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Preface

Discrete Mathematics is a branch of mathematics dealing with finite or

countable processes and elements. Graph theory is an area of Discrete

Mathematics which studies configurations (called graphs) consisting of a

set of nodes (called vertices) interconnecting by lines (called edges). From

humble beginnings and almost recreational type problems, Graph Theory

has found its calling in the modern world of complex systems and especially

of the computer. Graph Theory and its applications can be found not

only in other branches of mathematics, but also in scientific disciplines

such as engineering, computer science, operational research, management

sciences and the life sciences. Since computers require discrete formulation

of problems, Graph Theory has become an essential and powerful tool for

engineers and applied scientists, in particular, in the area of designing and

analyzing algorithms for various problems which range from designing the

itineraries for a shipping company to sequencing the human genome in life

sciences.

Graph Theory shows its versatility in the most surprising of areas. Re-

cently, the connectivity of the World Wide Web and the number of links

needed to move from one webpage to another has been remarkably mod-

eled with graphs, thus opening the real world internet connectivity to more

rigorous studies. These studies form part of research in the phenomena

of the property of a ‘small world’ even in huge systems such as the afore-

mentioned internet and global human relationships (in the so-called ‘Six

Degrees of Separation’).

This book is intended as a companion to our earlier book Introduction

to Graph Theory (World Scientific, 2006). Here, we present worked solu-

tions to all the exercise problems in the earlier book. Such a collection of

solutions is perhaps the first of its kind. We believe that the student who

v
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has worked on the problems himself will find the solutions presented here

useful as a check and as a model for rigorous mathematical writing. For

ease of reference, each chapter begins with a recapitulation of some of the

important concepts and/or formulae from the earlier book.

We would like to thank Prof. G.L. Chia, Ms Goh Chee Ying, Dr Jin

Xian’an, Dr Ng Kah Loon, Prof. Y.H. Peng, Dr Roger Poh, Ms Ren

Haizhen, Mr Soh Chin Ann, Dr Tan Ban Pin, Dr Tay Tiong Seng and

Dr K.L. Teo for reading the draft and for checking through the solutions -

any mistakes that remain are ours alone.

Koh Khee Meng

Dong Fengming

Tay Eng Guan

April 2007



N o t a t i o n

N = {1, 2, 3, · · · }

|S| = the number of elements in the finite set S
n
r


= the number of r-element subsets of an n-element set = n!

r! (n−r) !

B \ A = {x ∈ B|x /∈ A}, where A and B are sets
i∈I

Si = {x|x ∈ Si for some i ∈ I}, where Si is a set for each i ∈ I

(⇒) proof of the implication “if P then Q” in the statement “P if and

only if Q”

(⇐) proof of the implication “if Q then P” in the statement “P if and

only if Q”

[Necessity] proof of the implication “if P then Q” in the statement “P if and

only if Q”

[Sufficiency] proof of the implication “if Q then P” in the statement “P if and

only if Q”

In what follows, G and H are multigraphs, and D is a digraph.

V (G) : the vertex set of G

E(G) : the edge set of G

v(G) : the number of vertices in G or the order of G

e(G) : the number of edges in G or the size of G

V (D) : the vertex set of D

E(D) : the arc set of D

v(D) : the number of vertices in D or the order of D

e(D) : the number of arcs in D

x → y : x is adjacent to y, where x, y are vertices in D

x → y : x is not adjacent to y, where x, y are vertices in D

G ∼= H : G is isomorphic to H

A(G) : the adjacency matrix of G

vii
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G : the complement of G

[A] : the subgraph of G induced by A, where A ⊆ V (G)

e(A,B) : the number of edges in G having an end in A and the other in B,

where A,B ⊆ V (G)

G − v : the subgraph of G obtained by removing v and all edges incident

with v from G, where v ∈ V (G)

G − e : the subgraph of G obtained by removing e from G, where e ∈ E(G)

G − F : the subgraph of G obtained by removing all edges in F from G,

where F ⊆ E(G)

G − A : the subgraph of G obtained by removing each vertex in A together

with the edges incident with vertices in A from G, where A ⊆ V (G)

G + xy : the graph obtained by adding a new edge xy to G, where x, y ∈

V (G) and xy /∈ E(G)

NG (u) : the set of vertices v such that uv ∈ E(G)

N(u) = NG(u)

N(S) =


u∈S

N(u), where S ⊆ V (G)

d(v) = dG(v) : the degree of v in G, where v ∈ V (G)

id(v) : the indegree of v in D, where v ∈ V (D)

od(v) : the outdegree of v in D, where v ∈ V (D)

d(u, v) : the distance between u and v in G, where u, v ∈ V (G)

d(u, v) : the distance from u to v in D, where u, v ∈ V (D)

c(G) : the number of components in G

δ(G) : the minimum degree of G

∆(G) : the maximum degree of G

χ(G) : the chromatic number of G

α(G) : the independence number of G

G + H : the join of G and H

G ∪ H : the disjoint union of G and H

kG : the disjoint union of k copies of G

G(D) : the underlying graph of D

nG(H) : the number of subgraphs in G which are isomorphic to H

Cn : the cycle of order n

Kn : the complete graph of order n

Nn : the null graph or empty graph of order n

Pn : the path of order n

Wn : the wheel of order n, Wn = Cn−1 + K1

K(p, q) : the complete bipartite graph with a bipartition (X, Y ) such that

|X| = p and |Y | = q
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Chapter 1

Fu n d a m e nt a l C o n c e p t s a n d B a s i c

Results

Theorem 1.1 Let G be a multigraph with V (G) = {v1, v2, · · · , vn}. Then

n
i= 1

d(vi) = 2e(G).

Corollary 1.2 The number of odd vertices in any multigraph is even.

E x e r c i s e 1 . 2

Problem 1. Let G be the multigraph representing the following diagram.

Determine V (G), E(G), v(G) and e(G). Is G a simple graph?

x
y

zu v

w m

n

Solution. V (G) = {m, n, u, v, w, x, y, z},

E(G) = {my, uv, uw, ux, vx, vy, wx, xz, yz}, v(G) = 8 and e(G) = 9.

Yes, G is a simple graph. 

1
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Problem 2. Draw the graph G modeling the flight connectivity between

twelve capital cities with the following vertex set V (G) and edge set E(G).

V (G) = {Asuncion, Beijing, Canberra, Dili, Havana, Kuala Lumpur,

London, Nairobi, Phnom Penh, Singapore, Wellington,

Zagreb}.

E(G) = {Asuncion-Havana, Asuncion-London, Beijing-Canberra,

Beijing-Kuala Lumpur, Beijing-London, Beijing-Phnom Penh,

Beijing-Singapore, Canberra-Dili, Dili-Kuala Lumpur,

Dili-Singapore, Havana-London, Havana-Nairobi,

Kuala Lumpur-London, Kuala Lumpur-Phnom Penh,

Kuala Lumpur-Singapore, Kuala Lumpur-Wellington,

London-Nairobi, London-Singapore, London-Wellington,

London-Zagreb, Phnom Penh-Singapore, Singapore-Wellington}.

(Note that you may use ‘A’ to represent ‘Asuncion’, ‘B’ to represent

‘Beijing’, ‘C’ to represent ‘Canberra’, etc.)

Solution.

A

C

DS

Z

L





E x e rc i s e 1 . 2 3

Problem 3. Define a graph G such that V (G) = {2, 3, 4, 5, 11, 12, 13, 14}

and two vertices ‘s’ and ‘t’ are adjacent if and only if gcd{s, t} = 1. Draw

a diagram of G and find its size e(G).

Solution.

2

4

11

13

e(G) = 21. 

Problem 4. The diagram below is a map of the road system in a town.

Draw a multigraph to model the road system, using a vertex to represent a

junction and an edge to represent a road joining two junctions.

Diagram for Problem 4
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Solution.



Problem 5. Let G be a graph with V (G) = {1, 2, · · · , 10}, such that two

numbers ‘i’ and ‘j’ in V (G) are adjacent if and only if |i − j| ≤ 3. Draw

the graph G and determine e(G).

Solution.

2

4

1

67

9

10

e(G) = 24. 
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Problem 6. Let G be a graph with V (G) = {1, 2, · · · , 10}, such that two

numbers ‘i’ and ‘j’ in V (G) are adjacent if and only if i + j is a multiple

of 4. Draw the graph G and determine e(G).

Solution.

2

3

4

1

67

9

e(G) = 10. 

Problem 7. Let G be a graph with V (G) = {1, 2, · · · , 10}, such that two

numbers ‘i’ and ‘j’ in V (G) are adjacent if and only if i × j is a multiple

of 10. Draw the graph G and determine e(G).

Solution.

2

4

1

67

9

e(G) = 13. 
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Problem 8. Find the adjacency matrix of the following graph G.

v1

v3 v4

v2 5v

Solution. ⎛
⎜⎜⎜⎜⎝

0 1 1 1 1

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

1 0 0 1 0

⎞
⎟⎟⎟⎟⎠



Problem 9. The adjacency matrix of a multigraph G is shown below:⎛
⎜⎜⎜⎜⎝

0 1 0 2 3

1 0 1 2 2

0 1 0 1 1

2 2 1 0 1

3 2 1 1 0

⎞
⎟⎟⎟⎟⎠

Draw a diagram of G.

Solution.

v1

v4 v3

v5 2v
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Problem 10. Four teams of three specialist soldiers each (a scout, a sig-

naler and a sniper) are to be sent into enemy territory. However, some of

the soldiers cannot work well with some others. The following table shows

the soldiers, their specializations and who they cannot work with.

Soldier Specialization Cannot cooperate with

1 Scout 5, 7, 10

2 Scout −

3 Scout 5, 6, 8, 9, 11

4 Scout 8, 12

5 Signaler 1, 3, 9

6 Signaler 3, 10, 11

7 Signaler 1, 9, 12

8 Signaler 3, 4, 9, 10

9 Sniper 3, 5, 7, 8

10 Sniper 1, 6, 8

11 Sniper 3, 6

12 Sniper 4, 7

(i) Draw a multigraph to model the situation so that we may see how to

form 3-man teams such that each specialization is represented and every

member of the team can work with every other. State clearly what the

vertices represent and under what condition(s) two vertices are joined by

an edge.

(ii) Can you form four 3-man teams such that each specialization is repre-

sented and all members of the team can work with one another?

Solution. (i) Vertex i represents soldier i. Two vertices are joined by an

edge if the two corresponding soldiers can cooperate with each other and

are not of the same specialization.

9

10

1

1 5

6

7

8

3 4
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(ii) From the graph, one possible arrangement is

{1, 6, 9}, {2, 8, 12}, {3, 7, 10}, {4, 5, 11}.



E x e r c i s e 1 . 3

Problem 1. In the following multigraph G, find

(i) the size of G,

(ii) the degree of each vertex,

(iii) the sum


v∈V (G)

d(v),

(iv) the number of odd vertices,

(v) ∆(G), and

(vi) δ(G).

a

b

c x

y

z

w

e g

Is your answer for (iii) double your answer for (i)? Is your answer for

(iv) an even number?

Solution. (i) e(G) = 13.

(ii) d(a) = 5, d(b) = 3, d(c) = 5, d(e) = 6, d(g) = 2, d(w) = 0, d(x) = 1,

d(y) = 3, d(z) = 1.

(iii)


v∈V (G)

d(v) = 5 + 3 + 5 + 6 + 2 + 0 + 1 + 3 + 1 = 26.

(iv) There are 6 odd vertices (namely, a, b, c, x, y, z).

(v) ∆(G) = 6.

(vi) δ(G) = 0.
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Yes, the answer for (iii) is double that for (i); and the answer for (iv) is

an even number. 

Problem 2. Construct a multigraph of order 6 and size 7 in which every

vertex is odd.

Solution. A required multigraph is shown below.



Problem 3. Let G be a multigraph with V (G) = {v1, v2, · · · , vn}. Prove

that the sum of all the entries in the ith row of the adjacency matrix A(G)

is the degree of the vertex vi for each i = 1, 2, · · · , n.

Solution. Given i, where 1 ≤ i ≤ n, the sum of the entries in the ith

row of A(G) is the sum of the numbers of edges joining vi to vj, where

j = 1, 2, · · · , n, which is thus the degree of vi in G. 

Problem 4. Let G be a graph of order 8 and size 15 in which each vertex

is of degree 3 or 5. How many vertices of degree 5 does G have? Construct

one such graph G.

Solution. Let x and y be the number of vertices in G of degree 3 and 5

respectively. Then x + y = 8 and 3x + 5y = 2 × 15 = 30. Solving the

equations yields (x, y) = (5, 3).

An example of G is shown below.
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Problem 5. Let H be a graph of order 10 such that 3 ≤ d(v) ≤ 5 for each

vertex v in H. Not every vertex is even. No two odd vertices are of the

same degree. What is the size of H?

Solution. Let x, y and z be the number of vertices in H of degree 3, 4 and

5 respectively. Since not every vertex is even, x + z ≥ 2. As no two odd

vertices are of the same degree, x = z = 1. Thus, (x, y, z) = (1, 8, 1), and

so e(H) = (3 + 4 × 8 + 5)/2 = 20. 

Problem 6. Let G be a graph of order 14 and size 30 in which every vertex

is of degree 4 or 5. How many vertices of degree 5 does G have? Construct

one such graph G.

Solution. Let x and y be the number of vertices in G of degree 4 and 5

respectively. Then x + y = 14 and 4x + 5y = 2 × 30 = 60. Solving the

equations yields (x, y) = (10, 4). Thus, G has 4 vertices of degree 5.

An example of G is shown below.



Problem 7. Does there exist a multigraph G of order 8 such that δ(G) = 0

while ∆(G) = 7? What if ‘multigraph G’ is replaced by ‘graph G’?

Solution. ‘Yes’ for multigraph G. An example is shown below.
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‘No’ for graph G. Since if there is a vertex v in G with d(v) = 7, then v is

adjacent to the remaining 7 vertices in G, and so δ(G) ≥ 1. 

Problem 8. Characterize the 1-regular graphs.

Solution. A graph is 1-regular if and only if it is of even order and is the

disjoint union of some K2’s (see below).

...

...



Problem 9. Draw all regular graphs of order n, where 2 ≤ n ≤ 6.

Solution. All null graphs Nn and complete graphs Kn, where 2 ≤ n ≤ 6,

are candidates. The remaining ones are shown below.

n

n

n

= 4 :

= 5 :

= 6 :
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Problem 10.

(i) Does there exist a graph G of order 5 such that δ(G) = 1 and ∆(G) =

4?

(ii) Does there exist a graph G of order 5 which has two vertices of degree

4 and δ(G) = 1?

Solution. (i) Yes. An example is shown below.

(ii) No. Suppose G were such a graph having the vertices u and v of degree

4. As v(G) = 5, each of the other vertices must be adjacent to both u and

v, and so δ(G) ≥ 2. 

Problem 11. Let H be a graph of order 8 and size 13 with δ(H) = 2 and

∆(H) = 4. Denote by ni the number of vertices in H of degree i, where

i = 2, 3, 4. Assume that n3 ≥ 1. Find all possible answers for (n2, n3, n4).

For each of your answers, construct a corresponding graph.

Solution. We have n2 + n3 + n4 = 8 and by Theorem 1.1,

2n2 + 3n 3 + 4n 4 = 26.

It follows from the above that n3 + 2n4 = 10. As n3 ≥ 1, by Corollary 1.2,

n3 = 2, 4 or 6.

When n3 = 2, we have (n2, n 3, n4 ) = (2, 2, 4), and a corresponding

graph is shown below:

When n3 = 4, we have (n2 , n3, n 4) = (1, 4, 3), and a corresponding graph

is shown below:



E x e rc i s e 1 . 3 13

When n3 = 6, we have n4 = 2, and so n2 = 0, which is not possible as

δ(H) = 2. 

Problem 12. Suppose G is a k-regular graph of order n and size m, where

k ≥ 0, m ≥ 0 and n ≥ 1. Find a relation linking k, n and m. Justify your

answer.

Solution. By Theorem 1.1, kn =


x∈V (G)

d(x) = 2m. 

Problem 13. Does there exist a 3-regular graph with eight vertices? Does

there exist a 3-regular graph with nine vertices?

Solution. Yes, a 3-regular graph of order 8 is shown below.

No, there does not exist any 3-regular graph of order 9 by Corollary 1.2 (or

the result of Problem 12). 

Problem 14. Construct a cubic (i.e., 3-regular) graph of order 12. What

is its size? Does there exist a cubic graph of order 11? Why?

Solution. A cubic graph of order 12 is shown below.
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Its size is (3 × 12)/2 = 18 (see Problem 12).

By Corollary 1.2 (or the result of Problem 12), there does not exist any

cubic graph of order 11. 

Problem 15. Let H be a k-regular graph of order n. If e(H) = 10, find

all possible values for k and n; and for each case, construct one such graph

H.

Solution. By the result of Problem 12, kn = 20. As k ≤ n − 1,

(k, n) = (1, 20), (2, 10) or (4, 5).

An example of H for each case is shown below:



Problem 16. (+) Let G be a 3-regular graph with e(G) = 2v(G) − 3.

Determine the values of v(G) and e(G). Construct all such graphs G.

Solution. Let n = v(G) and m = e(G). By the assumption and Theorem

1.1, we have: 3n = 2m = 2(2n − 3), which implies that (n, m) = (6, 9).

There are only two such G as shown below.
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Problem 17. Find all integers n such that 100 ≤ e(Kn) ≤ 200.

Solution. As e(Kn) = n(n− 1)/2, we have 200 ≤ n(n −1) ≤ 400. It follows

that 15 ≤ n ≤ 20. 

Problem 18. (+) Let G be a multigraph of order 13 in which each vertex

is of degree 7 or 8. Show that G contains at least eight vertices of degree

7 or at least seven vertices of degree 8.

Solution. Suppose that the conclusion is false. Then G contains at most

seven vertices of degree 7 and at most six vertices of degree 8. Since

v(G) = 13, G contains exactly seven vertices of degree 7. This is, however,

impossible by Corollary 1.2. 

Problem 19. (+) Let G be a graph of order n in which there exist no three

vertices u, v and w such that uv, vw and wu are all edges in G. Show that

n ≥ δ(G) + ∆(G).

Solution. Let x be a vertex in G such that d(x) = ∆(G). Pick a vertex y

in N(x). By assumption,

n ≥ 1 + ∆(G) + (d(y) − 1) = ∆(G) + d(y) ≥ ∆(G) + δ(G).



Problem 20. (+) There were n (≥ 2) persons at a party and, as usually

happens, some shook hands with others. No one shook hands with the same

person more than once. Show that there are at least two persons in the

party who had the same number of handshakes.

Solution. Model the situation as a graph G of order n, where the vertices

are the persons, and two vertices are adjacent if and only if the two corre-

sponding persons shook hands. By assumption, G is a simple graph. The

problem is equivalent to showing that there exist two vertices u, v in G such

that d(u) = d(v).

It is clear that 0 ≤ d(x) ≤ n − 1 for each vertex x in G. If the above

statement is false, then there exist two vertices y and z in G such that

d(y) = 0 and d(z) = n − 1, which however is impossible. 
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Problem 21. The preceding problem says that in any graph of order n ≥ 2,

there exist two vertices having the same degree. Is the result still valid for

multigraphs?

Solution. No! A multigraph in which no two vertices have the same degree

is shown below.



Problem 22. (+) Mr. and Mrs. Samy attended an exclusive party where

in addition to themselves, there were only another 3 couples. As usually

happens, some shook hands with others. No one shook hands with the same

person more than once and no one shook hands with his/her spouse. After

all the handshakes had been done, Mr. Samy asked each person, including

his wife, how many hands he/she had shaken. To everyone’s amusement,

each one gave a different answer. How many hands did Mrs. Samy shake?

Solution. Model the situation by a graph G with 8 vertices for 8 persons,

and defining ‘adjacency’ for ‘handshaking’. By assumption, 0 ≤ d(v) ≤ 6

for each v in G, and each of ‘0, 1, 2, 3, 4, 5, 6’ is the degree of some vertex.

Let v1 be such that d(v1 ) = 6 and N(v1) = {v2, v3 , · · · , v7 }, say. Then

d(v8 ) = 0, and v1 and v8 are spouses (see below).

v1

v

v

v

v

v

v v

2

3

4 5

6

7

8

Let v2 be such that d(v2 ) = 5 and N (v2) = {v1 , v3, v4, v5, v6}, say. Then

d(v7 ) = 1 and v2 and v 7 are spouses (see below).
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v1

v

v

v

v

v

v v

2

3

4 5

6

7

8

Let v3 be such that d(v3 ) = 4 and N(v3) = {v1, v2, v4, v5}, say. Then

d(v6 ) = 2 and v3 and v 6 are spouses (see below).

v1

v

v

v

v

v

v v

2

3

4 5

6

7

8

It follows that d(v4) = d(v5) = 3, and v 4 and v5 are spouses.

As Mr Samy received different answers, either v4 or v5 represents Mrs

Samy. Thus Mrs Samy shook hands with three others. 

Problem 23. (+) In the preceding problem, there were four couples alto-

gether in a party. Solve the general problem where ‘four couples’ is replaced

by ‘n(≥ 2) couples’.

Solution. Using a similar argument as shown in the solution of Problem

22, it can be shown that the answer is ‘n − 1’ for this general problem. 

Problem 24. (∗) There are n ≥ 2 distinct points in the plane such that

the distance between any 2 points is at least one. Prove that there are at

most 3n pairs of these points at distance exactly one.

Solution. Let p1, p2, · · · , pn be the n given points in the plane. Form a

graph G with V (G) = {p1, p2, · · · , pn} in which two vertices are adjacent
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if their distance in the plane is ‘1’. What is the largest possible value that

each d(pi) can have? By the assumption that the distance between any 2

points is at least one, it follows that d(pi) ≤ 6 (see the figure below).

60o

ip

Thus, by Theorem 1.1,

2e(G) =

n
i= 1

d(pi) ≤ 6n,

and so e(G) ≤ 3n, as was to be shown. 

E x e r c i s e 1 . 4

Problem 1. Consider the following graph H.

u

v x

y

z

e1

e

e

e

e9

e

e

e7

e2

3

4

5

6

8

w

(a) Which of the following sequences represents a u − z walk in H?

(i) ue2we5xe7z

(ii) ue1ve5ye8z

(iii) ue1ve3we3ve4xe7z

(b) Find a u − z trail in H that is not a path.

(c) Find all u − z paths in H which pass through e9 .
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Solution. (a) Only the sequence (iii) represents a u − z walk in H.

(b) The sequence “uvxywxz” is a u − z trail that is not a path.

(c) All such paths are: uvwxz, uvwxyz, uwxz, uwxyz, uvxwyz. 

Problem 2. Consider the following multigraph G:

2

u w

t

v

x y z

ee

(a) Find d(t, v), d(t, y), d(x, w) and d(u, z).

(b) For k = 2, 3, 4, 5, 6, 7, find a cycle of length k in G.

(c) Find a circuit of length 6 in G that is not a cycle.

(d) Find a circuit of length 8 in G that does not contain t.

(e) Find a circuit of length 9 in G that contains t and v.

Solution.

(a) d(t, v) = 2, d(t, y) = 3, d(x, w) = 2 and d(u, z) = 3.

(b) ve1ye2v is a cycle of length 2,

uvxu is a cycle of length 3,

utwvu is a cycle of length 4,

xvwzyx is a cycle of length 5,

uvwzyxu is a cycle of length 6 and

uvxyzwtu is a cycle of length 7.

(c) tuve1ye2vwt is a circuit of length 6 that is not a cycle.

(d) uvwzye1ve2 yxu is a circuit of length 8 that does not contain ‘t’.

(e) utwzye1ve2yxvu is a circuit of length 9 that contains both ‘t’ and ‘v’. 
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Problem 3. Is the following graph H disconnected? If it is so, find its

number of components.

Solution. Yes, H is disconnected, and it has 5 components. 

Problem 4. Let G be a graph with V (G) = {1, 2, · · · , n}, where n ≥ 5, such

that two numbers i and j in V (G) are adjacent if and only if |i − j| = 5.

How many components does G have?

Solution. By definition, the graph G is depicted as follows:

...

...

...

...

...

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

Thus, G has 5 components. 
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Problem 5. (+) Show that any u − v walk in a graph contains a u − v

path.

Solution. Let P be a u − v walk. We may assume that u = v. If no

vertex in P is repeated, then P is a path, and we are through. Assume

that a vertex x is repeated in P as shown below (it is possible that x = u

or x = v):

P : u · · ·  
(a)

x · · · x  
(b)

· · · v 
(c)

.

Then P can be cut short by deleting the section (b) internally resulting in

a shorter u − v walk P  as shown below:

P  : u · · ·  
(a)

x · · · v 
(c)

.

This procedure is repeatedly applied until no vertex in the resulting u − v

walk is repeated, and in this case, the resulting u − v walk is a desired path.



Problem 6. (+) Show that any circuit in a graph contains a cycle.

Solution. Let Q be a circuit of length at least 2. If no vertex in Q is

repeated, then Q is a cycle, and we are through. Assume that a vertex x

is repeated in Q as shown below:

P : u · · ·  
(a)

x · · · x  
(b)

· · · u 
(c)

.

Then Q can be cut short by deleting the section (b) internally resulting

Q  : u · · ·  
(a)

x · · · u 
(c)

.

This procedure is repeatedly applied until no vertex in the resulting

circuit is repeated, and in this case, the resulting circuit is a desired cycle.



in a shorter circuit Q0 as shown below:
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Problem 7. (+) Show that any graph G with δ(G) ≥ k contains a path of

length k.

Solution. Let P = v0v 1 · · · vr be a longest path (of length r) in G. By

assumption, d(v0) ≥ k, and so v0 has at least k neighbors. Note that all

these neighbors must be contained in P ; for if there is a neighbor (say, w)

of v0 not in P , then we would have a path of the form: wv0 v1 · · · vr , which

is of length r + 1, contradicting the fact that P is a longest path. Thus,

N(v0 ) ⊆ {v1 , · · · , vr}, and so r ≥ |N (v0)| = d(v0 ) ≥ k, as required. 

Problem 8. (+) Let G be a graph of order n ≥ 2 such that δ(G) ≥ 1
2 (n−1).

Show that d(u, v) ≤ 2 for any two vertices u, v in G.

Solution. Let u, v be any two distinct vertices u, v in G. If u and v are

adjacent, then d(u, v) = 1. Assume that u and v are not adjacent. Consider

N(u) and N(v). We claim that N (u) ∩ N(v) = ∅.

Suppose that N (u) ∩ N(v) = ∅. Then, as {u, v} ∪ N (u) ∪ N(v) ⊆ V (G)

and δ(G) ≥ (n − 1)/2, we have:

n ≥ 2 + |N(u)| + |N(v)| = 2 + d(u) + d(v) ≥ 2 + 2δ(G) ≥ n + 1,

which is impossible.

Thus, N (u) ∩ N (v) = ∅, as claimed. Let w ∈ N(u) ∩ N(v). Then uwv

is a u − v path of length 2, and so d(u, v) = 2.

We thus conclude that d(u, v) ≤ 2, for any two vertices u,v in G. 

Problem 9. (+) Let G be a graph of order n and size m such that m >
n−1

2


. Show that G is connected.

Solution. Suppose on the contrary that G is disconnected. Let G1 be a

component of order k(1 ≤ k ≤ n − 1) in G, and let G2 be the remaining

part of G, which is of order n − k. Then
n − 1

2


< m = e(G1) + e(G2 ) ≤


k

2


+


n − k

2


,

which implies that

(n − 1)(n − 2) < k(k − 1) + (n − k)(n − k − 1)

or (k − (n − 1))(k − 1) > 0. As k ≥ 1, it follows that k − (n − 1) > 0, i.e.

k > n − 1, a contradiction.

We thus conclude that G is connected if the condition holds. 
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Problem 10. For n ≥ 2, construct a disconnected graph of order n and

size

n−1

2


.

Solution. The graph with 2 components, namely, K1 and Kn−1, is the

candidate. 

Problem 11. Let G be a disconnected graph of order 5. What is the largest

possible value for e(G)? If G is a disconnected graph of order n ≥ 2, what

is the largest possible value for e(G)? Construct one such extremal graph

of order n.

Solution. If G is a disconnected graph of order n ≥ 2, the largest possible

value for e(G) is

n−1

2


.

To justify this, we note that the disconnected graph K1 ∪ Kn−1 has

order n and its size equal to


n−1
2


, and by Problem 9 above, there is no

disconnected graph of order n having its size greater than

n−1

2


. 

Problem 12. (+) Let G be a graph of order n ≥ 2 and u, v be two non-

adjacent vertices in G such that d(u) + d(v) ≥ n + r − 2. Show that u and

v have at least r common

Solution. Our aim is to show that |N(u) ∩ N (v)| ≥ r. By the Principle of

Inclusion and Exclusion, we have

|N(u) ∩ N(v)| = |N(u)| + |N(v)| − |N (u) ∪ N(v)|

= d(u) + d(v) − |N(u) ∪ N(v)|.

As u and v are non-adjacent, N(u) ∪ N (v) ⊆ V (G)\ {u,v}. Thus,

|N(u) ∩ N(v)| = d(u) + d(v) − |N(u) ∪ N(v)|

≥ d(u) + d(v) − |V (G)\ {u, v} |

≥ n + r − 2 − (n − 2) (by assumption)

= r,

Problem 13. (+) Let G be a connected graph that is not complete. Show

that there exist three vertices x, y, z in G such that x and y, y and z are

adjacent, but x and z are not adjacent in G.

as was shown.

neighbours.
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Solution. As G is not complete, let u and v be two non-adjacent vertices

in G. As G is connected, let uab · · · v be a shortest u − v path in G (note

that it is possible that b = v). Now let x = u, y = a and z = b. As uab · · · v

is a shortest u − v path, it follows that x and z are not adjacent in G. 

Problem 14. (+) Let G be a graph of order n and size m such that ∆(G) =

n − 2 and d(u,v) ≤ 2 for any two vertices u, v in G. Show that m ≥ 2n − 4.

Solution. Let x be a vertex in G such that d(x) = ∆(G) = n − 2 with

N(x) = {y1, y2, · · · , yn−2 } as shown below:

1

x

z

y y y2 n-2

Clearly, the (n − 2) xyi’s are edges in G. As G is of order n, let z be the

remaining vertex in G. Note that z and x are not adjacent.

Since d(z, x) = 2 by assumption, z must be adjacent to some yi ’s. With-

out loss of generality, we may assume that z is adjacent to y1 , y2, · · · , yk,

where 1 ≤ k ≤ n − 2 and k is the largest index such that z is adjacent to

yk .

Now, for each j (if any) with k + 1 ≤ j ≤ n − 2, as d(z, yj) = 2 (z and

yj are not adjacent now), there must be a new edge joining yj with some

yi in {y1, y2, · · · , yk}.

Summing up, the number of edges in G is at least

(n − 2) + k + ((n − 2) − k) = 2n − 4.

That is, m ≥ 2(n − 2), as required. 

Problem 15. Let G be a graph such that N (x) ∪ N (y) = V (G) for every

pair of vertices x, y in G. What can be said of G?

Solution. The graph G must be a complete graph. We justify it as follows.

Suppose that G is not complete. Then there exist two non-adjacent vertices

u and v in G. In this case, u is not contained in N(u)∪N (v); which, however,

contradicts the assumption that N(u) ∪ N(v) = V (G). 
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Problem 16. (+) Let H be a graph of order n ≥ 2. Suppose that H

contains two distinct vertices u, v such that (i) N(u) ∪ N (v) = V (H) and

(ii) N (u) ∩ N(v) is non-empty.

What is the least possible value of e(H)?

Solution. The least possible size of H is ‘n’ (note that the given conditions

imply that n ≥ 3). The justification is as follows.

Firstly, the following graph of order n satisfying the given conditions

contains exactly ‘n’ edges:

w

u v

n -3 vertices

Now we show that every graph H satisfying the given conditions must have

at least n edges.

The vertices u and v must be adjacent; for if not, then u is not in

N(u) ∪ N(v), and so N (u) ∪ N(v) = V (H), violating the condition (i).

By (ii), there exists a vertex, say w, in N(u)∩N (v), and so w is adjacent

to both u and v.

By (i) again, each of the (n − 3) vertices other than u, v and w must be

adjacent to either u or v.

Summing up, H contains at least 1+2+(n− 3) edges; that is, e(H) ≥ n,

as required. 

Problem 17. Suppose G is a disconnected graph which contains exactly

two odd vertices u and v. Must u and v be in the same component of G?

Why?

Solution. Yes, the two odd vertices u and v must be in the same component

of G. Otherwise, let H be the component of G containing u but not v; then

H is a graph containing exactly one odd vertex, contradicting Corollary

1.2. 
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Problem 18. (∗) Show that any two longest paths in a connected graph

have a vertex in common.

Solution. Let P and Q be two longest paths (of length k each, say) in a

connected graph G, and suppose on the contrary that they have no vertex

in common. As G is connected, there exist a vertex u in P and a vertex v

in Q which are joined by a path R, say. Without loss of generality, we may

assume (see the figure below) that (i) this u − v path R contains no vertex

in P or Q other than u and v, (ii) the length of the subpath (a) in P is

greater than or equal to that of (b) and (iii) the length of the subpath (d)

in Q is greater than or equal to that of (c).

......

......

...

P:

Q:

R

u

v

a(  ) b(  )

c(  ) d(  )

With this, however, we observe that the path consisting of the subpath (a)

in P , the u − v path R and the subpath (d) in Q is of length greater than

k, a contradiction. 

Problem 19. (+) Show that a graph G is connected if and only if for any

partition of V (G) into two non-empty sets A and B, there is an edge in G

joining a vertex in A and a vertex in B.

Solution. [Necessity] Suppose on the contrary that there is a partition

(A,B) of V (G) for which there is no edge in G joining a vertex in A and a

vertex in B. It is then clear that no vertex in A can be joined to any vertex

in B by a path. Thus G is disconnected, a contradiction.

[Sufficiency] Suppose on the contrary that G is disconnected. Let H be a

component of G and R the remaining part of G. Then (V (H), V (R)) forms

a partition of V (G) for which there is no edge in G joining a vertex in V (H)

and a vertex in V (R) (note that both V (H) and V (R) are non-empty), a

contradiction. 
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Problem 20. (∗) Suppose G is a connected graph with k edges. Prove that

it is possible to label the edges 1, 2, · · · , k in such a way that at each vertex

which belongs to two or more edges (i.e. which is of degree at least two),

the greatest common divisor of the integers labeling those edges is 1 (32nd

IMO, 1991/4). (Recall that the greatest common divisor of the positive

integers x1, x2, · · · , xn is the maximum positive integer that divides each of

x1, x2, · · · , xn .)

Proo f. Starting at an arbitrary vertex, say v0 , in G, we walk along dis-

tinct edges in G to produce a maximal trail (no edge is repeated), say of

length s, and label the edges along the trail 1, 2, · · · , s (see the example

below).

v0
1

2

3

4

If there are edges not yet labeled, as G is connected, one of them is

incident with a vertex, say vr, which has been visited. Starting at vr, we

walk along distinct unlabelled edges in G to produce another maximal trail,

say of length p, and label the edges along the trail s + 1, s + 2, · · · , s + p

(see the diagram below).

v0
1

2

3

4

5

6

7

We repeat the above procedure until all edges in G are labeled (see the

diagram below).



28 Introducti on to Graph T heory , S olutions Manual

v0
1

2

3

4

5

6

7 8

9

10

We now show that for each vertex v with d(v) ≥ 2 in G, the gcd of the

labels of the edges incident with v is 1. If v = v0, the situation is clear

as the first edge incident with it is labeled 1. Assume that v = v0. Let e

be the edge with which we first visit v via a trail. As d(v) ≥ 2, along the

same trail, we leave v with a new edge, say f . By the above procedure,

the labels of e and f are consecutive numbers, say t and t + 1, and so the

corresponding gcd (that is, gcd{t, t + 1, · · · }) is 1. 



Chapter 2

I s o m o r p h i s m s , S u b g r a p h s a n d t h e

Comple ment of a Graph

Result (1). If G ∼= H, then v(G) = v(H) and e(G) = e(H).

Result (2). If G ∼= H, then G and H have the same degree sequence, in

non-increasing order.

Result (3). Let G and H be graphs such that G ∼= H. Then for any graph

R, nG(R) = nH (R).

Result (4). For any graph G of order n, e(G) + e(G) = e(Kn) =

n

2


.

Result (5). Let G be a graph. If G is disconnected, then G is connected.

Result (6). Let G be a self-complementary graph. Then

(i) G is connected and

(ii) v(G) = 4k or v(G) = 4k + 1 for some integer k.

29
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E x e r c i s e 2 . 2

Problem 1. Draw all non-isomorphic graphs of order n with 1 ≤ n ≤ 4.

Solution.

= 1

= 2

n

n

n

n

= 3

= 4



Problem 2.

(i) Draw all non-isomorphic graphs of order 5 and size 3.

(ii) Draw all non-isomorphic graphs of order 5 and size 7.

Solution. (i)

(ii)
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Determine if the following two graphs are isomorphic.

degree sequences (4, 4, 4, 4, 4, 2, 2) and (4,4, 4, 3, 3, 3, 3) are

2

4 4

2

44

4
3

4 4

343
3



Problem 4. Determine if the following two graphs are isomorphic.

Solution. Yes. As shown below, let

V (G) = {1, 2, · · · , 10} and V (H) = {1 , 2, · · · , 10}.

It can be checked that the mapping f : V (G) −→ V (H), such that f(i) = i

for all i = 1, 2, · · · , 10, is an isomorphism from G to H.
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1

2

34

5
6

7
89

10
1'

2'5'

6'

3'4'

8' 9'

10' 7'G: H:



Problem 5. The following two graphs G and H are isomorphic. List all

the isomorphisms from G to H.

H:G: b

d

f

e

a

x

u v

y

z

w

c

Solution. There are six isomorphisms gi, i = 1, 2, · · · , 6, from G to H :

gi(a) = u, g i(b) = v, gi(f) = z, i = 1, 2, · · · , 6,

g1 (c) = w,g1 (d) = x, g1 (e) = y,

g2 (c) = w,g2 (d) = y, g2 (e) = x,

g3 (c) = x, g3 (d) = w,g3 (e) = y,

g4 (c) = x, g4 (d) = y, g4(e) = w,

g5 (c) = y, g5(d) = w, g5 (e) = x,

g6 (c) = y, g6(d) = x, g6(e) = w.
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Problem 6. (∗) Prove, by definition of an isomorphism, that the relation

‘ ∼=’ is reflexive, symmetric and transitive among the family of graphs; that

is, the properties listed in Question 2.1.3.

Solution. (i) G ∼= G since the identity mapping is one-to-one and onto,

and clearly preserves adjacency.

(ii) Suppose G ∼= H. Then there exists a one-to-one and onto mapping

f from V (G) to V (H) which preserves adjacency. Clearly, f−1 is a one-

to-one and onto mapping from V (H) to V (G) which preserves adjacency.

Thus, H ∼= G.

(iii) Suppose G ∼= H and H ∼= J . Then there exist one-to-one and

onto mappings, f from V (G) to V (H) and g from V (H) to V (J), which

preserve adjacency. Now, the composite mapping g ◦ f is a one-to-one and

onto mapping from V (G) to V (J) which preserves adjacency. Thus, G ∼= J .



Problem 7. Let f be an isomorphism from a graph G to a graph H and

w a vertex in G. Show that the degree of w in G is equal to the degree of

f(w) in H .

Solution. Let the set of vertices adjacent to w in G be {v1, v2 , · · · , vk }.

Then the set of vertices adjacent to f (w) in H is {f(v1), f(v2 ), · · · , f(vk)}.

Hence

d(w) = |{v1, v2 , · · · , vk } | = k = |{f (v1), f(v2), · · · , f(vk)} | = d(f (w)).



Problem 8. A given graph G of order 5 contains at least two vertices of

degree 4.

(i) Assume that not all vertices in G are even. Find all possible degree

sequences of G, in non-increasing order; and for each case, construct

all such G which are not isomorphic.

(ii) Assume that all vertices in G are even. Find all possible degree se-

quences of G, in non-increasing order; and for each case, construct all

such G which are not isomorphic.

Solution. (i) Since there are at least two vertices of degree 4, the other

three vertices must have degree at least 2. Since not all vertices are even
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and we know that there must be an even number of odd vertices, there are

exactly two vertices of degree 3.

Thus, the possible degree sequences are (4, 4, 4, 3, 3) and (4, 4, 3, 3, 2). Their

graphs are shown below.

(4, 4, 4, 3, 3) (4, 4, 3, 3, 2)

(ii) Since there are at least two vertices of degree 4, the other three

vertices must have degree at least 2. Since all vertices are even, if there

is among these three vertices, one of degree 4, then all the vertices are of

degree 4. Otherwise, all the other three vertices are of degree 2.

Thus, the possible degree sequences are (4, 4, 4, 4, 4) and (4, 4, 2, 2, 2). Their

graphs are shown below.

(4, 4, 4, 4, 4) (4, 4, 2, 2, 2)



Problem 9. Let H be a graph of order 5 which contains more odd vertices

than even. Find all possible degree sequences of H in non-increasing order;

and for each case, construct all such H which are not isomorphic.

Solution. The possible degree sequences are

(1, 1, 1, 1, 0), (2, 1, 1, 1, 1), (3, 1, 1, 1, 0), (3, 2, 1, 1, 1), (3, 3, 2, 1, 1),

(3, 3, 3, 2, 1), (3, 3, 3, 3, 0), (3, 3, 3, 3,2), (4, 1, 1, 1, 1) and (4, 3, 3, 3, 3).
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(1, 1, 1, 1, 0) (2, 1, 1, 1, 1)

(3, 3, 3, 3, 0) (3, 3, 3, 3, 2)

(3, 1, 1, 1, 0)

(4, 3, 3, 3, 3)(4, 1, 1, 1, 1)

(3,2,1,1,1)

(3, 3, 2, 1, 1)

(3, 3, 3, 2, 1)



Problem 10. Construct two non-isomorphic 3-regular graphs of order 10.

Solution. The following two 3-regular graphs of order 10 are not isomor-

phic:

G H

Note that H contains a C3 while G does not. 

Problem 11. Let G and H be two isomorphic graphs. Show that

(i) if G is connected, then H is connected;

(ii) if G is disconnected, then H is disconnected, and they have the same

number of components.
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Solution. (i) Let u and v be any two vertices in H . Let f be an isomor-

phism from H to G. Since G is connected, there is in G an f(u)− f(v) path,

say, f (u)f(u1)f(u 2) · · · f(uk )f(v) where ui ∈ V (H) for all i = 1, 2, · · · , k.

Then uu1u2 · · · ukv is a path in H. Thus, H is connected.

(ii) By (i), if H is connected, then G is connected. Thus by the contra-

positive statement, if G is disconnected, then H is disconnected.

Suppose that G and H have different numbers of components, say G has

g components and H has less than g components. Let G1, G2 , · · · , Gg be the

components of G. Select vertices vi, i = 1, 2, · · · , g, such that vi ∈ V (Gi).

Let f be an isomorphism from G to H.

Suppose, for some i, j with 1 ≤ i < j ≤ g, f(vi) and f(vj ) are in the

same component of H . Then there exists in H a f (vi) − f(vj) path

f(u0)f(u1) · · · f (ut)

for some vertices u0 , u1, u2, · · · , ut ∈ V (G). where u0 = vi, ut = vj and

t ≥ 1. However, u0 u1 · · · ut is a vi −vj path in G, a contradiction. Thus, any

two of the g vertices f(v1 ), f(v2 ), · · · , f(vg) are not in the same component

of H, implying that H contains at least g components, a contradiction. 

Problem 12. Prove that if the adjacency matrices of two graphs G and H

are equal, then the graphs G and H are isomorphic.

Solution. Suppose the adjacency matrices of two graphs G and H are

equal. Let the ordering of the vertices in the adjacency matrices of G and

H be (u1, u2 , · · · , un) and (v1 , v2, · · · , vn) respectively. Let f be a mapping

from V (G) to V (H) such that f (ui) = vi for all i = 1, 2, · · · , n. Clearly, f

is one-to-one and onto. Now,

ui and uj in G are adjacent

⇐⇒ the (i, j)-entry of the adjacency matrix of G is 1

⇐⇒ the (i, j)-entry of the adjacency matrix of H is 1

⇐⇒ vi and v j in H are adjacent.

Thus, f preserves adjacency and so the graphs G and H are isomorphic. 

Problem 13. Using adjacency matrices, determine which, if any, of the

following three graphs are isomorphic.



E x e rc i s e 2 . 2 37

Solution. Let us label the vertices of the three graphs (which we shall

name A, B and C) as in the figure below.

A B C

a b

c
1

2

3

4

5

a

aa

a

a 11
2

2

3

3

44 5

5

6

6

6

b b b

bb

c

c

c

c

c

Adjacency matrices for the three graphs are shown below.

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

1 1 0 1 0 1

1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1

1 0 0 1 1 1

1 0 0 0 1 1

0 1 0 0 1 1

0 1 1 1 0 0

1 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A1 B1 C1

We now rearrange the rows (and correspondingly the columns) of

A1 such that the vertices in the new matrix A2 are now in the order

a2 , a4, a6 , a5, a1, a3.

a2 a4 a6 a5 a1 a3

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Since A2 = B1 , we have that A ∼= B.

We observe that three vertices in B, namely b1 , b2, b3, are such that no two

of them are adjacent to each other. A systematic check of the vertices of C

will show that no such three vertices exist. Thus, C ∼= B. 

E x e r c i s e 2 . 3

Problem 1. Let G be the graph given below:

a

b
c

u

v

x
y

(i) Draw the subgraphs [{b, v, y}], [{a, b, c, v, x}] and [{a, b, u, v, x}] of G.
(ii) Draw the subgraphs G − {ab, cv, xy}, G − c and G − {b, v} of G.

(iii) Find E([{a, b, c, x}]).
(iv) Draw the subgraph G − E([{a, b, c, x}]) of G.
(v) Draw a spanning subgraph of G that is connected and that contains a

unique C3 as a subgraph.
(vi) Draw a spanning subgraph of G that is connected and that contains no

cycle as a subgraph.

Solution. (i) The subgraphs [{b, v, y}], [{a, b, c, v, x}] and [{a, b, u, v, x}] of

G are the following graphs respectively.

b v y

a

b
c

v

x

b

u

v

a x

[{b, v, y}] [{a, b, c, v, x}] [{a, b, u, v, x}]
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(ii) The subgraphs G − {ab, cv, xy}, G − c and G − {b, v} of G are the

following graphs respectively.

u

b

a x

y

v
c

a

b

u

v

x

y

a

c

u

x

y

G − {ab, cv, xy} G − c G − {b, v}

(iii) E([{a, b, c, x}]) = {ab, ac, ax, bc, cx}.

(iv) The subgraph G − E([{a, b, c, x}]) is

a

b
c

u

v

x
y

(v) The following subgraph of G is spanning and connected, and it

contains a unique C3 :

a

b
c

u

v

x
y

(vi) The following subgraph of G is spanning and connected, and it

contains no cycles:

a

b
c

u

v

x
y
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Problem 2. Let H be a subgraph of a graph G. Show that H is a spanning

subgraph of G if and only if H = G − F , where F ⊆ E(G).

Solution. (⇒) Assume that H is a spanning subgraph of G. Then V (H) =

V (G) and E(H) ⊆ E(G). Let F = E(G)\E(H). Clearly, H = G−F , where

F ⊆ E(G).

(⇐ ) Suppose that H = G−F , where F ⊆ E(G). Clearly, V (H) = V (G)

and E(H) ⊆ E(G). Thus, by definition, H is a spanning subgraph of G. 

Problem 3. Let G be a graph and X ⊆ V (G). Show that G − X =

[V (G)\X].

Solution. We shall show that G − X is the subgraph of G induced by

V (G)\X, where X ⊆ V (G). We first note that V (G − X) = V (G)\X.

Next, we have to show that if there is an edge in G joining two vertices in

V (G)\X, then this edge must be in G − X . Indeed, if e = uv is such an

edge in G joining vertices u and v in V (G)\X, then as u and v are not in

X, the edge ‘e’ is still an edge in G − X .

We thus conclude that G − X = [V (G)\X ]. 

Problem 4. Let G be a graph and W a subgraph of G. Show that W is an

induced subgraph of G if and only if W = G − (V (G)\V (W )).

Solution. (⇐ ) Assume that W = G − (V (G)\V (W )).

Then by letting V (G)\V (W ) = X in the result of Problem 3, we have

W = G − (V (G)\V (W )) = G − X = [V (G)\X] = [V (W )];

that is, W is an induced subgraph of G.

(⇒ ) Suppose that W is an induced subgraph of G. Then

W = [V (W )] = [V (G)\(V (G)\V (W ))],

which is equal to G − (V (G)\V (W )) by the result in Problem 3. Thus we

have W = G − (V (G)\V (W )), as required. 

Problem 5. Determine which of the following four graphs are isomorphic

and which are not so.



E x e rc i s e 2 . 3 41

Solution. Denote the four graphs by G1, G2, G3 and G4 (from left to right)

respectively. Then G1
∼= G3 and G2

∼= G4, and their isomorphisms are

shown below.

G    :

G    :

G    :

G   :

1 3

2 4

u

v w

x

y z

u

v w
x

yz

u v w

x y z

u

v w

x

y
z

Note that G1 is not isomorphic to G2 (thus G3 is not isomorphic to G4) as,

for instance, G1 contains a triangle while G2 does not. 

Problem 6. Let G and H be the two graphs given below:

H:G:
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Do they have the same degree sequence in non-increasing order? Are

they isomorphic?

Solution. Yes, the graphs G and H have the same degree sequence in

non-increasing order, namely, (4, 3, 3, 3, 2, 2, 2, 2, 1). However, they are not

isomorphic as, for instance, H contains a triangle while G does not. 

Problem 7. (+) Let G be a graph of order five satisfying the following

condition: for any three vertices x, y, z in G, [{x, y, z}] is not isomorphic

to either N3 or K3 .

What is the graph G? Justify your answer.

Solution. The graph G is the cycle of order 5. To justify this, it suffices

to show that each vertex in G is of degree 2. Suppose on the contrary that

there is a vertex v in G such that d(v) = 2. We first assume that d(v) ≥ 3.

Let a, b, c be in N(v) (see the diagram below).

v

a b c

Consider the set {a, b, c}. If two of them, say a and b, are adjacent,

then [{v, a, b}] ∼= K3, which contradicts the assumption. Thus, no two in

{a, b, c} are adjacent, which, however, implies that [{a, b, c}] ∼= N3, again a

contradiction.

The case that d(v) = 1 likewise leads to a contradiction (we leave it to

the reader). Thus d(v) = 2 for each vertex v in G, as claimed.

Note. The reader should argue why G ∼= C5 in this case. 

Problem 8. Draw all non-isomorphic graphs of order 5 which contain a

C5.

Solution. All such non-isomorphic graphs of order 5 are shown below:
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Problem 9. Let H be a spanning subgraph of a graph G. Which of the

following statements is/are true? Why?

(i) If G is connected, then H is connected.

(ii) If H is connected, then G is connected.

Solution. (i) False. Nn is a spanning subgraph of Kn. While Kn is always

connected, Nn is not connected if n ≥ 2.

(ii) True. Assume that H is connected. We now prove that G is con-

nected by showing that every two vertices in G are joined by a path. Thus,

let u and v be any two vertices in G. Since H is a spanning subgraph of

G, u and v are also vertices in H . As H is connected, there is a u − v

path, say P , in H. Since H is a subgraph of G, we have V (H) ⊆ V (G) and

E(H) ⊆ E(G), and so P is also a u − v path in G. This shows that u and

v are joined by a path in G. 

Problem 10. Let G be a disconnected graph with k components. Choose

a vertex from each component. What is the subgraph induced by these k

vertices?

Solution. The subgraph of G induced by these k vertices is isomorphic to

Nk as no two of these vertices are adjacent in G. 

Problem 11. For a graph G, denote by c(G) the number of components in

G. Thus, for the graph G below, c(G) = 4.
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G:

Let H be a spanning subgraph of a graph G. Show that c(H) ≥ c(G).

Solution. Suppose that c(G) = k and let G1 , · · · , Gk be the components

of G with vertex sets V1, · · · , Vk respectively. Write H[Vi] for the subgraph

of H induced by Vi. Clearly, for each i = 1, 2, · · · , k, H [Vi ] contains at least

one component of H , and these components are different. Thus, c(H) ≥

k = c(G). 

Problem 12. (+) Let C be a cycle and S a subset of V (C). Show that

c(C − S) ≤ |S|.

Solution. Draw the cycle C as shown below, where the vertices of S are

denoted by big black dots and each of the components of C − S is enclosed.

Define a mapping f from the set of components of C − S to the set S

as follows: for each component ‘A’ of C − S, let f(A) be the first vertex in

S next to it clockwise.

A A

A

A

A

1 2

3

4

5

The mapping f is clearly one-to-one. Thus, c(C − S) ≤ |S|. 

Problem 13. Let G = Kn. Find
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(i) nG(C3), where n ≥ 3;

(ii) nG(C4), where n ≥ 4; and

(iii) nG(Ck ), where n ≥ k ≥ 5.

Solution. (i) Every three vertices in Kn induce a C3 . Thus the answer is
n
3


.

(ii) Every four vertices in Kn induce a K4 , which, in turn, contains

exactly three C4 as shown below:

a b a b

c d

a b

c d

a b

c d

Thus the answer is 3

n

4


.

(iii) For 5 ≤ k ≤ n, every k vertices in Kn induce a Kk, and each Kk

contains exactly (k − 1)!/2 distinct Ck. Thus the answer is (k − 1)!

n
k


/2.



Problem 14. Let G be the Petersen graph. Find nG(Ci), where i = 3, 4, 5.

What is the largest cycle in G?

Solution. n(C3) = n(C4) = 0 and n(C5) = 12.

The Petersen graph (of order 10) contains no spanning cycle. Its largest

cycle is of order 9 as shown below:



Problem 15. Let G be a graph of order 5 which contains at least two

vertices of degree 4 and a C5. Find all possible degree sequences of G, in
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non-increasing order; and for each case, construct all such G.

Solution. By assumption, G contains the following C5 as a spanning sub-

graph:

As G contains at least two vertices of degree 4, e(G) ≥ 8. Thus

8 ≤ e(G) ≤ 10.

When e(G) = 10, G = K5 and its degree sequence is (4, 4, 4, 4, 4). When

e(G) = 9, G = K5 − e, where e is an edge in K5, and its degree sequence is

(4, 4, 4, 3, 3). When e(G) = 8, G is the following graph:

and its degree sequence is (4, 4, 3, 3, 2). 

Problem 16. Let G be a connected graph. An edge e in G is called a

bridge if G − e is disconnected.

(i) Find all bridges in the following graph:

(ii) How many components does G − e have if e is a bridge in G?

(iii) Show that an edge e in G is a bridge if and only if e is not contained

in any cycle in G.
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Solution. (i) There are four bridges as indicated below:

(ii) c(G − e) = 2 if e is a bridge in G.

(iii) Let e be an edge in a connected graph G.

( ⇐) Assume that e is not contained in any cycle. We shall show that

e is a bridge. Suppose that e(= uv) is not a bridge. Then, by definition,

G − e is connected. Thus, u and v, being vertices in G − e, are joined by a

path P in G − e. Now, in G, the path P together with the edge e forms a

cycle containing e, a contradiction.

(⇒ ) Assume now that e is a bridge in G. We shall show that e is not

contained in any cycle. Since e(= uv) is a bridge, G − e is disconnected.

Thus, there is no path joining u and v in G − e, which implies that e is

contained in no cycle in G. 

Problem 17. (+) Let G be a connected graph in which every vertex is

even. Show that G contains no bridges.

Solution. Suppose on the contrary that G contains a bridge e(= uv). Let

H be the component of G−e containing the vertex u. Then, by assumption,

u is the only odd vertex in the graph H , contradicting Corollary 1.2. 

Problem 18. Let G be a connected graph. A vertex w in G is called a

cut-vertex if G − w is disconnected.

(i) Find all cut-vertices in the following graph:
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(ii) How many components does G − w have if w is a cut-vertex of G?

(iii) (+) Assume that v(G) ≥ 3. Show that if G contains a bridge, then G

contains a cut-vertex.

(iv) Is the converse of (iii) true?

Solution. (i) There are four cut-vertices as indicated below:

(ii) The value of c(G − w) can be any positive number if w is a cut

vertex of G as shown below:

...

w

(iii) Let e(= uv) be a bridge in G. As G is connected and v(G) ≥ 3,

either u or v (say v) is adjacent to a vertex w other than u (see the diagram

below). It is clear that u and w are not joined by any path in G − v. Thus

G − v is disconnected, and by definition, v is a cut-vertex in G.

u
v w

(iv) The converse is not true. An example is given below:
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Problem 19. (∗) Let G be a cubic (i.e., 3-regular) graph. Suppose G

contains a cut-vertex. Must G contain a bridge? Why?

Solution. Yes, G must contain a bridge in this case. The justification is

given below. Let w be a cut-vertex in G. As G is cubic (i.e. 3-regular), w

has exactly 3 neighbors, say x, y and z (see the diagrams below). Observe

that G − w is disconnected and one of its components contains exactly one

of the x, y and z, say z. In this case, wz is a bridge in G.

w w



Problem 20. Let G be a connected graph of order 8 and size 12 which

contains no bridges. Suppose that ∆(G) = 4 and G has exactly two vertices

of degree 4.

(i) Find the number of end-vertices in G.

(ii) Find the number of vertices of degree 3 in G.

(iii) Construct three such graphs which are non-isomorphic.

Solution. (i) As G contains no bridges, G contains no end-vertices.

(ii) Let x and y denote, respectively, the number of vertices of degree 2

and 3. Then x + y = 6 and, by Theorem 1.1, 2x + 3y + 4 × 2 = 24. Solving

these equations yields (x, y) = (2, 4).

(iii) Three examples of such graphs are shown below:
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Problem 21. (+) Show that a graph G contains a cycle of length at least

δ(G) + 1 if δ(G) ≥ 2.

Solution. Let δ(G) = k(≥ 2) and let P = v0v1 · · · vr be a longest path (of

length r) in G. As d(v0) ≥ k, v0 has at least k neighbors. Note that all

these neighbors must be in P ; for if there is a neighbor (say, w) of v not in

P , then we would have a path of the form: wv0v1 · · · vr , which is of length

r + 1, contradicting the fact that P is a longest path.

Let s be the largest index, 2 ≤ s ≤ r, such that vs is adjacent to v0 .

Clearly, s ≥ k and v0v 1 · · · vsv0 is a cycle of length s + 1(≥ k + 1), as

required. 

Problem 22. Let G be a graph of order 9. Assume that ∆(G) = 6 and that

G contains at least 4 vertices of degree at least 4. Show that G contains a

C3.

Solution. Let w be a vertex in G with d(w) = ∆(G) = 6. Since G has

at least four vertices of degree at least 4, one of the vertices in N (w) must

be of degree at least 4. Call this vertex u (see the diagram below). As

d(u) ≥ 4, u must be adjacent to another vertex in N(w), say v. Clearly,

wuvw forms a triangle.

w

N(w)
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Problem 23. Let G be a graph of order n with degree sequence

(d1, d2, · · · , dn). Construct a graph from G having the degree sequence

(d1 + 1, d2 + 1, · · · , dn + 1, n).

Solution. Given a graph G of order n with degree sequence

(d1, d2, · · · , dn), let H be the graph obtained by adding a new vertex w

to G and joining w to every vertex in G (see the diagram below). It can be

checked that the degree sequence of H is (d1 + 1, d2 + 1, · · · , dn + 1, n).

w.
..

G

H



Problem 24. (+) Let G be a connected graph of order n. Show that the

vertices in G can always be named as x1, x2 , · · · , xn such that the induced

subgraph [{x1, x2, · · · , xi}] is connected for each i = 1, 2, · · · , n.

Solution. Start by picking a vertex at random and naming it x1. Pick

any unnamed neighbor of x1 , and name it x2 . In general, having named

vertices with the names x1 , x2, · · · , xk , check through all neighbors of xk.

If there is such a vertex unnamed, pick one and name it xk+ 1 . Otherwise,

find the largest index j such that xj has an unnamed neighbor. Pick such

an unnamed neighbor, and name it xk+ 1.

An example of the above procedure is shown below. For convenience,

we denote xj by ‘j’.

1
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1

2

1

2

3

1

2

3

4

1

2

3

4 5

(j = 3)

1

2

3

4 5

(j = 3)
6

1

2

3

4 5

6

7
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1

2

3

4 5

6

7

8

1

2

3

4 5

6

7

8

9

1

2

3

4 5

6

7

8

9

( j = 8)

10

We shall now prove that the subgraph [{x1, x2 , · · · , xi }] is connected for

i = 1, 2, · · · , n by induction. The statement is obvious for i = 1, 2. Assume

that it is true for i = k. Consider the case that i = k + 1. We know from

the procedure that the vertex xk+ 1 is a neighbor of either xk or xj , where

1 ≤ j ≤ k. As [{x1, x2, · · · , xk }] is connected by the induction hypothesis,

it follows that [{x1 , x2, · · · , xk+ 1 }] is also connected.

This completes the proof. 

Problem 25. Let G be a connected graph of order 8 which contains two

C4’s having no vertex in common.

(i) What is the least possible value of e(G)?

(ii) Assume that G contains no cut-vertices. What is the least possible

value of e(G)?



54 Introducti on to Graph T heory , S olutions Manual

(iii) Assume that G contains no odd vertices. What is the least possible

value of e(G)?

(iv) Assume that G contains no even vertices. What is the least possible

value of e(G)?

For each of the above cases, construct a corresponding G which has its e(G)

attaining your least possible value.

Solution. (i) The least possible value of e(G) is 9. An example is shown

below:

(ii) If G contains no cut-vertices, the least possible value of e(G) is 10.

An example is shown below:

(iii) If G contains no odd vertices, the least possible value of e(G) is 11.

An example is shown below:

(iv) If G contains no even vertices, the least possible value of e(G) is

12. Two examples are shown below:
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Problem 26. Let G be a graph with V (G) = {x1, x2, x3, x4 } such that

G−x1
∼= , G−x2

∼= , G−x3
∼= and G−x4

∼=
.

Determine G and justify your answer.

Solution. Notation:

H ⊆ G: H is a subgraph of G.

u v : u and v are not adjacent.

G − x1
∼= ⊆ G

⊆ G

1

x2

⊆ G

1

3

It follows that G is the graph:
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x1

G x3
=

x4



Problem 27. (+) Let G be a graph with V (G) = {y1, y2, · · · , y5 } such that

G − y1
∼= , G − y2

∼= , G − y3
∼= , G − y4

∼= and

G − y5
∼= .

Determine G and justify your answer.

Solution.

⊆ G

1y

⊆ G

2y

⊆ G

2y
3y
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G − y4
∼=

1y
2y

3y

4y

5y



Problem 28. (+) Let G be a graph with V (G) = {u1, u2, · · · , un}, where

n ≥ 3. Let m = e(G), mi = e(G − ui), i = 1, 2, · · · , n. Show that

(i) the degree of u i in G is equal to m − mi , i = 1, 2, · · · , n;

(ii) m = (m1 + m 2 + · · · + mn)/(n − 2).

Solution. (i) As shown in the following diagram, it is clear that, for each

i = 1, 2, · · · , n,

e(G) = e(G − ui) + d(ui ).

iuiu ...

Thus, d(ui) = e(G) − e(G − ui) = m − m i, for each i = 1, 2, · · · , n.

(ii) Observe that

2m =

n
i= 1

d(ui ) (Theorem 1.1)

=

n
i= 1

(m − mi) (Part (i))

= nm −
n

i= 1

mi.

Thus,
n

i= 1

mi = nm − 2m = m(n − 2), as required. 
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Problem 29. (+) Let G be a connected multigraph of order at least two

and A be a subset of V (G). Denote by e(A, V (G)\A) the number of edges

having one end in A and the other in V (G)\A.

(i) Let H be the multigraph shown below and A = {u, v, z}. Find

e(A,V (H)\A).

y

zu v

w

f
f

e

e1

2

1

2

t

(ii) Show that e(A, V (G)\A) is even if and only if A contains an even

number of odd vertices in G.

Solution. (i) For A = {u, v, z}, e(A,V (H)\A) = 7.

(ii) We first note that for A ⊆ V (G), the following equality holds (see

the diagram below):
x∈A

d(x) = e(A,V (G)\A) +

x∈A

d[A](x) (1)

where d[A](x) denotes the degree of x in [A].

A V(G)\A

e(A, V(G)\A)

Let Ae and Ao be, respectively, the set of even vertices and the set of odd
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vertices in A. Then 
x∈A

d(x) =


x∈Ae

d(x) +


x∈Ao

d(x).

By Theorem 1.1, the sum


x∈Ad[A](x) is always even. It thus follows from

(1) that

e(A,V (G)\A) is even ⇐⇒

x∈A

d(x) is even

⇐⇒


x∈Ae

d(x) +


x∈Ao

d(x) is even

⇐⇒


x∈Ao

d(x) is even

⇐⇒ |Ao| is even.

The proof is thus complete. 

E x e r c i s e 2 . 4

Problem 1. Consider Problem 2 in Exercise 2.2. Is there any relation

between the family of graphs found in (i) and the family of graphs in (ii)?

Solution. Yes, there is a one-to-one correspondence between these two

families. Indeed, each graph in the family (i) has its complement in the

family (ii), and vice versa. 

Problem 2.

(i) Draw all non-isomorphic graphs of order 6 and size 3.

(ii) Find the number of non-isomorphic graphs of order 6 and size 12.

Solution. (i) There are five such graphs as shown below:

(ii) There are also five such graphs as shown below:
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Note that each graph in (i) has its complement in (ii). 

Problem 3. Let G and H be two graphs. Show that G ∼= H if and only if

G ∼= H.

Solution. (⇒ ) Assume that G ∼= H. We shall show that G ∼= H.

Let f : G ∼= H be an isomorphism. We claim that f is also an

isomorphism from G onto H. As V (G) = V (G) and V (H) = V (H),

f : V (G) −→ V (H) is also a one-to-one and onto mapping. Let u, v be

in V (G). Observe that

u and v are adjacent in G ⇔ u and v are not adjacent in G

⇔ f (u) and f(v) are not adjacent in H

⇔ f (u) and f(v) are adjacent in H.

This shows that f is an isomorphism from G onto H , as claimed.

(⇐ ) Assume that G ∼= H. Then, by the above result, we have G ∼= H;

that is, G ∼= H (see Question 2.4.1(3)). 

Problem 4. Let G be a disconnected graph. Show that the distance between

any two vertices in G is at most two. (See the proof of Result (5).)

Solution. Assume that G is a disconnected graph. Let u, v ∈ V (G)(=

V (G)). We shall show that d(u, v) ≤ 2 in G.

(1) If u, v are in different components in G, then u and v are joined by

an edge in G and so d(u, v) = 1 in G.

(2) If u and v are in the same component of G, let w be any vertex in

another component of G, then uwv is a u − v path in G (see Figure 2.22),

and so d(u, v) = 2 in G.

This completes the proof. 

Problem 5. Let G be a k-regular graph of order n. Is G also regular? If

the answer is ‘yes’, what is the degree of each vertex in G?
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Solution. Let v be a vertex in G. Then d(v) = k, and so the degree of v

in G is n − 1 − k. Thus, if G is k-regular, then G is (n − 1 − k)-regular. 

Problem 6. Let G be a graph of order n with degree sequence

(d1, d2, · · · , dn) in non-increasing order. Find the degree sequence of G

in non-increasing order.

Solution. Let d1 ≥ d2 ≥ · · · ≥ dn be the non-increasing degree sequence of

G. Then n − 1 − dn ≥ n − 1 − dn−1 ≥ · · · ≥ n − 1 − d1 is the non-increasing

degree sequence of G. (See Problem 5 above.) 

Problem 7. Draw all non-isomorphic 4-regular graphs of order 7.

Solution. All non-isomorphic 2-regular graphs of order 7 can be easily

constructed as shown below (two such graphs):

By taking their complements, we obtain all non-isomorphic 4-regular graphs

of order 7 as shown below:



Problem 8. How many non-isomorphic graphs are there with degree se-

quence (5, 5, 4, 4, 4, 4)? Construct one such graph.

Solution. We shall apply the result in Problem 6 above and thus first con-

sider the degree sequence (1, 1, 1, 1, 0, 0). It is easy to see that the following

graph is the only graph with this degree sequence:
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Thus, by taking its complement, the only graph with degree sequence

(5, 5, 4, 4, 4, 4) is shown below:



Problem 9. How many non-isomorphic graphs are there with degree se-

quence (5, 5, 5, 4, 4, 3)? Construct one such graph.

Solution. We shall apply the result in Problem 6 above again and thus

first consider the degree sequence (2, 1, 1, 0, 0, 0). It is easy to see that the

following graph is the only graph with this degree sequence:

Thus, by taking its complement, the only graph with degree sequence

(5, 5, 5, 4, 4, 3) is shown below:



Problem 10. (+) What is the value of each diagonal entry in the matrix

A(G)A(G)?
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Solution. Let A(G) = (ai,j), A(G) = (a i,j) and A(G)A(G) = (bi,j ). We

shall determine the value of bi,i, i = 1, 2, · · · , n.

Note that for i = j, ai,j = 0 if and only if ai,j = 1. Thus

bi,i = (ai,1, ai,2, · · · , ai,n)

⎛
⎜⎜⎝

a1,i

a2,i

· · ·

an,i

⎞
⎟⎟⎠

= (ai,1, ai,2, · · · , ai,n)

⎛
⎜⎜⎝

ai,1

ai,2

· · ·

ai,n

⎞
⎟⎟⎠

= ai,1ai,1 + ai,2ai,2 + · · · + ai,nai,n

= 0.



Problem 11. For each of the following graphs,

(i) construct its complement and

(ii) determine if it is self-complementary.

(c)

(a) (b)

(d) (e)

Solution. (i) The complements of these five graphs are shown below:



64 Introducti on to Graph T heory , S olutions Manual

(c')(a') (d') (e')(b')

(ii) It can be verified that only the graphs of (c) and (e) are self-

complementary.

The graph of (a) contains no C3, but its complement does.

The graph of (b) contains 6 edges, but its complement has only 4 edges.

The graph of (d) contains a vertex of degree 2, but its complement does

not. 

Problem 12. (+) Show that every self-complementary graph is connected.

Solution. Let G be a self-complementary graph (i.e. G ∼= G). We shall

show that G is connected. Suppose on the contrary that G is disconnected.

Then, by Result (5), G is connected, which however contradicts the fact

that G ∼= G. (See Problem 11(i) in Exercise 2.2.) Thus G is connected. 

Problem 13. (+) Let G be a self-complementary graph of order n ≥ 2.

Show that

(i) e(G) = 1
4 n(n − 1) and

(ii) n = 4k or n = 4k + 1 for some positive integer k.

Solution. (i) By Result (4),

e(G) + e(G) = n(n − 1)/2.

As G is self-complementary, e(G) = e(G). It follows from these two equal-

ities that e(G) = n(n − 1)/4.

(ii) By (i), we have e(G) = n(n − 1)/4. Since e(G) is a whole number,

the product n(n − 1) is divisible by 4.

If n is odd, then n − 1 must be divisible by 4, and so n − 1 = 4k or

n = 4k + 1 for some positive integer k.

If n is even, then n − 1 is odd, and so n must be divisible by 4. It follows

that n = 4k for some positive integer k. 
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values of n, where n ≥ 3, for which the cycle

n and e(Cn) = n(n − 1)/2 − n.

y, then e(Cn ) = e(Cn), that is,

n(n − 1)/2 − n.

n(n − 5) = 0, and so n = 5.

complementary. Thus, we conclude that the

y if and only if n = 5. 

-complementary graph of order n. Show that

1 for some positive integer k.

lar and self-complementary graph of order n.

1 − r)-regular.

nd so n = 2r + 1, which is odd. By Problem

me positive integer k. 

ular self-complementary graph of order 9.

lementary graph of order 9 is shown below:



Problem 17. (+) (i) Let G be a self-complementary graph of order 9.

Show that G contains at least one vertex of degree 4.

(ii) Generalize the result in (i).

Solution. (i) We shall prove the result by two different methods.

Method 1. Let d1 ≥ d2 ≥ · · · ≥ d9 be the non-increasing degree sequence

of G. Then 8 − d9 ≥ 8 − d8 ≥ · · · ≥ 8 − d1 is the non-increasing degree
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sequence of G (see Problem 6 above). As G ∼= G, these two sequences are

identical. In particular, their fifth terms must be equal; that is, d5 = 8 − d5 .

It follows that d5 = 4, as required.

Method 2. We first observe that if x is a vertex of degree r in G, then

x is of degree 8 − r in G. As G ∼= G, there must exist a vertex, say x,

of degree 8 − r in G too (see the diagram below). Now, suppose on the

contrary that G contains no vertex of degree 4. Then r = 8 − r, and it

follows from the above observation that the vertices in G can be grouped

in pairs {x, x }. This implies that the order of G is even, a contradiction.

G

x

x'

x

G

(ii) The general result is as follows:

If G is a self-complementary graph of order 4k + 1, then G contains at

least one vertex of degree 2k.

Note. The reader is encouraged to generalize the above arguments to prove

this general result. 

Problem 18. Let G be a graph and x be a vertex in G.

(i) Is it true that G − x = G − x?

(ii) If x is a cut-vertex of G, is G − x connected?

Justify your answers.

Solution. (i) Yes, for any vertex x in G, it is true that G − x = G − x.

First of all, it is noted that V (G − x) = V (G − x) = V (G)\x.

Next, we shall show that E(G − x) = E(G − x). Thus, let u, v be in

V (G)\x.

Observe that

uv ∈ E(G − x) ⇔ uv ∈ E(G) ⇔ uv ∈ E(G − x);

and so E(G − x) = E(G − x), as required. We thus conclude that G − x =

G − x.

(ii) Yes, if x is a cut-vertex of G, then G − x is connected.
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By (i), we have G − x = G − x. As x is a cut-vertex of G, G − x is

disconnected. Thus G − x, and hence G − x, is connected by Result (5). 

Problem 19. (+) (i) Show that at a gathering of any six people, some

three of them are either mutual acquaintances or complete strangers to one

another.

(ii) Does the result in (i) still hold for ‘five’ people?

Solution. (i) We use ‘graph’ as a model to study the problem. Let G be

a graph with V (G) = {a, b, c, d, e, f }, which represents the group of six

people, such that two vertices are adjacent in G if and only if the two

corresponding people are mutual acquaintances. Thus, two vertices are

non-adjacent in G if and only if the two corresponding people are complete

strangers to one another. Our objective is to show that either G contains

a triangle or G contains a triangle.

Consider the vertex a. Either d(a) ≥ 3 in G or dG(a) ≥ 3. Since G ∼= G,

we may assume that d(a) ≥ 3 in G. Let b, c, d be in N(a). If any two in

{b, c, d} are adjacent, say b and c, then [{a, b, c}] is a triangle in G, and we

are through. Otherwise, no two in {b, c, d} are adjacent in G, which means

that [{a, b, c}] forms a triangle in G.

This completes the proof.

(ii) The result in (i) is no longer true for five vertices. Consider the

cycle C5. Both C5 and C5 (∼= C5) contain no triangles. 

Problem 20. (+) Let G be a graph of order 6. If G does not contain N3

as an induced subgraph, what is the least possible value for nG(C3)?

Solution. Let G be a graph of order 6 satisfying the condition

(*) containing no N3 as an induced subgraph.

By Problem 19 above, G contains either a triangle or a N3 as an induced

subgraph. Since the latter cannot happen by (*), G contains at least one

triangle. We claim that G contains at least ‘two’ triangles. Suppose on the

contrary that G contains exactly one triangle, say xyzx, as shown below:

x y z

u v w
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(1) Consider {x, u, v, w}. We assert that x must be adjacent to one of u, v

and w. If not, then by applying (*) to {x, u, v}, {x, u, w} and {x, v, w}, it

follows that [{u, v,w}] forms a triangle, a contradiction.

Thus, say, x is adjacent to u as shown below:

x y z

u v w

(2) Consider {y,u, v, w}. Likewise, y must be adjacent to one of u, v and

w. To avoid producing another triangle, y must be adjacent to one of v

and w, say v as shown below:

x y z

u v w

(3) Consider {z, u, v,w}. Likewise, z must be adjacent to one of u, v and

w. To avoid producing another triangle, z must be adjacent to w as shown

below:

x y z

u v w

(4) Apply (*) to {x, v,w}. To avoid producing another triangle, v and w

must be adjacent as shown below:
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x y z

u v w

(5) Apply (*) to {y, u, w}. To avoid producing another triangle, u and w

must be adjacent as shown below:

x y z

(6) Consider {z, u, v}. To avoid producing another triangle, no two in

{z, u, v} are adjacent. But then [{z, u, v}] ∼= N3 , contradicting (*).

We conclude from the above discussion that G contains at least two tri-

angles. The following graph satisfies (*) and contains exactly two triangles.

Thus, the least possible value for nG(C3) is ‘2’.

x y z



Problem 21. Let G be a graph with ∆(G) ≥ r, where r is a positive integer.

Show that either G contains a triangle or G contains a Kr.

Solution. The result is trivial if r = 1.

Assume that r ≥ 2. Let w be a vertex in G such that d(w) = ∆(G)

(≥ r ≥ 2). If there are two vertices, say u and v, in N(w) which are

adjacent, then [{w,u, v}] forms a triangle in G. Otherwise, [N (w)] forms a

complete subgraph of order at least r in G, and so G contains a Kr . 

Problem 22. (+) Let G be a graph of odd order and δ(G) ≥ 5. Assume

that G contains no N3 as an induced subgraph. Show that G contains a K4 .
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Solution. Let G be a graph of odd order and δ(G) ≥ 5. By Corollary 1.2,

not all vertices in G are of degree 5. Thus, there is a vertex, say w, in G

with d(w) ≥ 6. Consider N (w). By Problem 19(i), [N(w)] contains either

a triangle or an induced N3. The latter cannot happen by assumption.

Thus, [N (w)] contains a triangle. It follows that [N(w) ∪ {w}], and hence

G, contains a K4.

Remark 2.1. Indeed, by Problem 20, G contains at least two K4’s. 

Problem 23. (∗) Let G be a graph of order n which contains no triangles.

(i) Assume that n = 9. Show that G contains a K4.

(ii) Assume that n = 8. Must G contain a K4?

Solution. (i) Let G be a graph of order 9 which contains no triangles.

Case (1). ∆(G) ≥ 4. Let w be a vertex in G such that d(w) ≥ 4 and

let a, b, c, d be adjacent to w in G. As G contains no triangles, no two in

{a, b, c, d} can be adjacent in G. Thus [{a, b, c, d}] forms a K4 in G.

Case (2). ∆(G) ≤ 3. Then δ(G) ≥ 5. As G contains no triangles, G

contains no N3 as an induced subgraph. Thus G contains a K4 by the

result in Problem 22.

(ii) The conclusion in (i) is no longer true if n = 8. Consider the

following graph G of order 8. It can be checked that G contains no triangles

and G contains no K4 as well.

G:



Problem 24. (∗) Seventeen people correspond by mail with one another -

each one with all the rest. In their letters only three different topics are

discussed. Each pair of correspondents deals with only one of these topics.

Prove that there are at least three people who write to each other about the

same topic. (IMO 1964/4)
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Solution. Before we present a proof for this problem, let us revisit Problem

19(i), which says that for any graph G of order 6, either G or G contains

a triangle. By superimposing G onto G so that the same vertices are iden-

tified, we obtain a K6. Thus the problem can equivalently be stated as:

Coloring the edges of K6 by ‘blue’ (for G) or ‘red’ (for G), either there is a

‘blue triangle’ or a ‘red triangle’ in K6.

We shall now generalize the above idea to solve the problem. Consider

K17 in which each vertex represents a person. Color the edges in K17 by

three colors as follows: an edge uv is colored blue (respectively, red and

yellow) if u and v discuss topic I (respectively, II and III). Our aim is to

show that there is a ‘blue triangle’, a ‘red triangle’ or a ‘yellow triangle’ in

K17 .

Let w be a vertex in K17. As the 16 edges incident with w are colored

by three colors, by the Pigeonhole Principle, at least 6 of the edges are

colored by one same color, say blue. Let wa,wb,wc, wd,we and wf be any

six of such blue edges.

Now consider the K 6 = [{a, b, c, d, e, f }]. If one of the edges in this K6 ,

say ab, is colored blue, then we have a blue triangle, namely, wabw.

If none of the edges in this K6 is colored blue, then all the edges in this

K6 are colored red or yellow, and so there must be a red triangle or a yellow

triangle in this K6 by the result in Problem 19(i).

The proof is thus complete. 
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Chapter 3

B i p a r t i t e G r a p h s a n d Tr e e s

Theorem 3.1 A graph G is bipartite if and only if it contains no odd

cycles.

Theorem 3.3 Let G be a connected graph. Then G is a tree if and only

if every two vertices in G are joined by a unique path.

Theorem 3.4 Let G be a connected graph of order n and size m. Then

G is a tree if and only if m = n − 1.

Theorem 3.5 Let T be a tree having ni vertices of degree i, where i =

1, 2, · · · , k with k = ∆(T ). Then n1 = 2+n3 +2n4 +3n5 + · · · +(k − 2)nk.

Theorem 3.6 Let G be a graph. Then G is connected if and only if G

contains a spanning tree.

Corollary 3.7 If G is a connected graph of order n and size m, then

m ≥ n − 1.

Result (1). Let G be a bipartite graph with a bipartition (X,Y ). Then
x∈X

d(x) = e(G) =

y∈Y

d(y).

73



74 Introducti on to Graph T heory , S olutions Manual

E x e r c i s e 3 . 1

Problem 1. For each of the following cases, construct all desired connected

bipartite graphs H of order n:

(i) 2 ≤ n ≤ 4;

(ii) n = 5 and H contains no cycles;

(iii) n = 5 and H contains a cycle;

(iv) n = 6 and H contains a C6 ;

(v) n = 8, H is 3-regular and contains a C8 .

Solution. (i)

n

n

n

= 2

= 3

= 4

(ii)

n = 5

(iii)

n = 5

(iv) n = 6.
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(v) n = 8.

a

b

c

d e

f

g

h
a

b

c

d

e

f

g

h



Problem 2. Let G be a connected bipartite graph. Then G has a bipartition

(X,Y ). Is {X, Y } always unique? What if G is disconnected?

Solution. If G is connected, then {X, Y } is unique. Indeed, if we fix a

vertex w in G and, say, w is in X , then

X = {v ∈ V (G) | d(w, v) is even}

and

Y = {v ∈ V (G) | d(w,v) is odd}.

If G is disconnected, then {X, Y } need not be unique. An example is given

below:

x

y
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Problem 3. Show that if G is bipartite, then G contains no odd cycles.

Solution. Assume that G is bipartite with a bipartition (X,Y ), and sup-

pose on the contrary that G contains an odd cycle v1v2 · · · v2k+ 1v1 . We

may assume that v1 ∈ X . As G is bipartite, it follows that v2 ∈ Y ,

v3 ∈ X, · · · , v2k ∈ Y and v2k+ 1 ∈ X . Thus {v1, v2k+ 1 } ⊆ X, but v1 and

v2k+ 1 are adjacent in G, a contradiction. 

Problem 4. Let G be a bipartite graph with a bipartition (X,Y ). Show

that if G is k-regular, where k ≥ 1, then |X| = |Y |.

Solution. As G is k-regular, by Result (1), we have

k|X| =

x∈X

d(x) =

y∈Y

d(y) = k|Y |.

As k = 0, it follows that |X| = |Y |. 

Problem 5. Construct all non-isomorphic graphs of order 8 and size 10

that are bipartite and contain a C8.

Solution. By assumption, G contains a C8 :

As e(G) = 10, we need to add 2 more edges, say ‘e’ and ‘f ’. Note that

G contains no odd cycles.

Case (1). e and f are adjacent (i.e., they are incident with a common

vertex). Then G is the following graph:

e f
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Case (2). e and f are not adjacent. Then G is isomorphic to one of the

following:

e f e
f e

f



Note. The reader should verify that the three graphs in Case (2) are not

isomorphic.

Problem 6. Let G be a bipartite graph of order n with a bipartition (X, Y ).

Assume that G contains a cycle Cn . What is the relation between |X| and

|Y |?

Solution. Let G be a bipartite graph of order n with a bipartition (X, Y ).

Suppose that G contains a Cn (thus, n ≥ 3). As G contains no odd cycles,

n = 2k for some positive integer k. Write C as v1v2 · · · v2kv1 and assume

that v1 ∈ X . Clearly, the mapping f defined by f(v1) = v 2, f(v3 ) =

v4 , · · · , f (v2k−1) = v2k is a one-to-one mapping from X onto Y . Thus

|X| = |Y |. 

Note: As an extension of Problems 4 and 6, if G is a bipartite graph with

a bipartition (X,Y ) such that it contains a k-regular spanning subgraph,

then |X| = |Y |.

Problem 7. Does there exist a bipartite graph with degree sequence

(5, 5, 5, 4, 4, 3, 3, 3, 1, 1, 1, 1)?

Justify your answer.

Solution. Yes, such a bipartite graph is given below:
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5 5 5 3

4 4 3 3 1 1 1 1



Problem 8. (+) Show that there does not exist a bipartite graph with degree

sequence (6, 6, · · · , 6, 5, 3, 3, · · · , 3).

Solution. Suppose on the contrary that there exists a bipartite graph G

with a bipartition (X,Y ) and degree sequence (6, 6, · · · , 6, 5, 3, 3, · · · , 3).

Let w be a vertex in G such that d(w) = 5. We may assume that w ∈ X .

By Result (1), we have


x∈X

d(x) =

y∈Y

d(y). (∗)

Now observe that, as w ∈ X , the sum

y∈Y

d(y) is divisible by 3 while
x∈X d(x) is not so. This, however, contradicts (*).

Thus, such a bipartite graph G does not exist. 

Problem 9. (+) At a party, assume that no boy dances with every girl but

each girl dances with at least one boy. Prove that there are two couples b, g

and b, g which dance, whereas b does not dance with g  nor does g dance

with b . (Putnam Exam (1965))

Solution. Let X be the set of boys and Y the set of girls at a party. Let

G be a bipartite graph in which b (∈ X) and g (∈ Y ) are joined by an edge

if and only if b dances with g. Our aim is to show that there exist b, b in

X and g, g in Y such that the adjacency relations shown in the following

diagram holds:
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b

g

b'

g'

where “• · · · · · · •” indicates the non-adjacency of the two vertices.

Let b be a vertex in X such that d(b) = max{d(x) | x ∈ X }. Clearly,

d(b) ≥ 1; i.e. N(b) is non-empty. As no boy dances with every girl, there

exists a vertex, say g, in Y \N(b). Since each girl dances with at least one

boy, there exists a vertex, say b , in X such that b and g  are adjacent.

Clearly, b = b. Now, if b is adjacent to every vertex in N (b), then d(b ) ≥

d(b) + 1, contradicting the maximality of d(b) in X. Thus, there exists a

vertex, say g, in N(b) which is not adjacent to b. It follows that the four

vertices chosen, namely b, b , g and g, are the desired ones (see the diagram

below).

b b'

g'
N(b)

...



Problem 10. (+) Let G be a bipartite graph with a bipartition (X, Y ).

Assume that e(G) = v(G), and that d(x) ≤ 5 for each x in X. Show that

|Y | ≤ 4|X|.

Solution. By Result (1) and assumption, we have:
x∈X

d(x) = e(G) = v(G).

Since d(x) ≤ 5 for each x in X and V (G) = X ∪ Y , we have:

|X| + |Y | = v(G) =

x∈X

d(x) ≤ 5|X |.

Thus, |Y | ≤ 4|X|, as required. 
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Problem 11. (+) Let H be a bipartite graph with a bipartition (X,Y ).

Assume that e(H) ≤ 2v(H), and d(x) ≥ 3 for each x in X. Show that

|X| ≤ 2|Y |.

Construct one such graph H with |X | = 2|Y |.

Solution. By Result (1) and assumption, we have:
x∈X

d(x) = e(H) ≤ 2v(H).

As d(x) ≥ 3 for each x in X and V (H) = X ∪ Y , we have:

2(|X| + |Y |) = 2v(H) ≥

x∈X

d(x) ≥ 3|X |.

It follows that |X| ≤ 2|Y |.

An example of H with |X | = 2|Y | is shown below.

K (6,3):

Note that in this example, v(H) = 9 and e(H) = 18. 

Problem 12. Let G be a bipartite graph of order 2k, where k is a positive

integer. What is the maximum size of G? Find all such bipartite graphs

with maximum size.

Solution. We claim that the maximum size of G is achieved if and only if

G = K(k, k), and in this case, e(G) = k2. A proof is shown below.

Let G be any bipartite graph of order 2k with a bipartition (X, Y ),

where |X| = x and |Y | = 2k − x. Then e(G) ≤ x(2k − x), and the equality

holds if and only if G is a complete bipartite graph, i.e., G ∼= K(x, 2k − x).

Note that

x(2k − x) = −(x − k)2 + k2 ≤ k2,

and the equality holds if and only if x = k. Our claim thus follows. 

Problem 13. Let G be a bipartite graph of order 2k + 1, where k is a

positive integer. What is the maximum size of G? Find all such bipartite

graphs with maximum size.
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Solution. The maximum size of G is achieved if and only if G = K(k, k+1),

and in this case, e(G) = k(k + 1). It can similarly be proved as shown in

the solution of Problem 12. 

Problem 14. Find, in terms of p and q, the number of C4 in K(p, q),

where 2 ≤ p ≤ q.

Solution. The number of C4 is


p
2


q
2


. 

Problem 15. Find, in terms of p and q, the number of C6 in K(p, q),

where 3 ≤ p ≤ q.

Solution. The number of C6 is 3 × 2 ×


p
3


q
3


= 6


p
3


q
3


. 

Problem 16. Let H be a graph obtained from K(p, q), 2 ≤ p ≤ q, by

adding a new edge.

(i) Is H bipartite?

(ii) What is the largest number of triangles that H could contain?

(iii) (+) What is the largest number of C5 that H could contain?

Solution. Let (X,Y ) be the bipartition of K(p, q), where |X | = p. Let e

be the new edge added to form H . Then e can only join two vertices in X

or two vertices in Y .

(i) No, H is no longer bipartite as H contains a triangle.

(ii) When e joins two vertices in X , H has the largest number of trian-

gles, which is q.

(iii) When e joins two vertices in X, the number of C5’s in H (see

the diagram below) is 2

q
2


(p − 2); and while e joins two vertices in Y ,

the number of C5’s in H is 2


p
2


(q − 2). As p ≤ q, solving the following

inequality:

2


q

2


(p − 2) < 2


p

2


(q − 2)

gives the solution that p = 2 and q ≥ 3. Thus the largest number of C5’s

that H could contain is
2(q − 2), if p = 2;

2

q
2


(p − 2), if q ≥ p ≥ 3.
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p

q... ...

(        ) choicesp - 2

...x y

p

q... ...

q
2 choices

(        ) choicesp- 2

...

x,yof {    }

x y

(a) (b)

q
2 choices x,yof {    }

X

Y

X

Y



Problem 17. What is the largest cycle in K(p, q), where 2 ≤ p ≤ q?

Solution. The largest cycle in K(p, q) is a cycle of order 2p, where 2 ≤

p ≤ q. 

Problem 18. What can be said about the complement of K(p, q)?

Solution. The complement of K(p, q) is the disjoint union of a Kp and a

Kq . 

Problem 19. Let G be a bipartite graph.

(i) Is G also bipartite?

(ii) Is G always connected?

(iii) What conditions should be imposed on G so that G is connected?

Solution. Let G be a bipartite graph with a bipartition (X, Y ), where

|X| = p and |Y | = q.

(i) No, G may not be bipartite. For instance, K1,3 contains a triangle.

(ii) No, G may not be connected. For instance, K1,3 is disconnected.

(iii) G is connected if and only if G is not a complete bipartite graph.

We justify it as follows.

(⇒ ) If G is a complete bipartite graph, then (see Problem 18 above)

G has two components, namely a Kp and a Kq, a contradiction.



E x e rc i s e 3 . 1 83

(⇐ ) If G is not a complete bipartite graph, then x and y are not

adjacent for some x in X and some y in Y . This implies that G contains

the following connected graph as a spanning subgraph.

Kp

qK

x

y

Thus, G is connected. 

Problem 20. (+) A connected graph G has the following property:

For each pair of distinct vertices u and v, either all u − v paths are of

even length or all u − v paths are of odd length.

What can be said about G? Justify your answer.

Solution. The graph G must be bipartite. We prove it by contradiction

as follows.

Suppose on the contrary that G is not bipartite. Then, by Theorem 3.1,

G contains an odd cycle C. Let u and v be any two vertices in C. Then,

as C is odd, the two different u − v paths along C have lengths of different

parity (one odd and one even; see the diagram below), a contradiction.

u

v

C:

Note. Every bipartite graph has the property described in the problem. 



84 Introducti on to Graph T heory , S olutions Manual

Problem 21. (∗) Let G be a graph. A cycle C in G is said to be induced

if C is induced by V (C).

(i) Consider the following graph H. Which cycles in H are induced cycles?

H:

x

y

z

w

a

b

c

(ii) Show that G is bipartite if and only if G contains no induced cycles of

odd order.

Solution. (i) There are three induced cycles, namely, xywx, yzwy and

abcwya.

(ii) (⇒) Suppose on the contrary that G contains an induced cycle C

of odd order. Then C is itself an odd cycle in G, and so G is not bipartite

by Theorem 3.1, a contradiction.

( ⇐) Suppose on the contrary that G is not bipartite. Then, by Theorem

3.1, G contains an odd cycle C. If C is induced, then we are through;

otherwise, there are two vertices, say u and v, in C, which are not adjacent

along C but are adjacent in G (see the diagram below).

u v
C:

As C is odd, one of the u − v paths along C forms, together with the

edge uv, a smaller odd cycle C. If C  is induced, then we are through;

otherwise, the above argument can be repeated in a finite number of steps

to eventually reveal an induced cycle of odd order in G. 
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Problem 22. (+) A graph H has the property that each edge in H is

incident with an even vertex and an odd vertex. What can be said about

H? Construct one such H .

Solution. The graph H must be bipartite. We prove it by contradiction

as follows.

Suppose on the contrary that H is not bipartite. Then, by Theorem

3.1, H contains an odd cycle C : v1 v2 · · · v2k+ 1 v1. We may assume that

v1 is odd. But then, by assumption, v2 is even, which, in turn, implies

eventually that v2k+ 1 is odd. This, however, contradicts the assumption as

these two odd vertices v1 and v 2k+ 1 are joined an edge.

The graphs K(p, q), where p and q are of different parity, are examples.

Note. Not every bipartite graph has the property described in the problem.



Problem 23. Let G be a bipartite graph of order 7 such that every vertex

in G is contained in a cycle.

(i) Construct one such G.

(ii) Must G be connected?

(iii) What is the least possible value of e(G)?

(iv) Construct all non-isomorphic graphs G which have their e(G) attaining

the least possible value obtained in (iii).

Solution. (i) Take K(2, 5) or K(3, 4).

(ii) Yes, G must be connected. The justification is as follows. If G is

disconnected, then, as v(G) ≥ 7, one of its components, say H , contains at

most three vertices. But then no vertex in H is contained in a cycle as C4

is the smallest possible cycle in G.

(iii) Claim. e(G) ≥ 8.

Let (X,Y ) be the bipartition of G. As v(G) ≥ 7, either |X | ≥ 4 or

|Y | ≥ 4, say the latter. By assumption, every vertex is contained in a cycle.

It follows that d(v) ≥ 2 for each vertex v in G. Thus, by Result (1), we

have:

e(G) =

y∈Y

d(y) ≥ 2|Y | ≥ 8.

(iv) All such extremal graphs are shown below:
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Problem 24. Let G be a connected bipartite graph of order p + q and size

pq, where 1 ≤ p ≤ q. Is it true that G ∼= K(p, q)?

Solution. No, take, for instance, p = 2 and q = 4, and consider the fol-

lowing connected bipartite graph G of order 6(= 2 + 4) and size 8 ( =

2 × 4).

G:

Clearly, G is not isomorphic to K(2, 4). 

Problem 25. (+) Let G be a bipartite graph of order p + q and size pq,

where 2 ≤ p ≤ q, and with δ(G) ≥ 1. Show that G ∼= K(p, q) if and only if

every two edges in G are contained in a common C4.

Solution. (⇒ ) If G ∼= K(p, q), where 2 ≤ p ≤ q, then it is clear that every

two edges in G are contained in a common C4.

(⇐ ) Let (X, Y ) be a bipartition of G.

Claim. G is a complete bipartite graph.

If not, then there exist u in X and v in Y which are not adjacent in G.

As δ(G) ≥ 1, assume that u is adjacent to y in Y and v is adjacent to x in

X (see the diagram below).

X

Y
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By assumption, the edges uy and vx are contained in a common C4. This,

however, implies that uv is an edge, a contradiction. Thus, G is a complete

bipartite graph with bipartition (X,Y ).

We shall now show that G ∼= K(p, q).

Let |X | = k, where 2 ≤ k ≤ p + q − 2. Then |Y | = p + q − k and

pq = e(G) = k(p + q − k). The latter implies that (k − p)(k − q) = 0. Thus

either k = p or k = q.

Now, if k = p, then |Y | = q, and we have G ∼= K(p, q).

If k = q, then |X | = q and |Y | = p; that is, G ∼= K(q, p) ∼= K(p, q). 

E x e r c i s e 3 . 2

Problem 1. Draw all non-isomorphic trees of order n, where 2 ≤ n ≤ 6.

Solution.



Problem 2. Let G be a graph of order n and size n− 1, where n ≥ 4. Must

G be a tree?

Solution. No, an example (n = 4) is shown below:
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Problem 3. Let T be a tree of order n ≥ 2. Show that T has exactly two

end-vertices if and only if T is a path, i.e., T ∼= Pn.

Solution. Let T be a tree of order n ≥ 2.

If T is a path: v1v2 · · · vn , then v1 and vn are the only end-vertices.

If T is not a path, then, by definition, T contains a vertex, say w, such

that d(w) ≥ 3. Let x, y and z be in N (w) (see the diagram below).

...

w

x y z

r s t

Traversing from w through x (respectively, y and z) via edges in T as

far as possible, as T contains no cycles, we shall terminate at a vertex, say

r (respectively, s and t). Clearly, r, s and t are three end-vertices in T , a

contradiction. 

Problem 4. Let T be a tree of order n ≥ 3.

(i) What is T if d(x, y) ≤ 2 for any two vertices x, y in T?

(ii) What is T if d(u, v) = n − 1 for some vertices u, v in T?

Solution. (i) T is the star K(1, n − 1).

(ii) T is the path Pn. 

Problem 5. Find all trees T of order n ≥ 2 such that T is a tree. Is there

any tree of order n ≥ 2 which is self-complementary?

Solution. Let T be a tree of order n ≥ 2. Then e(T )+ e(T ) = n(n − 1)/2.

As both T and T are trees, e(T ) = e(T) = n−1. Thus 2(n−1) = n(n−1)/2.

As n ≥ 2, it follows that n = 4.

It can be checked that the path of order 4 ( ) is the only

tree T such that T is a tree. Note that T is also self-complementary. 
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Problem 6. A connected graph is said to be unicyclic if it contains one

and only one cycle as a subgraph.

(i) Is every cycle unicyclic?

(ii) Construct two unicyclic graphs of order 8 which are not C8 .

(iii) How many edges are there in each of your graphs in (ii)?

Solution. (i) Yes, every cycle is unicyclic.

(ii) Two such graphs are shown below:

(iii) Each graph is of size 8 (same as the order). 

Problem 7. Let G be a unicyclic graph.

(i) What is the relation between e(G) and v(G)? Justify your answer.

(ii) Show that there exist at least three edges e in G such that G − e is a

tree.

Solution. Let G be a unicyclic graph.

(i) Then e(G) = v(G).

Let f be any edge contained in the only cycle in G. Observe that G − f

is still connected (see Problem 16(iii) in Exercise 2.3) and it contains no

cycle. Thus, G − f is a tree, and by Theorem 3.4, e(G − f ) = v(G − f) − 1.

It follows that e(G) = e(G − f) + 1 = v(G − f ) = v(G), as asserted.

(ii) Let Ck be the cycle in G. As shown in (i), the deletion of any edge

in Ck results in a tree. The result now follows as k ≥ 3. 

Problem 8. (+) Let G be a unicyclic graph and let n1 denote the number

of end-vertices in G. Find an expression for n1 similar to that in Theorem

3.5.

Solution. Let G be a unicyclic graph of order n and let ni denote the

number of vertices of degree i in G, i = 1, 2, · · · , k(= ∆(G)). Then, by
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Problem 7(i), e(G) = v(G) = n, and by Theorem 1.1,
v∈V (G)

d(v) = 2e(G) = 2n.

But 
v∈V (G)

d(v) = n1 + 2n 2 + · · · + knk.

Thus

n1 + 2n2 + · · · + knk = 2n = 2(n1 + n2 + · · · + nk).

and we have

n 1 = n3 + 2n4 + · · · + (k − 2)nk.



Problem 9. Let G be a connected graph. Show that G is a tree if and only

if every edge in G is a bridge. (See Problem 16 in Exercise 2.3.)

Solution. Let G be a connected graph.

( ⇒) Assume that G is a tree. Suppose that G contains an edge, say f ,

which is not a bridge. Then, by the result of Problem 16 in Exercise 2.3, f

is contained in a cycle in G, which is impossible as G contains no cycles.

( ⇐) Assume that every edge in G is a bridge. Suppose that G is not a

tree. Then G contains a cycle C. However, by the result of Problem 16 in

Exercise 2.3, each edge in C is not a bridge, a contradiction. 

Problem 10. (∗) Let T be a tree of order k. Show that if G is a graph

with δ(G) ≥ k − 1, then T is isomorphic to some subgraph of G.

Solution. The proof is by induction on k. For k = 1, 2, the result is trivial.

Assume that the result is true when k = n. We now consider the case

when k = n+1. Thus, let T be a tree of order n+1 and G be a graph with

δ(G) ≥ n. We shall show that T is isomorphic to some subgraph of G. Let

w be an end-vertex of T and suppose that w is adjacent to u in T (see the

diagram below). Write T  = T − w. Since v(T  ) = n and δ(G) ≥ n > n − 1,

by the induction hypothesis, T  is isomorphic to some subgraph, say T , of

G.

Let u be the image of u in G under an isomorphism. Observe that

d(u) ≥ δ(G) ≥ n in G and v(T ) = n. Thus, u is adjacent to a vertex in

G, say v, which is not in T . Clearly, the subgraph of G, which consists of

T  and the edge uv, is isomorphic to T . The proof is thus complete. 
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T'

T
G

u
w

u'
v

T''

Problem 11. Let T be a tree of order 15 such that 1 ≤ d(v) ≤ 4 for each

vertex v in T . Suppose that T contains exactly 9 end-vertices and exactly

3 vertices of degree 4. How many vertices of degree 3 does T have? Justify

your answer. Construct one such tree T .

Solution. For i = 1, 2, 3, 4, let ni denote the number of vertices of degree

i in T . Then n1 = 9, n4 = 3 and so

n2 + n3 = 15 − 9 − 3 = 3. (1)

By Theorem 1.1 and Theorem 3.4, we have:

n1 + 2n2 + 3n3 + 4n4 = 2e(T ) = 2(v(T ) − 1) = 28,

or

2n2 + 3n 3 = 28 − 9 − 4 × 3 = 7. (2)

Solving (1) and (2) yields (n2, n3) = (2, 1).

An example of T is shown below:
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Problem 12. The degrees of the vertices of a tree T of order 18 are 1, 2

and 5. If T has exactly 4 vertices of degree 2, how many end-vertices does

T have?

Solution. Let x and y be, respectively, the number of vertices of degree

1 and 5 in T . Then x + y = 18 − 4 = 14, and x + 2 × 4 + 5y = 2e(T ) =

2(v(T ) − 1) = 34 or, upon simplification x + 5y = 26. Solving the two

equations yields (x, y) = (11, 3). 

Problem 13. Let T be a tree and let ni be the number of vertices of degree

i in T . Which of the following statements is/are true?

(i) If T is not a path, then n1 ≥ n2.

(ii) If n2 = 0, then T has more end-vertices than other vertices.

Solution. (i) False. An example is shown below:

The above tree is not a path; and while n1 = 3, n 2 = 4.

(ii) The statement is true. Indeed, by Theorem 3.5,

n1 = 2 + n3 + 2n4 + · · · + (k − 2)nk (k = ∆(G))

> n2 + n3 + · · · + nk (n2 = 0)

= n − n1.



Problem 14. (+) Let T be a tree having ni vertices of degree i, where

i = 1, 2, · · · , k, with k = ∆(T ). Show that n1 = 2 + n3 + 2n4 + 3n5 + · · · +

(k − 2)nk.

Solution. By Theorem 1.1 and Theorem 3.4,
v∈V (T )

d(v) = 2e(T ) = 2(n − 1),

where n = v(T ).
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But


v∈V (T )

d(v) = n1 + 2n2 + · · · + knk . Thus

n1 + 2n2 + · · · + knk = 2(n − 1) = 2(n1 + n2 + · · · + nk ) − 2,

and we have n1 = 2 + n3 +2n4 +3n5 + · · · +(k − 2)nk, as was to be shown.



Problem 15. (+) Let T be a tree of order n. Show that the vertices in T

can always be named as x1 , x2 , · · · , xn so that every xi has one and only

one neighbour in {x1 , x2, · · · , xi−1 }, for i = 2, 3, · · · , n.

Solution. We apply the procedure introduced in the solution of Problem

24 in Exercise 2.3 to name the n vertices in T as x1, x 2, · · · , xn . Recall

that [{x1 , x2, · · · , xi}] is connected for each i = 1, 2, · · · , n. It is clear

from the procedure that every xi has a neighbour in {x1 , x2 , · · · , xi−1 }.

Suppose xi has two neighbours, say xj and xk, in {x1 , x2, · · · , xi−1 }. As

[{x1, x2 , · · · , xi−1 }] is connected, it contains a xj − xk path. But then

this path, together with the edges xixj and xixk, forms a cycle in T , a

contradiction. 

Problem 16. Let G be a graph of order n with degree sequence

(d1, d2, · · · , dn). Show that if G is a tree, then

n
i= 1

di = 2(n − 1).

Is the converse true?

Solution. If G is a tree, then, by Theorem 3.4, e(G) = n − 1; and we have,

by Theorem 1.1,

n
i= 1

di = 2e(G) = 2(n − 1).

The converse is not true in general. An example (n = 5) is shown below:
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Problem 17. (∗) Show that every sequence (d1 , d2, · · · , dn) of positive in-

tegers with

n
i= 1

di = 2(n − 1)

is a degree sequence of a tree.

Solution. We shall prove the statement by induction on n(≥ 2).

For n = 2, as d1 + d2 = 2, d1 = d2 = 1; and the sequence (1, 1) is the

degree sequence of the path of order 2.

Assume that the statement is true for all sequences of length n − 1,

where n ≥ 3.

Consider now the sequence (d1, d2, · · · , dn) with

n
i= 1

di = 2(n − 1).

We may assume that d1 ≥ d2 ≥ · · · ≥ dn.

Clearly, dn = 1; otherwise, d1 ≥ d2 ≥ · · · ≥ dn ≥ 2, and we have

n
i= 1

di ≥ 2n,

a contradiction.

As n ≥ 3, let k be the largest index in {1, 2, · · · , n − 1} such that dk ≥ 2.

Let dk = dk − 1. Then

(d1 , d2, · · · , dk−1, dk, · · · , dn−1) (1)

is a sequence of positive integers of length n − 1 such that

d1 + d2 + · · · + dk−1 + dk + · · · + dn−1

= 2(n − 1) − 2 (dn = 1 and dk = dk − 1)

= 2((n − 1) − 1).

By the induction hypothesis, the sequence (1) is the degree sequence of

some tree T of order n − 1.

Let v be a vertex in T of degree dk. Construct a tree T ∗ of order n

by adding to T a new vertex w and joining w to v (thus d(w) = 1 and

d(v) = dk in T ∗). Clearly, (d1, d2, · · · , dn) is the degree sequence of T ∗.

The proof is thus complete. 
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Problem 18. A forest is a graph which contains no cycle as a subgraph.

(i) Is it true that every tree is a forest?

(ii) Is it true that every forest is a tree?

(iii) Is it true that every connected component of a forest is a tree?

(iv) (+) Let F be a forest. Find a relation linking v(F ), e(F ) and c(F ), and

prove your result.

Solution. (i) True.

(ii) False. A forest may not be connected.

(iii) True.

(iv) Let c(F ) = k and assume that F1 , F2 , · · · , Fk are the components

of F . As each Fi is a tree, we have, by Theorem 3.4,

e(F ) = e(F1 ) + e(F2 ) + · · · + e(Fk)

= (v(F1) − 1) + (v(F2 ) − 1) + · · · + (v(Fk) − 1)

= v(F ) − k;

That is, v(F ) = e(F ) + c(F ). 

Problem 19. (+) Let G be a graph of order n and size n − 1. Prove that

G is connected if and only if G contains no cycles.

Solution. Let G be a graph of order n and size n − 1.

(⇒ ) Assume that G is connected. Since e(G) = v(G) − 1, by Theorem

3.4, G is a tree, and so contains no cycles.

( ⇐) Assume that G contains no cycles. Then G is a forest (see Problem

18). By the result of Problem 18(iii), c(G) = v(G) − e(G). Thus, by the

given assumption, c(G) = n−(n −1) = 1, which means that G is connected.
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(∗) E x e r c i s e 3 . 3

Problem 1. Find all spanning trees of the following graph.

Solution. The graph has 8 spanning trees which are shown below:



Problem 2. Let H be a graph of order 1000 and size 998. Can H be

connected? Why?

Solution. No, H cannot be connected. For if H is connected, then by

Corollary 3.7, 998 = e(H) ≥ v(H) − 1 = 1000 − 1, which is impossible. 

Problem 3. Let G be a connected graph and e be a bridge in G. Must e

be contained in any spanning tree of G? Why?

Solution. Let e be a bridge in a connected graph G. Then e must be

contained in any spanning tree of G. For if e is not contained in a spanning

tree, say T , of G, then T is also a spanning tree of G − e, and so G − e is

connected by Theorem 3.6. This, however, contradicts the fact that e is a

bridge in G. 
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Problem 4. Let G be a unicyclic graph which contains Ck as a subgraph,

where k ≥ 3. How many spanning trees does G have?

Solution. A spanning tree of G can be obtained by and only by deleting

an edge in Ck from G. Thus G has exactly k spanning trees. 

Problem 5. (+) Prove that every graph of order n and size n − r has at

least r components.

Solution. Let G be a graph of order n and size n − r. Assume that G has

k components, say G1, G2, · · · , Gk. We shall show that k ≥ r.

Indeed, we have:

n − r = e(G)

= e(G 1) + e(G2) + · · · + e(Gk)

≥ (v(G1) − 1) + (v(G2 ) − 1) + · · · + (v(Gk) − 1)

(by Corollary 3.7)

= n − k;

that is, k ≥ r, as required. 

Problem 6. Let G be a connected bipartite graph with bipartition (X, Y ).

Assume that d(x) ≤ 7 for each x in X . Show that

|Y | ≤ 6|X| + 1.

For each |X| = 1, 2, · · · , construct one such bipartite graph G with |Y | =

6|X | + 1.

Solution. Let G be a connected bipartite graph with bipartition (X,Y ).

By Result (1) in Section 3.1,

e(G) =

x∈X

d(x).

As d(x) ≤ 7 for each x in X , e(G) ≤ 7|X |.

On the other hand, as G is connected, by Corollary 3.7,

e(G) ≥ v(G) − 1 = |X | + |Y | − 1.

Combining the above two inequalities, we have:

|X| + |Y | − 1 ≤ e(G) ≤ 7|X |;

that is, |Y | ≤ 6|X | + 1.

An example of such a connected bipartite graph with |Y | = 6|X | + 1 is

shown below:
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...

...



Problem 7. Let G be a connected bipartite graph with bipartition (X, Y ).

Assume that G is not a tree and d(x) ≤ 4 for each x in X . Find the best

upper bound for |Y |, in terms of |X |. Justify your answer.

Solution. Let G be a connected bipartite graph with bipartition (X,Y ).

By Result (1) in Section 3.1,

e(G) =

x∈X

d(x).

As d(x) ≤ 4 for each x in X ,

e(G) =

x∈X

d(x) ≤ 4|X |.

On the other hand, as G is connected but not a tree, e(G) > v(G) − 1 by

Corollary 3.7 and Theorem 3.4.

Combining the above two inequalities, we have:

|X| + |Y | = v(G) ≤ e(G) ≤ 4|X |;

that is, |Y | ≤ 3|X|. The following example shows that |Y | = 3|X| holds

when |X| = 2.

Note. The reader is encouraged to construct such G for which |Y | = 3|X |

holds for |X | = 3, 4, · · · . 



Chapter 4

Ve  r t e x - c o l o u r i n g s o f G r a p h s

Theorem 4.1 For any graph G, χ(G) ≤ ∆(G) + 1.

Theorem 4.2 Let G be a connected graph which is neither an odd cycle

nor a complete graph. Then χ(G) ≤ ∆(G).

Result (1). Let G be a graph of order n. Then χ(G) = 1 if and only if

G ∼= Nn.

Result (2). Let G be a graph of order n. Then χ(G) = n if and only if

G ∼= Kn.

Result (3). Let G be a graph with at least one edge. Then χ(G) = 2 if

and only if G is bipartite.

Result (4). Let G be a graph which contains an odd cycle as a subgraph.

Then χ(G) ≥ 3.

Result (5). Let G be a graph and let p be any positive integer such that

G contains a Kp as a subgraph. Then χ(G) ≥ p.

99
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E x e r c i s e 4 . 2

Problem 1. Consider the following map:

(i) Colour the regions with no more than four colours in such a way that

each region is coloured by one colour, and adjacent regions are coloured

by different colours.

(ii) Construct a graph G modeling the above situation as shown in Figure

4.3.

(iii) Does G contain a K4 as a subgraph?

(iv) Does G contain a K5 as a subgraph?

(v) Is G 3-colourable? Why?

(vi) Is G 4-colourable?

(vii) What is the value of χ(G)?

Solution.

(i) The map is coloured with four colours 1, 2, 3 and 4.

1 3

2 3
2

1
3

2

4

(ii) The graph G below models the map.
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(iii) Yes, G contains a K 4 as a subgraph.

(iv) No, G does not contain K5 as a subgraph.

(v) G is not 3-colourable because it contains a K4 as a subgraph.

(vi) Yes, G is 4-colourable since the map colouring in (i) can be translated

into a 4-colouring of G as shown below.

2 3 3

1

4

(vii) χ(G) = 4. 

Problem 2. Let p and q be integers such that 1 ≤ p ≤ q. Explain by

definition why a p-colouring of a graph is also a q-colouring of the graph.

Solution. Let θ be a p-colouring of a graph G. By definition, the number

of colours x used by θ to colour the vertices of G is at most p, i.e. x ≤ p.

Since p ≤ q, we have x ≤ q. Thus, the number of colours x used by θ to

colour the vertices of G is at most q as well and so θ is also a q-colouring

of G. 

Problem 3. Prove that if H is a subgraph of a graph G, then χ(H) ≤

χ(G).
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Solution. Let k = χ(G). Then G admits a k-colouring θ. Let α : V (H) →

{1, 2, · · · , k} be the mapping such that for every w ∈ V (H), α(w) = θ(w)

(i.e. we maintain the same colour for w in H as it was in G). Consider

two adjacent vertices u, v in H . These two vertices will also be adjacent

in G and thus θ(u) = θ(v) which implies that α(u) = α(v). Thus, α is a

k-colouring of H. By definition, χ(H) ≤ k = χ(G). 

Problem 4. Construct two graphs H and G such that H is a proper

subgraph of G but χ(H) = χ(G).

Solution. One possible solution where χ(H) = χ(G) = 2 is shown below.

G: H:



Problem 5. Construct two connected graphs H and G such that H is a

spanning subgraph of G and χ(H) = χ(G) − 1.

Solution. One possible solution where χ(H) = 2 = χ(G) − 1 is shown

below.

G: H:



Problem 6. For each of the following graphs, find its chromatic number.
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(a) (b) (c) (d)

Solution.

(a) Let G be the graph. As e(G) ≥ 1, χ(G) ≥ 2. The following 2-colouring

of G shows that χ(G) = 2.

1 1

2

1 2

(b) Let G be the graph. As e(G) ≥ 1, χ(G) ≥ 2. The following 2-colouring

of G shows that χ(G) = 2.

1 2 1

212

(c) Let G be the graph. As G contains a K3 , χ(G) ≥ 3. The following

3-colouring of G shows that χ(G) = 3.

1

2 3

2 3

1
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(d) Since every two vertices are adjacent, every vertex in G must be

coloured by a new colour. Thus χ(G) ≥ 5. The following 5-colouring

of G shows that χ(G) = 5.

1

2

34

5



E x e r c i s e 4 . 3

Problem 1. Prove that χ(Cn ) = 2 for any even n ≥ 4.

Solution. As Cn contains an edge, χ(Cn) ≥ 2. Let n = 2k and Cn be

v1 v2 · · · v2kv1. Define θ : V (Cn) → {1, 2} by

θ(vi) =


1 if i is odd;

2 if i is even.

Clearly, θ is a 2-colouring of Cn. We thus conclude that χ(Cn) = 2. 

Problem 2. Prove that χ(Cn ) = 3 for any odd n ≥ 3.

Solution. Clearly, χ(Cn) ≥ 2. Suppose χ(Cn) = 2 and θ is a 2-colouring

of Cn. As before, let Cn be v1 v2 · · · v2k+ 1 v1 , where n = 2k + 1. We may

assume θ(v1 ) = 1. Then θ(v2) = 2, θ(v3) = 1, · · · , θ(v 2k+ 1) = 1. Ob-

serve that θ(v1 ) = θ(v2k+ 1 ) = 1 but v1 and v2k+ 1 are adjacent, which is a

contradiction. Thus, χ(Cn) ≥ 3. Define θ : V (Cn) → {1, 2, 3} by

θ(vi) =

⎧⎨
⎩

1 if i = n;

2 if i is even;

3 otherwise.

Clearly, θ is a 3-colouring of Cn. We thus conclude that χ(Cn) = 3. 
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Problem 3. Find a 3-colouring of the Petersen graph. What is its chro-

matic number?

Solution. Let G be the Petersen graph. As G contains a C5, by the result

of Problem 3 in Exercise 4.2, χ(G) ≥ χ(C5) = 3. The following 3-colouring

of G shows that χ(G) = 3.

1

22
2

1 3
1 3

13


Problem 4. Let G be the graph given below. Explain why χ(G) ≥ 3.

Then provide a 3-colouring for G, thereby proving that χ(G) = 3.

Solution. G contains a K3 as a subgraph and so χ(G) ≥ 3. The following

shows a 3-colouring for G, thereby proving that χ(G) = 3.

1
2

3

3

3

2

2

2
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Problem 5. Let G be the graph given below. Explain why χ(G) ≥ 4.

Then provide a 4-colouring for G, thereby proving that χ(G) = 4.

Solution. Let us label the vertices of G as in the figure below.

a

b

cd

e
fg

Since G contains a K3 , χ(G) ≥ 3. Suppose that χ(G) = 3. We may assume

that a, f and g are coloured 1, 2 and 3 respectively. Then e must be

coloured 2 and b must be coloured 3. Next, c and d must both be coloured

1. However, c and d are adjacent, which is a contradiction. Thus, χ(G) ≥ 4.

The following shows a 4-colouring for G, thereby proving that χ(G) = 4.

1

3

41

2
23



Problem 6. (+) Let G be the graph given below. Explain why χ(G) ≥ 4.

Then provide a 4-colouring for G, thereby proving that χ(G) = 4.
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Solution. Let us label the vertices of the graph G as in the figure below.

a

b

cd

e
f

g

hi

j k

Since G contains an odd cycle (e.g. abcdea), χ(G) ≥ 3. Suppose χ(G) = 3.

By symmetry, we may assume that the vertices a, b, c, d, e of the 5-cycle

abcdea are coloured 1, 2, 1, 2, 3 in that order as shown below.

cd

b

h

g

f

kj
e

a

i

1

2

12

3

Then f , i and j must be coloured 1, 2 and 3 respectively. However, then

k cannot be coloured with any of the 3 colours. Thus, χ(G) ≥ 4.

The following shows a 4-colouring for G, thereby proving that χ(G) = 4.

1

2

12

3
1

2

12

3 4
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Problem 7. (+) Determine all graphs G of order n ≥ 2 with χ(G) =

n − 1.

Solution. Let G be a graph of order n ≥ 2. We claim that χ(G) = n − 1

if and only if G ∼= Kn and G contains a Kn−1 as a subgraph.

Suppose G ∼= Kn and G contains a Kn−1. Then from the result that

χ(G) = n if and only if G ∼= Kn, we have χ(G) < n. Also, G contains a

Kn−1 implies that χ(G) ≥ n − 1. Thus χ(G) = n − 1.

Suppose χ(G) = n − 1. From the result that χ(G) = n if and only if

G ∼= Kn, we have that G  ∼= Kn . We shall show that Kn−1 is a subgraph of

G.

Suppose on the contrary that Kn−1 is not a subgraph of G. Then

G − x ∼= Kn−1 for every x ∈ V (G).

Since G ∼= Kn, there exist u, v ∈ V (G) such that uv /∈ E(G). Then xy ∈

E(G) for any x, y ∈ V (G) \ {u, v}; otherwise, [{u, v, x, y}] is 2-colourable,

implying that χ(G) ≤ n − 2, a contradiction. Hence G − {u, v} ∼= Kn−2 .

Note that G − u ∼= Kn−1 and G − v ∼= Kn−1. Since G − {u, v} ∼= Kn−2,

there exist u, v  ∈ V (G) \ {u, v} such that uu, vv /∈ E(G).

If u = v , then u, v and u can be assigned the same colour, implying

that χ(G) ≤ n − 2, a contradiction.

If u = v, then the four vertices u, u, v, v can be coloured by two

colours, implying that χ(G) ≤ n − 2, a contradiction too.

Therefore Kn−1 is a subgraph of G. 

Note. The following is another proof that if G is of order n and χ(G) =

n − 1, then G contains Kn−1 as a subgraph.

Let V (G) = {v1 , v2, . . . , vn} and θ be a (n − 1)-colouring of G. We may

assume that θ(vi ) = i for i ≤ n − 1, θ(vn) = 1 and d(vn) ≤ d(v1). Consider

the subgraph H induced by V (G) \ {vn }. Suppose H ∼= Kn−1. We shall

show that G can be recoloured with a (n − 2)-colouring. We have that

vivj ∈ E(H) for some i < j ≤ n − 1. If i = 1, we may recolour vi as j thus

obtaining a (n − 2)-colouring of G (with colour i excluded), a contradiction.

If i = 1, we may recolour v1 as j. Note that d(vn ) ≤ d(v1) ≤ n − 3. Thus,

vn can be recoloured with at least one colour from 2, 3, . . . , n − 1. Thus, G

admits a (n−2)-colouring (with colour 1 excluded), which is a contradiction.

Hence, H ∼= Kn−1 and so G contains a Kn−1 as a subgraph. 
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Problem 8. Let G be a graph. Determine whether each of the following

statements is true.

(i) If G admits a 3-colouring, then G is 3-colourable.

(ii) If G is 3-colourable, then G is 5-colourable.

(iii) If G is 3-colourable, then χ(G) ≥ 3.

(iv) If G is 3-colourable, then χ(G) ≤ 3.

(v) If G is 3-colourable, then G contains an odd cycle.

(vi) If G contains an odd cycle, then G is 3-colourable.

(vii) If G admits no 3-colourings, then χ(G) ≥ 3.

(viii) If G admits no 3-colourings, then χ(G) = 2.

(ix) If G admits no 3-colourings, then χ(G) ≤ 2.

(x) If χ(G) = 3, then G contains a triangle.

(xi) If χ(G) = 3, then G contains an odd cycle.

(xii) If G is a tree with at least two vertices, then χ(G) = 2.

(xiii) If χ(G) ≥ r, then G contains a Kr as a subgraph.

Solution. (i) True.

(ii) True.

(iii) False.

(iv) True

(v) False

(vi) False.

(vii) True. (Indeed, χ(G) ≥ 4.)

(viii) False.

(ix) False.

(x) False.

(xi) True.

(xii) True.

(xiii) False. 
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Problem 9. Let G be a disconnected graph with two components G1 and

G2 . Show that

χ(G) = max{χ(G1), χ(G2)}.

Solution. Let m = max{χ(G1), χ(G2 )}. Clearly, χ(G) ≥ m.

Let α : V (G1) → {1, 2, · · · , m} be an m-colouring of G1 and let β :

V (G2) → {1, 2, · · · , m} be an m-colouring of G2. Define θ : V (G) →

{1, 2, · · · , m} by

θ(v) =


α(v) if v ∈ V (G1);

β(v) if v ∈ V (G2).

As there is no edge joining G1 and G2, θ is an m-colouring of G; and so

χ(G) ≤ m. We thus conclude that χ(G) = m. 

Problem 10. Let G1 and G2 be two connected graphs and let G be the

graph obtained from G1 and G 2 by identifying a vertex in G1 with a vertex

in G2 as shown below:

1 GG 2

G:

Show that

χ(G) = max{χ(G1), χ(G2)}.

Solution. Let m = max{χ(G1), χ(G2 )}. Clearly, χ(G) ≥ m.

Let x ∈ V (G1 ) and y ∈ V (G2 ) be identified in G. Let α : V (G1) →

{1, 2, · · · , m} be an m-colouring of G1 and let β : V (G2) → {1, 2, · · · , m}

be an m-colouring of G2. We may assume that α(x) = β(y) (why?). Let

θ : V (G) → {1, 2, · · · , m} be the mapping defined by

θ(v) =


α(v) if v ∈ V (G1);

β(v) if v ∈ V (G2).

Since vertices in V (G1) \ {x} are not adjacent to any vertex in V (G2 ) \

{y}, θ is an m-colouring of G. Thus, χ(G) ≤ m, and so χ(G) = m =

max{χ(G1), χ(G2)}. 
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Problem 11. Let G be a graph. Show that

(i) χ(G) − 1 ≤ χ(G − v) ≤ χ(G) for each vertex v in G.

(ii) χ(G) − 1 ≤ χ(G − e) ≤ χ(G) for each edge e in G.

Solution. (i) Since G − v is a subgraph of G, by the result of Problem 3

in Exercise 4.2, χ(G − v) ≤ χ(G).

To show that χ(G) − 1 ≤ χ(G − v), we show that χ(G) ≤ χ(G − v) + 1.

Let k = χ(G − v) and θ : V (G − v) → {1, 2, · · · , k} be a k-colouring of

G − v. Define θ : V (G) → {1, 2, · · · , k, k + 1} by

θ(x) =


θ(x) if x ∈ V (G − v);

k + 1 if x = v.

It is clear that θ is a (k +1)-colouring of G. By definition, χ(G) ≤ k +1 =

χ(G − v) + 1, as asserted.

(ii) Since G−e is a subgraph of G, by the result of Problem 3 in Exercise

4.2, χ(G − e) ≤ χ(G). To show that χ(G) − 1 ≤ χ(G − e), we show that

χ(G) ≤ χ(G − e)+ 1. Let θ be a k-colouring of G − e, where e = uv. Define

θ : V (G) → {1, 2, · · · , k, k + 1} by

θ (x) =


θ(x) if x = v;

k + 1 if x = v.

It is clear that θ is a (k +1)-colouring of G. By definition, χ(G) ≤ k +1 =

χ(G − e) + 1, as asserted. 

Problem 12. For each integer n ≥ 2, construct a graph G of order n

such that χ(G − v) = χ(G) − 1 for each vertex v in G.

Solution. The family of complete graphs Kn , n ≥ 2, satisfies the condition.



Problem 13. For each integer n ≥ 4, construct a graph G of order n

such that χ(G − v) = χ(G) for each vertex v in G.

Solution. The family of paths Pn, n ≥ 4, satisfies the condition. 
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Problem 14. For each integer n ≥ 2, construct a graph G of order n

such that χ(G − e) = χ(G) − 1 for each edge e in G.

Solution. The family of complete graphs Kn , n ≥ 2, satisfies the condition.



Problem 15. For each integer n ≥ 3, construct a graph G of order n

such that χ(G − e) = χ(G) for each edge e in G.

Solution. The family of paths Pn, n ≥ 3, satisfies the condition. 

Problem 16. Let G be the graph shown below:

(i) Find χ(G).

(ii) Verify that χ(G − e) = χ(G) − 1 for each edge e in G.

Solution. (i) Let us label the vertices of the graph G as in the figure below.

t

u

v

w

x

y
z

Since G contains a triangle, χ(G) ≥ 3. Suppose that χ(G) = 3. We may

assume that the vertices u, y, w of the triangle uywu are coloured 1, 2, 3

in that order. Then x, v and t must be coloured 1, 2 and 3, respectively.
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However, then z cannot be coloured with any of the 3 colours. Thus,

χ(G) ≥ 4.

The following shows a 4-colouring for G, thereby proving that χ(G) = 4.

3

1

2

3

1

2
4

(ii) It suffices to show a 3-colouring of G − e for each edge e in G. We

shall do this by stating each edge e to be deleted followed by a listing of

the colours of the vertices in the order t, u, · · · , z. By symmetry, we need

only consider deleting the edges ty, uy and tz.

e = ty (yx,xw,wv, vu,ut are similar); (1, 2, 1, 3, 2, 1, 3)

e = uy (yw,wu are similar); (1, 2, 1, 3, 1, 2, 2)

e = tz (xz, vz are similar); (1, 2, 3, 1, 2, 3, 1).



Problem 17. Construct a graph G such that χ(G) = 3 and G contains

no triangles.

Solution. G can be the Petersen graph (see Problem 3) or any odd cycle

Cn, where n ≥ 5. 

Problem 18. Construct a graph G such that χ(G) = 4 and G contains

no triangles.

Solution. The graph of Problem 6 satisfies the condition. 
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Problem 19. Let H be the graph given below. What is the value of

χ(H)?

Solution. Since H contains an odd cycle, χ(H) ≥ 3. The following 3-

colouring of H shows that χ(H) = 3.

1

2

12

1

32

2

2

1

2

2

3



Problem 20. (+) Let G be a graph which contains only one odd cycle

as a subgraph. Find the value of χ(G). Justify your answer.

Solution. Since G contains an odd cycle, χ(G) ≥ 3.

Let w be any vertex in the only odd cycle of G. Then G − w contains

no odd cycle, and so it is a bipartite graph, implying that χ(G − w) ≤ 2.

By the result of Problem 11 (i), we have χ(G) ≤ χ(G − w) + 1 = 3.

Hence χ(G) = 3. 

Problem 21. (+) Let G be a graph which is not bipartite. Assume that

there is a vertex in G which is contained in every odd cycle in G. Show

that χ(G) = 3.

Solution. Since G is not bipartite, χ(G) ≥ 3. Let v be a vertex in G which

is contained in every odd cycle in G. Then G − v does not contain an odd

cycle. Therefore G − v is bipartite and χ(G − v) ≤ 2. By the result of

Problem 11 (i), we have χ(G) ≤ χ(G − v) + 1 = 3. Thus, χ(G) = 3. 
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Problem 22. (+) Let G be a graph. It is known that if χ(G) = 3, then

G contains an odd cycle. Assume now that χ(G) = 6. Does G contain two

odd cycles which have no vertex in common? Why?

Solution. Yes, G must contain two odd cycles which have no vertex in

common. We shall prove the contrapositive statement. Suppose G does

not contain two odd cycles which have no vertex in common. We shall

show that χ(G) ≤ 5.

Let C be an odd cycle in G. Then G − V (C) contains no odd cycle. So

we can colour G − V (C) with two colours. Next, we colour C with 3 new

colours. The resulting colouring of G is a 5-colouring and so, χ(G) ≤ 5.

Thus, if χ(G) = 6, then G contains two odd cycles which have no vertex in

common. 

Problem 23. Let G be a graph of order 8 with χ(G) = 2. Show that

e(G) ≤ 16. Construct one such G with e(G) = 16.

Solution. Since χ(G) = 2, G is bipartite and so the vertices of G can be

divided into 2 partite sets, say X and Y . Let |X | = p and so |Y | = 8 − p.

Since there are no edges between vertices in the same partite set, e(G) ≤

p(8 − p). It can be easily verified that the maximum value of p(8 − p) is 16

(= 4 × 4). Thus, e(G) ≤ 16.

The complete bipartite graph K(4, 4) is one such graph G with e(G) =

16. 

Problem 24. Let G be a graph of order 7 with χ(G) = 3. Show that

e(G) ≤ 16. Construct one such G with e(G) = 16.

Solution. Since χ(G) = 3, let X,Y and Z be the sets of vertices in G

coloured by colours 1, 2 and 3 respectively. We may assume that |X| ≥

|Y | ≥ |Z| and note that (|X|, |Y |, |Z |) is one of the following:

(5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2).

As there are no edges joining vertices in the same set X (respectively Y,Z),

for

(5, 1, 1), e(G) ≤ 11;

(4, 2, 1), e(G) ≤ 14;

(3, 3, 1), e(G) ≤ 15;

(3, 2, 2), e(G) ≤ 16.
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Thus, e(G) ≤ 16.

The graph below is one such graph G with e(G) = 16.



Problem 25. Let G be a graph of order 6 with χ(G) = 4. Show that

e(G) ≤ 13. Construct one such G with e(G) = 13.

Solution. Since χ(G) = 4, let W,X,Y and Z be the sets of vertices in

G coloured by colours 1, 2, 3 and 4 respectively. We may assume that

|W | ≥ |X | ≥ |Y | ≥ |Z| and note that (|W |, |X |, |Y |, |Z|) is either (3, 1, 1, 1)

or (2, 2, 1, 1). As there are no edges joining vertices in the same set W

(respectively X,Y,Z), for

(3, 1, 1, 1), e(G) ≤ 12; (2, 2, 1, 1), e(G) ≤ 13.

Thus, e(G) ≤ 13.

The graph below is one such graph G with e(G) = 13.
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Problem 26. Determine the chromatic number of each of the following

graphs:

(a) (b)

Solution. Let us label the vertices of the graph G as in the figure below.

(a) (b)

a

b

cd

e
f

g

hi

j
km

a

b

c

d

ef

g

h

i

j

(a) Since G contains an odd cycle (e.g. abcdea), χ(G) ≥ 3. Sup-

pose χ(G) = 3. Then G is 3-colourable. Let θ : V (G) → {1, 2, 3}

be a 3-colouring of G. Consider the 5-cycle abcdea. By symmetry,

we may assume that (θ(a), θ(b), θ(c), θ(d), θ(e)) is one of the following:

(1, 2, 1, 2, 3), (1, 2, 1, 3, 2), (1, 2, 3, 2, 3).

If (θ(a), θ(b), θ(c), θ(d), θ(e)) = (1, 2, 1, 2, 3), then f , i and j must be

coloured 1, 2 and 3 respectively. However, now m cannot be coloured with

any of the 3 colours.

If (θ(a), θ(b), θ(c), θ(d), θ(e)) = (1, 2, 1, 3, 2), then h, j and i must be

coloured 1, 2 and 3 respectively. Now, in turn, m must be coloured 1 and

f must be coloured 3. However, now k cannot be coloured with any of the

3 colours.



118 Intr oduction to Graph The ory, Solut ions Manual

If (θ(a), θ(b), θ(c), θ(d), θ(e)) = (1, 2, 3, 2, 3), then f , g and j must be

coloured 1, 2 and 3 respectively. However, now m cannot be coloured with

any of the 3 colours.

Thus, χ(G) ≥ 4. The following shows a 4-colouring for G, thereby

proving that χ(G) = 4.

1

2

12

3
1

2

12

3

44

(b) Since G contains a K4, χ(G) ≥ 4. Suppose χ(G) = 4. Then G

is 4-colourable. We may assume that the vertices a, b, c, d are coloured 1,

2, 3, 4 respectively. Then e, f, g, and h must be coloured 1, 2, 3 and 4

respectively. However, then i cannot be coloured with any of the 4 colours.

Thus, χ(G) ≥ 5.

The following shows a 5-colouring for G, thereby proving that χ(G) = 5.

1

2

3

4

51

2

3

4

5
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Problem 27. Let G and H be two graphs. The join of G and H, denoted

by G + H, is the graph whose vertex set is the union of V (G) and V (H),

and whose edge set consists of the edges in G and H together with new edges

which join every vertex in G to every vertex in H . Thus, if A and B are

the graphs shown below:

B:A:

then A + B is the graph shown below:

A+B:

(i) Find χ(A), χ(B) and χ(A + B).

(ii) In general, what is the relation among χ(G), χ(H) and χ(G + H)?

Prove your result.

Solution. (i) It is clear that χ(A) = 2 and χ(B) = 3.

Since A + B contains a K5, χ(A + B) ≥ 5. The following shows a

5-colouring for A + B, thereby proving that χ(A + B) = 5.

1

2

3

4

5

5
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(ii) In general, χ(G+H) = χ(G)+χ(H). We prove the result as follows.

The subgraph G in G+H needs at least χ(G) colours. Since the vertices of

the subgraph H are each adjacent to all the vertices of G in G+ H , a valid

colouring of G + H would require colours different from those used for G

to colour the vertices in H. At least χ(H) new colours are needed for H in

G + H. Thus, χ(G+ H) ≥ χ(G) +χ(H). In fact, any valid χ(G)-colouring

of G with χ(G) colours followed by any valid χ(H)-colouring of G with

χ(H) colours different from those used for the vertices of G will result in a

valid (χ(G) + χ(H))-colouring of G + H. Thus, χ(G + H) ≤ χ(G) + χ(H),

and so χ(G + H) = χ(G) + χ(H). 

Problem 28. The wheel of order n, denoted by Wn, is defined as (see

Problem 27 above) Wn = Cn−1 + K1 .

(i) Draw W6 and W7.

(ii) Find a 3-colouring for W7.

(iii) Find a 4-colouring for W6.

(iv) Show that χ(Wn) = 3 for odd n ≥ 5.

(v) Show that χ(Wn) = 4 for even n ≥ 4.

Solution. (i)

W6 W7
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(ii)

1

2

12

1

2

3

(iii)

1

2

12

3 4

(iv) For odd n ≥ 5, n − 1 is even. Thus, since Wn = Cn−1 + K1, we

have

χ(Wn) = χ(Cn−1 ) + χ(K1) = 2 + 1 = 3.

(v) For even n ≥ 4, n − 1 is odd. Thus, since Wn = Cn−1 +K1, we have

χ(Wn) = χ(Cn−1 ) + χ(K1) = 3 + 1 = 4.



Problem 29. (+) Let G be a graph of order n ≥ 5 which contains a P5

as an induced subgraph. Show that χ(G) ≤ n − 3. For each n ≥ 5, construct

one such G of order n for which the equality χ(G) = n − 3 holds.

Solution. Let G = G − V (P5). As v(G) = n − 5, G can be coloured with

at most n − 5 colours. Since P5 is an induced subgraph of G, we may colour

P5 by two new colours. Hence χ(G) ≤ (n − 5) + 2 = n − 3.

The graph Kn−5 + P5 is a graph of order n which contains a P5 as an

induced subgraph and χ(Kn−5 + P5 ) = (n − 5) + 2 = n − 3. 
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Problem 30. Let G be a graph. A set of vertices S in G is said to be

independent if no two vertices in S are adjacent.

Assume that χ(G) = k and there is a k-colouring θ of G. For each

i = 1, 2, · · · , k, let Vi be the set of vertices v in G with θ(v) = i.

(i) Can Vi be empty?

(ii) Is V i an independent set?

Solution. (i) No, Vi cannot be empty for any i = 1, 2, · · · , k; otherwise,

χ(G) < k, a contradiction.

(ii) Yes, Vi is an independent set; otherwise, two adjacent vertices in Vi

will have to be coloured differently. 

Problem 31. (∗) Let G be a graph of order n. The independence

number of G, denoted by α(G), is defined by

α(G) = max{ |S| | S is an independent set in G}.

(i) Find α(H), where H is the graph shown below:

(ii) Show that χ(G)α(G) ≥ n.

(iii) Construct a connected graph H such that v(H) = 12, χ(H) = 4 and

α(H) = 3.

(iv) Show that χ(G) + α(G) ≤ n + 1.

(v) Construct a connected graph H such that v(H) = 11, χ(H) = 5 and

α(H) = 7.

Solution. For the solutions below, unless otherwise stated, let Vi be the

set of vertices v in G with θ(v) = i for each i = 1, 2, · · · , χ(G), where θ is

a χ(G)-colouring of the graph G.

(i) The set of 4 ‘white’ vertices indicated in the figure below is an inde-

pendent set in H. It is easy to check that there is no independent set in H

with 5 vertices. Thus, α(H) = 4.
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(ii) Since α(G) ≥ max{ |Vi| | i = 1, 2, · · · , χ(G)}, we have

χ(G)α(G) ≥

χ(G)
i= 1

|Vi|,

i.e., χ(G)α(G) ≥ n.

(iii) The following connected graph H is such that v(H) = 12, χ(H) = 4

and α(H) = 3.

(iv) Let A be an independent set in G such that |A| = α(G). Then

the number of vertices in G − A is n − α(G). Introduce a colouring of G

as follows: all vertices in A are coloured by one colour, and each of the

n − α(G) vertices in G − A is coloured by one new colour. Clearly, this

defines a (n + 1 − α(G))-colouring of G. Thus, χ(G) ≤ n + 1 − α(G) and

so χ(G) + α(G) ≤ n + 1.

(v) K4 +N7 (see below) is a connected graph with the required proper-

ties.
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Problem 32. (∗) Let G be a graph which is not bipartite. Assume that

G contains an independent set S such that V (C) ∩ S is non-empty for every

odd cycle C in G. Show that χ(G) = 3.

Solution. Since G is not bipartite, χ(G) ≥ 3. By assumption, G − S

does not contain an odd cycle. Therefore G − S is bipartite and is 2-

colourable. It is possible to colour all vertices in S with one colour because

S is independent. Thus G has a 3-colouring. Hence, χ(G) = 3. 

Problem 33. (+) Let G be a graph satisfying the following conditions:

(1) χ(G) = 5 and

(2) χ(G − v) = 4 for each vertex v in G.

Show that

(i) G is connected;

(ii) δ(G) ≥ 4;

(iii) N (u) is not a subset of N (v) for any two vertices u,v in G;

(iv) v(G) = 6.

Solution. (i) Let G =
k

i= 1

Hi , where k ≥ 2 and the Hi’s are the components

of G. Then χ(G) = max{χ(Hi)|i = 1, 2, · · · , k}. We may assume that

χ(G) = χ(H1) = 5. Then, χ(G − v) = χ(H1) = 5 for each vertex v in H2 ,

a contradiction. Thus, G is connected.

(ii) Suppose δ(G) ≤ 3. Let v be a vertex in G such that d(v) = δ(G).

Since χ(G − v) = 4, there is a colouring θ : V (G − v) → {1, 2, 3, 4}. Since

d(v) = δ(G) ≤ 3, there is at least one colour, say 4, not used to colour the

neighbours of v. Extend θ to colour G by colouring v the colour 4. This

gives a 4-colouring of G. Thus, χ(G) ≤ 4, a contradiction. Hence δ(G) ≥ 4.

(iii) Suppose there exist two vertices u, v in G such that N (u) is a subset

of N(v) (then u and v are non-adjacent). Since χ(G − u) = 4, there is a

4-colouring θ of G − u. Since N (u) is a subset of N(v), θ can be extended

to a 4-colouring of G by colouring u the colour θ(v). Thus χ(G) = 4, a

contradiction. Hence N(u) is not a subset of N (v) for any two vertices u, v

in G.

(iv) Suppose v(G) = 6. From Problem 7, G = K6 and G contains a K5 .

Then there exists a vertex v in G such that G − v = K5. However, this

means that χ(G − v) = 5, a contradiction. Thus, v(G) = 6. 
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Problem 1. Let G be the graph C6 as shown below with two different

ways of arranging its vertices. Apply the greedy colouring algorithm to

colour G and find the number of colours produced in each case.

v1v4 v2

v3

5vv6

(a) (b)

v1

v2 v3 v4

v6 5v

Solution. The figure below shows the result of applying the greedy algo-

rithm. The number of colours in case (a) and case (b) is 2 and 3 respectively.

(a) (b)

1

2 1

2

12

1

2 3

1

23



Problem 2. Let G be the graph as shown below with two different ways

of arranging its vertices. Apply the greedy colouring algorithm to colour G

and find the number of colours produced in each case.

v

v

v

v

v

v

v

1 v

v

v

v

v

v

v

2

3

4 5

6

7 1

2 3

4

5 6

7

(a) (b)
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Solution. The figure below shows the result of applying the greedy algo-

rithm. The number of colours in both cases is 4.

(a) (b)
1 2

3

2 1

4

3

1 2

3

2 3

4

1



Problem 3. Let G be the graph given below:

1 w

ww

w w

ww

w

2

3

4

5

6 7

8

(i) Find the number of colours produced by applying the greedy colouring

algorithm on G according to the ordering of vertices w1, w2, · · · , w 8.

(ii) Find χ(G).

Solution. (i) The figure below shows the result of applying the greedy

algorithm. The number of colours produced is 4.
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1

1

2

2

3

2 1

4

(ii) Since G contains a triangle, χ(G) ≥ 3. The figure below shows a

3-colouring of G, proving that χ(G) = 3.

1

1

3

2

3

2 1

2



Problem 4. Let G be the graph given below:

v4

v3 5vv8

v1

v2

v6v7

(i) Find the number of colours produced by applying the greedy colouring

algorithm on G according to the ordering of vertices v1 , v2, · · · , v8.

(ii) Find χ(G).
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Solution. (i) The figure below shows the result of applying the greedy

algorithm. The number of colours produced is 4.

1

12

1

2

32

4

(ii) As G contains a C5 , χ(G) ≥ 3. The figure below shows a 3-colouring

of G, proving that χ(G) = 3.

1

12

1

3

22

3


Problem 5. Let H be the graph given below:

v4

v3

5v

v8

v1

v2

v6

v7

(i) Find the number of colours produced by applying the greedy colouring

algorithm on H according to the ordering: v1 , v2, · · · , v8.

(ii) Determine χ(H).

Solution. (i) The figure below shows the result of applying the greedy

algorithm. The number of colours produced is 4.
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1

1 2

23

2 4

1

(ii) Since G is a bipartite graph with at least one edge, χ(G) = 2. 

Problem 6. Let H be the graph given below:

v8

v1

v7

v10

v9

(i) Find the number of colours produced by applying the greedy colouring

algorithm on H according to the ordering: v1 , v2, · · · , v10.

(ii) Determine χ(H).

Solution. (i) The figure below shows the result of applying the greedy

algorithm. The number of colours produced is 5.

1

1

2

2

3

4

3

4

5

5
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(ii) Since G contains a triangle, χ(G) ≥ 3. Suppose χ(G) = 3. We may

assume that v8 , v4 and v2 are coloured ‘1’, ‘2’ and ‘3’ respectively. Then v9

and v7 must be coloured ‘3’ and ‘2’ respectively. Next, both v5 and v3 must

be coloured ‘1’. Now v1 and v10 must be coloured ‘2’ and ‘3’ respectively.

But then v6 cannot be coloured with ‘1’, ‘2’ or ‘3’. Thus, χ(G) ≥ 4.

2

3

1

2

1

2

1

3

3

The figure below shows a 4-colouring of G, proving that χ(G) = 4.

2

3

1

2

1

4

2

1

3

3


Problem 7. Let H be the graph given below in which the vertices are

named.

v4

v3

8

v6

v10

v9
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(i) Find the number of colours produced by applying the greedy colouring

algorithm on H according to the ordering: v1 , v2, · · · , v10.

(ii) Determine χ(H).

Solution. (i) The figure below shows the result of applying the greedy

algorithm. The number of colours produced is 5.

1

2

2

31

1

2

3

4

5

(ii) Since G contains a triangle, χ(G) ≥ 3. The figure below shows a

3-colouring of G, proving that χ(G) = 3.

1

3

2

32

1

2

3

2

1



Problem 8. (+) Let G be the graph given below.

(i) Find χ(G).
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(ii) Arrange the vertices as v1 , v2, · · · , v10 so that, when the greedy colouring

algorithm is applied to G according to this ordering, the number of

colours produced is the value of χ(G).

Solution. (i) Since G contains a triangle, χ(G) ≥ 3. The figure below

shows a 3-colouring of G, proving that χ(G) = 3.

1

2
1

3

1

2
1

3

3 2

(ii) The figure below shows an arrangement of the vertices as

v1 , v2, · · · , v10 so that, when the greedy colouring algorithm is applied to G

according to this ordering, the number of colours produced is the value of

χ(G).

v1

v5

v7

v4

v3

v10

v8

v6

v2

v9
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Problem 1. Determine the chromatic number of the following graph.

Prove your result.

Solution. Since the graph G contains K4, χ(G) ≥ 4. Since G is connected

and is neither a complete graph nor an odd cycle, by Brooks’ Theorem,

χ(G) ≤ ∆(G) = 4. Thus, χ(G) = 4. 

Problem 2. Determine the chromatic number of the following graph.

Prove your result.

Solution. Since the graph G contains a triangle, χ(G) ≥ 3. The 3-

colouring of G below shows that χ(G) = 3.
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1

2

3

2

1 3

2



Problem 3. (+) Let G be a connected graph, which is not a complete

graph. Show that if G contains Kr as a subgraph, where r = ∆(G) ≥ 3,

then χ(G) = r.

Solution. Since the graph G contains Kr , χ(G) ≥ r. Since G is connected

and is neither a complete graph nor an odd cycle (why?), by Brooks’ The-

orem, χ(G) ≤ ∆(G) = r. Thus, χ(G) = r. 

Problem 4. (+) Consider the following graph H:

(i) Find ∆(H) and χ(H).

(ii) Arrange the vertices of H as v1, v2, · · · , v7 so that, when the greedy

algorithm is applied to H according to this ordering, the number of

colours produced is ∆(H) + 1.

Solution. (i) ∆(H) = 4. Since H contains a triangle, χ(H) ≥ 3. The

3-colouring of H below shows that χ(H) = 3.
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1

2

3

3

2

11

(ii) The figure below shows an arrangement of the vertices of H as

v1 , v2, · · · , v7 so that, when the greedy algorithm is applied to H according

to this ordering, the number of colours produced is ∆(H) + 1 = 5. The

colours are indicated in parentheses.

v4 (2)

v7 (5)

v6 (4)

v5(3)

v2 (1)

v3v1(1) (2)



Problem 5. (+) Does there exist a graph G satisfying the following con-

ditions:

(i) χ(G) = 7 and

(ii) the degree sequence of G is (6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3)?

Solution. No, such a G does not exist. We shall prove it by contradiction.

Suppose such a G exists. Let H be a component of G with χ(H) =

χ(G) = 7. Clearly, H is not an odd cycle. If H is a complete graph,

then by (ii), H ∼= Kr, where r ≤ 6. But then χ(H) = χ(K r) = r ≤ 6,

a contradiction. Thus, H is a connected graph which is neither an odd

cycle nor a complete graph. By Brooks’ Theorem, χ(H) ≤ ∆(H) ≤ 6, a

contradiction again. Thus, no such G exists. 

Problem 6. (+) Let G be a cubic connected graph. What are the possible

values of χ(G)? Classify G according to the value of χ(G).
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Solution. As G is connected, χ(G) ≥ 2. By Theorem 4.1, χ(G) ≤ ∆(G) +

1 = 3 + 1 = 4. Thus, 2 ≤ χ(G) ≤ 4.

If G ∼= K 4 (3-regular), then χ(G) = 4. If G  ∼= K 4, then G can never

be complete. As G is cubic, G is not an odd cycle. Hence, by Brook’s

Theorem, χ(G) ≤ ∆(G) = 3. We thus have the following conclusion:

χ(G) =

⎧⎨
⎩

4 if G ∼= K4;

2 if G is bipartite;

3 otherwise.



Problem 7. (+) Let G be a regular and connected graph of order n.

Show that χ(G) + χ(G) = n + 1 if and only if G ∼= Kn or G ∼= C 5.

Solution. (⇐) Suppose G ∼= Kn. Then G ∼= Nn. Thus, χ(G) + χ(G) =

n + 1.

Suppose G ∼= C5 . Then G ∼= C5 . In this case, χ(G) + χ(G) = 3 + 3 =

5 + 1.

(⇒) Assume that χ(G) + χ(G) = n +1 and suppose G  ∼= Kn . We shall

prove that G ∼= C5 .

Let G be k-regular. Then 2 ≤ k ≤ n − 2 and G is (n − 1 − k)-regular.

Assume that G is not an odd cycle. Then by Brook’s Theorem, χ(G) ≤

∆(G) = k. As χ(G) ≤ ∆(G)+1 = (n − 1 − k)+1 = n − k by Theorem 4.1,

we have

χ(G) + χ(G) ≤ k + (n − k) = n,

a contradiction. Thus G ∼= C2r+ 1 (here, n = 2r+1). If r = 1, then G ∼= K3 ,

which is not allowed. Assume r ≥ 3. Then G (= C2r+ 1) is a connected

graph which is neither complete nor an odd cycle. By Brook’s Theorem,

χ(G) ≤ ∆(G) = (n − 1) − 2 = n − 3. Thus,

χ(G) + χ(G) ≤ 3 + (n − 3) = n,

a contradiction.

Hence r = 2, and so G ∼= C5 , as required.
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Problem 1. A chemist wishes to ship chemicals A,B, C, D, W,X,Y, Z

using as few containers as possible. Certain chemicals cannot be shipped in

the same container since they will react with each other. In particular, any

two of the chemicals in each of the following 6 groups

{A, B, C}, {A,B,D}, {A, B, X}, {C,W,Y }, {C,Y, Z} and {D, W, Z}

react with each other. Draw a graph to model these relations between the

chemicals. Use this graph to find the minimum number of containers needed

to ship the chemicals. Is it possible to have an allocation of the chemicals

that uses the minimum number of containers and such that there are at

most two chemicals in each container?

Solution. Let G be the graph with 8 vertices which represent the 8 chem-

icals A, B, C, D, W,X,Y, Z, where two vertices are adjacent if and only if

the chemicals they represent react with each other.

A B

D

WX

Y

Z C

Since the subgraph induced by the vertices C, W , Y and Z is K4, χ(G) ≥

4. The figure below shows a 4-colouring of G where each colour is used

exactly two times. Thus, the minimum number of containers needed is 4

and a suitable allocation of the chemicals such that there are at most two

chemicals in each container is {C, X}, {B, W }, {D, Y }, {A, Z}.
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A B

D

WX

Y

Z C
(1)

(2)

(3)

(4)

(3)

(2)(4)

(1)


Problem 2. The following figure shows the intersection of a major road

and a small road. There are 10 traffic lanes, L1 to L10, along which vehi-

cles approach the intersection. The directions in which vehicles along each

of the lanes are allowed to negotiate the intersection and go on to a pre-

scribed exit lane are shown. A traffic light system is installed to control

movement through the intersection. The system consists of a certain num-

ber of phases. At each phase, vehicles in lanes for which the light is green

may proceed safely through the intersection. What is the minimum number

of phases needed for the traffic light system so that (eventually) all vehicles

may proceed safely through the intersection? (We may assume that each

lane is broad enough for one vehicle at a time.)

L3
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Solution. Let G be the graph with 10 vertices which represent the 10

lanes, where two vertices are adjacent if and only if vehicles travelling in

the directions allowed by the two lanes represented by the vertices will

collide with each other.

6

3 10

12

4

5

9

7

8

Since the subgraph induced by the vertices 1, 3 and 9 is K3, χ(G) ≥ 3.

The figure below shows a 3-colouring θ of G, using the colours red (r), green

(g) and yellow (y). Thus, the minimum number of phases needed for the

traffic light system is 3 and a possible allocation of the phases, based on

the colouring θ, is {L1, L2, L6, L7 }, {L 4, L 5, L9 , L10}, {L3, L8 }.

6

3 10

12

4

5

9

7

8

r

g(   )
y(   )

r r

r (  )(  )

(  ) (  )

g(   )g(   )

g(   ) y(   )





140 Intr oduction to Graph The ory, Solut ions Manual

Problem 3. A Student Council has 8 committees. Ten councilors

A,B, C,D, E,F, G,H, I, J are appointed to be members of the committees

as shown below:

Publicity : A,B, C,D

Recreation : A, E, F,G

Welfare : G,H, I, J

School Liaison : C, J

Community : D, E

Projects : A,C

Secretariat : B, F,H

Finance : G, I

If each committee is scheduled to meet for two hours each week, what is the

smallest number of two-hour sessions required to schedule all 8 committee

meetings so that each of these councilors is able to attend the meetings of

the committees he/she is a member of?

Solution. Let Z be the graph with 8 vertices which represent the 8 com-

mittees, where two vertices are adjacent if and only if the committees they

represent have a common member.

Rec

Wel

Sch

Pub

Sec

Fin

ComPro

Since the subgraph induced by the vertices Pub, Rec and Com is K3 ,

χ(Z) ≥ 3. The figure below shows a 3-colouring of Z. Thus, the minimum

number of two-hour timeslots needed is 3 and a suitable time allocation of

timeslots is {Pub, Wel}, {Rec, Sch}, {Com, Pro, Sec, Fin}. 
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Rec

Wel

Sch

Pub

Sec

Fin

ComPro

(1)

(3)

(2)

(3)

(3)

(3)

)

Problem 4. A school is preparing a timetable for exams in 7 different

subjects, labelled A to G. It is understood that if there is a pupil taking two

of these subjects, their exams must be held in different timeslots. The table

below shows (by crosses) the pairs of subjects which are taken by at least

one pupil in common. The school wants to find the minimum number of

timeslots necessary and also to allocate subjects to the timeslots accordingly.

Interpreting this problem as a vertex-colouring problem, find the minimum

number of timeslots needed and a suitable time allocation of the subjects.

A B C D E F G

A X X X X

B X X X X

C X X X X

D X X X

E X X X

F X X X X

G X X X X

Solution. Let Z be the graph with 7 vertices which represent the 7 subjects

A,B, C,D, E,F and G, where two vertices are adjacent if and only if there

is a pupil taking the two subjects represented by the vertices.
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A

B

C

DE

F

G

Since Z contains a triangle, χ(Z) ≥ 3. Suppose χ(Z) = 3. Let θ :

V (Z) → {1, 2, 3} be a 3-colouring of Z. We may assume that the vertices

A and B are coloured ‘1’ and ‘2’ respectively. Then C and F must both

be coloured ‘3’. Next, G and E must be coloured ‘1’ and ‘2’ in turn.

However, D now cannot be coloured with ‘1’, ‘2’ or ‘3’, a contradiction.

Thus, χ(Z) ≥ 4. The figure below shows a 4-colouring of Z . Thus, the

minimum number of timeslots needed is 4 and a suitable time allocation of

the subjects is {A, G}, {B, E}, {C,F } and {D}.

A

B

C

DE

F

G

(1)

(2)

(3)

(1)

(3)

(4)(2)





Chapter 5

M a t ch i n g s i n B i p a r t i t e G r a p h s

Theorem 5.1 Let G be a bipartite graph with bipartition (X,Y ). Then

G contains a complete matching from X to Y if and only if |S| ≤ |N (S)|

for every subset S of X . 

Corollary 5.2 Let G be a bipartite graph with bipartition (X,Y ) such

that |X | = |Y |. Then G has a perfect matching if and only if |S| ≤ |N(S)|

for every subset S of X . 

Corollary 5.3 Every k-regular bipartite graph, where k ≥ 1, always con-

tains a perfect matching. 

Theorem 5.4 The family (S1, S2, · · · , Sm) of non-empty finite subsets of

a set W has an SDR if and only if

i∈I

Si

 ≥ |I|

for all subsets I of {1, 2, · · · , m}. 

143
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E x e r c i s e 5 . 2

Problem 1. Five applicants A1, A2, · · · , A5 apply for five jobs J1 , J2 ,

· · · , J5. It is known that

(i) J1 is applied only by A2,

(ii) J2 is applied by all except A4,

(iii) J3 is applied by all except A2,

(iv) J4 is applied by A2 and A4, and

(v) J5 is applied only by A4.

(a) Draw a bipartite graph that models the situation.

(b) Is it possible to assign each applicant to a job for which he/she applies?

Solution. (a) The bipartite graph is shown below:

A AAA A

J JJJJ1 2 3 4 5

1 2 3 4 5

(b) It is impossible. If it is possible to assign each applicant to a job for

which he/she applies, then all the five jobs must be assigned to the five

applicants. Thus J1 must be assigned to A2 and J5 must be assigned to

A4. But, then J4 cannot be assigned to any one, a contradiction. 

Problem 2. In the preceding problem, suppose that the applicant A5

changes his/her mind and applies for J5 instead of J2.

(a) Draw a bipartite graph that models the situation.

(b) Is it possible to assign each applicant to a job for which he/she applies?

Solution. (a) The bipartite graph is shown below:
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A AAA A

J JJJJ1 2 3 4 5

1 2 3 4 5

(b) It is possible, and the arrangment is shown below:

J1 − A2;J 2 − A1;J3 − A3;J4 − A4;J 5 − A5.



Problem 3. Five applicants apply to work in a company. There are six

jobs available: J1, J2, · · · , J6. Applicant A is qualified for jobs J2 and J6 ;

B is qualified for jobs J1 , J3 and J4; C is qualified for jobs J2, J 3 and J6; D

is qualified for jobs J1 , J2 and J3; E is qualified for all jobs except J 4 and

J6.

(a) Draw a bipartite graph that models the situation.

(b) Is it possible to assign each applicant to a job for which he/she is quali-

fied?

Solution. (a) The bipartite graph is shown below:

A

J JJJJ1 2 3 4 5 J

B C D E

6

(b) It is possible, and the arrangment is shown below:

J6 − A;J1 − B; J2 − C;J3 − D; J5 − E.


Problem 4. Five men M1 , M2, · · · , M5 and five women W1, W2, · · · , W5

have and only have the following acquaintance relationships between them:

(i) each of W1, W2 and W3 is acquainted with all the men,

(ii) each of M1 and M5 is acquainted with all the women.
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(a) Draw a bipartite graph that models the situation.

(b) Is it possible to marry off these five men in such a way that each man

marries a woman he is acquainted with?

(c) If M1 insists on marrying W1 , is it possible to marry off the remaining

ones in such a way that each man marries a woman he is acquainted

with?

Solution. (a) The bipartite graph that models the situation is shown be-

low:

M M M M M51 2 3 4

W W W W W1 2 3 4 5

(b) Yes. The following matching will work:

{M1W4, M2W2 , M3W3, M4W1 , M5W5 }.

(c) Suppose M1 marries W1 . The bipartite graph that models the new

situation with M1 and W 1 removed is as follows:

M M M M52 3 4

W W W W2 3 4 5

Observe that three men M2, M3 and M4 are only acquainted with two

women W2 and W3. It is thus not possible to marry off the remaining ones

in such a way that each man marries a woman he is acquainted with. 
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Problem 5. Consider the following set of codewords:

X = {ab, abc, cd, bcd, de}.

We wish to transmit these codewords as messages. Instead of transmitting

the whole codeword, we transmit a single letter which is contained in it, as

its representative. Can this be done in such a way that the five codewords

can be recovered uniquely from their five respective representatives?

Solution. We construct a bipartite graph such that the partite sets are

the set of codewords {ab, abc, cd, bcd, de} and the set of letters {a, b, c, d, e},

and a codeword is adjacent only to the letters contained in it.

ab abc cd bcd de

a b c d e

Single letters can be transmitted in such a way that the five codewords

can be recovered uniquely from their five respective representatives. The

following matching of codewords and representatives will work:

{(ab, b), (abc, a), (cd, d), (bcd, c), (de, e)}.


Problem 6. A school has vacancies for seven teachers, one for each of the

subjects Chemistry, English, French, Geography, History, Mathematics and

Physics. There are seven applicants for the vacancies and all are qualified

to teach more than one subject. The applicants and their subjects are listed

in the table below.

(a) Draw a bipartite graph to represent this situation.

(b) Determine the maximum number of (suitably qualified) teachers the

school can employ.
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Applicants Subjects qualified

Miss Lim Mathematics, Physics

Miss Wong Chemistry, English, Mathematics

Miss Tay Chemistry, French, History, Physics

Mr. Tan English, French, History, Physics

Mr. Lee Chemistry, Mathematics

Mr. Ng Mathematics, Physics

Mr. Peng English, Geography, History

Solution. (a) The bipartite graph that models the situation is shown be-

low:

Lim Wong Tay Tan Lee

Maths Physics Chemistry English French

Ng

History

Peng

Geography

(b) The school can employ all 7 of the applicants. The following job

assignment will work:

{(Lim, Maths), (Wong, English), (Tay, French), (Tan, History), (Lee,

Chemistry), (Ng, Physics), (Peng, Geography)}. 

Problem 7. Consider the following bipartite graph G with bipartition

(X,Y ):

a b c d

w x y z

X

Y

(i) Is {bx, cy} a matching?

(ii) Is {ax, by, cy} a matching?

(iii) Is {ax, by, cz} a matching?

(iv) Is {ax, bw, cz, dy} a matching? a perfect matching?
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(v) Is there any perfect matching that contains the edge ‘by’?

(vi) Find the number of perfect matchings in G.

Solution. (i) Yes.

(ii) No, since the edges by and cy are incident with a common vertex y.

(iii) Yes.

(iv) Yes. Yes.

(v) No. To see this, let us assume that there is a perfect matching

that contains the edge by. Then the matching must contain the edge cz.

However, this means that the vertex d is not contained in any edge of the

perfect matching, which is a contradiction.

(vi) By (v), G has no perfect matching containing by. So we just need to

consider perfect matchings in G − by. It is clear that a perfect matching of

G contains exactly one of {aw, bx} or {ax, bw}, and exactly one of {cy, dz}

or {cz, dy}. Thus, the number of perfect matchings = 2 × 2 = 4. 

Problem 8. For n ≥ 3, find the number of perfect matchings of the cycle

Cn.

Solution. A perfect matching of Cn has exactly n/2 edges. Thus, if n is

odd, there are no perfect matchings.

Suppose n is even. Let Cn be v1v2 · · · vnv1 and let M be a perfect

matching of Cn. If v1 v2 is in M , then vi vi+ 1, for all odd i, is in M . On the

other hand, if v1 v2 is not in M , then vivi+ 1, for all even i, is in M . Thus,

there are exactly two perfect matchings for Cn when n is even. 

Problem 9. For n ≥ 1, find the number of perfect matchings of the graph

K(n,n).

Solution. Let X and Y be the two partite sets of K(n,n) with X =

{x1, x2, · · · , xn }. For x1, to form an edge x1u 1 in a perfect matching,

there are n choices for u1, i.e., u1 ∈ Y . Next, for x2 , to form the edge

x2u2, there are n − 1 choices for u2, i.e., u 2 ∈ Y \ {u1 }. Continuing in this

manner, we see that there are n! perfect matchings for K(n,n). 
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Problem 10. (+) For n ≥ 2, find the number of perfect matchings of the

graph Kn.

Solution. A perfect matching of Kn has exactly n
2 edges. Thus, if n is

odd, there are no perfect matchings.

Suppose n is even. Choose a vertex u in V (Kn). Then u has n − 1

choices to choose a vertex, say v, to match with. Next, choose a vertex

w in V (Kn) \ {u, v}. Then w has n − 3 choices to choose a vertex to

match with. Continuing this procedure, we see that the number of perfect

matchings in Kn is

(n − 1)(n − 3) · · · 3 · 1.



Problem 11. Consider the following bipartite graph G with bipartition

(X,Y ):

Y

X

(i) Does G contain a complete matching from X to Y ?

(ii) Does G contain a perfect matching?

(iii) Find two matchings M and M  in G with |M | = |M | = 3.

(iv) How many matchings M are there in G with |M | = 3?

Solution. Let the vertices of X be, from left to right in the figure,

x1, x2, x3, x4 . Let the vertices of Y be, from left to right in the figure,

y1 , y2 , y3, y4.

(i) No. Observe that y2 and y4 are adjacent only to x2. Thus, there is

no complete matching from Y to X . Since |Y | = |X |, there is also no

complete matching from X to Y .

(ii) No. Since G does not contain a complete matching from X to Y , it

does not contain a perfect matching.

(iii) M = {x1 y1, x2 y2, x3 y3 }; M  = {x 1y1, x2y2, x4 y3 }.
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(iv) Observe that in any matching M in G with |M | = 3, we must have

either the edge x2y2 or the edge x2y4. When we remove the 3 vertices

x2, y2 and y4 from G, we are left with a complete bipartite graph

K(3, 2). The number of matchings M  in K(3, 2) with |M  | = 2 is

3 × 2. Thus, there are 2 × 3 × 2 = 12 such matchings. 

Problem 12. (+) Consider the following 6 × 6 grid-board whose upper left

and lower right corner squares are removed. You are given 17 dominoes,

each covering exactly two adjacent squares (squares that have an edge in

common) of the board. Can you use them to cover the 34 squares in the

board?

Solution. Colour the 34 squares black and white as shown below:

Clearly, each domino covers two squares with different colours. Form

a bipartite graph G with bipartition (X,Y ), where X is the set of black

squares and Y is the set of white squares, and a vertex in X is adjacent to

a vertex in Y if and only if their corresponding squares can be covered by a

domino. The problem is equivalent to asking whether G contains a perfect

matching. The answer is ‘no’ as |X| = 18 and |Y | = 16. 
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Problem 13. (+) Prove that the following 3-regular graph (triple flyswat)

does not have a perfect matching, but does have a matching with seven

edges.

Solution. Let us label the vertices of the triple flyswat G as follows:

v

v

v

v

v

v v

v

v

v

v v

v

v

21

22

23

24

25 11 12

13

14

15

31

32

33 34

35

Suppose the graph G has a perfect matching M . We may assume

that uv11 ∈ M . Now we observe that the 5 vertices in W =

{v21, v22, v23 , v24, v25 } can only be incident to edges of M which have both

end-vertices in W . This is however impossible as there is an odd number,

5, of vertices in W . Thus, G does not have a perfect matching.

A matching with seven edges is

{uv11, v12v13 , v14v15, v22v23, v24v 25, v32v33, v34v35 }.
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Problem 14. Let T be a tree of order n ≥ 2 and M , a maximal matching

in T .

(i) What is the largest possible value for |M |? Construct one such T which

contains one such M having its |M | attaining this largest value.

(ii) What is the least possible value for |M |? Construct one such T which

contains one such M having its |M | attaining this least value.

Solution. (i) Clearly, |M | ≤  n
2 .

Consider the path Pn : v1v1v2 · · · vn. Then

M  =


vivi+ 1 |i = 1, 3, 5, · · · , 2
 n

2


− 1


is a matching with |M | =  n

2 .

Thus, the largest possible value for |M | is  n
2 .

(ii) Clearly, |M | ≥ 1.

Consider Sn , the star of order n, which is also a tree. (Recall that a star

of order n has one vertex of degree n − 1, and n − 1 end-vertices.) Clearly,

any matching in Sn contains exactly one edge.

Thus, the least possible value for |M | is 1. 

Problem 15. (∗) The twenty members of a local tennis club have scheduled

exactly 14 two-person games among themselves, with each member playing

in at least one game. Prove that within this schedule there must be a set of

6 games with twelve distinct players. (USAMO, 1989)

Solution. Represent the situation as a graph G with 20 vertices represent-

ing the 20 players and two vertices are adjacent if and only if a game is

scheduled between the two corresponding players. Thus, there are 14 edges

and the degree of each vertex is at least 1.

Let M be a matching in G such that |M | is the largest among all the

matchings in G. Let U be the set of vertices in G which are not incident

with any edge in M . Then |U | = 20 − 2|M |, as shown below.

M

U
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Note that

(1) each vertex in U is incident with an edge in G and

(2) no two vertices in U are joined by an edge in G (why?).

Thus, there are at least |M | + |U | edges in G, and we have:

14 = e(G) ≥ |M | + |U | = |M | + 20 − 2|M |,

which implies that |M | ≥ 6, as desired.

Thus within this schedule there must be a set of 6 games with twelve

distinct players. 

Problem 16. (∗) Generalize the result in the preceding problem by replac-

ing ‘twenty members’ by ‘n members’, and ‘14 games’ by ‘m games’.

Solution. The n members of a local tennis club have scheduled exactly m

two-person games among themselves, with each member playing in at least

one game. We claim that within this schedule there must be a set of n − m

games with 2(n − m) distinct players.

Represent the situation as a graph G with n vertices representing the

n players and two vertices are adjacent if and only if a game is scheduled

between the two corresponding players. Thus, there are m edges and the

degree of each vertex is at least 1.

Let M be a matching in G such that |M | is the largest among all the

matchings in G. Let U be the set of vertices in G which are not incident

with any edge in M . Then |U | = n − 2|M |. Note that

(1) each vertex in U is incident with an edge in G and

(2) no two vertices in U are joined by an edge in G.

Thus, there are at least |M | + |U | edges in G, and we have:

m = e(G) ≥ |M | + |U | = |M | + n − 2|M |,

which implies that |M | ≥ n − m, as desired.

Thus within this schedule there must be a set of n − m games with

2(n − m) distinct players. 
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E x e r c i s e 5 . 3

Problem 1. Let G be the bipartite graph you constructed in Problem 1,

Exercise 5.2. Let S = {A1 , A3 , A5 }. Find N(S). Is |N(S)| < |S|? What

conclusion can you draw from Theorem 5.1?

Solution. We find that

N(S) = {J2, J 3}.

So |N(S)| = 2 < 3 = |S|. By Theorem 5.1, the bipartite graph that models

the situation in Problem 1 of Exercise 5.2 has no complete matchings. Thus

it is impossible to assign each applicant a job for which he/she applies. 

Problem 2. Let G be the bipartite graph with bipartition (X,Y ) as shown

in Problem 7, Exercise 5.2.

(i) Complete the following table:

S N(S)

{a}

{b}

{c}

{d}

{a, b}

{a, c}

{a, d}

{b, c}

{b, d}

{c, d}

{a, b, c}

{a, b, d}

{a, c, d}

{b, c, d}

X

(ii) Is it true that |S| ≤ |N (S)| for all S ⊆ X?

(iii) What conclusion can you draw from Corollary 5.2?
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Solution. (i)

S N (S)

{a} {w,x}

{b} {w, x, y}

{c} {y, z}

{d} {y, z}

{a, b} {w, x, y}

{a, c} {w, x, y, z}

{a, d} {w, x, y, z}

{b, c} {w, x, y, z}

{b, d} {w,x, y, z}

{c, d} {y, z}

{a, b, c} {w, x, y, z}

{a, b, d} {w, x, y, z}

{a, c, d} {w, x, y, z}

{b, c, d} {w, x, y, z}

X {w, x, y, z}

(ii) It is true.

(iii) Since |S| ≤ |N(S)| for every subset S of X and |X | = |Y |, by

Corollary 5.2, the bipartite graph shown in Problem 7, Exercise 5.2, has a

perfect matching. 

Problem 3. Let G be the bipartite graph with bipartition (X,Y ) as shown

in Problem 11, Exercise 5.2.

(i) Find a subset S of X such that |S| > |N(S)|.

(ii) What conclusion can you draw from Theorem 5.1?

Solution. (i) We first label the vertices in the bipartite graph in Problem

11, Exercise 5.2 as follows:

Y

X
x x x x

y y y y

1 2 3 4

1 2 3 4
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Let S = {x1 , x3 , x4 }. Note that N (S) = {y1, y3 } and |S| > |N (S)|.

(ii) By Theorem 5.1, the bipartite graph in Problem 11, Exercise 5.2

has no complete matchings from X to Y . 

Problem 4. Consider the following bipartite graph G with bipartition

(X,Y ):

Y

X
a b c d

w x y z

(i) Let S = {a, b}. Find N(S).

(ii) Let E1 be the set of edges in G incident with some vertex in S. Find

E1.

(iii) Let E2 be the set of edges in G incident with some vertex in N(S).

Find E2 .

(iv) Is E1 ⊆ E2?

Solution. (i) N (S) = {w,x, y}.

(ii) E1 = {aw, ax, bw, bx, by}.

(iii) E2 = {aw, bw, ax, bx, cx, by, dy}.

(iv) Yes, it is true that E1 ⊆ E2 . 

Problem 5. Let G be a bipartite graph with bipartition (X,Y ). For S ⊆ X,

let E1 be the set of edges in G incident with some vertex in S, and let E2

be the set of edges in G incident with some vertex in N(S). Is it true in

general that E1 ⊆ E2? Why?

Solution. It is true in general that E1 ⊆ E2.

Let xy ∈ E1, where x ∈ X and y ∈ Y . Then x ∈ S by the definition of

E1. By the definition of N(S), y ∈ N(S). Thus xy ∈ E2 .

Hence E1 ⊆ E2 . 
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Problem 6. (+) Let G be a bipartite graph with bipartition (X,Y ). Assume

that there exists a positive integer k such that d(y) ≤ k ≤ d(x) for each

vertex y in Y and each vertex x in X .

Let S ⊆ X , and denote by E1 the set of edges in G incident with some

vertex in S, and by E2 the set of edges in G incident with some vertex in

N(S) (see the preceding problem).

(i) Show that k|S| ≤ |E1 | ≤ |E2| ≤ k|N (S)|.

(ii) Deduce from Theorem 5.1 that G has a complete matching from X to

Y .

(iii) Deduce from (ii) that every k-regular bipartite graph with k ≥ 1 has a

perfect matching.

Solution. (i) Since d(x) ≥ k for each x ∈ X, we have

|E1 | =

x∈S

d(x) ≥

x∈S

k = k|S|.

Since d(y) ≤ k for each y ∈ Y , we have

|E2 | =


y∈N (S)

d(y) ≤


y∈N (S)

k = k|N (S)|.

By the result of Problem 5, |E1 | ≤ |E2 |. Thus we have

k|S| ≤ |E1 | ≤ |E2 | ≤ k|N(S)|.

(ii) By (i), we have |S| ≤ |N (S)| for every subset S of X . Thus, by

Theorem 5.1, G has a complete matching from X to Y .

(iii) Let G be a k-regular bipartite graph with bipartition (X,Y ), where

k ≥ 1. By the result of Problem 4 in Exercise 3.1, we have |X| = |Y |. Thus,

by (ii), G has a perfect matching. 

Problem 7. (∗) Let G be a bipartite graph with bipartition (X, Y ). Let

∆(G) = k ≥ 1 and X∗ = {x ∈ X | d(x) = k}. Assume that X∗ is not

empty. Determine whether the following statement (#) is true and justify

your answer.

(#) G contains a matching M such that every vertex in X∗ is incident

with an edge in M .

Solution. The statement (#) is true.

Let H be the subgraph of G induced by X∗ ∪N(X∗). Then (X ∗, N(X∗))

is a bipartition of H .
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Note that dH (x) = k ≥ dH(y) for each x ∈ X ∗ and each y ∈ N(X∗).

By the result of part (ii) of Problem 6, H contains a complete matching M

from X ∗ to N (X∗). It is clear that M is also a matching of G, and every

vertex in X∗ is incident with an edge in M . 

Problem 8. (∗) Let G be a bipartite graph with bipartition (X,Y ). Prove

that G contains a complete matching from X to Y if and only if

|X\N(T )| ≤ |Y \T |

for all T ⊆ Y .

Solution. (⇒) Assume that G contains a complete matching from X to

Y . Then, by Theorem 5.1, |S| ≤ |N (S)| for each S ⊆ X .

Let T ⊆ Y and S = X \N (T ).

Let y ∈ N (S). There exists x ∈ S such that xy ∈ E(G). If y ∈ T ,

then x ∈ N(T ), implying that x /∈ S, a contradiction. Thus y /∈ T . Hence

N(S) ⊆ Y \T .

Therefore

|X\N(T )| = |S| ≤ |N(S)| ≤ |Y \T |.

(⇐) Assume that |X\N (T )| ≤ |Y \T | for all T ⊆ Y .

Let S ⊆ X and T = Y \N(S). So Y \T = N (S). Then N (T ) ⊆ X \S,

implying that S ⊆ X \N(T ). By the assumption

|X\N(T )| ≤ |Y \T |,

we have

|S| ≤ |X \N (T )| ≤ |Y \T | = |N(S)|.

By Theorem 5.1, G contains a complete matching from X to Y . 

Problem 9. Let G be a bipartite graph. Prove that G contains a perfect

matching if and only if |S| ≤ |N(S)| for all S ⊆ V (G).

Solution. Let (X,Y ) be a bipartition of G.

(⇒) Since G contains a perfect matching, G contains a complete match-

ing from X to Y . By Theorem 5.1, |S| ≤ |N(S)| for all S ⊆ X .

Similarly, G contains a complete matching from Y to X . By Theorem

5.1, |S| ≤ |N (S)| for all S ⊆ Y .

Let S ⊆ V (G). So S = S1 ∪ S2, where S1 ⊆ X and S2 ⊆ Y . Then

|S| = |S1 | + |S2 | ≤ |N(S1 )| + |N (S2 )| = |N(S)|.
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(⇐) Assume that |S| ≤ |N(S)| for all S ⊆ V (G). Then |S| ≤ |N (S)|

for all S ⊆ X and |S| ≤ |N(S)| for all S ⊆ Y . By Theorem 5.1, G contains

a complete matching from X to Y , and also a complete matching from Y

to X . Thus |X| = |Y |, implying these complete matchings are perfect. 

Problem 10. (∗) Let G be a connected bipartite graph with bipartition

(X,Y ), where |X| ≥ 2 and |Y | ≥ 2. Prove that the following statements

are equivalent:

(i) Each edge of G is contained in a perfect matching of G.

(ii) |X | = |Y | and |S| < |N(S)| for all S ⊂ X with S = ∅.

(iii) G − {x, y} has a perfect matching for any x ∈ X and y ∈ Y .

Solution. (i) ⇒ (ii)

Since G contains perfect matchings, we have |X | = |Y |, and by Theorem

5.1, |S| ≤ |N (S)| for all S ⊂ X .

Suppose that there exists S ⊂ X with S = ∅ such that |S| = |N(S)|.

Since G is connected, there exists an edge xy with x ∈ X \S and y ∈

N(S).

By (i), xy is contained in a perfect matching M of G. But then the

vertices in S are matched with the vertices in N (S) \ {y} under M , which

is impossible as |S| > |N (S) \ {y} |.

(ii) ⇒(iii)

Let x ∈ X and y ∈ Y and H = G − {x, y}. Note that (X \ {x}, Y \ {y})

is a bipartition of H .

Let S be any set with S = ∅ and S ⊆ X\ {x}. We have |NH(S)| ≥

|NG(S)| − 1. As S ⊂ X , by (ii), we have |NG(S)| ≥ |S| + 1. Thus

|NH(S)| ≥ |NG(S)| − 1 ≥ |S| + 1 − 1 = |S|.

By Theorem 5.1, H has a complete matching from X\ {x} to Y \ {y}. Since

|X| = |Y | by (ii), this complete matching is perfect.

(iii) ⇒(i)

Let xy be any edge in G, where x ∈ X and y ∈ Y .

By (iii), G − {x, y} has a perfect matching M . Clearly, M ∪ {xy} is a

perfect matching of G. 
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Problem 11. (∗) Let G be a bipartite graph with bipartition (X, Y ) such

that |X| − |Y | = p ≥ 1. Form a larger bipartite graph G∗ with bipartition

(X,Y ∪ Y ∗), where |Y ∗| = p, such that

(1) G∗ contains G as an induced subgraph, and

(2) every vertex in Y ∗ is adjacent to every vertex in X .

Prove that G∗ has a perfect matching if and only if G has a matching with

|Y | edges.

Solution. (⇒) Suppose that G∗ has a perfect matching M . Let

M = M \ {e ∈ M | e is incident with a vertex y ∈ Y ∗}.

Then M is a matching of G with |M  | = |M | − |Y ∗| = |X | − p = |Y |.

(⇐) Assume that G has a matching M  with |Y | edges.

Let X  = {x ∈ X | x is not incident with any edge in M }. Then

|X| = p and [X  ∪ Y ∗] ∼= K(p, p). Clearly, [X ∪ Y ∗ ] possesses a perfect

matching, say M . Then M  ∪ M  is a perfect matching of G∗. 

Problem 12. (∗) Let G be a bipartite graph with bipartition (X,Y ), and

let k be an integer such that 1 ≤ k ≤ |X|. Show that G contains a matching

M with |M | = k if and only if

|S| ≤ |N (S)| + |X| − k

for all S ⊆ X .

Solution. By Theorem 5.1, the result holds if k = |X |. In the following

we assume that 1 ≤ k < |X|.

Construct the bipartite graph G∗ with bipartition (X,Y ∪ Y ∗) such that

G is an induced subgraph of G∗ and

(1) |Y ∗| = |X | − k;

(2) every vertex in Y ∗ is adjacent to every vertex in X .

(⇒) Assume that G contains a matching M with |M | = k.

Let

X  = {x ∈ X | x is not incident with any edge in M }.

Clearly, |X | = |X| − k = |Y ∗ |, and by the definition of G∗ , [X ∪ Y ∗] is a

complete bipartite graph with bipartition (X , Y ∗). Thus [X  ∪Y ∗ ] contains

a perfect matching, say M .

It follows that M ∪ M  is a complete matching of G∗ from X to Y ∪ Y ∗ .

By Theorem 5.1, for all S ⊆ X,

|S| ≤ |NG∗ (S)| = |NG(S)| + |Y ∗| = |N (S)| + |X | − k.



162 Intr oduction to Graph The ory, Solut ions Manual

(⇐) Assume that for all S ⊆ X ,

|S| ≤ |N(S)| + |X| − k.

As NG∗(S) = N(S) ∪ Y ∗, we have

|NG∗(S)| = |N(S)| + |Y ∗| = |N (S)| + |X | − k.

Thus, for all S ⊆ X ,

|S| ≤ |NG∗(S)|.

By Theorem 5.1, G∗ has a complete matching M∗ from X to Y ∪ Y ∗. Let

M = M ∗\ {e ∈ M∗ | e is incident with a vertex in Y ∗}.

Then M is a matching of G with

|M | = |M∗| − |Y ∗| = |X | − (|X| − k) = k.

This completes the proof. 

Problem 13. (∗) Let G be a bipartite graph with bipartition (X, Y ). As-

sume that d(x) ≥ 6 and d(y) ≤ 8 for all x ∈ X and y ∈ Y . Prove that G

contains a matching M with |M | ≥ 3
4 |X|.

Solution. By the result of Problem 12, we need only to show that for all

S ⊆ X ,

|S| ≤ |N(S)| + |X| −


3

4
|X|


.

If |S| ≤ |N(S)| + |X| − 3
4 |X|, then

|S| ≤


|N(S)| + |X| −

3

4
|X|


= |N (S)| + |X | −


3

4
|X|


.

Note that |N(S)| + |X | − 3
4 |X| = |N (S)| + 1

4 |X|. So it suffices to show that

|S| ≤ |N (S)| +
1

4
|X|

for all S ⊆ X .

Let S be any subset of X and H = [S ∪ N(S)]. Then (S, N(S)) is a

bipartition of H . Note that

e(H) =

x∈S

dH(x) =

x∈S

dG(x) ≥ 6|S|
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and

e(H) =


y∈N (S)

dH(y) ≤


y∈N (S)

dG (y) ≤ 8|N (S)|.

Thus

6|S| ≤ 8|N (S)|,

i.e., 3
4 |S| ≤ |N (S)|. Now, we have

|S| =
3

4
|S| +

1

4
|S| ≤

3

4
|S| +

1

4
|X| ≤ |N (S)| +

1

4
|X|.

By the result of Problem 12, G contains a matching M with |M | ≥ 3
4 |X|.



Problem 14. (∗) Let G be a bipartite graph with bipartition (X,Y ). For

S ⊆ X , the deficiency ρ(S) of S is defined as

ρ(S) = |S| − |N(S)|.

Assume that d(x) ≥ 3 and d(y) ≤ 4 for all x ∈ X and y ∈ Y . Show that

|X| ≥ 4ρ(S),

for all S ⊆ X .

Solution. Let S be any subset of X and H = [S ∪ N (S)]. Then (S,N (S))

is a bipartition of H . Note that

e(H) =

x∈S

dH(x) =

x∈S

dG(x) ≥ 3|S|

and

e(H) =


y∈N (S)

dH(y) ≤


y∈N (S)

dG (y) ≤ 4|N (S)|.

Thus

4|N(S)| ≥ 3|S|,

i.e., |N(S)| ≥ 3
4 |S|, which implies that

ρ(S) = |S| − |N (S)| ≤ |S| −
3

4
|S| =

1

4
|S| ≤

1

4
|X|.

It follows that |X| ≥ 4ρ(S) for all S ⊆ X . 
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Problem 15. (∗) Let k and n be positive integers with k ≤ n. A k × n

matrix with entries from {1, 2, · · · , n} is called a Latin rectangle if each

‘i’ in {1, 2, · · · , n} appears exactly once in each row and at most once in

each column. A k × n Latin rectangle is called a Latin square of order n

if k = n.

Consider the 3 × 5 Latin rectangle L =

⎛
⎝ 1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

⎞
⎠ .

Define a bipartite graph G with bipartition (X,Y ) associated with L as

follows:

(i) X = {1, 2, 3, 4, 5},

(ii) Y = {C1, C2, C3, C4 , C5 }, where Ci is the ith column of L,

(iii) ‘i’ in X is adjacent to ‘Cj’ in Y if and only if ‘i’ does not appear in

‘Cj ’.

(a) Draw the diagram of G.

(b) What is the degree of each vertex in X? Why?

(c) What is the degree of each vertex in Y ? Why?

(d) Is G 2-regular?

(e) Does G contain a perfect matching? Why?

(f) Display a perfect matching in G if your answer to (e) is ‘YES’.

(g) Use the perfect matching obtained in (f ) to append a new row to L to

form a 4 × 5 Latin rectangle L .

(h) Expand L  to form a Latin square of order 5.

Solution. (a)

1 2 3 4 5

1 2 3 4 5CC C C C

X

Y

(b) d(i) = 2 for each i ∈ X, as every i does not appear in exactly 2
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columns.

(c) d(Cj) = 2 for each Cj ∈ Y , as each column excludes exactly 2

members in X.

(d) Yes, G is 2-regular.

(e) Yes, G contains a perfect matching. By Corollary 5.3, every k-regular

bipartite graph with k ≥ 1 contains a perfect matching.

(f) The following is a perfect matching of G:

{1C5, 2C1, 3C2, 4C3 , 5C4 }.

(g) From the above perfect matching, we get the following 4 × 5 Latin

rectangle L:

L =

⎛
⎜⎜⎝

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

2 3 4 5 1

⎞
⎟⎟⎠ .

(h) We expand L to form the following Latin square:

L =

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

2 3 4 5 1

3 4 5 1 2

⎞
⎟⎟⎟⎟⎠ .



Problem 16. (∗) Consider the 2 × 6 Latin rectangle L =


1 2 3 4 5 6

3 6 4 5 2 1


.

Define, likewise, the bipartite graph G with bipartition (X,Y ) associated

with L as shown in the preceding problem by replacing X by {1, 2, 3, 4, 5, 6},

and Y by {C1, C2, C3, C4, C5, C6 }, where Ci is the ith column of L.

(a) Draw the diagram of G.

(b) What is the degree of each vertex in X? Why?

(c) What is the degree of each vertex in Y ? Why?

(d) Is G 4-regular?

(e) Does G contain a perfect matching? Why?

(f) Display a perfect matching in G if your answer to (e) is ‘YES’.

(g) Use the perfect matching obtained in (f) to append a new row to L to

form a 3 × 6 Latin rectangle L.
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Solution. (a)

1 2 3 4 5

1 2 3 4 5CC C C C

X

Y
C

6

6

(b) d(i) = 4 for each i ∈ X, as every i does not appear in exactly 4

columns.

(c) d(Cj) = 4 for each Cj ∈ Y , as each column excludes exactly 4

numbers in X .

(d) Yes, G is 4-regular.

(e) Yes, G contains a perfect matching. Since G is 4-regular, by Corol-

lary 5.3, it contains a perfect matching.

(f) The following is a perfect matching of G:

{1C4, 2C6, 3C2 , 4C5, 5C3, 6C1 }.

(g) From the above perfect matching, we get the following 3 × 6 Latin

rectangle L:

L =

⎛
⎝ 1 2 3 4 5 6

3 6 4 5 2 1

6 3 5 1 4 2

⎞
⎠ .
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E x e r c i s e 5 . 4

Problem 1. Find an SDR for each of the following families of sets.

(i) ({1, 2}, {2, 5}, {4}, {3, 5});

(ii) ({1, 3}, {1, 3}, {2}, {1, 4}, {4, 5});

(iii) ({5}, {1, 6}, {2, 3}, {1, 4}, {3}, {1, 4}).

Solution.

(i) (1, 2, 4, 5).

(ii) (1,3, 2, 4, 5).

(iii) (5, 6, 2, 1, 3, 4). 

Problem 2. For each of the following families of sets, determine whether

it has an SDR. Justify your answers.

(i) ({1}, {2, 3}, {1, 2}, {1, 3}, {1, 4, 5});

(ii) ({1, 2}, {2, 3}, {4, 5}, {4, 5});

(iii) ({1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}).

Solution. (i) Since |{1} ∪ {2, 3} ∪ {1, 2} ∪ {1, 3} | = 3 < 4, by Theorem 5.4,

this family has no SDR.

(ii) It has an SDR: (1, 2, 4, 5).

(iii) It has an SDR: (1, 2, 3, 4, 5). 

Problem 3. There are four clubs in a school with their committee members

as shown below:

Club (A): {a, b},

Club (B): {a, c, e},

Club (C): {b, c},

Club (D): {b, d}.

Let X = {A,B,C,D} and Y = {a, b, c, d, e}. Form a bipartite graph G

with bipartition (X,Y ) as follows: A vertex (club) in X is adjacent to a

vertex (person) in Y if and only if that person is a committee member of

the club.

(i) Draw the graph G.

(ii) Let S = {A}. Find N (S) in G.

(iii) Let S = {A,B}. Find N (S) in G.
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(iv) Let S = {A,B, C}. Find N(S) in G.

(v) Does there exist a subset S of X such that |S| > |N(S)|?

(vi) Does there exist a complete matching from X to Y ?

(vii) Display a complete matching M from X to Y if your answer to (vi) is

‘YES’.

(viii) Provide an SDR for the family (A, B, C, D) from M .

Solution. (i) The graph G is shown below:

X

Y

A B C D

a b c d e

(ii) If S = {A}, then N (S) = {a, b}.

(iii) If S = {A, B}, then N(S) = {a, b, c, e}.

(iv) If S = {A,B,C }, then N (S) = {a, b, c, e}.

(v) There are no subsets S of X such that |S| > |N(S)|.

(vi) By Theorem 5.4, there exists a complete matching from X to Y .

(vii) The following is a complete matching M from X to Y :

M = {Aa, Bc, Cb, Dd}.

(viii) From M given in (vii), (A,B,C,D) has an SDR: (a, c, b, d). 

Problem 4. Let S1 = {b, c}, S2 = {a}, S3 = {a, b} and S4 = {c, d}. Verify

that the family (S1, S2, S3 , S4) satisfies the condition stated in Theorem 5.4,

and thus conclude that the family has an SDR. Provide also one such SDR.

Solution. Let I ⊆ {1, 2, 3, 4}. It is clear that if |I| ≤ 2, then

i∈I

Si

 ≥ |I|.

If I = {1, 2, 3}, then

i∈I

Si

 = |{a, b, c} | = 3 = |I|;
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if I = {1, 2, 4}, then 

i∈I

Si

 = |{a, b, c, d} | = 4 > |I|;

if I = {1, 3, 4}, then 

i∈I

Si

 = |{a, b, c, d} | = 4 > |I|;

if I = {2, 3, 4}, then 

i∈I

Si

 = |{a, b, c, d} | = 4 > |I|.

if I = {1, 2, 3, 4}, then

i∈I

Si

 = |{a, b, c, d} | = 4 = |I|.

So the family (S1, S2 , S3 , S4) satisfies the condition in Theorem 5.4. By

Theorem 5.4, (S1, S2, S3, S4) contains an SDR.

Note that (c, a, b, d) is an SDR of (S1, S2, S 3, S4). 

Problem 5. Six teachers A, B, C, D,E and F are members of five commit-

tees. The memberships of the committees are

{A, B, C}, {D,E,F }, {A, D,E, F }, {A, C, E, F } and {A, B, F }.

The activities of each committee are to be reviewed by a teacher who is not

on the committee, and different committees are to be reviewed by different

teachers. Can five distinct teachers be selected? If ‘YES’, show one such

assignment.

Solution. Let Si be the set of teachers who are not in committee i. Then

we have

S1 = {D, E,F },

S2 = {A, B, C},

S3 = {B, C },

S4 = {B, D},

S5 = {C, D,E}.

Observe that (S1, S2, S3, S4 , S5) has an SDR: (E,A,B,D,C).

Hence five different teachers can be selected such that each teacher is

not in the corresponding committee. 
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Problem 6. Show that each of the following families of sets has no SDR

by Theorem 5.4.

(i) ({1, 2}, {1}, {3, 4}, {2});

(ii) ({1}, {2, 3}, {1, 4, 5}, {1, 2}, {1, 3});

(iii) ({2, 3}, {2, 3, 4, 5, 6}, {3, 4}, {4, 5}, {2, 5}, {2, 4}).

Solution. (i) Since |{1, 2} ∪ {1} ∪ {2} | = 2 < 3, by Theorem 5.4, this family

has no SDR.

(ii) Since |({1} ∪ {2, 3} ∪ {1, 2} ∪ {1, 3} | = 3 < 4, by Theorem 5.4, this

family has no SDR.

(iii) Since |({2, 3} ∪ {3, 4} ∪ {4, 5} ∪ {2, 5} ∪ {2, 4} | = 4 < 5, by Theorem

5.4, this family has no SDR. 

Problem 7. For n ≥ 2, let S1 = {1}, S2 = {1, 2} and for each i = 3, · · · , n,

let Si = {1, 2, · · · , i}.

(i) Show that the family (S1 , S2, · · · , Sn) has an SDR.

(ii) How many different SDR’s does (S 1, S2 , · · · , Sn) have?

Solution. (i) Note that (1, 2, 3, · · · , n) is an SDR of (S1, S2 , · · · , Sn).

(ii) We claim that (S1, S2 , · · · , Sn) has only one SDR, i.e.,

(1, 2, 3, · · · , n). Suppose that (S1, S2 , · · · , Sn) has an SDR (x1 , x2 , · · · , xn).

Then x1 ∈ S1 and so x1 = 1; x2 ∈ S2 \ {1} and so x2 = 2. Likewise, we

have xi = i for each i = 3, · · · , n. Thus (x1, x2 , · · · , xn) = (1, 2, · · · , n). 

Problem 8. For n ≥ 2 and for each i = 1, 2, · · · , n − 1, let Si = {i, i + 1},

and Sn = {n, 1}.

(i) Show that the family (S1, S 2, · · · , Sn) has an SDR.

(ii) How many different SDR’s does (S1, S2 , · · · , Sn) have?

Solution. (i) Since i ∈ Si for i = 1, 2, · · · n, we have

i∈I

Si

 ≥ |I|

for all I ⊆ {1, 2, · · · , n}. By Theorem 5.4, (S1, S2 , · · · , Sn ) has an SDR.

(ii) We shall show that (S1, S2 , · · · , Sn) has exactly two SDR’s, namely,

(1, 2, · · · , n) and (2, 3, · · · , n, 1).
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Let (x1, x2, · · · , xn) be an SDR of (S1, S2, · · · , Sn).

Since S1 = {1, 2}, we have either x1 = 1 or x1 = 2.

Case 1: x1 = 1.

Then xn = 1. As Sn = {n, 1}, we have xn = n. Then xn−1 = n. As

Sn−1 = {n−1, n}, we have xn−1 = n−1. Continuing this argument, we have

xi = i for each i = n − 2, n − 3, · · · ,2. Thus (x1, x2, · · · , xn) = (1, 2, · · · , n).

Case 2: x1 = 2.

Then x2 = 2. As S2 = {2, 3}, x2 = 3. Then x3 = 3. As S3 =

{3, 4}, x3 = 4. Continuing this argument, we have xi = i + 1 for each

i = 2, 3, · · · , n − 1 and xn = 1. Thus (x1, x 2, · · · , xn) = (2, 3, · · · , n, 1). 

Problem 9. (+) Let S1 = {1, a}, S2 = {1, 2a − 1}, S3 = {2, 4 − a} and

S4 = {2, a + 1}, where a ∈ {1, 2, 3, 4}. Find all possible values of ‘a’ for

which the family (S1, S2, S3 , S4) has an SDR.

Solution. If a = 1, then S1 = {1} = S2, and so (S1, S2 , S3, S 4) has no

SDR.

If a = 2, then S1 = {1, 2}, S2 = {1, 3}, S3 = {2} and S4 = {2, 3}. Since

|S1 ∪ S2 ∪ S3 ∪ S4 | = 3 < 4,

(S1, S 2, S3, S4 ) has no SDR.

If a = 3, then S1 = {1, 3}, S2 = {1, 5}, S3 = {2, 1} and S4 = {2, 4}.

Observe that (S1, S2, S3, S4 ) has an SDR: (1, 5, 2, 4).

If a = 4, then S1 = {1, 4}, S2 = {1, 7}, S3 = {2, 0} and S4 = {2, 5}.

Observe that (S1, S2, S3, S4 ) has an SDR: (1, 7, 2, 5).

Hence (S1, S2, S3, S4 ) has an SDR if and only if a ∈ {3, 4}. 

Problem 10. (+) There are 12 clubs at a junior college. It is known that

each club has at least 3 members and no student is a member of four or

more clubs. Prove that this family of 12 clubs has an SDR.

Solution. Let X = {S1, S2 , · · · , S12 } be the set of 12 clubs and Y the set

of students at the college. Let G be the bipartite graph with bipartition

(X,Y ) such that Si(∈ X) is adjacent to y(∈ Y ) if and only if y ∈ Si .

By the given conditions, we have

d(y) ≤ 3 ≤ d(Si)

for each y ∈ Y and i = 1, 2, · · · , 12.

Thus, by the result of Problem 6 (ii) in Exercise 5.3, G contains a

complete matching M from X to Y . Let M = {S1y1, S2y2 , · · · , S12y12 }.

Then (y1, y2 , · · · , y12) is an SDR of (S1 , S2, · · · , S12). 
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Chapter 6

E u l e r i a n M u l t i g r a p h s a n d

Hamiltonian Graphs

Theorem 6.1 Let G be a connected multigraph. Then G is Eulerian if

and only if every vertex in G is even.

Theorem 6.2 Let G be a connected multigraph. Then G is semi-Eulerian

if and only if G has exactly two odd vertices. Moreover, if G is semi-

Eulerian, then the two odd vertices in G are the initial and terminal vertices

of any Euler trail in G.

Theorem 6.3 Let G be a graph. If G is Hamiltonian, then for any non-

empty proper subset S of V (G),

c(G − S) ≤ |S|.

Theorem 6.4 Let G be a graph of order n ≥ 3. If d(v) ≥ n/2 for each

vertex v in G, then G is Hamiltonian.

Theorem 6.5 Let G be a graph of order n ≥ 3. If

d(u) + d(v) ≥ n

for every pair of non-adjacent vertices u and v in G, then G is Hamilto-

nian.

173
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E x e r c i s e 6 . 1

Problem 1. Consider the following multigraph G of order 5.

(i) Find e(G).

(ii) Find in G a circuit with 2 edges; with 3 edges; with 4 edges.

(iii) Find in G a circuit with 5 edges that is not a cycle.

(iv) Find in G a circuit with 6 edges.

(v) If W is an Euler circuit in G, exactly how many edges are contained

in W?

(vi) Does G contain an Euler circuit? Show one if there is.

Solution. (i) e(G) = 8.

(ii) Name the vertices as shown below:

w

u

v

x y

A circuit with 2 edges : xvx.

A circuit with 3 edges : uvwu.

A circuit with 4 edges : xvwyx.

(iii) The circuit xvuwvx is an example.

(iv) The circuit uvwxywu is an example.

(v) Eight ( = e(G) ) edges.

(vi) Yes, G contains an Euler circuit, e.g. uvxvwxywu. 
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Problem 2. Five multigraphs are depicted below. Show that each of

them is Eulerian by exhibiting an Euler circuit.

(1) (2) (3) (4) (5)

Solution. For each of the five Eulerian multigraphs, an Euler circuit is

exhibited by labelling its edges as shown below.

1

2
3

4

5

6

9

1

2

3

4

5

6
7

8

9

10

1
2
3

4

5

6

7
8

9

10
1112

13

14

15

(1) (2) (3)

1
2

3

4

5

6
7

8

910

11
12

13

14

15
16

17

18
19

20
1 2

34

5

6

7

8

9

10

11

12

13

14

(4) (5)
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i s e 6 . 2

m 1. Determine whether the following multigraphs are Eulerian,

ulerian or neither:

Solution. The first one (from left to right) is, by Theorems 6.1 and 6.2,

neither Eulerian nor semi-Eulerian since it contains more than two odd

vertices.

The second one is, by Theorem 6.2, semi-Eulerian as it contains exactly

two odd vertices.

The third one is, by Theorem 6.1, Eulerian as it contains no odd vertices.

The last one is semi-Eulerian as it contains exactly two odd vertices. 

Problem 2. Let G be the multigraph considered in Problem 1 of Exercise

6.1. Does G contain a circuit with 7 edges? Justify your answer.

Solution. No, G does not contain a circuit with 7 edges. If G contains a

circuit with 7 edges and e is the eighth edge, then G − e is Eulerian. But

this can never be the case as G − f contains two odd vertices for any edge

f in G. 

Problem 3. Let G be an Eulerian multigraph of size m. Can G contain

a circuit with m − 1 edges? Justify your answer.

Solution. No, G does not contain a circuit with m − 1 edges. If G contains

a circuit with m − 1 edges and e is the m-th edge, then G − e is Eulerian.

But this can never be the case as G − f contains two odd vertices for any

edge f in G. 

Problem 4. Determine if each of the following statements is true:

(i) If G is an Eulerian graph, then G contains no cut-vertices.

(ii) If G is an Eulerian graph, then G contains no bridges.

(iii) If G is an Eulerian graph of odd order and G is connected, then G is

also an Eulerian graph.
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Solution. (i) Not true. For instance, the following Eulerian graph contains

a cut-vertex.

(ii) True. If G contains a bridge, say uv, then G−uv contains exactly two

components. Let H be the component containing u. Since G is Eulerian,

by Theorem 6.1, u is the only odd vertex in the graph H , which however

contradicts Corollary 1.2.

(iii) True. Suppose that G is of order 2r + 1, for some positive integer

r. As G is Eulerian, by Theorem 6.1, every vertex in G is even. Note that

if d(x) = 2k for a vertex x in G, then d(x) = 2r − 2k in G. Thus, every

vertex is also even in G. As G is assumed to be connected, G is Eulerian

by Theorem 6.1. 

Problem 5. Which K(p, q), p ≥ q ≥ 1, are semi-Eulerian?

Solution. By Theorem 6.2, K(p, q) is semi-Eulerian when and only when

q = 2 and p is odd.

K (5,2) 

Problem 6. The following multigraph is semi-Eulerian as it contains

exactly two odd vertices, namely, x and z.

a

b c

d

u v

x y z

(i) Form a new multigraph G∗ by adding to G a new edge joining x and

z. Is G∗ Eulerian?

(ii) Find an Euler circuit W in G∗ .

(iii) Delete xz (or zx) from W . Can you find an open Euler trail of G from

the resulting sequence of edges?
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Solution. (i) Yes, G∗ is Eulerian since every vertex in G∗ is even.

(ii) An Euler circuit W in G∗ is given below:

a

b c

d

u v

3

4

56

7 8
91011

12

13

14

15

16

(iii) Yes, an open Euler x−z trail of G can be obtained from the resulting

sequence of edges after deleting ‘zx’ as shown below: xyzcybcdvuabxuvz

[namely, (7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(1)(2)(3)(4)(5)]. 

Problem 7. (∗) Let G be a connected multigraph in which every vertex

is even. Prove that G is Eulerian.

Solution. Let G be a connected multigraph in which every vertex is even.

We shall prove that G is Eulerian by induction on e(G) (≥ 2), the size of

G.

When e(G) = 2, clearly,

G

and when e(G) = 3,

G

and they are Eulerian.

Assume that the statement is true for all connected multigraphs G with

e(G) ≤ k − 1, where k ≥ 4, in which every vertex is even.

Let G be a connected multigraph with e(G) = k ( ≥ 4 ) in which every

vertex is even. If G is 2-regular, then G is a cycle, and we are through.
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Assume now that there is a vertex, say w, in G with d(w) ≥ 4. Let e

and f be two edges incident with w in G and let H = G − {e, f }.

Case 1. The edges e and f are parallel (see the diagram below).

e

f
w z

Clearly, every vertex in H is even (but H may not be connected).

(i) H is connected. As e(H) < k, by the induction hypothesis, H is

Eulerian, and hence H possesses an Euler circuit W . Clearly, W can be

extended to an Euler circuit W  of G by inserting e and f successively into

W the moment the vertex w is visited when W is traversed.

(ii) H is disconnected. Then H has two components, say, H∗ and H

(see the diagram below). By the induction hypothesis, both H∗ and H  are

Eulerian, and hence they possess Euler circuits W∗ and W  respectively.

Combine W ∗ , W  and {e, f } as follows: starting at w and following W ∗ to

return to w; traversing e to reach z and following W  to return to z; and

finally, traversing f to terminate at w. This is clearly an Euler circuit of

G.

e

fw z

H* H'

Case 2. The edges e and f are non-parallel (see the diagram below, where

e = wx and f = wy).

w

x y

In this case, H has two odd vertices, namely, x and y. Let R be the

multigraph obtained from H by adding a new edge joining x and y. Then
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every vertex in R is even (but R may not be connected).

(i) R is connected. As e(R) < k, by the induction hypothesis, R is

Eulerian, and hence R possesses an Euler circuit W . Clearly, W can be

converted to an Euler circuit of G if we replace the new edge joining x and

y, say xy, in R by e = xw and f = wy successively.

(ii) R is disconnected. Then R has two components, say, R∗ and R ,

where R∗ contains w while R contains the new edge xy (see the diagram

below). By the induction hypothesis, both R∗ and R  are Eulerian, and

hence they possess Euler circuits W ∗ and W  respectively. We shall now

combine W∗, W  − xy and {e, f } to produce an Euler circuit of G. We

may assume that xy is the first edge in W . Starting at x, we traverse

e(= xw) to reach w; following the whole W ∗ from w, we are back to w;

traversing f (= wy), we are now at y; finally, following the rest of W  − xy,

we terminate at x.

y

R*

R'

Clearly, the above closed walk is an Euler circuit of G. The proof is thus

complete. 

Problem 8. (∗) Prove Theorem 6.2.

Solution. (⇒) Assume that G is semi-Eulerian. By definition, G possesses

an open Euler trail W , say from x to y. Clearly, the trail W  obtained from

W by adding yx at the end of W is an Euler circuit of G+xy (the multigraph

obtained from G by adding xy). Thus, G+xy is Eulerian, and by Theorem

6.1, all vertices in G+xy are even. It follows that x and y are the only two

odd vertices in G.

(⇐) Assume that G has exactly two odd vertices, say x and y. Then
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all vertices in G+xy are even, and so G+xy possesses an Euler circuit W .

We may assume that xy is the first edge in traversing W . Then W − xy

forms an Euler y − x trail of G (see the solution of Problem 6(iii) in this

Exercise). This shows that G is semi-Eulerian. 

Problem 9. Two halls are partitioned into small rooms for an exhibition

event in two different ways as shown in (a) and (b) below, where A is the

entrance and B is the exit.

(i) Is it possible for a visitor to have a route which enters at A, passes

through each door once and exactly once and exits at B in partition

(a)?

(ii) Explain why such a route is not available in partition (b). Which door

should be closed to ensure the existence of such a route?

A B A B

(a) (b)

Solution. The situation can be modeled by a graph as follows: represent

each of the rooms, including the outside area, by a vertex; and join two

vertices by an edge if there is a door between the two corresponding rooms

(or outside area). The resulting graphs of (a) and (b) are shown below:

(a) (b)

(i) The graph for (a) is Eulerian, and so the answer is YES.
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(ii) The graph for (b) is non-Eulerian, and so such a route does not

exist. If the door between the second and third rooms in row 2 is closed,

then the degrees of the corresponding vertices reduce from 5 to 4, and the

resulting graph becomes Eulerian. 

Problem 10. (∗) We have shown that the multigraph G of Figure 6.1

(a) (namely the multigraph below) is Eulerian.

G:

94

x

w

y

z

Look at its edge set E(G) and observe that the edges in G can be partitioned

into three edge-disjoint cycles as shown below:

x

y

zw
e e

e e

3

5

7

8

w

y

ze

e e4

6

9

w

x
e

e
1

2

Show that, in general, a connected multigraph is Eulerian if and only if all

its edges can be partitioned into some edge-disjoint cycles.

Solution. (⇒) We shall prove that the edges in an Eulerian multigraph

can always be partitioned into some edge-disjoint cycles by induction on

p, the number of cycles in G. It is obvious if p = 1. Assume that it

holds for Eulerian multigraphs with p < k, where k ≥ 2. Let G be an

Eulerian multigraph with p = k. By Theorem 6.1, all vertices in G are
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even. Choose a cycle, say C, in G. Let H be the multigraph obtained from

G by deleting the edges in C (note that H may be disconnected). Observe

that each component of H has all its vertices even (and hence is Eulerian),

and possesses less than k cycles. Thus, by the induction hypothesis, the

edges in each component of H can be partitioned into edge-disjoint cycles.

Accordingly, the edges in G can be partitioned into edge-disjoint cycles, in

which C is a member.

(⇐) Let G be a connected multigraph. Assume now that the edges in

G can be partitioned into edge-disjoint cycles. We shall show that G is

Eulerian. Let C be a cycle in this partition. If C includes all edges in G,

then G is Eulerian. Otherwise, as G is connected, there is another cycle,

say C , in this partition which has at least one vertex v in common with C.

The (closed) walk P that starts at v and consists of the cycles C and C 

in succession is a closed trail containing the edges of these two cycles. If P

includes all edges of G, then G is Eulerian. Otherwise, applying a similar

argument, P can be extended to a longer closed trail P of G. Continuing

this process, a closed trail containing all edges in G can eventually be

obtained, which then shows that G is Eulerian. 

Problem 11. Let G1 and G2 be two semi-Eulerian multigraphs.

(i) Is it possible to form a semi-Eulerian multigraph by adding a new edge

joining a vertex u in G1 and a vertex v in G2 as shown below? If the

answer is ‘yes’, how can this be done?

1 2

u v

G G

(ii) Is it possible to form an Eulerian multigraph by adding two new edges,

each of which joining a vertex in G1 and a vertex in G2 ? If the answer

is ‘yes’, how can this be done?

Solution. (i) Yes, join u and v, where u is an odd vertex in G1 and v is

an odd vertex in G2. The resulting multigraph is now connected and has

exactly two odd vertices. It is semi-Eulerian by Theorem 6.2.
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(ii) Yes, let a and b (respectively, x and y) be the two odd vertices in

G1 (respectively, in G2 ). Join a to x and b to y. The resulting multigraph

is now connected and has no odd vertices. It is Eulerian by Theorem 6.1.



Problem 12. (+) Let G1 and G2 be two connected multigraphs having

2p and 2q odd vertices respectively, where 1 ≤ p ≤ q. We wish to form an

Eulerian multigraph from G1 and G2 by adding new edges, each of which

joining a vertex in G1 and a vertex in G2. What is the least number of

edges that should be added? How can this be done?

Solution. There are 2q odd vertices in G2. To turn them into even in

the resulting multigraph, it requires at least 2q new edges. The following

construction shows that 2q new edges suffice. 

p2    odd vertices

q2    odd verticesG2

1G

Problem 13. (+) The following graph H is not Eulerian. What is the

least number of new edges that should be added to H so that the resulting

multigraph becomes Eulerian? In how many ways can this be done?

H:

Solution. There are 6 odd vertices as shown in H .
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We pair them up into 3 pairs and join each pair by a new edge. Thus the

least number of new edges is ‘3’. This can be done in 5 × 3 × 1 ( = 15 )

ways. 

Problem 14. Let G be a semi-Eulerian multigraph of order 8 and size

18, and with δ(G) = 3 and ∆(G) = 6. Assume that G contains exactly two

vertices of degree 6. How many vertices of degree 3 does G have? Justify

your answer and construct one such multigraph.

Solution. For i = 3, 4, 5, 6, let ni denote the number of vertices of degree

i in G. Then, by assumption,

n3 + n4 + n5 + n6 = 8, n6 = 2 and n3 + n5 = 2.

It follows that n4 = 4. By Theorem 1.1,

3n3 + 4 × 4 + 5n5 + 6 × 2 = 2 × 18,

that is,

3n3 + 5n5 = 8.

Solving n3 + n5 = 2 and 3n3 + 5n 5 = 8 yields n3 = 1.

An example of G is shown below:

3

6 6

4

4

44

5



Problem 15. (+) Let G be a non-trivial connected multigraph. For

A ⊂ V (G), let e(A,V (G)\A) denote the number of edges in G having an

end in A and the other in V (G)\A (see Problem 29 in Exercise 2.3). Show

that G is Eulerian if and only if e(A, V (G)\A) is even for every proper

subset A of V (G).

Solution. (⇐) By Theorem 6.1, we show that each vertex in G is even.

Thus, let v be in V (G) and A = {v}. Observe that d(v) = e(A,V (G)\A),

which is even by assumption.
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(⇒) [First proof]

Let A be a proper subset of V (G) and W an Euler circuit of G with the

starting vertex v in A. Clearly, for each edge e in W from A to V (G)\A,

there is an edge e in W from V (G)\A to A (as v is also the terminal vertex

of W ). It follows that e(A,V (G)\A) is even.

(⇒) [Second proof]

For A ⊆ V (G), we have (see the solution of Problem 29 in Exercise 2.3):

e(A,V (G)\A) =

x∈A

d(x) −

x∈A

d[A](x)

where d[A](x) denotes the degree of x in [A]. By assumption and Theorem

6.1,

x∈A

d(x) is even, and by Theorem 1.1,


x∈A

d[A](x) is even. It follows

from the above equality that e(A,V (G)\A) is even. 

Problem 16. (+) Let G be a graph which contains K(5, 6) as a spanning

subgraph.

(i) If G is semi-Eulerian, find the minimum size of G, and construct one

such extremal semi-Eulerian graph G.

(ii) If G is Eulerian, find the minimum size of G, and construct one such

extremal Eulerian graph G.

Solution. Let G be a graph which contains K(5, 6) as a spanning subgraph.

(i) If G is semi-Eulerian, then the minimum size of G is 32 ( = 5 × 6+2).

An example of such G is shown below:

(ii) If G is Eulerian, then the minimum size of G is 33 ( = 5 × 6 + 3).

An example of such G is shown below:
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Problem 17. (+) Let G be a multigraph which contains K(5, 7) as a

spanning subgraph.

(i) Assume that G is semi-Eulerian. Can G be simple? If ‘YES’, find the

minimum size of G, and construct one such extremal semi-Eulerian

graph G.

(ii) Assume that G is Eulerian. Prove that G cannot be simple. Find the

minimum size of G, and construct one such extremal Eulerian multi-

graph G.

Solution. Let G be a multigraph which contains K(5, 7) as a spanning

subgraph.

(i) Assume that G is semi-Eulerian.

Yes, G can be simple, and the minimum size of G is 40 (= 5 × 7 + 5).

An example of such G is shown below:

(ii) Assume that G is Eulerian. We first show that G cannot be simple.

Suppose on the contrary that G is simple and let (X,Y ) be the bipartition

of K(5, 7) with |X | = 5. Since d(x) is even in G, d[X](x) ( = d(x) − 7 ) is

odd in [X] for each x in X . Thus the graph [X ] consists of 5 odd vertices,

which contradicts Corollary 1.2.

The minimum size of G is 41 ( = 5 × 7 + 6 ). An example of such G is

shown below:
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Problem 18. (+) Let G be an Eulerian graph of order 8 and size 10.

(i) Let k be the maximum possible value of ∆(G). Determine k and con-

struct all such G with ∆(G) = k.

(ii) Suppose that ∆(G) = 4.

(a) Determine the number of vertices of degree 4 in G.

(b) Assume further that no two vertices of degree 4 are adjacent. Con-

struct all such G.

Solution. Let G be an Eulerian graph of order 8 and size 10.

(i) Let k be the maximum possible value of ∆(G). As G is Eulerian,

∆(G) is even, and so ∆(G) ≤ 6. We claim that k = 6.

Let x, y and z be, respectively, the number of vertices of degree 2, 4 and

6 in G. Then

x + y + z = 8 (6.1)

and

2x + 4y + 6z = 20,

or

x + 2y + 3z = 10 (6.2)

Solving the equations (6.1) and (6.2) yields one possible solution (x, y, z) =

(7, 0, 1). It follows that k = 6.

There is only one such G as shown below:

(ii) Suppose that ∆(G) = 4.

(a) Then solving (1) and (2) in (a) with z = 0 gives (x, y) = (6, 2). Thus

there are 2 vertices of degree 4 in G.

(b) Let u and v be the two non-adjacent vertices of degree 4 in G. Note

that

2 ≤ |N(u) ∩ N(v)| ≤ 3.

Case 1. |N(u) ∩ N(v)| = 2.

There are two such G’s as shown below:



E x e rc i s e 6 . 4 189

Case 2. |N(u) ∩ N(v)| = 3.

There is only one such G as shown below:
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Problem 1. Determine whether the following graphs are Hamiltonian.

Justify your answers.

(a) (b) (c)

(f)(e)(d)
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Solution. (a) Yes. A spanning cycle is shown below:

(b) No. Apply the method of ‘degree two’ (see rules for constructing

Hamiltonian cycles) as shown below:

(c) Yes. A spanning cycle is shown below:

(d) No. Let G be the graph and S = {u, v, w} (see the diagram below).

Then |S| = 3 while c(G − S) = 4. Thus G is not Hamiltonian by Theorem

6.3.

(e) No. Let G be the graph and S = {u, v,w} (see the diagram below).

Then |S| = 3 while c(G − S) = 4. Thus G is not Hamiltonian by Theorem

6.3.
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u v

w

Note. You may also apply the method of ‘degree two’.

(f) Yes. A spanning cycle is shown below:



Problem 2. Determine whether the following m × n rectangular grids

are Hamiltonian.

(i) 3 × 3 (ii) 3 × 4 (iii) 3 × 5 (iv) 3 × 6

Solution.

(i) No. Apply the method of ‘degree two’ or Theorem 6.3.

(ii) Yes. A spanning cycle is shown below:
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(iii) No. Apply Theorem 6.3 (see the diagram below).

(iv) Yes. A spanning cycle is shown below:



Problem 3. (+) Show that an m × n rectangular grid is Hamiltonian if

and only if either m or n is even.

Solution. (⇐ ) We may assume that n is even. In this case, a spanning

cycle is shown below:

..

.

...

..

. ..
. ..

. ..
. ..

.

...

(⇒ ) Suppose that both m and n are odd. Consider G as the graph

with

V (G) = {(i, j) | i, j are integers, 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and

E(G) = {uv | u = (i, j) and v = (i , j ) in V (G), |i − i| + |j − j | = 1}.

Let

S = {(i, j) ∈ V (G) | i + j is odd}

as shown below:
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..

. ..
. ..

. ..
. ..

. ..
. ..

.

...

...

(1,1) (1,  )n

m(   ,1) nm(   ,   )

Observe that |S| = mn−1
2 and c(G − S) = mn+ 1

2 = |S| + 1. Thus, G is not

Hamiltonian by Theorem 6.3. 

Note: Let G be a bipartite graph with bipartition (X,Y ). If G is Hamilto-

nian, then |X | = |Y | and hence the order of G is even.

A proof of this fact can be found in the solution of Problem 6 of Exercise

3.1. Another proof by Theorem 6.3 is given below.

Suppose on the contrary that |X| = |Y |, say |X| < |Y |. We then observe

that c(G − X) = |Y | > |X |. By Theorem 6.3, G is not Hamiltonian, a

contradiction.

By the result of this note, we have a simple proof for the necessity of

Problem 3.

Let G be the graph for the m × n rectangular grid. Notice that G is a

bipartite graph of order mn. If G is Hamiltonian, then the order of G is

even by the above note. Thus mn is even, implying that either m or n is

even. 

Problem 4. Let H be a spanning subgraph of a graph G. Which of the

following statements is/are true?

(i) If H is Eulerian, then G is Eulerian.

(ii) If H is semi-Eulerian, then G is semi-Eulerian.

(iii) If H is Hamiltonian, then G is Hamiltonian.

Solution. Let H be a spanning subgraph of G.

(i) False. An example is shown below:
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H: G:

(ii) False. An example is shown below:

H: G:

(iii) True. Suppose H is Hamiltonian. Then H contains a spanning cycle

C. Since V (G) = V (H) and every edge in H is also in G, the cycle C is

also a spanning cycle of G. Thus, G is Hamiltonian. 

Problem 5. Prove that if G is a Hamiltonian graph, then d(v) ≥ 2 for

each vertex v in G.

Solution. Suppose G is Hamiltonian. Then G contains a spanning cycle

C. Thus, for each vertex v in G, dG(v) ≥ dC(v) = 2. 

Problem 6.

(i) Let H be a graph such that d(v) = 2 for each vertex v in H . Is H

Hamiltonian?

(ii) Let H be a connected graph such that d(v) = 2 for each vertex v in H .

Is H Hamiltonian?

Solution. (i) No, as H may be disconnected. An example is shown below:

(ii) Yes. In this case, H is itself a cycle, and hence Hamiltonian. 
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Problem 7. (+) Let G be a Hamiltonian graph with a Hamiltonian cycle

C. For any non-empty proper subset A of V (G), let eC(A,V (G)\A) denote

the number of edges in C having an end in A and the other in V (G)\A.

Show that eC (A,V (G)\A) is always even.

Solution. Let w be the first vertex in traversing the Hamiltonian cycle C

of G. We may assume that w is in A. Note that each time we leave A for

V (G)\A via an edge in C, as eventually we have to go back to w, there

must be another edge in C for us to leave V (G)\A for A. Thus all edges in

C linking A and V (G)\A are paired up, and the result follows. 

Problem 8. Consider the following graph G and let S = {x, y, z}.

x

y z

(i) Draw the graph G − S.

(ii) Find |S| and c(G − S).

(iii) Is |S| < c(G − S)?

(iv) Is G Hamiltonian?

Solution. (i) The graph G − S is shown below:

(ii) |S| = 3 while c(G − S) = 4.

(iii) Yes, |S| < c(G − S).

(iv) By Theorem 6.3, G is not Hamiltonian. 
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Problem 9. Let H be the graph depicted below:

(i) Verify that c(H − S) ≤ |S| for all non-empty proper subsets S of V (H).

(ii) Is H Hamiltonian?

(iii) Is the converse of Theorem 6.3 true?

Solution. For convenience, name the vertices as shown below:

a

b
wu

v x y

(i) As v(H) = 7, to verify that c(H − S) ≤ |S|, it suffices to consider

those subsets S of V (H) with 1 ≤ |S| ≤ 3. As H contains no cut-vertices,

it is clear that c(H − S) = 1 when |S| = 1. For the rest, by the symmetric

structure of H , we need only to check the cases as shown in the following

table:
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S |S| c(H − S)

{a, b} 2 1

{a, u} 2 1

{a, v} 2 1

{a,w} 2 2

{b, u} 2 1

{b,w} 2 1

{a, b, w} 3 1

{a, b, u} 3 1

{a, b, v} 3 1

{a, v, y} 3 1

{a, u, x} 3 1

{a, u, y} 3 1

{a,w, u} 3 2

{a,w, v} 3 3

{b, u, w} 3 1

{b, u, x} 3 1

Thus, the inequality holds.

(ii) No, H is not Hamiltonian (the reader may apply the method of

‘degree two’).

(iii) No, the above facts show that the converse of Theorem 6.3 is, in

general, not true. 

Problem 10. Let G be a Hamiltonian graph of order n and size m such

that m = n + 2 and n ≥ 5.

(i) Prove that 2 ≤ d(x) ≤ 4 for each vertex x in G.

(ii) If G is also semi-Eulerian, what can be said about the structure of G?

Solution. Let C be a Hamiltonian cycle of G.

(i) Let v be in V (G). Clearly, d(v) = dG(v) ≥ dC(v) = 2. On the other

hand, as m = n + 2, v is incident with at most two edges not in C. Thus

d(v) ≤ dC (v) + 2 = 4.

(ii) If G is semi-Eulerian, then G has exactly two odd vertices, and they

must be of degree 3 by (i). The structure of G is thus of the following form:
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...

.

..
.
..



Problem 11. Let G be a semi-Eulerian and Hamiltonian graph with

v(G) = 12, e(G) = 17, δ(G) = 2 and ∆(G) = 4.

(i) How many vertices of degree 3 can G have?

(ii) How many vertices of degree 2 does G have?

(iii) Construct one such graph G.

(iv) Assume that the odd vertices are adjacent in G, but no two vertices of

degree 2 are adjacent in G. What can be said about the structure of the

subgraph induced by the set of vertices of degree 4 in G?

Solution. (i) As G is semi-Eulerian, and δ(G) = 2 and ∆(G) = 4, G has

two vertices of degree 3.

(ii) Let x be the number of vertices of degree 2 in G. Then

2x + 3 × 2 + 4(10 − x) = 2 × 17,

and so x = 6.

(iii) One such G is shown below:

2 3 2 4 2 4

242423

(iv) Let C be a Hamiltonian cycle of G as shown below:
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By assumption, we may assume that u, v,w, x, y and z are the six ver-

tices of degree 2. Two of the remaining vertices must be adjacent to become

vertices of degree 3. Thus the subgraph induced by the four vertices of de-

gree 4 in G is a C4 (see below).

u v w

x

3 3



Problem 12. Let H be a semi-Eulerian and Hamiltonian graph with a

Hamiltonian cycle C. Assume that v(H) = 7, e(H) = 12, δ(H) = 2 and

∆(H) = 5, and that H has exactly 2 vertices of degree 2.

(i) Find the number of vertices of degree 4 and the number of vertices of

degree 5 in H .

(ii) Assume that the 2 vertices of degree 2 are adjacent in C. Construct

all such graphs H .

Solution. (i) Let ni denote the number of vertices of degree i in H . Then,

by assumption,

n3 + n5 = 2, n2 = 2, n2 + n3 + n4 + n5 = 7,

and

2n2 + 3n3 + 4n4 + 5n 5 = 2 × 12 = 24.

Solving these equations yields (n2 , n3, n4, n5) = (2, 1, 3, 1). Thus n4 = 3

and n5 = 1.

(ii) By assumption, H contains the following Hamiltonian cycle C in

which the two adjacent vertices of degree 2 are indicated:

2

2

a

b

C:



200 Intr oduction to Graph The ory, Solut ions Manual

Clearly, either a or b (see the above diagram), say the former, is of degree

5, and we have:

2

2

a

b c

where d(b) = 3 and d(c) = 3. Thus, H is one of the following two (which

are actually isomorphic):

2

2

5

4 4

4

3

2

2

5

4 4

4

3



Problem 13. (+) Let G be a Hamiltonian bipartite graph of order 8.

(i) Explain why δ(G) ≥ 2 and ∆(G) ≤ 4.

(ii) Assume further that G is Eulerian and ∆(G) = 4. What can be said

about the structure of G?

Solution. (i) As G is Hamiltonian, δ(G) ≥ 2. Let (X,Y ) be the bipartition

of G. As G is Hamiltonian, |X| = |Y | = 4. Thus, ∆(G) ≤ 4.

(ii) Suppose that G contains a Hamiltonian cycle as shown below:

X

Y

As ∆(G) = 4, there is a vertex of degree 4 as shown below:
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X

Y4

Since G is Eulerian, G contains no odd vertices. It follows that G ∼= K(4, 4),

as shown in the following sequence of logical implications:

X

Y

X

Y

X

Y
(4,4)K



Problem 14. (+) Let H be the graph given below:

(i) Is H Hamiltonian? Why?

(ii) Let m(H) denote the minimum number of new edges that are needed

to add to H so that the resulting graph H∗ is Hamiltonian (note that

V (H∗) = V (H)). Find the value of m(H) and justify your answer.

(iii) Construct two such Hamiltonian graphs H ∗ obtained by adding m(H)

new edges to H .
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Solution. (i) No, H is not Hamiltonian. (The reader may apply the

method of ‘degree two’ or Theorem 6.3 to justify it.)

(ii) m(H) = 3.

u

v

Note that, as shown above, c(H − {u, v}) = 5. Thus, by adding any two

new edges to H to form H∗, we still have c(H∗ − {u, v}) ≥ 3 > |{u, v} |; that

is, H∗ is still non-Hamiltonian by Theorem 6.3. It follows that m(H) ≥ 3.

The following example shows that three extra edges are enough.

u

v

(iii) Another example is given below:

u

v
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(+) Let H be the graph given below:

iltonian? Why?

) denote the minimum number of new edges that are needed

H so that the resulting graph H∗ is Hamiltonian (note that

V (H)). Find the value of m(H) and justify your answer.

t two such Hamiltonian graphs H∗ obtained by adding m(H)

to H .

No, H is not Hamiltonian. (The reader may apply the

gree two’ or Theorem 6.3 to justify it.)

= 2.

u

v

as shown above, c(H − {u, v}) = 4. Thus, by adding any one

to form H∗, we still have c(H ∗ − {u, v}) ≥ 3 > |{u, v} |; that

on-Hamiltonian by Theorem 6.3. It follows that m(H) ≥ 2.

example shows that two extra edges are enough.

u

v
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er example is given below:

u
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Problem 1. The following graph H is Hamiltonian.

(i) Does the Hamiltonicity of H follows from Theorem 6.4?

(ii) Does the Hamiltonicity of H follows from Theorem 6.5?

Solution. Note that the order of H is 5.

(i) No, since d(x) = 2 < 5/2 for some vertex x in H.

(ii) Yes, because d(x) + d(y) ≥ 5 for every two non-adjacent vertices x

and y in H. 

Problem 2. A graph G has (8, 8, 8, 7, 7, 7, 6, 5, 5, 5) as its degree se-

quence. Is G Hamiltonian? Why?

Solution. Yes. Since the order of G is 10 and d(x) ≥ 5 = 10/2 for every

vertex x in G, by Theorem 6.4, G is Hamiltonian. 



E x e rc i s e 6 . 5 205

Problem 3. (+) Let G be a graph of order n ≥ 3. The sufficient condi-

tion given by Dirac in Theorem 6.4 states that

(D) d(v) ≥ n/2 for each v in V (G).

The sufficient condition given by Ore in Theorem 6.5 states that

(O) d(u) + d(v) ≥ n for every pair of non-adjacent vertices u, v in V (G).

(1) Which of the following implications is true?

(i) (D) ⇒ (O);

(ii) (O) ⇒ (D).

(2) Which of the following implications is true?

(i) Theorem 6.4 ⇒ Theorem 6.5;

(ii) Theorem 6.5 ⇒ Theorem 6.4.

Solution. (1) (i) is correct, since if (D) holds, then (O) holds.

(2) (ii) is correct. 

Problem 4. (+) Let G be a graph of order n ≥ 3 and size m.

(i) Assume that there exist two non-adjacent vertices u and v in G such

that d(u) + d(v) ≤ n − 1. Show that m ≤


n−1
2


+ 1.

(ii) Deduce that if m ≥


n−1
2


+ 2, then G is Hamiltonian.

Solution. (i) Since u, v are not adjacent,

m = e(G − {u, v}) + d(u) + d(v) ≤


n − 2

2


+ n − 1 =


n − 1

2


+ 1.

(ii) Since m ≥

n−1

2


+ 2, by (i), we have d(u) + d(v) ≥ n for every two

non-adjacent vertices u, v in G. Thus, by Theorem 6.5, G is Hamiltonian.



Problem 5. Construct a non-Hamiltonian graph of order n ≥ 3 with

size

n−1

2


+ 1.

Solution. Let G be the following graph:

Kn -1
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Clearly, e(G) =


n−1
2


+ 1 and G is non-Hamiltonian. 

Problem 6. (+) A path in a graph G is called a Hamiltonian path if

it includes all the vertices in G.

(i) Is the following graph Hamiltonian? Does it contain a Hamiltonian

path?

(ii) Prove that if G is a graph of order n ≥ 2 such that δ(G) ≥ (n − 1)/2,

then G contains a Hamiltonian path.

Solution. (i) This graph is not Hamiltonian, but it contains a Hamiltonian

path.

(ii) Let H be the graph obtained from G by adding one new vertex w

and adding n edges joining w to every vertex in G.

Note that the order of H is n+ 1. For every vertex x ∈ V (H), if x = w,

then dH(x) = n; otherwise,

dH(x) = dG(x) + 1 ≥
n − 1

2
+ 1 =

n + 1

2
.

By Theorem 6.4, H contains a Hamiltonian cycle C. Observe that C − w

is a Hamiltonian path in G. 

Problem 7. (+) For each odd integer n ≥ 3, construct a non-

Hamiltonian graph G of order n such that δ(G) = (n − 1)/2.

Solution. Let n = 2k + 1. Let G be the graph obtained from two Kk+ 1’s

by gluing them at one vertex, denoted by w, as shown below:

Kk +1K k +1

G : w

Note that the order of G is 2(k+1)−1 = 2k+1 = n, and d(x) = k = (n−1)/2

for every vertex x in G, except w.
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Since G − w is disconnected, G is not Hamiltonian by Theorem 6.3. 

Note: K(k, k + 1) is another non-Hamiltonian graph G of order n such

that δ(G) = (n − 1)/2, where n = 2k + 1.

Problem 8. (+) Let G+H denote the join of two graphs G and H (see

Problem 27 in Exercise 4.3). For a positive integer r, denote by rK2 the

union of r independent edges as shown below:

...

r

(i) Determine whether the join (3K2 ) + N7 is Hamiltonian. Justify your

answer.

(ii) Determine whether the join (4K2 ) + N7 is Hamiltonian. Justify your

answer.

Solution. (i) (3K2 ) + N7 is not Hamiltonian.

Let S be the set of vertices in 3K2. So |S| = 6. Observe that if we

remove all vertices of S from the graph (3K2) + N7, we will obtain the

graph N7 , which has 7 components. By Theorem 6.3, (3K2) + N7 is not

Hamiltonian.

(ii) (4K2 ) + N7 is Hamiltonian. Note that the order of (4K2) + N7 is

15 and the minimum degree of this graph is 8 (≥ 15/2). By Theorem 6.4,

(4K2) + N7 is Hamiltonian. (Indeed this graph is 8-regular.) 
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Chapter 7

D i g r a p h s a n d To u r n a m e nt s

Theorem 7.1 Let T be a tournament. Then T is transitive if and only

if T contains no cycles.

Theorem 7.2 Every tournament contains a Hamiltonian path.

Theorem 7.3 Let T be a tournament. If w is a vertex in T with maximum

out-degree, then w is a king in T .

Result (1). Let D be a digraph. Then
v∈V (D)

id(v) = e(D) =


v∈V (D)

od(v).

Result (2). Let Tn denote a tournament of order n. Then

(i) e(Tn) =


n
2


;

(ii) od(v) + id(v) = n − 1 for each vertex v in Tn ; and

(iii)


v∈V (Tn)

od(v) =

n

2


=


v∈V (Tn)

id(v).

Remark 7.1. Throughout this chapter, we shall assume the following:

All digraphs contain neither parallel arcs nor loops.

209
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E x e r c i s e 7 . 1

Problem 1. Let D be the digraph shown below:

u

y z

v

xw

Find

(i) V (D) and E(D).

(ii) v(D) and e(D).

(iii) all vertices adjacent from w.

(iv) all vertices adjacent to y.

(v) all vertices dominated by x.

(vi) all vertices that dominate z.

(vii) all arcs incident from u.

(viii) all arcs incident to z.

Solution. (i)

V (D) = {u, v,w, x, y, z}

and

E(D) = {uw, uz, wx, wy, wz, xv, xz, yu, yw, yx, zv, zx, zy}.

(ii) v(D) = 6 and e(D) = 13.

(iii) x, y, z are the vertices adjacent from w.

(iv) z and w are the vertices adjacent to y.

(v) v and z are the vertices dominated by x.

(vi) u,w and x are the vertices that dominate z.

(vii) uw and uz are the arcs incident from u.

(viii) uz,wz and xz are the arcs incident to z. 
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Problem 2. Let D be the digraph defined as follows:

V (D) = {a, b, u, v, w, x, y, z}

and

E(D) = {aw, ay, bx, ux, vz, wu, wx, wy, xz, ya, yv, yx, yz, zb, zy}.

(i) Draw the diagram of D.

(ii) Find v(D) and e(D).

(iii) Which vertices are adjacent from a?

(iv) Which vertices are adjacent to y?

(v) Which vertices are dominated by w?

(vi) Which vertices dominate x?

(vii) Which arcs are incident to z?

(viii) Which arcs are incident from y?

Solution. (i)

a

w
b

u

(ii) v(D) = 8 and e(D) = 15.

(iii) w and y are adjacent from a.

(iv) a,w and z are adjacent to y.

(v) u, x and y are dominated by w.

(vi) b, u, w and y dominate x.

(vii) xz, yz and vz are the arcs incident to z.

(viii) ya, yv, yx and yz are the arcs incident from y. 
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Problem 3. Let D be the digraph defined as follows:

V (D) = {1, 2, 3, 4, 5, 6}

and (i, j) ∈ E(D), where i, j are in V (D), if and only if i > j.

(i) Draw the diagram of D.

(ii) Find e(D).

(iii) Which vertices are adjacent to ‘2’?

(iv) Which vertices are adjacent from ‘2’?

Solution. (i)

1

2 3

4

56

(ii) e(D) = 15.

(iii) 3, 4, 5 and 6 are the vertices adjacent to 2.

(iv) 1 is the only vertex adjacent from 2. 

Problem 4. Two table tennis teams A and B, each consisting of 3 players

as shown below:

A = {x, y, z} and B = {u, v,w},

had a friendly match between their players in singles. Each player in a

team must play each player in the other exactly once with no ties allowed.

At the end of the match, it was reported that

(i) x won all the matches;

(ii) y was defeated only by w;

(iii) team A defeated team B by just one match.
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(1) Construct a digraph D to model the situation where V (D) is the set of

all players, and ‘a’ → ‘b’ in D if player ‘a’ defeated player ‘b’.

(2) Find e(D).

(3) Did ‘z’ win any game?

(4) Which player in team B won the largest number of matches?

Solution. (1)

x y z

u v w

(2) e(D) = 9.

(3) z did not win any game.

(4) In team B, w won the largest number of matches. 
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E x e r c i s e 7 . 2

Problem 1. Let D be the digraph considered in Problem 1 of Exercise 7.1.

(i) Find the in-degree and out-degree of each vertex in D.

(ii) Verify that the equalities in Result (1) hold.

(iii) Is there any source in D?

(iv) Is there any sink in D?

(v) For k = 2, 3, 4, 5, find a k-cycle in D.

(vi) Is there any 6-cycle in D? Why?

(vii) Which vertices are reachable from u?

(viii) Which vertices are reachable from v?

(ix) Is D connected?

(x) Is D strongly connected?

(xi) Find d(u, x), d(u, z), d(u, v), d(x, w) and d(v, x).

Solution. (i) id(u) = 1 and od(u) = 2,

id(v) = 2 and od(v) = 0,

id(w) = 2 and od(w) = 3,

id(x) = 3 and od(x) = 2,

id(y) = 2 and od(y) = 3,

id(z) = 3 and od(z) = 3.

(ii) Result (1) holds as


a∈V (D)

id(a) =


a∈V (D)

od(a) = e(D) = 13.

(iii) There is no any source in D, since id(a) > 0 for every a ∈ V (D).

(iv) There is only one sink, i.e., v, as od(v) = 0.

(v) In D, ywy is a 2-cycle, yuwy is a 3-cycle, ywxzy is a 4-cycle and

yuwxzy is a 5-cycle.

(vi) There is no 6-cycle in D. Since od(v) = 0, no cycle can include v,

implying that the longest cycle in D contains at most 5 vertices.

(vii) All vertices in D are reachable from ‘u’.

(viii) Only v itself is reachable from ‘v’.

(ix) Yes, D is connected.

(x) No, D is not strongly connected.

(xi) d(u, x) = 2, d(u, z) = 1, d(u, v) = 2, d(x, w) = 3 and d(v, x) = ∞. 
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Problem 2. Let D be the digraph considered in Problem 2 of Exercise 7.1.

(i) Find the in-degree and out-degree of each vertex in D.

(ii) Verify that the equalities in Result (1) hold.

(iii) Is there any source in D?

(iv) Is there any sink in D?

(v) Find a 6-cycle in D.

(vi) Is there any 7-cycle in D?

(vii) Is there any 8-cycle in D?

(viii) Which vertices are reachable from u?

(ix) Is D connected?

(x) Is D strongly connected?

(xi) Find d(a, u), d(u, a), d(a, b) and d(b, a).

(xii) Find two vertices in D such that the distance from one of them to the

other is 5.

(xiii) Find two vertices in D such that the distance from one of them to the

other is 6.

Solution. (i) id(a) = 1;od(a) = 2;

id(b) = 1; od(b) = 1;

id(u) = 1; od(u) = 1;

id(v) = 1; od(v) = 1;

id(w) = 1;od(w) = 3;

id(x) = 4; od(x) = 1;

id(y) = 3; od(y) = 4;

id(z) = 3; od(z) = 2.

(ii) Result (1) holds, as


t∈V (D)

id(t) =


t∈V (D)

od(t) = e(D) = 15.

(iii) There is no source in D, since id(t) > 0 for each t ∈ V (D).

(iv) There is no sink in D, as od(t) > 0 for each t ∈ V (D).

(v) awuxzya is a 6-cycle in D.

(vi) There is no 7-cycle in D.

(vii) There is no 8-cycle in D.

(viii) all vertices in D are reachable from ‘u’.

(ix) Yes, D is connected.
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(x) Yes, D is strongly connected.

(xi) d(a, u) = 2, d(u, a) = 4, d(a, b) = 3 and d(b, a) = 4.

(xii) Take u,w and we have d(u,w) = 5.

(xiii) Take b,u and we have d(b, u) = 6.

Problem 3. Let D be the digraph considered in Problem 3 of Exercise 7.1.

(i) Find e(D).

(ii) Find the in-degree and out-degree of each vertex in D.

(iii) Verify that the equalities in Result (1) hold.

(iv) Is there any source in D?

(v) Is there any sink in D?

(vi) Are there any two vertices in D which have the same out-degree?

(vii) Is there any cycle in D?

(viii) Is there any path of length 5 in D?

(ix) What is G(D)?

(x) Is D strong?

Solution. (i) e(D) = 15.

(ii) id(1) = 5, od(1) = 0,

id(2) = 4, od(2) = 1,

id(3) = 3, od(3) = 2,

id(4) = 2, od(4) = 3,

id(5) = 1, od(1) = 4,

id(6) = 0, od(6) = 5.

(iii) Result (1) holds as
i∈V (D)

id(i) =


i∈V (D)

od(i) = e(D) = 15.

(iv) There is only one source in D, i.e., the vertex 6.

(v) There is only one sink in D, i.e., the vertex 1.

(vi) Every two vertices have different out-degrees.

(vii) There is no cycle in D.

(viii) Yes, there is a path of length 5, namely, 654321.

(ix) G(D) is the complete graph K6.

(x) D is not strong. 
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Problem 4. Are the following two digraphs isomorphic? If ‘YES’, find an

isomorphism from one of them to the other.

Solution. Yes, the two digraphs D and D are isomorphic. First we name

their vertices as shown below.

u
v

w
x

u' v'

x' w'

D: D':

Define a mapping f : V (D) −→ V (D) by f(u) = u , f(v) = v , f(w) =

w, f(x) = x . It can be shown that f is an isomorphism from D to D. 

Problem 5. Are the following two digraphs isomorphic? Justify your an-

swer.

Solution. The two digraphs are not isomorphic, as one of them has a vertex

with out-degree 0 while the other does not have any. 
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Problem 6. Among the following three digraphs, which two are isomor-

phic? Justify your answer.

Solution. Both the first digraph and the third digraph have a vertex with

in-degree 3, but the second digraph does not have. Thus the second digraph

is not isomorphic to the first and the third.

Now we show that the first digraph and the third digraph are isomor-

phic. First name the vertices in the two digraphs as shown below.

u
vw

x u'
v'w'

x'

Then it can be shown that the mapping f defined by

f(u) = u, f(v) = v , f(w) = w, f(x) = x,

is an isomorphism from the first digraph to the third one. 

Problem 7. (+) Let D be a digraph. Prove that every u − v walk in D

contains a u − v path, where u and v are two vertices in D.

Solution. Let W1 be a u − v walk in D. If W1 contains no cycles, then W1

is a path in D.

Now assume that W1 contains a cycle. Then some vertex in the cycle

is repeated. Let x be such a vertex. Let W  be the u − x walk along W1 in

which x is not repeated. Let W be the x − v walk along W1 in which x is

not repeated. Then the walk W2 = W W is a u − v walk whose arcs are

in W1 . Note that W2 is shorter than W1.

This procedure is repeatedly applied until the resulting u − v walk con-

tains no cycle, and in this case, the resulting u − v walk is a desired path.
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Problem 8. (+) Let D be a digraph and k = min{od(v)|v ∈ V (D)}. Show

that D contains a path of length at least k. Is the result also true if k =

min{id(v)|v ∈ V (D)}?

Solution. Let P = x0x1 · · · xs be a longest path in D. As P is a longest

path, xs is not adjacent to any vertex in V (D)\ {x0, x2, · · · , xs−1 }.

Thus, as od(xs ) ≥ k, there exist at least k vertices in {x0, x1, · · · , xs−1}

which are adjacent from xs. Hence s ≥ k, implying that the length of P is

at least k.

Similarly, it can be shown that if k = min{id(v)|v ∈ V (D)}, then D

contains a path of length at least k. 

Problem 9. (+) Let D be a digraph and k = min{od(v)|v ∈ V (D)}. Show

that D contains an r-cycle, where r ≥ k + 1. Is the result also true if

k = min{id(v)|v ∈ V (D)}?

Solution. By the result in Problem 8, we know that D contains a longest

path P : x0x1 · · · xs such that s ≥ k.

As P is a longest path in D, all vertices adjacent from xs are in the set

{x0, x1, · · · , xs−1 }.

Since od(xs) ≥ k, at least k vertices in {x0 , x1 , · · · , xs−1 } are adjacent

from xs. Thus there exists a vertex xi with 0 ≤ i ≤ s − k such that xsxi is

an arc in D. Hence we get a cycle of length r:

xixi+ 1 · · · xsxi,

where r = s − i + 1 ≥ k + 1.

Likewise, if k = min{id(v)|v ∈ V (D)}, we can show that the result also

holds. 

Problem 10. Let D be a digraph with v(D) ≥ 2. Prove that if D is strong,

then id(v) ≥ 1 and od(v) ≥ 1 for each vertex v in D (that is D contains

neither sink nor source). Is the converse true?

Solution. If D contains a sink x, i.e., od(x) = 0, then no vertex other than

x is reachable from x and so D is not strong. Likewise, if D contains a

source, then D is not strong.

Hence if D is strong, then id(v) ≥ 1 and od(v) ≥ 1 for each vertex v in

D.

The converse is not true. The following digraph is an example.
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Problem 11. (+) Let D be a digraph whose underlying graph G(D) is the

following 2 × 3 grid:

Assume that D contains neither sink nor source. Show that D contains a

4-cycle.

Solution. Suppose that D contains no 4-cycles. We first label the vertices

in this digraph as shown below:

u v

xyz

w

Without loss of generality, assume that v → x. As D contains neither

sink nor source, u → v and x → y. By the assumption that D contains no

4-cycles, u → y, as shown in the diagram.

As D contains no sink, y → z, and in turn, z → w and w → u. But

then uyzwu is a 4-cycle in D, a contradiction.

u v

xyz

w
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Problem 12. (+) Let D be a digraph whose underlying graph G(D) is

K(4, 4). Prove that if D contains an 8-cycle, then D contains a 4-cycle.

Solution. Assume that D contains an 8-cycle, but D contains no 4-cycles.

We may assume that uuvvwwxxu is an 8-cycle as shown below:

u v w x

u' v' w' x'

Since D contains no 4-cycles, u → v ; otherwise, uuvvu is a 4-cycle. By

the same reason, v → w, w → x and x → u , as shown below:

u v w x

However, we find a 4-cycle, namely, uv wxu, a contradiction. 

Problem 13. (+) Let D be a digraph of order n ≥ 2. Assume that od(x)+

id(y) ≥ n − 1 for any two vertices x, y in D such that x is not adjacent to

y. Prove that D is strong.
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Solution. We claim that for any two vertices u, v in D, if u is not adjacent

to v, then uwv is a path in D for some w in D.

Let O(u) be the set of vertices in D which are adjacent from u and I(v)

be the set of vertices in D which are adjacent to v. As u is not adjacent to

v, v /∈ O(u) and u /∈ I(v). So

O(u) ∪ I(v) ⊆ V (D)\ {u, v}.

If O(u) ∩ I(v) = ∅, then

od(u) + id(v) = |O(u)| + |I(v)| ≤ |V (D)\ {u,v} | = n − 2,

a contradiction. Thus there exists w ∈ O(u) ∩ I(v), implying that uwv is a

path in D. 

Problem 14. (+) Let D be a digraph that contains no cycles. Prove that

D contains a sink and a source. Is the converse true?

Solution. Suppose on the contrary that D contains no sink; i.e., od(v) > 0

for every vertex v in D.

Let k = min{od(v)|v ∈ V (D)}. Then k ≥ 1. By the result in Problem 9,

D contains an r-cycle, where r ≥ k + 1, a contradiction.

Similarly, if id(v) > 0 for every vertex v in D, then D also contains a

cycle.

Hence the result holds.

The converse is not true. The following digraph contains a source and

a sink, and also a cycle.



Problem 15. (+) Let D be a digraph. Prove that D contains no cycles if

and only if every walk in D is a path.

Solution. (⇐) If D contains a cycle, say v1v2 · · · vkv1, then v1v2 · · · vkv1 v2

is a v1 − v2 walk which is not a path.
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(⇒) Let W be a walk in D that is not a path. Then some vertex is

repeated in W . Let v be a vertex in W which is repeated. We may choose

v so that no vertex in the section (*) (see the diagram below) is repeated

in (*).

W: ...
v v

(*)

Clearly, the closed walk of (*) forms a cycle in D. 

Problem 16. (+) Construct a digraph D of order 7 such that id(v) =

od(v) = 2 for each vertex v in D, but D contains no k-cycles, where k =

2, 4, 6.

Solution. The following digraph is such a digraph.



Problem 17. Let D be a digraph and A, a set of vertices in D. Denote by

R(A) the set of vertices in D which are reachable from some vertex in A.

Clearly, A ⊆ R(A), as every vertex is reachable from itself.

(a) Consider the following digraph D:

u

x y z

w

t

v
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(i) Let S = {x, z}, T = {u, w} and U = {x, y, z}. Find R(S), R(T ) and

R(U).

(ii) Is R(U) = U?

(iii) Is D strong?

(b) Consider the following digraph D:

(i) Can you find a non-empty set W of vertices in D such that W = V (D)

and R(W ) = W?

(ii) Is D strong?

(c) (+) Prove that a digraph D is strong if and only if for every non-empty

and proper subset W of V (D), W ⊂ R(W ).

Solution. (a)

(i) R(S) = {x, z, y}, R(T ) = {u, v, w, x, y, z}, R(U ) = {x, y, z}.

(ii) Yes, R(U) = U .

(iii) D is not strong.

(b)

(i) No, there is no non-empty subset W of vertices in D such that W =

V (D) and R(W ) = W .

(ii) Yes, D is strong.

(c)

(⇒) Assume that D is strong. Then any two vertices are mutually

reachable in D. Thus for any W , ∅ = W ⊂ V (D), we have R(W ) = V (D).

Hence the necessity holds.

(⇐) Suppose that D is not strong. Then there exist two vertices u, v in

D such that u is not reachable from v.

Let W = R({v}). Then W is a non-empty and proper subset of V (D).
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We claim that R(W ) = W . Let x ∈ R(W ). Then x is reachable from

a vertex y in W . As y ∈ W = R({v}), y is reachable from v. Hence x is

reachable from v, i.e., x ∈ R({v}) = W . This shows that W = R(W ).

So the sufficiency holds. 

Problem 18. An orientation of a graph G is a digraph D obtained from G

by assigning each edge in G an arbitrary direction. (Clearly, the underlying

graph of D is G.) For instance, a graph G and an orientation of G are

shown below.

G: D:

(i) Let G be a graph. Does there exist an orientation D of G such that

d(x, y) ≤ 1 for all x, y in V (D)?

(ii) For n = 3, 5 and 6, find an orientation Dn of Kn such that d(x, y) ≤ 2

for all x, y in V (Dn).

(iii) Find an orientation D4 of K4 such that d(x, y) ≤ 3 for all x, y in V (D4).

(iv) (+) Does there exist an orientation D4 of K4 such that d(x, y) ≤ 2 for

all x, y in V (D)?

(v) (+) Suppose that, for some n ≥ 5, Kn has an orientation Dn such that

d(x, y) ≤ 2 for all x, y in V (Dn). Construct an orientation Dn+ 2 of

Kn+ 2 based on Dn such that d(x, y) ≤ 2 for all x, y in V (Dn+ 2).

Solution. (i) For any graph G of order at least 2, there is no orientation

D such that d(x,y) ≤ 1 for all x, y in V (D).

The reason is very simple. If d(x, y) = 1, then it is impossible that

d(y,x) = 1.

(ii) An orientation Dn of Kn, n = 3, 5, 6, such that d(x, y) ≤ 2 for any

x, y ∈ V (Dn), is given below:
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(iii) An orientation D4 of K4 such that d(x, y) ≤ 3 for any x, y ∈ V (D 4)

is given below:

(iv) No, there is no orientation D4 of K4 such that d(x, y) ≤ 2 for any

x, y ∈ V (D4).

Suppose on the contrary that such a D4 exists. Let yx be an arc in D4 .

Then d(x, y) = 2, and so xzyx is a 3-cycle in D4 for some vertex z as shown

in (a).

Let u be the fourth vertex. Then u must be adjacent to some vertex in

{x, y, z}, say x (by symmetry). Then d(x, u) = 2, implying that z → u, as

shown in (b).

x

y
z

x

y
z

u
(a) (b)
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Now consider y and u. If y → u, then d(u,y) = 3; if u → y, then

d(y,u) = 3, a contradiction.

(v) An orientation Dn+ 2 of Kn+ 2 is constructed from Dn by adding two

new vertices u and v and adding all arcs in the set {uv} ∪ {vw,wu|w ∈

V (Dn)}, as shown below.

v

u
w

Dn

n+2D

Now we show that d(x, y) ≤ 2 for all x, y ∈ V (Dn+ 2). This is obvious if

{x, y} ∩ {u, v} = ∅.

By the definition of Dn+ 2, uvwu is a 3-cycle of Dn+ 2 for every w ∈

V (Dn). Thus d(u, v) = 1, d(v, u) = 2 and

d(u,w) = 2, d(w,u) = 1, d(v,w) = 1, d(w,v) = 2,

for every w ∈ V (Dn). Hence d(x, y) ≤ 2 for all x, y ∈ V (Dn+ 2) if {x, y} ∩

{u, v} = ∅. 

Problem 19. Consider the orientation D of the graph G shown at the

beginning of Problem 18.

(i) Verify that d(x, y) ≤ 4 in D for all x, y in V (D).

(ii) Is it true that d(x, y) ≤ 3 in D for all x, y in V (D)?

(iii) Find an orientation D of G such that d(x, y) ≤ 3 in D for all x, y in

V (D ).

(iv) Does there exist an orientation D* of G such that d(x, y) ≤ 2 in D∗

for all x, y in V (D∗)? Justify your answer.

Solution. (i) As D is strongly connected and D contains only 5 vertices,

d(x, y) ≤ 4 for all x,y in V (D).

(ii) No, we have d(a, c) = 4 (see the following diagram).
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D:

uv

a

b

c

(iii) The following diagram shows an orientation D such that d(x, y) ≤ 3

for all x, y in V (D).

uv

a

b

c

D':

(iv) No, the graph G has no orientation D such that d(x, y) ≤ 2 for all

x, y in V (D).

uvuv

D:G:

(a) (b)

a

b

c a

b

c

Suppose on the contrary that such a D exists. Consider a and c. As

d(c, a) ≤ 2, we must have c → b → a (see the above diagram) in D. But

then d(a, c) ≤ 2 can never be the case, a contradiction. 
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Problem 20. Let G = K(p, p), where p ≥ 2.

(i) Does there exist an orientation D of G such that d(x, y) ≤ 2 in D for

all x, y in V (D)? Justify your answer.

(ii) Find an orientation D of G such that d(x, y) ≤ 3 in D for all x, y in

V (D).

Solution. (i) There is no orientation D of G such that d(x, y) ≤ 2 for all

x, y in V (D).

Let x, y be two vertices in D with x → y. Then d(y, x) ≥ 2. If d(y, x) =

2, then there exists a 3-cycle xywx in D, contradicting the fact that G is

bipartite.

(ii) Let (X, Y ) be the bipartition of K(p, p), where X = {a1, a2, · · · , ap}

and Y = {b1, b2 , · · · , bp}. Let D be the orientation with arc set:

{aibi | i = 1, 2, · · · , p} ∪ {biaj | 1 ≤ i, j ≤ p, i = j}.

For any i, j with i = j, aibiajbjai is a 4-cycle. Thus d(ai, aj ) ≤ 3, d(bi , bj ) ≤

3, d(ai, bj) ≤ 3 and d(bi, aj) ≤ 3. Hence d(x, y) ≤ 3 in D for all x, y in

V (D). 

Problem 21. Let D be a digraph with n vertices labeled v1, v2, · · · , vn . The

adjacency matrix of D, denoted by A(D), is the n × n matrix in which

ai,j , the entry in row i and column j, is 1 if there is an arc from vertex vi

to vertex vj , and 0 otherwise. We may sometimes write A(D) = (ai,j ).

(i) Draw the digraph D which has the following adjacency matrix A(D):

A(D) =

⎛
⎜⎜⎝

0 1 0 1

0 0 1 1

0 1 0 0

0 1 1 0

⎞
⎟⎟⎠

(ii) Find the adjacency matrix A(D) of the following digraph D.

v

v v

v

v

1

2 3

4

5
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Solution. (i) The digraph is shown below:

D: 1 2

34

v v

vv

(ii) The adjacency matrix of D is A(D) =

⎛
⎜⎜⎜⎜⎝

0 1 1 0 1

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

1 0 0 1 0

⎞
⎟⎟⎟⎟⎠ . 

Problem 22. Let D be a digraph of order n, where n ≥ 2.

(i) Show that if D contains no cycles, then od(v) = 0 for some vertex v in

D.

(ii) (+) Show that D contains no cycles if and only if the vertices in D can

be named as v1 , v2, · · · , vn such that A(D) is upper triangular.

(Note that a square matrix (ai,j) is called an upper triangular ma-

trix if ai,j = 0 for all i, j with i > j.)

Solution. (i) If od(v) ≥ 1 for all v ∈ V (D), then, by the result of Prob-

lem 9, D contains a cycle of length at least 2, a contradiction.

(ii) (⇒) Assume that D contains no cycles.

We shall prove the result by induction on n ≥ 2. For n = 2, D is either

Name the vertices of D as

v1 2v v1 2v
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Then

A(D) =


0 1

0 0


or A(D) =


0 0

0 0


.

Now assume that n ≥ 3. By the result in (i), there is a vertex v such

that od(v) = 0. Label this vertex as vn.

Let D be the digraph obtained from D by deleting vn. It is clear that

D contains no cycles. Thus, by the induction hypothesis, the vertices in

D can be named as v1, v2 , · · · , vn−1 such that A(D ) is upper triangular.

Hence A(D) is also upper triangular, as

A(D) =

⎛
⎜⎜⎜⎝

A(D)

a1,n

...

an−1,n

0 · · · 0 0

⎞
⎟⎟⎟⎠ .

(⇐) Assume that the vertices in D can be named as v1, v2 , · · · , vn such

that A(D) is upper triangular. Then the (i, j)-entry in A(D) is 0 if i ≥ j,

implying that vivj is not an arc in D whenever i ≥ j. If D contains a cycle

vi1vi2
· · · vik

vi1 , then i1 < i2 < · · · < ik < i1, which is impossible. 

E x e r c i s e 7 . 3

Problem 1. Let T be a tournament, and u, v be two mutually reachable

vertices in T . Prove that

(i) d(u, v) = 1 if and only if d(v, u) = 1;

(ii) d(u, v) = d(v, u).

Solution. (i) If d(u, v) = 1, then u is not adjacent to v in T . As T is a

tournament, v → u in T , and so d(v, u) = 1.

If d(v, u) = 1, then v → u in T , and so u is not adjacent to v in T ,

implying that d(u, v) = 1.

(ii) It follows from (i). 
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Problem 2. (+) Let T be a tournament, and u, v be two vertices in T with

d(u, v) = k ≥ 2. Prove that

(i) od(v) ≥ k − 1;

(ii) v is contained in an r-cycle for each r = 3, 4, · · · , k + 1;

(iii) u and v are contained in a common (k + 1)-cycle.

Solution. As d(u, v) = k ≥ 2, let u1 · · · ukv be a shortest u − v path in T ,

where u1 = u. Then v → ui for each i = 1, 2, · · · , k − 1. Thus, we have

(i) od(v) ≥ k − 1;

(ii) for r = 3, 4, · · · , k + 1, vuk−r+ 2uk−r+ 3 · · · ukv is a r-cycle that con-

tains v;

(iii) vu1 u2 · · · ukv is a (k + 1)-cycle that contains both u and v. 

Problem 3. Show that, up to isomorphism,

(i) there is only one strong tournament of order 3;

(ii) there is only one strong tournament of order 4.

Solution. (i) Let T3 be a strong tournement of order 3 and x1 , x2, x3 be

the vertices in T3.

As T3 is strong, od(xi) = id(xi) = 1 for i = 1, 2, 3. Assume that

x1 → x2 . Then x2 → x3 and x3 → x1. Thus T3 is uniquely determined

by the condition that x1 → x2, as shown in (a). This shows that, up to

isomorphism, there is only one strong tournament of order 3.

1 2

4x2

x1
x

x

x

x

(a) (b)

(ii) Let T4 be a strong tournement of order 4 and x1 , x2, x 3, x4 be the

vertices in T4.

By the result in Problem 18 (iv) of Exercise 7.2, d(xi, xj ) = 3 for some

i, j, say i = 1 and j = 4. Let x1 x2 x3x4 be a x1 − x4 path in T4 . As
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d(x1 , x4) = 3, we must have x4 → x1, x4 → x2 and x3 → x1, as shown in

(b).

Thus, up to isomorphism, there is only one strong tournament of order

4. 

Problem 4. Let Tn be a strong tournament of order n such that, for each

arc in Tn, the reversing of the direction of this arc results in also a strong

tournament. Show that n ≥ 5 and construct one such Tn.

Solution. For n = 3, 4, by the result in the previous problem, T3 and T4

are the tournaments shown in the solution of the problem. Clearly, the

reversing of x2 → x3 in both T3 and T4 results in non-strong tournaments.

Hence n ≥ 5. For n = 5, one such tournament is shown in (a).

(a) (b)

...Tn-1

For n ≥ 6, construct Tn from Tn−1, as shown in (b), by

(1) adding a new vertex x;

(2) adding two arcs from x to any two vertices in Tn−1 and adding n − 3

arcs from the other n − 3 vertices of Tn−1 to x.

It is easily checked that if Tn−1 satisfies the condition stated in the

problem, then so does Tn . 

Problem 5.

(i) Suppose that six teams play in a round-robin tournament. Is it possible

that all six teams have the same score at the end?

(ii) Suppose that seven teams play in a round-robin tournament. Is it pos-

sible that all seven teams have the same score at the end?

(iii) Suppose that n teams, n ≥ 3, play in a round-robin tournament. Is it

possible that all n teams have the same score at the end?
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Solution. (i) It is impossible. The total score of the six teams in the

tournament is 15 and 15 is not divisible by 6.

(ii) It is possible. We can construct a tournament T of order 7 such

that id(u) = od(u) = 3 for every vertex u in T . Let

V (T ) = {x1 , x2, · · · , x7}.

For each i = 1, 2, · · · , 7, assume that xi is adjacent only to xi+ 1 , xi+ 2 and

xi+ 3, where x 7+k = xk for all k = 1, 2, 3.

It can easily be checked that id(xi) = od(xi) = 3 for each i = 1, 2, · · · , 7.

(iii) Let Tn be a tournament of order n ≥ 3. By Result (2) (iii),
v∈V (Tn )

od(v) = n(n−1)
2 . Thus, all vertices have the same score (= n−1

2 )

only if n−1
2 is an integer, i.e., n is odd.

For odd n ≥ 3, such a tournament can be constructed inductively.

For n = 3, it is clear that the strong tournament of order 3 is such a T3 .

Assume that there is such a tournament T2k+ 1. Let x1 , x2, · · · , x2k+ 1

be the vertices in T2k+ 1. Now construct a tournament T2k+ 3 from T2k+ 1

by adding two new vertices u and v and adding arcs in the following set:

{uv} ∪ {uxi, xiv | i = 1, 2, · · · , k} ∪ {xi+ku, vxi+k | i = 1, 2, · · · , k + 1}.

It can be checked that all vertices in T2k+ 3 have the same score. 

Problem 6. Let T be a tournament of order n ≥ 3. Assume that od(v) = k

for all vertices v in T .

(i) Find a relation between k and n.

(ii) Deduce that n must be odd.

(iii) Construct one such tournament of order 7.

Remark. Such a tournament is called a regular tournament.

Solution. (i) By Result (2) (iii) and the assumption,
n

2


=


v∈V (T )

od(v) = kn.

Thus k = (n − 1)/2.

(ii) By (i), n = 2k + 1, which is odd.

(iii) See the construction shown in Problem 5 (ii). 
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Problem 7. Consider the following tournament T . Find

(i) the out-degree and in-degree of each vertex in T ;

(ii) the sum od(u) + od(v) + od(w) + od(x) + od(y);

(iii) the sum id(u) + id(v) + id(w) + id(x) + id((y);

(iv) the sum (od(u))2 + (od(v))2 + (od(w))2 + (od(x))2 + (od(y))2;

(v) the sum (id(u))2 + (id(v))2 + (id(w))2 + (id(x))2 + (id(y))2 .

Are the sums in (ii) and (iii) the same?

Are the sums in (iv) and (v) the same?

u

v

w x

y

T:

Solution. (i) In T , we have:

od(u) = 3, od(v) = 3, od(w) = 2, od(x) = 0, od(y) = 2;

id(u) = 1, id(v) = 1, id(w) = 2, id(x) = 4, id(y) = 2.

(ii)

od(u) + od(v) + od(w) + od(x) + od(y) = 10.

(iii)

id(u) + id(v) + id(w) + id(x) + id((y) = 10.

(iv)

(od(u))2 +(od(v))2 +(od(w))2 +(od(x))2+(od(y)) 2 = 32+32+22+02+22 = 26.

(v)

(id(u))2 +(id(v))2+(id(w))2+(id(x))2+(id(y))2 = 12+12 +22+42 +22 = 26.

The sums in (ii) and (iii) are the same, and the sums in (iv) and (v) are

the same. 
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Problem 8. Prove the results in Result (2).

Solution. We shall prove that

(i) e(Tn) =


n
2


;

(ii) od(v) + id(v) = n − 1 for each vertex v in Tn; and

(iii)


v∈V (Tn )

od(v) =

n

2


=


v∈V (Tn)

id(v).

(i) As the underlying graph of Tn is the complete graph Kn , we have

e(Tn) = e(Kn) =


n
2


.

(ii) For each vertex v in Tn , its degree in the underlying graph of Tn is

n − 1. Thus od(v) + id(v) = n − 1.

(iii) By Result (1) and Result (2) (i),


v∈V (Tn )

od(v) =


v∈V (Tn)

id(v) = e(Tn) =


n

2


.



Problem 9. (+) Let T be a tournament. Show that


v∈V (T )

(od(v))2 =


v∈V (T )

(id(v))2.

(Putnam Exam (1965))

Solution. Let T be of order n. By Result (2), we have od(v)+id(v) = n−1

for each vertex v in T and


v∈V (T )

od(v) =


n

2


=


v∈V (T )

id(v).
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Thus 
v∈V (T )

(od(v))2 −


v∈V (T )

(id(v)) 2

=


v∈V (T )

((od(v))2 − (id(v))2 )

=


v∈V (T )

(od(v) − id(v))(od(v) + id(v))

= (n − 1)


v∈V (T )

(od(v) − id(v))

= (n − 1)

⎛
⎝ 

v∈V (T )

od(v) −


v∈V (T )

id(v)

⎞
⎠

= (n − 1)


n

2


−


n

2



= 0.


Problem 10. (+) Let T be a tournament with V (T ) = {v1, v2, · · · , v n}.

Show that, for any k = 1, 2, · · · , n,

k
i= 1

od(vi) ≥


k

2


.

Solution. Let Tk be the sub-tournament of T induced by {v1, v2 , · · · , vk }.

Then, for i = 1, 2, · · · , k,

od(vi) ≥ odTk
(vi),

where odTk
(v i) is the out-degree vi in Tk . Hence

k
i= 1

od(vi ) ≥
k

i= 1

odTk
(vi) =


k

2


.



Problem 11. Is there a tournament in which the out-degrees of the vertices

are:

(i) 5, 4, 3, 2, 1, 0?

(ii) 5, 5, 3, 1, 1, 0?

(iii) 5, 4, 4, 1, 1, 0?

(iv) 4, 3, 3, 2, 2, 1?
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For each case, construct one such tournament if your answer is ‘YES’; give

a reason if your answer is ‘NO’.

Solution. (i) There is a tournament in which the out-degrees of the vertices

are 5,4, 3, 2, 1, 0.

Let T be the tournament with vertex set {x1, x2, · · · , x6 } and arc set

{xixj | 1 ≤ i < j ≤ 6}.

Then od(xi) = 6 − i for i = 1, 2, · · · , 6.

(ii) There is no tournament in which the out-degrees of the vertices are

5, 5, 3, 1, 1, 0.

Suppose that T is such a tournament. There is a vertex x in T with

od(x) = 5. Thus x → v for every other vertex v in T . But then od(v) ≤ 4

for each v with v = x, and so the second ‘5’ can never be the out-degree of

any vertex in T , a contradiction.

(iii) There is no tournament in which the out-degrees of the vertices are

5, 4, 4, 1, 1, 0.

Suppose that T is such a tournament. Let x, y, z be the three vertices

in T with out-degrees 1, 1, 0, respectively. Then

od(x) + od(y) + od(z) = 1 + 1 + 0 = 2.

However, by the result of Problem 10, od(x) + od(y) + od(z) ≥


3
2


= 3, a

contradiction.

(iv) There is a tournament T in which the out-degrees of the vertices

are 4,3, 3, 2, 2, 1.

Let T be the tournament shown below:

x

x

x x

x

x

1 2

3

45

6

T:

Then the out-degrees of x6, x5, x4, x3, x2, x1 are 4, 3, 3, 2, 2, 1 respectively.
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Problem 12.

(i) Construct a tournament T5 in which the out-degrees of the vertices are:

2, 2, 2, 2, 2.

(ii) Construct a tournament T6 in which the out-degrees of the vertices are:

3, 3, 3, 2, 2, 2.

(iii) Show a way of combining the above T 5 and T6 to obtain a tournament

of order 11 in which the out-degrees of the vertices are: 8, 8, 8, 8, 8,

3, 3, 3, 2, 2, 2.

Solution. (i) Let T5 be the tournament with vertex set {x1, x2, x3, x 4, x5 }

and arc set

E(T5) = {x ixj | i + 1 ≤ j ≤ i + 2, i = 1, 2, 3, 4, 5},

where we assume that x6 = x1 and x7 = x2 . Then od(xi) = id(xi) = 2 for

all i = 1, 2, 3, 4, 5.

(ii) Let T6 be the tournament with vertex set {y1, y2, y3, y4, y5, y6 } and

arc set

E(T6 ) = {yiyj | i + 1 ≤ j ≤ i + 2, i = 1, 2, 3, 4, 5, 6} ∪ {yiyi+ 3 | i = 1, 2, 3},

where we assume that y7 = y1 and y8 = y 2.

Observe that od(yi) = 3 for i = 1, 2, 3 and od(yi) = 2 for i = 4, 5, 6.

(iii) Let T11 be the tournament with vertex set V (T11) = V (T5 ) ∪ V (T6)

and arc set

E(T11) = E(T5) ∪ E(T6) ∪ {xiyj | 1 ≤ i ≤ 5, 1 ≤ j ≤ 6}.

Note that the out-degrees of x1, x2, x3, x4, x5, y1, y2 , y3, y4, y5, y6 in T11 are

8, 8, 8, 8, 8, 3, 3, 3, 2, 2, 2,

respectively. 

Problem 13. (+) Let T be a tournament of order n ≥ 3. Prove that T

contains a 3-cycle if and only if T contains two vertices of the same out-

degree.

Solution. (⇒) Suppose that T does not contain two vertices of the same

out-degree. Then the out-degrees of vertices in T are

0, 1, 2, · · · , n − 1.
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Let V (T ) = {x1, x2, · · · , xn} and od(xi) = i − 1. It can be shown by

induction that

E(T ) = {xjxi | 1 ≤ i < j ≤ n}.

Thus T contains no cycles, a contradiction.

(⇐) Assume that T contains two vertices of the same out-degree.

Let x and y be two vertices in T with od(x) = od(y) = k. As either

x → y or y → x, k ≥ 1. Assume that x → y and y is adjacent to k vertices

y1 , y2 , · · · , yk. Since od(x) = od(y) = k and x → y, it is impossible that x

is adjacent to every vertex in {y1, y2 , · · · , yk}. Assume that x → y1. Then

y1 → x, and so xyy1x is a 3-cycle in T . 

Problem 14. (+) Prove that a tournament T is transitive if and only if

od(u) = od(v) for any two vertices u, v in T .

Solution. (⇒) Assume that T is transitive, i.e., for any three vertices

u, v,w, if u → v and v → w, then u → w. Thus T contains no 3-cycles. By

the result of Problem 13, od(u) = od(v) for any two vertices u,v in T .

(⇐) Assume that od(u) = od(v) for any two vertices u, v in T . By the

result of Problem 13, T contains no 3-cycles. Thus, for any three vertices

u, v,w in T , if u → v and v → w, we must have u → w; that is, T is

transitive. 

Problem 15. (+) Prove that a tournament T of order n is transitive if and

only if the out-degrees of its vertices are, respectively, n − 1, n − 2, · · · , 1, 0.

Solution. By the result of Problem 14, T is transitive if and only if od(u) =

od(v) for every two vertices u, v in T . Since T is of order n and 0 ≤ od(u) ≤

n − 1 for all u ∈ V (T ), od(u) = od(v) for every two vertices u, v in T if and

only if the out-degrees of vertices in T are, respectively, n−1, n−2, · · · , 1, 0.



Problem 16. (+) A tournament T is said to be reducible if V (T ) can be

partitioned into two non-empty subsets, U and W , such that u → w for all

u ∈ U and w ∈ W . A reducible tournament of order 5 is shown below:
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U W

(i) Is the following tournament reducible?

(ii) Prove that every transitive tournament is reducible.

Solution. Notice that if T has a vertex of in-degree 0 or out-degree 0, then

T is reducible.

(i) This tournament T is reducible, as it contains a vertex of in-degree

0.

(ii) Let T be a transitive tournament of order n. By the result of

Problem 15, the out-degrees of vertices in T are n − 1, n − 2, · · · , 1, 0. As

T contains a vertex of out-degree 0, T is reducible. 

E x e r c i s e 7 . 4

Problem 1. (+) Prove that a tournament is transitive if and only if it has

one and only one Hamiltonian path.

Solution. (⇒) Let T be a tournament of order n. The proof is by induction

on n. Assume that T is transitive. If n ≤ 2, then it is obvious that T

contains one and only one Hamiltonian path.

Now assume that n ≥ 3.
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Since T is transitive, by the result of Problem 15 in Exercise 7.3, T has

a vertex v with od(v) = n − 1. As T − v is also a transitive tournament,

by the induction hypothesis, T − v contains one and only one Hamiltonian

path. Since v is adjacent to every vertex in T − v, T also conatins one and

only one Hamiltonian path.

(⇐) Let x1x2 · · · xn be the unique Hamiltonian path in T . We shall

show that xi → xj for all i, j with 1 ≤ i < j ≤ n.

Clearly, it holds if n ≤ 2.

Assume that xi → xj for all i, j with 1 ≤ i < j ≤ n − 1. We need to

show that xi → xn for all i with 1 ≤ i ≤ n − 1.

Suppose on the contrary that xn → xi for some i with 1 ≤ i ≤ n − 1.

Let k be the minimum integer with 1 ≤ k ≤ n − 1 such that xn → xk .

If k = 1, then xnx1 x2 · · · xn−1 is also a Hamiltonian path in T , a con-

tradiction.

If k ≥ 2, then x1x 2 · · · xk−1 xnxkxk+ 1 · · · xn−1 is a Hamiltonian path in

T , also a contradiction.

Hence xi → xn for all i with 1 ≤ i ≤ n − 1.

Therefore xi → xj for all i, j with 1 ≤ i < j ≤ n. This shows that T is

transitive. 

Problem 2. (+) Let T be a tournament and u, v be two vertices in T . If

od(u) ≥ od(v), what are the possible values of d(u,v)? Justify your answer.

Solution. We claim that if od(u) ≥ od(v), then d(u, v) ≤ 2.

If u → v, then d(u,v) = 1. Assume that v → u. We shall show that

d(u, v) = 2.

Let od(u) = k and assume that u → ui for i = 1, 2, · · · , k. As od(v) ≤ k

and v → u, it is impossible that v → ui for all i = 1, 2, · · · , k. Thus ui → v

for some i, where i = 1, 2, · · · , k, say u1 → v. Then uu1v is a u − v path,

implying that d(u, v) = 2 in this case. 

Problem 3. (+) Suppose in a round-robin tournament, team A has the

maximum score. Let p denote the number of teams defeated by A, and q

the number of teams not defeated by A. Which of the following situations

are possible?

(i) p > q;

(ii) p = q;

(iii) p < q.
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Solution. If there are even number of teams in the round-robin tourna-

ment, only (i) is possible; otherwise, both (i) and (ii) are possible. But (iii)

is impossible.

Assume that there are n teams in the round-robin tournament. Then

p + q = n − 1 and

p ≥


n

2


/n =

n − 1

2
.

Thus q ≤ (n − 1)/2. Hence p ≥ q.

If n is even, we have p ≥ (n − 1)/2 ≥ n/2 > q. If n is odd, then it is

possible that p = q = (n − 1)/2 or p > (n − 1)/2 ≥ q. 

Problem 4. For each n ≥ 2, construct a tournament of order n in which

there is a king w with od(w) = 1.

Solution. The case that n = 2 is trivial.

Assume that n ≥ 3. Let Tn−2 be any tournament of order n − 2.

Construct a tournament Tn from Tn−2 by adding two new vertices w and

u such that w → u and for all x in Tn−2, u → x → w (see the diagram

below).

w u

x

T   :n

n-2

......

T

Clearly, w is a king and od(w) = 1 in Tn. 

Problem 5. (+) Let T be a tournament of order n ≥ 3 and let u be a

vertex in T with od(u) ≤ n − 2. Show that u is dominated by a king in T .

Solution. Assume that od(u) = k, where 0 ≤ k ≤ n − 2.
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Let V (T ) = {u, x1 , x2, · · · , xn−1}. Assume that u → xi for i =

1, 2, · · · , k, and xi → u for i = k + 1, k + 2, · · · , n − 1.

Let T  be the sub-tournament of T induced by {xk+ 1, xk+ 2 , · · · , xn−1 }.

Then T  itself has a king, say xn−1.

So d(xn−1 , xi) ≤ 2 for all i = k + 1, k + 2, · · · , n − 2. Note also that

xn−1 → u → xi for all i = 1, 2, · · · , k. Thus xn−1 is a king of T .

This shows that u is dominated by a king of T . 

Problem 6. If w is the only king in a tournament of order n, what is the

value of od(w)?

Solution. If w is the only king in a tournament T of order n, then od(w) =

n − 1. Otherwise, od(w) ≤ n − 2, where n ≥ 3, and by the result of

Problem 5, T contains a king other than w. 

Problem 7. (+) Is there a tournament which contains exactly two kings?

Justify your answer.

Solution. No, no tournament contains exactly two kings.

Suppose on the contrary that T is a tournament of order n ≥ 2 which

contains exactly two kings, say u and v with u → v. Since u is reachable

from v, od(u) ≤ n−2 and n ≥ 3. By the result of Problem 5, u is dominated

by a king, say w, in T . Clearly, w = v. Thus, T has at least three kings,

namely, u,v and w, a contradiction. 

Problem 8. Suppose that a tournament T has exactly three kings. What

can be said about the dominance relations among them?

Solution. Let u,v,w be the three kings of T of order n. Let T ∗ be the

sub-tournament of T induced by {u, v, w}. We claim that T ∗ is a 3-cycle.

Otherwise, we may assume that

wu
T *

v

Since u is reachable from w in T , od(u) ≤ n − 2. By the result of Problem 5,

u is dominated by a king, say z, in T . Clearly, z = v and z = w. Thus, T

contains more than three kings, a contradiction. 
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Problem 9. Using the results in Problem 18 of Exercise 7.2, show that for

each n ≥ 3, n = 4, there is a tournament of order n in which every vertex

is a king.

Solution. By the results in Problem 18 of Exercise 7.2, if n ≥ 3 and

n = 4, there is a tournament Tn of order n such that d(u, v) ≤ 2 for all

u, v ∈ V (Tn). Hence every vertex in Tn is a king. 

Problem 10. Show that there is no tournament of order four in which

every vertex is a king.

Solution. This result follows from the result of Problem 18, Exercise 7.2.

Another proof is given below.

Assume that there is a tournament T of order four in which every vertex

is a king. Let x1 , x2, x3, x4 be the vertices in T . As every vertex is a king,

od(xi) ≥ 1 for all i. Since

od(x1 ) + od(x2) + od(x3) + od(x4 ) = 6,

od(xi) = 1 for some i.

Assume that od(x1 ) = 1 and x1 → x2. Then xi → x 1 for i = 3, 4. As

d(x1 , xi) ≤ 2 for i = 3, 4, we have x2 → xi for i = 3, 4.

If x3 → x4 , then d(x4, x3 ) = 3; if x4 → x3 , then d(x3, x4) = 3. Both

cases contradict the condition that every vertex is a king.

Hence there is no such tournament T . 

Problem 11. Let T be a regular tournament (see Problem 6 in Exercise

7.3). Is it true that every vertex in T is a king? Why?

Solution. Yes, every vertex in a regular tournament T is a king.

Since T is regular, by definition, there exists an integer k such that

od(v) = k for all vertices v in T . Thus, every vertex in T has the maximum

out-degree, and so is a king by Theorem 7.3. 
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Problem 12. (+) A tournament T is said to be irreducible if T is not

reducible, that is, for any partition of V (T ) into two non-empty subsets U

and W , there exist u ∈ U , w ∈ W such that u → w and there exist y ∈ W ,

x ∈ U such that y → x. (See Problem 16 in Exercise 7.3.)

(i) Is the following tournament irreducible?

(ii) Prove that a tournament is strong if and only if it is irreducible.

Solution. (i) This tournament is irreducible.

(ii)

(⇒) Assume that T is a strong tournament. Let (X,Y ) be any partition

of V (T ).

Let x ∈ X and y ∈ Y . As T is strong, there exists a x − y path in T .

This path must contain an arc xy  with y ∈ Y and x ∈ X.

Similarly, there exists an arc yx with y  ∈ Y and x ∈ X.

Hence T is irreducible.

(⇐) Assume that T is irreducible. To show that T is strong, we show

that R(x) = V (T ) for all vertices x in T , where R(x) is the set of all vertices

in T which are reachable from x.

Suppose that R(x) is a proper subset of V (T ) for some x ∈ V (T ).

Since T is irreducible, there exists an arc xy in T with x ∈ R(x) and

y ∈ V (T )\R(x). But this implies that y  ∈ R(x), a contradiction. Hence

R(x) = V (T ), and so T is a strong tournament. 

Problem 13. Let T be a tournament. Prove that if T is strong, then every

vertex in T is contained in a cycle. Is the converse true?

Solution. Let x be a vertex in T . As T is strong, id(x) ≥ 1. Let y be a

vertex such that y → x.

As T is strong, there is a x − y path P . The arc yx cannot be in P .

Then P and the arc yx form a cycle containing x in T .

The following tournament shows that the converse is not true.
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Problem 14. (+) Let T be a strong tournament of order n ≥ 3. Determine

whether each of the following statements is true.

(i) Every vertex in T is contained in a 3-cycle.

(ii) Every arc in T is contained in a 3-cycle.

(iii) Every arc in T is contained in a Hamiltonian cycle.

(iv) Every arc in T is contained in a cycle.

(v) For any two vertices u, v in T , either there is Hamiltonian path from

u to v, or there is Hamiltonian path from v to u.

Solution. (i) It is true. Let z be any vertex in T . Let

O(z) = {x ∈ V (T ) | z → x} and I(z) = {y ∈ V (T ) | y → z}.

Since T is strong, both O(z) and I(z) are non-empty. Also, there exist

x ∈ O(z) and y ∈ I(z) such that x → y; otherwise, there is no path from

z to any vertex in I(z). Clearly, zxyz is a 3-cycle containing z, as shown

below.

I(z) O(z)

..

. ..
.
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(ii) It is false.

The following tournament T of order 4 is a strong tournament.

Note that the arc xy is not contained in a 3-cycle. So (ii) is false.

y

z
T:

(iii) It is false. In the tournament T shown in (ii), the arc xz is not

contained in a Hamiltonian cycle.

(iv) It is true.

Let xy be any arc in T . As T is strong, there exists a y − x path P in

T . Clearly, P and xy form a cycle which contains xy.

(v) It is false.

In the tournament T shown in (ii), there is no Hamiltonian path from

x to z, nor Hamiltonian path from z to x. 
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