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Preface

To better understand nature, researchers have provided some mathematical tools that
are used currently in many branches of science, technology, and engineering. In par-
ticular, the concept of integral transformation was suggested and has been found as a
useful mathematical tool for solving a range of problems in mathematics and applied
mathematics. It is worth noting that a mathematical operator is called an integral
transform if it maps a function from its original function into another function space
through an integral. However, it is possible that some properties of the initial func-
tions could be easier to characterize and manipulate than the original function space.
Usually, the transformed function can be mapped back to the initial function space
using the inverse transform. In mathematics and applied mathematics, several prob-
lems have been found difficult to be solved in their original presentations. Thus, an
integral transform maps an equation from its original domain into another. However,
controlling and solving a differential or integral equation in the target domain can be
easier than manipulating and finding the solution in the original space. The obtained
solution is mapped back into the original space using the inverse integral transform.
The available literature shows that there are several applications of probability that
are connected to integral transforms, for instance, the pricing kernel, also known
as the stochastic discount factor. Another important field where these mathemati-
cal operators are applied is the control theory. This theory comprises two principal
approaches for continuous time and discrete linear time-invariant systems. We will
be interested only in the continuous time, which generates frequency-domain tech-
niques, relying on the notions of the transfer function and the frequency response.
The electric circuits are in this case the principal step toward understanding complex
electrical engineering notions. More importantly, circuit analysis creates the progres-
sive methods that are moving the industry forward. Laplace transform is, therefore,
an important mathematical operator used to obtain the transfer function that it in turn
is used to obtain the Bode diagram. Besides the Laplace transform, several differ-
ent integrals have been suggested in the last decades and have been found to have
some interesting properties comparable to those of the Laplace transform. We can
list the Sumudu transform, Mohand transforms, Sawi transform, Elzaki transform,
Aboodh transform, Pourreza transform, ¢ integral Laplace transform, Kamal trans-
form, G-Transform, and Natural transform. These integral transforms have played a
significant role in solving differential equations with integer and non-integer orders
in the last decades. In particular, fractional linear differential equations have been
acknowledged as powerful mathematical tools to replicate complex phenomena. The
tools of fractional calculus have played a significant role in enhancing the modeling
methods for several real-world problems. In this book, information on the mathemat-
ical analysis of integral transform and their applications in control theory are pre-
sented. We discuss the possibility of obtaining transfer functions using different in-
tegral transforms especially when they map any function into the frequency domain.

XV



xvi Preface

We applied these integral transforms for many electric circuit models. Different dif-
ferential operators are considered including classical derivative, Caputo derivative,
Caputo-Fabrizio derivative, and Atangana-Baleanu derivative in the models. This
book could be convenient for graduate students and investigators in pure and applied
mathematics and engineering.
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Sumudu and Laplace
Transforms

The Laplace transform is perhaps one of the most used integral transforms in the
field of mathematics, technology, and engineering. In general, the Laplace transform
was named after Pierre-Simon Laplace as he introduced it as an integral that cov-
ers a function of a real variable to a function of a complex variable also known as
complex frequency. The operator has found applications in all fields of science and
engineering. In particular, this transform is used to solve linear ordinary and partial
differential and integral equations. One of its great achievements is to transform a
convolution into a product; therefore, the theorem of convolution is used to obtain
the solution of linear equations with integer and non-integer orders. It is worth not-
ing that the current widespread application of the Laplace transform especially in
engineering can be traced to World War II as it was replacing the earlier Heaviside
operational calculus. Gustav [6] provided the advantages of the Laplace transform.
Indeed, there are some questions raised around some properties of the Laplace trans-
form; for example, it fails to preserve parity of the function and the units. However,
the operator has been used to solve problems in mechanical engineering and electri-
cal engineering since it has the great property of reducing a linear differential equa-
tion to an algebraic equation, which can be later solved by a recognized routine of
algebra. The original solution can be obtained by the mean of the inverse Laplace
transform. On the other hand, by the year 1990 Gamage K Watugala suggested an
integral transform similar to the Laplace transform to solve differential equations
and control engineering problems the operator was called Sumudu transform and has
been applied in many real-world problems with great success. In particular, it was ob-
served that the transform has many interesting properties that over-performed those
of the Laplace transform. For example, unlike the Laplace transform, the Sumudu
transform preserve units and parity of the function, the differentiation, and integra-
tion in the t-domain is equivalent to division and multiplication of the transformed
function F (u) by u in the u-domain. Where u- domain is a complex number.

1.1 DEFINITIONS

DEFINITION 1.1 Let f(¢) be defined for t > 0. The Laplace transform of f(¢)
defined by F'(s) or L{ f(¢)} is an integral transform given by the Laplace integral [9]:

LU0} = F(5) = | exp(—sn)f(0)ar (L1)
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Provided that this (improper) integral exists, i.e., that the integral is convergent. The
Laplace transform is an operation that transforms a function of 7 (i.e., a function of
time domain), defined on [0,0), to a function of s (i.e., of frequency domain). F(s)
is the Laplace transform, or simply transform, of f(¢). Together, the two functions
f(t) and F (s) are called a Laplace transform pair.

DEFINITION 1.2 Over the set of functions,
A={f(t)|3M, 71,72 > 0,] f(t) |< Mexp(|t | /1j, ift € (—1)) x [0,%0)}, (1.2)

the Sumudu transform is presented as [10-12]

Gu) = S[f(1)] = /0 " flut)exp(—0)dt, ue (=1, 7). (1.3)

DEFINITION 1.3 Let u € C™,[0,T]. The Caputo fractional derivative of order & of
the function u is defined below [13, 14]:

1 g 1 dam
=) I T d':’(,,?)dn, m—l<a<m, meN,
6D u(r) = (1.4)

d™u(t
dt,,E), a=m, mecN.

DEFINITION 1.4 Let0 < o < l and u € H'(0,T), T € R}. We define the Caputo-
Fabrizio fractional derivative of order ¢ of a function u by [15]

wenpu) = 10 ["wmes (- pw-m)an. a9

where H'(0,T) denotes the Sobolev space, and M () is a normalization function in
which M(0) =M(1) = L.

DEFINITION 1.5 Let o € [0,1] and u € H'(0,7), 0 < T. The Atangana-Baleanu
fractional derivative in Caputo sense of order & of a function u is given by [15]

07D u(t) = AB(2) /OtEa (—a(t—n)“> u'(n)dn, (1.6)

11—« 11—«

where H! (0,7 denotes the Sobolev space and AB(a) = 1 — ot + % is named the
normalization function in which AB(0) = AB(1) = 1.

1.2 PROPERTIES OF LAPLACE AND SUMUDU TRANSFORMS

We present some important properties of these two integral transforms.
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1.2.1 PROPERTIES OF LAPLACE

The Laplace transform has several properties that have been found useful in many
theoretical problems as well as applications. For readers that are not aware of these
properties, in this section we present some useful properties of the Laplace transform.
Let g and f be two functions for which their Laplace transform exists [15]

Z(af (1) +bg(t)) =aZ (f (1)) +bZL(g(1))
=af(s) +bG(s)
The above property is known as linearity
Vn>1
LA{t"f ()} = (=1)"F"(s), where

F" (s) is the n. derivative of F(s)

2 D@ = s y

(£7@) =16 = Xot
Z(f 1) = fs—a)

L(ft=a)Ut—a)=e“f(s), a>0

1 K
Z(fla)==~F (5) . a>0
ZL((fxg) () =F(s)G(s)
The above is known as convolution theorem

f(O*) = lim sf(s)

§—o0

which is known as initial value theorem

lim sf(s)

§—ro0

if all poles of sf(s) are in the left half plane.

1.2.2 PROPERTIES OF SUMUDU

We present some important properties of the Sumudu transform.
Let f and g be two functions such that their Sumudu transform exists. Then, [11]
Vn>1,

s (@) =
n+1

S(tn—H f(t)) £ Z an+1 kf( )(u)

k=0



4 Integral Transforms and Engineering: Theory, Methods, and Applications

Fw _FO) 0

u u" a u

s (%:f(f)dr>::uF00

S(f(at)) = F (au)

s(l_/o'tfmdr)) = [ rma
S((f ) (1)) = uF () G(w)

The above is the equivalent convolution

S((f*g)" (1)) =u"F (u) G(u)

The Sumudu transform may be used to solve problems without resorting to a new
frequency domain. In fact, the Sumudu transform which is itself linear preserves
linear functions, and hence in particular does not change units [11].

1.2.3 SOME EXAMPLES OF SUMUDU AND LAPLACE TRANSFORMS

We give some examples of the Laplace transforms and Sumudu transforms as [6, 11]

L{ %} =s*"'T(1 - a). (1.7)
””W”:ﬁir (18)
Licos(t)} = szi . (1.9)

S =5s~°T(1 — ). (1.10)
Slcos(t)] = s211' (1.11)
S[sin(t)] = ﬁ (1.12)

We have the following relations for the Caputo, Caputo-Fabrizio, and Atangana-

Baleanu derivatives:
_ du(?) =

SD%u(t) = i T ) (1.13)
M
SFDCu(t) = d’;(tt) * %exp (—1_aat> : (1.14)

du(t) AB(o -
0°Dfu(t) = d(t)* l(a)E"‘La’a] (1.15)
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The Laplace transform of Caputo derivative is given as

LEEDRu(t)} = (sL{u(t)} — u(0)) s

The Laplace transform of Caputo-Fabrizio derivative is given as

M(o)
L{§¥D*u(r)} = — (sL{u(r)} — u(0)) ————.
{67 DR u(r)} = = (sL{u(0)} —u(0) ==
The Laplace transform of Atangana-Baleanu derivative is given as

Sa71
L{ABCDYu(1)} = (sL{u(r)} — u(0)) m.

The Sumudu transform of Caputo derivative is given as

Sl — u(0)

s

SIEDu(r)] =
The Sumudu transform of Caputo-Fabrizio derivative is given as

S[6¥ D u(t)] = (S[u] — u(0)) %

The Sumudu transform of Atangana-Baleanu derivative is given as

AB(a)

S[6"“Dffu(t)] = (S[u] — u(0)) T _otas®

For 1 < @ <2, we defined the Caputo Derivative as

Cryo _ 1 ! dzf(r) 1-o
ODt f(t) - F(Z—Oc) 0 dT2 ([—T) dt

1 d’f(r)

Ir2—oa) di?

*tlfa

Then, we have the Laplace transform of the above equation as

L(§DYf(1)) = F(zla)L<dd];§t)>L(tla)

L(GDYf(1)) = (SL(f(1)) —sf(0)— f(0)) s* 2

For 1 < a@ <2, we defined the Caputo-Fabrizio Derivative as

roes) = MDD o (22— as

2—ato dt? 2—«o

M(a) d*f(t —o
e ()

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)
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Then, we have the Laplace transform of the above equation as
M(o)  (d*f(1) —a
L(§T DY (1) = ——L L —t
(7 rr) =5 = ( ar ) \TP\2-a

L(§"DIf(1)) = OH—Af((Z(xza)

(sL(f(2) —sf(0) — f'(0))

For 1 < o <2, we defined the ABC derivative as

O N e L

2—a Jo dt? 2—0o

_ AB@) ) ( —a ta>

2—o di? 22—«

Then, we have the Laplace transform of the above equation as
B(a) . (d*f(t) —a
L(3BDYf(1)) = =———L L{Eg| ——¢°
(0™ D' 1(0)) 2—a ( dr? “\2-a

Sa—l
L(éBCDzaf(f)) = 0%

(S"L(f(2) = £(0) = £'(0))
For 1 < a¢ <2, we defined the Caputo Derivative as

Cnro _ 1 ! dzf(f) 1-a
ODI f(t) - 1—~(2_ a) o 472 (t_T) dt
1 d*f()
r2—a) de

w4

Then, we have the Sumudu transform of the above equation as

2
S(§p2f() = s(r(zlmddfgﬂ*,la)

- ()5 (rema)
s (sm /) _ f’(O)) (54

52 s
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For 1 < a <2, we defined the Caputo-Fabrizio Derivative as

M t 42 _
o) = 3D [ e (2_“a<rr>)dr

_ M) dzf(t)*exp( —“ t>

2—o di? 2—o

Then, we have the Sumudu transform of the above equation as

sroesn) = s(RDLD e (41))

ss(dz ) (5o (5=%7))

_ S<S[f]—f(0)_f’(0)>< M(a) )

52 s 2—a+os

sM(a) <S[f}—f(0)_f’(0)>

2—a+os 52 s

For 1 < a0 <2, we defined the ABC derivative as

2—a Jo dr? 2—a

_ AB(a) d*f(1) *Ea( —a ta)

2—o df? 2—«

Then, we have the Sumudu transform of the above equation as

s@reoro) = 32 Ds (L0 )s (e (%))
_ S<S[f]—f(0)_f’(0)>( AB() )

52 ) 2— o+ os®

_ sAB(a) (S[f}—f(o)_f’(0)>

2— o+ os® 52 s

Theorem 1.1

We obtain the Sumudu transform of the Mittag-Leffler function as [4]

o 1
S|Eg | ——1%)| = ——= 1.22
[“( l-a ﬂ L (22

04
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where

1—a
s < ——
o

l1—a a
Is| < (——
o

| 2

— o

A < () .
o

PROOF We have the following relation between Sumudu transform and Laplace
transform.

S[t*] = s** LY. (1.23)
We obtain
o B = (]ft;)k
S{E"‘<_1—at )] N SL;ra +1)

0
= Y (Fq S[t%]
= T(ak+1)
I — k
_ Z (%) S2ak+1L[[ak}
kzol"(oc +1)
I — k
— Z (%) S2ak+ls—1—ak1—~(ak+l)
= T(ak+1)
I k
()
far l—-a
1
= I s )

by using the properties of Sumudu transform and the relation between Sumudu and
Laplace transform. [ ]

REMARK 1.1 The Sumudu transform of even functions is even, and the Sumudu
transform of odd functions is odd. ]

PROOF Let f(z) be an even function. Thus, we have f(t) = f(—t). Therefore, we
obtain

S[—u] = /Oooexp(—t)f(—tu)dt = /Ooo exp(—1) f(tu)dr = S[u]. (1.24)



Sumudu and Laplace Transforms 9

Now let f(¢) be an odd function. Thus, we have f(¢t) = —f(—t). Finally, we get

S[—u] = /Oooexp(—t)f(—tu)dt =— /Oooexp(—t)f(tu)dt = —S[u]. (1.25)

The above cannot be proven using Laplace transform. For instance, the Laplace trans-

form of sin(t) is Tlsl This function is even function. This is very important as the

Sumudu transform conserves the parity. |

We shall use some properties of the Laplace and the Sumudu transforms to derive
the solution of the below decay equations. We have stressed the fact that these equa-
tions may not have exact solutions, or if they are obtained, they may not satisfy the
initial conditions due to the memory effect. We consider the below decay equation
with different differential operators.

We consider the decay equation with the classical derivative as

Df = Af. (1.26)
We consider the decay equation with the Caputo-Fabrizio derivative as
SEDYf = Af. (1.27)
We consider the decay equation with the Caputo derivative as
SDYf = Af. (1.28)
We consider the decay equation with the Atangana-Baleanu derivative as
SBCDYf = Af. (1.29)

We find the Laplace transform of these equations. We apply the Laplace transform
to both sides of Eq. 1.26, and we obtain

L(Df)=L(Af) (1.30)

SL(f) = f(0) = AL(f) (1.31)
After rearranging the above equation, we get
0

L(f):sfﬁﬂ),' (1.32)

We apply the Laplace transform to both sides of Eq. 1.27, and we obtain

L(§FDYf) = L(Af) (133)
() - 1) ), (1349

After rearranging the above equation, we get
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fO)M(a)
L(f)= . 1.35
(f) A(sa—s—a)+sM(a) (1.35)
We apply the Laplace transform to both sides of Eq. 1.28, and we obtain
L(GD7f) = L(Af) (1.36)
(SL(f) = £(0))s* 7" = AL(f). (1.37)
After rearranging the above equation, we get
f(0)s*!
L(f)=——+—. 1.38
(N="ar7 (1.38)
We apply the Laplace transform to both sides of Eq. 1.29, and we obtain
L(°Df'f) = L(AS) (1.39)
AB(a)s*!
L(f)— f(0)) —————— = AL(Y). 1.40
(LU = FO) g~ gy 7 = M) (140)
After rearranging the above equation, we get
0)AB(a)s*!
Lif)=— f(0)AB(c) (1.41)

(s%(1—a)+a)+AB(a)s*’
We find the Sumudu transform of these equations. We apply the Sumudu trans-

form to both sides of Eq. 1.26, and we obtain

S(Df) =S(Af) (1.42)

S(f)—f(0)

N

= AS(f). (1.43)

After rearranging the above equation, we get

st =% (1.44)

We apply the Sumudu transform to both sides of Eq. 1.27, and we obtain

S(G D f) =S(Af) (1.45)
M)
(S(f)—f(o))m—ls(f). (1.46)
After rearranging the above equation, we get
S(f) = fOM(@) (1.47)
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We apply the Sumudu transform to both sides of Eq. 1.28, and we obtain
S(GDFf) = S(A.f) (1.48)
S(f)—f(0
SU) = f0) =AS(f). (1.49)

SO{
After rearranging the above equation, we get

f(0)

S(f) = Y (1.50)
We apply the Sumudu transform to both sides of Eq. 1.29, and we obtain
S(6"°Dff) = S(Af) (1.51)
AB(a)
S(f) = f(0)) ———— = AS(Y). 1.52
(S() = £ (O) Tz = AS() (1:52)
After rearranging the above equation, we get
0)AB(«x
S(f) F(0)AB(a) (1.53)

T AB(a) —A(l—a+ as?)’
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2 Transfer Functions and
Diagrams

Laplace transform appears to be one of the most used integral transforms, which
could be applied in many fields of science. For instance, linear ordinary and partial
differential equations can be solved using the Laplace transform. In signal analysis,
a very important field, the Laplace transform is an essential mathematical tool that
is being used very intensively to calculate the well-known transfer function. This
function can be used to estimate the Bode diagram. We shall recall that the trans-
fer function is a suitable depiction of a linear time-invariant dynamical system. We
shall note that, mathematically, the function called transfer is a function of complex
variables. In the case of finite dimensional systems, the transfer function is just a
rational function of a complex variable. This function in other words can be calcu-
lated by inspection or algebraic manipulations of differential equations that depict
the systems. This function can be used to describe systems of a very high order, even
infinite dimensional systems that are governed by partial differential equations.

In engineering, a transfer function is very well used; for instance, a transfer func-
tion of an electronic or control system component is a mathematical function mod-
eling hypothetically the device’s output for each potential input. In other words, in
this field, the function can be viewed as a two-dimensional graph of an independent
scalar input against the dependent scalar output, known as a transfer curve.

It is therefore important to note that, all these analyses originated from the re-
sults obtained from the Laplace transform, the question, and the fundamental moti-
vation of this section is that, what happens if one uses the results obtained from the
Sumudu transform to perform the same analysis? Could we get better results when
using Sumudu than Laplace? In this section, we provide a simple yet very important
analysis using both Laplace and Sumudu transform.

DEFINITION 2.1 We define the transfer function H(s) for continuous-time input
signal x(¢) and output y(¢) as [4,7,34,35]

Y L(y(t

H(s) = (s) _ LO() 2.1

X(s)  L(x(r))
We use the transfer functions in the analysis of systems such as single-input single-
output filters in the areas of signal processing, communication theory, and control
theory. These functions were implemented in classical control engineering.

In this section, we present the transfer function of the delay differential equation
with four different differential operators including classical differentiation, Caputo
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fractional differentiation, Caputo-Fabrizio, and the Atangana-Baleanu fractional op-
erators.

Bode gain plot and Bode phase plot is a simple but accurate method for graph-
ing gain and phase-shift plots on circuit theory and control theory. The Bode plot
is an experiment of analysis in the frequency domain. The Bode plot for a linear,
time-invariant system with transfer function H(s) (s being the complex frequency
in the Laplace domain) contains a magnitude plot and a phase plot. The Bode mag-
nitude plot is the graph of the function |H(s = jo)| of frequency @ (with j being
the imaginary unit). The ® -axis of the magnitude plot is logarithmic and the mag-
nitude is presented in decibels; i.e., a value for the magnitude |H| is plotted on the
axis at 20log|H|. The Bode phase plot is the graph of the phase, commonly given
in degrees, of the transfer function arg(H (s = j®)) as a function of ®. The phase is
plotted on the same logarithmic w-axis as the magnitude plot, but the value for the
phase is plotted on a linear vertical axis. The phase Bode plot is acquired by plotting
the phase angle of the transfer function presented as [36-39]

arg Hy,(jo) = —tan™! 2,
(4

versus @, where @ and @, are the input and cutoff angular frequencies, respec-
tively. The horizontal frequency axis, in both the magnitude and phase plots, can
be replaced by the normalized (nondimensional) frequency ratio w% In such a case
the plot is said to be normalized, and units of the frequencies are no longer utilized
since all input frequencies are now presented as multiples of the cutoff frequency
.. The Bode plotter is an electronic instrument resembling an oscilloscope, which
produces a Bode diagram, or a graph, of a circuit’s voltage gain or phase shift plotted
against frequency in a feedback control system or a filter. It is extremely useful for
analyzing and testing filters and the stability of feedback control systems, through
the measurement of corner (cutoff) frequencies and gain and phase margins. This
is identical to the function applied by a vector network analyzer, but the network
analyzer is typically utilized at much higher frequencies.

A Nyquist plot is a parametric plot of a frequency response applied in automatic
control and signal processing. The most common use of Nyquist plots is for ob-
taining the stability of a system with feedback. In Cartesian coordinates, the real
part of the transfer function is plotted on the X axis. The imaginary part is plotted
on the Y axis. The frequency is swept as a parameter, resulting in a plot per fre-
quency. The same plot can be defined utilizing polar coordinates, where the gain of
the transfer function is the radial coordinate, and the phase of the transfer function is
the corresponding angular coordinate. Consideration of the stability of a closed-loop
negative feedback system is made by implementing the Nyquist stability criterion to
the Nyquist plot of the open-loop system. This technique is easily applicable even
for systems with delays and other non-rational transfer functions, which may appear
difficult to analyze using other techniques. Stability is defined by investigating the
number of encirclements of the point at (—1,0). The range of gains over which the
system will be stable can be determined by looking at crossings of the real axis. The
Nyquist plot can present some information about the shape of the transfer function.
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For instance, the plot presents information on the difference between the number of
zeros and poles of the transfer function by the angle at which the curve approaches
the origin.

The Nichols plot is a plot utilized in signal processing and control design. We
consider the transfer function as [40]

Y(s)
X(s)’

with the closed-loop transfer function described by

G(s) =

G(s)
M) =1T6m)
The Nichols plots demonstrates 201og(|G(s)|) versus arg(G(s)). In feedback control
design, the plot is useful for obtaining the stability and robustness of a linear system.
This implementation of the Nichols plot is central to the quantitative feedback theory
(QFT) of Horowitz and Sidi, which is a well-known technique for robust control
system design.
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Analysis of First-order
Circuit Model 1

First-order differential equations have found applications in many real-world prob-
lems. One of the most used of such equations is the well-known decay equation that
explains the decay of a given entity. However, this class of differential equations has
also found applications in electrical mechanics, in this field, first-order circuits that
contain only one energy element, for example, capacitor or inductor. This is mod-
eled using only the first-order differential equation. In general, there are two types
including RC, which contains a resistor and capacitor. They can be placed in parallel
or series. It is also known that inductors are best solved by considering the current
flowing via the inductor. On the other hand, an RC circuit is a circuit that contains
a resistor R and a capacitor C. In this chapter, therefore, we will consider first-order
RC where the first-time derivation is classical, fractional in Caputo, Caputo-Fabrizio,
and Atangana-Baleanu types. The equations will be solved with both Sumudu and
Laplace transforms. The associated transfer functions will be obtained, and their cor-
responding Bode diagrams will be plotted and compared. Of course, in this book we
will not be in the position to say which Bode diagram is more realistic or practical,
we will refrain from the obtained results [41,42].

We consider the first-order circuit model 1 with classical, Caputo, Caputo Fab-
rizio, and Atangana-Baleanu derivatives.

3.1 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 1 WITH CLASSICAL
DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

dna(t) 1 _ ondVi(t)
Va(t) +RC o 2 (Vl (1) Rcidt > 3.D
If we take the Laplace transform of the both sides of Eq. (3.1), we will obtain
da(t)) _ 1 _RC_(dWi(1)
L(Vz(t))+RCL<dt> = 2L(V1 (1)) > L( 7 > 3.2)
Then, we get
1 R R
L(V5(t))+sRCL(V,(t)) —RCV,(0) = EL(V] (1) — %L(Vl 1)+ ;Vl (0). (3.3)
1—sRC
L(Vg(t))(1+sRC)=L(V1(t))( ZS ) (G4
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Figure 3.1 Transfer function of the first-order circuit model 1 with the classical derivative
using the Laplace transform.

Therefore, we obtain the transfer function as

L(V»(1))  1—sRC
L(Vi(t)) 2(1+sRC) (3:5)

The graphical representation of the above transfer function is presented in Figure 3.1
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (3.1), we will obtain

S(Va(t)) +RCS (‘”2;’)) - %S(Vl (1) — %s (d‘i;,(t)) . (3.6)

Then, we get

SVi(t))  RC
2 25

S (Va(1)) <1+RSC) =S(Vi(1)) (s_zfc). (3.8)

S A(0)) + 2 (S(va(1)) ~ Va(0)) = (S0 -i(0). BT

Therefore, we obtain the transfer function as

S(h(t))  s—RC
Sh(@) ~ 25+ RC)" (39)
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Figure 3.2 Transfer function of the first-order circuit model 1 with the classical derivative
using the Sumudu transform.

The graphical representation of the above transfer function is presented in Figure 3.2
as magnitude and phase.

3.2 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 1 WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

Va(t)+RC (SD# V(1)) = % (v] (t) —RCd‘zt(t)> (3.10)

If we take the Laplace transform of the both sides of Eq. (3.10), we will obtain

L)+ KL (§000) = 0 -5 (P0). G
Then, we get
L(Va(0) + RS (LY (1))~ Va(0)) = 5L (1) — SCLA () + 5 vi(0).

(3.12)
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Figure 3.3 Transfer function of the first-order circuit model 1 with the Caputo derivative
using the Laplace transform.

L(Va(t)) (14 s*RC) = L (Vi (1)) (1 _ZSRC) : (3.13)

Therefore, we obtain the transfer function as

L(Va(r))  1—sRC
L(V5(t))  2(1+s*RC)’ (3.14)

The graphical representation of the above transfer function is presented in Figure 3.3
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (3.10), we will obtain

S (Va(1)) + RCS (SD&Va(1)) = %S(Vl (1) — %s (d‘gt(’)) . (3.15)

Then, we get

S(Va(t)) + ]S;f (S(Va(t)) — V2(0)) = S(Vlz(t)) B %

(S(Vi(2)) —vi(0)). (3.16)

Sa(1) <1+ff> _ S(Vi(0)) (s_zfc>. (3.17)
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Figure 3.4 Transfer function of the first order circuit model 1 with the Caputo derivative
using the Sumudu transform.

Therefore, we obtain the transfer function as

S(Va(r))  (s—RC)s*!
SVi(t))  2(s*+RC) ° (3.18)

The graphical representation of the above transfer function is presented in Figure 3.4
as magnitude and phase.

3.3 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 1 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transform to obtain the solution.

Va(t) +RC (§¥DMVA (1)) = % <V1 (1) —Rcd‘;(’)) (3.19)

If we take the Laplace transform of the both sides of Eq. (3.19), we will obtain

L)+ REL DR (0) = 5L 0) - T (T ). 620
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Vs |

108 10° 10° 10"

Figure 3.5 Transfer function of the first-order circuit model 1 with the Caputo-Fabrizio
derivative using the Laplace transform.

Then, we get
LOA0) ~ D ke (L2 (1)) ~V3(0) = SL A1)~ *RC L (v 1)
+ %Vl (0). (3.21)
L(Va(1)) <1+M) —L(Vi(2)) (1_;RC>. (3.22)

Therefore, we obtain the transfer function as

L(W(t))  (s+a—sa)(1—sRC)
L(Vi(r))  2(s+oa—sa+sRCM(a))’ (3.23)

The graphical representation of the above transfer function is presented in Figure 3.5
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (3.19), we will obtain

S(Va(t)) +RCS (§ DAVA(1)) = %S(Vl (1)) — %S (d‘st(t)> . (3.24)
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Then, we get
$(200) + M@ (5(v50)) v2(0)) = DB (s50) - wi o).
(3.25)
S(Va(t)) (1+M) = S(Vi(1)) (s_zfc). (3.26)
Therefore, we obtain the transfer function as
S(Va(1)) (s—RC)(so+1—a) (3.27)

SWVi(t)) ~ 2s(sa+1—oa+RCM(a))’

The graphical representation of the above transfer function is presented in Figure 3.6
as magnitude and phase.
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Figure 3.6 Transfer function of the first-order circuit model 1 with the Caputo-Fabrizio
derivative using the Sumudu transform.

3.4 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 1 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Va(1) +RC (4°°Df*Va (1)) = % <v1 () —Rcdvt;f’)) (3.28)
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If we take the Laplace transform of the both sides of Eq. (3.28), we will obtain

L(Va(t)) +RCL (55D (1)) = %L(Vl (1) — %L (d‘gt(t)) . (3.29)
Then, we get
so1 s
L)+ ~gir o RE(SLVAD) ~ 12(0) =5L (Vi (1) — 5L (Vi)

+ %Vl (0). (3.30)
L(Va(1)) (HM) =L(Vi(1)) (1_25RC) (3.31)

Therefore, we obtain the transfer function as
L(Va(2)) _ (1=sRO)(s*(1 — )+ ) (3.32)

L(Vi(1)) ~ 2(s*(1— &)+ ot + s“RCAB(1))

The graphical representation of the above transfer function is presented in Figure 3.7
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (3.28), we will obtain

S (Va(t)) +RCS (§PCDVa (1)) = %S(v1 (1)) — %S (‘”3;”) . (3.33)
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Figure 3.7 Transfer function of the first-order circuit model 1 with the ABC derivative using
the Laplace transform.
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Figure 3.8 Transfer function of the first-order circuit model 1 with the ABC derivative using
the Sumudu transform.

Then, we get
$200) + B (5(v0) ~12(0) = 2 K (5130) - vi(0)).
(3.34)
S(Va(1)) (1+m> =S(Vi(1)) (s_zfc>. (3.35)
Therefore, we obtain the transfer function as
S(Va(1)) _ (s—RC)(1— o+ os®) (3.36)

Svi(t)) 2s(1—a+as*+RCAB(a))

The graphical representation of the above transfer function is presented in Figure 3.8
as magnitude and phase.
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Analysis of First-order
Circuit Model 2

Many real-world problems can be modeled using first-order systems. They occur
often in many physical problems, and a simple example is the decay process. In
mathematics and applied mathematics, differential equations with the first order, or
first-order system can be viewed as any system that can absorb energy via a storage
element and release that stored energy. The available literature proved that a capacitor
stores energy in the electric field within its dielectric medium, and an inductor stores
energy in the magnetic area induced by the current flowing through its conductors.
Therefore, for electric circuits, any circuit that includes a single capacitor or a single
inductor in addition to resistors, voltage, and/or current sources can be classified as
a first-order circuit. First-order circuits are called RC or RL circuits, respectively,
and can be defined by a first-order differential equation. The analysis of first-order
circuits contains investigating the behavior of the circuit as a function of time before
and after a sudden change in the circuit due to switching actions. There are many
approaches applied to research first-order circuits. Electric circuits that include only
resistors in addition to current and/or voltage sources are called static circuits and
are given by algebraic equations. The circuits that include storage elements (capaci-
tors and inductors) in addition to current and/or voltage sources are called dynamic
circuits and are given by differential equations. Capacitors and inductors are called
storage elements due to their ability to store energy. Inductors can store magnetic
energy in their area, whereas capacitors can store electric energy in their area. The
analysis of first-order circuits needs the solution of differential equations. The com-
plete solution contains two parts: the homogeneous solution and the particular solu-
tion. The particular solution of a first-order circuit with DC sources and switching
action is the steady-state response and called the forced response. The homogenous
solution consists of the characteristic mode of the first-order circuit, which decays to
zero after a few time constants and is called the transient response [43—45].

We consider the first-order circuit model 2 with classical, Caputo, Caputo Fab-
rizio, and Atangana-Baleanu derivatives.

4.1 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 2 WITH CLASSICAL
DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

dv: c v,
Va(t) + R Cy ;[(t) = _F; (V1 (t) — RyC> ;t(t)) @.1)
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Figure 4.1 Transfer function of the first-order circuit model 2 with the classical derivative
using the Laplace transform.

If we take the Laplace transform of the both sides of Eq. (4.1), we will obtain

L(Va(1) +RICIL (dvjft)) -8 (L (Vi(6)) — RaGoL (dvl m)) e

(&) dt

Then, we will get

L(Vz(l)) +SR1C1L(V2(I)) —R1C1V2(0) =— % (L(Vl (t)) —SRZCZL(Vl ([))

+R,C,V1(0)). 4.3)
Ci
L(Va(1)) (14 sR,C1) =L(Vi(t)) (—a +SC1R2). “4.4)

Then, we get the transfer function as
L(Vz(t)) _ —C1 4+ sC1GRy
LVi(t))  C(1+sRGy)

The graphical representation of the above transfer function is presented in Figure 4.1
as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (4.1), we will obtain

S(Va(1)) +RIC1S (M> __a (s(v1 (1)) = RoCoS (M» 46

4.5)

dt G dt
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Then, we will get

1 0 C 1
S(Vz(l‘)) +RCy ;S(Vz(l)) —Rlcly =— éS(Vl (l)) +R2C2;S(V1 (l))
—RzCz@. 4.7
s0a)) (1459 ) s i) (-2 + 92, 48)
s (6 K
Then, we get the Transfer function as
S(Vg(t)) . —Cis+CR; 4.9)

SWVi(1)  Go(s+RiCy)

The graphical representation of the above transfer function is presented in Figure 4.2
as magnitude and phase.
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Figure 4.2 Transfer function of the first-order circuit model 2 with the classical derivative
using the Sumudu transform.
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4.2 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 2 WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

Va(t) + R\ Cy (§DZVA (1)) = —% (V1 () —chzd‘;t(t)> . (4.10)
If we take the Laplace transform of the both sides of Eq. (4.10), we will obtain
L(V5(t)) +RiCIL (§DVa(1)) = f% (L(v1 (t)) — RGO <d‘2t(t)>> NCRE))
Then, we will get
L(Va(t)) +s*RICIL(Va(1)) — s* ' RIC1 V4 (0) (4.12)
_ f% (LVi(1)) = SRaGAL (V1 (1)) + RaCaV3 (0) .13)
L)) (1+5°R\C1) = LA (1)) (—g —|—sC|R2) . (4.14)

Then, we get the Transfer function as

LVa(t)) _ —Ci+5CiGRy
L(Vi(t))  G(14s*RiCy)’

(4.15)

The graphical representation of the above transfer function is presented in Figure 4.3
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (4.10), we will obtain

S(Va(1) +RICiS (DIVA (1)) = — = (S(Vl (1)) —R.CoS (d‘;t(t))) . (4.16)

Then, we will get

1 0 C 1
S(Vz(l)) +RC S?S(Vz(l)) —RiCy % =— éS(V] (l)) —|—R2C2;S(V] (I))
—RZCZ&SO). (4.17)
S(Va(t)) (1+R‘C‘> =S(Vi(1)) (—C‘+C‘R2). (4.18)
s¢ G K
Then, we get the Transfer function as
S(VQ([)) _ ol —Ci1s+CR, 4.19)

S(Vi()) Co(s*+RiCy)’

The graphical representation of the above transfer function is presented in Figure 4.4
as magnitude and phase.
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4.3 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 2 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

C dvi(t
Va(t) +R1Cy (SFngz(f)) = —é (Vl (1) = R2Cy ;t( )> . (4.20)
If we take the Laplace transform of the both sides of Eq. (4.20), we will obtain
C dvi(t
L(Va(1)) + RICIL (5" DfVa (1)) = _Ci (L(Vl (1)) = R2GoL (;p)) . (42D
Then, we will get
sM(ot) sM(o)
L(V- ————R|C1L(V; —————RiC1W(0
V2(0) + s —saRIOL(V2(0) — = = RiCiVa(0)
C
= —C—; (L(V1(1)) = SRaGL (V1 (1)) + RaCa V1 (0)) .
SM(OC) Ci

L(V)(t 1+4——R =L(Vi(¢t ——+4sCiRy | . 4.22
o) (14 0w ) =L i0) (-G 4sik). @2

Then, we get the Transfer function as

L(Vg(l)) _ (—C] +SC1C2R2)(S+OC—SOC) 4.23)
LVi(t)) GCy(s+a—so+sM(a)RCy)’ '

The graphical representation of the above transfer function is presented in Figure 4.5
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (4.20), we will obtain

S(Va(1)) +RiC1S (§F DA (1)) = f% (S(V1 (1)) — RG2S (‘”2;”)) . (4.24)

Then, we will get

M(a)

sao+1—o

M(o)
sa+1—a
f(0)

N

S(Vg(l))—‘y—R]C] S(Vg(l‘))—Vg(O)Rlcl

LS A(0) 4 RaCa S (1)~ RaC
) S

M(a) Ci Gk

S(Vo(t 1+RICi——————— | =SV (¢ - . 4.25
o) (1+RC ) —smon (~g+ AR). @
Then, we get the Transfer function as

S(Vz(t)) B (7C1S+C1C2R2)(SOC+17(X) (4.26)
S(Vi(t))  Cas(sa+1—a+RiCiM(a))’ '

The graphical representation of the above transfer function is presented in Figure
4.6 as magnitude and phase.
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Figure 4.5 Transfer function of the first-order circuit model 2 with the Caputo-Fabrizio

derivative using the Laplace transform.
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4.4 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 2 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

C dvi(t
Va(t) + RiC1 (3P DfVa (1)) = —C—; (V1 () —chzc}f)) . 4.27)
If we take the Laplace transform of the both sides of Eq. (4.27), we will obtain

L(Va(1)) + RiCIL (§PCDVs (1)) = —% (L(V1 (1)) = R2GoL (d‘;}t@» . (4.28)

Then, we will get

Safl s(x*l
L(Vz(t))-FmRﬂlL(Vz(l))—m&cﬂz(o)
- —% (LVI (1)) = SRaGoL (Vi (1)) + RaCaVi (0)).
L)) <1+mmq> — L) <g+sC1R2). 4.29)

Then, we get the transfer function as

L(Vz(l)) - (*C1+SC1C2R2)(S(X(17(X)+O£) (4.30)
LWVi(t)) GC(s¥(1—a)+a+AB(a)s* 'R|Cy)’ '

The graphical representation of the above transfer function is presented in Figure
4.7 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (4.27), we will obtain

SV (1)) +RiCiS (47D Va (1)) = _% (S(Vl(f)> — RS (d\gfr))) . (43D

Then, we will get

S(Va()) + RiC %swm)) - vz(())%
=~ ES )+ RS (A (1)~ R L.
S(Va(t)) <1+RICI%> =S(Vi(1)) (—2+C1SR2). (4.32)
Then, we get the transfer function as
S(Va(t))  (—Cis+CiCRy)(as” + 1 —ax) 433)

SVi(t)) Cos(as®+1—a+AB(a)RCy)’

The graphical representation of the above transfer function is presented in Figure 4.8
as magnitude and phase.
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5 Analysis of Noninverting
Integrators Model 1

Before the transition from the old electronic to the digital world, important technol-
ogy like control systems, which have been solutions obtained from ordinary differ-
ential equations, these solutions were obtained using the so-called analog compu-
tation to derive solutions to those equations. Thus, as a result, it can be concluded
that this analog computer was moderately common, as almost all solutions to differ-
ential equations required the capability to integral signal. On a serious note, control
systems have mostly gone digital, thus numerical integration has replaced integra-
tion, but one must note that there is still a place for analog integrator circuits for the
operation of sensors, signal generation, and filtering. It is worth noting that a rudi-
mentary integrator inverts the integral of the signal, while the second inverting op
amp connected in series with the straightforward integrator can reinstate the original
phase, thus there is a possibility to construct a non-inverting integrator in a single
state. These types of integrators use also differential integrators to keep the result in
phase with the input signal. This version has additional properties, for example, the
addition of passive components, which should be matched to better the performance.
For this version, the connection between the input and the output voltages is the
same as the basic integrator except for the sign. In this chapter, the combination of
a high-pass filter with the noninverting-integrator circuit system is considered with
the aim to improve low-frequency performance. The mathematical models associ-
ated with these systems will be considered with classical and fractional differential
operators. We aim to obtain solutions using the Sumudu and the Laplace transforms
in the complex number space [46,47].

5.1 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 1 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

- EdVg(Z‘)

(1) > ar (.1

If we take the Laplace transform of the both sides of Eq. (5.1), we will obtain

L) =2 (%f”) - (52)
LOG(0) = L)~ Eova(0). (53)
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Thus, we get the transfer function as

LVa(t)) _ 2

L(Vi(1)  SRC 6

The graphical representation of the above transfer function is presented in Figure 5.1
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (5.1), we will obtain

SVi(1)) = %s (%f”) . (5.5)
LK(1) = SoL3(0) ~ Sova(0) (5.6)

Thus, we get the transfer function as

L(Va(r)) 2

L)  RC o7

The graphical representation of the above transfer function is presented in Figure 5.2
as magnitude and phase.
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Figure 5.1 Transfer function of the noninverting integrators model 1 with the classical
derivative using the Laplace transform.
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Figure 5.2 Transfer function of the noninverting integrators model 1 with the classical
derivative using the Sumudu transform.

5.2 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 1 WITH
CAPUTO DERIVATIVE

‘We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.
_RC

Vi(t) = = (G072 (1)) (5.8)

If we take the Laplace transform of the both sides of Eq. (5.8), we will obtain

RC
L(Vi(t) = 5L (§DMVL(1)) - (5.9)
“RC RC
L(Vi(1) = S5 L(Va(0) = 5%~ S va(0). (5.10)
Thus, we get the transfer function as

L(Vi(r))  seRC’

The graphical representation of the above transfer function is presented in Figure 5.3
as magnitude and phase.
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Figure 5.3 Transfer function of the noninverting integrators model 1 with the Caputo deriva-
tive using the Laplace transform.

If we take the Sumudu transform of the both sides of Eq. (5.8), we will obtain

S(Vi(t)) = %S(gpf‘vz(t)). (5.12)
SH0)) = RCS(h(0)) ~ 23 (0), 5.13)

Thus, we get the transfer function as

S(Va(t 25%
S(a(n) _ 257 (5.14)
S(Vi(t)) RC
The graphical representation of the above transfer function is presented in Figure 5.4
as magnitude and phase.

5.3 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 1 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.
__RC

5 (6 Diva(n)) (5.15)

V1 (Z‘)
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Figure 5.4 Transfer function of the noninverting integrators model 1 with the Caputo deriva-
tive using the Sumudu transform.

If we take the Laplace transform of the both sides of Eq. (5.15), we will obtain

RC
LVi(0) =L (§" DV (1)) . (5.16)
_ sM(a)RC RCM (o)
Thus, we get the transfer function as
L(Va(2)) _ 2(s+o¢—ocs). (5.18)

L(Vi(r)) ~ sM(a)RC

The graphical representation of the above transfer function is presented in Figure 5.5
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (5.15), we will obtain

SWVi(r) = %S (6" Dfva(0)) .- (5.19)
LIG0) = 5 h e L 0A0) ~ ooy e ostal0). 620)
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Figure 5.5 Transfer function of the noninverting integrators model 1 with the Caputo-
Fabrizio derivative using the Laplace transform.

Thus, we get the transfer function as

L(V2(1))  2(as+1—a)
L(Vi(t))  M(a)RC (5:21)

The graphical representation of the above transfer function is presented in Figure 5.6
as magnitude and phase.

5.4 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 1 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

_KC

V] (t) 2

(65 DEVA (1)) (5.22)

If we take the Laplace transform of the both sides of Eq. (5.22), we will obtain

L(Vi(t)) = %L (4°DEVA(1)) . (5.23)
L) = —AB@RC ) () ) S* ABIORC ) (504

2(s%(1—a)+a)
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Figure 5.6 Transfer function of the noninverting integrators model 1 with the Caputo-
Fabrizio derivative using the Sumudu transform.

Thus, we get the transfer function as

L(V(1))  2(s*(1—a)+a)
L(Vi(t))  s*AB(a)RC

(5.25)

The graphical representation of the above transfer function is presented in Figure 5.7
as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (5.22), we will obtain

S((1)) = %s (45 DEV(1)) (5.26)
_ AB(o)RC - AB(a)RC
SWi(r)) = mS(Vz(f)) —Z(as“+1—a)V2(0)' (5.27)
Thus, we get the transfer function as
S(Va(1)) _ 2(as*+1—a) . (5.28)

SWVi(t))  AB(a)RC

The graphical representation of the above transfer function is presented in Figure 5.8
as magnitude and phase.
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(G Analysis of Noninverting
Integrators Model 2

There are several types and models of noninverting-integrator circuit models. In the
previous chapter, we gave a brief history of this type and presented an analysis of one
model. Note that these classes of circuit problems have given birth to a class of dif-
ferential equations that need to be solved using either analytical method or numerical
methods in the case of nonlinear equations. In this chapter, a different mathematical
model able to replicate the dynamic of the noninverting-integrator circuit will be sub-
jected to some analysis. The classical model will be solved using the Laplace and the
Sumudu transforms to obtain a transfer function. Both transfer functions will be com-
pared to see the major difference between the Sumudu and the Laplace transforms
when both are mapping in complex space. Additionally, to include in the mathemat-
ical formulation the effect of nonlocality, the classical model will be extended by
replacing the classical time derivative with fractional derivatives. The mathematical
model under investigation here is given as follows [48-50]:

6.1 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 2 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

- dva(t)
Vi(t) = 2RC7dl 6.1)

If we take the Laplace transform of the both sides of Eq. (6.1), we will obtain

L(Vi(r)) = 2RCL (d‘ijt(t )) : 6.2)
L(Vi()) = 2sRCL (Va (1)) — 2RCV»(0). 6.3)

Thus, we get the transfer function as

L) _ 1
L(Vi(t))  2sRC

(6.4)

The graphical representation of the above transfer function is presented in Figure 6.1
as magnitude and phase.
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Figure 6.1 Transfer function of the noninverting integrators model 2 with the classical
derivative using the Laplace transform.

If we take the Sumudu transform of the both sides of Eq. (6.1), we will obtain

S(Vi(t)) = 2RCS ( d‘gt(t >> . 6.5)
SVi(1) = gswz (1) — ?vz(oy 6.6)

Thus, we get the transfer function as

SMa(r)) _ s
S(Vi(t)) 2RC’

6.7)

The graphical representation of the above transfer function is presented in Figure 6.2
as magnitude and phase.

6.2 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 2 WITH
CAPUTO DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

Vi(t) = 2RC ({DZV;(1)) (6.8)
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Figure 6.2 Transfer function of the noninverting integrators model 2 with the classical
derivative using the Sumudu transform.

If we take the Laplace transform of the both sides of Eq. (6.8), we will obtain

L(Vi(t)) = 2RCL (§ D?V;(1)) . (6.9)
L(Vi()) = 2s*RCL (V5 (1)) — s* 12RCV;(0). (6.10)
Thus, we get the Transfer function as
L(Wx(1)) 1

= . 6.11
L(Vi(t)) 2s%RC ©.1D)
The graphical representation of the above transfer function is presented in Figure 6.3
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (6.8), we will obtain

S(Vi(t)) = 2RCS ({DIVa (1)) . (6.12)
LOA(0) = 2L wa(0) 2w 0), 6.13)

Thus, we get the transfer function as

L(V(t ¢
LVal) _ 7 6.14)
L(Vi(t)) 2RC
The graphical representation of the above transfer function is presented in Figure 6.4
as magnitude and phase.
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Figure 6.3 Transfer function of the noninverting integrators model 2 with the Caputo deriva-
tive using the Laplace transform.

6.3 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 2 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Vi(t) = 2RC (§¥ D5 (1)) (6.15)

If we take the Laplace transform of the both sides of Eq. (6.15), we will obtain

L(Vi(t)) = 2RCL (§¥ DZV5(1)) . (6.16)
L) = 2O, (1) - MDD ) 61

Thus, we get the transfer function as

L(Va(t))  s+a—oas
L(Vi(r))  2sM(a)RC’ (6.18)

The graphical representation of the above transfer function is presented in Figure 6.5
as magnitude and phase.
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Figure 6.4 Transfer function of the noninverting integrators model 2 with the Caputo deriva-
tive using the Sumudu transform.

If we take the Sumudu transform of the both sides of Eq. (6.15), we will obtain

S(Vi(r)) =2RCS (§" DIVa(1)) . (6.19)
L) = DR 1 (1 07) - MRy ) (6.20)

Thus, we get the transfer function as

L(Wz(t)) as+1-a
L(Vi(t)) 2M(a)RC’

6.21)

The graphical representation of the above transfer function is presented in Figure 6.6
as magnitude and phase.

6.4 ANALYSIS OF NONINVERTING INTEGRATORS MODEL 2 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Vi(t) = 2RC (45 DVa (1)) (6.22)
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If we take the Laplace transform of the both sides of Eq. (6.22), we will obtain

L(Vi(t)) = 2RCL (43 DV1 (1)) . (6.23)
_ 25"AB(a)RC s* 1AB(a)2RC
LWVi(1)) = mL(Vz(f)) - m"z(o)- (6.24)
Thus, we get the transfer function as
L(W(t)) s*(1—a)+a 6.25)

L(Vi(t)) 2s*AB(o)RC"

The graphical representation of the above transfer function is presented in Figure 6.7
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (6.22), we will obtain

S(Vi(r)) = 2RCS (45 DAVA (1)) - (6.26)
$0H0)) = 2P DR sty - 22D 0. 62

Thus, we get the transfer function as
SW() os*+1-a
S(Vi(t))  2AB(a)RC
The graphical representation of the above transfer function is presented in Figure 6.8
as magnitude and phase.

(6.28)
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Analysis of Lag Network
Model

To obtain a better frequency response in the feedback and control system, engineers
have designed a type of circuit known as the lag compensator, which is known to
be an electrical network that provides sinusoidal results having the phase lag when a
sinusoidal output is instigated. These models have found application in several sub-
fields of engineering, for example, they have been applied in robotics, automobile
diagnostics, laser frequency stabilization, satellite control, liquid-crystal display, and
many others. They play a significant role as a building block in analog control sys-
tems. More importantly, they can be used in digital control. However, it is noted
that both analog and digital control systems are employed lead-lag compensators.
Nevertheless, the skill used for the construction of this class is different in each
case; nonetheless, the underlying principles are identical. In this case, the transfer
function is organized such that the output is in terms of sum of terms involving the
contributing parameters. In general, the construction of the lead-lag compensator re-
quired that the system needed correction can be categorized within a lead network,
a lag network, or even a combination of both. In this case, electrical feedback of
the constructed network to an input signal is obtained by the mean of the Laplace,
transform, within the Laplace domain. Of course, the obtained complex mathematic
function could be represented in two ways accordingly to how the current-gain ra-
tio of the transfer function or the voltage-gain ratio transfer function. In this chapter
we shall focus on the lag-compensator, as said before, the lag-compensator is an
electrical network for which the outcome is sinusoidal having the phase lag when
this sinusoidal input is applied. Thus, in this chapter analysis of the mathematical
model will be undertaken by first obtaining the Laplace and the Sumudu transforms
of this mathematical model and then converting the classical derivative to fractional
types [51-53].

7.1 ANALYSIS OF LAG NETWORK MODEL WITH CLASSICAL
DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.
A% (t ) A% ([ )

=VI+R,C———= (7.1)

V- R, +R,)C
H(t)+ (R +Ra) I 7

If we take the Laplace transform of the both sides of Eq. (7.1), we will obtain

L(V3(1)) + (R; +R2)CL (d&gf)) = L(Vi(1)) +RoCL (””2;”) (7.2)
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Then, we will get

L(Vz(l‘)) + (R1 +R2)CSL (Vg(l)) — (R] +R2)CV2(0)
= L(Vi(t)) + RyCsL(Vi(t)) — RyCV(0)

Thus, we will obtain
L(Va(t)) (14 (R1 +R2)Cs) = L(Vi(¢t)) (1 +RxCs). (7.3)
Then, we get the transfer function as

L(Va(t))  1+4RyCs
L) TR 1RICs 79

The graphical representation of the above transfer function is presented in Figure 7.1

as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (7.1), we will obtain

av; (l‘)
dt

S(Va(t)) + (R) +R2)CS ( ) = S(Vi(t)) + RoCS (d‘gt(t)) (1.5)
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Figure 7.1 Transfer function of the lag network model with the classical derivative using the
Laplace transform.
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Then, we will get

LRy +Ro)CV:(0)

N

S(Va(1)) + (R +R2)C§S(V2(1))

= SOA() +RCS (W (1)~ +RaCVi(0)

Thus, we will obtain

SV (1)) <1 (R, +R2)C1> —S(Vi(1) (1 —&—RzCi) . (7.6)

s
Then, we get the transfer function as

S(Vz(l‘)) _ s+ R,C
SVi) st RIAR)C 7

The graphical representation of the above transfer function is presented in Figure 7.2
as magnitude and phase.
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Figure 7.2 Transfer function of the lag network model with the classical derivative using the
Sumudu transform.
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7.2 ANALYSIS OF LAG NETWORK MODEL WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

dV1 (l‘)

Va(t) + (R +R2)C (§D*Va (1)) = Vy +RC— = (7.8)
If we take the Laplace transform of the both sides of Eq. (7.8), we will obtain
Cpho avi (t)
L(Va(1)) + (R +R2)CL (GD{Va (1)) = L(Vi(1)) + R.CL — (7.9)

Then, we will get
L(V2(1)) + (R1 +R2)Cs"L(Va (1)) —s* ' (R1 + Ry)CV2 (0)
= L(Vi(t)) +RyCsL(Vi(t)) — R2CV;(0)
Thus, we will obtain
L(Va(t)) (14 (Ry +R)Cs*) = L(V1(1)) (1+ RxCs). (7.10)
Then, we get the transfer function as

LWy(t))  14RyCs
L(Vi(t)) 14 (R +Ry)Cs*’

(7.11)

The graphical representation of the above transfer function is presented in Figure 7.3
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (7.8), we will obtain

S(Va(1)) + (R +R2)CS (SD#Va (1)) = S (Vi (1)) + RaCS <d‘2t(t)> (7.12)

Then, we will get

S A1)+ (Ri+ Ra)C S (Va(0)) — 5 (R +R2)CV(0)

_STX(

= S(H() +RoC S (W (1) ~ L RaCVi (0)

Thus, we will obtain

1 1
S(Va(1)) (1 + (R +R2)Csa> =S(Vi(r)) (1 +R2Cs> . (7.13)
Then, we get the transfer function as
R
SUAW) _ a1 sHRC (7.14)
S(Vi(1)) s+ (R +Ry)C

The graphical representation of the above transfer function is presented in Figure 7.4
as magnitude and phase.
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Figure 7.3 Transfer function of the lag network model with the Caputo derivative using the
Laplace transform.

7.3 ANALYSIS OF LAG NETWORK MODEL WITH CAPUTO-FABRIZIO
DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and

Sumudu transforms to obtain the solution.

dvi (l )
dt

Va(t) + (R +R2)C (§¥ DV (1)) = Vi + RoC (7.15)

If we take the Laplace transform of the both sides of Eq. (7.15), we will obtain

L(Va(t)) + (R1 +Ro)CL (§¥DXVa (1)) = L (Vi (1)) + RoCL (‘”3:”) (7.16)

Then, we will get

LVa(0) + (R, +R2)csf‘27(f‘lauv2(t)) - %(Rl +R2)CVA(0)
— LV (1)) + RaCSL (Vi (1)) = RaCV; (0)
Thus, we will obtain
L(a(t)) (1 + (R +R2)cm) L) (1+RCs).  (117)
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Figure 7.4 Transfer function of the lag network model with the Caputo derivative using the
Sumudu transform.

Then, we get the transfer function as

L(a(t)) _  (1+RCs)(s+ o —sat) (7.18)
LVi(t)) s+oa—sa+sM(a)C(R+R2) .

The graphical representation of the above transfer function is presented in Figure 7.5
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (7.15), we will obtain

S(Va(t)) + (R + R2)CS (§FDXMVA(t)) = S (Vi (t)) + RoCS (‘”ﬁ;f”) (7.19)
Then, we will get
S(Vz(l)) + (R1 +R2)CS(Z]Z(%S(V2(I)) - MXIZ(%(RI +R2)CV2(0)

—S(0)) +ch§3(v1 (1) — %chv1 0)

Thus, we will obtain

M)

S(Va(t)) (1 + (R +R2)Cm

) =S (Vi(1)) (1 +R2Cl) - (720
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Figure 7.5 Transfer function of the lag network model with the Caputo-Fabrizio derivative
using the Laplace transform.

Then, we get the transfer function as

S(Va(t)) (s+RC)(sa+1—a)
SWVi(t))  s(soa+1—a+ (R +R)CM())

(7.21)

The graphical representation of the above transfer function is presented in Figure 7.6
as magnitude and phase.

7.4 ANALYSIS OF LAG NETWORK MODEL WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and

Sumudu transforms to obtain the solution.

dvy (l )
dt

Va(t) + (R1 +R2)C (§DEVA (1)) = Vi + RoC (7.22)

If we take the Laplace transform of the both sides of Eq. (7.22), we will obtain

L(Va(t)) + (R1 + R)CL ({PDZVa (1)) = L(Vi(t)) + RoCL (‘W) (7.23)
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Figure 7.6 Transfer function of the lag network model with the Caputo-Fabrizio derivative
using the Sumudu transform.

Then, we will get
s®AB(at)
L(V2(1)) + (R, +R2)Cm (Va(t)) — “(1—a)ta
=L (Vi(t)) + R2CsL (Vi (t)) — R,CV;(0)

Thus, we will obtain

LVa(1)) (1 R +R2)Csas0!AB(OC)

(l_a)ﬂx) =L(Vi(t))(1+RCs). (724

Then, we get the transfer function as

LVa()) _ (14+ReCs)(s*(1— ) + ) 7:25)
LVi(t))  s*(1—a)+a+ (R +Ry)Cs*AB(ax) '

The graphical representation of the above transfer function is presented in Figure 7.7
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (7.22), we will obtain

S(Va(t)) + (Ry +R2)CS (3P DEVA (1)) = S (Vi (t)) + R.CS (‘ﬂgf’)) (7.26)
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Figure 7.7 Transfer function of the lag network model with the ABC derivative using the
Laplace transform.

Then, we will get

AB(a)
oas®+1—o

AB(a)

S(Va(1)) + (R1 +R2)C ' tl—a

S(Va(t)) -

=S (Vi(1)) + RaC S (Vi(1)) ~ RaCVi(0)

(R1+R2)CV(0)

Thus, we will obtain

(A1) (1 s +R2>Cm) ) (1 +R2c§) . @

Then, we get the transfer function as

SWVa()  (s+RC)(as®+1-a)
SVi(t))  s(as*+1—o+ (RiRy)CAB())’

(7.28)

The graphical representation of the above transfer function is presented in Figure 7.8
as magnitude and phase.



62 Integral Transforms and Engineering: Theory, Methods, and Applications

8

Magnitude, [H{w), [d8]
- 8 &

3

10 10 101

). [rad]

[=]
T
L

&
w

Phase, Arg(H{w)

o

Figure 7.8 Transfer function of the lag network model with the ABC derivative using the
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Analysis of Lead Network
Model

The current electrical technology and its different applications showed that lead com-
pensators are almost present everywhere in control. It is also known that a lead com-
pensator can optimize the stability or the speed of response of a system. However,
a lag compensator can be used to get rid of the steady-state error. The available
literature indicates that based on the need of the engineer, one or more lead com-
pensators can be used in various combinations. As indicated in the previous chapter,
lead, lag, and lead/lag compensators are commonly constructed for a system in the
transfer function form. The major disparity between the lag and lead compensator is
that the lag compensator increases the negative phase of the system over the quan-
tified frequency collection. While on the other hand, a lead compensator augments
the positive phase over the specified frequency. In this chapter a mathematical model
depicting the dynamic of the lead network is considered. The classical model will
be subjected to the Laplace transform and the Sumudu transform. Note that the main
aim is not to derive the exact solutions using these integral operators but to obtain the
associate transfer functions for comparison. The model will later be extended within
the framework of fractional differentiation [51-53].

8.1 ANALYSIS OF ANALYSIS OF LEAD NETWORK MODEL WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu

transforms to obtain the solution.

dVs(t Ry +R dvy(t 1
2()+< I 2)V2(t)— 1(7)

— Wt 8.1
dt RiR,C d T RC 10 @1

If we take the Laplace transform of the both sides of Eq. (8.1), we will obtain

L ("V;f”) ; (’j;;’g) Ly(t) =L ("i}f”) FcLh). 62)

Then, we can get

SL () - Va(0) + (SR ) L0 =LV (1) - Vi 0
+ R:—CL(Vl (1)). (8.3)
L (1)) (s—i— (';11;2’2)) —LVi(1)) (s—i— RTC> 8.4)
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Figure 8.1 Transfer function of the lead network model with the classical derivative using
the Laplace transform.

Therefore, we obtain the transfer function as

L(Vz(l‘)) R2(1+SR1C)
= . (8.5)
L(Vl(l)) SRIR)C+Ri+R»

The graphical representation of the above transfer function is presented in Figure 8.1
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (8.1), we will obtain

s ("V;‘ff)) n (I;Zf) S(() =S (”’V;t(’)) FaSTE). 60

Then, we can get

L) - () (’f;}fg) SMa(0) =15 @) - (o)
+ RILCS(Vl ). 8.7)

S(Va(0)) <i+ (1;1;;2)) —S(Vi(1)) (i+RjC> 8.8)
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Figure 8.2 Transfer function of the lead network model with the classical derivative using

the Sumudu transform.

Therefore, we obtain the transfer function as

S(Vz(t)) . Rz(R]C+S)

= . 8.9
S(V](I)) R{R>C +sRy| + sR» (8.9)

The graphical representation of the above transfer function is presented in Figure 8.2
as magnitude and phase.

8.2 ANALYSIS OF LEAD NETWORK MODEL WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

Cna Ri+R; _dVl(l‘> L
(6D VA1) + ( RiRSC > Vo) = — +R1CV1 (1) (8.10)

If we take the Laplace transform of the both sides of Eq. (8.10), we will obtain

L) + (e ) L0am) =L (T4 )+ o). @
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Figure 8.3 Transfer function of the lead network model with the Caputo derivative using the
Laplace transform.

Then, we can get

SL (1) 5% a0) + (o ) L) LY ()~ i(0)
JFR%CL(V1 (1).  (8.12)
L (1)) (s“+ (W)) —LVi(1)) (s+ ch) (8.13)

Therefore, we obtain the transfer function as

L(Vg(l‘)) . Rz(lJrSRlC)
L(Vi(t)) s*R{R,C+R|+Ry

(8.14)

The graphical representation of the above transfer function is presented in Figure 8.3
as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (8.10), we will obtain

$G0E0) + (Tpe ) ST =5 () 4 pas ). ®9
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Then, we can get

SELOA0) -~ 200) + (T ) SI-0) =15 (Vi) ~ T4 (0)
1

+RcSMO). 316

SV (1)) (sla+ (’;;’2)) —SVi(1) (i+R1C> 8.17)

Therefore, we obtain the transfer function as

S(Vz(t)) s“‘le(R1C+s)

S(Vl(t)) - R1R2C+sa(R1+R2)' (818)

The graphical representation of the above transfer function is presented in Figure 8.4
as magnitude and phase.
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Figure 8.4 Transfer function of the lead network model with the Caputo derivative using the
Sumudu transform.
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8.3 ANALYSIS OF LEAD NETWORK MODEL WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transform to obtain the solution.

Ri+R dvi(t) 1
CF no 1 2 1
DV, (t Wa(t) =
(6" DIVl >)+(R1R2C) (1)
If we take the Laplace transform of the both sides of Eq. (8.19), we will obtain:

L D) + (e ) L0a0) =2 () 4 L i) 20

Then, we can get

sM(a)

M(a) Ri+Ry
et - o+ (G ey ean
1
=LVi(0) = V1(0) + =L (Vi(0)). (8.22)
sM(a) Ri+R; _ 1
L(Vy(1)) <S+ o + ( RIR,C )) =L(Vi(1)) <s+ R1C) . (8.23)
Therefore, we obtain the transfer function as
L(Vz(t)) RQ(SR1C+1)(S+06—SOC)

L)  sM{ORRC + (R 1 Ra) (s &t —sa)’ (8.24)

The graphical representation of the above transfer function is presented in Figure 8.5
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (8.19), we will obtain

567 0r0) + (e ) S0a0) =5 (P52 ) + ps ). 629

Then, we can get

M)} vy(0)) A“O‘)vz<o>+(R‘+R2)s<v2<r>> (8.26)

as+1—o Cas+1-a RiR,C
1 1 1
=-S(V, —V1(0)+ —=8(Vi(1)). 8.27
SSWI0) = (0) + 5 =S M) (327)
M((X) Ri+R; 1 1
S(Vo(t =S(Vi(t -+ —. 8.28
(Vaf ))(as+la+(R1R2C)> ( 1())<S+R1C> (8.28)
Therefore, we obtain the transfer function as
S(Va(1)) Ry(RiIC+s)(as+1—a)

SVi(1) ~ s(RiR:CM(a) + (Ry + Ra) (s +1— ) (8.29)
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Figure 8.5 Transfer function of the lead network model with the Caputo-Fabrizio derivative
using the Laplace transform.

The graphical representation of the above transfer function is presented in Figure
8.6 as magnitude and phase.

8.4 ANALYSIS OF LEAD NETWORK MODEL WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Ri+R A% 1
(6% DfVa (1)) + ( R‘IZQ C2> Va(t) = C}ft) oy (8.30)

If we take the Laplace transform of the both sides of Eq. (8.30), we will obtain

L(§DEvs (1)) + (?;ﬁ) L(Vs(1)) =L (d‘i;t(t)) + R%CL(Vl (1). (831

Then, we can get
s*AB(a) s* 1AB(a) R +R,
muvm - m‘/z(()) + ( REC ) L(V2(1))

= SLIVI(1) = Vi(0) + 2 L ().
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Figure 8.6 Transfer function of the lead network model with the Caputo-Fabrizio derivative
using the Sumudu transform.

L(Va(1)) (SazﬁBxia + (121;2122» =L(Vi(1)) <s+ RL) . (832)

Therefore, we obtain the transfer function as

L(Va(2)) _ Ry(1+sRC)(s*(1—a)+a) (833)

L(Vi(t)) s*AB(o)R{R.C+ (R1+Ry)(s%(1 —a)+ o) '
The graphical representation of the above transfer function is presented in Figure 8.7
as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (8.30), we will obtain

S (6% DA (1)) + (%;ﬁf) S(Va(t)) =S <d‘2t(t)> + R%CS(VI (t). (8.34)

Then, we can get

s ) - B o)+ (SR ) san) 639
— S () = TVi(0) + 7 S (1), (8.36)

S(Va(1)) (asfi(‘f‘) —+ (121;2122)) =S(Vi(r)) (l + RIC> . 837
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Figure 8.7 Transfer function of the lead network model with the ABC derivative using the
Laplace transform.

Therefore, we obtain the transfer function as

S(Va(2)) Ry(RiIC+s)(as*+1—a)

S(Vi(t))  s(RiR2CAB()+ (R +Ry)(as* +1—a))’

The graphical representation of the above transfer function is presented in Figure 8.8
as magnitude and phase.

(8.38)
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Analysis of First-order
Circuit Model 3

First-order differential equations have attracted the attention of many researchers
from different backgrounds as they have been recognized as powerful mathematics
tools to model some basic behaviors found in many real-world problems. In partic-
ular they are used to model behaviors of the first-order circuits, which are known to
include one energy storage element, for example, capacitor or an inductor. In this
chapter we shall consider the following linear differential equation will be subject to
some analysis including the application of the Sumudu and the Laplace transforms to
obtain the transfer functions. Latter the model will be extended within the framework
of fractional differential equations and then Laplace and Sumudu transforms will be
applied to obtain transfer functions. These transfer functions will be compared to see
the major difference between Sumudu and Laplace transforms on the one hand and
to also see the effect of fractional differential operators on the other hand [54, 55].

9.1 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 3 WITH CLASSICAL
DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.
dVi(t)
dt

+4(10%) V(1) = —4(10")V; (1) 9.1)

If we take the Laplace transform of the both sides of Eq. (9.1), we will obtain

L (dvﬁz(t)> +4(10°)L (Va(1)) = ~4(107)L (Vi 1)) ©9.2)
SL(V2(1)) = V2(0) +4(10°)L (V2(0)) = —4(107)L (V1(r)) 93)
(S+4(106))L(V2(I)) = —4(107)L(V1 ®)) 9.4)

Therefore, we get the transfer function as

L(Va(r))  —4(107)
L(Vi(t)) s+4(100)"

9.5)

The graphical representation of the above transfer function is presented in Figure 9.1
as magnitude and phase.

DOI: 10.1201/9781003359869-9 73


http://doi.org/10.1201/9781003359869-9

74 Integral Transforms and Engineering: Theory, Methods, and Applications

=]
(=]

s
[=]
T
1

i~
=]
T
|

(=]
T
|

Magnitude, [H ()], [dB]

R
=

107 107 10° 1070

L
tn

(%]
T
i

Phase, Arg{H{w)), [rad]
n
[ [+,

107° 107 10° 10"

-
o

Figure 9.1 Transfer function of the first-order circuit model 3 with the classical derivative
using the Laplace transform.

If we take the Sumudu transform of the both sides of Eq. (9.1), we will obtain

S <d‘;2t(t)> +4(10%)8 (V2 (1)) = —4(107)S (Vi (1)) (9.6)
éS(Vz(f)) - %v2(0) £ 4(105)8 (Va()) = —4(107)S (Vi (1)) o7
(3400 s3:00) = ~400)s (1) 08)

Therefore, we get the transfer function as

S(Wa(t))  —4(107)s
S(Vi(t))  1+s4(109)°

(9.9)

The graphical representation of the above transfer function is presented in Figure 9.2
as magnitude and phase.
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Figure 9.2 Transfer function of the first-order circuit model 3 with the classical derivative
using the Sumudu transform.

9.2 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 3 WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

(§DEVA(1)) +4(10°)Va(r) = —4(107)V; (1) (9.10)

If we take the Laplace transform of the both sides of Eq. (9.10), we will obtain

L(§DfVa(t)) +4(10°)L (Va(t)) = —4(107)L (Vi (1)) ©.11)
SL(Va(t)) — %~ 'Va(0) +4(10°)L (Va(t)) = —4(107)L (Vi (1)) 9.12)
(5 +4(109) L(1va(r) = ~4(10)L (Vi 1)) 9.13)

Therefore, we get the transfer function as
L(a(t))  —4(107)
L(Vi(t))  s*+4(100)

The graphical representation of the above transfer function is presented in Figure 9.3
as magnitude and phase.

(9.14)
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Figure 9.3 Transfer function of the first-order circuit model 3 with the Caputo derivative
using the Laplace transform.

If we take the Sumudu transform of the both sides of Eq. (9.10), we will obtain

S (GDIVa(1)) +4(10°)S (Va(r)) = —4(107)S (Vi (1)) (9.15)
LS 0A(0) ~ Va(0)+4009S(Va() = ~4(10)S(A(W)  9.16)
(sla +4(106)> S(Va(t)) = —4(107)S (Vi (1)) 9.17)

Therefore, we get the transfer function as
SV (1)) _ —4(107)s0‘
SVi(t))  1+s24(100)

The graphical representation of the above transfer function is presented in Figure 9.4
as magnitude and phase.

(9.18)
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Figure 9.4 Transfer function of the first-order circuit model 3 with the Caputo derivative
using the Sumudu transform.

9.3 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 3 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

(§F DV (1)) +4(10°) V5 (1) = —4(107)Vi (1) (9.19)

If we take the Laplace transform of the both sides of Eq. (9.19), we will obtain
L(§F DXV (1)) +4(10°)L (V5 (1)) = —4(107)L(Vi(2)) (9.20)

M M

M) va0) Oy 0) 44010 (v3(0) = 410 (Vi 1)

9.21)
sM(ar) 6 _ 7
Therefore, we get the transfer function as
_ 7 _

L(Vy(1)) _ 4(10") (s+a —sa) 9.23)

Li(t))  sM(a) +4(108)(s+ ot —sat)”
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Figure 9.5 Transfer function of the first-order circuit model 3 with the Caputo-Fabrizio
derivative using the Laplace transform.

The graphical representation of the above transfer function is presented in Figure 9.5
as magnitude and phase. If we take the Sumudu transform of the both sides of Eq.
(9.19), we will obtain

S (6 DfVa(1)) +4(109)8 (Va(t)) =

—4(107)S (Vi (1)) (9.24)

%S (Va(t)) = %Vz(@ +4(10°)S (Va (1)) = —4(107)S (V; (:9))25)
(om +4(106)> S(Wa0)=—40100SMi(0)  926)
Therefore, we get the transfer function as
SW(t) 410" (as+1—a)
SVi(r)) ~ M(a)+4(10%)(as+1—a) 9.27)

The graphical representation of the above transfer function is presented in Figure 9.6
as magnitude and phase.
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Figure 9.6 Transfer function of the first-order circuit model 3 with the Caputo-Fabrizio
derivative using the Sumudu transform.

9.4 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 3 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

((PEDAVA(1)) +4(10°) V5 (1) = —4(107)Vi (1) (9.28)
If we take the Laplace transform of the both sides of Eq. (9.28), we will obtain
L(6%D7Va(1)) +4(10°)L (Va(1)) = —4(10")L (V1 (1)) (9.29)
s*AB(o) s“1AB(x) 5
mL(Vz(t))—mV2(0)+4(10 JL(Va(2))
=—4(10")L (Vi (1)) (9.30)
s*AB(o) 6 _ -
(s“(l S +4(10 )) L(Va(2)) = —4(10")L (Vi (1)) (9.31)
Therefore, we get the transfer function as
L(Va(1)) —4(107)(s*(1 — @) + )

L(Vi(t)) ~ s®AB(at) +4(109)(s*(1 —at) + &) (9.32)
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Figure 9.7 Transfer function of the first-order circuit model 3 with the ABC derivative using
the Laplace transform.

The graphical representation of the above transfer function is presented in Figure 9.7
as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (9.28), we will obtain

S (§BDVA (1)) +4(10%)S (Va (1)) = —4(107)S (Vi (1)) (9.33)
P s (va0) 5T va(0) +4(10%)5(V3(0)) = i)
(Om +4(106)> S(Va(r)) = —4(107)S (Vi (1)) (9.35)

Therefore, we get the transfer function as
SWa(1)) —4(10") (as* +1— ) 9.36)

SVi(t)  AB(a) +4(109)(as® +1—a)

The graphical representation of the above transfer function is presented in Figure 9.8
as magnitude and phase.
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1 () Analysis of First-order
Circuit Model 4

Electronic elements such as inductors and capacitors are seen as nonlinear compo-
nents. When they are introduced into a circuit system, the behaviors are not instanta-
neous as they would be when other components like resistors are introduced. For in-
stance, changing the state will disturb the circuit system, and the nonlinear elements
necessitate time to reply to the change. It was observed in several cases that some
feedback could lead to jumps in the voltage and current, which may eventually cause
damage to the circuit system. Thus to solve this problem, transient feedback with
circuit design can help to reduce the risk of ill behaviors. In this chapter, therefore, a
mathematical model of a circuit that explores the complete response of inductors and
capacitors to a state variation, this model will take into account the transient response.
The classical model will be solved using the Laplace and the Sumudu transforms, and
the solutions will be obtained in complex space to enable us to evaluate the transfer
functions of both. Fractional differential operators with different kernels including
power law, exponential decay, and the generalized Mittag-Leffler function will be
used to include in the mathematical model the effect of nonlocalities associated with
a power law, exponential decay, and the generalized Mittag-Leffler function. The
classical differential equation under investigation here is given as follows [54,55]:

10.1 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 4 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu

transforms to obtain the solution.
dva(t) dvi(t)

dt

R1R2(C1 +C2) + (Rl +R2)V2(t) =RR,C, + R,V (l‘) (10.1)

If we take the Laplace transform of the both sides of Eq. (10.1), we will obtain

) + (Ri+R2)L(Va(t)) =Ri1R2C\ L (d‘i}r(t)>

+RL(Vi(1)). (10.2)

av, (t)
dt

R1R2(C1 +C2)L (

Then, we will reach

SRR, (C1 +C)L(Va(t)) — RiR2(Cy + C>)V5(0)
= (R1 +R2)L (Vz(l)) +SR1R2C1L(V1 (I)) —RIR,C\'V (0) +R2L(V1 (t)) .

L(V2(t)) (SR1R2(C1 +C2) + (R1 +R2)) = L(Vi(t)) (SR1IRCy +Ry) . (10.3)
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Figure 10.1 Transfer function of the first-order circuit model 4 with the classical derivative
using the Laplace transform.

Then, we obtain the transfer function as

L(Va(1)) SRI1R,C1 + Ry

= . 10.4
L(V](l‘)) SRle(C1+C2)—|—(R1—|—R2) ( )

The graphical representation of the above transfer function is presented in Figure
10.1 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (10.1), we will obtain

avs(t) av, (r))

Rle(Cl —|—C2)S <> + (R] +R2)S(V2(l‘)) =R1R2C15<

dt dt

FRS(Vi().  (10.5)
Then, we will reach
1 1
;R1R2(C1 + )8 (Va(t)) —RiR2(Cy +C2)EV2(O) + (R +R2)S (Va(2))

1 1
= ;R1R2CIS(V| (t)) — ;R1R2C1V] (0) +R2S(V] (l‘))

S(Va(t)) (iRlRZ(Cl +C2) + (R +R2)> =SWi(t)) <iR1R2C1 +R2> . (10.6)
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Figure 10.2 Transfer function of the first-order circuit model 4 with the classical derivative
using the Sumudu transform.

Then, we obtain the transfer function as

S(Va(1)) _ Sail(Rlecl +5Ry)
S(Vi(t)) ~ RiR2(C1+C2) +s%(Ri +Ry)

(10.7)

The graphical representation of the above transfer function is presented in Figure
10.2 as magnitude and phase.

10.2 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 4 WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

dvi(t)
dt

If we take the Laplace transform of the both sides of Eq. (10.8), we will obtain

Rle(Cl —|—C2) (gDIaVZ(Z‘)) + (R] —|—R2)V2(t) =R |R,C + RV (l‘) (10.8)

RIR>(C1 +G)L (SD;XVZ(t)) + (Ri +R2)L(Va(t)) =R R2CIL (d‘g[(t))

—|—R2L(V1 (t)) . (10.9)
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Figure 10.3 Transfer function of the first-order circuit model 4 with the Caputo derivative
using the Laplace transform.

Then, we will reach
SRRy (C1 4 Co)L (V2 (1)) — s* 'R Ry (C) + C2)V5(0)

= (R] —|—R2)L(V2(l‘)) —l—SR]RzC]L(V] (I)) —RI1R,C1V; (0) —‘y—RzL(V] (t))

L(Va(1)) (saRle(Cl +C)+ (R +R2))=L(Vi(r)) (sRiR:Ci +Ry).  (10.10)

Then, we obtain the transfer function as

L(Va(1)) _ SRIR,C1 + Ry 10.11)
L(V](I)) SaRle(Cl—i-Cz)—l—(Rl—‘rRz)' '

The graphical representation of the above transfer function is presented in Figure
10.3 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (10.8), we will obtain

RiR,(C1 +G>)S (OCD;XVZ(I)) + (R +R)S(Va(t)) = RiR.C1S (d\;ft))

+ RS(Vi(t)).  (10.12)
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Then, we will reach

siaRle(Cl +G)S(Va(t)) —R1Rx(Cy JFCZ)S%VZ(O) + (R +R2)S (Va(t))
= %R1R2C1S(V1 (1) — §R1R2C1V1 (0) + RS (Vi (1))

1 1
S(Va(1)) (saR1R2(C1 +C) + (R +R2)> =8SVi(2)) (SR1R2C1 +R2> . (10.13)
Then, we obtain the transfer function as

S(Vz(l)) _ R{R>C + Ry (10.14)
S(Vl(t)) R1R2(C1+C2)+S(R1 —I—Rz). '

The graphical representation of the above transfer function is presented in Figure
10.4 as magnitude and phase.
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Figure 10.4 Transfer function of the first-order circuit model 4 with the Caputo derivative
using the Sumudu transform.
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10.3 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 4 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

dvy (t)
dt

If we take the Laplace transform of the both sides of Eq. (10.15), we will obtain

RiRy(C1 +C2) (§¥DEVA (1)) + (Ri + Ro)Va () = RiR2Cy +RyVi(t) (10.15)

RiR>(C1 +C)L (§"DMVA(1)) + (Ry + R2)L(Va(t)) =R RoC1 L (
—|—R2L(V1(t)). (10.16)

Then, we will reach

%&Rz(a +C)L(Va(t)) — %R&(Cl +C)V5(0)

= (Ri+R)L(Va(1)) +sRIRCIL(V1(7)) — RiR2C1V1(0) + RoL (Vi (1)) -

sM(a
L(Vy(1)) (S—‘rOC(—?S‘OCRlRZ(Cl +C)+ (R —I—Rz)) =L(Vi(t)) (sRiR,C) +Ry) .
(10.17)
Then, we obtain the transfer function as
L t RiR R —
(Va(1)) (SR{R2C1 +Ry) (s 4 ¢ — sa) (10.18)

LVi(t))  sM(Q)R\Ry(Ci+Co)+(s+0—s0)(Ri+Ra)’

The graphical representation of the above transfer function is presented in Figure
10.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (10.15), we will obtain

RiRo(Ci+C2)S (57 DIVa(1)) + (Ry +R2)S (Va(r) =RiRoC1 S (d‘gr(t))
+RSVi(r)).  (10.19)

Then, we will reach

M(a)
soe+1—a

— (RI4R)S((1))+ %RleClS(V] (1) — émezc1 V1(0)+ RaS (Vi (1))

RIRy(C1 +C2)S (Va(t)) —R1R2(Cy +C2)S M() V2(0)

a+1—o

M(a)
soa+1—o

S(Va(1)) ( R1R2(C1+C2)+(R1+R2)>

=S(Vi(1)) <1R1R2C1 —|—R2) . (10.20)
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Figure 10.5 Transfer function of the first-order circuit model 4 with the Caputo-Fabrizio
derivative using the Laplace transform.

Then, we obtain the transfer function as

S(Vz(t)) (R]chl +SR2)(S(X+17(X)

S(Vi(t))  M(x)R\Ry(C1+Co)+ (sa+1—0a)(Ri+Ry) (10.21)

The graphical representation of the above transfer function is presented in Figure
10.6 as magnitude and phase.

10.4 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 4 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and

Sumudu transforms to obtain the solution.

dVi(t
RiR>(C1 +Co) (§PDIVA (1)) + (R + R2)Va(t) = RiR2Cy ;t( ) +RVi (1) (10.22)

If we take the Laplace transform of the both sides of Eq. (10.22), we will obtain

RiRy(Ci +C)L (5°°DPVa(t)) + (R + Ry)L (Va (1)) = RiR,CI L (d‘gt(t))

+ RL(Vi(1).  (10.23)
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Figure 10.6 Transfer function of the first-order circuit model 4 with the Caputo-Fabrizio
derivative using the Sumudu transform.

Then, we will reach

AP Ra(Cy+ CoL (V) - Sa_lAB(a)aRle(C‘ reRol

s¢(1—a)+a s“(1—a)+
+(R1 +R2)L (Vg(t)) = SR1R2C1L(V1 (t)) —R1R,C1'V; (O) +R2L(V1 (t)) .

L) (=A@ k(€ +Co)+ (R +R2) ) = LOVi(1)) (sRiRoC -+ R)
2 s”‘(l—a)+a121 2 1 2) | = 1 110207 2).
(10.24)
Then, we obtain the transfer function as
a_
L(Va(1)) _ (SRIRC1+Ry)(s*(1— )+ o) (10.25)

L(Vi(t)) s*AB(@)R\Ry(Ci +C)+ (s*(1 —a) +a)(R; +Ry)’

The graphical representation of the above transfer function is presented in Figure
10.7 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (10.22), we will obtain
dvi(t)

RiR>(C +C2)S (éBCDf‘Vz(I)) + <R1 +R2)S(V2(l)) = RIRC|S (dt)

+ RS(Vi(1)).  (10.26)



Analysis of First-order Circuit Model 4 91

1

I
=
=

[+

=

=
T

L

i8]

=

=
T

L

=
T
L

Magnitude, |Hiw)|, [dB
=
(=]
T
.

10 10° 10° 101

151

-
T
L

(=]

Phase, Arg(H(w)). [rad]

10° 10° 101

Figure 10.7 Transfer function of the first-order circuit model 4 with the ABC derivative
using the Laplace transform.

Then, we will reach

AB(a)

AB(a)
as®+1—a

RiRy(C1 +C2)S (Va(0)) = RiRa (C1 +C) =

V2(0)

+(R1+R2)S(Va(r)) = %RleclS(Vl (1)) — %R1R2C1V1 (0) + RS (Vi (1))

AB(a) 1
S(Va(t ——RiR)(C1 +C Ri+R =S(Vi(t —RiR,C1+R; |.
(2())((XSO‘—|—1—(X 1R2(C1 +C2) + (R + 2)) (1())(S 1R2C1+ Ry
(10.27)
Then, we obtain the transfer function as
\% RiR R *41—
S( z(t)) ( 1R C + s 2)(06S + (X) (10.28)

SVi(t)) ~ s(AB(@)R\Ry(Cy +Ca) + (as® + 1 — &) (Ry +Ry))

The graphical representation of the above transfer function is presented in Figure
10.8 as magnitude and phase.
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11 Analysis of First-order
Circuit Model 5

Mathematical equations based on the first derivative have also been found suitable
for modeling some complex real-world problems in different fields of science, tech-
nology, and engineering. Within the field of electrical engineering, a resistor-inductor
circuit model can be efficiently modeled using first-order differential equations. It is
worth noting that resistor-inductor circuits have been labeled RL circuits, or RL net-
works, and have been known to be comprised of resistors and inductors driven by
a voltage or current source. Particularly, a first-order RL circuit contains one resis-
tor and one inductor which makes it a fundamental type of RL circuit. Additionally,
one should note that this class is one of the main equivalent infinite impulse re-
sponse electric filters, since it contains a resistor and an inductor, either in series
driving by a voltage source or in parallel driving by a current source. In this chapter
we consider the following linear ordinary differential equation, different differential
operators with integer and non-integer orders will be applied. We consider the first
order circuit model 5 with classical, Caputo, Caputo Fabrizio, and Atangana-Baleanu
derivatives [54,55].

11.1 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 5 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transform to obtain the solution.
di(t)

Ri() +K= > =V (1) (11.1)

If we take the Laplace transform of the both sides of Eq. (11.1), we will obtain

RL(i(t))+KL (dld(:)> =L(V()). (11.2)
RL(i(1)) + KsL(i(r)) — Li(0) = L(V (7). (11.3)
L(i())(R+sK)=L(V(t)) (11.4)
Then, we get the transfer function as
LV®) .
o) =R+ sK. (11.5)

The graphical representation of the above transfer function is presented in Figure
11.1 as magnitude and phase.
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If we take the Sumudu transform of the both sides of Eq. (11.1), we will obtain

RS (i(t)) +KS ("fj(:)) —S(V(1)). (11.6)
RS (1)) + K~ S(i1)) ~ LLi(0) = S (V(1). (11.7)
S(i(1)) (R+§) —S(V(1)) (11.8)

Then, we get the transfer function as

sv@e)_, K
@) =R+~ (11.9)

The graphical representation of the above transfer function is presented in Figure
11.2 as magnitude and phase.
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Figure 11.1 Transfer function of the first-order circuit model 5 with the classical derivative
using the Laplace transform.
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Figure 11.2 Transfer function of the first-order circuit model 5 with the classical derivative
using the Sumudu transform.

11.2 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 5 WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

Ri(t)+K (§Di(t)) =V (t) (11.10)

If we take the Laplace transform of the both sides of Eq. (11.10), we will obtain

RL(i(t)) + KL (§Di(t)) = L(V(1)). (11.11)
RL(i(t)) + Ks*L(i(t)) —s* 'Li(0) = L(V (r)). (11.12)
L(i(t)) (R+5s*K) =L(V (1)) (11.13)
Then, we get the transfer function as
LVO) _ o«
20) =R+s%K. (11.14)

The graphical representation of the above transfer function is presented in Figure
11.3 as magnitude and phase.
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If we take the Sumudu transform of the both sides of Eq. (11.10), we will obtain

RS(i(1)) +KS (§DYi(t)) = S(V(1)). (11.15)
RS(i(1) +1<Sias(i(z)) _ SiaLi(O) —S(V(r)). (11.16)
S(i(r)) (R—i— 5) _ SV (1) (11.17)
Then, we get the transfer function as
i((‘;((t’)))) _ +Sfa, (11.18)

The graphical representation of the above transfer function is presented in Figure
11.4 as magnitude and phase.
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Figure 11.3 Transfer function of the first order circuit model 5 with the Caputo derivative
using the Laplace transform.
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Figure 11.4 Transfer function of the first-order circuit model 5 with the Caputo derivative
using the Sumudu transform.

11.3 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 5 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution [92].

Ri(t)+ K (§¥Di(t)) =V (2) (11.19)

If we take the Laplace transform of the both sides of Eq. (11.19), we will obtain

RL(i(t)) + KL (§¥D%i(t)) = L(V(1)). (11.20)
RL(i(t)) + %L(i(z)) — %Lt(m =L(V(t)). (11.21)
L(i()) <R+m> — L) (11.22)

Then, we get the transfer function as
M =R+ M (11.23)

L(i(1)) s+o—so
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The graphical representation of the above transfer function is presented in Figure
11.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (11.19), we will obtain

RS(i(1)) +KS (§¥DYi(t)) = S(V(1)). (11.24)
RS (i(t)) +Ksaﬂj_(71azaS(i(t)) - wﬁ(%au(m =S(V(1)). (11.25)
sa@»<R+“fff?a>=saqo) (11.26)

Then, we get the transfer function as

SVO) _ ., IM(@)

S@n) " sari—a (127

The graphical representation of the above transfer function is presented in Figure
11.6 as magnitude and phase.
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Figure 11.6 Transfer function of the first-order circuit model 5 with the Caputo-Fabrizio
derivative using the Sumudu transform.

11.4 ANALYSIS OF FIRST-ORDER CIRCUIT MODEL 5 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Ri(t) + K (35°D%i(r)) =V (1) (11.28)

If we take the Laplace transform of the both sides of Eq. (11.28), we will obtain

RL(i(t)) + KL (3°°Di(t)) = L(V(1)). (11.29)

s safl
RL(i(1)) +K&L(i(t)) - WU(O) =L(V(t)). (11.30)
L(i(1)) (R+ m> =L(V()) (11.31)

Then, we get the transfer function as

LV() _ . Ks“AB(@)

Lan) “teiZata (1152)

The graphical representation of the above transfer function is presented in Figure
11.7 as magnitude and phase.
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If we take the Sumudu transform of the both sides of Eq. (11.28), we will obtain

RS(i(1)) +KS (§5DEi(1)) =S (V(1)). (11.33)
RS (i(t)) +1<asfji%s(i(t)) - #(f‘)_au(()) =S(V(t). (1134
S(i(r)) (R—i— OM) =S(V(1)) (11.35)

Then, we get the transfer function as
‘Z ((‘;((;)))) —R+ %. (11.36)

The graphical representation of the above transfer function is presented in Figure
11.8 as magnitude and phase.
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Figure 11.7 Transfer function of the first-order circuit model 5 with the ABC derivative
using the Laplace transform.
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1?2 Analysis of a Series RLC
Circuit Model

Besides the well-established theory of RL circuits, there is another more complex
type called RLC circuits. In this case, R represents the resistor, L stands for the in-
ductor, and C indicates the capacitor. These electronic devices can be connected in
series or parallel accordingly. Generality speaking the nomenclature comes from the
letters that are used to define the constituent components of the system. It is worth
noting that, for this system, some resistance is unavoidable especially when a re-
sistor is not included as a component. Thus, in an ideal situation, one will expect
a pure LC circuit to exist only in the domain of superconductivity. Indeed, in this
case, a physical effect plays a significant role at temperatures beneath and/or pres-
sures far above what is found in nature on the Earth’s surface. As an application,
RLC circuits [52,53] have got several implementations as oscillator circuits. In other
applications, the radio receivers, and television systems use them for tuning to select
a narrow frequency range from ambient radio waves. Thus, this circuit is frequently
named tuned circuit, and they are also known to apply to band-pass filters, band-stop
filters, low-pass filters, or high-pass filters. These circuits are classified under second-
order circuits, and this implies any voltage or current in the system can be modeled
using ordinary differential equations with second order. To obtain several different
topologies, one can combine in different ways the R, L, and C. In this chapter, we
shall analyze differential equations describing the dynamics of the RLC circuit with
different differential operators. We consider a series RLC circuit model with classi-
cal, Caputo, Caputo Fabrizio, and Atangana-Baleanu derivatives.

12.1 ANALYSIS OF A SERIES RLC CIRCUIT MODEL WITH CLASSICAL
DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

d*V(t) R4V _Ri(t)  1di()

dt? " Ldt CL C dt

(12.1)

If we take the Laplace transform of the both sides of Eq. (12.1), we will obtain

L(dil‘gt)) +§L (‘i‘;) :L(Ré(li)) +éL <d;(;)>. (12.2)
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Figure 12.1 Transfer function of the series RLC circuit model with the classical derivative
using the Laplace transform.

Then, we obtain

s?L(V(1)) —sV(0)—V'(0)+ %L(V(r)) - ILSV(O)
R s . 1
= L)+ ZL(i(0) — £i0)
Thus, we have
L(V(1)) (s2+sf> = L(i(1)) <§L+é) (12.3)
Therefore, we find the transfer functions as
L(i(t)) _
LV@) Cs. (12.4)

The graphical representation of the above transfer function is presented in Figure
12.1 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (12.1), we will obtain

S(EYOY R (40) Lg(RO) L5 (H0) s
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Then, we obtain

LV(O)~V0)+ S5 (v(e) - 1)
1

= o S0) + ZS(i)) = =)

S(V(1) -

Thus, we have
1 R R 1
S(V(1)) (S2+sL> =S(i(1)) (CL+CS> (12.6)

Therefore, we find the transfer functions as

==, (12.7)

The graphical representation of the above transfer function is presented in Figure
12.2 as magnitude and phase.
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Figure 12.2 Transfer function of the series RLC circuit model with the classical derivative
using the Sumudu transform.
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12.2 ANALYSIS OF A SERIES RLC CIRCUIT MODEL WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-

forms to obtain the solution.
RdV  Ri(t) 1di(t)
C o o -
GDFV () + Ld L "¢ (128)

If we take the Laplace transform of the both sides of Eq. (12.8), we will obtain

L(SDeV (1) + L(?t/) L(Ré(z))+éL (d;(tt)). (12.9)

Then, we obtain

(PLYV (1) = 5V/(0) ~V'(0)) s + LV (1) ~ TV (0)
R 1
= L)+ SL(i(0) = 5i(0)
Thus, we have
L(V(1)) <s"‘+sf) — L(i(1)) <§L+é> (12.10)
Therefore, we find the transfer functions as
L(i(t))  s*L+sR (12.11)

L(V(t))  R+sL

The graphical representation of the above transfer function is presented in Figure
12.3 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (12.8), we will obtain

S(GDAV (1)) + S (‘Z) =S (12(2)) + CS (d;(t)> : (12.12)

Then, we obtain

o (S[V] ;V(O) - v/(O)) +§s(v(¢)) _ gv(o)
R 1. 1,
= o S0)+ 5S((0) — 5:i(0)
Thus, we have
S(V(1)) (slaJrsIZ) =S(i(r)) (CRLJFC]s) (1219

Therefore, we find the transfer functions as

S(()  C(sL+Rs%)
SWV{@) s GRTL) (12.14)
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Figure 12.3 Transfer function of the series RLC circuit model with the Caputo derivative
using the Laplace transform.

The graphical representation of the above transfer function is presented in Figure
12.4 as magnitude and phase.

12.3 ANALYSIS OF A SERIES RLC CIRCUIT MODEL WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

RdV _ Ri(t) 1di(t)
Ldt CL C dt
If we take the Laplace transform of the both sides of Eq. (12.15), we will obtain

6" Drv(n) + (12.15)

L(SFDf‘V(t))—F%L (‘?j) :L(Ré(Lt)> +éL(d;(;)). (12.16)
Then, we obtain
M(a) , SR R
ars2—a) (SzL(V(f)) —sV(0)—V'(0)) + fL(V(’)) - ZV(O)
= B L)+ 2060 - Li0)

CL C C
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using the Sumudu transform.

Thus, we have

M(a)s? sR >

Oc—l—s(Z—oc)Jr L

L(V(t))( = L(i(1)) <£+é) 12.17)

Therefore, we find the transfer functions as

L(i(t))  C(LM(a)s®+sR(o+5(2 - a)))
L(V(r)) R+sD)(a+s2—a) (12.18)

The graphical representation of the above transfer function is presented in Figure
12.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (12.15), we will obtain

S(§ DV (1)) + %S (Li,‘;) =S <Ré(£)> * éS (dil(zt)) ' (1219
Then, we obtain
zfﬁi(ff)as <S[V] ;V(o) v (0)> +S£LS(V@)_ gv(O)
— £S(i(t)) + LS(i(t)) - ii(O)

CL
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Figure 12.5 Transfer function of the series RLC circuit model with the Caputo-Fabrizio
derivative using the Laplace transform.

Thus, we have
M(o) R R 1
S(V(t — 4+ — | =S8(i(t — 4+ — 12.20
( ())<s(2—a+as)+sL> (i€ ))(CL+CS) (12:20)
Therefore, we find the transfer functions as

S(i(t))  C[LM(a)+R(2— o+ as)]
SV(@) ([L+sRQ2-a+as) (12.21)

The graphical representation of the above transfer function is presented in Figure
12.6 as magnitude and phase.

12.4 ANALYSIS OF A SERIES RLC CIRCUIT MODEL WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.
RdV  Ri(t) 1di(t)

ABC e
(6°° Dy v(x))+Ldl L +C ” (12.22)
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Figure 12.6 Transfer function of the series RLC circuit model with the Caputo-Fabrizio
derivative using the Sumudu transform.

If we take the Laplace transform of the both sides of Eq. (12.22), we will obtain

L(5%DMv (1)) +§L (CZ) :L(Ré(]i)) +éL (dl;t’)) (12.23)
Then, we obtain
AB(a)s*! , SR R
At (2—a)s® (SPL(V (1)) —sV(0) = V'(0)) + fL(V(f)) - ZV(O)
= L)+ SLE0) - 5il0)
Thus, we have
sa+1 s s
L) (%+f) — Li(1)) <§L+C> (12.24)

Therefore, we find the transfer functions as

L(i(t)) _ C[AB(a)Ls®*! +sR(a+ (2 — 0)s”]
L(V(t)) (R+sL)(a+(2—a)s%) : (12.25)

The graphical representation of the above transfer function is presented in Figure
12.7 as magnitude and phase.
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If we take the Sumudu transform of the both sides of Eq. (12.22), we will obtain

S({}BCD?V(t)H% (‘?;) S(Ré(Lt)) +és <d;(tt)>. (12.26)

Then, we obtain

sAB(a) (SM —VO) _ V’E‘”) + Rswy)-Evo)

2 — o+ os® 52 sL Ls
R . 1 . 1.
= S SU)+ £ S(() - i(0)
Thus, we have
AB(a) RY . ﬂ i
Therefore, we find the transfer functions as
S(i(t)) _ C[LAB(a) +R(2 — o+ as?)] (12.28)
S(V(t) (L+sR)(2—a+os*)

The graphical representation of the above transfer function is presented in Figure
12.8 as magnitude and phase.
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Figure 12.7 Transfer function of the series RLC circuit model with the ABC derivative using

the Laplace transform.
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1 3 Analysis of a Parallel RLC
Circuit Model

There are several ways to build a system that includes R, L, and C as three circuit el-
ements. One way is to place them in series, where the three elements share the same
current. For this first simple case, two ways can be recognized. The second way is to
place them in parallel, noting the system is in parallel if all three components share
the same pair of nodes. These are the simplest in notion and most straightforward
for investigations. Nonetheless, several arrangements could be made, with some be-
ing very important for practical purposes in real circuits. A well-known problem is
usually found in the need to account for inductor resistance. This is due uniquely
because inductors are classically built from coils of wire, the resistance of which is
not frequently necessary. However, it has an important effect on the circuit system.
The investigation of a paralle] RLC circuit can be more complex when converted into
mathematical terms than the series version. Because, as an alternative to the current
being common to the circuit components, the applied voltage is in this case common
to all, thus there is a need to find the individual branch currents via each element.
Now the overall impedance, known as Z of a parallel RLC system [56-58], is com-
puted by inducing the current of the system similar to that of a DC parallel system;
thus, the alteration is that admittance is applied instead of impedance. These sys-
tems have been used in many industrial settlements, cities, towns, and transport. In
this chapter we shall therefore consider the mathematical model describing the RLC
circuit problem in parallel mode. Different differential operators will be considered,
for each the Laplace and the Sumudu transforms will be applied with the aim of ob-
taining the transfer function under the condition that the u-domain of the Sumudu
transform is the complex number as in the Laplace transform case.

13.1 ANALYSIS OF A PARALLEL RLC CIRCUIT MODEL WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.
d?i(t) 1.di V() 1dV(r)
df? ~RCdt RCL L dt

(13.1)

If we take the Laplace transform of the both sides of Eq. (13.1), we will obtain
d%i(t) 1 [(di V(t) 1adv(t)
L —L|—|=L|—~ L|—
( dr? ) & (dz) (RCL VAT
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Figure 13.1 Transfer function of the parallel RLC circuit model with the classical derivative
using the Laplace transform.

Then, we obtain

($*L(i(t)) — si(0) —i'(0)) + — (sL(i(r)) — i(0)) = ( i

If we simplify the above equation, we will obtain

K 1 1
L(i(t (2 —):LVt 4
) (%4 ) =V 0) ez + 1)
Then, we obtain the transfer function as

L(V(t))  Ls(1+sRC)
L(i(t))  1+RC

The graphical representation of the above transfer function is presented in Figure

13.1 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (13.1), we will obtain

(%) aes(3) - (aee) > (%)
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Then, we obtain

(SHLH0 1O 1 (500 - (1)

If we simplify the above equation, we will obtain

S(i) (12+,§C) =SV (1)) (RéﬁlL)

Then, we obtain the transfer function as

S(vV(@) _ L

S@i(t)) s

The graphical representation of the above transfer function is presented in Figure
13.2 as magnitude and phase.
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Figure 13.2 Transfer function of the parallel RLC circuit model with the classical derivative

using the Sumudu transform.



116 Integral Transforms and Engineering: Theory, Methods, and Applications

13.2 ANALYSIS OF A PARALLEL RLC CIRCUIT MODEL WITH CAPUTO
DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.
Ldi V() 1dV(t)

Cna: T\
DM+ re i = RCL T L ar

(13.2)

If we take the Laplace transform of the both sides of Eq. (13.2), we will obtain

Lorio) + et () =2 (her) +2 (1702

Then, we obtain

s%2 (sL(i(r)) — si(0) — (0)) + % (sL(i(t)) —i(0))
— (Bl v -voy

If we simplify the above equation, we will obtain

L(i(0) (s + 52 ) = LIV (1)) (RéL + i)

Then, we obtain the transfer function as

L(V(t)) L(s+s*RC)
L(i(t))  1+RC

The graphical representation of the above transfer function is presented in Figure
13.3 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (13.2), we will obtain

s(55i) + 75 () = (rer ) +5 (702

Then, we obtain

— () + L W) -V

If we simplify the above equation, we will obtain

S(i(r)) (Sla + sR}C) =S(V(1)) (RéL + le)
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Figure 13.3 Transfer function of the parallel RLC circuit model with the Caputo derivative
using the Laplace transform.

Then, we obtain the transfer function as

S(V(t))  (sRC+s%)L

S@i(t))  s*(s+RC)’

The graphical representation of the above transfer function is presented in Figure
13.4 as magnitude and phase.

13.3 ANALYSIS OF A PARALLEL RLC CIRCUIT MODEL WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.
1 di V() 14V()

CF o » T
6 DY)+ pe = RCL T T dr

(13.3)

If we take the Laplace transform of the both sides of Eq. (13.3), we will obtain

nn e (8)-1 () (%)
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Figure 13.4 Transfer function of the parallel RLC circuit model with the Caputo derivative
using the Sumudu transform.

Then, we obtain

aff((;‘lm (s°L(i(r)) = 5i(0) —'(0)) + % (sL(i(r)) —i(0))
- (B vy -voon

If we simplify the above equation, we will obtain

s*M (o) s 11
L(i(t —_— 4+ — | =L(V(t —_—t =
(i€ ))<a+s(2—a)+RC) ( ())(RCL+L>
Then, we obtain the transfer function as

L(V(r)) L[RCSM(a)+s(o+s(2—a))]
L(i(r)) (RC+1)(a+s2—a))

The graphical representation of the above transfer function is presented in Figure
13.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (13.3), we will obtain

S (5 DFi() + e (i) _s (1@) s (;dgﬂ)
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Figure 13.5 Transfer function of the parallel RLC circuit model with the Caputo-Fabrizio
derivative using the Laplace transform.

Then, we obtain

sM(at) (S[i(r)}—i(O)_i’(0>>+ L ((i(0)) - i(0))

2—a+as 52 § sRC

If we simplify the above equation, we will obtain

. M(o) 1 1 1
S(i(t [ A —— N I
(i®) <S(2—Ot+s(x) +sRC) () (RCL+SL>
Then, we obtain the transfer function as

S(V(r))  L(RCM(at)+2— o+ as)
S(i(t))  (RC+s)2—a+as)

The graphical representation of the above transfer function is presented in Figure
13.6 as magnitude and phase.
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Figure 13.6 Transfer function of the parallel RLC circuit model with the Caputo-Fabrizio
derivative using the Sumudu transform.

13.4 ANALYSIS OF A PARALLEL RLC CIRCUIT MODEL WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.
) L di V() 1dv()
ABC o
DY)+ —=—=—=+~
PO+ je g “ReL L
If we take the Laplace transform of the both sides of Eq. (13.4), we will obtain

nin e (3)-1 () ()

Then, we obtain

(13.4)

AB(a)s*! . P 1 . .
A (PL() —si(0)—1(0) + 7 (L0~ (0)
- (B4 Ly -vio

If we simplify the above equation, we will obtain

L(i(1)) <m + RSC) = L(V(1)) (RéL + i)



Analysis of a Parallel RLC Circuit Model 121

353 =
= =
=] =]
T
!

Magnitude, [H{w), [dB]
=

10 10° 10° 10

[{%)
T
L

Phase, Arg(H(w)), [rad]
=

g . .
1078 10° 108 1010

Figure 13.7 Transfer function of the parallel RLC circuit model with the ABC derivative
using the Laplace transform.

Then, we obtain the transfer function as

L(V(t)) L[RCs*"AB(a)+s(a+s*(2—a))]
L(i(t)) (RC+1)(a+s*(2—a)) ’

The graphical representation of the above transfer function is presented in Figure
13.7 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (13.4), we will obtain

s(@oin) + 15 (5 ) =5 (ma ) +5 (1202

Then, we obtain

SAB(«) <S[i(t)]—i(0)_i’(0)>+ L st — i0)

2 — o+ as® s? § sRC
E ey

If we simplify the above equation, we will obtain

s60) (s ez ) =SV (ze 51
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Figure 13.8 Transfer function of the parallel RLC circuit model with the ABC derivative

using the Sumudu transform.

Then, we obtain the transfer function as

S(V(1))  L(RCAB(at)+2— o+ os®)

Si(t) ~ (RCts)2—a+ as®)

The graphical representation of the above transfer function is presented in Figure

13.8 as magnitude and phase.



1 4 Analysis of Higher Order
Circuit Model 1

To capture processes exhibiting second-order variation, for example, problems dis-
playing processes involving accelerative behaviors, or change in concerning time or
space, the concept of second differentiation has been introduced and gave birth to an
important class of differential equations known as second order. This class of ordi-
nary or partial differential equations has been found powerful mathematical tools to
replicate behavior with accelerative or dispersive properties. In electrical engineer-
ing, these equations are used to model the transfer of electricity. In this field, it is
known that the order of a circuit is equivalent to the number of energy storage el-
ements resulting from all the possible possibilities that include series and parallel
combinations of inductors and capacitors [59-62]. In this section, we shall devote
our attention to applying the Laplace and the Sumudu transforms to solving second-
order circuit problems. Our aim is not to obtain exact solutions to these equations in
real space, but to obtain the solutions in the complex space for us to determine the
Transfer function.

We consider the higher order circuit model 1 with classical, Caputo, Caputo Fab-
rizio, and Atangana-Baleanu derivatives.

14.1 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 1 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

1di(t) V() d*V(t) <R1 l)dV(t) R +Ry

C dt CL  dr? dt R,CL

cL'

T ®c V() (14.1)

If we take the Laplace transform of the both sides of Eq. (14.1), we will obtain

14+ b (440) 4 LD (210

CL C dt CL dr?
R 1 dv(t)\  Ri+Ra
—+—|L L(V(t

+<L+R2C> ( 4 ) RaCL V()
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Figure 14.1 Transfer function of the higher order circuit model 1 with the classical derivative
using the Laplace transform.

Then, we obtain

&L(i(t)) + 1 (sL(i(r)) —i(0)) + L) = (s*L(V (1)) — sV (0) = V'(0))

+ <RLl + R;C) (SL(V (1)) =V (0)) + R;;?L(V(t))

If we simplify the above equation, we will get

. Ry s 1 SRy s Ri+R;
L(i(2)) (CL C> =L(V(1)) <s2CL+L+R2C+ RoCL >

Therefore, we obtain the transfer function as

L(V(1)) Ry(Ry +5L)

= . 14.2
L(i(1)) §2RyCL 4+ sR1R,C +sL+R; ( )

The graphical representation of the above transfer function is presented in Figure
14.1 as magnitude and phase.
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If we take the Sumudu transform of the both sides of Eq. (14.1), we will obtain

%S(i(t)) + 1 (di(t)> + SVO) _ g (dzv(t))

C dt CL dr?

(e e)s () A

Then, we obtain

L sC CL 2 p
i (le * sR12C> (VO] =V(0) + R;;izs(v(t))

If we simplify the above equation, we will get

S(l(t))(R1 + 1) S(V(r))( 1 +3 : +&+ 1 +R‘+R2)

CL sC CL SL ~ SR,C R,CL
Therefore, we obtain the transfer function as
S(V(t)) SRZ(SR] +L)

- . 14.3
S(i(t)) ~ CLRy+R|CSRy+sL+ 2R, (14.3)

The graphical representation of the above transfer function is presented in Figure
14.2 as magnitude and phase.

14.2 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 1 WITH
CAPUTO DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

R . | V() d*V(t) (R 1 \dv(t) R;+R
oL+ Gorin)+ 7 = ( 1 RC) dt 11€2CL2

V()

(14.4)
If we take the Laplace transform of the both sides of Eq. (14.4), we will obtain

2
B v+ g s + HUO (470

+ (R‘ + R;C> L (d‘;ft)) + RII?;CIZZL(VQ))
L(0) + 15 s1(00)) — i00)) + 2 (v (1) - v (0) - v/(0)

Ri+R;
L t
L)

CL dr?

Then, we obtain

Ry
CL

(RI+R§C) (SLV(1)) —V(0)) +
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Figure 14.2 Transfer function of the higher order circuit model 1 with the classical derivative
using the Sumudu transform.

If we simplify the above equation, we will get

R s 1 SR s R +R;
L(l(t)) (CL+ C> L(V(l)) <S2—CL+L+RZC+ R,CL

, Ry + Ls® s?CLR, +CsR{R2+Ls+R;
wio) (P ) = uvon i

Therefore, we obtain the transfer function as

LV(D) Ry (R +5°L)

= . 14.5
L(i(t))  s*CLR,+CsR\R, +Ls+R, (14.5)

The graphical representation of the above transfer function is presented in Figure
14.3 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (14.4), we will obtain

1 0. S(v axv
& stit)+ gs Grin) + S - s (C10)

+ (Rl + R1C> S (%ﬁ”) + R;;izs(V(t))
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Figure 14.3 Transfer function of the higher order circuit model 1 with the Caputo derivative
using the Laplace transform.

Then, we obtain

R .. 15(3i(1))—i(0)  S(V(r)) (S[V()]—V(0) V'(0)
SN+ e+ =g = ( 52 T )
" <le * sR12C) (SV ()] =V(0)) + ng;’zzs(v(z))

If we simplify the above equation, we will get

. R 1 1 1 R 1 Ri+R>
SG) [ mr+ == ) =SV(O)) ( — =+ = + o

, Ris*+L CLR> +sCRyR; +Ls + s*R,
stio) (M) =stvia (R

Therefore, we obtain the transfer function as

S(V(t)  (Ras* %) (L+Rys%)
S(i(t))  CLR,+sCRyR| +Ls+s?R;’

(14.6)

The graphical representation of the above transfer function is presented in Figure
14.4 as magnitude and phase.



128 Integral Transforms and Engineering: Theory, Methods, and Applications

(=]
T
|

dn

(=1
T
|

Magnitude, [H ()], [dB]
g

107 107 10° 1070

107° 107 10° 10"

Figure 14.4 Transfer function of the higher order circuit model 1 with the Caputo derivative
using the Sumudu transform.

14.3 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 1 WITH
CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Ri . 1 V()  d*V(t) <R1 1 )dv(z)+R1+R2

CF o »
t)+—= (g D/t - = T T o~
cr't )+C(0 rio) + CL dr? L RC) dt R.CL

V()
14.7)
If we take the Laplace transform of the both sides of Eq. (14.7), we will obtain

2
a}@@ﬂ(%GﬁWW»+L¥f»L<ﬂ$”>

+<&+-1>LCW@)+&+&LW@)

R 1

L R dt R,CL
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Then, we obtain

DL+ g (s1(i(0) - i0)) +

~(RLV0) - 5v0) -V 0) + (T + 7z ) (LY E) V(0
+ L)

If we simplify the above equation, we will get

' Rl s M) > 1 sRy s Ri+R;
— 4 ———"7 =LV — T T 5 A
L) (CL+Cs+as(X> V) (S CL+ L +R2C+ RyCL

, Ri(s+a—so)+LsM(a)\ s?CLRy +CsR{R2 + Ls + R,
L(’m)( : CL(s +a —sa) ) _L(V(t))< : CLR, )

Therefore, we obtain the transfer function as

L(V(t) Ry(Ri(s+a—so)+LsM(a))

: 14.8
L(i(t))  (s+oa—sa)(s2CLRy +CsR\Ry +Ls+R;) (14.8)

The graphical representation of the above transfer function is presented in Figure
14.5 as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (14.7), we will obtain

2
S ) + g5 6ot + S —s (470

+ (RLI + R;C) S <d‘;ft)> + R;;;ﬁzs(v(r))

Then, we obtain

S S() + ¢ o (s1)] - (o)) + S — (VO VO

* (le + sRIQC) (SIV(D)] =V (0)) + R;;gﬁzs(\/(r))

If we simplify the above equation, we will get

. Ry 1 M(O{) . 1 1 Ry 1 R+ R,
S(®)) (CL tesari- a) =Sv) ( ccteta” SR,C * R,CL )

, Ri(sa+1—oa)+LM(a)\ CLR; + sCRyR| + Ls +s°R
sty (Rl LTI gy (Lt aCRtr Lo R
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Figure 14.5 Transfer function of the higher order circuit model 1 with the Caputo-Fabrizio
derivative using the Laplace transform.

Therefore, we obtain the transfer function as

S(V({) ((sot+1— )Ry +M(at)L)s*R, (14.9)
S(i(t))  (CLRy+5sCRyRy +Ls+s*R)(sa+1—a)’ ’

The graphical representation of the above transfer function is presented in Figure
14.6 as magnitude and phase.

14.4 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 1 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

Ry . 1 ancpa V() _d®V(@) (R 1 \adv()
e+ @ DN + o =T (7 tRC) ar
RitRym (14.10)

R,CL
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Figure 14.6 Transfer function of the higher order circuit model 1 with the Caputo-Fabrizio

derivative using the Sumudu transform.

If we take the Laplace transform of

the both sides of Eq. (14.10), we will obtain

2
&)+ g (egin) + HE0 <1 (T4
Ry 1 dv(t) Ri+R;

+ (L+R2C> L( o ) + RoCL L(V(t))

Then, we obtain
so—1
L)+ e o _Ao’f)(j)a (i) —itoy) + 2D
(PO -sV 0 -V ) + (4 i ) (L) - Vo)
e LV @)
If we simplify the above equation, we will get
. R 1 SaAB((X) . 1 SRy N Ri+R;

L(i®) (a Cy¥(l—o)+a +a) = L) <s2 "ot T TRe R )
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) Ri(s*(l—oa)+ a))+ Ls*AB(ax)
L(’(I))( CL*(1—a)+a) )
s?CLRy +CsR{R2 + Ls + R,

CLR, )

— v

Therefore, we obtain the transfer function as

LV(@1) _ Re(Ri(s*(1 —a)+a)+Ls*AB()) (14.11)
L(i() ~ (s*(1— )+ a)(s2CLR, + CsRiR, + Ls + R;)” '

The graphical representation of the above transfer function is presented in Figure
14.7 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (14.10), we will obtain

2
%S(i(t))—#éS(G‘BCDf‘i(t))+S(Z£t)) :S<d6;;2(t)>

+ (121 4 Ric) s ("‘;Et)) 4 R;;Izzsw(z))

Then, we obtain

Rl . 1 AB(a) . S(V(1))
S UO)+ g g SHO1=i(0) + =
- (WO VO (B L) iswiol-vioy
R +R
weL Sv)

If we simplify the above equation, we will get

(R 1 AB(q) I 1 R 1 R+R
SGE) (22 + = —22F ) (v () [ — =+ + ot
(l())<CL+Cocsa+l—oc> ( ())< cL 2 st sre T RQCL>

, Ri(os*+1— o) +LAB(at)\ CLR; 4 sCRyR; + Ls + sR;
S(il) ( CL(as%+ 1 —a) ) =Svi) ( S2CLR, )

Therefore, we obtain the transfer function as

S(V({t) ((as*+1— )Ry +AB(a)L)s*R; (14.12)
S(i(t))  (CLRy+5sCRyRy +Ls+s2Ry)(os®+1—¢t) '

The graphical representation of the above transfer function is presented in Figure
14.8 as magnitude and phase.
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Figure 14.7 Transfer function of the higher order circuit model 1 with the ABC derivative
using the Laplace transform.
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1 5 Analysis of Higher Order
Circuit Model 2

Besides the use of first- and second-order differentiation to construct linear ordinary
differential equations, mathematicians, and engineers have also made use of higher-
order differential equations to capture the dynamics of circuit systems with more
complex components. They are referred to as higher orders because they are con-
structed using orders of more than two. In general, it is possible to form arbitrary
orders of differential equations if the function under investigation is several times
differentiable. Within the framework of an electrical circuit, having in mind that they
are called filters, an order of a different operator will then correspond to the order of
the filter, these orders describe its response. For a specific energy store element in the
circuit involving an inductor or capacitor, it is possible to add one order to the circuit
as long as the elements are not connected in a manner that leads to degeneracy, for
example, two capacitors in parallel [63-66]. In this chapter higher order circuits will
be subjected to some analysis, in particular, a Laplace transform and Sumudu trans-
forms will be used to obtain the transfer functions that will also be compared. The
classical model will be extended using fractional differential operators with different
kernels. These models will also be solved via Sumudu and Laplace transforms, and
their transfer functions will be compared for different fractional orders.

15.1 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 2 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

1 lav(t) V() d%() (R 1 \di(t) Ri+R:.
CL()+Z dt R1CL: dt2 ( 2+R1C> dt + 1131CL2l(t) (151)
If we take the Laplace transform of the both sides of Eq. (15.1), we will obtain
V) L)
(()) LL< dt )+ R|CL
1 di(t) Ri+Ry .
() (o4
Then, we have
L)+ 7 6LV - )+ )
— PL(i(r)) — si(0) — (0) + (12 1C> ) =i(0) + L)
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Figure 15.1 Transfer function of the higher order circuit model 2 with the classical derivative
using the Laplace transform.

If we simplify the above equation, we will get

LV (1)) (Z + RIICL> =L(i(r)) <82 + % + RILC * RféL)

Then, we reach

RIC+1 2R\CL+sRyR|C+Ls+R
L) (sLlR—Ci— >—L(i(t)) <s 1 +SR2C1L +Ls+ 2>
1 1

Therefore, we will obtain the transfer function as

L(V(t))  s’R\CL+sRR\C+Ls+R>
L(i(t)) sR1C+1 ’

The graphical representation of the above transfer function is presented in Figure
15.1 as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (15.1), we will obtain

1. 1,/dv() S(V({))
(:Ls(l(t))+LS( dt )+ R\CL

(50 () (50)
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Then, we have

)+ > s vy + VD)
B (S[i(t)lz_ - i/io)) * (Ri + SR11C> (S(i(r)) = i(0)) + RI; 1+C’Z2s<i<t>>

If we simplify the above equation, we will get

1 1 . 1 R 1 Ry
V() | = =W a2ty
S(V(t)) <sL + R1CL> S(i(r)) (s2 + sL + SR, C + Rch)

Then, we reach

s+RiC ) R{CL+ sRyR|C + Ls+ s2R
s (0 st ( e )

Therefore, we will obtain the transfer function as

S(V(t))  RiCL+5sRR\C+sL+s*R;
S(i(r)) s(RC+5)

The graphical representation of the above transfer function is presented in Figure
15.2 as magnitude and phase.

15.2 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 2 WITH
CAPUTO DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

1. 1

PR l‘ P
i+

V() dzi(t)+<R2+ 1 )di(t) R1+R2i(t)

RCL a2 L "RC) ar T RCL
(15.2)

If we take the Laplace transform of the both sides of Eq. (15.2), we will obtain

6DV () +

) + LDV ) + HV)

() () (40) S

Then, we have

S LG0)+ 757 (LY ()~ V(0) +

R 1

= SL(i(t)) — 5i(0) — ' (0) + (L + R1C> (SL(i(1)) —i(0)) + e L0))
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Figure 15.2 Transfer function of the higher order circuit model 2 with the classical derivative
using the Sumudu transform.

If we simplify the above equation, we will get

L(V(1)) (SZ + RIICL) = L(i(r)) (s2 + SR% + R%C + R’f&)

Then, we reach

S*RIC+1 ) $2R|CL+sRyRC+Ls+R
LV )=
<<r)>( R C ) <z<r>)( R.CL

Therefore, we will obtain the transfer function as

L(V(t))  s’R\CL+sRyR|C+Ls+R,
L(i(t)) sR1C+1 ’

The graphical representation of the above transfer function is presented in Figure
15.3 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (15.2), we will obtain

| 1 a SV (@)
aS(l(t))JrZS(th V() + R.CL

(40 (e (5)
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Figure 15.3 Transfer function of the higher order circuit model 2 with the Caputo derivative
using the Laplace transform.

Then, we have

a’ L @ R|CL
- (SO FON (B L st - 00+ s

If we simplify the above equation, we will get

1 1 e 1 R 1 Ry
SV <saL * RICL) =S (s2 Ao R1CL>

Then, we reach

s“+RICY . R\CL+ sRoR|C+ Ls+5R,
S <ue1c> =5() < RCL )

Therefore, we will obtain the transfer function as

S(V(t))  RiCL+5sRR\C+sL+s*R;
S(i(t)) 527 (R, C +s%)

The graphical representation of the above transfer function is presented in Figure
15.4 as magnitude and phase.
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Figure 15.4 Transfer function of the higher order circuit model 2 with the Caputo derivative

using the Sumudu transform.

15.3 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 2 WITH

CAPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and

Sumudu transforms to obtain the solution.

1. 1 cra V() d%i(t)  (Ry 1 \di(t) Ri+Rs.
e+ @D V(t)HRch’ a \TYre)ar T Rer W
(15.3)
If we take the Laplace transform of the both sides of Eq. (15.3), we will obtain
1 1 L(V(1))
7L 7L CFDOC
L (l(t))+L 6 DV (n) + R.CL
di(t) R, 1 di(t)\ Ri+Ry .
=L —“+— L — L
< ar >+<L e a )t Rer FEO)
Then, we have
1. 1 M(a) L(V(1))
—L(i(t)) + ————— (sL(V(1)) = V(0
L (l())+Ls+a_m(s V(1)) =V(0)+ R.CL
R 1 Ri+R
21/ . . 2 . . 1 2 .
=L — — —“ 4+ — | (sL — L
RL(0) ~5(0) =0+ ( 2+ iz ) (L0) ~10) + T L)
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If we simplify the above equation, we will get

sM () | N, sRy s Ry
L) (L(s—i— o —sa) * R1CL> = Liitt)) <s2 T TRe” RICL)

Then, we reach

S N — 8 S2 s s
L(V(t))( M(@)R,C+s5+a a):L(i(t))( R\CL+ sRyR,C+ L +R2>

LR\ C(s+ o —sat) R,CL
Therefore, we will obtain the transfer function as

L(V(t)) (s+a—sa)(s?RiCL+sRiR,C+ Ls+Ry)
L(i(t)) SM(0)R\1C+s+ 0 —sa

The graphical representation of the above transfer function is presented in Figure
15.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (15.3), we will obtain

G S+ 17 pev() + S0

—s <dz(;)> + (RLz + RiC> S (d;(;)> + R;LIZZS(I'(I))

Then, we have

arSG) + O (v (o) ~v()+

_ (s[i(t)]sz—i(o) - i’(SO)) N (fz L sR11C> (S(it)) — i(0)) + R;szs(i(t))

S(V())
R,CL

If we simplify the above equation, we will get

M(a) 1 s 1 R 1 R
S (L(soc—i- 1-a) - R1CL> =Sle)) (32 i i i SR, C " RléL)

Then, we reach

— u S s+ 52
SV () (M(a)R1c+1 o+ a)_ (i(t))<R1CL+ RyR,C+Ls + Rz)

(1—o+sa)LRiC ) $2R|CL
Therefore, we will obtain the transfer function as

S(V(¢))  (RiCL+sRyR\C+sL+s*R>)(1 — ot —sx)

S@i(t)) s2(M(a)RIC+1—a+sa)

The graphical representation of the above transfer function is presented in Figure
15.6 as magnitude and phase.
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Figure 15.5 Transfer function of the higher order circuit model 2 with the Caputo-Fabrizio
derivative using the Laplace transform.

15.4 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 2 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

L i)+~ (3%Dav(r) + Vi) _ 4 <R2 + 1) dilt)  RitRs,.

al

L RICL ~ dr? L "RIC) di ' RCL
(15.4)
If we take the Laplace transform of the both sides of Eq. (15.4), we will obtain
. 1 L(V(1))
LU0 + LDV () + Ty
d%i(t) R, 1 di(t)\ Ri+R2
=L —4+—|L L(i(t
< a? )"\ T TR a )t Rer HEO)
Then, we have
1 1 s*'AB(«) L(V(1))
— L (i(t ———— (sL(V(t)) - V(0
PO+ ] g 1 g CHV ) VIO + e

+o
= $*L(i(1)) — 5i(0) — ' (0) + ( + ) (SL(i()) —i(0)) + TR Gy
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Figure 15.6 Transfer function of the higher order circuit model 2 with the Caputo-Fabrizio
derivative using the Sumudu transform.

If we simplify the above equation, we will get

LV (1) (is“erBOE;ija—FRllCL) — L(i(1)) (sz+sf’?2+s+ Ry )

Then, we reach

sAB(a)R\C+s*(1—a)+o\ . s’RiCL+5sRyR|C + Ls+ R
L( (t)) < R]CL(Sa(l — (X)+(X) ) _L(l(t)) < R,CL )

Therefore, we will obtain the transfer function as

LV(t) (s*(1—oa)+a)(s*RiCL+ sR\R,C +Ls+R») .

L(i(t)) sPAB(0))R|C+5%(1 — o) + o

The graphical representation of the above transfer function is presented in Figure
15.7 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (15.4), we will obtain

1 1 SV ()

SO+ 7S (v () + 2

-S(58) ()5 s
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Figure 15.7 Transfer function of the higher order circuit model 2 with the ABC derivative
using the Laplace transform.

Then, we have

S+ 3 2B (s -v() + L)

If we simplify the above equation, we will get

1 AB(a) 1 s 1 R 1 Ry
Svi) <L ' 1—a R1CL> = S(i®) <s2 TSR T R1CL>

Then, we reach

AB(a)R|IC+as*+1—« , Ri{CL+ sRyR|C +Ls+ s*Ry
S(V(t = S(i(t
( ())( RiCL(as® +1— ) (i(0)) s2R\CL

Therefore, we will obtain the transfer function as

S3i(t)) s2(AB(0))RiC+ 1 — a+ ous®)

S(V(t)) (RiCL+sRyR C+sL+s*Ry)(ats® +1— )

The graphical representation of the above transfer function is presented in Figure
15.8 as magnitude and phase.
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Figure 15.8 Transfer function of the higher order circuit model 2 with the ABC derivative
using the Sumudu transform.
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1 6 Analysis of Higher Order
Circuit Model 3

A different linear ordinary differential equation with two orders is under investiga-
tion in this chapter. The two orders correspond to two energy-saving components
including two capacitors, two inductors, or a combination of one capacitor and one
resistor where the system depends and does not depend on voltage sources and de-
pendent and independent current sources [67—70]. Since this mathematical model is
a linear equation, therefore can be solved using an integral transform like Sumudu
and Laplace transforms. However, we do not aim to obtain the exact solution to
this problem but to obtain the associate transfer functions. Besides this exercise, we
also aim to extend the model by replacing the time classical derivative with different
fractional differential operators including the Caputo derivative, the Caputo-Fabrizio
derivative, and finally the Atangana-Baleanu fractional derivative. For each model,
the Laplace transform and Sumudu transform are applied to obtain transfer functions.
These transfer functions are compared to access the effect of Sumudu and each frac-
tional derivative.

16.1 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 3 WITH
CLASSICAL DERIVATIVE

We consider the model with classical derivative. We apply Laplace and Sumudu
transforms to obtain the solution.

1 azvl(z)+ Vi(t)  d*Wa(r) ( 1 1

1
= Vo(t) + ———VWa(t
R,C, dt RIR,C1Cy dr? RCy + R2C2> 2( )+R1R2C1C2 2( )

(16.1)
If we take the Laplace transform of the both sides of Eq. (16.1), we will obtain

L, (an() n LWi(t))
R,C, dt RiRC1Cy

d*Vs(t) 1 1 1
- L( dfz ) + (R1C1 + chz) L(Va(t)) + 7R1R2C1C2L(Vz(t))

Then, we obtain

e BLV0) ~Vi(0) + i
= (L) -0 - V0 + (i + gy ) L)
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If we simplify the above equation, we will get

L) (= 4 ! L) (P !
= s
! R,C,  RiR,Ci1Cy 2 RiC; RyC» RiR,CiCy

Thus, we have

sSR1Cy +1 S2R1R,C1Cr 4+ RyCr + R1Cy + 1
L04() (et ) =200 e )

Therefore, we obtain the transfer function as

LVa(1)) SR\Cy + 1

= . 16.2
L(Vl(t)) S2R1R2C1C2 +R,Co+R1C1+1 ( )

The graphical representation of the above transfer function is presented in Figure
16.1 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (16.1), we will obtain

1 S dvi(t) n S(Vi(t))
R,C, dt RiRC1Cy

a*(t) 1 1 1
:S< dt22 ) + <R1C1 +R2C2> S(VZ(I))‘F mS(VQ(Z‘))

Then, we obtain

1 S(Vi(1))
ﬂibmwm»—wm»+ﬁﬁiﬂg

_ (sp@(x)]sz— V2(0) V£§0)> + <R11Cl 4 R;@) S(Va(r)+

— SV
RiR,CiG,S (V2 (1)

If we simplify the above equation, we will get

| 1 11 1 1
S(Va(t =SW2) | 7
Vi(1)) (ngCz + R1R2C1C2) (V2(1)) <s2 + R1C1 * RoCy * R1R2C1C2)

Thus, we have

RiCi+s RI{R,Ci1Cy + s*RyCy + 2R Cy + 52
S(Vi(t —— | =S(Wa(t
( ]( )) <SR1R2C1C2) ( 2( )) ( S2R1R2C1C2

Therefore, we obtain the transfer function as

S(Va(1)) _ s(R1C1 +5)
S(V] (t)) RIR,C1C, +S2R2C2 —|—S2R1C1 +s52°

(16.3)

The graphical representation of the above transfer function is presented in Figure
16.2 as magnitude and phase.
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Figure 16.1 Transfer function of the higher order circuit model 3 with the classical derivative
using the Laplace transform.

16.2 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 3 WITH
CAPUTO DERIVATIVE

We consider the model with Caputo derivative. We apply Laplace and Sumudu trans-
forms to obtain the solution.

1 Vi(t) d*Vs(t) 1 1
—— (§D*Vy (¢t = Vo(t
Ry, (0 gl ))+R1R2C1C2 dr? + RCy +R2C2 2(¢)
1
—V(t 16.4
+R1R2C1C2 2 (1) (16.4)

If we take the Laplace transform of the both sides of Eq. (16.4), we will obtain

1
mL(gD?Vl (1) +

d*Vs(t) 1 1 1
- L( dfz ) + (R1C1 + R2C2) L(Va(t)) + 7R1R2C1C2L(Vz(t))

LVi(1))
RiR,C1Cy
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Figure 16.2 Transfer function of the higher order circuit model 3 with the classical derivative
using the Sumudu transform.

Then, we obtain

L(Vi(7))
R{R,C1Cy

B0 s“H(sL(Vi (1)) = Vi (0)) +

— (PLVa(1)) — sV3(0) — VA(0)) + (Rllcl + R21c2) La(0) + mL(Vz(I))

If we simplify the above equation, we will get
s* 1 2 1 1 1
L(Vy(t =L(Va(t
() (R2C2 + R1R2C1C2) (V2(1)) (S + RCy + R, + R1R2C1C2)
Thus, we have

S*R1Cy+1 32R1R2C1C2 +RyCo +Ri1Cr+ 1
L(Vq(t —— | = L(W(t
Vi) ( N ) Va(0) ( ke )

Therefore, we obtain the transfer function as

L(Va(1)) _ sRiC1+1 (16.5)

L(Vi(t))  s2RiRyCi1Cy +RyCo+RiC1+1°

The graphical representation of the above transfer function is presented in Figure
16.3 as magnitude and phase.
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Figure 16.3 Transfer function of the higher order circuit model 3 with the Caputo derivative
using the Laplace transform.

If we take the Sumudu transform of the both sides of Eq. (16.4), we will obtain

SWi())
R{R,C1Cy

o[ d*Va() 1 1 1
= S< i ) + (R1C1 + R2C2> S(Vz(t))+7R1R2C1C2S(V2(t))

Then, we obtain
1 S(Vi(r)—Vi(0) =~ S(Vi(r))
Ry s Ri{R,CCy

- (SO O (Y s

1
ms(thaVl (1) +

§(V2(2))
If we simplify the above equation, we will get

S (et — Y s (L L
! S*R,Cr  R1R,C1Cy o 2 s2  RiC; RxC, RIR,CiCy

Thus, we have

RiCy + 5% —S(V (t)) R1R2C1C2+S2R2C2+S2R1C1 —|—S2
SRR, C1Cy B 2 $2RR,C1Cy

swi(0) (
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Figure 16.4 Transfer function of the higher order circuit model 3 with the Caputo derivative
using the Sumudu transform.

Therefore, we obtain the transfer function as

S(Va(t)) s?7%(R|Cy +5%)
S(Vl (t)) o RiR,C1Cy + s2RyCy + s2R|Cy + 5%~

(16.6)

The graphical representation of the above transfer function is presented in Figure
16.4 as magnitude and phase.

16.3 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 3 WITH
CPUTO-FABRIZIO DERIVATIVE

We consider the model with Caputo-Fabrizio derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

| P, Vi(1) d*Vs (1) 1 1
—_— D7V (t = Vo(t
Ry, (0 ! 1( )) + Ri{R,C1Cy dr? + RCy + R, 2( )

1
— V(¢ 16.7
+R1R2C1C2 >(2) (16.7)
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If we take the Laplace transform of the both sides of Eq. (16.7), we will obtain

1 L(Vi(1))
R,y RiRC1

d*Vs (1) 1 1 1
=L L(Vh(t —L(Vh(t
( dr? + RIC +R2C2 (Va( ))+R1R2C1C2 (V2(1))
Then, we obtain

e L(Vi(2))
G T (LIA) = Vi(0) +

L(5"DfMVi(r)) +

, 1 1 1
= (SZL(VZ(I)) —SVZ(O) _VZ(O)) + (RlCl + RzC2> L(VQ(I)) + mL(VQ([))

If we simplify the above equation, we will get

L0 (e rass t TRGE)

R,Crs+oa—sa  RiR,CiCy

1 1 1
=L(Va(1)) | s* + + +
RiCi R  RiR,Ci(Gy

Thus, we have

L(V[ (t)) <SR1C1M((X)+S+(1—S(X>

(RIR,C1Cy) (s + a—sa)
S2R1R2C1C2 + R G +Ri1Cr+ 1
RI1R,C1

~0a0)

Therefore, we obtain the transfer function as

L(Va(1)) sM(0)R|Ci + s+ o —sa
= . (16.8)
L(V](l‘)) (S R1R2C1C2+R2C2+R1C1+1)(S-|—OC—SO£)

The graphical representation of the above transfer function is presented in Figure
16.5 as magnitude and phase.
If we take the Sumudu transform of the both sides of Eq. (16.7), we will obtain

! S(Vi(1))
—S(§D*V (1 —_—

R,y
d*Vs(t) 1 1 1
=9 S(WVo(t — S (W (¢
( dr? * R\ C +RzCz (Va( ))+R1R2C1C2 (12())

Then, we obtain

1 Ma) . . S(Vi(1))
E@gﬁjjaGMm—@D+EEéa
_ <S[V2(f)]—V2(0) _V5(0>>+< 1 1

S(Valt
52 RCy +R2C2> (Va()) +

—— SVt
RiRCiCo (V2 (1)
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Figure 16.5 Transfer function of the higher order circuit model 3 with the Caputo-Fabrizio
derivative using the Laplace transform.

If we simplify the above equation, we will get

1 M(a) 1
S(Vi (¢t
0 (r s+ G

—s) (L]
N 2 S2 R1C1 RzCz R1R2C1C2

Thus, we have

S(V]( )) <R1C1M(a) +sa+1— (X>
(SOC+ 1 —a)R1R,C1Cy
=S(V5(t)) <R1R2C1C2 +2s2R2C2 +5°R,Cy +s2>
S*R1R,C1Cy

Therefore, we obtain the transfer function as

S(Va(t)) sS2(RICIM () +sa+1—a) (169)
S(Vi(t))  (RiR2C1Ca + s2RyCy + s2R 1 C +52) (sa+1— ) ’

The graphical representation of the above transfer function is presented in Figure
16.6 as magnitude and phase.
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Figure 16.6 Transfer function of the higher order circuit model 3 with the Caputo-Fabrizio
derivative using the Sumudu transform.

16.4 ANALYSIS OF HIGHER ORDER CIRCUIT MODEL 3 WITH
ATANGANA-BALEANU DERIVATIVE

We consider the model with Atangana-Baleanu derivative. We apply Laplace and
Sumudu transforms to obtain the solution.

1 ABC o Vi(t) d*Vy(t) 1 1
DXV, (t = Va(t
RG> (0™ 1())+R1R2C1C2 a2 \ra TRaG )W

1
— W (t 16.10
+R1R2C]C2 2(2) ( )

If we take the Laplace transform of the both sides of Eq. (16.10), we will obtain

1 ABC o
— L (4B¢p2y, (¢
R,C, (0™ D)) +

d*Vs(t) 1 1 1
=L < e ) + (R1C1 + chz) L(Vah(t))+ 7R1R2C1C2L(Vz(t))

L(Vi(1))
RiR,C1
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Then, we obtain

1 s*'AB(a) L(Vyi())
L(Vi(t))—V1(0 —
R2C2s°‘(1—a)+a(s ( 1( )) 1( ))+R1R2C1C2
1 1
2 /
= (s"L(Va(t)) —sV2(0) = V,(0 — | L(Va(z
(PLOA) ~20) =V O0) + (i + gy ) LR
1
—L(W(¢
et 20)
If we simplify the above equation, we will get
1 s®AB(a 1
LG () )
RGrys*(1—a)+a  RiRCi1C

1 1 1
=L(Va(1)) | 8*+ + +
RiCi  RG  RiIR,Ci(Gy

Thus, we have

L) (so‘RIClAB(a) +5%(1—a) +(x)

(R1R2C1C2)(Sa(1 — Ot) + OC)

s’°R1RyC1Cy +RyCy + R Cy + 1 >

=L(Va(1)) ( RiR:C\Cy

Therefore, we obtain the transfer function as

L(Vz(t)) . s“R1C1AB(a)+s°‘(1—a)+oc (16.11)

L(Vi(2)) o (S2R1R2C1C2 +RG+RICI+ 1) (s%(1—0a)+ ) ' '
The graphical representation of the above transfer function is presented in Figure
16.7 as magnitude and phase.

If we take the Sumudu transform of the both sides of Eq. (16.10), we will obtain

1
R,

N RZ10) 1 1 1
_S< 2 ) + (Rlcl +R2C2) S(Vz(t))+R71R2C1C2S(V2<t))

Then, we obtain

SMWi(0))

S@DE0) + ¢ oo

Rzlcz as?‘i(;x)_ P (SVi(t)] =v1(0)) + %C(‘?C)‘z
- (S[Vz(t)l’z_ =0 V2§0)> + (RIIC1 + R2]C2) S(Wa(1))

1
+R1R2C1C2

§(Va(1))
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Figure 16.7 Transfer function of the higher order circuit model 3 with the ABC derivative
using the Laplace transform.

If we simplify the above equation, we will get

1 AB(a) !
S(Vi(z
Wi(1)) <R2C2 as®+1—a R1R2C1C2>

A0 (- LU S
o 2 52 RICi RC» RiR,CiCy

Thus, we have

S( 1(2‘)) (RlclAB((X) +os®+1— (X>
(OCSO‘ +1—a)RR,CiCy
= S(Va(1)) (R1R2C1C2 +2S2R2C2 +5°R|Cy +s2>
S*R1R,C1Cy

Therefore, we obtain the transfer function as

S(Va(t)) s?(RIC1AB(a) + as® + 1 — ) (16.12)
S(Vi(t))  (RiRaC1Cy+s2RyCyr + s2R1Cy +52) (as® + 1 — ) '

The graphical representation of the above transfer function is presented in Figure
16.8 as magnitude and phase.
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using the Sumudu transform.



’l 7 Nonlinear Model 1

Within the framework of mathematics, applied mathematics, and other fields of sci-
ence, a nonlinear equation can be viewed as an equation in which the change of
the output is not proportional to the change of input. The nonlinearity is an addi-
tional force that has a significant impact on the system behavior. These differential
operators have been found fundamental and powerful tools for describing processes
with nonlinear behaviors; thus they have been used to model real-world problems
in engineering, biology, physics, chemistry, and many other fields [71]. These equa-
tions have been applied in modeling electric circuits. In particular, a nonlinear circuit
can be viewed as an electric circuit for which parameters changed concerning cur-
rent and voltage. This implies that an electric circuit for which parameters including
resistance, inductance, capacitance, waveform, frequency, and many others is not
constant. Due to the wider applicability of these models, there is a need to obtain
their exact solutions to predict future behaviors of the system. However, due to non-
linearity, it is sometimes impossible to derive an exact solution; therefore, numerical
schemes are used to provide numerical solutions to these equations. In this chapter
we shall consider a nonlinear differential equation able to depict the dynamic behav-
ior of the nonlinear circuit. The model will be extended to the concept of fractional
nonlinear differential equations. Three different fractional differential operators will
be employed for this purpose. For each model, a numerical scheme based on the
Lagrange interpolation will be used to provide numerical solutions. Different theo-
retical investigations will be performed to insure the well-posedness of the model.
We consider the following system with the Caputo derivative

6Dfx(t) = x(1) (y(1) —2(1)x(t)) = F(x,3,2,1)
6D7y(1) = 2() (x(r) = y(r)) = H(x,y,2,1)
6D72(t) = x(r) = 2(t)y(r) = G(x,y,2,1)

We transform the above system to the following system as

x(t) —x(0) = ﬁ/olF(x,y,z,r)(t—r)o‘*ldr
¥(0) —3(0) = ﬁ [ Heyzna-oetas
Z(t) _Z(O) = % /(: G(x?y7Z’ T)(t_ T)aildr

DOI: 10.1201/9781003359869-17 159
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Then, we consider the system att =1¢,,y :

! /tn+1 F( 7)(, )% ldr
F(Ot) 0 X525 n+1

1 Int1
— H _ o1
owi) =3O+ g [ HG Do~
ber) = 2(0)+ —— [ G( (1 a=lq
Z( n+1) _Z( )+F(a)/0 x7y>Z7T) n+1 T) T

x(tn—H) = x(O) +

Then, we apply the Atangana-Toufik method and obtain

- Ar)®
+1_ .0 (A0 Lk o
=x +/<ZZ)<F(O‘+2) XV E ) (n+1-k%n—k+2+a)

—(n—k)*(n—k+2+2a))
F((ffz)m"-l,yk-l,zk-l,tk_o (110 (=)= 1+ @) )

=y +Z< T(a+2) HE V22 0) (n+1-0)%n—k+2+a)

—(n—k)*(n—k+2+2a))
—F((i’fz)m"l,y“,z“,tk_o (010 = (1= 0=k 140

I_/ +Zn:< Fa+2) G 2K ) (n+1-k)*(n—k+2+a)

—(n—k)*(n—k+2+42a))
—MG()CI‘*1 YL E ) (n+ 10" —(n—k)*(n—k+ 1+ a))
F((X + 2) 9 9 9
We consider the following system with the ABC derivative:

07 Dfx(t) = x(1) (y(t) — 2(1)x(¢)) = F (x,3,2,1)
0°CDRy(1) = 2(r) (x(r) = y(r)) = H(x,y,2,1)
0°DRz(t) = x(1) = 2(t)y(1) = G(x,y,2.1)

We transform the above system to the following system as

1—«a

x(t)—x(O):WF(x,y,z,t) W/ F(x,y,2,7)(t—1)%" ldt
1—a a—

(0 =30) = Jpees s+ g [ ez oo —o dr

2(t) — 2(0) = AlB%((;)G(x,y,z,t) W/ Glxy,2,7)(t — 7)% 'de
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Then, we consider the system att =1#,; :

-«
x(tns1) =x(0) + mF (*,,2,tn)
o In+1
_* F ) (tyer — 7)% 'dt
+ABC((X)F(a) 0 (xvyaza )( +1 )
-«
y( n+l) y( )+ABC(OC) (x7yaz n)
o Tn+1

+ H(xayazar)(tn"'l _T)aildr

ABC(a)I'(@) Jo
-«
—G 1
ABC(a) (x7y7Z7 n)
o Int1

ABC(o)T'(a) Jo

Z(tn+1 ) :Z(O) +

+ G(xvyazvf)(thrl _T)a_ldT

Then, we apply the Atangana-Toufik method and obtain
-«
ABC(a)

n AL .
+AB((;t(oc) k;() (r((atj_z)F(xk’yk»Zkvfk)((’l+1—k) (n—k+2+a)

anrl :x0+

F(xn7yn7znatn)

—(n—k)*(n—k+2+2a))

161

g A A ) (0 1R k14 )
y :yo+Aizg(z)H(X",y",Z”Jn)

o n (At)a o
+ABC(a)kgb<r(a+2)H(xk,yk,zk,tk)((n+1—k) (n—k+2+a)
—(n—k)%*n—k+2+42a))

—I%H(xkl,ykl,zkl,tkl) ((n+ 11— —(n—k)*(n—k+1 —HX)))
Zn+l :ZO+ ~a G(xnaynazn’tﬂ)

ABC(a)

o (Ar)*
* 4BC(@) ,§0 (F(OH—Z)
—(n—k)*(n—k+2+2a))

(an)*

n

G W5 0) (n+ 1K) (n—k+2+ o)

— G YT AT e ) (1 =R — (n— k)% (n—k+ 1+ oc))>

IN'a+2)
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We consider the following system with the Caputo-Fabrizio derivative:

6 DPtx(t) = x(r) (v(r) —z(0)x(t)) = F (x,y.2.1)
6" Dfy(r) =2(t) (x(e) = y()) = H(x,,2,1)
oCFD?‘ (1) = x(1) = 2(1)y(1) = G(x,y,2,1)

We transform the above system to the following system as

x(t) —x(0) = ;/I%O?;F(x,y,z,t) + % /)tF(x,y,z, T)dt

y(t)—y(0) = %H(x,y,z,t) + %Oc) /OIH()c,y,z7 T)dt

dﬁ—zm)—%i;jG@ygt ﬁi%SAQX&%@ryn

Then, we consider the system att =¢,; and t =1, as

-« o Tnt1
-x<tn+1) :x(o)'i_Mia)F(xayaZ?ln)'i_W/o F<x7y7Z7T)dT

<
Y1) = ¥(0) + %sz,m + e "tz yas
(

o Int1

G 3 — G T)dT
(x,3,2, n)+M(a) A (x,3,2,7)

2lins1) =2(0) + 305

l—o a In
t,) =x(0)+ ——F th — F d
‘x( n) ‘x( )+M((X) (x7y7Z7 n 1)+M(a) 0 (x7y7Z;T) T
(6) = () + % H(xyztn 1)+ 2 [ Hx,y,z, 7)d7
Yn) =Yy M(a) y Yy 25 In—1 M((X) 0 Yy s
(ty) = (O)+;aG(x ! )+L tnG(x T)dT
\ln) =2 M(a) 3V Zyln—1 M((X) 0 y Yy s
Then, we obtain
1—a
x(thrl) = x(tﬂ)+W(F<x7yazatﬂ)—F(xvyazatl’l*l))
a 3At At
= _(=F ~=F _
+ M((X)( ) (Xay»thn) ) ()C7y,Z,tn 1))
11—«
y(tn+1) = y(tn>+W(H(x7yaZatn)_H(x7yazatn—1)>
o 3At At
+ M(a)<2H(x,y,z,tn)—zH(x,y,z,tn1))
-
Z(t}’l+1) = Z(tn)+ (G(x,y,z,tn)—G(x,y,z,tn,l))

M(a)
[0 3At

At
—— | =G t,)——G th—
+ (a) ( ) (xay7Z7 n) ) (-x7y7Z7 n 1))

<
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We consider the following system with the fractal fractional derivative using
power law kernel:

FFPDa (t) X
FFPDO‘y(t) z
0P Dz(r) = x

(t) ((t) — z(t)x(t)) = F (x,y,2,1)
(t) (x(t) = (1)) = H(x,,2,1)
(t) —z(t)y(t) = G(x,y,2,1)

We can write the above system as

§-Dfx(t) = PP F (x,y,2,1) = K(x,y,2,1)
§“Dfy(t) = BtP ' H (x,y,2,1) = L(x,y,2,1)
§-D (1) = BrP ' G(x,y,2,1) = M(x,y,2,1)
We transform the above system to the following system as
1 t
N—x(0)==— [ K r—1)%d
1) —x(0) = gy [ Klsyz ) — ) lax
] t
t)—y(0 :—/Lx, ,2,7)(t—1)% ldr
y(t) = ¥(0) () Jo (x,7,2,7)(t = 7)
1 1
z(¢) —z(0 :—/Mx, .2,7)(t—1)% ldrt
(1) —2(0) T Jo (x,3,2,7)(t—17)

Then, we consider the system att =141 :

1 Tn+1
X(tn+1) :X(O)‘Fi/ K(anazvr)(tn+1 _T)aildf

I'(a) Jo
(tnt1) = (0)‘*‘71 tHlL( )|t )*d
Y\n+1 y F(OC)/() X, 0,2, T)In+1 T T
(tn1) = (0)+71 IMM( )@ )*d
- X, 0,2,T -7 T
ZIn+1 < F(Ot) 0 »Z n+1

Then, we apply the Atangana-Toufik method and obtain
=y +Z< KXy 25 0) (n4+1—k)*(n—k+2+a)

—(n—k)* (n—k+2+2a))
KT T A ) (1= (- %kt 14 0) )

ntl _ s (A «
H_y0+,<20<r(<x+2) (F VK ) (n4+1—k)*(n—k+2+a)

—(n—k)*(n—k+2+2a))
g AL ) (0 1= - -k 1+ @) )
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I—, +Z< MV ) (n+1-0)%(n—k+2+a)

—(n—k)* (nfk+2+2a))
MG A A ) (0 1R = (k4 )

We consider the following system with the fractal fractional derivative using the
generalized Mittag-Leffler function as

x(t) (y(t) —z(t)x(2)) = F(x,,2,)
z(t) (x(t) =y(2)) = H(x,y,2,1)
x(t) —z(t)y(t) = G(x,y,2,1)

We can write the above system as

FFMDOC (I)
FFMDocy(t)
EPM D ()

0PEDx(t) = PP F (x,y,2,0) = K(x, 3, 2,1)

ABRD"‘ (1) = B~ H (x,y,2,1) = L(x,y,2,1)

078D (1) = BrP ' G(x,y,2.1) = M(x,y,2,1)
We transform the above system to the following system as

1—«a

1) —x(0)= —+K )+ ——— | K( r—1)%ld
) ~x(0) = ey Koy 0+ ABC( | Kenano—o s
-«
1) —y(0) = ——L t L( a-lyg
3(0)=30) = Jpeter e an) + perarrar ) s oo —o) lds
-«
t) — =M )+ ——e— | M( r—1)%1d
() =2(0) = M) + gperoies [ Mleyz - e
Then, we consider the system at ¢ = ¢, :
-«
X(tay1) = X(O)+WK(X7%Z,%)

A (04 (04 /tn 1 ( )(t + ) !
K(x,y,z,T T drt
BC( )F( ) 0 SARS ntl

|
farl) = o Ly, 2.t
Y(tay1) y(O)JrABC(a) (%,7,2,1)
o Int1
ARC( T (v L a1l
" ABC(a)F(Ot)/Q (0,22, T) (tar1 — T) drt
l-a
t}’l = 0 7M Y, ’tn
z( +1) Z( )+ABC(a) (Xyz )

o

Tnt1
—_— M TItp+e1— T a_ldT
+ ABC((X)F((X) /0 (X,y,Z, )( +1 )
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Then, we apply the Atangana-Toufik method and obtain

1—-a
n—+1 0 n .n _n
ABC(O!) ( LA n)

Ar)®

a (
+ ABC(@) ,;0 (F(a +2)

n

KXy 25 0) (n4+1-0)*(n—k+2+a)

—(n—k)*(n—k+2+2a))

g KO L) (0 1= = (=)= 1+ @) )

-«
n+1 0 n.n _n
=y + L t
y y QBC(OZ) (x ?y 7Z ) n)

+ 150w (et (e 1=k ks 240)
—(n=k)*(n—k+2+2a))
(an)®

,mL(xk—lvyk—lvzk—l,tk—l) (n+1-k)* ' —(n—k)*(n—k+1+ a))>

ABg(a)
o (Ar)*

T ABC(a) k;) (F(OH—Z)

—(n—k)*(n—k+2+2a))

oM ) (41 = (1 k4140 )

Zn+1 :ZO+

M(x",y",7" 1)

n

MV F ) (n+1-k)*(n—k+2+a)

We consider the following system with the fractal fractional derivative using the
exponential decay kernel:

(t)x(1)) = F(x,y,2,)
) = H(xvy’zat)
(t) —z(t)y(t) = G(x,y,2,1)

We can write the above system as

CFEDEx(1) = x(1) (v(1) —
FFEDXY(1) =2 )
FPEDEL(r) = x

SFDEx(t) = BtP~IF (x,y,2,t) = K(x,y,2,1)
SEDEy(t) = BtP~VH (x,y,z,t) = L(x,y,2,1)
SEDYz(t) = BtP1G(x,y,2,t) = M(x,y,2,)
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We transform the above system to the following system as

x(t) —x(0) = %Ku,y,z,n + i [ Ky oyae
y(1) = y(0) = %L(x, y,2,0) + ﬁ /0 "Lixy,2,7)de
() =2(0) = M) + g [ Mteyzvyas

Then, we consider the system atf =f,41 and t =1, as

() = X0+ 4o Kyt + o [ Koz o
X\p+1) =X M((X) X, Y, 251n M(Ot) o Xy Y25
(1) = Y(0) - % Ly, zyt) + 2 /thL( t)dr
Y1) =Y M(a) X, Y,25In M(a) 0 X, ¥,25
tnit) = 2(0) + —2Mm w4 =2 (" d
Z( n+1)—Z( ) W (X,}GZ: n) W 0 (x7y7Z7T) T
(1) = x(0) + X Keyztn) + 2 [ K(xyzn)de
X\lp) =X M((x) X, Y, 25In—1 M(OC) o Xy ,25
(1) =3(0) + 3y Loty )+ 3o [ Lz, 2)de
W) =Y M(a) X, Y, 2,In—1 M(a) o X2,
(1) = 20) 4~ E M yzter) + 2 [ Mxy.z0)de
= —_— X — — X
Z\Iln < M((X) sV Zoln—1 M(Ot) 0 InZye
Then, we obtain
-«
x(t}’lJrl) = x(tn)+W(K(xvyaz,tn)_K(xayazvtnfl))
a 3At At
2 (g el e .
+ M(a)( ) (x»)@Zatn) ) (x7yaz7tn 1))
-«
y(thrl) = y(tn)+W(L(X,y,Z7tn)_L(X,y7z,fn7]))
() - 2 Lyan )
M((X) ) X, Y, 25In ) X, Y, 25 In—1
-«
Z\ln+1 = I I N X, 0, 2,In) — XY, 25 In—1
(et) = 20+ 3 (M)~ M 2ta1)

o 3At At
— (=M™ b)) — — — M(X,y, 2,1
+ M(a)< > (x,3,2,1) 3 (x,3,2,t 1))



’l 8 Chua Circuit Model

In this section we consider the Chua circuit model with the Caputo, Caputo-Fabrizio,
and Atangana-Baleanu derivatives. We also take into consideration the fractal frac-
tional derivative using power law, exponential decay law, and the generalized Mittag-
Leffler law kernels. We discretize the problem with all derivatives. We use the two-
step Lagrange polynomial to get the desired results. We apply the Atangana-Toufik
method to the model for all derivatives. We obtain very effective results for this
model [16,17,72-74].
We consider the following system with the Caputo derivative:

§Dx(1) = a(y(1) — o (x(1))) = F(x,y,1)
SDEy(t) = x(t) —y(t) +2(t) = H(x,y,2,1)
6D z(t) = —Ay(t) = G(y,1)

We transform the above system to the following system as

1

X(t) —x(0) = m/(:F(x,y, O — 1) dr

0 =30) = g5 [ Hnz o) —0) 'ae
dn—4m=f%5[ﬁXxwa—rw4dT

Then, we consider the system att =1, :

1

x(tni1) = x(0) + )A%“FuyanH—rw—wr

I'la
i) =30+ —— [ H ! aly
Y(tagr1) = ¥( HTOO A (6, 3,2,T) (tas1 —7)% " dT
(tay1) = z(0) + L Gy, 7)(t, )% ldt
1) =2 F(OC) 0 Vs n+1

Then, we apply the Atangana-Toufik method and obtain

K :xo+1§ (r((OACt_)i_O;)F(xk,yk,tk) (n+1-k)*n—k+2+a)

—(n—k)*(n—k+2+2a))
(Ar)*

“Hayyy &) (4 1-0 —<n—k)“(n—k+1+a>>>
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= +§:< T(a+2) H( 5200 (n+ 1= 0% (n—k+2+ @)

—(n—k)%*(n—k+2+2a))
(An)*

—mH(xk”,yk”,zk”,tH) (n 1=k — (n—K)*(n—k+1 +a))>

l=¢ +Z( Mla+2) GO ) (n+1-k)*(n—k+2+a)

—(n—k)*(n—k+2+2a))
(An)*

Fla g 00 ) (1R = (=R %k 1+ @) )

We consider the following system with the ABC derivative:

ABCDOC ( Y=a(y(t)—¢(x(r))) = F(x,yt)
ABCDay( t)=x(t) —y(t)+z(t) = H(x,y,z,t)
ABcDa (t) = —Ay(t) = G(y,1)

We transform the above system to the following system as

11—«

1) —(0) = i Fen )+ ﬂiﬁ——f/Fx%)O—)“Wr
y(t) —y(0) = ALE(OOCC)H(x,y,z,I) ABC(a / H(x,y,2,T T)afldr
11—« o

)’J)'i‘m/o G(y,7)(t—1)* ldt

Then, we consider the system at ¢ =f,,4 :

2(0) ~2(0) = e O

) = 30)+ et F ()

" WAIH+1F(X’V77)(fn+1T)a_ldr

net) = YO+ 1pes

a In+1
ABC(@)T (@) Jo

) = 0)+ e Glu)

H(x,y,zJ,,)

H(X,y,z, T)(t71+1 - T)a_ldT

m/oml G(y,T)(tay1 —7)% ldt
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Then, we apply the Atangana-Toufik method and obtain

X'IHZXOJFA;C(OC) (" 1)
+ABg(a) kzo <p((2[ia2)F(xk,y",zk) (n+1-k)*n—k+2+a)

—(n—k)*(n—k+2+2a))
Hae g P ) (410 = (0= 14 @) )

l-o
yHt=y0 +ABC(a) H(x",y", 2" t)

Vo2 0 (n+1—k)*(n—k+2+a)

ABCa)k):O< oc+2
— (n—k)*(n—k+2+2a))
(Ar)*
INo+2)
X ((n+1k)“+1(nk)“(nk+1+a)))

a v (_(a)* a

* ABC(a) k;) (F(a+2) GOF ) (n+1-k)*(n—k+2+a)
—(n—k)*(n—k+2+2a))
oS GO ) (410 = (1= k1) )
We consider the following system with the Caputo-Fabrizio derivative:

o Ditx(t) = a(y(t) — 9 (x(1))) = F (x,y.1)

6 Dy (t) = x(1) = y(1) +2(r) = H(x,y,2,1)

§7Dfz(t) = —2y(1) = G(3,1)

We transform the above system to the following system as
-
x(1) = x(0) =~ F(x,3,1) / Flx,y,t

1—-o
=——H H+—— | H d
a (x’y7Z’ )+ M(OC) /0 (x7y?Z7T) T

2(t) - 2(0) = %G(y,t) + %a) /O "Gy, 7)de
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Then, we consider the system at¢ =1, and t =1, as

X(ty1) = x(0) + %F(x,y, tn) + ﬁ Oth F(x,y,7)d7
) =3(0)+ s Hszn) + s [ Hesz, mae
2r11) = 20) + 372 Glotn) 005 [ GO Tl

x(ty) =x(0) + (0,9, t—1) + %a) /Otn F(x,y,7)dt

lfaF
M(a)
¥(t) = ¥(0) + ﬁfz<x,y7z,tn,1>+%m [ iy vas

2(6) = 2(0) + ﬁG(y, bot) + ﬁ /0 " Gly,1)dt

Then, we obtain

x(tar1) = x(t,,)+%(F(x,y,ln)—fr(x’)’alnfl))
+ M((xa)(?F(x,y,w—Ath(win—l)>
et = o)+ e () = Hlsyzo)
" ﬁ (?H(x,y,zvfn) - Ath(xay,Z»fnl))
) = 2(t) F A (Gt = Glruta1)

M(a)

o 3At At
——— | =—GO.ty) — =GO, t—
+ M(a) ( 2 (ya n) 2 (y7 n ]))

We consider the following system with the fractal fractional derivative using
power law kernel:

a(y(t) = ¢(x(1))) = F(x,y,1)
PEPDEY(t) = x(t) — y(t) +2(t) = H(x,y,2,1)
SEPDP (1) = —Ay(t) = G(y.1)

We can write the above system as

RLD%x(t) = BtP=1F (x,y,t) = K(x,y,1)
RLD&y(t) = BtP~'H (x,y,z,t) = L(x,y,z,1)
RLD%z(t) = BtP~1G(y,t) = M(y,1)
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We transform the above system to the following system as

(1) = x(0) = ﬁ /OtK(x,y, 0 —1)% \dt

(0 =30) = gy [ Lsyame = s

1 t
z(t) —z(0 :—/M ) (t—1)% ldt
(t) —z(0) @) Jo 1) —1)
Then, we consider the system att =1#,; :

1 Tnt1
lin) = 5(0)+ /0 K03, 7) (i1 —7)% \dt

(@)
Ytns1) = y(0) + ﬁ /0 " Ly ) (g1 — )% d
2ltnsr) = 2(0) + %a) 0’"“ My, 7)(tns1 — )% \dz

Then, we apply the Atangana—Touﬁk method and obtain

+i( K5 0) (n+1-k)%(n—k+2+ @)
—(n—k)" (n—k+2+2a))
I%K(xk_layk_latk—l)((nﬂk)““(nk)“(nk+1+(x))>

+Z< Fo 2y L@ 8w (e 1=k (i —k+2+a)

—(n—k)*(n—k+2+2a))
(a0)°

*mL(xk_l,yk_lvzk_lvtk_l) ((n+ 1 fk)oc+1 _ (n*k)a(n*k*i’ 1 +(X))>

+Z< Tla+2) MG 0) (n+1-k)*(n—k+2+a)

—(n—k)*(n—k+2+2a))
(Ar)®
INo+2)
We consider the following system with the fractal fractional derivative using the
generalized Mittag-Leffler function as

6 VD x(t) = a(y(r) = 9 (x(t))) = F(x,3,1)

SEMDEy(1) = x(1) — y(t) +2(t) = H(x,y,2,1)
0MDRZ(t) = —2Ay(t) = G(y,1)

MO o) (1 =R % - ("_k)a(n_k+1+a))>
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We can write the above system as

ABRDEx(1) = BtP—1F (x,y,1) = K(x,y,1)
ABRD&y(t) = BtP~H (x,y,z,t) = L(x,y,z,1)
ABRDAZ(1) = BtP~1G(y,1) = M(y,1)

We transform the above system to the following system as

l-a o
1) —x(0) = Fpaar K+ W/K”’ )t — 1) ldr
-« o
(0 =30) = gpeterLlenan) + gperaes [ Ly oo —o tde
£()=2(0) = 2 MO + geraria) Jy MO =0 s

Then, we consider the system at ¢ = ¢, :

1—a

X(I,H,l) :x(O) + m

K(X»Y7tn)

¢ " Ry ) )alq
S T (tyr1 — T T
ABC(a)D(a) Jo 0 r /il

-
—L 1
ABC(a) ('x7y7Z7 }’l)

+ o /tn+1L( )(t )a_ld
— TIp+1— T T
ABC((X)F((X) 0 X, 2, +1

Y(tat1) =y(0) +

1-o
—M(y,t
o Tnt1

Y ABC(@)T(@) Jo

Z(tn+1> :Z(O) +
M(y,7)(tyy1 —7)% ldz

Then, we apply the Atangana-Toufik method and obtain
1

ﬂ+1:x0+ABC( @) K(x",y" 1)

a 7L (Ar)® .
+ABC((X)]<;0(r‘(a+2)K(xk7yk,tk)((n+l—k) (n_k+2+a)
—(n=k)*(n—k+2+2a))

e K ) (1= ket 1+ ) )
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11—«
yn+1 :y0+ABC(a)L(xn’yn’Zn7t")
a ¢ (An)* Kk k
L 1 1-k)%n—k+2
+ a0 1 (gt ) (1 ==k 29

—(n—k)*(n—k+2+2a))
Fo S L ) (410 = (1= k1) )

l—«o

n+1 0 n

=z + M 1
< ¢ ABC(O{) (y ’ n)

ABg(“)zib(F((itJ)raz) 050 (n+1-k)*(n—k+2+a)
—(n—k)*(n—k+2+2a))
1“((2?_0‘2) (ykl,tk1)((n+1_k)a+1_(n_k)a(n_k+l+a))>

We consider the following system with the fractal fractional derivative using the

+

exponential decay kernel:

SFEDIx(1) = a(y(1) — 9(x(1))) = F(x,y.1)
SFEDXy(1) = x(1) — y(t) + 2(t) = H(x,y,2,1)
oFEDEZ(1) = —Ay(t) = G(y,1)

We can write the above system as

SFD%x(t) = BtP='F (x,y,t) = K (x,y,1)
SEDEy(t) = BtP~1H (x,y,z,t) = L(x,y,z,1)
SFDZ2(t) = BtP~1G(y,1) = M(y,1)

We transform the above system to the following system as

x(t) —x(0) = ;ﬁl((x,y,t) + M((XOO/;K()C,y, 7)dT
o t

¥(0) —3(0) = ﬁux,y,z,o i JRZESERNE

(1) —2(0) = ﬁM(y,t) + ﬁx) /0 "My, t)dz
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Then, we consider the system at¢ =1, and t =1, as

) =0+ o Kt + o [ Kxmas
ltner) = 3(0)+ s Llean) + oo [ Loz ae
(1) = 200+ g MOt + s [ MO 7)de

n

(i) = 0)+ 7o Kt + s [ Ky o)
y(tn) = y(0) + ;aO; (x, y,z,tnfl)Jrﬁa)/OtnL(x,y,z,T)d‘L'

2(tn) = 2(0) + ;T;;M(y,rn,l) + % /O " My, 1)dt

Then, we obtain

) = 0+ e (K(n) = Klstion)

s s (Bt - Sk )
Ytup1) = y(tn)+m(L(x7y7z,tn)—L(x,y,z,tnfl))

n ﬁ (?L(x,y,z,tn) - AZtL(xay»ZJn—1)>
) = 20)+ s (M0n) =M (i)

b s (B ) - Farun)

Therefore, we reach
sltner) = 5(0) + g (B a0~ ¢<x<rn>>>—ﬁrf:]‘a@(tn_l)—¢<x<rn_1>>>)

Uﬁ@( Br ™ a (v(t) = 0 (x(1))) - l3t 1a<<rn1>—q><x<rnl>>>)
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ltner) = 300) + 317 (B (x0) = 300) +20,)

Bt (xlta1) = 3(t01) +2(00-1)) )

+ %a) <32Atﬁt,?1 (x(t) = ¥(tn) +2(ta)) — %Btf:ll (x(ta—1) = ¥(tn—1) +2(ta—1 ))>

Z(trl+1) = Z(tn) + ﬁ (_ﬁtfill)’(tn) + ﬁtf:llly(tn—l))

3At g At g
+ e (5B () + 5 B2 ()
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O Applications of the Circuit
Problems

In this chapter different circuit problems with second order are considered. These
classes of differential equations have been used in electrical engineering to model
different types of dynamics in system circuits. Some of these equations are integral
equations that are also been found very important to provide more value to circuit
systems [75]. In this chapter we do not aim to obtain exact solutions for these prob-
lems, but rather provide different analyses. These models will be modified by re-
placing the classical derivative with fractional derivatives, and then where classical
integrals are used, they will be replaced by fractional integrals. These new classes are
very rich in terms of including into the mathematical model’s nonlocal behaviors. An
investigation underpinning the derivation of the conditions under which their exact
and unique solutions exist. Due to their complexities, numerical methods will be
employed to derive their solutions. In this chapter, therefore, seven problems will be
considered starting with the one below.

19.1 FIRST PROBLEM

In this subsection, we take into consideration:

dz(z’) —— <Izd;(:)+L1C1(t)> (19.1)
For simplicity, we define
At 1()) = — (12‘1;(:) + Llcz(r)> (19.2)
Then, we have
‘Ucllgt) — A(1,1(1) (19.3)
After taking integral, we reach
I(6) = 1'(0) + /0 Az, 1(7))dz (19.4)
Then, we obtain
1(t) = 1(0) + /O ' (1’(o>+ /0 TA(l,I(l))dl) dr (19.5)
1(1) :I(O)—FI'(O)H—/(: /OTA(Z,I(I))dldr (19.6)
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1(t) :I(O)+I’(O)t+/0t(l‘fT)A(T,I(T))dT (19.7)

Then att = At(n+1) = 1,41, we have

) = 1O +IOhmia+ | " (b1 — DA(T1(2))de

Ljt+1

= 1O+ O+ Y [ - DA )
j=0"1

Within [t;,7;41], we can approximate

T—1j—1 —1j

T
—A(tj-1,1j-1)

A(I(D) % PA() = A1, 1) 7=~ i~

(19.8)

Replacing A(7,1(7)) ~ P;(T), we get

f/+1

I(thr1) = 1(0 +I tn-&-l"‘Z/ t11+1_T

) (A(Z}Ij) (1) W(T_tj>> de

t, +1
= 1(0)+1'(0 rn+1+z Aol / (ta1 —0)(T—tj1)dT

Zj

A(tj—1,0j-1) [l
—ZfAif/ (a1 — 7) (7 —1;)d7

=0 d fj
n
= I(O) +I ( (t]a )
=0
n
3j+3n)A(tj-1,1j-1)
19.2 SECOND PROBLEM
We consider the following problem:
di(t)
L——= +RI(t I(t 19.
DRI+ / (19.9)
At t,, 11, we obtain
I(th1) — I(tn) 1 [tat
LT +Rl(tn+1)+6/o I(T)dT:V(tn+1) (1910)

Then, we reach

1 i+t I(tjgq) + (1))
+1 it J
L +RI" + E / 3 dt =v(tyt1) (19.11)

In+1 n
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- U & I(tj) +1(1;
At +Rln+1+62 (J+1)2 (])AIZV(IH+1)
j=0

L (19.12)

19.3 THIRD PROBLEM

We consider the following problem:
(19.13)

1 C
LSDI(t) +RI(1) + a)l,“l(r) = (1)

We can write the above equation as
1

Ti—a) /I 7)"%dT+RI(t )+ém/oll(r)(t—r)“*ldr:v(t)
(19.14)

At t,41, we obtain
[Vl+1
tn+1 —T) dT+RI(ln+1)

e
éT/ " 1) 1 — 1T = v{tre)

Then, we reach
i+ I(t
/I ”1 )(th — 1)~ %dT+RI(tnt1)

n

o) &
]:
n

1 1 tj+1 I(tj+1)+l(tj) a1
It —1)* = (1,
e / (11— 1) V(tns1)

After simplification, we obtain
At — n ) _ ) _
)Y (1)~ 1) [+ 1= )" = (1= )] +Ri(t,1)

're-a &
+ér((3t_)|_a1) ji,z)l(tj+l)2+l(lj) (11— )% — (n— ¥ = v(tnr1)

19.4 FOURTH PROBLEM

We consider the following problem:
1 CF
=v(t) (19.15)

L§TDY1(t) + R (1) + Co I%1(t) =

We can rewrite the above equation as
I - = dt+RI 2 t

11— 1 « !
EWIU)JFEW/O I(t)dt = V(1)
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At t,11, we obtain

M)

Tnt1
m/o I'(t)exp (—l_a(tm - r)) dT+ R (ty11)
J1l1-c
C

I l o In+11 d p
t, - 7)dT = v(t,
M(a) ( +1)+CM(OC)/O ( ) V( +l)
Then, we reach

M(a) &

i I(tj1) —I(25)
ek e

o
— thi1 —7T) | dT+ R (1,
[ e (i =) ) det R )
11—«

1 o & b I(tig) +1(1))
CIVI(OC)I(IHH)JFC]VI(OQI;)/U J+1 j

+

fd T=v(tyt1)
After simplification, we get

I(tji) —1(t))
7 Y

a2 N

o o
exp ( ————(ts1 —141) ) —exp | ————(tas1 1))
-« / -« !
l1-« 1
+ R (1)

o & I(tjsr)+1(t)
+Eml(tn+l)+EM(a)§ L J

2 (tj+1 = 1) = v{tat1)

M) & I(tjg1) —1(t)) o )
p jgé ths A J {exp(l_am(n]))

—exp (a1 1)) |+ RE G
1 o &

T M) &

L

+ Eﬁ](l‘,ﬁl)
0 (41 );‘I(tj)At =V(tns1)

J

19.5 FIFTH PROBLEM

We consider the following problem:

1 AB
LYBEDXI(r) + RI* (1) + Co I%1(t) = v(t) (19.16)
We can rewrite the above equation as

G o (g o)
ll-a, 1 o
+Em (t)+

CT@Be) Jy 1O s =0
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At t,41, we obtain

AB(a) [+ a
L%/o I/(T)Ea <_la(tn+l - T)a> dT—"RIZ(tWH)
11—«

*EWI(’HH) + ém /ot”+1 1(7) (tys1 — 7)1 dT = v(ts1)

Then, we reach

LALM i)/tjﬂ I(tj+1) _I(tj)Ea (— 1 (_xa(th - ‘L')a) dT“‘RIZ(thrl)

l—a = At

l1-« 1 o Tt I(tg) +1(t) _

iil th - - AN e t — o ld
T CaB(@) ( +‘)Jrcr(oz)AB(oc) jzo/tj 2 (tns1 = 7)"d7

=V(tat1)

LALM z":/’f'“ I(tj1) —1(t)) i (— 1% (tns1 —T)a)kd*c—&-Rlz(lnH)

| =/ At far [Nak+1)

1l 1-a 1 o L I(tjer) HI(8) [l _
iil tn — J J / tn _ o ld
e " T @AB) & 2 , w1 AT

j=0 j
=V(tat1)

oo

k
AB(a) & i+ I(t I(t;) < tit1
L ( )Z/ /+1 J Z ak_|_1 / (tni1 — T)%d T+ RP (tns1)
< Ji;

l—a = k=0

| I 1 (Az 2 I(4 +It) . )
Jraml(fnﬁ) CTa Z ! Zln+1- )%= (-
=V(tnt1)

n

o (0 Ak
— Z j+1 tj)) Z w [ n_|_1 )ak+1 (n J)akJrl}

= = T(ak+2)
+é Al—B*( )+ & P byl ) )

R (tn 1) = V(ts1)
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Then, we obtain

ZO ) = 1))+ 1= Bz (g 41— )0

a Jio tj+1 )E(X2( lixa(n—])At>
11—« 1 (A% & I(tj1) +1()
+eaBia) Y ETaaB@) P S

+RI (tn 1) = V(tns1)

[(n+1= )%= (n=j)°]

19.6 SIXTH PROBLEM

We consider the following problem
1 CF
LyBEDEI(t) + RI* (1) + o I%1(t) = v(t) (19.17)
We can rewrite the above equation as

A [ o (g0 aesrr)

%;mz(m éﬁ / I(2)de = v(r)

At t,+1, we obtain

AB I
LB ey (s ) e R

11—« 1 o Tn41
) / 1(2)dT = v(tas1)

+Eml(l‘n+l)+am o

Then, we reach

1_ «Ji; At I-o
j=0"1j
11—« 1o & e () +1(t)
ll-a M) 1) 4
M) (tns1) + CM(a )Z/t, 2 !

FRE (tys1) = v(tns1)

OC) i/tjﬂ I(tj+1) I i( T-a tn+1 T)a)kdr

At = I'ok+1)
l1-o 1 o & [l I(tjgr) —|—It])
+———I(t, / — Lz

CM(a) (ta1) + CcM(a) =),

+R12(tn+1) = V(tn+l)
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At IN'ak+1

ll—a 1 o G I(tj1) +1(25)
Yo (”“)%M(a)jio/t, i

+R12 (tn—H) = V(tn+1)

AB i 1) — 1) & (—1%)" fin .
/, j j kz (1 )/ (tns1 — 7)%d1

I—a & = T(ak+2)

ll-«a 1 a & e I(tg) +1(1))

— —I(t _— / / d
cm(a) )T a)j.;)/t_, 2 !

~ 0O

+R12(tn+1) = V(tn+1

Then, we obtain

e f )~ 1))+ 1 s (w1 )

B(a) i I(tj+1) — )Eaz< lfla(nj)At>

j:

11—« 1 o S I(t4) +1(E)
+CM( )I(t”+1)+CM(a)Zg) 3 At
+R12 (tn—H) = V(tn+1)
19.7 SEVENTH PROBLEM
We consider the following problem:
c
LABEDEI(r) + RI* (1) + éolﬁ‘l(r) = (1) (19.18)

We can rewrite the above equation as

LAB®) '/(:I’(T)Ea (—a(r — r)"‘) dt+RI (1)

1—-a 1—a

+éﬁ /Otl(f)(t _ el = (1)

At t,11, we obtain

AB(o Tnt1 o

L2 [ 10 (12 =0 ) a5 R
1 1 Tnt1 _

tar 1O~ = )
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Then, we reach

n

Tj+1 [ lj+1

J)Ea (—laa(t,,ﬂ —r)“) dt

]:0 tj
il It —I—[t _
+77 ) 1t1) £1() (tar1 — )% ldt
1:0 tj
+R12([n+1) =V(tat1)

=

k

e (1 /+1 1(t)) (— 1% (tir1 —7)%)
d
/ )3 :

S 0 Iak+1)

k=
& +1 (¢ +1t
Z/’ (tj+1) j)(tn =)@ ldg
j:() Zj

+R12(tn+1) = V(tn+l)

M:

l—oc

k
AB(a) & i I(tjg) —1(t)) & 1jt1
L ( )Z/ (tj+ > () Z (—1%) / (tns1 — 7)%dt
1

11—« =01 k:()r 1) j
1 (An)® I(tiy1) +1(t)) na N
CF(OC+1),Z6 el (G R A CEbl
+R12(tn+l) = V(tn+1)
LAB((X) i( I(t +l i ( At)k [n_|_1 )(Xk+1 (n J)ak+1
l-a & U kOFak+2)
L (A% & (1) +1(1) o ™
et B 0
+R12 (tn-H ) (trH—l )
Then, we obtain
,:o (tjs1) —1(t)(n+1— )Ea2< I ("+1—j)Af)

f (tj1) >Ea2< lf‘awj)m)

1 (A% & I(tj1) +1(t)
+EF(0¢+ )Z - 2 :

+RI? (tnr1) = V(tat1)

[(n+1=/)% = (n—j)°]




O Existence and Uniqueness
of the Solution

While it is ideal to obtain exact solutions to differential equations as these solutions
are used to depict some real-world behaviors, it is also important to note that due to
the complexities of these models, existing analytical methods may have some limi-
tations thus, they may not be able to be used for this purpose. In the last years sev-
eral analytical methods were introduced aiming to provide exact solutions to several
nonlinear equations. However, these methods lead to multiple solutions for one non-
linear equation, which in some instances violate the theory of uniqueness. Thus to
avoid this situation, several powerful numerical schemes have been proposed in the
last decades to deal with nonlinear equations with classical and fractional derivatives.
However, for this process to be performed, it is usually ideal to provide at least con-
ditions under which these equations admit unique exact solutions. In this chapter the
seven differential and integral equations are considered and will be subjected to the
discussion underpinning the existence and uniqueness of their solutions presented in
detail. This is achieved using the Linear growth and the Lipchitz approach [76-80].

20.1 FIRST PROBLEM

In this subsection, we take into consideration the following circuit problem:

d*1(t) RdI(t) 1
=—|-—7"+—=1 20.1
dr? <L a TIc ®) 0.1
We integrate the above equation from O to 7. Then, we get

dI(t) "(RdI(t) 1 dI(t)

=— - —I — 20.2

dt /0 (L dt * LC (1) )dr+ dt =0 (20-2)
We define ' (RI(T) | a1
T t

F(Z,I) ——/0 <L dt +lCI(T)> d7+7‘[:0 (203)

To prove the existence and uniqueness of the solution, we verify the following:
() |F(t,1)]> < (14 |I]?) (linear growth)

(i) VLL, ||F(t.0))=F(t.0)|%<kllI-5]|2
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Start with the linear growth:
"(RdI(t) 1
— ——— 4+ —I d
o0 /0<L at ' IC (T)> !

2 t(RdI(t) 1
al g
0 <L dt +LC m)‘“

dI(t) 2
dt
dI(t)
- dt =0
dI(t)

dt =0

di(t 2 R
<|410) +6(
dt =0

L)
|41 2+6(IZ)2|1(;)|2+6 <IZ>21(0)|2

- dt =0

(L%)Z /Otl(r)dr
2+6<§)ﬂugﬁ+6<§>2umﬁ

di(r)

<2

‘dt

+6——T sup |I(t)?
o e 10)

2 2 g
<2021 [ +6(F) wors () m0R s
2 2
Lo
6 (8)* (1)
OI2

[ Fe® P

s

2
+2

+6

t=0

()1

t=0

1=0 (LC)2

2|

If

<1

6 (%)’
2
2|42 e (®) i

P+ 6 T ()

then, we get
F(t, 1) <k(1+]1P) (20.4)

2 2
+6<Iz> 11(0)* + (Lé)Z

Therefore, the function satisfies the growth condition.

where

dil(r)
dr

Ol (20.5)

k=2
t=0
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Now, we will verify the Lipschitz condition:

di(t) dl (1)
’ dt li=o dt

7/0 <L (dld(f) dICIZSf))Jr;C(I(T)Il(T)O dt

|F(tal)7F(tall)|2 =

t=0
2

+6<§>21(0) /|1 )P de

We have that the initial condition is the same for both. Thus, we have 1(0) = ;(0)
and I'(0) = 11(0). Then, we get
/ l1(7) 7)[*dt

2
sup [F(t,1)— F(t,1,)|? <6 (’Z) sup [1(t)— 1(1)]?

t€[0,T] t€[0,7]

2
Fen-renf < o7 ) -

+6(LC) Ttes[%pﬂll() L)

2
IFeD-FanE < <6(’Z) +6<L2>2T> 116~ 1o 12

Thus, we get

IF@D=F@,m)lZ < k@) —n@)?2

where

k

R 1
6((— ——T |.
<<L) " {ep )
This shows that the function F satisfies the Lipschitz condition. Owing the fact that

<1

)12

2
2|42 [ +6(®) o)

then the equation admits a unique solution.
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20.2 SECOND PROBLEM

In this subsection, we consider the following circuit problem:

di(r)

L= 2RI c/ I(t (20.6)
al(t) B 1

L =0 -RI0 - [ 1) (20.7)

a1 R 1

—d(:) = v~ 710) - 7 [ 1) (20.8)

We define
Fe) = o0 - Rioy - L [ 10yae (20.9)

L L LC Jo ’

To prove the existence and uniqueness of the solution, we verify the following:
() |F(t,v,1)]* < (1+|1]?) (linear growth)

2 <klr-n|Z

||oc

() VLL, |F(t,vI)—F(t,v1)

We start with the linear growth:

2

|F(t,v,1)|2 = ‘iv(l)—f[(;)_l}c/otl(f)dr
2 ; 2
< L32v(t)|2+3<’z> I(t)2+(LZ)2‘/0’(T)dT
2
< o bP+3(5) WP+ o s lif
< % v()*+3 <'Z> 1(0)]* + (3T)2 11(e)|2
< (BhOP+ G M)
) 3(8)° 10
2O + G MOl
If
(3 1
SOF+ 25 O
then, we get

Fev D) < k(1+|17) (20.10)
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where

0P+ o MO

Therefore, the function satisfies the growth condition.
Now, we will verify the Lipschitz condition:

F(tnD)—Fevnh)f? = ‘—Iz(l(t)—ll(t))—l t

2 (f)z 10(r) —

2
sup |[F(t,v, 1)~ Ftnh)f < 2<R) sup [1() = I (1)
t€(0,T] t€[0,T]

IN

7)*dr.

Then, we obtain

2
(IR ,ES[%?T] [1(#) — L (2)]

2
PG~ P < (z(f) ¥ (ng)z>||1(f)—11(t)||i

Thus, we get

+

@ v ) = Fawh)lIZ < k@) =h@)]2

where k = (2 (%)2 @ c) ) This shows that the function F satisfies the Lipschitz
condition. Owing the fact that

SOF+ 25 OR

then the equation admits a unique solution.

20.3 THIRD PROBLEM

We consider the following circuit problem in this subsection as

C
LEDXI(t) +RI(t) + éol,“l(t) = (1) (20.11)
Crol 1 R 1€ o
We define
1 R 1€,
Ftvd) = pv(t) = 710) = 75 F0) (20.13)
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To prove the existence and uniqueness of the solution, we verify the following:
() |F(t,v,])]* < (1+|I]?) (linear growth)

(i) VILL, |[F(t,v,1)—F(t,v,1)|% <k|I—1]|2

||oc

We start with the linear growth:

C 2
FwnP = %v@f%m)f% 0

3 P+ 2K oy ol

3 3 1 "

3 o+ 2 P+ (LC)Q T)/O(H) (e
+37 2l LCF /’ ) (z)df

3R2 TZOC 1
* ie@yrea—n 28, 1OF

3T206—1
(LCT ()22 — 1) 12(0)]12

3 3r2e-!
(ZM0OP+ e MO

B 1(r)

2 o)l +(CFST [LOI=

IN

2

IN

IN
=
[\S]
—
~
~—
o
h
i8]
?
—
~—

IN

IN

3R?
2 2
— ()] +7|I(t)| +

IN

If

3R2
L2

<1
2 2o 2
%W(’)\ ‘*‘%Hl( Dl 8

then, we get
FanD[> < & (1 n |1(z)|2) (20.14)

where

3T20671

(LCT(a))2 (20— 1) 1712 - (20.15)

3
= SO+

Therefore, the function satisfies the growth condition.
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Now, we will verify the Lipschitz condition:

) POt = |- -1~ o (10§10
< 2(B) w0+ g rero - nerof
< z(’z)zuumw
LCF /| =0 far

Then, we have
R\2
sup [F(t,v,) = F(t,m)? < z() sup [1()— (1)
t€[0,T] L t€[0,T]

2T2oc—1 5
+ sup [I(t)—1i(t
(LeT(@)Pa 1) a1~ 10

2
IFewn-FenmlE < 2(F) 10 -nolE

20—1
+(LCF(317;)2(205* 7 6 =hol

R\? 7201
(2 <L> " {ECT (o)) (20 - 1)> 1) =1 ()]

I < kO -n0)l2

. R\’ 2720~
= (2 (z) + weryroas 1)) |

This shows that the function F' satisfies the Lipschitz condition. Owing the fact that

IN

Thus, we get
|F(z,v,I)—F(t,v,1})

where

3R*
2
L <1

2 VO + Geriisay 1O

then the equation admits a unique solution.
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20.4 FOURTH PROBLEM

We consider the following circuit problem in this subsection:

lCF
LSEDXI(t) + R (1) + Co I%1(t) = v(t)
1 R 1 ¢F
CF na 2 a
DYI(t) = —v(t)— —I*(t) — — I*I(t
o D)= pv(t) = T1°(1) Ico 1)
We define
Fnt) = v - Ry - L e
V=TT L LCo

Integral Transforms and Engineering: Theory, Methods, and Applications

(20.16)

(20.17)

(20.18)

To prove the existence and uniqueness of the solution, we verify the following:

(i) |F(t,v.D)[* < (1+|I|?) (linear growth)

(11) VIaII, ||F(tav71)7F(t7va11)”zo <k||1*11||i

We start with the linear growth:

CF
FOwnP = |0 - 5RO~ g, 110
2 2 2
< 3<I{> v(t)|2—|—3<lz> yzz(t)|2+3(L1C> §F 1)
2 2
< 3(3) v(t>|2+s(R> 2
1 1—«a
+3<LC> ( /I dr
2 —
ol - o
(LCM /'I ol de
2 PRy
< 3@ o |+3< ) PO+ o
(X
ey, O
2 2 _ 2
< 3<i> v(t)|2+3<§> ]|12(t)]|2+£g‘4(gg)2|1(t)|2

6T a2

+W 17(2)]12.
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2 2 2
< <3 (1) por+s(3) !|12<r>||2+@(§‘§?;))2||1<r>i>

_v\2
L T ()
x 2 2
3D OP 3B 2@ + 8L 1)

(LCM (a))?
If
6(1—a)?
(LCM(@))? <1
2 2
3(0) O +3(5) 12O + g I,
then, we get
FenDf < k(1+|1(t)|2) (20.19)
where
1 2 2 R 2 2 2 6T062 2
k3<L> lv(t)] +3<L> 177 (0)]| +W\|I(t)||w. (20.20)
Therefore, the function satisfies the growth condition.
Now, we will verify the Lipschitz condition:
2 R 2 L ’
FevD) = Flew )P = ]—L(I () =10) =15, FUO=1()
< 2(F) PO - RO+ o 57100 - ()
R\? , o2 2 |-«
< 2(F) 1P0-BOP+ o i (0~ 10)
o ! 2
+ / I(t)—1i(7))dT
i@ Jp (@ -h(®)
R\ » sz Al—a)? 2
< — _
< 2(F) IPO-ROM+ oo 16 - 1)
4o ‘
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Then, we obtain

0 PO~ Fen) < 2(§)Ztes;g]|ﬂ<r>—1%<r>!2
mt:mzommf
+(L;‘T4?Z))2t§;§]1(t)ll(t)lz

IFenD) ~ P2 < z(f)2|112<r>—1%<r>ui
+m“<r>—n<r>ni
e ) -

Thus, we reach

IF @) =F(v)lZ < k|l1() —nh@)|I2

where

_ R\? ,  4(1-a)? 4T o2
k = 20 =) |H@)+4L(t .
( (Z) 1010 + Geyrrars + gt
This shows that the function F satisfies the Lipschitz condition. Owing the fact that
6(1—a)?
(LCM (a))?

2 2
3(2) O +3(5) 12O + gy O

<1

then the equation admits a unique solution.

20.5 FIFTH PROBLEM

We consider the following circuit problem in this subsection:

1 AB

LYBEDI(r) + RI* (1) + Co I%1(t) = v(t) (20.21)
AB

() -+

1

ABC o
DSI(t) = —v(t) —

§"DrI(0) = pvo) o

R (04
. 7 1°1(1) (20.22)

We define

R AB

F(t,v1) = %v(t) — Zﬂ(r) — %0 1%1(1) (20.23)

To prove the existence and uniqueness of the solution, we verify the following:

() |F(t,v,D)[* < (1+|I|?) (linear growth)
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2 <k|I—nl|?

(i) VI,Il, HF(Z‘,V,I)—F(I,\@I])

We start with the linear growth:

Fev D) =

IN

(1)

’ 2

IN

3 2

Teep

l-a o ! P
WI(IH T /0 (t— 1) I(t)de

N2
3 )P+ 25 | |+%|<t>|

(LCAB / (=0 1(w) [ a

N2
G (5&3(‘2))2 10

IN

3
L2

IN

\v<t>|2+? ||12<t>

P ——OT
(LCAB(o)T(@))* (20t = 1) 4c(o.7)

3 6(1 —a)?

I wcaBa): 1V

[LG]

IN

MR + 25 2|+

60‘2T2a71
+<LCAB<oc> < >>2<2a7 )

60‘2T20tfl

IN

- (;';(AB = @)
& MOP + 35 120 +(LCAB(Z‘”>2§2';)IM LG]
If
6(1—a)?
(LCAB(w))?

<1
2 2 27201
2 WO+ 1201+ pompea s 012

then, we get

F(nD < k(1+|1(t)|2) (20.24)
where
3 ) 602720
k=g MOF + o) * eABor@Pea—1 Ol
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Therefore, the function satisfies the growth condition.
Now, we will verify the Lipschitz condition:

‘F(I,V,1>7F(t7v7]1)|2 —

IN
)

IN
)

IN

1

Then, we obtain

t€[0,7]

IF (t,v,0) — F(t,v,11)||2

IN

IN

Thus, we reach

||F(tav71)*F(t7V,Il)Hi

— |

o 1
2B

:(

R 2 2 1 AB a

7 (=1 (t))ffo I (I(t) = I(1))
2

IZ) 12(e)— 12(0) + (Li)’l 1481 (1(6) — 1, (1))
2 —

IZ) |12(z)—112(;)|2+ (Li’)z AlB(z) (I(r) =L (1))

AB
2 _ 2
Iz) |2() - Rl MW)—A(;)Z

4a?

LCAB(a)T

R 2
sup |F(t,v,1) —F(t,v,ll)\2 <2 <L>

(@) /0’ [t =) (I(7) _11(7))‘2d7

wp [P()~ (o)

t€[0,T]
_ 2
Tomay OO
4a2T2(X—1 ,
+ (LCAB(a)[())2(2a — 1) tES[l(l),pT] [1(t) =1 (t)]

2
2 (£) 1o - ol

_ 2
*dﬁﬁgggyﬂﬂﬁ—hon&

402721

HicaBl@r@2aa—1 10— 012

2 _ 2
<2<f) wa>+hun&4é§;333y
4021201
LCAB(a)T(a))2 (200 — 1)> [LORIAC]

1

< k@) -n)llZ
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where
2 2 27201
- R 2 4(1-o) 4a°T
k = 2| = I(t) + 1 (¢ .
< (L) I+ 00N+ ZeaB @) T TeaBl@T (@) 2Ra=1)
This shows that the function F' satisfies the Lipschitz condition. Owing the fact that
6(1—a)?
(LCAB(x))? <1
) 5) P 27201 2
2 VO + 3 120 + pomped e 11O
then the equation admits a unique solution.
20.6 SIXTH PROBLEM
We consider the following circuit problem in this subsection:
1 CF
LaBEDEI(r) + RI* (1) + o I%1(t) = v(1) (20.25)
1 R RCF
ABC 2 o
DI(t) = —v(t)—-1°(t) — — [L7I(t 20.26

DRI = (0 - L PO -7 1) (2026)
We define

Fnn) = S0 - Bewy - L e (20.27)

R ) LCo '

To prove the existence and uniqueness of the solution, we verify the following:

() |F(t,v,])]* < (1+|1]?) (linear growth)

() VLI, (F (6w d) = F (v )12 < k=012
We start with the linear growth:
FOsDP = |0 r—’Zﬂa)—L]COCFI,“I(r)z
< () |+3( ) 2o + ( )!CFI“I ol
5 (Y
13 (L1C> %I(rﬂ—ﬁ /OZI('c)drz
< 3(11)2' (t)| +3< ) 12(1)] +(6L(C1A;(Z;;I(I)2
LCM /|I ‘ dt
< 3(,{)2|v<r>|2+3(L) PP+ S E
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T )P
(LCM(O‘))Z 1€[0,7]

2 2 Y
< 3<i> |v(t)|2+3(’z> sz(t)HZerl(t)Z
6TO£2 2
JFWHIU)HOQ
<

2 2 2
<3 (1) por+3(3) |¢12<r>|\2+Lc6A§?L>>z”’<’>”i>

6(1—
(LCM 2‘1( )‘
x| 1+ 2 B R 2 6T o2 2
3(3) b0 +3(8)° III( I* + s I

If
6(1—a)?
(LCM(@))? <1
2 2 2
3(1) )P +3 (B) 1PN + Z8h&s 1101
then, we get
FanD)? < k(l+|1(t)|2) (20.28)
where
1\* 2 R\? ., .2 6T o 2
=3( = =) |1 2 1))2. 20.2
k=3(7) bOP+3 () 1POIF+ G MR @029)

Therefore, the function satisfies the growth condition.
Now, we will verify the Lipschitz condition:

CF
FOnd) = FOwn)P = =5 (20 -F(0) - % 1 (1)~ 1 (1)
2
= 2(1;) a +(Lc)2 5755 o =)l
2 —
< 2(?) ‘]2 +ﬁ ﬁ(](l‘)—]l(t»

2

()/Om h(e)de

2 PRy
2(R) \12<r>—1%<r>!2+m|1<r>—n<z>|2

/ (1) = Iy (7)[2 dx
LCM

IA
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Then, we obtain

2
sup |F(t,val)7F(tav711)‘2 < 2<R> sup |12(t)7112(t)|2
t€[0,T) L t€[0,T]
4(1—a)? )
—— sup |[(¢)—Li(¢
wem(ay? S, 1~
4TOC2 2
+——— sup |[(t)—1i(¢
(LCM(@))? te[O,T]| 0=
2 R 2 2
IFewn-FenniE < 2(3) 10 -0l

N2
e 0 - ()12

2
e (ORI

Thus, we reach
IF (D) —Fewh)2 < K@) -0
where
_ R\? 4(1 — a)? 4T o2
k= <2<L> |I(t)+h(t)”§°+(L(C’M(Z§)2+(LCM((xa))2>'

This shows that the function F satisfies the Lipschitz condition. Owing the fact that

6(1—a)?
(LCM(a))? <1
2 2 2 2
3(0) O +3(5) 12O + gy I,
then the equation admits a unique solution.
20.7 SEVENTH PROBLEM
We consider the following circuit problem in this subsection:
1 C
LYBEDEI(r) + RI* (1) + c I%1(t) = v(t) (20.30)
0
1 R 1€
ABC o 2 o
DiI(t) = —v(t) — I (t) — — LIt 20.31
DRI = 7o) = T = 75 1) (2031)
We define c
1 R
F(tov,d) = —v(t) — —1*(t) — — I%I(1) (20.32)

L L LCo
To prove the existence and uniqueness of the solution, we verify the following:
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() |F(t,v,])[* < (1+|I]?) (linear growth)

2 <klI=n]2

||oo

() VLL, |F(t,vI)—F(t,v1;)

We start with the linear growth:

c 2
F(w )P = %vm—%ﬂ()—%mo
3
< 2P+ e O + e Gl
3 1 . 2
< MO+ 1w |+W Fay J, =0 1@
3
< SO+ PO+ e [ 16— 0 1w
5 3T206 1
< BP0 e, 1O
< 1) |2 1(0) S (1)) 12
< ZMOP+ O IR+ o Ol
<

3 3r2e-!
(ZM0OP+ e MO
F P

1+ 20—1
> \V(t)|2+(Lcr(3T)W 12(2)]12,

If

3B 1|1(r) 2

201
3 ()] + (LCF(%T)W 12(2)]I2.

then, we get
Fav D) < k (1 n |I(t)|2) (20.33)

where

3T20t71
k=1 MO+ Gere e =

11(0)]1%. (20.34)

Therefore, the function satisfies the growth condition.
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Now, we will verify the Lipschitz condition:

2
|F(t7v71)_F(t7V711)|2 = ’_ﬁ(lz(t)_llz(t))_l}c(clal() gllral(t))
2
< 2(F) WO~ RO+ g 55010 - S0
< Z(R)2\12<t)—112(t)!2

a—1|2
e (a /' (= de

Then, we have

2
sup ‘F(l‘,v,])—F(l‘7V,11)|2 < 2(R) sup ’Iz(t)_llz(t)‘z
t€(0,T] 1€(0,7]

2T2a71 5
TP @a 1), o, 10 A )]

2
IFewn-FennlE < 2(3) 20l

2T20571
@) 2a—1)

R\’ 2720
(2 (3) WO+ 8 OR+ Gerarrma 1)>

x[|(e) = (@)II2

|172(0) 102

IN

Thus, we get

IF @) = Fawh)liZ < k@) =h@)]2

where

5 2001
k= (2 (i) ||I(l‘)+11(t)||zo+ (LCF(?XY;)Z(Z(X* 1)) -

This shows that the function F' satisfies the Lipschitz condition. Owing the fact that

3B ||1(r) 2

2 200—1 2
L%|V(f)| +(3T7MUH 3]s

then the equation admits a unique solution.
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21 Non-Linear Stochastic RLC
Systems

While deterministic differential equations have been applied on several occasions to
model some behaviors observed in nature, it has been reported that they are unable
to depict stochastic processes. To solve this issue, the concept of stochastic differ-
entiation and integration was introduced. These equations can then be viewed as
deterministic with an addition of a random component. These models have been ap-
plied to several problems, for example, stock prices and thermal fluctuations. While
we do not say that the inclusion of stochastic components in RLC systems will be of
great value in the field, only, we are very curious to see what can happen if an RLC
differential equation is connected to a stochastic type. In this chapter we will extend
the come circuit model by adding a stochastic component [§1-87].

di(t)

Ri(t)+L =V() (21.1)
dt
We added a stochastic component
+/ f(z,i( a’T—i—/ T)w;dB(t) (21.2)
where B(r) is assumed to be differential such that dB(t) = B'(¢)dt. Then, we get
1 !
0)+ / Fl1,i(7))dT+ / i(v)oB(1)di 213)
0 0
Thus
+/f‘L'l dr+/ T)wdB(t (21.4)
where o is the density of randomness. Here
. 1 .
fUJU»::Z(VO)—R(Qy (21.5)

We first present the existence and uniqueness of the above equation by verifying
(i) Growth condition V¢ € D;, | £(2,i(1))|* < k(1 +]i(t)[?)
(i) The Lipschitz condition. Let i; and i, be the solutions of the equations.

£ (6,01 (0)) = £(t,i2(0))]* < ki — i
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PROOF (i) In fact

sien? = [ vo-rio|
< 2 CVOR+2R)0P)
< ;(;5£v<r>|2+kz|i<r>|2>
< S ®IOP)
;o g

If R? < ||V ()|2, then

FLi@)P < K1+i)P)
where k = ZHVL#E" Indeed
iy = w2 i) > < w? (1+1i(0) )

Here w = k.
(i1)) Indeed

2 R2

0 0) - i) = \—fm(r)—iz(f))

=§|l'1(t)—i2(t)|2

< (i +’Lf) (1) — 2O < KJin(e) — a0

where k =1+ f—;. Thus, both conditions have been verified. We can consider that the

equation has a unique solution.

We now present the numerical solution.

i(6) — i(0) = Ot%

We consider the equation at f,;| = (n+ 1)At and t =t,, = nAt.

(V(t)—Ri(1))dt.

i) i) = [ 1

A (V(t)—Ri(t))dr

(21.6)

21.7)
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(1) If B(t) is differentiable then dB(7) = B'(7)d. Then, we obtain

1 ]

i) =i) = [ L (V) =Ri(e))ds (218)

n

Using the Lagrange approximation gives
. 3.1 . At ;
i(tns1) = i(tn) =58 (V1) = Riltn)) = 5 (V (t31) = Ri(ty1))

3Ar B(tyt1) — B(t,) At B(ty) — B(th—1)
+2sz(t)(+‘At )—szz(tn 1)(At 1 )

(2) If B(#) isnot differentiable, then we have

3

e — i) = EA% (V (1) — Ritn)) —

= +wZz t;) (B(tj+1) — B(t;)) _W’Z’ i(t;) (B(tj+1 — B(t;)))

71 (V1) = Rilt,-1))

Let us consider the following classical stochastic model.

dVZ( ) 1 dV] (t)
t)+R R 21.
Va0 + R = (o) - e (1.9
We added a stochastic component
»l .t
Va(r) = V3 (0) + /0 F(,V(0)dr+ /O Vo(7)avdB(1) (21.10)
where B(r) is assumed to be differential such that dB(¢) = B'(¢)dt. Then, we get
t 1
B0 =200+ [ fEE)d [ i@esnd  @LD
Thus
t 1
Va(1) = V3 (0) + /0 F(2,Va(1))dT+ /0 Vo(7)0dB(1) 21.12)
where o is the density of randomness. Here
1 dvi(t) 1
=—(V1(¢t)—R — 21.13
F0V5(0) = e (M0 -ReD) - e

We first present the existence and uniqueness of the above equation by verifying
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(i) Growth condition V¢ € D;, | £(t,Va(1))|* < k(1+ [Va(2)[?)

(ii) The Lipschitz condition. Let V,, and V>, be the solutions of the equations.
£V, (0) = f (8, Vay (1) < k|Va, =V, P

PROOF (i) In fact

2
FeO)P = \Mﬁc(vmt)—Rch;f’))—];Cvz(r)
< e ;5£|v1<>|2+j]dvgf’) +3 (Rlc)z Va)F
2
e MO+ | T2 3 P
1 3 davi(o) |2
< <3(2RC)2||V<>||3°+4H g )
<| 1+ 3<Ré>2 va(e)
2 avi(t) ||? 2

13755 < (3 M >||i+%\)dt;,<')

eV 0))F < K1+ [Va())

2 dv;
where k=37 Vi (1) + [ 24

2
. Indeed

va(twl? = w? V()P < (14120

Here w = k;.
(i) Indeed

2

_ @ Va, () = Va, (8)

< (1 n (Rlc)z) Vay (1)~ Va, (1)
<k|Va, (t) — Vi, (1)

£V (1)) — £(0Vay () —|— L i ()~ vy (1)
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where k =14+ —— ® ) . Thus, both conditions have been verified. We can consider that

the equation has a unique solution. We now present the numerical solution.

V() = v2(0)+/0t (M}C (Vl(f)r—RCd‘ziT)) - %v (z )> dr (21.14)

We consider the equation at t =t,11 = (n+ 1)Ar and t = 1,, = nAr.

Va(tns1) — Va(ty) :/:'H (Z;C <V1(T) _Rcd\gif)) Rlc

Int1
+w [ Va(r)dB(1).

n

(1) If B(t) is differentiable then dB(7) = B'(7)d7. Then, we obtain

Vlte)—a(i) = [ (Z;C (Vl(T)RCd‘Z}ET)>R1CV2(T)> at

Tnt1
+ w/ Vo (1)B'(1)d.
Ji,

Va(t ))dr

Using the Lagrange approximation gives

3 1
Vz(t,hq) —Vz(tn) = At (2RC (V] (l‘n) RC AL - EVQ(I,Z)

At 1 Vi(tn) = Vi(tn—1)
- Rc—1. T Anml)
2RC (ZRC (Vl (ta-1) —RC At

1 3 At B(ty41) —B(t,)
~re 2 1))+22RCWV2( )< . )

At B(ty) = B(ty—1)
— WW‘@(% 1) (At1> .

(2) If B(¢) isnot differentiable, then we have

Vl(tn+1)—V1(tn)) 1 )

Vz(tn+1) _ V2(tn) _ <2RC (Vl (tn) (thrl)A; Vi (m)) _ RICVZ(IH)>

" 4RC ( SRC (Vl tt) W)

——Vz -1 )+w2n:Vz (B(tj+1) = B(t)))

_WZVZIJ (tj1) = B(t)))
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Let us consider the following classical stochastic model.

dva(t) G avi(t)
W (t)+RiC = Vi(t) — R,C 21.15
2(t) +R1Cy 7 C2<1() 26— ( )
We added a stochastic component
t !
V() =Va0)+ [ feVa(e)dr+ [ a(@ovas) L6
where B(r) is assumed to be differential such that dB(¢) = B'(¢)dt. Then, we get
t t .
Va() = V5 (0) + /0 F(2,Va(0))dr + /0 Vo(t) oy B(1)dt 21.17)
Thus . .
V(t) = Va(0) + /O Flr,Va(1))dr+ /0 V(1) 0dB() 21.18)
where o is the density of randomness. Here
1 dvy (l‘) 1
R - 21.1
F0) = ez (M0 - R ) < v L9

We first present the existence and uniqueness of the above equation by verifying

(i) Growth condition V¢ € Dy, | f(t,Va(t))|* < k(1+|Va(2)]?)

(i) The Lipschitz condition. Let V;, and V>, be the solutions of the equations.

|f(t,V21(t)) —f(t,ng(t))‘z < ]_C|V21 _V21 ‘2

PROOF (i) In fact
2

2 dVl(t) 1
P = |- (M0 - R >_R1C1V2(t)
3R av(t 1
: R2C2|VI()‘2+ R c}t() +3(R1C1)2|V2(t)|2
1
Bey MOF
3R2 |dvi(1)]?
= 3(R1C2)2f£|vl()‘ +R2 dt
1
B g
1 3RS ||avi(t
< Sgap MOk wo)*

ey MOP
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1 3R2 || avi (1) ||*
< (3——e
> ( (R C>2 ||V1( )”oo R2 dt .
3 1
R|Cy)?
x| 1+ <; 1)3R2 e Vo (0))?
3y MO+ %2 | 242

3%
(R C))?

3R2 H dVl

< 1 then

@V )P < K1+ [Va(0))

3— v
(Rlcz)znl llo+

"
7

dvi(t)

where k =3 s Vi ()12 + ar

2
. Indeed

Va(eywP =w? Va(0)P < w? (14 V(1))

Here w = k;.
(ii) Indeed

1 2

02 0) = F0 Y 0)F = |~ (0,0~ Vi)
1

(R1C1

1
< (1 ; W) Vs, (1) Vay (1)
<k[Vay (1) — Vay (1)

)2 |V21( ) V22(’)‘2

where k =1+ 3 )
that the equation has a unique solution. We now present the numerical solution.

Va(t) = V3(0) - /( 1 <v1<> chzdva;f)) 1 V()>dr (21.20)

———. Thus, both conditions have been verified. We can consider

R1C2 RICI

We consider the equation at# =, = (n+ 1)Ar and t = 1, = nAr.

Va(tns1) = Va(ta) = */[t'1+1 (RllCz <V1(T)R2C2d‘2i1)) Jr%VZ( )> dt

Int1
+ w Va(7)dB(7).

In
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(1) If B(t) is differentiable then dB(7) = B'(7)d7. Then, we obtain

Va(tny1) —Va(ts) = */:H <R11Cz <V1( ) — chzd‘gir)> Rllclv( )> dt

Tn+1
tw [ Wm(n)B (1)dx.

In

Using the Lagrange approximation gives

v2<rn+1>—vz<zn>=—§Ar(RfC2 (vm)—chzvl“"“it‘““"))— ! vm))

At 1 Vi (ln) -V (tn—l) 1
+= <R1C2 <V1(ln—1) RC Y TRG Va(tn)

3 At B(t,+1) — B(t,) At
o (T )

22 v
TR A 2R,C

y (B(tn) Alj(tnl)) .

(2) If B(t) is not differentiable, then we have

Valtn) ~Valt) =381 (i (Vo) — ReGy AR ) vy

wV, (tnfl)

R At R|C;

+2 < ri (M) -G A0 2y, )

+W;)V2(fj) (B(tj1) — B(1))

i=

—wZVz t;) (B(tj+1) — B(t}))

|
Let us consider the following classical stochastic model.
Va(t) + (Ry +R2)cd‘;2t(” v (t)+R2cd‘2t(’) @1.21)
We added a stochastic component

=0+ [ v [BEodsn @122

where B(t) is assumed to be differential such that dB(t) = B'(¢)dt. Then, we get

Vi (t) = V3 (0) + /O "z, Vae))dT+ /0 mevBOd  (21.23)
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Thus
V(1) = Va(0) + /0 F(2,Va(1))dT + /0 V(1) 0dB(1) (21.24)

where o is the density of randomness. Here

1 Ry dVi(1) 1

— Vi) + - Vo) (2125
(Ri +R,)C W R @ (R +R,)C 20 @129

[, Va(t) =
We first present the existence and uniqueness of the above equation by verifying
(i) Growth condition Vr € Dy, | f(t,Va(t))|* < k(1+|Va(1)[?)
(ii) The Lipschitz condition. Let V;, and V>, be the solutions of the equations.

(. Va, () = F(t,Vay ()P <k |Va, = V3,

PROOF (i) In fact

2

Fea)P = MW(IHRITRZWCZU)‘<R1+1Rz>cvz<’)
) 2
< 3m\w(r)lz+ (R13f;?2)2 dt}t(t)
e e IOl
o) 2
< e MO m e
@ +1Rz)C)2 v)F
2
< 3 MO+ g |40
el
o) 2
< <3W||vl<r>||i+(&3f;2)z s )
1
x| 1+ e P

1 2
3trrmer MO+ Gy || T

=
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3 1
If (R +Ry)C)

1 2, 3B lavo|]?
3<<R1+R2>6)2HV'(’)”W*(RIRQVH .

@V 0)F < K1+ [Va(0)f)

< 1 then

3R}
(R1+Ry)?

avi(t)
dt

2
Wherek:3ﬁ|wl 0))2+ R Indeed

(R1+Ry

Va(eyw> =w? Vo) < w? (14 [va(0) )

Here w = k;.
(i) Indeed

(. V2, (1) = f (1, Vo, (1)) = ’_

(R R,

where k=1+ (O Thus, both conditions have been verified. We can consider

that the equation has a unique solution. We now present the numerical solution.

1 R, dVi(t) 1

Vz(t) :V2(0)+/0 <(R1—‘rRz>CV1(T)+R1+R2 dr — <R1+R2>CV2(T)> drt
(21.26)

We consider the equation at t =, = (n+ 1)Ar and t =1t,, = nAr.

VZ (tn+1 ) - V2 ([n)

T 1 Ry dVi(7) 1 )
= —Vi(7) + — W (1t drt
/tn ((R1+R2)C () Ri+R, dt  (Ri+R.)C 2(7)

Tnt1
+w [ Va(r)dB(1).

n

(1) If B(t) is differentiable then dB(7) = B'(7)dt. Then, we obtain

V2 (tn+l) - VZ(trz)

Int1 ( 1 R2 dVl (T) 1
(

—_Vi(1)+ - Vo(1) | dr
Ri+Ry)C Ot R @ (R1 +R2)C 2 ))

In

Int1
+w Va(T)B'(T)dT.

In
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Using the Lagrange approximation gives

3 1 Ry Vi(tws1) = Vi(tn)
n - n =zAt| n
Va(tns1) = Va(ty) 5 t((Rl—i—Rg)CV](t )+(R1—|—R2> A

“wr )
At 1 R, Vi(ta) = Vi(ta1)
—2((RI+R2)CV1(I;1—I)+<R1+R2) y

‘W”(’"”)

B(t,) = B(ty—1)
e ) ()

(2) If B(r) isnot differentiable, then we have

3 1 R, Vi(tns1) —Vi(tn)
" — n = FM| Z—n n
et = 38 (e (i) "%

At 1 R Vi(ty) = Vi(ta=1)
_(( )Cvl(t"‘lH(leRz) TR

TR )

+WiV2(tj) (B(l]+1) _B(tj))
i=0

1

n—1
—w ;) Va(t;) (B(tj+1) — B(t5))

|
Let us consider the following classical stochastic model.
de(t) Ri+R> dVl(t) 1

W(t) = —Vi(t 21.27
a "\ &me )= g TR (2127
We added a stochastic component
1 t
Valt) = Va(0)+ [ feVa(0)dr+ [ va@ovaB)  @128)

where B(t) is assumed to be differential such that dB(t) = B'(¢)dt. Then, we get

Va(t) = V5(0) + /0 "z, Va(e))dT+ /0 Vo () oy B(t)dt (21.29)
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Thus
t 3
Vi (t) = Va(0) + /0 F(2,Va(1))dT + /0 V(1) 0dB(1) (21.30)
where o is the density of randomness. Here
dvi(t) 1 Ri+R;
t,V. = —Vi(t) - Vo(r 21.31
ravs0) =0 dvo - (B ne e

We first present the existence and uniqueness of the above equation by verifying

(i) Growth condition Vr € Dy, | f(t,Va(t))]* < k(1+|Va(1)]?)

(ii) The Lipschitz condition. LetV>, and V5, be the solutions of the equations.

|f(taV21 (t)) _f(t7V22 (t))‘z < ]_C|V21 - V21 ‘2

PROOF (i) In fact

Favs)P = \dVG}fHRIICvm (Bl |
< 3"”;;” + s MO +3 R
< |G o+ g o
< 3| MO i -3 R e
< <3Hd‘2t(t) :+(R13C)2 ||vl(t)||§,>
i D0 o
3[40 + g2 @ -

(R1+R>)? dvy(r)
I3 e < (3 |5

2 2
m+ R1C2 [Vi(2)]|, ) , then

FEV20))F < K1+ [Va()f)

oﬁ o Vi ()2 - Tndeed

where k =3 H (e

Va(owl =w Va0 <w? (1+va(0)F)

Here w = ;.
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(i) Indeed
2

£V, (1) — (1, Ve, (1) = ’_M

) (V2 (1) = V2,(1))

2

- m Vay (1)~ Va, (1)
2

(1 +m) Va, (1) — Vay (1)

k|Va, (1) =V (1)

IN

IN

_ (Ri+R>)*
where k =1+ (R11R2C)2

that the equation has a unique solution. We now present the numerical solution.

dVl Ri+R;
— (0 +/ ( 1Cvl(r) - ( e ) VQ(”L')) dt (21.32)

We consider the equation at # = 1,41 = (n+ 1)Ar and t =1, = nAt.

Va(tny1) —Va(ts) = /Itn+1 (d‘;i ) + &%V (1) — (121;2122> V2(7)> dt

+ w [ va(e)aB(o).

In

(1) If B(t) is differentiable then dB(7) = B'(7)d. Then, we obtain

. il (dV) (T) 1 Ri+R;
Valtns1) = Valty) = /, ( o () <R1R2C>V2(r)>d7

Tnt1
w [ (o) (1)dr.

In

. Thus, both conditions have been verified. We can consider

Using the Lagrange approximation gives

Va(tu1) =Valtn) = ;At(R:CVI(zn)+V1(t"+1)At_Vl<t")
e )
A;(}JCVI@"I) W
)
2 v (BB

_%sz(t’1_1> (B(tn) _B(tn—l)) )
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(2) If B(r) isnot differentiable, then we have

14

Valturr) =Valtn) = %At (R:CVI (t,) + W
_’;1;2’? vz(t,,))
(g M)
At )
O NABICOME D)

0

n—1
—W;)Vz(tj) (B(tj+1) —B(1)))

|
Let us consider the following classical stochastic model.
dv,(t
% +4 % 10%V,(1) = —4 x 107V, (1) (21.33)
We added a stochastic component
t 3
V() =Va0)+ [ feVa(e)dr+ [ a@ovaB)  @134)
where B(r) is assumed to be differential such that dB(¢) = B'(¢)dt. Then, we get
! t
Va(t) = V3 (0) + /O F(2,Va())dT+ /0 BnaovB@)dr  (21.35)
Thus . .
Va(t) = Va(0) + /0 F(2,Va(0))de + /0 V() 0dB(t) (21.36)
where o is the density of randomness. Here
F(t,Va(1) = —4 x 107V (1) — 4 x 10%V; (1) (21.37)

We first present the existence and uniqueness of the above equation by verifying
(i) Growth condition V¢ € Dy, | £(t,Va(t))* < k(1+|Va(1)]?)
(ii) The Lipschitz condition. Let V,, and V>, be the solutions of the equations.

|f(t,V21 (t)) —f(t,sz(l))‘z < ]_<|V21 _V21 ‘2
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PROOF (i) In fact

FEVa()]F = |=4x 107V (t) —4 x 10V, (¢) ’
2(4 x 1072 Vi (1) +2(4 x 10°)2 [va () *

IN A

teD;

IN

245 1072 [V (1) |2 +2(4 x 10°2 Vo 1)
(24102 Vi )112.)

2(4 % 1092 |Va (1) [*
" (” G0 [V (0] )

If 2(4109)2 < 2(4107)2 ||V, (1) |12

[

IN

then

@V )P < K1+ [Va(0))

where k = 2(4107)2 ||V; (¢t)||% . Indeed

12
Va(eywP =w? Va(0)P < w? (14 va(1) )

Here w = k;.
(i1) Indeed

£, Va, (8)) = £(8,Va, (1))

I

|
~
X
—_
(e)

[=))
§

= (4x10%?% W,

< (1+ (4 x 10° 2)|V21(t —Va, (1)
)

< kVa,(6) = Vo, (1))

2(4 % 107)2 sup |Vy (1) > +2(4 x 10°)? [Va (1) [*

where k = 14 (4 x 10°)2. Thus, both conditions have been verified. We can consider

that the equation has a unique solution. We now present the numerical solution.

Va(t) = V5(0) —/(: (4 % 107V (1) +4 x 106V2(7)) dt

We consider the equation at# =, = (n+ 1)Ar and t = 1,, = nAr.

Tnt1
Valtnsr) — Valty) = _/t ’ (4><107V1(1:)+4><106V2(r)>dr

Int1
+ w Va(7)dB(7).

In

(21.38)
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(1) If B(t) is differentiable then dB(7) = B'(7)d7. Then, we obtain

Tnt1
Valtar1) — Valta) = / ’ (4x10Vi() +4 x 10°Ws(v) ) d
n
Tnt1
+w/ Vo (1)B'(1)d.
tn
Using the Lagrange approximation gives
3
Valtni)) = Valt)) = SAr (4 x 107V) () +4 x 106V2(tn))
At
— ? (4 X 107V1 (fn—l) +4 x 106V2 (tn—l))

+%WV2(M) (B(th)At_ =L )

A (B(t”) Af““)) .

(2) If B(t) is not differentiable, then we have

3
Valtni) =Valtn) = S (4 % 107V, (1) +4 x 106V2(t,,))

At
-5 (4 % 107Vy (tn_1) + 4 106V2(z,,,,))

n

+w) Va(t) (B(tj+1) = B(1))

i=0

n—1
—-w ;) Va(tj) (B(tj1) — B(t;))

Let us consider the following classical stochastic model.

dv,(t dvi(t
RIR,(C +C2)$ + (R +R2)V2(t) =R |R,C, c;t( ) + RV (7) (21.39)
We added a stochastic component
t 1
Va(t) = Vi (0) + /0 F(1,V5(0))dT + /0 V() v dB(1) (21.40)

where B(t) is assumed to be differential such that dB(t) = B'(¢)dt. Then, we get

Va(t) :VZ(O)+/Otf(r,Vz(’L'))dTJr/OtVg(r)a)VB(t)dt (21.41)

Thus
Vi (t) = Va(0) + /0 Flr,Va(7))dr+ /0 V(1) 0dB(1) (21.42)
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where o is the density of randomness. Here

C dV](t) 1 Ri+Ry
T =ee o Traro)"  RRc o) G

We first present the existence and uniqueness of the above equation by verifying

(i) Growth condition V¢ € Dy, | f(t,V5(1))* < k(1+|Va(1)]?)

(ii) The Lipschitz condition. Let V,, and V>, be the solutions of the equations.

|f(t’V21 (t)) _f(t’V22(t))|2 < I;|V21 =V |2

PROOF (i) Infact
(V2 ()

C, dvi(t) 1 R +R»
= Vilt) = 57—~ | V(1)
Ci+C dt Ri(C1+ () RiR>(C1 + ()

G\ || ( ! ) 2 L (Ri+R)?
=3 3 Vi(t 3= W (r
- <C1+C2> a | Pl rcrey) MO RRor V0

a \ |avi@))? ( | >2 i
= sup |———| 7+3| o—=—~~ ] sup|Vi(r
(C1+C2> ter dt R](C]_|_C2) ter,| 1( )|
(R1+R2)
V(o)

(RIRC)
¢\ Mo ’ (Ri +Ry)?
_3<C1+C2> ar || (,M> ||V1()||w+3m|v2()|

C 2 dvi(r) 2 1 2
§<3 (C1+Cz> w+3<R1(C1+Cz)> |V1(t)||i>

dt
(R1+R;)*
dVl
C1+C2

R{R,C
1RO Vi ()12 [Va ()2
Ri+R dV
1f 3{RueRo <3(C1+C2) H 1

2

2
(—Rl(clucz ) o]z
2
. +3 (e ) Vi) then

1, Vz(t))l2 < k(1+IV2(t)|2)

where k =3 (C1+C2) Hdvl

Va(eywl> = w2 [Va(r)* < w? (1 +va(0)?)

Here w = k.
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(i) Indeed

2
(V2 (1) = £ (£, Vo, (1)) = ‘(Rl(él(;% (Va, (1) = Va, (1))
2
aelﬁfigf)@»z Vi, (1) =V, (1)

(R1 +Ry)? 2
< (1+w) Va, (1) — Vay 1)

< k|V21 (t) _V22(t)‘2

_ (Ri+Ry)? L : _
where k =1+ Rk (GG Thus, both conditions have been verified. We can con

sider that the equation has a unique solution. We now present the numerical solution.

%3 (t) =V, (0)

4 C; dvi(r) 1 R+ Ry )
+/ + Vi(T) — ——————W (7 drt
0 (C1+C2 dt | R (Ci+Ca) 1(7) RiRy(Ci +C2) 2(7)

(21.44)
We consider the equation at t = f,,+1 = (n+ 1)Ar and r =1t,, = nAt.
V2(’n+1) - VZ(tn)
W [ Cp o dVi(1) 1 Ri+R, )
= Vi(t) — ———W(7) |dt
Jun (Cl TG dt | R(C+G) i RiRy(C +Cy) 2(7)

Tnt1
+w Va2 (7)dB(7).

In

(1) If B(t) is differentiable then dB(7) = B'(7)dt. Then, we obtain

Va(tas1) = Va(tn)

Tht1 C dV 1 R R

+ ( 1 I(T) V](T _& 2(1’.)> dr
Ci+GC dt Ri(C1+C2) RiR:(C1 +G)

tn
Tn+1

+w/ Vo (1)B'(1)d.
t’l

Using the Lagrange approximation gives
Ci Vi(tar1) =Vi(tn)

Va(tar1) —Va(tn) = Vi(ta) +

*Al B —
2 (R](C] JrCz)

Ci+C At
Ri+R
——— V(¢
RIRy(C1 + () 2(n)>
At 1 C Vi(t,) —Vi(t,—
< Viltn) + =S 1(tn) = Vi(ta-1)
2 \Ri(C1+C) Ci+C At
Ri+R>
————Ws(t)—
R]RQ(C1+C2) 2(n 1))

3At B(tn+1) — B(ta)
S wBG o)W ( At )

At B(ty) = B(tn-1)
ARG 1) Y ( Ar ) '
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(2) If B(r) isnot differentiable, then we have

3 1 Cr Viltys1) —Vi(tn)
V2( +1) 2( n) ) <R1(C1+C2) l(n)+C1—|—C2 At
RI+Ry )
-V (1,
R]RQ(C1+C2) ( )
2 (Vl(tnl)+ ) )
2 \R(C1+C,) Ci+G At

Ri+R;
———W(t,—
R1R2(C1+C2) Z(n 1))

—|—wzn;‘)V2(tj) (B(l‘jﬂ) _B(tj))

n—1
o ;) Va(t;) (B(tjs1) — B(t)))

We consider the following problem:

1 di(t)  dPi(r) V()  1dV()

RC dt di® ~ RCL L dt

In this case, we assume that the function V(¢) is knomn. Then, for simplicity we
assume

(21.45)

V() 1dv(r)

Then, the equation becomes
1 di(t) d%i(t)
— =F - 21.47
di(t) d%i(r) ,
o CF(t,V(t)) —RC 2 (2,i(1)) (21.48)

We can now convert the above equation into integral equation and the randomness to
obtain

(1) —i(0) = /O "H(z,i(7))dT+ 0 /0 i()dB(7) (21.49)

Again we present the existence and uniqueness of the above problem by verifying:

(i) Growth condition V¢ € Dy, | f(t,i(t))]* < k(1+i(t)[?)
(i) The Lipschitz condition. Let i1 and i; be the solutions of the equations.

£ (i1 () = f (1, 2(0))* < k|in —iaf?
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2i 2
i) = |re[ruvio) - 4]
B 2i(t) |*
= (RC)?|F(1,V(1)) — P
. 2
< (RO |2|F(t,V(1)[+2 d;’t(;) ]
Zi 2
< 2(RC)? tsggIF(t’V(t))Izﬂzga ddt(zt) ]
2 > @i | N
< 2rep? I v+ |G | | (o)
< k(1+1i0P)
) & ’
H0) - Heo0)F = /02| 0 - i)

We asuming that % (i1(t) —ix(2)) is bounded. Then, we obtain

d? 2

g () =i2(1))

2
()~ ()

|H(1,ir (1) H(t,i2(1)) = (RC)?

2
< (1+(RC)*) sup
teD &2
iy —iy

x|ir () = i2 (1)

< klin() =i (o))

Under the conditions the above were derived, we can conclude that the equation has
unique solution. We now present the numerical solution att = ¢, and r =t,. Then,
we have

i(tyy1) —i(ty) = %AtH(tn,i(tn))—%AtH(tn_l,i(tn_l))
+gAlGi(tn)B(t’1+l)At_B(tn)
1 ) B(t,) — B(ty—1)
—EAfGl(tnfl)iAt
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If B(r) is not differentiable, then

i(tet) —i(ty) = %AtH(tn,i(tn))—%AtH(tn,l,i(tn,l))

D=

+0RCY i(tj) (B(tj+1) — B(1}))

Il
=]

3
|
—_

—RCo 0i(tj) (B(tj+1) — B(t)))

Here

H(tn, (1)) = RCF (£, V (1)) — RC (i(t,m) —2i(1,) + i(t,,l))

(Ar)?

Fltn, V(1)) = ‘;(CfL) N % V(tm)m— V(i)

We consider the following problem:

Ry .

CLt(t)+

1di(t) V(@) V() (Rl 1>d"(’) RitRay i) 2150

C dt  CL  arf? L " R,C) dt R,CL

In this case we assume that the function i(¢) is known. Then, for simplicity we assume

R,

F(t,i(t)) = ai(z)+

1di()
C dt

(21.51)

Then, the equation becomes

(R1+ 1 >dV(t) Ry s ) RitRey o dVE) o

L RC) dt CL  RCL dr?
dv (1) 1 : V() Ri+R d*v (1)
= F(t,i(t — V(t)— 21.53
(g )( O~ TRer VO e (2159
L RC

av (t) LR,C (F(t,i(t))+( 1 R +R2> Vi) - d*v (1)

= — 21.54
dt RiR,C+L CL R,CL dr? ) ( )

We can now convert the above equation into integral equation and the randomness to
obtain

V() —V(0) = ./O.[H(LV(T))dT—&—G/(:V(T)dB(r) (21.55)
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Again we present the existence and uniqueness of the above problem by verifying:
(i) Growth condition Vz € Dy, | f(1,V(t))]* < k(1+|V (1))
(i) The Lipschitz condition. Let V| and V, be the solutions of the equations.

£, Vi () = F (2, Va () P < K[V = Va?

LR,C Ri+R» d*v(t)
H(tV( - V() —
H(V ) ‘R]R2C+L( (CL RZCL> ®) dr?
_LRC 2F L_RitR) 0 v
R1R2C+ L CL R,CL dr?
LR:C > 1 Ri+R\*
3|F(t, 3 Vit
<R1R2C—|—L> F (i) + <CL mcL ) V0
2]
IRC V3 o PP +3 (A BER Y
l
RIRC+L) | romy CL™ RoCL
2
2V (1)
+3 su
teDI:/ dt
LR.C [ o 1 Ri+R\>.
<= F 2
<(amecg) Preciois (g - ) o
2V |
3

[38)

d’v(t)
dt

< LR,C
T\RIRC+L
2
2
3(& - %) v

+
I1F (2, i0))II2

3 <||F<r,i<r>>||i,+\

)

dt
If

v |
dt

1 R +Ry
CL R),CL

)2 <P+

=

Then, we reach

H(V(O) < k[1+ V()]
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where
LR,C ? e |V |
= (= F
(RleCH)s(n wion+ | 50|
1 Ri+Ry\ LRC
H -H REE | [ -~
e 0) - HonF = |( g ) L o - v
2
LR,C  d?
“RikaCrLap 7 Y0)

We asuming that < e (Vl( ) — V»(¢)) is bounded. Then, we obtain

(01 (0) = Hoa0)F =| (G~ ) R -0

2
LR,C d?
e 1% Vv
R1R2C+Ldt2(1() 2(1))

1 R +R\ LRC 77 )
21\ &~ Vi(t) —Va(t
B {(CL RyCL >R1R2C—|—L] (Vi) = V2(2)]

) LR,C \*| &> (
RiR,C+L dr?

< 1 R +Ry LR,C
- CL R,CL ) RiR,C+L

( LR,C )2 2
2 ——— sup
RiR:C+L) iepy,

d2
I Ri+R)\ LRC 17 2
2 (= — Vi) =Wt
= [(CL R,CL >R1R2C+L] Vi(6)=V2(0)]

LR,C d?
12—
RiR,C+L

s V() = Va(r)
<kIVA() -~ Va)

2
Vi) =Va())

2
] V() — V(o))
2

(Vi(t) = Va(t))

2

oo

Under the conditions the above were derived, we can conclude that the equation has
unique solution. We now present the numerical solution at # =1#,, and t =¢,. Then,
we have

3 1
Vitat1) =V(tn) = EAtH(trzaV(tn)) - EAtH(tnf] V(ta1))
3 LR,C B(tyy1) — B(t,)
—At Vit
AR R’ TN
1 LR,C B(ty) — B(th—1)

Gv(tnfl)

R ti
2 RIR,C+L At
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If B(¢) is not differentiable, then

V(tr) — V(i) = %AtH(t,,,V(tn)) - %AtH(t,,_l,V(t,,_l))
C n
+o% Y V) (Bs1) - Bi0)
n—1
O e L L) (B) —B0)
Here
H(ty V(1) = % (F(t,,,i(t,,)) 4 (CIL - R;;’f) V(i)
~ Vltar1) —2V(t) +V(t,,_1)>
(At)?

Liltns1) —i(tn)

Fltni(tn) = L O+te— A

= aln

We consider the following problem:

L R C

1 lav(t) V() d%(t) (R 1 \di(t) Ri+Ra.
al — = <2+ ) 1 2

(1 - 1) (21.56
O+ ~a RICL a2 di R1CLI()( )

In this case we assume that the function V(¢) is known. Then, for simplicity we

assume
_1ave) v

F(t,V(t)) = 21.57
Then, the equation becomes
Ry, 1 \di@) 1. d%i(t) Ri+R,.
=+ — =F(t,V —i(t) — - t 21.58
<L +Rlc) o~ FeVO)+apit) =5 =i @2LS®)
di(t) 1 d*i(t) Ri+Ry,

dr (Rz L) (F(t,V(t))+c1Li(t)— a?  R.CL l(t)) (21.59)

di(t)  RLC ( 1, d%i(t) Ri+R>

= F(t,V(t —1I(f) — —
di  RR,C+L WV + o=z R.CL

We can now convert the above equation into integral equation and the randomness to
obtain

i(t)) (21.60)

(1) — i(0) = /0 "H(r,i(7))dT+ 0 /0 i()dB(7) 21.61)
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Again we present the existence and uniqueness of the above problem by verifying:
(i) Growth condition V¢ € D;, | £(t,i(1))]* < k(1 +]i(t)[?)

(i) The Lipschitz condition. Let i; and i, be the solutions of the equations.

(2,01 () — ft,i2(0))* < Kliy — ia]?

, RILC 1. d%(@t) Ri+R, \|
Hti))? = |—— (F@t, V(1)) +—i(t) — - t
P = |ere (P gpin - S8 - Bt

2
RILC \? 1 Ri+R)\ . . d2%@)
= (=——"ie ) |F@,V( —— 1) —
<R1R2C+L> g ())+(CL reL )
RILC \*
< 3 gpar) [IFEVOP
R{R,C+L
2
1 Ri+R; dz'(l‘)
+<CL R1CL) {OF + dr?
2
R|LC )
< 3 S ) sup [F(r,V (e
< 3(grerz) | ey
2 2. 2
1 Ri+Ry N2 d=i(t)
— - t
+<CL R1CL) {0+ sup | =75
RILC \* )
< 3= ) | sup [F@, V(e
< 3(grerz) | irevo)
2
1 Ri+R\*,. . d%i(t)
— - t
+<CL RCL) [12)] +,‘2};§ ar?
_RIC
< I
R1R2C+L
2
1 Ri+R, N dzi(t)
— - t
+<CL R1CL> o)l +’ a ||

2 2.
RILC 5 |l @)
< 3 —— F(t,V(t
< 3 amerr) <|| vl |
2
. 2
(&—’22’?) |z<r>|

[1F (2, V(1

)

1+

||oo

dt2
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If

&2i(1) ||°

dr?

1 Ri+R)\’ 5
—_— = F(t t
(- her) <IFvlE+

=

Then, we reach

H (e, <k [14+1i(0)]

where

RILC 2 > |12 ||
= _— F
=3 (emert) <|| cvol+ |52

) -Ha0F = |(gress) (&~ ra ) 60 -a0)

R{LC d2 . '
- (RIR;C+L) o (1) = i(1))

We assuming that % (i1(t) —i2(2)) is bounded. Then, we obtain

2

) -HeaOF = |(zrers) (&~ e ) 60 -a0)

RR:C+L) \CL R/CL
(e ) & )20
< 2(rerr) (CIL—RIQL’ZQ)Zwmo—iz(z)F

2
RiLC 1 Ri+R)\’,. o
P i e N . t
<R1R2C+L> (cz R CL ) i1 () —ia(t)]

< RILC >2 ?
42 =——— ] sup
RiRyC+L) ep,

R\LC 1 R+R\?.. o
20— ) [ —— A —i(r
<R1R2C+L) (CL R.CL > i1 (1) —i2(2)]

2 2 2
+2(pperr) | @020
klir(r) —i2 (1)

2

IN

d2

s (1)~ (1))

IN

=

IN
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Under the conditions the above were derived, we can conclude that the equation has
unique solution. We now present the numerical solution at f =1#,,1 and t =¢,. Then,
we have

. . 3 . 1 )
i(tgy1) —i(ts) = EAIH(I,,,I(I,,))— EAIH(tn_l,l(tn_l))
3 R\LC . B(tn+1) —B(l‘n)
—At
A Rk 120 ) Al
1 RILC ) B(ty) — B(th—1)
N RRC L0 )T
If B(t) is not differentiable, then
. . 3 . 1 )
i(tyr1) —i(tn) = EAtH(tn,t(tn))—EAIH(tn,l,l(tn,l))
RLC /!
i(t;) (B(t B(t
+GR1R2C—|—LZ§’)Z(J)( (tj41) — (/))
RiLC "l
— i(t:) (B(t; B(t
RIR2C+Ll:Ol(])( (tj+1) (1))
Here
. 1 1, Ri+R, .
H(ty,i(tn)) = @ <F(fn,V(tn))+CLl(fn)—IIQICLZl(ln)
L TRC
iltnrr) — (n)"’i([n—l))
(Ar)?

LV (tgi1) =V (ta)  Vitn)

F(t,,V(t,)) = —
1,V (t)) = 7 At T RiCL
We now consider the following equation
Ldl( +RI(¢ / I(t (21.62)
dt C '

Here, the function V (¢) is well known. We assume that the solution () is bounded
in its domain, V (¢) is also bounded. We firstly convert the above equation as

a0 VO 21— g [1(war (21.63)

We now convert the above equation into integral equation as

1) - 1(0) = %/Ot (V(‘L’) _RI(7)— é /Orl(l)dl> dt
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We add the stochastic component to have

1) —100) = % /O’ (v(r)—RI(r)—é /O TI(l)dl) dr
‘o /0 ' 1(2)dB()

Here

F(1(r) = i(v(z)—R](t)—é/otl(r)dr)

G(t,1()) = ol(t)
Of course for all t € Dy, we have
GO <k (1+[1()])

So
2 2
G(6,1(1)) = G(1,J(1)[” < k[1 (1) = J (1))
We have to show that F(¢,1(¢)) also verifies these conditons.

2

/Otl(r)dr

)| dt

F 1)) = ’i(v(t)—Rl(t)—é /Otl(r)dr>

3 , 3R? 5
SIvi) +?v<r>\ +

2

IN

(LC )?

IN

3
3 woP+ 2

IN

3T
2 sup WO+ 2 0P + o /0 swp 1§) s

372
(LC)?

IN

2
%uvmnh%uo»ﬁ @I

372
(LC)?

IN

M

3 3R2
7 V@)l + 1z ()] +

3 31?2
< (BIVOR+m)

3B |1(r)

2
ENT7e Pt M

A

Here, ||I||2 < M since I(t) is assumed to be bounded. Then

F 1) < k(1+10)P)
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under the condition that

3®
L
— <1
V)L + &g)zM
and
3 , 3717
- M
k=13 HV(I)ILXnL(LC)2
Also
1 2
F(t,1,(t)) = F(t,L(1)] = *( 1(0) =h(1) - 77 A (h(7)—h(t))dt
<F o -nor 2| [ @ -neyad
Seih 2 02 | Jo 1 2
R? 2 T ! 2
<) _ - _
<25 ()~ BOP +2 7 | i@ -n@Par
R? 5 72 5
<2—5 sup |I(t) —h(t)|]"+2 5 sup |1 (t) = L(1)]
IED117[2 (LC) IEDIIJZ
<(2R2+2 r ) sup |I(t) — L)
>~ 1 — 1
L2 (LC) tEDII N
<K|L(t) —b(0)]2
where
R2 T2
K=2— 412~ _.
2R (LC)?

Therefore, under the conditions described above, we have unique solution. We can
now present the numerical solution of the stochastic equation. Thus at t = 1,1 =
(n+1)At, we get

Tn41

Htns1) —1(0) = % F(t,1(t))dt + /tn+1G(1,I(r))dT

t 1j+1
_ /]+ d1+2/ G(z,I(z
1

Using the Lagrange within [t;,#;,1], we can approximate the functions F(7,/(7)) and
G(7,1(7)) to obtain
1 3 1
1(tn41) —1(0) = 17 )y EAIF(fjal(tj)) - EAIF(tjflal(tjfl))
=1
3 1
+ Z FAG(,1(1))) = S MG (1)1, 1(tj-1))

j=1
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where

% (v(tj) RIt)) - é /0 th(T)dr)
=1 iy
-1 <v(;,-)R1(;,-) é;zo / I(r)dr)

1 1!
= 7 <V(’j) —RI(tj) - CkZZ)AtI(tk)>

We consider the following differential equation
di R. 1 .
= —Zz(t)+ZV(r) = f(1,i(r)) (21.64)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

F(t,1(t;)) =

1 _ ~\a-1 i i _ o—1
i(r)— /ffz (t—1) dr+r(a)/0 i(7)(t—1)* 'dB(7)
(21.65)
We define a mapping

[C(i(2))] = ‘ @) /frz N —1)% ldr+%/0ti(f)(t—r)“*ld3(r)
< g GO+ ol
r M| +M
< m( 1+ 2)
T M
S Tla+))
We have
MO -T) = g || Gei0) =i (@) (o) ae
g (=i (3) (= d(e)
< g (i) = feio) =0 e
G|(i(x) ~ i (1)) (s~ 1)° dB(o)
1 R T .
< ()[tes[lér;]l()—n()l+GLates[1(1)pT]|()—n(t)I1

< I (R GL) il <Lifi-i]
F(OC+1) I 1= 11| 1N U ||
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We assume that B(r) is Lipschitzian on [0, T] with constant L, then

[ rmicene-o= ‘dr+r(Ga) [iwa-ota)

LG = m

: o]

6| [ i@ -0 ab()

/frz )t—1)% ldr

|

< [/ffl (t—1)* ldr

G/| (t—7)* 'dB(t )]

< % [/Ot sup |£(L,i(1))| (1 —7)* " 'dt

1€]0,7]

t
G [ sup |i(])|(r—1)* 'dB(1)
0 7efo,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

i(tr1) = F / f(2,0(0)) (tpr — 7)*
f+1

+m/o i(7)(tny1 —7)* 'dB(7)

- z<o>+r(1a)]i0 [ () (1 — ) e
O WARGLREGIT

= O+ g LA ) )
* g B o) = 2,

=
X[(n—j+1D)%*n—j+34+20)— (n—j* (n—j+3+3a)]

Zr‘((i)j:fi) [f(tj lf) 2f(t _1, i )+f(l‘j_2,ij72)]
x [(n—j+1)*(2(n—j)*+ (Ba+10)(n— j) +20* + 9+ 12)

—(n— )% (2(n—j)* + (S +10)(n — j) + 60> +18c + 12)]

Y1) [(n—j+1)% = (n— )] (B(tjs1) — B(t;))
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Then, we obtain

i(trH»l) = 1(0)+F((X+1)i

x[(n—j+1D)*n—j+342a)— (n—j*% (n—j+3+30)]
(Ar)* R, 1
+m [(_Ll(tj)+LV(tj)>

-2 <IZ,-(,].1) + iV(tjl)) + (Izi(lm) + iV(Piz)ﬂ
x [(n—j+1)%(2(n— j)*+ Bo+10)(n— j) + 20> + 9o + 12)
—(n—j)* (2(n— j)* + (S0 +10)(n— j) + 60> + 18a +12)]

mil(n)[(n JHD* = (n= )" (B(tj11) — B(t)))

We consider the following differential equation

A%} 1 1 A% (t)

@~ re Wt e - =4,

= f(t,Va(1)) (21.66)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

Valt) = Va(0) = o5 | EVE =0 v+ s [ V(@) —0) s

(21.67)
We define a mapping

)] =\1 / ’f(r,v2<r>><t—r>“—1dr+r(("oo [ w@e-netas)

<t [V ol T
<l—‘(076"j—1) (M, + M)
TOC

—M
NYCES))
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‘We have
1

[C(V2) =T(V2)| = a)

1"((; /( 2(7) = Vo, (7)) (t = 7)*dB(1)

[ rtevae) - s v, @) -0 las

(o)

)
< YA — £(5Vay () (¢ — )
(Va(1) = Va, (2)) (1 — 7)*'dB(7)]]

G|
1

< L sup [val0) - vay ()] =
| , , L
F( ) RCte[OT] : o
T(X
+GL— sup |Va(r) — Vo, ()]
t€[0,T]

T 1
— +GL |||V, -V Ly||Va -V
< ram (reot) -l <L -y

We assume that B( ) is Lipschitzian on [0, 7] with constant L, then

/f’cVz (t—1)%" 1d1+—/V2 (t—17)* 'dB(7)

1

Sm )t —1)% ldr
G/Otvz(f)(t—r)a*lds(r)
<L /|f T, Vo(1))|(r —1)% ldt
G/ [Va(t )*1dB(t )}

<ﬁ [/ot IESEP] lF(I,Va ()] (r — 1) d

!
G| sup [Va(D)|(t—1)* 'dB()
0 [¢[0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtnsr) = vz<o>+ﬁ [ 1@V @) -0 e
+% / "V (0) (1 — 7)* ' dB(7)

Lj+1

f(TﬂVZ(T))(tn-&-l - T)aildT
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+% jzn%)/fjtj+1 Vo (T) (tas1 — 7)*'dB(7)
= O+ gty B 7))
(At)a n

"Tla+2) j);z [f(’f*h"zj*l) —f(tj,z,vz-"*z)}
x[(n—j+1)%(n—j+34+2a)— (n—j*)(n—j+3+3a)]
2r((AO§)f3) [F8) 20V 4 2,032

x [(n—j+1)*(2(n— j)*+ Bo+10)(n— j) + 20> + 90t + 12)

_|_

( )“(Z(n N2+ (5a+10)(n—j)+60> + 180+ 12)]

(X n

a+1 L =+ 1% = (1= )] (Blt) = B()
Then, we obtain
) = O+ e, jgz(zelcm“”u}c“(ffz)d%giz))
x[(n—j+1)% = (n—j)°]
1

1 dVl(tj_g)
- _RCVZ(tj 2)+ 2RCV1(tj 2)— 7

x[(n ]—H (n— ]+3+20¢) (n—j*) (n—j+3+30)]
( ) dV](tj))

_|_

Fa+3 [( 2RC dt
dV](l‘j 1)

< Valti-1) + 2RC Vilti-1) = =4~ )

_EV H(tji—2) + Z;CVI (tj2) — dVlgtjz))}

x [(n—j+1)% (2(n—j)* + (3o +10)(n— j) + 20> + 90 + 12)
—(n—7)*(2(n—j)*+ (Sa+10)(n— j)+6a” + 180+ 12)]

_|_

GAN* ¢ . ,
Mot 1) & ) (0= 5+ D% = 0= 1)) (Boy00) ~ B()
We consider the following differential equation
dv, 1 1 Ry dV/ (1)
— =——=W(t)— Vi(t) + == = f(t,Va(t 21.68
i = REO0 - gVt g ST = f0n0) L)
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We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

t
Wo( /f A )@ lgr 4 a)/ Vo(2)(t — 1) 'dB(7)
0
(21.69)
We define a mapping

’ /fer Yt—1)% 1dr+—/V2 )(t—1)* 'dB(t)

< [nf( Il + LIV ]

M)
T(X

<m(M1+M2)
T“ M

“T(a+1)

We have
T2 -0 = g | [ eV = sl (@) (=) lae
e 00— () (=1 a(e)

I'a
|(Va(2) = Va, (2)) (t — 1) 'dB(v) ]
1
I(a)

)
< [ Va®) — 13V () — 7t
(

Q

o

T
sup [Va(r) = Va, (1) —
RiC t€(0,T) 1 o

(X
+GL— sup [Va(1) — Vo, (t)]
o t€[0,T]

T 1
< = GL ) |V, =V <L [|Vo =V
o (g + L) eVl < L=V

We assume that B( ) is Lipschitzian on [0, 7] with constant L, then

f T,Va(17))(r — )% 'dr+ o) /OtVz(T)(l—T)“"dB(r)

/fer N(t—1)% ldt
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G/ Va(7)| (t — 7)* 'dB(t )]

<ﬁ [/0' sup |£(LVa(D)] (- 1) 'de

1€[0,7]

!

G [ sup [Va(D)] (t—T)aldB(T)]
0 1¢[0,7]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtns1) = V2(0)+ﬁ/otmf(r,Vz(r))(tn+1—1)“*1011:
g VO o) s
= RO+ X l_’”‘f(r,vz(r))(t,,ﬂ—r)a—ldr
j=071j
G & [l o
+m; : VZ(T)(tn+1_T) ldB(T)
= O g LSO D) )
+F(((Axtiz)jzn;{f(t/—thj_l)—f(fj—z,sz_z)]

x[(n—j+1D)%n—j+3+2a)—(n—j*n—j+3+3a)]

21“((Aoi)j3) {f(tjavzj) —2f(tj-1,V{ ) +f(fj—2,V2j_2)}

x [(n—j+1)*2(n—j)*+ Ba+10)(n— j) +20* + 90 + 12)
—(n— )" (2(n— j)* + (Sa+10)(n— j) + 60> + 180+ 12) ]

+FC(;26AQ;]_ZOI‘(U) [(n—j+1)% = (n— j)*] (B(tj+1) = B(1;))
Then, we obtain
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1 1
— —=—Wa(tj—2) — —Vi(¢t; —=
< R.C; 2(j 2) R I(J 2)+R1 dt
X[(n—j+ D)% n—j+342a)— (n—j% (n—j+3+30)]

(Ar)® Ry dVi(1))
2T(a+3) K_R]C]Vz(tj)_R]Cz l(t"HR% clzz >

deVl(tj_l))

|

1 1
2| ——=——Valtj—1) — —Vi(tj—
< RCy 2(1 l) RC, ](j l)_‘_Rl dt

1 1 Ry dVi(tj-2)
e Vh(tj2) — ——Vi(tja) + 2 2
+< ric, i) T gt g

x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j) +2a + 9o+ 12)

We consider the following differential equation

A% _ 1 1 R, dVi(t)

e W)+ Vit
dt (R +R,)C 2(1) (R +Ry)C O R R

= f(t;Va(1))

(21.70)
We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

Valt) =Va(0) = g [ A=) e s e - a(e)
(21.71)
We define a mapping

P00 = | g HE (o= 0as

+F(Ga)/0’v2(r)(tf)a-ld3(r)

1 T T
—_— LV — L —
< Fa 1wl ol
TOC
— (M + M,
< Tasn M)
TOC

F(a+1)M
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We have
IF02) = 0| =g | (8208 = (5.0 (0) 1~ 01 e
— | (V. 14 t—1)* 'dB(z
+F(a)/(2( )= V2, (2)) (6= ©)* dB(3)

<ﬁ H(f(T,Vz(T)) _f<‘L',V21(T))) (,_ T)Otfldr‘

G|(Va(7) = V2, (7)) (r — 7)*~'dB() ]

1 1 T
sup. [Va(r) =V, 1) -

<
I(a) | (R +R2)C cpo.

o

T
+GL— sup |[Va(t) — V3, (t)|1
o t€[0,T]

T@ I
“Tat1) ((Rl +Ry)C

We assume that B(r) is Lipschitzian on [0, 7] with constant L, then

+GL) Va—Va, Il < Ly Vo= Vs, |

Hoo

P00 =gy | [ £ Va0 - 9 e s [ty o) s

%) { /Otf(favz(f))(t—r)“—ldr

L [ / ()] (-
+G/ Va(t )% 14B(t )}

<r(% l/ot sup [f(1,Va(1))| (1 =) dt

) [0 1ejo.7)
t
+6 [ sup |V2(l)|(t—1:)°‘1dB(r)]
0 [¢[0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

L Tnt1
I'(a) Jo
g VO — o) s

Valtar1) = Va(0)+ F@V2 (1)) (tarr — 1) T
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- Vﬂo)*%i/t_t"+'f<r,vz<r>><rn+l ~ o) lar

’/+1

+—Z/ T)(tay1 — 7)% 'dB(7)

jOt/

SCORN Fa) if 2V ) =+ 1) = (= )

A& - -
+F((ati 2) ,;2 [f(lj—l,sz D= flt2, Vs 2)}

x[(n—j+1D)*n—j+34+2a)—(n—j* n—j+3+3a)]

s [P =20 ) 402 )
x [(n—j+1)%(2(n—j)*+Boa+10)(n— j) +20* + 90 + 12)

—(n— )% (2(n—j)*+ (Sa+10)(n— j) + 60* + 180+ 12) ]

F((;((fok) T) Y it [(n—j+ D)% = (n—j)*] (Btj41) — B(t)))

Then, we obtain

At)a n 1 1
a+1) § ( (R, +R2)CV2(”*2)+W

Valtn) =Y2(0)+ Vit

R; dV] t] 2)
R1 +R;

(A% 1 1
e & K‘ FrRe ) R R

Ry dVl(fjl))

X[(n—j+1)*—(n—j)%

_|_

Ri+R; dt
1 1 R dVl(tj2)>:|
(W (tj2) + ——— V(1)
( (R, +Ry)C 2(t; 2)+(R1+R2)C -2+ e
X[(n—j+1D)%*n—j+342a)— (n—j* (n—j+3+3a))

(At)a 1 1 R, dV; (t)
T (a+3) K_(R1+R2)Cvz(tj)+(R1+R2)Cvl(tj)+R1+R2 i >

1 1 Ry dVl(tj_l))
2 - Valtj 1)+ ———Vi(tj 1)+
( (R1 +Ry)C 2(t5-1) (R1 +R,)C W)Y R ar
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+

1 1 Ry dVi(tj-2)
e V() ————Vi(t
(Ri +R,)C 2(0; 2)+(R1+R2)C 2+ g

x[(n—j+1)%(2(n—j)*+ Ba+10)(n— j) +2a* + 9+ 12)
—(n—j)* (2(n—j)* + (Sa+10)(n— j)+60* + 18a +12)]
G(An®* &

Nat 1) by )=+ 107 = (1= )% (Blt) = ()
We consider the following differential equation
dVa — Ri+R; 1 avi(t)
— = Vo(t Vit = f(t,Valz 21.72
i = RRc Ot pe i ST =) @)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

Valt) =Va(0) = g7 ) A va(@) =2 s s [a(a) e

(21.73)
We define a mapping
ID(Va (1) ‘/frvz (o))t —7)% 1dr+—/ Vo ()t — 1) 'dB(z)
T OC
<ty 17 S el 2]
TO!
<W(M1+M2)
TOC
NYCES))
We have
M2 =TVl = s | 2(0) = FaVay (0) = 0) lae
a7 020 =V (2 =9 (o

< ﬁ [|(£(z,Va(x)) = f(z,V2, (1)) (t — 7)* ' d7]

+G|(V2(1’) -V, (7)) (t — r)“‘ldB(r)H

1 Ri+R; T®
< Tl p [Va(t) = Vo, (1) —
F( ) RIRZC [e[() T] ! o
T
+GL— sup |Va(r) —Va, ()]
t€[0,7]
T* R +R>
< GL | ||V, =V L[|V, =V
r‘(a+l) (RIRZC + H 2 2]||o<>< IH 2 21”00
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We assume that B( is Lipschitzian on [0, 7] with constant L, then

F(C;) ./0 Va(t)(t — 1) 'dB(7)

/fer (t—1)* ldr+
[/frVg (t—1)* ldr

[/|f‘L’V2 (t—1)% dr

+G (7)(r —7)* 'dB(7)

+G/ Va(7)| (t — 7)* 'dB(t )]

<ﬁ l/ot sup [£(1,Va(D)| (1 =) dt

[€[0,7]
!
+G [ sup |Va(D)| (¢ — T)a_ldB(T)]
0 1€[0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtnsr) = V2(0)+%a) [ @) i -0 e
g VD — o) s

= V2(0)+1)i tHlf(T,Vz(T))(an—T)Wld’f

tj

- vz<o>+r(afl)ji2f<r, 2V 1) ()

a+2 Z[f oV f(tj,z,vgfz)}
X[(n—j+1)%mn—j+3+20)— (n—j*) (n—j+3+3a)]
s [P =20 W) 402 )

x [(n—j+1)*(2(n—j)* + (3a+10)(n— j)+20* + 9 + 12)
( )(2(n )+ (50+10)(n— j) + 60 + 180+ 12)]

) Zo’ n—j+ D)% = (n— ) (Btj:1) — B(1))

(x+1
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Then, we obtain

Va(ths1 =V2(0) + —Vi(tj—2) +

_Ri+Ro
dt

fW1<ff—2))

x[(n—j+1)% = (n—j)°]

(At)a 4 Ri+R, 1 dvi(ti—1)
+r(a+2)JZ[(_R1R2CV2<” D+ gy Vit + m )

Ri+R, 1 dv, (tj;z)
Rk )t g i) T
X[(n—j+1)%n—j+3+2a)—(n—j*%(n—j+3+3a)]
(At)a Rl +R; 1 dvi (l‘j)
o(tj) + —Vi(tj)) + ———=
T3 |\ TRk 2 rg W+,
Ri+R; 1 dVl(tj_l)
-2 = Vol(ti— —Vi(tj- _—
( R{R,C z(tj 1)+R1C1 1<tj 1)+ dt
R1+R2 1 dvi(tji—2)
V ti_ 7‘/ i -~ =7
RR,C (j 2)+R1C| 1(] 2) + dt

< [(n—j+1)*(2(n—j)*+ (Ba+10)(n— j) +2a* + 9o+ 12)
( )( J)*+(5o+10)(n— j) + 60 + 18 +12)]

(n—
a+1 ; [(n =+ 1)% = (n = )% (Bltj11) ~ B(1;))

We consider the following differential equation

av, _
dr

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

Val0) =Va(0) = g ) £ va(@) =2 s s [a(a)e— b
(21.75)

—4x 10V, (1) —4 x 107V, (t) = f(1,Va(1)) (21.74)

We define a mapping
T(Va(0))] —\1 / lf(T,Vz(T))(t*T)“_ldT+% [ w@e-neta)

T T
<ty [T Ll T

o

T
<m (Ml +M2>

TDC

NYCES))
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We have
M%)~ = g | [ (ea(0) =V () =0 e
a7 020 = (3) (=1 (o)
< g e a(e) = w2y () =0
G|(Va(t) = Vs, (7)) (t — 7)* 'dB(7)|]
1 T
< (o) [4>< 106::[13,I)T]|V2([)7V21 (t)|?
TOC
+GL— sup |[Va(t) — V5, (1)]
o t€[0.T]
1“(511) (41074 GL) V2 = Va, .. < Ly V2 = Vay ..

We assume that B( ) is Lipschitzian on [0, 7] with constant L, then

/fer ) —1)% 'dT—&——/Vg )(t—1)% 'dB(1)

ol

/0V2 7)(t —1)% 'dB(1)

fla,Va(o)(t—1)* ldr

|

s [ [ vaela oz

+G

+G./0't Va(7)| (1 — r)“ldB(r)]

<ﬁ l/ot sup |£(LVa()|(t — ©)% e

[€[0,7]

1

+G sup |Va(1)] (t—T)afldB(‘L')

0 1¢[0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtn1) = v2(0)+r(la)/Ot”“f(r,vz(r))(tmr)a—ldr

G Tnt1

er 0 Vo () (tas1 —T)* 'dB(7)
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= B0+ g L[ @) 9 s
i X @0 s

= V2(0)+F((At) if l/ 2, V’ )[(n_j_|_1)a_(n_j)a]
+r((2ti 2) ]:22 {f(tj—l,sz_l) _f(tj_bvzj_z)}

x[(n—j+1D)%n—j+3+2a)—(n—j*%n—j+3+3a)]

x [(n— ]+1a(2(l’l N+ Ba+10)(n—j)+2a? +9OH—12)
( )(2(n 7+ (5a+10)(n— j) + 60 +18a+12)]

) fo, (n—j+ 1) = (n— j)*] (B(tj11) — B(t)))
) &

+

a+1

Then, we obtain

n

V2(tn+l) = VZ( oc+l 2< 4 x 1()6V2 tj 2) 4 x 107V1(l‘j,2)>
]
x[(n—j+1)%*—(n—j)%
oo

( 45 105 (tj_2) — 4 x 10"Vy (1 z))}
(

x[n—j+1D)%n—j+3+20)— (n—j*n—j+3+3a)]
(Ar)*
(e +3)

- (—4 < 109V3(tj_1) — 4 x 107V (t,,l))

+

{(—4 X 10°V3 (1)) —4 x 107V, (ﬁ))

2
+ (—4 X 106V2(lj—2) —4x 10"V, (tj_z))}

x [(n—j+1)%*(2(n—j)*+ Ba+10)(n— j) +20* + 90 + 12)
(n—j)* (2(n—j)* + (Sa+10)(n— j) + 6a* + 180t + 12)]
G(An* & N
th] n—j+1)%—(n—j)* (B(tjs1) — B(t}))

Fla+1) 5
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We consider the following differential equation

av, R +Ry C, dvi(r) 1

= Va(r) +
20+ e RI(CI+C)

dt  RR(C+G) M= vl

(21.76)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

Va(t) — V(0) = ﬁ [ rEv@e—oetar % [ v@e-oeta)
21.77)
We define a mapping

TV (0))] =|F(1a) / tf(LVz(T))(t—T)“ldHF(Ga) [ @0 tas

T T
IVl GVl

1
“T(a) a

o

<m (Ml —I—Mz)

TOC
<— M
INo+1)
We have

TV =TV = | [ (3(0) = (2.1, (1) (= 9 ae

o [ () =V, (9) (¢~ ) aB(e)
0

< [|(f(5,Va(2)) = F(T.V2, (1)) (= 1) 1]

+G|(Va(7) = V2, (7)) (1= 7)* ' dB(7)]]

1 Ri+R;
< sup |Va(t) — Vo, (¢
F((X) lR]Rz(Cl +C2) IE[O,F;‘]| 2( ) 21( )

T
+GL— sup |V2(l)—V21(t)|
o 1€(0,7]
T¢ ( Ri+R;
C(a+1) \RiR(C1 + ()

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

[ fevae) =0 e s [ Vi - dn(o

TOC
o

<

=)

+GL) IVa—Vay |l < Ly [Va— Vs |

A :ﬁ

|

/Otf(r,Vz(r))(t— 0% lac
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|

i [ [ va@l -0 tas

G /Otvz(r)a—r)“*‘dzs(r)

+6 [l 9] < s [/0 sup |0V - 1) ae

1€[0,7]
t
+G | sup |V2(l)|(t—r)“ldB(T)]
0 1¢[0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Wltn) = O+ g [ R~ s
+(G)/tn+l Va(2) (tar1 — 1) 'dB(1)
= 0+ >Z/ " a1 — 1) dn
G & (ln o
+H7]§) b VZ(T)(t11+1 _T) ldB(T)
= O g LSO ) )
(an)® ¢ - -
F(a+2)]22|:f(tjhv2 1)_f(tj727V2] 2):|

x[n—j+1D)%n—j+3+2a)—(n—j*%n—j+3+3a)]

3 [ =20 ) 412 )
x [(n—j+1)%(2(n—j)*+ (Ba+10)(n— j) + 20> + 90 + 12)

—(n—)* (2(n—j)*+ (S0 +10)(n — j) + 60> + 180+ 12)]

Y ile) (- + 1%~ (1 )% (Bter) - B(t)

Then, we obtain

C] dV] (l‘j_z)

Va(tuy1) =V2(0) + CiiC  di

Va(tj2)+

(An)* ¢ (_ Ri+Ry
F(OC+1) s’ Rle(C1+C2)

1 o y
e ) ) 0 D= (- )
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(A)* ¥ K Ri+R Ci dVi(tjy)
e e W(tj_1) + —i
F(Ot-|-2)j:22 RIR(C) + ) 2(] 1) Ci+CG dt

1
+—Vi(ti-
Rl(C1+C2) l(j 1)>
Ri+R; Ci dVi(tj—2)
— _7‘/ ti_ + —J =/
< RiRy(C1 + () 2(tj-2) Ci+C  dt

1
+R1(C1 +C2)V1 (tjz)ﬂ
x[(n—j+ D)% n—j+3420)—(n—j* (n—j+3+30a)]

(At)a Ri+R; C dv, (tj)
+ - Va(t))
2I'(a+3) RiRy(C1+ () Ci+C dt
1
t— V[
Ri(CI+G) l(f))
Ri+R, C dVl(tj,l)
_7‘/ ti_ _|_ —_J 7
( Rle(Cl—i-Cz) R G
t] 1 )
(C1+C2
Ri+Ry Ci dVi(tj2)
—— V(¢ —_
+< R1R2(C1+C2 2(] 2) Ci+G dt

"RG0 (c1+c2 ”2)}
x [(n—j+1)%*(2(n—j)*+ (Ba+10)(n— j)+20* + 9+ 12)

(n J) ( )?+(5a+10)(n— j)+60* + 180+ 12)]

(n—
a+1 i [(n=j+ 1) = (n= )] (B(tj1) = B()))

We consider the following differential equation

2l' i
Y = L) V()44 (I)+(R2+L)d(‘)+R1+R2 (1) = £,V (1))

R\C dr? RC) ar R.C
(21.78)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

V() —V(0) = ﬁ/otf(r,v(r))(t—r)“_ldf—#%/Otv(r)(t—r)“_ldB(r)
(21.79)
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We define a mapping

PO =| g [ V6= 0= az s o [ Vo - o ase)

I'a).
<t [V oLV T

o

T
<— (M) +M)

IN'a+1)
re
“T(a+1)
We have
T(v)—-T(v)| = F(la)/t(f(r,V(r))—f(f,Vl(r)))(t—r)“‘ldv:
+%/Ot (V(T)—Vl(r))(t—r)“‘ldB(r)
< ﬁ%ﬂvwvm» e VA(2)) (= 1) ]
+G|(V(r)—Vi(7)) (t —7)* 'dB(7)|]
1 [ T
< W[MtGSE(I)I)T]|V(I)V1(t)|a
+GL7I€S;PT] V() =V (t)I]
<t (et oL) V-Vl <LV vl

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

/frV )t — T“ldr—k—/v (t—1)* 'dB(t)
{ fz, V(D) —1)* ldt
{/|f1:V (t—1)% ldr

+G/|V (t—1)* 'dB( )}

(7)(r —1)* 'dB(1)
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1
+G [ sup [V(D)|(t—1)* 'dB(t)
0 7efo,7]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Vi) = v<o>+ﬁ [ @V @) — )% ae

+% /Ozn+1 V(T)(ths1 — T)aildB(q:)

= VO F(loc)z/ttmffv (1) (tas1 — )% d7
G & [+ o
T jzg) ' O (41 = )% 'dB(2)

— v+ A7y

SCES) jng(tj727v./‘*2) [(n—j+1)%—(n—j)"]

x[(n=j+1)%n—j+3+20) = (n—j*)(n—j+3+3a)
21“((A0Z)+3) [f(lhvzj) —2f(fj—17V2j_1)+f(tj—2,V2j_2)}

x [(n—j+1)%(2(n— j)*+ Boa+10)(n— j) +20* + 90 + 12)
—(n— )% (2(n— j)* + (Sa+10)(n — j) + 60>+ 18a +12)]

r(szi) T) ii(z;) [(n—j+1)% = (n= )] (B(tj+1) = B(t;))

Then, we obtain

a n 2i(t;
V(t,,+l)_v(0)+r((2t) 22(11 1j2)— Rlc (tj- z)+Ad C(;;]z 2

]
+<R2+f’> dl(t/ 2)+R1+R2 (tj 2)) [(n—j-l-l)a—(n—j)a]
)

R C dt R C
)
2

n (At
I+

C 2i(t;
; Kéi(tj])RjCV(tjl)+Ad 6(1?2 )

J

™~
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+ <R2 + L) dilti-n) | R +R2i(tj—1))

R, C dt R C
1, 1 d%i(tj—2)
- _El(tj—z) RiC V(- 2)‘“‘7
L di(lj_z) R +R> .
R — ti
+< 2+R1C) a T Re W)
(

n—j+3+3a)

X[(n—j+1)*(n—j+34+2a)— (n—j%

—

(Ar)“ 1. 1 d%i(t;)
721—‘((14*3) |:<_Cl(tj)_R]CV(tj)+A dtz]
R, U

( L) di(t;) R|+R2i(tj)>
&iltj-1)

+
(=L - v, ) 4a
c\i T g\t dar?

+
+ R C

)
+ dt R\ C
1

L \di(tj-1) Ri+Ry,
R J= -
+< 2+R1C) 7 + R.C it 1))
1. 1 d%i(t;2)
+< i(tj-2) “RC V(tji2)+A dtJZ
di(tj—2) R1+R2.
R i .
+< 2+ ) RiC I(Z‘J 2)):|
X [(n=j+ 1% (2(n—j* + (Ba+10)(n— j) +20° + 90+ 12)

—(n—j)* (2(n—j) + (50 +10)(n— j) +60* + 180+ 12)]

We consider the following differential equation

di d%i(t) 1 RCav(t) ., .
o~ RC—5 +oV O+ 7 = f(t,i(1)) (21.80)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

i(t) — /f 7,i(7))(t —1)%" 1d1+%/01i(7:)(t71)“‘1d3(r)
(21.81)
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We define a mapping
CUON = | [ 7=tz s [t o) as)
< g [ il T
< 1“(0511)(M1+M2)
T M
< Ta+))
We have
MO -T(0)| = Fgs| [ i) = e (@) (=) ae
-l-%/ot (i(t) —ii (7)) (t — )% 'dB(7)
< g i) = (e (@) (=) ae

+G|(i(t) —i1 (7)) (t — ©)* " 'dB(7)|]

< L RC sup |i2(t)fi%(t)|T—a
F((X) t€[0,7] o
TOC
+GL— sup |i(t) —i1(¢)]
& tefo,1)
o
< gy ROl it G =il < Lilli= ..

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

LG =

/fm (1 — 1) ld‘c—&-%/oti(r)(t—r)“’ldB(r)
[ f(zi(o)(t—1)* dr
(e -0 tane)|

< [/f’cz (t—1)* ldr

G/| (t—1)* 'dB(t )]

IN

G
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< 1“(loz)l/ot,§}$p]|f(l’i(1))(tT)a_ldf

t
+G [ sup |i(1)|(t—1)* 'dB(1)
0 7€f0,1]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

0

iter) = 00+ o [ i) s 97 as
G

i(T)(tar1 — 1) 'dB(7)

Lj+1

FEH(0) (i1 =) de

- O+ Fa jfzfa,-_z,i”n(n—ﬁl)a— ()%

R

x[(n—j+1)
+21“((§)+3) [f(tjaié) —2f(tj-1,55 ) +f(tf—2”é_2)}

x [(n—j+1)*(2(n—j)*+ (3a+10)(n— j) +20* + 9 + 12)
( )(2(n J)?+(5o+10)(n— j) + 60+ 180+ 12)]

n

Y ilt) [(n—j+ D)% = (n—j)*] (Bltj1) — B;))

(n—j+3+2a)— (n—j* (n—j+3+3a))

oc+1

J:O
Then, we obtain
n .
. (l‘j 2) 1 RCdV(tj_z)
[(n i+ 1) —(n—j)%]

Dk
(A% & d? i(ti—1) 1 RCdV(tj_1)
JrI“(oc—i-z) ;[ —RC dtj2 +Zv(tj*1)+f d; >

- (_RCdZi(tj_Z) + lV(f/—z) + % dV(cZ_Z) ﬂ
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x[(n—j+1)*(n—j+3+2a)—(n—j%)(n—j+3+3a)]

(Ar)® d?i(t;) 1 RC dV (1))
T (a+3) K_RC a TVt )

d*iti-1) 1 RC dV(tj-1)
2 —RC=—E L vyt e Y /4
( dt? +Lv(t’ )+ J )

2i . -
o (et Ly RO Y]
(2(n—j)*+ (Ba+10)(n— j) + 20 + 90t + 12)

x[(n—j+
) — )2+ (5a+10)(n— j)+ 60>+ 18a + 12)]

(
d
1)“
<(<
a+1§l +1)% — (n— /)% (B(tj+1) — B(t;))

We consider the following differential equation

di Ry,
7 A ()+1TIQV(I)+C

dr? A o = /i) (2182)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

d*v(t) N (CE+I;2> dv (1)

i) — /f 7,i(7))(t — 1)*” ldr—k%/oti(r)(t—r)“’ldB(r)
(21.83)
We define a mapping
T3i(2))] = ‘ /f 7,i(7))(t —1)*" 1d1+F(Ga)/0ti(r)(tr)"‘_1dB(r)
Ay T I
< Hmhﬂwma+awua}
< m(Ml—‘er)
T I,
S Tla+)
We have

1
T(a)
G
"T(a)

[ twite) - s - o= as
[ i@ =) a-o*ar
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< @H(f(f,l(f))—f(r,u( ) (1 —1)% dr|
+G|(i(7) — i1 (7)) (t — 7)* 'dB(7)|]
1 [R _ . |
< o) Ates[l(l)%]lz(t)—u()l+GLat:[1(1)pT]|()_,l(,)|]
< F((chij—l)(il_kGL) li—iill. <Lilli—ill.

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

/frz (t—1)% 1d1+%/oli(r)(t—r)“*ld3(r)

[ it2)e- e tano

ICG@) =

IN

frz 7)% ldt

]
< {/|frz )% ldt

G /0 (D)6 —0) aB(z >]

G

< ﬁ [ / t s )=

t
+G [ sup |i(1)] (t—1)* 'dB(7)
0 7efo,7]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

) = i0)+ gy [ AEAE) b —0) e
+% /0 i(7) (tny1 — ©)* " 'dB(7)

= O+ Z [ i) -

Z / i(7) (141 =) dB(7)

n

_ - 2 . a o
= i a+1 22 (127 ) (1= j+ 1) = (n= )%
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n

a+2 Z[ S, 77 = f(tj-2,7%)]

j=2
x[(n—j+1)%*(n—j+34+20)— (n—j*)(n—j+3+3a)]

s [F065,7) = 27071,81) 412,

x [(n—j+1)*(2(n—j)* + (3a+10)(n— j) +20* + 9 + 12)
( )(2n J)?+(50+10)(n— j) + 60 + 18 +12)]

Zl 1) [(n=j+1)% = (n=j)*] (B(tj+1) - B(t;))

+

Then, we obtain

o n 2 .
i(tas1) = i(0)+ r((gti 0 22 <11:1i(t,/'2)+1£;2‘/(j2)+cd V;;éfz)
=
(Fr) o e
[0 n 2 j
+r((itiz) Z"z{ _%i(’f‘l”gzv(”‘l)w V;tg_l)
=

CR; 1)\ dV(tj_2)
*( A +R2) 7 )
_ <_’;‘i(t,l)+ %ZV( i) +Cd2‘;(tt§’2)

CR; 1)\ dV(tj_2)
*( A +R2) 7 ﬂ
X [(n—j+ D)% —j+3+20) = (1= j*)(n—j+3+30)

a a*v(t;

+2r((ii)+3) K IX U’”EV(”HC c‘l/t(ztj)

CRy 1)\4dV(t)
+<A Rz) drj>
—2(—1211'(5-1)+£§2V(Z/1)+Cdzvd(g1)

CRy 1\dV(ti)
* < A JrRz) 7 >

2 .

+ <_11:1i(tj 2)+A12 V(tj—2)+c%

(S w) i)
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J+D*(2(n—j)*+ (Ba+10)(n— j)+2a* +9a +12)
—(n— )% (2(n—j)*+ (Sa+10)(n— j) + 60>+ 18a +12)]
)

Y e (= + D)%~ (1= )% (Btse1) ~ B(r)

X
—
3
\
+
—_

We consider the following differential equation

di R, 1o

=310 = 1 [ 1)+ V@) = rleie) (2184)

We convert the above differential equation to the fractional stochastic differential
equation as: In power-law case we have

(1) — i(0) = ﬁ/olf(r,i(r))(t—f)“*ldr+i/oli(r)(t—r)“*ldB(r)

()
(21.85)
We define a mapping
IN()] = \F(la) /()’f(ni(r))(m)“*dw% [ iwa—o=tan
< Fgg eI+ oLl
Ta
< W(Ml-i-ﬁ/h)
TOt
S Ta+))
We have
ITG0) = T(0)| =g | [ ((®i(0) = Flin(@) (=0
+ g7 ) i@ =i®) (=) an(r
< NUi(E) = f(mi () =0 as

+G|(i(7) —ir(7)) (t — 7)% 1dB(1) 1]
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:ﬁ /0’ (f(7,i(7)) — f(z,i1(7)) (t —7)* dz

+% [ @ -i@)e-neane)

<ﬁ [|(£(z,i(7)) = f(7,i1(2))) (t — 7)* " d7]
+G(i(7) ~ i1 (7)) (t— ©) dB(e) |

o | Gae) s -0l
I Y (e i) —i L
F(OC) A AC t€[0,T] 1 «
TOC
+GL— sup |i(t) —i;(¢)]
t€[0,7]

T¢ R 1

We assume that B(t) is Lipschitzian on [0, 7| with constant L, then

()| = r(la) ) — 7% lmr(fx) /(fi(r)(z—r)%ldB(f)
< F(la) /frz )t—1)% ldr

()
/ )| (t—1)* 'dB(t )]

) |:/0t sup |f(L,i(l ))‘(t*’c)“_ldf

1€[0,7]

(
t

+G [ sup |i(D)](t—1)* 'dB(7)
0 7¢fo,7]

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

i(thr1) = +F( / f(7,i() (tys1 — 7)% ldt

*%a) /ot ") (1 — 1) dB(T)
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= i(0)+ L Zn: /,tﬁl F(2,0(7)) (tn1 — 7) % Nde

[(a) 1=

L) @ -0 as

= O+ g LA 1 )
+r((2tiaz) ]iz [, 71 = £ (2, 72)]
X[(n—j+1D)%n—j+3+20)— (nfj“)(n—j+3+3(x)]
ey W) =267 4 (52,0
x [(n—j+1)%*(2(n—j)*+ B+ 10)(n— j) + 20> + 90t + 12)

—(n— )% (2(n—j)*+ (50 +10)(n— j) + 60 + 18a +12)]

Y i) [(n—j+1)* = (n—j)*] (B(tjs1) — B(t;))

Then, we obtain

i(thp1) = i(0)+r((2’f1)i‘,2<—§i(tj—z)—;(:/0tjzi(y)dy+:‘V(fj—2)>
f=
x[(n—j+1)%—(n—j)%
(A% ¢
+r(oc+z) K 2/t AC/ Ndy+ 3 Vt’ 1)

tjg AC/ der Vt12>]

x [(n— ]—|—1) (n—j+3+2a)—(n—j* (n—j+3+3a)]

+2r((iz)+3 K 21 AC/ o)yt Vt’)
2( Rit; ) AC/I" ()dy + V(t] 1))

( i1j-2) - AC/I” Dy Vo)) |
(n—

x| ) (2(n— j)? + (3a+10)(n— j) + 20> + 90+ 12)
—(n— ) ( (n—j)° (SOH—IO)(n J)+60%+18a+12)]
+ ot i i(1;) [(n—j+1)% = (n— j)*] (B(tj+1) — B(t;))

F(a+1)j:0
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We consider the following differential equation

di R 1 .
= — i+ V() = £(1,i(0) (2156)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

(1) — i(0) = % F(t,i(0)) + % /0 " f(z,i(0))dr+ % /O i()dB(7)
(21.87)
We define a mapping
TGO = | Fi0)+ g [ (e

Ga t
+W/O i(7)dB()
< 3ty i)+ s [ s 1f(e.i(o)|ds

M(a) t€[0,T] 0 z€[0,]
+% /O ’ sel[l(?t]|i(‘c)|dB(T)
< j%nf( T 47005 1760 o GLL
< Mi+M+M;
< M
‘We have
T()~T(@)| = j%(f(ni(r))—f(rm(r)))
i o Ui = f(mi () e
Hatte {0 =1(0) dB(e)
< %w,i(r» Fein@)]

—a . |
M(a) t.gs[l(l)F)T] [f(2,i()) = f (1,02 (1))
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it [ sw rtwite) - swin(@)las

t€(0,f]

Ga ! . .
i 2,001

< @zl -0l

i 2 ) = @)+ GLYi0) —i 0]
I1-aR a TR
(e
< Lilli() =i (0|l
We assume that B(r) is Lipschitzian on [0, T] with constant L, then

+GL) i) — 1) .0

TGO = | £+ 055 [ 7wt

Ga [t
Vit /O i(7)dB()

o [ :
it /O sup |f(1,i(1))|d7

1€]0,7]

Ga (!
+7/ sup |i(l)|dB(t
M(a) 016[0%]|()| (1)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

1— o

i(trH—l) = ( )+M ) (IYH (n)) (OC)

Ga [n+l
M(a /0

[ rwiteas
0
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and

i) = O0)+ o i)+ s [ A(mie)e

Thus, we reach

i(tipr) = i(n)+ = (f(tn,i(tn)) = f(tn—1,i(tn-1)))

+Mia) ,n’ ' f(r,i(f))dTJr% /t:"“ i(7)dB(7)
1

= i(n)+ T-(S (Fltr (1)) = Fltn—1,i(tn 1))

n

| /l_”'“ F(z,i(2))dr+ MG(z) y [ (0B (D)

j=271j

+(At)ﬁf(tj7ij)]
+% Jizi(’f) (B(tj41 —B(1;)))

Then, we obtain

) = 1)+ 37 (< Fi0)+ 1V )

+(At)152J (-fi(;,-z) + LV(tjz))
a2 (Izi(t,-)+ LV(tj)ﬂ
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We consider the following differential equation

A%} 1 1 A% (l‘)

?:—EVZ(I)‘F%VI(I)_ di = f{t,Va(1)) (21.88)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

|

V2(l)—V2(O) M(Ot)

f(le())-Fi/fTVz dT+ /V2 T)dB(t
(21. 89)
We define a mapping

T = |1<Of;f<r,v2<t>> i o FE Vel

M
/v2 )dB(1)

-« o d
< e, S [0V + s [ s (e V() ar
Ga (!
3@ Jy 2o V(014
l-a
< 3itay MOt T oes I (Vo) o+ GL VL
< M +M+ M3
< M
We have
T2 ~T(Va)| = | (12 (0) =0V (1)
ey V@) @V (@)
it (Va0 = () dB (o
< A‘% £ V2(0) = 11, V2, (1)
i o U a(e) = (a1 () e
Goc !
Fittay ) W®) = Va (0)]aB(z)

—a
i(a] 218 VY0 =10V, )
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it [ s 176 va(e) — s Ve, (2] e

t€(0,f]

+ﬂ/0t sup [Va(T) — V2, (7)|dB(7)

M(a) t€(0,f]
< e MO -V 0.
+%a)% IVa()) = Va, ()|, + GL||Va(t) = V2, (1) ||,

M(o) RC "~ M(o) RC
< Li|[Va(t) = Vo, (1),
We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

<l—oc 1, o« T+GL> Va(t) = Va, ()]

ITV()) = ﬁf(t,Vz(t)Hﬁ /0 ' fr.va(n)dt

Ga [!
it /0 Vo()dB(7)

}ﬁ; FEVa(0))]
o [ 17 vaelas

Ga t
v | va@)1de)

—
1,V5(1
M(a) ,Z‘[BI?,] FiAZIO)

o t
+W/o sup | £(1,Va(1))|d7

1€[0,7]
Ga [!
+7/ sup |V2(/)|dB(t
M(a) Jo leml 2(1)|dB(7)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Va(tnrr) = v2(o>+% f(tn,Vg(tn))—Fﬁ /0 " (ni(e)dt

Go Int1
Sre /0 Vo()dB(7)
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and

V2 (tn)
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— w0+ ﬁf(tn_l,vg(zn_l))—k ﬁ/ﬂ' F(r.Va(2))dt

Ga [
+W/0 Va(7)dB(7)

Thus, we reach

Va(tny1)

l—a

=

(f(tn,VZ(tn)) _f(tnflv‘/Z(tnfl)))

+iptas tﬂ’”*‘f(r,vxr))duﬂf(g‘) Va()dB(x)

1—-«a

= i(n)+m(f(tmv2(tn))_f(tnflaVZ(tnfl)))
- Z./tr fz.Va(T ))dHMGa Z/{ i(t)dB(7)

TH(o) &, (@) &,

= i(n )+;4(a0; (f(tn;Va(tn)) = f(ta—1,Va(ta1)))

e B |05 4 00 2 0272)

Then, we obtain

V2 (tn-H)

= W)+ — <<—1V2(l‘n)+lV1(t,,)— dvl(t”)>

M(a) RC 2RC dt
1 1 dVi (te—1)
< EVZ(%*I)"‘%V](%*I) dt
(- 4 1 1 dvi(tji-1)
— VY (A= [ ——=Vo(tiy) + —Vi(t;i) —
+M(a)g’2 ( )3< re 2 T e Viltin) dt

1 1 dvi(ti—)
——=Wa(tj—2)+ %Vl (tji—2) — T]

i
+(AI)?— (I:C’VZ(tj)+2R}C~V1(tj) dV;gfj))]
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We consider the following differential equation

A% 1 1 &dvl (t)

?:—sz(t)—ivl(t)"‘Rl di = [, V(1)) (21.90)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

vz(t)—vz(O)zﬁf(t,vz(t) / F(EVa(@)dr+ o / Vo(1)dB(t
Q1. 91)
We define a mapping
FOAO) = [jraf Va0 + s [ feva(oae

Go [!
v /0 Vo(1)dB(7)

< 1-a sup |f(t,Va(t ))|+ﬁ/t sup |f(7,Va(7))|dT

M), o 0 cefos
+%/Ot TSEIF()I?I]|V2(T)|dB(T)
< 317 D+ T s Vo) LV
< Mi+M,+M;
< M
We have
T8 ~TVa)| = |7 (F(a(0) =0V (1)
+% /0 (F(z. V(1) = £(z, V3, (7)) d7
+% [ 0w -, (@) an(e)
< ﬁ (e V() = £, V2, (1)
/|f Va(2)) — £(2,Va, (1)) dx
GO‘ /|V2 —Vy,(7)|dB(7)
< T sup |F(Va0) — £V, ()]

M(O‘) t€[0,T]
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Vet [ sw 15 va(@) — (w1 ()

7€(0,1]
Ga [!
_|_7/ sup |Va(7) — Vs, (7)|dB(7
M) Jo Te[&]l 2(7) = V2, (7)|dB(7)
1—

a 1
M(a) R
a

7, V20 =Va (0l

e o W20 = Va )+ LIV = Ve ().

< (el e TG v - (0]
M(a)RiC; ' M(a) RiCy 2 21 lee

< Li|Va(t) = Vo, (1),

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

FOA0) = [j7ra Va0 + s [ feva(oae

Go [!
i) /0 Vo(2)dB(7)

1

< ﬁg £ Va(0)]

+W/0 |f(z,Va(7))]dT

Ga [
Fittay Jy Vo 14BD)

-«
1,Vo(l
M(@) [zt[:)l?t] |f(L,VA(1))]

o t
+m/0 o 11V ())lde

Go (!

oo [ sup Va(D)|B(o)
M(a) Jo 1epo,q

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation

_ o In+1

Valtns1) = i(0)+;Togf(tn,Vz(tn))+W A

+G70‘> /Ot"“ Va(7)dB(1)

M(a

f(t,i(t))dt
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and

Va(t) = v2(0)+;% f(t,,_l,Vz(tn_l))-i-ﬁ /0 " Va(D))dT

Ga [
e /0 Vo(7)dB(7)

Thus, we reach

Va(tuy1) = Vz(n)+%(f(t,,,Vg(tn))—f(tn_hvz(tn_l)))
o In+1 Ga o1
+W/tn f(T»VZ(T))dT‘f‘W/In Va(t)dB(1)
= i(ﬂ)+%(f(tmvz(tn))ff(rn,l,vz(;n,l)))
a [l Go & [+,
it L, ey [
=)+ e (e Va) = et Valtn1)
b B [0 ) 2
Ha) T 0|
il LV (B = B10)

Then, we obtain

Va(tui1) = Va(n) + a <<_1V2(t”) B R11C2V (1) + 261‘/;15@)

1 1 RZdVI(tnfl)
—| ———Wa(ty-1) — —Vi(t,— —
< RCy 2(tn-1) R G i 1)+R1 dt
dVl(tjl))

a | 4 1 1 Ry
—Z YV = (A= [ — =W (tjo1) — ——Vi(t -2
+Moz)jz[ ( )3< R 21~ g Vil 1)+R dt

5 1 1 Rz dVl
3

I
+an2 (lvz(;,) = %Vl (1) + ’;?d":;’ﬂﬂ
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We consider the following differential equation

dV, 1 1 Ry dv (l‘)

e W)+ Vi(t)+
dt (R +R,)C 2(1) (R +R,)C O+ R @

= f(t, V(1))
(21.92)
We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

Va(t) — Va(0) = Lzaogf(r Vit ))+i/ FEVa T+ / Va(2)dB(t
@1 93)
We define a mapping

roa) = |M Fva(0) + 3o [ eva(enae

/Vz )dB(1)

l—oc o "
< i tesfé%lf(t’VZ(t))HM(a)/o s (- Va(0)lds

Ga [
+W/O sup [V2(7)|dB(7)

7€[0,1]

1l-o
—_— T——
< 3 MG+
< Mi+My+M;

< M

( ] 17(V2)llw + GL V2l

We have
IT(V2) —=T(V2,)|

_ %(f(t,m»ff(ml (1))
+ﬁ /0 (F(z,Va(x) = f(z.Va, (7)) d7
+% /0 (Va(7) = Vi, (7)) dB(%)

< ﬁ;;|f(f7Vz(f))—f(f,V2] o)

+ Sty o LFEVa(2) = (2.2 (1) e

' % /0 [Va(z) =V, (%) |dB()



Non-Linear Stochastic RLC Systems 271

< iy 0B [FET200) = 012, 0)

[04 °t
@) o 2, VW) S D)l

—&-%/ar sup [V2(7) —Va,(7)|dB(7)

7€(0,]
< ;ﬁm IVa(t) =V, (1)
o T
T M(a) (Ri+Ro)C [Va(t)) —Va, (1) ||, + GL||Va(t) — V5, (1)]]..
11—« 1 o T
= (M(a) R 1 R2)C | M(a) (R + Ra)C +GL) [Va(2) =V, (1)

<Ly |Va(t) = V2, (1)l
We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then
-«
M(a)

+% /0 Va()dB(7)

< ﬁ FEVa(0)

o t
*atta) ) @@l

ITV()) = f<t,vz<r>>+ﬁ /0 fr.va(n)dt

Go t
v | va@)1dB(o)

11—«
1,Va(l
M(a)lil[ﬁg]‘f( 2(1))]

o t
*W/o sup |£(1,Va(1))|d7

1€[0,7]

Go (!
Jri/ sup |Va(l)|dB(T
M) Jo lg[ml 2(1)|dB(7)

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation
l-a o
—f(ty, Valt,

M(Ol)f(n, 2( n))+

Go nt1
el /0 Vo()dB(7)

Valtner) = Va(0)+ i " p(i(e)de
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and

Vat) = Val0)+ 7 f e Valto) + s [ A va(r))de

Ga [
Vit /0 Vo(7)dB(7)

Thus, we reach

Valtsr) — w(@ﬁ%<f<rn,v2<rn>>—f<tn,1,v2<tn71>>>
s L e s [T v
= l(”) + % (f(thZ(tn)) _f<tn—1;V2(tn—1))>
+ﬁ iz/,.tj“ f(t,Va(1))d + A/?(Z) iz/,.tj“ i(t)dB(7)
= i(n)+%(f(rn,vzo,,))—f(tnfl,vz(tnq)))
) ):[ Pl V) + 802 fley Vi)
2
VEYOE m]
5% N 1) (Bl - BW))
(o) =
Then, we obtain
VZ(tn-H)
B -« 1 1 Ry dVi(tn)
= V2l + (<(R1 R T R TR Y T R R )

1 1 Ry  dVi(ta-1)
e VY ( iy [ — Y P
( (R, +Ry)C 2(tn 1)+(R1—|—R2)C )+ p e

a n 4 1 |
" szzz {_(At)3 <_(R1+Rz)CV2(t"‘)“L RitRc 1)

R> dV](tj,I) 5 1 1
Y3 R AP IR —
+R1+R2 dr +( )12 (Ri +R>)C 2(t 2)+(R1+R2)C 1(tj-2)
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R, dV; (tj_g) 23 1 1
_— At —— V5 (¢; —V(t;
Ri+R> dt +( )12 (R]JrRz)C 2( j)+ (R]JrRz)C l(j)
R, dV; (Z‘j)) Go &

Ri+Ry dt * M(a) j:Zzi(tj) (B(tj+1 —B(t))))

_|_

We consider the following differential equation

dV, Ri+R; 1 dvi(t)

@ Rk PO RO+ =g =) (21.94)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

Valt) =Va(0) = 37 10 Va0) + 310 / ’f(a%(r))dw% [ va@an)

1
M(a)
(21.95)

We define a mapping

11—«

FOAO) = [jra Va0 + s [ e va(oae

Go‘ / Vo()dB(7)

o g
< W,S[%F’ﬂ 0120+ 065 s A(EVa(o)

Go

et ) ;‘;&'VM"’B(”

l—«a
an( )||w+T

M+ M, + M;
M

AN AN A

‘We have

(f(6;Va(0)) = (2, V2, (1))

) I = |

+ﬁ/ot (f(z.a(7)) = f(7,V2, (7)) dT
+i“) /" (Va(7) — Va, (7)) dB(7)
0

M(a

<ﬁ £ Va(0) — £(1.Va, ()]

i o e a(e) = (e (0) e
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Ga
e Ve = Ve (9)]dB(o)

-«
<W::;,I)T] |f(t,Va(t)) — f(, V2, (¢)]

(04 t
(@) S s )

L e /’ sup |Va(7)—Va, (7)|dB(7)
YTy 2 — V2
M(a) Jo 7€[0,4] :
11— R +R,
<
M(OC) R\R,C
a T(R] —|—R2)
M(a) RiRC
1—-aRi+R o T(RI+Ry)
M((X) R]RQC M((X) R1R2C

Va(£) = V2, ()]l

[IVa(2)) = Va, ()| + GL V2 (2) = V2, (1),

+ GL) [Va(2) = V2, (0)]l.,

<Li[[Va(r) = V2, ()]l
We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

l—a

TR0 = |37 f V20 + s [ feva(oae

Go (!
+W/0 Va(7)dB(7)

< ﬁ e Va(0))]

Fata) )y F@ @)l
Go t
e | va(w)1d(2)

-«
1Vy(1

o t
i fy e [PVl

Ga (!
oo [ sup Va(h)|aB(o)
M(a) 0 1€0,7]
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtner) = Va0) + g o Valn)) + g0 [ A i(r)ae
+% /0 "y (v)dB(7)
and
Voltn) = v2(0)+;% f(tn_l,vz(tn_l)wﬁ / " e va(1))d
Go (™,
+W/0 i(7)dB(7)
Thus, we reach
Valtasr) = wwﬁ(m,w(rn))—f(rnfhvz(rnfl)))
+ M‘(xa) " va(1))d T+ % /, "y, (v)dB(7)
= i+ }Wza"; (. Va(a)) — (i1, Va(aa 1)
MOC)JZ’Z/zJ fava(n)dr+ s ;/ i(2)dB(x)
= i)+ s o Valt)) = Fa 1.2l 1)
o 1l 4 j— 5 i
e By | A3 ) 00 2

RISEYIONE] >]
G7a) i Va(tj) (B(tj1 — B(17)))
=

Then, we obtain

I—a Ri+R 1 dVi(t
Vz(ln+1):V2(n)+ _ 1 2V2(tn)+7vl([n)+ l(n)
RiCy dt

M((X) RiR,C
Ri+Ry 1 dVy(ty—1)
—(- Va(t, Vi(t,
( R\R,C 2( l)+R1 i)+ =5
a & 4 Ri+R; dVl(tjfl)
B ' (/AT V. Vi(t
+ (a)j;[ ( )3< RiR,C (1) + 5 Vilti) dt
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S Ri+R
R{R,C

Vs (l ) dVl(tj—2)>

1
R\C, dt
Ri+Ry 1 dvi(t;)
— 7‘/ t:
R{R,C R,C; 1(1)+ dt

Go & .
7)];21(;/) (B(tj+1 - B(1;)))

(lj 2)+

Va(tj) +

We consider the following differential equation

% = —4x 105 (1) —4 x 10"V (1) = f(1,V»(1)) (21.96)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

Vz(t)fVZ(O):%f(t,Vz(t) /fer D+ /V2 1)dB(t
(21. 97)
We define a mapping
rm0) = j%f(r,vm)) i | e va()ae
+— / Vi (7)dB(7)
l—oc a !
< e U]+ s / s (EVa(0) s

+%/OI sup [V2(7)|dB(7)

7€[0,]
-«
< (e WG+ T s V)l + GLV:L

< Mi+My+Ms

( )

< M
We have
F0) =) = [ (00 (Ve )
+ﬁ/o' (F(2,Va(1) — (1, V3, (7)) d7
+%) /0 (Va() - Va3, (¢)) dB(7)

1

< ﬁof; £t Va(0)) — £(2,Va, (1))
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it V(D) = Fle v (2l e

4+ 5% / [Va(2) — Vs, (5 dB(2)

M)
< mt;ﬁ%}f(l’Vz(f))—f(faVzl(f)

s /O’Ts;&|f(r,v2<r>>—f(r,vzl<r>>|dr
< ;dza‘);w106||Vz<t)szl(t>||m

+%OC)T4 X 10 [|Va()) — Va, (1) + GL[[Va (1) = V2, (1) ..
< (114?034 10+ ﬁm x 106+GL> IVa(t) = Va, (1)),

< Li|[Va(t) = Vo, (1),

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

FOAO) = |3 fev2(0)+ s [ feva(oae

Ga [!
it /0 Vo()dB(7)

< % V()]

i [ EVaE)lde
Go t
v | va@)1de)

-«
1LVl

[ s 720t

0 7¢fo,1]

o
M)

Goa [?
+7/ sup |Va(l)|dB(t
(@) o;dog]l >(1)|dB(t)

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation
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1-— o Int1

Vatni1) = v2<o>+Wf;f<rn,vz<zn>>+m [ i)
Ga Int1
Vit /0 Vs (7)dB(7)
and
Vz(tn) = Vz(O)%—%f(tn 1, Vz th 1 / f TVZ

Go (™
it /0 Va()dB(7)

Thus, we reach

Va(tuy1) = V2(n)+WO?;(f(mez(fn))—f(fnfl,VZ(fnfl)))
+Mia) /, " f(T,Vz('E))dT+% /t "y (2)dB(%)
= l(”) + 11‘% (f(thZ(tn)) _f(tn—I;VZ(tn—l)))
+]w()i)‘)jg’z/tjtjﬂ f(‘L',Vz( dr+ g/tﬁl . )
— i)+ % (FltnValt)) — £ (tn1.Valta1)))
i) B |3+ @0 0
RENOAG)
+(’;‘j‘,6)j=22v2<r,>(3<r,+1 B(1))))
Then, we obtain
Valtns1) = vz(n)+%((—4xm6v2<zn)—4x 107V (1))

(oo 10)

a & 4
+W,=22 {(At)3 (—4 X 10 (tj_1) —4 x 107V, (tj71)>

5
(A1) 75 (=4 X 1073 (tj2) =4 x 107V (15-2)
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—i—(At)%( 4% 10%V;(1;) — 4><107V1(tj))}

n
Z B(tj+1—B(t))))
We consider the following differential equation

C dv (l‘) 1
Ci+C dt R (C1+ ()

vy, Ri+R;y

& = RRC 15 Vi(t) = f(t,V2(1))

(21.98)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

Va(r)+

Vale) = Va(0) = e F VA + 3 /fw2 DT+ /v2 )dB(z
1. 99)
We define a mapping
l—a o g
rWa@) = Wf(t,Vz(t))JrW/of(nyz(T))dT

+% /0 "Va(t)dB(z)

11—« o 1
= M(a),:;§]|f(f»Vz(f))l+W/()Tsel[l(?t |[f(z,V2(7))]d7
Go [!
it o o V(a8
l—-a
< iy M CN T ()Hf( V)|l + GL|Va]l.
< My+My+M;
< M
We have
F0) =) = | (00 (Y2, )
+M((X(x) /0 (f(2,V2(7) = f(7,V2, (7)) d7

+% /0 (Va(7) — V3, (1)) dB(7)

< ﬁlf(t,Vz(t))*f(th.(t)l
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/Ifsz F(5V2, ()] dr

G(x
e | Wa(e) =V (2 ()

< zlmof;,;‘é?r 10V (0) = 7.V, 0)
+% /otfi‘f&’,] (2. V2(7)) = f(T. V3, (7)) d7
Uz;éiﬁwﬂﬂﬁhwwm

< e TR MO - 0l
+GL||Va(t) — Vo, (1) .,

< (i e e i e )

X |IVa(e) = Vo, ()],
< Li[Va(t) = Vo, ()],
We assume that B(r) is Lipschitzian on [0, T] with constant L, then

1—a
ST L)+ s [ f(mvalo)ae

Ga
+W/O Va2 (7)dB(71)

l—«o
M(a)

o [ 17 vaelas
L‘(’;) ./0’ IV3(¢)|dB(7)

-
1Vy(1

o t
v /0 sup [£(Va(l)| de

1€]0,7]

Go t
L / sup [Va(1)|dB(7)
M(a) Jo 1€]0,1]

TV2(0) =

|f (2, Va(1))]
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtwsr) = Va(0)+ e o Val)) + 3700 [ fri(r))ae
+% /0 " Vy(2)dB(2)
and
Voltn) = Vg(O)—i—]l‘%f(tn_l,%(tn_l))—kﬁ /Ol" F(.Va(0))de
+% Oan(r)dB(r)
Thus, we reach
Valts1) = wwﬁ(m,w(m)—f(rnfl,vzonfl)))
o In+1 Ga In+1
Vit ). SV s /, Va(2)dB(7)
= i+ }Wza"; (. Va(a)) — (i1, Va(aa 1)
j=2"1 j=2
= i)+ jl((f; (i, Va(60)) — F a1,V 1))
ity o |03 A )+ 40 2
J

RENOAG)

% févz(tj) (B(tj+1—B(1)))
p=

Then, we obtain

1—a Ri+R; C dVl(ln)
Vo(t =V — Va(t,
2( n+1) 2(n)+M(O£) << R1R2(C1—|—C2) 2<n)+C1—|—C2 dt
1
+—Vi(ts
R(C1+ () 1 )>

Ri+R; Ci  dVi(th—1)
—| Vo (ty—1) + —_—
( R1R2(C1+Cz) Z(n l) CI+G dt
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a & 4 Ri+R; C dV](tjfl)
¥V == (——2 2y + —l
(Oc)j;[ ( >3< R]Rz(C]-l-Cz) 2(1 l) Ci+G dt

L)
RI(Ci+Cy) !
5 Ri+Ry C dV](tj_2>
— | —— = V5 (t:_ — ~J =7
+ )12( RiR:(C) +C3) 20 2)+C1+C2 dt
—&-;V(r ))
RI(Ci+Cy) V72
23 Ri+R> C dvi(t))
At)— | ——————V»(t;
+ )12( RiR(C1 +C) A "

)]
R(Ci+Cy)
Ga & .
(o) Y ilt)) (B(tj+1 — B(1;)))
j=2
We consider the following differential equation

v 1, 1 d%i(t) L \ di(t) Ri+R;.
o= o VAT +(R2+RC> o TRe (O=/tV@)
(21.100)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

V(t)—V(O):%f(t,V(t) /fTV Ndt+ o /v 1)dB(t
(21. 101)
We define a mapping
1_ t
TV = |50 V) + 3 | FEV(@Daz
G“ /v )dB(7)
l—oc a !
< Mméﬁymwm+mw4£&f@wmwr
Goa [!
v /0 s WV(OIdB()
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< 3t MOl + T V)4 GLIVI.
< Mp+My+M;
< M
‘We have
V)T = ‘]‘,[(O?;(f(t,V(t))f(nVl(t)))
it o UEVE) = e vi() e
+%/at V(1) - Vi(7))dB(2)
< j%w V() — (Vi)
+—/ F(EV(0) ~ f(5.Vi(2)ldz
GO‘ /|V 7)|dB(7)
1 o
< Wtes[g%]\f(t V() — f(e,Vi(2)]
o t
e / s (V) (o)l de
Go t
it / s V(D)= Vi(0)]B()
< M e - eV O-ViOl.
e T 0= 7 VO =Ml

+GL||V(t) = Vi (1)]|..
l—al. 1 o .1 1
< (i me* ma "¢ me )
x[[V(#) =Vi(t)]|.

< Li||lV(e) =il
We assume that B(t) is Lipschitzian on [0, 7] with constant L, then

TV = | VO + o [ e

Ga 4
itta /0 V(t)dB(t)
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< % v

M(a)
it | V@)l

Ga [
ey V@I4BED)

1—a
LV(l
M(@) lzl[log] (V)]

o t
erfo sup [f(I,V(1))|dz

1€]0,7]

Goa [t
+7/ sup |V(l)|dB(t
M(@) 016[03” (1)]dB(7)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Vi) = v<o>+jﬁof;f<rmv<rn>>+ f(z.i(2)dt
+% OI"“ V(7)dB(1)

e
M(a) Jo

and

L Vi) + " f(z.a(0))dt

Vz(l,,) = VQ(O) + W

_e

M(Ot) 0
Ga [

+W o V(T)dB(T)

Thus, we reach

Vi) = v<n>+;ﬁ<f<rn,v<zn>) ooV (1))

a tnt Int1
M(a) ; f T,V(t d1+ﬁ V(7)dB(7)

- i<n>+Wf§<f<rn,v<tn>> Pt 1,V (ta 1))

o & [l Ga & [li+l (
(a) Z § f(t,V(t )dT+A/I((Jt,Z:2/t, i(7)dB(t)
1

= i(n)+ —— (ftn,V(tn)) — f(ta=1,V (tn=1)))

=
—a
M(a)

it By | A3V @)
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(802 £, v9)

12
+% izv(’j) (B(tj+1 — B(t))))
Then, we obtain
_ 2t
Vitay1) = V(n)Jr;/I(();( 7éi(t)7R%CV(t")+Addg)
L \ di(ta) Ri+Ry.
+(R2+R1C> di R.C l(tn))

2i(t,—
- <—éi(t) - R%Cv(tn,l)ﬂ%

L di(lnfl) Ry +R; .
Ryt —— f_
2+ > di | RC i(tn ‘)>)

3

L \ di(tji-1) Ri+R».
R4 —— / 1
+ R+ ) i + R.C l(J 1)
1 1 d%i(tj_5)
A — [ —=i() — —V(t:_ A=
8055 (=40~ gV +AT

C
) 2i(tj—
by {—(At)él (—éi(t) - R%CV(IJ”)"FA%

C

L di(l‘j_z) Ri+Ry.
R+ —— -
+( 2+ ) o T RC i(tj-2)

dzi(tj)
dr?

23 1, 1
L \ di(tj) Ri+Ry,
Ry+— tj
+( 2*xc) T T Re W

Ga - .
W/:Zzl(tj) (B(tj+1 - B(1)))

+

We consider the following differential equation

v 1. 1 di(t) L \di(t) Ri+Ry, .
E__El(O_R]iCV(t)JFA dt? +(R2+R1C> dt + R,C l(l‘)—f([,V(t))
(21.102)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have
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V(t)fV(O):%f(t,V(t))Jr%m/ot DT+ /v )dB(t
(21. 103)
We define a mapping
T = j%f(r,w D+ gice f HEV D)

/v )dB(1)

1 o o t
< W),S[‘é,pn FEVON+ 570 | s sz vp)ar

T€[0,f]
Go [!
it h 24
- ﬁ\|f(.,i)\|m+Tﬁ||f(-aV)||oo+GLHV”°°
< Mi+M,+M
< M
We have
-«
F) =T = | i (V) )
+ﬁ/{) (f(,V(2) - f(z,Vi (7)) de
Go [!
+W/O (V(t)=Vi(r))dB(7)
< L V) - £

)
/|f feVi(e)lde

/ V(1) =V, (¢)|dB(1)

< 1‘—“ sup [ £(6,V(1) — f(t,Vi(0)]

M(a)te[OA,T]
a '
3@ Jy S0 V@) =S @V ()t
Ga [!
e 2,V Vel
< - m VO -V

M(a)C
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a 1 1
L T i) ——|V
i) ¢ Rl

+GL|V(t) = V1 (1)

l—al, 1 o 1.
(e~ et e ")~ e 1)
x |V (t) = Vi(t)]|.
< Li|[V()) =Vi(0)ll.,

() =Vi()lw

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

MVON = [ V@) + g0 [ v

Ga [!
it /0 V(t)dB(7)

< % V(@)

o t

Fidta 1@V @)z
Go [

Fittay  V@I4BE)

—a
lel[g’l] (VD)

o °t
+W./ sup [£(1,V(1))|dt

0 7¢fo,1]

Go [
+7/ sup |V(I)|dB(t
M(0) 01e[o%]| (1)|dB(t)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Vitner) = VIO)+ fo o Vi) + 005 [ r(eice)ae
+% /O "y (0)dB(7)
and
Valt) = Va0) 7o Pl o) + g NGO
+-5% "y (e)aB(e)

M(OC) 0
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Thus, we reach

V(i) = V(ﬂ)+%(f(th(tn))*f(tnqu(tnfl)))
52%55 t%+lj(T,V(TDdT—FA;?Z) b7+lV(r)dB(r)
- z<n>+%(f(rn,von))—f<rn_1,v<rn_1)>>
o Tj+1 Go & f/+1.
e K, g 3 e
- i<n>+%<f<rn,v<zn>)—f(tn_l,van_n»
o ¢ 4 , 5 .
i) B | @3V + @ )
a0 B 0,07
Go &
+T“),§’2V(tj) (B(tj+1—B(1))))
Then, we obtain
_ 2i a
V) = Vit (=0 - gV +as g
L di(tn) Ri+R; .
+ R2+R]C> di + R.C l([n)>

(
—(—éi(t) R11C (tn) +4% i{g’t"z‘l)
(

Rt e) o+ e o))

RC) dt R,C

a & 4/ 1 1 d%i(tj-1)
— Y (A [ —=ilt) - ==V (tjo1) +A—2
+M(a)j_2[ ( >3< ¢l = gV A5

L di(l"_l) Ri+R; .
Ro+—— / ti
+<2+R ) o TR ()

1, 1 d%i(tj_»)
v (‘c’(’)_RlcV(t”HA dr?
di(tj2) Ri+Rs.
li_
i T Re )

23/ 1 1 d%i(t;)
A2 (—Zi(t) = ——=V (1)) +A—]
+H) 3 (-~ i) - gV ) +ATgG

R+ —
+2+C)
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+ (R2 + L) ditt;) | Rtk i(z,))}

RIC) dt R,C
+Af(‘;‘)j22i(tj) (B(tj+1—B(t))))

We consider the following differential equation

di d%i() 1 RC dV (¢
i i) 1y, RCAV()

7= —RC— o TV () + e = (i) (21.104)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

(1) — i(0) = % F(t,i(0)) + ﬁ /0 ' f(z,i(0))de+ % /0 i(0)dB (%)
(21.105)

We define a mapping

TGO = | Fi0)+ e [ (e

Ga [T,
+W/O i(7)dB()

< 3ty L)+ s [ s If(e.i(o)|ds

M(a) t€[0,T] 0 z€[0,]
Ga

i) Jy 2, WD)

1—a
—_— T——
i 1Cl+
< Mi+My+M;

< M

( ] /(0] +GLIJi]l

We have

’Mz‘g (f(2,i(r)) = f(,i1(2)))
o

+7)/0t (f(z,i(7)) = f(7,i1(7)))dT

M(a

INORSNUY]

Ga [
ita Jy 60— () 4B
-«

< Wlf(t»i(t))*f(hil(t)l

+7/|fm F(1,i1(2))] d7
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—a
) S )~ i)

+L/0’ sup |£(7,i(7)) — f(,i1(7))| d7

M(a) Jo ;e [0,1]

+ﬂ/t sup |i(t) —i1(7)|dB(t)

M(a) Jo 7€[0,]

< %chi(t) —i1(t) |l
(04

+WTRC||i(t)) i1 ()|l + GLIJi(t) = i1 (1) o0

A

11—«
<M(a) C+()TRC+GL) [[i(e) =1 (1)

Ly [Ji(r) =i (1)

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

A

TGO = | 1)+ 7005 [ (e
Go (!,
i /0 i(7)dB(x)
11— .
< Sita i)
o t
+W/O |f(z,i |dt

o t
Vo | s Iriy)ar

1€[0,7]

Ga [
_5_7/ sup |i(/)|dB(7
M(a) Jo le[o,r]| Dl aB(z)
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

l—(x (04 Tt

) = 10+ 3 i) + s [ p(miceae
+% /0 " i(0)aB (%)
and
i) = (0 )+]1W(a°; Fltnor,iltr)) + ﬁ./ol"f(r,i(r))dr
Ga In
M(Ot 0 i
Thus, we reach
(1) = <>+1(—)<f<rm<n>> Fltn 1t 1))
Maa /t F(z,i(7))dT+ G(z) /t:"“ i(T)dB(7)
= i)+ gz (i) = . ()
LS| Go & [+,
JZZ/ZJ flz dr+M(a)J22/lj i(7)dB(7)

Moc)
1

l(I’L) + M((Xa) (f(tmi(tn)) _f(tn—bi(tn—l)))

RUHTSTNMENINS

&
&) T 00|
+(’;‘xa)g<m (Bltj1 —B(1)))
Then, we obtain
i(ta1) = i(n)+ ;4?;; ((—Rcdzg”) + %V (tn) + % d‘;(tt")>
(st b )
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d%i(t; o) 1 RC dV(tj_2)
_RC=2=20 L (e i
< L (tj-2)+ L dt >

d?i(t; dv (1
—|—(AI)E (—RC dt(?) +%V(fj)+% Vd(ttj))]

+(Ar)

n
oo ) ilt) (B(tj1 — B(1)))
j=2
We consider the following differential equation

di R; . a’v(t) (CRy 1)\dV(t)
— = ——i(t)+-—V()+C — 4+
- AloF O+ 7 ") @

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

= £(1,i(t)) (21.106)

. . l—a . a 4 . Ga [t
z(t)—z(O):Wf(t,z(t))+W/o f(r,z(r))df—&—m/o i(t)dB(7)
(21.107)
We define a mapping
TGO = | Fi0)+ oo [ At
+% /0 i(v)dB(7)
1—a . (07 4 .
< o, 2 ]+ [ sup 17w |ar
Go ! .
v /3 Til{lg?’]\l(f)\dB(T)
< ﬁnﬂ.,i)nwwﬁ\|f<.7i>uw+GL||i||m
< Mi+M,+Ms;
< M
We have
ITG)~ ()| = %(f(t,i(t))—f(t,il(t)))
it | U i) = fi (@) e
+%) [ i -ie)ane)

1—a

M(a) |f(2,i(2)) — f(t,i1(2)]
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/ F(5,i()) — f(z,i1(2)) | d

G
“/\ 7)|dB()

— % sup |f(1,i(t) — £(t,ia (1)

M), So
‘i | ’ s (Ei(e)) = (50 (5) o
+% /O t up 1i(€) =i (5)| B()

< %%niuwmnw
Faoar T Ii0) =0+ GLIiw) ~i (1),
(ot rs o) o) - ol

< Lili(t) —i1(t)]|o

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

FUON = |3 ) + s [ fle.itonas

e /0 i(v)dB(7)

M(a )Zzl&)pr] |f(L,i(1))]

o 1
v /0 s Uf(Li]de

Ga (!
_|_7/ sup |i(l)|dB(t
M(a)-me[o%'()' (1)

293
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

1) = 0(0) 4+ =% F(ti(tn)) + —2— / " (i)

M(a) M(ax) Jo
Go In+1
+W/(; i(t)dB(7)
and
i(t,) = i(O)—&-%f(tn 15i(ta-1) / f(ri(r

it /0 i(t)dB(7)

Thus, we reach

(1) = i<n>+jf(f§(f(rmiun))—f<tn_1,i<rn_1>>>
o Int1 Ga Int1
+WA 1z, ())dr+m/tn i(7)dB(7)
- i<n>+%<f<rn,i<tn>>—f(tnfl,ianfl)))
o & [l n t,+1_
+M(a)122/, f(z,i(7) dz+]f,2/ (7)
- i<n>+%<f<rn,i<tn>>ffan,l,i(tn,l)))
e B |05+ @ )
o) 22115,
+% éi(fj) (B(tj+1—B(1})))
Then, we obtain
_ 2
(1) = i<n>+jw((g(( o (rn>+/%v<zn>+cd Zt()

R
+ %—Fi dv(t”)
A R dt
d2V(tn_1)

R i(t, )+—V( )+C
TA VU T AR, ! dr?
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(G 2%5)

+M((Xa)]22 {—(At)i (_Iili(tj—l) + %V(zj_l) +c%
() )
+(Af)% <_Iili(tj—2)+1£‘}2V(tj_2) +C%
(o) )
a3 (~Ri) + 5pve) )
() %)
it L) (Bt -30)
We consider the following differential equation
g - —fi@ - f% Ot i(y)dy+ %V(t) = f(t,i(r)) (21.108)

We convert the above differential equation to the fractional stochastic differential
equation as: In exponential-decay case we have

i0)=1(0) = g i)+ s [ eiopae+ s [iteyan(e)
We define a mapping LI
TGO = | 1000+ 005 [ 1wt
+% ./Oti(r)dB(r)
< jg;;mp L0+ A sup (i)

Ga (!
+7/ sup |i(7)|dB(t
M(a) Jo TG[OJ]I( )| dB(7)
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1_
< I+ T (£ (i) ]| + L] .

M(a) M(a)
< Mp+My+M;
< M
‘We have
. . -« . .

MO =T = | 00) = £ (60 0)
it [ it - s
+% [ =)

< %mr (1)) — £(t.ir (1))
i o (i) = f(wi (o) e
Ga /| o)|dB(7)
< ,SES%] F(6i0) — Fe, i (1)
43t /Otfsel[lgﬂlf(f,i(f))f(f,il(f))ldf

+ﬂ/ot sup |[(‘L’)711(T)|dB(T)

M(O‘) t€(0,f]

< 33 IO =10l.

+%T§ 1i(6)) — i1 (O)]l + GLIJi(0) — in(0)]..

) <1<O§§+A@Tf+GL)||<> A0l

< Liflie) =i ()]l

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

()| = 1;f +i/ff,

Ga t
+W/o i(7)dB()

< jﬁof; F(6,i(0))]
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o t
+—— / 7,i(7))|dT
i@ Jo FEO)

Ga (',
Fitta 14D

— % sup | £(L,i(1))]

M(OC) 1€[0,]

o 4 .
Vi /0 o /(i)

Go [?
Jri/ sup |i(l)|dB(t
M@ Jo /e[og]‘ (1)|dB(7)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

(1) = i<o>+%f@mi<fﬂ>>+% Otnﬂf(f,i(f))df
+% /0 " i(1)dB(x)
and
i) = i<o>+j%f<zn,l,i<rn,l>>+ﬁ [ rtwiteyas
Ga In
it /0 i(t)dB(7)
Thus, we reach
) ) -« . )
i(tay1) = l(n)+m(f(tml(fn))—f(tn—l,l(tn—l)))
+ﬁ t: " fni()de + Af(‘;) ./,:M i(7)dB(7)
- z<n>+%<f<tmi<rn>> Fllrsiltn1))
+ iy 22 [ s ienars MG(‘;‘C) 22 [ iwan(a
J=277 j=27%
- z(n)+%(f(rmi<rn>>ff<rn,1,i<rn71>))
4
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o) 2 0|

Go
M)

=

i(1) (B(tj+1 — B(t))))

2

J
Then, we obtain

) = 100+ o (<510 = 5 [0+ 3v0)
(it g [ )+ V) )

+‘(1a122 [—(Az);L (-ﬁi(tj—l) - ALC /Ot_,u i(y)dy -+ ;V(t/_1)>
+(At)i

) | L 1
0)- 5 [ 1)+ () |
i i i(t;) (B(tj+1— B(1))))
M(a) &

We consider the following differential equation

di R 1

oD Z = i 21.11

=T+ V() = f(ei() @1.110)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

i0)=i(0) = (i) + ot [ i) (=) de
Go . o
+W/o i(0)(t — )% 'dB(7)
We define a mapping
T = \Mﬂmwm [ riene—o e
+%/Oti(f)(t—f)“_ld3(r)
1
<

o 1 . .
+ aBa e Jp il a0 e
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M@ J, 11604

1 —a
AB(a) ,ES[‘(‘)?T} £ (5,i(0)]

o it . .
A b s (i) =0 lar

Go

< i)l

T%x
AB(a)[(a+1))

GLo

+ s MO

< Mi+Myy+M3=M

* 17, i(0))

We have

RO

-«
AB(a)

(f(2,i(1)) = f(2,02(2)))

(04 t . . o
+W/O (f(7,i(7)) — f(z,i1(7)) (t —7)* dz

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

CUON = | i)+ ot [ (e )% s
Go 't o
A /0 i(7)(t — ©)*1dB(c)
< AIB‘( )wm(r))\

/ ‘le t "L'a ldT
/\ (t—7)* 'dB(t)
— % Sup [£(Li(1))]

AB(a) 1€[0,]

D tsu i _ a-1

+AB(“>F(a))/<),€[O§]|f(l’ ) —1)*dt
Go t . .

FaAB@) o 7, O
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

(1) =i(0) -~ i) + /0 " f(i() -1 dr

AB() AB(@)T(a))
+ % /0 " i) —©)* dB(7)
O+ Ay i)+ gty By, i o
+ F(a;();(a) éo/tj’”‘ i(T)(t — 7)*'dB()

AB(a)T(a+ 1)

()
AB(@)Ta12) & ) = 277

x[(n—j+1)*(n—j+3+2a)—(n—j)*)(n—j+3+3a)]
Sy V)25 )
x [(n—j+1)%(2(n—j)*+ (Ba+10)(n— j) +2a* + 9+ 12)
—(n—j)*(2(n— j)*+ (5a+10)(n— j) + 60> + 180+ 12)]

Ga(Ar)® n Ny
AB(—jzol [(n—j+ 1) —(n—j)"% (B(thrl) —B(tj))

Then, we obtain

i(ta1) = i(0)+a(m)ai‘,(—lzi(fj—z)Jer(lj—z))

x[n—j+D)%n—j+3+2a)—(n—j*n—j+3+3a)]

o(Ar)* R, 1
T AB(a) (@ +3) K—’(”) + V(tj))

-2 (-Izi(fj—l) + iV(fH)) + (
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x [(n—j+1)*(2(n—j)*+ (3a+10)(n— j) +20* + 9 + 12)
—(n—j)* (2(n— j)* + (50 + 10)(n— j) + 60 + 18a + 12)]
Ga(

+AM)FA(I)i i(t)) [(n—=j+1)% = (n— )] (Btj+1) — B(t)))

We consider the following differential equation
di R | 1
—=——i(t)—— [ i(y)dy+-V(t) = f(¢,i(t 21.111
We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

i) —i(0) = ;B_(;‘)f(z s / Flei(0) (1 — 1) \dt
Ga ! o
+F(a)AB(oc)/o l(r)(z—r) 14B(7)

We define a mapping

0N = | i)+ e [ (e =0 as
Go ! o
W/Q l(T)(l—T) ldB(T)
-« .
AB(« )\f(f (1))
/\frz (t—1)* ldr
/\ (t—7)* 'dB(7)

l—oc
AB(a) l:;})ﬂ | (5,i(0)]

2 t | a—1
+m/0 Ti‘[l(ft] If(z,i(0)|(t —1)* 'dr

+

Go 1 ' "
+W/O Ti‘[lorft}|l(f)l(t—r) 1dB()

A5 O
T%x

st rn) MOl
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GLa

* Faasia 0
< Mi+My+M3=M
We have
IT(0) —T()] ;B_(oc) (f(t,i(1)) — f(t,i1(2)))
AB(a()xF(a))/ot(f(T’i(’f)) f(Ti(0) (1 —1)* dt
Ga

sy U= (®) (=2 an()

‘2‘ F(6i(0)) — £(2, 1))
T ) ) — A @) =) ae

AN
=

/ iz (1—7)*'dB(2)
< AIB]; ,2[‘5% Vi) =00
AR o 2B D)~ i )] s
+F(oc)C/;AO;(oz)/o.[f€‘fg?l]"(T>—i1(f)|(t—r)“‘dB(r)
<Rt -a ).
+ e A 0 -1l
Sl - ).

1o R « RT®  Gla
- (AB(a)A+AB(a)F(a))Aa+w> i) = ir ()]

<Ly li(t) = i1 (1)l

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

KGO = | i)+ praiess [ lrite))e ) as
Ga ! o
+7F(a)AB(a)/o i(7)(t — )% 'dB(7)
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< i)

AB(a)
/|f1:z (t—1)* ldt

Goc g o
(e /0 ()] (1=)*aB(z)

—
1i(l
AB(a) z?ﬂﬂ] |f(L,i(D))]

Ca
AR h S35, N e

+

T o sup 0] ¢~ s

+
L(a)AB(a) Jo jepo.q
This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

AIB;@z)f(tn’l‘(tn)) + m Al’l+] f(f,i(f))(t _ T)chldr

Ga Intl o
+W/o i(0)(t — )% 'dB(7)

i(tnt1) =i(0) +

=i(0) + jB*(;‘)fon,i(r,,)HAB g B [ i o

n

Z/tl”" )t — 7)% ' dB(7)

n

:i<o>+mf)rzz+lz FG28) [ D)~ ()

o(Ar)®

FariaTs 5Vl D)

_|_

X[(n—j+1D)*n—j+3+2a)—(n—j))*)(n—j+3+30)]

(Ar)*

m[f( i) =2f(tj-1,i/” 1)+f(t i 2)]

+
x [(n—j+1)*(2(n—j)*+ B+ 10)(n— j) + 20> + 9 + 12)

—(n— )% (2(n— j)*+ (5a+10)(n— j) + 60> + 18a + 12)]

Go(Ar)® n . . o O
fw«og(ngm L i)l =j+1)% = (= )%} (Bltj) = B()
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Then, we obtain

i(;n+1)i(0)+Am(Ata+lf2< i(t) ) Ac/t’ ily)dy+ 1V (- 2))
=

<[(n=j+1)%=(n=j)"]
o(Ar)* u
+AB((X)F((X+2)]ZZ|:< A l/ 1) AC/ yv)dy+ — V(tj 1))

( i(tj—2) AC/ y)dy+ V(t, 2))]

X[(n—j+1D)%n—j+3+2a)— (n—j* (n—j+3+30)]

a(Ar)® R. 1 /4 1
w41 e ) 30

> (—fi(l‘jl) _ % /Ot’;l i(y)dy+ iV(fj1)>

(i) - g [ i)+ V) )|
x [(n—j+1)%(2(n—j)* + Ba+10)(n— j)+20> +9a+12)
—(n— )% (2(n—j)* + (Sa+10)(n— j)+ 60> +18a +12)]

Ga(A)®

W;f@j) [(n—j+1)%—(n—j)*] (B(tj+1) - B(t)))

We consider the following differential equation

d*V (s CR dv (s
2( ) LR av()
dt A R2 dt

di R .

= f(1,i(1)) (21.112)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

i(1)—i(0) = ;B_(s)f(t,i(t)) O /frz N —1)% lde
+7F(a;";(a)/o (r)(t—r)“ 14B(1)
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We define a mapping

T = ' B )+ Fgraeray [ Ao =0

Ga r .
+ Easia Jy (@00 dB(e)
1

< ﬁ\f@ 1))
/\fﬂ (t—1)%'dt
/\ (t—7)% 'dB(r)

1—a
AB() tes[l(l),pT i)

o t . N
+m/o b |f(7,i(7)] (t — )% \dt

Ga i _ "
+F(OC)AB(a)/O TZL[‘(EIHI(T)I(t—r) 'dB(7)

< i)l

T%x '
T aB@ @y MO

GLa

s O

< M1+M2+M3 M

We have

Eaas@ . (=) =0 a(e)

1 ‘(“) F0,i(0) — £t 1)

/‘f“ flri(o)|(t—1)* 'dr
/ i®) ()]~ ) anD)
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<AIB‘(;‘) sup (0:i0) = f(6:1 ()
b [ sup |f(0i(0) ~ fmi (0)] - 1) e
AB(O‘)F(O‘)) 0 70,

Go t _ . "
* Faaia) p 2,19~ () (=" an()

<3 A =0l
(01 R T®
AB(@ (o) A o |
GLa
+ Fajase 11O~ 1Ol
l-a R o R T GLo
- (AB(a)X+AB(a)F(a))I4la+r‘(()¢)()> li(e) =i ()]l
<Ly [li(t) = i1 (1)

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

+ i(t) = i1(1)ll..

CUON = | i)+ s [ A0 s
—i—%/oti(r)(t—f)“*'dmr)
l—oc (
< )If(wt))I
/|f 7,i(T )% lir

/| ©)%aB(v)

— % sup [£(Li(D))]

AB(O‘) le[0,]
L t i _ ~\a-1
+AB(a)1"(a))/0 s (i) —1)* dr

Go t _ "
FaAB@) 2, OB

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation
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1) 0) s () + s [ i) -9
Go Intl o
+W/o i(0)(t — 1) 1dB(*L')
—i(O)+;B_(;‘)f(tn,i(tn))+AB Z /t"“f (1,i())(t —1)% 'dt

J=0"%j
i(0)+AB((X()Al'[‘EZ+])jn;2f(t12 i/ 2)[(,1 j+1)a7(n7‘])a}
a(Ar)® n
AB@) o 2) & ) =S

X[(n—j+1D)*n—j+3+2a)—(n—j))*)(n—j+3+30)]

zfug((oAg)tl)“OE(aerg,) [ (e5s7) = 20 (51, Y) o f(tj,i2)]

x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j) +2a> + 9o+ 12)
—(n—)*(2(n—j)*+ (5a+10)(n— j) + 60> + 180 +12)]
Go(Ar)® d

W;i(w) [(n—j+1)%=(n—j)* (B(tjt1) — B(t))

Then, we obtain

n 2 .

(CRI 1) L 2) =+ = (0= )"

Ry
o(Ar)® < R R d2V(t;_1)
e | (3 e+
CR] dV(I _1)
+ <A+Rg) —a )
2 . .
—< il i(tj- z)+f%v(tj72)+cd Vd(:[z) + (CARIJFRlz) dv(ﬂg”)]

X[(n—j+ D)% n—j+3420)—(n—j*% (n—j+3+3a))

a(Ar)” R . R d*V(t;)
2AB(@)T(a+3) K 20+ R,V
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CR; 1 dV(lj)
+(A+Rz> dr
(R s Ry )+C7dzv(t’”)+ CRi | 1) aVii-)
ATV aR, dr? A 'R dt

R; . R d? V(tj_z) CR; 1 dV(tj_z)
i V(o) +cT =2y (2
+( 2 )+ g Vi) + == g ) T

x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j) +2a* + 9o+ 12)
—(n—j)* (2(n—j)*+ (5a+10)(n— j)+ 60’ + 18+ 12)]

AB(GQAZ:Ii [(n—j+1)% = (n—j)*] (B(tj+1) — B(t;))

We consider the following differential equation

di d%i(r) 1 RC dV (1)

&m0y Ly 4 B i) (1.113)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

i(t)—i(0) = AIB_(;‘)f(t,i(t)) Bla /frz N —1)% lde
Jrl_,(OsL\O;(a)/oti(r)(tr)“_ldB(‘c)

We define a mapping

ICG() = ‘mf(t’i(t))+m/Otf(fvi(f))(t—r)a1dT
+%.£i(f)@_f)aﬂwm
= AIB_(:) 1£(2,i(2))]
+L/Z |f(1,i(7)] (t — )% \dt
AB /' )*~'dB(7)
) AB—(a)t:[‘éPT]U(Z i)
ﬂ% /ot s £(z,i(2)| (t = 7)* 'dT

Ga t . W
*wméé‘fé?ﬂ"“”“—ﬂ 'dB()
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(#,i(1)l..

1—o
AB(a)
T*x
T AB(o)T(a+ 1))
GLx .
+W i)
< Mi+My+M3=M

1F (1))l

We have

o t ] 3
AB(a)F(a))/O(f(Tv’(T)) f(ri1(0) (t—1)* dr
+% /0’ (i(7) =i (7)) (r = ©)*"dB(1)
AlB_(;x) L5, i(0) = o0 1))

/|frz F(5,i1(0)] (t — 1) \dt

/| )| (6 = )% 'dB(t)

& sup [£(6,i0) — £, (1))]

<
AB(0) ;c(o.7]

a t j ; oa—1
AR 2B M)~ )] =) s

Ga

* aasia sup 1i(€) =i (€)1 %) dB(x)

;B_(g)RC||i(r)—i1(t)Hm
+WRCT li(e) = i1 (1))
% li(r) = i1 ()],
= <;B_(3)RC+AB(O§F(0‘))RC7: +F(°‘G)La()> ol

<Ly |li(t) —i1(1)]].

<
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We assume that B(r) is Lipschitzian on [0, T] with constant L, then

O = |t i) + s [ (w0 as

Ga ! a
+W/o i(7)(t — )% 'dB()

L% i)

AB(oc
/|f‘L’l (t—1)% dr

(t—1)* 'dB(7)

~—

1—oc
AB(a) 121;5] |f(l7l( )]

+L/Ot sup |f(L,i(1)|(t—1)* 'dt

AB(a)I'(t)) Jo epo
Ga t 1 a—1
*Eaasa) Jy 2up 0169 a0

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation

s i)+ e [ p(eie) -0 las

(i) =10) + 250 AB(a)T(@))
+ 7“0‘;0];(“) /Otn+1 i(t)(t—7)* 'aB(7)
=i+ AIB;(O‘) S0+ )iy ,-:o " ity e—o e
" f1+1_ a1
a)jZO/z, )t —7)% ' dB(1)
=i<o>+(off;22+1)])":2f<z, 2 ) 0+ 1)~ (0 )]

m Y (1) =1 22)]

(At) . [F(tj,8) =2 (151, + £ (12, 7)]

T 2B (@ +3)
X [(n—j+1)*(2(n—j)*+ (Ba+10)(n— j) +2a* + 9+ 12)
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—(n—j)*(2(n— j)*+ (5a+10)(n— j) + 60> + 180+ 12)]
TR L) 1=+ 1)% = =] (B(y00) B0
=

Then, we obtain

. . Ar)% n d%ilt_ 1 RCdAV(t;_
i(tns1) =i(0) + AB(S:)(FELH) L (‘chfzz) AN L(dliz)>

<[(n=j+1)%=(n= 1)

oo 5 [(rel) s Ly RV

— = —V(t;-
AB((X)F(OC+2)J.:Z2 e AR

d%i(tjn) 1 RC dV(t;-2)
— [ =R AN — - ST NImA)
( C— Vi) +—— )}

x[(n—j+1)*m—j+3+2a)— (n—j*) (n—j+3+3a)]

a(Ar)® d*i(t;) 1 RC dV(t;)
2AB(a)T (a1 3) K_RC ar TVt dt]>

d%i(tiy) 1 RC AV (tj_1)
2| —RC="LH 4 Ty A TS
( a? L (tj-1)+ L dt )

d%i(t; o) 1 RC dV (tj_3)
_RC=2Z2L L (e s
+( C— i TV +———2 )

x[(n—j+1)%(2(n—j)*+ (Ba+10)(n— j)+2a* + 9+ 12)
—(n—j)*(2(n— j)* + (S0 +10)(n— j) + 60> + 18a + 12)]
Ga(An® o ) o .a
+Imgal(f])[(n*ﬂrl) —(n— )% (B(tj+1) — B(t}))
We consider the following differential equation

L \di(t) Ri+R

r) G+ SR = e )
(21.114)

We convert the above differential equation to the fractional stochastic differential

equation as: In Mittag-Leffler case we have

av 1 1 d%i(t)
= () — — A
dt Cl(t) Rlcv(t)+ dr?

+ (R2+

11— o

V-V = S eV O0)+ e [ V(@)=

Ga ! o
H@IABE) /0 V(D) —7)% 'dB()
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We define a mapping
-« -
TVO = | g eV O)+ g [ V@)=
G t
+W01;(oo/0 V(r)(t—r)"‘_ldB(T)
-«

< mmf 840)]
/|fTV (t—1)% dr

(t—1)* 'dB(7)

AB_(% s;pT ] \f(nw I

(01 t _
AT 2 O

Ga t o
+W/O Ti‘f{fl]\"(f)\ (r—1)* 'dB(1)

V).
T%x
AH@o 1)

LA ).

toe—
[(a)AB(a)
< Mi+My+Mz=M

-«
AB(«)

+ 1F V()]

We have
IC(V) =T (W)

_ AIB—(;‘ (F(V (1)~ e, Vi(0))

(04 t N
+m/o (f(z,V(1)) = f(z,V1 (7)) (t — T) 4t

Go 1 "
+ Eaisia) ) V@~V (- dB(e)
< v ) - )

AB(a)
/ [f(7, V() = f(T,Vi ()| (1 —7)* dT

/ V() (2] =)

~—
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<

AIB_(g) es[l(l)PT] |f(t, V() — f(t,V1(2))]

" m ~/0r Sup |f(T’V(T)) 7f(Tavl (T))| ([7 T)a_ldf

7€(0,]

' % A o V(1) =Vi(9)] (1= 0)* " dB(x)
<ﬁi%§%ﬂww—wumm

*“Ji‘*'lszW> Vi(o)ll.,

AB(a)l'(a)) RiC o
GLo
sl | =Vl

<1a 1 o 1 T GLa

= AB(a )R1C+AMO£)1"W))R1C05+F(OC)AB(OC)) V() =Vi(0)ll.,
<Ly V() = Vi (0)]l..

We assume that B(t) is Lipschitzian on [0, 7] with constant L, then

FVO) = | V) + o [ AV @)= 0 ar

Ga i .
+W/o V(2)(t —1)*dB(r)

/|fTV ) (@t —1)% dt

/I )| (t—1)*"'dB(t)

(04
LV(l
Am&h§&u< )

a t o—1
@) f S VO s

Ga 1 W
T @)AB(a) /0 IES}(I)% V()| (t—1)*"'dB(t)
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

o In+1 .
B o TEV@IE=7) ldt

Ga

=V(0)+/:B_(a)f(tn,v(tn))+AB Z [t’“f (T,V(1))(t—7)* dr
Ga LT o

+F(a)AB(a)§0/tj V (o)t — ©)* 'dB(z)

=VO) gpaiar ) B0V ) )

*m?ﬁzxui[ (61, V) = £tj2,V772)]
x[(n—j+D)%n—j+3+20) = (n=j)*)(n—j+3+30)]
x [(n—=j+1)% (2(n— >+ (3a+10)(n — j) + 20> +9a + 12)

—(n=)* (2(n—j)*+ (Sa+10)(n— j) + 60>+ 180+ 12)]
fmz‘/” (n=j+ 1% = (n— )" (Bltj+1) = B(t;))

Then, we obtain

R C dr?
L dl'(l‘jfz) Ri+Ry . ) o ~a
R —_— . _ 1N — (n—
—|—( 2+R1C> 7 + R.C i(tj2) | [(n—j+1)%*=(n—j)“]

o(Ar)“ n 1, 1 dzi(tj, )
T aB(o)(a+2) L [<_c’([f—1)_MV(fj—1)+A !

R 2t
Vitay1) = V(O)Jrf\)_'%:jc‘)(lézz)c—s—])j;((l;i(tfz)lv(tj2)+Ad (tj-2)

=2 dr?
L dl(tjfl) R1—|—R2
Ry +—-— fi_
+( +R1C> dt + RlC l(./ 1)
1 1 dzi(['_z)
==t . A Jj
( Cz(t, 2) 1CV(t, 2)+ e
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+ (Rz + L> dilti2) | R +R2i(tj_2)>]

R]C dt R1C
x[(n—j+1)*n—j+3+2a)—(n—j%)(n—j+3+3a)]

a(A 1 1 d%i(t;)
SAB(a)T )[( C(tj) RI—CV(tj)JrA dﬂj

s
(o) )

1 1 d%i(tj_1)
— —=i(t:i )= —V(t: A— I
( cltim) — gV i) +A—5

+(R2+L> di(tj1)+R1+R2i(tjl)>

R, C dt R C
| 1 2i(tj_2)
— it A2
+( Cl(fj 2) — R CV(IJ 2) + 7
L \ di(tj-) Ri+Ry.
R — J ti_
+ 2+R1C> i T RC )

x [(n—j+1)%(2(n— j)*+ Bo+10)(n— j) + 20> + 9o+ 12)
—(n—j)*(2(n—j)*+ (50 +10)(n— j) + 60> + 18a + 12) ]

GBI ey [ — i+ 1)® — (n— )% (Bltj1) — Blty)

TAB@(a+1) &

We consider the following differential equation

av, . Ri+R; C dV](l) 1

dr RiR(Cy +C2)V2(t) TovG @ TRG +C2)V1 (=0 V2(0)

(21.115)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

Va(0)=Va(0) = jggfmwmwa“A%@merrW”m

[(a)AB(a) /V2 )*dB(2)
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We define a mapping
1-a o g o—
PO = | 0+ gty | HE (@)= 0 ae
+ﬁJ?Lf/ﬁa )(t — 7)* dB(7)
< Al e )If(t Va(0)

/|fTV2 (t—1)% dr

/\ )| (1 —1)*'dB()

1— o
< AB(a)l:;%]\f(r,Vz( )|

7 (o)) /t sup |f(z,Va(7))[ (1 = 7)*ld7

W 0 7¢f0,]

Ga ' "
Flaasa) 2,00 s

< 50 VO

_|_

T«
@) e

a0l

< Mi+M+M3;=M

We have
T(V2) ~T(Va,)| = | - &
2 2017 | AB(a

(04 t N
W/O (f(z,Va(1)) = f(7,V5, (7)) (t — 7)* dt

% /(: (Va(7) = V2, (7)) (1 = 1) 'dB()

&£V (0)) — £, Vo, ()]

“AB #e)
/ (. Va(1) — f(2,Va, (0)] (¢ — )% de

/‘ — Vs, (7)| (1 — 7)*'dB(7)

(f(#,V2(2)) = f (2,2, (1))

~—

+
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— % sup £, Va(t) — £(t,Va, (1))

AB(a) 1€[0,7)
+%/[ sup |£(7,Va (%)) — £(7, V2, (7)) (t — 1)* 'dt

B(a)I'(a)) Jo 7€[0,]
Ga !
+7/ sup [Va(t)—Va, (7)|(t —7)* 'dB(t
FlaaBia) y 200 1)V, (0 =) an)
< 1—a Ri+R,
AB(OC) R1R2(C1 +C2)
+ o R +Ry La
AB(O()F(O!)) R1R2(C1 -|—C2) o
GLa
b
I'(a)AB(o)
<(1—Ot Ri+Ry i a Ri+Ry La
AB(a) RiRy(C1 +C;)  AB(o)T(a)) RiR:(C1+Cr) o

Va(e) = V2, ()]l

[Va(£) = V2, ()]l

[Va(t) = Va, (1),

n r((gg(@) IVa(t) = Va, (1)]].,

<L |V(t)=Vi(t)]

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

PR = | f )+ ppraeress [ (V@)= s

er/o Va(7)( t—r)“_ldB(r)

= AlB_(S) f (V2 (1))l
/'f’”VZ (t—1)* lde
/'Vz (1= )" 'dB(x)

< ;B}%,;;g]va,vz )]

B fy 2, V] 0
+F<°‘>(i‘01;<°‘>/ot1§'[3%'w”'<"f>“1dB<r>
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This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtns1) =Va(0) 4~ f (10, Va(tn))

AB(a)

o Tn+1 .
T @) -0
+ Ga Int1 Vz(T)(l . ‘L‘)a_ldB(”L')

I'(a)AB(a) Jo

—V2(0) + /ﬁﬂm%(m»

ﬂﬁ L[ s o

f/tlmvz )1 —7)*"1dB(1)

Jj=0
RO (OC()Ath Jngftf WV ) (= j+1)% = (n— )%
g ) )
AB((X)F(OC_FZ);[]C(IJ'MVZJ 1)*f(tj,2,V21 2)}

X[(n—j+1D)%*n—j+3+2a)—(n—j)*)(n—j+3+3a)]

Zm 76V =210V + (2.7

X [(n—j+1)%(2(n—j)*+ Ba+10)(n— j)+2a> +9a + 12)
—(n—j)*(2(n—j)*+ (5a+10)(n—j) + 60> + 180+ 12)]

m ,,iovm) (= 1) = (= )] (Blt 1) = B(1})

Then, we obtain

. (X(At)a u Ri+R; 4
Va(tnt1) =V2(0) + AB(@) (0T 1) J; (_Rle(Cl JrCz)Vz(tJ—z)

(o] dVl(tjfz) 1
Vi(tj-2)
Ci+C dt Ri(C1+ ()
x[(n=j+1)% = (n—j)"]
(Al 1 Ri+R;

_— 7V ti_
T AB(@) (0 +2) ) &\ RIR(CI+Co) 2(tj-1)
Ci dV](t] 1) 1 >

Jr t;
C1+C2 dt <C1+C2) (J 1)
Ri+R; c, dv, (Z‘jfg)
—| =WV (t;n) +
< RiR>(Ci +Cy) )T eT G ar
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1
Jr1’?1(C1+Cz) 1= 2))}
X[(n—j+1D)*n—j+34+2a)—(n—j* (n—j+3+3a))

a(Ar)® Ri+R,
- Va(t))
2AB(o)T(a+3) R1R2(C1 +(C,)
C dV](tj) 1 )
+ Vi(t;
Ci+C dt R (C1+ () l(j)
Ri+R; Ci avi(tj—y)
_7‘/ ti_ + —_J 7
( R1R2(C1+Cz) -0 TS ar
1 (¢
(cl+cz Uj-1) )
Ri+R; G dni(tj)
—— V(¢ —_—
+< R1R2(C1+C2 2lj-2) + Ci+CG  dt
(t;
TRGTO) (C1+C2 (tj-2 ﬂ

x [(n—j+1)%*(2(n—j)*+ (3a+10)(n— j) + 20> + 9 + 12)
—(n— )% (2(n— j)* + (5o +10)(n— j) + 60> + 180t +12)]

A
fm L i) =4 )% = (0= 0)% (Blty1) = B()

We consider the following differential equation

% = —4x10°Vy(r) =4 x 10"V (1) = f (1, Va (1)) (21.116)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

1

V) =Va(0) = oot f(6a0) + et [ A va(m)0— ) ae

Go ! o—
* Faoania) Jy P01 a8

We define a mapping
rvo) = u;(;f(t,vz(t)) + e SV

*%/otvzu)(t—r)“*dwf)

AB(ay V20
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/|fTV2 ) (t—1)% ldt
/IVz )| (t— 1) 'dB(1)

l—oc
AB(a) z:fé?r] (&, V2(0))]

(04 t N
B @) b s (Vo) (= 0) e

Ga 1 o

- Albi—(;‘) 1 Va(0)]l

LT
AB(a)I'(a+1))

GLx
T(@)AB(a) V2 (1)l
< Ml +M2 +M3 =M

1/ (V2 (0)) .

We have

-«
AB(a)

IT(V2) =T'(Va,) = ‘ (f(2,V2(2)) = f (2, V2, (1))

* +m /Ot (f(T,Va(7)) = f(7,V2, (1)) (t —7)* 'dr

Go

T F0)AB(a) /Ol (Va(7) = V2, (7)) (t — 7)*"'dB(1)

<fﬁ £, Va(0)) = £(2,Va, (1))
/ F(2, V() — £(z,Va, (0))] (t — ©)% '

/ [Va(7) = V2, (0)| (t — )~ dB()

sup [ f(2,Va(1)) = £ (2, V2, (1))

(OC) t€(0,7]
o t _
W/ up (2 2(5)) = f (Vo ()] 1= 4

Go 1 W
raytsa) fy S L) (07 an(o)

l—a
———4x10° _
<aB(e) 10 V20 =V ()]
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(04 (,Ta
tmrarand < 100 Va0 = V2 0l

AB(gL)F( )

Fooanie 0 Va0l
< <A;(;‘)4 % 100+ m4 x 10"%
* o) IR0 -1 0l

<L [V(6) =Vi(®)l.

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

RO = [ o)+ et [ e oo o e
" T(o)AB(a) /0 Va(o)( f*f)“‘ldB(f)
= AIB]; £, V2 (1))l
/t|f (z.Va(2))| (= 1)t
AB /|V2 )*~1aB(z)
) As@,ggi]lf(l V(D)
TRy e V)60 e

o t o—1
+W/O l:{éﬂ]“’z(l)l(t—r) dB(t)

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

1-a
mf(tm‘@(tn))

S e

Go In+1 o—
Ras@ fy | 00 4B

Va(tuy1) =V2(0) +

~V2(0)+ ol Vo)
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n

a Tj+1 i
@) by, SV

Ga LS

AB(a) 1=y

Va(1)(r —1)* 'dB(7)

AB(a)[(t+1)

o(Ar)* n N 3
Al%ot)l"(a—i—Z)jZ:z[f(tj—thj Y= 12,4
x[(n—j+1)%n—j+3+2a)— (n—j)*)(n—j+3+3a)]

S [ =27 ) i)

x [(n—j+1)* (2(n— j)*+ (3a+10)(n— j) +2a* + 9o + 12)
—(n—j)* (2(n— j)*+ (Sa+10)(n— j) + 60> + 180+ 12)]

AB(Ga (Ar)* ZV ) (n—j+1)%—=(n—j)% (B(tj+1)*B(tj))

Va0 + B s ) (4 1) (n— )]
=

Then, we obtain

o(Ar)® "
AB@(a 1) & (~4 5 10°Va(0j2) 4 107Vi (12)

Va(tnr1) =V2(0) +
x[(n—j+1)%—(n—j)"]

+m Z [(—4x10%Va (1) — 4 < 107V (11) )

_ (—4 5 100V5(tj_5) — 4 x 107V, (t,_z))}
x[(n=j+1)*n—j+3+20a) = (n—j*) (n—j+3+3a)]

o(Ar)®

TN 4 100V —4x 1))

=2 (4 x10°Va (1)~ 4 x 107V (1))
+ (—4 5 100V5(tj_5) — 4 x 107V, (lj_2)>}
x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j)+2a + 9o+ 12)
—(n— )% (2(n—j)* + (Sa +10)(n— j) + 60> + 180+ 12) |

)
AT ,io"(”) (= + 1) = (1= 1)) (B01) ~ B)
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We consider the following differential equation

av, __R1+R2 1 dVl(l‘)

22 Va(t Vil
dt R(R,C 2()+R1C1 0+—

= f(t,Va(1)) (21.117)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

11— o

VQ(I)-VQ(O) = AB(a)f(l,Vz(l)>+m/(:f(7,‘/2(l'))(l—f)aildf

Go ! o—
* Faoania) Jy P01 a8

We define a mapping
) = \jB(O‘j‘)f(r,vg(rmmj‘w [ rEva@ne-o e
+%/{)tvz(r)(t—f)a”d8(r)
< B0 a0

o ' .
aBtaa) )y FEEI = e

s Vel =0 B

-
AB((X) teS[I(J;I;"] |f(t7V2(t))|

2 t a—1
T AB0)T () /O o (2 V()] (=) de

Ga ! o
“Faanta o 2, V0o

1—a
AB(a)

1£(2,V2(1)) |
T«
TAB(@)T(a+1))
GLx
+W IVa(t) ..
< Mi+Mry+M3=M

(2, Va(0))ll..
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We have
IT(Va) =T (V)| = ‘;B(;‘) (e, Va(t)) — £ (2, V5, (1))
" fm /oz (f(z.Va(0) = f(2. V5, (1)) (1 = 1) ldT

+ % [ (0=, ) = % a()

< L% i) — (Ve ()]

AB(a)
Ot()xl—‘ / ‘f (t,Va(1 f(z V21( ))|(t_7)a71dr
06) /‘V2 Vzl t T)a_ldB(T)
(3) ti‘é%] (e Va(0) = (22, (1))
ﬁ /t Tsel[l(ft] |f(t,Va(7)) _f(TaVZI ()] (t — T)aildr
+% /l TSGI[J(R] Va(7) =V, (7)[ (£ - 7)% 1dB(1)
1 AB(a) R E +R2 = V20 = Vo, (0]

o R1+R2T

T AB(@)T () Rik> ¢ o V20 =V, ()],

Faane 0 a0l

l—-a Ri+R; o Ri+Ry T®
< (AB(a) RIR:C ' AB(@)I(@)) RiR:C o
+ oo ) IO - 01

<L V() =Vi(t)]l.,

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

PO = | o)+ e [ (e o as

+71"(a)AB(a)/o Va(1)( t—r)“*ldB(r)




Non-Linear Stochastic RLC Systems 325

/\f’cVz (t—1)* ldr

/\Vg (t—7)* 'dB(t)

1_
% sup |£(LV2(1))]

- AB(a) 1€[0,]
PP [ u _ o—1
+AB(a)F(a)) /0 les[ol,)r] lfF (VA ()| (t—1)% dt

Go 4

Frcanasia fo s Va0l —)* dB(o)
I(a)AB(a) Jo jepo.q

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation

Va(tns1) =V2(0) ‘*‘;B;@z)f(tm%(’"))

n 04 Int1
AB(a)'(a)) Jo

Go In+1 o—
+ Faanie | VOB

l—o
mf(tnaVZ(tn))

flz,Va(2)(t—1)* ldr

=V,(0)+

i

o N
+AB®‘)F((X))JZO/U Fflt,Va (1)t —1) Yar

n

e Z/f”’ Va(1)(a — 1) aB(v)

*A(()tztﬂg Fltj2 V) (= j+ D)% = (n— j)°]
A n ., .
Jrfm%gz)(l“&m;[f(tjl’vi} DRIIGENT] 2)}
X[(n—j+1D)%*n—j+342a)—(n—j)*)(n—j+3+3a)]
MB((O?;)F(ZM [f(fsz") _Zf(tj—l’vzj_l)+f(tj—2aV2j_2)}
x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j) +2a +9a + 12)
—(n—)* (2(n— j)*+ (50 +10)(n — j) + 60> + 18a +12)]

AB((m)éA(ZHZVz, n—j+1)%—(n—j)* (B(tj+1) — B(t)))

=V»(0)
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Then, we obtain

(At i R1+R2
AB( (X—I—l = R\R,C

dvi (l‘jfz)
7‘/ i — ~J =7
+R1C1 1( J 2)+ dt

x[(n=j+1)%—=(n— )%
OC(AZ‘)a u Ri+R;
T AB(@) T (a+2) ];2 K rRiRoc )

avi (t ‘_1)
~a)

Va(tnt1) =V2(0) + Va(tj-2)

+—V1 (l‘j_l) +

R1 +R; A% (tj;z)
( RIR:C Rig, 1),

X|(n—j+1)*n—j+3+2a)— (n—j*% (n—j+3+3a)]

Va(ti—a) + —

(At) R +R
24B(a)T (0t +3) K R]1Rzg v2(t;)

1 dvi(t;)
' i )

x [(n—j+1)*(2(n—j)*+ (Bo+10)(n— j) + 20> +9a + 12)
—(n—7)*(2(n—j)*+ (Sa+10)(n— j)+ 60> + 180+ 12)]
Go(Ar)* 4

W}; i(t)[(n—j+1)* = (n= )] (B(tj41) = B(z)))

We consider the following differential equation

av, 1 1 R; dVl(l‘)
e W)+ Vi(t)+
dt (Ri +R,)C 2(1) (R, +Ry)C W RT R ar

= f(t,Va(t))
(21.118)

We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have
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Va(t) = Va(0) = AIB_(“)f(z V(e ar /fer (t—1)%de
a—1
+F(a)AB(a)/0 Va(1)(r—1)% 'dB(7)
We define a mapping
1_
P00 = [ )+ g [ v o as

Ga -~
*W/OV” (7)o

L0 va()|

< ABa )
/|fTV2 (t—1)* dr
/I (t—1)* 'dB(t)
< By sup 1(1,Va(e)]

AB(O‘) t€[0,7T]

o t N
CRBGITT@) Jo 23, /(6 I )

Ga t o
* Faan(a) Jup [Va(@) ¢ =) dB(z)

< e IV

T%
T AB@)Na 1)
SR A
ajas(a) "2l

< Miy+M+M;=M

17 (V2 ()l

We have

B_@; (&, Va(0)) = f2,V2, (1))

(04

+ AB(aF(a))/Ot (f(z,Va(7)) — f(7,V2,(7))) (t — r)“*ld»;

I(Va) ~T(2,)| = ];

* #O;(a) /Ot (Va(1) = V2, (7)) (1 = 7) % dB(1)
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<ﬁ £, Va(e)) — f(2.Va, ()]
a‘;‘r / £(5,Va(0)) — £(2,Va, (0))] (= 1)* 'z
F a) / [Va(t) — Vo, (7)| (t — 7)*'dB(7)

—¢ sup |f(t,Va(t)) — f(t,V2,(1))]

AB(a 1€[0,7]

)
L tsu - _ o-l
AB(a)T (e >>/ofe[£,]'f<fvvz<f>> FEVa, ()] (= 1)* Nde

Ga t o
+W/O Ti‘[‘(ft]wﬂf) —Va,(7)| (t—7)*'dB(t)

-« 1
(a (Rl +R) ||V2(t)_V21(t)H

)
o 1
AB(a)['(a)) (R +R2)C o

GLo
WHW(Q—VA(I [

<

HVz( )= V2, (1)L,

+

1—«a 1 o 1 T%
= <AB<a> (Ri+Ro)C " AB(@)T()) (Ri +Ro)C &
+ amna ) IO 0.

<Ly |V(6) = Vi(t)]..

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

PO = |t )+ s [ (e va(e)e— o as

- )/ Va(1)( t—r)“*ldB(r)

I'(a)AB(a) Jo

< Al‘(“)mr V()
/|f17V2 (t—1)* ldr
/\ (1—1)*"'dB()

< iy sup |£(1,Va(1)|

AB(Ot) 1€[0,]
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2 t a—1
+W/o e IF(LVa(D)] (£ —1)% dt
Ga t i

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtusr) =Va(0)+ Sz 0 Vo)

er ot’lﬂf(T’VZ(T))(t*T)a_IdT
i % " st 1 tab(e)
=V2(0) + IL;B;@:C)JC(I’“% (tn))

o u iyl W
* AB@T@) & [ et oe s

G 3 v o—
T 0)AB(a) ,go/t, Va(1)(t —7)* 'dB(r)

fw«a(frtgm ;Zzﬂff—w;‘z) [(n—j+1)% = (n— )%

=V1(0) +

o(Ar)® n - .~
+m}; [0,V = S22
X [(n—j+ ) (= j+3+20) — (0= )*) (n— j +3+3a)]

2AB<(OA5>I)F<Z+3> £V =2£ 0 VD + £ ley2 V)]

x [(n—j+1)* (2(n— j)*+ (Ba+10)(n— j) +2a* + 9o+ 12)
—(n—j)* (2(n— j)* + (5a+10)(n— j) + 60 + 18+ 12)]
Go(Ar)®

T AB(@) (a1 1) ];OV(U) [(n—j+1)%=(n—j)* (B(tjr1) — B(t)))
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Then, we obtain

Wlhe) = 0+ et 3 (e

1 R, dVl(fj—z))
b Vi(tj )+
(R1—|—R2)C 1(/ 2)

x[(n—j+1)%=(n—j)"]

o(Ar)” 4 1
AB@N oD & (- @rmact

1 Ry dVi(tj1)
7‘/ ti_ _ ~J "7
+(R1+R2)C l(j 1)+R1+R2 dt

! V; ! Vi(t;
—(_W 2(Ij72)+m 1(1‘172)

+ Ry dVi(tj-2)
Ri+R, dt

X[(n—j+1D)%n—j+34+20)— (n—j*)(n—j+3+3a)]

(Ar) 1
2AB(a)T(a+3) K_ (R, +R2)CV2(”)
R, dV; (tj))

+(R1 JrRz)CVl (tj) Ri+R, dt
1 1

—2 (_(IQH—IQZ)C‘VZ(ZJ_I)+U€H—122)C‘V1 (tj-1)
N R, dV; (tj1)>

Ri+R; dt
+ (lvz(r 2)+ ;V (tj-2)

(Ri+Ry)C ~7~ (Ri+Ry)C

i R, dV; (tj_2)>:|

R+ R, dt

x [(n—j+1)*(2(n—j)*+ (Ba+10)(n— j) +20* + 9 + 12)
—(n— )% (2(n—j)*+ (5a+10)(n— j) + 60 + 180+ 12)]
(At(x n

m/@o (1) [(n—j+1)* = (n— j)*] (B(1j+1) — B(1)))

+
We consider the following differential equation

dvs 1 1 Ry dVy (1)
2 Ly — v (L2 = (1. Vo(t 21.119
dt RIC 2(1) RG> 1 (1) R, dt fv2(0)) ( )
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We convert the above differential equation to the fractional stochastic differential
equation as: In Mittag-Leffler case we have

Va(t) = V5(0) = AlB_(Z)f( Bla)r /f’cVz )t—1)* ldr

+W/O V2 T Z‘*T)a ldB(T)

We define a mapping
T(Va(t)| = ‘;B_(O(?)f(t Va(t F /ffvz (t—1)% 'dr
< Al ‘(“) 0. V5(0)
/|f T V2 l ) Ot Yar
/ Va() (¢ )"~ dB(z)
‘ 23123 s
a ' a_
 ABteo@) b S0 -9 s
Go ! "
“Faana) 2,010

< a0 MO

T
T AB(@T (a1 1))
OLY v o))

+
I'(a)AB(a)
< My+My+Mz=M

£, V2(1))]l.o

We have

) -T2 =

Bieg U6 V20) = 7(6V2, 0)
(04

+ AB(aF(a))/Ot (f(z,Va(7)) — f(7,V2,(7))) (t — r)“*ld»;

Ga

T T(@)aB(a) /Ot (Va(1) = V2, (7)) (1 = 7) % dB(1)
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<Alz%<§ £, Va(e)) — f(2.Va, ()]

)
a(;r / |£(2.V2(7) = f(2. V2, (D) (¢ = 7)*
Fa) /| — Vs, (1) (t— 7)%'dB()
< <§> t:‘é% £ Va(0) = £, V2, (1))
+WO;W/otTi‘Eof,’,]'f(Wz(r))f<r,v21<r>>|<rr>a—1df
+ﬁ /Ot Ti‘[’gt] Va() = Va, (7)| (1 — 7)*'dB(7)
1<3 1 IIVa(1) = V2, 01,

)R
o 1 1%

+ AB(a)T'(a)) RiCy « o V20 = V2 Ol
GLa
+m||V2(t)—V21(t)Hm

l—a 1 o 1 7«
< <AB(a) R\Ci +AB(a)F(a)) RIC o
oo ) IO 0.

<L ||V (1) =Vi(1) L.,

+

We assume that B(r) is Lipschitzian on [0, T] with constant L, then

S AIB;J)W i r /f’rv2 (t—1)% ldt
= A1 Bl )|f(f Va(1)]
/ £ (2. Vo ()| (t — 1)% dt
/‘ (t—1)* 'dB(7)
) Ale(s) IZ‘[JOI;] LF(1,V2(0))]
+‘m /ot,:Eé% F(LV(D)] (e —1)* dr
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Ga ! 1

Frcaragiat [ s Va0l e- )% dB(o)
I(a)AB(a) Jo 1efoq

This shows that our mapping has a unique solution. We now present the numerical

solution of the equation

Valtusr) =Va(0)+ Sz 0 Vo)

04 In+1
AB(a)T(a)) Jo

Ga Int1 a—
W./o Vo () (1 — 7)% ' dB(7)

=V»(0) + ﬁf(tmvz(fn))

+ feVa()(t—1)* dt

_|_

n

’ Am+ Y [ s e

/! tj+l

0 Z )t — 1) 1dB(x)
Jj=
v2<0>+(of)tngrj VD) =+ 1) — (= )]
aar)r o

BT £V = 2|

x[(n—j+1)%(n—j+3+2a)—(n—j)*)(n—j+3+3a)]

mfﬁi)rizm |70V =200V £ 28]

X [(n=j+1)* (2(n— j)*+ (Ba+10)(n— j) +2a* + 9o+ 12)
—(n—7)*(2(n—j)*+ (50 +10)(n— j) +6a* + 18+ 12)]

+m th, n—j+1)% = (n= )" (Btj+1) = B(1))

Then, we obtain

Valtn) 5000+ gty B (g ) g i)
ﬁjdv‘;’; 2’)[( D= (1))
a+2 ;{ R1C Valti-1)
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1 Ry dV(tj-1)
e Vi(fi e i VA
R l(tj 1)+R| dt
1 1 Ry dVi(tj—2)
— | —5—=W(- —Vi(t e
( ric ) g )t gy,
X[(n—j+1D)%n—j+3+2a)— (n—j*) (n—j+3+30)]
o (A1) 1 1 Ry dVi (1))
— Vo(t:) — —— Vi (1) + =2
2AB(a)T(+3) |:< R.C; z(tj) R 1(tj)—i_Rl dt
1 1 Ry dVy(tj)
) - —2 2=l
( Ric; 2 T jg ) R
1 1 Ry dVi(tj 2)
— Wt -
+( ”ic 2 g )t gy,
x [(n—j+1)%(2(n—j)* + (Ba+10)(n— j) +2a* + 9+ 12)
—(n—j)* (2(n— N+ (Ba+10)(n—j)+6a* + 180 +12)]

AmGa(AixHi [(n—j+1)% = (n— )% (B(tj+1) — B(t)))

We consider the following differential equation

D v+ i - ) (21.120)

dt~ RC 2RC
We convert the above differential equation to the fractional stochastic differential

equation as: In Mittag-Leffler case we have

Valt) = V2(0) = mﬂr,w(zm% [ rEv@e-o e
AB / Vale )*dB(x)
We define a mapping

-« > t
FEV2 )+ prm@) o

rE0l = |
Go ! o
ey )AB(a)/OVQ(’L' t—1)% 'dB(1)
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<

l—a
AB(a) IGS’ESF’T] [f(2,Va(2))]

(04 t N
FABEIF@) h 2, M9

Ga ! "
“Faana) h 2, 010

A5 IO
T«

TAB@T(at 1))

Loy o).

+7
['(a)AB(a)
< Mi+M+M3;=M

17, V2(0) |

We have
11—«
AB(a)
(04

+ m/of (F(T,Va()) — F(T,V5, (1)) (t — 1) 't

IT(V2) —T'(V,)| —’ (f(2,V2(2)) = f(2,V2,(2)))

Ga

* T@aB(a) /Ot (Va(7) = V2, (7)) (1 — 7)*'dB(7)

gﬁ V30— (6, Vo, (1)
/ £ (2. Va(1)) = £(7,V2, ()] (t = 1) 7
/| — V2, (9)| (1 = 7)*"'dB(7)

<

-
B(a) t:g;gl LFe,V2(0) = (5 Vo, (1)

o ! .
+W/o Sup 117 Va(e) = (7 V()] (=) ldt

Go t "

*ww/ofi‘f&”@v%(r)(m) 14(z)
l—-a 1

(a)iHvz() Vo, (D]l

a 1 7%

WRC o
GLo

+W HVz(l‘) —V21 (t)”oo

3>~

<

[Va(e) = V2, ()]
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l—a 1 o 1 T*
< (AB(a) RC T AB(a)T(a)) RC @
o ) IO -V 01
<Li||V(t) = Vi(¢)

+

Hoo

We assume that B(¢) is Lipschitzian on [0, 7] with constant L, then

ROl ’All%o(j)f(t’vz(t)wrm/Olf(T,Vz(f))(t—r)“ldf

Eaana =0 B

< ame )
R Vel - e
+%[;\Vz(f)\(t—f)“*‘d3(r)

< 1@ sup U (LV:(0)
)y 2 V)60 ae
i@ 5, Ol

This shows that our mapping has a unique solution. We now present the numerical
solution of the equation

Valtusr) =Va(0)+ o 0 Vo)

o Int1 .
T B@r@y RO -0
Go

* Faia e s

:VQ(O) + AlT@:C)f(thZ (tn))

o d Lj+1 o
* A B, e
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5(@) i (@) - 1o taB(e)
%®)+A(;>z_+nf;ﬂwzJ§2Hmj+D“Mﬂﬂ
B
o(Ar)* u

+m; [f(tjfl’vgil) _f(fjfz,szfz)}

x[(n—j+1)%*n—j+3+2a)— (n—j)*)(n—j+3+3a)]

MB((O??FOEZM £V = 2£ (1,8 + 152,V

x [(n—j+1)%(2(n—j)*+ Ba+10)(n— j)+2a> +9a+ 12)
—(n— )% (2(n— j)*+ (5Sa+10)(n— j) + 60> + 180+ 12)]

Aw?¥2+1zvn (1= j+ 1% = (1= )% (B(13:1) ~ B(1y))

Then, we obtain

OZ(AZ‘)(X /! dvi (l‘jfz)

Vz(fn+l>V2<0>+AB<a>rm+1>,§2<Rlcvﬂff”*m}cvl“fz) i)

x[(n=j+1)%=(n= 1)
(X(Al‘)a u 1 1 dV](t;])
+fwwg{<—m%(ﬁl)+m%(ﬁl)— ! >

_ (_Rlcvz(tjz) + ﬁvl (tj—z) B dVlg;_2)>]

X [(n_j+1)a(n_j+3+2a)_(”_ja)(n—j+3+3a)}
a(Ar)® 1 | e

T 2AB(a)T(a 13) K =gVt Vi) = = >

1 1 dV](l‘];])
) Vi) — _
( re 21+ e Vilti) dt

1 1 avy (Z‘j_g)
+ (—RCVZ(’/2) +ope1ti2) = ——

x [(n—j+1)%(2(n— j)* + (3o +10)(n— j) +20> +9a + 12)
—(n—)* (2(n— j)* + (54 10)(n— j) + 60> + 18+ 12)]

Ga(A "
mﬂgégmjzoi(r;) [(n—j+1)%—(n—j)*] (B(tj+1) — B(t)))




Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

22 Numerical Simulations of
Some Circuit Problems

Fractional differential operators based on the power-law functions have been used in
this chapter to include in mathematical equations describing the dynamics of a circuit
system and the effect of fading and crossover behaviors. These models are second-
orders circuit systems on the one hand. On the other hand, models with classical
integral were extended by replacing the classical integral with fractional integral
including the Riemann-Liouville integral. Suitable numerical methods were used to
provide numerical solutions to these modified models [88-91].

22.1 FIRST PROBLEM

We consider the following system:

We use

di _
dt—  di?
Then, we obtain
R eV Ly d2V+§d—V+iv
dt dr? dr? L dt
(chl)d2 CRff Yoo Lyvoo
dr? dt LC
d*v av
a7 +c1— ar +coV =0

where

R 1
CR—-1 —ic

c—1" " c—1

c1 =
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Then, we fractionalize the %/ and obtain

d’v 4%V

W +c dl7a + C()V =0
We demonstrate the numerical simulation of the solution of this problem for different
values of a by Figure 22.1.

0.08 -

0.06

0.04 H--—- -4

Hi ()

0.02

-0.02

Figure 22.1 Numerical simulation of problem I for ¢; = ¢9 = 0.5.

22.2 SECOND PROBLEM

We consider the following problem

av

=0
dt

v 1
E+Z/o V(t)dt+C

We use

Then, we obtain
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Ldi d%i
== L—
R +i(H)+C i =0

i 1di 1

a "rear T’ =0
Thus, we get
Z:zl +col() 0
where
1 1
TR T LIC

Then, we fractionalize the and obtain

d?i d%

FTERY T

We demonstrate the numerical simulation of the solution of this problem for different
values of o by Figure 22.2.

+coi(t) =0

22.3 THIRD PROBLEM

‘We consider

dv d2i+iﬂ+i
dt dt? RCdt CL

Vit
—= V(t)dt+C—
+L/ o+

We use

Then, we obtain

d? LC—1) di 1
LC—1 e e (R
(Le )dt2+< RC >dt+< CL>’

d? Lo di
— Cc Cl
arr a0
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I’/(t) + clla(t) + C()I( ) 0

0.06

0.05 ¢

0.04 ¢

0.03 ¢

Ho (1)

0.02

0.01

Figure 22.2 Numerical simulation of problem II for ¢; = c¢o = 1.

where

o= (ae) o= (a)

Then, we fractionalize the and obtain

dzi d%i

ﬁ da+col() 0

We demonstrate the numerical simulation of the solution of this problem for different
values of a by Figure 22.3.

22.4 FOURTH PROBLEM

We consider

dv i d%
V(t)dt+C— = — 4+ —
L/ T dt CL * dr?

We use
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0.25

0.2

0.15

0.1

-0.05

-0.1

-0.15

Figure 22.3 Numerical simulation of problem III for ¢; = ¢¢ =0.1.

V()= LE

Then, we obtain

/v arrcy - L L
L dt CL drf?

d%i 1.
(LC—1 )d2 <1—CL> =0

d2i PLIPRI
a2 e’
Then, we fractionalize the and obtain

d% 1
i =0

We demonstrate the numerical simulation of the solution of this problem for dif-
ferent values of « by Figure 22.4.
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I(t)* +Z(t)/(LC) =0

0.25

0.05

-0.05

-0.1

-0.15 -

0.2

Figure 22.4 Numerical simulation of problem IV for L =2 and C = 3.



2 3 Applications of General
Integral Transform

In this chapter we apply the new general integral transform to obtain the trans-
fer functions. The obtained transfer functions are new in the literature. Therefore,
they will be very useful for mathematicians and engineers. We use power-law,
exponential-decay, and Mittag-Leffler kernels. We present the applications of the
circuit problems by the new general integral transform. In the circuit problems we
check the effect of the three different kernels. We demonstrate the numerical simula-
tions to prove the efficiency of the general integral transform. We use many integral
transforms and obtain very interesting transfer functions.

An integral transform maps a function from its original function space into an-
other function space by integration. Some of the features of the original function
might be more easily characterized and manipulated than in the original function
space. The transformed function can generally be mapped back to the original func-
tion space using the inverse transform. We have differential and integral operators
with the different kernels [1-3, 5]. We have presented many useful integral trans-
forms in this work. We have applied these transforms to many circuit problems in
this paper.

Let u(t) be an integrable function described for r > 0, p(s) # 0 and ¢(s) are pos-
itive real functions. The general integral transform 7'(s) of u(¢) has been presented
by [8]:

T [u(t); s]=T(s) = p(s) /Omu(t)exp(—q(s)t)dt (23.1)

provided the integral exists for some ¢(s).

This transform is very useful in many applications. We can obtain many integral
transforms by choosing p(s) and ¢(s). We will obtain Mohand transform, Sawi trans-
form, Elzaki transform, Aboodh transform, Pourreza transform, o integral Laplace
transform, Kamal transform, G-transform, and Natural transform.

Linear physical system with one or multiple set of input and output can be pre-
sented by mathematical functions that depend on any of the outputs to any of the
inputs. These functions are unique and are described relied on the systems governing
equations. Transfer functions are described for any essentail set of input and output
functions that may depend on the input and output together [7].

23.1 GENERAL INTEGRAL TRANSFORM

We define the following integral transforms that will be used in the following sections

[8].
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We have the definition of the Elzaki transform as [18]

E(f0) =s | e sy

We present the definition of the Aboodh transform as [19]

AT0) = [ exp(-sn) (0

N

We present the definition of the Pourreza transform as [20,21]

oo

PUFO) = [ exp(-n)f(0)ds

0
We present the definition of the Mohand transform as [22]

RUF0) = [ exp(—st)(0)ds

We present the definition of the Sawi transform as [23]

Saf0) = 5 [ exp(=5)r)ar

We present the definition of Kamal transform as [24]
K(0) = [ exp(=5) f0ar
We present the definition of the G-transform as [25,26]
G((0) =5 [ “exp (<%) f(0)ar
We present the definition of the Natural transform as [27]

N(/(0) = R(s,) = [ exp(—st)f(ur)ds

We consider #~“ and exp (— %) .

23.1.1 MOHAND TRANSFORM

We find the Mohand transform of these functions as

M[t %] =5 /mfaexp(—st)dt
0

If we use st = u transform, then we will get

M™% = sz/ooo (%)ﬂxexp(—u)%

= s‘”l/ exp(—u)u' "% 'du
0

= s“TIr(l—-o)

Integral Transforms and Engineering: Theory, Methods, and Applications

(23.2)

(23.3)

(23.4)

(23.5)

(23.6)

(23.7)

(23.8)

(23.9)
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and

M {exp <1_—Oixt>} = /Omexp (l—_o;t> exp(—st)dt

Il
1)
[38)
ﬁ
o
>
ho}
/7
4
7N
.
|‘Q
Q
~
+
=}
~——
QU
~

23.1.2 SAWI TRANSFORM

We find the Sawi transform of these functions as

Sa[t™%] = siz/omexp (_St> t~%dt

If weuse u = f transform, then we will get

1= u
s—z/o exp(—u) (su)”“ sdu

s*“”/ exp(—u)u' "% 'du
0

= s*'r(l-a)

Sa ™%

and
Sa |ex _at = l/mex _—at ex . dt
P 11—« o2 ) P 11—« P s
| I o 1
= = —t| ——+—| |dt
s2/o exp( (1 Ot+s )
1 1
- 2 1
A R
s (1-a)
 as+l—a

23.1.3 ELZAKI TRANSFORM

We find the Elzaki transform of these functions as

E[t7%] = s/mt_“exp (_t> dt
0 s

347
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If we use u = % transform, then we will get

E 7%

I
%
8
~—~
<
©
S~—"
|
S}
[¢]
>
=)
—~
|
<
S~—"
©
U
<

and

E {exp (;_O;tﬂ - s/oooexp ( l:aaIZ(axp (") di

23.1.4 ABOODH TRANSFORM

We find the Aboodh transform of these functions as

Al = l/mt*"‘ exp(—st)dt
0

N

If we use st = u transform, then we will get

_ 1 [ /u\—© du
Al = E/o (;) eXP(*”)T
= so‘*z/ u~%exp(—u)du
0
= safz/ exp(—u)u' "% 'du
0

= s*I'(1-a)
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and

23.1.5 POURREZA TRANSFORM

We find the Pourreza transform of these functions as
Pt ] :s/ 1~ %exp(—st)dt
0
If we use st = u transform, then we will get
—a1 C U\ du
Pt = s/o (S—Z) exp(fu)s—2

sm_l/ exp(—u)u' "% 'du
0

2470 (1 - «)

) I O R
/:exp (—t (lfa +s2)> dt

e
s(l—a)
a+s2(1—o)

and

|
5

= S

23.1.6 o INTEGRAL LAPLACE TRANSFORM

Since we define the fractional order with o¢ we use 8 instead of & in the transform.
We acquire the o integral Laplace transform of these functions as

Lg 7% = /Oooexp (—sﬁ%t) t~%dt
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1
If we use sP ¢ = u transform, then we will get

Lg [t_o‘] _ /Owexp(fu) (2)

o exp(—u)u~
= /0 ——— g —du

QU

u

“
=|—

a+

o—1 o
ST/ exp(—u)u"* 'du
0

o1
= sPFI(l-a)

/m @, ( %t)dt
A exp - exp|—s
o0 (04 1

— | —— 3 d
/Oexp< (1_a+s >)
1

1
ll—xoz + sk

-«
a+s%(lfa)

and

t

23.1.7 KAMAL TRANSFORM

We find the Kamal transform of these functions as

K[t %] = /()wfaexp <_St> dt

If we use § = u transform, then we will get
/ (us)~*exp(—u)sdu
0

= slfa/ exp(—u)u' "% 'du
Jo
= Ml -o)

/°° o er)or ()
_ expl( (125 +1) )

=
v
8

[

and

1
[¢]
>
o}
VRS
—
|"
QQ
~
~_
_
Il

(1— )

Cas+l—a

o

-«
s(l—a)
as+1—ao
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23.1.8 G TRANSFORM

We find the G transform of these functions as

Gl o] =5 /wt*“exp (ﬁ) dt
JO N

If we use % = u transform, then we will get

Gl % = sk./olw(us)faexp(—u)sdu

and

23.1.9 NATURAL TRANSFORM

We find the Natural transform of these functions as
/ (ur) ™% exp(—st)dt
Jo
= / u %t %eSdt
0

/: y e (ls‘)a exp(—k)?

-

= e | exp(-ok ek
s 0

= u® rl—a)

sl—a

N[t7%]
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and

NIf@)] =

T
-
ou+s(l—a)

23.2 INTEGRAL TRANSFORMS OF SOME FRACTIONAL
DIFFERENTIAL EQUATIONS

We obtain [4]

6D u(r) =

*
d T(1—

*

gFDtotu(t) — du(t) M((X) p(

D) -

a 1—a "
du(t) AB(a)

du(t) T

a)’

*k
dt 1—

—a
E 1] .
a “{1—05 }

We have the Elzaki transform of these derivatives as

E(§"Dif) =

FCopp) = EU)_1O)

E (4D f)

= (E(H)~ £(0)) —

S2
(20 0) 242
@ ga=2
AB(a)

(1—a)+os*—2

We have the Aboodh transform of these derivatives as

A(G"Dif) =

A(GDf)

A ("D f)

M(o)

(mm_ﬂ®>

N

= (SPA(f) = £(0))s*~

= (sA(f) — £(0))

s+ —so

2
AB(a)s* 2
s9(1—a)+o

(23.10)

(23.11)

(23.12)

(23.13)

(23.14)

(23.15)

(23.16)
(23.17)

(23.18)
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‘We have the Pourreza transform of these derivatives as

P (D) = (5P() —V3r(0) 0

P(§Df) = (sP(f) —/sf(0))s*!

safl
PPDES) = (5P~ VEIO) i

‘We have the Mohand transform of these derivatives as

R(f)

S+ 0 —so

R(§" D f) = (sR(f) —5°f(0))

R(GDf'f) = <@ = f(0))s**!

R AB a+1
repepin) = (M- ) 2HE
‘We have the Sawi transform of these derivatives as
M
S(§"DFf) = (sS(f) _f(O))era(%)sa

S(GDrf) = <S(sf) —f(O)) s
s 1
seorn = (70 10) e va

We have the Kamal transform of these derivatives as

K(SFD;Xf) = (sK(f)—f(O))s_‘_Ai(%)sa
K (§D%) = (sK(f) — £(0))s*"!

5@ 1
K(éBCD;Xf) = (sK(f) f(o))m

We have the a-integral Laplace transform of these derivatives as

Lp (5D f) = (7 (1) - £(0)) M)
o+sf(l1—a)
15 (SDEf) = (5 £(0) - £(0)) 55
ABC ot o sl 3 AB(OC)SO‘T_I
Ly (3%°DEf) = (7 (1) = £(0)) i

Since the fractional order is o, we use 3 instead of « in the transform.

353

(23.19)
(23.20)

(23.21)

(23.22)
(23.23)

(23.24)

(23.25)

(23.26)

(23.27)

(23.28)
(23.29)

(23.30)

(23.31)

(23.32)

(23.33)
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We have the G-Transform of these derivatives as

G(5"DFf) = (sG(a) - S(S)) (23.34)
G(6Dff) = (s“T'G(f) = £(0))s" (23.35)
ABC 0l £\ _ AB(a)s™!
G (™Dl f) = ST a (23.36)
We have the Natural transform of these derivatives as
cFpap _ (N) M(a)
N ("D f) = (u —f(0)> o — (23.37)
N(§Dff) = <N(f) - f(uo)> s%u® (23.38)
ABC 00 £\ 1 AB(OC)SOP]
N (0 D, f) = ;(N(f) _f(o))m (23.39)

23.3 GENERAL TRANSFORM OF THE MITTAG-LEFFLER FUNCTIONS

We obtain the integral transforms of the Mittag-Leffler functions in this section.

23.3.1 ABOODH TRANSFORM

Theorem 23.1

We get the Aboodh transform of the Mittag-Leffler function by:

o 1
A[E (—t“)} = (23.40)
“\ l-a et
where
a
’_lasa <1
_ 11—«
|s| 7% < ——
a
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PROOF We have

Alt%] = -L[t% (23.41)

Then, we get

23.3.2 MOHAND TRANSFORM

Theorem 23.2

We get the Mohand transform of the Mittag-Leffler function by:

1
M [Eoz <_ o t&)} - (23.42)
-« sTlp a2
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where
'lfas_a <1
5] a<1 a
“ 1
< (50

PROOF We have

M[t%] = s*L[t%] (23.43)

Then, we obtain

a ) (_%ta)k
e (125)] w5 (r )|
— i ﬂ M[t“k]
B\ D(ak+1)
_ i ﬁ SZL[tak]
- B\ (ak+1)
N = (_&)k 2 —ak—1
= k;) Tak+1) 578 [(ak+1)
o
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23.3.3 SAWI TRANSFORM

Theorem 23.3

We get the Sawi transform of the Mittag-Leffler function by:

a 1
soo (-+551%) | = e 4

I-a

where

2
I—o\ @
sl < | ——
o

PROOF We have
Salt*] = s**L[t% (23.45)

Then, we obtain
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1 i o, k
= - — s
sio\ 1-«a

RV
s\ 1+ &2

B 1
s+ 4G
|
23.3.4 ELZAKI TRANSFORM
Theorem 23.4
We get the Elzaki transform of the Mittag-Leffler function by:
o s
E|Eq| ———t%)| = - (23.46)
1-a 1+ 75
where
- “l<1
‘ —a
1-a
5] < ——
a
-«
sl < | ——
a
l—a\«
sl < | ——
a
1— o
a+b* < < Ot>
a
|
PROOF We have
E[t%] = s> T2 L[t*] (23.47)

Then, we obtain
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23.3.5 KAMAL TRANSFORM

Theorem 23.5

We get the Kamal transform of the Mittag-Leffler function by:

APAY 1

1-a

where
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2
l—a\@
ls| < | ——
o

PROOF
We have

K[r%] = s*T2¢L[1%] (23.49)

o (7&1‘(1)/(
kz(’)< I'(ak+1) >

Then, we obtain

_ i (7%)]( K[tak]

- B \TD(ak+1)

_ v (_%)k 2420k 1,ak

_ k;) ek )&

o - (_%)k 2420tk —otk—1

= kgb Fak+ 1) s s I'(ak+1)
(04

1
- N
- ]
I+
_ 1
- S71 + os@—1
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|
23.3.6 POURREZA TRANSFORM
Theorem 23.6
We get the Pourreza transform of the Mittag-Leffler function by:
o, 1
P Ea - 171‘ == W (2350)
-« SR
where
- <
l-o
-
|S| —20 <
o
(&)
sl < | ——
€L
o 2a
< [
o< (1%2)
o
A +b < (a)
-«
|
PROOF We have
Plt%] = s *L[t¥] (23.51)

Then, we obtain
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— i ) s 2% s (ak +1)
[(ak+1)

k=0

) k
_ 1 o a S—Za
R -

1 1
= }(W)
1+ I-a
S_l
—20
I+9=

1

1-2a
a
S

23.3.7 o INTEGRAL LAPLACE TRANSFORM

Theorem 23.7

We use B instead of o in the transform. We obtain the ¢ integral Laplace transform
of the Mittag-Leffler function as

a o\ 1
Lﬁ {l;a (__l(xt )] — 47““‘?%17:;; (23.52)

where
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PROOF
We have

Lglt®] =L[1F*%] (23.53)

Then, we have

23.3.8 G TRANSFORM

Theorem 23.8

We use f3 instead of & in the transform. We get the G transform of the Mittag-Leffler

function by:
% )| _ B ;
G |:E(Z ( 1— OCt ):l = <Sl os%—1 > (2354)

where
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PROOF We have

Gl1* = sPK[t?)], K[t*]=s*T2L[t%], G[t%] = sPs*2oL[1%] (23.55)

o (_&ta)k
1?6( I'(ak+1) )

Then, we obtain

_ i (7%)]( G[tak}
a S\ T(ak+1)
_ - (7%)]( B (2420 rook
N k;) T(ak+1) )" " ]
- VK
_ k;) (lg(alki)l)> §B 220k kT gk 4 )




Applications of General Integral Transform 365

23.3.9 NATURAL TRANSFORM

Theorem 23.9

We get the Natural transform of the Mittag-Leffler function by:

o 1
N [Ea <_ taﬂ S (23.56)
l-o s+ Q2

where

()
o l-«
ul S Ta
J ()
ul < (fa)
||
PROOF We have
Rls,u] = %A (g) AQs) = %L(s), R(s,u) = %L (%) (23.57)
Then, we obtain
o (7% oc)k
N{Eo‘ <lfa>} =K\ O(l‘(ixk—f—l))
I (7%)k "
= %(F(ak—s—l))N[I g
= (—r%)f N 1 [k
= g(r(ak—%l))uL [tuk}
= (_%)k §—ak—1
- ,§<r(alk+1>> e (kD)
oo —a\ K
- (@EE=07)
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I

G | =
-~
—
+
Ny
‘:\H
] !

)
v

23.4 GENERAL TRANSFORM OF THE EQUATIONS
We consider the following problems:
Df=Af.
6 DY f=Af.
6Dff=Af.
0DEf=Af.
23.4.1 ELZAKI TRANSFORM

We give some examples of the Elzaki transform as

E(") = nls"t?
3
. as
E (Sln(at)) = m
S2
E(cos(at)) = —
(eos(an)) =

We find the Elzaki transform of the above equations as

E(Df) = EG)

ED o) = 2k
s2

E = 1{(31)

EG"DYf) = E(Af)

S2
S ro)g iy = M)
SZ
- 02

M(o)—Alas+1—a)
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E(GDf)
E(f) f(0)

s sa72

E(f)

E(;"Df'f)
AB()
s72(1— o) + oes®—2

E(f)

23.4.2 ABOODH TRANSFORM

367

We give some examples of the Aboodh transform as

A (tﬂ)

A(sin(ar))

A(cos(at))

n!
sT42
a
s(s2 +a?)
1
52 +a?

We get the Aboodh transform of the following equations by:

A(G"DIf)
M(o)
s+o—sa

(SA(f)_f(0)>

N

AA(f)

fO)M(e)
sM(o) —A(s+a—sa)
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A(GDYf) = A(Af)
(sA(f) — £(0))s*2 = AA(f)

§®—2
agp = 1O

ARREDES) = A(AS)
AB(at)s* 2

(sA(f) - £(0)) (- ta

Alf) =

= AA(f)

f(0)AB(0)s* >
AB(a)s* — A(s%(1— &) + @)

23.4.3 POURREZA TRANSFORM

We give some examples of the Pourreza transform as

nls
P(") a2
. as
P(Sln(at)) = = m
S3
P(COS(G[)) m

We get the Pourreza transform of the following equations by:

P(Df) = P(Af)
SP(f)—sf(0) = AP(f)
) = L0

P(§FDrf) = P(Af)

(sP(H) —Var () A gy

s+a—so
_ Vsf(0)M(a)
PU) = sM(o) —A(s+a—sa)

P(DIf) = P(Af)
(sP(f) =/5£(0))s*" " = AP(f)

ssa_l
Py = VIO
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P("Dlf) = P(ASf)
AB(a)s*!
s¢(l—a)+ o

P(f)

(sP(at) —/5£(0)) = AP(f)

J3F(0)AB(0)s®!
AB(a)s* —A(s%(1—oa)+ o)

23.4.4 MOHAND TRANSFORM

We give some examples of the Mohand transform as

R =

snfl
2
. as
R(sm(at)) = m
S3
R(COS(QI)) = m

We get the Mohand transform of the following equations by:

R(Df) = R(Af)
SR(f)—=sf(0) = AR(f)

§2
Ry = 10
R(§DEf) = R(AS)
R(f) _
(SR(f)*Szf(O))m = AR(f)
2
R(f) s~ f(0)M(ax)

sM(o) —A(s+a—sa)
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R(3%DEf) = R(AS)
(R(f)_ f(0)> AB(0t)s*"!

s s¢(l—a)+ o

= AR(f)

f(0)AB(or)s*+!
AB(0t)s% — A(s%(1 — &) + &)

R(f) =

23.4.5 SAWI TRANSFORM

We give some examples of the Sawi transform as

Sa(’") = s !'n!
. a
Sa(sm(at)) = m
1
Sa(cos(at)) = m

We get the Sawi transform of the following equations by:

Sa(Df) = Sa(Af)

Sa 0
UL SO~ dsa)
0
Sa(f) = sz(jlf(—éks)

Sa(§"DYf) = Sa(Af)
(s8a(f) ~ 70) 1~ asup)
fOM(@)

Salf) = Map-AG+a—sa)

Sa(§Df'f) = =Sa(Af)
(P 0)) s = sl

f(O)s“'H
s —A




Applications of General Integral Transform 371

Sa(3°°Dif) = =Sa(Af)
Sa(f) AB(a)s®t!
( . _f<0)>sa(1—a)+a = ASa(f)
a—1
sy - 1(0)AB(@);

AB(a)s* 2 — A(s%(1—a) + a)

23.4.6 KAMAL TRANSFORM

We give some examples of the Kamal transform as

K@) = nis"!
2
. as
K(Sln(at)) = m
s
K(COS(at)) = m

We get the Kamal transform of the following equations by:

KDf) = KGif)
D jo) = ki)
K = 1O

K(§FDrf) = K(Af)
(K(f)— £0) D) k()

s+o—so
f0)M(a)

K(f) = sM(a) — A(s+ o —s))

K@GDYf) = KQAf)
(K(f)=FO)s* = AK(f)
K(f) =
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K((*Df) = K(Af)
Sa—l
(KU = FO) e = AK(7)
F(0)AB(0t)s*!

KD = s —ape(i—a) ra)

23.4.7 G- TRANSFORM

We give some examples of the G-transform as

G(tn) _ n!sn+a+l
) as®t?
G(sm(at)) = m
sa+1
G(COS(CZ[)) = m

We find the G- transform of the following equations as

G(Df) = G(Af)

) e po) = a6
s 1
o = SO

G(§'Drf) = G(Af)

(SG(OC)*ST) = AG(f)
fO)M(a)s™
sM(o) —A(s+a—sa)

G(§Df) = G(Af)
s“T'G(f) - f(O0)s™" = AG(f)

o = L2
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GG Dff) =
AB(a)s™!
s¢(l—a)+ o

G(f) =

(sG(f) = £(0))

23.4.8 NATURAL TRANSFORM

G(Af)

= AG(f)

f(0)AB(ot)s™!

AB(at) — A(s%(1— ) + )

We give some examples of the Natural transform as

N(") =
N(sin(at)) =

N(cos(at)) =

W'T'(n+1)
Sn+l
au
a’u? + 52
s
a’u? + 52

We get the Natural transform of the following equations by:

N(§FDrf) =

<N(f) M(a)

(wen - 22

umomﬂﬁa

— N(Af)
— AN(f

~

f(0)
s—Au

N(Af)
AN(f)

f(O)M(0)u
M(o) —ud(sa—s—uq)

= N(@Af)
= AN(f)

F(0)s%u®
u(s®u®—2)

373
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N(5"Drf) =

AB(a)s*!
s¢(l—a)+ o

N(f) =

23.5 APPLICATIONS 1

Integral Transforms and Engineering: Theory, Methods, and Applications

N(Af)
AN(f)

f(0)AB(ot)s*!
AB(a)s* 1 —du(s*(1 — ot) + &)

In this section we consider the circuit problems with different kernels.

1 di

6 DFi(t)+ —— =

RC dt
1 di

$DRi(0) + o =

RC dt

23.5.1 ELZAKI TRANSFORM

V() 1dV(r)
RCL 'L dt (23.58)
V() 1dV(r)
RCL 'L dt (23.59)

We get the Elzaki transform of these equations by:

1 di
CF o ; it
E(O Dt l(t))+E(RCd[>

o)1)

-

= V(t))
RCL

(dz>1

- R%LE( 1)+

)
o
1
L
(a

(5
) g
(04
1E(

E(V(1)
N

o M@)o <_1f‘ t)) +$ (E(lft))—sim))
ol 1%

vo)

1))+ B

L E(i(1))

()
1
= R—CLE(V(I)) +

Then, we reach

EVQ@) _M

)“(

05))
+
oas—a+1

RC

(@)RCs+as—a+1)L

(as—a+1)(s+RC)
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and

E (3%°D%i(1)) + E (RICZD _E <ng) L E (id‘;gr))

(4402 5] (42 )

_ L (E(V())
= RCLE(V(z))+L<S—sV(0)>

L () ), ] A

RC s

1 1E(V(1))

= EE(VU)H'ZiS
1 (E@i(t)) . \AB(a) [ s*(1-a) 1 E(i(2))
s( s _Sl(0)> l-o (1—a+as°‘>+

_ 1 1E(V(r))

= EE(V(I))JFi .

Then, we reach

E(V(t)) L(AB()RCs+1—a+as®)
E(i(t))  (1—a+oas®)(s+RC)

23.5.2 ABOODH TRANSFORM

We get the Aboodh transform of these equations by:

A(§" D) +A< ! di) :A(V(t))ﬂ(ldv(t)

RC dt RCL L dt

)

A <d;(tt) x 1&02 exp <— : f‘at» + % <A(is(t)) —si(O))

_ RlﬁA(V(t)) +% (A(VS(I)) —sV(o>>

oa (A) 0% (exp (-1 251) )+ e

1 1AV (1))
D=5

(- DTG ( () s

1 1AV (1))
reL V)T
Then, we reach
A(V(t)) L(RCsM(a)+s+a—sa)
AGi(r))  (s+a—sa)(s+RC)

375
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and
oo (i) (et )+ (175°)
(e ) (42 )
= RLCLA(V(I))JF < )
() (Ea[ “|) e re
= R AVOF Z#
S(SA s0>1 as21 atas @ )+RICA(is(I))
= A+ )

Then, we reach

A(V(t))  L(RCSAB(q)+1—a+os™®)
A(i(t)) (I—o+as %) (s+RC)

23.5.3 POURREZA TRANSFORM

We get the Pourreza transform of these equations by:

it 2)-n(3) o (25)
HJ (df( ) M(a)g—l%r)) s (HJ(l(f)) —si(0)>

dt 1—a RC
= i)+ (VD)
| (df()\ M(q) o 1 AGi(r))
SHJ(dt) —a'’ (e"P (“m”)) TR s
= A+ A
%(szHl(i(t))—si(O)) Tﬁaa (52( llja‘;‘ a) %A(’(I))
= A+ 2D

Thus, we obtain

HJ(V(t)) s*M(a)RC+a—s*(1—a)

HI(i(t))  (a—s2(1—a))(s+RC)
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and
HJ ({°D%i(t)) + HJ (RICZ;) =HJ (ng) +HJ (id‘;y))
di(t) AB(a) - 1 (HIGi(r) .
HJ< & *1T-a Ea[l—(xt ]) —I—E (S—sz(O))
= i)+ (V)
di(t)\ AB(a) —a 1 HJ(i(t))
HJ( ar ) 1aHJ<Ea[1of D+Rc
1 1HJ(V (1))
= e VO)+
%(ﬁm(i(t)) —si(O))AlB_(O(;) (= ;(Z‘S,M) %HJ(;(I))
= ()¢ V)
Then, we get

HI(V(t))  (AB(a)RCs+1—a+os %)L
HI(i(t))  (1—a+oas2%)(s+RC)

23.5.4 MOHAND TRANSFORM

We get the Mohand transform of these equations by:
M (5" Di(t)) + 20 < )
— LM+ v(0)
~ RCL s

L
M( Zz(r) 11402 r>+Rlc M o )
.

_ ! M)
= e MIO)+ (v )

L () o %)) - 2

1 1 M(V(1))

= 7M(V(l‘))+i 5

812 (SME) _szi(0>)nl4£a03 2 :;jsa n %M(i(m
= LM(V(r)) + 1MV )

L )
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Then, we obtain

MV () (M(a)s*RC+s+ o —sa)L

M(i(t))  (s+a—sa)(s+RC)

and

M (<0t + e (M4 si0))

1 M(V(1))

= M)+ (T o))

(2 ) (120
— ]M(V(t))+1<M(V(t)>—5V(0))
AB(o

RCL L s

b))
= M)+ T

L (smit)) — o)) 2@, L@y L M)
= e m(v()+ )

Thus, we acquire

M(V(t)) (AB(a)RCs+1—o+os *)L
M(i(t))  (I—a+as %) (s+RC)

23.5.5 SAWI TRANSFORM

We get the Sawi transform of these equations by:

Sa(§"fi0) + g (5 si0)

RC
= Sl >>+ 2<S“(Z( ) _wo)
sol S 1aee (Cran) ) e (M5 -0)
= L SalV(D) + ,f(S“(Z D _ (o)
() a5 200
= g Sa(v@) + 1 )
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Sa(i(t)) 0\ M(a) 1 s(1—a) 1 Sa(i(r))
Sz( N )1as21+a(1+s)+RC s

N

_ 1 1 Sa(V(t)
= TaSa(V(I))+Z7S
Then, we get
Sa(V(t)) B (M(a)RCs+1+4+o(—1+5s))L
Sa(i(t)) — (1+a(=1+s))(s+RC)
and

Sa (7°DL(0) + ( (S‘ )
_ RLCLSa(v(z)H ( )

so (40,2010, [1_—a t]) oL (B0 )
— sy (U v o)

() (e ]

- RLCLSa(V(t))Jr%isa(‘:( )

Sa(i(t)) i(0)\ AB(a)1 1—a 1 Sa(i(r)
52( K _s2> 1—a§1—a+as“+ﬁ s
1 Sa(V ()

1
= ﬁSd(V(Z))+Z 5

Thus, we obtain

Sa(V(t))  (AB(o)RCs+1—a+as*)L
Sa(i(t)) (1—o+as*)(s+RC)

23.5.6 KAMAL TRANSFORM

We get the Kamal transform of these equations by:
} 1 (K(i(r)) .
K (§¥D%i(t)) + — [ — —si(0
(§"Dei0) + e (“42 i)
1 1 K(V())
s

= oKV +1( —sV(0))

K (d;(t’) ) ]lwfiogexp <(1 f‘at))) +$ (K(is(t)) si(O))
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= k) KT )
di(t)\ M() a 1 K(i(r)
(dt )w" exp<<‘a))>+1ec s
= KV () 1 T

= —KWV(@)+
Then, we obtain

K(V(1)  (M(@)RCs+1+a(—1+s))L

K@) = (I+a(—1+9)(s+RO)
and
K (§0ti0) + e (F42 i)
= ko) + 1 (V)
di(t) AB(a) . [ —a 4 1 KGG)
K( ar l—aEa[l—at Dﬂec( s _”(O)>
- RéLK<v<r>>+ LAV i)
1 K(i)
k(%) Tk (oo ]) e
= k() VD)
ki) . \Ma) -« 1 K(i(1))
( s _1(0))1—asl—a+as“+RC s
o 1KV ()
= ﬁK(V(I))—'—Z p
Then, we get

K\V(t)) (M(a)RCs+1—a+as*)L
K(i(1)) (1—a+as*)(s+RC)
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23.5.7 G- TRANSFORM

We get the G- transform of these equations by:

G (S Df) + % (K(is(’)) - si(0)>

1

- kv (2w
(5 ()

= eV < S )
)l ) 2

- < <>>+ Wy’))

- ﬁK(V(r)) V

Then, we obtain

G(V(1)) (M()RCs+1+(—1+s)a)

G(i(t))  (1+(=1+s)a)(s+RC)

and

GEDEi0) + 7 (F42 i)

RC
- RéLG<v<r>> +% (GW“” —sv<o>)
o e o] e (57 -0)
= v +1 (A )
()t ]
= G+ )

5B <G<l‘s<t>> _SB,.(O)) Ale a) i fa . %G(is(t))

e G () + 7 2
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Thus, we reach
_ (AB()RCs+1— o+ as*)L

(1 -0+ as*)(s+RC)

23.5.8 NATURAL TRANSFORM

We get the Natural transform of these equations by

N DED) + e (M0 i)

- R&y@«»+i(NW“»—wm0
N)
UG =" ( 1))+ e (M)
1 V
- R—CLM DIETGLEENI0)
(@, L NGE)
o (G0 ) T (e (- 7250) ) + e MG —si0)
- R%LN(V(t)HZ V) wio)
i( ( -1+« 1 N(i(t))
( u) —-1+o) ua—’_ﬁ s
= N () + 1
Then, we obtain
NV(1))  (M()RCs+uct—s(—1+ )L
NG(D) ~ (wa—s(—1+a)(s+RC)
and
W Ensin) + o (Y4 i)

- RLCLN(V(t))JrL( V) —sv(0))
() (2 )

i 1—a %1-a
o L /NV()
- mmmw»+L(—wm0

o () T (2o 6] e (0 0)

= v+ (M)
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s i(0)\ AB(a) 1 -« 1 N(i(t))
“(M’W’(’))‘u) —asi-ata(l)@ RC s
o 1 N(V(1))
EN(V(I)) I s

Then, we get

NV () (AB(a)RCs+1—o+a(3)™%)

N(i(t))  (I—oa+oa(2)~%)(s+RC)

23.5.9 o INTEGRAL LAPLACE TRANSFORM

Since « is the fractional order of the equations, we use 3 instead of « in the trans-
form. We get the ¢ integral Laplace transform of these equations by:

L (§"D5i0) + e (25 —si00))

Ly (V) + <Lﬁ(‘s/(t)) —SV(O)>

Lg (d;(tf) N ZIVIEO‘OZ exp <( 1 fat))> + % (LB(;O)) si(0)>

_ ﬁLﬁ(v@))% (Lﬁ (‘S/(t)) —sV(O)>
() % on(-15,) (520

. R—éLLB(V(t)) % (Lﬁ(‘:(’)) sV(0)>

P+ 1-g
Ly s LV0)

rep BV I+ =5
Then, we obtain

Lg(V(t)  (M(a)RCssP +sF(1—a)+a)L
Lg(i(t)) (s (1 — &)+ ) (s + RC)
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and

L (pfi) + o (25 o))

= LV (Lﬁ(vm) - sV(O))
1

(G T [ &)+ re (P57 )
- L)+ ( o)

()00 e ] ()

= b+ (2w

S — o+ as
1 1 Lg(V
= RTLLﬁ(V(Z))‘LEM

Then, we reach

Lg(V(1))  (AB(a)RCs+1— o+ as B)L

Lp(i(r)) (1—a+as #)(s+RC)

23.6 APPLICATIONS 1l

We consider the following problem with Mittag-Leffler kernel in this section.

d 1
d—‘: = RABCD%i+ ol (23.60)

23.6.1 ELZAKI TRANSFORM

E (”g:) RE (%Dl +E (é)

£ (20 2 ) L

‘We obtain

EQ) _

a8 )
1 (E0 o) 0 (A1) L
ESV> — RE(i)% + éE(i)

E(v) RAB(a) 1

=)

K l—-a+as* C
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Then, we get

E(i) (1—a+oas*)C
E(v) CsRAB(a)+s(1—a+ as®)

23.6.2 ABOODH TRANSFORM
We obtain

av . 1.
A <dt> =RA ()®°D%i) + A <C1>

sA(v) — @ =RA (d;(;) *AIB_(‘;)EQ { aat“D + lA(i)

SA(v) = RsA (di(t ))) AB(a) , (Ea [_";taD + 140

dt ) 1-a
sA(v) = Rs (sA(i) - l@) AB(a) (SZ( -« ) +lA(i)

Then, we obtain

A(i) (I—a+os *)Cs
A(v)  CRAB(o)+1—o+ os™ @

23.6.3 POURREZA TRANSFORM

‘We obtain

C

S2HJ(v) — sv(0) = RHJ (di(t) LGP { aat“] ) + Lhia)

dv 1
HJ <dt> = RHJ (;5¢D%) + HJ (i)

dt -« 1— C
SLHI(v) = R%HJ (d;(t’)) AIB_(? HJ (EO, L__O;t“} ) + %HJ(i)

SPHI(v) = R% (2HI(i) —si(0)) 2B (S ( " ) +_HI(i

1—a
AB(a) 1

— — + —HJ(i
1—a+as*2°‘+C (@)

SHI(v) = HI(i) (RAB(O‘) + 1)

l1-o+as2¢  C

1 —a+oas29)

s?HJ(v) = RHJ (i)

385
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Then, we get

Hi(i)  (1—oa+os2%)Cs?
HJ(v) CRAB(o)+1—a+as 2

23.6.4 MOHAND TRANSFORM

‘We obtain

a
sM(v)tszv(O)RM(di() AB(a) {“ “D+éM(i)

M (dv> = RM (B°Di) +M(éi)

dt —o 1—-o

sM(v) = R~ M(d;t ) o ( [ ])-ﬁ-éM(i)

SM(v) = Rl(sM() i(0)2 “( (1_) >+éM(i)

a \l—-a+oas ¢
AB(a) 1
TN M
1—a+as*°‘+C (@)
RAB(a) 1)
74'_*

l—-a+as ® C

sM(v) = RM(i)
sM(v) = M(i) (

Then, we reach

M(i) (I—a+oas *)Cs
M(v) CRAB(a)+1—a+as@

23.6.5 SAWI TRANSFORM

av ABC ot 1.
— ) =R DS =
(dt) Sa (% D{i) 4 Sa o

Salv) MO _ kg (di(’) JAB@) [l_a t“D + L sa(i

‘We have

s s it 1-a - ¢
0y (42) e ] L
S ()
30) _ Rsa(iy 22Dy Lsali

Sav)Sa(i)( RAB(a) +1)

l—-a+as* C
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Then, we obtain

Sa(i) (1—a+as*)C
Sa(v)  CsRAB(a)+s(1 — a+ as®)

23.6.6 KAMAL TRANSFORM

We have
K (‘?j) RK (3°°Dfi) + K (;)
ng) —v(0) = RK (d;(: ) AlBi(O;) Eq [ 1_“06;“} ) + éK(i)
KTV) — RK (‘i;?) AIB_(O;)K <Ea L__aat“D + éK(i)
(K0 i) 12 (2500 ) + ko

K (e 1)

Then, we obtain

K(i) (I-—a+oas*)C
K(v)  CsRAB(o)+s(1— o+ as®)

23.6.7 G- TRANSFORM

We have
G (’?;) =RG (3°Dli) +G (éz
a2 A8 5] L
Gv) di(t)\ AB(a) —-a 1
— =R ﬁG( r ) 0 C Ea[l t D+CG(1)
v i sB(1—
s (S0 80 (200 ) 1
GSV) =RG() 1 —A(ffgcs“ éG(i)

G(v) _ G ( RAB(a) +1)

) l—-oa+as®* C

387
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Then, we have

G(i) (I-—a+oas%)C
G(v) CsRAB(a)+s(1 —a+ as®)

23.6.8 NATURAL TRANSFORM
‘We have

av . 1.
N (Ch) =RN (}*Di) +N <Cz>

Sy = YO gy <di(t) LGP [la t“D + v

u u dt 11—« — C
%N(v) = RuN (d;(;)) AlB_(z)N (Ea [1__aar°‘D + éN(i)
s B s . i(0)\ AB(a) l-o 1.
(N0 =R ONG) == > I« (s(1a+a(;)—a))+cN(’>
s AB(a) 1.
AN = RNG) T T VD
5 , RAB(a) 1
EN(V) N(l)<1—a+a(;)0‘ C)
Then, we get
N(i) (I-a+a(3)"%))Cs

N(v) ~ CuRAB(a)+u(l—a+a(2)~%)

23.6.9 o INTEGRAL LAPLACE TRANSFORM
We have

Ly (Z:) — RL, (g‘BCDf’i) YLy (éz)
$# Lot (v) —v(0) = RLg (d;(t’) **‘13<%)Eﬁ L = }

i (2) o )
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Then, we obtain

La(i) _ (1-B+Ps @)Cst
La(v)  CRAB(B)+1—B+Bs @

23.6.10 APPLICATIONS Il

We consider the following circuit problems in this section.

dv di 1
D_RgEL 2361
o ate (23.61)

dE  di  d%

— =R L— +—i 23.62
dt a’tJr dt2+Cl ( )

23.6.11 ELZAKI TRANSFORM

We find the Elzaki transform of these problems as

] -2 [<a) e [

E() _ LE() 1

- =R= =+ ZE()

EEV) _E() [RJFH _E() [Rcsgs]
E() C

E(v) RC+s

and

o[ -efri] el o[
E(SE) :REs(i)JFLES(Zi)JFéE(i)
Sk
E(E) _p {YRCHCHZ}

s §2
E (i) sC )

E(E) sRC+LC+s2
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23.6.12 MOHAND TRANSFORM
We find the Mohand transform of these problems as

o8] et

sM (v) = RsM (i) + éM (i)

sM (v) = M (i) [Rs—f- H

RsC+1
C

sM (v) =M (i) {
M (i) Cs

M(v)  RCs+1

[ 9B e [R%) sma [ L] aa [ L
dr | dt dr? c'

and

MgE) :RMT@ +Ls2M(i)+%M(i)
MSE) =M (i) {I:-q-l'fz—ké}

ME) ) {RC+LC30+]

M (i) c

M(E)  RC+LsC+s

23.6.13 KAMAL TRANSFORM

We find the Kamal transform of these problems as

cf4]- ] ]

KO _ K@ | éK(i)
K0) g [K+ 1] —xw (22)

K (i) C
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and

<[] =x e o xlem] o]

MY Lk + Lea)

s s 52 C
K(E) R L 1
—KDIZ+=Z4 =
s (l)[s—’_ 2+C}
K(E R+ CL+ s?
):K(l.)(sC +2C +s>
s sC
K (i) sC
K(E) sCR+CL+s

23.6.14 ABOODH TRANSFORM

We find the Aboodh transform of these problems as
dv di 1
A|l—|=A|R A
)=l o]
sA (v) = RsA (i) + ( )

RsC+1>

AG) _
A(v) RsC+ |

[ [ ea i) e

sA(E )stA()+Ls2A()+éA()

and

SA(E) =A(i) [sR+Ls2 + é]

SA(E) = A(i) [ =
A(i) Cs

A(E) CsR+LCs +1

CsR+LCs> + 1}
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23.6.15 SAWI TRANSFORM

We find the Sawi transform of these problems as

soff] =[] s ]
Sa(v) Sas(i) n éSa (i)

= Sa (i) [I; + 1}
B RC +5)
, sC

=R

5

—~

and

C

s
Sa(E) . ,.[RsC+CL+s’
Sa (i) ( 2C )

_ sa(i) [f{;ﬁ]

Sa(i) sC
Sa(E)  RsC+CL+s2

23.6.16 O-INTEGRAL LAPLACE TRANSFORM

We get the o -Integral Laplace transform of these problems by:

Lo | D) = Lo |[RE] 1 | L
“ldar| 7% dr @|c!

1
5@ Lo (v) = Rs@ L (i) + La(i)

5% Lo (v) = Ly (i) [Rsi + é]

(CRsé T 1)

5@ Lg (v) = L (i) -

1

Le(i)  Cs@
La(v)  CRs# +1
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and
Lo [“E) = 10 [RE] 1o [ 2] g [
dr | Mar | TR e T |
1
5@ Lo (E) = s@RLg + Ls Lg (i) + Lali)
5Ly (E) = La()[Rsa—&—Lsrx -
Lo(i) 5@ B
La(E)  Rsw 4Lsa+L RCsa+LCse+1
23.6.17 G— TRANSFORM

We find the G—transform of these problems as

and

ofi] -elea] <ol ol

G (i)

:R—+L e

:G(l)[k L

s
(i sC
" SCR+CL+s2

+5+

)+ = G()

d

G(E CR+CL + s?
)ZG(i)(S +2C +s )
S
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23.6.18 POURREZA TRANSFORM

We find the Pourreza transform of these problems as

1Y) = [r%] 4u | L
dr| dt c'

s°H (v) = Rs*H (i )—l—éH(i)

s’H (v) = H (i) [Rs2 - é

RCs?+1 )

s?H (v) :H(i)< c

and

o[ w e+l o

s’H (E) = Rs* )+Ls4H()+éH()

1
s’H (E) = H (i) [s2R+Ls4+ c}
CR+LCs* +1
s*H (E) = H (i) (H“F)
C
H(i) s*C
H(E) s2CR+LCs*+1

23.6.19 NATURAL TRANSFORM

We find the Natural transform of these problems as

5]l

Sy =BV 4 v
%N(v) =N (i) [IZSJrH
v =) | BEE
N(@)  sC

N(v) RsC+u
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{ W[H

u  uw ' C
RsuC + LCs? + u?
—N(i){ su —|—2 s —|—u]
u-C
N(i) suC
N(E)  RsuC+LCs?+u?

23.6.20 APPLICATIONS IV
We consider the following circuit problem in this section.

d%i(t) 1di V(@) 1av()
dt>  RCdt RCL L dt

23.6.21 ELZAKI TRANSFORM

We find the Elzaki transform of the circuit problem as
E d%i(t) +LE i\ _ o V(t) iE 1av(t)
dr? RC \dt) ~\RCL L dt

Then, we have

E(V) 1[EV)
~ RCL L( s _SV(O)>
E(@ EG _EWV) E(V)
2

Thus, we reach
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23.6.22 ABOODH TRANSFORM

We find the Aboodh transform of the circuit problem as

()i (2) (3 2589

(#a0-i0- ")+ e (i - 1)

N

A(V) (s2+%):Ls(sRC+l)
A) (g +E) (RC+1)

Then, we have

23.6.23 POURREZA TRANSFORM

We find the Pourreza transform of the circuit problem as

HJ( djiit(;)) +R1CHJ( Zi) HJ( ]‘;gL)) +HJ( id‘;y)>
(sHJ())—V/5i (0)—i'(0)) + = (s2HJ(i)—si(0))

RC
:I;C(Z) +% (s*HJ(V)—sV(0))

L SHIG)  HIV)  sHI(V)
SHIG) + —pc~ = kel L

HI(i) <s+;2C ) —HJ(V) <RéL+SL2 >
mw)  (stic)
HI() ( N )

Then, we have

HJ(V)  Ls(RC+s)
HJ(@)  1+s2RC
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23.6.24 MOHAND TRANSFORM

We find the Mohand transform of the circuit problem as

(A2) o 2) (2 e 1220)
(£M0)~ %1 (0)~ £1(0) ) + = (sM(i) —24(0)

RC
Azg;) + l(sM(V) ——52V(0))

sM(i) M) | sM(V)
RC ~ RCL L
M) (SzJF% ) =M(V) (RéL+L )
(s*+7=) _ Ls(sRCH+1)
M@i) (g +s) (RC+1)

Then, we have

23.6.25 SAWI TRANSFORM

We find the Sawi transform of the circuit problem as

sol G +aese(7) =5 () +0 (1)
(Sa(i) i(())i’(())>+ 1 <Sa(i) i(0)>

52 §3 52 RC s 52
_Sa(V) 1 (Sa(V) B V(0)
 RCL L s 52

Then, we get
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23.6.26 KAMAL TRANSFORM

We find the Kamal transform of the circuit problem as
d%i(t) 1 di V(t) 1adv(t)
K( dr? )+RCK<dt) B K(RCL AT
KG) i) 1 (KG)

K(V) 1 [K(V)
"~ RCL +L( s V(O))
K(i) , K() _K(V)  K(V)

Then, we get

23.6.27 G TRANSFORM

We find the G transform of the circuit problem as
d%i(t) 1 di V() 1dV(t)
G( dr? )+RCG<dt)_G(RCL PO\
G@i) i(0)sP 1 (G@i) .
(sz— s —ll(O)Sﬂ + E T—sﬁz(O)

_Gv) 1 (GW)
_BCL+L<s_me0

G 6 _G6v)  G(V)
sRC  RCL sL

G (i) <s12+sk}c> =G(V) (Réﬁle)
G(V) (%ﬁﬁ)

G)  (mer+ir)

+

Then, we get
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23.6.28 NATURAL TRANSFORM

We find the Natural transform of the circuit problem as

V() e () = Ghen) 2 (2%6)
(;N(i)—i(o)—i/io)>+RlC(;N(i)—i(b?)>
% 1( N(V)— V(0)>
(ot 2
(ch) v (e 7)

NWV) (L42+MRC) _ Ls(sRC +u)
N(i) (rez+2) ~ u(sRC +u)

Then, we get

23.6.29 o INTEGRAL LAPLACE TRANSFORM

We find the « integral Laplace transform of the circuit problem as

() () () (1)

(S%La (i) — st (o)—i/(O)) +— (séLa (i) —i(O))

R
saLa(i)JrsaLa(l) Lo(V)  saLg(V)
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Then, we get

Lo(V) o
La@ "

23.7 APPLICATION V
We consider the following circuit problem in this section.

1 di V(@) 1dv()
Cna

D i -

o Dr'ilr )+RC dt  RCL ' L dt

23.7.1 ELZAKI TRANSFORM

We find the Elzaki transform of the circuit problem as

eGorio)+ e (5) £ (fa) ~£ (1992
2 ( E@_; 0)-st (0))

N

4
_E(V) N 1 ( E(SV) —sv(o)>

ED (mrtit)
E(V) L(s “sRC+1)
E(i) s+RC

23.7.2 ABOODH TRANSFORM

We find the Aboodh transform of the circuit problem as

w62t ( 5) = () A (172)

w2 (201 0- ") 1 2 (- 1)
_AW) 1< V() )

~

RCL +L

1

AGD) (s +R)=A(V) <C+

S;o;

)

e
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AWV) _ (5+ze)
AO (i)
A(V)  L(s“RC+y)
A(i)  1+sRC

23.7.3 POURREZA TRANSFORM

We find the Pourreza transform of the circuit problem as

HI(SD% (1 ())+R1CHJ< Z;>HJ(ZC(2) +Hj(id‘;ft))

s27 Y (sHI (i) — /5 i(0) — ' (0)) + %(szHJ(i) —si(0))
= Igc(z) + %(SZHJ(V) —sV(0))

52 i 52
POH (i) + ;{é() _ PZC(‘L’) HZ(V)

HJ()( +RZ> HI(V) (RéL+sz>
i) _ (%+ie)
HI(i) ( s )

HJ(V)  L(s**RC+s?)

HJ(i)  1+s?RC

23.7.4 MOHAND TRANSFORM

We find the Mohand transform of the circuit problem as

i)+ zem (5 )4 ()4 ( 1 75)

S 22M() — $i(0) — 24 (0)) + - (sM(i) — 52(0))

RC
M)
=MV L) - (o)
angli SM() M) sM(V)
SME)+ 35 = ReL L
1
M()(s +RC) M(v) (RCL+L>

M) _ (s“+xc)
MO ()
M(V)  L(s“RC+s)
M(i) — 1+sRC
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23.7.5 SAWI TRANSFORM

We find the Sawi transform of the circuit problem as
di V(t) 1dV(r)
C a
D% _— = A i )
Sa(o i ())+RCS (dt> Sa(RCL)+Sa<L dr

—a(Sa(i) i(0) #(0)\ 1 (Sa(i) i0)
SSV;;(;M; §C< )

RCL s 52
B ~  Sa(i)  Sa(V) Sa(V)
a J—
s Sali)+"pe = ker t L

1 1 1 1
Sa(i) (s‘l—’_sl%‘) =Sa(V) (RCL+ I )
Sa(V) _ (w+ie)

Sa(d)  (rer+ir )
Sa(V)  L(s~*sRCH+1)

Sa(iy ~ s+RC

23.7.6 KAMAL TRANSFORM

We find the Kamal transform of the circuit problem as

oo (2) (3 ()

2 <Ks(2’) @ —i (0)) +$ <Ks(i) i(O))
_EkW) 1 (K V) _V(O))

K@) K@) _K(V) K(V)
54 SRC RCL sL

K()(1+SRIC) K(V) (RéL+ 1)
K(V) _ (Gtie)

K@) (geztr)

K(V) L(s “sRC+1)

K@)  s+RC
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23.7.7 G TRANSFORM

We find the G transform of the circuit problem as
di V(t) 1dV(r)
Cna
D — = —= -
G(§ ,())+ G(dt> G(RCL>+G(L 7
[ GGH) (0P 1 (G(i) 4.
2—a | T\') _ B I A S
s < 2 . i'(0)s +RC LS i(0)

-G 1 ()

" RCL 'L
G(i) n G(i) G(V) G(V)
54 sRC ~ RCL sL

~ 1 1 1 1
(l) (ﬂ+m> = G(V) (RCL—’—SL>
G(V) _ (wtse)

G(0)  (mer+ir)

G(V) L(s"“sRC+1)

G(i)  s+RC

=)

23.7.8 NATURAL TRANSFORM

We find the Natural transform of the circuit problem as

N (SDsi (e (>>+R1CN(ZZ) —N( Zé?)”(idtzz( )>
Z_z:(iN(i)—i(O)— il(O))

RCL L u
54 NG) sN(@i)  N(V) sN(V)
wi T URC T RCL T Lu

Ni) (S+M;C) —N(V) (Réﬁ;u)

) (aic)
50 ()

N(V)  L(s“uRC + su®)
N(i)  u(u+sRC)
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23.7.9 o INTEGRAL LAPLACE TRANSFORM

We find the « integral Laplace transform of the circuit problem as

ity £ () (152)

1 1 .
+ o saLa(l)—t(O))
Lo(V) 1 /1
== +Z(suLa(V)—V(0))
S HL 0 sily () La(V) | s@Lg(V)

23.8 APPLICATION VI

We consider the following circuit model in this section.

di 1

ABC nya .

DV =R— + — 23.

0 t ; l (363)

23.8.1 ELZAKI TRANSFORM

We obtain the Elzaki transform of the circuit model as
di 1
E*CDYW)=E(R= |+E( =i
(6" Dyv) a)tE\c!

E <‘Z%B_(Z) E. <1iata>) =R (EE’) si(0)> + éE(i)

()220 () £
(o) 22 25 52)
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E (v)AB(a) E(i) (Rc+s >

1—a+as® sC

E (v)AB(a) _ (RC+s)E (i)
1—a+as® sC

E(i) _ sCAB(a)

E(V) (RC+s)(1—a+as?)

23.8.2 ABOODH TRANSFORM

We obtain the Aboodh transform of the circuit model as

di 1
A(*BC pay) = A (Rd;> +A (C i)

sA (CZ*A]B(‘;) E, (—laat>) =R (sA (i) — @ ) + éA(i)
sA (‘Z ) AIB_(“a) A (E (—liat)> = RsA (i) + éA(i)

(o) )

l—a s*’(1—a+as™@

AWAB@ _ (RSC+1)

l—a+as™@ C
A(v)AB(a)  (RsC+1)A(i)
l—a+as—® C

A(D) B CAB(a)

AWV) (RsC+1)(1—a+as™)

23.8.3 POURREZA TRANSFORM

‘We obtain the Pourreza transform of the circuit model as

di 1
HI(AB¢ pavy=HJ (R= | +HJ( =i
J(ABC pav) J( dt)+ J(Cz)
HJ<dV AB(a)

a1 oa b <_ 1 iata>> = R(s*HJ (i) = 5i(0)) + éHJ(i)

%HJ (?t/) AlB_(‘;) HI (Ea (—&r“)) = HJ(i) <R52 + é)
%(SZHJ(V) - sV(O))Ale“;) q (;22“) = HJ (i) (Rs2 + é)

HI(vAB(a) _ ... Rs*C+1
=m0 ()

(1—a+as—2a C

405
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HJ(v)AB(a)  HJ(i)(Rs’C+1)
(1—a+as=29) C

HIG) CAB(a)
HI(V)  (RPC+1) (1 —a+as24)

23.8.4 MOHAND TRANSFORM

‘We obtain the Mohand transform of the circuit model as

di 1
M(ABC pavy = M (Rd;) +M (c i)

M (G b (1) ) =ROM ()~ 21(0) + M)
SizM (”3:) AIB_(‘;)M (E (—liat» = RsM(i) + éM(i)
Lsm () -y () iEe 20 d

l—al—-a+as™@
M(v)AB(a) . . 1
l—a+as™ =M (RS+C>
M(v)AB(a)  (RsC+1)M (i)

l—a+as—® C
M(i) B CAB(a)

MV) (RsC+1)(1—a+as)

= RsM(i) + éM(i)

23.8.5 SAWI TRANSFORM

We obtain the Sawi transform of the circuit model as
di 1 .
Sa(*8¢ DYV = Sa (Rdt) +Sa (c z>
dV AB(a) a Sa(i) i(0) |
Sa| — E,| - t“] ) =R - —S
a(dt*l—a a( l—a )) < s 52 +Ca(l)

$*Sa (OZ) ]_(a)Sa (Ea (liat“)> =R (Sas(i)> +éSa(i)
S

2 (Sa(V) V(0)\ AB(a)  (1-a)
(-5
L

1 —a s(l(—a—i-as“) = Sali) (f+é>

Sa(v)AB(a) RC+s
l—a+tas® ()( )
Sa(v)AB(a) _ Sa(i)(RC s>
1—a+as? sC
Sa(i) sCAB(a)

Sa(V) — (RC+s)(1—a+as?)
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23.8.6 KAMAL TRANSFORM

We obtain the Kamal transform of the circuit model as
K(*8€ Div) =K <RZ§) +K (é i)
K (?j*ﬁB_(? E, (—liat)> =R <El) —i(O)) + éK(i)
K (‘?:) AIB_(‘;)K (Ea (—lfaz“» = ?K(i) + éK(i)
(57 vo) e —xo (5e)

K (v)AB(a) K()(RC+S> '

1—a—+as® sC
E(v)AB(a) _ (RC+5)E (i)
1—a+as® sC

K(i) sCAB(a)

K(V) (RC+s)(l—a+as?)

23.8.7 G TRANSFORM

We obtain the G transform of the circuit model as
G(*BC pav) = G <R;ll> +G (é )
G (”;‘t/ AIB_< a) E, <— 1 a at”)) =R (GS) —sBi(O)> + éE(i)
sPG @‘:) 1(a)G( . —1"ata>> = Isj G(i)+éG(i)

5P (GW)—SBV(O)) AB(a) (1 —a) = G(i) (R+l>

K l—a l—a+as?

G(V)AB(a) G0 <RC+S>

E

s(l —a+as®) sC
G(V)AB(a)  (RC+s)G(i)
s(l —a+as®) sC

Gli) CAB(a)

G(V)  (RC+s5)(1—a+as®)
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23.8.8 NATURAL TRANSFORM

We obtain the Natural transform of the circuit model as
NABC DiV) =N (R?) +N (é i>
(3 (2 )) < (-
() T (e () - (’i> )+ gho
(o) e o (i)

N (v)AB(a) :N(i)<RsC+u)

N(

S|

l—a+a($)™ uC
N (v)AB (a) _ (RsC+u)N (i)

l—a+a()™ uC

N(i) uCAB(a)

N(V) (RsC+u) (1—a+a(i)7a>

23.8.9 o INTEGRAL LAPLACE TRANSFORM

We obtain the ¢ integral Laplace transform of the circuit model as

Lo(*5 DPV) =L, (RZ) + L <é i)
Lo ( ‘?;*AlB_(%) Eg (- 1 f/}’B)) —R (ﬁLa (i) —i(O)) + éLa(i)

La (?;) AlB(%)La (Eﬁ( 1ﬁﬁtﬁ>) Rs@ Ly (i)—&—éLa(i)
(séLa V) —V(O)) ﬁB_(/;) 1_(;1[;)& sTw = (Rsé +é> Lo (i)
Le (V)AB(B)

m - (Rsr‘x +é) Lo (i)

Lo(v)AB(B) e () (Rs¥C+1)

(1fﬁ+as%~ﬁ) - ¢
Lq(i) CAB(B)

La(V) (Rséc+ 1) ( 1-B +as%)
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23.8.10 SIMULATIONS

We present the simulations of the obtained transfer functions in this section. We
firstly consider the Eqgs. (23.58)—(23.59). We apply many integral transforms (Elzaki
transform, Aboodh transform, Pourreza transform, Mohand transform, Sawi trans-
form, Kamal transform, G transform, o integral Laplace transform) to demon-
strate the simulations of the transfer functions. In Figures 23.1-23.16, we choose
our fractional order ¢ = 0.1...0.9 and M(a) =1, R=2, C=3L = 1. In
Figure 23.1, we demonstrate the transfer function of Eq. (23.58) by Elzaki trans-
form. In Figure 23.2, we show the transfer function of Eq. (23.59) by Elzaki trans-
form. In Figure 23.3, we present the transfer function of Eq. (23.58) by Aboodh
transform. In Figure 23.4, we present the transfer function of Eq. (23.59) by Aboodh
transform. In Figure 23.5, we give the transfer function of Eq. (23.58) by Pourreza
transform. In Figure 23.6, we give the transfer function of Eq. (23.59) by Pourreza
transform. We show the transfer function of Eq. (23.58) by Mohand transform for
different values of fractional order in Figure 23.7. We demonstrate the transfer func-
tion of Eq. (23.59) by Mohand transform for different values of fractional order in
Figure 23.8. We present the transfer function of Eq. (23.58) by Sawi transform for
different values of fractional order in Figure 23.9. We show the transfer function
of Eq. (23.59) by Sawi transform for different values of fractional order in Figure
23.10. We demonstrate the transfer function of Eq. (23.58) by Kamal transform for
different values of fractional order in Figure 23.11. We show the transfer function
of Eq. (23.59) by Kamal transform for different values of fractional order in Figure
23.12. We show the transfer function of Eq. (23.58) by G transform for different val-
ues of fractional order in Figure 23.13. We give the transfer function of Eq. (23.59)
by G transform for different values of fractional order in Figure 23.14. We show the
transfer function of Eq. (23.58) by « integral Laplace transform for different values
of fractional order in Figure 23.15. We give the transfer function of Eq. (23.59) by
a integral Laplace transform for different values of fractional order in Figure 23.16.
We choose 8 = 1 in Figures 23.15-23.16.

Then, we consider the Eq. (23.60). We choose fractional order o =
0.2, 0.4, 0.6, 0.8 and R =2, C = 3 in Figures 23.17-23.24. We apply the integral
transforms (Elzaki transform, Aboodh transform, Pourreza transform, Mohand trans-
form, Sawi transform, Kamal transform, G transform,  integral Laplace transform)
to show the simulations of the transfer functions. We can see the effect of the trans-
forms and the effect of the fractional order in these figures.

Then, we consider Egs. (23.61)—(23.62). We choose R=2, C =3, L =1 in
Figures 23.25-23.40. We apply the integral transforms (Elzaki transform, Aboodh
transform, Pourreza transform, Mohand transform, Sawi transform, Kamal trans-
form, G transform, ¢ integral Laplace transform) to demonstrate the simulations
of the transfer functions.

Then, we consider Eq. (23.63). We choose R =2, C = 3, L = 1 in Figures
23.41-23.48. We apply the integral transforms (Elzaki transform, Aboodh transform,
Pourreza transform, Mohand transform, Sawi transform, Kamal transform, G trans-
form, o integral Laplace transform) to demonstrate the simulations of the transfer
functions.
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Then, we consider the Eq. (23.63). We choose R=2,C=3,L =1 and a =
0.3, 0.6, 0.9 in Figures 23.49-23.58. We apply the integral transforms (Elzaki trans-
form, Aboodh transform, Pourreza transform, Mohand transform, Sawi transform,
Kamal transform, G transform, « integral Laplace transform) to present the simula-
tions of the transfer functions.

Then, we consider the Eq. (23.63). We choose R =2, C =3 and a =
0.15, 0.30, 0.45, 0.60, 0.75, 0.90 in Figures 23.59-23.64. We apply the integral
transforms (Elzaki transform, Aboodh transform, Pourreza transform, Mohand trans-
form, Sawi transform, Kamal transform, G transform, o integral Laplace transform)
to present the simulations of the transfer functions.
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Figure 23.1 Elzaki transform of the Eq. (23.58).
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Figure 23.29 Kamal transform of the Eq. (23.61).
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Figure 23.33 Sawi transform of the Eq. (23.61).
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Figure 23.37 G transform of the Eq. (23.61).
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Figure 23.42 Aboodh transform of the Eq. (23.63).
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Figure 23.47 G transform of the Eq. (23.63).
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Conclusion

In this book we investigated the general integral transform in detail. We applied many
integral transforms to many circuit problems to obtain the transfer functions. We
used different kernels (power-law, exponential-decay, Mittag-Leffler) in the models.
We demonstrated the simulations to prove the efficiency of the proposed integral
transforms. We discussed many useful applications. We obtained new and interesting
transfer functions that will be useful for engineers.
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