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The Emergence of 1 Computer Science 
in K–12 Schools 

We are tempted to assume that you think computer science is worth teaching in 
K–12 settings.After all, you have opened a book about that very topic. It would 
be safe to think that you need little convincing. But people open books like this 
for diferent reasons. Sure, you yourself might have an intrinsic interest in coding 
or robotics or things like that. It is also possible that someone else asked (or told) 
you to read this book.We get it. No judgement either way. 

So, let’s do this a little diferently. Let’s assume that you don’t necessarily 
believe computer science has any place in K–12 schools. Let’s assume that some 
readers might not even be sure what computer science means.A couple paragraphs 
into the frst page, most readers are naturally skeptical–not sure they’re 100 per-
cent committed to the chapters that follow.To be fair, we, the authors, are skeptical 
about you, too.That’s why we are going to level with you:We have little interest 
in computer science for its own sake. Not in this book. 

Then why did we write it and why might it be worth your time? Give us a 
few more pages of your attention and we will explain. 

We want to be transparent about why we believe we have a compulsory 
school system in the frst place. In our experience, it is easy for teachers, parents, 
administrators, and elected ofcials to expound on the virtues or shortcomings 
of school without ever being clear about why schools are important. That is 
understandable when you realize that unlike most other nations to which we 
compare ourselves, the United States does not defne the purpose of public edu-
cation in the national Constitution. (No kidding. Google the Constitution and 
search around.You won’t fnd words like school or learning or teaching or anything 
like that.) As a result, the purpose of our schools appears in state constitutions, 
but that means there are ffty diferent articulations of why we educate children. 

https://follow.To
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The Emergence of Computer Science 

Some articulations are specifc and thoughtful, preparing children to participate in 
a democracy or contribute to an economy. Others are more problematic, like the 
many clauses in state constitutions that really don’t say why educating children is 
important at all.They just say that states will use tax money to do it. 

Here’s why we believe we educate our children, and it is with this explicit 
purpose in mind that we frame our entire book.We argue that we have compul-
sory education in the United States because as a democratic republic, we rely on 
an informed population to participate in making our communities better. The 
individual right to vote does our nation little beneft if the individual is not taught 
to read, to write, to learn about the world, to assess the validity of arguments, and 
to engage in complex conversations with others about things that matter to us 
all. Tightly tethered to civic engagement is economic engagement. We educate 
our children because we want to know that they can contribute to our col-
lective economy, whether it’s holding down a steady job and providing for one’s 
family or creating a new technology that changes the world. Civic and economic 
engagement—that is why we believe we have schools and that is also why we 
believe computer science must be meaningfully introduced into K–12 spaces. 

Over the last twenty years, digital technologies have revolutionized the way 
so much of our society operates. First, there is the basic stuf most of us have 
begun to take for granted. We send messages to each other in an instant, share 
ideas and pictures, book tickets, and stream entertainment. Much of this happens 
on our phones or via ever-fattening computers. Second, there is the bigger stuf 
that happens digitally that we tend to think less about on a daily basis, like our 
banking systems, the entirety of the aviation industry, identifcation management, 
and medical record keeping. Digital technologies now mediate our individual and 
collective lives in ubiquitous, hidden, speedy, and wide-scaled ways. 

With the spread of digital technologies has come new opportunities. In some 
parts of the world, you can order virtually any good or service you need from 
your phone and it will be provided in hours, if not minutes.You don’t exchange 
money with the provider directly; it’s all handled digitally. In other parts of the 
world, communities whose governments have not yet provided a basic commu-
nication infrastructure—either because they cannot or choose not to—can now 
access information via the Internet using very simple and inexpensive mobile 
phones. Digital technologies are credited with making democratic revolutions 
possible in countries like Egypt and Tunisia.The same technologies can make it 
possible for anybody, anywhere to learn something they need or want. 

Digital technologies have become so much a part of our daily experience that 
we forget how little the average person really understands about how they work, 



 
 
 

  
 
 
 

  
 
 
 
 

  
 
 
 

 
 
 

 
 

   

 
 

  

  

  

 
  

The Emergence of Computer Science 

who makes them work, and why. It was a lack of understanding that was put on full 
display in the wake of the 2016 presidential elections in the United States, when it 
became increasingly evident that social media platforms like Facebook and Twitter 
were used by foreign powers to stoke division among American voters. What’s 
more, few understand just how much digital data are generated and collected about 
individuals today. Companies have been able to leverage more data than ever before 
in order to market to consumers. In many states, schools have also been encouraged 
to digitize more of their instructional and operational practices.There are mobile 
apps dedicated to classroom management and parental communication, web-based 
apps for running blended classrooms, and paper-based textbooks are on the decline. 
For administrators, grades are increasingly submitted via digital systems, student 
records are collected and shared via third-party products, and professional learning 
opportunities are increasingly ofered and tracked online. 

It all seems so normal.But how many readers know what data companies collect 
about our children and teachers and what they do with them? How many readers 
know how to spot a suspicious and infammatory post in their social media feed? 
How many realize that when they share a picture online, they are sharing many 
dozen types of personal data with the company who owns the platform and device? 

Our point is to say that today what it means to prepare young people for civic 
and economic engagement requires that they critically understand the way digital 
technologies enable and inhibit such engagement. Senior ofcials have warned of the 
danger of election systems being hacked throughout the world. But do our soon-to-
be-voting children know what “hacking” an election consists of? Economic experts 
have foreshadowed that jobs across industries and pay scales will increasingly require 
at least a basic, if not an advanced, understanding of how to communicate with 
computers. But what happens when computer science as a subject is disproportion-
ately ofered to economically advantaged students or as a single elective or Advanced 
Placement course? We don’t advocate computer science in K–12 schools and districts 
because it is in vogue or trendy.We advocate computer science in schools because we 
believe the future improvement of our society requires it. No hyperbole. 

In our experience, there are two problems with K–12 computer science 
education in the United States.The frst problem is computer.The second problem 
is science. Here’s what we mean when we say that computer and science are so 
problematic: 

1. Computationality is not about “computers,” per se. It is 

about inquiry, logic, and languages. By overemphasizing the word 
“computer,” advocates have deemphasized some important things about 
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The Emergence of Computer Science 

digital technologies. First, you can learn about computationality without 
computers. Electricity isn’t necessary. Second, computers don’t appear out 
of the ether. Human beings build them, program them, and network them. 
Those human beings have diferent motivations for doing so, and any 
particular way they do it could always look diferently than it does.We 
suggest forgetting about “computers” and think about computationality 
instead, including its distant etymological cousins composition and commu-
nication. When it comes down to it, computer science is fundamentally 
about systematically and logically communicating with machines—as well 
as how machines increasingly communicate with us (Frabetti, 2015). It 
is about how human beings compose instructions to tell machines what 
to do—and it is about realizing how computationality shapes the world 
around us. Once you realize that, you will begin to see that insofar as 
you and your students are fuent in communicating in any language, you 
already have the foundation to communicate with computers. It’s all just 
inquiry and logic and language.At a talk in Seoul a few years ago,Tom told 
a group of several hundred English-language teachers that they in fact had 
comparable expertise in teaching coding in schools as computer science 
professors. Coding is just a form of writing, a way to communicate with 
a particular mechanical audience (Vee, 2017).Who better to help students 
learn to code than language teachers? There were a few claps, but most of 
the attendees remained unconvinced. But Tom meant it. Still does. 

2. Computationality is not about “science.” It can deepen and 

expand learning in all grades and disciplines. It might surprise 
you to know that the feld of K–12 computer science is young compared 
with other subjects like secondary mathematics and English. In their 
eagerness to support schools in this important work, advocates sometimes 
treat computationality in an overly narrow way, limiting their paradigms 
to those of computer scientists and technology industry experts. The 
problems with the resultant paradigm are manifold. First, it means that 
computer science is framed as an external discipline that has to be 
introduced anew to existing K–12 school curricula and structures. But 
most schools already have a dense curriculum and tight schedules, and 
the traditional structures by which schools operate simply don’t change 
swiftly.Ask a science or math teacher how much room in their curricula 
they have to include meaningful and extended activities in computer 
science.Watch them sweat. Second, and relatedly, by framing computer 
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The Emergence of Computer Science 

science as a science, it means that non-STEM (science, technology, engin-
eering, math) subjects are deemphasized as sites of computational study. 
And yet there are rich and engaging ways to embed computationality into 
the humanities, ways that deepen and expand disciplinary study. In short: 
forget computers and forget science.Think in terms of computationality. 
We believe that computational methods have a place across grades and 
disciplines and that embedding such methods into one’s classroom can 
deepen and expand one’s practice (Lynch, 2017). 

Here’s the paradox of K–12 computer science education: If you really believe that 
computer science is important for young people to learn, then it might be best to 
stop talking so much about computers and the sciences! Nevertheless, it is a familiar 
term and one we will use generously to refer to ways of thinking, solving problems, 
creating, and communicating that empower teachers and students to better under-
stand how computers operate in the world.We will also use other terms at times, like 
computational thinking, computationality, and computational methods. In this book, those 
words are used mostly interchangeably.To better appreciate how computer science 
(see, we’re back to using it already!) has been framed in schools currently, let’s look at 
its emergence on the national stage in the United States and how the nation’s largest 
school district attempted to introduce computer science to 1,800 schools at scale. 

An Ofcial, Top-Down Approach 

In December 2014, President Barack Obama became the frst president to write com-
puter code as part of the White House’s promotion of Computer Science Education 
Week and its Computer Science for All (CS4All) initiative (Finley, 2014). Nine months 
later, the nation’s largest school district announced its plans to provide computer science 
education to its 1.1 million students and 80,000 teachers (Taylor & Miller, 2015). New 
York City might not be representative of many other districts, but nevertheless it serves 
as a case study for how computer science has emerged in American schools.Two main 
eforts took root in New York City to operationalize CS4All: a centralized and ofcial 
top-down model and a decentralized and unofcial bottom-up model.The frst efort 
was the city’s establishment of a formal team in its central ofces devoted to K–12 
computer science education.The team focused on several ways to support schools, 
including: designing an accessible K–12 computer science framework for the city’s 
teachers, soliciting sample curricula, and building community via social media. 
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The Emergence of Computer Science 

Accessing K–12 Computer Science Frameworks 

Multiple sets of K–12 computer science standards already exist.Two of the main ones 
in use are provided by the International Society for Technology in Education (ISTE) 
and another set created by the Computer Science Teachers Association (CSTA).The 
ISTE Computer Science Educator standards are divided into four areas: knowledge 
of [computer science] content, efective teaching and learning strategies, efective 
learning environments, and efective professional knowledge and skills.The CSTA 
standards (Seehorn et al., 2011) are somewhat more detailed and are organized into 
two areas: concepts and practices. Concepts include computing systems, networks and 
the Internet, data and analysis, algorithms and programming, and impacts of com-
puting. Practices include fostering an inclusive computing culture, collaborating 
around computing, recognizing and defning computational problems, developing 
and using abstractions, creating computational artifacts, testing and refning compu-
tational artifacts, and communicating about computing. New York City’s team felt 
that those two standards sets were aimed at teachers who taught computer science as 
an isolated content area.Their concern was that if computer science was going to be 
truly scaled in K–12 classrooms, there needed to be a framework for teachers across 
grade levels and content areas to integrate computational concepts and methods 
into the classes they were already teaching. (We should note that ISTE now also has 
a nimbler framework that they refer to as Computational Thinking Competencies.) 
So, New York City created their own framework, referring to the resultant document 
as the Blueprint. The Blueprint (New York City, n.d.) is divided into three main 
areas: perspectives, practices, and concepts. Perspectives frames learning via diferent 
roles students might play, which they call explorers, creators, innovators, and citi-
zens. For practices, the team boiled it down to just three: analyzing, prototyping, and 
communicating. Finally, the core concepts the Blueprint puts forth are limited to 
abstraction, algorithms, programming, data, and networks. In each case, teachers can 
drill down on the website to see in greater detail what is meant by the various terms. 

It is interesting to note that the team saw it necessary to design an entirely 
new heuristic when others existed already.Their rationale—that other standard 
sets like ISTE’s and CSTA’s were too focused on computer science as a sep-
arate subject—has proven a compelling one. Many public school districts lack the 
funding to sustain separate computer science teachers, courses, and programs. If 
ofcials truly want computer science for all students, then embedding computer 
science into current courses will likely be much more equitable and sustainable. 
To do that, an alternative framework like New York’s seems reasonable. 



  
   

   
  

 
 

  
 
 
 

  

 
 
 

 

 

The Emergence of Computer Science 

Soliciting Sample Curricula 

While drafting their Blueprint, the city’s team began soliciting curricular samples from 
a wide array of partners.Tom and Gerald designed several.The city’s goal was to amass 
a library of activities, projects, assignments, and units that 80,000 teachers could adapt 
or adopt for themselves.The units were aligned with instructional standards like the 
Common Core and, where possible, made explicit what computer science standards 
were being evoked. Interestingly, one of the challenges the team faced appeared to be 
within the city’s own district ofces.When Tom presented an assignment to the CS4All 
team in which students plotted word frequencies from Shakespeare, he was surprised 
to learn that the city’s English Language Arts team would not approve it because it 
contained “too much English content.” In short, the curricular team themselves did not 
appreciate just how innovative, strategic, and practical the CS4All team was being.What 
the CS4All team wanted was precisely what we argue is needed: teachers using com-
putational methods to deepen and expand their content-area instruction. But what the 
curricular team wanted was a circumscribed computer science activity that wouldn’t 
get in the way of teaching English. Still, the CS4All team persisted and ultimately made 
dozens of curricular resources available to the schools. 

Building a Community via Social Media 

A fnal tactic the team used to ofcially support schools was to build an ongoing 
conversation online via a weekly Twitter chat. Specifcally, the team was interested 
in engaging teachers in some of the timely and knotty ethical questions that 
emerged for them when exploring computer science with minors.All under the 
hashtag #ethicalcs, the group posted questions and engaged in real-time discus-
sion for an hour each week tackling issues like protecting student data and how 
information systems can perpetuate school segregation. 

An Unofcial, Bottom-Up Approach 

The second main efort to operationalize CS4All in New York City came through 
a nonproft called Computer Science New York City (CSNYC). CSNYC was 
launched with the support of city and philanthropic funding. A core part of 
CSNYC’s mission was to create an ecosystem for computer science education in 
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The Emergence of Computer Science 

the city. CSNYC became the premier connector of individuals and organizations 
doing work in New York City related to K–12 computer science.They established 
strategic partnerships, held meet-ups, sent out regular newsletters, and served as 
a constant reminder to others that there were many kinds of contributions one 
could make to the CS4All cause. Tom attended several of their events over the 
years.The range of curricular resources and services ofered was often staggering, 
ranging from formalized nonprofts to impressive individual eforts. For example, 
MOUSE is a nonproft that creates a variety of learning experiences for students 
who live in poverty and who are of color. MOUSE has a sizable workspace in 
downtown Manhattan where students come to learn about computing, robotics, 
electrical engineering, and more. Students might partner with an organization 
to learn about a pressing need and then design technological prototypes that 
attempt to solve the organization’s problem. At the other end of the spectrum, 
take Coding Train. Started by Professor Daniel Shifman, Coding Train is a YouTube 
channel in which Shifman teaches anyone how to learn to code.With animations, 
a lively host, and ever-changing content, the channel has racked up nearly 
750,000 subscribers, and the most popular videos have nearly 2 million views. 
Shifman typically stands at his computer engaging with real-time comments or 
asynchronous requests. His backdrop is his screen, though, making the videos 
highly engaging. There were even other organizations teaching computational 
thinking through dance and gaming and Minecraft.The list was endless.Whereas 
the city’s CS4All team ofered ofcial support to schools with a necessarily top-
down feel to it, CSNYC worked from the ground up by becoming the force that 
connected all the smaller eforts that risked getting lost in the vastness of a city of 
10 million people. 

Nations and States Doing 
Their Own Thing 

As we write this, national eforts to formally require K–12 computer science vary 
widely.Because education is mostly a state-controlled issue, it means that efecting 
change at scale requires ffty diferent state governments taking coordinated action. 
It just doesn’t happen often. Some states are responding to grassroot calls from 
parents, schools, and the private sector to take computer science more seriously 
as a formal content area. New York, for instance, has a proposal on the books to 
certify computer science teachers at the K–12 level.As of 2018, twenty-two states 
had academic standards that framed K–12 computer science education. Fifteen 
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states required high schools to make computer science an ofered course.Thirty-
three states had computer science teaching certifcation.And fourteen states had 
dedicated supervisors at the state level for computer science (Herold, 2018). In 
addition, the College Board revamped its Advanced Placement Computer Science 
course to de-emphasize narrow coding skills and underscore core computational 
principles and practices. 

Again, what is essential to understand is that there is no one way K–12 com-
puter science looks—certainly not nationally, not within individual states, and not 
within schools. 

Compare what K–12 computer science looks like in the United States to 
what it looks like in other countries like the United Kingdom, Israel, and New 
Zealand. In those countries, as in most others, public education is administered 
nationally from a centralized ofce.The result is that when a country determines 
that computer science is a necessary subject for school-age children, they develop 
standards and implement the requirements nationwide. In 2016, Ireland had 
decided to make computer science compulsory in its schools. The education 
department conducted a landscape review of other countries that implemented 
computer science in schools nationally, including the countries named earlier. 
They found that despite tight administrative execution, those countries were not 
seeing an uptick in the number of young people going into computer science. 
Nor did they see the expected rise in women going into the feld.When Tom 
gave a talk at Trinity College in Dublin that year, he suggested to the group that 
part of the reason multiple countries are all seeing the same result is—you guessed 
it—because they are teaching computer science too narrowly. Rather than just 
thinking about computer science as a separate subject, countries also needed to 
acknowledge computational methods as applicable to all content areas. Do that 
and you might see diferent results.A rich discussion ensued, with professors from 
education and computer science weighing in. Ultimately, though, the Irish gov-
ernment proceeded to go about compulsory computer science the same way 
other nations did.The results are predictable. 

In the United States, the decentralized nature of our national school system 
is a blessing and a curse. It is a blessing because, if other nations’ approaches are 
representative, we are avoiding going down a very disappointing road where great 
funding is earmarked for something that doesn’t ultimately manifest. However, 
the curse is that it means there is no “right” way to implement computer science 
in K–12 settings.That can be liberating for some schools and daunting for others. 
There are many ways to do this work, limited only by one’s creativity and resources 
(strictly in that order), and there are other, more research-driven books that might 
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complement the practices discussed here (Kafai & Burke, 2014; Margolis, Estrella, 
Goode, Holme, & Nao, 2008; Resnick, 2017). In the chapters that follow, we 
will share with you some of our insights on what we have done and what we 
might do diferently in the future. Both Tom and Gerald are education professors 
with expertise in technology in schools. Pam is a high school English teacher in 
Georgia with some informal background in computer science.Together, we hope 
to share stories from our experiences that reveal insights and principles of practice 
that can be applied systematically in your classroom, school, or district. Here’s a 
breakdown of what to expect. 

How to Read the Book 

This is Chapter 1, where we frame what we mean by computer science, assert some 
beliefs about K–12 computer science education, ofer some background context, 
and set the tone for the rest of the book. In Chapter 2, we ofer a closer look at 
New York City’s Blueprint, which we have found to be extraordinarily helpful in 
providing not only a heuristic but also concrete actionable resources for teachers 
across grades and content areas. In Chapter 3, we begin our focus on key compu-
tational concepts, starting with abstraction. In it, Gerald walks us through a story 
about how he used circuit boards to teach life science. Next, in Chapter 4, Tom 
takes you into a crowded cafeteria where hundreds of elementary students partici-
pate a Rock, Paper, Scissors tournament in order to uncover what algorithms are all 
about. In Chapter 5, Gerald demystifes programming with his stories about middle 
schoolers, robots, and collaborative learning.Tom returns in Chapter 6 to share his 
project in which students use quantitative data about literature—specifcally, word 
frequencies—to deepen their experiences with reading. Chapter 7 pulls us into 
Pam’s classroom, where she works with her students to teach Shakespeare through 
robotics. Let us say that again: Shakespeare through robotics. And fnally, we con-
clude in Chapter 8 with a toolkit for getting started in your own settings. It’s a 
chapter loaded with straight advice and tools you can use immediately. 

While you can jump around in the book, we recommend reading the chapters 
in order. It might be tempting for a content-area teacher to want to skip chapters 
that don’t appear to focus on their preferred discipline, but we would discourage 
you from doing so.There is so much to learn from the work that happens across 
grades and content areas. What’s more, we make sure that the chapters framed 
around concepts actually always give examples of what it might look like across 
disciplines. The principles of practice that emerge from diferent chapters can 
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always—always—be adapted for grades and content areas other than the specifc 
ones illustrated.You will get the most out of the book by reading each chapter in 
order and always translating for your own setting what can be adopted and adapted. 

Conclusion 

Bringing K–12 computer science to your classroom, school, and district 
is uncharted territory, but that is not to say it is unexplored.You can see that 
whether you look at how it plays out in diferent schools, how diferent states are 
attempting to respond to growing demand, or how other countries implement 
national programs.There is no one way to do it.We think that with such openness 
comes phenomenal potential to create K–12 computer science models that are 
truly responsive to the needs of each individual community. As you prepare to 
learn more from our experiences, remember the two key points made earlier: 

1. Computer science is not a STEM subject. It can deepen and expand 
learning in all grades and disciplines. 

2. Computer science is more than a technical subject. It’s about inquiry, 
logic, and language. 

With that in mind, let’s begin exploring core computational concepts, beginning 
with New York City’s Blueprint. 
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A Blueprint 2 for Embedding 
Computer Science 
into Learning 
and Teaching 

It was Texas. And it was summer. Now, hot is one thing. But hot in Texas with a 
dubious air conditioner at a mostly empty high school building is something else 
altogether.A team from a public university was preparing to welcome nearly one 
hundred pre-service teachers to a week-long training in computational thinking 
that would culminate the following week with teachers running a camp for 300 
elementary, middle, and high school students. As they prepared for the teachers’ 
arrival in a large group instructional room, it was clear that the heat was going to 
be an issue. In a moment of insight, the team decided to pull the temporary wall 
from its closet in order to divide the room in two. One hundred teachers crammed 
into half the space, but with twice the cold air.As teachers took their seats, it was 
clear that everyone was slightly closer to their neighbors than they’d like. 

Addressing the group, Tom and his collaborator Dr. Hannah R. Gerber of 
Sam Houston State University suggested everyone look around them and move 
their tables a little up or down or left or right—wherever they had some add-
itional room.Within a few minutes, the group was breathing a little easier. 

“This week-long workshop can be summed up in what we just did.We saw 
a problem.We identifed what steps we could take to fx it.Then we systematic-
ally acted on those steps in order to create a better situation.That’s computational 
thinking in a nutshell,”Tom concluded. 

Participants looked around the room. Some were excited. Others showed 
signs of regret, the sort of hopelessness one might observe of queasy guests on a 
ship that just left the dock.The journey ahead might be promising, but it wasn’t 
clear that its promise could outweigh the humidity of Houston. 

As the conversation with the group continued, there were persistent and recur-
ring barriers to teachers feeling comfortable exploring computer science. First, they 

https://problem.We
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were intimidated or confused by the terminology that comprises the feld.Words like 
algorithm or programming can intimidate the average teacher. Second, many participants 
appeared skeptical that computer science was really something they needed to spend 
their precious time exploring.After all, it’s not like the state was assessing computer 
science, so it ultimately felt like a nice-to-have but hardly something that teachers 
should be spending their summers learning about. Finally, computer science sounded 
like its own confdent feld—which it is—so it was hardly clear how it relates with 
other content areas. Put it all together and you have a room of overheated teachers 
whose attention was due more to politeness than to interest. 

We will share more about that professional learning experience in the 
chapters ahead. What is most important at this point is to understand what 
happened next. In looking at the participants, who were sweating and crammed 
and slowly cooling of,Tom continued. 

“As we begin this work this week, I need you to understand one thing: No 
one knows how best to teach K–12 computer science.There are lots of approaches, 
but many of them are informed by big technology companies or computer science 
professors. Don’t get me wrong.They are all well-intentioned and some are useful. 
But they tend to come from outside K–12 schooling and attempt to push com-
puter science into classrooms.We think about this work diferently.We start with 
the curriculum and instruction already underway in your school, looking for stra-
tegic ways to use computationality to deepen and expand that work.” 

Participants exchanged glances.Their expressions appeared to say, “So, why 
do we have to learn any of this?” 

“The reason to care and to concentrate on computational thinking this week is 
as follows.There is more computing power in the smartphone in your pocket than 
NASA had for the Apollo missions.That technology is mediating more and more 
of what we do as a society: how we fnd dinner, how we fnd love, how we vote, 
how we fnd the news, how we plan a wedding, how we fnd an attorney when the 
marriage doesn’t work out, how we fnd a doctor, and how we fnd a funeral home. 
In the same way that reading and writing has always been a priority in learning and 
teaching, the twenty-frst century demands that we also understand how to read and 
write with and through computationality—computer science.” 

As suggested in Chapter 1, if you are like many people, you don’t necessarily iden-
tify with the word “computer” or even perhaps “science.” In looking for a place to start, 
you might fnd yourself searching the wilds of the Internet in hopes of unearthing some 
comprehensive document that clarifes for you what to do.Recall that there are many 
to choose from, with the options seeming to increase each month. A popular frst fnd 
is a standard set created by the Computer Science Teachers Association (CSTA). 

https://differently.We
https://classrooms.We
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If your school has formal computer science classes, then few other resources can rival 
the thoroughness one fnds in its pages. Another oft-cited series of competencies 
comes from the International Society for Technology in Education (ISTE). ISTE 
has developed international infuence in the educational technology space over the 
years. They provide guidelines for both computer science educators and broader 
competencies intended for a wide range of teachers. Even Google—yes, the very 
Google you might have used to fnd the CSTA or ISTE standards—has its model for 
teaching computer science, which is part of its CS First initiative. 

There is value in each of these frameworks and others that your school or 
district might encounter. And after you feel more comfortable with what embed-
ding computer science in your practice might look like, we encourage you to see 
what they have to ofer. But these are not the frameworks we recommend begin-
ning with. The thoroughness of the CSTA standards, for instance, will quickly 
overwhelm most people who do not have formal computer science training. 
If your school is focused on embedding computational thinking rather than 
teaching a formal computer science course, then the CSTA standards might be 
overkill.You’ll stop before you start. Other standards might strike school leaders or 
teaching teams as too vague—conceptually useful but operationally thin. 

As briefy mentioned in the previous chapter, our preferred framework for 
understanding computer science as it relates to K–12 settings comes by way of the 
New York City Department of Education. It just so happens that the city that never 
sleeps really burned the midnight oil to create something incredibly valuable to 
educators the world over. Understanding that making computer science available 
for all meant embedding computer science across grade levels and content areas, the 
city’s CS4All team designed a “Blueprint” for computer science that ofers a smart, 
elegant, and nimble framework for any school or district. It’s so thoughtful that we 
restructured this book after some initial feedback from reviewers, realizing that we did 
not need to invent a new heuristic. New York did a stellar job. (Note:We will refer 
often to the Blueprint, quoting from it throughout the book.You can fnd everything 
you need to know about it by visiting https://blueprint.cs4all.nyc/what-is-cs/) 

The Blueprint is broken up into several components that provide educators 
multiple entry points into thinking about how best to embed computer science 
into their practice. First, it describes computer science perspectives. Perspectives 
refer to the ways in which educators envision their students identifying as they 
explore computer science. Or, put more succinctly, “Meaningful computer 
science units help students fully embrace a perspective such that they are ready 
and interested in progressing to the next” (italics added). Four main perspectives 
are described in the Blueprint, each of which will be discussed further: explorer, 
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creator, innovator, and citizen. Second, the Blueprint describes three high-level 
practices that subsume groups of key skills. The core practices are analyzing, 
prototyping, and communicating. Finally, the creators of the Blueprint suggest 
fve core computer science concepts that can guide one’s pedagogy: abstraction, 
algorithms, programming, data, and networks. When combined, the Blueprint 
provides the contours for teachers’ curriculum and instruction in a manner that 
honors the uniqueness of both the traditional content areas and computer science. 
They even weave the components together into a student outcome matrix, spe-
cifc enough to be meaningful but fexible enough to be useful. 

Now, before we dive into each of the components a bit further, we want to 
acknowledge that some readers might fnd these terms intimidating.That’s OK. 
You actually know way more about all this than you think you do.We suspect that 
after the next several pages, you will begin to appreciate just how accessible much 
of this is.With that being said, let’s dive into it. 

Perspectives 

There are many ways for students and teachers to encounter computational 
methods. Most of us are simply users, meaning we have embraced some aspect 
of digital technologies in our lives for fun or functional purposes, but we do not 
think about it much further.We check email.We text with family.We might even 
post to social media.We binge-watch old television series. But not much more. 
As you start to consider what it means to teach computer science in your school 
or district, you will want to shake things up. 

All these digital technologies we experience, they are created by teams of people 
somewhere. Created.That means, just like we would never accept teaching children 
(or ourselves) to read without also learning to write, we want to demystify how to 
produce the kinds of phenomena we heretofore only consumed.The Blueprint argues 
for four personas to help us do so: one who explores computer science, one who creates 
with computational methods, one who innovates through computationality, and one 
who uses what one knows about computationality to help improve their community 
civically.The fnal emphasis on the role of being civically engaged is, for us, a powerful 
perspective. Recall that we advocate computer science in K–12 schools not because 
it’s in vogue or because we think it will prepare children for jobs or because parents 
are screaming for it.The primary reason to teach it is because many crucial aspects of 
society are increasingly mediated by digital technologies.The citizen perspective in 
the Blueprint ofers a way to take with seriousness the civic impetus. 

https://media.We
https://family.We
https://email.We
https://further.We
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Explorer 

When students are explorers, they are focused on playing with computational 
concepts and practices in focused and fexible ways.They might program a robot to 
do a simple maneuver or learn how to draw a design using variables.As the Blueprint 
states,“The goal of this exploration is to help students build familiarity and facility 
with CS so they can progress to becoming creators who are able to start defning the 
ideas they would like to express through CS.” Importantly, such activities can be used 
in elementary school as the bulk of the learning experiences, or they can be used 
in middle and high school settings as introductions to deeper work. But remember, 
especially at the secondary level, the goal is to embed computational methods in ways 
that ultimately deepen and expand the content area. It is not enough to have a CS 
day in one’s classroom that only glibly relates to the disciplinary heart and soul of the 
curriculum. Maybe start there, but don’t mistake it for the goal. 

Creator 

After students become more comfortable with computational concepts and 
methods, the next step is to help them “use friendly, open-ended physical and 
digital tools to represent their ideas, thoughts, or interests.”Whereas a student with 
the explorer perspective might modify some existing simple computer code to 
make a robot do the hokey pokey, a student in a creator mind set envisions a more 
authentic problem or purpose for which computationality can help. For instance, 
a student might better understand the tactful errors of Napoleon’s Waterloo by 
programming robots to reenact the battle. Or a student might wish to use data 
gathered from probes in science class to create a series of visualizations that shows 
pH levels in water supplies. What drives the creator perspective is a newfound 
sense of fuency with computational concepts and methods that makes posing real 
questions and making new solutions possible. 

Innovator 

To be an innovator is to “build and share ideas, thoughts, and interests with others 
by contributing to or building on other projects.”There is a deep sense that the 
work one does necessarily interrelates with the work of others. Remember that 
digital technologies are all powered by software and that software is composed of 
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lots of diferent computational languages written by diferent people at diferent 
times for diferent discrete purposes. There would be no Digital Age without 
the contributions of others. No lone coder hiding in the shadows of his dorm 
room—let’s make that her dorm room, thank you very much—was ever going to 
code the Internet.The innovator perspective requires that students situate their 
own creativity and explorations in the context of others. Computationality comes 
from a collective efort, and it should ultimately contribute to a collective need. 
The Blueprint gives the example of a student who creates an interactive map 
“showing average temperature by year in a website that she created to discuss 
the impacts of humans on the environment.” In short, the student used the pro-
gramming languages and tools created by others to herself create something that 
contributed to solving others’ problems.That’s innovation. 

Citizen 

At frst glance, the word “citizen” might seem unrelated to computer science in 
K–12 schools. We also acknowledge that in some communities, citizenship has 
become a complex topic and can be both a point of hope and fear for families, 
students, and teachers. Not all children or parents are ofcially citizens. Depending 
on where one lives at a given time, not being a citizen can make one the target 
of formal and informal investigations, harassment, or worse. In the way the word 
is used in the Blueprint, “citizen” refers to the broader notion of students being 
civically minded. Unfortunately, there isn’t a clear pithy word in English to convey 
“someone who demonstrates civic-mindedness” other than citizen. As suggested 
in Chapter 1, the notion of civic engagement is actually vital to understanding why 
schools and districts should bother with computer science in the frst place. Recall 
that one of the reasons we like the Blueprint as a framework for approaching com-
puter science in K–12 schools and districts is because we believe that the ultimate 
purpose of a K–12 school system is to prepare young people to contribute to society 
in productive ways, to be politically, economically, and socially generous with their 
time and talents.The citizen perspective attempts to capture that ultimate purpose. 
The Blueprint gives examples like students writing to other students to encourage 
them to better address issues like fake news, students debating the ethical issues of 
self-driving cars, and a student who designed a more equitable algorithm for the 
way students are placed in schools in New York City. (Unlike most other districts, 
where students go to elementary, middle, and high school in the Big Apple is not 
determined on geographic location alone. Instead, all families have to apply for 
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schools or be placed in a school based on the city’s own criteria and algorithmic 
logic.) To be computationally savvy and civically engaged is the ultimate end for 
the Blueprint authors.The authors of this book agree. 

Practices 

A natural next question to ask is what kinds of things students are expected to 
do while donning the roles of an explorer or creator or innovator or citizen. 
Perspectives are helpful, but what skills are students learning? That’s where 
practices come in.The Blueprint team identifed three high-level practices that 
each contain a series of discrete skills.You will notice that the skills they describe 
below are not unique to computer science. Not at all.They are the kinds of skills 
one would expect to hear teachers talking about in any grade or content area. 
You already know them.As you read, it’s helpful to understand that the Blueprint 
team presents them in sequential order based on Webb’s Depth of Knowledge, a 
popular instrument used internationally for ensuring rigorous curriculum and 
instruction. Though we won’t go into signifcant depth with the practices, let’s 
gain a working familiarity with each. 

Analyzing 

When students analyze something, they are expected to engage in a process of 
critically understanding how a particular phenomenon operates. They might 
begin by describing what they see, like the way users interact with a mobile app 
on their phone. Then students might examine their description of the app and 
identify ways that the diferent parts of the design afect how it is used. After 
examining their description, students might interpret what they observed and make 
an evaluation that results in recommending changes in colors or buttons or layouts 
to make the app easier to use for Luddites like us.The point is that when students 
analyze, they are focused on the systematic observation of how something works 
in the world—keeping in mind the potential to make it better. 

Prototyping 

If analyzing is about systematically defning a problem, prototyping is about 
designing a potential solution. Let’s stick with that example of a mobile app that 
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befuddles people like us. Once an evaluation is in hand, students might begin 
the process of building a solution or a prototype. First, students might iterate 
some diferent features that could fx diferent shortcomings of the app. Next, 
students might imagine a sweeping overhaul of the app that improves its ease of 
use.Then, students might plan in detail all the specifc changes they could make, 
ultimately designing a comprehensive overhaul of the app.The stages to proto-
typing overlap in some ways and can complement other popular approaches in 
some schools, like design thinking and project-based learning. Ultimately, the 
focus of prototyping is about students engaging with concrete problems and 
detailed solutions. 

Communicating 

Like all forms of learning, computer science requires students to be able to com-
municate their work to others in a range of diferent contexts. One might begin 
by showing what one is wondering or creating, a relatively simple step that requires, 
for some students (and adults, mind you), a leap of confdence and faith. As a stu-
dent shows others what she has created, the next step is to explain why she made 
what she made and how it works. Both showing and explaining can be done rela-
tively informally, but to present one’s work—even in a small setting—often takes 
on a bit more of a formal tone. Ultimately, the hope is that students can arrive at 
a place where they are comfortable discussing both the product of their creativity 
and the process they underwent to bring it to fruition. 

Concepts 

Up to now, we suspect that the categories and skills presented in the Blueprint are 
mostly quite familiar to you. Some of the examples might refer to digital tech-
nologies or software, but not in an overly disorienting way.That’s a real strength of 
the Blueprint: two-thirds of it is rooted in things educators already know or do or 
value.The fnal component is called concepts.This is where some educators might 
start to feel out of their element. But as with much of what we just surveyed, you 
actually know far more than you think you do. Like, way more. In our experi-
ence, it’s the terms that freak people out—abstraction, algorithms, programming, 
data, and networks—because they appear to belong to an elite group in society 
whom we might call software engineers or computer scientists or programmers. 
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But those terms we just listed, and many more, do not belong to them or anyone 
else. We believe that last sentence so passionately. If we can just help you see 
that these terms that feel so far from your daily world are actually a part of your 
experiences in and out of schools, we know that your entire paradigm as it relates 
to computer science will shift. Almost in an instant. 

Here’s what we are going to do.We are going to provide a brief overview 
of the fve main concepts framed in the Blueprint.You will get an accessible 
defnition that alludes to real-life examples of the concept in both digital and 
analogue (nondigital) forms.Then, because we know that becoming confdent 
in what these concepts are and look like in educational settings is the lynchpin 
that will enable you to make computer science a meaningful part of your class-
room, school, or district, we are going to devote an entire chapter to each of 
the concepts so you can really see what they are all about. But wait. If the 
idea of reading a chapter about algorithms is not appealing, we encourage you 
to stay with us. Trust that what you think you already know or don’t know 
about algorithms is probably incomplete. Trust that you know more than you 
think. And trust that computationality isn’t an end in itself—not in this book. 
Computationality has the potential to deepen and expand your current class-
room practice, to take it to exciting new places for your students, yes, but even 
more importantly: for you. In we go. 

Abstraction 

Life is complex. Sometimes, when we encounter too much complexity, it can 
be helpful to describe something in broader terms. Ever overhear someone 
explain something to someone else by saying, “Don’t overthink it. It’s like. . .”? 
To say one thing is like another thing is to drift into the realm of abstraction.The 
Blueprint team describes abstraction as follows:“An abstraction represents a sim-
plifed idea or problem derived by ignoring details and using patterns or general 
characteristics.”We will explore this further in Chapter 3. 

Algorithms 

If you have ever cooked with a recipe, then you have experienced an algorithm. 
The Blueprint team defnes algorithms as “a generalized and repeatable sequence 
of instructions that achieve a particular purpose and output, given a set of inputs. 
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It’s important to understand when, why and how to implement an algorithm, 
and to consider who or what might be afected.” In the background of everyday 
life, computers are following instructions about how to collect, process, and 
act on information. It’s why you get the ads you do on your phone, for example. 
Chapter 4 will be devoted to this intimidating term that is, in so many ways, 
very familiar. 

Programming 

Cue the fashing images of dimly lit dorm rooms with aloof and lonely coders 
hunched over their laptops protected from the world only by their audacity 
and hoodies.That’s not really what programming is. Programming refers to the 
writing of computer code in order to tell computers what you want them to 
do.The Blueprint describes programming as “giving instructions to computers. 
Programming can be done through a constantly changing set of languages.” 
Remember in Chapter 1 we tried to emphasize that software is composed of 
languages, that when we speak of anything that is “digital,” we are speaking about 
human and computational languages.Well, programming is the broad term used 
to capture that. In Chapter 5, we will demystify programming further. 

Data 

Data just refers to information that can be collected, stored, retrieved, and 
manipulated by human beings and computers. That’s all. Some refer to data in 
the Digital Age as being “big”.That’s fair.The amount of data being collected and 
shared and used today is unimaginable.We will say more about the complexity of 
digital data in Chapter 6.There, we will explore the Blueprint team’s defnition in 
greater depth, which reads:“Computers can be used to collect, store and analyze 
massive amounts of data quickly and reliably. Computer programs can use data to 
make decisions or to automate tasks.” 

Networks 

The fact that the Internet works at all is borderline miraculous. It is, fundamen-
tally, just a collection of computers talking to each other really quickly in ways that 

https://unimaginable.We
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would strike the average person as gibberish.All the digital devices we have in our 
lives work because of that interconnectedness. Or to put it diferently, networks.The 
Blueprint uses the Internet as their main example as well (though others exist) when 
they write, “Networks, like the Internet, allow computers to interface with other 
computers through a set of rules, or protocols, that defne how computers send 
and receive data. Protocols and standards are created and agreed upon by groups 
of people.” Understanding networks is a key component of being able to critically 
explore computationality in our world, to which we will devote Chapter 7. 

There is one more thing to know about the computational concepts described 
earlier.While they appear to be distinct, they seldom are.That is, you can certainly 
explore them individually but when it comes to real-life experience and practice, they 
often overlap. Take Minecraft as an example.Minecraft is a popular frst-person point-of-
view video game in which players explore a virtual world while accumulating supplies 
that help them build their own worlds.When you watch someone play Minecraft, it is 
hard to pry apart the various computational concepts. First, a virtual world is, by its 
nature, an abstraction. It is an immersive environment meant to emulate key aspects of 
our own lives.Algorithms operate in the background in order to present players with 
hints or resources needed. But beyond that, players get to create their own buildings by 
following step-by-step instructions that they either create or that they learn about via 
fan blogs. Once players master the basics, they can program their own customizations 
into their Minecraft worlds.Throughout this process, players are constantly receiving 
and acting on data provided, like health, mapping, and more. Finally, while Minecraft 
can be played on a discrete gaming console, the fun of it is when one enters into one 
of the myriad networked worlds available.A player in Texas can literally (well, digitally 
so) enter into the virtual world of a Minecraft player in Thailand. 

The point of this example is to drive home the idea that computational 
concepts often—if not always—intertwine.They can be introduced and explored 
separately, but doing so is somewhat artifcial. It would be like identifying the 
distinct notes in a chord: helpful for analysis and understanding, but it misses the 
real beauty of the thing. 

Back in Texas, Conceptually 

North of Houston, teachers at the professional development sessions had made a 
daily point of identifying the culinary experiences Tom, as a New Yorker, needed 
to have while in the Lone Star State.There were some eateries Tom had heard 
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about back East, like Sonic and Chick-fl-A.Those were known in Manhattan, 
but hardly ubiquitous. However, a particular hamburger joint emerged as near 
and dear to the participants and thoroughly unavailable back home. It was called 
Whataburger. Not, as Tom originally believed,Waterburger or even Whadaburger. 
Those were amateurish misnomers that would have proved the lie to any local 
with whom Tom spoke. 

He needed to know what Whataburger was all about. 
Tom punched into his phone’s mapping application the name of the loca-

tion. The nearest Whataburger was a mere two and a half miles away. Before 
he knew it, he was in his rented car, cold air blasting, sunglasses on, and Garth 
Brooks crooning in the background. When he put the car in reverse to leave 
the hotel parking lot, a rearview camera shot appeared on the screen on his 
dashboard. It superimposed green, yellow, and red lines onto the view to show 
how near or far the vehicle was from danger.The voice of artifcial intelligence 
guided him out of the parking lot and on to the highway. Surprisingly at frst, 
then comfortingly, a subtle orange light glowed on the interior opposite the 
sideview mirrors, sensors alerting him that another car was moving through his 
blind spot. 

It took seven minutes to get to Whataburger. 
He ordered his burger, paid by wanding his phone over a credit card scanner, 

and sat to enjoy a triple hamburger with bacon, avocado, mustard, mayo, and no 
bun. Bite by bite, Tom streamed through his social media feed to see teachers 
talking about the day’s workshops on Twitter. They would soon be full-time 
educators, responsible for the lives of individual children, yes, but more than that. 
Every teacher has the potential to afect the trajectory of a child, which in and of 
itself is a powerful efect. But more so, every student that teachers afect has the 
potential to redirect the trajectory of entire families for generations. 

That’s what happened in Tom’s family. He and his sisters were the frst ones to 
go from high school to college.After that, it became a norm for other members 
of the family to do the same. For every teacher who demystifes computationality, 
dozens of families acquire the potential to participate in society in radically 
diferent ways than we currently imagine. The burger was delightful. And with 
each like, retweet, and comment he saw from his Houstonian pedagogues,Tom 
mused just how necessary computer science was becoming to life, even if one 
didn’t yet realize it.Without it, you couldn’t fnd a Whataburger, back out of a 
parking lot, navigate to a fast food spot, listen to your tunes, and appreciate the 
passion and authenticity of a whole new crew of teachers. In order to ensure 
that future teachers possessed a critical and creative understanding of the place 
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of computationality in the world, what was needed was a new way of engaging 
with core computational concepts. And that, we are happy to say, is what comes 
next for you. 

For Further Exploration 

• Read | CSTA Standards: https://www.csteachers.org/page/standards 

• Read | ISTE Standards: https://www.iste.org/standards/computational-
thinking 

• Explore | CS First: https://csfrst-beta.withgoogle.com/s/en/home 

• Study | Blueprint: https://blueprint.cs4all.nyc/what-is-cs/ 
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3 Abstraction 

One Thanksgiving not too long ago,Tom joined his in-laws for the annual trad-
ition of converging at his wife’s childhood home.The house sits on a few acres 
of land a couple hours north of Manhattan.The trees at that time of year turn 
glorious shades of red and orange and yellow.Wafting in the air are classic holiday 
scents: turkey, butter, cinnamon, sweet potatoes, cookies, and cakes. This par-
ticular year, Tom added to the victuals his own contribution in the form of a 
fne bottle of wine. For reasons that will be clear shortly, he does not remember 
its exact vintage or varietal or vineyard. He imagines it was probably a medium-
bodied red wine from either the Loire Valley in France or from right there in 
the Hudson Valley. 

Not too long before midnight, Tom excitedly burst into the kitchen with 
his smartphone in hand. The bottle had been opened a few hours earlier, not 
thoroughly shared in the spirit of the holiday or family, but not hoarded either. 
(Not intentionally, anyway.) He showed his wife and mother-in-law the screen 
of his phone. It had a picture of a chessboard on it.The button below the picture 
featured one word: Buy! Tom’s wife, Kerry, quickly pointed out the price of the 
board. Conveniently,Tom doesn’t remember exactly how much it cost. But it is 
safe to say it cost over $300. In what might well have been a defning moment 
in their marriage, Kerry looked at the excitement on Tom’s face, the cost of the 
board, the empty bottle of wine, and the time on the clock. 

“If it will make you happy, go ahead.” 
It would be false to call Kerry’s tone truly supportive or encouraging. Rather, 

it was said with an experienced appreciation for which battles are worth fghting 
and which ones are unwinnable in the moment. 

Buy Tom did. 
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We will return to this event throughout the next few chapters as a way to build 
your understanding of the concepts under exploration. Our frst concept is abstraction. 

The Blueprint says that abstraction “represents a simplifed idea or problem 
derived by ignoring details and using patterns or general characteristics.” Chess 
itself is an abstraction.A chessboard is an eight by eight grid that features sixteen 
pieces per side: a queen, a king, two bishops, two knights, two rooks (castle-
looking things), and eight pawns.The two warring sides must use their respective 
pieces, each of which has unique movement abilities and limitations, to put the 
king in checkmate.The side that does so frst wins. 

When you play chess, you are not actually battling the other person.There are 
no real kings or queens or armies.The board, pieces, and rules are all abstractions. 
Thousands of years ago, someone had the idea to extract certain key components 
of warfare and turn them into a game that could be played to help train others on 
military strategy.At its core, that is all abstraction is.Abstraction is all around you. 
Time is an abstraction. Language is an abstraction.The pictures you see on what-
ever screen is in front of you are abstractions.You already know what abstraction 
is.What you don’t perhaps know so clearly is what abstraction means in a compu-
tational context, but a classroom illustration is all that’s needed to take care of that. 

The Science of Turtles and Squares 

When Gerald was a middle school life science teacher, he designed a project for 
his seventh-grade students. One of the key concepts of his life science curric-
ulum was feedback mechanisms: the process by which living organisms and living 
systems respond to changes in their internal and external environments. Gerald 
believed that this was an excellent concept to explore through computationality. 
He believed that embedding computer science (CS) and computational thinking 
(CT) skills, practices, and projects into existing content areas could be a mean-
ingful way to deepen and expand his students’ experience of science. Specifcally, 
he wanted his seventh-grade students to program interactive machines using the 
Arduino microprocessor, making connections between the notion of feedback in 
the worlds of computationality and nature. 

This project focused on a key concept of science—feedback mechanisms— 
and was to be accomplished through the students’ use of coding tools. Realizing 
these diferences between the science concepts and his students’ limited previous 
experience with coding, along with the likely challenges and the corresponding 
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levels of abstraction required, Gerald designed his coding program accordingly. 
His plan was to support his students by managing levels of abstraction, increasing 
and decreasing, throughout this six-week experience. 

Gerald’s students, at the point in the school year when they were about 
to engage in this project, had already had several experiences with feedback 
mechanisms through their study of science. They had learned the relationships 
between photosynthesis (where plants transform carbon dioxide into energy in 
the form of glucose) and cellular respiration (where glucose is broken down to 
release the energy stored in it).They had investigated food chains and food webs 
to see that a complex system can respond to some degree of change, but that other 
degrees of change are too severe to survive. 

In his project entitled Introduction to the Feedback Mechanism, Gerald challenged 
students to program an interactive device using the Arduino microprocessor. 
The project consisted of four parts: 1) Block-based coding in Turtle Blocks, 2) 
designing and coding an interactive device in Python Turtle, 3) text-based coding 
in Arduino, and 4) exhibiting and refecting. Let’s take a closer look. 

At the outset, Gerald demonstrated examples of interactive devices 
for students to see in order to generate some excitement. During block-
based coding, students learned to code with Turtle Blocks, a platform for 
block-based graphical programming. Students participated in a series of 
coding challenges that would allow them to build core CS skills, which they 
would then be able to translate into text-based coding later. Students then 
transitioned from block-based to text-based coding in designing and coding 
an interactive device in Python Turtle. In this phase, students used Python’s 
Turtle library to translate the work they did with blocks in Turtle Blocks 
into text in the popular coding language Python.Then, as they engaged with 
text-based coding in Arduino, students were introduced to the Arduino board, 
electronic circuits, and the Arduino software integrated development envir-
onment (IDE). Lastly, during exhibition and refection, students shared their 
work with their peers and then had a chance to refect on what they had 
learned.This refection focused on the obstacles students encountered and the 
work they did to overcome them. 

Gerald designed the multiphased project with two key elements in mind.The 
frst was that in each phase, students were presented with challenges that were to 
be met. These challenges featured clear goals, but had many possible solutions, 
allowing for student exploration and autonomy. The second key element was 
that each phase transferred skills from one programming language to another. 
For example, students learned to draw shapes with Turtle Blocks, then learned to 
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accomplish the same task in Python.This project took place over six weeks, with 
students doing the work during most of their scheduled science class time. 

Let’s look at each phase of the project in more detail. 

Phase 1: Block-Based Coding with Turtle Blocks 

Turtle Blocks is a block-based coding tool. It was designed by Sugar Labs, which 
developed the operating system and software for the One Laptop Per Child 
(OLPC) XO Laptops.As with the popular introductory coding language Scratch 
(see Chapter 5), users create programs by snapping digital blocks together.Turtle 
Blocks difers from Scratch in that it is focused on creating artwork, whereas 
Scratch is centered on animating characters called sprites (at least at the begin-
ning). In this phase of Gerald’s project, the students were presented with a series of 
challenges that provide them with an opportunity to master core CS skills. 

In Turtle Blocks, Gerald began by having students create a program to draw 
basic shapes. In this case, students were challenged to create a program in Turtle 
Blocks that instructs the turtle to draw a square (see Figure 3.1). 

This is only the frst challenge in a series. Once they can draw a square, 
students are challenged to change the color of each side of the square. Squares 
are concrete, colors slightly less so.This challenge introduces more programming 
blocks to the student, in this case, the “set color” block. Students also learn that 
colors are represented as numbers, as are other properties in Turtle Blocks and 
other computing languages. Colors represented as numbers? See how far we are 
now from the concreteness of a simple square (see Figure 3.2.). 

Next, students work to draw squares that have a diferent color on each 
side, and then to create a program that draws a square with randomly selected 
colors on each side. Alternating colors add yet another level of abstraction.This 
challenge introduces the blocks controlling numbers, which include randomly 
generated quantities. Randomly generated numbers is a slightly more abstract 
concept than just numbers representing colors.The students also learn that since 
colors are represented as numbers in Turtle Blocks, randomly generated numbers 
will change the color of each side (see Figure 3.3.). 

Gerald then challenged his class to fnd the simplest way to have more than 
one turtle draw a square with a randomly generated color on each side. While 
they can certainly accomplish this challenge by having each new turtle have the 
same code they have already created, they soon realize that this gets cumber-
some to both create and maintain this code as they add more and more turtles. 
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 Figure 3.1 A program in Turtle Blocks to draw a square. 



 Figure 3.2 A program in Turtle Blocks to draw a square with a specifc color on each side. 



 Figure 3.3 A program in Turtle Blocks that draws a square with a randomly generated color on each side. 
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If they want to make any changes, they would have to change it in each iteration 
of the code.Through a series of exercises intended to stretch students’ comfort 
with abstraction, they arrive at a point where they can think about how to ef-
ciently program. Not just make it work, but work well. In CS lingo, we talk about 
using functions to achieve this, or what Turtle Blocks calls “actions.” It is like 
trying to say something in as few words as possible, without losing the meaning. 

In Turtle Blocks, the user creates a function, say, drawing a square with a 
randomly generated color on each side, and can then use this function over and 
over again.This is another example where Gerald managed the level of abstrac-
tion exposed to students. He found it most useful to introduce actions in Turtle 
Blocks through this type of challenge: the moment when what students are trying 
to do builds on what they have done before but requires a conceptual leap.That 
is the ideal time to have them experience new functionality. Figure 3.4 depicts a 
program in Turtle Blocks that makes use of actions to create reusable functions, 
and Figure 3.5 depicts this action being used by multiple turtles simultaneously. 

Next, Gerald worked to have students understand and apply the notion of 
variables.Variables allow for adding complexity to a program by allowing that 
program to respond to changes in inputs.This can be a very difcult concept for 
young students to grasp, so Gerald located it within the next challenge. He asked 
students to create a numerical counter, just like they have seen in video games of 
various types.A typical solution to this challenge involves creating a box in Turtle 
Blocks, naming that box, assigning it an initial value, and then incrementing that 
value as the program proceeds (see Figure 3.6.). 

In this program, the student reused the function she created earlier to draw 
a square with a randomly generated color on each side. She wanted her program 
to draw a circle of squares, which she accomplished by having her turtle “call” 
that action, then turn two degrees to the right.This set of instructions repeated 
10,000 times, resulting in a circle of squares.The counter allowed her to see the 
number of squares her program drew.The “print” block displayed the value of 
the counter variable on the screen. 

The last skill students needed in order to successfully complete phase 1 
of the project was “sensing.” Sensing allows the program to use informa-
tion from the outside world or within the world of the program to change 
the function of the program itself. For example, students often encounter video 
games that keep track of a character’s health.When their character’s health falls 
below a certain level (the condition), the character dies. Gerald challenged his 
class to add both sensing and conditional statements to result in changes to their 
program, adding both variables and complexity. 
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 Figure 3.4 A program in Turtle Blocks using the “action” functionality. 



 Figure 3.5 A program in Turtle Blocks applying an “action” to multiple turtles simultaneously. 



 Figure 3.6 A program in Turtle Blocks using a box (variable) to count the number of squares generated. 
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They didn’t disappoint. 
One possible solution to this challenge was to have the program in Turtle 

Blocks monitor the sound level (via the computer’s microphone) and then to 
take a set of actions based on this input. In this program, after the turtle has 
drawn one hundred squares (which is monitored by the counter variable), it stops 
and says, “I need a nap!” It’s an interactive device programmed in Turtle Block 
(see Figure 3.7.). 

This phase of the project, Block-Based Coding with Turtle Blocks, provided 
Gerald’s students with a set of challenges during which they mastered core CS 
skills: creating instructions, functions, variables, and conditional statements. And 
just as importantly, students did so in a student-centered, inquiry-based learning 
environment that allowed them to explore Turtle Blocks at their own pace and 
create programs that were meaningful to them. Gerald worked with individual 
students to manage abstraction so that they could make the appropriate cognitive 
leaps at exactly the point at which they were ready for them. 

Then, Gerald ushered the class into the project’s second phase. 

Phase 2:Text-Based Coding in Python 

In the next phase of his project, Designing and Coding an Interactive Device in 
Python Turtle, Gerald introduced his seventh graders to text-based coding in 
Python. He selected Python because 1) it’s free and runs on every operating 
system, 2) the code is reader friendly, and 3) there are lots of online resources 
available to support the learner. In particular, Gerald used the Python Turtle 
library, which contains all the bits necessary to create programs that draw shapes 
just like Turtle Blocks. 

So, as with Turtle Blocks, students were shown how to create a turtle and 
to have the turtle draw a square (see Figure 3.8.). However, unlike Turtle Blocks, 
where the turtles themselves and their instructions already exist as blocks, Gerald 
began to have students understand that these things must be done explicitly in 
Python. 

Let’s look at what is actually happening in this program in terms of what the 
Python code says and the result (see Table 3.1.). 

Gerald found that at this point many students realize they want to know 
what is actually happening with the code. For example, they ask, “Can you use 
anything for the color?” Gerald encourages, ‘Give it a try and see what happens.’ 
Students soon fnd out that Python recognizes only some colors through words, 
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 Figure 3.7 A Turtle Blocks program that adds a conditional statement. 



 Figure 3.8 A program in Python Turtle to draw a square. 
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Table 3.1 A Table Breaking Down Python Turtle Code and What It Does 

Python Turtle Code What Is Actually Happening 

Import Turtle Go get the Python Turtle library with all of its functionality. 

alex = turtle.turtle() Go to the Python Turtle library, fnd the object called “Turtle,” 

and bring one to my program. 

alex.color (‘green’) Assign the color green to my turtle called alex. 

alex.shape (‘turtle’) Assign the shape turtle to my turtle called alex. 

alex.forward (100) Move my turtle called alex 100 pixels in the direction he is 

pointed. 

alex.left (90) Move my turtle called alex 90 degrees to the right. 

which gets them ready for the next challenge, which is about having each side 
of their square frst having a predetermined diferent color and then, ultimately, a 
randomly generated color.To do this, they have to develop another abstraction— 
how does the Python language defne color? 

Students worked through the sequence of coding challenges as they had in 
Turtle Blocks. First, they created a square that had a diferent color on each side 
(see Figure 3.9). To meet this challenge, the students did not have to learn any 
new skills. Rather, they applied the color method three more times, once to each 
remaining side of their squares. 

Next, students were introduced to the “repeat” functionality in Python, 
which makes use of the “for loop” (see Figure 3.10).Again, let’s walk through this 
line by line (see Table 3.2). 

The next challenge, as before with Turtle Blocks, was for students to create a 
program that defned a function square (analogous to the action functionality in 
Turtle Blocks). Figure 3.11 depicts this program. 

Gerald introduced this functionality in terms of Turtle Blocks (“This is 
how you create actions in Python Turtle”) so that his students could make the 
necessary connection. They came to see that the code was something they 
had seen before. 

Remember def square ( ): ? 
It worked the same way they saw the “action” block work in Turtle Blocks. 

Gerald joked that it is far more cumbersome to explain this to adults than it 
is to middle school children. Also as before, he provided a model, which they 
then copied and played with. The students then explored ways to defne other 
functions, like those that drew rectangles or triangles. 
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 Figure 3.9 A program in Python Turtle to draw a square with a diferent color for each side. 



 Figure 3.10 A program in Python Turtle to draw a square with a diferent color for each side using a for loop. 
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Table 3.2 A Table Showing Color Alteration in Python Turtle 

Python Turtle Code What Is Actually Happening 

Import Turtle Go get the Python Turtle library with all of its functionality. 

alex = turtle.turtle() Go to the Python Turtle library, fnd the object called “Turtle,” 

and bring one to my program. 

alex.color (‘green’) Assign the color green to my turtle called alex. 

alex.shape (‘turtle’) Assign the shape turtle to my turtle called alex. 

alex.forward (100) Move my turtle called alex 100 pixels in the direction he is 

pointed. 

alex.left (90) Move my turtle called alex 90 degrees to the right. 

alex.color (‘blue’) Assign the color blue to my turtle called alex. 

alex.forward (100) Move my turtle called alex 100 pixels in the direction he is 

pointed. 

alex.left (90) Move my turtle called alex 90 degrees to the right. 

alex.color (‘red’) Assign the color red to my turtle called alex. 

alex.forward (100) Move my turtle called alex 100 pixels in the direction he is 

pointed. 

alex.left (90) Move my turtle called alex 90 degrees to the right. 

alex.color (‘yellow’) Assign the color yellow to my turtle called alex. 

alex.forward (100) Move my turtle called alex 100 pixels in the direction he is 

pointed. 

alex.left (90) Move my turtle called alex 90 degrees to the right. 

The last challenge involved having the students draw squares that had a ran-
domly generated color on each side, as they had in Turtle Blocks.This challenge 
required the highest level of abstraction. As they had seen before, the Python lan-
guage understands colors as numbers. However, Python defnes colors using the 
RGB (red, green, blue) system, which specifes each color as mixes of those three 
primary colors. In this system, each color as represented as a triplet of numbers 
between 0 and 255. For example, purple is represented as (155, 21, 255), meaning it 
has some red (155), very little green (21), and lots of blue (255). In Gerald’s experi-
ence, students love learning this. 

The next abstraction is about how Python operationalizes randomness.As we 
saw earlier, the students came to understand how Turtle Blocks dealt with ran-
domness via a Random block, as depicted in Figure 3.9. So, now students had to 
learn how Python deals with randomness and that the Random block in Turtle 
Blocks picks a new number within a user-defned range each time the program 
uses it. In Python, they frst need to understand that this functionality also lives 
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 Figure 3.11 A Python Turtle program that defnes a function (“square”) that contains the instructions for drawing a square. 
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in a library called random, which has a method called random.randint (which 
means “from the random library, grab the function randint, which picks a random 
integer”). So, their code needs to include it as well as the Turtle library. Then 
they just need to see an example of how this is done. Gerald gives them the 
code snippet random.randit (0, 255). He encouraged them to treat it just like a 
block they have to include in their Python program.This code snippet generates 
a random number in the range indicated in the parentheses. In order to generate 
a random color, we would need a set of three random numbers, each of which is 
between 0 and 255 (see Figure 3.12.). 

By the end of these challenges, Gerald’s seventh-grade students had by and 
large successfully navigated the transition from block-based to text-based coding. 
They were certainly not expert programmers, nor was that Gerald’s goal. His goal 
was to provide a learning environment in which they would be able to code by 
typing words.And it worked.They were writing usable code in Python. 

Phase 3:Text-Based Coding in Arduino 

By the end of the Python Turtle work, Gerald felt his students were ready to 
tackle the next level of complexity and abstraction, namely, building and coding 
interactive devices using the Arduino microprocessor and its associated software 
IDE.That’s a whole lot of polysyllabic babble. Let’s break it down. 

The Arduino microprocessor board is an inexpensive (about $30) miniature 
computer that can be used as the core (the brain) of interactive devices. Figure 3.13 
depicts a device built with the Arduino.This device is a circuit that includes a red 
light called a light-emitting diode (LED). 

The circuit is a simple one.The LED is controlled by pin 13 on the Arduino 
board, and its wiring utilizes a resistor that protects the LED from burning out. 
The simple circuit returns to the Arduino via the GROUND pin. It’s that easy. 
The circuit comes to life, so to speak, through some coding that results in the LED 
blinking on and of. Allow me to explain what the code you see in Figure 3.14 
actually says.We’ll do it one step at a time. 

This program has the same two main components of any Arduino program: 
setup and loop. The setup portion of the program literally sets up what’s needed 
for the program to work: pinMode(LED_BUILTIN, OUTPUT). In this case, 
the piece of code declares that our program will talk to the built-in LED (which 
happens to be on pin 13).The loop portion of the code details the instructions, 
which will repeat over and over again (looping) as long as the Arduino board has 
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 Figure 3.12 A Python Turtle program that defnes a function that draws a square with a randomly generated color on each side. 
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Figure 3.13 Arduino device for blinking an LED. 

power. In this case the LED pin is set to HIGH (which means “on”) for 1 second 
(1,000 milliseconds): 

digitalWrite(LED_BUILTIN, HIGH); 

delay(1000); 

and then set to LOW (which means “off”) for another second 

(1,000 milliseconds): 

digitalWrite(LED_BUILTIN, LOW); 

delay(1000); 
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Figure 3.14 Simple program in Arduino for blinking an LED. 

Clearly, even this chunk of code requires that students understand diferent 
levels of abstraction. HIGH and LOW stand in for turning the LED on and 
of. Seconds are understood by the Arduino program in terms of milliseconds. 
Special words (like delay) and punctuation (like semicolons) give the program 
its intended meaning. In Arduino, as with other text-based coding languages, 
the syntax is less visually scafolded and intuitive. It must be explicitly taught 
and learned. 

Once students understood this pattern (and this abstraction) about how 
sensors, variables, and conditional statements work, they were able to apply 
it to other sensors and other behaviors. For example, a pair of students built 
a circuit that utilized an ultrasound sensor. An ultrasound sensor works like 
echolocation in bats and other organisms. One part of the sensor emits an 
ultrasound pulse and then receives that pulse when it is bounced of an object. 
The delay between these two events can be used to determine distance. 
Students used the data received from this sensor to control the speed and dir-
ection (backwards or forwards) of a motor.This is the beginning of an obstacle 
avoidance program for a robot—like those automated vacuum cleaners you 
see nowadays. 



 
  

 
 

 

 
 
 

 

   
 

 

 

    

 

Abstraction 

Phase 4: Exhibit and Refect 

Gerald’s students reported fnding phase 3 of the project the most difcult. 
This is certainly understandable. The Arduino code is far less intuitive than 
either the block-based code in Turtle Blocks or the human-friendly code 
in Python Turtle. The students loved the physicality of the circuits them-
selves. However, the physicality of needing to build circuits—along with 
understanding the fundamentals of wires, LEDs, resistors, and photocells— 
added to the complexity and the resulting levels of abstraction. Nonetheless, 
by the end of this part of his feedback mechanism project, just about all of 
Gerald’s students had successfully designed and coded interactive devices that 
utilized the Arduino microprocessor. 

On the surface, this work seems quite credibly to be about CS and CT skills. 
But it is far more about using these skills to deepen students’ understanding of 
science, specifcally. Certainly, the students were very engaged and challenged by 
creating an interactive device through text-based coding.They worked hard and 
generally met and overcame challenges.They learned to debug code successfully 
for the most part. In these ways, in Gerald’s experience, this type of program seems 
to support the development of self-regulatory skills. 

And yet there is something about supporting students in navigating the 
various levels of abstraction that Gerald believes is the most rewarding compo-
nent of this work.The frst time, for example, that students uncover that the code 
they are working with reads colors as a set of numbers within a specifc range (as 
with the RGB code related earlier) or they see that sensors (like those in their 
cell phones) merely take data from the outside world and convert it to changes 
in the fow of electricity and that this information can be used to control other 
behaviors, their minds are blown in ways that are unique and powerful and cool— 
all at the same time. 

Uncovering Subconcepts 

This chapter has focused on the key concept of abstraction and its subconcepts 
decomposition,pattern recognition, generalization and detail removal,modularity, 
and interfaces. Each of these has been illustrated in the description of Gerald’s 
interactive machine project with his seventh-grade science students.Throughout 
the project, Gerald orchestrated students’ experiences with abstraction and its 

49 



50 

 

  
   

 
 
 
 

  
  

 
 
 

 
 

  

 
 

 
 

Abstraction 

subconcepts.Additionally, he orchestrated the management of levels of abstraction 
as a matter of pedagogy and created a productive learning environment for these 
novice programmers. Let’s take a look. 

Decomposition 

According to the Blueprint, decomposition is defned as “ideas, problems, or 
projects [. . .] broken down into component parts to set the stage for deeper 
analysis.” In Gerald’s project, we can see decomposition as a key element that he 
included in each of the challenges described. Perhaps the most salient example 
revolves around students learning that Turtle Blocks and Python’s Turtle library 
both decompose colors into numbers. In the case of Turtle Blocks, these 
numbers take the form of values between 0 and 100, and colors have properties 
such as hue and chroma (which Gerald did not cover with his students).As we 
saw in Python, colors are defned as triplets of numbers, which correspond to 
the RGB system. In both cases, in order to efectively deal with colors in their 
programs, students had to learn to decompose their intuitive and descriptive 
experience of colors into ones that involve abstraction and decomposition— 
and numbers. 

Pattern Recognition 

According to the Blueprint, pattern recognition is defned as “decomposed 
component parts [. . .] examined to fnd patterns like similarities, repetition, 
conditional relationships, or nested relationships.” One of the turning points in 
Gerald’s programming project with his seventh-grade science students took place 
during their initial exposure to the Arduino language, which was by far the most 
abstract of the three programming languages.To introduce them to the language, 
Gerald had projected onto a smartboard the Arduino code for a program that 
blinked an LED on and of (see again Figure 3.14). 

Gerald began by asking students to try to fgure out what the code was doing. 
They could readily determine that HIGH and LOW was the same as on and of 
and that the delay was pretty much what it seemed to be. The real conceptual 
leap happened when some students made the connection between the setup 

and loop elements as being the same as blocks. Once they did, students suddenly 
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Abstraction 

began to fnd Arduino more like something they already knew than something 
completely new to them. Gerald worked to leverage these types of experiences 
throughout this project. 

Generalization and Detail Removal 

According to the Blueprint, generalization and detail removal is defned as 
“component parts [. . .] grouped by general characteristics, and unnecessary details 
[are] fltered out.” From the very beginning of the feedback mechanism project, 
Gerald worked to have his students frst do something and then step back and 
generalize what they had done. For example, when his students began to work in 
Turtle Blocks, the frst challenge Gerald gave them was to write a program that 
would draw a square. For many of them, this involved four sets of instructions: 
move forward, turn right; move forward, turn right; move forward, turn right; 
move forward, turn right. Once they had done this successfully, Gerald asked 
them to try to do the same thing with the fewest number of instructions (revisit 
Figure 3.4).This step had them see that only two things were happening (moving 
forward and turning right) and that these things could then be repeated as needed. 
Gerald repeated this type of pattern of challenge and then generalization/detail 
removal through his work with each of the three programming languages. 

Modularity 

According to the NYC DOE Blueprint, modularity is defned as “a process that 
completes a single task [that] is more useful when it can be chained together with 
other processes to accomplish something more complex.” During the project, 
Gerald highlighted this subconcept in each of the three programming languages. 
In Turtle Blocks, for example, modularity was accomplished via the Action blocks 
(see Figure 3.4). In Python, modularity was accomplished through the use of 
functions (see Figure 3.12). In Arduino, the structure of its programs includes two 
modular components, namely setup and loop (see Figure 3.14). Gerald continued 
to have his students understand that programming became efcient when sections 
of code could be made modular and that these modules could be reused both 
within and across programs. In fact, Gerald came to feel that modularity could be 
used to assess students’ understanding of programming concepts. 
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Interfaces 

In this project, Gerald’s students had to learn to interact efectively with several 
interfaces: one for Turtle Blocks, which included simple features like compat-
ible shapes indicating compatible functionality; one for Python, which, being text 
based, included potential errors stemming from typos; and one for Arduino, which 
introduced the increased requirements of its programming language. According 
to the NYC DOE Blueprint,“Interfaces help users complete tasks, while hiding 
details of the overall process.” 

Gerald discovered that the way each interface handled the processing of pro-
gramming errors ultimately became its most salient feature. Students had to learn 
to recognize, interpret, and address these various interface-specifc error messages. 
For example, Turtle Blocks generates a warning sign with arrows directing the 
programmer to the area of concern. Python highlights the line of code and 
provides some description of the error.The Arduino IDE will also highlight the 
line of code and provide some description.Typically, students felt Arduino error 
messages to be the most abstract. 

In Gerald’s experience, a key part of students’ success in learning to program 
is developing a capacity for recognizing, interpreting, and responding to these 
various types of error messages.This became the key activity in Gerald’s classroom 
once the students became familiar with the coding basics in each language. He 
also found that encouraging students to share their experiences with one another 
in a peer mentoring model became a very efective strategy to help students be 
able to deal powerfully with this interface-based feedback. 

In Sum 

This chapter has focused on the CS concept of abstraction and its subconcepts of 
pattern recognition, generalization/detail removal, modularity, and interfaces. In add-
ition, this chapter explored a connection to pedagogical strategies used by all successful 
teachers to orchestrate the levels of abstraction within a content area or skill in ways 
that allow students to engage powerful with in and thereby lead to mastery.A key com-
ponent of this work for Gerald was the pedagogical strategy of orchestrating and man-
aging levels of abstraction for and with his students in ways that allowed them to be able 
to respond to increasing levels of complexity and challenges efectively and powerfully. 

The pedagogical moves described here themselves fall into a pattern. First, 
regardless of the coding language used (Scratch,Turtle Blocks, Python, or Arduino) 
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teach some basic CS skills. For example, in Turtle Blocks, the basic skills include 
that one programs by snapping blocks together, as well as key blocks, like forward, 
right, etc.Then, design challenges that allow students to apply these skills in ways 
that are meaningful to them.Again, in Turtle Blocks, the students were challenged 
to create a program that produced a square with each side having a randomly 
generated color. These challenges should be orchestrated to anticipate and lead 
students to the functionality (like Actions in Turtle Blocks, RGB color syntax, 
and setting pins in Arduino) that are essential but almost impossible to discover. 
Once students are engaged in these challenges, it then becomes possible to intro-
duce them to this high level of abstraction, usually in a one-to-one or small group 
setting. By this point, to paraphrase the great math educator Dan Myer, students 
have a headache and the abstraction becomes the aspirin. 

We discussed these various types of abstraction through the description of 
a project that Gerald designed and conducted with his seventh-grade science 
students. His project focused on the science concept of feedback mechanisms 
and allowed students to design and model feedback mechanisms using tools that 
support computationality. The project gave students experience with block-
based programming in Turtle Blocks, an introduction to text-based coding using 
Python’s Turtle functionality, and, fnally, the opportunity to build circuits and 
create programs that control them in Arduino. 

Connections to Content Areas 

The recognition and development of abstraction are fundamental to any deep 
learning on the part of students in any discipline. Good teachers skillfully orches-
trate abstraction with their content areas, as well as levels of abstraction in the 
introduction of new concepts, skills, and content. Let’s take a look at what this 
could look like in these content areas. 

English Language Arts 

Reading and writing are all about abstraction.Young children learn that letters 
of the alphabet represent sounds, that words are representations of collections 
of sounds. Reading is all about decomposition and pattern recognition. When 
children are reading, we already ask them to identify things like character traits, 
or setting, or a narrative fow. In our normal teaching of these things, we could 
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easily make transparent the concept of abstraction (and its subconcepts of pattern 
recognition and modularity). Gerald worked with a teacher who designed a pro-
ject with her high school students where they made a graph of the evolution of 
characters in The Lord of the Flies. In her project, the students saw immediately the 
evolution of these characters across the book. 

History 

The study of history is very much about the discovery and application of trends 
over time. Abstraction, then, is fundamental to the study and practice of history. 
Students can be taught to ask the kinds of questions that allow them to uncover 
and apply these trends. Under which conditions does oppression generate revo-
lution? What factors are associated with the rise and fall of governments? Why 
are some people richer or more powerful than others? All of these questions are 
typical in the teaching and learning of history, and each allows students to interact 
powerfully with the practice of abstraction. 

Science 

This chapter focused on some ways to engage student inquiry in science through 
the use of abstraction. Scientifc inquiry across the grade levels is all about 
discovering patterns. What happens when hot and cold things come together? 
What happens when two objects collide? How does electricity work? Certainly 
tools that support computationality as we have seen in this chapter can be applied 
across grade levels. Systems of all types can be modeled as diagrams, in three 
dimensions, and through software. 

Math 

When children and adults say, as they too often do, that they hate math, they tend 
to ask the same question:“When am I ever going to use [insert math skill here] 
in real life?” Underlying this question is an inherent suggestion that abstractions 
are central to math, but not life. How untrue! In our normal teaching of math, we 
already teach students diferent levels of abstraction. Numbers can be represented 
by symbols, and these symbols can be used to represent mathematical thinking. 
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In addition, the mathematical skills regularly involve pattern recognition (“look, 
these are all even numbers”) and generalization (“any number multiplied by 1 
is itself), and modularity (3 + 2 is the same as 2 + 3). Programming tools can 
be broadly used for math instruction. For example, students can create function 
machines at pretty much any age level, bringing math and life together right 
before their eyes. 

The Arts 

When Gerald taught middle school, his art colleague had designed a project in 
which students created tessellations with sixth-grade students.You know: those 
M.C.Escher drawings where staircases ascend and descend into each other, where 
shapes and shadows twist and turn in unexpected ways. Central to this project was 
an understanding of modularity. How do young artists take a particular shape or 
concept and copy it to repeat, yes, but in new ways? Art teachers teach abstraction 
when they focus on the common patterns and techniques of diferent elements of 
art, such as brushstrokes, color schemes, and composition. 

For Further Exploration 

• Play with | Turtle Blocks: https://turtle.sugarlabs.org/ 

• Explore | Python Turtle: http://pythonturtle.org/ 

• Read | An introduction to Arduino: https://create.arduino.cc/projecthub/ 
projects/tags/kids 
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4 Algorithms 

You would think that someone who bought a multihundred-dollar chessboard 
was actually good at chess. Such is not the case.Tom is terrible at chess, a rudi-
mentary player whose complete lack of a coherent strategy becomes obvious after 
the frst few moves. But he loves playing it.And there was something special about 
this particular chess set that was simply irresistible. 

On this chessboard, your opponent’s pieces move themselves. No joke.The 
chessboard is designed so one person can play on their physical board without 
their opponent nearby.Your opponent can be on the other side of the world, 
playing you on a special mobile app. When they move pieces on their mobile 
phone, the pieces on Tom’s chessboard in New York City move on their own. 

Algorithms abound in this example. The Blueprint team defnes algorithms 
as “a generalized and repeatable sequence of instructions that achieve a particular 
purpose and output, given a set of inputs.” Let’s unpack further what algorithms are. 

The game of chess itself is inherently algorithmic. Each piece on the board 
has limited kinds of moves it can make. For instance, a pawn can only move one 
space forward at a time, except on the frst move, when it can move two, or if it is 
taking another piece, which it can only do diagonally. Each of the clauses in that 
previous sentence comprises “a generalized and repeatable sequence of instruc-
tion that achieve[s] a particular purpose.”The “purpose” is to play chess. Every 
kind of piece on the board has a comparable algorithmic logic.When you start 
to play a game of chess, you have to weigh which moves are most benefcial in 
both the short and long term.Your mind operates computationally: “If I move 
my pawn there, then I can force my opponent to move her knight out of position. 
That might help weaken her defense later.”What you begin to see is that not only 
are repeatable instructions algorithmic but so is planning for multiple possibilities. 
You can begin to branch out in a choose-your-own-adventure way of thinking. 
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People think algorithmically all the time. Have you ever watched someone’s 
face when they are running late for a connection at an airport, when a subway 
line is down, or when there is trafc on their usual route home? If you could listen 
to their thought process, it would reveal a series of possible ways they envision 
getting to where they need to go—all weighing the limitations and possibilities of 
each route and all with alternatives in mind should some options prove untenable. 

We might refer to what we just explored as analogue algorithms. That is, 
there are no digital computers involved. However, the very same logic undergirds 
the digital world. 

Tom’s wine-induced enthusiasm noted earlier for the chessboard did not 
appear out of nowhere. He had seen a YouTube video advertising it the previous 
week, but thought it too expensive. Come Thanksgiving, while scrolling through 
Instagram, ads for the chessboard began appearing in his feed over and over.Tom 
was tightly targeted for those advertisements in a digital world where social media 
companies share user data to deliver just-in-time marketing primed for specifc 
people to act on in a specifc moment.The digital marketing world thrives on 
sophisticated algorithmic logic. Tom has the chessboard to prove it. 

Rock, Paper, Scissors Battles 

When the eyes of 200 elementary and middle school students fx on you, the noise 
briefy calmed, you have about 7.4 seconds to earn their continued attention.That 
window of time is not at all scientifc, no empirical study to justify its statement. 
Just gut instinct.Tom got right to it. “Welcome to our camp on computational 
thinking!” Not really an attention grabber.Too many syllables. He went on. 

“We are about to hold a frst-of-its-kind tournament where only one of you 
here today will be named champion!” 

That was more like it. 
“How many of you have ever played Rock, Paper, Scissors?” Hands shot up 

throughout the cafeteria in which they gathered. He went on. 
“Excellent. Here’s how it will go. Each of you is sitting at a table with your 

team of about twenty students and several teachers.Your teachers will help facili-
tate a practice round in which everyone plays a three-round match.The victors 
of those practice rounds will go to the right side of the room.The nonvictors will 
go to the left side of the room.You have three minutes. Go!” 

With that, children turned to each other with a range of expressions on their 
faces. Some seemed dazed, overwhelmed by the sheer number of other human 
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beings in close proximity whose volume levels abruptly rose and whose arms 
began swinging and darting through the air. Others wore visages of concentrated 
competition.They chanted—rock, paper, scissors, shoot—and quickly dispensed 
with their opponents. As the battles were won and lost, teachers ushered the 
students to the two sides of the room. 

“Now, we have two teams. Over the next few minutes, your teams will con-
duct a best-of-three series of Rock, Paper, Scissor battles. If you lose, just step 
toward the outside near the wall and cheer on others.Your team has to determine 
one representative who will compete against the other side of the room for the 
championship. Keep battling it out within your team until there is one student 
remaining, then send them up to the front of the room. Please begin.” 

And so the rounds continued, the giddy hollers of “rock, paper, scissors, 
shoot” echoing all around. Little by little, the crowds on both sides began to give 
way to clusters of smaller challenges. Ultimately, each side sent up their fnalists to 
the small stage at the front of the room. 

The two students, a boy and a girl, introduced themselves to the yelps of 
their respective teams. They shook hands like prize fghters and began. After 
three expert rounds, the girl raised her hands in victory.Tom proudly presented 
her with the coveted “air trophy,” which, as the title suggests, was a giant non-
existent award composed of air. (Despite its fairly clear title, the student was 
nevertheless visibly disappointed.) As the fnalists returned to their teams amidst 
a buzz of congratulatory remarks,Tom congratulated the entire room on what 
he considered the most important victory to be:“You have all just demonstrated 
beyond a shadow of a doubt that you know far more about computationality 
than you might imagine.” 

For many months leading up to it,Tom worked with his colleague Hannah 
Gerber to design a two-week professional learning experience for pre-service 
teachers as part of a grant in computational thinking. As briefy described in 
Chapter 2, the frst week focused on teaching teachers about computationality 
through a series of learning experiences.The second week put teachers in charge 
of groups of students, whom they guided through similar learning experiences.As 
in this book,Tom and Hannah wanted to make sure that they inverted the usual 
way teachers learned about computationality.Whereas many approaches focus on 
applying computational principles and practices to classroom instruction from 
the outside or plugging computer science exercises into one’s lesson, they wanted 
to tease out ways that computationality already operated in participants’ lives, 
both inside and outside school. Instead of putting teachers through traditional 
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professional development workshops, they designed the frst week of the camp to 
be more like a “computational carnival,” with a series of loosely connected kinds 
of activities that together created a patchwork of computational learning: smart, 
fun, and hands-on. 

One of the core challenges was to resist their instincts on how to design 
computational learning experiences. It was easy to imagine giving students 
access to web-based coding platforms that ofered engaging introductory 
exercises in programming. But that wasn’t quite what Tom and Hannah were 
after. Computationality was already a part of everyone’s lives. If they could 
craft ways for teachers and students to uncover what they already know about 
computationality, they theorized that learners would feel more empowered to 
continue exploring computer science afterward. When they began discussing 
ways to introduce algorithms to teachers, Tom and Hannah quickly found 
themselves considering the usual YouTube videos in which mathematicians 
and computer scientists explain how algorithms are formulated and what 
function they serve in software.The problem with relying solely and too early 
on videos is that it perpetuates the idea that learning is a matter of learners 
absorbing information.That’s nearly never true.As Tom often repeated during 
those two weeks: Learning isn’t about teachers covering content; it is about 
students uncovering understanding. What were ways to help teachers and 
students uncover what they already knew about algorithms? 

As the noise in the room settled,Tom repeated the idea to the group that they 
already knew way more about computationality than they realized.And not just 
computationality. But algorithms. 

“Let us prove it to you. In your teams, take the next few minutes to dis-
cuss something with your teammates. For every round of Rock, Paper, Scissors 
you played, how did you determine whether to throw rock or paper or scissors? 
Everyone has their own strategy.What was yours? Your teachers will help facili-
tate and prepare to share some of your insights with the whole group.Your time 
starts now.” 

Stopwatch in hand,Tom circulated to listen in on how students approached 
the game. In the distance, he saw a small group of boys animatedly demon-
strating to each other diferent ways they had decided to throw their hands. It 
was hard to hone in on individual sentences from any one group as the col-
lective chatter in the room crunched along inaudibly.After three minutes,Tom 
called everyone back to share. 

“Who’d like to start?” 
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“We will,” asserted one of the teachers as she took the microphone. She 
invited up one of the students, an eleven-year-old who appeared to have given 
the matter a great deal of thought. 

“I always start with rock. But I don’t really expect to win the frst round. I 
just want to see what they throw.Whatever they throw, I will throw next time 
whatever beats them. So if they throw scissors the frst round I will throw rock in 
the second round. But if they throw paper I will throw scissors.” 

Whispers unfurled in the room like a blanket being placed on the ground 
for a picnic. 

Then another team raised their hand. They took the mic. A nine-year-old 
student shared his strategy. 

“I just go random. I don’t want my opponent to have any idea what I am 
going to throw. If I am random, then they can’t ever fgure out what I’m going 
to do. But they will keep trying to fgure it out and get frustrated.That gives me 
an advantage.” 

This idea was greeted with a swell of discussion in the room. Some 
participants shook their heads in disagreement that a randomized Rock, Paper, 
Scissors approach would work. Others seemed to view it as the most brilliant 
battle strategy since Hannibal crossed the Alps to romp through Italy. 

In planning the week’s activities, one of the most important concepts for 
participants to uncover was the idea that algorithms are intentional and instructive. 
You will often hear them described as recipes or dance moves. (In fact, Hannah 
conducted a fantastic activity that guided participants in piecing together the steps 
in the Macarena, followed by decomposing the steps in the Floss. If you want to 
see a room full of middle schoolers get fred up, ask them to document the precise 
steps necessary to perform the Floss. Madness will ensue.) 

Now that teachers had uncovered questions and insights about the nature of 
algorithms,Tom and Hannah showed a clip from a BBC documentary by Oxford 
professor of mathematics Marcus du Sautoy to illustrate the instructive nature 
of algorithms. In the video, du Sautoy sets up a little experiment on the famed 
campus. On a small table over which is draped a red and white checkered table-
cloth, he sets a large glass jar. In the jar, he places thirteen chocolates wrapped 
in gold foil—and one red hot chili pepper. The afable professor then invites 
unsuspecting students to play a little game with him.They will each take a turn 
retrieving candies from the jar in amounts of one to three at a time.Whoever is 
left with the chili, well, you know what happens. 

It seems like a simple game in which both participants have a fair chance 
to win. After all, you can select one or two or three candies at a time. As long 
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as you are thinking ahead, you should be able to force your opponent to wind 
up running for a glass of milk (or tequila, maybe). But du Sautoy always wins. 
He wins because he has a trick up his sleeve. As he later reveals, “Whatever my 
opponent does, my algorithm tells me how to respond.” He always chooses frst; 
he always chooses one chocolate to start. And with that, his opponent is already 
doomed. Here’s why, in his own words: 

“So, the key is to think about grouping things in fours.Thirteen chocolates 
divides into three groups of four, with one left over. So, by taking one chocolate 
in the frst round, and then four minus whatever the other person takes in the 
subsequent rounds, this algorithm ensures that the other player is always left with 
the chili.” 

The clip helps playfully drive home the instructive nature of algorithms— 
that they are like recipes or dance moves. But it also alludes to the intention-
ality inherent in algorithms, that someone designed the algorithm and that their 
intentions might not always be neutral or kind. 

Recall the Blueprint defnition. It is not just that algorithms provide “a 
generalized and repeatable sequence of instructions that achieve a particular pur-
pose and output, given a set of inputs,” as described in the frst part of its defnition. 
But rather, it is the second sentence in the defnition that merits equal or greater 
attention, especially the last clause:“to understand when, why and how to imple-
ment an algorithm, and to consider who or what might be afected.” The last clause 
refers to the intentions of those who compose algorithms, to the ways in which 
their work has intended and unintended consequences in the world. Algorithms 
are not just math or computer code.They have very real consequences in peoples’ 
lives, not just hot chilis.Algorithms are used to determine what interest rate you get 
on a mortgage.Algorithms are used in large school districts to place children into 
kindergarten and to set the cutof scores for teacher efectiveness ratings.Algorithms 
are even used by judges in some counties to sentence criminals to jail.We would go 
out on a limb to say that your average banker or district ofcial or judge would be 
hard pressed to explain in any detail what algorithms are and how the way they are 
formulated can actually perpetuate inequity and discrimination. Algorithms merit 
severe ethical scrutiny, a feat made all the more challenging because they are often 
invisible to users and guarded tightly by the companies who produce them. 

The Hannibalian child now seated,Tom drew everyone’s attention to a slide 
on the screen. It featured a table. 

“Check out the screen at the front of the room.You might not ever have 
heard of Boolean logic, but everything you just did tells me you know quite a 
bit about it. Boolean logic is a fundamental principle that makes the whole 
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Table 4.1 The Rules for Rock, Paper Scissors as Boolean Logic 

IF Player 1 AND Player 2 THEN Outcome 

Rock Rock Tie | Redo 

Rock Paper Win | Player 2 

Rock Scissors Win | Player 1 

Paper Paper Tie | Redo 

Paper Rock Win | Player 1 

Paper Scissors Win | Player 2 

Scissors Scissors Tie | Redo 

Scissors Rock Win | Player 2 

Scissors Paper Win | Player 1 

computational world operate. It literally dictates how electricity fows through 
computers. Boolean logic uses ‘operators’ to say,‘Well, if this thing happens AND 
this other thing happens, then the OUTPUT will be such and such.’The point is 
that words you already know like AND, OR, and NOT are the heart and soul of 
how computers engage with the world.” 

To be honest, this was a point in the two weeks where Tom realized a little 
too much of his secondary education background was coming through. Some of 
the older students seemed to follow. Some of the younger students, whose ages 
were closer to his son’s age, looked like they were getting lost.That didn’t stop him 
from continuing, however.After all, he had a table! 

“Just look at the table [Table 4.1] to see precisely how Boolean logic informed 
the algorithms you yourself used to play Rock, Paper, Scissors.” 

He proudly stepped aside, waving toward the screen. 
“Earlier, some of your peers shared how they decide to throw rock, paper, or 

scissors. Remember? They said things like,‘If I throw rock and my opponent throws 
paper, next time I will throw scissors.’The way their minds were working, the way they 
combined all sorts of information and predictions in order to try and achieve a specifc 
outcome . . . that is inherently algorithmic.They are applying Boolean logic to the 
game so quickly and so naturally, they are hardly aware of their own computationality.” 

Uncovering Subconcepts 

Recipes; dance moves; sinister chocolate and chili games; and Rock, Paper, 
Scissors. These examples help defne the conceptual contours of algorithms. In 
addition to such broad defnitions, there are four subconcepts that can further 
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one’s understanding: algorithm design; control fow; inputs, variables, and outputs; 
and application. Let’s uncover briefy what each of these mean. 

Algorithm Design 

The Blueprint defnes algorithm design as “instructions [that] should be general, 
clear, well-formed, complete, and capable of being executed as intended without 
confusion.” In Rock, Paper, Scissors, the rules of the game were so socialized and 
commonly known that Tom did not harp on reviewing them. Instead, he showed 
a simple slide that depicted each of the three hand gestures—a fst for rock, a 
fattened hand for paper, and an inverted peace sign for scissors—with arrows indi-
cating which gesture beats which gesture.The generally understood instructions 
for playing the game were as follows: 1) choose a partner, 2) each partner throws 
rock or paper or scissors per round for three rounds, and 3) whoever wins the best 
of three rounds is the victor.Then, within those battles, participants revealed that 
they, too, had their own decision-making algorithm designs for how to increase 
their chances of winning. Many students expressed that they always began with a 
particular gesture.This allowed them to confdently begin matches and know how 
to interpret their opponent’s throws.When the one student shared that his second 
throw would be based on what his opponent throws in the frst round, he is putting 
in place a clear and complete instruction that leaves little room for confusion. 

The algorithm design in the chocolate and chili game is a bit more 
sophisticated. In his game, Professor du Sautoy also puts in place a simple set of 
instructions to ensure his victories. He always takes the frst chocolate. He only 
takes one chocolate on his inaugural selection.Then, on his next turn, the pro-
fessor always takes four minus whatever his opponent takes. So, if his opponent 
takes three chocolates, he takes just one. In both cases, it is interesting to note 
that both the children playing Rock, Paper, Scissors and the Oxford professor 
try to control the possibilities before them by knowing what they are going to 
do to start. Controlling possibilities is a key element of algorithms, as the next 
subconcept also shows. 

Control Flow 

Remember the child who confdently argued for randomness as his Rock, 
Paper, Scissors strategy? Despite its appeal, it lacked what we might call a 
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logical control fow. According to the Blueprint team, control fow refers to 
“the order in which steps of an algorithm are executed; determined by logical 
constructs such as IF statements, loops and calls to other procedures.” With 
randomness always the rule, it is impossible to systematically and intentionally 
increase one’s odds of winning.There’s no real algorithm at play. Contrast that 
with the idea that a student will throw their second gesture based on your frst 
gesture, or even that they keep track of what you throw in other rounds, and 
you see how a sophisticated logic can quickly emerge. As described earlier, it 
is clearest when we think in terms of IF my opponent throws paper, THEN 
I will throw scissors. But anyone who has ever played multiple rounds of the 
game while being on daddy duty and not having sufcient activities to engage 
the child, as his wife had suggested before leaving the two in a sweltering 
Manhattan apartment for the day (a completely random example, obviously), 
can tell you that sometimes loops happen.You know what they look like.After 
a couple coincidental rounds where the two players each throw the same 
gesture—rock, rock; paper, paper; scissors, scissors—they both start to hedge if 
or how to break the tie.They get caught in the tie loop, partly wanting to see 
who breaks it frst and partly too afraid to call the other’s bluf. One can design 
algorithmic approaches to problems, but one must also ensure the fdelity of 
their implementation. 

Inputs,Variables, and Outputs 

Inputs, variables, and outputs, as defned in the Blueprint, refer to “how 
data is passed into (inputs), manipulated, used within (variables), and returned 
from the algorithm (outputs).” In the chocolates and chilies examples, the way 
these three elements interplay is very clear. After taking one chili to start, the 
professor collects data based on his opponent’s selection. He has in his mind two 
variables—let’s call them x (how many chocolates his opponent chooses) and y 
(how many chocolates he will select next)—and he uses the data he collects to 
complete an equation: 4 – x = y. Or to put it slightly diferently, based on his 
logic, he treats the number of chocolates his opponent takes as an input that, 
once run through his equation, gives him an output for how many chocolates 
he himself should take next. 

Notice that in the case of our randomness-loving preteen, his Rock, Paper, 
Scissors strategy didn’t really make use of inputs, variables, or outputs. He didn’t 
collect data on what his opponents threw. He didn’t have a way to use any data 
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he might have collected. And he didn’t have any intentionality behind his ges-
tural output. He just threw whatever he wanted in a vacuum. But boy did he 
love doing it! 

Application 

At its core, application is simply “understanding where, when, why and how to 
apply algorithms and which algorithm to apply in a given context,” as per the 
Blueprint. Knowing how to apply an algorithm is just as, if not more, important 
than knowing how to create one. For example, were the Oxford professor to 
forget to take one piece of chocolate to begin the game, he might very well end 
up eating the hot chili.The application of the algorithm requires that it succeed 
that very crucial frst step. Or, sometimes when Tom plays Rock, Paper, Scissors 
with his son, his son evokes something he calls “light saber.” In short, just as Tom 
is throwing rock or paper or scissors, his son shouts the term, begins making 
the woo-woo swishing sounds of Luke Skywalker’s weapon of choice, and then 
crushes whatever gesture Tom throws.Tom’s algorithm for determining what to 
throw next cannot be adequately applied to this creative—but illegal, thank you 
very much—maneuver. 

The notion of application also cuts to the core of the issues of ethics that 
engulf the design and use of algorithms today. Many people are unaware of 
“where, when, why, and how” algorithms operate in our world. Everything you 
see in your social media feed streams past you because of many algorithms oper-
ating clandestinely beneath the screen. We say algorithms in the plural form 
because it oversimplifes matters to point a fnger at just one company. No one 
company is in control of our digital lives. Companies share information, plug into 
each other’s systems, and sell our data to myriad other companies.There’s a reason 
the term big data has gained so much traction today. Considering the bigness of 
the data, companies can’t possibly make sense of it manually.They have to make 
sense of it automatically, which means they need a sophisticated logic executing 
things behind the scenes.That’s where algorithms come in. As suggested earlier, 
the kinds of decisions algorithms make on behalf of companies are becoming 
increasingly concerning. Should a company’s algorithm, which is hidden from 
our view and opaque even when made available, have the power to determine 
without human intervention whether a self-driving car stops and slams on the 
brakes when its sensors detect something that might or might not be a child in 
the road? Answers to such questions are not easy, which is why all content-area 
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teachers should become familiar with them and ask themselves what algorithms 
mean for their pedagogy. 

In Sum 

From chessboards to social media, children’s games to campus exhibitions, 
algorithms are all around us.What is especially powerful about algorithms is that 
they represent not only a concept, but more accurately, a way of thinking about and 
acting in the world.That’s why reimagining the algorithms in one’s content area 
can be well worth teachers’ attention: algorithms ofer a way to deepen one’s craft. 
What’s more, when teachers and students begin to understand that algorithms are 
all around us and that they are not the domain of mathematicians and computer 
scientists alone, we create opportunities for people to think more confdently and 
critically about the way companies and governments increasingly automate core 
aspects of life—often in ways that are hidden from public view. It doesn’t take 
much to get started. Just ask yourself how any of the subconcepts earlier could 
be used in your current teaching and curriculum to deepen existing assignments 
and learning experiences.We suspect that doing so will quickly demonstrate that 
computationality has much to ofer you and your students.And with that kind of 
input and curricular variables at your fngertips, the outputs will propel you forward. 

Connections to Content Areas 

By this point, we hope it is clear that algorithms play such an important role in 
our world that all teachers and students beneft from understanding their basic 
nature and function. Still, what is a content-area teacher to do with that informa-
tion? How does one use the concepts shared earlier to deepen and expand their 
classroom practice? Well, let’s take a look. 

English Language Arts 

Some literature is inherently algorithmic. Shakespearean sonnets are a great 
example. Sonnets are composed of fourteen lines that rhyme in a prescribed pattern: 
ababcdcdefefgg. They also employ various literary devices to convey meaning, like 
repeating vowel sounds,or assonance.When studying how sonnets work,ELA teachers 
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can focus on the choices poets make as writers within the sonnet algorithm. For 
example, if line 1 ends with the word blue then line 3 cannot end with the word 
bird, even if the author is writing about a blue bird. Similarly, if a poet has to choose 
a word, she would be wise to look for other words or images she wishes to asso-
ciate it with and see if she can tighten the association by repeating vowel or con-
sonant sounds. Using algorithms as a guiding framework, the quality of students’ 
analysis—and their own writing of sonnets—can be increased in so many ways. 

History 

At the heart of studying history is the examination of why human beings and 
governments made the decisions they made. Similar to studying literature, much of 
what students must do is to interrogate the decisions others made in hopes that it 
will teach them how to make better decisions themselves, as writers and as citizens. 
History teachers might try this: Identify a key decision made by some historical fgure. 
Then, ask students to imagine that the historical fgure created a chart for herself that 
included three columns: inputs, variables, and outcomes. Finally, still imagining them-
selves to be the historical fgure, ask students to fll out the table for some signif-
cant historical decision. For instance, what kinds of variables might Harriet Tubman’s 
table have included on when and how to free her family when she returned from 
Philadelphia to Maryland? What inputs might have informed President Truman’s 
decision to authorize the use of the atomic bomb? These questions encourage deep 
engagement with historical content—and they happen to be algorithmic. 

Science 

As mentioned earlier, algorithms can be used to operationalize Boolean logic. 
Nowhere is that so tangible and electrifying as in exploring circuits. In a unit 
studying electricity, students might explore the way circuits turn on and of, 
hypothesizing the logic that dictates when electricity fows.To bring this to life 
in the classroom, teachers could use a product called Snap Circuits, which gives 
students opportunities to posit the cause-and-efect relationship between parts of a 
working circuit.What happens, for example, when electricity fows from batteries 
and encounters a switch? We can see that depending on the position of the switch, 
the light indicating electrical fow turns on or of. But why does it do that? How 
exactly does the switch do that? Such questions naturally uncover opportunities 
to examine the logic undergirding electrical engineering and computing. 
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Math 

Recall the simple equation we wrote to represent the professor’s chocolate and 
chili game? Well, students can write similar expressions and equations to represent 
all kinds of decisions they make every day. How do students decide what time to 
wake up? What route do they take to and from school? How do they determine 
how much to save for that trip they want to take or a new pair of sneakers? By 
creating subtle opportunities for students to represent their world algorithmically, 
teachers can help students see that what they learn in school is hardly contained 
within the classroom walls. Of course, in its most explicit form, teachers could 
look at actual examples of algorithms online. Just be careful that they don’t have 
the unintended efect of making students feel computationally inadequate. 

The Arts 

Music is algorithmic. Depending on the note played at a given moment in a 
given key of a given piece of music, the note that follows can only likely be a 
few options. Try playing a piece of music for students. Pause the track before 
the next note is played.Ask students to vote on what note they think will come 
next and explain why.Then, extend their thinking by taking the top two options. 
Ask students to vote on what the next NEXT notes might be. If a Bb is played 
next, what note do you think would follow that? And so on and so on. By asking 
students to predict what will come based on what has transpired and asking them 
to explain their rationale, teachers can create a space where the wonder of algo-
rithmic creativity emerges from the very things we enjoy already. 

For Further Exploration 

• Watch | BBC documentary on algorithms featuring Oxford math professor 
Marcus du Sautoy can be found at https://youtu.be/kiFfp-HAu64 

• Read | O’Neil, C. (2016). Weapons of math destruction: How big data increases 
inequality and threatens democracy. New York: Crown. 

• Read | Williamson, B. (2015). Governing software: Networks, databases and 
algorithmic power in the digital governance of public education. Learning, 
Media and Technology, 40(1), 83–105. 

https://youtu.be
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5 Programming 

The chessboard Tom bought isn’t magical, though it is often compared to a 
bespelled game memorably played at Hogwarts. From the seemingly automated 
sliding of chess pieces to the way Tom discovered and purchased the board, pro-
gramming languages operated in the background. Programming languages are 
mostly invisible, operating at the speed of electricity across complex network 
infrastructures. Remember that digital refers to software and that software is 
powered by human and computational languages. 

To start, in order for the chessboard to work, it must be connected via 
Bluetooth to a smartphone that has the manufacturer’s mobile app. Programming 
languages power the phone being used, the receiver in the chessboard, and the 
mobile app itself. You cannot easily see all of those languages. (Notice the plural 
form of languages we are using here.Any piece of software tends to rely on mul-
tiple programming languages at once, even if those who created the software 
focused their development on a single language.) The programing languages are 
designed to be hidden, sometimes protected doggedly in the name of intellec-
tual property. So when the average person gets uncomfortable with words like 
programming or coding, it makes total sense.You are intentionally shielded from 
programming languages. Instead, you just see a button or a picture.The thing 
just works. 

Another level of programming languages is at play, though. Remember that 
Tom purchased the chessboard because he was the focus of a targeted marketing 
campaign.Yes, he had also imbibed much of a bottle of Cabernet Franc from a 
region called Samur-Champigny (see how the memories come back with time!), 
but that alone would not have resulted in his purchasing the chessboard.A com-
plex web of marketing and sales programming languages and systems was also at 
play.Very likely,Tom’s web browser noted his having watched a YouTube video of 
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the chessboard and automatically captured that information. The browser and 
YouTube share owners: Google. Google also operates a marketing juggernaut. 
It is quite possible that the owners of the chessboard company used Google to 
cross-reference users’ search histories with their Instagram accounts.Again, all of 
this happens rapidly, invisibly, and automatically. And all of this is made possible 
because human beings write computer programs to make it happen.When Tom 
saw the advertisement for the chessboard, it was the culmination of a computa-
tional chorus directed to increase the chances that he would do so. It is possible 
that he was targeted late at night, when anyone on social media tends to exercise 
poorer judgement than in the morning.And maybe the marketing system knew 
he had purchased copious amounts of wine that evening.Tom used his phone to 
pay for wine at the store. 

If, as the Blueprint team says, programming “is about giving instructions to 
computers . . . [and] can be done through a constantly changing set of languages,” 
how is the average teacher supposed to get more familiar with it? All the languages 
seem hidden! There is no shortage of tools teachers can use to become more 
familiar with computer code, some of which we will explore here. But you can 
also expose the code that already comprises your daily life. The easiest way to 
do so is to navigate to a favorite website you visit every day. On any web page, 
you can right click on the screen and see an option to “View Source.” (If you 
don’t see this option, just search online for “view source” and your type of com-
puter and browser.) A new tab will open that shows you the Hypertext Markup 
Language (HTML) language that computers use to put that web page together. 
Websites often use three main languages: HTML, Cascading Style Sheets (CSS), 
and JavaScript. When you look at the HTML code for a favorite website, just 
remember that a team of human beings wrote what you see in order to tell a 
computer how to create the web page.You experience programming every day. 
You just might not know where to see it. 

Talking and Dancing with Robots 

Allow us to begin with a tale of two computer science (CS) learning environ-
ments.The frst is a story about Excel. Gerald’s doctoral program required that 
he participate in two 4-hour workshops featuring Excel in order to support 
the collection and analysis of data. The workshop was conducted in a typical 
university computer lab, with rows of tables containing desktop computers.The 
instructor provided a very detailed workbook on the functionality of Excel and 



 
 
 

  
 
 

 
 
 
 
 

 
 

 
 

  
  

   

Programming 

then proceeded to walk students through it, menu item (File > New) by menu 
item (Help > Help). Gerald and his fellow students were expected to follow 
along, step by step, in exactly the order prescribed by the instructor and his 
workbook. They worked hard to follow the instructions, but found that they 
had questions and scenarios that ranged beyond the skills being addressed at 
any one time, and students experienced an unnecessary disconnect between the 
instruction provided and their own needs and interests.While Gerald’s know-
ledge of Excel certainly increased as a result of the workshop, he noticed that his 
role as a learner had shifted. Rather than feeling free to explore and try things 
out on his own, to ask questions shaped by his own interests and the needs of 
his research, he was encouraged to simply be compliant as a learner and get with 
the program. 

It is certain that this demotivation was an unintended outcome of this type 
of learning environment. The instructor certainly wanted his students to learn 
Excel. He was likely doing what he had done in the past and what probably 
worked in meeting his own learning style and goals. However, the relationship 
between a teacher-centered, low-autonomy, supportive learning environment and 
low levels of engagement and motivation stuck with Gerald and ended up shaping 
his own teaching. 

The second story involves a cat.When Gerald was a middle school science 
teacher, his ffth-grade colleagues asked him to introduce their students to Scratch. 
Scratch was created by the Lifelong Kindergarten group at the Massachusetts 
Institute of Technology. It was designed as a tool to allow young people to explore 
coding in a fun and friendly way.The mantra of these designers was “low foor, 
no ceiling,” meaning that it should be easy for anyone to get started in Scratch; 
what was possible in terms of complexity was determined by the learner, not the 
tool (see Figure 5.1). 

Scratch utilizes block-based programming, meaning that one creates programs 
in Scratch by snapping blocks together (similar to Turtle Blocks in Chapter 3). 
The ffth-grade teachers very much wanted their students to have an experience 
of Scratch, but were not comfortable providing the instruction themselves. For 
these teachers, and for most if not all of their students, this would be their frst 
experience with coding of any sort. 

Gerald’s original plan was to create a series of learning cycles where students 
would be introduced to a set of functionalities in Scratch and then practice it 
on their own through structured (meaning, teacher-designed) activities.The frst 
cycle was to feature some basic skills: adding/modifying sprites (sprites refer to 
cartoonish characters), using speech and thought bubbles and movement. 
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 Figure 5.1 Introductory project demonstrating basic functionality in Scratch. 
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There are three basic components of the Scratch user interface. On the left 
are categories of blocks represented by diferent colors; the blocks for the sound 
category are highlighted.These blocks are dragged into the middle portion of the 
screen to create the program itself. In what you see, a program instructs Scratchy 
the cat (the default sprite) to use a speech bubble to say “hello” for two seconds 
(say), then move ffty steps across the screen, and then meow (play sound)- all once 
the green fag is pressed. On the right is where the program is “performed.” 

Gerald has used this program as an introduction to Scratch for years, for both 
children and adults. Not once has an audience not laughed when the cat meows. 
Not once.This joy at the surprise tends to lead new Scratchers to try out all kinds 
of sounds. Scratch features a pretty extensive sound library, along with the func-
tionality to both edit and record sounds. (We leave it to you to imagine just what 
other sounds participants have recorded over the years!) 

In the ffth-grade classroom, students were seated at tables with their own 
laptops, while Gerald demonstrated his introductory Scratch program via a Smart 
Board. Rather than the traditional and orderly pedagogical rhythm of skill– 
practice–repeat like Gerald experienced in his Excel workshop, something very 
unexpected took place.As soon as Gerald demonstrated any skill, students tried it 
out immediately and went on just trying out other blocks to see what they did. 
They didn’t need to wait until the next structured cycle to learn something new. 
They were ready and eager to just dive in. 

Gerald also noticed that as soon as students got something to work, they 
simply had to share with the others around them what they had done and how 
it worked. Rather than sitting patiently doing only what was asked, students 
immediately began playing with various blocks and sequences of blocks and then 
sharing what they had learned—and even what had failed—with one another. 
They literally popped out of their seats and moved around the room. Gerald and 
the teachers began to refer to this phenomenon as “The Ripple.” 

Rather than stop The Ripple, Gerald changed gears. Instead of the organized 
presentation he had prepared, he started moving from table to table, conferring 
with students to see what they were trying to accomplish, supporting them in 
what their next steps could be. If students had mastered a skill, he deputized 
them to teach it to another student who was ready to learn it. He supported 
their sharing, their experimentation, and their enthusiasm. Gerald met them 
where they were and empowered them to move one another along to bigger 
and more complex things. The entire classroom learning environment shifted 
from being primarily teacher-centered to being primarily student-centered. To 
Gerald, it felt like magic. 
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Despite the seeming chaos of the experience, Gerald and the other teachers 
noticed that students were heavily engaged and invested in what they were 
learning.Their acquisition of new skills was much more iterative than linear. It 
took students very little time to begin to be able to work on projects of real 
complexity, such as games or elaborate animations. A pedagogy of exploration, 
discovery, and sharing arose organically to meet the needs and interests of these 
students. Student autonomy and engagement were key. 

What’s great about Scratch is that in addition to empowering students to create 
animated cats, it increasingly serves as an introductory coding language, one that other 
companies use to power their computational products. Robotics is a great example. 
Robotics companies have often either used Scratch to serve as the coding language to 
program children’s robots or emulated Scratch’s interface and concepts. In short, when 
you start with Scratch, you can continue to explore computationality without having 
to start from scratch. (Get it? With and from, Scratch and scratch . . . OK. Moving on!) 

A Tale of Two Robotics Projects 

We, your authors, have all used robots as vehicles to introduce novices to soft-
ware programming.The work described in this chapter was inspired by two such 
robotics projects: one conducted with sixth-grade math and science students, the 
other conducted with high school students in grades 10 to 12. (We will also hear 
about Pam’s more humanistic robotics project in Chapter 7.) 

Why Robots? 

In our various experiences with introducing students to programming, we have 
found that many of them relate diferently, and sometimes more positively, to a 
physical object rather than a digital one. Robots provide the combination of phys-
ical and digital experience that seems to be a sweet spot for young people. 

As described in Chapter 3, we think of it in terms of abstraction. When 
older elementary or younger middle school students are working to program 
digital objects, there is always a moment when the object being programmed 
is beyond the student’s world, “out there” somewhere. This becomes especially 
relevant when something is not working as intended. Later, students learn the 
term “debugging,” but early in the process they just say,“It’s not working!”When 
encouraged to describe the problem, they often use opaque language: “Scratchy 
the cat won’t meow when I want him to!” 
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With robots, this process is far less abstract. In the robotics projects that Gerald 
developed, one of the earliest challenges he gives to students working with robots 
for the frst time is some version of a race.To meet this challenge, students must 
program the robot to travel, as quickly as possible, in a straight line—say, down a 
hallway—and then come back again.When they see that their robot is not doing 
what they intended it to do, meaning their program does not work properly, 
the robot’s physicality seems to reduce the level of abstraction with which they 
are dealing.When something is not working, their descriptions are far more con-
crete. Instead of “my robot is not doing what it’s supposed to do,” they say,“I want 
the robot to turn right for three seconds, but it’s not doing that.” Students pick 
up the robot.They look at it.They then look at the code.Their work is no longer 
about coding for its own sake. Rather, it is about discovering how to realize one’s 
intention for and with this physical device.Students want the robot—that physical 
metal thing right over there—to actually behave the way they want it to.We have 
seen this diference to be a profound one for secondary students. 

(As an aside, there is also something about the process of physically assem-
bling their robots that is similarly meaningful to students. Robots often come 
unassembled, and each time Gerald has begun a robotics project with either 
middle or high school students, he has them assemble their robots themselves. 
This process takes about twenty to thirty minutes. During that time, a small trans-
formation takes place in which students form a relationship with the device, often 
naming their robot whether asked to or not.This experience powerfully, and con-
cretely, sets the stage for the coding work that follows.) 

This relationship with the physical robot does not end after the assembly 
process, either. Gerald remembers one illustrative story fondly. Midway through 
a robotics project with high school students, groups were given an expansion 
pack for their robots, which allowed them to add a servo (a mechanism for 
adding movement) and an external light-emitting diode (LED) light panel to 
their robots.This is one of the nice features of the robots used, which were called 
mBots.They are designed for additional construction, like their counterparts from 
LEGO called LEGO Mindstorms. 

Most students added these new components by building the robot up. In such 
cases, the servo allowed the cross pieces to spin, and the extra LED panel allowed 
for another set of really bright lights.The robot was no longer just confned to its 
initial construction. Students literally caused their robots to grow upward. 

While most students utilized this type of vertical construction, one student 
realized that he could use the extra LED panel to add undercarriage lights, like 
those he had seen in souped-up cars in his neighborhood.This idea really captivated 
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him, and he was determined to realize it. Implementing this idea, though, required 
the student to disassemble his robot and rebuild it. Gerald explained the extra 
work involved, but it became obvious that this modifcation was personally mean-
ingful to the student. He spent almost an entire two-hour session getting this 
robot and its new undercarriage lighting system to work exactly the way he 
wanted. This enhanced lighting became a key component later in the project, 
when the student and his partner incorporated this unique lighting system into 
a dance they had programmed their robot to perform.The outcomes in terms of 
both enhanced functionality and student ownership more than justifed the time 
it took for this student to re-engineer his robot. It is hard to imagine this student 
feeling so interested in and committed to a cat he had coded to meow. 

Some Robot and Software Suggestions 

There are many robot kits available for classroom use. Dash robots and Ozobots 
are designed for early elementary students and classrooms. The robots them-
selves are designed to be fun and inviting. Their programming languages are 
visual and intuitive in order to meet the needs and skills of pre-readers or early 
readers. LEGO We Do robots can do more complex things and have a Scratch-
like programming language.We have extensive experience working with mBots 
and LEGO Mindstorms and will discuss them in greater detail in order to 
identify some key ideas and elements for using them to teach programming to 
K–12 students. 

When designing a robotics project, we have found it useful to consider a set 
of factors. Price is important, given that particularly in a school setting money is 
a limited resource. Durability is also important. Ideally, the robots you decide to 
use should be able to take the wear and tear inficted by novice users. Degree of 
difculty in use and assembly is also very important. The robot should be easy 
to assemble, store, and expand. Most robot systems, like the mBots and LEGO 
Mindstorms used in these two projects, come with additional construction parts 
and sensors so that the robots can be modifed for diferent learning experiences. 
Further, it is important to consider the logistics necessary to operationalize your 
robotics program. How will the parts be stored and where? How will you and 
the students keep track of them? What are the practices and routines around all of 
these activities in your classroom? 

Lastly, robots are programmed using software (formally, software development 
environments) on a computer or mobile device. Care should be taken in making 
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sure that the software is appropriate for your students developmentally and in 
terms of the devices and technical support available in your setting. For example, 
the sixth-grade robotics program Gerald helped design used LEGO Mindstorms 
with its accompanying software. The high school STEM (science technology 
engineering, math) enrichment programs that Gerald has designed and led use the 
mBot along with its Makeblock software.The next section describes the LEGO 
Mindstorms robots and their Mindstorms software development environment as 
well as the mBots and their Makeblock software development environment in 
some detail. 

LEGO Mindstorms 

LEGO Mindstorms are robot kits that are an extension of the LEGO building 
ecosystem (see Figure 5.2). The kits include motors, gears, sensors, and other 
robotic parts and allow for additional construction using LEGO blocks.As such, 
these robot kits beneft from being already somewhat familiar to most students. 

Like Scratch, LEGO Mindstorms software features a block-based program-
ming environment, with blocks that are laid out horizontally instead of vertically. 
Additionally, clicking on a block reveals the options available for that block. For 
example, clicking on a motor block will reveal options for the amount of power 
and direction.A simple program might utilize three types of Mindstorms blocks: 
play, display, and make sound. In this program, once the play button is pressed, the 

Figure 5.2 LEGO Mindstorms robot used with the sixth-grade program. 
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software program is initiated and the word “Hello” is displayed as text on the 
robot’s screen and a tone is played through its speaker. In the Mindstorms soft-
ware development environment, clicking on a block reveals the various options 
available for that block. For example, the display block ofers the options of text, 
shapes, or images. 

The mBot 

The mBot is an afordable (about $100) robot that comes with two motors and 
several sensors (ultrasound, light, and line), and on-board LEDs (see Figure 5.3). As 
described earlier, extension packs are available that add functionality, like building 
kits, sensor kits, and lighting kits. mBots are relatively easy to assemble and come 
with clear, graphical directions. 

mBots are programmed using the Makeblock software development envir-
onment, which is based on Scratch.As with Scratch, the Makeblock user interface 
is divided into sections. On the left, the user selects the device (in this case, the 
mBot). In the center are the programming blocks divided into various categories. 
On the right is the program we are building.The resultant program would ultim-
ately get uploaded to the mBot (see Figure 5.4). 

Like the Mindstorms code depicted earlier, this program uses a small set of 
blocks: LED, play note, forever, and wait.The code lights up the LED in pink while 
playing a C4 tone for a quarter note, waits a second, then lights up the LED in 
blue while playing an F2 tone for a quarter note. These blocks are embedded 

Figure 5.3 The mBot. 

https://Scratch.As


 Figure 5.4 A program for the mBot that blinks its LEDs on and of while playing sound. 
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within the forever block, which means the robot will do this over and over again 
as long as it is powered up. 

One last feature of mBot’s Makeblock software is the ability for users to 
move beyond block-based programming to true text-based programming. In our 
experience, this is not something that all students will want, but for those who 
do the ability to make this transition is an important feature. Some students like 
the ability to program quickly by editing the text instead of being solely tied to 
blocks.While most introductory-level students will not be ready for text-based 
coding of their robots, some might be.And in our experience, many are eager to 
know what is going on “under the hood” even if they are not ready to make use 
of this text-based coding yet. Makeblock lets them see it, and even edit if they feel 
ready (see Figure 5.5). 

We will not review this text-based code in detail here, but invite you to try 
to connect what you see in the text to the blocks on the left. Gerald has done 
this type of exercise with students, even young adolescent students (as described 
in Chapter 3). In doing so, he has found that as students try to make connections, 
the degree of abstraction with text-based code begins to dissipate and the code 
becomes more readable. 

Some Best Practices for Teaching with Robots 

Our work with robotics had led us to discover some best practices.These have 
been test-driven with students in grades K–12 in various settings and with various 
robots. 

Pedagogy and Curriculum Design 

The frst element is the learning environment in which this work takes place. Both 
the high school and sixth-grade robotics projects shared a similar pedagogy and 
curriculum design, which consisted of three main elements: a student-centered 
learning environment, authentic student work, and programming. Allow us to 
share a brief overview of each. First, we aim for student-centered learning envir-
onments. Students had a great deal of say in terms of how they worked with their 
partners and how they managed their own time.They were presented with open-
ended challenges that were designed to allow them to demonstrate their prof-
ciency as programmers, while allowing them to pursue their own interests and 
ways of working together.The teachers in these two projects acted as facilitators 



 Figure 5.5 Makeblock interface showing block-based and text-based coding side by side. 
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and mentors to the students, rather than as the sole sources of all knowledge and 
skills. Second, we value authentic student work.Various challenges that Gerald 
included in these projects, such as a Dance-Of Challenge (see later), where groups 
of students programmed their robots to dance to a song of their own choosing. 
We aim for a strategic mixture of fun, challenge, and choice so that students will 
take ownership (and even pleasure) in completing the projects.The result is, we 
hope, a sense of authenticity and joy. Finally, these projects were designed to teach 
the core CS concept of programming, which we think in terms of what it means 
to use visual and text-based languages to communicate with computers. 

Two Examples of Robotics Projects 

Now let’s dive into how these design principles, pedagogical elements, and cur-
riculum came together in two specifc robotics projects. 

Example 1:A Sixth-Grade Math/Science Robotics Project 
When Gerald was a middle school science teacher, one of his sixth-grade 
colleagues, Lauren, was interested in developing a robotics program for her math 
students. Her goal was to both increase some of their math skills, particularly in 
the areas of algebra and geometry, while also improving their collaboration skills. 
Lauren had already arranged a grant for the LEGO Mindstorms robots and had 
them in her classroom. She also had the Mindstorms software development envir-
onment installed on her classroom set of computers. 

The curriculum that Lauren and Gerald developed was organized around a 
series of increasingly complex challenges that students worked in groups to meet. 
Here were the challenges.They called the frst one the Boat Float.This was not 
a robotics challenge, but was a warm-up engineering/collaboration task where 
the student groups were given paper, foil, Post-its, and pennies and charged with 
designing and building a boat that could hold the largest numbers of pennies. 
(Notice how concrete and tangible this is!) Next, Gerald and Lauren orchestrated 
a Robot Race. For this challenge, the student groups were tasked with assem-
bling their Mindstorms robots and programming them to run (as fast as pos-
sible, of course) down a 100-foot hallway, then turn around and race back to the 
starting point. It was during this challenge that the students were introduced to 
the Mindstorms software development environment.At the end of this challenge, 
student groups demonstrated their robots actually racing. Finally, it was time for the 
Dance-Of Challenge. For this challenge, student groups were tasked with reassem-
bling their robots to include a sensor (light sensor, sound sensor, or touch sensor) 
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and then to create a program that had their robots dance to a song of the group’s 
choosing. Students had to add the sensor functionality to their programs, specif-
ically taking information from the sensor to trigger a behavior in the robot. For 
example, using the sound sensor, students could program their robots to start their 
dance by clapping their hands. Students demonstrated their dancing robots on a 
classroom dance foor. 

Pedagogically, this project sequence was consistent with Gerald’s Scratch 
project described earlier, with students being allowed to explore the basic func-
tionality of programming their robots and then working together to design 
and implement solutions to the various challenges. This part in particular was 
important to Lauren, as one of her main goals was to increase her students’ cap-
acity to collaborate with one another. Her sixth-graders spent about forty-fve 
minutes per day over the course of six weeks engaged in this robotics program. 
During that time, students were asked to keep a journal that captured both their 
daily progress in building and programming, as well as the ways their groups 
collaborated successfully or not. 

Example 2:A High School Robotics STEM Enrichment Program 
For several years, Gerald has worked with a nonproft organization in Mt.Vernon, 
New York, which focuses on improving educational outcomes for students in grades 
4–12 by providing STEM enrichment programs of all types (e.g., math tutoring, 
coding, and robotics) throughout the school year and the summer. During one of 
those years, Gerald was approached to ofer a Saturday STEM enrichment program 
for high school students that focused on programming robots.This program took 
place in two-and-half-hour sessions over six consecutive Saturdays.As with Lauren’s 
sixth-grade robotics program, Gerald’s robotics program for the high school students 
was also designed around an increasingly complex series of challenges.And, as we 
might expect, the pedagogy employed was also similar. 

The STEM enrichment program provided several opportunities that are not 
easily achieved in a K–12 school setting. First, there was a small number of students. 
Approximately twenty-fve tenth, eleventh, and twelfth graders self-selected to 
participate. Second, while this enrichment program had clear curricular goals and 
learning objectives, the extracurricular nature of the program facilitated Gerald’s 
being able to customize the work to students’ individual interests. For example, 
one team was interested in the dance that bees do to inform their hive mates of 
the location of nectar and so worked to program their robot to perform that kind 
of dance.And they could do so, in part, because we weren’t beholden strictly to 
a scope and sequence. 
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Here was the curriculum that Gerald and his team designed for these high 
school students. Students were grouped in pairs, given their mBots, and tasked 
with assembling them.We began with the basics. Students worked in their pairs 
to assemble their robots (and, of course, name them), and then create their frst 
programs. These start with the fashing LEDs and playing sound programs, as 
depicted in Figure 5.5 and then go from there. Next, we created an Obstacle 
Course project. Once the students had successfully learned the basics of program-
ming their mBots, they were tasked with writing a program that allowed their 
mBot to navigate through an obstacle course.This challenge required them to add 
sensing functionality to their robots, typically using the ultrasound sensor that the 
robot used to judge distance.The sensors provided information about the envir-
onment (such as proximity to an object), which would then automatically change 
the robot’s behavior. Finally, students were ready for the Dance-Of Challenge. 
This challenge is the same as it was for the sixth-grade students.The pairs worked 
to program their robots to dance for at least two minutes to a song of their own 
choosing. Once again, they exhibited their work via a classroom dance foor. 

We have seen other sets of students and teachers do other really great things 
with robots of all kinds, and probably you have too.You’re limited only by your 
imagination. But now let’s step back for a moment and unpack the subconcepts 
that are at play. 

Uncovering Subconcepts 

This chapter has focused on the key concept of programming, including its 
subconcepts languages, syntax, development environments, and collaboration. 
Each of these has been illustrated in the description of Gerald’s robotics work with 
students as described earlier. (By now you might see, too, that much of this discus-
sion can apply to Gerald’s interactive machines project with seventh-grade science 
students in Chapter 3 as well.) Let’s look at how each of the subconcepts played out. 

Languages 

In these robotics examples, we have seen students work with two block-based 
coding languages: Makeblock (for the mBot) and LEGO Mindstorms. According 
to the Blueprint, languages is defned thus: “Programming languages have diferent 
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applications and require diferent amounts of prior knowledge.” Each has its own 
syntax and development environment, along with particular afordances, all of 
which have an important efect on students’ learning. 

Syntax 

Here is what the NYC DOE Blueprint has to say about syntax: “All program-
ming languages have a set of commands or reserved words and grammar rules 
that must be followed.” Both Mindstorms and Makeblock are block-based pro-
gramming languages that use conventions to determine how the programmer can 
operate within its software development environment. For example, Mindstorms 
requires that programs are built horizontally, whereas Makeblock requires that 
programs are built vertically. Each language has conventions as well for ensuring 
that programmers use the appropriate syntax. Makeblock, like its progenitor 
Scratch, uses the convention of shape that must be locked together in certain 
ways. Blocks that don’t work together won’t ft together. 

In Figure 5.6, for instance, the LED and wait blocks will ft into the repeat 
block, but the pick random block will not.The pick random block is about selecting 
a range of numbers, so it fts into the parts of blocks where numbers would go. 
For example, if we want our program to have a pause which could range from 
one to ten seconds, we could slide the pick random block into the circle (which 
currently contains a “1”) on the wait block. Mindstorms, on the other hand, allows 
every brick to connect to every other brick. It uses a diferent convention to 
enforce efective programming.The user must properly assign values to options 
for the various blocks in order to have their program work as intended. In this 
sample program, the robot plays the sound fle “Hello” three times and then drives 
its large motor to turn ten rotations.Then it stops.The success or failure of the 
program is determined not by the shape of the blocks, but rather by the pro-
ductive use of the various options available for each block.The repeat block has a 
count option (we chose “3”).The sound block has options for fle selection (we 
chose “Hello”), volume (we chose “100%”), and play type (we choose once).This 
group of blocks results in the sound “Hello” being played three times in a row 
by the robot.Then the action block controlling the large motor has options for 
power (we chose “50%”), rotations (we chose “10”), and brake at end (we choose 
“True”).When added to the repeat block, this action block has the robot move 
forward by having the motor complete ten rotations at 50% power once the robot 
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 Figure 5.6 Block shape as syntax in the Makeblock software development environment. 
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has played “Hello” three times in a row. In the Mindstorms software development 
environment, block options—not shapes, as in Scratch—are everything. 

Development Environments 

In these two robotics projects, we saw students working with two diferent 
development environments, which the NYC DOE Blueprint defnes thus: 
“Programmers use development environments to create applications; these envir-
onments have an editor to write code, run and show a program’s output and 
log errors that arise.” Development environments are to programming what 
Microsoft Word and Google Docs are to writing. Both development environ-
ments described in this chapter—namely the Makeblock environment for the 
mBots and the LEGO Mindstorms software—are block-based and allow students 
to make and test the code for their robots. One of the things that ends up being 
important in these types of robotics experiences is students coming to under-
stand the conventions of the development environments. Both Makeblock and 
Mindstorms group their programming blocks into color-coded categories, and 
both have conventions for indicating the options associated with specifc blocks. 
Students learn to interpret which functionality is contained within each of these 
categories, as well as how the diferent sets of blocks work in order to use the 
software correctly and efciently. 

Collaboration 

In both the sixth-grade robotics project and the high school STEM enrichment 
program, teachers explicitly used this work to enhance their students’ ability 
to collaborate productively with one another. Here is what the NYC DOE 
Blueprint has to say about collaboration: “Collaborating on code is complex 
because each line is part of a larger algorithm or abstraction. Clearly setting team 
roles, saving versions along the way, and using parallel versions are some ways to 
manage the complexity.” We have found that robots provide a unique oppor-
tunity for students to do programming work that is meaningful and authentic 
to them.They are honestly engaged by the challenges involved in frst assem-
bling and then programming the robots to do their bidding. We have found 
(as have many other teachers) that these challenges are enhanced by collaboration, 
allowing a team solution rather than just an individual one. 
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Additionally, there can be a multiplicative efect to this type of collabor-
ation. In the projects in which Gerald has been involved, he works to celebrate 
the accomplishments of individual teams by calling out a clever solution to a 
challenge: “If you really want to be impressed, take a look at what Group 2 has 
done!”This is very empowering to groups and encourages knowledge and skill 
sharing across teams.We have found this type of strategy to be extremely efective 
in both enhancing the development of CS skills and concepts, but also through 
building a learning environment that fosters, supports, and promotes critical 
thinking and problem solving. 

In Sum 

This chapter has focused on the CS concept of programming and its subconcepts 
of languages, syntax, development environments, and collaboration. In addition, 
this chapter explored a connection to pedagogical strategies that can be used 
by teachers at all grade levels and with all diferent levels of experience to suc-
cessfully orchestrate curricular projects that include the use of programming. 
There is clearly a place for formal CS education in secondary school settings, 
like AP Computer Science and coding electives. For most students and school 
settings, however, this structure is neither viable nor desirable. Not every student 
is interested in this type of formal CS education, and not all teachers are trained 
to teach with the required depth. 

Therefore, we are strong proponents of embedding CS skills and concepts 
into existing content areas, like programming robots in increasingly fun and com-
plex ways. Students of all ranges of ability and experience can deeply engage in 
their content area, and can do work that is both computational and meaningful. 

Connections to Content Areas 

While the CS skill of programming may seem narrow one, we have found it to be 
a very broad and useful skill across various content areas. 

English Language Arts 

Tom and Gerald have developed a project they call BardBots, which, as the name 
implies, combines programming with the study of Shakespeare. The project 

https://teams.We
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emerged over a series of conversations where we started thinking creatively 
about computer science education: What does literary study teach us about 
computational thinking? What does robotics teach us about humanity? 
Are computational languages really just another kind of human language? 
Over the course of the BardBots project, students work in groups to do the 
following: closely read a scene from Shakespeare, plot stage directions for 
their scene, program robots to “perform” the scene, and complete Babble 
Logs—critical refections about the relationship between human and com-
putational languages. (And wait until you read about Pam’s adaptation of 
BardBots in Chapter 7!) 

History 

Tom has put together a really cool project that he calls States of Education. This 
project is an interactive map that allows users to click on a state and then see the 
portion of that state’s constitution that discusses the right to a public education 
(see Figure 5.7). 

Tom coded this project using the R programming language, which can be 
used to create all sorts of data visualizations. History teachers and students, by 
starting with his code and then modifying it to focus on other areas of interest, 

Figure 5.7 Tom’s project States of Education. 
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could easily use Tom’s model to analyze other kinds of primary and secondary 
source artifacts. 

Science 

In Chapter 3 we described in detail a program Gerald designed for his former 
seventh-grade students that worked to have them deepen their understanding 
of feedback mechanisms by building an interactive device. This type of project 
could be implemented in any one of a variety of programming languages, from 
block-based ones like Scratch or Turtle Blocks, to text-based ones like Python 
or R. Additionally, while Gerald’s project focused on feedback mechanisms as 
a key concept, similar projects could be designed and implemented that make 
use of modeling in science classrooms, a strategy that has a deep and compelling 
research base. Students, for example, could model all sorts of scientifc concepts: 
predator–prey relationships, weather patterns, the growth of plants, the causes of 
earthquakes, enzyme activity, and forces and motion. 

Math 

Programming and robotics projects can be used to enhance the acquisition and 
application of math skills across grade levels in a variety of ways. For example, 
programming directly addresses the development of sequential thinking, which is 
essential for the deep understanding of math. Recall the Robot Race challenge, 
where students had to get their robots to roll straight down a hallway, turn 
180 degrees, and return down the hallway. Breaking down these steps becomes 
an essential component of writing the necessary software programs that get the 
robots to race successfully. Or consider how algebraic skills such as variables and 
functions are incorporated into programming projects. Working with sensors 
necessitates the establishment of a variable (such as sound level), which can 
then be used to trigger other events in the program. Functions emphasize the 
subconcept of modularity, in which individual instructions can be built once and 
then are easily reused. Both of these skills became critical elements of the Dance-
Of Challenge. Finally, robots and programming can be used to focus on even 
more basic math skills. For example, students can be asked to program their robots 
to “perform” increasingly complex shapes, starting with the simplest (squares) and 
then progressing to those that are more complex (stars). Solving these challenges 
enhances student understanding of geometric relationships. (See Chapter 3.) 
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The Arts 

Processing is a programming language that was created to allow noncoders to gen-
erate images of all kinds.The code is easily readable by people and can be used 
to teach both coding and the various components of geometric shapes, as well as 
their relationships to one another.This type of tool has all kinds of implications 
for uses in art classes and projects across grade levels. Processing can create and 
manipulate shapes; can defne colors, hues, and shades; and can be used to create 
interactive graphics of various types. There are also myriad examples available 
online. 

For Further Exploration 

• Explore | Scratch: https://scratch.mit.edu/ 

• Explore | mBots: https://www.makeblock.com/steam-kits/mbot 

• Play with | LEGO Mindstorms: https://www.lego.com/en-us/product/ 
lego-mindstorms-ev3-31313 

• Dabble in | Processing: https://processing.org/ 
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6 Data 

When the chessboard arrived at Tom’s apartment a few days after Thanksgiving, 
you can imagine the level of anticipation that had built up.Was it the best deci-
sion he had ever made in life? No.Was it the worst? Not by a longshot.And there 
was no way he was turning back.As he carried the box up four fights of stairs to 
his family’s tiny apartment,Tom believed that it contained not only a chessboard 
but the possibility for redemption. If it was as phenomenal as it appeared to be, 
no one would question his decision to buy it. His impulsiveness would instantly 
transform into a mark of foresight and innovation. 

He carefully opened the box with his wife and son huddled over watching. 
The board was glorious, heavier and bigger than he expected because it contained 
inside a series of electromagnetic rods that powered the movement of the pieces. 
Then he opened the smaller boxes with the pieces. Disappointment followed.A 
single pawn was missing.To be clear, these pieces were meticulously wrapped in 
such a way that there was no possibility anything loosened or fell out.Whoever 
packed the box just forgot a pawn. Getting a chessboard with a missing pawn is 
like getting a car with three tires. It is useless. 

In a moment of sheer indignation,Tom took a picture of the chessboard with 
the missing pawn and sent a message via Twitter to the company. He did the same 
on Instagram. Probably on Facebook and any other service he could fnd, but he 
was seeing red at that point so his actions get fuzzy. 

What does this have to do with data? The Blueprint says the following 
about data: “Computers can be used to collect, store and analyze massive 
amounts of data quickly and reliably. Computer programs can use data to 
make decisions or to automate tasks.” Doubtless, data are used to power 
the chessboard, from how the electromagnets operate to the moves that the 
machine makes, to the way it connects players on other sides of the world. 

https://company.He
https://missing.To
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But perhaps more familiar, yet less well known, is the way computers collect, 
store, manipulate, and act on data all the time. 

Consider the picture of the missing pawn Tom snapped and blasted over 
social media. 

Like any picture taken with a smartphone, the picture contained over 
one hundred kinds of data that are attached to it called metadata. The single 
picture of the missing pawn included the type of phone, operating system, 
longitude and latitude of where it was taken, camera lens type, and even the 
direction the person taking the picture was facing. That information comes 
standard with the photograph. It does not include other data that social media 
companies can associate with the photo, which gets added to the photo online. 
For example, let’s say you post a photo on social media that features you posing 
with your chessboard and your best friend. When you post the photo online, 
social media companies increasingly use it to generate more associated data.They 
can automatically identify who else is in your photo and suggest that you “tag” 
them. Companies can also ask you to confrm that you are in a specifc geographic 
location.They then monitor who you share it with, who likes it, who comments, 
and so on. Companies take all those data and they use them to create a profle of 
you as a user: your interests and aversions, your closest friends, and your behaviors. 
Those data are used to market products and services to you, like the greatest 
chessboard ever created. 

Plotting Plots in Chinatown 

There is something to be said for getting lost in one’s own town.The navigation 
app on Tom’s phone said the trip would take forty minutes. He left over an hour 
ahead of time.Walking through the pre-dawn familiar streets to the subway, he 
boarded the D train at 125th Street and was whipped along to his destination in 
plenty of time. Disembarking at Grand Street,Tom had time to spare. So he sat 
on a bench in the station and read the last chapter in an unfnished novel for his 
book club. 

Checking his watch,Tom hurried upstairs ready to walk the couple of blocks 
to the high school where he was scheduled to run a morning workshop. As he 
emerged at street level, though, he was struck by what can only be described 
as a linguistic hit-and-run. A man was yelling (Tom assumed at him) in a lan-
guage Tom didn’t understand. As he looked around, Tom’s eyes were knocked 
into a state of alphabetic disorientation, the sweeping calligraphy of unfamiliar 
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characters seemed to be everywhere. He began walking briskly now, as you can 
imagine, in the direction where he believed the school to be.After a few blocks, 
Tom realized he hadn’t recognized English words anywhere.While the street signs 
were bilingual, the presence of English was overshadowed by the sheer dominance 
of Mandarin. 

Chinatown was not Tom’s intended destination, but the school was in a 
part of Manhattan where several neighborhoods overlap. Lower Manhattan 
predates the neat and tidy grid system that defnes the island north of 14th 
Street.The East Village, the Lower East Side, Chinatown, Little Italy—they all 
blur together.Tom was in old Manhattan. Old, as in streets crisscross illogically, 
confusing invading British troops. Old, like that’s the spot where Boss Tweed 
rigged elections. Old, like centuries of stories of war and corruption and ambi-
tion and hope and love—and the myriad dialects and languages in which such 
stories were told. 

Tom found the entrance to the school.The security guard commented on 
his ensemble, noting Tom’s light blue shirt and dark blue pants resembled her 
own uniform. Tom smiled, raised his foot in the air, and asked if his polished 
brown leather shoes with red laces are standard issue for school safety ofcers. 
The ofcer laughed, also a believer in the power of unexpected bursts of color in 
the world. Navigating the halls,Tom hufed up the stairs and was soon standing 
before a group of ten teachers, mostly English language arts (ELA), but also spe-
cial education, math, and physics. Apparently, the title of the workshop attracted 
a respectable interdisciplinary crowd:“An Introduction to Integrating Computer 
Science into ELA.” 

Tom began his workshop with a picture. It was an image of the gates of 
Columbia University at 116th Street and Broadway in New York.As you observe 
the gateway, which is referred to as College Walk, there are two statues fanking 
the entrance to campus. On the left, there is a male fgure wearing a robe, his 
bare chest exposed for all to see. He holds an orb. He is labeled “Sciences.” On 
the right, there is a female fgure wearing a fuller robe. She holds an open book, 
pages facing out. She is called “Letters.”Tom used this image as a way to intro-
duce the idea that, for centuries, we have confdently separated the sciences from 
the language arts.The result is that computational methods become the expertise 
area of STEM professionals whose titles denote science, technology, engineering, 
or math.The problem with that, recall, is the value of computer science in K–12 
spaces is not in the least bit limited to STEM subjects.We do not limit the value 
of reading and writing to English class, do we? Of course not.That’s because we 
understand that the use of language to consume and produce texts transcends all 
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disciplines. Similarly, we must not limit the value of computational methods to a 
subset of disciplines that evoke the image of bare-chested men holding orbs over 
Broadway. 

In Chinatown that morning, the teachers’ interest in the workshop fowed, 
in part, from Computer Science for All (CS4All). Recall from Chapter 1 that 
in 2014, the Obama administration launched CS4All as a nationwide program, 
kicking it of with a press event in which the president learned to write a simple 
computer program with students at the White House. He was hailed as the Coder 
in Chief. CS4All was not strictly a federal initiative, per se. Instead, it consisted of 
a network of public, private, and philanthropic partners who joined forces to pro-
mote computer science education in K–12 schools. President Obama’s photo op 
was just one piece. In addition, companies like Google, Amazon, Facebook, and 
Microsoft all supported raising awareness of computer science in K–12 schools. 
Philanthropists like Fred Wilson, the venture capitalist behind Union Square 
Ventures, worked with elected ofcials to support public schools in the New York 
City at scale.Wilson funded the establishment of two high schools in New York— 
one in Manhattan, another in the Bronx—that made software engineering a core 
part of their vision.With broad support, New York mayor Bill de Blasio launched 
the city’s own CS4All campaign, providing curricular resources and incentives 
for schools to step up their computer science oferings.All that buzz likely lured 
teachers to Tom’s workshop that morning. 

“Our goal today is to walk between those two statues fanking the entrance 
to College Walk,”Tom began, pointing at the picture of Columbia. “Computer 
science is not the domain of STEM. In fact, it can be employed very meaningfully 
in the humanities as well. Rather than treat computer science as a discipline in its 
own right, I want to share with you how computational methods can be used to 
deepen and expand the ways you already teach (or were taught) literature.” 

Deepen and expand content-area instruction. For Tom, that is an oft-repeated 
phrase.When teachers stop thinking about computer science as a circumscribed 
discipline and begin thinking in terms of computational methods that can be 
adapted for the work they already do, pedagogical paradigms shift. 

“How many of you have read (or were supposed to have read) Shakespeare’s 
Romeo and Juliet?” All hands shot up. “Excellent,”Tom went on,“so you all have 
a general recollection of the story. Well, let me share with you an assessment 
question similar to the ones you might have encountered in a middle or high 
school English class.” On the screen fashed a prompt: How does Shakespeare por-
tray the relationship between love and death in Romeo and Juliet? The question seemed 
straightforward enough. Reading the room,Tom said,“By the looks on your faces, 
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Table 6.1 The Frequency of the Words “Love” and “Death” in Shakespeare’s Romeo 

and Juliet 

Act / Scene “Love” “Death” Act / Scene “Love” “Death” 

Act 1, Scene 1 22 4 Act 3, Scene 1 3 3 

Act 1, Scene 2 5 0 Act 3, Scene 2 8 6 

Act 1, Scene 3 5 0 Act 3, Scene 3 9 12 

Act 1, Scene 4 11 1 Act 3, Scene 4 3 0 

Act 1, Scene 5 5 0 Act 3, Scene 5 10 5 

Act 2, Scene 1 11 1 Act 4, Scene 1 7 6 

Act 2, Scene 2 29 2 Act 4, Scene 2 1 0 

Act 2, Scene 3 10 1 Act 4, Scene 3 0 1 

Act 2, Scene 4 5 0 Act 4, Scene 4 0 0 

Act 2, Scene 5 7 1 Act 4, Scene 5 5 10 

Act 2, Scene 6 5 1 Act 5, Scene 1 2 2 

Act 5, Scene 2 0 0 

Act 5, Scene 3 9 19 

you don’t seem impressed with the prompt, right? It might not strike you as very 
computational or very scientifc. So, let’s add something else.” He clicked on the 
next slide, which included the original uninspiring question, but now with an 
addition: Be sure to use both quantitative data (i.e., from the graph and table) and quali-
tative data (i.e., textual evidence) in your response. 

Now Tom saw eyebrows raise. 
“Check this out,”Tom went on as he presented a table of data on the screen. 

“This table shows the frequencies for the keywords love and death in every scene 
in the play.” (See Table 6.1.) Each row was labeled with the acts and scenes; each 
column was labeled for the keywords of interest. 

“What you now see is precisely how many times in every scene of the play 
the words love and death appeared.This doesn’t count for other related words, like 
lovely, or topically related words like passion. Just the exact words love and death. 
That all make sense?” 

Heads nodded. 
“Next, I am handing out customized graph paper for a little experiment.You 

will see on the graph paper that the y-axis is labeled from bottom to top with 
the numbers 0 to 30.The x-axis is labeled a bit more strangely. Each tick mark 
represents a scene in the play.Working in small groups, I am asking you to spend 
the next ten minutes plotting the data from the table for love and death on your 
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graphs. Use diferent colors or lines to make it clear in your line graphs which plots 
are for love and which are for death.” 

Participants got to work, frequently looking up at the table on the screen as 
they plotted their data.Tom overheard one participant sigh, saying that scribbling 
points on a graph is not what reading literature is all about. Tom agreed com-
pletely, but said nothing.The real fun hadn’t started yet. 

After ten minutes,Tom took pictures of a few graphs with his phone, sending 
them up onto the screen so the whole group could see. 

“Whose graph is this one?”Tom asked. 
A balding man in a green short-sleeved shirt raised his hand.“It’s mine.” 
“Would you talk us through what you see?” 
“Sure. At frst, there wasn’t much of a surprise really.You can see that in the 

frst two acts of the play the word love is used way more often. In the last two acts, 
the word death is used more often.” 

Tom nodded. 
“But as my group kept talking about it, we noticed two things.” 
“What were they?” 
“First, we noticed that in Act 3, Scene 1, the two keywords are used the same 

number of times.One of my colleagues pointed out that it is in that scene that the 
confict of the play really heats up when Tybalt kills Mercutio.” 

“So what? Why is that interesting?” a voice asked from the back of the room. 
Turning behind him, the teacher continued. 
“It’s interesting because the numerical data drew our attention to a moment 

in the play that is actually signifcant from a literary perspective. The numbers 
aren’t random.They show patterns very clearly. So the fact that a simple graph 
could pull our attention to an important scene surprised us.” 

Participants began revisiting their own graphs. Some making notes, others 
erasing marks. 

Tom asked,“That’s really intriguing.You said you had two points.What was 
the second?” 

“The second observation is in the last scene of the play.That’s where every-
thing comes to a tragic end with both Romeo and Juliet killing themselves.” 

“And what did you see there? I have the same data, same graph even, and I 
don’t notice anything,” a woman with brown hair inquired. 

“Oh, look at Act 5, Scene 3.The word love had really dropped of in frequency 
throughout the second half of the play. But then, in the last scene the word spikes 
again.Death is used a lot too, but love comes out of nowhere. Look at the graph: It’s like 
love is chasing death.That’s a pretty profound observation given the prompt we got.” 
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Now, all eyes were on the graph on the screen.Two participants got up to 
look at the plots more closely. One teacher began tracing the lines on his paper 
with two fngers to see how the two keywords interrelated. 

“So,” Tom asked after a couple of minutes, “what questions or insights are 
coming to mind about the relationship between love and death in the play? Talk 
with your group briefy and then let’s hear what you got.” 

Participants talked excitedly for three minutes, pointing to the data table, 
studying the graphs, and even pulling up digital copies of the play on their laptops 
and phones.After the volume in the room dipped to a hum,Tom reengaged. 

“Who would like to start?” 
The speaker for one group reported that they wondered exactly how the 

words love and death were used in Act 3, Scene 1. Because it was a scene where 
the two words were used equally and it was a key scene where a main character 
dies, they wanted to examine more closely exactly how Shakespeare used them. 

“We only got to look briefy. But we did notice that the words are not used 
like they are earlier in the play. Earlier in the play, when the word love is used, it’s 
all rainbows and sunshine and bliss. But when love is used in this scene, it’s way 
more loaded. Look.When Romeo encounters Tybalt early in the scene, he says, 
‘Tybalt, the reason that I have to love thee / Doth much excuse the appertaining 
rage / To such a greeting. Villain am I none. / Therefore farewell; I see thou 
knowest me not.’ Romeo’s love for Tybalt is confused. It’s a forced love because of 
Tybalt’s relationship to Juliet. Romeo loves Juliet so he has to love Tybalt. I think 
they’re cousins or something.” 

At this point, most participants had pulled up the play and were scrolling through 
the scenes. Some were using the search feature on web pages to fnd the words love 
and death to see how they were used, then compared them with what they saw on 
their line graphs. In a matter of a half-hour, that group of teachers had confdently 
begun to ignore the false separation of science and letters, strutting through the gates 
with a newfound confdence that computational methods belonged to no single 
discipline. Certainly not STEM alone. Computationality served only one’s curiosity. 

Uncovering Subconcepts 

Believe it or not, you can learn a great deal about how data operate from the 
mixed literary analysis assignment described earlier. In what follows, let’s unpack 
a series of subconcepts from the Blueprint and explore ways to weave them into 
other content areas. 
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Sensors and Datasets 

The Blueprint defnes sensors and datasets by framing their relationship to 
data. The team writes, “Data is collected by sensors such as video cameras or 
thermostats, or from other datasets such as government data, or your digital 
activity. Data from sensors and datasets must always be cleaned, to ensure its 
accuracy and usability.”To clarify, data can be collected by sensors, but that’s not 
always the case. Sensors relate to datasets, but are not the same thing. Sensors 
are used by computers to detect phenomena in the environment and to do 
something based on that detection.You ever go to a restroom, wash your hands, 
and wave them under a paper towel dispenser? A little light fashes; paper towel 
appears.There is a motion sensor beneath the dispenser that detects your hand’s 
movement. The sensor constantly sends out a little signal. When your hand 
interrupts the signal, it activates the dispenser. It is the same kind of device 
that makes doors open automatically, vacuums autonomously clean your living 
room, and hands-free sinks operate. Other sensors can detect things like heat, 
sound, and even smell. 

While there are no sensors used in the mixed literary assignments, two datasets 
are used. The frst dataset is the text of Romeo and Juliet. It is a digital text fle 
consisting of Shakespeare’s very own words. Like most text data, the play is what 
we call unstructured data.That means it is not stored in a spreadsheet, but rather 
it appears in a way that might appeal to humans but is very hard for machines 
to process easily.The second dataset is the table of word frequencies for love and 
death. In that case, the data are presented in a structured manner, with each row 
representing an act and scene in the play and each column representing a key-
word.Then, for each keyword, we see the number of times the word appeared in 
each act.All neat and tidy. 

There are lots of other forms of data that can be used in such activities. For 
example, you can use methods of analyzing texts to count the number of times 
specifc pronouns or punctuation marks are used. On a more advanced level, you 
can generate a sentiment score for each sentence or paragraph in a novel.A senti-
ment score uses an algorithm to estimate whether the words in a text are mostly 
positive or mostly negative. Marketing companies use such means to track how 
their brands are talked about on social media.That’s just the tip of the iceberg, just 
some data you can generate for literature. 

With the advent of the Internet, there are tons of ways to fnd interesting 
datasets. For example, sites like Kaggle or Data World archive data from myriad 
sources. With just a few clicks, you can fnd sets of data on a range of topics: 
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movie reviews from last summer, calorie counts in fast-food chains, voting 
records of elected ofcials, test scores for all students in the United States, player 
statistics for your favorite soccer team, and on and on. By making cultural 
datasets more accessible, it becomes easier for teachers and students to dabble in 
the world of data. 

Data Abstraction and Storage 

In order to create datasets like those used in the mixed literary analysis assignment, 
it was necessary to abstract and store data from the original Shakespearean text. 
Abstraction and storage go hand in hand because, as described in the Blueprint, 
“data is represented in computers as binary, but humans save and use data on 
computers as lists, databases, key-value pairs, etc.” So how did Tom abstract and 
store the text of Romeo and Juliet for his assignment? In this case,Tom started with 
an electronic version of the play freely available online.Teams of volunteers for 
websites like Project Gutenberg already did the painstaking work of transcribing 
the Bard’s tragedy. But still, the transcribed play doesn’t give you the word fre-
quencies or anything like that. Creating that simple data table required that Tom 
abstract and store data. 

Tom wrote a rough computer program that automatically broke up the play 
into scenes, counted every word in every scene, and then stored the tallies in a 
structured manner called a dataframe. Then all Tom had to do was to save the 
data in a spreadsheet, and Bob’s your uncle! (Or Bill’s your bard, whichever you 
prefer.) It might help to see what this process looks like a bit more closely. Just 
know that you do not have to program or write code like what you are about to 
see. It’s just for illustration purposes in an efort to better understand abstraction 
and storage. 

First,Tom programs the computer to read a text fle that contains the play, 
which he downloaded from Project Gutenberg. Remember, a text fle like that is 
unstructured data. It’s really hard for a computer to do anything with it. So,Tom 
tells the computer to try to read the text fle as a type of dataframe called a tibble. 
When the computer does so, it creates a rough table in which each row has one 
whole line from the play until whoever typed it up pressed Enter.The code to 
achieve this looks like this: 

rj <- read_lines("/rj.txt") 

rj_tb <- as_tibble(rj) 
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It kind of looks silly, doesn’t it? Just two little lines does all that. Next,Tom has 
to tell the computer to take the tibble that he just made and to break it up dif-
ferently. Specifcally, he wants the computer to do three things: identify every 
line number, break the text up into scenes of the play by automatically detecting 
the word “Scene” at the beginning of a new line, and then create a new table 
that gives each individual word its own row, with columns for line numbers and 
scene numbers. 

Tidy_rj <- rj_tb %>% 

mutate(linenumber = row_number(), 

scenes = cumsum(str_detect(value, regex("^Scene", 

ignore_case = FALSE)))) %>%

 unnest_tokens(word, value) 

Now that the text is restructured logically—remember that it was unstructured 
data up to this point and pretty useless to a machine—Tom needs to know pre-
cisely how many times the words love and death were used. He tells the computer 
to group the text by scene, count how many times every word in the play is used 
per scene, and then make a new table with those word counts.Then, all Tom has 
to do to narrow the table down to love and death is to flter out every other word. 

count_rj <- tidy_rj %>% 

group_by(scenes) %>% 

count(word, sort = TRUE) %>% 

ungroup %>% 

complete(scenes, word,

 fill = list(n = 0)) 

love <- filter(count_rj, word == "love") 

death <- filter(count_rj, word == "death") 

rj_set <- bind_rows(love, death) 

Finally, after all that,Tom writes a simple line of code to tell the computer to take 
that new table, which he calls “rj_set,” and store it as a good old-fashioned spread-
sheet. He types: 

write_csv(rj_set, "rj-set.csv") 

Sometimes we might think that data are something that are handed to us, created 
mysteriously by others in far-away places.What is important to note about this 
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example of code is that you yourself can abstract and store data about virtually 
anything.And your students can too. 

Transformation and Visualization 

A table of data might be interesting (or not!), but in order to generate insight, one 
has to transform and visualize the data.The Blueprint defnes these terms as 
the computer’s ability to “make looking at data easier by allowing us to quickly 
visualize data in diferent ways; to break up a big problem into manageable pieces, 
operate on each piece independently, and then put all the pieces back together.” 
It’s true that computers can transform and visualize data rapidly. But humans can 
do it too, as we saw in the example earlier. In the case of Romeo and Juliet, work-
shop participants had to take the data that were provided and transform them 
from a table to a graph. The process of visualization then makes it possible to 
gain insights about the play. Approaching that process without a computer can, 
in fact, help students and teachers better understand what it is that computers do 
so swiftly. 

There are many benefts to approaching the transformation and visualiza-
tion process manually. For instance, if students were to count the appearances of 
words by hand, the tediousness of the exercise carries with it an opportunity to 
understand the benefts and problems of counting words at all. In counting the 
appearance of the word love, a student might question whether or not to include 
words like loving or lover or even kiss. In posing those questions, the student gains 
invaluable critical insight into what computers do so confdently and quickly. In 
the code where we use the count function, does that count variations of words or 
just the exact words? That question really matters in analyzing literature because 
it will afect the kinds of insights readers can cull from the visualization. Such 
questions empower students and teachers to be more digitally discerning, more 
computationally critical. 

Similarly, in manually plotting the line graph, students have to patiently 
place each point on the graph and in doing so have more time to make 
connections and pose questions about how the numbers relate to the text. 
In one workshop, Tom heard a teacher notice aloud while placing a point 
on the graph that, “Oh, this is where the balcony scene happens!”That itera-
tive process of connecting the quantitative to the qualitative, the fact to the 
fction, is a rich part of what English teachers call meaning-making or English 
professors might call hermeneutics. Again, what appears to be two separate 
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worlds of computers and content-area instruction are often closer than they 
appear at frst. 

Feedback Loops and Automation 

Feedback loops and automation refer strictly to things that computers do 
while processing data. As per the Blueprint team, “Automation is controlled by 
data. Some automation uses data from outside the automated system, like time. 
Other automation uses data on the output of the system, like temperature.” But 
feedback loops and automation also have correlates in the workshop example 
provided earlier that merit a brief discussion. In the mixed literary analysis work-
shop example, teachers worked collaboratively to create and make sense of the 
data. After teachers created their graphs,Tom asked them to frst discuss in pairs 
what they saw: In your graphs, what surprises you and what doesn’t? After sharing 
together, Tom asked couples of teachers to pair up with each other into small 
groups to pose questions about each other’s graphs. Then, Tom asked the small 
groups to share their insights on a live document on the screen at the front of the 
room.As all groups shared summaries of their notes,Tom was able to facilitate a 
whole-group conversation. 

What we just described is a systematic feedback loop in which teachers have 
circumscribed opportunities to hear and provide feedback on a shared task.The 
word systematic is important. It is not uncommon for teachers to ask students to 
share with a partner or think–pair–share. But in such activities, it is vital that the 
questions being explored and the quality of the sharing are planned in advance 
and held accountable in real time in practice. Otherwise, the result can be glib 
and wan. 

In Sum 

Data are all around us.Whether they are hidden in the photos we upload to social 
media sites or abstracted from the lines of great works of literature, data are fun-
damentally human. It can be tempting to think of data as uniquely digital or as 
belonging exclusively to content areas most associated with STEM. But to do so 
ignores the fact that human beings have always recognized and created data around 
them.What’s more, human beings have often relied on stories as ways to convey 
understanding of data. In Homer, for example, the poet includes lists of names of 
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soldiers and battles and other kinds of historical data. Such catalogs, as they are 
known, are really kinds of data that have been woven together in narrative form 
in an efort to ensure future generations will have access to a culture’s history. 

There is an important lesson there for us. Data do very little good in the 
world when valued for their own sake. Sophisticated datasets abstracted from 
the recesses of modern life are only as valuable as the stories they help us tell, the 
questions they help us pose.Whether you are collecting humidity readings at a 
local pond or counting keywords in an age-old play, computationality must ultim-
ately serve humanity. Not the humanities, but humanity—a shared human exist-
ence. Our classrooms can become places where numbers and letters intermingle 
in enriching ways, where data are embraced for all their variety and vitality. It is 
as simple as reimagining what counts. 

Connections to Content Areas 

Data are everywhere.That includes the major content areas in schools and districts. 
When teachers begin their learning experiences with data, especially data that 
students perceive as authentic and culturally responsive, teachers can be confdent 
that the discussions that emerge will be rooted in a kind of concreteness that can 
be examined and explored ad infnitum. Let’s look at some brief illustrations. 

English Language Arts 

In addition to mixed literary analyses, think about the way basic literary ana-
lysis operates.When students examine literature, they are often asked to identify 
specifc literary elements and to interpret how the author uses such elements to 
achieve some kind of efect on readers.The process of identifying literary elem-
ents or quotations in a text constitute a process of data abstraction. Students are 
taking raw unstructured data—the text—and they are abstracting from it discrete 
data points they can use to formulate a literary argument. 

History 

Similar to how data might operate in ELA, in history class students are also asked 
to examine primary source documents in order to identify signifcant words or 



 

 

 

 
 
 
 

  
 

 

 

Data 

parts of the documents as they relate to a particular theme or question. At its 
core, such identifcation is a process of historical data abstraction. Further, when 
students annotate a primary source document, history teachers will be quick to 
note that they also have to be able to organize all their abstracted information in 
an orderly way so they can use it in an essay, for example.The process of inten-
tionally organizing abstracted data can be referred to as storage. 

Science 

Science class has, at its best, embraced the place of data in the curriculum. One 
classic example consists of students using simple sensors like thermometers to 
gather data about the natural world. Students might track the temperature of a 
makeshift greenhouse to determine the efects of cloud cover on plant growth. 
Groups of students quickly develop datasets that can be transformed and visualized 
as part of a traditional lab report assignment. 

Math 

Math teachers will feel quite at home with the idea of using data in their class-
room practice. It can be interesting to extend such work by looking at the way 
data are used in more popular forms of data journalism. For example, websites 
like FiveThirtyEight and The Pudding routinely collect large interesting datasets 
that they transform and visualize into profoundly engaging visual essays. In 
addition to the essays themselves, teachers will fnd the technical notes chock 
full of concepts and explanations about the mathematical decisions underlying 
the projects. 

The Arts 

In musical and visual arts, the concept of remix can be useful in exploring the idea 
of data abstraction.When artists remix another work, they often isolate a specifc 
idea—like a rif from a piece of music or the style of a painting—and then rework 
it into their own creation.That process of isolating something specifc in order to 
retrieve and reuse it is fundamentally one of data abstraction. 
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For Further Exploration 

• Read | FiveThirtyEight, a data science website that covers a range of cultural 
and political topics: https://fvethirtyeight.com/ 

• Read | The Pudding, a data journalism site that does fascinating projects in 
which data are used to tell visual stories about society:https://pudding.cool/ 

• Explore | Kaggle, a repository for tons of datasets that you and your students 
can explore in a range of academic contexts: https://www.kaggle.com/ 

• Explore | Project Gutenberg, a collection of e-texts for literature in the 
public domain: https://www.gutenberg.org/ 

https://fivethirtyeight.com
https://pudding.cool
https://www.kaggle.com
https://www.gutenberg.org
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7 Networks 

As the Blueprint team defnes it, “Networks, like the Internet, allow computers 
to interface with other computers through a set of rules, or protocols, that defne 
how computers send and receive data.”That’s true. But if words like “interface” 
and “protocols” intimidate you, just think of it in terms of how human beings 
communicate. Our story of the missing pawn serves as a helpful case in point. 

Weeks passed as Tom waited for the missing pawn to arrive. Weeks, plural. 
During that time, Tom tried to leverage diferent communication strategies to 
get things resolved more quickly. At frst, the chessboard company told him to 
send an email to their support team, who would resolve the issue. He did, sharing 
his story, his heartbreak, and verifying his order information.They sent the pawn 
in the mail, not rushed or express. Just sent it in the mail with the urgency of a 
balloon released on a windless day.Two weeks passed. No pawn.When Tom asked 
the company where his pawn was, they responded that it had arrived.They were 
right.The pawn did arrive, at the wrong address. 

Over social media,Tom asked how on earth it was possible to ship the chess-
board to the right address only to send the missing pawn to the wrong address. 
Clearly the company was using two diferent systems for shipment and for support. 
What became evident over time was that the people who packed the order were 
diferent from the people monitoring the company’s social media, and they were all 
diferent from the people who were responsible for responding to support requests. 
In our globalized world, they were likely thousands of miles apart from each other. 

Human communication is itself complex. Anyone who has ever been in a 
relationship knows so. Sometimes it is challenging enough to communicate even 
simple things to the ones you love. Sometimes it helps to have strategies for speaking 
to each other, especially when the topic could be a sensitive one.As a father,Tom 
has had to learn to mind his tone of voice when speaking with his son. It comes 
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across as angry and judgmental when he doesn’t mean it to be. When you add 
asynchronous written language to the equation, communication gets even harder. 
Look at the kinds of unproductive and heated conversations that can happen over 
email chains, texts, and in online discussions.The simple act of communicating 
can be unfathomably challenging.That’s true for personal communications, pro-
fessional communications, and computational communications. So as we begin 
to discuss what is meant by networks and how one might explore them in one’s 
classroom, just remember that for all its computationality, the challenges of com-
munication networks are very human and very known to you already. 

(As for the pawn, it ultimately arrived fourteen days after it was reported missing. 
Tom was alone in his apartment when it came, which might have been for the best. 
Tom set up the board, connected it to his phone, and began. He played his frst game 
against the computer on a novice level and lost. It was an anticlimactic inaugural 
game, the Dionysian ecstasy that started the whole thing bedimmed.) 

Waves of Light Through the Darkness 

“Come what come may, time and the hour run through the roughest day.” 

–Macbeth I.iii 

Anyone who knows Pam knows how important light is in her life. It energizes her 
and flls her soul. Her favorite season is springtime, daybreak is her favorite time of 
day, and she will afectionately tell you that by 9:00 a.m. half the day is over. How 
could anyone possibly sleep in until midday? In early 2007, her instructional team 
leader let her know to pack up her teaching materials because she would be moving 
out of her portable classroom up to the second foor to Room A211. She was 
relocating to the penthouse! Squealing with joy, her response was,“I love that class-
room! I love the way the light comes in early in the morning.” Her team leader got 
a kick out of her response, but Pam believed it was just her inner Transcendentalist 
breaking out.Whether it was teaching Miller, Emerson,Thoreau, or Shakespeare, 
the light of knowledge always burns bright in A211. So did the light of the sun. 

Each new school year brought excitement and a wonderful feeling of new 
ideas to enrich the lives of the students who walked into Pam’s classroom. It was 
now fall. Outside, the air was crisp and the feeling of autumn had broken through 
Georgia’s oppressive summer heat. Its grasp had fnally released its encumbrance over 
all living things. It should have been a time to bask in the freshness of how things 
are supposed to change with the beginning of every new school year. Except, it was 
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already ten weeks into the semester and a feeling of desperation crept over Pam as she 
stood at the front of her classroom looking at thirty-two apathetic seniors engaged in 
some trending story on Instagram about Kim Kardashian’s derriere. 

Pam briefy drifted of into a distant memory of a conversation she was 
having with her long-time English teaching colleague, who was now a freshly 
minted assistant principal and her evaluator. Earlier that year, she stopped 
by Pam’s room to ask her how she felt about teaching seniors. She went on 
enthusiastically to tell her that Pam would be the ideal ft to teach British 
literature. 

In her efervescent voice and ear-to-ear grin, Pam remembers her supervisor 
saying,“We think you have an excellent rapport with your students.We need you 
and think you would make great connections with our senior co-taught kids.” 

A wave of darkness descended upon Pam as the reality set in. She quickly 
understood the challenges of being “voluntold” and tried to appear happy about 
gaining the responsibility of two new preps.This would require her to spend her 
summer learning a great deal more content. 

At frst she thought,“There goes my summer.” 
Pam was unsure what she had done to deserve this punishment. She was 

confdent in her pedagogy and previously relished in the delight that comes with 
being a ten-year veteran American literature teacher. A delight that was imbued 
with the familiarity of knowing the texts verbatim and being able to rely on 
having already created dozens of creative, engaging lessons. Lessons purposely 
designed with her extensive knowledge of American literature and familiarity 
with the areas of New England often described in the curriculum. 

Pam was in her teacher comfort zone, so she thought—or was it compla-
cency merely masked by comfort? 

The end of the school year was a blur. Summer vacation blazed through 
like a lightning bolt, and eventually the fresh October winds blew in. Waves of 
light poured into her classroom as Pam returned to the reality of students still 
hyperfocused on their phone screens.And then the distortions set in. 

Distortions in Learning 

During those frst weeks of the semester, Pam realized that traditional teaching 
methods were no longer making connections with her students. In the not-so-
distant past, lecture and direct instruction provided a familiar and time-tested 
approach to skills-based summative assessments. 
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She realized that fewer and fewer students engaged in recreational reading 
and writing for pleasure. Even though Pam thought the students were engaged, 
they craved more: more creative writing, more interactivity, more collabor-
ation, more electronic access, and more technology-based lessons. Her students 
were unapologetic about their obsession with their electronic devices, and this 
conficted with Pam’s direct instructional pedagogy. She was up for the challenge 
because she loves technology and futurism. Her students were primed and ready 
for a new challenge.This challenge was timely because the landscape of education 
was rapidly changing. 

Pam took a refective approach to her teaching style and concluded that 
her pedagogy should undergo a transformation to better meet the needs of the 
students. A new day had dawned and the light of change was on the horizon. 
So began a refreshed approach towards providing a collaborative, high-tech, and 
engaging learning environment. 

October slid into November and the Macbeth unit quickly appeared on the 
horizon. In Act I, Pam used two research-based teaching methods. She focused on 
building student knowledge of archaic language through a gallery walk exercise and 
student-led intimate discussion circles with preselected groups. In Act II, students 
completed a flm analysis of the Baz Luhrman version of Macbeth where they iden-
tifed direct and indirect characterization. In addition, they were responsible for an 
in-depth study of how the characters used language as a function of emotion. In 
Act III, students were taught theatrical elements and how to “block” a scene.The skills 
they learned during the instruction of each act provided fertile ground for students to 
scafold into the skills they needed to have success in Act V. Pam knew that if she didn’t 
fnd something innovative quickly for Act V, her students would run out of stamina to 
fnish the play.They would disengage altogether. Change had to happen soon. 

Seeing Through the Lens of Change 

Pam has always had a devout passion for learning new technologies. For decades, 
she had been driven to combine science with the study of the English language. 
In 2005, she presented a poster in a symposium at the University of Georgia 
College of Education on Incorporating the Discourse of Nanotechnology into English 
Education Communities. At the time, not many people knew what nanotechnology 
was, much less the impact it would have on society in the future. Her fascination 
with the study of language and its connection to science and technology was an 
area of focus that she felt needed to be addressed. Her capacity to think outside 
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the box and make connections to abstract ideas has served her well as an educator. 
It was this same type of focus that led her to seek out a nontraditional way of 
having her students learn Act V of Macbeth. 

As mentioned earlier, it became painfully apparent that even after several high-
interest teaching strategies were employed in class, her students were still losing their 
stamina and interest in Macbeth.This presented a problem, and Pam was determined 
to fnd or create a learning experience that resonated with her students, yet had the 
rigor necessary to meet the county standards in English language arts (ELA). She 
researched ideas on how to approach her fnal segment of teaching Macbeth. 

Pam sought out and discovered an interesting learning concept from two 
professors in Manhattan.Tom and Gerald, the co-authors of this book, created a 
project for their university teaching cohort where they had students write code 
and build a robot that would act out scenes in a play.They produced a project 
called BardBots where their students programmed robots to perform scenes in 
Shakespeare’s plays. 

Pam decided to modify Tom and Gerald’s project and asked her students to 
have robots act out a scene from Macbeth and emote as though they were human. In 
and of itself, the idea is unique, and programming robots to act as humans was one 
way of creating an awareness in her students to be cognizant of what is happening in 
the world around them.The exercises they completed required collaboration with 
each other to achieve the specifed outcome of the project.They had to work and 
communicate with each other to fulfll the requirements.A secondary learning goal 
for this exercise was designed with the intent that students would develop a wider 
understanding of how language has power, for human beings and for computers. 

Under the auspices of Babble Lab, a center for digital humanities pedagogy and 
research Tom co-founded with English professor Dr. Kelley Kreitz,Tom and Gerald’s 
BardBots project ofered a complete unit plan that Pam studied to see if it would be 
feasible to duplicate with her students, and many logistical questions arose. Five key 
issues would have to be resolved if Pam was to facilitate the BardBots project: 

1. Can relevant learning targets be extracted from this project? 

2. Will the lessons presented improve higher-level thinking skills? 

3. How will this project reinforce student literacy and meet literacy goals? 

4. Can the instructional methods used be reinforced with research-based 
learning strategies? 

5. How will the activities be formally and summatively assessed? 

6. Are there robots available that do not have to be purchased? 
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So many questions needed concrete answers before Pam could proceed. Issues 
were still in limbo.Yet she blazed down the trail of tackling a new challenge sim-
ultaneously teaching both computer coding and Act V of Macbeth. 

Pam diligently worked through what she wanted to accomplish by the end of 
the project. First and foremost, she would have to be sure that students understood 
the interpersonal dynamics between the characters in Act V. She wanted them to 
be able to duplicate the emotional constructs that humans embody when acting. 
Her expectations were for the students to replicate these actions with the robots. 
(Tom and Gerald used mBots for BardBots. Pam used a comparable inexpensive 
robot called Finch robots.) A clear picture was beginning to develop.After infor-
mally surveying the students, they showed great interest in writing code to have 
robots perform. Initially, she was concerned about whether the students would 
read Act V at all.They were visibly becoming fatigued with the language and con-
tinuing forward to fnish the play.Yet BardBots required a pedagogy focused on 
having students collaborate, move around the room, and help each other to learn 
how to write basic computer code. 

But for Pam, the idea of integrating computer science into her ELA class-
room had the efect of pulling a curtain open.There was something illuminating 
about it.And you know how Pam feels about light. 

Seeing the Light 

The grip of helplessness released its ugly hold on how Pam would approach the 
remainder of the semester. She found herself enlightened and energized as 
she thought of ways she could intertwine the study of the English language with 
the study of computer languages. It occurred to her how similar constructs are 
used when students draft an essay and when a developer writes and debugs code. 

At the end of a long weekend of research, Pam listed all of the tasks she 
needed to complete before she would approach her administrator and request 
permission to start introducing her own version of BardBots, which she called 
Macbot. She emailed the AP Computer Science teacher Chris Michael and 
explained what she was trying to accomplish with her Macbot concept. He 
was intrigued. After they discussed her idea, Chris loaned her thirteen Finch 
robots. At that moment, Pam realized that selecting the identical robot from 
the BardBot project was less important than the goal of integrating computa-
tional thinking into her pedagogy as part of her plan to remix her curriculum 
in order to problem-solve and work through challenges that help students 
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develop sharp critical thinking skills. Together, they loaded the necessary 
integrated development environment onto her teacher laptop. Students would 
need to use Snap! code to run the Finch robots. Because the Snap! environ-
ment uses graphical, colored, interlocking coding blocks (much like Scratch 
mentioned previously), the language is easy to learn and uses self-explanatory 
terms students use to make the Finch robots fulfl the commands they chose to 
act out their assigned scenes. 

Pam made an appointment to share her ideas in detail with her supervisor 
and what she was she was planning to teach each day for the next two weeks. 
Having explained her purpose, identifying research-based teaching methods and 
the standards she would cover, she understood that her administrator may shoot 
down her idea at any stage during their meeting. Hoping that her idea would 
pique the administrator’s interest, Pam took great care to explain the outcomes 
she expected from her classroom “experiment.”The following day, Pam received 
an email from the administrator stating how excited she was and couldn’t wait to 
see the robots in action. 

Be the “Guide on the Side Instead of the Sage on the Stage” 

As she began the project, Pam recalled how during grad school her professor 
Dr. Tom Hébert enthusiastically stated, “Remember when working with your 
students, always be the Guide on the Side, instead of the Sage on the Stage. 
Carefully consider that your students may not be as interested as you are in your 
lesson.” His words have frequently reverberated in Pam’s mind throughout the 
course of the project. She intentionally planned for her students to move around 
as much as possible to work together solving the various problems that arose 
within their individual groups. 

On the frst day, Pam had her twelfth-grade students in British literature 
get into groups that she created. She appointed a group leader. Each group self-
selected who would “perform” which character in the assigned scene in Act V. 
She empowered students to make these decisions among themselves in order to 
create a sense of “team” within each group. Pam recalls that students were very 
excited to see who was in their group. She also asked them to volunteer if they 
had experience with computer programming or coding. 

Prior to beginning this lesson, it was essential to think through all aspects 
of the project. Having small groups of three students, all members in each group 
were tasked with responsibilities for which they were best suited.The team leader 
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was selected from students who had a fairly good computational aptitude or who 
were taking one of the CS courses at the school. Having these students as team 
“anchors” helped tremendously because they could troubleshoot and assist other 
students who had difculty with their projects. 

Seven students volunteered to be group leaders. In a quick meeting before 
the project started, Pam explained how the group leaders would take on a lead-
ership role in one of the seven newly formed groups. They were tasked with 
heading up their own teams and an additional support role to provide guidance 
to other groups that might struggle with the technical portions of the assignment. 
By empowering her students to make their own decisions, they were able to solve 
problems that came about as a result of their struggles with learning how to write 
code in the robots’ programming language called Snap!. 

Students used the Folger Shakespeare Library edition of Macbeth’s Act V to 
create an annotated Prompt Book. Together, they decided what functions they 
wanted their robot to complete and how they would have it “perform” as their 
character of choice. Pam employed a gradual release of responsibility by allowing 
students to take ownership of how they were going to present their understanding 
of literary and dramatic techniques in coordination with their demonstration of 
plot dynamics. She gave students a rubric that outlined her expectations for the 
robot performance activities. 

Students had already completed a Prompt Book activity for their human per-
formance of Act III,which made them familiar with “blocking”out stage placement 
and location. Her students were experienced and understood the expectations of 
completing this exercise—only this time with an added robotic twist. 

The Macbot Project in Action 

Once assigned to their teams, some students resisted the idea of what Pam was 
asking them to do. Like any project, some chose not to participate and some did 
the minimum.This created a weak spot in their human network. Eventually, they 
realized that this project was not one that had been completed before and joined 
in with their team members to complete their assigned responsibilities. 

Many students became frustrated because they had developed clear objectives 
and the processes they wanted their robots to complete, but had difculty getting 
the program to execute their desired outcome.They had to write and rewrite their 
code to get the robots to do what they intended. Pam recalls how students were 
particularly challenged with programming the Finch robots to blink their noses 



 
 
 
 
 

  
 
 
 

  

 
 
 

  
 
 
 

   
 

 
 

 

Networks 

a certain color to represent an emotion that the character in Macbeth would have 
displayed in their scene. By process of elimination with the placement of the “blink” 
block, one student discovered how to get the Finch robot to blink its beak a color 
that is symbolic of the emotion that character might be feeling at that point in the 
scene. It was no coincidence that the Lady Macbeth Finch robot blinked her “nose” 
red as she read her infamous soliloquy. Another group programmed their Finch 
robots to hold solid green and blue “noses” to symbolize the colors of their clan as 
they marched into battle in Act V.4. For instance, when one team discovered how 
to confgure the blocks in a specifc order to complete an action, Pam asked them 
to reach out to the struggling groups.They assisted the other teams with a solution 
and recommended code to use as a workaround solution. 

As the students proceeded with their planning during the design phase, they 
developed goals for their robot performance and by methodically working through 
their objectives, they drafted, revised, added, and eliminated the steps that their 
Macbot would perform.They modeled the desired actions they wanted robots to 
perform and tested them out in the Snap! Sandbox (see Figure 7.1). Pam required 
students to have their robots “speak” the dialogue of their individual character. Soon, 
they discovered the fexibility to make the Finch robots “speak,” but there was no 
infection.The code did have its limitations.The characters spoke in a computerized 
voice that was monotonous and showed no emotion. One group was not satisfed 
with the lack of emotion in the computer voice.Another group discovered a work-
around solution by recording their lines into Voice Notes on their phones and then 

Figure 7.1 Macbot movements in Snap! code. 
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played them while performing the scene. Pam recalls how gratifying it was to see 
each one of her students participating in revolutionizing the curriculum. 

For several class periods, Pam provided direct instruction to show the 
characteristics and actions each colored block represents.This provided the skills 
for each team to write the code necessary to have their Finch robots perform 
actions that executed the movements they desired.They had fun building their 
program code and testing out their actions in the Snap! sandbox. Each group 
made progress through trial and error.They discovered that Snap! code was easy 
to use because of the instinctive nature of the color-coded command blocks. (See 
more about block-based coding in Chapters 3 and 5.) 

For some students who had advanced knowledge of coding, they found it 
easier to write text-based code in the compiler. 

In both situations, Pam explained to students that languages all require a spe-
cifc syntax to “work”correctly. She went on to explain how a program will not run 
if the code is not written or developed properly.The syntax and commands must 
be in the proper order for the code to execute. During one class, Pam projected an 
example of a poorly written paragraph with incorrect punctuation and grammar 
on the interactive white board.She then projected the Snap! application on next to 
the hand written text to show the similarities between the two languages and what 
each communicated to the reader. She also reminded students how their programs 
did not work when the improper code was used, much like when writing an 
essay and using improper grammar and sentence structure.They understood how 
the similarities were surprisingly alike.The parallels between drafting an essay and 
writing computer code became apparent to all. Students experienced how both 
written English and Snap! code paralleled one another.This revelation indicated 
how incredibly alike both forms of language network to translate into communi-
cation.A communication that may either be translated in a wired or wireless form. 

Each robot connected to an individual laptop via USB cable.This presented 
somewhat of a challenge and required students to carry their laptops as their robots 
performed their scene.The goal of the exercise was to have the Finch robots man-
euver across the “stage” as though they were actors.As students became familiar with 
Snap!, they quickly realized that some of their performance ideas would require 
multiple robots to complete a specifc task to play out the scene, but it was too 
time and labor intensive.After this realization, they modifed their code to meet the 
limitations of their robots—just like authors who revise based on readers’ feedback. 

During students’ cold read of Act V, they were instructed to analyze and inte-
grate the key lines and dramatic techniques into the essence of their robot’s per-
formance.This activity was a progressive task that involved annotating the Prompt 
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Book and modifying the robot’s behavior to function within the limitations of the 
technology available. At the beginning, Pam was concerned that students would 
get bored with the play. With the inception of integrating technology into her 
ELA class, the students never complained that they were reading Act V multiple 
times so that they could achieve the objectives outlined in the assignment. Excellent 
group dialogue was present as students made executive decisions, which afected 
the potential outcome of their performances.The blending and integration of tech-
nology took hold. 

Students constructed their own internal schemas, which allowed them to 
scafold their understanding of how they would allow their bots to act as they 
planned during their blocking activities. During one class period, they planned out 
how they would write the Snap! code to get their robots to perform the necessary 
actions required for the project. Silently, Pam feared the worst. She often thought, 
“What if this project is a disaster?”At the end of each class period, she required her 
students to post their thoughts in her class discussion board so she could get an idea 
of how they were feeling about the progress of their groups. In addition, she required 
them to read journal articles that discussed why it is important to integrate CS 
principles into other core subjects.Their refections on these readings documented 
their understanding of both the content of Act V and the higher-level purpose of the 
Macbot project. By requiring cross-discussion posts, students were able to network 
with each other to validate their ideas in relation to their daily activities. 

At the conclusion of the two weeks, each group presented their rendition of 
their assigned scene in front of a “mock stage” painted by one of the students.They 
presented Act V chronologically, and many had technological difculties. Every 
challenge represented the strengths and weaknesses of the internal network they 
had built within their group and among their peers. If one aspect of the “network” 
was down, the project faltered and students had to reconfgure a solution to the 
problems that arose when running their Snap! code. Group members relied on 
each other to work through their difculties. As Pam watched students’ Macbot 
performances, she experienced the warmth of a radiant light. Not the sun’s rays 
from without, but the light of pedagogical innovation bursting out from within. 

Uncovering Subconcepts 

In her pedagogy, Pam had set out to try a dramatically new teaching strategy. One 
that was innovative, creative, and rigorous enough to challenge her students, yet 
provide high interest. Pam’s story also helps us begin to understand subconcepts 
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related to networks. Recall that one’s understanding of human networks helps 
demystify computational networks. 

Trust 

Trust is implicit when you are an educator.Administrators, parents, stakeholders, 
and, most importantly, students place formidable trust in the role teachers impart in 
providing knowledge to future generations.All of them rely on Pam’s expertise as 
an educator.The trust is reciprocated, and she wholeheartedly respects the power 
that educators have in the classroom. She has tremendous respect for her position 
and the trust her students have for her. Pam establishes excellent relationships with 
her students early on in the year and knows when a student trusts and respects her. 
After earning that trust and respect, students are open to learning new concepts 
and will happily engage in active classroom activities. 

In the world of computationality, trust is not dissimilar.The Blueprint writes, 
“The common thread behind issues of security, privacy and consent is trust. 
Whenever we connect to a network, we decide our level of trust, based on our 
security and privacy needs.We implement and monitor protocols to protect those 
needs.” Pam’s school had a networking infrastructure that ensured issues of security, 
privacy, and consent were respected. So do many schools. That’s why students 
sign on to computers with their own unique usernames. It’s why administrators 
can never see a student’s password, only help them change it. It’s why devices 
like Finch robots need to be purchased with data security and privacy in mind. 
Because children will be using them in a safe and secure space. 

Protocols 

Languages are an integral part of cultural diversity, freedom of expression, and 
universal access to information and knowledge.The English language is one of 
the most challenging languages to learn, yet over 1.3 billion people communicate 
in some form of English.The communication of data and the transfer of infor-
mation from teacher to student and student to student function within a set of 
protocols. When the transfer of information is uninterrupted, then the fow of 
data is smooth and uncorrupted. Processes can be completed, packets can be sent, 
instructions will be followed or carried out according to the functions indicated 
in the syntax. Send, synchronize, share, report, and recover. 
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The Blueprint defnes protocols thus: “In order to send data from one 
device to another, the devices must be synchronized, share a syntax for the data, 
share a method of encryption, and have a way to report and recover from errors.” 
The clearest place to see protocols at work in the Macbot project is when students 
were trying to pair their robots with the computers. Gerald and Tom agree: It’s 
nearly always a challenge at frst.That’s because a very narrow protocol is being 
used to let the computer communicate with the robot. Lots of syntax and encryp-
tion issues for both devices to sort out. It might be worth noting, however, that 
in Pam’s language arts class communication was no diferent. Sending instructions 
to students indicated a desired function would result in a specifc outcome.When 
Pam’s students understood her expectations, things went very smoothly. In fact, if 
there were no expectations or if her expectations were unclear, then the learning 
environment in her class would have never had success with the Macbot project. 

Physical Internet 

Part of what made the Macbot project successful was the technology available to 
the students and teachers.The school where this project was taught is in a suburb 
of Metro Atlanta and had recently undergone a retroft with upgraded routers 
and bandwidth very capable of handling multiple users on the Wi-Fi at any given 
time. Also, the school is connected to an extremely fast fber optic connection 
that rarely, if ever, experienced slow trafc or lag. Students in Pam’s class never 
experienced difculty with being able to connect to the network, and as a matter 
of fact, they took for granted that the technology was available for them to com-
plete the project.This allowed them to be focused on presenting their work to the 
class instead of dealing with technology failures. 

As the Blueprint defnes the physical Internet,“It is critical to understand 
the infrastructure of the Internet, including the hardware, companies, governing 
bodies, etc. that connect your computer to Internet exchanges—where massive 
networks cross-connect to the undersea fber-optic cables that connect the world 
(not satellites).” In our experience, that is something many educators and people 
have a hard time understanding. For all the appearance of wirelessness, the Internet 
is only possible with a lot of wires and metal and plastic. Just as the physicality of 
robots is a helpful reminder to students that the digital and physical worlds are not 
so separate, so, too, does the ubiquity of cables hiding in the ceilings, access points 
hanging from the walls, and the very devices themselves remind us that the digital 
world is hardly as ephemeral as it appears. 
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Markup 

Recall for a moment that part of the intent of Pam’s project was to have students 
examine the code and compare it to how the English language is similar. Pam 
wanted her students to discover and analyze how language commands struc-
ture, sequential functions, and proper syntax. For instance, the inverted syntax in 
Macbeth is difcult and presents a challenge for most people. Disseminating the 
structure and the archaic language of each line in the play takes patience and con-
centration to comprehend, synthesize, and deconstruct in order to make sense of 
what Shakespeare is attempting to convey.While some readers see beautiful lan-
guage, others see an arduously difcult text to understand. 

These English language grammar and syntax rules exist for a reason—to 
get the language to function the way it was intended. If the syntax or grammar 
is ill placed or incorrectly used, the intended meaning will be lost in translation. 
Without grammar rules, language would be subject to any type of interpretation 
and would result in a great deal of confusion. 

There is no diference when writing code to make an app, a program, or a 
website perform its intended function. Markup is a perfect example, which the 
Blueprint team defnes as,“Hypertext Markup Language (HTML) is the standard 
way to publish information or applications on the Internet. It is a standard agreed 
upon by the Internet Engineering Task Force (IETF). It is not a programming 
language, as it doesn’t use logic.”Without a “standard way” to make information 
available online, there simply wouldn’t be the digital revolution we are experien-
cing today. It would be informational chaos, a dilapidated digital tower of Babel. 

In Sum 

In this chapter, Pam’s objective was to bring you into her classroom where she 
took the least likely subject, English, and shone the light on an entirely non-
traditional way of getting students to take Shakespeare seriously, integrating com-
puter science principles into daily instruction. 

As much as Tom struggled with the lack of communication between two 
departments that resulted in a missing pawn, he relied on a trusted framework 
that had provided a system that he had come to rely on to produce and deliver 
a product he expected. Educators should not remain complacent with historical 
and even current practice: remember that teaching is a dynamic profession that 
demands the creation of people who will become productive citizens in society. 



 

 
 

 

 

  
 

Networks 

The networking concepts discussed in this chapter began with building trust 
among students. Good communication results in exciting new challenges for 
students who will learn vital communication skills that are essential for a collab-
oration based future. Good communication networks are also the heart and soul 
of what makes the digital world work at all.The more we understand that idea 
in our daily lives, the clearer we will be able to see when those communication 
networks are vulnerable, manipulated, and corrupted. But it starts with knowing 
what they are in the frst place. And who better to show us such things than a 
400-year-old playwright? No one, Pam suspects. 

Connections to Content Areas 

Much like Pam and her experience with the Macbot project, the networking 
concepts can be employed in other subject areas. This chapter has primarily 
addressed the integration of computer science principles into ELA at the high 
school level. Listed here are some conceptual ideas that deal with networks that 
are primed for further exploration and creative development. 

English Language Arts 

An oft-taught topic in ELA classrooms is how authors develop characters. One 
of the key ways this is done is by exploring direct and indirect forms of char-
acterization. In order to unpack indirect characterization, readers have to tune 
into the way other characters or the narrator encrypts information. A narrator 
might imply something about a character or use a specifc word that is less than 
appealing to describe a character. Such authorial moves are subtle protocols 
authors employ as a way to build complex characters—it’s about how trustful 
readers are of narrators, characters, and authors. 

History 

In history class, teachers often examine the way politics unfold on a micro and 
macro scale. When it comes to matters of politics and diplomacy, trust is front 
and center.What are the ways in which trust factored into U.S. foreign policy, for 
instance? Or, perhaps more darkly, how have espionage and secret codes attempted 
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Networks 

to control the types of information and disinformation shared across governments 
throughout history? Fast forwarding to the present, it would be quite under-
standable to examine current debates about election hacking and the use of social 
media to spread disinformation.Trust—and what it means for human beings and 
for computers—has never been a more pressing issue. 

Math 

Protocols are also really helpful to consider in math classes.This is especially the 
case when we think about the protocols students use to solve problems, how 
they show their work to their teachers so that their thinking is clear.There are 
better and worse ways for students not only to approach solving a problem but 
to communicate their thought process to their teachers. As many schools move 
away from overvaluing single correct answers in favor of understanding students’ 
process of solving problems—their thinking—it can be invaluable to invoke the 
computational idea of protocol. 

Science 

The human correlates to computational networks are all around us in the natural 
world. Our bodies are composed of networks, like those neural networks in our 
brains.What’s more,it’s not uncommon to map the ways diferent species or chemicals 
relate to each other via sophisticated networking maps. It can be quite powerful to 
make clear to students just how this very natural tendency toward networks is also 
fundamental to the often-invisible world of the Internet they know so well. 

The Arts 

Put on your favorite blues or jazz instrumental album. Listen for the protocols at 
play. It is not uncommon to hear, for instance, a kind of call-and-response prac-
tice throughout songs. For example, when a jazz musician takes a solo—say a 
trumpeter—you might hear the drummer subtly echoing the impromptu rhythm 
of the soloist, or you might hear the pianist playing a variation of a musical 
phrasing in the trumpeter’s solo.This is all part of jazz protocol: mutually under-
stood ways of communicating music together. 
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For Further Exploration 

• Read | BardBots Project: http://www.babblelab.org/bardbots 

• Check out | Birdbrain Technologies: https://www.birdbraintechnologies. 
com/fnch/ 

• Watch | “The Internet: Packets, Routing & Reliability” by Code.org: 
https://youtu.be/AYdF7b3nMto 

• Watch | “How Computers Work:What Makes a Computer, a Computer?” 
by Code.org: https://youtu.be/mCq8-xTH7jA 

• Read | Lynch, T. L. (2019). Electrical evocations: Computer science, the 
teaching of literature, and the future of English education. English Education, 
52(1), 15–37. 
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8 Getting Started 

Over the previous chapters, we have made the case for why computationality should 
be embedded into all grades and content areas in K–12 settings. We argued that 
computationality is vital for the future of society, both civically and economically. 
Then, we ofered a brief overview of some of the popular frameworks schools and 
districts are using as they try to fgure out what “computer science for all” means 
in their communities. Paradoxically, we said that the words computer and science do 
more to limit access to computationality than one would think, causing us to say 
that advocates for robust computer science education in K–12 schools should stop 
talking so much about computers and the sciences. It was with this in mind that we 
suggested schools and districts think about how to embed computationality every-
where rather than adding computer science somewhere. New York City’s Blueprint 
for K–12 Computer Science Education is, in our view, the best framework for 
beginning to do so. Others have their merits, but they are often too specifcally 
geared to narrow computer science classes, or they are too generally presented 
without the conceptual nuances and clear practical implications that would make 
them most valuable to schools. It was the Blueprint that gave us the framework 
needed to organize those middle chapters you just completed, each devoted to a 
high-level computational concept and its associated subconcepts. 

So, now what? 
We didn’t write this book to be an academic exercise. We wrote it to be 

useful, which heretofore has taken the shape of real-world illustrations, stories, 
and ideas for classroom practice. But you don’t want to do this work scattershot. 
You want to be systematic and intentional about it, right? We want you to be, 
for sure. It is only when you approach this work systematically in your curric-
ulum and instruction that you can be sure computationality is equitably and 
sustainably available to all children. In what follows, we want to ofer a basic 



 
 
 

 

 

 

   
  

 
 
 

 
 

  
 

 
 

  
 
 

Getting Started 

step-by-step plan for how to get things of the ground in a way that allows you 
to be nimble, strategic, and sustainable in making computationality a part of 
your classroom, school, and district. Here are the main phases for getting started 
that we suggest: 

1. Huddle. Form a working group of stakeholders who are committed to 
learning about computationality, connecting it to your curricular and 
instructional vision, piloting prototypes, and leading implementation 
teams over time. 

2. Explore. Set a time frame within which the working group will review 
materials about computationality, exchange ideas, and generate insights 
that will help guide the work moving forward. 

3. Connect. Review existing curricular and instructional materials— 
especially things like curriculum maps, achievement data, and planning 
templates—and for each document, ask yourselves how computationality 
can deepen and expand the work as it already exists. 

4. Pilot.Working in vertical or horizontal teams, identify specifc assignments 
that can be designed and piloted in the next one to two months.These 
might be totally new assignments inspired by some of the examples in this 
book. Or they might be strategic modifcations to existing assignments. 
Importantly, you want the assessment mechanism for the assignment to 
explicitly account for the relevant language in the Blueprint. 

5. Evaluate. Using internal evaluation frameworks already familiar to the 
school community (i.e., the Danielson Framework, Webb’s Depth of 
Knowledge), evaluate what worked and what didn’t work about the 
pilot. Make adjustments accordingly. 

6. Expand. Working group leaders divide up and begin meeting with 
grade- and/or content-level colleagues and teams to share the progress, 
ideate ways to expand the use of computationality, and set measurable 
goals for the next three to six months. 

In what follows, we will unpack each of these six steps individually. Each section 
will be anchored in a planning instrument that provides clarity of the contours of 
the stage in question.As a rule, we honor the fact that every classroom, school, and 
district is unique. Doubtless, you will want and need to make alterations. However, 
we will also point out why we designed the instruments the way we did so that any 
adjustments you make can be done knowingly. Let’s get into it. 
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Getting Started 

Phase 1: Huddle 

Whether you are an individual teacher, a school principal, or a district offi-
cial, the first phase ensures that you will not walk this path alone. We’ve 
broken down the phase into six steps. But before we look at the steps, we 
warn you that we are going to emphasize the importance of starting with a 
little word that has big impact: why. In his book Start with Why: How Great 
Leaders Inspire Everyone to Take Action, business professor Simon Sinek argues 
that when you look at the most effective leaders in recent times, they all 
have one thing in common.They lead their organizations by focusing on the 
following: 1) why we do this work, 2) how we do this work, and 3) what 
we do. That order—why, how, what—can be of immense value to the way 
educational organizations operate as well.We suspect some readers might be 
skeptical as we begin referring to business theory in a K–12 education book. 
But hear us out. 

In education, it is our experience that teachers and school leaders are often 
forced to work in the reverse order. First, they focus on what to teach: a set of 
tested standards. Second, they focus on how to teach: a teacher-efectiveness 
framework. Third, they might focus on why they teach what they teach by 
exploring enduring understandings, big ideas, and other similar why-like aspects 
of pedagogy.The result of putting the why last is that schools tend to fnd them-
selves in reaction or compliance mode. Our days start with that sense of having 
to check a box rather than with the higher purpose that makes us commit to 
education in the frst place. If someone was to ask you why you get out of 
bed in the morning, your answer might be something like “because I have to” 
instead of “because I’m preparing young people to contribute civically and eco-
nomically to society.” But when we start with why, we increase the likelihood 
that our energy and efort will be guided by what really matters.With that in 
mind, let’s see those six steps. 

Step 1.1: Build a Team 

Who is on the team? When you involve others in your interests and thinking, 
you not only get the beneft of their perspective but you also increase the level of 
personal accountability. It’s a lot harder to abandon a project when you have pub-
licly engaged others in its pursuit.Avoid the temptation to go it alone. 
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Step 1.2: Know Why Everyone is There 

Why them? Educators are asked to be in meetings all the time, too often without 
a clear understanding of why them. State explicitly why each person was invited 
into the huddle. It could be because they are comfortable with technology, sure. 
But it can also be because they are skeptical about new initiatives. It could be that 
they are a creative thinker or a born task-master.Whatever the reasons, be sure to 
discuss those reasons from the start. It honors everyone’s presence in a way that 
will strengthen the group’s work. 

Step 1.3: Put Why First 

If a parent asked why you—as a teacher, leader, school—educate children, what 
would your answer be? Remember that there is a lot about the way education 
is currently framed that makes asking and answering that question really hard. 
Emphasis is often placed on tests, standards, achievement scores, and teaching 
measures. Regardless of whether you think such things are good or not, recall 
that those are hows and whats—not whys. If you want to maximize the work’s 
chances of success, you have to put the why frst. Fortunately, most schools and 
districts have materials that can help. Revisit documents like vision and mission 
statements. Check out your state’s constitution where it articulates why you 
have a compulsory education system. Look at your curriculum maps and refect 
on those big ideas, guiding questions, and enduring understandings that frame 
learning and teaching. 

Step 1.4: Embrace Skepticism 

We fnd it helpful to begin this kind of work—especially when it involves popular 
technologies—by frst assuming that it is a complete waste of time and resources. 
Be skeptical. Don’t start with the assumption that computer science or computa-
tional thinking or computationality is necessarily worth focusing on.Assume the 
opposite. Honor skepticism and dissent. If no one on the team feels that way, play 
devil’s advocate.What would a technophobe at the table say? Or ask the question: 
What else could we do with our limited time and resources if we abandoned this 
computationality work right now? Have that conversation. It’s real. 
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Step 1.5:Why Computationality, with Adults 

You will have more time to dig into the question of why in Phase 2. Still, now 
is the time to articulate your short-form understanding. Based on the values of 
your school district and community, the curiosity and creativity of your students 
and teachers, and the ideas shared in the previous chapters, why might computer 
science be worth exploring further in your classroom, school, and district? Really 
wordsmith a collective response to that question in no more than one or two 
sentences. 

Step 1.6:Why Computationality, with Students 

With Step 5 in mind, now shift perspectives. Picture a student raising her or his 
hand, looking you in the eye, and asking this question:Why are we doing com-
putational stuf in this class? Write a one- to two-sentence response that doesn’t 
evoke tests, college, or because you said so. If time permits, even picture diferent 
actual students you have taught who might ask that question in diferent ways. 
Again, construct a collective response and wordsmith accordingly. 

Once you have had a chance to work through these six steps of Phase 1, it’s 
time to turn your attention to Phase 2: Explore. As you will see, the diligence 
with which you attended to Phase 1 will directly afect the quality of Phase 2. 
So double-check your responses in Phase 1, and when you’re ready, let’s move 
ahead. 

Phase 1: Huddle | Planning Guide 

Date: ___________________ School/District: ______________________ 

1.Who is on the team? 2. Why them? 
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3. If a parent asked you why you—as a teacher, leader, school—educate 

children, what is your answer? You might review the district’s mission 

statement or vision statement or similar documents, if helpful. Or look at a 

sample curriculum and see what big ideas drive it. 

4.What might a skeptic say about 

eforts to bring computer science to 

K–12 schools? 

5. Based on what you have read 

in the previous chapters, why 

might computer science be worth 

exploring further in your classroom, 

school, and district? 

6. Picture a student raising her or his hand, looking you in the eye, and 

asking this question:Why are we doing computational stuf in this class? 

Write a one- to two-sentence response that doesn’t evoke tests, college, or 

because you said so. 

Fantastic work! You should now have a more concrete understanding of WHY 

computationality is worth exploring in your community.That move alone will be invaluable. 

You are ready to roll up your sleeves. Let’s move forward to Phase 2: Explore. 

Phase 2: Explore 

It will not surprise you to hear that when it comes to K–12 computer science 
education, there is no shortage of ideas and resources foating out there. To be 
clear, we think there is great potential in those ideas and resources. However, 
we also think that whether or not that potential is realized has everything to 
do with how thoroughly your team understands why the work is important, as 
well as a sense of the strengths and weaknesses of your current organizational 
structure and culture.We have argued in this book that the key to equitable and 
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Getting Started 

sustainable access to K–12 computer science can only really be achieved when 
it is embedded into the current curriculum in schools, which can be done by 
emphasizing computationality and computational methods rather than computer 
science. It is through that lens that we suggest four basic steps to explore what 
other practices are out there in the world. But remember: some of the practices 
might slide right into current instruction in a school; other practices will take 
creative adaptation. Both are workable. 

Step 2.1: Set up a Note-Catcher 

This step seems rudimentary, but in our experience, it merits stating. Establish a col-
laborative space where members of the team can catch their notes, ideas, and questions 
as they explore diferent K–12 computer science resources online.You might set up a 
shared spreadsheet, for instance, with a tab for each person on the team, using column 
headers like resource name, URL, interest level (scale of 1 to 10), ideas for potential 
use, and other thoughts. Give members of the team a set amount of time to capture 
their own lists and notes.Then set a window of time for them to review others’ as well. 

Step 2.2: Scour the Web 

Your team’s list of potential resources can be populated in lots of ways. First, 
there are websites devoted to computer science in K–12 spaces like Code.org, 
CodeAcademy.org, and Mouse.org. Spend time in such spaces checking out 
examples and experimenting with activities, always asking how what you are 
seeing might be used to deepen and expand current content-area practice. Second, 
there are many excellent products on the market that can be used in one’s class-
room practice. For example, Gerald introduced Tom to mBot robots and that led 
to the BardBots project where students program robots to perform Shakespeare. 
Or consider the shelves and shelves of new products that introduce children to 
coding, robotics, engineering, and more. Explore those products critically and 
creatively.Again, don’t limit your thinking to what the product is intended to do. 
Focus instead on how it could be creatively used in one’s instruction to deepen 
and expand classroom practice.Third, we suggest checking out videos on YouTube 
and TED that explore topics of computer science, engineering, and coding.Yes, 
such videos sometimes come from the perspective of K–12 computer science for 
its own sake. But if you look past that you might hear or see little insights that can 
resonate with your students and teachers. 

https://Mouse.org
https://CodeAcademy.org
https://Code.org


 
 

  
  

 
  

 

  
 
 
 
 
 
 
 

  
  

 
 

 

Getting Started 

Step 2.3: Reconvene 

After a set time has elapsed, everyone should reconvene—ideally around a physical 
table at the end of which is a big screen and computer with the live document. 
Prior to the reconvening,members of the team should not only have flled out their 
fndings and notes on their spreadsheet tab.They should also have had a chance to 
review what their colleagues found, coming to the table with specifc ideas about 
what might be worth exploring further.As everyone shares, keep track of patterns 
of comments and insights. 

Step 2.4: Identify Promising Practices 

We emphasize the word promising. If your collective goal is to leverage existing 
curriculum and culture in your classroom, school, and district, then you want to 
identify the practices (and products associated with them) that you think could 
meaningfully deepen and expand the current classroom instruction. No solution 
can be unboxed. Rather, you want to emphasize that there are exciting ideas and 
products and practices out there already, all of which are waiting for adaptation and 
application. Ideally, the team leaves the meeting having identifed some high-level 
idea of where computationality might work best to start. For example, a team might 
say:We want to see how robotics might be used in history class to bring great battles 
to life for students. Or something like: We want to see if there are creative ways 
for students to collect more of their own experiential and cultural data for use in 
science and math classes.Your team might fnd the following instrument helpful. 

Phase 2: Explore | Planning Guide 

Date: ___________________ School/District: ______________________ 

What are some of the most interesting resources you reviewed (including 

your own list)? 

1. Name of resource 2.What made it interesting 
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3.What are three promising 

practices you see emerging? 

4.What aspects of the respective 

content area might these practices 

deepen and expand? 

A. A. 

B. B. 

C. C. 

Awesome! You should now have a more concrete understanding of what kinds of practices might 

be worth exploring. But before you go piloting anything, take a step back and look at your 

curriculum as it currently stands. Let’s move forward to Phase 3: Connect. 

Phase 3: Connect 

Nobody wants to waste their time.That goes for students in desks and teachers in their 
classrooms. So it’s important to take a step back and look at what is already required 
in terms of learning and teaching. Most of us have experienced what happens when 
this simple step goes unacknowledged. A new initiative or mandate comes raining 
down from the state or the district or the school and everyone rushes to comply.The 
result is seldom what anyone would say is best for students’ learning.We will say it 
again and again: Computer science in K–12 spaces cannot be implemented well if it 
is imposed from without for its own sake.The result will be inherently inequitable, 
unsustainable, and a pale version of what it could have been if it began instead by 
honoring current classroom instruction. So, how does one proceed? Well, like this. 

Step 3.1: Examine Your Current Curricula 

Your current curricula is likely informed by many inputs, including state standards, 
professional learning organizations’ frameworks, and testing data. It might take the 
form of curriculum maps for grades and content areas, or even key assessments 
and projects feshed out in some detail.They might exist in fling cabinets, digital 
archives, and foppy disks. What’s most important in this phase is that the team 
collectively agrees on how to get it all out on the table—literally, if necessary. 
For each standard or essential question or goal articulated, ask yourselves: How 
might computationality deepen and expand this? Remember, for us, what drives 
the need for computer science in K–12 settings is civically and economically 
motivated. If it helps, look back at the why your team articulated in Phase 1. 

https://learning.We
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Step 3.2: Identify Places in Your Curricula for Embedding 
Computationality 

As you scan through existing curricula, you are looking for places where 
computationality might be able to deepen and expand instruction. It might be 
that there are particular priority standards your school is focused on. Or, it could 
be that there are some current assignment or projects that could use renovation. 
Whatever the case, it is not a matter of looking for an opening to slip in some 
computer science.That would be a mistake. Instead, it is about looking honestly 
at the content-area practices already underway and thinking creatively about how 
computationality might be leveraged. List those places out for the team to see. 

Step 3.3: Ideate Variations of Promising Practices for Piloting 

At this point, the team will want to look back at the promising practices from Phase 
2 and cross-reference them with the list of potential curricular places you just iden-
tifed. Discuss explicitly what value computationality might add to the content-area 
instruction. Engage with the teachers who might be involved with implementation, 
and gauge their interest—and their hesitations. Ultimately, the team will want to 
identify at least one or two pilot sites with a clearly articulated goal. For instance: In 
February, Mr. Lynch will pilot an assignment while teaching Romeo and Juliet in which 
students write mixed literary analyses.We are interested in better understanding how compu-
tational methods of analyzing literature afect students’ depth of knowledge about the text and 
the quality of their written arguments. With a couple of those pilot ideas in hand, the 
classroom, school, or district will be well positioned to bring computationality to 
life in a way that is authentic to its organizational and professional culture. 

Phase 3: Connect | Planning Guide 

Date: ___________________ School/District: ______________________ 

1. Based on your review of existing documents and priorities, what are 

some of the potential places where piloting computationality might make 

sense? 
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2.What are some of the possible promising practices from your exploration 

of K–12 computer science education that might be worth considering to 

pilot? 

Awesome! Now you have a sense of what some pilots might look like and where they 

might happen. Let’s get into Phase 4: Pilot. 

Phase 4: Pilot 

There are many ways to pilot instructional innovations in classrooms, schools, 
and districts. One of the most thorough ways to do so is through a method-
ology referred to broadly as action research.Action research refers to the system-
atic investigation of how changes in practice afect one’s teaching and learning. 
Resources to support action research in the classroom abound and are just an 
online search away. If the idea of a robust model is intimidating, we might suggest 
instead a simple approach to get started. 

Step 4.1: Identify and Align Resources 

Once the team has identifed places to pilot computational methods in specifc 
classrooms, it’s vital to step back and ask:What resources will we need to make this 
happen well? Resources can refer to many things. First, consider time.What kind 
of time is necessary for the people involved to pilot this? There is the instructional 
time already blocked during class periods. But there might also need to be time to 
plan, especially with other colleagues who might support the eforts. For instance, 
if a teacher was going to try to use robots to teach Shakespeare, she might want 
to huddle up with the school’s technology support lead to review the ins and outs 
of implementing robots in the classroom. In the example of Shakespearean robots, 
it’s also necessary to plan for the peripheral materials needed, like laptops. Second, 
consider money.What kind of funding is necessary for the people involved to pull 
this of? Funding relates to two main resources: people and products. If additional 
planning and meeting will be needed to implement the pilot project, then consider 
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whether compensation would be fair and available. But the people are only part of 
it. If specifc products are needed, then that, too, might require lining up in advance. 
Products like necessary technologies will be clear, but other related costs might not 
be.We suggest mapping low-, medium-, and high-level potential costs. 

Step 4.2: Observe Classroom Practice 

Members of the team should schedule times to visit colleagues who are implementing 
pilots.The purpose of the visits is not to evaluate. Rather, the purpose is to ofer 
collegial feedback about the work, which might take the form of questions or other 
kinds of insights. By making the time to observe, the team can help those teachers 
piloting computationality feel supported. Schools and districts often have protocols 
for conducting observations, many of which can be adapted for these visits. Just 
remember that this isn’t a formal observation or anything like that. It’s a collegial 
observation with the goal of helping the teacher and team better understand some 
of the nuances of what embedding computer science takes in your setting. 

Step 4.3: Check in Periodically with the Team 

Whether it is through email updates or face-to-face meetings, it’s important to 
update the team on how the pilot is going. Such updates can be solicited from the 
team lead or can be shared by the teacher directly.The purpose of the updates is to 
keep the work energized and on everyone’s radars. It is easy in the daily dynamics 
of working in schools to lose sight of something like a pilot.When stacked against 
other demands for time and mental energy, something like a pilot (especially one 
focused on K–12 computer science) might be hard-pressed to make the cut in the 
moment. By scheduling solicited or proactive updates, you can better ensure that 
the community remains primed to learn and grow together. 

Phase 4: Pilot | Planning Guide 

Date: ___________________ School/District: ____________________ 

1.What resources will you need to get this pilot of the ground? Think 

about not just money but also materials and time and people. 
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2.When are members of the team going to visit the pilot teacher in action? 

Take a moment now to write down specifc dates, times, and locations. 

3.When and how is the team going to check in collectively during the 

pilot? Who is going to make sure you do it? Hash it out here.

 Sweet! Now you have a thoughtful pilot underway. Great job.When you’re ready, let’s go to 

Phase 5: Evaluate. 

Phase 5: Evaluate 

So, how did the pilot go? What lessons can the team learn about how to use 
computer science to deepen and expand content-area instruction? Those are 
the key questions to consider in this phase. It is not uncommon for teachers 
to try out new things. Good teachers do that all the time. But it is less than 
common in many schools for a team to sit around the table, look at student 
work, hear from the teacher’s perspective, and then extract from those data some 
principles of practice that can be used to frame work going forward. But that’s 
the goal here. 

Step 5.1: Begin with Student Artifacts 

Few activities have the power to ground our conversations about learning and 
teaching like looking at student work. As the team convenes, the pilot teacher 
should bring some artifacts of student work that emerged from the previous 
few weeks. Then, use a protocol for looking at student work for the team to 
examine the artifact.What questions and insights does it surface? After the team 
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gets a chance to unpack the artifact, the pilot teacher can fll in gaps and answer 
questions. Be sure to avoid high-inference observations. Keep it low-inference: 
concrete, rooted only in the artifact. 

Step 5.2: Capture Teachers’ Feedback 

After focusing on the assignment, open the discussion up more broadly to solicit 
feedback from the pilot teacher. Use whatever protocol your school or dis-
trict already has.The kinds of questions can vary, of course. But here are a few 
to get you started: What are the big lessons learned about the possibilities for 
computationality in the classroom, school, and district? What would have made 
the project even more successful? What key alterations to the assignment might 
you make knowing what you know now? 

Step 5.3: Discuss How to Proceed 

This can be a very challenging step for any classroom, school, or district.Very 
often there can be far too many or far too few clear ways to proceed.You want 
the former.We suggest creating an opportunity for the team to think broadly and 
creatively. Get all ideas for procession on the table, or better yet on a white board 
with lots of colors and shapes and arrows. Don’t dismiss any idea.Then step back 
and look at all the possibilities. 

Phase 5: Evaluate | Planning Guide 

Date: ___________________ School/District: ______________________ 

1.What student work do you have before you, and what does it tell you 

about the depth of students’ learning? What questions does the work raise 

for you about the potential for computationality to deepen and expand the 

content area? 
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2.What does the lead teacher have to say about the ups and downs of the 

pilot? What potential does the teacher see? What lessons did the teacher learn? 

3. After brainstorming any and all possible ways to proceed, what is sticking 

and why? Capture it here. 

Yes! Now it’s time to strategize how you are going to expand and sustain this work.That’s 

what Phase 6: Expand is all about. 

Phase 6: Expand 

Based on team’s evaluation of the pilot, you should now have some rich insights 
into what worked, what didn’t, and what possibilities lie before you as a profes-
sional community.The fnal phase is to begin expanding those insights.We have 
identifed three main steps to take. 

Step 6.1: Identify a Strategy for Expanding Horizontally 
and/or Vertically 

Schools and districts tend to have similar organizational structures.When it comes 
to expanding computationality in yours, leverage those structures.The main ways 
to think about expansion tend to be horizontally (spreading the work across grades) 
or vertically (spreading the work throughout departments).Which works best has 
a lot to do with the people and practices already underway in your setting. If there 
are individual teachers in other grades who seem keen to explore computationality, 
then proceeding vertically might make sense. Or if teachers in the same depart-
ment as the pilot teacher are eager to implement their own projects, then that 
energy is priceless. Both can be efective. Some have suggested that departmentally 
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similar teachers might be worth targeting for expansion, especially if they teach 
diferent grade levels than the pilot teachers.We’ll leave that up to you. 

Step 6.2: Orient New Collaborators with the Process to Date 

Whoever you invite to expand the use of computational methods in your setting, 
be sure to create a space for them to become oriented with the team’s work to 
date. Of particular importance is drawing their attention to that critical and refective 
work from Phase 1 where the team ruptured their assumptions about why computer 
science might be worth pursuing in the frst place.There are myriad ways to do this. 
What is most important is to avoid the pitfall of essentially telling someone they are 
expected to integrate computational methods into their practice without rooting that 
work to a higher sense of purpose that deepens and expands content-area practice. 

Step 6.3: Establish a Computationality Committee 
to Maintain the Work 

In order to systematize the expansion and sustainability of computational 
methods in your setting, it is at this point that we recommend establishing a 
computationality committee.The idea is for key leads from the initial pilot team 
to establish a regular meeting schedule in which they gather to review artifacts 
of students’ and teachers’ work, reveal problems and possibilities, and establish 
next steps. In addition to these formal foci, the committee can work informally 
to share examples of what computationality looks like in classrooms with other 
teachers, parents, and students.The idea is to slowly and steadily socialize the idea 
that computationality is a rich addition to any content area and grade level. 

Phase 6: Expand | Planning Guide 

Date: ___________________ School/District: ______________________ 

1. How is your setting organized, and what makes the most sense in terms 

of expanding the work? Vertical or horizontal or both? 
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2.What do new committee members and participants need to know about 

the conversations the team has had already? Share notes and anything else 

that will give them context. 

3.Who should serve on the computationality committee? How often will 

they meet, and what are their core goals for the next three, six, and nine 

months? 

You’ve done it.You have started to get started. Beautiful job. 

Conclusions and Beginnings 

In this chapter, we have ofered a brief and broad series of suggestions for getting 
started with computationality in your classroom, school, or district. Our hunch is 
that you will have your own ways to go about this based on your existing organ-
izational and cultural structures. Still, by reading through our lowest-common-
denominator suggestions, we hope that we might have revealed some angles or 
questions that you and your team might not have yet considered. 

We would be remiss to leave you here without mentioning that there are 
professional corners where others think and talk about this work.We have alluded 
to several throughout the book, but allow us to draw your attention to two. First, 
the International Society for Technology in Education (ISTE) does an excellent 
job in bringing together teachers and leaders who are thinking passionately about 
the role of technology in education. Their online community and professional 
learning resources are well worth engaging. Second, CSforALL is emerging as 
a powerful and useful unifying organization in K–12 computer science educa-
tion.They are, as we are, committed to the idea that computationality is vital for 
civic and economic engagement.Their online resources and live conferences are 
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wonderful supports to teachers and school and district leaders. Look up both 
organizations on Google to learn more. 

From politics to chessboards, from Houston to New York, we have tried to 
make the case that computer science is a vital area for focused exploration—so 
vital that we have to stop calling it computer science.We have argued that it is 
better to think in terms of computationality as computational methods and logic 
mediate more and more of our world.Young people and their teachers need ubi-
quitous, critical, and creative exposure to computationality.We believe wholly that 
computationality can deepen and expand one’s classroom practice in any grade 
and any discipline. Our belief, however, is not driven by technophilia. Quite the 
opposite. 

In her poem Boy Breaking Glass, poet Gwendolyn Brooks writes, “I shall 
create! If not a note, a hole. // If not an overture, a desecration.”To paraphrase 
the poem’s speaker, our belief is driven by undying faith in the power of human 
beings to create both notes and holes, overtures and desecrations. Like the speaker 
in the poem, we think human beings are inherently creative—but that creativity 
can be put to positive and negative ends. Computationality is itself a product of 
human creativity, but whether it will create notes and overtures remains to be 
seen.We have our doubts at times. But we also have hope.We are hopeful that 
the more teachers, leaders, and students come to understand computationality as 
a way of engaging with the world—not just scientifc and mathematical corners 
of the academy—the more likely we are to witness a sea change, one in which 
computationality serves our highest aspirations for society. Whether or not this 
book contributes to that change rests entirely in your hands. 

Quite literally. 
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