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Preface 

DANIEL M. GREENBERGER 

Department of Physics 
City College of the City University of New York 

New York, New York 10031 

Quantum theory represents one of the great and most beautiful structures in all of 
physics. It is the subject that all graduate students must master before going on to 
their specific area of specialization. Its general principles, like the uncertainty 
principle, have become metaprinciples that all phenomena must conform to, in all 
the far-flung branches of the subject. In areas that we understand, such as quantum 
optics, it provides a basis for predict ing the results of as yet unperformed experi
ments. In areas that we have yet to understand, such as high-T superconductivity, it 
provides the framework into which new discoveries must be fit and the means for 
interpreting them. Still, after 70 years, we have no real clue as to how and when the 
theory will break down (but break down it must-that is the tragedy of the human 
condition) .  

Nonetheless, despite i ts  uncontrovertible experimental successes, the theory has 
a very shaky philosophical foundation. The standard Copenhagen interpretation 
(whatever that is) requires us to accept so many assumptions that defy c ommon sense 
that ever since the theory was first developed it has led to enormous debates 
concerning its interpretation. Most mode m physicists accept it without qualification 
and, indeed, one can develop a creative intuition for using it. The fact that many of its 
founding fathers turned against the standard interpretation, whereas their followers 
have tended to accept it without second thoughts can only partly be ascribed to the 
circumstance that anything tends to grow more familiar with repeated use. Part of 
the explanation must be related to the fact that those very founders were much more 
culturally well rounded than most modern physicists. They were philosophically 
trained and philosophically inclined and did not like what they saw. 

In spite of their doubts, the subject grew rapidly and it became fashionable to 
avoid questions concerning the foundations. This attitude only started to change 
after Bell's famous theorem in 1964. He showed that one could pose some of one's 
intuitive doubts experimentally. Since then, a number of alternate interpretations 
have grown and new experimental tests devised. Over the years, more and more 
ingenious challenges have been put to the theory and it has passed each of these tests 
handsomely. Today, we know that the strange predictions of the theory hold up 
experimentally (even though the foundations remain shaky). We will never go back 
to classical physics-we must learn to accept and live with the world as it actually is. 

What makes quantum mechanics so much fun is that its results run so counter to 
one's classical intuitions, yet they are always predictable, even if unanticipated. That 
is why I like to say that quantum mechanics is magi,c, but it is not black magic. In 
recent years, there has been an explosive growth in new experimental techniques that 
can be adapted to test some of the stranger predictions of quantum theory. Most of 
the papers of this conference are devoted either to explaining the se new techniques 

xiii 
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or to some of the experiments they have led to. Not only can this serve to sharpen our 
intuitions concerning this ever fascinating subject, but also it brings us closer to the 
day when we can determine the limits of the theory. Some of these new techniques 
include neutron and electron interferometry; experimentally realizable two
dimensional models; photon downconversion in nonlinear crystals; special and 
ultrafast lasers/micromasers that can create few-photon states; trapping of indi
vidual atoms; atomic interferometry, which is the exact opposite of photon interfer
ometry in that atoms are scattered off photon "crystals"; quantum cryptography; 
SQUIDs; and Josephso n tunneling. 

The New York Academy of Sciences spo nsored a conference similar to this one 
in 1986, in honor of Eugene P. Wigner. Many of the new techniques mentioned 
above did not exist or were rudimentary at that time. It was decided that now would 
be a good time to hold another conference and we feel privileged that John A. 
Wheeler allowed us to honor him this time. I was surprised to learn at the conference 
how many participants earned their degree with Wheeler, had a postdoc with him, or 
otherwise collaborated with him. I suspect that he has probably mentored or 
supervised as a postdoc more first-rate physicists than anyone in the history of the 
United States. Of course, even if he had never written a word about fundamental 
problems in quantum mechanics, he would still be wor k! famous for his major 
contributions to other fields, but he has had a semi 11al in 6uence on many ideas in this 
field; thus, many people participated as a chance to pay homage to him. For my part, 
although I have never had the chance to work with him directly, I have read many of 
his books and papers carefully, have listened to him speak many times, have talked 
with him when I could, and feel as though I have been his student. In fact, few 
physicists have had a g reater influence on my thoughts, indirect as this has been, and 
I am sure that I speak for many of the participants in the conference when I say this. 

The exigencies of the conference made it impossible to schedule all papers on 
one topic together and so we have arranged the proceedings by topic rather than 
chronologically. This has allowed us to include a few papers from people who could 
not attend, but who sent in the papers they would have presented. I also would like to 
thank each of the session chairmen: Herb Bernstein, Ray Chiao, Serge Haroche, 
Mike Horne, Rolf Landauer, David Mermin, Mikio Namiki, Herschel Pil loff, Hel
mut Rauch, Marian Scully, Abner Shimony, Henry Stapp, Jean-Pierre Vigier, 
Herbert Walther, Sam Werner, and Anton Zeilinger. 

I would like to thank the chief executive of the New York Academy of Sciences, 
Rodney Nichols, and its board of directors, for letting the conference take place and 
for providing the experienced use of its staff, and also the conference director, 
Geraldine Busacc a. Also, the conference could not have come to pass without the 
financial support of the contributing organizations and foundations, to whom we are 
extremely grateful. Very special thanks go to the two personnel who handled the 
arduous work and made the conference happen, Renee Wilkerson-Brown

.
and Lynn 

Serra. The excellent detailed editorial expertise that made the proceedings possible 
was provided by Stefan Malmoli and the editorial direction by Bill Boland. We are 
also fully indebted to Carolyn Harriger and her staff at the Baltimore campus of the 
University of Maryland for handling the conference so smoothly. Finally, I would like 
to thank all the conference participants for making it a truly memorable experience 
and for the excellent quality of the papers. 
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INTRODUCTION 

The process of parametric downconversion in a nonlinear material, in which an 
incident pump photon of frequency w0 effectively splits into two subharmonic 
photons of frequencies near w0/2, has become the basis of numerous experiments for 
the study of nonclassical and nonlocal effects. The phenomenon appears to have 
been first investigated theoretically by Klyshko1 (see also Harris et af.2) and it was 
later observed experimentally by Burnham and Weinberg3 in 1 970. 

The essential features are illustrated in FIGURE 1. A laser beam of frequency w0 
falls on the nonlinear crystal, NL,, having a x<2> nonlinear susceptibility. A parametric 
interaction that leaves the crystal unchanged causes a pump photon to be absorbed 
and two downconverted photons of frequencies w1 and w2 to be emitted simulta
neously such that 

( 1 )  

For historical reasons, these are known a s  the signal (s) photon and the idler (i) 
photon. Because there are many frequencies w1 and w2 that satisfy equation 1, it 
follows that both the signal and idler photon may have a substantial bandwidth and 
appear in the form of a short wave packet, even if the pump is monochromatic. For 
the quantum state I IJI) of the electromagnetic field after a short interaction time, we 
may therefore write 

(2) 
.. 

Here V is the complex amplitude of the (classical) pump field of frequency w0 such 
that I VI 2 gives the light intensity in photons per second, I '11 1 2 is the downconversion 
efficiency, and cl>(w) is a normalized spectral weight function. In equation 2, we have 
discarded the terms with more than two downconverted photons, which are very 
improbable, and thus the coefficient M is very close to unity. It is apparent from 
equation 2 that the signal and idler photons are in a state that is entangled 
(nonfactorizable) through their Fourier components, and this exhibits many nonclas
sical features. For example, if a signal photon is detected by a photodetector located 
in the path of the signal beam, then there has to be an idler photon in the 

0This work was supported by the National Science Foundation and the Office of Naval 
Research. 
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corresponding position at the same time.4 Moreover, if N signal photons are detected 
by a photodetector of near 100% efficiency in the signal beam, then N idler photons 
have to be in the idler beam, and we have a Fock state exhibiting sub-Poisson 
statistics.5·6 The probability of simultaneous detections (within the detector resolving 
time) of a signal and an idler photon pair greatly exceeds the probability of detecting 
two signal photons in one arm or two idler photons in the other arm. More precisely, 
the normally ordered cross-correlation between the number ft1 of signal photons and 
the number ft2 of idler photons satisfies the inequality, 7 

(3) 

which is impossible for a classical electromagnetic field. Recent measurements have 
shown that classical probability is violated by about 600 standard deviations in 
coincidence measurements,8 which may well be the largest observed violation in the 
optical domain. 

pump 
from laser NL 1<2> .. 

signal 
(I) 1 

FIGURE 1. Illustration of downconversion of a coherent light beam in a nonlinear crystal. 

'!WO-PHOTON INTERFERENCE EXPERIMENTS 

When the signal and idler beams are allowed to come together, they exhibit no 
one-photon or second-order interference, but a two-photon or fourth-order interfer
ence effect, which is readily revealed by two photodetectors and a coincidence 
counter.9-t t FIGURE 2a shows the setup for a two-photon interference experiment in 
which the signal and idler beams from a parametric downconverter are mixed by a 
50%:50% beam-splitter and fall on two detectors, Da and Db, at a small angle of 
inclination relative to each other. 10 Because of the inclinations of the light beams at 
the detectors, one might expect to find an interference pattern in front of Da and Db. 
Actually, the one-photon counting rates of Da and Db reveal no interference, that is, 
no sinusoidal variations as the distances Xa and xb are varied. Only the two-photon 
coincidence counting rate measured with both detectors at once exhibits interfer
ence as x3 is varied withxb held constant, as shown in FIGURE 2b.to 

An interesting aperiodic two-photon interference effect occurs when the signal 
and idler photons are mixed at a 50%:50% beam-splitter without relative inclination 
and the optical path differences are varied by translating the beam-splitter at right 
angles to its face, as shown in FIGURE 3a. 12 Photodetectors D1 and D2 receive the two 
light beams and the two-photon coincidence rate is measured as a function of the 
beam-splitter displacement, & = dh, from the symmetric position. FIGURE 3b shows 
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FIGURE 2a. The geometry for a two-photon interference experiment in which signal s and 
idler i photons are mixed by a 50%:50% beam-splitter, BS, and the mixed beams fall on 
photodetectors, Da and Db. (Adapted from reference 10.) 

5.0 5.5 1.0 u 
Posit.ion Xa of Detector (mm) 

FIGURE 2b. Experimental results for the rate of two-photon coincidence detection as a 
function of the displacement of detector D •. The full curve is a sinusoidal function of the 
expected periodicity. (Adapted from reference 10.) 
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Counter 1-----. 

Coincidence 
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PDP 
11/23+ 

Counter i-----

FIGURE Ja. Outline of an experiment to detect mixed signal and idler photons in coincidence 
as the differential time delay between them is varied by displacement of BS. (Reproduced from 
reference 12.) 

the experimental results superimposed on the theoretical curve. It will be seen that 
almost no two-photon coincidence detections occur when 8T = 0. The coincidence 
rate rises as 8T increases from zero positively or negatively, and it becomes substan
tially constant when 8T exceeds the coherence time, which is about 100 fs. This shows 
that we are dealing with about 100-fs-long photon wave packets, which is the length 

c ·e 1000 
0 .... 
. 6 800 
Cl) -c ::::J 600 0 (.) 
Q) (.) c 400 Q) 
:a 
·g 200 

0 
0 0 

z 260 280 300 320 340 360 
Position of beam splitter {µm) 

FIGURE Jb. Experimental results for the rate of two-photon coincidence detection as a 
function of the differential time delay introduced by displacement of the beam-splitter. The full 
curve is theoretical. (Reproduced from reference 12.) 
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determined by the 1013-Hz passband of the interference filters in FIGURE 3a. 
Numerous other experiments based on the same principle have been carried 
out,6.B.14 sometimes in order to measure tunneling15 or propagation times. 16 The 
technique makes it possible to measure the time separation between two photons 
with femtosecond time resolution, which is about a million times shorter than the 
resolving time of the detectors and the electronics. The dip to zero when l)T = 0 is a 
consequence of the destructive interference of the photon pair at the beam-splitter. 
It can be understood as follows: The detection of one photon in each output beam 
leaving the beam-splitter can occur in two different ways; either the two incident 
photons are both transmitted or they are both reflected. Because these possibilities 
are indistinguishable, we have to add the corresponding probability amplitude before 
squaring to arrive at the probability. However, because of the phase changes that 
occur on reflection, the two-photon probabil ity amplitude for two reflections is 180° 
out of phase with that for two transmissions, and the two amplitudes sum to zero. Of 
course, this perfect destructive interference only occurs when &T = 0. If one photon 
wave packet is delayed relative to the other, there is no longer full destructive 
interference and the coincidence rate rises above zero. The rate becomes constant 
when the differential delay, &T, is so great that one photon no longer overlaps the 
other. 

The entanglement of signal and idler photons via their Fourier components, as in 
equation 2, has been demonstrated in a rather striking experiment by Chiao and 
coworkers. 17 With the help of two-photon coincidence measurements of signal and 
idler photons, they showed that reducing the bandwidth of the idler photons by a 
filter also reduces the bandwidth of the signal photons by the same amount. On 
passing downconverted signal photons through an unbalanced interferometer whose 
path difference exceeded the coherence length of the signal photons, they found no 
interference at the interferometer output (see FIGURE 4) as expected. However, 
after a narrow band filter was inserted in the path of the idler, the signal photons 
clearly exhibited interference, as shown in FIGURE 4. This is a consequence of the 
entangled form of the state in equation 2. 

A number of two-photon interference experiments have been performed, based 
on an idea proposed by Franson, 1 8 with the unusual characteristics that the signal 
and idler photons never come together and mix. The principle is illustrated in 
FIGURE 5 .  Consider a pair of photons, A and B, emitted simultaneously from a 
common (downconverter) source at some unpredictable time t in two different 
directions. The two photons never come together, but are directed to two separate 
photodetectors, DA and DB. Some beam-splitters and mirrors are introduced into 
each channel, as shown, so as to provide both a shorter and a longer path for each 
photon. Now, suppose that the path difference is similar in each channel and that it is 
much longer than the coherence or wave-packet length of each photon. Under these 
conditions, one would not expect to observe any interference in the output of 
detector DA as the path difference in channel A is varied, and similarly for detector 
DB as the path difference in channel B is adjusted, and this is readily confirmed. 
However, if the outputs of the two detectors are fed to a coincidence counter that 
measures the rate of detection of photon pairs, one observes interference when 
either one of the two path differences is varied. 19-21 

This phenomenon is most readily understandable in terms of the interference of 
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40 
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FIGURE 4. Results of an interference experiment in which signal photons are sent through an 
unbalanced interferometer with unbalance cT and signal and idler photons are detected in 
coincidence. It is found that the bandwidth or coherence time of the signal photons is 
determined by the bandwidth of the idlers. The upper trace shows no interference of signal 
photons when the idler bandwidth exceeds l/T, whereas the lower trace exhibits interference 
when the idler bandwidth is reduced below 1/T. (Reproduced from reference 17.) 

probability amplitudes for the photon pair. A coincidence detection can result from a 
pair of photons that both follow the short path through the interferometer or from a 
pair of photons that both follow the longer path (or if the coincidence resolving time 
exceeds the path-difference time from other combinations). As these are indistinguish
able possibilities, we have to add the corresponding probability amplitudes and then 
square, and this generates interference. Moreover, the interference exhibits nonlocal 
features to the extent that the output of detector DA depends not only on path
difference changes made in channel A, but also on those made in channel B. Yet, 
there need be no causal connection between detector DA and the interferometer in 
channel B. 

TESTS OF BELL'S INEQUALITIES 

The classic experiments of Aspect and coworkers demonstrating locality· viola
tions in two-photon correlation measurements made use of the cascade decay of Ca 
atoms to generate photon pairs in a singlet state.22-24 It was first noticed by Alley and 
Shih25 that the same quantum state could be achieved and the same measurement 
performed if either circularly or linearly polarized signal and idler photons produced 
by downconversion were mixed by a 50%:50% beam-splitter. The mixed photon 
beams are then directed to two photodetectors with polarizers interposed. For 
example, for a symmetric beam-splitter, if the signal photon is x-polarized and the 
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idler is y-polarized and if subscripts 1 and 2 label the two light. beams emerging from 
the beam-splitter, then the quantum state of the emerging photon pair is given by 

1"1) = (�) [ll)1.rll)2y - llh,ll h. + ill)1.rll)i, + illh.l1)2y]· (4) 

The first two terms correspond to the usual singlet state with respect to polarization. 
Although terms 3 and 4, corresponding to two photons in beam 1 or two photons in 
beam 2, represent an undesirable distortion, the singlet-state contribution can be 
projected out if we always measure coincidences between one photon in beam 1 and 
one photon in beam 2. 

The coincidence detection probability, 9'12(9 i . 92), as a function of the settings 91 
and 92 of the two linear polarizers is then measured for several different values of 91 
and 92 and also with one or both polarizers removed. If nature is describable by a 
local realistic theory, then 9'12(9. ,  92) should satisfy one or more of the Bell 
inequalities. In practice, it has been found that the Bell inequalities are clearly 
violated in the course of such two-photon polarization correlation measure
ments.25-27 In a recent experiment based on downconversion with type II phase 
matching, in which the signal and idler photons emerge from the down converter with 
orthogonal polarizations, Kiess et al were able to demonstrate the violation of a Bell 
inequality by 22 standard deviations.27 

FIGURE S. Illustration of the prin
ciple behind the Franson-type two
photon interference experiment. 
(Reproduced from reference 19.) 

Coincidence 
Counter 
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A number of experiments on locality violations based on space-time variables or 
phases or field quadratures rather than polarizations have also been rcported.28•29 

EXPERIMENTS ON INDUCED COHERENCE 
WITHOUT INDUCED EMISSION 

In the presence of a strong coherent field, the emission from an excited atom or 
from an optically pumped downconverter can become stimulated or induced as well 
as being mutually coherent with the inducing field. By contrast, the phenomenon we 
now describe is of an entirely different kind. Consider the arrangement of two 
downconverters labeled NLl and NL2 shown in FIGURE 6. Both are optically 
pumped by light derived from the same laser and, as a result, downconversion can 
occur at NLl with the simultaneous emission of an s1 and an i 1 photon, or 
downconversion can occur at NL2 with the simultaneous emission of an s2 and an i2 
photon. The two downconverters have been al igned so that i 1 passes through NL2 
and becomes colinear with ii. We are interested in the question of whether the two 
signal beams, s1 and s2, are mutually coherent and exhibit interference when they are 
mixed at the output beam-splitter, BS0, in which case the pnoton counting rate of 
detector D, varies periodically as BSo is translated orttiogonally to its face. 

Such experiments have been performed.30,3l So long as i 1 and i2 are made 
colinear, an interference pattern is indeed observed, as shown by curve A in FIGURE 
7. However, if the i1 beam is blocked and is prevented from reaching NL2, all 
interference disappears and the experimental points lie on curve B in FIGURE 7. It is 
apparent, though, from FIGURE 7 that the mean photon rate is the same in both 
cases. The rate of photon emission from NL2 remains strictly spontaneous and is not 
affected by the presence of i 1 ; only the mutual coherence between s1 and s2 is 
affected. As it is essential for i 1 to reach NL2 for interference to show up, we may 
describe i i as "inducing coherence between s 1 and s2". However, i 1 induces no 

NLl 

Crom Argon Laser 

q 
FIGURE 6. Outline of an experiment exhibiting induced coherence between two downconvert
ers, NLI and NL2, but no induced emission. (Reproduced from reference 30.) 
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FIGURE 7. Results of an interference experiment obtained with a filter of variable transmissiv· 
ity placed in the idler i 1 path between NLl and NL2: 91 % filter transmissivity gives result A and 
zero transmissivity gives result B. (Reproduced from reference 30.) 

emission, so this phenomenon is new and quite different from that mentioned at the 
beginning of this section. In a real sense, there is no interaction between i 1 and NL2. 

How is the phenomenon to be understood? One interpretation rests on the 
quantum mechanical relation between coherence and indistinguishability. If it is 
impossible, in principle, to determine whether any one signal photon detected by 05 
comes from NLl or from NU, then the signals will exhibit interference . On the other 
hand, if there is some scheme that, in principle, allows the source of the detected 
signal photons to be determined without disturbing the interference experiment, 
then there will be no interference. It is not necessary for this auxiliary experiment to 
be actually carried out. The mere possibility of such a measurement is sufficient to 
wipe out the interference because we are now dealing with a state described by a 
diagonal density operator, which reflects not so much what is known, but what is 
knowable in principle . 

As an illustration, let us suppose that i 1 is blocked and that an auxiliary, 
near-perfect detector, D;, is introduced into the i2 beam, as shown in FIGURE 6, at the 
same distance from NL2 as 05• The introduction of this detector D; does not 
physically disturb the Si. s2 interference, but the output of D; provides us with 
information about the source of the emitted photons. Suppose that when Ds registers 
a photon, D; registers a photon simultaneously. Then, this photon pair obviously 
originated in NL2. On the other hand, suppose that when 05 registers a photon, D; 
does not simultaneously register a photon. Then, the detected photon must have 
come from NLl. We see that the auxiliary device provides us with the information to 
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determine the source of each detected photon, and this is just the quantum 
prescription for wiping out all interference. 

A number of variations on this scheme have been reported that all depend on the 
same principle.32-36 A differential time delay, T, inserted into one interferometer arm 
in general reduces the visibility of the observed interference. If the delay T exceeds 
the coherence time, Tc, of the interfering light, then the intensity interference is lost 
altogether, although interference shows up in the spectrum.32 Because of the 
quantum entanglement of signal and idler, it is found that the insertion of the delay T 
into the i 1 beam between NLl and NL2 has exactly the same consequences as 
insertion into the s2 beam.33 A long delay T makes the sources of i 1 and ii 
distinguishable; therefore, the sources of s1 and s2 become distinguishable as well and 
this wipes out all interference. 

FIGURE 8 shows a variation of the former experiment, in which mirrors M3 and 
M4 are introduced to form a resonant cavity for the idlers.34 Also, a beam-splitter, 
BS;, is inserted in the idler i 1 path followed by a detector, Di. Once again, we look for 
interference with the help of D., but we concentrate on those events in which a 

IF1 

stop 

Amp. 
& Disc. 

Count.er 

TDC 

Count.er 

FIGURE 8. Outline of an interference experiment in which a cavity resonant with the idlers is 
introduced and a beam-splitter, BS;, directs some idler photons to detector D;. Detections by 01 
and D; exhibit interference when the idler photon has made one or more cavity round-trips and 
its detection is delayed, but no interference when 05 and D; photons are detected simulta
neously. (Reproduced from reference 34.) 

photon detection by Ds is accompanied by a detection by D;. If the two detections are 
simultaneous, they are attributable to an event in which the i 1 photon from NLl is 
reflected by BS; and then detected. As the source of the photon is identifiable, no 
interference shows up in the coincidence counting rate of Ds and D;. However, if the 
idler photon from either NLl or NL2 makes one or more trips around the cavity 
before being detected by D;, the sources of the photons become indistinguishable. 
Therefore, photon detections by D. that are accompanied by delayed detections by 
D;, as measured with a time-to-digital converter (TDC), are expected to give rise to 
interference. This is indeed observed.34 

In this experiment, some signal photons behave like waves and exhibit interfer
ence, whereas other signal photons behave like particles that are counted, but exhibit 
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no interference. The "decision" whether to  be  one or  the other i s  not made by the 
experimenter nor by the signal photon, but by the associated idler, which is either 
transmitted or reflected by BSi· Somewhat similar experiments have also been used 
to test certain predictions of the de Broglie pilot wave theory.35,36 

It is apparent that the process of parametric downconversion provides us with 
entangled photons that are extremely rich in experimental possibil ities. 
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INTRODUCTION 

Quantum optics (QO) plays a special role in the problem of the interpretation of 
quantum theory. In optics, we do not in principle need any extra measuring devices 
for the observation of the quantum object-the electromagnetic field-and thus the 
interface between the classical and quantum worlds can be put straight into our eyes. 
It is also essential that the Maxwell equations for classical free-space fields have 
exactly the same form as the Heisenberg equations for the Bose-type operators of the 
fields. 

One of the mainstreams of the experimental QO for the last two decades has 
been the observation of the two-photon interference (see references 1-9). The 
three- and four-photon experiments are also being discussed.10-14 The usual ampli
tude or one-photon interference is continuing to attract attention, 15-18 as is the 
observation of the anticoincidence effect in two-photon counters at the output of a 
beam-splitter. 19•20 

Usually, these experiments are motivated by the desire to demonstrate once 
more the quantum nature of light. Many physicists also hope that such investigations 
would lead to the fulfillment of Einstein's dream-to understand, at last, what the 
proton really is. 

In some types of two-photon experiments, it is possible to introduce a quantita
tive measure of the nonclassicality. For example, the exceeding of the interference 
visibility V over a certain level may contradict the classical stochastic models of the 
light field (the C-language) or more general classical models with dichotomic 
observables (the C8-language of John Be1121 ) .  In other experiments, there is no such 
measure, but they are frequently understood to be demonstrating the photon 
structure of light all the same. Sometimes, the optical Berry phase is also considered 
to be a property of the photons (see the discussion and sources in references 22 and 
23). 

In this report, I will compare and estimate the three alternative ways of 
describing the quantum-optical experiments, that is, the Q-, M-, and C-languages 
(see FIGURE 1) .  

a Financial support was provided by the International Science Foundation. 
13 
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THE SEMANTICS OF QUANTUM OPTICS 

Quantum Language 

The 0-language consists of some well-established mathematical models (of the 
field's state preparation, its evolution, and detection) and of the rule for comparing 
the mathematical symbols with the experimental data-the projective postulate. We 
can define also three 0-dialects: the Heisenberg (OH) and Schrodinger (Os) 
descriptions of the field's evolution, and the Copenhagen interpretation (Oc) of the 
quantum formalism. 

Observed 

Optical 

Phenomena 

Metaphysics (M) 

Classical (C*) and 
Half-Classical (C) 

Theory 

-
-

SchrOdinger 

Representation (QJ 

Copenhagen 

Interpretation (QJ 

Heisenberg 

Representation (Q.r) 

FIGURE I. The scheme of the main language families used for the description of two-photon 
experiments. 

The 0-language gives excellent descriptions of all known optical phenomena 
statistics, but it says nearly nothing about the individual counts in the detectors, their 
immediate causes, and their times of occurrence. According to Oc, this information 
does not exist in nature and one simply should not ask improper questions. All we 
can say a priori about the field is at best its state. 

Metaphysical Language 

I propose to call metaphysical all terms that are not necessary for the quantitative 
description of the observable optical phenomena or that have no direct connection 
with the 0-theory or experiment. I'm risking to be branded such names as positivist 
or pragmatist, but it seems to me that one should differentiate somehow between 
terms justified by some theory and nonjustified, redundant terms. 

A whole virtual world of quantum metaphysics with its own thesaurus, isolated 
from experiment and theory, has been built up. We need some criteria to distinguish 
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between it and the traditional physical science. Perhaps, some moderate kind of 
operationalism and the Popper's principle of falsification sho}lld be accepted. 

The usual hallmark of an M-language is the absence of exact definitions and of 
observable predictions (different from the Q-ones) and, at the same time, a preten
sion to give a more complete description than the Q-language, that is, "to look 
behind the mirror". 

Regretfully, Q-, C-, and M-languages are frequently used together without 
distinction, even inside one sentence. Some time ago, before the buildup and 
confirmation of quantum electrodynamics, at the "Heroic Epoch of Quantum 
Physics", M-terms were unavoidable; however, now there is little hope left that by 
the way of inventing new fuzzy terms it would be possible to tame Schrodinger's cat 
and to exorcise the "Devil of Complementarity" and other quantum spooks. 

Of course, some useful and traditional M-terms (e.g., the photon) could be used 
for convenience and consolation, but only with the due reservations about their exact 
status. The same applies to the reduction of the state vector: if it is only a brief 
symbolic catchword for a definite situation, which could be described more accu
rately (but in some length) by exact Q-theory (see Schiff's Q-description of the trace 
made by an electron in the Wilson camera24), then it is a Q-term. Usually, however, 
the term means something mysterious, inaccessible to experimental confirmation, 
that is, metaphysical. 

A typical example of an unjustified, deceptive term seems to be the nonlocality. It 
should be understood only as a symbol of the fact that the predictions of Q- and 
C8-languages are different. Actually, there is no more nonlocality (in the usual sense) 
in Q-theory or in experimental optics than negative probabilities there (see refer
ences 8 and 25). 

Classical and Semiclassical Languages 

The semiclassical theory (C-language) considers atoms quantum mechanically 
and the field classically-as a superposition of some number of wave packets with 
energies 116>; see reference 26. It should not be taken seriously because it simply 
serves as a useful auxiliary pictorial model. Most spectacularly, its inadequacy was 
demonstrated by the crossed-polarizers zero effect in Freedman and Clauser's 
experiments, 1 depicted in FIGURE 2. 

In two-photon optics, the notion of a classical effective field, Eetr. whose square 
gives the joint probability to register two photons, also proves to be useful, especially 
when supplemented by the picture of fictitious advanced waves, "emitted" by one of 
the detectors13•27-30 (see FIGURE 2 and APPENDIX A). 

The purely classical C*-language contains the notion of continuous detectors, 
whose output currents duplicate the intensities of the beams. It permits useful 
classical analogues of such phenomena as the two-photon anticorrelation and 
interference.8•9•13 It gives a trivial explanation of these effects as resulting from the 
transformation of the phase fluctuations of the input fields into the anticorrelated 
intensity fluctuations at the output beams (see later sections below). 

Only the high visibility of the interference, that is, the practical absence of the 
background, observed in case of two-photon input light, is an essentially nonclassical 
effect. The interference phenomenon itself can be observed using the classical 
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squeezed light (CSL) and can be explained in the C*-language. 13•30•31 CSL can be 
produced by applying strong (No » Yi) thermal radiation to the input of a paramet
ric downconverter. If in the C*-theory we put N0 = \1, then the only difference 
between the output radiation statistics and the true squeezed light would be an extra 
energy, hw/2, in each output mode (see APPENDIX B). 

Of course, the Q-language is the only true and universal one, but traditionally in 
physics one should also be using the languages of the lowest possible levels, which 
still describe the most characteristic features of the phenomenon. Note that even the 
Davies-Unruh effect32-the squeezing of the vacuum by acceleration-has a useful 
classical counterpart.33 Regretfully, the C*-language is nearly completely ignored in 
modern QO. 

) (Ilailb) ) 
E adv E eff ,_ cos(a-/3) 

FIGURE 2. The experimental setup for the observation of the two-photon interference of the 
polarization type. 1 The source emits the photon pairs with correlated polarization states, which 
are registered by two detectors with analyzers and a coincidence circuit. The coincidence rate is 
described by the "two-photon Malus law", cos2(a - �), which cannot be explained in terms of 
C-photons (wave packets), but which follows at once from the advanced waves interpretation, 
according to which one detector emits a fictitious unpolarized field, Eadv· 

The important difference between M- and C-languages is that the latter does not 
pretend to be giving a better description of quantum phenomena than the Q
language. 

What ls a Photon? 

Consider the definition of the term "photon" in the Q-language. Usually, it is 
defined as something that is described by the following state vector, cailed the 
one-photon wave packet: 

(2.1) 

Note that this is just a very special state vector of the whole field-one of the myriad of 
possible states. Why are we ascribing to it such a fundamental role? It can be possibly 
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justified only if we consider in detail the measurement process; however, if we are 
interested in the free-field's a priori state, then all possible sfates should be treated 
on equal grounds. The one-photon Fock state 1 1 ) is not any better or worse than 
1 666) or than any other state ljl(t) = Icnln )exp(-inwt). 

Note also that the one-photon state ljl1 is very difficult to prepare because one has 
to first prepare an atom exactly in an excited stationary state. It is possible to do this 
with a laser ir-pulse, but it seems that until now such experiments have not been 
performed. A little easier way is to prepare a superposition, ai!ivac + P"11> of the 
one-photon state with the vacuum state. However, usually, we have mixed states 
around us, which are very far away from our ideal "'" and thus we practically never 
meet Q-photons. 

Therefore, if we exclude the ex..;tic one-photon states "'" then we can say that a 
photon comes to a fleeting existence just at the moment of its absorption in the 
detector. (Hence, the operators, a and a +, should swap their names.) Let us rephrase 
the well-known formulation of N. Bohr: "A photon is a phenomenon only if it is a 
recorded photon." 

Ironically, it is much easier to prepare (using parametric downconversion) a 
two-photon state (plus a large vacuum component): 

{2.2) 

It is often claimed that the reduction is happening when we detect one photon of 
the two and, as a result, we prepare the field in the one-photon state. However, this 
seems to be an M-talk. Actually, in all true two-photon experiments, some kind of 
coincidence scheme is used and the quantitative Q-description is possible only using 
the true full state, ljl2• 

Another popular definition of a photon is the following one: it is something living 
in the space-time and causing this or that individual "click" at the detector's output. 
This is an M-definition as it has no testable or falsifiable consequences. In Oc

language, the click means only that the a priori state I "1) contained a nonzero 
component, c1 = ( l ll!J), which is possible not only with 1 "1) = 1 1 ) ,  but with any state 
with c1 ;ii! 0. As the detection quantum efficiency, ,, ,  is practically always smaller than 
l, the stationary a priori states, 1 2), 1 3), . . .  , are also possible. The quantum 
retrodiction in case of a single measurement is always uncertain: one cannot 
reconstruct a vector by its single projection. 

Consider as an example a stationary state, prepared by the spontaneous emission 
in a noncentrosymmetrical molecule34 {FIGURE 3) . There are two possible paths 
from the excited state to the ground state: a direct path, 1 = 3, with the emission of 
one photon, hwc, and a two-step path, 1 = 2 = 3, with the emission of two photons, 
hwA and hw8 (wA + w8 = we). As a result, the stationary state with definite energy is 
prepared: 

I "1) = alO)A I 0)8 1 l )c exp(-iwct) + P I l )A 1 1 )8 I O)c exp(-iwAt - iwJ/). (2.3) 

It has two peculiarities: the photon number is indefinite (1 or 2) and there is a 
nonzero constant cube of the field: 

(£3) - 2 Re((a�a;ac)) = 2 Re(aP* )  (2.4) 
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FIGURE 3. Spontaneous emission in a noncentrosym
metrical molecule prepares the stationary state with 
indefinite photon number and nonzero cube of the 
electrical field. 

(here, a and � depend on the molecule's properties34). 
The last effect is easily explained in C-language by considering three overlapping 

wave packets with frequencies WA, we, and we: 

= (1/.a) cos( IPA + <Pe - q>c) + f(t) .  (2.5) 

However, this model contradicts the first peculiarity: the number of the simulta
neously existing wave packets should not be three, but either one or two. This 
example shows that the usual assertion that "l ight consists of photons" does not 
make sense. 

The situation is a little easier in case of low-energy Fermi fields, where the 
number of particles is fixed and only one particle can occupy a coherence volume. As 

the number of true particles is a fixed integer number, the assertion that they are 
existing a priori makes sense. 

Similar arguments can be applied against many other M-terms. It seems that the 
textbooks on quantum mechanics should pay more attention to these problems and 
to the difference between physical theory and its possible interpretations. 

ANTICORRELATION EFFECT 

OH: In the Heisenberg representation, the action of various optical schemes on 
the input field operators can be described phenomenologically by the scattering 
matrix D.34•35 In the lossless case, it is unitary. The scattering matrix can be 
considered as the Green function (propagator) in the spectral representation. It has 
identical forms in Q- and C*-theories (for linear optical tracts). 

Consider the scheme in FIGURE 4. Two modes with amplitudes a and b are mixed 
by a beam-splitter (BS), a polarization prism, or a Mach-Zehnder interferometer. A 
two-mode linear mixer makes the transformation, 

a ' = ta + rb, b' = -r*a + t *b, (3.1) 
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where t and r are the phenomenological transmission and reflection coefficients with 
the common phase factor omitted. In the lossless case, I t  1 2 + I r r2 = T + R = 1 .  

In QO, we are usually measuring the normally ordered correlation functions or, 
. in the case of narrow-band radiation, simply the first NA = (a +a), N8 = (b +b), and the 
second moments, 

(3.2) 

Let (a +b) = (a +2b2) = (a+2ab) = (b +2ba ) = O; then, it follows from equation 3 . 1  
that 

G AA = T2G AA + R2Gaa + 4TRG AB• 

G 88 = R2GAA + T2G88 + 4TRGAa• 

G'....8 = TR(GAA + G88) + (T - R)2GAB· (3.3) 

These equations define the output measurable properties of the light field through 
the input ones and the· optical tract parameters, T and R; they can be used in the 
lossy case as well.35 

In the lossless case, we have the following invariants: NA + N8 = constant and 
G AA + G88 + 2G AB = constant; that is, the energy and the fluctuations plus 
correlation are conserved. 

Let the input be symmetrical: NA = N8 = N, GAA = G88 = G = g/N2; also let 
T =  R = Yi; then, NA. = N'i.. = N and 

g' = g/2 + KAB• KAB = g/2 (3.4) 

(here, gAB = GAalN2). Thus, ifgAB < g/2, then the output bunching parameter, g ' ,  is 
smaller than the input one. If g < 2 (i.e., the input bunching parameter is smaller 
than the thermal one), then the output intensities are anticorrelated (gft.8 < 1 )  

a 

b a' 
F1GURE 4. The anticorrelation effect. The independent phase fluctuations of two input fields, 
a and b, are transformed by a beam-splitter into anticorrelated fluctuations of the output 
intensities, which are observed by two detectors and the coincidence or multiplication circuit. 



20 ANNALS NEW YORK ACADEMY OF SCIENCES 

independently of the initial correlation. As shown below, this anticorrelation effect 
has a simple classical explanation. 

Consider several input statistics: 

1. In case of thennal light, g = 2 and thus 8AB = 1-the output intensities are 
uncorrelated independently of any possible initial correlation. This is an 
example of the general invariance property of thermal light. 13,35 

2. Two independent coherent input beams (g = 8AB = 1) give some anticorrela
tion effect: 8AB = �- In the polarization case, this gives the hidden polariza
tion effect.9 

3. A two-mode squeezed vacuum has thermal fluctuations in each mode and full 
correlation between the signal and idler modes: 

NA = N8 = N = sinh2(F), 

8AB = 1 + coth2(F) = 2 + ( 1 /N), K = l . (3.5) 

Here, F is the parametric gain, K = (GAB - N�8)/aAa8 is the correlation 
coefficient, and � = GAA + NA - Ni = Ni + NA. At the output, the 
correlation is suppressed: 8 AB = l, K = 0. This resu!t should be compared with 
tbe strong initial correlation: 8AB = 2 + (1}.N). Usually, N - 10-8, so a very 
large contrast is observed.4·6 

-

4. In case of the symmetrical two-photon input state, I "1) = I l )A ® 1 1 )8 = 1 1 , 1) , 
we have at the input no fluctuations: g = a = 0 and N = 8AB = 1 .  At the output, 
N' = g' = a' = 1 and 8AB = O; that is, there are some fluctuations and no 
coincidences. 

08: In the Schrodinger approach, we have to find the output state vector, 1 "1) ' , 
through the input one, I "1), and the scattering matrix. 22 Consider the two-mode case. 
Let us define a function /(x, y) by the following equation: 1 "1) = f(a +, b+ )  l vac). 
Reversing the transfonnation in equation 3 .1 , we find 

1 "1) ' = /(ta '+ - r*b ' + , ra ' + + t *b ' + ) l vac). (3.6) 

Consider again the two-photon input state, I "1) = 1 1 ,  1 ) .  Now, f (x, y) = xy, so 

1 "1) ' = tr 1 2, 0) + (T - R) l 1 ,  1 )  - t*r* 1 0, 2). (3.7) 

Thus, the 50% BS makes the following transformation of the state vector: 

1 "1) = 1 1 . 1) =o 1 "1) ' = ( 1 2, 0) - 1 0. 2))/2. (3.8) 

Oc: According to the projection postulate, the coincidence probability amplitude 
equals e n  = ( 1 ,  1 1 "1) '  = T - R = O; that is, there are no coincidences. 

M: In the metaphysical language, the considered transformation, which results 
from the essentially classical SU(2)-transfonnation (equation 3. 1 ), is usually ex
plained by the intrinsic properties of the photon. For example, the projections c20 and 
co2 in equation 3.7 are considered to reflect the photon's corpuscular component and 
cu is considered to reflect the wave component. 

C: The two-photon anticorrelation effect can be very simply "explained" using 
the notion of the effective field (two-photon wave packet), built from the advanced 
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wave and "radiated" by one of the detectors:27•28 there are two paths, which exactly 
compensate one another. 

C*: If we replace in the Owequations the operators a and a +  by classical 
dimensionless stochastic amplitudes a and a * and the quantum-averaging operation 
( . . .  } by the classical one, then we get the classical transformations. Their functional 
forms are exactly the same. Thus, if there are some nonclassical effects, they are due 
only to the nonclassicality of the input moments and not to the concrete optical 
scheme under consideration, which simply performs a linear transformation of the 
moments. However, in C*-theory, we have a limitation: because Kc1ass = ((a *a)2}1 
(a *a }2 :<!: 1, (gAfi)c1ass :<!: Yi according to equation 3.4. 

Suppose that there are two classical waves with constant equal amplitudes, la I = 
l b l  = 1 ,  and independently fluctuating phases, a(t)  and �(t) ,  at the input of a 50% 
BS. Let a = exp[ia(t)] and b = exp[i�(t )]; then, a '  = (a + b) l,12 and b' = 
(-a + b) l,/2 . The output intensities are 

n '.A = l a '  1 2 = 1 + cos[cp(t )] , n 8  = l b ' l 2 = 1 - cos[cp(t )) , (3.9) 

where cp = a - �- Thus, the input energy is redistributed between two output beams 
depending on the transient phase difference, cp(t) .  The total energy, nA + n8 = 2, is 
conserved and thus dn Al dt = -dn 'el dt; that is, the intensities are always changing in 
the opposite directions and thus are fully anticorrelated, K = - 1 .  We see that the 
scheme in FIGURE 4 serves as a phase detector. 

It is clear that this classical anticorrelation effect, which is explained by the 
transformation of the input phase fluctuations into the anticorrelated output inten
sity fluctuations, is very similar to the quantum one. Note that in Q-language we can 
also use the notion of the phase cp by introducing the phase-difference operator (see 
reference 8). 

The given multilingual description of a typical QO effect can be repeated for 
other more-complicated cases with more modes involved, but the message should 
already be clear: the most universal, compact, and close to classical notions is the 
Owlanguage. The M-language cannot add anything testable to it. The C-language 
gives useful visualizable pictorial analogues. Various linear optical mixing schemes 
can be considered as parts of the classical detection devices for measuring the input 
light statistics. 

TWO-PHOTON INTERFERENCE 

Consider the four-mode scheme in FIGURE 5. We have two amplitudes, a 1  and a2, 
with equal frequencies, Wa, and an adjustable phase delay, a = ka (Zai - Za2) , mixed by 
a 50% BS; analogously, we have two amplitudes, b 1  and b2, with frequency, wb, and 
delay, � = kb(Zb i - zb2), mixed by the second BS. 

QH: The output amplitudes are 

a = [a 1 exp(-ial2) + a2 exp(ial2)) 1 ,, 2, 

b = [b1 exp( -i�l2) + b2 exp(i�/2)] / .;2. (4. 1 ) 
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a 

FIGURE S. The four-mode mixing scheme for the observation of the interference of intensities 
and the two-photon interference (interference of advanced waves). The output correlator, 
Gab = (a +ab +b), depends on the delays, a and p, as cos(a - P) and cos(a + p), depending on 
the existence of the input correlators, G _ and G + (see equation 4.3). 

In analogy with earlier discussions, we find 

where 

Gab = G0 + G+ cos(a + �) + G_ cos(a - �), 

Go = (Ga lbl + Ga2b2 + Galb2 + Ga2b1 ) /4, 

G+ = (a tb ta.JJ2) /2, 

G_ = (a tb;a,P1)/2 

(we take the moments G"'- to be real). 

(4.2) 

(4.3) 

The terms with G "'- describe two types of intensity interference with phases a ± � 
and visibilities V"'- = G"'- /G0• The interference with the phase a - � is the well-known 
interference of intensities. The second type with the sum phase can be called the 
advanced waves interference28 because the plus sign in a + � can be conveniently 
"explained" in C-Ianguage by supposing that fictitious advanced waves are "emitted" 
by one of the detectors. 

It is possible to observe simultaneously both types of intensity interference using 
a parametric downconverter and three additional beam-splitters (FIGURE 6). A 
polarization version of this scheme was realized recently by Shih and Sergienko.36 In 
this case, the visibilities are 

V+ = (Gee - 2Gcd) /2(Gcc + Gcd) = -(N + 1 ) /(4N + 1) ,  

V_ = Gccl2(Gcc + Gcd) = N/(4N + 1 ) .  (4.4) 
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Here, N = (c +c) = (d+d). In case of weak pumping (small parametric gain F), N « 1 ; 
thus, V_ = N = 0 and we have the superclassical 100% visibility, V+ = - 1 .  In case of 
strong pumping, N > 1 and hence V_ = - V+ = \4; thus, the coincidence rate is 
proportional to 1 + (Yi)sina sinp. 

Consider next the classical squeezed light, generated by a parametric converter 
with additional strong (No > Yi) input signal and idler radiation with thermal 
statistics (APPENDIX B). Now, 

N = N0 cosh(2F), G,, = Gdd = 2.N2 = N�[ l  + cosh(4F)] , 

G,d = N� cosh(4F), g,d = 1 + tanh2(2F) = 2 - (N0/N)2• (4.5) 

Hence, 

V± = [1 + cosh(4F)] /2[ 1 + 2 cosh(4F)]. (4.6) 

Thus, in case of small gain (F « l, that is, with thermal noise at the converter's 
output), we have V+ = 4F2/3 « 1 and V_ = YJ. In case of strong squeezing, again 
V_ = - V+ = Y... 

Os: In case of weak pumping, the initial state vector with omitted vacuum 
component is a factored state: 1 "1) = 1 1 ), 1 l )d = c +d+ I vac). The first BS makes the 
transformation in equation 3.8. The next two BSs in FIGURE 6 give 

1 "11 ) = 2-312( 1 2000) - 2 1 1 100) + 1 0200) - 1 0020) + 2 1 001 1) - 1 0002)), (4.7) 

FIGURE 6. A parametric downconverter can be used for the preparation of the four-mode 
field with nonzero correlators, G + and G _ (see FIGURE 5). Terms: P is the pump field; c and d 
are the signal and idler fields. 
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where l klmn)  = l k)ad l)bd m )a2 l n )b2• The output BSs (see FIGURE 5) give 10 compo
nents: 

1 "12 ) = { -2i sin(a}( l 2000) + 1 0020)) - 2i sin(�)( l 0200) + 1 0002)) 

- 4 cos( a} 1 1010) + 4 cos(�) 1 0101)  

+ 4i sin[(a + �}/2]( 1 1 100) + I 001 1 )) 

+ 4i cos[( a +  �)/2]( 1 1001)  + 1 01 10)))/25'2. (4.8) 

Here, l klmn) = l k)a l l)b l l )ao l  l )bO. Thus, the cojncidence probabil ity is Pab = l cuoo l 2 
= [1 - cos(a + �)]/4. We again get the 100% visibility, so the considered scheme 
can be used for the demonstration of Bell's inequality violation. 

M: Usually, for the demonstration of the EPR-Bell-type paradox, it is stressed 
that the state, describing two or more photons, should be entangled, that is, 
nonfactorizable. However, all the state vectors, l lfl), l lfli ), and 1 "12 ), considered above 
are factorizable (they are connected by unitary transformations}, so this property is 
not a necessary one in the optical case. 

Because the data, used in constructing Bell's observable, do not depend on the 
components of the output state vector with two photons ii\ one mode (of the type 
1 2000)), one can argue that these components can -be omitted. As a result of this 
"paper" operation, we get from equation 4.7 the desired entangled state, l lfli )cnt = 
2- i 12< - 1 1 100) + 1 001 1)) .  

Many other discussions of two-photon interference in M-terms, such as the 
photon's duality, paths, tunnelinj!;, (un}distinguishability, etc., can be found in the 
literature. 

C: Both types of intensity interference have a trivial classical explanation, 
analogous to that of the anticorrelation effect. Let the classical mode fields in 
FIGURE 5 have constant amplitudes ( = 1) and stochastic phases (which play the role 
of the hidden parameters) : 

ak (t) = exp[-ixk(t)], bk (t) = exp[-iyk (t)] , k = 1 ,  2. (4.9) 

The output amplitudes and intensities are (cf. equation 4. 1 )  

a(t) = [exp( -ixi - ia/2) + exp(-ix2 + ia/2)]/ /2, 

b(t )  = [exp(-iyi - i�/2) + exp(-iy2 + i�/2)]//2, 

na = 1 + cos(x + a), nb = 1 + cos(y + � ), (4.10) 

where x = xi - X2 and y = Yi - Y2· Let xi and x2 as well as Yi and y2 be independent; 
then, {na ) = (nb ) = 1 and 

Gab = {nanb ) = 1 + � (cos(x + a ± y ± �))/2. (4.11) 
+ 

Thus, if x(t )  ± y(t) = constant, then we have two types of stationary interference with 
visibilities V = Yi. The minus sign corresponds to mutually coherent input waves with 
a i = bi and a2 = b2 (phase correlation). The plus sign corresponds to the condition, 
xk + Yk = constant (phase anticorrelation), which holds in case of the nondegenerate 
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parametric generators or classical squeezed light because the signal and idler 
frequencies always drift in opposite directions. 

CONCLUSIONS 

First, Owlanguage (Heisenberg representation) is the most universal, compact, 
and useful one for the quantitative description of optical experiments. It closely 
follows the C-description. Moreover, Os-language has no advantages over it. 

Second, C-language is useful for the qualitative pictorial description of many 
optical effects in terms of one-photon wave packets. Two-photon wave packets, 
depending on two time-space points and constructed by means of fictitious advanced 
waves, give a visualizable description of the effects of two-photon optics. 

Third, M-language by definition does not predict any new phenomena and its 
conclusions cannot be falsified. It has no operationally defined notions. The M
photon has practically no counterpart in Q-language. 

Fourth, the interference phenomena themselves are not nonclassical; only the 
used input l ight is. All two-photon interference experiments could be repeated using 
classical squeezed l ight and continuous detectors. The only difference would be in 
the smaller visibility. 

Fifth and last, the "iron curtain" between Q- and C-worlds, which in QO can be 
placed right into human eyes, remains impenetrable in spite of all efforts. 
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APPENDIX A 

Advanced Waves lnterpretatiofl 

The advanced waves C-interpretation of two-photon optics13,27-30 is based on the 
following correlation function, calculated in the first-order using the effective 
Hamiltonian, x.£3: 

where 

Ek = E(rk, td, 1 "12) = (ih)- 1 I d"x x£� l[£!- > J2 1 vac}, 

(A.1)  

E12eff = (vac l£�+)£�+ > 1 11i2} = ih I d"x D(x1 , x) xE� >D* (x, x2>· (A.2) 

Here, Ep is the classical pump field and 

(A.3) 

is the phenomenological Green function, describing the propagation of the field £( + > 
from (ri. t 1 ) to (r2, t2) or of the field E<- > in the opposite direction. 

APPENDIX B 

Classical Squeezed Light 

The scattering matrix for any linear scheme, which can include any number of 
parametric upconverters and downconverters,31 consists of two parts, u and v. In 
vector notations, a'  = u *a + v *a + . In the dissipationless case, uu + = vv + + I and 
va = uii. 
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Let the input field be in a displaced Gaussian state with parameters Nkl = 
(a; a1 )8/d and zk. Then, the output field is described by the following normally ordered 
characteristic function:3t ,34 

where 

x(µ, µ* ) = exp[- µN' µ* + ( µ.M ' µ.  + cc)/2 + (µ.z ' *  - cc)), (B.l) 

N '  = uNsymu + + vNsymv+ - //2 = (2N + J)vv+ + N, (B.2) 

M' = (a 'a ' )  = uNsymv + vNsymu = (2N + J ) uv, (B.3) 

z ' = u *z + v*z* , Nsym = N + //2 = ((a +a) + (aa + ))/2, 

(u +)ki = u 1k = a :,. (B.4) 

In case of the squeezed state, N = O; thus, 

N'o = vv+ , M0  = uv. (B.S) 

In C*-theory, the only difference is that the "spontaneous" terms with //2 in 
equations B.2-B.4 are missing; that is, Nsym = N. 

If we put //2 = 0 and Nsym = N = //2 in equations B.2-B.4, we would get equation 
B.5, but with N '  increased by an extra term, +//2. 

If N » � in Q-theory or experiment, then we get the classical squeezed light with 
the same characteristic function of equation B. 1 ,  but in which now, in place of 
equations B.2 and B.3, we have (cf. equation 4.5) 

N'c; = N(2vv + + /) = 2N(N 0 + //2), M'c; = 2Nuv = 2NM0. (B.6) 
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INTRODUCTION 

Efforts have been profitably invested into the amelioration of atomic spectros
copy, the goal being the precision measurement of atomic energy differences. In a 
two-level system, the narrowest line that one can conventionally observe has a width 
governed by the sum of the decay rates out of the two levels in question. However, in 
some instances, it is also possible to obtain spectroscopic resolution beyond this 
"natural line width". We specifically point to "time delay spectroscopy",1 wherein 
only the temporal tail of the resonance fluorescence is measured by opening a shutter 
in front of the detector some time after exciting the atoms. With the help of this 
method, one observes line widths governed by the difference of the decay rates out of 
the two involved atomic levels, the disadvantage being the exponential decrease of 
the signal with the time delay. 

In time delay spectroscopy, we are interested specifically in single-photon 
detection, that is, the measurement of first-order correlation functions G (l). How
ever, as we will see, similar techniques can be obtained by considering intensity
intensity correlations measured by using two detectors, that is, second-order correla
tion functions G <2>.2-6 The pioneering work of Hanbury Brown-Twiss7 is an example 
of such a payoff when going from G < 1 > physics (Michelson stellar interferometry) to 
G <2> (Hanbury Brown-Twiss interferometry). 

In fact, applications of photon correlation techniques extend from astrophysics to 
the foundations of quantum mechanics. In this latter context, we have in mind the old 

aThis work is dedicated to John Archibald Wheeler, who has given us so many insights into 
the foundations of quantum physics and in particular the concept of delayed choice, which has 
been so fruitful. Support was provided by the Office of Naval Research, the Welch Foundation, 
and the Texas Advanced Research Program. 
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proposal8 to investigate complementarity in a Young double-slit experiment, in 
which two atoms replace the slits; see FIGURE 1. In the case of three-level atoms, 
which absorb light at Wac and emit at Wab• G(l l  shows no interference because the 
atom being left in level l b) provides "which-path" information. However, by extend
ing the story to include two-photon cascade and G <2> physics, interference is restored 
when we correlate. This is an example of delayed choice9 and was the initial 
suggestion of the quantum eraser.8 

1 

2 a 
P1 �a 1 y 

b' P1 : p / jEa I / 
b / / I 

b ///
<I> 

I b 
/ 

c c / 

(a) (b) (c) 
FIGURE 1. Original quantum eraser setup: Light impinges from left on atoms at sites I and 2. 
Scattered photons -y1 and -y2 produce an interference pattern on the screen. (a) Two-level atoms 
excited by laser pulse P1 emit -y-photons in the a --+ b transition. (b) Three-level atoms excited by 
pulse P1 from c --+  a emit photons in the a --+ b  transition. (c) Four-level system excited by pulse 
P1 from c --+ a  followed by emission of -y-photons in the a --+ b transition. Second pulse P2 takes 
atoms from b to b' .  Decay from b' to c results in emission of c!>-photons. 

Recently, beautiful experiments verifying these predictions have been carried out 
by the NIST group10 involving two trapped ions that scatter light, which is detected by 
a single detector. These experiments demonstrate the interference expected from 
two-level atoms and the disappearance of that interference when three levels are 
used. We emphasize that both cases were single-photon, G<1 > experiments. 

In this article, we are concerned with "trapped" three-level atoms that radiate 
spontaneously into two-photon cascades. Interesting results can be obtained that 
bear resemblance to time delay spectroscopy on the one hand and Hanbury Brown
Twiss correlations on the other, thus deepening our understanding of many-photon 
processes. In particular, we show in the following calculations of second-order 
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correlation functions that there are possibilities for the measurement of the atomic 
transition frequencies to a high precision (beyond the natural line width) even if very 
broad levels are involved. 

In the second section, we outline the calculational technique for the determina
tion of second-order correlation functions. This technique is then employed in the 
third section to analyze an experimental setup with two atoms in a trap, demonstrat
ing the possibility of subnatural spectroscopy. In the fourth section, we put forward 
another spectroscopic scheme involving only one atom, but utilizing a birefringent 
medium between this atom and the detectors. Finally, the fifth section contains a 
discussion of the results. 

PHOTON-PHOTON CORRELATIONS FROM SINGLE ATOMS 

One way of calculating and understanding Glauber correlation functions utilizes 
an expression that may be called a "photo-electron detection probability amplitude" 
'I'. With 'I' known, the expectation value of light field correlations can be found 
simply by using G = I 'I' 1 2; for example, for the present second-order correlation 
function, we may write 

. .  
a <2>(r, , r, ;  r2, 12) = l 'lfl'<2>(r, , r,;  r2, 12')12. (1) 

where the subscripts 1 and 2 label the two detectors involved (see FIGURE 2) and the 
actual expression for "1'<2> is derived later in equation 1 1 . We first consider a 
three-level two-photon cascade in a single atom as depicted in FIGURE 3, governed by 
the transition frequencies Wab and oo"" and the inverse lifetimes of the two upper 
levels 'Ya and 'Yb· As a first candidate for the two-photon state, one might think of a 

--0...---ro- b 

• 

Atom 
FIGURE 2. The cascade decay of a single excited three-level atom leads to a "Hanbury 
Brown-Twiss" second-order interference pattern. 
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a 

b 

c 
FIGURE 3. The level scheme for the atom in FIGURE 2. 

product state of two single-photon states, 8 

1 '11) = 1 "1) 1 <1>). (2) 
leading to the expectation value G <2>( 1 ,  2) = 1 '1'�1>( 1 )'11�>(2) + w�>( 1 )'1'�1>(2) 12, 
where we introduced the short-hand notation ( 1 )  = (i\ , 11 ) and (2) = (r2, 12) . 
However, this result holds only with a rapidly decaying uppermost level and a 
long-lived intermediate state, as the following actual derivation of I '11) shows. 

We define the relevant probability amplitudes by writing the atom-field state, 

1"1) = A (l ) l a , O) + L Bi(l ) l b, li) + L Ci, q(l ) l c, li , lq). (3) 
k k, ij 

This ansatz makes use of the rotating wave approximation. By using the interaction 
Hamiltonian (in the interaction picture), 

r = h L IEa;(r)akl a)(b l ei("'ob-Vk)t + H.c.) + h L l"gb,q(r)aq l b)(c l ei<--vq)I + H.c.] , 
k ii 

with coupling constants that depend on the atomic position, 

g ·(r) = _,,,_ {-;; eik·r = g _ ,,;i·• a, k , - ab v-,;;;;v a,K<- ' 

(4) 

(5) 

(6) 
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we obtain the equations of motion for the probability amplitudes of equation 3: 

d dt A(t )  = -'Y0A(t ), 

� Bi(t ) = -ig0,k(r) *A (t )e-i(..,b-Vk)I - 'YbBf(t) ,  (7) 

� ci.q(t )  = -igb,q(r) *Bf(t )e-i<--vq)I, 

where we applied the Wigner-Weisskopf approximation to the decay out of the levels 
l a) and l b). Solving this system of differential equations for Ci,;; in the long-time limit, 
we obtain 

c 
-c:.kc:,qe -ii·Hii·• 

k,q(t � oo) = [i(wac - vk - vq) + 'Ya ] [i(wbc - vq ) + 'Yb] · 
(S) 

With this result, the state of the radiation field is given by 

I 'I') = L Ci,q I li '  lq) . • 

k,ij •• -

(9) 

Now, we consider the expectation value of the second-order correlation function: 

G<2>( 1 , 2) = ('l' I E <->( l )E <->(2)£ <+>(2)£<+>(1) 1 '1') 

= ('l' IE <- >( l )E<->(2) I O)(O 1£ <+>(2)£<+>(1) I 'I'). (10) 

With equation 1 in mind, we define 

w<2>( 1 , 2) = (0 1 £ (+)(2)£ <+>( 1 ) 1 '1') (11) 

and thus have a quantity that can be used as advertised earlier. Using the well-known 
form of the electric field operator 

E<+ >(i) = L Wkaie-iviMik·r; 
k 

and taking I 'I') as given by equation 9, we find 

(i = 1, 2) 

w<2>( 1 , 2) = - L ( . c:.kc:.qe-ii·�-;q·• ) k,q [i(wac - vk - vq) + 'Ya ] (l(Wi>c - vq) + 'Yb] 

(12) 

x {e-ivk11 + ik·i'1e-ivq12+iii"i'i + ( 1 ++ 2)) . (13) 

Changin� the sums into integrals and choosing the z-axes of the angular integra
tions along k and q, we obtain 

'1'(2)( 1 ,  2) = ire-(i.,,,b+'Yo-'Yb)(/1 -r1 /c)@(t1 - r1 /c) 
x e -(i..,,.,+'Yb)(r2-ri/c)@[(t2 - r2/c) - (t1 - r1 /c)] 
+ (1 ++ 2) (14) 
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as the result for the two-photon probability amplitude, where r; = I r; - r l  and K is an 
uninteresting constant. Now, we have a useful tool that we witl apply in the next 
section to present a new kind of subnatural spectroscopy not limited by the usual 
radiative broadening of spectral lines. 

FIGURE 4. Two three-level atoms are stimulated weakly such that either the atom at r or the 
atom at s is excited. 

CORRELATED EMISSION SPECTROSCOPY 

We here consider an experimental setup as depicted in FIGURE 4, with two atoms 
located at r and s and two detectors at R 1 and R2• With the cascade scheme of the last 
section (FIGURE 3), one can determine the energy difference of the levels up to a 
precision governed by the radiative decay rate 'Ya of the upper level l a ) independent 
of 'Yb · 

As a starting point, we prepare an atomic state such that either one of the atoms 
is excited to state l a) and the other one is in the ground state l e) with the field in the 
vacuum state I 0). This initial atom-field state may be written as 

1 '11(0)) = (�)( l a , e) + l e, a)) ® 1 0) . ( 15) 

For times t » 'Ya - 1 , 'Yb - 1 , this state evolves to 

( 16) 
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where I lflr. cl>;) and I If/;, cf>;) are the field states generated by the atoms at r and s, 
respectively, and If/ (cf>) is associated with the l a ) -+ l b }  ( l b } -+ l e }) transition; that is, 
using equation 9, 

I cf> ) - � ( -ga,kKb,;e-ik·f>-iiN> ) 1 1 - 1 - }  lflr., P - ;;,q (i(w0c - Vk - vq) + -y0] (i (w11c - vq) + 'Yb) 
k
> 

q ' (17) 

in which j) = ; or s . Using equation 14, the corresponding two-photon probability 
amplitude can be written as 

where 

and 

'1'<2>( 1 ,  2) = A (l ,  2) + A (2, 1) + B(l , 2) + B(2, 1) , (18) 

A (l, 2) = i<e-c;.,..6+..,.-..,6><1 1-r1 tc)e(t1 - r1 /c) 
x e-c;-+..,b)(rz-rz/c)0((t2 - r2/c) - (t1 - r1 /c)] (19) 

B(l ,  2) = A (l ,  2) lr,-•j (20) 

with r;(s;) = IR; - r;(s;) I for i = 1, 2. Substituting eqliatian 18 into equation 1 gives 

G2(1 ,  2) = { [A (l ,  2)*B(l ,  2) + A (l ,  2)*B(2, 1 ) + ( 1 - 2)) + c.c.} 

+ {A (l ,  2)*A (l ,  2) + B(l ,  2)*B(l ,  2) + ( 1 - 2)), (21) 

where we used the fact that A ( l ,  2)*A (2, 1 ) and B(l ,  2)*B(2, 1 ) vanish due to 
equations 19 and 20. The second curly bracketed term in equation 21 is a de 
background term, so we focus on the contribution of the first one. This is the 
interference cross term (with the factorized state of equation 2 vanishing), as shown 
in FIGURE 5. Here, A (l ,  2)*B(l ,  2) corresponds to the detection of lflr. at detector D1 
and cf>r. at detector D2 (j) = f od) andA(l ,  2)*B(2, 1 ) corresponds to If/; (cf>;) at D1 and 
cf>; ( If/;) at D2. 

We now define the interesting interference term of the total joint count probabil
ity, 

P<2> = fo'° dt1 fo'° dt2{[A (l ,  2)*B(l ,  2) + A (l ,  2)*B(2, 1 ) + ( 1 - 2)) + c.c. }, (22) 

and obtain 

where 

c 

(23) 

(24) 

(25) 

(26) 
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g(T, .i) = cos WocT - (�) sin WbcT - e-y·T[ cos WabT - ��) sin WabT] . (27) 

The term proportional to (.i2 + 'Y;)- 1 in equation 23 enables us to envision a 
high-precision measurement of the atomic transition frequencies, Wab and wbc , in the 
following way. As indicated in FIGURE 6, the intermediate level l b) of the atomic 

...._ 
...._ 

<i>s 

A{1 ,2)* 8(1 ,2) 
{a) 

...._ 
...._ 

A{1 ,2)* 8(2,  1 )  

{b) 
FIGURE S. Illustration of the origin of the two (ac) terms in G <2> as given in equation 2 1 .  

cascade may be taken to be a magnetic sublevel with m = - 1 so that we can vary .i = 

wab - w"" around d = 0 by applying a magnetic field. In doing so, we map out the 
sharp Lorentzian (.i2 + 'Y;)- 1 and thus provide a good measurement of the magnetic 
field strength Bo for which .i = 0. With the knowledge of B0, we are able to determine 
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--...... -- a 

b+ 
bo 

b_ 
co b_c 

c 
FIGURE 6. Cascade radiation is "tuned" by an external magnetic fit:ld such that Wab_ = "'b_c = 
1110• Then, 4 = lllab_ - "'b_c can be varied around zero. (Thi£ level b_ plays the role of l b} in the 
calculation.) 

the difference of the energy spacing of the unshifted transition frequencies between 
l a) and I bo) ( I bo) being the intermediate state with m = 0) and between I bo) and l e) . 
This procedure thus enables us to measure Wabo - wbrf' • limited only by the line width of 
the atomic level l a ). An additional measurement for Wabo + wbo< = Wac could be 
performed, obviously limited by 'Ya alone as well, so that we are finally in a position to 
determine Wabo and wbrf' to a precision governed only by 'Ya · 

Note at this point, however, that g(T, A) varies with A as well as the Lorentzian 
denominator. This functional dependence is such that, for small T « -y;; 1, the signal 
g(T, A)/(A2 + ...,;) goes to a constant independent of A. Therefore, the time delay T 
has to be of order 'Y;; 1 • This, however, leads to an exponential decrease of the signal 
amplitude by means of the prefactor exp(-'YbT) in equation 23 and eventually to an 
unwanted oscillatory behavior of the signal by means of the sine and cosine functions 
in equation 23. Both effects are well known from time delay spectroscopy. As shown 
in FIGURE 7, we find a signal of width 'Ya without oscillations for T = 3-y;; 1 ; that is, in 
the optimum case, our signal is damped by the factor exp( -3'Yb l'Ya ) · This places an 
upper limit on the magnitude of 'Yb because of untolerable amplitude loss for 
'Yb » 'Ya· However, as stated earlier, the width of the signal is unaffected by 'Yb · 

ONE-ATOM CORRELATED EMISSION SPECTROSCOPY 

We now use one atom as shown in FIGURE 8 involving a three-level two
photon cascade as before. For the sake of simplicity, we choose a symmetric setup 
with the distances in equation 14: r1 = r2 = r. The region between the radiating atom 
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and the detectors is filled with a birefringent medium such that photons travel with a 
polarization-dependent velocity, C+ = c01n + for right circularly polarized photons 
and c_ = c0/n_ for left circularly polarized ones. Here, c0 is the speed of light in a 
vacuum and n± is the respective index of refraction. 

The two-photon state for this setup can be obtained from equation 14 by noting 
that the speed of light for + ( - )-polarized ljl( cl> )-photons of frequency Wab( wbc) is now 
c+(c-) and has the form 

The total joint count probability in this case is given by 

p(2) ( 1 ,  2) = -- 1 + a 1 - e-"raT COS �T - - sin �T 
( K2 ) { [4'Y 'Ybe-2"rbT] [ ( [� ] )] } 
2'Ya'Yb (�2 + 'Y;) 'Ya 

(29) 

with T = r(n+ - n_)/c0• The situation here is similar as in equation 23. We have to 
trade off signal amplitude against resolution because, for T « 'Y; 1, the interference 
term is a constant independent of �. From FIGURE 9, we see that, for T = 2'Y; 1 ,  a 
resolution of order 'Ya is obtained without introducing strong oscillations into the 
signal. Thus, in this case, the damping factor is exp(-4'Ybl'Ya) · 

0.5 

0 

-o.5 L.....-......__ ...... 5 _________ ....__......_ ...... o__..____._....__......_ ...... 5 __..___. 
Mya 

FIGURE 7. Signal in the two-atom setup for different time delays. The time delays are T = 
-v; 1, T = 2-y; 1, T = 3-y; 1 , and T = 4-y; 1 in the order of decreasing width. The maximum amplitude 
is normalized to unity for easier comparison. 
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DISCUSSION 

We return to the physical origin of the sharp Lorentzian in equations 23 and 29. 
As noted in the derivation of equation 23, the interference cross term involves the 
two possibilities for photon detection as depicted in FIGURE S. The first term in 
equation 23 that goes with / (T, 4) is due to the situation depicted in FIGURE Sa, 
whereas the interesting term, which is multiplied by the sharp Lorentzian of equation 
23, corresponds to the case in FIGURE Sb. We see that this latter term plays a role in 
equation 23 only when the cf>,-radiation and the l!J.-radiation have to traverse different 
optical path lengths from their respective so�rce to detector D2 because g(T = 0, 4) 
vanishes. In other words, it is the difference in the time delay between the superposed 
probability amplitudes for the detection of cf>- and ljl-photons at D2 that forms the 
essential ingredient for the existence of the sharp Lorentzian. 

This idea is confirmed by the results for the one-atom setup including the 
birefringent medium. Now, we have once more a superposition of probability 
amplitudes for detection of cf>- and ljl-radiation in one detector with a different time 
delay because the optical path for +-polarized ljl-radiation is different from the one 
for --polarized cf>-radiation in the birefringent medium. We may therefore say that 
the possibility for subnatural spectroscopy in both anaixzed cases has the same 
physical origin. . •  

To summarize, we have shown the possibility for su6natural spectroscopy utiliz
ing second-order correlations of spontaneously emitted photons from two atoms that 
yields results very similar to time delay spectroscopy. Furthermore, we elucidated the 
underlying physical effect with a single-atom source of polarized radiation involving 
birefringence. 

--"'--- C 
FIGURE 8. One three-level atom in a spectroscopic setup involving a birefringent medium 
between the atom and the detectors. 
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�0.5 
bO . .... en 

0 
-5 5 

FIGURE 9. Signal in the one-atom setup for d ifferent t ime delays. The time delays are T = 
-y;; 1, T = 2-y;; 1, and T = 3-y;; 1 in the order of decreasing width. The maximum amplitude is 
normalized to unity for easier comparison. 
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INTRODUCTION 

Two-particle entangled states have been known since the early days of quantum 
mechanics. These states play a particularly important role in the study of the 
Einstein-Podolsky-Rosen (EPR) paradox1 and in the test of Bell inequalities.2 It was 
Schrodinger who first pointed out that a particul� type of two-particle state, which 
he called an "entangled state", is responsible for the EPR paradox.3 Entangled states 
are states of two or more particles that cannot be written as products of single
particle states. An example of a two-particle entangled state was given in EPR's 1935 
paper, where the measurement of an observable of either particle determined the 
value of that observable for the other particle with unit probability. 1 Although 
two-particle entangled EPR states are predicted by quantum theory, they are not 
allowed in classical physics. The physical consequences resulting from the EPR 
states violate classical local realism.4 

In the past, EPR-type two-particle entanglement has been demonstrated by two 
types of experiments-(1 )  two-particle polarization correlation measurements: most 
of the historical EPR-Bohm experiments5 and the measurements testing Bell's 
inequality exhibited a nonlocal two-particle polarization correlation;6-10 these experi
ments demonstrated the EPR-type two-particle spin entanglement; (2) two-particle 
interference (fourth-order interference) experiments; recent two-particle nonclassi
cal interference experiments demonstrated two-particle space-time entangle
ment. 1 1-16 

A typical EPR-Bohm-type two-photon spin entangled state was predicted by 
Wheeler in the late 1940s and was proved by Wu and Shaknov in the early 1950s: 17 

(1) 

where I R; >  (or I L; > )  stands for a right-hand (or left-hand) circular polarization 
eigenstate of the superscript photon. If one wants to measure the linear polarization 
of a single photon, one would find that neither of them has a preferred polarization 
direction; however, whenever a single photon is measured to be polarized in a certain 
direction, the other one must be polarized orthogonal to that direction. 

0This work was supported by the Office of Naval Research (Grant No. N00014-91-J- 1430). 
40 
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A typical EPR-type two-photon space-time entangled state, proposed by Franson 
recently, 18 is in the form of 

-

(2) 

where A(Li . Li) [or A(Si .  S2)) is the amplitude in which a pair of photons travel 
along the long (L) or short (S) optical paths through one or two interferometers. In 
this state, if one photon is measured to follow the L (S) path, then the other must 
have followed the L (S) path. One can never predict "which path" for a single 
photon; however, if one of the photons traveled through the longer (shorter) path, 
the other must have traveled through the longer (shorter) path. The signature of the 
state in equation 2 is a cosine sum frequency interference fringe pattern of the 
coincidence counting rate . 

The nonlocal spin or space-time two-particle entanglement phenomenon is 
striking. It is even more striking that quantum theory also allows two-particle 
entanglement both in spin and in space-time simultaneously. This third type of two
photon entangled state will be discussed in detail by reporting several experiments. 
In these experiments, it is interesting to see that the measurement of the spin and 
space-time observables of either particle determines the value of these observables 
for the other particle with unit probability. 

1YPE-II SPONTANEOUS PARAMETRIC DOWNCONVERSION AND THE 
EFFECTIVE 1WO-PHOTON WA VE FUNCTION 

Spontaneous parametric downconversion (SPDC) is one of the most effective 
mechanisms for generating two-photon entangled states. In SPDC, a pump beam is 
incident on a birefringent crystal. The pump beam is intense enough so that 
nonlinear effects lead to the spontaneous emission of a pair of entangled light quanta 
by means of the phase matching condition, 19 

(3) 

where w; is the frequency and k; is the wave number vector, linking pump (p ), signal 
( 1 ), and idler (2). The downconversion is called type-I or type-II, depending on 
whether the photons in the pair have parallel or orthogonal polarization. The light 
quanta of the pair that emerges from the nonlinear crystal may propagate in different 
directions or may propagate collinearly. The frequency and propagation directions 
are determined by the orientation of the nonlinear crystal and the phase matching 
relations in equation 3. 

In order to understand the two-photon behavior of SPDC, consider the simplified 
experiment shown in FIGURE 1, which is a simple beam-splitting experiment. Assume 
that a type-II BBO (�-BaB204) crystal is used for the SPDC. The collinear downcon
version beam is split by a beam-splitter. The beam-splitter is assumed to be 
polarization-dependent so that the o-ray is transmitted and the e-ray is reflected. 
Single-photon counting detectors D1 and D2 are placed in the transmission and 
reflection output ports of the beam-splitter for detecting the o-ray and the e-ray, 
respectively. 

It is most convenient to perform the calculation in the Heisenberg picture. An 
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effective wave function '11(1 1 > 12) will be developed in the following calculation. The 
introduction of '11(1i .  12) is helpful for the understanding of physics. 

For collinear type-II SPDC, the two-photon part of the state that exits the 
downconversion crystal may be calculated from the standard theory of SPDC 
(first-order perturbation theory) to bet9 

1 '11 > = J dwt8(wt + w2 - wp)'11(kt + k2 - �)a![wt(kt)Ja![w2(k2)J I O > ,  (4) 

where w and k represent the frequency and the wave number for signal ( 1  ), idler (2), 
and pump (p ). The subscript indices o and e for the creation operators indicate the 
ordinary and extraordinary rays of the downconversion, traveling along the same 
direction as the pump, that is, the z-direction. The coordinate axesx andy are chosen 

Type-I I  
Nonlinear Crystal 

Laser 
Polarizing BS 

lo > 

Co inc. 
L.-----..+ Circuit 

FIGURE 1. Simplified schematic experiment for the study of the type-II SPDC biphoton. BS is 
a polarization-dependent beam-splitter that transmits the o-ray and reflects the e-ray. 01 and 
D2 are photon counting detectors. A coincidence circuit is used for recording the coincidence 
rate. 

along the polarization direction of the o-ray and the e-ray, respectively. The use of 
small apertures makes the state of equation 4 a good one-dimensional approxima
tion. The frequency phase matching condition is explicitly displayed by the delta 
function; the wave number phase matching condition is not of the form 8(k1 + k2 - kp) 
because of the finite length of the crystaJ. t9 The function '11 determines the natural 
spectral width of the two-photon state. Taking the origin of the coordinate of z at the 
output surface of the downconversion crystal, 

'11(4k) = [ 1 - exp(-i4k · L ) )/(i4k · L ), (5) 

where L is the length of the crystal and 4k = kt + k2 - kp. 
Suppose that the crystal is oriented so that the perfect phase matching condition 

(equation 3) is satisfied by a set !lo. n.,, k,,, and k •. Because of the finite natural 
spectral bandwidth of the two-photon state, we may let Wt = fl,, + v and w2 = !l,, - v, 
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where I v  I « !lo,c· Now, expand k1 and k2 to the first order in v l!sing the dispersion 
relations, 

k1 = k0 + v(dko/d!l0) = ko + v/u0, 

k2 = ke - v(dke/d!le) = kc - vlue, 

where u0 (uc) is the group velocity for the ordinary (extraordinary) ray. Equation 5 
can be written as 

'l'(v) = [ 1  - exp(-ivDL ))livD, (6) 

where D = ( 1 /u0) - ( 1 /ue) and we assume a negative crystal (BBO), that is, Uc > u0• 
The fields at the detectors 1 and 2 are given by 

E\+>(t) = a1 J dw exp[-iw(t - T1 ) ]a0(w), 

(7) 

where ai is the annihilation operator of the photons (j = o, e) and T; = s;lc (where s; 
is the optical path length from the output surface of the BBO crystal to the i-th 
detector and c is the speed of light). We assume T1 = T2 for the following discussion. 
Also, a1 and a, are the complex transmission and reflection coefficients of the 50-50 
beam-splitter. The average coincidence counting rate is given by 

Re = ( 1 /T) f LT dT1 dT2 ('l' IE\-l£�- )£�+ )£\+l l 'I'} 

= ( 1 /T) J LT dT1 dT2 l 'l'(t. , t2) 1 2. (8) 

where t; = T; - T;, T; is the detection time of the i-th detector, and T is the duration 
time of the measurement. An effective two-photon wave function 'l'(ti. t2) is defined 
by equation 8 as 

Substituting equations 4 and 7 into equation 9, 

where 

Here, 

v (t) = v0 exp(-iwrJ/2), 

u (t) = u0 exp(-iwdt/2) J_"".,. dv[ l - exp(-vDL )]l (ivDL ) exp(-ivt)  

= exp(-iwdt/2)1I(t) .  

{Uo II(t) = o, 
DL > t > 0 

(9) 

( 10) 

( 1 1) 

(12) 

(13) 
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v0 and u0 are constants (normalization), and wd = 00 - fie. We have approximated 
the pump to be a plane wave in the calculation. If the pump beam was taken to be a 
Gaussian with bandwidth <Tp, it is not difficult to show that the constant v0 will be 
replaced by a Gaussian function, v0 exp(-�12/8). In this case, we may write the 
effective wave function in the following form: 

'l'(t1 , 12) = v0 exp[-�(11 + 12)2/8)1I(11 - 12) exp(-i!lJ1) exp(-i!lJi), (14) 

which is a two-dimensional wave packet, referred to as the two-photon effective wave 
function or, for short, the bipholon. 19•20 It is not difficult to understand the physics of 
the effective two-photon wave function (equation 14). In this simplified setup, the 
o-ray goes to detector 1 and the e-ray goes to detector 2; the rectangular-shaped 
function, II(11 - 12), means that if detector 2 is triggered at T2, detector 1 will be 
triggered at a later time, but no later than T2 + DL. The "joint triggering" probability 
at T1 and T2 is a constant during this period and is zero otherwise. The v(11 + 12) 
function has a finite width along the axis of 11 + 12• This describes the fact that the pair 
can be produced at any time when the pump wave packet covers the crystal (for a 
Gaussian pump beam with bandwidth <Tp)· This represents a reasonable physical 

-. ...,. 

FIGURE 2. A schematic diagram of the biphoton (envelope). 

picture for type-II BBO SPDC because each photon pair contains an o-ray and an 
e-ray. The pair is produced simultaneously in the crystal with equal probability along 
the z-axis. BBO is a negative uniaxial crystal so that the e-ray exits the BBO crystal 
first. The maximum possible time delay between the o-ray and the e-ray is 
(Lluo - Llue) = DL, which is the time delay to cross the crystal. It is clear that the 
biphoton is entangled in space-time because the wave function cannot factor into a 
function of I 1 times a function of 12• FIGURE 2 is a schematic diagram of the biphoton 
wave packet. 

The experimental setup for the verification of the II-shaped biphoton is almost 
the same as the above simplified experiment, except for the following: (1)  the 
beam-splitter is polarization-independent, so both the o-ray and the e-ray could be 
transmitted or reflected to trigger 01 or 02; (2) a Gian Thompson linear polarization 
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analyzer, oriented at 45° relative to the o-ray and e-ray polarization planes of the 
BBO crystal, is placed in front of each of the detectors; (3) birefriggent material, for 
example, a set of quartz plates, is introduced into the single incident beam for 
manipulating the optical delay 8 between the o-ray and the e-ray. The fast axes of the 
quartz plates were carefully aligned to match the o-ray or e-ray polarization planes of 
the BBO crystal . In order to see the natural spectral bandwidth of the SPDC, no 
narrow bandwidth spectral filters are used, except UV cutoff filters to cut off the 
pump scattered light.21 

We first consider the case in which no quartz plates are used. The coincidence 
detection measurement realizes the probability amplitudes: 

( 1) o-ray transmitted ® e-ray reflected, 
(2) e-ray transmitted ® o-ray reflected. 

The effective wave function is easily calculated as 

(15) 

I t  i s  interesting to see that the two terms in the effective wave function (equation 15)  
do not show any interference. Mathematically, it is easy to see that II(ti - t2 ) and 
II(ti - t 1 )  do not overlap. Physically, the o-ray and the e-ray photons are well 
distinguished in space-time ; it is impossible to find any detection time Ti and Ti, 
except for Ti = Ti, in which the two terms in equation 15 are both nonzero. If Ti > 
Ti, the detection only records the amplitude (o-ray to Di) ® (e-ray to Di); if Ti < Ti, 
the detection only records the amplitude (e-ray to Di ) ® (o-ray to Di) ;  and the 
chances of having the o-ray and e-ray photons exit from the BBO at ti = ti 
(corresponds to Ti = T2) is infinitesimal . 

Now, consider the case of having a quartz plate in the downconversion incident 
beam. If we align the quartz carefully to match its fast axis to the o-ray polarization 
direction of the BBO, an optical delay, 8 = (n0 - ne )l!c, is introduced between the 
o-ray and the e-ray of BBO, where n0 and nc are the indices of refraction of the 
quartz plates for the o-ray and the e-ray of BBO, and I is the thickness of the quartz 
plate. The effective wave function becomes (consider that the analyzers are set at 
45°) 

where q> = (n0 + ne )l!c is a phase constant that has no contribution to the 
coincidence measurement after the normal square of 'l'(ti .  t2 ) .  It is easy to see from 
equation 16 that there is interference now because the two terms overlap. When 8 = 
DL/2, the two terms completely overlap and therefore cancel each other. This may 
be considered as a perfect anticorrelation. 

If different numbers of quartz plates are introduced into the downconversion 
incident beam to manipulate the optical delay 8, the coincidence counting rate Re is 
calculated by substituting equation 16  into equation 8: 

Re = Rc0[1  - p(8)), ( 17) 
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where p is a A-shape function of 8 (self-convolution of the Il-shape function), 

lo K8 
p = A - K(8 - DL/2) 

- oo < 8 < 0 
0 < 8 � DL/2 

DL/2 .s 8 < DL 
DL < 8 < oo, 

( 17' ) 

and K = 2/DL, resulting in a V-shaped Re. It is easy to see that the width and the 
shape of the biphoton can be evaluated by the width and the shape of Re. 

FIGURE 3 reports typical observed "V-shape" coincidence rate measurements as 
a function of the optical delay 8, which verifies the Il-shape effective wave function. 21 
The coincidence counts are direct measurements, with no "accidental" subtractions 
or any other theoretical corrections. Each of the data points corresponds to different 
numbers of quartz plates remaining in the path of the downconversion incident 
beam. The negative sign stands for the case in which the slow axis of quartz is aligned 
with the o-ray polarization direction of the BBO. The solid curve is a calculated curve 
of equation 17. It is easy to find that the vertex of the V-shape function has a 
displacement of (72 ± 3) fs from zero, which corresponds to a time delay of DL/2 in 
a (0.56 ± 0.05)-mm BBO crystal. 
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In the above calculation, we only considered the case of the natural spectral 
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width of the SPDC. If narrow bandwidth spectral filters are used for the detectors in 
the above experiment, the filter functions must be included in the field operators and 
Il(t) becomes 

Il(t) = J_0000 dv/1 (01 + v)f2(flz - v)[l - exp(-vDL )] l(ivDL) exp(-ivt) .  (18) 

The filter function may be taken to be Gaussian with bandwidth a; then, 

Il(t) = u0{erf(<rt/2) - erf((<rt - DL)l2]}!2DL, (19) 

where erf(x) is the error function and u0 is a normalized constant. This function 
peaks at DL/2 and has a width on the order of DL + 8/a. For narrow bandwidth 
filters, it can be approximated as a Gaussian, 

IT(t) a u0 exp[-a2(t - DL/2)2 / 4 ], (20) 

and the coincidence counting rate becomes 

R0 = Rc0{ l  - exp[ -a2(8 - DL/2)2/2) } . (21) 

FIGURE 4 reports typical measurements with the fitting curves of equation 21, which 
is an "anticorrelation" observation.22 



48 ANNALS NEW YORK ACADEMY OF SCIENCES 

The discussion of the effective wave function is important for the understanding 
of the two-photon double entanglement . The spin and space-time entanglement will 
be discussed in detail by reporting the following experiments. 

EXPERIMENT ONE: 1WO-PHOTON QUANTUM BEATS 

In this experiment,23 a pair of orthogonally polarized light quanta with different 
colors are injected collinearly through a single port of a beam-splitter and are 
detected by two independent photon counting detectors placed in the two output 
ports of the beam-splitter with two linear polarization analyzers and two narrow 
bandwidth spectral filters. The bandwidths of the filters are narrow enough so that 
each of the detectors only picks up one color. There is no preferred polarization 
orientation in each of the three (incident, transmitted, and reflected) beams. There 
is no single-detector counting rate change when the orientation of the polarization 
analyzers or the optical path difference between the orthogonally polarized compo
nents is manipulated. There is not even a coincidence counting rate change when 
manipulating the optical path difference without having polarizers in each of the 
transmitted and the reflected beams. However, a beating fringe with 100% modula
tion shows up in the coincidence counting rate by inserting<:rystal quartz plates in the 
incident beam with the help of correctly oriented j:)olacizers in each of the transmit
ted and reflected beams. It is the spin and space-time entangled state (simulta
neously) that makes it possible to demonstrate two-particle nonlocal interference in 
a simple beam-splitting experiment. 

The schematic experimental setup is illustrated in FIGURE 5. A CW argon ion 
laser line of 35 1 . 1  nm is used to pump an 8 mm x 8 mm x (0.56 ± 0.05) mm BBQ 
nonlinear crystal. The BBQ is cut at a type-II phase matching angle to generate a pair 
of orthogonally polarized signal and idler photons collinearly around 702-nm wave
lengths. The downconverted beam is separated from the pumping beam by a UV 
grade fused silica dispersion prism and is then directed collinearly at a near-normal 
incident angle to a polarization-independent beam-splitter that has 50%-50% reflec
tion and transmission coefficients. A single-photon detector is placed in each 
transmission and reflection output port of the beam-splitter. The photon detectors 
are dry-ice-cooled avalanche photodiodes operated in photon counting Geiger 
mode. A Gian Thompson linear polarization analyzer, followed by a narrow band
width interference spectral filter, is placed in front of each of the detectors. The 
polarization analyzers are oriented at 45° to the o-ray polarization planes of the BBQ 
crystal . The spectral filters f1 and f2 have Gaussian-shape transmission functions 
centered at conjugate wavelengths of the downconversion, A1 = 700.7 nm and A2 = 
703.7 nm, respectively. The spectral bandwidths are both 1 nm in full width at 
half-maximum. The passband overlap between the two filters is negligible. Because 
of the finite bandwidth of the type-II parametric downconversion, both wavelengths 
may be o-ray or e-ray; however, if A1 is an o-ray, then X2 must be an e-ray and vice 
versa. The output pulses of the detectors are then sent to a coincidence circuit with a 
3-ns coincidence time window. The two detectors are separated by about 2 m so that 
the detection events of the pair are spacelike separated events. 

A set of 15 crystal quartz plates is placed in the incident beam for manipulating 
the optical path difference, t:J, between the orthogonally polarized signal and idler 
photons. The fast axes of the quartz plates were carefully aligned to match the o-ray 
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or e-ray polarization planes of the BBQ crystal during the measurements. Each of 
the quartz plates is (1 ± 0. 1 )  mm in thickness, resulting in an optical path difference 
9f (ne - n0)/ ;;;; 9 µ.m between the o-ray and e-ray of the BBQ. The 15 quartz plates 
were aligned carefully one by one before the taking of data and were moved away one 

700.7 nm 
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Quartz 
Plates 

-f t--

BBO 
Type I I  

351 .1  nm 

Ar laser 

Analyzer 2 (45°) 

Analyzer 1 (45°) 

Coincidence 
Counter 

FIGURE 5. Schematic experimental setup for quantum beats. 

by one during the measurements. Two sets of measurements were made in order to 
have 31 experimental points to show the. modulation of the interference. In the first 
(second) set, we aligned the fast axes of the quartz plates to match the o-ray ( e-ray) 
polarization plane of the BBQ. The two-photon coincidence counting rate was 
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observed to show a frequency beating fringe when the polarization analyzers were 
oriented at 45°: 

(22) 

where >..; is the center wavelength of the i-th spectral filter and f)J is the optical path 
difference introduced by the quartz plates. 

FIGURE 6 reports typical observed two-photon coincidence rate measurements as 
a function of lll.23 The coincidence counts are direct measurements, with no 
"accidental" subtractions or any other theoretical corrections. Each of the data 
points corresponds to a different number of quartz plates remaining in the incident 
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FIGURE 6. Observed beating pattern. Lower curve: Coincidence counts in 60 seconds as a 
function of 11/, which corresponds to a certain number of quartz plates. The solid curve is a 
fitting curve of equation 25. The measured period is about 164 µ.m, which corresponds to the 
beating frequency, 1 .83 x 1012 Hz, of the downconverted beams. The modulation visibility is 
(97 ± 2)% (no "accidental subtractions") . Upper curve: Single-detector counting rate as a 
function of 11/. 

beam. The left (right) side's 15 points of data, which are indicated by the " -" sign 
(" + "  sign), were taken under the following condition: the fast axes of the quartz 
plates coincide with the o-ray ( e-ray) polarization plane of the BBO crystal . It is clear 
that the interference pattern has a period of about 164 µm, which corresponds to the 
beating frequency, 1 .83 x 1012 Hz, of the downconverted beams. The modulation 
visibility is (97 ± 2)%. The single-detector counting rates do not show any modula
tions, as is reported in the upper part of FIGURE 6. 
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It is straightforward to calculate the effective wave function 'l'(ti. t2) : 

'l'(t1, t2) = v(t 1 + t2 - qi)[e1 . eoe2 . eeU(t1 - t2 + &) 

+ e1 · e.e2 · e,µ(-t 1 + t2 + &)) , 

51 

(23) 

where a1ar has been absorbed to the normalization constant. The time delay & and 
the phase factor <p have been defined in the previous section. We have used a 
right-handed natural coordinate system with respect to the k vector as the positive 
z-axis direction. Care has to be taken to follow the rules of the natural coordinate 
system, especially for the reflected beam. 

The effective wave function 'l'(ti. t2) can also be written in the following form in 
order to compare it with the two-photon EPR states (equations 1 and 2): 

'l'(t1, t2) = [e 1 · e0e2 · e0A(t'j, ti) + e1 · e0e2 · eaA(t!, tnJ. (23 ' ) 

The t; values are given by tr = t - f't/c and tj = t - 1'[/c (i = 1 ,  2), where f'/'" = 
f dzn°·" (z) indicates the optical path for the o-ray or e-ray of the i-th beam, with 
n"'" (z) being the refractive index at position z (z = 0 is defined at the output surface 
of the SPDC crystal). We have approximated (dn/dw)0 - (dn/dw). = 0 for 
simplifying the calculation. 

The two terms in equations 23 and 23 ' correspond to two probability amplitudes: 

( 1) o-ray transmitted with long path ® e-ray reflected with short path, 
(2) e-ray transmitted with short path ® o-ray reflected with long path. 

The effective wave function (equation 23) indicates two-particle entanglement in 
both spin and space-time. 

The coincidence counting rate is calculated as follows (considering the coinci
dence time window): 

(24) 

where -r = T1 - T2, T; is the detection time of the i-th detector, S(-r, tJ,.Tc) is a function 
that describes the coincidence circuit, and tJ,.Tc is the time window of the coincidence 
circuit. For T > tJ,.T, S(T, tJ,.Tc) = O; for T < tJ,.T, S(T, tJ,.Tc) = 1 .  If the coincidence time 
window is large enough, S can be considered to be equal to 1 at time t . The time 
integral can be taken to infinity as a good approximation. 

Consider the case 01 = 02 = 45°; substituting 'l'(ti . t2) into equation 24, the 
coincidence counting rate is calculated as 

(25) 

Equation 25 indicates an interference beating of the coincidence counting rate at 
frequency 01 - !li with 100% modulation when & is near zero. The modulation 
visibil ity vanishes exponentially when & is off from zero. The sol id curve in FIGURE 6 
is a fitting curve of equation 25 . 

It is interesting that the zero point of the counting rate is not seen in the case of 
zero quartz plates. From the experimental data, we conclude that the zero point of 
the coincidence counting rate happens at a point in which about 2.4 x ( I  ± 0. 1 )-mm 
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quartz plates are placed in the t>eam path, which corresponds to the time delay of 
DL/2 in a (0.56 ± 0.05)-mm BBO crystal. This is in agreement with the TI-shape 
effective wave function verification experiment reported in the previous section. 

The above quantum beating phenomenon demonstrated a two-photon entangled 
state in spin and in space-time generated by type-II SPDC. The simultaneous double 
entanglement may be easily seen from the following argument: neither the transmit
ted nor the reflected beam has a preferred polarization or a preferred optical path 
(short or long path in the quartz plates); however, if the photon in the transmitted 
beam is measured to be polarized at 8i. the photon in the reflected beam must have 
been polarized at a specific angle 82• At the same time, if the photon that triggered 
detector 1 is the one that took a shorter optical path in the quartz, then the one that 
triggered detector 2 must have been the one that took a longer path, and vice versa. 
The measurement of the observables of either particle (spin and space-time) 
determines the value of these observables for the other particle with unit probability. 
The (97 ± 2)% visibility coincidence interference pattern is the signature of this 
particular double entanglement. 

EXPERIMENT 1WO: A NEW 1YPE OF 1WO-PHOTON INTERFEROMETER 
. .  

Taking advantage of the spin and space-time entanglement of the biphoton, 
another type of two-photon interference phenomenon can be demonstrated.24 The 
experimental setup is similar to the quantum beats experiment, that is, a simple 
beam-splitting setup. With the addition of a Pockets cell and a reorientation of the 
quartz plates and polarizers, the coincidence counting rate exhibits interference 
modulation of the pump frequency when manipulating the voltage across the Pockels 
cell, regardless of the optical delay by the quartz plates (which is much greater than 
the coherence length of the signal and idler downconversion fields) and the mutual 
incoherence between the signal and the idler of the downconversion. This two
photon interference effect is again due to a nonclassical two-photon state that is 
entangled both in spin and in space-time. 

The schematic setup of the experiment is illustrated in FIGURE 7. The type-II 
SPDC is the same as that in the quantum beats experiment, which is reported in the 
previous section. The collinear downconversion beam passes through a set of crystal 
quartz plates before the beam-splitter. The first 3 quartz plates, which sum to 2.4 mm 
in thickness, are oriented in such a way that the fast polarization plane of the quartz 
plates coincides with the o-ray polarization plane of the BBO to make the two terms 
of the TI-shape function completely overlap (see the discussion in the previous two 
sections). Thirteen more crystal quartz plates follow these 3. The fast axes of these 13  
quartz plates are aligned carefully so that they are oriented at  45° relative to the o-ray 
and the e-ray polarization planes of the BBO. Each of these quartz plates is (1 ± 0. 1) 
mm in thickness, resulting in an optical delay of t!J e 9 µm between the fast and the 
slow rays of the quartz crystal at wavelengths around 700 nm. The optical delay is 
about 1 1 7  µm after 13 quartz plates, which should be compared with the coherence 
length of the field, which is about 25 µm. Therefore, the IX> and the I Y> 
components of the o-ray and e-ray of the downconversion suffer enough optical delay 
to be nonoverlapping, where IX> and I Y> correspond to the fast and the slow axes 
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of the quartz plates. A Pockets cell with fast and slow axes carefully aligned to match 
the IX> and the I Y> axes is placed after the quartz plates for fipe control of the 
optical delay between the IX> and the I Y> . The quartz plates and the Pockets cell 
all · have antireftection coatings at 702.2 nm. The pair is then injected at a near
normal incident angle to a polarization-independent beam-splitter that has 50%-
50% reflection and transmission coefficients, within ±5% accuracy. The detector 
packages are the same as those used in the quantum beats experiment. The 
polarization analyzers are oriented at 0° relative to the o-ray polarization planes of 
the BBQ crystal. The spectral filters f1 and f2 have Gaussian-shape transmission 
functions centered at 702.2 nm, with bandwidths of 19 nm (full width at half
maximum). The output pulses of the detectors are then sent to a coincidence circu it 
with a 3-ns coincidence time window. In order to have spacelike separated detection 
events, the two detectors are separated by about 2 m. 

351 . 1  nm 

BBO 
Type I I  

Ar laser N • 

.----------iColncidence -------. 
Counter 

o ,  

Analyzer 1 
Pockels Cell 

FIGURE 7. Schematic setup for the new type of two-photon interferometer. 

FIGURE 8 reports a typical observed interference modulation of the coincidence 
counting rate as a function of the optical delay Mp, where /l/p is the optical delay 
(between IX> and I Y>) introduced by the Pockets cell .24 The manipulation of /l/p is 
realized by changing the applied voltage of the Pockets cell. The half-wave voltage is 
calibrated at 702.2 nm. The coincidence counts are direct measurements, with no 
"accidental" subtractions. Each of the data points corresponds to a different voltage 
applied to the Pockets cell. The left-side (right-side) data points, which are indicated 
by a "-" sign (" +" sign), were taken by applying a negative (positive) voltage across 
the Pockets cell. It is clear that the modulation period corresponds to the pump 
wavelength, that is, 35 1 . 1  nm. The interference visibility is about (88 ± 2)%.  Con
trary to the coincidence counting rate, the single-detector counting rate remains 
constant when /l/p is manipulated, as is reported in the upper part of FIGURE 8. 
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The downconversion I o >  and I e > polarized photons both have certain probabili
ties to be in the IX> or the I Y> state when passing through the crystal quartz plates 
and the Pockets cell. The optical delay between the IX> and the I Y> is then 
introduced by the anisotropic refractive index of the quartz plates and the Pockets 
cell. When the pair meets the beam-splitter, both of the photons have a 50%-50% 
chance to be transmitted or to be reflected. The transmitted one is registered by 

1 200 3000 
I I I 1 1 I I ·  I I I I I () (') Cl) 1 000 2500 (/) 0 

0 c 
::i co -.... 800 2000 5· 

0 IC -
(/) ::IJ 'E ID -
::i 600 1 500 GI 
0 0 () GI 
Cl) -
() GI 
c 400 1 000 0 -Cl) 0 'C ... 

'(j 0 c 200 500 I\) ·5 () 

0 0 
·0.20 ·0.1 5 ·0.1 0 ·0.05 0.00 0.05 0.1 0 0.1 5 

Optical Delay in Pockels Cell (µ m) 
FIGURE 8. Obseived sum frequency two-photon interference pattern. Lower part: Coinci
dence counts in 60 seconds as a function of the optical delay, t:Jp, which corresponds to a certain 
voltage applied to the Pockels cell. The measured oscillation period is about 351 nm with an 
(88 ± 2)% visibility. Upper part: Single-detector counting rate remains constant when t:Jp is 
manipulated. 

detector 1 and the reflected one is detected by detector 2. It is interesting to see from 
the following discussion that the only registered coincidences are the two-photon 
probability amplitudes in which 

(1) ( l o >  is in IX> and is transmitted) ® ( l e > is in IX> and is reflected), 
(2) ( l e >  is in IX> and is transmitted) ® ( l o >  is in IX> and is reflected), 
(3) ( I o >  is in I Y> and is transmitted) ® (I e > is in I Y> and is reflected), 
(4) ( l e >  is in I Y> and is transmitted) ® ( l o >  is in I Y> and is reflected). 

All the other possible two-photon probability amplitudes cancel each o
.
ther, regard

less of the optical delay by 13 pieces of quartz plates (greater than the coherence 
length of the downconversion field) and the mutual incoherence between the signal 
and idler. This results in an EPR state. In the following paragraphs, we present a 
simple quantum mechanical model to explain our experiment, which is essentially 
the same as that in the previous two sections. 
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The fields at the detectors 1 and 2 are given by 

E\+>(1) = <Xi I dwf(w)[exp(-iwttx)(eo . ex)(ex .  e1 )a�(w) 

+ exp(-iwttx)(ee . ex)(ex . e1 )ae(w) 

+ exp(-iwt1y)(eo . ey)(ey . e1 )ao(w) 

+ exp(-ill>l1y)(ee . ey)(ey . e 1 )ae(w)) , 

£�+>(1) = a, I dwf(w)[exp(-iwt:zx)(eo . ex)(ex . e2)aa(w) 

+ exp(-iwt:zx)(ee . ex)(ex . e2)ae(w) 

+ exp(-iwt2y)(eo . ey)(ey . e2)ao(w) 

+ exp(-iwt2y)(ee . ey)(ey · e2)ae(w)], 

SS 

(26) 

where e; is in the direction of the i-th linear polarization analyzer axis, aa(w) and 
ae( w) are the destruction operators for the o-ray and the e-ray of BBO, a,. and a,. are 
the complex transmission and reflection coefficients of the beam-splitter, and f ( w) is 
the spectral transmission function of the filters. The l;x and l;y are given by l;x = I -
l;x/c and l;y = I - l;y/c (i = 1, 2), where l;x.Y = J dznx,y(z) .X and Y, defined by the fast 
and slow axes of the quartz plates and the Pockels cell, indicate the optical paths for 
the X and Y components of the i-th beam, and nx,y(z) is the refractive index at 
position z for the X or Y components of the beam. We have approximated (dn l 
dw)x - (dn/dw)y ai 0 for simplifying the calculation. The use of pinholes allows a 
good one-dimensional approximation. 

It is straightforward to calculate 'l'(li. 12) : 

'11(11 , 12) = a1a,[(e0 • ex)(ex · e 1 )(ee · ex)(ex · e2)A(ltx, l:zx) 

+ (ee · ex)(ex · e1 )(e0 • ex)(ex · e2)A(1tx, l:zx) 

+ (e0 • ey)(ey · e 1 ) (ee · ey)(ey · e2)A(lm 12y) 

+ (ee · ey)(ey · e1 )(eo · ey)(ey · ei)A(11y. l2y) 

+ (e0 • ex)(ex · e1 )(ee · ey)(ey · e2)A(ltx, 12y) 

+ (ee · ex)(ex · e1 )(e0 • ey)(ey · e2)A(ltx, 12y) 

+ (e0 • ey)(ey · e1 )(ee · ex)(ex · e2)A(11y, l:zx) 

+ (ee · ey)(ey · e1 )(e0 • ex)(ex · e2)A(lm l:zx)] .  (27) 

To simplify the calculation, A(li . 12) may be taken to be 

A(11 > 12) = Ao exp[-a�(11 + 12)2/8) exp[-a2(11 - 12 - DL/2)2/4) 

· exp(-i!l 11 1 ) exp(-i!l7.ti), (28) 
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where we consider narrow bandwidth Gaussian filters f;(w) with equal bandwidth u 
and a Gaussian spectral distribution of the pump field with bandwidth CTp and where 
O; is the i-th filter's center frequency, which is related to the peak frequency of the 
pump, Op, by 01 + 02 = Op. Considering the phase shift of 'Tl' due to reflection and 
the sign of the projections as well as the 45° orientations of the quartz plates and the 
()" orientation of the analyzers, it is straightforward to show that the first four terms 
can be combined into two terms, which correspond to the two-photon probability 
amplitudes in equation 29, where the Y components (of the o or e) take a longer 
optical path due to the anisotropic refractive index of the quartz plates and the 
Pockets cell. It is also straightforward and very interesting to see that other terms in 
equation 27 are out of phase in pairs (terms 5-6 and 7-8) and cancel each other. The 
cancellation makes the interference visibility greater than 50%. We want to remind 
the reader once again that we have used a right-handed natural coordinate system 
with respect to the k vector as the positive z-axis direction. To realize the state of the 
type in equation 2, we have taken advantage of the polarization entanglement of the 
two-photon state for the cancellation of the unwanted amplitudes. An EPR en
tangled two-photon state is finally realized by the coincidence measurement, 

(29) 
. •  

which is similar to the EPR states in equations 1 and 2;withX and Yequivalent to the 
long and short paths of the interferometer, or the polarizations. 

The coincidence counting rate is 

Re -= R.:o{ i - exp[-�(4//2c)2] cos(wp4//c)}, (30) 

which indicates an interference modulation of the pump frequency with 100% 
visibi lity when 41 is much smaller than the coherence length of the pump in perfect 
experimental conditions. The observed visibility is (88 ± 2)%. The reason that we 
see less than 100% is mainly due to the nonlinear response and the optical quality of 
our Pockets cell when applying higher voltages. 

We have also demonstrated a similar experiment with an orthogonal circularly 
polarized light quanta pair. The experimental setup is almost the same, except that 
( 1 )  a quarter-wave plate is placed after the compensation quartz plates; the quarter
wave plate is oriented at 45° relative to the o-ray polarization plane of the 880 to 
rotate the linear polarization state of the o-ray and the e-ray to an orthogonal 
circular polarization (left-hand, right-hand) configuration; (2) 13 crystal quartz 
plates are used to make a large enough delay between the Ix > and IY >  components 
of the circular polarized pair, where Ix > and IY > are defined by the fast and the 
slow axes of the quartz plates; Ix >  and IY > are oriented to coincide with the o-ray 
and the e-ray polarization planes of the 880; (3) a Pockets cell is placed after the 
quartz plates for fine control of the optical delay between Ix > and IY > ; the fast and 
the slow axes of the Pockets cell are aligned to match Ix >  and IY > ; (4) the 
polarization analyzers are both oriented at 45° relative to Ix > .  The differences of the 
two configurations are illustrated in FIGURE 9. The coincidence counting rate for the 
circular configuration exhibits similar interference as that reported in FIGURE 8. 
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EXPERIMENT THREE: BELL INEQUALITY MEASUREMENTS 

In order to have space like separated manipulations of the optical path delays, the 
single Pockels cell before the beam-splitter is replaced by two Pockels cells placed in 
the transmission and the reflection beams of the beam-splitter; see FIGURE 10.25 The 
coincidence time window in this experiment is 1 .8 ns, which is much shorter than the 
distance between the Pockels cells. Bell inequality measurements can be performed 
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*� 

axes 
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RGURE 9 .  Experimental setup differences between the linear and circular configurations. 

both for space-time variables and for spin variables in one experiment. Following the 
calculations in the previous section, for 45°-oriented polarizers, the coincidence 
counting rate is predicted to be 
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where A./;/c is the optical delay introduced by the i-th Pockets cell (to simplify the 
calculation, we assumed that the optical delays introduced by the Pockets cells are 
the same). 

FIGURE 11 reports a typical measurement of the coincidence rate. The modula
tion visibil ity is (88.2 ± 1 .2)%, which violates a Bell inequality for space-time 
variables (visibility � 70.7%) by more than 14 standard deviations.ZS 

It is interesting to see that, in the same experiment, a test of a spin variable Bell 
inequality can be made by manipulating the orientation of the polarizers at a totally 
constructive or destructive space-time interference point. Because of the symmetries 
present in the measurement, we are able to study one of the Bell inequalities, 26 

8 = l [R0('IT/8) - R0(3'1T/8) ) /R0 1 � 1 /4 , (32) 

and the measured result is 8 = 0.309 ± 0.009, implying a violation of more than 6 
standard deviations.ZS 

CONCLUSIONS 
.. 

Experiments starting with type-II downconversion are a very effective mechanism 
for generating two-photon entangled states (biphoton) .  The type-II SPDC biphoton 
is entangled both in space-time and in spin. The double entanglement of the 
two-photon state makes it possible to perform EPR-type two-photon interference 
experiments in a simple beam-splitting setup and to test Bell inequalities for 
space-time variables and spin variables in the same experiment. Two-photon interfer
ence visibilities as high as (97 ± 2)% have been observed. Experimental tests for the 
space-time variables and spin variables of Bell inequalities have been measured with 
violations of 14 and 6 standard deviations, respectively, in one experimental setup. 

Argon Laser 

Coinciden 
Circuit 

Type-II 02 

BBO 

F1 

2.4rnm 1 1  quartz plates BS P1 A1 
quartz 

FIGURE 10. Schematic experimental setup for Bell inequality measurements. 
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FIGURE 1 1. A typical observed sum frequency modulation when the cross voltages of the two 
Pockels cells are manipulated (negative values correspond to negative voltages). The interfer
ence visibility is (88.2 ± 1 .2)%. which violates a Bell inequality for space-time variables by more 
than 14 standard deviations. 
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Correlated photon pairs produced by parametric downconversion have become a 
major tool in demonstrating fundamental properties of quantum mechanics. Nonclas
sical interference effects, that is, effects not describable by classical Maxwellian 
electrodynamics, have been used, for example, in experiments on the nonlocality of 
quantum mechanics, 1 on nonclassical photon statistics,2 and on superluminal effects 
in tunneling experiments.3 However, in nearly all those experiments, only second
order interference can be observed by correlated detection of the photon pair.4 In 
contrast, the experiment described here demonstrates the possibility of manipulating 
downconversion such that one has enhancement or suppression of the spontaneous 
two-photon emission process.5 These directly observable intensity variations result 
from nonclassical first-order interference. However, this interference clearly shows 
the product-state nature of the photon pair. 

Most significantly, our experiment closely resembles the case of a spontaneously 
decaying atom close to a mirror, where modification of the emission process has 
already been observed.6 There, the light emitted by the atom could reach the 
detectors via two different paths, thus causing constructive (i .e . ,  enhanced emission) 
or destructive (suppressed emission) interference. For atom-mirror distances on the 
order of the emitted wavelength, one can achieve perfect inhibition of the emission 
process into the modes perpendicular to the mirror surface. In the description of this 
process, one introduces virtual photons, which are understood as being energetically 
indistinguishable from the vacuum field and therefore not detectable. Similarly, in 
our experiment, mirrors are used to reflect both the pump beam as well as a pair of 
downconverted light beams back into the crystal. For the case of destructive 
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interference, the question arises as to whether any downconversion took place at all, 
in analogy with the suppressed decay of an atom decoupled from the vacuum field 
fluctuations due to the possible back-reflection from the mirror. An alternative 
explanation does not rely on the concept of virtual photons. Instead, it takes into 
account the fact that a pair of back-reflected photons could be spontaneously 
upconverted with a probability equal to the one for downconversion, when passing 
through the crystal. The predictions for the observable interference effects agree 
with those of the model described before. However, photons would now be immedi
ately detectable in the downconverted modes between the crystal and the mirrors, 
even in the case of destructive interference. -

Our conceptually simple setup allows one to freely manipulate the modes 
between the crystal and the mirrors, thereby changing the boundary conditions for 
the interference effect. In the present contribution, we will show how different 
Welcher-Weg and quantum eraser experiments can now be performed. Also, in 
contrast to the atom-mirror experiments, one can now try to place a detector (or a 
switch to a detector) between the crystal and the mirror to test for the existence of 
photons even in the case of destructive interference . 

. .  

ENHANCEMENT AND FRUSTRATION OF mE 
DOWNCONVERSION PROCESS 

In the process of downconversion (FIGURE la), a UV-pump photon is spontane
ously converted into a pair of red photons (not necessarily of equal frequency). 
Energy and momentum conservation correlates the two photons, represented by the 
state, 

(1) 

Here, a is the amplitude for downconversion (DC) into the idler (i) and signal (s) 
modes. Higher order terms are neglected because of the very low efficiency of the DC 
process ( I  a I « 1 ) . Also, the coherent pump beam can be treated as essentially 
unchanged, but still coherent with the photon pair. Therefore, there will be a definite 
phase relation between DC photons created in the first process and photons created 
in the process induced if one reflects the pump beam with a phase shift of cl>p back 
through the crystal (FIGURE lb): 

(2) 

If one now uses a mirror IM to overlap mode I i 1 ) (with a phase shift of cl>;) with I i2) 
to give I i) (FIGURE le), a naive picture, neglecting that the phase of each of the DC 
photons is undetermined, would already predict first-order interference. However, a 
definite phase relation with the pump phase cl>p only exists for the whole product 
state. In other words, the remaining signal modes could be used for Welcher-Weg 
detection of the overlapping idler photons; interference effects are therefore ex
cluded. 
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a) 
Pum 

b) 

Pum 

FIGURE 1. Principle of the experimental setup: In addition to the standard setup (a) of 
parametric downconversion (PDC), a second possibility for a PDC process is given by 
back-reflecting the pump beam onto itself (b). Overlapping both idler modes alone (c) is not 
sufficient to obtain interference because the signal photons could still be used for Welcher-Weg 
analysis. When the signal photons are reflected back as well (d), the two PDC processes become 
indistinguishable and first-order interference can be observed in both the signal and idler 
intensities. 
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Overlapping the signal modes as well as using the mirror SM (i.e., I s1 ) --+ I s2) = 
I s); see FIGURE ld) guarantees indistinguishability because no experiment can then 
give information on when the photon pair was emitted. Consequently, this results in 
first-order interference for both the signal and idler photons. The two-photon state is 
now given by 

I 'l') = a(ei� + e i(cl>s+c!>; l ) I s) I i ) . (3) 

Here, cl>; and cl>s are the phases acquired by the back-reflected signal and idler beams. 
The observable singles intensity will vary as 

/5 = I; = 210{ 1  + cos(c!>; + cl>. - c!>p)}, (4) 

where /0 = l a l 2 Ip is the rate of independent downconversion in either of the two 
possible processes. 

Applying a multimode formalism and thus accounting for the finite coherence 
length of the light beams involved shows that, as in any standard interferometry, the 
various path lengths between the crystal and the three mirrors have to agree within 
the respective coherence lengths. The coherence length of the downconverted 
radiation is very small for experimental reasons (of the qrder of 100 µm). The use of 
filters selecting a narrower frequency band than the. one used (�� = 5 nm) would 
lead to an unacceptable loss in intensity. Therefore, a proper path length adjustment 
is crucial for the mirrors reflecting the downconverted light. The path length 
requirements are much less stringent for the pump beam mirror because the 
coherence length of the single-mode UV-line is about 6 m in our experiments. 
However, only the relative lengths have to be adjusted and, in principle, there is no 
upper limit for these crystal-mirror distances,7 in contrast to the atom-mirror case. 

Another new feature of this first-order interference effect can be seen from 
equation 4. The intensity oscillations are modulated by the sum of idler and signal 
phases, not by the relative phase difference. Therefore, the effects of a movement of 
one mirror (e.g., the idler mirror) cannot be undone by changing the position of the 
other (the signal mirror) in the same direction to make both path lengths equal again. 
Rather, as a consequence of the originally entangled product states (equation 2), one 
has to move the second mirror in the opposite direction to cancel the first phase 
change. Also, the nonlocal influence of the change of, say, the signal phase on the 
idler intensity originates in the product-state properties of the correlated photon 
pair. 

FIRST EXPERIMENTAL DEMONSTRATION 

As a source of the downconversion photon pairs, we used a nonlinear crystal 
(Lil03) pumped by the 35 1 . 1 -nm line of a single-mode argon-ion laser (coherence 
length = 6 m). Interference filters and apertures were used to select photon pairs 
with wavelengths of 632.8 nm for the signal mode and 788.7 nm for the idler mode. 
These apertures ( = 0.8-mm diameter, 90 cm apart) selected out overlapping and 
indistinguishable modes behind the crystal (see FIGURE ld), thus providing high 
visibility for the first-order interference. The narrow setting of the diaphragms was 
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the limiting factor for the bandwidth of the detected downconversion light: the value 
of �>. "" 1 .7 nm corresponds to a coherence length le "" 260 µ.m forlhe idler photons. 
Signal and idler photons were detected by sil icon-avalanche photodiodes operated in 
the Geiger mode. After pulse amplification and shaping and an optional coincidence 
selection, the count rates were recorded by a PC that also controlled the mirror 
positions via de motors and piezoelements. 

FIGURE 2 shows a first coarse scan of the idler mirror and the narrow region 
where interference occurs. The coincidence rate was used to find this position 
because of the much better signal-to-noise ratio. However, its variation is due to the 
first-order intensity oscillations in the signal and idler beams . 
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u � . ...... 

0 400 u 

• 

2500 3000 
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FIGURE 2. Coincidence intensity for a coarse scan of the idler mirror. Interference effects can 
be observed only where the crystal-mirror distances are equal to within the coherence lengths. 

At the position of maximum visibility, we performed fine piezoscans for all three 
mirrors. FIGURE 3 shows the dependence of the idler count rate on the various 
mirror translations. One clearly sees the difference in the periodicity of the oscil la
tions when moving mirrors, reflecting different wavelengths. Moreover, this measure
ment also proves the aforementioned influence of the signal mirror movements on 
the idler intensity. 

One feature of the product state describing a DC-photon pair (equation 2) is 
strikingly demonstrated in FIGURE 4. Here, both the signal mirror as well as the idler 
mirror have been moved in the same direction (towards the crystal) in steps 
proportional to the respective wavelength. Whereas there would be no intensity 
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FJGURE 3. Idler count rate as a function of the position of the different mirrors. The 
oscillation frequency depends on the wavelength of the reflected light. 

variation for a standard interferometer, one can now observe oscillations with a 
period depending on the sum of the phase changes. 

JUST A CLASSICAL NONLINEAR EFFECT? 

The described experimental setup is topologically very similar to an experiment8 
where two standing-wave infrared modes were upconverted to two UV fields, which 
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were then overlapped. The high visibility interference effects in that case can be 
described entirely classically in terms of Maxwell's equations. • 

Applying the theory of parametric amplification to our experiment reproduces 
many of the observed features. The phase relations of the observed interference 
phenomena are then described as due to the phase-matching condition implied by 
this process. However, to also attain visibilities of the first-order intensity variations 
comparable to those presented here, a very high pump power would be needed.9 
FIGURE 5 shows the dependence of the fringe visibility on the pump power as 
predicted by such classical considerations. For our experimental parameters (pump 
intensity of 1 W /mm2), a visibility of only about 3% is predicted, far below the 
observed value of up to 51 %.  

Another unexpected prediction can be deduced from this amplification picture in  
the case of  constructive interference if one considers the very short coherence times 
of the downconverted radiation (�Tc = 100 fs). It is only during this time that the 
amplification process can occur, corresponding to an increase of the photon number 
in the DC modes by a factor of four. The resulting photon bunches in each of the two 
outgoing downconverted beams should be observable with a Hanbury-Brown and 
Twiss detection scheme in the two outputs. On the other hand, the Si-avalanche 
photodiodes used here do not distinguish between one or two photons within the 
short time of only 100 fs. Therefore, if the increase of DC photons would be only due 
to this classical amplification process, we could not even have observed the construc
tive interference shown in FIGURES 2-5. 
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FIGURE 4.  Idler count rate for the simultaneous change of  the positions of  idler mirror and 
signal mirror in the same direction. Due to the entangled nature of the states, intensity variation 
with a period corresponding to the pump wavelength can be observed. 
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Pump intensity (W/cm2) 

FIGURE S. Visibility versus pump power in a classical model. A fringe visibility of only 3% is 
predicted for the pump power of 300 W /mm2 used in the eXperii:nent. This has to be contrasted 
with the observed value of 51 %. 

WELCHER-WEG DETECTION AND QUANTUM ERASERS 

In the first experimental test of these new interference effects, the distance 
between crystal and mirror was 13 cm. Although, as mentioned before, there is no 
upper limit, already these shorter distances suffice to place various optical compo
nents in between the crystal and mirrors or to perform path length changes much 
larger than the coherence length of the DC photons. This allows Welcher-Weg 
marking that could be subsequently erased after the crystal, restoring the interfer
ence. 

For example, a path length change of the idler mirror by more than a coherence 
length provides a means to determine which of the two downconversion processes 
actually occurred. Therefore, no interference is possible anymore for both the idler 
and signal photons. Placing a narrow-band filter in front of the idler detector now 
increases the coherence length and destroys path distinguishability, thus allowing 
one to recover interference on this beam. However, first-order interference cannot 
be restored for the signal beam. 

Another possibility of manipulating the interference properties is to change the 
polarization of the back-reflected photons. If, as shown in FIGURE 6a, the polariza
tion of the back-reflected signal beam is changed from vertical (v) to horizontal (h) 
polarization by means of a quarter wave-plate in front of the mirror, polarization
sensitive detection would allow one to determine the origin of the observed photon 
pair. The resulting loss of interference is explained by the same Welcher-Weg 
arguments as before. Again, the signal photons can be made indistinguishable, now 
by analyzing the polarization at ±45° with respect to the vertical direction, thus 
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allowing interference on the signal beam behind the polarization filter (FIGURE 6b). 
However, erasing the path information can be done only ·on photons marked 
previously. Continuing from equation 2, one obtains, for a polarization change of s i .  

A./4-plate 

I 'I') = a I S1 v) I i i v) + o:eic!>p I S2 v) I ii v) -, I 'I') = a( I sh) I iv) + o:ei.14> I Sv) l iv)) 
· · · · over ap 

polarizer, 45° ( a ) 
1 '11) = .Ji l iv) [ l sd( l  + e i.14>) + I S-45•)( 1  - e i.14>)] .  (5) 

The indistinguishability conditions for interference are not fulfilled at the point 
of overlap and the idler mode factorizes. As before, there is no way to restore 
intensity interference for the idler beam. 

Changing polarization in both back-reflected beams preserves the entangled 
nature of the state described by equation 2. Overlap of the signal modes and idler 

Pum 

� ' �  � 
FIGURE 6. The polarization of the signal photons of the first process is rotated by 90° using a 
retardation plate (X/4) (a). This destroys the observed interference at the signal detector as 
well as at the idler detector. (b) Analyzing the signal polarization at 45° can restore the signal 
interference. This is not possible for the idler beam. 
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modes, respectively, then results in spin-entanglement: 

(6) 

Attenuation of the back-reflected beams changes the symmetry properties of this 
entanglement; the resulting incomplete entanglement is required in some classes of 
loophole-free tests of Bell's inequality.10 

VIRTUAL OR REAL PHOTONS? 

We have shown that the downconversion into the final idler and signal modes can 
in principle be perfectly suppressed. However, the question arises as to whether or 
not the downconversion into the modes i 1 and s1 is then frustrated as well. At first 
sight, one might conjecture that spontaneous upconversion of a pair of signal and 
idler photons seems to be too small of an effect ( l a l 2 = 10-6) to explain the 
observed reduction of the intensities. Two explanations have been given for the 
process; their main differences are pointed out now. 

The close analogy of the experiment described.J1ere to the behavior of an atom 
close to a mirror suggests a similar explanation. When-emission is suppressed, the 
atom sits at a node of the standing wave of the field to be emitted, consequently being 
described by virtual photons. Changes of the boundary conditions (i.e., mirror 
position) modify the standing-wave pattern at the atom position after the retardation 
time, t = Lie (L is the atom-mirror distance), and the atom can start to emit photons. 
Similarly, replacing a mirror instantaneously by a detector causes emission of 
photons after the time t and the detector will consequently start to count photons 
after a total time delay of 21. 

Application of such a reasoning to our experiment would mean that a detector 
instantaneously replacing the idler mirror (FIGURE 7) would not detect photons 
before a time delay of 

J1T = 2L/c. (7) 

In contradiction, a model assuming the same amplitude for upconversion as for 
downconversion would predict no time delay between insertion of the detector and 
detection of photons. The description is formally analogous with one of a Michelson 
interferometer with a very low reflectivity beam-splitter and shall be outlined briefly. 

Extending the coarse description of the second section, we start with a pump 
beam in the state I p), which is downconverted to give 

(8) 

Without loss of generality, one can assume that a is a purely imaginary number; 
higher order terms are neglected again. Reflecting the pump beam back into the 
nonlinear crystal gives another possibility for downconversion (FIGURE lb); the state 
is now described by 
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In order to overlap the idler and signal modes, the beams originating in the first 
process are reflected back into the crystal, as before, with phase shifts If>; and lf>s, 
respectively. If one now also considers the possibility for upconversion of this pair 
into the pump mode, one obtains 

l 'I') = aei4>i+<l>s(Vl - l cx l 2 1 s) l i) + a l p)) + Jt - l cx l 2aei"'i> l s) l i) + (1 - l cx l 2)e i�p l p) 

= J1 - l cx l 2cx(ei�;+<l>s + ei"'i>) l s) l i )  + (( 1  - l cx l 2)ei"'i> - l cx l 2e i4>i+�s] l p) (10) 

and, for the intensities, 

/5 = I; oc A(l  + cos( If>; + lf>s - lf>p)), 
/P oc { 1 - A(l  + cos( If>; + lf>s - lf>p))} , ( 1 1 ) 

FIGURE 7. Different models predict different behavior for a detector moved rapidly onto the 
mirror position. An interferometric model predicts immediate detection of photons, whereas 
the virtual photon picture anticipates a delay of 11T = 2.L/c. 

with A = 2 1 ex 1 2( 1 - I ex 1 2) . One sees that the intensity of idler and signal beams 
behaves the same as before; however, now also the intensity of the backwards-going 
pump beam depends on the phase settings inside the interferometer. Constructive 
interference between the amplitude of the back-reflected pump beam and the 
amplitude resulting from upconversion accompanies the destructive interference of 
the DC photons. This demonstrates the close analogy to a standard Michelson 
interferometer if we identify the probability for downconversion (or upconversion, 
respectively) with the reflection probability. There, too, one obtains, for a very low 
reflectivity beam-splitter, 100% visibility in one of the two interferometer outputs 
and very little intensity variation for the other output (the backwards-reflected one). 
Surely, a detector replacing one of the mirrors of a Michelson interferometer would 
start counting photons immediately. Then, just as in that case, there would also be in 
the frustrated downconversion experiment a certain amplitude for detecting photons 
in the signal or idler arms between the crystal and the mirrors, independent of any 
phase settings. Therefore, for frustrated downconversion, we infer that the instanta
neously inserted detector would start firing without any delay. 
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The experiment planned to answer which of the two predictions is correct will use 
a fast switch, consisting of a Pockels cell and a polarizing beam-splitter, in order to 
change from the reflection at the mirror to the detection of photons. Realizable 
rise-times of such a switch are about 3-5 ns, implying that the distances between the 
crystal and the idler and signal mirrors have to be at least 1 m. Spatial filters will be 
used to guarantee the necessary mode selection without too much intensity loss. 

CONCLUSIONS 

The experiment described here constitutes a new two-way first-order particle 
interference effect, which can directly enhance or suppress the downconversion 
process. Manipulation of the modes involved opens the possibilities for new kinds of 
Welcher-Weg/quantum eraser experiments. Contrary to well-known examples in 
standard interferometers, one can restore the interference only in certain modes, not 
in all. In addition, the possible production of spin-entanglement is a first step 
towards loophole-free Bell-type experiments. 

Different models for this process have been proposed. However, they give 
significantly different predictions for certain types of �eriments. Whether, for 
example, the picture of virtual photons or an interferometric model as proposed here 
should be used still has to be answered by experiments. 
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INTRODUCTION: 
CAVI1Y QED AS A TEST GROUND FOR QUANTUM MECHANICS 

John A. Wheeler is one of the leading scientists in quantum theory, who has 
always pointed to the deep issues and defined clearly the problems to be addressed. 
Throughout a long and outstanding career, he has had direct interaction with the 
founding fathers of this marvelously successful, and yet still mysterious, theory. It has 
been a wonderful experience for me to participate in the conference organized in his 
honor and to have the opportunity to report on the latest results of the Ecole 
Normale group in a field so close to his heart and to his mind. 

Nonlocal particle correlations1-3 and macroscopic superpositions of states� have 
been given a lot of attention recently. Although restricted for a long time to the realm 
of "gedankenexperiments", the discussion of these concepts has been revived by the 
possibility of actually realizing experiments demonstrating some of the most fascinat
ing aspects of quantum theory. "Cavity Quantum Electrodynamics" (Cavity QED)7 
is a new domain of quantum optics where such experiments have become feasible. 
Cavity QED deals with individual atoms and a few photons coupled together in an 
electromagnetic resonator. Due to recent progress in the technology of high-Q 
cavities and in atomic beam manipulation, photons could now be continuously 
observed in a cavity and could be counted nondestructively, in a way quite similar to 
the counting and manipulation of material particles.s.-12 New "Einstein-Podolsky
Rosen" (EPR) situations1 involving atoms correlated at macroscopic distances via 
their interaction with a cavity field could be studied. Multiple atom correlations of 
the type discussed by Greenberger, Horne, and Zeilinger (GHZ) 13 have become 
practically realizable, opening the way to nonlocal ity tests that are more stringent 
than the classical Bell's inequality tests performed so far.2•3 Nonclassical fields could 
also be generated in high-Q cavities, 9,t4-l6 which would display some of the properties 
discussed by Schrodinger in his famous cat paradox.4 For example, nonlocal superpo
sitions of fields occupying simultaneously two cavities could be prepared and 
detected. 14• 15 Such nonlocal field correlations could be used in a practical scheme17 of 
particle teleportation18 from one cavity to the other. 

These experiments can be performed with a very versatile Rydberg atom
superconducting cavity setup, whose simplest version is sketched in FIGURE 1 . An 

0The research reported here was carried out at Ecole Nonnale Superieure (Laboratoire 
Kastler Brossel) in close collaboration with J. M. Raimond, M. Brune, L. Davidovich, and N. 
Zagury and a team of students (F. Bernardot, P. Nussenzweig, and A. Maali) and guests (F. 
Schmidt-Kaler and W. Gawlik). 
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atomic beam effusing from the oven 0 crosses the cavity C. The atoms are prepared, 
before entering C, either into a Rydberg state l e} of given energy or into a 
superposit ion of Rydberg states of different energies. The preparation into state l e}, 
which involves laser and radio-frequency excitation, takes place inside the prepara
tion box B. If a superposition of Rydberg states is required, a microwave cavity R1 
between B and C is used to apply a resonant pulse on the atoms, admixing the 
initially prepared Rydberg state l e} with another state lg} of sl ightly different energy. 
In this way, initial atomic states of the form c, I e} + cg lg} are injected into C. The 
coefficients c, and cg can be adjusted at will by choosing the parameters of the 
microwave pulse applied in R1 • The atoms .then interact with the field in C while 
crossing it. The cavity sustains a mode whose frequency is resonant or nearly 
resonant with the transition linking I e} to lg} . After leaving C, the atoms are detected 

FIGURE I .  General sketch of the circular Rydberg atom-superconducting cavity setup. 

downstream by field-ionizing them and counting the resulting ions in the detector D. 
By adjusting the ionizing electric field, this detection can be made energy-sensitive 
and one can thus count the atoms in l e} and lg} and determine how the probability of 
finding them in either level is affected by the coupl ing with the apparatus.7 One can 
also make this detection more subtle by inserting, between C and D, a second 
microwave zone R2, admixing again l e} and lg}. The combination of R2 and D acts as 
a detector sensitive to any linear superposition c � l e} + c� lg} of the two relevant 
Rydberg levels. 

Let us focus here on the important orders of magnitudes of these experiments, 
which dictate the choice of atom and of the cavity. The atom-field coupling is 
characterized by the constant n, which represents the rate at which the atom and the 
empty cavity exchange a photon (vacuum Rabi frequency).7 The quantum correla-
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tions produced by the atom-field interaction are destroyed in a time on the order of 
the atom and field relaxation times, Tat and Tcav· Thus, the e�periments must be 
!=arried out within a time shorter than Tat and T cav and the conditions, OTat » 1 and 
OT cav > 1 ,  must be fulfilled. Atoms prepared in circular Rydberg states with a 
principal quantum number of n e 50 appear as ideal tools to perform such 
experiments. 19 Circular states are a special kind of Rydberg states, in which the 
valence electron precesses in an orbit corresponding to the maximum possible value 
of the angular momentum projection along the quantization axis.20 Not only do these 
atoms correspond to huge electric dipoles associated with very large n values, but 
they also have extremely long damping times, Ta1o in the 10-2-second range for n = 
50. The preparation of these atoms, which occurs in the box B (FIGURE 1 ), is 
described in detail in reference 19. The resonant frequency between the n and n - 1 
circular states (which are the e and g states of our present discussion) falls in the 
50-GHz range for n = 50 (wavelength of about 0.6 cm). The high-Q cavity C coupled 
to the atom thus has a centimeter size. It is convenient to use a cavity made of 
separated mirrors facing each other because such a resonator is easy to tune (by 
displacing the mirrors) and can sustain static electric fields across the mirrors, which 
is very useful for maintaining the direction and the shape of the circular orbit while 
the atom crosses the cavity.21 An intracavity electric field could also be used to tune 
by Stark effect the atomic transition in and out of resonance with the cavity mode at 
well-adjusted times. The cavity C, made of superconducting niobium cooled at 1 K or 
below and submitted to a proper surface treatment, has presently a damping time in 
the millisecond range (Q e 108) .  This is longer than the flight time of thermal
velocity atoms over a distance on the order of a few centimeters from C to D, a 
condition required to keep quantum coherences alive during the experiment . The 
typical coupling parameter between an n = 50 circular atom and the cavity is n = 105 
rad/s, corresponding to fit = -rr/2 for an atom crossing a 0.5-cm cavity waist at 300 
m/s. 

An important feature of this setup is its interferometric character. The first zone 
R1 prepares atoms in linear superpositions of atomic states that undergo different 
"histories" while the atom crosses C, with a probabil ity amplitude for each. The 
second zone R2 admixes again the two parts of the atomic wave function before 
detection occurs. The probability of detecting the atom in l e) or lg) may then exhibit 
an interference term, which oscillates between 0 and 1 when the frequency v of the 
microwave field applied in R1 and R2 is varied. This modulation is known as a 
"Ramsey fringe" signal.22 The interaction of the atom with a field in C may affect 
differently the two probability amplitudes associated with levels l e) and lg), resulting 
in a shift of the fringe pattern whose measurement yields precious information about 
the atom-field interaction. FIGURE 2 shows, as an example, a typical recording of the 
fringes obtained with this interferometer when the cavity is empty (lower trace) and 
when it contains on average one photon (upper trace). In this experiment, the atomic 
transition and the cavity mode are slightly detuned (frequency mismatch 8 = 150 
kHz) so that the interaction is dispersive, leading to small energy shifts of the levels 
l e) and lg). This experiment, described in detail in reference 23, demonstrates that 
our circular Rydberg atom-cavity system has the sensitivity required to observe a 
single photon and to carry out the experiments discussed below. 
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RESONANT AND DISPERSIVE CA VI1Y QED EXPERIMENTS 
ANALYZED FROM IBE EPR POINT OF VIEW 

Let us first consider the situation where the atom and the field in C are exactly 
resonant. The atom undergoes in this case a Rabi oscillation between levels l e) and 
lg) at a frequency that depends upon the number of photons initially present in C.7 
This frequency is equal to 2!l if the cavity field is initially in its vacuum state. The final 
state of the "atom + field" system depends upon the initial state of this system and 
upon the time that the atom has spent in C. Assuming, for example, that C is initially 
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FIGURE 2. Population transfer signal between circular Rydberg levels l e) (n = 5 1 )  and l g) 
(n = 50) as a function of the frequency v applied in the microwave zones R1 and Ri. The cavity 
(detuned by I> =  150 kHz from the atomic transition) contains zero photons (lower trace) or 
one photon (upper trace) on average. The translation of the Ramsey fringe pattern can reveal 
the dispersive light shift produced by subphoton fields. (From reference 23.) 

empty, we can write the initial state as I '111 ) = c, l e, 0) + cg lg, 0), where the first 
symbol in each term refers to the atom's state and the second to the field photon 
number. During the atom cavity crossing time t, the state l e, 0) evolves into the 
linear superposition, cos(nt) l e, 0) - i sin(nt) lg, 1), whereas the state lg, O) re
mains invariant (no photon emission from the lower state of the atomic transi
tion) .  The state of the global system after the atom has left C is thus I '112) = 
c,{cos(nt) l e, 0) - i sin(nt) lg, 1) } + c8 1g, 0), which is clearly an entangled state for 
most values of t. Let us assume for the time being that the microwave zone R2 is 
inactive so that the system does not evolve between C and D. Detecting the atom in 
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level I e) means that the field in the cavity is left in its vacuum state, whereas detecting 
it in level lg) generally projects the field in a linear superpoSition of zero- and 
one-photon states. In the special case where nt = -rr/2 (probability unity for the 
excited atom to emit a photon in C), one prepares with certainty the atom in level lg) 
and the field collapses into the superposition, -i c, 1 1 )  + cg I 0), which replicates in the 
field (with a phase change) the superposition state initially carried by the atom. By 
properly adjusting the microwave parameters in Ri. any linear photon number 
superposition can be generated in this way, including the special case of Ce = 1 and 
cg = 0 (one-photon Fock state) and the symmetric superposition, ( 1 //2) ( 1 1 ) + 1 0)). 

If the atom and the field are resonant and Ce = 1 and cg = 0, this describes the 
passage of the first atom through a micromaser cavity fed by excited atoms.24-26 The 
analysis can be carried out for successive atoms crossing C. Each atom interacts with 
the field left in C by the previous ones and a field made of a large number of photons 
builds up, leading to very interesting nonclassical effects, 26 whose theoretical descrip
tion, which can be found in various articles,27-29 is beyond the scope of this review. 
The atoms are detected by field ionization after they leave C. The field properties are 
inferred from the statistics of atomic detection events.28 Note that the micromasers 
studied so far have involved noncircular, low angular momentum Rydberg atoms, 
which have a nonnegligible probability of spontaneous decay towards lower states 
between C and the detector, thus limiting the quantum efficiency of the atomic 
detection procedure. Micromasers operating with circular Rydberg atoms are now 
being considered for experiments requiring a very high atomic detection efficiency 
and hence very long atomic lifetimes. Other interesting resonant cavity QED effects 
have been observed on two-photon micromasers.30•3 1 In this device, the atoms 
undergo a two-photon transition between two Rydberg states of the same parity and 
emit photons by pairs in the cavity. 

The micromaser situation is complicated (or made richer, depending upon the 
point of view) by the fact that the atoms play a double role in this device: they are the 
source of the radiation that they can feed or absorb while they are in C and they also 
serve as measuring devices for the field, according to the mechanism outlined above. 
It is, however, also possible to deal with simpler situations, in which the atoms act as 
mere quantum detectors of the field. If the cavity and the atomic transition are 
slightly mistuned, with a frequency difference 8, any exchange of energy between 
atom and field is made impossible. The atom-field coupling then becomes purely 
dispersive and the atom can be viewed purely as a "measuring device" for the field in 
C.8•9 The interaction then produces a mere dephasing of the field (index effect of the 
atom crossing C) and also dephases the atom's wave function by an angle depending 
upon the number of photons in the cavity and upon the quantum state of the atom. 
More precisely, ifNphotons are present in the cavity, the initial state of the "atom + 
field" system is now I '111 ) = c, I e, N) + cg lg, N) and immediately after the atom has 
crossed C it becomes 1 '112) = Ce exp[ie(N + l ) t ] l e, N) + cg exp[-ieNt] lg, N), where t 
is again the atom-cavity crossing time. The Bohr frequency of the atomic transition is 
shifted by e(2n + 1 ) ,  where the quantity 2e = 2!}2/8 is the frequency shift per photon 
of the atomic transition, averaged over the trajectory of the atom across the cavity. 
This shift is precisely the quantity measured in the experiment23 described in the 
previous section (see FIGURE 2). In addition to the light shift effect (terms propor
tional to N in equation 2), there is even for N = 0 a shift of the upper Rydberg level 
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l e), which is the "Lamb shift" produced by the vacuum field in the cavity mode. This 
single-mode Lamb shift has been experimentally observed with our setup.23 

Assume now that the field is initially in a superposition of different photon 
number states, for example, in a coherent state, l a) = !,vCN IN}, with CN = 
exp(- l a l 2/2)[aN/y'N!] (such a field can be produced by coupling C to a classical 
source of current that is switched off immediately before the atom is sent across the 
apparatus) . The state of the "atom + field" system after the atom leaves the cavity is 
obtained by mere superposition: 

(1) 

This expression shows that the atom in l e) ( in lg)) dephases the field in the cavity by 
the angle +et ( - et). This dephasing corresponds to an atomic index effect. If the 
atom is in a linear superposition of the two levels, this phase shift results in an 
entanglement of the system after the interaction, with the internal state of the atom 
being correlated to the phase of the field in the cavity. Note that this entanglement is 
of a quite different nature than the one discussed above in the resonant case. Here, 
the number of photons in C cannot be changed by the atom-field interaction and the 
entanglement results from a purely dispersive pnase-shift distortion of the wave 
function, different for each photon number and atomic state. 

If the microwave zone R2 is left inactive, then measuring the atom's state in D 
"collapses" the phase of the field to a single value, leaving the field in either the state 
l a eiEI) or the state l a e -iEI), a rather trivial result. However, a very interesting 
situation arises if a ir/2 microwave pulse mixing levels l e) and lg) is applied on the 
atoms in R2• Then, the "atom + field" state immediately after the atom leaves R2 
becomes 

1 '1'3) = c, (eiE1/J2) [ 1e , a eiEI) + lg, a eiEI)] + (cg/J2)[ 1g, a e -iEI) - l e, a e-iEI)] (2) 

and the subsequent detection of the atom in level lg) or l e) results in the collapse of 
the field into one of the two states, 

(3) 

These are linear superpositions of field states with different classical phases that 
have been dubbed "SchrOdinger cat states" of the field. 6.9 

We recognize here the ingredients of the Einstein-Podolsky-Rosen paradox.1 
The atom and the field in the cavity get entangled by their interaction. This 
entanglement survives the system separation. One subsystem (here, the field) 
collapses into a state that depends upon the result of the measurement performed on 
the other part (here, the atom), even if these two parts are far apart from each other 
when this measurement is performed. The state into which this collapse occurs 
depends upon the kind of measurement that one decides to perform (here, by 
adjusting the microwave parameters in R2) . This decision can even be made after the 
systems have ceased to interact (one can change these parameters while the atom is 
flying from C to R2, thus realizing a "delayed choice" experiment). We must notice, 
however, a difference at this stage with the discussion of a classical EPR situation. In 
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an EPR experiment, spins are coupled together before flying apart and the experi
mental data display some kind of correlation between the results of measurements 
performed on two (or more) such spin particles. Here, we correlate a spinlike 
particle (the atom) to a harmonic oscillatorlike system (the field). Moreover, we 
know how to measure the "spin" (by the field ionization detection in D), but we do 
not have any convenient way of measuring directly the field stored in C. In fact, the 
only practical way to get information on the field is to couple it to atoms that will be 
subsequently detected. We are thus naturally led to consider what happens if we 
send several atoms across the same cavity and perform correlated measurements on 
them. The atom-field entanglement then translates into easily detectable atom-atom 
correlations. 

PREPARATION OF A STREAM OF ENTANGLED ATOMS 
AND GHZ EXPERIMENTS 

We have shown in the INTRODUCTION that the phase shift produced on the 
atomic transition by the field in C can be measured by Ramsey interferometry. Let us 
assume that the field is initially prepared in the state, l cl>fieJd) = ( 1 /JZ)( l 1) + 1 0)) (we 
have indicated in the previous section how such a field can be generated), and let us 
send nonresonant atoms across the Ramsey interferometer to measure the atomic 
phase shift. When one photon is stored in C, the atomic coherence between levels l e) 
and lg) accumulates an extra phase equal to 2et and the phase of the fringe pattern is 
shifted by that amount. Let us adjust now the frequency v of the microwave in the 
R1-R2 zones so that the probability of detecting the atom in lg) when N = 0 is equal to 
unity (this corresponds to a "bright" fringe for this probability). Let us also fix e and t 
so that et = -rr/2. In this case, a single photon in C shifts the fringe pattern by half an 
interfringe and changes a "bright" fringe into a "dark" one. The probability of 
detecting the atom in lg) then vanishes when N = 1. The state of the "atom + field" 
system immediately before detection of this atom thus must be I '11) = 
( 1 /  J2)( l e, 1) + lg, 0)) . Our interferometer can thus correlate perfectly the photon 
number to the state of the atom. 1 1 •12 Detecting this state then provides an ideal 
measurement of the field photon number and projects the radiation onto a Fock state 
( 10) or 1 1 )). This remarkable dispersive atom-field entanglement is at the basis of a 
method of quantum nondemolition of photons8•9 that we have recently proposed and 
hope to implement soon. 

Let us assume now that we do not perform immediately the atomic state 
measurement, but that we send a second and then a third atom identical to the first 
one across the cavity. The same argument can be repeated because the state of the 
field has not been changed by the first (and the second) nonresonant atom. If there is 
zero photon in C, then necessarily the second (and the third) atom must emerge from 
R2 in state lg) with unit probability and, if there is one photon in C, they must emerge 
in state l e). As a result, the combined system consisting of the three atoms and the 
cavity field, after all atoms have crossed R2, is prepared in the state 1 '1'10131) = 
( l /J2)( l e, e, e; 1) + lg, g, g; 0)). We have produced in this way a many-atom-field 
entanglement. If we now want to generate a pure interatomic correlation, we can 
perform a last operation that "disentangles" the field from the system. We tune back 
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the cavity to resonance and we send in C a  last atom (denoted by a prime) in the 
lower state lg ' ) .  The microwave zone R1 is switched off at this stage. The time t is also 
adjusted so that !lt = -rr/2. After this last atom leaves the cavity (and before it enters 
R2), the combined state lg ' ,  1) has become l e ' ,  0) (photon absorption in a -rr pulse), 
whereas lg', 0) has not evolved. As a result, the total state of the four-atom + field 
system has become l 'l1101a1) = ( 1 /JZ)( l e, e, e; e ' )  + lg, g, g; g ' )) I O). The cavity is now 
empty, the atom-field entanglement has been removed, and the state of the three 
(nonresonant) atoms has been correlated to the state of the last (resonant) atom. 
This atom finally crosses zone R2, in which it is subjected to a -rr/2 pulse. The 
state of the total system then becomes 1"'1'10131) = ( 1 /JZ)( l e, e, e)( l e ' )  + lg ' )) + 
lg, g, g)( lg ' )  - l e ' ))J I O) and the subsequent detection of the last atom (in level l e ' ) or 
lg ' )) results in the "collapse" of the three-nonresonant-atom system into one of the 
two states: 

l 'l'f23) = ( 1 /JZ)( l e, e, e) ± lg, g, g)). (4) 

The + (- )  sign in equation 4 corresponds to the detection of the last atom in lg ' )  
( I e ' )  ) .  Such three-atom entangled states are precisely of the kind required to carry 
out the GHZ experiment. 13 Translated into a "spin language", the state 1 '11123) 
becomes (1 /JZ)( l + + + ) - 1 - - -)), where the 'symbols "+ "  and "-"  refer to 
eigenstates of the z component, Sz, of the spin angular momentum. A restricted 
version of the GHZ argument, presented by Mermin,32 states that, according to 
quantum mechanics, a measurement of the transverse component, Sx, of three spins 
Yi prepared in that entangled state should always yield an odd number (1 or 3) of 
particles in the Sx = - Yi  state. In contrast, a classical argument based on the 
existence of "elements of reality" would always predict this number to be even (0 or 
2). Coming back to our Rydberg atom system, we remark that the eigenstates of Sx 
become analogous to the linear superpositions, ( 1 /JZ)( l e) ± lg)), which can be 
produced by "rotating" the states le) and lg) with the help of yet another -rr/2 
microwave pulse. Thus, we must extend our apparatus downstream of the atomic 
beam and add a zone R3 to perform this pulse on the three entangled atoms, which 
should not be detected by the detector D (no ionizing field applied while these atoms 
cross it). Finally, a field ionization detector D' ,  placed behind R3, should be used to 
count the atoms in level l e) or lg). The combination of R3 and D' is equivalent to a 
detector of the "equivalent spin" component along Ox (the RrD ' combination is not 
represented in FIGURE 1) .  Quantum mechanics predicts the detection in D' of an 
odd number of atoms in the lg) state, whereas a classical argument predicts an even 
number. The strength of the GHZ-Mermin experiment is that it yields, in a single 
shot, a violation of the prediction of the "element of reality" theory, whereas the 
Bell's inequal ity experiments are based on a statistical analysis of a large number of 
measurements performed on pairs of particles. Here, a single measurement outcome 
exhibiting two atoms in state lg) would be enough to prove quantum mechanics 
wrong (provided the detectors are ideal and never yield wrong counts). The 
argument exposed above for correlating three nonresonant atoms could be general
ized to four or more atoms, leading to extensions of the GHZ experiment to 
many-atom situations.33 
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SCHRODINGER CATS AND NONLOCAL FIELD STATES 
_
IN CAVI1Y QED 

Another fascinating feature of these Cavity QED experiments is to make possible 
the preparation and study of nonclassical field superposition states of the "Schro
dinger cat" type. We have shown in the second sect ion how this can be achieved by 
sending a single nonresonant atom through our Ramsey interferometer, when C 
contains initially a coherent field I a). For the sake of definiteness, let us adjust the 
atom's parameters to the following values: c, = -i! /l, Cg = 1 / ,2, and El = -rr/2. 
Equation 3 then becomes 

(5) 

with � = ia. The field in the cavity is then prepared in a linear superposition of two 
coherent field states with opposite phases. These particular superpositions are even 
(odd) photon number states when the sign in equation 5 is + (- ) . Schrodinger cat 
states have been studied extensively in theoretical papers.9�37 Cavity QED provides 
for the first time a practical method to generate and detect them. 

We have described elsewhere16 a possible experiment with these states. It is 
essential, of course, to perform a measurement probing directly the coherent 
character of the superposition and enabling us to distinguish between a field 
described by equation 5 and a mere statistical mixture of the I �) and I - �) field 
states. One elegant way to achieve this is to send a second atom after the first one has 
been detected and to measure the probability of detecting this second atom in l e) or 
lg). This probability presents an interference term between two probability ampli
tudes, one associated to each of the I �) and I - �) states. This interference is 
constructive for the probability of detecting the second atom in the same state as the 
first one, making this conditional probability equal to 1, and is destructive for the 
probability of the second atom to be detected in a state different from the first one, 
making this conditional probability equal to 0. If the field in C is in a statistical 
mixture instead, the interference vanishes and both conditional probabilities level off 
to Yi. In fact, we have neglected in the analysis so far the relaxation of the field in the 
cavity.9 Dissipative processes have a strong effect on these quantum superpositions. 
In a time on the order of Tcavl N, where N = I a 1 2 is the average number of photons in 
the coherent field, they evolve into a classical statistical mixture. We thus expect the 
conditional probability of detecting the first and the second atom in the same 
quantum state to be a function of the delay T between the two atomic detections. For 
short delays (T < Tcavl N), this probability should be close to 1. For large delays 
(T cav > T > T cavl N), it should take the value of Yi. 

The continuous change of this conditional probability from 1 to Yi as T is 
increased should be direct evidence of the "Schrodinger cat's" decoherence, a 
physical process that is at the heart of the quantum measurement process.38 It is 
instructive to see the phase of the field in C as a kind of "needle" pointing in two 
possible directions, each direction being correlated to one of the two Rydberg states 
l e) or lg) of the first atom crossing C (see equation 5) . This "needle" remains for 
some time in a quantum superposition of its two possible classical positions, but in 
the end it chooses one or the other (when the quantum superposition has evolved, 
due to the field dissipative coupling to its environment, into a statistical mixture). For 
"small needles" (N = l a l 2 = 1) , this decoherence occurs in the relatively long time 
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Tea•· For "long needles" (N = ra l 2 ::::: 10-100), the decoherence becomes much 
faster. Because we can adjust the intensity of the field initially present in the cavity 
from small to large values of N, such an experiment would enable us to explore the 
fuzzy boundary between the quantum world (where "small needles" are, at least for 
some time, quantum objects existing in several possible states susceptible to the 
creation of interference effects) and the classical world (where "large needles" 
decohere into mutually exclusive states much faster than they can be observed). 

Other kinds of cats can be generated with simple variants of this Cavity QED 
setup. Instead of preparing a coherent field inside the cavity prior to the first atom 
injection, it is possible to employ the atom itself as a kind of "quantum switch" that 
governs the flow of the field inside the cavity. 15 The cavity must then be connected to 
a classical source slightly mistuncd so that, in the absence of an atom, it cannot feed 

rc/2 
pulse 

Cavity 
1t 

pulse 
rc/2 

pulse 

Field 
ionization 
detectors 

--

FIGURE 3. Sketch of a setup for the preparation of a field delocalized in two cavities. The 
source S feeds both cavities through a T-shaped waveguide. An atom sent across both cavities 
acts as a switch. The state of the switch is controlled by the pulses applied in the zones R1 and 
Rz. The nonlocal field is prepared when the atom is detected by the field ionization detectors, 
following a last Tr/2 pulse applied in zone R3• (Adapted from reference 15.) 

any field inside C. The atomic parameters arc then adjusted so that an atom crossing 
C in level l e) provides exactly the mode frequency shift required to tune it into 
resonance with the source. On the other hand, the atom in level lg) leaves the cavity 
and the source mistuncd. We take again here advantage of the single atom index 
effect: the atom behaving as a kind of dispersive "plunger" tuning C in and out of 
resonance with the source. Such a device allows us to prepare "ampl itude cat states" 
of the form, I <1>:mplitude) = ( 1 I J2)( I a) ± I 0) ), whose coherence can also be tested by 
sending a second atom across the system and measuring the conditional probability 
that both atoms end up being detected in the same state. 

The quantum switch can also be used to generate nonlocal "Schrodinger cat" 
states in two identical cavities, C1 and C2 (see FIGURE 3). 15 The two cavities arc now 
coupled symmetrica lly to a sl ightly mistuned source and a single atom is sent across 
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both cavities. A microwave zone R1 in front of C1 prepares again tfle atom in a linear 
symmetrical superposition of l e) and lg) states, realizing the quantum switch device. 
A 'II' microwave pulse applied in zone R2 turns l e) into lg) between C1 and C2 and 
exchanges the open and closed states of the switch. The two levels l e) and lg) are 
finally mixed again in the downstream zone R3 before the atom is detected. In this 
way, one can generate the superposition state, l <l>�nlocat) = ( 1 /JZ)( l a; O) ± 1 0; a)), 
which represents a nonlocal field, with equal (or opposite) probability amplitudes for 
the coherent field to be in the first or in the second cavity (the first and the second 
symbol in each term refer to the field in C1 and C2, respectively) . 

Nonlocal fields can also be generated in a two-cavity system by a resonant 
atom-field interaction. We present here a simple preparation method for a single 
photon delocalized between two cavities, which is a variant of a method discussed in 
reference 14. Let us consider again the setup of FIGURE 3, but assume now that the 
source is disconnected, as well as the microwave fields in the three zones Ri. R2, and 
R3• A resonant atom, prepared in level l e), is sent across the initially empty cavities. 
The resonant atom-cavity interaction times with C1 and C2, that is, t 1 and t2, are set so 
that !lt1 = '11'/4 and !lt2 = '11'/2. This can be achieved by tuning at conveniently 
adjusted times the atomic transition in and out of resonance with the cavity mode 
while the atom is crossing each resonator. The atom crosses C1 with a probability 
amplitude of 1 /JZ of leaving a photon in it (and flipping to state jg)) and the same 
probability amplitude of leaving it empty (and remaining in state I e)). After the atom 
leaves C., the combined "atom-field" system is thus in the state, ( 1 /  J2)( l e; 0, O) -
i jg; 1, 0)), where the first and the second figures in each term are the number of 
photons in C1 and C2, respectively. If the atom crosses C2 in state l e), it deposits a 
photon in it with unit probability and exits in level lg). Nothing happens, on the other 
hand, if it crosses C2 in level jg). Thus, after the atom exits C2, the atom-field system is 
in the state, ( 1 /JZ)( lg; 0, 1) + jg; 1, 0)), and we have prepared the field in the 
nonlocal one-photon state: 

l <J>���j��ton) = ( 1 /JZ)( p ;  0) + 1 0; 1)) .  (6) 

This highly nonclassical field state can be employed in an interesting scheme of 
particle teleportation between C1 and C2 that we briefly analyze in the next and last 
section. 

TELEPORTATION OF A TWO-LEVEL ATOM BETWEEN TWO CAVITIES 

It has been recently pointed out by Bennett et al. 18 that quantum nonlocality could 
be used to "teleport" an unknown quantum state from one observer to another. 
Their scheme involves an EPR pair ( 1 ,  2) of two spin-Yi particles that are shared by 
the two observers located at different places. The particle (a) to be teleported is a 
spin-Yi particle in a superposition c + I + )  + c_ j -)  of its two quantum states, which is 
supposed to be unknown to the observers. One of them couples the particle (a) to be 
replicated to his/her EPR particle ( 1 )  and performs a measurement on the combined 
(a, 1) system. A complete basis for the (a, 1) system is spanned by four "Bell states"39 
in which the ( 1 )  and (a) particles are entangled. In the expression of the initial state 
of the total system made up of the three particles, each of these Bell states is 
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correlated to a particular l inear combination of the particle (2) states, whose 
coefficients are simply related to the C+ and c_ coefficients. If the first observer can 
measure an observable having the (a, 1) Bell states as eigenstates, this measurement 
would amount to projecting the (a, 1) system into one of these Bell states. The 
quantum correlation between the two EPR particles will then automatically entail 
the collapse of the (2) particle into a quantum state whose coefficients can be 
deduced from C+ and c_ by a unitary transformation that depends upon the outcome 
of the (a, 1) measurement. If the second observer is informed about the result of the 
measurement performed by the first one (through a classical communication chan
nel), he/she will then be able to apply the inverse unitary transformation to particle 
(2) and reconstruct on this particle the quantum state of the (a) particle. 

B 
FIGURE 4. General scheme of a two-cavity teleportation machine. 

Bennett et al. did not discuss any specific way of measuring the Bell states, which 
is a crucial point of the teleportation process. Translating their spin point of view into 
the Cavity QED "language", we have recently described a realistic procedure to 
implement the teleportation program on circular Rydberg atoms crossing supercon
ducting cavities. We present here only the principle of the method, which is 
described in detail in reference 17 .  Our experimental scheme is sketched in FIGURE 
4. Instead of a pair of EPR particles, our "observers" are attached to two identical 
cavities C1 and C2 in which a nonlocal one-photon state of the form given by equation 
6 has been prepared. A single resonant atom, produced by the circular state source 
C, is used for this purpose, according to the method outlined in the previous section. 
The detection of this atom by the detector De means that the teleportation machine 
is ready and that the unknown quantum state of an atom A sent across C1 can be 
teleported on an atom B sent across C2• The auxiliary microwave zone P. is used to 
prepare the atom A in an arbitrary superposition c, j e} + c8 jg} of the l e} and lg} 
levels. 
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The atom (A) couples dispersively to the field in C1 and, through a proper 
manipulation of the atomic states before and after C1 in the microwave zones R1 and 
R2, one gets upon detection of A by the state-selective detector D. a bit of 
information about the (A + C1 ) system. This is not sufficient, though, to perform a 
complete measurement because the (A + C1 ) Bell states span a four-dimension 
space. Another "reference" atom (A' ) prepared in state lg) and made resonant with 
the cavity is then sent across C1 • After a proper manipulation performed in R2, its 
detection provides the remaining information required to fully specify the (A + C1) 
Bell state. At this time, the field in C2 "collapses" into a superposition of zero- and 
one-photon states, which replicates within a unitary transformation the initial 
superposition of l e) and lg) states in A. The second obseJVer then sends a resonant 
atom (B) across the second cavity, which replicates on its own quantum state the 
superposition present in the field, in a "copying process" that is the reverse of the 
one discussed at the beginning of the second section above. A unitary transformation 
must then be applied to this state in order to reproduce the initial (A) state. It is 
performed by applying a microwave pulse in R3• The parameters of this pulse can be 
adjusted only if the second obseJVer knows the outcomes of the measurements 
performed by the obseJVer attached to C1 • Thus, two-bit information has to be 
transmitted via a classical channel between Da and R3 (''wire" in FIGURE 4). Such a 
teleportation experiment would clearly be a new test of quantum nonlocality. As with 
the GHZ-type experiments, it would correspond to a new generation of EPR tests 
based on atomic correlations of h igher order, as opposed to the second-order 
correlations involved in the demonstrations of Bell's inequalities. Note that a similar 
teleportation scheme based on Cavity QED effects has been independently proposed 
recently.40 

This discussion shows the versatil ity of the circular Rydberg atom-superconduct· 
ing cavity system for testing quantum mechanics and probing the boundary between 
the classical and the quantum worlds. Two important conditions are required by 
these experiments: (i) matter and radiation should be coupled very strongly to make 
single-photon-single-atom effects obseJVable and (ii) the two coupled systems 
should be very well protected against relaxation because quantum coherences 
quickly dissipate into the environment . The Ramsey interferometry experiment 
mentioned in the first section of this report demonstrates that circular atom
superconducting cavities achieve the strong coupling condition (single-photon and 
even vacuum effects are obseJVable with these systems). Recent progresses in the 
technology of open superconducting cavities, in which cavity damping times on the 
order of 10-3 s have been achieved, make us feel confident that the second condition 
will be met and that some of the fascinating experiments discussed above will soon be 
realized. 
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Since the earliest observations of manifestly quantum or nonclassical fields in the 
1970s, quantum optics has continued to provide unique opportunities for investiga
tions of fundamental issues in quantum measurement. Indeed, in recent years, 
exquisite capabilities have been developed for generating a zoology of nonclassical 
states of the electromagnetic field and for manipulating the field for sensitivity 
beyond the vacuum-state limit. 

Our intent in this abbreviated contribution is to describe some of the activities of 
the Quantum Optics Group at the California Institute of Technology in the arena of 
quantum measurement. The themes of the research programs are both (i) retrospec
tive with the laboratory demonstration of what had previously been only gedanken
experiments [such as the realization of the Einstein-Podolsky-Rosen (EPR) experi
ment] and (ii) prospective with the development of new technical capabilities and the 
emergence of new theoretical concepts (such as the generation of "arbitrary" states 
of the electromagnetic field and the implementation of quantum logic). 

SQUEEZED STATES OF LIGHT 

Parametric downconversion has been employed for the generation of squeezed 
states of light. 1 This experiment has provided a direct operational verification of the 
Heisenberg uncertainty principle for l ight and thereby of the field commutation 
relation itself.2 In addition, it has become the prototypical avenue for the production 
of squeezed light and has led to the largest degree of quadrature-phase squeezing.3 
Our group has employed squeezed light to achieve measurement sensitivity beyond 
the standard quantum limit. 4-6 

0This work was supported by the National Science Foundation, the Office of Naval Research, 
and the Army Research Office. 

87 



88 ANNALS NEW YORK ACADEMY OF SCIENCES 

QUANTUM CORRELATIONS FOR SPATIALLY SEPARATED BEAMS 

The process of nondegenerate parametric downconversion has been utilized in a 
variety of experiments, including a faithful realization of the original gedankenexperi
ment of EPR.7 As opposed to previous work with discrete spin or polarization 
variables, this is the first experiment for observables with continuous spectra as in the 
original proposal of EPR. The experiment attempts to confront the important 
questions of the generalization of the Bell inequalities to continuous variables. 

We have also investigated the fundamental noise performance of an optical 
amplifier experimentally.8 Here, the standar<J noise limits from the theorem of Caves 
are surpassed by "squeezing" the internal modes of the amplifier. The experiment is 
otherwise significant in that it is an example of a cascaded quantum system, for which 
the manifestly quantum fields from one system are used in turn to excite a second 
system. 

Finally, back-action evading measurement has been demonstrated for parametric 
amplification with polarization mixing.9 

THE STANDARD QUANTUM LIMIT (SQL) FOR mE 
POSITION OF A FREI}. MAS� 

Although in general terms it was a controversial topic throughout the 1980s, 
Jaekel and Reynaud10 and others1 1 • 12 have suggested a practical avenue for achieving 
sensitivity beyond the SOL for the position of a free mass. The basic scheme employs 
squeezed light for interfernmetric sensing of position, with the fluctuations of 
position and momentum correlated in a cunning fashion by proper choice of the 
orientation of the squeezing ellipse. 

Of course, the quantum noise in this scheme is observable only to the extent that 
it is dominant over other sources of technical noise. Following the work of Saulson, 13 
we have shown that it should be possible to find windows in frequency space where in 
fact the SOL could be experimentally observable. 14 The fundamental ingredients are 
a large degree of quadrature squeezing,3 extremely low-loss optical coatings,15 and 
materials of exceptionally high mechanical quality factor. 16 

SYNTHESIS OF "ARBITRARY'' QUANTUM STATES 

In collaboration with Parkins, Marte, and Zoller, we have proposed a new avenue 
for synthesizing quantum states of the field that should allow for the generation of 
quite general superpositions of Fock states. 17 The basic scheme employs adiabatic 
passage and strong coupling in cavity QED. It should be capable of dial-a-state 
service, whereby the coefficients of the Fock state expansion are preselected; the 
passage of a single atom then leads with near unit probability to the desired state for 
the intracavity field. The process is, in principle, reversible (to the extent allowed by 
cavity dissipation) and hence should also find gainful employment for various 
applications involving measurement of quantum fields. As well, we and others have 
suggested processes for the realization of certain quantum logic gates that employ 
this adiabatic passage scheme. 
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A necessary condition for the implementation of this scheme is. the attainment of 
strong coupling for individual intracavity atoms. Several years ago, our group 
demonstrated such capabilities in the optical domain. 18 A comparison to similar 
developments in the microwave domain is given in reference 19. 

ATOM GALLERIES FOR WHISPERING ATOMS 

We have proposed coupling atoms to the evanescent fields of whispering gallery 
modes of quartz microspheres. 20 Because of the small mode volume, the electric field 
strength per photon (and hence the coherent coupling constant) can be quite large. 
At the same time, because of the high Q (2 x 109 at 850 nm in our laboratory), the 
cavity storage time can be long enough to allow for diverse phenomena such as 
quantum state synthesis by adiabatic passage and even the generation of quantum 
superpositions for the fields of two different microspheres. The large field strength 
per photon also should enable investigations that combine the physics of cooling and 
trapping with that of cavity QED. For example, we have suggested binding atoms in 
stable orbits around a microsphere resonator and employing the field mode to form a 
de Broglie resonator for the atomic matter wave.20 

TRAPPING BY THE NUMBERS 

We have recently succeeded in trapping individual cesium atoms in a magneto· 
optical trap, with resulting localization on the scale of 200 µm.21 This work is 
currently being extended to a dipole-force trap, with the objective of achieving 
spatial localization of several microns. Such capabilities will enable various fundamen· 
tat experiments in quantum optics, including our work in cavity QED. 
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INTRODUCTION 

By pumping two or more downconversion crystals with a pulsed laser, it is 
experimentally feasible to obtain with nonnegligible probability one photon pair 
from each crystal within a pulse. Then, by registering the idlers in such a way that this 
does not provide path information, we observe that the signal photons emitted 
together with the idlers are projected onto the desired entangled state. The neces
sary condition for erasure of idler path information is that the idler filter bandwidth 
results in an idler coherence time that significantly exceeds the pump pulse length. 
We show the importance of this technique for photon correlation schemes that 
would permit one to perform "event-ready" two-photon Bell tests, entanglement 
swapping, and quantum teleportation and to obtain GHZ states. 

Entanglement is at the source of a number of pure quantum phenomena, such as 
the correlations violating Bell's inequalities, 1 quantum teleportation, 2 GHZ correla
tions,3 and various other nonclassical interference phenomena.4 Entanglement be
tween two or more particles was generally viewed as a consequence of the fact that 
the particles involved did originate from the same source or at least were interacting 
at some earlier time. However, it has first been suggested in seminal papers by Yurke 
and Stoler5 that the correlations of particle detection events required for a Bell test 
can even arise for photons, or any kind of particle for that matter, originating from 
independent sources. What, though, are the operational procedures required to 
achieve such correlations? If we can observe violations of Bell's inequality for 
(destructive) registrations of particles coming from independent sources, can we also 
entangle them in a nondestructive manner? Is this possible for particles that do not 
interact at all and that share no common past? What would be the requirements for 
an experimental realization of such a scheme? These questions will be discussed 
here. In general, the answers could be summed up in the following way:6 it turns out 

0This work was supported by the Austrian "Fond zur Forderung der Wissenschaftlichen 
Forschung" (Project No. S6502) and National Science Foundation Grant No. PHY92- 13964. 
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that the conditions for obtaining entangled states require specific, not immediately 
intuitive, choices of coincidence timing that enable one to monitor the emission 
events of the independent sources as well as to erase the Welcher-Weg information. 
In this work, we study the possibility of the application of pulsed photon sources to 
meet these requirements in real experiments. 

The initially proposed setup, 6 which serves to correlate independent particles via 
"entanglement swapping", employs parametric downconversion (PDC) sources 
pumped by cw lasers. One of the requirements is then narrow filtering of some 
photons, called the idlers, and detecting them in ultracoincidence, that is, with a 
coincidence window much narrower than the filter bandwidth time.6 Commercially 
available filter bandwidths are of the order of 0.3 nm at best (for 700-nm light), which 
implies a coherence time of the order of 6 ps. This is at least two orders of magnitude 
shorter than the time resolution of state-of-the-art single-photon detectors. To 
overcome this problem, one could use extremely high-Q cavities as filters, a choice 
that clearly would result in forbiddingly low count rates. 

It is the main purpose of the present report to demonstrate that the limitation 
described above can actually be overcome. We explicitly propose the use of pulsed 
pump lasers with sufficiently narrow pulse widths to feed the PDC sources. The idlers 
are now to be observed through filters resulting in a coherence time longer than the 
pulse width and no stringent requirements for the'aet�tion times of the idlers will be 
necessary. 

ENTANGLING INDEPENDENT PARTICLES 

Although entanglement of initially independent particles seems to be surprising 
at first sight, it may easily be understood on the basis of the following observation. 
Consider, for simplicity, the factorizable two-particle state: 

(1) 

where the first ket describes particle 1 and the second ket describes particle 2. 
Consider also the entangled state, 

(2) 

with, for simplicity, (a l e) = 0 and (b i d) = 0. Then, it is always possible to obtain an 
entangled state of the form of equation 2 out of the state of equation 1 using the 
projection operator, 

(3) 

acting on I W): 

(4) 

Finally, provided that state 1 is not orthogonal to each of both terms in the 
superposition forming state 2, the relation I c 12 = I (w+ j W) 1 2 gives the probability for 
obtaining the entangled state. 
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We have thus given the general reason of why it is possible t.o obtain entangle
ment between independent particles in an initially factorizable state. Obviously, the 
scheme can be applied to various systems. Slight modifications should account for the 
specific types of entanglement to be achieved, the number of particles involved, and 
so on. 

In general, the question obviously is how to obtain experimentally a setup 
realizing the appropriate projection operator. 

ENTANGLEMENT SWAPPING 

The generic example of the projection method studied here is that of entangle
ment swapping.6 Let us first outline its original version that aims at obtaining a 
two-particle maximally entangled state. 

Consider the experimental setup of FIGURE 1. For clarity of the discussion, 
assume that two independently cw pumped downconversion crystals emit one 
entangled photon pair each. In a simplified description, the states of the pairs are 
represented by ( t /J2)( 1 a )dbh + l a ' h l b 'h) and ( l /J2}( l ch l d)4 + l c 'h l d ' )4}, re
spectively. Therefore, the initial four-photon state is given by the product, 

(5) 

where, clearly, photon 1 is entangled with photon 2 and photon 3 is entangled with 
photon 4. Yet, the photons emitted by crystal I are not correlated with the photons 
emerging from crystal II. Of course, the states written down above should be 
properly symmetrized. However, as the symmetrization does not change the results 
discussed here, we drop it for simplicity of the presentation. 

For the following, let us call photons 1 and 4 the signals and photons 2 and 3 the 
idlers. Then, the basic procedure in order to entangle the uncorrelated signal 
photons and to obtain the state 

(6) 

is to project the two idler photons into an entangled state (cf. equation 2). 
This projection can be done (destructively}, after overlapping their modes at two 

beam-splitters and by observing the idler photons in, say, detector i1 and i2 each. If 
the two idlers are indistinguishable, the joint detection projects the state of the 
initially unentangled idler photons into 

(7) 

giving the maximal entanglement for the signal photons. 
One should mention here in passing that, surprisingly, one of the major advan

tages of the procedure is that the registration acts of particles 2 and 3 can 
operationally define (at a distance) the ensemble of (now entangled) pairs of 1 and 4. 
Thus, one can, for example, perform an "event-ready" version of the EPR-Bell 
experiment.6 
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WELCHER-WEG INFORMATION AND COINCIDENCE REQUIREMENTS 

In order to effectively entangle photons emitted from different sources, one has 
to meet rather stringent-and, in part, not immediately intuitive-conditions on the 
detection of the photons involved.6 

The above simplistic single mode description can give only some hints on the 
possible procedures. However, if the kets (of equations 5-7) are thought of as 
describing plane waves, one cannot obtain any predictions in the temporal domain .  
One intuitively feels that the necessary joint detection of the idler photons has to be 
" in coincidence". Thus, the all-important question is as  follows: what are the 
experimental requirements for the two idler photons to be considered coincident? 
The conditions for the coincidence time gates can be obtained with the use of a more 
refined analysis that takes into account the multimode nature of the states involved. 

First, one has to clarify the notion of coincidence. Note that even for ideal 
devices, with perfect time resolution, one always has to impose a certain time gate to 
define two counts as coincident. The idlers at i1 and i2 are being registered at 
completely random times throughout the experiment. We can always select the pairs 
of idlers out of those counts that are separated in time by less than a certain (ad hoc) 
imposed gate Tj. 

However, in the case of the coincidence of signals and idlers coming from a single 
downconversion act, the situation is different. It is well known 7 that the actual 
bandwidth .iw of the observed PDC radiation determines the relation between the 
registration times of the twin PDC photons. The detection time of a signal is 
determined by the registration moment of its idler up to approximately its coherence 
time of Tc = 1 /.iw and vice versa. Because the downconverted light itself is 
extremely broadband, one defines Tc in a practical experiment through the apertures 
and filters used. Because of the energy conservation and because of the phase
matching conditions, the filtering of the idlers also defines ("nonlocally") the 
bandwidth of the coincident signal photons. Thus, if idler and signal counts are 
coincident (barring retardation effects) to within Tc, they can be thought of as coming 
from one PDC pair (provided that the rate of production of the signal-idler pairs is 
low enough so that emergence of two pairs from one source is a very rare event). 

Let us return to considering the setup of FIGURE 1 .  If we select only the idlers 
detected in "ultracoincidence" (i.e., for Ti « Tc). the Welcher-Weg information is 
erased.6 This is because such registrations are too close in time to discriminate which 
signal shares the source with which idler. Thus, we select signals in a "noninvasive" 
way. Due to the lack of Welcher-Weg information, the two two-particle processes 
interfere and we can have high visibility of the fringes. Therefore, we can approxi
mately describe the preselected ensemble of signals by the maximally entangled state 
(equation 6). 

Alternatively, one could also obtain high-visibility fringes by (post-)selection of 
only ultracoincident signal counts. However, such a procedure would be a selection 
of a subensemble after actual detection (i.e., destruction) of the particles. 

The ultracoincidence condition requires the use of narrow filters in order to 
make the coherence time as long as possible. Nevertheless, if we consider using 
state-of-the-art filters, such as those described in the INTRODUCTION, no fast enough 
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detectors exist at present (with · a  time resolution below 1 ps) as are necessary to 
select ultracoincident idlers. In the next section, we will show how the use of fast 
pulsed pump lasers can overcome this limitation. 

A minor problem briefly requests our attention: Even if we register two idlers in 
the way described above, they might actually have come from two downconversion 
processes within the same crystal. Then, obviously, we do not obtain the desired 
entangled state. Yet, this case can easily be discarded as irrelevant. These "wrong" 
events do not lead to coincidence counts at different ends of FIGURE 1 and hence, 
tautologically, no entanglement arises. A beautiful analysis of the insignificance of 
such "wrong" events for the Bell theorem has been given by Yurke and Stoler5 and 
thus will not be repeated here. 

pulsed 
ump 

. 

12 

FIGURE 2. The two PDC crystals of the entanglement swapping system are now fed with 
simultaneously arriving pump pulses (cf. FIGURE 1). The narrow filters make the coherence 
time of the idler radiation much longer than the pulse width. Thus, detection of the idlers at i1 
and i2 does not reveal from which crystal they were emitted. The two signal photons emerge in 
an entangled state via beams a and d' or a ' and d. 

PULSED PUMP: WELCHER-WEG CONSIDERATIONS 

Consider the arrangement of FIGURE 2, where a single pulsed laser pumps two 
thin downconversion crystals. The crystals are thin so as not to lead to problems 
related to the property that the downconvcrsion photons inside the crystal might 
have a different velocity compared to the pump or even compared to each other. As 
above, we again attempt to project the initially unentangled signal photons onto an 
entangled state by superposing the idlers and measuring them in coincidence. Then, 
certainly without any narrow filters in the beams, the tight time correlation within a 
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photon pair emitted by the same crystal permits one again to associate simulta
neously detected idlers and signals with each other. This provides path information 
and hence prohibits the creation of the entangled state. 

We thus now insert filters into the idler paths. Using state-of-the-art, commer
cially available filters, we can achieve a filter coherence time of the order of 5 ps. On 
the other hand, it is no problem to obtain pulse durations of an order of magnitude 
shorter. Hence, the time span within which the two photon pairs are emitted can be 
shorter by more than an order of magnitude than the time interval over which the 
individual idler photons might emerge from their respective filters. Thus, it follows 
that the idler photons detected behind the filters carry practically no information 
anymore on the detection times of their twin signals. This implies that the path 
information was erased in the process. The signal photons are now projected onto 
the entangled state. Please note that the time resolution of the detectors plays no 
role whatsoever here. Of course, it should be better than the pulse period of the 
laser. 

We assumed here that both sources are fed with pulses derived by 50%-50% 
beam-splitting of the original laser pulses and that they arrive at the crystals 
simultaneously. Of course, in principle, the pulses may originate from two different 
lasers, thus making the two sources fully independent. One should then take into 
consideration only those events where the pulses sufficiently overlap in time. 

PULSED PUMP: SKETCH OF A QUANTITATIVE DESCRIPTION 

The Welcher-Weg considerations presented above can give the first qualitative 
predictions and understanding of the basic physics involved. However, it is very 
important to know the threshold ratios of the pulse width to the time resolution of 
the idler filters in order to start to speak about real quantum mechanical entangle
ment. By this, we mean signal states leading to two-particle fringes of high enough 
visibility as required for the violation of the Bell inequalities. 

One can obtain some rough quantitative estimates with the use of the following 
approximate description. Let us assume that the pulse is weak enough so that we are 
not troubled by multiple emissions or other effects specific to very strong pulses. 
Furthermore, one can assume that the pulse is longer than the crystal, as only in this 
case can one expect that the nonmonochromaticity of the pulse will not blur too 
much the phase-matching conditions (essentially, momentum conservation) .  Other
wise, the angular correlation of the emissions could be weakened. Thus, to a good 
approximation, we can treat the downconversion process as a superposition of 
processes that would occur for all monochromatic components of the pulse. 

Under such assumptions, the PDC photon pair originating from one of the 
sources can be represented as being emitted in specified, well-defined directions, as 
dictated by the phase-matching, and the joint wave packet is constructed out of the 
superpositions of monochromatic modes. Thus, the two-photon state that can be 
produced by a single pulse at PDC-1 (which we consider to incorporate also the idler 
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filters and the aperture arrangement) can be described as 

l 'l'Poc-1) = J dw; J dw. J d<a>oK(<i>o)A(wo - w. - w;)/(w;; wt; ar) 

X {�)( I w.; a)i l  w;; b}i + l w.; a ' ) i l w;; b ' )i) . (8) 

Here, I w5; a) 1 ( l w;; b}i) describes the signal (idler) of frequency w. (w;) in beam a (b), 
emitted by PDC-1; the function g represents the spectral content of the pulse; and f is 
the transmission function of the filter with. central frequency wr and bandwidth ar. 
Finally, function A(w0 - w. - w;), which is highly peaked at the origin, reflects the 
phase-matching conditions and the energy conservation of the PDC process. For the 
perfect case, which we assume here, one can replace it by 

8(<i>o - w. - w;) . (9) 

Within this limit, proper normalization of I 'l'poc-i) is obtained for both g and f 
normalized to unity. 

The state I 'I' PDc-u) can be described in a similar way and the two-source emission 
is described by I 'I') = I 'l'poc-1) I 'l'poc-n) (cf. equation 5). • 

Let us describe in more quantitative terms theresl.\)ts of the wave packet collapse 
in the experiment. Assume for the moment gedanken detectors of infinitely sharp 
time resolution. Then, the detection of an idler in i1 at 1 1 and of another idler in i2 at 12 
causes a wave packet collapse of the initial state I 'I') = I 'l'poc-i) I 'l'Poc-n) into the 
entangled state of the signals 

( 10) 

where 

(II) 

with, for example, 

1 1, b) = ()z;) J dwei"" l w, b) (12) 

(compare with the description presented by Fearn and Loudon8). The explicit form 
of the collapsed state is given by 

Here, for example, 
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where N(t1) is the normalization constant. The above formulas were obtained using a 
number of simplifying assumptions-for example, that all source-detector optical 
paths are equal. 

Let us now calculate the overall probability of the detection of two signals at a; 
and dj (i,j = �) provided that (a) the pulse produced an emission as described by 1 '11) 
and (b) the two idlers were registered at i1 and i2• We shall not impose any time gates 
on the registration times; the pulse is of a short duration; and we can expect to collect 
the two signals within the pulse's width T and the idlers within Tc = 1 /u » T. Of 
course, we are interested in events associated with a single pulse. Thus, if Tc is in turn 
much smaller than the time separation of two pulses, the time integration can be 
extended to infinity. The detectors a; and di are behind the interferometers and 
hence the aforementioned probability can be given by 

P(i, j I 'fl, qi')  = [P(i1 ; i2W
1 f dt f dt ' f dt1 f dt2 

x P(t1 , t2) I 1 (t, a; l4(t ' ,  di I U( qi, <p ' )  I 'I'; t 1 , t2) 1 2, (15) 

where U(qi, qi') describes the action of the two spatially separated phase-shifters. 
The term P(ti . t2) denotes the temporal distribution of the probability for the two 
idlers generated by one pulse and to be detected at i1 and i2, whereas P(i1 ;  i2) is the 
overall probability of such an event. One can simplify equation 15 by noticing that 
P(t i . t2) = P(ii . ii)N(t1 )N(t2) .  

Now, it is a straightforward, but otherwise lengthy, manipulation to show that the 
visibility of the two-signal fringes can be given by 

V = f dt f dt ' I G(t) l 2 1 G(t ' ) l 2 1 f dt"F(t" - t)F*(t" - t ' ) l 2, (16) 

where G(t), that is, the Fourier transform of g( w ) , is given by 

(17) 

This represents the time-dependence of the pulse; F(t) is the analogous transform of 
f and it represents the filter response function. Recall that g (and thus also G) is 
normalized to unity. Next, asfis similarly normalized, one has 

1J dt"F(t" - t)F*(t" - t ') I � 1J dt"F(t" - t)F* (t" - t) I = 1 .  (18) 

The left-hand side of equation 18 is much smaller than unity if I t - t ' I > 1 /uc. Thus, 
the visibility (equation 16) can be close to 100% only if the width T of the pulse 
function G is much more narrower than 1 / uc. Only in this case does the region of 
integration, where the product I G(t) llG(t ' )  I has values that significantly contribute 
to the overall value of the integral, overlap with the region where the left-hand side 
of equation 18 is close to 1. Thus, the full integral is close to the square of the 
normalization value of G, that is, 1 . 

Let us illustrate this result with two examples. Consider first that both the pulse 
function and the filter function are Gaussians: [ 1 ] { (<i>o - 00p/2)2} 

K(<i>o) = (2iro2) 1/4 exp -
2u ' (19) 



100 ANNALS NEW YORK ACADEMY OF SCIENCES , [ 1 ] { ((1)5 - Wp/2)2} 
/oauss(w., Wp/2, <Tr) = (2'1Tof)l/4 exp -

2<Tr 
• 

The resulting visibility reads 

<T 
V = ---

Ja2 + of . 

(20) 

(21) 

It has the appealing feature that V � 1 I ./2 only for T pulse = 1 I a :S 1 I <Tt = T cob; that is, 
we reach the threshold of the visibility of the two-particle fringes to violate the 
standard Bell inequalities exactly when the tiine resolution of our filter is equal to the 
pulse width. 

For a rectangular pulse of duration T and for Lorentzian filters of width dw, that 
is, 

(22) 

one obtains 

(23) 

where x = Tdw . The Bell threshold is now at x = 1 . 14. For x « 1, the formula 
(equation 23) can be approximated by V = 1 - x/3 . 

CONCLUDING REMARKS 

The above ideas can be employed in order to obtain high visibility in any other 
higher-order interference phenomena that involve particles emitted by independent 
sources. 

For example, let us consider the phenomenon of quantum teleportation.2 In its 
simplest form (devised for states in a two-dimensional Hilbert space), it involves the 
following steps. One starts with subsystem A in the arbitrary (in principle, unknown) 
pure state I <P}A to be teleported. An independently emitted pair of subsystems B + C 
is EPR-Bell-entangled. One then performs a measurement on A + B that is 
supposed to result in projecting A + B into one of four possible entangled "Bell" 
states. Depending on the actual state onto which A + B collapses, one can perform 
one of four specific unitary transformations on C. This results in the quantum C 
object ending up in the state I <P}c. Thus, the initial state of A is transferred to C. The 
act of collapse involves a measurement that by its very nature is performed upon the 
two independently emitted particles A + B. If such an experiment is to be performed 
with photons, then one can devise the actual setup.9 Following again the ideas 
explained in previous sections, either one has to impose the ultracoincidence 
condition for the joint registrations of photons A and B or one has to use the pulsed 
pumps of sufficiently narrow temporal width. Only then can the Welcher-Weg 
information be effectively erased, and thus particle C is obtained in the pure state 
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I IP }c. One can check operationally the fidelity of the telepprtation process by 
performing an interference experiment upon C (which will result in high visibility 
.only under the conditions mentioned above). 

Another phenomenon that can be experimentally realized with the use of the 
methods presented above is the production of GHZ states. Let us present here the 
three-particle case. The scheme of the proposed setup is shown in FIGURE 3. In this 
case, the three PDC sources independently produce three pairs of EPR-correlated 

(-) 

(+) (-) 

(+) 

FIGURE 3. Principle of entanglement swapping leading to the GHZ correlations. The initially 
entangled two-particle emissions of the three PDC sources (equation 24) result in a GHZ state 
(equation 26) of the outward bound signals, after coincident registration of the idlers at ii. i2, 
and i3• 

particles. The initial state can be written as 

If we register one photon in each of the three detectors i . ,  i2, and i3, we collapse 
(destructively) the idler photons into the GHZ state, 

(25) 

whereas the untouched signals correlated with the three registered idlers continue in 
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the collapsed state, 

(26) 
and can be fed into three interferometers to obseive GHZ correlations. 

The above process can be successfully implemented only if the Welcher-Weg 
information, contained in the tight time correlation of the individual PDC emissions, 
is erased. Again, this can be achieved by passing the idlers through sufficiently 
narrow filters and then either selecting only the ultracoincident idler counts (for cw 
pumped PDCs) or using pulsed pumps of narrow enough pulse width. Of course, 
only the latter technique seems to be able to overcome the limitations associated with 
the poor time resolution of current photodetectors. In fact, numerical estimates 
using state-of-the-art intensities of pulsed lasers and estimates of downconversion 
efficiencies suggest that such an experiment is indeed feasible with current technol
ogy. 

The GHZ states are very interesting as they lead to correlations between three 
(or more) particles, in clear-cut contradiction with the Einstein-Podolsky-Rosen idea 
of "elements of reality". However, this holds only for perfect correlations of 100% 
visibility. In an analysis of a real experiment, one has to resort to some form of Bell's 
inequalities. Interestingly, the threshold of the visi�ility of the multiparticle interfer
ence pattern that violates such inequalities decreases exponentially with the number 
of particles involved.10 In the three-particle case, according to current knowledge, 
this limit is already achieved at a visibility of 50%, 1 1 •12 as opposed to 71 % for 
two-particle correlations. Thus, the GHZ experiments do not impose sharper 
coincidence/pump-width requirements than the two-particle EPR-Bell ones (in the 
"event-ready" mode) .  
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Two separate structures exist in quantum mechanics: the observables, which are 
represented by operators of the Hilbert space, and the physical systems, which are 
described by state vectors or wave functions. The wave function is said to have an 
epistemological meaning because it contains all the relevant information about the 
physical system under consideration. The result of a precise measurement on a single 
quantum system is always one of the eigenvalues of the measured observable. After 
the measurement, the wave function of the measured system collapses to the 
corresponding eigenstate, according to the projection postulate. There is no one-to
one correspondence between the result of a single measurement and the state of the 
system before the measurement. In order to measure the initial wave function of the 
system, one needs to prepare an ensemble of systems with the same wave function 
and then measure them all. The wave function is obtained from the statistics of the 
results of measurements performed on this ensemble. Recently, Aharonov, Anan
dan, and Vaidman1•2 suggested that the wave function of a single quantum system 
could be measured, thereby giving the wave function an ontological significance, that 
is, physical reality in its own right, in addition to its usual epistemological role. They 
suggested employing a series of "protective measurements", where an a priori 
knowledge of the wave function enables one to measure this wave function and to 
protect it from changing at the same time. However, with this a priori knowledge, one 
could reproduce the wave function after each measurement for an arbitrarily large 
number of times and one could then measure the wave function in the conventional 
manner. 

In this report, we investigate the possibility of measuring the wave function of a 
single quantum system with no a priori knowledge of the wave function in order to 
explore a real ontological meaning of the wave function. We study the case of 
repeated weak quantum nondemolition (QND) measurements,3.4 for which we can 
assume that the signal and the probe are in pure states before the measurement, 
without loss of generality. In this case, the signal is left in a pure state after the 
measurement. The unitary interaction between the probe and the signal does not 
allow transitions between any two eigenstates of the measured observable, where 
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such transitions cause an appreciable change of the wave function. Also, the QND 
measurement can be chosen to be as weak as we want. It is possible, therefore, to 
measure the signal many times, using weak QND measurements, before the wave 
function of the signal is changed significantly. The measurement results are all 
generated under some influence of the initial wave function and one may expect the 
statistics of these results to give at least partial information about this wave function. 
In this work, we show that this intuitive picture fails and one cannot, in fact, extract 
any information about the initial wave function of the signal at all. By " information 
about the wave function", we mean information about both the average and the 
variance of the measured observable, that is, the center and the width of the wave 
packet, with finite probability errors. Information about the center position alone 
corresponds to a measurement of the observable, where information about the 
variance reveals the wave function. 

In our model, a series of photon-number QND measurements is performed on a 
single wave packet of light.5-8 A signal wave packet of light, I l!io)., is correlated to a 
probe wave packet, I ao)p, in an optical Kerr medium. This process is described by the 
unitary operator fJ = exp(iµJi.;ip), where n, and np are the signal and probe 
photon-number operators, respectively, and µ is the coupling strength.9 The photon
number of the signal, n., shifts the phase of �be prooe, lici'>P e µJi,. Then, the 
second-quadrature amplitude of the probe, a2, is measured precisely by a homodyne 
detection. The inferred signal photon-number, ;;, is obtained from a}, that is, the 
result of the probe quadrature measurement, ii 1 e a}/( l aolµ) ,  where l ao l  is the 
initial excitation of the probe. A back-action noise is imposed on the phase of the 
signal by the probe photon-number, but this noise does not influence the photon
number distribution of the signal. The probability-amplitude operator, Y1 = 
p(al l U lao)p, completely describes the three stages of this QND measurement: 10 the 
preparation of the probe state, I ao)p; the interaction of this state with the signal, fl; 
and the results of the measurement, al, which corresponds to the state of the probe 
after the measurement, I al>r,· The pn_?ba,bility of obtaining al as the readout of the 
homodyne detection is P(a2) = Tr,[YiY1p0) , where p0 = l l!io) • •  (l!io l is the density 
operator of the signal before the measurement. After a homodyne detection, which 
results in al. the signal density operator becomes p1 = P(a1)-1Y1p0yt and the 
corresponding photon-number distribution is P1(n) = ,(n I p 1 In )  •. 

The same measurement procedure is repeated k times. Each time, the measure
ment is performed on the output signal of the previous measurement, using a new 
probe state. We get a series of second-quadrature amplitude readouts, (al, ai, . . .  , 
'4), which correspond to a series of inferred photon-number values, (ii i . ii2, . • . , nk)· 
It is the statistics of (ii i. ii2, . . .  , nk), in the limit of weak measurements, that are 
expected to give the initial photon-number distribution of the signal, P0(n) = 
,(n I p0 I n )  •. The probability of obtaining a specific series of inferred photon-number 
values is 

k k 

P(ii ., iii • . . .  , iik) II dii; = P(al, a�, . . . , a�) II da�, (1) 
i= l i= l  

I 2 k ' + ' A A A A A • 
where P( a2, <Xl• • • • , <12) = Tr.[ z k ZkPo] and where zk = yk . . .  Y2 Yi IS the total 
probability-amplitude operator that describes the whole process of k repeated QND 
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measurements. 10 The photon-number distribution of the signal vvave function after 
the k-th measurement, Pk(n) 5(n I Pk I n  )5, is calculated from the corresponding 
s_ignal density operator, 

• _ P( , 2 k) - 1z· • . 7+ Pk - a2, <Xi• · • · • <X2 kPCJL' k · (2) 

Note that Zk is symmetric in ( �. a�, . . .  , '4); that is, it is independent of the order in 
which the results are obtained. This is because the different Y; operators commute 
with each other. Therefore, the probability of obtaining these results, P(�, � • . . .  , 
'4), and the final photon-number distribution after these results are measured, Pk(n ), 
are both symmetric in (a1, a�, . . .  , a�) . The probability of obtaining a� in the second 
measurement depends on the result of the first measurement, a1. Yet, the process of 
measuring a} first and � second has exactly the same probability as the process in 
which � is measured first and a} is measured second. Also, there is no inherent 
difference between the changes caused to the wave function by the different 
consecutive measurements. Because the wave function of the system is slightly 
different at each measurement, the above observation, namely, that zk is indepen
dent of the order of the measurement results, suggests that no information about the 
width of the wave function is contained in the statistics of the readouts, P(�, 
a�, . . .  , '4). 

To confirm this, let us assume that the initial photon-number distribution is a 
Gaussian, that is, a normal distribution,1 1 P0(n) = N(n,n0,&0 1) .  Physically, the 
photon-number distribution is a discrete distribution, where n � 0. If the signal is 
initially in a squeezed state with a large excitation, that is, n0 » 1, this Gaussian 
approximation is valid. The initial distribution of the second-quadrature amplitude 
of the probe, with the probe being in a squeezed state with a zero phase, is also a 
Gaussian, centered at zero with the variance (M�) = e-2r/4, where r is the squeezing 
parameter. Our model describes a measurement process in which both the signal and 
the probe have normal distributions. Many other physical schemes are described in 
the same way-for example, the QND measurement of one of the quadrature 
amplitudes of a wave packet of light, using a nondegenerate parametric amplifica
tion. 12·13 Using a� � I ao I µA; in equations 1 and 2, the probability distribution for 
inferring a series of photon-number values is 

(3) 

The final photon-number distribution of the signal is 

k 
Pk (n) = P(n t> n2, . . .  , nk ) - 1 N(n, no, &0 1 ) TI N(n;, n, &,;:; 1 ] .  (4) 

i = I  

Here, &m = l ao 1 2µ2/(Mi) is the strength of each consecutive measurement. The 
measurements are weak when the error associated with each measurement is much 
larger than the initial width of the photon-number distribution of the signal, that is, 
when &m « &0• 

Consider the case of one measurement performed on a single wave packet of 
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light. The probability distribution of measuring the inferred photon-number, n ., is 
P(ii 1 ) = N[ii 1, n0, 80 1 + 8;;; 1 ) . 

The signal wave function is changed to 

P1 (n) = N[n, n�, (80 + 8m) - 1 ] , 

n� = (8ono + 8� 1 )(80 + 8m)- 1 • 

(5) 

(6) 

(7) 

The center of the wave function, n�, is shifted toward the measurement result, ii . , 
from its original value, n0, whereas the width of the wave function narrows from 80 1 
to (8o + 8m)- 1 . If the measurement is weak, that is, 8m « 80, both the shift and the 
narrowing are very small. 

Before investigating the case of repeated QND measurements performed on a 
single wave packet, we analyze the case of one measurement performed on each 
wave packet in an ensemble of k wave packets, all prepared in the same initial state. 
In this case, each measurement is independent of the others. The probability of 
obtaining the inferred photon-number values, (ii ., ii2, • • •  , iik), is obviously indepen
dent of their order, P(ii ., ii2, • • •  , flk) = II�= 1 P(fl;). It is well known that the statistics 
of the results of the measurements in this case . .are anilyzed by both the inferred 
average ii = I�= 1 ii;/k and the inferred variance fln'2 = I�= 1 (fl; - ii)2/(k - 1 ), in 
which all measurement results have the same weight. In terms of ii and tln2, the 
probability that the measurements performed on the ensemble would result in 
(fl . ,  fl2, . . . , flk) is 

k 
IT P(fl;)dfl; = [P(ii)dn][P(S)dS)dfik- I • (8) 
i= I 

where S = (k - 1)(80 1 + 8;;; 1 )- 1tln2 and dfik- I is a normalized infinitesimal element 
of the solid angle in dimension (k - 1), that is, fdfik- I  = 1. The probability 
distribution of the inferred average is 

(9) 

P(ii ) is centered at the original center of the wave function, n0• Therefore, the 
inferred average, ii, is a statistical measure of n0• The variance of P(ii)  is inversely 
proportional to the number of measurements, k. The probability error associated 
with this measurement decreases as the number of measurement results increases. 
The probability distribution of S is a chi-square distribution,14 P(S) = x2[S, (k - 1)) . 
Therefore, the distribution of the inferred variance, tln2, is centered at 80 1 + 8;;; 1 , 
with the variance 2(k - 1)- 1 (80 1 + 8;;; 1 )2• As k increases, the probability error for 
tln2 to read 80 1 + 8;;; 1 decreases. By measuring an ensemble of wave packets, all 
with the same initial wave function, we can conclude that both the center of the wave 
function and its width can be inferred statistically. This corresponds to a measure
ment of the wave function. 

Next, let us consider the changes in the measured wave function in the process of 
k repeated measurements performed on a single wave packet. From equation 4, we 
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obtain that the final photon-number distribution after k repeated measurements, 
which results in (ii i . ii2, • • •  , iik), is 

Pk(n) = N[n, n�, (S0 + kSm ) - 1 ) , 

n� = ( 8ono + Sm � ii}So + kSm) - 1 • 

( 10) 

(11)  

As was noted before, Pk(n) i s  symmetric in (ii i .  ii2, • • •  , iik) · Also, by comparing 
equations IO and 1 1  with equations 6 and 7, the total change in the wave function due 
to k repeated measurements of strength Sm is exactly the same as the change due to 
one measurement of a strength kSm, which results in n = n. After each measurement, 
the width of the wave packet decreases (continuous wave packet collapse) .  The 
center of the wave packet takes a step in a random walk (quantum Brownian 
motion), which depends on the random result of the measurement, Ii;. The probabil
ity distribution that statistically describes the diffusion of the center position of the 
wave function after k measurements, n�, is 

(12) 

The average center position is always at the initial center position, n0• However, the 
probability of finding the center further away from n0 increases as the number of 
measurements increases. As long as the total strength of the measurements is small, 
that is, kSm « S0, the variance of n� increases l inearly with the number of 
measurements, kSmS0 1 (8o + kSm)- 1 e Dk. In this regime, the movement of the 
center position is a quantum Brownian motion with a constant diffusion coefficient, 
D = SmS02• Here, the time scale is replaced by the discrete scale of the number of 
measurements. As the wave function narrows, the average step size of this quantum 
Brownian motion decreases. The statistical variance of the center position saturates 
and then equals the original variance of the wave function, S0 1 • At the same time, the 
wave packet is reduced to a photon-number eigenstate. The measured wave packet, 
therefore, undergoes a quantum Brownian motion, which is saturated due to the 
continuous collapse of the wave packet. 

Analyzing the statistics of the results of k repeated measurements on a single 
wave packet, we use the same definitions for the inferred average and variance as for 
the case of k measurements performed on an ensemble. Both definitions are 
symmetric in the results of the measurements, (Ii i .  n2, • • •  , nk) . In the case of k 
repeated measurements on a single wave packet, both the final wave function and the 
probability to obtain a specific series of results are independent of the order in which 
these results are obtained. Therefore, it is natural to use the same n and tJ.n2 as 
before. From equation 3, the probability of obtaining the series (ii i .  ii2, • • •  , iik) as a 
result of k repeated measurements is 

k 
P(n i . nz, . . .  ' iik ) TI dii; = [P(n)dn)[P(S)dS]d!lk- 1 ' (13) 

i= l  

where S = (k - 1 )Smtln2, and is independent of 8o. Again, the probability distribution 
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of the inferred average is centered at the original average, n0, that is, 

(14) 
The variance of the inferred average decreases with an increased number of 
measurements and, as k - oo, this variance reaches its minimum value, which equals 
the original variance of the wave packet, 80 1 • Therefore, the inferred average has the 
same probability error in the cases of both an infinite number of repeated weak 
measurements and one precise measurement. In fact, comparing equation 14 with 
equation 5, we see that 'ii is inferred with equal probabilities by k consecutive 
measurements of strength 8m and by one measurement of a strength k8m. The 
probability distribution of S is again a chi-square distribution, P(S) = x2[S, (k - 1)) .  
However, P(S) is now independent of 80; therefore, the inferred variance, 4n2, is not 
a measure of the original variance, 80 1 • Indeed, 4n2 is centered at 8,-;; 1 , with the 
variance 2(k - 1)- 18,-;;2• The statistics of the results of repeated weak QND measure
ments performed on a single wave packet contain no information about the initial 
width of the wave packet. In contradiction with our expectations, these statistics do 
not infer the wave function of the single wave packet. 

The mathematical origin of this result is the symmetry of P(ni. n2, • • •  , nk), which 
appeared already in equation 1. Each time that .the wave packet is measured, it is 
slightly changed. The results of the consecutive measurements are essentially col
lected from an ensemble of wave packets with different widths. Because all these 
results have the same weight in P(ni .  n2, • • • , nk), their statistics are independent of 
the width of the initial wave function. There is no natural way to assign different 
weights to the different results in the definition of 4n2 because the changes in the 
wave function are symmetric in (Ii i .  n2, • • •  , nk) and we cannot overcome the 
symmetry of P(n i .  liz, . . .  , nk)· 

Physically, it is the exact coordination between the quantum Brownian motion 
and the continuous collapse of the wave packet that prevents us from distinguishing 
between two wave packets of large and small widths, both centered at n0• Probably, 
the first measurement result obtained from the wide wave packet is further away 
from n0 than the result obtained from the narrow wave packet. However, the shift 
toward the measurement result and the collapse due to the first measurement are 
more dramatic in the case of the wide wave packet. Therefore, the probability of 
obtaining the second result in a certain distance from the first result can be the same 
for both wave packets, regardless of their initial widths. 

The above result is consistent with the fundamental theorem of quantum 
communications, 15 namely, Holevo's theorem. The maximum channel capacity is 
realized by a photon-number state channel, in which the photon-number state signal 
is detected by an ideal photon counter. 16, 17 The finite capacity of this noiseless 
channel is due to the discrete spectra of the photon-number; that is, the number of 
distinguishable states is finite because the photon-number observable has only 
positive integer eigenvalues. If one could measure the variance as well as the average 
of a given wave packet, the number of distinguishable states would increase by 
replacing the photon-number state with other states with the same average and 
varied variances. The possibility of exceeding the maximum channel capacity is 
excluded because the measurement of the average is subject to an error, which is 
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determined by the initial variance of the wave packet, and the variance measurement 
is inhibited. 

• 

In conclusion, we have shown that the wave function of a single quantum system 
cannot be measured by a series of weak QND measurements without an a priori 
knowledge of the wave function. This is because the statistics of the results of the 
measurements contain no information about the initial width of the measured wave 
function. Mathematically, this result originates in the symmetric structure of the 
probability-amplitude operator. During the measurement process, the wave function 
undergoes a quantum Brownian motion and continuous collapse. This physical 
mechanism is responsible for the exact cancellation of the information about the 
wave function from the statistics of the measurement results. 
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INTRODUCTION 

The advent of the micromaser1 has permitted a direct study of the quantum 
features in the interaction of two-level atoms with a single quantized mode of the 
electromagnetic field. This device can be used to generate different kinds of 
nonclassical states of the radiation field,2-4 for example, macroscopical quantum 
superpositions as suggested in reference 5. In the present report, we investigate 
quantum superpositions of nonlocal fields of two lossless micromasers coupled by the 
common pumping atomic beam6•7 as depicted jn FIGURE 1. Atoms enter the first 
cavity in their excited states and then proceed to the second one without any time 
delay between the cavities. We show that a correlation and, ultimately, a steady-state 
entanglement of the two nonlocal fields arise due to the interference of the two 
atomic paths that an atom can follow to reach the same final state.7•8 We assume that 
there is at most one atom in the cavities at a time to avoid collective effects. The final 
state of the atoms is detected after the interaction using two different setups. First, 
we require the atoms to leave in a prescribed sequence of final states, making the 
fields evolve along the desired trajectory. In particular, we consider the two simplest 
schemes in the present report where the sequence of final states consists only of the 
upper or only of the lower state. We do not know prior to the experiment which 
sequence will be produced, but we can redo the experiment until the desired one is 
obtained. This is called conditional measurement and is studied in the second section 
by calculating the pure evolution of the state vector of the fields. In the second case, 
we do not select a particular result for the final state of the atoms, but average over 
the two possible outcomes. Thus, the reduced density matrix for the fields is used in 
this nonselective measurement scheme, the evolution of which is discussed in the 
third section. The last section is devoted to a summary. 

CONDITIONAL MEASUREMENTS OF ATOMS 

We consider two kinds of conditional measurement schemes.7 In the so-called 
energy-preserving scheme, we require that each atom is detected in its upper state; in 
the energy-transferring scheme, we require that each atom is detected in its lower 

0This research was supported by the Office of Naval Research (Grant No. N00014-92-J-
1233), the National Science Foundation (Grant No. PHY-9201912), and PSC-CUNY. 
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state. We assume no  cavity losses, zero temperature, 100% detection efficiency, 
single atom resonant interaction, and no atomic velocity spread. · 

The state of the fields after the (k - 1 )-th atom left, but before the k-th atom 
entered the cavity reads 

I 'l'(k- l)) = � 'I'��:;.� l nh nz) . (2.1) 
n 1 ,n2 

After the interaction of the k-th atom with the fields, the state of the atom-fields 
system is 

1 c1><k>) = � 'l'��:;.!> [C�1+ 1 (C;2+ 1 l a, nh ni) - ;s;2+ 1 l b, ni .  ni + 1 )) 
ni ,n2 

beam of 
two-level 

atoms 
cavity 1 cavity 2 

field ionization 
detectors 

FIGURE 1. Schematic arrangement of two micromasers coupled by a beam of two-level atoms, 
the state of which is measured after the interaction. 

where S�1 = sin (g' T1 ..Jn;, ) and SZ2 = sin CK' T" .;;;_), with g
' ,g" and T1, T" being the 

atom-field coupling constants and the interaction times in the two cavities, respec
tively, and where C�1 and c:2 stand for the cosine functions of the corresponding 
arguments. Then, the state of the k-th atom is measured, resulting in a reduction of 
the state of the fields to 

I 'l'(k)) = N(k) � 'l'���n2 ln 1 , nz) . (2.3) 
n J ,n2 

Each measurement means a renormalization of the state vector by N(kJ. The new 
amplitudes, 'l'�kJ n , are functions of the old ones, 'l'�k-;, 1 > , and for our two schemes they I •  2 I •  2 
read as follows: 

(2.4) 

for the energy-preserving scheme and 

'l'Ck> = 'l'Ck- 1 ) C' S" + '1'<k- 1J S' C" n1,n2 n 1 ,n2- 1 n1 + 1 n2 n 1- l ,n2 n 1  n2 (2.5) 
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for the energy-transferring scheme. The probability of detecting the k-th atom in the 
desired state is 

(2.6) 

The evolution of the two fields is studied by iterating the amplitudes according to 
equation 2.4 or 2.5 starting from coherent states. Because the state, I a, a), is 
separable into a product of two coherent states, l a)cavityl ® l a)cavity2• the fields are 
initially uncorrelated. In the case of an energy-preserving scheme, they settle to a 
superposition of Fock states at steady state in both micromasers, assuring Rabi 
angles that are multiples of 'II'. As a result of this, the atoms are in their upper states 
before, between, and after the cavities. In the example depicted in FIGURE 2, where 
a2 = 30 and the interaction parameters are gT = 'II' (gr = g' T1 = g'T"), the Fock states 
are located at integer squares minus one, predominantly at 24 and 35. It is easy to see 
that the two fields are uncorrelated at steady state because the state vector is 
approximately separable as ( 1 24) + 1 35))cavityl ® ( 1 24) + 1 35))cavity2 (unnormalized). 
The probabilities of detecting the atoms in their upper states as required by the 
conditional measurement scheme are depicted in FIGURE 3. 

Let us now consider energy-transferring �chemes: FIGURE 4 shows typical 
evolutions of the fields for interaction parametersg-r == 0.3, 0.5, and 0.8, starting from 
coherent fields of a2 = 10. It can be seen in the first row of the figure for gT = 0.3 that 
the distribution is stretched along a straight line, as it is shown for k = 20. The fields 
are correlated in this regime. The distribution then separates into two regions and 
finally ends its regular evolution in a rapidly oscillating structure around k = 40 that 
corresponds to the so-called "single-cavity" trapping effect. 7 In the second row for 
gT = 0.5, the photon number increases in both cavities in such a way that the 
distribution localizes around a single point where n1 = n2, showing a balance 
between the fields. The two micromasers are uncorrelated in this regime. At n1 ;;;; 
n2 = 40, the oscillatory structure shows that the system reached a single-cavity 
trapping point. 

For larger interaction parameters, gT = 0.8, shown in the third and fourth rows of 
FIGURE 4, the system undergoes a transition between the above two uncorrelated 
and correlated regimes. On the other hand, the stretched distribution becomes 
double-peaked around k = 30, showing fields with a state vector approximately of the 
form, I 15, 50) + 1 50, 15) (unnormalized). This is the result of a new trapping effect 
called "two-cavity" trapping.7 Finally, the double-peaked distribution built up by k = 
30 begins to be destroyed at k = 35 by the coexisting single- and two-cavity trapping 
mechanisms. The probabilities that the atoms are detected in their lower state 
according to the measurement scheme are depicted in FIGURE 5 for the three 
examples given in FIGURE 4. It can be seen that the probability drops at the 
transitions between the uncorrelated and correlated regimes, as well as at the 
trapping. Defining m-th order correlation by the nonseparability condition, 

(2.7) 

where a 1  (at) and a2 (ai) are the field operators in micromasers 1 and 2, respectively, 
it is easy to show that the transient state above, I 15, 50) + 1 50, 15), exhibits 35th order 
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FIGURE 3. The probabilities of detecting the upper state of atom number k in the scheme in 
FIGURE 2. 

.. 
correlation. We would like to emphasize that this is· a correlation between fields of 
two spatially separated micromasers, that is, a nonlocal entanglement. The state of 
one of the fields can be inferred from a measurement made on the state of the other 
field located at a different point in space. 

Now, we want to combine these two kinds of schemes, starting with the energy
transferring one and then, at an optimum number of atoms, switching to the 
energy-preserving one. This way the Fock states generated by the latter scheme will 
be located under the envelope of the fields generated by the former scheme at steady 
state. Let us start, for example, the system in the energy-preserving scheme at gr = 
0. 142, from uncorrelated coherent fields of a2 = 30. After 100 atoms, the generated 
fields will exhibit a long stretched distribution as depicted in FIGURE 6a showing 
strong correlation between the fields. This correlation would be destroyed by the 
atoms to come due to the appearance of the oscillatory structures if the energy
transferring scheme would be followed any further. We switch our system to the 
other scheme instead. From the lOlst atom, we continue in the energy-preserving 
scheme using different parameters, gr = -rr/2. (The interaction time can be changed 
in an experiment by changing the velocity of the atoms.) After the next 200 atoms, we 
get a superposition of three Fock states at squares of even integers minus one, 
depicted in FIGURE 6b, that could be approximated by the state, 1 99, 35) + 1 63, 63) + 
1 35, 99) (unnormalized). This is approximately equal to the steady state of the fields. 
A double-peaked superposit ion of the fields can be produced if we chose gr = 1 .0 
instead of -rr/2 as the new parameters. The generated fields are depicted in FIGURE 
6c and can be approximated with the state, 1 88,38) + 1 38,88) (unnormalized), 
showing a 50th order correlation at steady state. Although the method is not 
particularly sensitive to the atom number where the switch is to be made, we show 
what happens if we switched between the schemes too early in FIGURE 6d: instead of 
k = 100, the switch is at k = 50. Because the distribution at the moment of the switch 
is much broader this time than it was in FIGURE 6a, a peak at 138, 38) can arise. The 



BOGAR et al.: MICROMASERS 115 

probabilities of detecting the atoms in the desired states ( I b) befort: and I a )  after the 
switch) are depicted in FIGURE 7. In principle, arbitrary superpositions can be 
produced by choosing the appropriate initial coherent states and interaction param
eters. In the energy-transferring scheme, gr · a = 'TT/4 needs to be satisfied in order to 
produce a stretched distribution. When it is prepared, we need to switch to new 
interaction parameters for the energy-preserving scheme that will generate the 
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FIGURE 4. Density plots showing the evolution of the amplitude distribution of the fields 
starting from coherent fields of a2 = J O, using energy-transferring schemes at g-r = 0.3 for the 
first, 0.5 for the second, and 0.8 for the third and fourth rows. Bright spots correspond to 
positive values, dark ones correspond to negat ive values, and the gray level is zero. Atom 
number k is given in each panel. 
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FIGURE 5. The probabilities of detecting the lower state of atom number k in the scheme in 
FIGURE 4 for gT = 0.3, 0.5, and 0.8, depicted by the solid, dashed, and dot-dashed lines, 
respectively. 

desired Fock states, assuring Rabi angles of multiples of 'TT under the envelope of the 
stretched distribution. 

NONSELECTIVE MEASUREMENTS OF ATOMS 

The state of the fields is described by the reduced density operator obtained by 
tracing out over the atomic states. This tracing operation is sometimes referred to as 
a nonselective measurement. The evolution of the system is governed by the 
Jaynes-Cummings operators U '  and U" in cavities 1 and 2, respectively. At the 
instant when the k-th atom leaves cavity 2, the field density operator reduces to 

(3.1) 

where Parom is the atomic- and p(k- t) is the field-density operator at the instant when 
the k-th atom enters cavity 1. It can be seen from equation 3.1 that, for steady states 
of the fields, one needs 

(3.2) 

that is, the trapping condition satisfied by any combination of the four numbers ni .  
mi. n2, and m2, for al l  of which gt Jn + 1 = qv, where q is an integer and Ii is any of the 
four numbers above. Thus, the only possible steady states of the system are the 
superpositions of trapping number states satisfying equation 3.2. They include both 
mixed and pure quantum states of the fields. It is shown in reference 7 that the most 
general solution for pure steady states of the fields is given by 

(3.3) 
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where NP and Mq satisfy the trapping conditions, g' t' JNP + 1 = prr and 
g't"JMq + 1 = q-rr. Any combination of NP and Mq determines a poirit in the number 
space, n1 -n2, where a nonzero amplitude, 'l'N M ?! 0, can arise. The initial fields . p q 
and the parameters of the interactions, g't ' and g't", determine which part of this 
general state vector the system will evolve into. 

We want to show that a state of m-th order correlation, l'l'}�m>, exhibiting a 
structure given by 

l 'l'}�m) = (�)( IN, N + m} ± I N +  m, N}) (3.4) 

can be amplified into the trapping state, I 'l')t'l, of the same form as above, if the two 
conditions 
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100 

so 

- 0 c 
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so 

SN+ I = Siv+ 1 = 0 

so 100 

and Siv = 0 (3.5) 

0 so 100 ISO 

n 
2 

FIGURE 6. Density plots of the amplitude distributions of the fields: (a) at the l OOth atom 
starting from coherent fields of a2 = 30 using an energy-transferring scheme at gT = 0. 142; (b) 
at the 300th atom after switching from the field produced in part a at the JOOth atom to an 
energy-preserving scheme at gT = Tr/2; (c) same as part b, but for gT = 1 .0; (d) same as part c, 
but switching at the 50th atom. 
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FIGURE 7. The probabilities of detecting the state of atom number k corresponding to the 
schemes given in FIGURES 6b, 6c, and 6d, depicted by the solid, dashed, and dot-dashed lines, 
respectively. • 

were satisfied simultaneously, where N and N + M are trapping numbers. These 
conditions imply that the interaction parameters must be integer multiples of 
-rr/JN + 1 and -rr!./N simultaneously. Although this is not possible exactly, it will be 
shown that an approximate solution for gT works very well and the steady states are 
very close to the pure entangled trapping states, I '1')}$">. We should mention here that 
unequal interaction parameters g't' and g"t" result in a loss of correlation and purity 
of the fields at steady state due to an asymmetrical amplification of the state vector. 
Therefore, we require gT = g't' = g"f' in the amplifying procedure. 

It can be seen from equation 2.2 that detecting the first atom emerging from the 
interactions in the upper state, l a), will not change the initial state of the fields, 
I 'l')Wl, when equation 3.5 is satisfied. On the other hand, detecting the lower state, 
l b), will result in the state, l 'l')W+ 1>. The tracing operation averages the two atomic 
paths out and the state of the fields is a statistical mixture of the two corresponding 
quantum states, l 'l')Wl and l '1')W+ 1>. Similarly, for all the consecutive atoms during 
the evolution, the states of the fields are statistical mixtures of quantum states of the 
form of I 'l')W> only, where N is the same as the initial one and m is any integer below 
the next trapping number M. This suggests that the system inevitably evolves into the 
trapping state, I '1')}$">. 

Let us start, for example, from the initial state, l 'l')pl , and apply gT = 7-rr/,/1. = 
4.950-rr. The evolution of the purity factor, �(kl =  Tr[p<kl2], of the state of the fields as a 
function of atom number k is depicted in FIGURE 8 by the dot-dashed line. The 
steady-state field-density matrix elements using the notation (nh mh n2, m2) are the 
diagonal terms ( 1 ,  1 ,  7, 7) and (7, 7, l , 1) equal to 0.500, and the off-diagonal ones, 
( 1 ,  7, 7, 1) and (7, 1 , 1, 7) equal to 0.496, resulting in the steady-state purity factor, 
� = 0.992. The steady state of the system is approximately equal to the entangled 
trapping state, l 'l')i6>. We have found approximately the same steady states for gT = 
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1-rr/./1., for I = 7, 10, 17, . . .  (within the ± sign in equation 3.4), although the time 
evolution can be very different, as depicted in FIGURE 8 by the dot-dashed, dotted, 
and solid lines, respectively. The evolution of the system toward its steady state is 
particularly slow for I = 17 (solid line) due to its being attracted by the "pseudotrap
ping" state, j l, 3) - 1 3, 1 ), along its way around the atom number k = 9. The 
conditions in equation 3.5 ensure that the fields evolve along statistical mixtures of 
state vectors, I 'l')im>, only (m � 6). The transient drop in the purity due to the 
mixture goes back up to 1 as the fields approach the pure trapping state, l 'l')i6>. 
Involving quantum states of different structure into the evolution would result in an 
irreversible loss of purity and the system would evolve into a mixed quantum state of 
reduced or vanishing correlation. 

In order to prepare the appropriate initial state, l 'l')�P, for amplification starting 
from the number state, j N, N), we need to have a different pair of conditions 
satisfied. First,g' t ' must satisfy the condition, I C  N+ 1 I = I S N+ 1 j. On the other hand, g'f' 
must approximately be an integer multiple of Tr I (2JN + 1 )  and at the same time that 
of -rrl.fN in order to have I S.V+ i I ;;;;; 1 and S,V ;;;;; 0 simultaneously. In this case, 
equation 2.2 tells us that, sending one single atom through the fields, the probability 
of detecting its upper state is close to zero, whereas the other atomic path provides us 
with fields in a state approximately equal to I 'I')�>. In the case of N = 1, choosing for 
example g'T' = -rr/ (4/i.) and tf'T" = 17Tr/(2./1.) = 6.01-rr gives us the probability of 
0. 1 % to detect the upper atomic state, and the generated fields can be approximated 
very well by the pure state, I 'l')p>. Once the initial state for amplification, I 'I')�>, is 
prepared, we can proceed to the amplification procedure by switching the interaction 
parameters to the appropriate values discussed above. 

We have shown in this section that entangled trapping states, I "1)t'>, of arbitrary 
N and M can be produced from number states, IN, N), using a two-step procedure 
that is based on conditions regarding the interaction parameters of the two cavities. 
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FIGURE S. The evolution of the purity factor l;(k) as a function of atom number k applying gr = 
/Tr/ ./2, for I = 7, 10, and 17, depicted for the dot-dashed, dotted, and solid lines, respectively. 
The initial and the final states in each case are I '11)\1 > and I '11)\6>, respectively. 
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SUMMARY 

Two lossless micromasers are coupled by the common pumping beam of excited 
two-level atoms, the fields of which are studied performing conditional and nonselec
tive measurements of the final state of the atoms. Energy-transferring conditional 
measurement schemes are shown to produce a transient entanglement of the fields. 
In the case of energy-preserving schemes, a set of Fock states is generated at steady 
state under the envelope of the initial fields. If the initial fields were uncorrelated 
(correlated), the generated ones would be uncorrelated (correlated) too. This 
suggests that switching from an energy-tral}sferring to an energy-preserving scheme 
produces a steady-state entanglement. The Fock states generated by the latter 
scheme will in this case be located under the envelope of the correlated fields 
generated by the former scheme. 

In the case of nonselective measurements, it is shown that entangled trapping 
states of the form, IN, N + M) ± IN + M, N), can be produced starting from number 
states, IN, N), using a two-step procedure. First, we introduce some correlation via 
generating the above state of M = 1; then, we amplify it to a larger M corresponding 
to the trapping state above. Both steps are based on conditions regarding the 
interaction parameters, g't' and g't", of the two cavities . •  They ensure that the fields 
evolve along statistical mixtures of state vectors of the above form only. An inclusion 
of other quantum states or an asymmetrical amplification of the state vector (when 
g't' ¢ g't") would result in a loss of purity and mixed quantum states of no correlation 
at steady state. 

In the absence of dissipations, both methods can generate steady-state nonlocal 
quantum superpositions of distinct macroscopical fields, that is, nonlocal "Schro
dinger cats". 
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INTRODUCTION 

One of the most surprising consequences of quantum mechanics is the entangle
ment of two or more distant particles.I  The classic example of a two-particle 
entangled state was given by Einstein, Podolsky, and Rosen in their famous 1935 
gedankenexperiment, 2 where the measurement of an observable on one of the 
particles determined the value of that observable for the other particle with unit 
probability. The progression from gedanken to real experiments3 has been greatly 
aided by the use of spontaneous parametric downconversion (SPDC),4 the nonlinear 
optical process in which a laser pump incident on a crystal leads to the emission of a 
correlated pair of photons. The distinctively quantum nature of the resulting 
two-photon state, which has been confirmed in a number of interesting experiments,5 
has allowed us to demonstrate a new type of two-photon phenomenon in the 
following two experiments. 

The first experiment reported in this discussion is a two-photon optical imaging 
type experiment:6 the SPDC light beam, which consists of pairs of orthogonally 
polarized signal and idler photons, is split into two diverging beams by a polarization 
beam-splitter (BS) so that coincidence detections may be performed between two 
distant photon-counting detectors. An aperture (mask) placed in front of one of the 
detectors, for example, the letters of our institution, is il luminated by the signal beam 
through a convex lens. Surprisingly, an image of this aperture is observed in the 
coincidence-counting rate by scanning the other detector in the transverse plane of 
the idler beam, even though both detectors' single-counting rates remain constant. 

The second experiment demonstrates "ghost" two-photon interference-diffrac
tion patterns.6 The experimental setup is similar to the image experiment, except that 
rather than an aperture it is a Young's double slit (or a single slit) inserted into the 
path of the signal beam. Surprisingly, an interference (or diffraction) pattern is 
observed in the coincidences when scanning the detector in the idler beam. This 
effect is even more striking when one considers that there is not any first-order 
interference-diffraction pattern behind the slits. 

0This work was supported by the Office of Naval Research via Grant No. N00014-91 -J - 1430. 
Further support was provided by the International Science Foundation for the visit of 
D. N. Klyshko. bPermanent address: Department of Physics, Moscow State University, Moscow, Russia. 
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As will be shown in detail, these two experiments demonstrate the EPR phenom
ena from both a geometrical optics and a physical optics point of view. 

1WO-PHOTON "GHOST" IMAGE EXPERIMENT 

The experimental setup is shown in FIGURE 1. The 35 1 . 1 -nm line of an argon ion 
laser is used to pump a nonlinear BBO (j3-BaB204) crystal that is cut at a degenerate 
type-II phase-matching angle to produce pairs of orthogonally polarized signal ( e-ray 
of the BBO) and idler (o-ray of the BBO) photons.4 The pairs emerge from the 
crystal nearly collinear, with w, == w; == wp/2, where wi (j = s, i, p) is the frequency of 

laser 
pump 

351 . 1 nm 

BBO 

collection 
/ lens 

!!!!� - aperture 

polarizing 
beam 
splitter 

'filter 

lens 

filter 

Coincidence 
Circuit 

X·Y scanning 
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FIGURE I. A schematic setup for the two-photon "ghost" image experiment. 

the signal, idler, and pump, respectively. The pump is then separated from the 
downconversion beam by a UV-grade fused sil ica dispersion prism and the remain
ing signal and idler beams are sent in different directions by a polarization beam
splitting Thompson prism. The signal beam passes through a convex lens with a 
400-mm focal length and il luminates a chosen aperture (mask). As an example, one 
could choose the letters "UMBC" or "UM". Behind the aperture is the detector 
package Di .  which consists of a 25-mm focal length collection lens in whose focal spot 
is a 0.8-mm-diameter dry ice-cooled avalanche photodiode. The idler beam is met by 
detector package 02, which consists of a 0.5-mm-diameter multimode fiber whose 
output is mated with another dry ice-cooled avalanche photodiode. The input tip of 
the fiber is scanned in the transverse plane by two encoder drivers, and the output 
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pulses of each detector, which are operating in the Geiger mode, are sent to a 
coincidence-counting circuit with a 1 .8-ns acceptance window. Both detectors are 
pr(!ceded by 83-nm-bandwidth spectral filters centered at the degenerate wave
length, 702.2 nm. 

By recording the coincidence counts as a function of the fiber tip's transverse 
plane coordinates, we see the image of the chosen aperture (for example, "UMBC" 
or "UM"), as is reported in FIGURE 2. Moreover, although the size of the "UMBC" 
aperture inserted in the signal beam is only about 3.5 mm x 7 mm, the observed 
image measures 7 mm x 14 mm. We have therefore managed linear magnification by 
a factor of two. Despite the completely different physical situation, the remarkable 
feature here is that the relationship between the focal length of the lens f, the aperture 's 
optical distance from the lens S, and the image 's optical distance from the lens (lens back 
through beam-splitter to BBO, then along the idler beam to the image) S' satisfies the 
Gaussian thin-lens equation: 

(1)  

In  this experiment, we chose S = 600 mm and the twice-magnified clear image was 
found when the fiber tip was in the plane with S' = 1200 mm (see FIGURE 3). 

To understand this unusual phenomenon, we examine the quantum nature of the 
two-photon state produced in SPDC, which is entangled by means of the phase
matching conditions inside the crystal:4 

(2) 

where kj is the wave vector of the signal, idler, or pump. The angular distribution of 
the correlated photon pairs, which encourages two-dimensional applications, is the 
result of the transverse components of the wave vector condition: 

k, sin a5 = ki sin ai, (3) 

where a5 and ai are the scattering angles inside the crystal. Upon exiting the crystal, 
Snell's law thus provides 

w5 sin �. = w; sin �;. (4) 

where �. and �; are the exit angles of the signal and idler photons with respect to the 
kp direction. Therefore, near the degenerate case, the photons constituting one pair 
are emitted at roughly equal, yet opposite, angles relative to the pump, and the 
measurement of the exit angle of the signal photon determines the exit angle of the 
idler photon with unit probability and vice versa. This then al lows for a simple 
explanation of the experiment in terms of "usual" geometrical optics in the following 
manner: Considering the action of the beam-splitter, we envision the crystal as a 
"hinge point" and "unfold" the schematic of FIGURE 1 into that shown in FIGURE 3. 
Because of the equal angle requirement of equation 4, we see that all photon pairs 
that result in a coincidence detection can be represented by straight lines (but keep in 
mind the different propagation directions) and therefore the image is well  produced 
in coincidences when the aperture, lens, and fiber tip are located according to 
equation 1 .  In other words, the image is exactly the same as one would observe on a 
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FIGURE 2. (Top) A reproduction of the actual aperture "UMBC" placed in the signal beam. 
Note that the size of the letters is on the order of standard text. (Middle) The image of 
"UMBC": coincidence counts as a function of the fiber tip's transverse plane coordinates. The 
scanning step size is 0.25 mm. The data shown are a "slice" at the half-maximum value, with no 
image enhancement. (Bottom) The image of "UM". 
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screen placed at the fiber tip if detector 01 were replaced by a poiQtlike light source 
and the BBO crystal by a reflecting mirror . 

. The study of fundamental quantum mechanics sometimes leads to interesting 
and useful applications. In the sense of recent work done on quantum cryptography,7 
the two-dimensional image transfer experiment reported here demonstrates that the 
possibilities of a quantum "cryptoFAX" are, in principle, quite real. Because the 
information (i.e., aperture-mask shape) is essentially carried in coincidences, an 
eavesdropper between detectors would require information from two communica
tion "channels". Therefore, even though the random pulse electric signal from 
detector 01 is quite available, the use of indivisible light quanta in the other channel 
would foil any spying attempts. 

tens fiber 
tip plane 

-s - 600mm -------- s• .. 1 200mm ------

FIGURE 3. A conceptual "unfolded" version of the schematic shown in FIGURE I ,  which is 
helpful for understanding the physics. Although the placement of the lens and the detectors will 
obey the Gaussian thin-lens equation, it is important to remember that the geometric rays 
actually represent pairs of SPDC photons that propagate in different directions. 

1WO-PHOTON "GHOST" INTERFERENCE-DIFFRACTION 

The schematic experimental setup is illustrated in FIGURE 4. It is similar to the 
first experiment except that, after the separation of signal and idler, the signal 
photon passes through a double-slit (or single-slit) aperture and then travels about 1 
m to be counted by a pointl ike photon-counting detector 01 (0.5 mm in diameter) . 
The idler photon travels a distance about 1 .2 m from BS to the input tip of the optical 
fiber. In this experiment, only the horizontal transverse coordinate, x2, of the fiber 
input tip is scanned by an encoder driver. 

FIGURE 5 reports a typically observed double-slit interference-diffraction pat· 
tern. The coincidence-counting rate is reported as a function ofx2, which is obtained 
by scanning the detector 02 (the fiber tip) in the idler beam, whereas the double slit 
is in the signal beam. The Young's double slit has a slit width of a = 0.15 mm and a 
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FIGURE 4. A schematic setup for the two-photon "ghost" interference-diffraction experiment. 
The signal (e-ray of BBO) and idler (o-ray of BBO) photon pair is generated in a nonlinear 
crystal BBO (�-BaB204) .  The ultraviolet pump beam is separated from the downconversion 
beams by a UV-grade fused silica dispersion prism. BS is a beam-splitting Thompson prism for 
splitt ing the signal and idler beams to different directions; f1 and f2 are spectral filters with 
702.2-nm center wavelength and 10-nm bandwidth. Both photon-counting detectors 01 and Dz 
are dry ice�ooled avalanche photodiodes operated in Geiger mode. 

slit distance of d = 0.4 7 mm. The interference period is measured to be 2. 7 ± 0.2 mm 
and the half-width of the envelope is estimated to be about 8 mm. By curve fittings, 
we conclude that the observation is a standard Young's interference pattern, that is, 
a sine function oscil lation with a sine function envelope: 

(5) 

The remarkable feature here is that z2 is the distance from the slits ' plane, which is in 
the signal beam, back through BS to the BBO crystal, and then along the idler beam to the 
scanning fiber tip of detector D2 (see FIGURE 4) . The calculated interference period 
and the half-width of the sine function from equation 5 are 2.67 mm and 8.4 mm, 
respectively. 
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Even though the interference-diffraction pattern is observed in coincidences, the 
single-detector-counting rates are both observed to be constant when scanning detector D1 
or D2• Of course, it seems reasonable to not have any first-order interference
ditfraction in the single-counting rate of 02, which is located in the "empty" idler 
beam. Of interest, however, is that the absence of the first-order interference
ditfraction structure in the single-counting rate of Di. which is behind the double slit, 
is mainly due to the divergence of the SPDC beam ( » 'JI.Id). In other words, the 
"blurring out" of the first-order interference fringes is due to the considerably large 
angular propagation uncertainty of a single SPDC photon. 

Furthermore, if 01 is moved to an unsymmetrical point, which results in unequal 
distances to the two slits, the interference-diffraction pattern is observed to be simply 
shifted from the current symmetrical position to one side of x2• This is quite 
mind-boggling: Imagine that there were a first-order interference pattern behind the 
double slit and that 01 were moved to a completely destructive interference point 
(i.e., zero intensity at that point) and fixed there. Then, we still can observe the same 
interference pattern in the coincidences (same period, shape, and counting rate), 
except for a phase shift. 

FIGURE 6 reports a typical single-slit diffraction pattern. The slit width equals a = 
0.4 mm. The pattern fits to the standard diffraction sine function, that is, the 
"envelope" of equation 5, within reasonable experimental error. Here, again, z2 is 
the unusual distance described in the above paragraphs. 
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Detector 2 posit ion (mm) 
FIGURE 5 .  Typically observed interference -diffraction pattern: the dependence of  the coinci
dences (per 400 s) on the position of the optical fiber tip of detector D2, which counts the idler 
photons, while the signal photons pass through a double slit with a = 0.15 mm and d = 0.47 mm. 
The solid curve is calculated from equation 5, corrected for the finite size of the detectors and 
the pump profile. If 01 is moved to an unsymmetrical point, which results in unequal distances 
to slits C and D, the interference-diffraction pattern is observed to be simply shifted from the 
current symmetrical position according to equation 9. 
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FIGURE 6.  Two-photon diffraction: coincidence cou.ots (per 400 s)  versus the position of the 
idler photon-counting detector. A single slit of width a = 0.4"mm is in the signal beam. The solid 
curve is calculated from equation 10. 

To explain this unusual phenomenon, we again present a simple quantum model. 
The quantum entanglement nature of the two-photon state of SPDC has been 
described in the previous section . Even though the propagation direction for each 
single photon of the pair has a considerably large uncertainty, the measurement of 
the exit angle of either photon determines the exit angle of its conjugate twin brother 
with unit probability. This important peculiarity selects the only possible optical 
paths in FIGURE 7, when one photon passes through the double-slit aperture while 
the other gets to 02• In the near-degenerate case, we can simply treat the crystal as a 
reflecting mirror. 

The coincidence-counting rate Re is determined by the probability P12 of detect
ing a pair of photons by detectors 01 and 02 simultaneously. For SPDC, P12 is 
proportional to the square of the second-order correlation function (£2'+ >£1<+ >) of 
the fields at points 01 and 02 (it thus plays the role of the two-photon effective wave 
function): 

(6) 

In equation 6, ( . . . ) = {'I' I · . . I 'I'), with I 'I') being the four-mode state-vector of the 
SPDC field: 

1 '11) = l vac) + e(a .ta ;t exp (iq>A) + b.tb;t exp (iq>8)] 1 vac), (7) 

where e < 1 is proportional to the pump field (classical) and the nonlinearity of the 
crystal, IPA and lf>B are the phases of the pump field at A and B, and ait (bit) are the 
photon creation operators for the upper (lower) mode in FIGURE 7b (j = s, i). In 
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terms of the Copenhagen interpretation, one can say that the interference is due to 
the uncertainty in the birthplace (A or B in FIGURE 7) of a photon pair . 

. In equation 6, the fields at the detectors are given by 

E�+> = a, exp (ikrA1) + b, exp (ikr81 ), 

E�+> = a; exp (ikrA2) + b; exp (ikr82) ,  (8) 

where rN (re;) are the optical path lengths from region A (B) along the upper (lower) 
path to the i-th detector. Substituting equations 7 and 8 into equation 6, 

Re ex P12 = e2 I exp (ikr A + iqi A) + exp (ikr8 + iqi8) 1 2 

ex 1 + cos [k(rA - re)] ,  (9) 

where we assume 'PA = qi8 in the second line of equation 9 (although this is not a 
necessary condition to see the interference pattern, the transverse coherence of the 
pump beam at A and B is crucial) .  In equation 9, we defined the overall optical 
lengths between the detectors 01 and 02 along the upper and lower paths (see 
FIGURE 7b ) :  r A = r At + r A2 = rc1 + rci and re = ra1 + re2 = rm + r02, where ra and ro; 
are the path lengths from the slits C and D to the i-th detector. 

If the optical paths from the fixed detector 01 to the two slits are equal, that is, 
rc1 = rm , and if z2 » d2 /"'A, then r A - r8 = rc2 - r02 = xid /z2 and equation 9 can be 

a) 

/ 
,. 

---. 

Pump � 
____. 

b) 
rA2 

FIGURE 7. Simplified experimental scheme (a) and its "unfolded" version (b). The overall 
optical path lengths between D1 and D2 along the upper (rA) and lower (re) paths, appearing in 
equation 9, are defined as r A = r Al + r A2 = rc1 + ro and re = re1 + re2 = rm + ro2, where re; and 
1"J:>i are the optical path lengths from the slits C and D to the i-th detector. 
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written as 

(10) 

Equation 10 has the form of a standard Young's double-slit interference pattern. 
Here, again, z2 is the unusual distance from the slits ' plane, which is in the signal beam, 
back through BS to the crysta� and then along the idler beam to the scanning fiber tip of 
detector D2. 

If the optical paths from the fixed detector 01 to the two slits are unequal, that is, 
rc1 ;<! r01, the interference pattern will be shifted from the symmetrical form of 
equation 10 according to equation 9. This interesting phenomenon has been ob
served and reported following the discussion of FIGURE 5. 

There are two conclusions that can be drawn from equation 10: 

( 1 ) a two-photon interference pattern can be observed in coincidences by 
scanning 02 in the transverse direction of one beam, even though the 
Young's double-slit aperture is in the other beam; 

(2) the interference pattern is the same as one would observe on a screen in the 
plane of 02, if 01 is replaced by a pointlike light �ource and the SPDC crystal 
by a reflecting mirror. . .  

To calculate the "ghost" diffraction effect of  a single slit such as  shown in  FIGURE 
6, we need an integral of the effective two-photon wave function over the slit width: 

(11)  

where r(x0, x2) is the distance between points x0 and x2, x0 belongs to the slit's plane, 
and the inequal ity z2 > a2/'A. is assumed. 

Repeating the above calculations, the combined interference-diffraction coinci
dence-counting rate for the double-slit case is given by 

(12) 

which is exactly the same as equation 5 obtained from experimental data fittings. 
In the above calculations, we assume that the pump beam is a plane wave and the 

crystal 's transverse dimension is infinite. If, instead, a Gaussian pump beam profile is 
considered, equation 12 (or equation 5) must be multiplied by a Gaussian function 
G(x2, az2/zo): 

( 13) 

where u is the Gaussian width of the pump beam and z0 is the distance between the 
slit plane and the crystal. Furthermore, if the finite size of the detectors and the 
divergence of the pump are also taken into account by a convolution, the interfer
ence visibil ity will be reduced. These factors have been taken into account in the 
theoretical plots in FIGURES 5 and 6. FIGURE 8 reports a study of the diffraction 
pattern width when the slit width is changed. The theory curve (solid line) takes into 
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FIGURE 8. A study of the diffraction pattern width when changing the slit width. The 
calculated solid curve takes into account the corrections for the finite size of the detectors, the 
Gaussian pump beam profile, and non-far-field corrections. No fitting parameters have been 
used. The dashed (dotted) line shows the expected purely diffraction (geometrical) width, 
limited by the pump profile. 

account the corrections for the finite size of the detectors, the Gaussian pump 
profile, and non-far-field corrections, which become important for wider slits. 

CONCLUSIONS 

A pair of photons is generated in SPDC. The propagation direction of each single 
photon has a considerably large angular uncertainty. However, if one of them is 
detected at a certain direction, its conjugate twin brother must have been propagat
ing in a defined certain direction. The above two experiments demonstrated this 
striking EPR phenomenon from both a geometrical optics and a physical optics point 
of view. We may consider these experiments as a nonclassical phenomenon of a new 
variety, in which the two-particle is entangled in space. 
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INTRODUCTION 

In the last years, the modern techniques of laser spectroscopy have made it 
possible to investigate quantum phenomena of single atoms. In this report, two 
groups of these experiments will be reviewed. The first one deals with the one-atom 
maser and the second one with trapped ions. 1 There is also considerable progress in 
trapping neutral atoms.2 These techniques are undergoing rapid development at the 
moment. However, experiments with single isolated atoms using these techniques 
have not yet been described. 

REVIEW OF THE ONE-ATOM MASER 

The most fundamental system to study the generation process of radiation in 
lasers and masers is to drive a single mode cavity by a single atom. This system, at first 
glance, seems to be another example of a gedankenexperiment, but such a one-atom 
maser3 really exists and also can be used to study the basic principles of radiation
atom interaction. The main features of the setup are as follows: 

( 1) it is the first maser that sustains oscil lations with much less than one atom on 
the average in the cavity; 

(2) the maser allows one to study the dynamics of the energy exchange between 
an atom and a single mode of the cavity field as treated in the Jaynes
Cummings model;4 

(3) the setup allows one to study in detail the conditions necessary to obtain 
nonclassical radiation, especial ly radiation with sub-Poissonian photon statis
tics in a maser system directly; 

(4) it is possible to study a variety of phenomena of a quantum field, including 
nonlocal aspects of the quantum measurement process. 

What are the tools that make this device work? It is the enormous progress in 
constructing superconducting cavities with high quality factors together with the 
laser preparation of highly excited atoms-Rydberg atoms-that have made the 
realization of such a one-atom maser possible.3 Rydberg atoms are obtained when 
one of the outermost electrons of an atom is excited into a level close to the 
ionization limit. The main quantum number of the e lectron is then typically of the 
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order of 60-70. These atoms have quite remarkable properties5 that make them ideal 
for the maser experiments: The probability of induced transitions between neighbor
ing states of a Rydberg atom scales as n4, where n denotes the principal quantum 
number. Consequently, a few photons are enough to saturate the transition between 
adjacent levels. Moreover, the spontaneous lifetime of a highly excited state is very 
large . We obtain a maser by injecting these Rydberg atoms into a superconducting 
cavity with a high quality factor. The injection rate is such that, on the average, there 
is much less than one atom present inside the resonator. 

The experimental setup of the one-atom maser is shown in FIGURE 1 .  A highly 
collimated beam of rubidium atoms passes through a Fizeau velocity selector. Before 
entering the superconducting cavity, the atoms are excited into the upper maser level 
63p312 by the frequency-doubled light of a cw ring dye laser. The superconducting 
niobium maser cavity is cooled down to a temperature of 0.5 K by means of a 3He 
cryostat. At this temperature, the number of thermal photons in the cavity is about 
0. 15  at a frequency of 2 1 .5 GHz. The quality factor of the cavity can be as high as 3 x 
1010, corresponding to a photon storage time of about 0.2 s. Two maser transitions 
from the 63p312 level to the 61d312 and to the 61d512 level are studied. In a new setup 
equipped with a dilution refrigerator, temperatures in the range of 0.1 K are 
obtained. Some of the experiments described in this re\fiew have been performed 
with the latter setup. ·· 

The Rydberg atoms in the upper and lower maser levels are detected by two 
separate field ionization detectors. The field strength is adjusted to ensure that, in 
the first detector, the atoms in the upper level are ionized, but not those in the lower 
level; the lower-level atoms are then ionized in a second field. 

To demonstrate maser operation, the cavity is tuned over the respective transi
tion and the flux of atoms in the excited state is recorded simultaneously. FIGURE 2 

Velocity selector 

FIGURE I. Scheme of the one-atom maser. To suppress blackbody-induced transitions to 
neighboring states, the Rydberg atoms are excited inside the liquid-helium-cooled environ
ment. 
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FIGURE 2. A maser transition of the one-atom maser manifests itself in a decrease of atoms in 
the excited state. The flux of excited atoms N governs the pump intensity. Power broadening of 
the resonance line demonstrates the multiple exchange of a photon between the cavity field and 
the atom passing through the resonator. 

shows the result for 63p31;r61d312• Transitions from the initially prepared state to the 
6ld312 level (21 .50658 GHz) are detected by a reduction of the electron count rate. 

In the case of measurements at a cavity temperature of 0.5 K, shown in FIGURE 2, 
a reduction of the 63p312 signal can be clearly seen for atomic fluxes as small as 1 750 
atoms/s. An increase in flux causes power broadening and a small shift. This shift is 
attributed to the ac Stark effect, caused predominantly by virtual transitions to 
neighboring Rydberg levels. Over the range from 1750 to 28,000 atoms/s, the field 
ionization signal at resonance is independent of the particle flux, which indicates that 
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the transition is saturated. This arid the observed power broadening show that there 
is a multiple exchange of photons between Rydberg atoms and the cavity field. 

For an average transit time of the Rydberg atoms through the cavity of 50 µs and 
a flux of 1750 atoms/s, we estimate that approximately 0.09 Rydberg atoms are in the 
cavity on the average. According to Poisson statistics, this implies that more than 
90% of the events are due to single atoms. This clearly demonstrates that single 
atoms are able to maintain a continuous oscillation of the cavity with a field 
corresponding to a mean number of photons between unity and several hundred. 

Among the studies performed with the one-atom maser are the measurements of 
the dynamics of the photon exchange between a single atom and a cavity mode.6.7 
Before we discuss some experiments with the one-atom maser, the theory will be 
briefly reviewed. 

THEORY OF THE ONE-ATOM MASER 

The simplest form of interaction between a two-level atom and a single quantized 
mode of the electromagnetic field is described by the Jaynes-Cummings Hamilto-
nian:4·8 · · 

H = (Yz)liwo<r, + liwata + li(gatu_ + adj.) = H0 + V, 

where 

H0 = (Yz)liwo<r, + liwata 

and 

V = li(gatu_ + adj.) .  

Here, w0 is the atomic transition frequency; w is the field frequency; a and at are the 
photon annihilation and creation operators of the field mode (with [a, at] = 1 ) ; u,, 
u_, and u+ are atomic pseudospin operators (with [u+ , u_J = u,); and 

(pE.,) 
g = \2h sin KZ 

is the electric dipole matrix element at the location Z of the atom, where E., is the 
"electric field per photon", that is, E., = (liw/E-OV)l l2. 

The Jaynes-Cummings model plays a central role in quantum optics owing to 
several reasons: it gives the simplest description of Rabi-flopping in a qu11.ntized field 
and the simplest illustration of spontaneous emission; furthermore, it can be solved 
exactly and thus describes the true quantum dynamics observed with the one-atom 
maser, such as collapse and revivals of the atomic inversion. The model describes the 
situation realized in the one-atom maser and allows a detailed investigation of the 
complexities of the atom-field dynamics in the simplest of all situations. 

In the following, a few results derived from the Jaynes-Cummings model are 
reviewed that are relevant for the discussions in this report. 
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The eigenstates of the Jaynes-Cummings Hamiltonian are 

Ein = fi[-(Yz)Wo + (n + l )w + (Yz)(.On + 8)) , 

E'2n = fi[(Yz)Wo + nw - (Yz)(.On + 8)), 
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where 8 = Wo - w is the atom-field frequency detuning. .On is the generalized 
n-photon Rabi-flopping frequency: 

The corresponding eigenvalues are the ones of the dressed atom: 

1 1 . n) = sin an l a , n) + cos an l b, n + 1 ), 
1 2, n) = cos an l a, n) - sin an l b, n + 1 ), 

where the states l a ) and l b) represent the upper and lower atomic states, respec
tively, and I n) represents the number state of the field mode with ata I n ) = n I n). The 
angle a is defined by means of the following relations: 

Note, in particular, that 

and 

(.0,. - 8) 
cos an = , 

y(.On - 8)2 + 4g2(n + 1 )  
. 2gJn + 1 

sm an = --;::::======== 
Jenn - 8)2 + 4g2(n + 1 )  

sin 2an = 2gJn + 1/!ln. 
In the vacuum field (n = 0) and on resonance (Wo = w) , the dressed states are 
separated by the frequency !lo = 2g, generally called vacuum Rabi-splitting. 

One of the interesting phenomena described by the Jaynes-Cummings model is 
the dynamical behavior. When we assume that the atom is initially in the upper state 
l a ) and the field is in the number state I n), it follows for the probabil ity of an atom to 
be in the upper state that 

I Can (t) 1 2  = cos2(g./n+lt). 
This shows that the upper state population oscillates periodically at the Rabi
ftopping frequency, similar to the case of classical fields. If the field is initially 
described by the photon statistics, pm the above results have to be generalized to 

I Ca (t) l 2 = �Pn COs2(gJn + lt) . n 
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In the case where the field mode is initially in a coherent state, it has been shown 
that I C0(t ) 1 2 undergoes a collapse followed by a series of revivals.6 The collapse is 
due to the destructive interference of quantum Rabi-ftoppings at different frequen
cies; a similar phenomenon may also occur with a classical field. However, the 
revivals are a purely quantum mechanical effect that originates in the discreteness of 
the quantum field. Collapse and revivals have been observed in a micromaser 
experiment. 7 In this experiment, the interaction time of the atoms with the cavity was 
varied and the probability was investigated where the atoms leave the cavity in the 
excited state. As will be shown below, the photon statistics in the maser cavity 
changes when the interaction time is varied;·therefore, the photon statistics Pn is not 
a pure distribution. Nevertheless, the revival shows up, as was also confirmed in a 
computer simulation of the results on the basis of the Jaynes-Cummings model.7 

In the following, we would like to summarize the results of the quantum theory of 
the one-atom maser. Because the atom-field interaction takes place in a closed single 
mode cavity, there is no spontaneous emission rate into free space modes. Owing to 
the extremely high quality factors achieved in the superconducting cavities, the 
photon lifetime is extremely long compared to the transit time of the atoms through 
the resonator. This means that the cavity damping can be practically ignored while an 
atom interacts with the field. Because the atomic.flux is JCept small so as to have, at 
most, one atom present inside the cavity at a time, the cavity is empty most of the 
time; therefore, cavity damping can be neglected during the rare instances when an 
atom interacts with the cavity mode. 

The one-atom maser theory is therefore based on the following strategy:9 while 
an atom is in the cavity, the coupled atom-field system is described by the Jaynes
Cummings Hamiltonian and, for the interval between atoms, the evolution of the 
field density matrix is described by a master equation considering damping and also 
the mean number of thermal photons in the cavity. 

Besides this microscopic theory, there is also a macroscopic theory based on the 
quantum theory of the laser. 10 The resulting probability distribution of the photons 
depends characteristically on the pump rate and on the interaction time l;n1 of the 
atoms with the cavity field. One obtains the following result for the probability of 
finding n photons in the maser cavity [P(n)] in steady state: 

P(n) = Po[ nb ]n TI [ 1 + (.!!.._) sin2(g�)] , (nb + 1 ) m= I  nb'Y m 

with N being the atomic pump rate, nb being the thermal photon number, and 'Y being 
the cavity decay rate. P0 is determined by the normalization condition, I P(n) = 1 .  
One can now evaluate the mean photon number (n) and the field variance i n  the form 
of the Qr parameter:9 

[(n 2) - (n)2 - (n)] 
Qr = (n) 

FIGURE 3 shows the mean photon number as a function of the interaction time of 
the atoms with the cavity. The photon number is scaled to Nex; here, Nex is the 
average number of atoms that enter the cavity during the cavity decay time, Nex = 
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N/-y. The maser thresholds occur at @ = 1 and regions of sub-Poissonian photon 
statistics are between @ = 'IT and 21T as well as between 31T and 4'!T. The sub
Poissonian character leads to a negative Qr. A large negative value is obtained close 
to (before) 21T. 8•9 

To get a more intuitive insight into this effect, we recall that the Fizeau velocity 
selector preselects the velocity of the atoms. Hence, the interaction time is well  
defined, which leads to conditions usually not achievable in standard masers. This 
has a very important consequence when the intensity of the maser field grows as 
more and more atoms transfer their excitation energy to the field: even in the 
absence of dissipation, this increase in photon number is halted when the increasing 
Rabi frequency leads to a situation where the atoms reabsorb the photon and leave 
the cavity in the upper state. This situation is close to a quantum-nondemolition case. 
For any photon number, this situation can be achieved by appropriately adjusting the 
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FIGURE 3. Mean value of the photon number v = n!N., versus the pump parameter 0, where 
the value of 0 is changed via N0,. The solid line represents the micromaser solution for n = 36 
kHz, t;01 = 35 µ.s, and temperature T = 0. 15 K. The dotted lines are semiclassical steady-state 
solutions corresponding to fixed stable gain-loss equilibrium photon numbers. The crossing 
points between a line E> = constant and the dotted lines correspond to the values where minima 
in the Fokker-Planck potential V(v) occur. For details, see text. 

velocity of the atoms. Then, the number distribution of the photons in the cavity is 
sub-Poissonian. 

Unfortunately, the measurement of the nonclassical photon statistics in the cavity 
is not straightforward. The measurement process of the field involves the coupling to 
a measuring device, whereby losses lead inevitably to a destruction of the nonclassi
cal properties. The ultimate technique to obtain information about the field employs 
the Rydberg atoms themselves: for this purpose, the population and the statistics of 
the atoms in the upper and lower maser levels are probed when they leave the cavity. 
Accordingly, the atoms play a double role : (i) they pump the cavity and (ii) they are 
used for the diagnostics. These two roles interfere with one another because the 
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detection of the atom in a known final state leads to a quantum mechanical reduction 
of the photon state inside the resonator. Frequent detection is accompanied by a 
quasi-permanent state reduction, which can prevent the cavity field from relaxing to 
the steady state that would be reached if the atoms were left unobserved. Neverthe
less, the steady-state properties determine the statistics of the clicks recorded by the 
atom detectors. 

The theoretical treatment of the one-atom maser produces predictions about 
both the photon field and the emerging atoms. Only the latter can be tested 
experimentally and the success of such tests feeds our confidence in the predictions 
about the quantized radiation field inside the·cavity. The pump atoms are statistically 
independent in the standard one-atom-maser experiments, so their arrival times are 
subject to Poissonian statistics; therefore, we shall restrict the discussion to this 
standard Poissonian situation. 

Inasmuch as the atoms arrive at random, they are recorded at equally random 
times; thus, the only reproducible data are statistical. Consequently, one is led to 
studying the statistics of the detector clicks. Numerical simulations investigating the 
effect of repeated atomic measurements on the evolution of the cavity field have 
been performed by Meystre 1 1  as well as by Meystre and Wright. 12 The relation 
between the counting statistics of the detected atoms em'erging from the resonator 
and the photon-number statistics of the field in�ide -the cavity has been studied 
analytically by Rempe and myself13 as well as by Paul and Richter. 14 In reference 13, 
the results are also compared with numerical simulations showing good agreement; 
experimental results are reported by Rempe et al. 15 

In a recent paper, a general method for the computation of various statistical 
properties of the click distribution was presented.16 This method does not resort to 
numerical simulations. Naturally, the efficiencies of the detectors (far from the ideal 
100%, unfortunately) are taken into account. A central tool used in those calcula
tions is a nonlinear master equation that governs the dynamics of the photon field in 
periods between detector clicks. The nonlinearity arises from the necessity to 
distinguish between the notions of observation and detection. When the detectors 
are active, all emerging atoms are observed, but only a fraction is actually detected. 
Most of the time, the experimenter is observing, but does not detect; he/she is 
l istening, but does not hear. 

In another approach based on the concept of the counting statistics of light 
beams, the atomic counting probability, the waiting-time distribution, and the 
"two-atom correlation" function for a Poissonian atomic beam exciting the microma
ser cavity are also calculated. In an analytic treatment, it is shown how the 
waiting-time distribution converges into the atom correlation function for vanishing 
detection efficiency. 11 

Under steady-state conditions, as mentioned above, the photon number and the 
photon statistics of the maser field are essentially determined by the dimensionless 
parameter e. The quantity (v) = (n)/N0, shows the following generic behavior (see 
FIGURE 3): It suddenly increases at the threshold value of e = 1 and reaches a 
maximum for 0 = 2. As 0 further increases, (v) decreases and reaches a minimum at 
0 = 211' and then abruptly increases to a second maximum. This general type of 
behavior recurs roughly at integer multiples of 211', but becomes less pronounced with 
increasing 8. The reason for the periodic maxima of (v} is that, for 8 = 211' and 
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multiples thereof, the pump atoms perform an almost integer number of full 
Rabi-flopping cycles and start to flip over at a slightly larger value of 0, with this 
leading to enhanced photon emission. The maser threshold at 0 = 1 shows the 
characteristics of a continuous phase transition, whereas the subsequent maxima in 
(v} can be interpreted as first-order phase transitions. In the intervals between the 
phase-transition points, the photon statistics is mostly sub-Poissonian. The field is 
super-Poissonian for all phase transitions,8·9 with the large photon number fluctua
tions above e = 2ir and multiples thereof being caused by the presence of two 
maxima in the photon number distribution P(n). They result from the fact that atoms 
in the upper maser level may or may not tip over to the lower level.8·9 

The phenomenon of the two coexisting neighboring maxima in P(n) was also 
studied in a semiheuristic Fokker-Planck (FP) approach.9 There,  the photon number 
distribution P(n) is replaced by a probability function P(v, T) with continuous 
variables T = t/Tcav and v(n) = n/N0., with the latter replacing the photon number n .  
The steady-state solution obtained for P(v, T) ,  T » 1 ,  can be  constructed by means of  
an  effective potential, V(v), showing minima at  positions where maxima of  P(v, T), 
T » 1 ,  are found. Close to 0 = 2ir and multiples thereof, the effective potential V(v) 
exhibits two equally attractive minima located at stable gain-loss equilibrium points 
of maser operation. The mechanism at the phase transitions mentioned is always the 
same: a minimum of V(v) loses its global character when 0 is increased and is 
replaced in this role by the next one. This reasoning is a variation of the Landau 
theory of first-order phase transitions, with .JV being the order parameter. This 
analogy actually leads to the notion that, in the limit N •• --+ oo, the change of the 
micromaser field around integer multiples of 0 = 2ir can be interpreted as first-order 
phase transitions. 

In the region of the first-order phase transitions, long field evolution time 
constants Tfield are expected. This phenomenon was experimentally demonstrated, as 
was related phenomena such as spontaneous quantum jumps between equally 
attractive minima of V( v ), bistability, and hysteresis.18 Some of these phenomena are 
also predicted in the two-photon micromaser.19 

If there are no thermal photons in the cavity-a condition achievable by cooling 
the resonator to temperatures below 100 mK-very interesting features such as 
trapping states show up.20 The investigation of the trapping states is discussed in 
detail in a recent review.21 

In the following, we would like to review two experiments, one on the measure
ment of the photon statistics of the one-atom maser and another one on the 
observation of quantum jumps and bistability in the maser field at the first-order 
phase transition points. 

THE PHOTON STATISTICS OF THE ONE-ATOM MASER FIELD 

As discussed above in the experiment on the photon statistics of the one-atom 
maser field, 15 the number N of atoms in the lower maser level is counted for a fixed 
time interval T roughly equal to the storage time Tcav of the photons in the cavity. By 
repeating this measurement many times, the probability distribution of finding N 
atoms in the lower level is obtained. The normalized variance Q. = [(N2) - (N}2 -
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(N)]/(N} is evaluated and is used to characterize the deviation from Poissonian 
statistics. A negative (positive) Q. value indicates sub-Poissonian (super-Poissonian) 
statistics, whereas Q. = 0 corresponds to a Poisson distribution with (N2) - (N)2 = 
(N). The atomic Q. can be related to the normalized variance Qr of the photon 
number (for details, see references 13, 15, and 16) .  

As an example, we discuss one result for the 63p31;r6ld512 maser transition with 
g = 44 rd/s; it is shown in FIGURE 4. Velocity-selected atoms with an atom-cavity 
interaction time of t;n1 = 35 µs were used. A very low flux of atoms of N0• > 1 is 
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FIGURE 4. Variance Q. of the atoms in the lower maser level as a function of the flux N •• (see 
also reference 15). 
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already sufficient to generate a nonclassical maser field. This is th� case because the 
vacuum field initiates a transition of the atom to the lower maser level, thus driving 
tbe maser above threshold. 

The sub-Poissonian statistics of the atoms near Nex = 30, corresponding to Q8 = 
-4%, is generated by a photon field with a variance (n2) - (n)2 = 0.3(n), which is 70% 
below the shot noise level. 15 Again, this result agrees with the prediction of the 
theory.9•10 The mean number of photons in the cavity is around 12 and 13 in the 
regions of Nex = 3 and Nex = 30, respectively. Near Nex = 15, the photon number 
changes abruptly between these two values. The next maser phase transition with a 
super-Poissonian photon number distribution occurs above Nex = 50. 

We emphasize that the reason for the sub-Poissonian atomic statistics is the 
following: A changing flux of atoms changes the Rabi-frequency via the stored 
photon number in the cavity. By adjusting the interaction time, the phase of the 
Rabi-nutation cycle can be chosen so that the probability for the atoms leaving the 
cavity in the upper maser level increases when the flux and therefore the photon 
number in the cavity are raised. We observe sub-Poissonian atomic statistics in the 
case where the number of atoms in the lower state is decreasing with increasing flux 
and photon number in the cavity. This feedback mechanism is also demonstrated 
when the anticorrelation of atoms leaving the cavity in the lower state is investigated. 
Measurements of this "antibunching" phenomenon have also been performed (see 
reference 21 for a detailed review and also reference 14). The fact that anticorrela
tion is observed shows that the atoms in the lower state are more equally spaced than 
expected for a Poissonian distribution. Thus, when two atoms enter the cavity close 
to each other, the second one performs a transition to the lower state with a reduced 
probability. 

The experimental results presented here clearly show the sub-Poissonian photon 
statistics of the one-atom maser field. In addition, the maser experiment leads to an 
atomic beam with atoms in the lower maser level showing number fluctuations that 
are up to 40% below those of a Poissonian distribution found in usual atomic beams. 
This is interesting because atoms in the lower level have emitted a photon to 
compensate for cavity losses inevitably present. Although this is a purely dissipative 
process giving rise to fluctuations, the atoms nevertheless still obey sub-Poissonian 
statistics. 

QUANfUM JUMPS OF THE MICROMASER FIELD 

The setup used for these measurements is similar to that described above. As 
before, 85Rb atoms were used to pump the maser. They are excited from the 5S1 12, 
F = 3 ground state to 63P312, m1 = ± Yi  states by linearly polarized light of a 
frequency-doubled cw ring dye laser. The polarization of the laser light is linear and 
parallel to the likewise linearly polarized maser field and, therefore, only .:1m1 = 0 
transitions are excited. Superconducting niobium cavities resonant with the transi
tion to the 610312, m1 = ± Yi states were used. The experiments were performed in a 3He/4He-dilution refrigerator with cavity temperatures T = 0.15 K. The cavity 
Q-values ranged from 4 x 109 to 8 x 109• The velocity of the Rydberg atoms and thus 
their interaction time t;n1 with the cavity field were preselected by exciting a particular 
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velocity subgroup with the laser. For this purpose, the laser beam irradiated the 
atomic beam at an angle of approximately 82°. As a consequence, the UV laser light 
(line width = 2 MHz) is blueshifted by 50-200 MHz by the Doppler effect, depend
ing on the velocity of the atoms. ts 

As before, information on the maser field and interaction of the atoms in the 
cavity can be obtained solely by state-selective field ionization of the atoms in the 
upper or lower maser level after they have passed through the cavity. The field 
ionization detector was recently modified, so there is now a detection efficiency of 
TJ = (35 ± 5)%. For different t;01o the atomic inversion has been measured as a 
function of the pump rate; the coupling constant is about g = 40 rd/s. 

Depending on the parameter range, essentially three regimes of the field 
evolution time constant Tfield can be distinguished. ts We restrict the discussion here 
only to the results for intermediate time constants. The maser was operated under 
steady-state conditions close to the second first-order phase transition (C in FIGURE 
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FIGURE S. Quantum jumps between two equally stable operation points of the maser field. 
The channeltron counts are plotted versus time (CTI = upper state, CT2 = lower state). 

3). The interaction time was 1;01 = 47 µs and the cavity decay time was Tcav = 60 ms. 
The value of N., necessary to reach the second first-order phase transition was N0, = 
200. For these parameters, the two maxima in P(n) are manifested in spontaneous 
jumps of the maser field between the two maxima with a time constant of = 5 s. This 
fact and the relatively large pump rate lead to the clearly observable field jumps 
shown in FIGURE 5. Due to the large cavity field decay time, the average number of 
atoms in the cavity was still as low as 0. 1 7. The two discrete values for the counting 
rates correspond to the metastable operating points of the maser, which correspond 
to = 70 and = 140 photons. In the Fokker-Planck description, the two values 
correspond to two equally attractive minima in the Fokker-Planck potential V(v). If 
one considers, for instance, the counting rate of lower-state atoms (CT2 in FIGURE 
5), the lower (higher) plateaus correspond to time intervals in the low (high) field 
metastable operating point. If the actual photon number distribution is averaged 
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over a time interval containing many spontaneous field jumps, the steady-state result 
P(n) of the micromaser theory is recovered. 

· In a parameter range where switching occurs much faster than in the case shown 
in FIGURE 5, the individual jumps cannot be resolved any longer owing to the 
reduced Ncx necessary in this case. Therefore, a different procedure has to be chosen 
for the investigation. Those experiments will not be discussed here (details are 
described in reference 18). 

LINE WIDTH AND PHASE DIFFUSION OF THE ONE-ATOM MASER 

In the following, we would like to discuss another special feature of the one-atom 
maser: the spectrum. This is determined by the decay of the expectation value of the 
electric field:21 

(E(t)) - L (n + 1 ) 1 12Pn.n+ 1 (t) . n=O 

Hence, the micromaser spectrum is different from the other effects discussed so 
far because it involves the off-diagonal elements Pn,n + 1 of the radiation density 
matrix rather than, for example, the photon statistics, that is, the diagonal elements 
Pn,n; moreover, it requires their time dependence rather than their steady-state 
values. It could also be shown that the line width D of the maser is given by 

D _ 4 . 2[ gtint ] 'Y(2nb + 1 )  
- r SID rr::i + 4( ) . 

4v (n) n 

For small gr/4/W, the sine function can be expanded; this leads to the familiar 
Schawlow-Townes line width, 

a + 'Y(2nb + 1 ) 
D = 4(n )  ' 

where 

The complicated pattern of the micromaser line width results, in part, from the 
complicated dependence of (n) on the pump parameter, which enters in the 
denominator. 

We emphasize that the one-atom maser line width goes beyond the standard 
Schawlow-Townes line width. The sine function suggests in the limit of large 
pumping parameters an oscillatory behavior of the line width confirmed in an exact 
numerical treatment. (For details, see also references 22 and 23.) 

It was pointed out that the maser l ine width can be measured when two 
phase-coupled microwave fields are used: one before the atoms enter the microwave 
cavity and one after corresponding, in principle, to a modified Ramsey setup. The 
first micromaser field creates a superposition of the two maser states being then 
probed by the s:!cond one. The first field is only applied for an initial period in order 
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to "seed" a phase in the micromaser cavity; in the second field, the phase diffusion is 
probed. This technique will provide the basis for future experiments to measure the 
line width. It was tested by computer simulations and analytical calculations that 
showed that coherent pumping of the maser leads to new and interesting phenomena 
(not discussed here). The first coherent injection for the one-atom maser was 
proposed in the paper by Krause et al. 24 and was discussed later in connection with 
the measurement of the phase diffusion line width. 25 Also, the phase dynamics of the 
maser field in steady-state operation was discussed by Wagner et a/. ;26 in this latter 
case, only one microwave field is used for probing after the micromaser cavity. The 
latter scheme was further pursued in connection with the entanglement of states by 
Wagner et al. 21 The entangled state of the atom-field system occurs because a 
factorization in the field and atom part is not possible. This fact leads to applications 
of the micromaser for Einstein-Podolsky-Rosen-type experiments and to nonlocal 
field correlations in two distant cavities. 

A NEW PROBE OF COMPLEMENTARI1Y IN QUANTUM 
MECHANICS-mE ONE-ATOM MASER AND ATOMIC INTERFEROMETRY 

. 

. .  

In one of the preceding sections, we discussed how a nonclassical field inside the 
maser cavity can be generated. Such a field is extremely fragile because any 
attenuation causes a considerable broadening of the photon number distribution. 
Therefore, it is difficult to couple the field out of the cavity while preserving its 
nonclassical character. However, what is the use of such a field? In the present 
section, we want to propose a new set of experiments performed inside the maser 
cavity to test the "wave-particle" duality of nature--or, better said, "complementar
ity"-in quantum mechanics. 

Complementarity lies at the heart of quantum mechanics: Matter sometimes 
displays wavelike properties manifesting themselves in interference phenomena and, 
at other times, it displays particlelike behavior, thus providing "which-path" informa
tion. No other experiment illustrates this wave-particle duality in a more striking way 
than the classic Young double-slit experiment. Here, we find it impossible to tell 
which slit that light went through while observing an interference pattern. In other 
words, any attempt to gain "which-path" information disturbs the light so as to wash 
out the interference fringes. This point has been emphasized by Bohr in his rebuttal 
to Einstein's ingenious proposal of using recoiling slits to obtain "which-path" 
information while still observing interference. The physical positions of the recoiling 
slits, Bohr argued, are only known to within the uncertainty principle. This error 
contributes a random phase shift to the light beams that destroys the interference 
pattern. 

Such random-phase arguments, illustrating in a vivid way how the "which-path" 
information destroys the coherent wavelike interference aspects of a given experimen
tal setup, are appealing. Unfortunately, they are incomplete: in principle, and in 
practice, it is possible to design experiments that provide "which-path" information 
via detectors that do not disturb the system in any noticeable way. Such "Welcher 
Weg" (German for "which path") detectors have been recently considered within 
the context of studies involving spin coherence.28 In this section, we describe a 
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quantum optical experiment29 that shows that the loss of coherence occasioned by 
"Welcher Weg" information, that is, by the presence of a "Welcher Weg" detector, is 
due to the establishment of quantum correlations. It is in no way associated with 
large random-phase factors as in Einstein's recoiling slits. 

The details of this application of the micromaser are discussed in reference 30. 
Here, only the essential features are given. We consider an atomic interferometer 
where the two particle beams pass through two maser cavities before they reach the 
two slits of the Young interferometer. The interference pattern observed is then also 
determined by the state of the maser cavity. The corresponding interference term is 
given by 

(4>lf). «1>�> 1 «l>li). «l>�f)), 
where I «l>Ji)) and 1 «l>Jf)) denote the initial and final states of the maser cavity j. _  

Let us prepare, for example, both one-atom masers in coherent states I ep>) = I llj) 
of large average photon number (n) = l ai 1 2 » 1 .  The Poissonian photon number 
distribution of such a coherent state is very broad, !lm = a » 1. Hence, the two 
fields are not changed much by the addition of a single photon associated with the 
two corresponding transitions. We may therefore write 

which to a very good approximation yields 

Thus, there is a "radiation" interference cross term different from zero. 
However, when we prepare both maser fields in number states l ni), the situation 

is quite different. Because the number states are orthogonal, the interference term 
disappears whenever a passing atom deposits a photon in one of the cavities; 
therefore, no interferences are observed in such a case. (For the case that thermal 
fields are present, see reference 29.) 

At first sight, this result might seem a bit surprising when we recall that, in the 
case of a coherent state, the transitions did not destroy the coherent cross term, that 
is, did not affect the interference fringes. However, in the example of number states, 
we can, by simply "looking" at the one-atom maser state, tell which "path" the atom 
took. 

The atomic interference experiment in connection with one-atom maser cavities 
is a rather complicated scheme for a "Welcher Weg" detector. There is a much 
simpler possibility that we will discuss briefly in the following. This is based on the 
logic of the famous "Ramsey fringe" experiment. In this experiment, two microwave 
fields are applied to the atoms, one after the other. The interference occurs because 
the transition from an upper state to a lower one may occur either in the first or in the 
second interaction region. In order to calculate the transition probability, we must 
sum the two amplitudes and then square, thus leading to an interference term in the 
same way as the two-slit experiment. (For details, see reference 3 1 .) 

We conclude this section by emphasizing again that this new and potentially 
experimental example of wave-particle duality and observation in quantum mechan
ics displays a feature that makes it distinctly different from the Bohr-Einstein 
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recoiling-slit experiment. In the_ latter, the coherence, that is, the interference, is lost 
due to a phase disturbance of the light beams. In the present case, however, the loss 
of coherence is due to the correlation established between the system and the 
one-atom maser. Random-phase arguments never enter the discussion. We empha
size that the argument of the number state not having a well-defined phase is not 
relevant here; the important dynamics are due to the atomic transition. It is the fact 
that "which-path" information is made available that washes out the interference 
cross terms.30 

EXPERIMENTS WITH TRAPPED IONS-THE PAUL TRAP 

In contrast to neutral atoms, ions can be easily influenced by electromagnetic 
fields because of their charge. Therefore, it is possible to isolate a single ion quite 
easily from its surroundings. In most of the experiments performed so far, the Paul 
trap is used. It consists of a ring electrode and two end-caps as shown in FIGURE 6. 
Trapping can be achieved if time-varying electric fields32 are applied between the 
ring and caps (the two caps are electrically connected). A de voltage, in addition, 
changes the relation of the potential depth along the symmetry axis (vertical 
direction in FIGURE 6) to that in perpendicular direction. The equation of motion of 
an ion in such a situation is the Mathieu differential equation, well known in classical 
mechanics, which-depending on the voltages applied to the trap (de and radio
frequency voltages)-allows stable and unstable solutions. Another way to achieve 
trapping is the use of a constant magnetic field aligned along the symmetry axis 
leading to the Penning trap. 1 .33 In this case, only a de voltage has to be applied 
between the ring and cap electrodes. 

In order to produce the ions in the Paul trap, a neutral atomic beam is directed 
through the trap center and is ionized by electrons. Unfortunately, the resulting 
trapped ions have a lot of kinetic energy rendering them useless for most applica
tions, such as spectroscopy; therefore, the ions have to be cooled. This is done by 
laser light . For this purpose, the laser frequency v is tuned below the resonance 
frequency, so the energy of the photon is not sufficient to excite the atom. Crudely, 
the ion can extract the missing energy from its motion and thus reduce its kinetic 
energy. In other words, the atomic velocity Doppler-shifts the atom into resonance to 
bridge the detuning gap .i between laser and resonance frequency and the atom 
absorbs the photon of momentum hk = hv/c. After the absorption process, the 
momentum of the atom in the direction opposite to the laser beam is reduced. This 
leads to a net cooling effect because the reemission of the energy due to atomic 
fluorescence is isotropic in space. The lowest temperature achievable is determined 
by the Doppler limit,34 which is in the milli-Kelvin region. The low temperatures can 
be obtained within a fraction of a second. 

The results discussed in this report were obtained using a Paul trap with a ring 
diameter of 5 mm and an end-cap separation of 3.54 mm.35 This trap is larger than 
most of the ion traps used in laser experiments. 1 ,36 The radio frequency of the field 
used for dynamic trapping is 1 1  MHz. The trap is mounted inside a stainless-steel, 
ultrahigh vacuum chamber. We can obtain storage times of hours using a background 
gas at a pressure of 10- 10 mbar. The ions are loaded into the trap by means of a 
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thermal beam of neutral atoms (magnesium atoms in our case), which are then 
ionized close to the center of the trap by an electron beam entering the trap through 
a small hole in the lower end-cap (see FIGURE 6). In order to not distort the trap 
potential, the hole is covered by a fine molybdenum mesh. The neutral Mg beam and 
the laser beam pass through the gaps between the end-cap and the ring electrodes. 
The laser frequency is shifted by an amount 11 below the 3S1 12 -+ 3P312 resonance 
transition of 24Mg+ at 280 nm to extract kinetic energy from the ions by radiation 

L a s er-Beam 

Camera  o r  
P h o t o mul t ip l i er  

E l e c t rons  A t omic -B e a m  
FIGURE 6. Sketch of the Paul trap. The fluorescence light is observed through a hole in the 
upper electrode. 

pressure as discussed above. In this way, a single ion can be cooled to a temperature 
below 10 mK. The fluorescence from the ions is observed through a hole in the upper 
end-cap, again covered by a molybdenum mesh. The large size of the trap allows a 
large solid angle for detecting the fluorescence radiation, either with a photomulti
plier or by means of a photon-counting imaging system. To observe the ions, the 
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cathode of the imaging syste� is placed in the image plane of the microscope 
objective attached to the trap; in this way, images of the ions could be obtained.37,38 

PHASE TRANSITIONS OF TRAPPED IONS 

The existence of phase transitions in a Paul trap manifests itself by significant 
jumps in the fluorescence intensity of the ions as a function of the detuning .:1 
between the laser frequency and the atomic transition frequency.35 These discontinu
ities are indicated in FIGURE 7 by vertical arrows and occur between two types of 
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FIGURE 7. Fluorescence intensity, that is, photon counts per second, from five ions as a 
function of the laser detuning �. The vertical arrows indicate the detunings where phase 
transitions occur. The horizontal arrow shows the range of detunings in which a stable five-ion 
crystal is observed. The spectrum was scanned from left to right. 

spectra: a broad one and a narrow one, analogous to the fluorescence spectrum of a 
single, cooled ion. We interpret the broad spectrum as a fingerprint of an ion cloud 
and the narrow spectrum as being characteristic for an ordered many-ion situation 
with a "single-ion signature". Thus, the jumps clearly indicate a transition from a 
state of erratic motion within a cloud to a situation where the ioµs arrange 
themselves in regular structures. In such a crystalline structure, the mutual ion
Coulomb repulsion is compensated by the external, dynamic trap potential. The 
regime of detunings in which such crystals exist is depicted in FIGURE 7 by the 
horizontal arrow. The existence of the two phases-crystal and cloud-can be 
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verified experimentally by direct observation with the help of a highly sensitive 
imaging system and theoretically by analyzing ion trajectories via Monte Carlo 
computer simulations.37,38 

· FIGURE 8 shows ion structures as measured with the imaging system. For the 
measurements, only a radio-frequency voltage was applied to the trap electrodes: in 
this case, the potential is a factor of two deeper along the symmetry axis rather than 
perpendicular to it and, therefore, plane ion structures are observed being perpen
dicular to the symmetry axis (for details, see references 35, 37, and 38). 

After we have accepted the existence of the ion crystals and the corresponding 
phase transitions, how do they actually occur? Would the cooling laser not force any 
cloud to immediately crystallize? A heating mechanism balancing the cooling effect 
of the laser must be the answer to this puzzle, but what heating mechanism? Since 
the early days of Paul traps, this so-called radio-frequency heating has repeatedly 
been cited.1 A deeper understanding, though, was missing and was provided only 
recently by a detailed study of the dependence of the cloud -+ crystal and crystal -+ 
cloud phase transitions on the relevant parameters.37-39 

The ions are subjected to essentially four different forces: the first one arising 
from the trapping field, then the Coulomb interaction between the ions, the laser 
cooling force, and finally a random force, arising from the spontaneously emitted 
photons. Using these forces, computer simulations of the motion of the ions can be 
performed.37 Depending on the external parameters such as the laser power, the 
laser detuning, and the radio-frequency voltage, the experimentally observed phenom
ena could be reproduced. Some of the results of the simulations are summarized in 
FIGURE 9, which plots the radio-frequency heating parameter K of five ions versus 
their mean separation.39 For zero laser power and large r, we did not observe any net 
heating of the ions. This is confirmed by our experiments, in which, even in the 
absence of a cooling laser, large clouds of ions can be stored in a Paul trap over 
several hours without being heated out of the trap. When the ions are far apart, the 
Coulomb force is small and, on short time scales, the ions behave essentially like 
independent single stored ions. For this reason, we call this part of the heating 
diagram the Mathieu regime.38.39 Turning on a small laser, the root-mean-square 
radius r reduces drastically, but comes to a halt at about 14 µ.m. At this distance, the 
nonlinear Coulomb force between the ions plays an important role and the motion of 
the ions becomes chaotic. In this situation, the power spectrum of the ions becomes a 
continuum leading to a radio-frequency heating process. 

Increasing the laser power further results in an even smaller cloud. The smaller 
cloud produces more chaotic radio-frequency heating, as seen clearly by the negative 
slope of the heating curve in the range of 8 < r < 14 µ.m. Finally, in the range of 4 < 
r < 8 µ.m, there is still chaotic heating, but the slope of the heating curve is positive. 
As a consequence of the resulting triangular shape of the heating curve at a laser 
power of about P = 150 µ. W, corresponding to r = 8 µ.m, the chaotic heating power 
can no longer balance the cooling power of the laser light and the cloud collapses into 
the crystalline state located at r = 3.8 µ.m. At this point, the amplitude of the ion 
motion is so small that the nonlinear part of the repulsive Coulomb force is negligible 
again; therefore, chaotic heating disappears and the phase transition occurs. 
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THE ION STORAGE RING 

A completely new era of accelerator physics could begin if it were possible to 
produce, store, and accelerate Coulomb crystals in the particle accelerators and 
storage rings. To work with crystals instead of the usual dilute, weakly coupled, 
particle clouds has at least one advantage: the luminosity of accelerators (storage 
rings) could be greatly enhanced and (nuclear) reactions whose cross sections are too 
small to be investigated in currently existing accelerators would become amenable to 
experimentation. 
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FIGURE 9. Average heating rate K of five ions in a Paul trap versus mean ion separation. The 
insets show the power spectrum and the corresponding stroboscopic Poincare sections (plane 
perpendicular to the symmetry axis) of the relative separation of two ions in three characteristic 
domains: the crystal state, the chaotic regime, and the Mathieu regime. The units on the axes 
are in µm. In order to calculate the power spectrum of the "crystal" shown on the left-hand 
side, the distance of the two ions was displaced by 1 µm from the equilibrium position. The 
Mathieu regime shown on the right is dominated by the secular motion. 

In the following, we would like to discuss very briefly our recent experiments 
using a miniature quadrupole storage ring. The storage ring is similar to the one 
described by Drees and Paul40 or by Church.4 1 We can observe that phase transitions 
of the stored ions and the observed ordered ion structures are quite similar to the 
ones expected in relativistic storage rings, although much easier to achieve . The 
motivation for building this type of small storage ring came from the fact that 
micromotion perturbs the ion structures in a Paul trap and only a single trapped ion 
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is free of micromotion. 1 The ring trap used consists of a quadrupole field, leading to 
harmonic binding of the ions in a plane transversal to the electrodes of the 
quadrupole and with no confinement along the axis (see FIGURE 10). Confinement 
along the axis is achieved, though, by the Coulomb interaction between the ions 
when the ring is filled; then, the total number of ions in the ring determines the 
average distance between them. 

A scheme of the ring trap used for our experiment is shown in FIGURE 10.42•43 It 
consists of the four electrode rings shown in the insert on the right. The hyperbolic 
cross section of the electrodes required for an ideal quadrupole field was approxi
mated by a circular one.  The experiments were also performed with Mg+ ions. The 
ions were produced between the ring electrodes by ionizing the atoms of a weak 
atomic beam produced in an oven, which injected the atoms tangentially into the trap 
region. The electrons used for the ionization came from an electron gun, where the 
electron beam of which was perpendicular to the direction of the atomic beam. A 
shutter in front of the atomic beam oven allowed the interruption of the atomic flux. 
The ultrahigh vacuum chamber was pumped by an ion-getter pump. After baking the 
chamber, a vacuum of 10- 10 mbar could be reached. Under these conditions, the 
number of ions stored in the trap stayed practically constant for several hours. 

When laser cooling of the ions is started, a sudden change in the fluorescence 
intensity is observed, resembling very much that.seen with stored ions in a Paul trap 
(FIGURE 7); this indicates a phase transition and -the formation of an ordered 
structure of ions. The ion structure can also be observed using an ultrasensitive 
imaging system. Pictures of typical ion structures are shown in FIGURE 1 1 .  The ions 
are excited by a frequency-tunable laser beam that enters the storage ring tangen-

Detector 

Atomic Oven 

Ionization 

FIGURE 10. Quadrupole storage ring. The cross section of the electrode configuration is 
shown in the insert on the right-hand side of the figure. The diameter of the ring is 1 13  mm and 
the distance between the electrodes is 5 mm. 
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a 

b 

c 

FIGURE I I . Crystalline structures of laser-cooled 24Mg+ ions in the quadrupole storage ring. 
At a low ion density (A = 0.29), the ions form a string along the field axis (a, upper) . Increasing 
the ion density transforms the configuration to a zigzag (b, middle ; A = 0.92). Al st i l l  highe r ion 
densities, the ions form ordered helical structures on the surface of a cyl inder, for example, 
three interwoven helices at A = 2.6 (c, lower). As the fluorescent light is projected onto the 
plane of obseivation in this case, the inner spots are each created by two ions seated on opposite 
sides of the cylindrical surface, resulting in a single bright spot. 

tially. In the linear configuration, the ions are all sitting in the center of the 
quadrupole field; therefore, they do not show micromotion and it is possible to cool 
them further to temperatures in the micro-Kelvin region. The new cooling methods 
proposed by Dalibard et al. 34 can be applied to the Mg+ ions so that the single-photon 
recoil limit can be achieved for the cooling process. At this limit, the kinetic energy of 
the ions is smaller than the energy resulting from the "zero-energy" motion of the 
harmonically bound ions; the ion structure then reaches its vibrational ground 
state-that is, a Mossbauer situation ic; generated. The observed ion configurations 
in the quadrupole ring trap are described in a recent paper by Birkl et al. 44 We will 
review the major results reported in this paper in the next section and will compare 
the observed ordered structure to the results of molecular dynamic calculations.45 
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FIGURE 12. Images and intensity profiles of (from the top) one shell plus string (a; X = 4.3), 
two shells plus string (b; X = 1 2.2), three shells plus string (c; X = 26), and four shells (d; 
X = 34). There are up to = 8 x 105 ions stored in the ring for the four-shell structure. 

ORDERED STRUCTURES IN THE STORAGE RING 

In the molecular dynamic calculations,45 a cylindrically symmetric, static har
monic potential is assumed to describe the confining field. Each particle is subjected 
to the Coulomb forces of all other particles and to the confining field. The classical 
equations of motion are integrated for a system of several thousand particles, starting 
with random positions and velocities, to give the t ime evolution of the system. 
Cooling of the stored particles is simulated by scaling down the resulting velocities of 
the stored particles at defined instants of the integration process. After sufficient 
cooling, ordered structures such as strings, zigzags, shells, and multiple shells should 
arise owing to the confining field's harmonic potential. Our experiments are well 
suited to checking these predictions. To compare the experimental results with 
theory, we can use the normal ized "linear particle density" ;>.., which is given by the 
ion density multiplied by the ratio of Coulomb repulsion and confining force of the 
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trap.45 Low A values correspond to a deep potential well or to a SRlall number of ions, 
resulting in an equilibrium structure closely confined to the field axis comprising a 
string of ions (FIGURE l l a) .  This is the micromotion-free configuration discussed 
ahove and the analogue of the single stored ion in a Paul trap, as in both cases the 
ions sit in the potential minimum and show no micromotion. For higher values of A, 
the structures extend more and more into the off-axis region, giving rise to (in the 
order of increasing A) a plane zigzag structure (FIGURE l lb) and cylindrical 
structures with the ions forming helices on cylindrical surfaces. The structure in 
FIGURE llc consists of three interwoven helices with six ions per pitch. The string 
and the zigzag have also been observed with laser-cooled Hg+ ions in a linear trap.46 

Increasing further the number of ions leads to structures with smaller spacings 
between the ions where we cannot optically resolve individual ions any longer. 
Images of these structures are presented in FIGURE 12. The radial intensity profiles 
displayed on the right-hand side of the figure provide information about the 
structures as they give a measure of the radial distribution of the ions. For increasing 
A, it becomes energetically more favorable to create a string inside the first ion shell 
(FIGURE 12a) to provide space for more particles. This results in a structure that is a 
three-dimensional analogue of the plane seven-ion crystal for a Paul trap (FIGURE 
8). The inner string turns into a second shell at higher densities; a string then 
develops inside this second shell (FIGURE 12b) and so on. FIGURES 12c and 12d show 
structures consisting of three shells plus string and four shells, respectively. We have 
been able to observe all possible structures, from the string up to four shells plus 
string. The formation of multiple-shell crystalline structures in the quadrupole 
storage ring contrasts with the observation of shell structures in Penning traps, where 
the ions do not occupy fixed positions inside the shel ls.47 

COMPARISON WITH THEORY 

The top panel of FIGURE 13 gives a summary of experimental data for all 
recorded images in which the ions were individually resolved. The depth of lfio of the 
potential well and the ion density per unit length are the experimental parameters. 
The theoretical boundaries between the different shell structures, predicted in 
reference 45 in terms of the functional dependence of A on lfio and the ion density, are 
given by the straight lines with constant A. String structures are expected for A < 
0.709, zigzag structures are expected in the range of 0.709 < A < 0.964, and single 
shells are expected in the range of 0.964 < A < 3 . 10. Many different structures that 
are degenerate in energy are expected within the single-shell regime. We obtained 
stable configurations near A =  1 .3 and A =  2.0 (two interwoven helices) and near A =  
3.0 (three interwoven helices-FIGURE l lc). The observed structures agree with the 
predicted scheme for a large range of experimental parameters, thus confirming the 
theoretical results. 

A summary of the experimental observations for ordered shell structures with up 
to four shells plus string and without resolution of individual ions is presented in the 
bottom panel of FIGURE 13. The depth lfio of the confining potential well is again one 
of the experimental parameters. As the ion density cannot be determined directly 
from the images, the radius p of the structures is used instead as the second 
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FIGURE 13. Summary of the experimental results. (Top) Individual ions resolved, where the 
observed structures are characterized by the ion density per unit length and the depth of the 
potential well ljio. These two parameters can be combined to give the normalized linear particle 
density A, which fully determines the ion configuration. The straight lines show critical A values 
separating the regions corresponding to the various theoretically expected structures. The 
observed configurations are labeled with different symbols for each structure. (Bottom) 
Individual ions unresolved, where the observed shell structures with up to four shells plus string 
are characterized by their radius p and the potential depth ljio. The various observed structures 
are again separated by lines of theoretically determined critical A values. 
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parameter. The theoretically predicted boundaries between .the different shell 
structures are again given as straight lines of constant >. following reference 45, 
where the dependence of p on >. and ljl0 was established. The observed ion configura
tions are seen once more to be determined by >. for a wide range of potential depths 
and ion densities. 

Our results have important implications for two very different fields. Consider 
first the physics of low-energy particles: an ion string in a quadrupole ring, being free 
of micromotion, can be cooled to its vibrational ground state in the confining 
potential using recently proposed laser-cooling techniques.34 This would place the 
string in the Lamb-Dicke regime with a vanishing first-order Doppler effect because 
the spatial amplitude of the motion is smaller than the wavelength of the atomic 
transition. Furthermore, the second-order Doppler effect, which can only be reduced 
by further cooling, also disappears, making the stored ions very interesting for 
frequency standards. The large number of ultracold ions available in the ring will 
lead to a high signal-to-noise ratio. Finally, cooled ions in the ring represent a 
quantum object of macroscopic dimensions-a Wigner crystal. In this limit, the 
photon recoil will disappear because the ion crystal experiences the Mossbauer 
effect. 
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INTRODUCTION 

One of the most puzzling aspects of quantum theory is the implementation of the 
measurement process on a quantum mechanical system and the back-action of this 
process on the system. A gedankenexperiment from the early days of quantum 
mechanics dealing with this problem was proposed by Heisenberg in 1927. 1 In order 
to understand the localization process of an electron in a Wilson cloud chamber, he 
chose an operational approach of dividing the whole observation of the particle 
trajectory in a sequence of fundamental quantum.process�s. 

The position of the particle in each fundamental step is described by its 
center-of-mass wave function, which may have a certain spatial extension. A funda
mental step of the measurement is the observation of scattered light from this 
particle. The uncertainty !::.x of the measurable origin of the scattered wave is given 
from classical optics by the wavelength W' of the light used for the illumination of the 
particle. One expects a localization of the object because a position measurement is 
carried out that should cause the wave function to collapse to a position distribution 
with an extension on the order of W'. 

To analyze the measurement process, the action of the scattered light on the 
momentum of the particle has to be studied. Because l ight carries not only energy, 
but also momentum, one can calculate the momentum transfer from the light field to 
the object. If the microscopic particle is smaller than the wavelength of the scattered 
light, the scattered wave may be described in a spherical basis. To evaluate the 
momentum distribution of such a light field, this mode has to be projected onto a 
basis of plane waves. Assuming momentum conservation for the scattering process, 
the momentum distribution from that projection must be transferred to the object 
under observation. For the most efficient measurement process, the influence on the 
object for a certain amount of information achieved should be as small as possible. 
Because the amount of momentum contained in the scattered wave increases with 
the amount of scattered light, the minimum possible momentum transfer to the 
particle is given by the minimum detectable amount of light necessary for the 
localization of the particle, which is a single photon. The momentum uncertainty 
contained in a spherical wave of one photon is just given by !:lp = h/cP, where kP = 
2v/>..P and W' is the wavelength of the photon. 

This gedankenexperiment is in fact not restricted to a certain combination of 
quantum objects and scattering waves, but may be extended to a whole variety of 
pairs. In the following, we use an atom as the quantum object and a spontaneously 
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emitted photon in the place of the scattered photon. This allows the investigation of a 
single measurement step in the Heisenberg gedankenexperiment: 

THE ATOM-PHOTON PAIR 

Ideally, an atom in our experiment2 is prepared into a state where the external 
motion has to be described by a discrete set of plane waves; the initial position is 
therefore unknown. Furthermore, the internal structure of the atom is prepared into 
an excited state, allowing for a single spontaneous emission of a photon. After the 
decay of this excited state, the atom should show the momentum uncertainty in its 
center-of-mass motion, reflecting the momentum distribution of the emitted photon 
(see FIGURE 1 ) . In a first step, we do not look at the photon and observe only the 
momentum distribution of the atom. 

l e ) 

"' ,.. 

FIGURE 1. An atom prepared in a plane-wave state for its external motion undergoes a 
spontaneous emission and shows afterwards a transverse momentum distribution. The photon 
emitted in this process should allow the determination of the position of the atom with an 
accuracy close to the wavelength of the light. 

In the following, we restrict our quantum mechanical treatment to the motion of 
particles in the transverse direction z. The effect of the spontaneous emission on the 
wave function may be described as a loss of transverse coherence. A quantity to 
describe the coherence properties of a wavelike phenomenon is the two-point 
correlation function of a field. Physically, this function describes the possibility of 
interference between Huygens waves originating from separated points of the space 
that is covered by the wave function or a statistical mixture of wave functions. It will 
be called the transverse coherence function in the following.3 

If the field state is described by a classical mixture of momentum eigenstates, the 
coherence of a field 'l'(z) only depends on the separation between two testing points. 
The coherence function is then identical to the autocorrelation function of the field:4 

g(l >(z) = J 'l'(z '  - z)'l'*(z ' )  dz'. 
After the spontaneous emission of a photon from an atom, the initial coherence 

function has to be multiplied by the Fourier transform of the momentum distribution 
of the atom, which is complementary to the momentum distribution /(k,) of the 
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spontaneously emitted light. In an idealized version of our experiment, we would like 
to begin with a plane-wave state, corresponding to a 8-function-shaped momentum 
distribution. The initial coherence function would be 1 for all distances z and, after 
the spontaneous emission of a photon, it will be 

g( l >(z) = Y(/(k,)] ,  

where Y denotes the Fourier transform. Assuming a spontaneous emission with an 
isotropic emission probability at a fixed frequency, the one-dimensional momentum 
distribution is given by a square function ranging from -hkP to hkP. The extension of 
the corresponding coherence function is reduced to a small region, with a separation 
AP of the first nodes of g<O(z). Furthermore, the coherence function shows an 
osci llatory behavior in the wings (see FIGURE 2). 

A proposal for the measurement of this coherence function by Sleator et al. 5 uses 
the visibility of an atomic far-field diffraction pattern from a double slit, where the 
atom emits a photon. Because this photon allows localization of the atom, the 
visibility of the diffraction pattern should be reduced according to the amount of 
position information extractable from the photon. For certain ratios of the slit 
separation and the wavelength of the emitted photon, ther.e should be an inversion of 
the contrast of the far-field diffraction pattern (see F19URE 3a) and, for a large slit 
separation, the visibility should completely vanish because "which path" information 
is accessible to an observer. A detailed theoretical treatment of the expected 
diffraction pattern can be found in reference 6. 

An operational definition of the visibility of a double-slit diffraction pattern uses 
the Fourier component of the intensity distribution at the transverse momentum, 
hid, where d is the slit separation. The coherence function, g(l >(z), is simply given by 
this visibility as a function of the slit separation, d. A negative value of g( l >(z) 
corresponds to a contrast inversion of the diffraction pattern. 

Because it is difficult to realize a double slit with a variable slit separation 

g(I)  (z) 
initial 

j,t 
1 

initial 
j,t 

final 
j,t 

z 

FIGURE 2. Momentum distribution /(k,) and coherence function g(ll(z) of the atom before 
and after the spontaneous emission. 
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(a) 
atomic beam 

(b) 
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lk>0 -
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FIGURE 3. Diffraction of atomic matter waves from (a) a double slit and (b) an on-resonant 
standing light wave, in both cases followed by a spontaneous emission of a photon. 

experimentally, we have chosen a different approach to generate a diffraction 
pattern . The diffractive structure is formed by a resonant standing light wave with a 
variable period (see FIGURE 3b ) . This setup allows not only a continuous variation of 
the diffraction period and thereby a continuous measurement of g( l l(z), but also 
shows a higher transmission for the atoms than a double slit. Furthermore, the 
excitation of the internal degrees of freedom of the atom is contained in this 
interaction region. In addition, the spontaneous emission process is clearly separated 
from the excitation process, if the interaction time between an atom and the light 
field is shorter than the natural lifetime of the excited state. 

EXPERIMENTAL IMPLEMENTATION 

A sketch of the experimental setup is shown in FIGURE 4. The atomic species 
used are helium atoms excited into the metastable triplet state 3S1 within a gas 
discharge atomic source with a mean velocity of 2150 m/s. The plane-wave state for 
the external motion of the atom is prepared by collimation of the atomic beam using 
two narrow slits ( 10 µ.m) with a separation of 1 10 cm. The variable-period standing 
light wave was produced by reflecting a Gaussian laser beam under a variable angle a 
off a mirror close to the second collimation slit . For such a setup, in a region close to 
the mirror surface, the desired light field configuration with the variable-period 
standing light field is produced. The light was generated by an LNA-laser tuned to 
the 2(3S1 )-2(3P2) transition in helium at 1083.3 nm. During the interaction of the 
atom with the light field, the probability of a spontaneous emission of a photon is very 
small because the interaction with the light field takes place within a time of 1 7  ns, 
whereas the spontaneous emission should occur on a time scale of the natural 
lifetime of T = 100 ns of the excited state. Therefore, the region of spontaneous 
emission is clearly separated from the standing light field, but still in the near field of 
the diffraction from the diffracting region. The diffraction pattern itself was detected 
in the far field of the light grating, so the momentum distribution /(k, ) was converted 
in a position distribution. The atomic distribution was mapped out using a 5-µ.m
wide scanning slit and a channeltron detector. 
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FIGURE 4. Setup for the atomic beam experiment (a). Atoms are diffracted from a standing 
light wave with a variable period (b). 

To extract the coherence function from the diffraction patterns, the excitation 
process has to be analyzed in more detail. For a light field in resonance with the 
atom, the interaction can be treated by regarding the local eigenenergies of a 
two-level atom coupled to a light field as optical potentials7 for the local energy 
eigenstates, I ± ) = ( 1 /./i.)( lg) ± l e)). The effect of diffraction of the atoms from this 
light field can be explained by regarding the interaction region as a phase object for 
the matter wave. The phase acquired by atoms in the two energy eigenstates depends 
on their transverse position, 

�<l>Az) = ±a sin(k5z), 

where a is a constant containing the l ight field strength and the interaction time, and 
k5 = kP/cos(a). Because the atoms are in the ground state of the two-level model 
system before the interaction, and this ground state does not coincide with an 
asymptotic energy eigenstate for a light field exactly on resonance, the atomic state 
has to be projected onto the dressed states. After the interaction, these states with 
their different acquired phase shifts have to be reexpressed in the bare state basis of 
the atom. The resulting total transverse wave function of the atom after the 
interaction takes the form, 

'l'(z) = cos[a · sin(k5z)] · lg) + i sin(a · sin(k5z)] · l e). 

With this procedure, atoms in the ground state leaving the interaction region will 
be diffracted into orders with a transverse momentum of even multiples of hk5, 
whereas the atomic component in the excited state will be diffracted into the odd 
momentum orders. By this formalism, one can see that, for the laser tuned on 
resonance, half of the atoms leave the interaction region in the ground state and half 
of the atoms do so in the excited state. 

Because only the atoms in the excited state emit a photon, the observed visibility 
for the diffraction patterns has to be corrected for the contribution of atoms leaving 



KURTSIEFER �t al.: A HEISENBERG MICROSCOPE 167 

the interaction zone in the ground state. This correction was carried out in a 
reference diffraction experiment, where the light field was detuned from the atomic 
resonance. In this case, the asymptotic energy eigenstates of the atom light interac
tion are the bare states and, for a sufficiently large detuning, the atoms travel 
adiabatically through the light field. Therefore, the atoms leave the interaction 
region in the ground state and, for a proper choice of the light field intensity and 
detuning, the ground state contribution to the diffraction patterns with the resonant 
laser is reproduced. 

MEASUREMENT OF THE WSS OF COHERENCE 

FIGURE 5 shows two pairs of measured atomic diffraction patterns for different 
standing light wave periods. In both, the visibility for the laser on resonance is 
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FIGURE S. Experimental diffraction patterns for  a standing wave period of  0.53>.P (a )  and  >.P 
(b). The diffraction orders come closer together with increasing period and the visibility is 
reduced for an on-resonant laser. 
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smaller due to the loss of transverse coherence by spontaneous emission. For a larger 
period (FIGURE Sb), the diffraction orders come closer together because the far-field 
pattern represents the momentum distribution. Also, a reduction of the visibility for 
the laser off resonance at a large standing wave period can be seen, which is due to 
the limited momentum resolution in the experiment corresponding to 0.5hk:P. To 
correct for that contribution to the visibility and to take into account the finite size of 
the diffraction pattern, we normalized the visibility of the excited state component to 
the visibil ity of patterns with an off-resonant laser. This final visibility value for atoms 
in the excited state is plotted in FIGURE 6 as a function of the standing wave period. 
Experimentally, we have access to gOl(z) for z ranging from W' /2 to 3/2W', correspond
ing to incident angles a varying from 0° to 700 of the laser beam on the mirror. The 
solid line in the figure shows the one-dimensional Fourier transform of the angular 
emission, characteristic for the atomic transition 2(3P2)-2(3S1), taking into account 
the excitation with linearly polarized light. This theoretical description explains the 
measured visibility within our experimental accuracy. 

To our knowledge, this is the first study of the loss of spatial coherence of an 
atomic wave function, induced by a single spontaneous emission of a photon . 

• 

CORRELATION EXPERIMENTS 

In the experiment described previously, we have observed the momentum of the 
atom after a spontaneous emission of a photon and have ignored the information 

g (1) (z) 

-OA ---r------.-+----.-----+--...--1-----.-----1 
1 .0 1 .5 2.0 2.5 3.0 

z in units of / . ..P /2 
FIGURE 6. Normalized visibility of the diffraction pattern from a standing light wave. The 
solid line shows the theoretical prediction for the transverse coherence function after one 
spontaneous emission of a photon and is in good agreement with the experimental data. 
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FIGURE 7. Experimental setup to observe conditional diffraction patterns. The photon could 
be measured either directly in a momentum basis without collection optics or in a position basis 
using a microscope. 

carried away by the photon. The uncertainty in the momentum of the emitted photon 
was transferred in an uncertainty of the atom, leading to a loss of coherence of the 
atomic wave function. 

Nevertheless, the spontaneous emission process may be described in a slightly 
larger space, where not only the atomic wave function is regarded, but also the wave 
function of the photon. To experimentally observe and exploit the entanglement of 
this two-particle system, one has to carry out correlation experiments between atoms 
and photons. 

The experiments that we have in mind will again be implementations of well
known gedankenexperiments in quantum mechanics. In a first step, we want to look 
at conditional diffraction patterns if the spontaneously emitted photon is detected in 
a momentum basis. Analogous to the discussion of "Einstein's recoiling slit" 
gedankenexperiment, the momentum transfer onto the atom by the spontaneous 
emission is well known (e.g., zero transverse momentum transfer for the experiment 
sketched in FIGURE 7). Therefore, the conditional atomic diffraction pattern should 
show fully visible interference fringes, whereas the total atomic patterns should be 
washed out completely for certain ratios of slit separation and optical wavelength. 

Such an experiment could be extended to a real Heisenberg microscope if, by 
means of an imaging system, the spontaneously emitted photon is measured in a 
position basis. Because it could be distinguished whether the atom went through a 
node or an antinode of a standing light wave, or through one or the other of a pair of 
mechanical slits, the conditional diffraction pattern is expected to be washed out . By 
restricting the amount of position information from the spontaneous emission 
process-for example, by reducing the size of the aperture of the microscope 
objective-the conditional interference pattern should be reestablished. In the limit 
of a very "poor" microscope, the aperture is small and this experiment becomes 
equivalent to an experiment where the momentum of the photon is measured. This 
experiment may therefore be regarded as a quantum eraser for the atomic wave 
function. Such experiments have been discussed in the context of micromasers.8 

Because the combined system of atom and photon forms a clean two-particle 
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entangled state, one could also realize an EPR-type experiment and search for 
violation of Bell-type inequalities. In order to test local hidden variable theories, the 
detection of the atom and the choice of the measurement basis for the photons 
should happen in two spacelike regions.9 One difficulty in an atom-photon EPR 
experiment would be the very different propagation velocities of atoms and photons 
from the origin of the EPR pair to the detection systems. Therefore, the photon must 
be delayed by nearly the atomic transit time to the detector, for example, in a 
reasonably long fiber (about 100 km for our current experimental parameters), 
before the choice of the measurement basis and the detection is carried out (see 
FIGURE S). 

To perform correlation measurements between atoms and photons in atomic 
beam experiments, a clear association between an atom and a spontaneous emitted 
photon has to be ensured. Therefore, either the velocity of the atom has to be known 
accurately or the density of pairs in time has to be low enough to identify pair events. 
The way that we plan to achieve the pair identification uses a time-of-flight (t1) 
velocity measurement of the atoms by means of a pulsed atomic source and a 
time-resolved atom detection. 

Applying such a technique to our standing light wave diffraction setup, we were 
able to obseive a time-resolved diffraction pattern (see FIGURE 9). This technique 
allows identification of high diffraction orders; which will be washed out due to 
chromatic effects for usual atomic beam sources. In the picture shown, the diffraction 
orders form straight lines because the de Broglie wavelength scales linearly with the 
time of flight from the source to the atomic detector. Our next experimental step will 
be the detection of a spontaneously emitted photon and a correlation of the atomic 
diffraction pattern with the photon momentum. 

diffraction structure f:
,
��tion � ••• • • • • • • •• 

� 
Atoms .. imaging system 

� photon atom detector 
fiber detection 
delay lin::::e_r------,__ 

. • • •  t base selector 

. . . •  t i  
I 
I 
I 
I - - - - - - - - - -> coincidence unit -<- - - - - - - - - - - - - - - - - - - -' 

FIGURE 8. A possible experimental setup for an EPR experiment between an atom and a 
photon. The spontaneously emitted photon is coupled into a pair of fibers to allow the atom to 
get close to a momentum detector. Then, a measurement basis for the photon is chosen and the 
particles are detected in two spacelike regions. 
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FIGURE 9. Time-resolved diffraction pattern from an off-resonant standing light wave. The 
additional time information allows us to measure the velocity of each atom to a high accuracy; 
therefore, the high diffraction orders could clearly be resolved. The line at t1 = 0 is caused by 
UV photons generated together with the atoms in our source. The events at t1 = 50 µs may be 
caused by electrons generated by de-excitation of some atoms at collimating microstructures. 

SUMMARY 

In conclusion, we were able to prepare a two-particle entangled state between an 
atom and a single photon. The entanglement was produced by a single spontaneous 
emission out of an excited internal state. We were able to measure the loss of spatial 
coherence of th� atomic wave function by this emission process. This emission 
process may be looked at as an elementary process for the localization of an atom 
with the accuracy of the optical wavelength of the photon. Therefore, the classical 
gedankenexperiment of a Heisenberg microscope could be realized experimentally 
with the tools of atom optics. Furthermore, EPR-like experiments could be carried 
out with one massive and one relativistic particle. We were able to realize a first step 
towards such correlation experiments by the measurement of a time-resolved 
diffraction pattern. 
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INTRODUCTION 

The basic idea of Stern-Gerlach Interferometry (SGI) is to produce entangle
ment of the spin variables with the external and internal motion variables. By 
appropriate spin projections in the preparation and analysis, one gets a signal in 
which phase information is related to the evolution of the different magnetic levels 
within the interferometer. 1 •2 This al lows a transfer of coherence from the spin 
variable (whose coherence is determined mainly by the direction of the magnetic 
field) to the external motion variables. As shown in the following section, the 
extracted phase information is strongly dependent on the way that the entanglement 
is being produced. No entanglement means pure spin precession and the experimen
tal results give no information on the external motion. On the other hand, strong 
entanglement yields maximum information on the Fourier component distribution of 
the external motion wave function. In this report, we do not focus on potential 
applications of atomic interferometry,3 but rather limit ourselves to the discussion of 
the coherence problems that can be studied in the experiments presently performed. 

SIGNAL AND ATOMIC BEAM CORRELATION FUNCTION 

Principle 

Stern-Gerlach Interferometry follows the same pattern as interferences with 
polarized light. A collimated beam of spin-carrying atoms is first polarized. It passes 
then through a low-magnetic-field Majorana region where a coherence superposit ion 
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of spin states is built. The beam then passes through a magnetic field that produces 
phase shifts in the various spin components. Each state of the coherent superposition 
undergoes a specific dynamical evolution during its voyage throughout the magnetic 
field profile. The beam crosses a second Majorana region that produces a second 
coherent superposition and the beam is analyzed by a second polarizer. Finally, the 
number of atoms in the selected state is recorded by means of a detector of 
macroscopic extension. 

For an incoming spin polarized wave function of magnetic number v entering the 
first Majorana region, that is, 

I � � [ -� (E')] 'l'in(r, t) = dkc(k) exp ik . r - i -,; ' (1) 

where E stands for the kinetic energy of the atom of mass M, one gets an outgoing 
spin analyzed wave function of magnetic number µ: 

� f � � . [ �  (E') � ] '1':;:,(r, t) = � dkc(k)9':::fl'::! exp ik . r - i -,; + im�(k, u , r, t) ' (2) 

where �(k, u, r, t) is the phase shift for an incoming m polarized plane wave scattered 
by the magnetic field profile; u is either the magnetic.Jield direction (when it is kept 
constant) or the effective one (when there is a change in the magnetic field 
direction4•5); and the 9''s are the Wigner rotation matrices describing the Majorana 
region effect. The Zeeman energy shifts occurring in our experimental conditions are 
in the ne V range and thus are very small compared to the kinetic energy of the atoms 
(in the eV range). Henr�. phase shifts can be determined using Glauber's high
energy approximation.6 For a ray that passes at point r at time t, one has 

� ( 1 ) J;.w �(k, r, t) = - ltu _,. dsV[X(r, s) ; Y(r, s) ; Z(r, s) ; T(r, t, s)] , (3) 

where k is directed along w, V stands for the Zeeman energy, v stands for the group 
velocity, and s stands for the abscissa along the ray axis. X, Y, Z, and T are space and 
time coordinates in the fixed reference frame used to compute the magnetic 
potential energy. 

To get the signal S, one has to average 1 w:1 (r, t) 1 2 over the spatial and temporal 
resolution of the detector, which can be described by a function R of time and 
position. One gets 

s = � f dkdk'MV,:,,..c (k)c(k ')  I ardtR(r, t) exp[ili«l>(k, k ' , m, m ' , r, t)], (4) 
m,m' 

where M",,!'"m• is the product of the relevant Wigner matrix elements and 

� � � � [(E - E' )t ] � � i:\«l>(k, k ' , m, m 'J, t) = (k - k' ) ·  r - " + m�(k, r, t) - m '�(k' , r, t) . 

Because the detector aperture is macroscopic, one is led to assume that after 
integration the only nonzero contribution to the signal will be provided by the 
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flGURE 1. Experimental setup. 

stationary part of .:1<1> with respect to position and time. This condition gives the 
relations between k and k ' and E and E' and enables us to carry the integration over 
the primed variables. Indeed, assuming that the detector extension is infinite, one 
gets 
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FIGURE 2. Experimental demonstration of the scalar Bohm-Aharonov effect using two 
different velocity selections [(a) 10 km/s; (b) 5 km/s]. The current height in the Helmholtz coils 
is scanned from 0 to 910 mA. 
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As 11 == 1 1 ' and w == w ' . one gets  the shared phase factor, 

. .. . . (El1t) 
lf>(k , ;. 1 > = lfl(k ' , r, 1 > = if(k ) = k · M - T . (6) 

where the notat ion of rc l'crcncc 5 is used; the signal expression is thus 

S = l':, J dkM�r,,, .c (k )c(k + M) exp[i(m - m ' )if(k )] . 
"' · "' 

(7) 

Equat ion 7 shows that  hy an appropriate choice of the experimental conditions, that 
is, or the spat ia l  and t i me depe ndence or the magnetic field phase object, it  is possible 
to ga i n  informa t ion on the hcam coherences from the interference patterns obtained 
hy scann ing the magnetic field amplitude of the phase object. 

/Jispersivity Considerations in Continuous versus Pulsed Operation 

There is st i l l  another issue dese rving examination: the wave number ( i .e . ,  
velocity) depende nce of phase shifts and momentum exchange.  This is conveniently 
handled in the  framework of Glauher's approximation . The key point is to determine 
if i t  is possible to perform the change of variable T = :�Iv in tfle determination of the 
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FIGURE 3 .  Demonstrat ion o f  t h e  longitudinal  Stern-Gerlach effect for t he same velocity 
select ions as in FIGURE 2. The current  in the Helmholtz coils is scanned from -50 mA to +50 
mA. 
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FIGURE 4. SG interference patterns obtai ned by r.ca nning the con t inuou� cu rrent  in an 
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i n  the Helm hol tz coi l�.  The SAB phase �hift i�  zero ( i) ,  "II' ( i i ) ,  and 511' ( i i i ) .  

phase shift and to el imin ate the k-dependencc in  the in tegration. When one deals 
with a pulsed magnetic field localized i n  a speci fic space region, i t  is clear that we can 
disregard the velocity dependence if the pulse d u ration is less than the transit  t ime 
th rough the magnetic profile.  The result ing phase sh ifts and thus  the fringe spaci ng 
i n  this type of experiment a re vel ocity- independent  and the contrast of the in terfer
ence patterns is not l i mited by the beam coherence lengt h.7  I f  static f ields arc used, 
then the k-depcndence re mains.  

Bxperimental Setup 
The general scheme of our experimental  proced u re has al ready been described i n  

detail  i n  previous pu blications.2•4·s F1nu1rn l gives a schematic view of our appa ra tu!. .  
Metastable 1-1 •  atoms arc prod uced by a 1 20-cV electron bombardment of a thermal 
H2 beam. The time-of-fl ight (TOF) distribu tion is roughly Maxwel l i a n  with a most 
probable TOF being a ve loci ty of I 0 km /s, corrc!.ponding to a de Brogl ie wa velength 
of about 40 pm. The polarizer and the analyze r arc of the Lamb-Retherford type; 
that is, they consist of a transverse 600-G magnetic fie ld acting ove r a 20-mm length 
that  quenches one of the magnetic sublevcls .  The Majorana regions con!.ist of two 
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v = IOkm/s 
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(i) 

(ii) 

FIGURE 5. Patterns obtained for a pulsed transverse gradient field. The current in the 
anti-Helmholtz coils is scanned from 0 to 800 mA. 

zones, past which the magnetic field has a weak magnitude and a rapidly changing 
direction. The central region where the phase object lies is protected by a triple 
Mumetal shielding. The magnetic field inside this region is produced by a pair of 
electric coils of appropriate geometry. In the pulsed regime, a metallic spring 
protects the beam from stray electric fields in order to avoid cancellation by eddy 
current of the high-frequency components of the magnetic field. The H*-sensitive 
detector consists of a capacitor in which the electric field quenches the metastable 
hydrogen atoms. The induced Lyman a emission is recorded by means of a channel 
electron multiplier. Several different experiments can be performed by pulsing, in a 
definite time sequence, the various elements of the system (source, phase object, 
detector). 

EXPERIMENTAL RESULTS 

Magnetic Field Profile Produced by Two Parallel Rectangular Helmholtz Coils 

In this configuration, there is neither momentum nor global energy transfer. 
Furthermore, if the magnetic field is pulsed while the atoms are in the vicinity of the 
middle of the profile, no momentum transfer occurs at all and one is faced with a 
scalar Bohm-Aharonov (SAB) effect.7-9 As shown in FIGURE 2, the phase shift is 
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velocity-independent. As a consequence of this type of pulsed experiment, the 
number of visible fringes is not related to the coherence length of the beam. On the 
contrary, if the magnetic field is static, momentum transfers occur at both ends of the 
profile (although of opposite values); this is a longitudinal Stern-Gerlach effect. The 
phase shift is inversely proportional to the velocity and thus the number of visible 
fringes is limited by the velocity dispersion. This is demonstrated in FIGURE 3, from 
which one can infer that the beam coherence length is about 200 pm under the 
present experimental condition. If one combines pulsed and static magnetic fields, 
important information on the finesse of our device can be extracted from the 
experimental results. For example, when a 'IT or 51T SAB phase shift is superimposed 
on the Stern-Gerlach dispersive pattern (FIGURE 4), there is an inversion of the 
fringes and a shift of the envelope. This shift is a signature of the finesse of our 
apparatus as it can be modeled by adding a random contribution to the phase shift. 
This shift is not related to the atom wave packet envelope. 

<•> O 

(c) e 

-60 0 60 

i l (mA) 
FIGURE 6. Central bright fringe attenuation as a function of the current in the anti-Helmholtz 
coils for different collimation holes: (a) hole diameter is 4 mm, (b) hole diameter is 2 mm, (c) 
hole of inner diameter is 3 mm and outer diameter is 4 mm. Dashed lines are theoretical 
calculations. 
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Magnetic Field Profile Produced by Two Parallel Rectangular Coils in the 
Anti-Helmholtz Configuration 

The magnetic field produced by this wire configuration is a quadrupole deflector. 
It has been used in transverse Stern-Gerlach effect studies by Bloom and cowork
ers. to Because the magnetic field gradient is radial, an incoming plane wave is 
transformed into a conical outgoing wave. Our phase object acts like an axicon. In 
this configuration, transverse momentum transfer occurs and thus effects related to 
the beam collimation and to the transverse coherence are observed. If pulsed 
transverse gradients are used, there is no velocity dependence in the momentum 
transfer as demonstrated in FIGURE 5. If static transverse gradients are used, a 
velocity dependence occurs. The sensitivity of the method to the beam collimation is 
shown in FIGURE 6. In spite of the smallness of the de Broglie wavelength (in the pm 
range) compared to the collimation-hole diameter (in the mm range), the attenua
tion of the central fringe visibility as a function of the gradient amplitude is modified 
by the choice of the macroscopic collimation. 

(i) 

(ii) 

0 100 200 300 

i 1or i 2  (mA) 

FIGURE 7. Interference patterns obtained using the funnel-like Helmholtz coils. The mag
netic field is pulsed so that VB/B = 10-2 mm- 1  for case 1 (i) and VB/B = 2.5 x 10-3 mm- 1  for 
case 2 (ii). 
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Magnetic Field Profile Produced by Funnel-like Helmholtz Coils 

In this configuration, the magnetic field profile in the central part of the phase 
object indicates that the atoms experience a longitudinal gradient in the pulsed 
regime. This gives rise to an energy transfer and a longitudinal momentum transfer. 
The ensuing modifications of the interference patterns displayed in FIGURE 7 can be 
related to the correlation length of the beam. Under the experimental conditions of 
case 2 (VB/B = 2.5 x 10-3 mm-1 ), the correlation length is determined to be 0.4 
mm (the momentum exchange being 2.5 mm-1 ) . 

CONCLUSIONS 

We have shown here that Stern-Gerlach Atomic Interferometry is an effective 
tool for the study of wave function correlation functions. It gives qualitative and 
quantitative results without involving much technology. The versatility of our method 
opens a wide range of opportunity for studying quantum phase problems that can be 
understood in a quite direct way. 
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INTRODUCTION 

For many years, the field of cavity quantum optics has borrowed from the already 
well established two-level system literature. The Jaynes-Cummings modeJI is essen
tially an optics generalization of the equations governing an isolated spin evolving in 
a magnetic field. One can see the influence of this in the names of the equations in 
cavity QED (the optical Bloch equations and the Bloch SP.here are two obvious 
examples). One of the fascinating recent prediction$. Of the dynamics of an atom 
interacting with a coherent state field in a cavity is tlie existence of quantum 
"collapse" and "revival" effects.2 

In this report, I would like to discuss the possibility that quantum revivals are 
being seen in a recent experiment performed by Nunes et al. 3·4 investigating the 
longitudinal spin diffusion coefficient of dilute concentrations of 3He in 4He. In the 
process of these measurements, they noticed a quite peculiar response of the 
magnetization to an inverting pi pulse. Immediately following the pi pulse, there is a 
short free-induction decay that lasts about 100 ms. This is followed by approximately 
1 .4 seconds of no signal apart from noise. At 1 .4 seconds, a rapidly oscillating signal 
starts to appear. The signal has the appearance of a burst lasting about 0.2 seconds. 
These bursts, recurring periodically, are separated by intervals of no signal. The 
width of subsequent bursts increases and the amplitude decreases until neighboring 
bursts eventually merge together into a long tail, which subsides 10-15 seconds after 
the initial pi pulse (see FIGURE 1 ). 

Before discussing any mechanisms to describe this phenomenon, it is probably 
best to describe the apparatus and procedure used. Nunes et al. were investigating 
the longitudinal spin diffusion of spin-polarized 3He-4He solutions. The general 
procedure used was as follows. A sample cell was constructed that consisted of two 
chambers (for a diagram of the cell, see reference 4 ). The upper chamber was about 
ten times larger than the lower one. The lower chamber was surrounded by a 
resonant cavity that was attached to the NMR spectrometer for the experiment, and 
the two chambers were connected by a narrow tube. The experimental procedure 
was to invert the spins in the lower chamber and to observe how the magnetization in 

0This research was supported through the MacArthur Professorship endowed by the John D. 
and Catherine T. MacArthur Foundation. 
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the lower chamber relaxed back to its original state. It was during this portion of the 
experiment that the interesting bursting behavior was first observed. 

An explanation for this behavior was proposed by Nunes et al. 3•4 They hypoth
esized that this behavior was the result of the inherently nonlinear spin dynamics in 
the system. In fact, in this system, a purely longitudinal gradient in the magnetization 
becomes unstable against transverse perturbations. The results of a simple model 
based on this hypothesis reproduce the initial time delay before the first burst and 
the long-time scale behavior following the burst, but they do not reproduce the 
interesting bursting behavior of the experimental signal. Using a simple Jaynes
Cummings type of model, I can reproduce the bursting behavior seen in FIGURE 1 .  
This report will discuss the development of such a model. 

-
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FIGURE 1 .  Experimental signal amplitude for 350-ppm 3He in 4He solution at 10.0 mK. (From 
reference 3.) 

DEVELOPING A MODEL HAMILTONIAN 

The pattern of bursts in Nunes' experiment is very reminiscent of quantum 
revivals in cavity QED. In fact, if one naively plugs some numbers into the standard 
setup for a quantum revival experiment, one can quite easily generate a signal that 
closely mimics FIGURE 1. One difficulty in attributing the phenomenon to a simple 
Jaynes-Cummings revival is that the quantity that undergoes the revival phenomenon 
is the spin, whereas in this experiment it is the current in the circuit that is measured. 
It would be nice to formulate the problem in a manner so as to examine the time 
development of the measured current rather than focus on the behavior of the spins. 
To do this, I will first derive a Hamiltonian that represents the interaction between 
the spins and the circuit coupled to the cavity. I will quantize this Hamiltonian in 
terms of the circuit variables (charge and current). From this quantized Hamiltonian, 
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I will examine the time development of the expectation value of the current starting 
with the circuit having a classical-type current and the spins in the cavity being 
inverted. 

The NMR resonator and circuitry prior to signal amplification in Nunes' experi
ment can be modeled as an LRC circuit with a gas of dipole moments in the inductive 
element. I would like to consider, at first, a series LC-circuit that has a classical 
resonance frequency of Wo· In the inductive element, place a magnetic dipole with 
moment m. The total energy of the circuit and the dipole is then 

(1)  
where B is the total magnetic field acting on the dipole. The total magnetic field on 
the dipole arises from two sources. The first i s  a large static magnetic field, B0, that is 
placed perpendicular to the inductor axis ( -z direction). The second is the magnetic 
field (in general, time-varying) generated by the inductor, parallel to the axis of the 
inductor, and of magnitude (assuming that the inductor is a solid object whose size 
does not change) 

LI 
B;nd =

A , (2) 

where L is the inductance and I is the current (q ) . With this and by using the fact that 
m = (lry/2)u, we can write the energy as 

(3) 

Now, I will use the standard identifications to write down a Lagrangian and 
obtain a canonical momentum conjugate to q. First, the "kinetic energy" is identified 
with the bilinear terms in q. The potential energy is then the rest and the Lagrangian 
is given by 

- (�) • 2 - ( q2 ) - (',.v) (f,.yL ) . 2' - 2 Lq 2C 2 Boerz + 2A qax. 

From this Lagrangian, the canonical momentump = (iJL/aq) is 

. (lt-yL) 
p = Lq + 2A CTx. 

(4) 

(5) 

We can then use this fact to write down the Hamiltonian and we find that it is very 
similar to that obtained in the QED case: 

(6) 
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The Hamiltonian can be expanded and, after removing all constant terms, it can 
be written as 

(7) 

It appears that I have started the quantization procedure already as there are some 
Pauli matrices in the above equation. I could as well replace these by a classical 
dipole moment and the circuit would then be completely classical. As it stands, it is a 
classical circuit being driven by a quantum spin. Now, using standard canonical 
quantization of the circuit variables, we introduce the commutator (q, p) = ilt and 
expand equation 7. The Hamiltonian above is similar to a driven harmonic oscillator; 
thus, in quantizing it, we introduce the familiar annihilation and creation operators: 

a = { 
JZ
�

w
J (Lw0q + ip ),  

at = (-1-) (Lw0a - ip) . 
J21tLw0 

These operators then have the standard commutation relation [a , at] 
equation 7 can be written, using the rotating wave approximation, as 

H = ltwoata + (It;) Bo<Iz + ig(acr+ - atcr_), 

where the coupling 

g = (�) J¥ . 

A GENERAL SOLUTION 

(8) 

(9) 1 and 

(10) 

At this point, it is just a matter of obtaining a solution for the time-development 
operator associated with equation 10. Using techniques originally proposed by 
Walls5 and used by Yoo and Eberly,6 we split the Hamiltonian into two pieces. The 
first piece depends only on constants of the motion and, as such, adds only an overall 
phase to the wave function. The second contains the nontrivial time development of 
the system. In the limit of exact resonance, the splitting described above is identical 
to working in the interaction representation. The Hamiltonian is then 

where 

H1 = ltwrfv, 

Hu = ltfl.u+cr- + ig(acr+ - atcr_), 

with N = ata + cr +<I- and fl. = -yB0 - wo. 

(11)  

(12) 
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Because H1 is a constant of the motion, we consider a representation where the 
time-development operator is given in terms of H11 alone. Looking at equation 13, it 
is easy to see that the Hilbert space can be broken down into two-dimensional 
subspaces with eigenstates 

I l )<nJ = 1 l , n), 

1 2)(n) = I f  , n  - 1 ), 

(13) 

(14) 

where the arrows designate the z-component of the spin and n is the number of 
quanta in the circuit. Because the different n-subspaces are independent, we need 
only solve for one. Following standard procedures (equation 6), we obtain a 
time-development operator, 

( i/1 ) . 
cosfnt + Zfn 

sinfnt 
cfi�l(t) = e-(r/1/2)1 • (l8n) , 

fn 
smfnt 

wherefn = ,!in + (112/4) and gn = ,/iig. , .  

THE SOLUTION FOR THE CIRCUIT CURRENT 

(15) 

Let us now examine what the above time-development operator predicts for a gas 
of N independent spins, initially pointing in the positive z direction and interacting 
with a circuit initially in a coherent state with respect to the annihilation operator: 

1 '11(0)) = e-( 1°1212) ± (!!:...) I j ,  n). 
n=O ./iif (16) 

Assuming the cavity resonance is tuned to the spin energy splitting, we obtain, from 
operating equation 15 on the above, 

I ilJ(t)) = e-Ual2i2l ± [ a" ] (cos g,,t I 2)(n) - i sin 8n( I l )<nl). (17) 
n=O J(n - 1) !  

From equation 17, let us  calculate the expectation value for the current in  the 
circuit. From equation 5, we see that the current is given by 

I = (£) - (�) Ux· (18) 

Calculating the expectation values, (p) and (ux) are quite straightforward and, after a 
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bit of tedious algebra, we obtain 

(e-1a12) " [ lal2n ] { 
· . . 

(I)= I0 
-1-1 L 

/ii cosgnt cosgn+il + frl+T smgnt smgn+il a n=I Jn!(n - 1)! 

where I0 = J2hw0/L. 
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FIGURE 2. Time-dependence of current in a circuit initially in a coherent state with ii = I 00. 

The above equation can be simplified greatly by introducing the dimensionless 
parameter,�= (-y!A)JhL/2w0, for thengn = NE;,,,(WQ/2). Furthermore, if we assume 
that I a I is large, the only terms that contribute significantly to equation 19 will be 
those near I a 12 and we can approximate [rl+T - /ii + (I /2/ii). With these identifi-



188 ANNALS NEW YORK ACADEMY OF SCIENCES 

cations, equation 19 becomes 

(e-1°12) ,. [ I a I 2n ] (Nl;,owrl.) 
(/) = /0 � � (n _ 1 )! 

cos 4/n . (20) 

With equation 20, we can investigate the behavior of the current in this simple 

model. First, notice that it is a sum of cosines, each of incommensurate period. This 

sort of sum is what leads to the familiar quantum revivals in the Jaynes-Cummings 

model. Following along the lines of reference 6, we would expect to find revivals 

whenever the difference between the two most important terms was a multiple of 2'1T. 
The important terms, of course, are those near n = I a 12• Again, in the limit of large 

ii, this criterion becomes 

10 

-<: 
c: 0 

-10 

(N�owr/) (_!_ __ I ) 
= Z

'IT. 4 
./H Fn+1 

(21) 
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FIGURE 3. Time-dependence of current in a circuit initially in a coherent state with ii = 400. 
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0 2 4 6 8 10 
Time(sec) 

FIGURE 4. Time-dependence of current in a circuit initially in a coherent state with n = 700. 

This leads to the prediction that revivals occur with period 

l&rrii3/2 
tR = 

Ni;owo . 
(22) 

In order to get a feel for what this model predicts, let us introduce some 

experimental parameters. Most of the necessary numbers can be obtained from 

reference 4. One important number, however, is available only in reference 3. This is 

the capacitance of the circuit, which was measured to be 0.23 nF. From this and the 

fact that the resonance frequency was 293 MHz, we find that /0 = 1.1 nA, fo = 3.12 x 

10-14, and tR = 0.63 s. Using these numbers in equation 22, we can obtain a 

relationship between ii and N that must be satisfied to match the experimentally 

observed signal: 

n312 

N 
= us x 10-1. (23) 
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There is still one free parameter in the model and I use it to match the number of 
distinct revivals in the experimental trace. FIGURES 2-5 demonstrate how the 
number of distinct revivals depends on the initial intensity of the current in the 
circuit (ii). Notice that increasing ii while keeping tR fixed increases the number of 
distinct revivals-specifically, for ii= 900, the number of revivals matches quite well 
the experimental signal, whereas, for small ii (FIGURE 2), there is barely one visible 
revival. 

20 

< 
5 0 1--9-----<-� 

-20 

0 2 4 6 8 10 
Time (sec) 

FIGURE 5. Time-dependence of current in a circuit initially in a coherent state with n = 900. 

FIGURE 5 appears to match the experimental signal the best. Using this as a 
rough estimate, I predict that 2.3 x 1011 3He atoms are involved in creating this 

signal. This is to be compared with 1.3 x 1017 atoms in the cavity. Furthermore, 

ii = 900 implies an initial current in the circuit of approximately 33 nA. One final 
prediction that can be made, and possibly verified from the raw data, is the base 

frequency. This is given by the frequency component of the most important term in 
the sum (equation 20). I predict this to be approximately 17.53 kHz. 



SCHAUER: QUANTUM REVIVALS 191 

DISCUSSION 

I would now like to discuss what these results imply for the usefulness of this 
model in describing the long-time scale oscillations observed in Nunes' experiment. 
Qualitative comparison of FIGURES 1 and 5 is quite striking. However, direct 
comparison of the two plots is impossible as Nunes' data have been mixed down to 80 Hz and the base oscil latory frequency has been lost. Also, whereas the revivals in 
my model are strictly periodic, the first burst in FIGURE 1 is delayed by more than 
twice tR. It is not clear if this delay can be reproduced in the simple model that I have 
described. Furthermore, one must ask the following question: what does resistance 
do to this model? At first sight, resistance should basically add an overall multiplica
tive exponential decay to equation 20. The problem that one finds is that one must 
have a resistance of the order of 5 nO in order for the time scale of this model to be 10 seconds. This is clearly unreasonable; thus, in order for this model to be useful, 
some way must be found to extend the strength of the signal for 10 seconds. 

One way to extend the signal lifetime within this model would be to consider a 
model of correlated spins rather than the one of an independent gas of spins 
described here. One could do this in such a way that there are not actually N definite 
spins interacting with the circuit, but rather N effective spins. It is possible that this 
sort of coherence could counteract the dissipation in the resistor and extend the 
lifetime of the revivals. 

In conclusion, the behavior of the 3He atoms is highly suggestive of quantum 
revivals. The exact mechanism for these revivals is likely more complicated than the 
simple model presented in this report, but this simple model seems to capture the 
essence of the experimental behavior. 
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INTRODUCTION 

Since the first demonstrations of matter wave interferometry with electrons1-5 
and neutrons,<HI matter wave interferometry carried out with these elementary 
particles has been a central tool for investigating many fundamental aspects of 
quantum mechanics9-14 and for making new types of precision measurements. 15 New 
nanofabrication technology16·17 and applications of the mechanical forces of light to 
atoms1B-22 have more recently led to the development of atom optics that manipulate 
atom de Broglie waves coherently. 16, 19.23-41 

Atom interferometers, in particular, are having a significant impact on applica
tions to precision and fundamental measurements. Recent experiments by our group 
using fabricated gratings exploit a physical separation between interfering matter 
waves to make precision measurements of absolute energy shifts of individual states. 
This is in contrast to resonance and spectroscopic techniques that rely on energy 
differences between states. Using this separated path approach, we have made a 
measurement of the atomic polarizabil ity of sodium with a precision exceeding 20 
times the best previous direct measurements.42·43 Similar experiments have demon
strated rephasing of different magnetic sublevels from their different Zeeman 
interactions44•45 and determinations of the real part of the forward scattering ampli
tude for various gases for the first time.46 Using Raman pulses to spatially separate 

0This work was supported by the Army Research Office (Contract Nos. DAAL03-89-K-0082 
and ASSERT 29970-PH-AAS), the Office of Naval Research (Contract No. N00014-89-J-
1207), and the Joint Services Electronics Program (Contract No. DAAL03-89-C-0001).  Support 
was also provided by the Universitiit Innsbruck (to J. Schmiedmayer and S. Wehinger), a 
National Science Foundation graduate fellowship (to T. D. Hammond), and an APART 
Fellowship of the Austrian Academy of Sciences (to J. Schmiedmayer). 
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two internal states of the atom, Weiss et al. 47 have made measurements of the photon 
recoil of cesium atoms with the objective of improving the: precision of the fine
structure constant. This configuration has also been used to measure fringe shifts 
from the local gravitational acceleration g.37 Related experiments using an optical 
Ramsey fringe configuration have permitted a measurement of the Sagnac phase of 
atoms.38 Experimental demonstrations of the scalar Aharonov-Bohm effect have also 
been performed using atom interferometry48 and topological effects have been 
observed in a longitudinal Stern-Gerlach atom interferometer.49 Optical Ramsey 
fringe interferometry has also been used to measure the phase shift due to the ac 
Stark effect.39.so,s 1 The shift in fringes from the de Stark effect has also been observed 
in a double-slit apparatus using laser-cooled atoms using a gradient electric field,s2 

but without the precision inherent in our separated path measurements. 
The use of atoms, and now molecules,s3.s4 in quantum interferometry experi

ments raises questions regarding the possible limitations to observing interference 
with complex particles. We consider the consequences of the particle 's size exceed
ing its de Broglie wavelength, limitations on particle size for observing interference 
from physical constraints in the interferometer, and the consequences of interfering 
particles containing a large number of unselected internal states. We performed 
experiments using our three-grating, achromatic interferometer to investigate some 
of these limitations imposed by complex interfering particles. High contrast fringes 
of both atoms and molecules were observed even though the de Broglie wavelength 
of the atoms (>.. = 0. 16  A) was much smaller than the physical size of the sodium 
atoms (3 A).42 Interference fringes with molecules were also observed with contrast 
nearly identical to that for atoms, showing that a large number of internal states do 
not reduce contrast.S3 Illuminating the atoms in the interferometer with a laser 
beam, we observed both loss of fringe contrast and contrast revivals when a single 
resonant photon was scattered from the two interfering atomic paths.ss We also 
discuss applications to atomic and molecular physics and fundamental measure
ments in quantum mechanics. This includes precision measurements of the polariz
ability of atomic sodium and the index of refraction of a gas for sodium matter waves. 
Future experiments are discussed, including accurate tests of predicted topological 
or geometric phase shifts, such as Berry's,s6 or the Aharonov-Casher (AC) phase.s7 

TABLE 1 summarizes some of the important characteristics of atom interferom
etry. Most notable for atoms are large source brightness, the wide variety of atomic 
interactions that can be applied and the corresponding variety of atom optic 
components, the broad range of atomic parameters, and the ability to apply interfero
metric approaches to make completely new types of precision measurements in 
atomic and molecular physics. Difficulties with atoms include complicated fabrica
tion or implementation of optical elements, more complicated interpretation of 
fundamental experiments, lack of nondiffractive beam-splitting elements, and (cur
rently) small diffraction angles. Although neutron and electron interferometry have 
provided a wealth of important results,7• 1 1-13·ss-os neutron sources have lower inten
sity ( - 101s s- 1 sr- 1 ) and both types of interferometry employ effectively elementary 
particles with only two accessible internal states. 
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THE MIT ATOM INTERFEROMETER 

Our interferometer is a three-grating Mach-Zender type with a diamond path 
configuration (FIGURE 1) that produces a robust white fringe.32 We use 200-nm
period silicon nitride transmission gratings that separate the centers of the interfer
ing beams by 60 µm with argon carrier gas. The fabrication of these gratings using 
nanometer-scale electron beam writing techniques is described in references 24 and 
32. A supersonic sodium beam, typically using argon as the carrier gas, provides an 
intense source of atoms ( > 1018 atoms s- 1 sr- 1 , with an effective source diameter of 
-500 µm) with v = 1000 m/s and a corresponding de Broglie wavelength of �dB -
0. 16  A. The full width at half-maximum (FWHM) of our velocity distribution is 

TABLE 1. Characteristics of Atom Interferometers 0 

Sources 
Source Brightness 
de Broglie Wavelength 

Useful Atomic Properties 
Mass 
Magnetic Moment 
Polarizabilities 
Types 

Other Properties/ Applications 

Supersonic, effusive, laser-cooled, and trapped atoms 
Up to 1020 s- 1 cm-2 sr- 1 (supersonic) 
-0. 1-5.0 A (effusive and supersonic sources) 
- 100 nm (laser-cooled atoms) 

1-250 amu 
fl. = 0-104 fi.N 
a = 0.5-tOO A3 
Bosons and fermions (density effects and statistics) 
Rich internal structure 
Interacts with light and RF 
Molecules 
Atomic physics-precision measurements, collisions, fun

damental measurements 
Approaches with Gratings Fabricated (!J.d/d - 10-4): flexible design, species-

independent, ground state interactions 
Crystal surfaces (!J.dld - 10-1): robust, ground state only 

(not yet realized) 
Light gratings (!J.d/d - 10- 10): species-specific, internal 

state--<lependent, easily integrated with laser-cooled and 
trapped atoms, high precision, with timed gratings 

0The phase coherence !J.d!d is the ratio of deviation of the grating element tJ.d to the grating 
period d. 

6-v/v < 8% at 3-bar Ar pressure. The mean velocity (de Broglie wavelength) of the 
beam can be changed by using different seed gases. A rhenium hot-wire detector 
provides high detection efficiency, a response time of - 1  ms, and a background as 
low as < 10 cps. The fringe amplitude of the interferometer is greater than 2000 cps 
with close to 45% contrast (FIGURE 2), allowing a phase determination of le!'S than 
10 milliradians in 1 minute. 

As shown in FIGURE 1, an interaction region or septum consisting of a 10-µm
stretched metal foil can be inserted behind the second grating so that portions of the 
atom wave in the two arms of the interferometer pass on opposite sides of the foil. 
Insertion of the barrier typically produces less than a 10% reduction in contrast with 
argon carrier gas. The physical separation of paths in our interferometer is unique 
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FIGURE 2. Interference pattern from 40 seconds of data ( 1  second per point). A constant 
background of 200 cps has been subtracted. 

and of central importance to many experiments, as will be discussed in greater detail 
later. 

QUANTUM INTERFERENCE WITH COMPLEX PARTICLES 

An important goal of our work is the investigation of fundamental aspects of 
quantum interference.66·67 Experimentally, we have already shown that interference 
can be obtained even when the size of the particle ( - 3 A for Na atoms) is larger than 
its de Broglie wavelength (0. 16 A).32•42 Interference was not degraded by using 
molecules, in spite of their large numbers of internal states that are closely spaced in 
energy.53 The situation is different when we couple internal states to a reservoir. 
Recent work by our group has shown that the contrast and phase of fringes produced 
when scattering a photon from interfering matter waves depend upon the mean 
separation of paths, exhibiting both revivals and loss of contrast as a function of path 
separation. We discuss these and other possible limitations to producing interfer
ence in atom interferometers. 

Particle Size and Internal States 

Interference with composite particles whose de Broglie wavelength >.de is smaller 
than the particle size is expected to occur without degradation of fringe contrast 
because the wave functions of the bound constituent particles develop a common 
phase that corresponds to the motion of the center of mass. The formation of fringes 
depends upon the internal states of the atom along a given path being the same (or at 
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least nonorthogonal in Hilbert space) or upon both paths undergoing the same 
transition. 

However, physical size can limit the abil ity to obtain interference fringes in a 
more practical sense. Consider the interferometer in FIGURE 3, in which particles 
pass through three gratings. Particles of diameter s certainly must be smaller than the 
grating period d in order to pass between the grating bars. To produce interference 
fringes with large grating slits, the single-slit diffraction angle 9dif "" '11.dald from the 
first grating must still be large enough to illuminate the adjacent slits in the second 
grating as shown in FIGURE 3. An interferometer operating in this near-field regime 
is called a Talbot interferometer and is characterized by having diffraction orders 
that cannot be spatially separated. If the diffraction angle were reduced further, the 
pattern at the second grating would be a classical Moire pattern and we would not 
observe interference fringes. (In the Moire case, particles traverse essentially 
line-of-sight trajectories throughout the interferometer so that one could not recom
bine different diffracted paths and observe a phase shift .) The condition that the 
diffraction pattern from a single slit at the first grating extend over at least one pair of 
adjacent slits at the second grating implies that L » d2/'ll.da > s2/'ll.d8, where L is the 
spacing between the first and second gratings (recall ing s is the particle diameter and 
d is the grating period) .  The quantity LTal = d2/'ll.da is called the Talbot length, which 
arises in the theory of near-field imaging of periodic structures.68,69 Using the de 
Broglie relationp = h/'11.da and assuming a spherical particle with mass density p, we 
arrive at the inequality 

- _ , _ 

e dir 
I 

L 
I 

(8ht) l /5 
s « -

' 
1Tp 

I 
I 

(1) 

I 

I 
I 
I 
I 

FIGURE 3. Three-grating (Talbot) interferometer showing the minimum single-slit diffraction 
angle Odif required to produce fringes as depicted by dashed lines. The particle size s is l imited 
by the slit size . 
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where t is the traversal time between gratings. The reason that the traversal time and 
not the grating separation L appeal"S in equation 1 is that the maximum width of the 
single-slit diffraction pattern that appears at the second grating is limited essentially 
by the momentum uncertainty, !J.p = h id, which is the grating momentum. 

Equation 1 states that it would be impossible to produce interference fringes with 
a diffractive interferometer using large particles unless the traversal time was long 
enough. For example, an interferometer with a one-second transit time (between 
gratings) using sodium particles would require particle diameters smaller than 70 nm 
or clusters of about 8 x 107 sodium atoms in order to produce interference fringes. 
Even if we waited one year, we would observe interference from sodium clusters with 
a diameter of less than about 2 µ.m or 1 .9 x 1012 sodium atoms. 

Optics and Interferometry with Molecules 

By using mechanical light forces together with our fabricated grating technology, 
we have obtained molecular diffraction and interference with a contrast essentially 
equal to that of atoms. These measurements demonstrate that interference is not 
affected by large numbers of internal states so long as the evolution of the molecular 
internal states is not dependent upon path in the interferome'ter. 

In these experiments, an intense beam of sodiurri'atoms and dimers is produced 
in an argon- or krypton-seeded supersonic expansion through a 70-µ.m nozzle.53 
Pressure and temperature of our source were optimized to yield Na-dimer concentra
tions of nearly 30% of the detected beam intensity with an FWHM velocity 
distribution of about 8%. This corresponds to a translational temperature of about 2 
K (0. 17 me V) and rotational and vibrational temperatures at roughly 30 K (2.6 me V) 
and - 100 K (8. 7 me V), respectively. 70 The much larger 0.8-e V binding energy of Na2 
(see reference 70) implies that the molecules are essentially in their vibrational 
ground state; however, the population of the ( j, mi) rotational states is on the order 
of 103. 

To achieve larger diffraction angles, experiments were performed using Kr
seeded beams that have a mean velocity of about 750 m/s (�Na = 0.23 A, �Naz = 0. 1 15 
A), compared to 1000 m/s (�Na = 0. 16  A, �Naz = 0.08 A) using argon. The Na atoms 
were removed from the beam with light scattering forces. The atoms were pushed 
sideways out of the collimated beam with a resonant "pushing laser beam" of 
circularly polarized light resonant with the 3S112, F = 2 -+ 3P312, F' = 3 transition of 
atomic Na. FIGURE 4a is a diffraction pattern obtained with a microfabricated grating 
with a 100-nm period, showing well-separated atomic peaks and molecular peaks 
with half the diffraction angles. FIGURE 4b shows the molecular peaks when the 
pushing laser is applied. 

We have demonstrated a molecular interferometer consisting of three 200-nm
period nanofabricated diffraction gratings using a Mach-Zender geometry employed 
in our atom interferometer. We have checked that the observed interference is from 
molecules using two methods: (i) we introduced a laser (decoherence laser) that 
would destroy any atom interference pattern by scattering resonant light from the 
split atomic wave function inside the interferometer and observed no change; (ii) we 
observed that the best contrast of the molecular interference pattern is closer to the 
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collimation axis, which would be expected from the reduced diffraction angle with 
molecules. 

Coherence Loss by Photon Scattering 

We have investigated the loss of coherence between different diffracted wave 
function components when resonant single photons are scattered from the interfer
ing atoms passing through our three-grating interferometer. In our experiment 
(FIGURE 5), single photons are scattered from atoms some distance behind the first 
grating where the path separation is x0• The fringe contrast and phase are measured 
as a function of separation. Complementaricy would lead to the conclusion that 

> 
x 

)- . 
y 

FIGURE S. Light scattering experiment in a white fringe interferometer: Scattering a photon 
produces a phase shift in each de Broglie wave path that depends upon the path difference of 
the photon. The resulting photon-atom state is an entanglement of scattered photons and phase 
difference between atom paths. The pathsABD' and AED' correspond to the classical paths of 
the centers of the atom wave packets after receiving a photon recoil kick. 

fringe contrast must disappear when the mean separation between the two possible 
paths is greater than the wavelength of light because, in principle, one could observe 
from which path the photon was scattered. The physical origin of the loss of 
coherence is that the dynamics of measuring the position of the atom by scattering a 
photon of wavelength >..p produces a corresponding position uncertainty >..P in the 
atom. This is simply a consequence of the momentum uncertainty -h/>..p produced 
by the photon recoil as considered original ly by Heisenberg.71 Thus, the wave 
function becomes uncorrelated on length scales exceeding >..p, resulting in a loss of 
fringe contrast when the peak separations are of the same order. Zurek has 
considered specific cases of quantum measurements, which are closely related to our 
experiment, in which interactions with the environment produce a loss of coherence 
or "decoherence" of the measuring apparatus. 61.12 
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Our photon scattering experiment shown in FIGURE 5 has two essential features: 
first is that the effects of displacement of atomic trajectories by the photon
momentum kicks and shifts in the phase of the atom fringes are decoupled because 
the displacement of the atomic center of mass over the length of the interferometer 
from the recoil kicks is much larger than the displacement of the fringes at the third 
grating, as will be shown; second is that the transverse width of the de Broglie waves 
at the point of scattering can be much larger than Xp. Experiments in which fringe 
contrast is reduced by a spontaneously emitted photon after an atom passes through 
a Young's double slit have been considered theoretically by Sleator73 and Walls.74 
Clauser75 and Sterr39 have also demonstrated complete loss of fringe contrast in an 
interferometer by light scattering when the path separation was much greater than 
an optical wavelength. The Konstanz group76 has recently performed experiments in 
which atoms initially excited in optical standing waves spontaneously decay, reducing 
the contrast in their diffraction patterns. However, the loss of contrast in both the 
experiments and the theoretical analyses could be interpreted as a result of smearing 
of fringe or diffraction patterns caused by photon recoil displacement of the atomic 
center of mass. 

We illustrate the problem theoretically by evaluating the corresponding atom 
wave function phase difference between both paths in FIGURE 5 at D when a photon 
scattered in a particular direction. We later sum over all scattering directions to 
obtain the total fringe contrast and phase. Scattering a photon from the atom imparts 
an additional linear phase variation onto the atom wave function. This additional 
quantum mechanical phase is consistent with momentum conservation and arises 
from the interaction of the atomic dipole with the (incident and scattered) light field 
at a particular point in space. 

For simplicity, we consider a wave packet incident on the first grating with a 
well-defined spatial peak and momentum that splits into two packets that propagate 
along the various + 1 and - 1 grating orders in the interferometer. The symmetric 
case is considered for simplicity, although the theory developed also holds for our 
diamond-shaped interferometer in FIGURE 1. The phase difference at D in FIGURE 5 
is the difference in phases developed along the paths ABCD andAEFD, correspond
ing to the + 1 and - 1 diffracted orders from the first grating, respectively. Although 
the center of the atom wave packet would follow the paths to the position D '  after 
scattering, we can still evaluate the phase difference at D, which corresponds to the 
unperturbed case (no scattering) . We consider the amplitudes at B and E after 
scattering at z = z0• If the initial amplitude at any x along the z = z0 axis were Uinc(x), 
then after scattering the amplitude would be 

(2) 

where k; and k1 are the incident and scattered photon wave vectors and !l.k is the 
difference in the incident and scattered wave vectors in the x-direction. The corre
sponding amplitudes at B and E are then 

(3a) 



202 ANNALS NEW YORK ACADEMY OF SCIENCES 

and 

(3b) 

where Sc1[AB] and Sc1[AE] are the classical actions along the pathsAB andAE. 
To find the amplitudes at D, we have to sum over all the Feynman paths going 

through the second grating from B to D and from E to D. Additionally, we would 
have to sum over the spatial extent of the incident wave packets near B and D. 
However, we would expect that it is possible to evaluate the phase at the center of the 
wave packets as expressed by equations 3a aqd 3b. This is reasonable even if the 
transverse (x-direction) extent of the wave packets were larger than Xp because the 
wave packets are identical, except for being displaced by x0• Thus, we would expect 
the average phase difference between them to be A.kx0• This averaging procedure can 
be performed more rigorously by summing over the Feynman paths along the 
transverse extent of the wave packets as shown in reference 55, showing that only the 
phase difference between the centers of the wave packets is important. 

To determine the amplitudes at D, we can therefore use the amplitudes (or 
propagators) through the second grating only along the unperturbed paths BCD and 
EFD. The resulting combined amplitude at D is then .. 

U(D) = (�) [ei4kX-012U(AB)U(BCD) + e -i41a:ot2U(AE)U(EFD)] 

= ( �) [ei4u�t2U(ACD) + e-i4kX-Ot2U(AFD)], (4) 

where U(ACD) and U(AFD) are the total amplitudes along the unperturbed paths 
through the second grating when no scattering is present. The unperturbed ampli
tudes through the second grating U(BCD) and U(EFD) depend upon the classical 
actions along their respective paths and upon an additional phase factor that comes 
from the grating.ss 

From the result of equation 4, we see that the phase difference of the interfering 
de Broglie waves at the third grating is identical to the unperturbed case, except for 
an additional phase difference imparted by the interaction with the l ight. Thus, the 
phase shift depends only upon the mean separation between diffracted de Broglie 
waves and not upon the details of their envelopes as indicated in the previous 
discussion. Note, however, that the displacement of the peaks of the wave packet 
envelopes near D from the transverse photon recoil kicks is A.xrecoil = hA.kL/mv,, 
which is much larger than the displacement of the fringes at the third grating, 
A.xrringc = hA.kxo!ZP, = hA.kz0/mv, (here, Pg is the grating momentum). This differ
ence in the center-of-mass displacement and the fringe shift is depicted in FIGURE 5 
and is a consequence of scattering the photon close to the first grating rather than the 
third grating. Thus, the effect of the transverse recoil is decoupled from the fringe 
shift imparted by the light. 

To obtain the total fringe contrast and phase shift for the interference pattern at 
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D, we sum over all possible scattering directions for the photon. This will form an 
entanglement of the photon and atom states: 

l!i(D) = I dkt U(D, 11k)S(k;Jct)  l kt) 

= (�) J dkt/ei4kxot2U(ACD) + e -i4kxo12U(AFD))S(k;,kt) l kt), (S) 

where S(k;, kt) is the scattering matrix for an incident photon with wave vector k; and 
an emitted photon with wave vector kt in a state l kt ) . We have explicitly included the 
11k dependence in U(D). The magnitude-squared of the scattering matrix, I S(k;, kt) 12, 
gives the probability of photon emission in a direction kt and corresponds to the 
dipole radiation pattern. Averaging over all scattering directions in equation 5, we 
obtain the fringe intensity I at D: 

I = Trfield[ ll!J(D)) (l!J(D) I ]  = J dkt l S (k;, kt ) 12 1 U(D, 11k) l2 

= H) J dktl S(k;, kt) 121 ei4kxol2U(ACD) + e-i4kxot2U(AFD) 12 

= J dkt l S(k;, kt ) l2[ 1 + cos(<!> + 11/a0)) . (6) 

The phase cl> is the unperturbed phase of the fringes, where eicb = U*(ACD)U(AFD). 
Equation 6 explicitly shows that the fringe pattern is an incoherent superposition of 
fringes shifted by 11/a0 from the unperturbed phase cl>. From equations 5 and 6, we 
see that the loss of coherence is a consequence of the entanglement of the atom and 
photon states. By detecting only atoms, we lose the two-particle phase relationship 
established between the photon and the atom during the scattering process. 

Destruction of Interference by Scattered Photons 

We have investigated the destruction of interference by scattering predominantly 
single photons in our interferometer using the configuration shown in FIGURE 6. 
Atomic sodium de Broglie waves are split into two paths by the first grating and are 
resonantly excited with circular polarized 'II' pulses applied some distance behind the 
first grating on the Na (3S112, F = 2, mF = 2 --+  3P312, F' = 3, m i: = 3) cycling transi
tion. Varying the z-position of the excitation laser allows the separation x0 between 
the diffracted de Broglie wave components to be changed. Optical pumping prepares 
atoms on the F = 2, mF = 2 stretched state so that excitation and spontaneous decay 
take place within a closed two-state system. The excitation laser spot that intersects 
the atom beam has a field amplitude FWHM of about 15 µm. This corresponds to an 
atom transient time across the laser spot of about 5 ns achieved with He carrier gas. 
This transient time is much smaller than the 16-ns lifetime of the 3P312 state, so single 
spontaneous emission events oc<..-ur with high probability. 

A plot of contrast versus separation x0 between the two interfering beams is 
shown in FIGURE 7. These data show an overall decay of contrast with increasing 
separation, falling rapidly when the separationx0 exceeds more than 1/4 of an optical 
wavelength. These data also show strong revivals in contrast that have approximately 



204 

Na 

38112 

Optical 
Pumping 

Collimation 
Slits 

F'=3, m ,.= 3 

ANNALS NEW YORK ACADEMY OF SCIENCES 

Interaction 
Laser Beam 

FIGURE 6. Photon scattering experiment. Resonant laser 
light intersects the atom beam after the first grating, where 
the mean beam separation is x0• Optical pumping prepares 
a polarized atomic Na beam. 

periodic maxima. The figure also shows the phases of the fringes, which are nearly 
periodic with discontinuities approximately at every x0 = n'>.pJ2. 

These data can be understood by considering -the phase shift of the fringes 
produced by scattering a photon in a particular direction. According to equation 6, 
the phase shift is IP = t:i.kx0, where 0 < lit:i.k < 21ikp is the transverse component 
(x-direction) of the one-photon recoil momentum of the atom and likp is the photon 
momentum. The transverse recoil momentum distribution for linear or circularly 
polarized light is shown in the inset of FIGURE 7. If the distribution were flat in the 
inset, zeros in contrast would occur at kpXo = mr, identical to a single-slit diffraction 
pattern. The averaged phase near these minima jumps discontinuously from 1T to 
zero because we are essentially averaging phasors that are uniformly distributed over 
just slightly less or slightly more than the entire unit circle. When kpXo > 21T, the 
contrast becomes small because the distribution of large phase shifts tends to average 
out the fringe contributions. The data in FIGURE 7 show these contrast minima close 
to kpXo = mr, slightly shifted by the nonuniform momentum recoil distribution. 

A fit to our data from a calculation based on equation 6 is shown in FIGURE 7 and 
includes contributions from zero- and two-photon scattering processes. The zero
photon processes contribute to a nonzero background contrast at large separations, 
whereas the two-photon processes further reduce the contrast and smooth the phase 
discontinuities because of the additional diffusion that occurs with two-photon phase 
shifts. As emphasized in the theoretical discussion, these results clearly distinguish 
between the quantum mechanical phase shift induced by the scattering process and 
the classical recoil momentum that is manifested as a displacement of the envelope 
of the fringes at the third grating in our experiment. Thus, we have made ·a direct 
measurement of the dephasing induced by a spontaneous scattering process. 

Delayed Choice 

In quantum interferometry, a measurement that distinguishes which path a 
particle traverses must correspondingly produce a loss of fringe contrast as empha-
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sized by Bohr's discussion of complementarity.66 The interaction of the path detector 
with the particle destroys the complementary information nee�ed to produce fringes 
as demonstrated by Einstein's recoiling slit and Feynman's microscope77 and also 
from our photon scattering experiment.55 Although complementarity forbids the 
simultaneous observation of path information and interference, Wheeler pointed out 
that one can wait until the last possible instant to observe either fringes or path 
information in what he called a delayed-choice experiment.78 For example, two 
detectors could be placed after the third grating in FIGURE 1 to intercept the two 
possible interferometer paths. If the third grating were left in, a fringe pattern would 
be observed by the detectors from an applied phase shift. On the other hand, the 
third grating could be removed just before the atom (wave packet) reaches the third 
grating so that the detectors record the "route" traversed by the atom. The ability to 
choose between either mode of measurement at the last instant emphasizes that path 
information always exists in both "routes" simultaneously, whereas the particle itself 
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FIGURE 7. (Top) Experimental data showing the ratio of contrast with the scattering laser on 
to that with the laser off as a function of atom path separation. (Bottom) Experimental data 
showing the phase difference between fringes with the laser on to that with the laser off as a 
function of atom path separation. The solid line is a theoretical fit with 83% one-photon, 13% 
two-photon, and 4% zero-photon processes. (Inset) One-photon transverse (x-direction) recoil 
momentum distribution for circular polarized l ight normally incident to the atomic beam. 
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can be detected in one "route" only. The delayed-choice experiment emphasizes the 
nonlocal character of quantum mechanics because the detection of the particle in 
one detector "instantaneously" excludes it from the other.65 

We consider a type of delayed-choice experiment in which one can record path 
information by entanglement with the internal states of the particle, but the choice 
can be made later to either detect fringes or detect path information (FIGURE 8). In 
accordance with complementarity, we expect interference fringes to disappear when 
path information is perfectly recorded; loss in contrast is a consequence of orthogo
nality of the path-dependent internal states. However, the entanglement of the 
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FIGURE 8. Two-state example of a delayed-choice experiment with atoms. Using a combina
tion of gradient fields and -rr/2 pulses, the atoms can be prepared in identical spin states or 
orthogonal spin states before detection. Path information is recorded in both cases, but 
reversed in the first case. Spins are shown in an unperturbed rotating frame. 

particle's internal states with the path can be reversed by applying a second 
interaction (unitary transformation) .  In this case, fringes are restored, but with a 
subsequent loss of path information. An experiment that can regain interference by 
"erasing" path-distinguishing information has been called a "quantum eraser".79•80 
Closely related experiments using neutron spins to record and undo path informa
tion have been performed using continuous beams. 64,81 Similar delayed-choice experi
ments using chopped neutron sources have been proposed by Badurek et al. ,61 with 
some experimental progress being attained in this direction by Rauch et al. 82 and 
Jacobson et al. 63 
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The necessity to have entanglement with a measuring apparatus and entangle
ment with a macroscopic particle detector to rapidly dephase the correlations 
between the measuring apparatus (the internal states of the particle) and the path 
states in a particular preferred basis has been emphasized by Zurek in his theories of 
measurement.67•72 The distinction of these two components of the measurement 
process is a feature of our proposed delayed-choice experiment. 

Atoms are particularly useful in this type of experiment because an atom 
delayed-choice experiment can be generalized to record multiple paths using mul
tiple states. For simplicity, we discuss it in the framework of a spin-1 /2 particle 
(two-state system) experiment, which is illustrated in FIGURE 8. We send a pulsed 
beam of S = 1 /2, z-polarized atoms into a three-grating interferometer and apply a 
resonant -rr/2 pulse (x-direction) perpendicular to a uniform magnetic guide field 
Bguide = £80• This places the atoms in a superposition state whose spin is aligned 
along the -y-axis: 

'PI = A1 (<PR + <Pd( -ie-i""'T/2 1 l )  + ei""'T/2 1 t )), (7) 
where 'PR and 'PL are spatial wave functions representing the two paths in the 
interferometer, 11>1ra = w,, - 11>0 is the precession frequency, T is the time of 
interaction, andA1 is a normalization factor that depends upon the spatial overlap of 
'PR and 'PL· The spin is oriented in the -y-direction in the unperturbed rotating frame 
at a precession frequency 11>1ra. Application of a small localized gradient field 
produces path-dependent Zeeman shifts, ER = hfl./2 and EL = -hfl./2, which 
momentarily shift the precession rates. By taking the interaction time T' with the 
gradient field such that fl. · T' = -rr/2, the atoms are now in the entangled state, 

<Pu = Au[e-;,,.14(  I l ) + e-i• 1 t ))<PR + e;,,.14 (- 1 l )  + ei• I f ))ipd, (8) 

where <I> is the phase that would be accumulated from the precession with the guide 
field only. The spins on the left and right sides are now aligned parallel and 
antiparallel to the x-axis. 

At this point, one has "recorded" path information by entangling it with the 
spins. We now consider two choices: (i) we apply another gradient field, opposite to 
the first, to align the precessing spins parallel to each other so that they can interfere 
again or (ii) we apply a second -rr/2 pulse at the correct time to align the left and right 
spins in either the +z or -z directions, respectively, to save the path information in a 
form useful for detection. In the first case, we apply Zeeman shifts ER = -hA/2 and 
EL = hfl./2 just before the third grating, yielding the uncorrelated state with the spins 
aligned along -y in both paths: 

<Pma = Ama (-i l l ) + eW I f ))(<PR + <Pd· (9a) 

Here, <I>'  is the new phase from precession due to the guide field alone. In the second 
case, application of a -rr/2 pulse just before the second gradient field yields the 
entangled state, 

(9b) 

Here, T and T1rav are the -rr/2 pulse time and the traversal time between gradient 
fields, respectively. In order to align the spins along the z-axis following the -rr/2 
pulse, the phase developed from free precession must satisfy 11>11a(T + T '  + Tirav) = 
-rr/2 or it must be adjusted appropriately by varying the RF phase . A Stern-Gerlach 
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apparatus behind the third grating .detects the final spin state and corresponding 
path when a second -rr/2 pulse is applied. 

This atomic delayed-choice experiment can also be performed with pulsed lasers 
using Raman pulses rather than RF fields to produce the desired spin flips. This 
would permit the "choice" of measurement to be made on much shorter time scales. 
Furthermore, Hammond et al. 83 have proposed a scheme for atoms that uses a 
multiple-peaked velocity distribution to cancel velocity dispersion. This would 
permit the experiment to be performed with typical atomic beam velocity distribu
tions. In addition to experimental advantages using atoms, an atom delayed-choice 
experiment begins to address the relationship of information and quantum mechani-
cal behavior of complex particles. 

· 

PRECISION MEASUREMENTS OF ATOMIC AND MOLECULAR 
PROPERTIES 

Atom and molecule interferometry with its sensitivity to phase, like the separated 
oscillatory fields method, will find numerous applications in precision experiments of 
atomic and molecular properties. Spatially separating the atomic wave function 
allows a direct measurement of the absolute energy shift nf a single state with a 
precision attainable in resonance or spectroscopic methos;ls because of the ability to 
apply uniform interaction fields to one path only. 

Separated Beam /ntetferometry 

Our atom-molecular interferometer is unique in that the two paths are com
pletely separated at the location of the second grating. We have inserted an 
interaction region or septum consisting of a 10-µm-stretched metal foil behind the 
second grating to physically isolate the two beams that interfere at the third grating. 

With this setup (FIGURE 1) ,  we must consider the effect of an interaction in one 
path of the interferometer. Applying a potential U(x) to one path changes the 
unperturbed k-vector from k0 = ( 1 /li)/2mEkin to k(x) = ( 1 /li)J2rn[Ekin - U(x)] . The 
corresponding phase difference <p between the two paths can be evaluated accurately 
along the two classical paths in the eikonal approximation (Ekin » U) to give 

<p(ko) = J k(x) dx - J k0 dx a (�) J U(x) dx. 
Path 2 Path I Linter 

(10) 
Here, Linter is the length of the interaction region projected along the path. 

The effect of the potential U(x) is equivalent to a wave function traversing a 
medium with refractive index n = k/k0• Using the eikonal apP,roximation (U « Ekin), 
one finds n = k/k0 = 1 - (U/2£) and the phase shift <p(ko) = k0 f [ 1  - n(i)] dx. In 
our interferometer, a phase shift of 1 rad occurs when 1 1 - n I = 3 x 10- 1 1 • This 
gives an energy sensitivity of roughly 7 x 10- 14 eV in one minute (using Ar carrier 
gas, assuming a 10-mrad/ [rillri phase sensitivity) . 

The velocity dependence of the phase shift in equation 10 causes a reduction in 
contrast when large phase shifts are applied because of the averaging over different 
fringe contributions within the source velocity distribution. The corresponding 
coherence length is 0.65 A ( 1 .6 A FWHM) with argon carrier gas and represents the 
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maximum longitudinal spatial shift between the two paths that can be applied before 
fringe contrast drops significantly. 

Precision Measurements in Alomic and Molecular Physics 

Measurement of the Electric Polarizability of the Na Atom 

The interaction region allows us to apply different electric or magnetic fields to 
portions of the atom wave on each side of the interferometer. For an alkali atom such 
as sodium, an applied electric field W generates a Stark potential U = -a W 2/2, 
where a is the scalar electric polarizability. FIGURE 9 shows the measured qua
dratic dependence of phase shift versus applied voltage for sodium atoms inter-
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FIGURE 9. Phase shift of the interference pattern as a function of voltage applied to the left 
(open circles) or right (filled circles) side of the interaction region. The fit is to a quadratic and 
the residuals are shown in the lower graph. 

acting with a very uniform electric field in our interaction region. From these phase
shift measurements, we have determined the ground state polarizabil ity to be 
24.1 1(6)s1a1is1ica1(6)sys1ematic X 10-24 cm3• This 0.3% accuracy is about 20 times more 
accurate than the previous best direct measurement84 and 6 times more precise than 
that of the best indirect measurements normalized to the theoretical polarizabilities 
of metastable helium as a reference.85 The systematic error is dominated by uncer-
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tainties in the geometry of the interaction region and effects related to the 10%
FWHM-wide velocity distribution of our atomic beam. Our statistical error is 
dominated by uncertainty in the determination of the velocity distribution, by 
short-term instability of the phase, and to a lesser extent by counting statistics. We 
recently proposed a velocity multiplexing technique that promises to overcome the 
problems arising from the finite velocity distribution.83 

Measuring the Refractive Index for Na Matter Waves 

We have applied separated beam interferometry to measure the refractive index 
of a sodium de Broglie wave in gaseous media. By inserting a gas cell in one arm of an 
atom interferometer, we have measured both the attenuation and the phase shift of a 
sodium matter w;i.ve that passes through monatomic (He, Ne, Ar, Kr, Xe) (FIGURE 
10 and TABLE 2) or molecular gases (N2, C02, NH3, H20) (see TABLE 2).46 From 
these measurements, we have determined both the imaginary and real parts of the 
forward scattering amplitude, f (k, 0). In analogy to light and neutron optics, the 
forward scattering amplitude is related to the complex index of refraction by n = 1 + 
(2Tr/k1.tfc)N · f(k, 0), where kiah is the wave vector in the lab frame, k is the wave 
vector in the center-of-mass frame of the collision, and N is tlte density of the gaseous 
medium. • •  

The results of these measurements are summarized in TABLE 2. The complex 
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FIGURE 10. Phase shift of Na matter waves passing through He, Ne, AI, and Xe gas as a 
function of the gas pressure in a 10-cm-long gas cell. 
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TABLE 2 .  Phase Shift �<p. Refractive lndex n, and the Ratio Re[/(k, O)] / Im[/(k, 0)) 
for 1000-m/s Na Atoms Passing through Various Gases at 300 K and 1-mtorr 
Pressure • 

�cp (n - 1 )  
(mtorr- 1 )  ( 10- 10 mtorr- 1 )  

He 0.50 0. 14 + 1 . 18i 
Ne 2.0 0.55 + 0.56i 
Ar 3.9 1 .07 + 1 .81i  
Kr 5.4 1 .5 1  + 2.45i 
Xe 6.5 1 .81  + 2.49i 
Ni 4.7 0.91 + 1 .39i 
NH3 3.3 1 .30 + 2.16i 
C02 5.0 1 .37 + 2.21i 
H20 6.2 1 .71 + 2.40i 

Re(/) 

Im(/) 

0. 12  (2) 
0.98 (2) 
0.59 (3) 
0.62 (6) 
0.73 (3) 
0.60 (2) 
0.65 (4) 
0.62 (2) 
0.72 (3) 

indices of refraction given are based on estimates of gas cell pressure that are subject 
to large uncertainties. The ratios of the real and imaginary parts of the forward 
scattering amplitudes are independent of gas cell pressure and are much more 
accurate. Using Na2 molecules in the interferometer, we also investigated Na-dimer 
scattering from neon gas to measure the index of refraction of molecular de Broglie 
waves passing through a gas sample in one arm of the interferometer. For Na2 
traversing Ne gas, we find a ratio of Re[/(k, O)) / Im[/(k, 0)) = 1 .4 ± 0.3. 

This type of experiment provides a fundamentally different probe of scattering 
processes and interatomic potentials. The real part of the forward scattering 
amplitude is particularly sensitive to the shape of the interatomic and molecular 
potentials, especially in long-range potentials, whereas the imaginary part depends 
on the overall strength of the long-range interaction. Experimentally, we confirm 
that the ratio of Re[/(k, O)) / lm[/(k, 0)) depends much more on the form of the 
interaction potential than conventional total cross-section experiments. 

POSSIBLE FUTURE EXPERIMENTS 

Aharonov-Casher Phase 

Anandan86 and Aharonov and Casher57 recently proposed a topological phase, 
analogous to the Aharonov-Bohm effect, for the magnetic moment of a neutral 
particle rather than a charge. Like the Aharonov-Bohm effect, this phase shift can 
occur in the absence of any classical force. This effect has been studied in neutron 
interferometers87 and recently in atomic systems by the group at Yale in electronic 
singlet molecules using a Ramsey fringe technique.88 These groups have reported 
phase shifts from nuclear spin contributions on the order of 2-3 mrad. Using ground 
state Na atoms, with their much larger magnetic dipole moments and greater beam 
intensities, we will be able to achieve up to I -radian Aharonov-Casher phase shift in 
our interferometer. This should greatly reduce the statistical error and will also allow 
us to study the predicted dependence on the dipole orientation. Varying the velocity 
and the velocity distribution of our Na beam will allow us to explicitly investigate 
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precisely the nondispersive character of the Aharonov-Casher effect and will there
fore give direct evidence of its topological nature.89 

Geometric Phase 

When a quantum system evolves (even adiabatically) around a cyclic path in 
phase space, it gains an additional phase, as first described by Berry.90--92 Various 
demonstrations of this effect have been performed with photons,93•94 in spin rotation 
experiments with neutrons,95•96 in nuclear quadrupole resonance experiments with 
rotating samples,97 and with atomic hydrogen.49 By exploiting the separated beam 
geometry in our interferometer, one can demonstrate the geometric phase of the 
wave function directly by measuring the phase difference produced when the atom 
traverses two different paths in phase space . Such an explicit determination of the 
geometric phase acquired by the wave function of a massive particle was prohibited 
in previous experiments because of unknown phase shifts that developed between 
the two paths in phase space. 

For a geometric phase experiment, one ideally wants a magnetic field configura
tion that gives the same dynamical phase, but transports the angular momentum 
vector of the particle on different paths in the two interfering beams. This can be 
accomplished using the configuration shown in FIGURE 1 1 .44·•5 A screw coil produces 
a helical magnetic field that rotates in the center-of-mass frame of the atom. 
Opposing magnetic fields oriented in the ±z-direction are produced by passing a 
vertical current through the metal foil in the interaction region. The resulting 
magnetic field approximately traces out cones in opposite directions so that the solid 
angles, and therefore the geometric phases, are different on either side of the foil; 
however, the dynamic phase contributions that depend only on the field magnitude 

interfering beams 

x 

FIGURE 1 1. Schematic for the magnetic coil configuration in the Berry phase experiment. 
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FIGURE 12. Movement of  the magnetic field vectors on  both sides of  the interaction region i n  
the atom frame. The septum field i s  twice the size of  the screw field. The bias field i s  zero. 
Entering the interaction region, the atom finds the magnetic field vector at the marked locat ion 
(e) .  While the atom moves through the interaction region, the magnetic field vector moves 
along the two trajectories (-) as given by the arrows and returns to the starting point when the 
atom leaves the interaction region. The solid angle between the two curves is a measure of the 
geometric phase obtained by the adiabatic evolution of the state. 

are the same and cancel . An additional uniform field in the y-direction provides a 
quantization axis and additional field adjustabil ity. The resulting magnetic fields on 
either side of the interaction region are shown in FIGURE 12 for a particular set of 
currents. Reference 45 describes this separated path configuration in greater detail .  
This experiment can also be seen as a demonstration of geometric forces98·99 because 
the phase shift has the same relation to the geometric force as the Aharonov-Bohm 
phase shift has to the Lorentz force. 

CONCLUSIONS 

Matter wave interferometry using atoms and molecules has tremendous applica
tions to fundamental measurements in quantum mechanics and to new types of 
precision measurements in atomic and molecular physics. The ability to measure 
phase shifts produced by an interaction is already al lowing the measurement of 
physical quantities that have previously been inaccessible in intensity-based measure
ments. Interferometry with particles containing large numbers of populated internal 
states does not seem fundamentally limited, as demonstrated by our molecular 
interferometer. However, larger particles may require impract ically long traversal 
times to achieve measurable fringe contrast . Interferometry with complex particles 
also has significant applications to the theory of quantum measurement because of 
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the relative ease of forming entangled states with a variety of internal states and 
states with macroscopic degrees of freedom. This, in particular, should permit 
investigations of the relationship between recording information, entanglement with 
the measuring apparatus, and the destruction of coherence. The photon scattering 
experiment, in particular, shows that entanglement with the radiation field does not 
necessarily destroy coherence. 

We have also summarized some of our experimental work on applications of 
matter wave interferometry to atomic and molecular physics. This includes a number 
of completely new results such as direct measurements of the ground state polariz
ability of sodium with an accuracy more than 6 times higher than previous measure
ments, the demonstration of fringes from molecules, and the determination of the 
index of refraction of a gas from both incident atoms and molecules. 
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INTRODUCTION 

The validity of quantum mechanics has been proved in enumerable examples. 
However, direct observations of the most basic quantum phenomena (such as 
"quantum jump") have been brought to the range of experimental observation only 
recently by the progress of laser technology. There still are several hypotheses in the 
basis of quantum mechanics that have not been tested by direct observation and it 
should be worth carrying out such tests whenever possible in the light of advanced 
techniques. 

The present report discusses the results of a series of works carried out in order 
to demonstrate the validity of the concepts of quantum mechanical observations in 
the case of free motion of an ultralow-energy single atom in a confined space. It 
shows that a single atom is observed at a point in the space-time coordinates and the 
accumulation of the observed points reflects directly the wave function obtained as 
the solution of the Schrodinger equation. It is an experimental demonstration of the 
validity of the most basic concept that the wave function gives the amplitude of the 
probability of the atom being observed in each point in the space at a given time. 
Observation of an atom, the wave function of which is given by a wave-function 
spread in the space, at a point in the space at a given time is sometimes referred to as 
a collapse of a wide-spread wave function into a point. As will be discussed later, the 
experiment is independent of the validity of such a concept as "the collapse of a wave 
function". The range of the scope of the present work is simply to demonstrate that 
the waves given as the solution of the Schrodinger equation (which we shall call 
"de Broglie waves" in the present text without taking the historical definitions and 
principles given by de Broglie seriously) reflect the probability amplitude of the 
atom, and the de Broglie waves show excellent analogy with the optical waves 
propagating in the space having an index-of-refraction distribution corresponding to 
the potential distribution, 1 including the phase and not only the amplitude. 

0This work was supported by a grant-in-aid from the Ministry of Education, Science, and 
Culture of Japan. 
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The present discussion starts by comparing the Schrodinger equation for a free 
particle moving in a space having a potential distribution V(r), that is, 

v2c1> + {�)[w + V(r)]cl> = o, (1)  
with the Maxwell equation for optical waves propagating in a space having an 
index-of-refraction distribution ofn(r), that is, 

k = n (r)k0, (2) 

where A represents the amplitude of the electromagnetic wave and k and k0 are the 
wave vector in the space and that in vacuum, respectively. Similarity between 
equations 1 and 2 is apparent. If we assume that 

k2 = (�)[w + V(r)] , (Ja) 

where 

(Jb) 

the solution of the Schrodinger equation should be equivalent to the optical waves 
propagating in a space having an index-of-refraction distribution given as 

n (r) = l� I = Ji + [Vt)] . (4) 
Such a consideration indicates that we will be able to do on de Broglie waves 

everything that we can do on optical waves. This is the origin of the motivation of a 
new field called "atom optics". Although there should be no problem in pursuing 
such works, the similarity of the de Broglie waves with the optical waves has to be 
accurately tested by experiments. The purpose of the present work is to carry out 
such experiments with an accuracy given by the present-day technology. A neon atom 
in the lss metastable state was chosen as a test material because of the following 
reasons:2.3 ( 1 )  its natural lifetime of about 20 seconds is long enough to assume that it 
is stable during the course of the experiment, (2) its high internal energy of 16 eV 
makes it possible to detect one atom with a good efficiency, (3) there is an ideal 
cooling transition between the ls5 (J = 2) and 2p9 (J = 3) metastable states (transi
tion marked A in FIGURE 1) ,  and (4) atoms in the lss metastable state can be 
efficiently transferred to the nonmagnetic ls3 (J = 0) metastable state via the 2p2 
state by exciting the ls5 state with 598-nm radiation (transition marked B in FIG
URE 1) .  

The kinetic energy of atoms treated in the present report is in such a low range 
that the excitation of the internal atomic state never occurs by mechanical collision. 
Among naturally existing isotope species, 2DNe was selected because it is the most 
abundant isotope, it does not have hyperfine structure, and the lowest energy level 
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above the ground state is the 1 6-eV-high metastable l s5 state. Such a high internal 
energy of 20Ne causes a high rate of Penning ionization by collision against all kinds 
of atoms and molecules. However, coll ision is considered as a loss of the atom, and 
those atoms experiencing coll ision during the course of the experiments are indepen
dent of the present observations. In order to make the atomic collision rate as low as 
possible, all the experiments were carried out in ultrahigh vacuum. The effect of 
electrons and ions, which were produced by metastable state collisions, together with 

2P 

2p9 (J=3) 

t s  
t s5 (J=2) 

FIGURE 1. Energy level of neon as related to the present work. Each of the allowed transitions 
is shown by a line, with an arrow showing the direction of the transition used in the present 
work. The width of the arrow-headed lines roughly represents the transition intensities. Note 
that the lowest energy level shown here is a metastable state having a l ifetime of 21 s and is 
13,400 cm- 1  above the ground state of neon. 

the ultraviolet radiations, which were emitted by the transitions induced by the 
metastable state collisions and the spontaneous emission from the 1 p2 state in the l s5 
to l s3 transition, disturbed the experimental observation strongly by adding excess 
noises. Reduction of such extra noises is one example of important efforts needed in 
the present experiments, although such experimental details shall not be described in 
the present report. 
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DOUBLE-SLIT INTERFEROMETRY 

The first observation of interference fringes of an atom was carried out by Carnal 
and Mlynek4 on cold metastable state helium atoms in a supersonic beam. However, 
they observed only a one-dimensional scan of the fringes because the experiment was 
carried out at a de Broglie wavelength of only 0.056 nm, and the observation of a 
two-dimensional fringe pattern by the use of a multichannel plate was impossible 
because of the limited spatial resolution. Their experiment was an extremely difficult 
one that could be repeated only with great patience and an extremely stable setup 
because the de Broglie wavelength was extremely short. It has become much easier 
to do by the use of a well-developed technique of laser cooling and trapping because 

Cooled 
1 &  Ne* 

z 

Optical 
fiber 

598nm 
Laser 

� Lens _ 

Deflector • 

-

<XXD ¢::= 640nm 

<XXD Lasers 

! 1 s, Ne' 

- -

Double 
slit 

I To camera 
FIGURE 2. Schematic illustration of the setup for Young's interferometer. 
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FIGURE 3. Observed Young's interference fringes 
of the metastable state neon atoms. 
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1 mm 
this allows us to work on a much longer de Broglie wavelength.5-7 However, most of 
the observed fringes in the atom interferometry showed only poor visibility, including 
those cases where the fringes were observed with an excellent signal-to-noise ratio. 
Therefore, it is imperative to observe a two-dimensional fringe pattern and also to 
confirm that the fringes show exactly the same high visibility as is described in the 
textbooks of quantum mechanics. 

The present experimental setup of Young's interferometer is schematically 
shown in FIGURE 2. The magneto-optical trap held metastable state neon atoms at a 
density of about 1010 cm-3 cooled to a temperature of 2.5 mK. The pulsed output of a 
dye laser having a 598-nm wavelength was introduced in vacuum by an optical fiber 
and was focused in the center of the trap in order to transfer a significant part of the 
ls5 (J = 2) state to the ls3 (J = 0) state through the 2p2 (J = 1) state . Those atoms 
transferred to the ls3 state are released from the trap, start free-fall motion, and pass 
through the double-slit if their horizontal velocity component is small enough. 

Because the initial speed of the atomic source is extremely low, the axis of 
symmetry was set in the vertical direction. The double-slit-2-µm opening width, 
6-µm separation, and 1 mm long-was made of gold foil and was placed 7.6 cm below 
the source on a horizontal plane. Because of insufficient mechanical strength, the 
double-slit was deformed and had only 0.5 mm of usable length . The atoms that 
passed through the double-slit were detected by a time-resolved two-dimensional 
detection system consisting of doubled multichannel plates, a fluorescent screen, a 
CCD camera, and a videocassette recorder. 

The clock in the experimental operation was synchronized with the framing pulse 
of the video recorder and the following series of operations were repeated in a cycle 
of 1 6/60 s: The cooling laser of 640 nm was turned on for 4/60 s and the trapped atom 
grew up with a time constant of 10 ms. The releasing laser pulse of 598 nm was 
applied at 2/60 s after the turning on of the cooling laser, thereby releasing a 
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significant portion of the trapped atoms in the focal zone. Those atoms having a very 
small horizontal component of the initial velocity passed through the double-slit and 
struck the surface of the multichannel plate. An atom was observed as a bright sharp 
spot and the images were recorded by the videocassette recorder with a rate of 60 
frames/s, each frame corresponding to a different range of the initial velocity of 
atoms. The result was digitally processed afterward and the images were given for 
each of the different initial velocity groups. 

A typical fringe pattern obtained for a group having a 20-nm de Broglie wave
length at the double-slit is shown in FIGURE 3. These atoms correspond to those 
having a zero initial vertical velocity. In FIGURE 3, the fringes are not parallel in the 
upper part of the picture. This is due to the deformation of the double-slit in one of 
the edges. A plot of the fringe pattern scanned in the direction perpendicular to the 
slit is shown in FIGURE 4. The calculated fringe pattern is shown as the solid curve in 
FIGURE 4. The calculation is based on the assumption that the contrast ratio is 
determined by the spatial coherence due to the size of the source having an 80-µm 
diameter with respect to the slit separation of 6 µm and a 76-mm source for the 

. 
. 

/ _'.:} 

FIGURE 4. Plot of the fringe intensity scanned in the direction perpendicular to the slit (shown 
by dots) and the calculation based on the classical theory of optics (shown by the solid c.-uive ) . 

double-slit separation. The theoretical curve shows a good agreement with the 
experimental result, proving that the de Broglie waves behaved exactly like optical 
waves in Young's double-slit interferometer. 

PHASE SHIFf BY ELECTRIC FIELD 

The second trial was to observe the phase shift by the potential distribution of 
electric field distributed in the path of the atom interferometer.s The electric field 
was produced by applying a de voltage to a copper wire of 0. 7-mm diameter pl�ced in 
parallel to the. double-slit, separated by 2 mm from the double-slit surface and 1 .5 
mm from the vertical plane passing through the slit edge. By applying a de field E, the 
internal energy of the metastable state is shifted by the second-order Stark effect and 
the potential energy V(r) in equation 1 is given by 

V(r) = - x  . £2, (5) 
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where x is the polarizability of the neon atom. The value of x has been determined on 
the neon l s3 state as9 

x = 1 x 10-38 Fm2• 

The effect of the electric field on the neon atom appears in two ways. One is the 
change of the propagation due to the gradient force and the other is the phase shift. 
In Young's interferometer, only the difference in the phase of the beam passing 
through the two slits affects the appearance of the fringes. The difference in the 
phase integral for the two partial waves passing through each slit is given by 

8 = (.!!!....) f [iJV(r)] · d · dz 
h2k ily , (6) 

where d is the double-slit separation, the z-axis is taken to be parallel to the vertical 
direction, and the y-axis is taken to be perpendicular to the slit. 

As the path difference due to the nonuniform electric field is rather complicated 
to calculate in the wave model, we used a classical approximation, which should 
apply well in this case as geometrical optics does in tracing the wave propagation in 
optical systems. Because the effect of the electric field should be limited in the 
vicinity of the double-slit and the force does not apply to the atom passed through the 
double-slit, which is made of gold and kept at ground potential, the effect of the 
electric field on the atomic motion is given as the increase in the y component of the 
atomic velocity Vy, which is given by 

Vy = (�v.) J [iJ�r)] .  dz, (7) 

where v, is the atomic speed at the double-slit. The increase in Vy causes a shift in the 
position of atoms hitting at the target by as much as �: 

(8) 

where a is a number defined by 2gl!v,. On the other hand, the separation between the 
fringes is given by 

E = 
(:J(�) [2(� - 1 )] 

• (9) 

Combining equations 6, 8, and 9, we have 

8 = 2-rrMe. ( 10) 

This result means that the fringe pattern is not changed, but only shifted by the 
electric field. The experimental result is shown in FIGURE 5 for various voltages 
applied to the pin electrode. It is apparently seen that the interference fringes are 
shifted by an amount proportional to the applied voltage without changing the shape. 
This result shows that the shift of the phase integral due to the applied electric field is 
given by equation 6. 
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FIGURE 5. Shift of the interference fringes by the application of a de field. 

AN AXIALLY SYMMETRIC CONDENSING LENS FOR ATOMS 

The first experiment on an imaging system for atoms was carried out at the 
University of Constance using a Fresnel zone plate made for X-ray optics. 10 How
ever, because it was necessary to place a wire to stop the incoherent component of 
atoms, only a one-dimensional image was obtained. A condensing lens with axial 
symmetry can be realized theoretically by making a field distribution equivalent to 
the distribution of the index of refraction in a condensing optical lens. However, it is 
theoretically impossible to make a point having a maximum de field in a free space. 

Because the change of the internal energy of a neon atom by application of an 
electric field is due to the second-order Stark effect, it is independent of the direction 
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of the field. Therefore, a nonresonant ac field should have the same effect on it as the 
de field, and the use of the lowest frequency TM01 resonant !Dode seems to be the 
most appropriate system for this. In this mode, the distribution of the electric field is 
represented by J0(k0r), with the direction being parallel to the axis. It is easily 
derived that those atoms incident to the cavity in parallel to the axis are focused at a 
point on the axis separated from the lower edge of the cavity by f, given by the 
following equation: 

(mv2c4e0ir )  
f = 5.76 xw2QP ' 

(11)  

where Q and P are, respectively, the quality factor and the power dissipated in the 
cavity. 

We have experimentally tested the focusing of an atom by a setup as shown 
schematically in the left side of FIGURE 6. The procedure is quite similar to Young's 
interference experiment described in the second section of the present report . A 
13-cm-long cylindrical cavity, which is resonant at 17 GHz in the TM01 cutoff mode, 
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FIGURE 6. Experimental setup (left) and the results (right) of an atomic lens experiment. 
Upper right: Atoms detected without an electric field. Lower right: Atoms detected with an 
electric field. 
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was placed 39 cm below the trap and the multichannel plate was placed 20 cm below 
the lower edge of the resonator. An example of observed results is shown in the right 
side of FIGURE 6, where the upper figure corresponds to the observed atoms without 
any microwave field in the cavity and the lower one corresponds to those with a 
microwave field. Apparently, atoms are focused toward the center, although the spot 
size is still not small enough. 

Such an atom lens has several intrinsic problems that should be solved in order to 
obtain a high-quality focusing lens. First of all, it has strong dependence on the 
atomic velocity. In the present experiment, such a "chromatic aberration" was 
avoided by a time-resolved measurement and by choosing only the slowest group of 
atoms. The chromatic aberration should be negligibly small after the atoms have 
fallen a long distance if the initial velocity spread of the atoms is small enough. It may 
also be possible to compensate for the effect of changing the velocity by adjusting the 
microwave power fed to the cavity when the velocity of the atoms is a well-known 
function of time, as in the present case. Other types of aberration, such as that 
corresponding to the spherical aberration in conventional optics, are now under 
investigation . 

CONCLUSIONS 
. .  

Through the three types of experiments reported above, in which the wave nature 
of an atom is directly observed, it may be concluded that, at least in the limit of 
present accuracy and for ultralow-energy atoms, the validity of the nonrelativistic 
Schrodinger equation has been verified, together with a fact that the wave function 
represents the amplitude of the probabil ity of finding an atom at a given time and 
space. As the Schrodinger equation indicates, the probability amplitude waves, 
which we referred to as "de Broglie waves" in the present report, behave exactly 
similar to the optical waves propagating in a space having an index-of-refraction 
distribution equivalent to the potential distribution. 
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INTRODUCTION 

The wavelength of an electron wave is extremely short ; for electrons accelerated 
to 100 kV, for example, it is only 0.04 A. Microscopic objects and fields can therefore, 
in principle, be measured or observed with this resolution by electron interferometry. 
In fact, a few extremely interesting electron-interference experiments were carried 
out in the 1 950s to 1970s (see reference l ) .  In those days, however, electron
interference experiments required highly skillful techniques. This was partly because 
there were no convenient optical parts like those in light optics . There is, for 
example, a convex magnetic electron lens, but not a concave lens, nor are there 
simple mirrors or half-mirrors in electron optics: the only practical interferometer is 
the electron biprism.2 Another reason that full advantage of electron interferometry 
could not be taken is that there was no "coherent" electron beam like the laser beam 
used in light optics. 

Difficulties in electron-interference experiments in those days can thus be 
compared to those in optical-interference experiments using high-pressure mercury
arc lamps as a light source . These kinds of experiments were therefore done in only a 
few laboratories, such as those at Tiibingen University in Germany,3 CNRS Tou
louse,4 Berlin University,5 Bologna University,6 and Tohoku University. 7 

The advent of a "coherent" field-emission electron beam8 in 1979 changed the 
situation. The maximum number of observable interference fringes increased by an 
order of magnitude, and interference fringes became observable directly on a 
fluorescent screen when their number was less than 50. 

This coherent beam improved the performance of electron holography9 to the 
extent that it can now be used for practical applications. Because electron hologra
phy faithfully transforms electron wave fronts into optical wave fronts, versatile 
optical techniques can be used in the electron optics. Electron holography has made 
it possible to obtain phase contour maps, which are inaccessible with an electron 
microscope equipped with an electron biprism. Furthermore, the precision in phase 
measurement was increased to 2'1T/ 100 by using a technique peculiar to holography. 10 

The development of such electron interferometry has made it possible to carry 
out fundamental physical experiments that had not been feasible : experiments 
concerning the single-electron buildup of a double-slit interference pattern1 1  and 
experiments confirming the Aharonov-Bohm effect. 12 It has also engendered new 
methods of measurement and observation, such as measurements of the thickness 
distribution of a uniform material 1° and of the magnetic field distribution inside a 
ferromagnetic film13 and the observation of flux lines14 in a superconductor. 

227 



228 ANNALS NEW YORK ACADEMY OF SCIENCES 

Electron  
source 

Bipr i s m  

Observation 
plane 

FIGURE I .  Wave packets in the electron biprism: (left) positive potential on the central 
filament; (right) negative potential on the central filament. 

INTERFERENCE OF ELECTRONS 

One of the most striking conclusions derived from quantum mechanics can be 
found in Young's double-slit experiment with electrons when only a single electron 
exists in the apparatus at one time. Feynman15 referred to such an experiment as 
"impossible, absolutely impossible to explain in any classical way, and has in it the 
heart of quantum mechanics". This experiment has never been done in just this way 
because the apparatus would have to be made on an impossibly small scale. 

Such an experiment is feasible, 11 however, in a field-emission electron micro
scope equipped with an electron biprism and a two-dimensional position-sensitive 
electron-counting system. 16 Electrons pass through the biprism, are detected by the 
electron-counting system, and can then be displayed one by one on a TV monitor 
(see FIGURE l , left panel). When there are few electrons, their distribution on the 
monitor seems quite random (see FIGURE 2a). As their number increases, however, 
an interference pattern formed by two waves passing through both sides of the 
biprism becomes recognizable (FIGURES 2b-d). Even when the electron arrival rate 
is as low as 10 electrons/s over the entire field of view (so that there is at most only 
one electron in the apparatus at one time), the accumulation of single electrons still 
forms the interference pattern shown in FIGURE 2d, as if single electrons had passed 
through both sides of the bi prism. In quantum mechanical terms, two partial electron 
wave functions overlap to interfere on the observation plane, forming a probability 
distribution of an interference pattern. When detected, however, the two overlap
ping partial electron waves can be observed only as a single electron, never as two. 
This phenomenon is interpreted as the result of measurement making the extended 
wave function instantly collapse into a single point. 

This collapse is even more mysterious when a negative instead of positive 
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potential is applied to the central filament of the electron biprism (see FIGURE 1 ,  
right panel). I n  this case, two partial electron waves having passed through both sides 
of the biprism filament are thoroughly separated as in the right panel of FIGURE 1 .  
When measured, a single electron i s  detected o n  either side o f  the biprism filament. 
Because two partial wave functions must exist on both sides of the filament until just 
before the measurement, the partial wave function on one side of the filament must 
have jumped to the other side to collapse. I t  should be noted here that the coherence 
length of the electron wave packet in the traveling direction is only 1 µm, whereas the 
distance between the biprism and the observation plane is on the order of 10 cm. 

This experiment was designed especially for a demonstration and, therefore , the 
electron frequency in the experiment was made to be much lower than the frequency 
of the usual hologram formation. However, the single-electron accumulation re
mains the same for forming any electron hologram. The following experiment was 
carried out under these single-electron conditions. 

AHARONOV-BOHM EFFECT 

Another strange phenomenon in quantum mechanics is the Aharonov-Bohm 
(AB) effect, 17• 18 which describes the fundamental interactions of electron waves with 
electromagnetic fields. The AB effect means that electrons can be physically influ
enced by a magnetic field without actually entering it. For example, if two electron 
waves travel in field-free regions on both sides of an infinite solenoid, the electron 

flGURE 2. Single-e lectron buildup of the electron interference pattern: (a) N = 8. (b) N = 
100, (c) N = 3000, and (d) N = 100,000. 
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FIGURE 3. Toroidal magnet covered with a superconductor: (left) scanning electron micro
graph and (right) schematic cross section. 

waves are physically influenced (resulting in a relative
.
phase shift) when a current 

flows through the solenoid. Aharonov and Bohm attributed this effect to the vector 
potential surrounding the solenoid, the circulation integral of which does not vanish, 
but is equal to the magnetic flux inside the solenoid. This effect is purely quantum 
mechanical because electrons pass through only field-free regions and thus no force 
is exerted on them. Although the AB effect is a straightforward consequence of the 
Schrodinger equation, it was long a center of controversy because it contradicts 
classical electrodynamics. Many conflicting assertions have been made concerning its 
physical implications and even its existence. 

The significance of the AB effect increased19 in the late 1970s, when the theory of 
gauge fields was revived as the most probable candidate for the unified theory of all 
fundamental interactions in nature. In this theory, vector potentials are extended to 
gauge fields and are regarded as fundamental physical quantities. The AB effect 
demonstrates the physical reality of gauge fields. 

The last in a series of experiments that we made used a toroidal ferromagnet 
instead of a straight solenoid. An infinitely long solenoid is experimentally impos
sible, but an ideal geometry can nonetheless be produced by using an actual toroidal 
magnet.20 The toroidal magnet was also covered with a superconducting niobium 
layer to completely confine the magnetic field. 

Even with such a compl icated structure, the distance across the toroid should be 
less than the transverse coherence length of an electron beam, say, on the order of 10 
µ.m. Yet, for complete magnetic shielding, the thickness of the superconductor layer 
should be three times the penetration depth ( - 0. 1  µ.m) of Nb. Such samples were 
thus fabricated by using the most advanced photolithography techniques. The 
resultant sample is shown in FIGURE 3. 

When the sample was cooled to 5 K, the relative phase shift was measured 
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between two electron waves passing through the inside of the hole and outside the 
toroid. 12 Although phase shifts were measured for many .samples with different 
magnetic flux values, only two phase shifts, 0 or 'TT, were observed (FIGURE 4). The 
conclusion is obvious-a relative phase shift of 'TT is produced even when the 
magnetic field is confined within the superconductor and is shielded from the 
electron beam. This proves that the AB effect exists. 

However, why is the phase shift either 0 or 'TT? This quantization of the phase shift 
provides key evidence for the complete shielding of the magnetic field by the 
covering superconductor: When a magnetic flux is no other way to be surrounded by 
a superconductor, the magnetic flux is quantized in h/2e units. Because a magnetic 
flux of h/2e produces a phase shift of 'TT, whether the relative phase shift is 0 or 'TT 
depends on whether the number of trapped flux quanta is even or odd. 

The AB effect tells us that a phase shift of 2'TT is produced between two electron 
beams enclosing a magnetic flux of hie. It can therefore be concluded that an 
electron interference micrograph displays the flow of magnetic flux. This can be more 
clearly understood when we see the result obtained by Aharonov and Bohm. From 
the Schrodinger equation, they calculated the following phase difference t:.S/h 

FIGURE 4. Electron interferograms indicating the relative phase shift: (top) phase shift = O 
and (bottom) phase shift = ir. 
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between the two electron beams starting from one point and ending at another point: 

tlS/11 = ( 1 /11) � (mv - eA ) · ds 

= ( 1 111) � (l2meV - et · A)ds, (I)  
where the integral is carried out along the route connecting two electron trajectories 
and t is the unit tangent vector of the electron trajectory. 

It can be seen from this equation that electromagnetic potentials (A, V) can be 
detected by measuring the phase shift of an electron beam, although what we can 
obtain is not the electromagnetic potentials themselves, but their integrals along the 
electron beam trajectory. 
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FIGURE S. Principle behind electron holography. 

ELECTRON HOLOGRAPHY 

The precise measurement of electron phase shifts became possible by combining 
electron holography21 and a "coherent" electron beam.s Electron holography, first 
devised by Gabor for breaking through the resolution limit of electron microscopes,9 
is a two-step imaging technique consisting of hologram formation with an electron 
wave and image reconstruction with a light beam (FIGURE 5). Its significance, 
however, was not fully recognized at first because of the lack of coherent waves. Since 
the advent of the coherent laser beam, holography has blossomed in the field of light 
optics. Likewise, practical applications of electron holography were opened up by the 
introduction of a field-emission electron beam. 
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Once an electron image is transformed into an optical image, versatile optical 
techniques can be used. For example, the phase distribution of the electron beam 
having passed through an object can be displayed as a phase-amplified interference 
micrograph22 in which phase can be measured with a precision of 2'1T I 50. 10 

The optical reconstruction is simple, but is off-line because of the time required 
for developing the film. On-line or real-time reconstruction techniques using comput
ers and optical devices are therefore being developed. An image can be numerically 
reconstructed from a hologram recorded on a charge-coupled device (CCD) at
tached to an electron microscope, and the amplitude image, the phase image, or the 
interference image can be displayed. These images can be obtained in a fairly short 
time (depending on the computer used), but not yet in real time. 

A real-time method using a liquid-crystal panel for a phase hologram has been 
developed recently.23 The image signal of the hologram, detected with a TV camera 
attached to the electron microscope, is transmitted to a liquid-crystal panel, where 
the signal is displayed as the phase distribution in the panel for an incident light 
beam. Images are reconstructed instantly by shining a laser beam onto this phase 
hologram. The time resolution depends on the TV system, and dynamic phenomena 
can be observed in real time. 

A two-dimensional phase-shifter having an arbitrary phase distribution can be 
obtained by applying the appropriate electric signal to the liquid-crystal panel. 
Therefore, another liquid-crystal panel located on the Fourier plane of the image in 
the optical reconstruction system acts as a phase-shifter for spatial filtering,24 
compensating for the lens aberrations caused by the electron lens and producing 
images under arbitrary focusing conditions (FIGURE 6). 

APPLICATIONS TO ULTRAFINE MEASUREMENTS 

Specimen Thickness Distribution in Atomic Dimensions 

The phase distribution of a specimen of uniform material maps the thickness 
contour of the specimen. A cleaved molybdenite thin film, phase-amplified 24-fold, is 
shown in FIGURE 7. The phase distribution is displayed here as a deviation from 
regular fringes (i .e. , as an interferogram). Steps A, B, and C in the micrograph 
correspond to one, three, and five layers of atomic surface steps. The thickness 
change at step A is only 6.2 A (one-half of the c-axis spacing) and produces a phase 
shift of 2'1T/50. This figure shows that a phase shift on the order of 21T/ l00 can be 
detected. 

In the transmission mode, surface topography can only be inferred from thick
ness measurements. In the reflection mode, however, topographic features can be 
measured precisely because surface height differences are directly measured (in 
units of extremely short electron wavelengths) as geometrical path differences.25 

Magnetic Field Observation 

The phase difference between two electron beams passing through a pure 
magnetic object is given by 

M/h = -(elh) PA ·  ds = - (e/h) f B · dS, (2) 
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where the first integral is carried out along a closed path along two electron 
trajectories and the second integral is carried out over the surface determined by the 
two paths. 

From this equation, we can draw the following conclusions: 13 

( I )  contour fringes in the interference micrograph indicate magnetic l ines of 
force because the phase difference tlS!h vanishes between two beams 
passing through points along a magnetic line; 

(2) a magnetic flux of h ie flows between two adjacent contour fringes. 

An interference micrograph of a fine particle of cobalt is shown in FIGURE 8. 
When the particle is observed with an electron microscope that displays the intensity 

-- -

:: =3 AJ.?=.'. 

-

5000 A --=---

FIGURE 7. Interference micrograph of a molybdenite film ( x 24). 

of the transmitted electron beam, only the triangular outline can be observed. In this 
interference micrograph, however, two kinds of fringes appear. The fringes parallel 
to the edges indicate that the thickness increases to 550 A l inearly from the edges, 
and the fringes in the inner region where the thickness is uniform indicate magnetic 
lines of force. The smoothly rotating magnetization is observable at a glance even in 
such a fine particle. 

The diameter of this particle is about 3000 A. When particles are smaller, the 
magnetization is not closed inside; the particles are uniformly magnetized. A 
barium-ferrite particle26 is shown as an example in FIGURE 9. Magnetic fields are 
leaking outside from the upper north pole of the particle and are sucked up at the 
south pole below. It can be seen that the particle has a single magnetic domain. 
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Magnetization 

Schematic diagram 

FIGURE 8. Interference micrograph o f  a Co particle. 

Flux Lines in Superconductors 

Flux lines in superconductors can be observed quantitatively by interference 
microscopy27•28 and Lorentz microscopy29 with our 350-kV holography electron 
microscope.30 In these expl!riments, we tilted a superconductive thin film with 
respect to both the electron beam and the magnetic field. The experimental 
arrangement is shown in FIGURE 10. An Nb thin film set on a low-temperature stage 
was tilted 45° to an incident beam of 300-kV electrons so that the electrons could be 
influenced by the flux-line magnetic fields. An external magnetic field of up to 150 

1 pm 

FIGURE 9. Interference micrograph of a barium-ferrite particle. 
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nGURE 10. Schematic diagram of the flux-line lattice obseivation. 

gauss was applied horizontally. A flux-line array in a single-crystall ine Nb thin film27 
is shown in FIGURE 1 1 .  Projected magnetic lines of force can be seen in this 
interference micrograph. They become dense in the localized regions indicated by 
circles, which correspond to individual flux lines. 

Although interference microscopy is a high-resolution and quantitative tech
nique, Lorentz microscopy is more convenient for observing the dynamic behavior of 
flux lines. After the sample was first cooled to 4.5 K, the magnetic field B was 
gradually increased. At B = 32 gauss, flux lines suddenly began to penetrate the film 
and the number of flux lines increased as B was increased further. Their dynamic 

nGURE 1 1. Interference micrograph of a superconducting 1'.'b film at B = 100 gauss (phase 
amplification, x 16). 
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behavior was interesting: At first, only a few flux lines appeared here and there within 
a (15 x 10)-µm field of view. They oscillated around their pinning centers and 
occasionally hopped from one center to another. These movements continued as 
long as the flux lines were not closely packed (B .:5: 100 gauss). 

An equilibrium Lorentz micrograph of a superconducting Nb film at B = 100 
gauss29 is shown in FIGURE 12. The film thickness is fairly uniform in the region 
shown, but the film is bent along the black curves (bend contours), which are caused 
by Bragg reflections at the atomic planes brought to a favorable angle by bending. 
Each spot showing a black-and-white contrast is an image of a single flux line. As 
expected, this contrast reversed when the applied magnetic field was reversed. The 
tilt direction of the sample can be read from the line dividing the black and white 
parts of the spots. Because the black part is on the same side of all the spots, the 
polarities of all the flux l ines seen in the region are the same. At a low B (i .e. , up to 
30-50 gauss), the flux lines are too sparse to form a lattice, even in equilibrium. At 
B = 100 gauss, the flux-line density is so high that they can only form a hexagonal 
lattice. 

A high-Tc superconductor has also been investigated by means of Lorentz 
microscopy.31 High-Tc superconductors are difficult to use practically because the 
critical current vanishes at high temperatures and at high ma�netic fields, even when 
the temperature is well below the critical temperatu.re Tc. This phenomenon most 
probably arises from the behavior of flux lines, but lias not yet been proven 
concretely. Some researchers believe that these flux lines melt l ike molecules in a 
liquid and it is therefore difficult to fix flux lines at some pinning sites. 32 Evidence for 
flux-line melting was provided by a Bitter BSCCO figure in which the flux-line image 
was blurred even at 15 K :mJ 20 gauss (Tc = 85 K).33 Accordingly, the practical-use 

FIGURE 12. Lorentz micrograph of a two-dimensional array of flux lines in a superconducting 
Nb film. 
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(a) 

(b) 

(c) 

(d) 

FIGURE 13. Lorentz micrographs of a BSCCO (2212) film: (a) T = 4.5 K, (b) T = 20 K, (c) T = 
56 K, and ( d) T = 68 K. 

temperature would not be Tc, but the melting temperature Tm. Other researchers, 
however, disagree and attribute the low critical current to weak pinning effects. 

The flux lines were dynamically observed to find out whether they begin to move 
under such conditions. They were observed under a fixed magnetic field B while 
increasing the sample temperature from 4.5 K to above Tc. A Lorentz micrograph at 
T = 4.5 K and B = 20 gauss is shown in FIGURE 13a. Flux lines are distributed at 
random. When the temperature was raised stepwise by a few K, flux l ines moved. 
After a few minutes, they reached an equilibrium state and became stil l . They did not 
melt even at 20 K. The flux-line configuration changed between 40 and 50 K and, at 
temperatures above those of this transition region, the flux lines formed a regular 
latt ice (FIGURE 13c). The flux-l ine lattice persisted at higher temperatures, although 
the image contrast gradually decreased and then disappeared above 77 K. 

CONCLUSIONS 

The advent of the coherent electron beam has opened up a new way to visual ize 
the phase distribution of the electron wave function. This technique has enabled 
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thought experiments in fundamental physics to actually be performed and has 
provided a new way of observing microscopic objects and fields. 
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HISTORICAL PERSPECTIVES 

The neutron, a seemingly simple, yet exquisitely complex particle, was discovered 
over 60 years ago by Chadwick. 1 Elasser first suggested that the motion of neutrons 
would be determined by quantum mechanics such that they would be diffracted by 
crystalline matter.2 This was soon verified experimentally by Halban and Preiswerk3 
and by Mitchell and Powers4 using very weak (by today's standards) radium
beryllium neutron sources. With the advent of nuclear reactors after the Second 
World War and the subsequent construction of high-flux research reactors using 
highly enriched U-235 fuel during the past 30 years, the scattering of thermal 
neutrons having a de Broglie wavelength comparable to the interatomic spacings of 
atoms in solids has become one of the most powerful techniques available in the 
elucidation of the structure and dynamics of condensed matter. 

Diffraction effects at wavelengths of the order of angstroms have been known 
since Max von Laue's demonstrations of X-ray diffraction by crystals in 1912. 
However, observing interference effects between well-separated, coherent beams is 
much more difficult to arrange. In 1965, Bonse and Hart invented the perfect 
silicon-crystal interferometer. They observed interference effects between two beams 
of X rays with a wavelength of about 1 A and separated by about 1 cm.5 In 1974, 
Rauch, Treimer, and Bonse were the first to demonstrate that this perfect sil icon
crystal interferometer would also work for thermal neutrons in an experiment 
carried out at the small reactor in Vienna.6 Thus, this year marks the twentieth 
anniversary of neutron interferometry. A list of the increasingly sophisticated 
quantum interference experiments carried out with this marvelous device over the 
intervening years is given in TABLE 1 . 

It is very fitting that a conference on Fundamental Problems in Quantum Theory 
honoring John A. Wheeler should have a session devoted to neutron interferometry. 
The neutrons that we use in the experiments come from the fission of U-235, which 
was explained to us in the famous 1939 Bohr-Wheeler paper, "The Mechanism of 
Nuclear Fission".7 This, combined with Wheeler's substantial contributions to the 
applications and clarification of quantum mechanics, makes this series of papers in 
this session particularly apropos. 

0This work was supported by the Physics Division of the National Science Foundation 
through Grant No. PHY-9024608. 
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TABLE 1 . Neutron Interferometry Experiments ( 1 974-1994) 

• First Test of Perfect Si-Crystal Interferometer with Neutrons: Vienna ( 1974) 
• Observation of Gravitationally Induced Quantum Interference: Michigan, Missouri 

( 1975, 1980, 1988, 1993) 
• Observation of the Change of Sign of the Wave Function of a Fermion due to Preces

sion of 360° in a Magnetic Field: Michigan, Vienna-Grenoble ( 1975, 1978) 
• Observation of the Effect of the Earth's Rotation on the Quantum Mechanical Phase 

of the Neutron (Sagnac Effect): Missouri ( 1980) 
• Measurement of the Energy-dependent Scattering Length of Sm-149 in the Vicinity of 

a Thermal Nuclear Resonance: Missouri ( 1 982) 
• Charge Dependence of the Four-Body Nuclear Interaction (n-3He versus n-3H): 

Vienna-Grenoble ( 1979, 1985) 
• Search for Nonlinear Terms in the Schriidinger Equation : MIT ( 1981 )  
• Search for  the Aharonov-Bohm Effect for  Neutrons with a Magnetized-Single-Crystal

of-Fe-inside Interferometer: MIT ( 1981 )  
• Measurement of  the Longitudinal Coherence Length of  a Neutron Beam: Missouri 

( 1983) 
• Observation of the Coherent Superposition of Spin States ("Wigner Phenomenon") 

with Both Static and RF Spin Flippers: Vienna-Grenoble (1983, 1984) 
• Neutron Interferometric Search for Quaternions in QJJantum ·Mechanics: Missouri 

( 1984) 
• Sagnac Effect Using a Laboratory Turntable-Shows Phase Shift due to Rotation Is 

Linear in 111: MIT ( 1984) 
• Observation of Acceleration-induced Quantum Interference: Dortmund-Grenoble 

( 1984) 
• Experiment on the Null-Fizeau Effect (Stationary Boundaries) for Thermal Neutrons 

in Moving Matter: Missouri-Melbourne ( 1985) 
• Observation of the Neutron Fizeau Effect with Moving Boundaries of Moving Matter: 

Dortmund-Grenoble ( 1985) 
• Double-RF Coil Experiment-Analogue of the Magnetic Josephson Experiment: 

Vienna-Grenoble ( 1986) 
• Precision Measurement of the Bound-Coherent Neutron Scattering Lengths of U-235, 

U-238, V, Eu, Gd, Th, Kr, H, D, Si, Bi, etc.: Vienna-Grenoble, Missouri ( 1975-1993) 
• Observation of a Motion-induced Phase Shift of Neutron de Broglie Waves Passing 

through Matter near a Nuclear Resonance (Sm-149): Missouri-Melbourne ( 1988) 
• Observation of Stochastic versus Deterministic Absorption of the Neutron Wave Func

tion: Vienna-Grenoble (1984, 1987, 1990) 
• Observation of the Topological Aharonov-Casher Phase Shift: Missouri-Melbourne 

( 1989) 
• Test of Possible Nonergodic Memory Effects: Vienna-Grenoble ( 1989) 
• Observation of the Effects of Spectral Filtering in Neutron Interferometry: Missouri

Vienna ( 1991 )  
• Counting Statistics Experiments-Particle Number/Phase Uncertainty: Vienna ( 1990, 

1992) 
• Observation of the Neutron Phase Echo Effect: Missouri-Vienna ( 1991 )  
• Coherence Effects i n  Time-of-Flight Neutron Interferometry: Missouri-Vienna ( 1992) 
• Observation of the Scalar Aharonov-Bohm Effect: Missouri-Melbourne ( 1992, 1993) 
• Spectral Modulation and Squeezed States in Neutron Interferometry: 

Missouri-Vienna (1994) 
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I begin this report with a brief description of the three-crystal LLL perfect 
Si-crystal neutron interferometer. The measurement of the .quantum phase shift 
resulting from the passage of a neutron beam through a slab of matter and 
interacting with the assembly of nuclei, creating an "optical potential", is then 
described as an elementary, but important application. The first physics experiment, 
gravitationally induced quantum interference,8 carried out with the Si-crystal inter
ferometer has evolved through several stages of improved accuracy and the latest 
results are described.9-1 1  Because this experiment is carried out on the surface of our 
rotating Earth, a noninertial frame of reference, an additional phase shift, called the 
Sagnac effect, occurs.12 Its measurement is described in some detail. I then discuss 
the observation of the topological Aharonov-Casher effect. 13· 14 I conclude by giving 
an agenda of present and future experiments with some speculations on applications 
of neutron interferometry. 

For overviews of this field, the reader is referred to the proceedings of a 
conference on Matter Wave lnterferometry15 held in Vienna, Austria, in 1987 and to 
a review article by Klein and myself in reference 16. A book on Neutron Interferom
etry by Rauch and myself is in preparation.17 

PERFECT SILICON-CRYSTAL NEUTRON INTERFEROMETERS 

A thermal neutron having a de Broglie wavelength of 2 A has a kinetic energy of 
about 20 meV and moves with a velocity of 2000 m/s. This curious dual nature of 
neutrons-sometimes a particle, sometimes a wave-is wonderfully manifested in 
the highly nonlocal effects of neutron interferometry. The seemingly incompatible 
point-by-point motion of particles in space-time as described by relativity consider
ations and these nonlocal quantum mechanical interference phenomena are brought 
into close juxtaposition by interference experiments induced by gravity, rotation, and 
topology. 

A schematic diagram of a three-crystal LLL interferometer, of the type devel
oped by Boose and Hart5 for X rays, is shown in FIGURE 1. It consists of three perfect 
crystal slabs cut perpendicular to a set of strongly reflecting Bragg planes, typically 
(220). A collimated, nominally monochromatic beam of thermal neutrons is directed 
along the line SA and is coherently split by Bragg reflection in the first crystal slab. 
These two coherent beams are split again in the second crystal slab near points B and 
C. Two of these beams are directed toward point D in the third crystal slab, where 
they overlap and interfere. The label LLL means that this interferometer involves 
three Laue transmission-geometry crystals. The neutrons are detected in three 3He 
gas-filled proportional detectors Ci. C2, and C3. A photograph of one of our LLL 
interferometers is shown in FIGURE 2. 

If the beam traversing path II is phase-shifted relative to the beam traversing 
path I, then by introducing a slab of material in path II, causing a change in the 
"optical" path length, the counting rates in detectors C2 and C3 will change. On very 
general grounds, it can be shown that the intensities /2 and h vary sinusoidally with 
the phase shift .M>: 

Ii = a2 - b2 cos (.M>) (1) 
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FIGURE 1. Schematic diagram of an LLL perfect Si-crystal neutron interferometer used at 
beam port B at the University of Missouri Research Reactor. The phase rotator allows the 
neutron "optical" path length on path II relative to path I to be adju\ted. The dimensions of this 
interferometer used in the gravity experiments are d = Jl(.518-± 0.002 mm and a = 2.464 ± 
0.002 mm. 

and 
(2) 

The constants a2, b2, a3, and b3 depend upon the transmission and reflection 
coefficients of the three Bragg reflecting crystals. As the phase shift 4cl> is varied, the 
neutron intensity is swapped back and forth between detectors C2 and C3 such that 
Ii + h is constant, requiring b2 = b3• 

For an interferometer of the size shown in FIGURE 2, there are of the order of 109 
oscil lations of the thermal neutron de Broglie wave on each path. Upon recombina
tion in the third crystal slab, stable interference fringes are formed. For this 
"miracle" to occur, very stringent requirements on microphonic and thermal stability 
must be met. In our two interferometry setups at the University of Missouri Research 
Reactor (MURR), the interferometers are positioned inside metallic, isothermal 
enclosures, which are mounted upon a vibration isolation pad. 

The incident neutron beam is not precisely monochromatic. Typically, the 
wavelength dispersion is 8>../>.. = 0.01 . The important feature of this interferometer is 
that it uses Bragg reflection in perfect crystals, where the Darwin width is about 1 .0 
arc sec. This means that the Bragg reflection process itself defines the wavelength 
along a given trajectory (ray) to within about 1 part in 106. 

The phase accumulated on either path is a line integral over the Lagrangian ..!? in 
space-time given by 

cl>(x, t ) = (�) J ..!? dt ' . (3) 
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The Lagrangian 5i9 is related to the Hamiltonian via a Legendre transformation, 

li9 = p · v - Jt', 

245 

(4) 

where p is the canonical momentum of the neutron and v is its classical group 
velocity, that is, v = ds/dt. Thus, equation 3 gives the phase at the detector at position 
x as a function of time t, namely, 

�(x, t) = {�) £> · ds - {�) f,; Jr dt ' 

= ix k · ds - J.' w dt ' , XO IO 
(5) 

where k = 2-rr/A is the wave vector and w is the frequency of the wave at any point 
(x' , t ' ) along the trajectory. For each of the two paths in FIGURE 1, we must 
separately evaluate equation 5, namely, 

�1 (x, t) = {�) £p1 • ds - (�) f,; Jr1 dt ' (6) 

and 

�u(x, t) = {�) £ Pn · ds - {�) f,; Jfl1 dt ' . (7) 

FIGURE 2. A photograph of an LLL interferometer. 
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Thus, the phase difference between the two paths is 

,!\Cl>(x, t) = <1>11(x, t) - <1>1(x, t). (8) 

In neutron interferometry, the phase shift d<l>v(x, t) caused by a potential V(x' , v, t ' ) 
is the quantity that is measured and is of physical interest, namely, 

(9) 

where d<l>o is the "empty" interferometer phase difference, that is, when V(x', v, t) = 
0. The phase shift due to the potential is the line integral along the classical 
trajectories of the neutron around the interferometer. 

• 
p 

. ... 

-� 
I 
I 
I 
I 
I 

I... L __.J X �  
FIGURE 3. A neutron of kinetic energy Wo passing through a region .'lt of optical potential 
Vop. 

PHASE SHIFf DUE TO THE INTERACTION OF NEUTRONS Wim NUCLEI 

Only the s-wave component of the scattering amplitude is significant for thermal 
neutrons scattering from nuclei. It is easy to show from this that the neutron optical 
potential of a slab of material having an atom density N and a nuclear scattering 
amplitude b is 

2Trh2bN 
Vop = --- . m 

This potential is typically of the order of 10-1 eV. 

(10) 

Suppose that this slab is inserted into one leg of the interferometer, creating a 
potential step as shown in FIGURE 3. Upon entering !JP, the neutron is slowed down 
and, upon leaving 91, it is speeded up. Knowing this, it is tempting to calculate the 
phase shift d<l>v caused by V0P using equation 3, with limits on the integral given by 
the time-of-flight across the region 91. Surprisingly, this gives the wrong answer. It is 
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important to realize that the energy is conseived here, 

( 1 1 )  

because the Hamiltonian Jt' is independent of  time. Time does not enter the 
calculation. Because V0P is assumed to be small compared to the kinetic energy 
p�/2.m, the shift in momentum calculated from equation 1 1  is 

Ap = P - Po = (- �) (;:) · Po· (12) 

Then, the phase shift of the neutron wave traversing 9f (of length L) due to the 
potential V op is 

A<l>nuc = (�) J:L �p · ds = (- 2�) (;:) ·Po · L = -XoNbL, ( 13) 

where in the last step we have used equation 10 and the de Broglie relation p0 = 
Afc0 = h f Xu. For an aluminum slab, 1 mm thick, using 2-A neutrons, this phase shift is 
420 rad = 150,000°. It is clear from this that neutron interferometry provides a very 
sensitive method for accurately measuring neutron-nuclear scattering amplitudes. 

GRAVITATIONALLY INDUCED QUANTUM INTERFERENCE 

Neutrons, like all matter, are subject to the universal gravitational force. This fact 
has been demonstrated by verifying that neutrons fall on a parabolic trajectory in the 
Earth's gravitational field. 18 This is a consequence of classical mechanics and is 
expected from the principle of equivalence. Is there a quantum phase shift for the 
neutron accompanying its fall toward the Earth? The answer is yes and it is 
measurable. Gravity and quantum mechanics do not simultaneously play an impor
tant role in most phenomena accessible to terrestrial experimentation. However, a 
neutron interferometry experiment, for which the outcome necessarily depends 
upon both the gravitational constant G and Planck's constant h , was first carried out 
by Colella, Overhauser, and Werner (COW).8 Subsequently, a series of increasingly 
precise experiments have been completed by my group at Missouri.9-1 1 I now 
describe briefly the apparatus and geometry of these experiments. Collectively, these 
experiments are called COW experiments. 

A thermal (Maxwellian spectrum) neutron beam is brought out of the 10-MW 
MURR through a helium gas-filled beam tube and is monochromated by a double
crystal monochromator assembly, which uses either pyrolytic graphite crystals or 
copper crystals. The monochromatic beam then passes through a series of collimat
ing slits onto the interferometer. The double-crystal monochromator provides a 
variable-wavelength incident beam directed along the local North-South axis of the 
Earth, a fact that we will see is important in these experiments. 

The experimental procedure involves tilting the interferometer, including the 
entrance slits and the three 3He detectors Ci. C2, and C3, about the incident beam 
line SAB shown in FIGURE 1. For each angular setting a, neutrons are counted for a 
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preset length of time (actually determined by a monitor detector in the incident 
beam). Tilting the interferometer allows the path CD to be somewhat higher above 
the Earth's surface than the beam path AB. The difference in the Earth's gravita
tional potential between these two levels results in a quantum mechanical phase shift 
of the neutron wave on trajectory ACD relative to that on the trajectory ABD. The 
phase accumulated on the rising path AC is equal to the phase accumulated on the 
opposite rising path BD. The curvature of the trajectories over the distances involved 
in the interferometer is negligible. If we assume that the gravitational potential is 
Newtonian, then (as a function of the tilt angle a) we have 

.:1V(a) = mgH0 sin (a), (14) 

where m is the neutron mass, g is the local acceleration due to gravity, and Ho is the 
perpendicular distance between the lines AB and CD. At Columbia, Missouri, mg = 
1 .023 x 10-9 eV /cm. The difference in the neutron's momentum between these two 
levels is 

( 1 ) [mgH0 sin (a)] .:1p = P - Po = - 2 g-0 Po• (15) 

where the energy W0 is a constant of the motion; in terms of the initial wave vector k0, 
it is • ·  

(16) 

The phase difference for nculron waves on path II relative to path I, induced by the 
Earth's gravity, is then easily evaluated: 

M>grav = (�) � �p · ds = -2mn2(!2) A0A0 sin (a) = q00w sin (a). (17) 

The area Ao enclosed by the beam paths is 

A0 = (2d2 + 'lad ) tan 68, (18) 

where d is the distance between the crystal slabs in the interferometer, a is their 
thickness, and 68 is the Bragg angle for the Si(220) reflection for neutrons of 
wavelength Ao. For Ao = 1 .4 A. this area is about 10 cm2 for the interferometer used in 
our experiments. Note that equation 17 contains both the gravitational constant and 
Planck's constant. 

As the interferometer is tilted through various angles a, always maintaining the 
Bragg condition, equations 1 and 2 predict that we should observe quantum 
oscillations in the counting rates in detectors C2 and C3, induced by the gravitational 
field of the Earth. An interferogram obtained with 1 .407-A incident neutrons is 
shown in FIGURE 4. 10 The unexpected loss of contrast was originally interpreted as 
being due to the fact that the interferometer bends and warps under its own weight 
(on the scale of angstroms) as it is rotated about the incident beam axis, which is not 
an axis of elastic symmetry of the Si-crystal interferometer. We have studied these 
effects with in situ X-ray experiments. X rays were directed along the same incident 
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beam path and the interfering X-ray beams were monitored as a function of rotation 
angle. The effect of gravity on X rays (gravitational redshift) over the distances 
involved in the interferometer is negligible. The frequency of oscillation of the 
interferogram due to bending was therefore measured directly with X rays and 
subtracted from the frequency of oscillation measured with neutrons, leaving only 
the effects of gravitationally induced quantum interference. Horne19 has reanalyzed 
these COW-type experiments, pointing out that the three-crystal LLL interferom
eter is not a simple two-path device, but really an eight-path interferometer. This has 
the effect that the single interferometer area Ao appearing in the COW phase shift 
formula (equation 17) should be replaced by a dynamical diffraction intensity-

u • .. 
0 ., ., 
;;; I-z ::> 
0 () 
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Gravitationally Induced Quantum Interference 
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o .__�...._� ....... ��'--�...._� ....... ��'--�...._�___._��"'--�-'-�---'-�--' 
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FIGURE 4. Interferogram resulting from tilting the interferometer shown in FIGURE 1 through 
angles a about the incident beam direction SAB. The angle a is zero when the parallelogram 
ABDC defining the beam paths is horizontal. Note that the sum of the counting rates in the two 
detectors C2 + C3 is a constant, independent of a, as required by equations 1 and 2. (See 
reference 10.) 

weighted average over three areas, A0, A0 + M, and Ao - M, where M/A0 = fa /d. 
Here, a is the thickness of each of the three slabs, d is the distance between them, and 
r is a factor (less than unity) dependent upon the misset angle 46 of a given incident 
ray from the exact Bragg con'Clition. Using Horne's theory, we find that a correction 
of 4.8% to the experimental frequency of the gravity interferogram should be made 
before comparison with the COW phase shift formula. The fact that the experiment 
actually involves more than one interferometer area also explains the loss of contrast 
with increasing tilt angles a. Similar conclusions, using a complete spherical-wave 
dynamical diffraction treatment, were reached by Boose and Wroblewski20 in analyz
ing their acceleration-induced interferometry experiment. We have shown that this 
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geometrical correction to the COW formula for the frequency of oscil lation is in fact 
given by10 

q�av = [ 1 + (�) (�)] qCOW· (19) 

For our interferometer, aid = 0.0714, so 
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FIGURE S. For a given tilt angle a, an interferogram is recorded by rotating the phase rotator 
(a slab of aluminum). The phase of this interferogram is called &(a). The functional form of the 
interferogram is I] (&, a) = a + b cos [M>(&) + 4(a)]. The tilt angle is then changed and 
another interferogram is recorded. Note that 4(a) = q••P sin (a - ao). See equation 21 and 
reference 10. 

We now turn to comparing this predicted frequency of the gravitationally 
induced quantum interferogram with our most recent experiments. We have fol
lowed a somewhat different procedure than in the original COW experiments. The 
phase shift .:1<1>grav(a) = q1rav sin (a) is measured directly by first setting a = 0 and 
rotating the phase rotator through successive angles 8. Due to the neutron-nuclear 
optical potential of the phase rotator, this results in a sinusoidal interferogram. 
Then, tilting the interferometer through an angle a and repeating the scan of the 
phase rotator gives rise to another sinusoidal interferogram. The difference in phase 
between these two interferograms is .:1<1>�v(a). The results of a series of very 
accurate measurements, using 1 .417-A neutrons, are summarized in FIGURE 5. The 
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abscissa is sin (a - ao), where ao is a correction due to the Sagnac effect (ao = 1 .41°), 
which will be discussed below. The slope of �<l>grav versus sin (a - ao) is the 
experimental frequency qexp of the gravity interferogram. To compare this frequency 
with qgrav• we must make a correction for bending and for the Sagnac effect, namely, 

- ( 2 - 2 ) 1 12 -qgrav - qexp qSagnac %end• (21) 

Theory gives qsagnac = 1 .45 rad and, with X rays, we measure qhend = 1 .4 1  rad. Thus, 
our current experimental result is 

qgrav(observed) = 58.72 ± 0.03 rad. (22) 

Equation 20 predicts 

qgrav(theory) = 59 . 19  rad. (23) 

Hence, the observed frequency due to gravity is 0.8% lower than theory predicts. 
Layer and Greene suggested that this discrepancy might be due to the fact that X 

rays interrogate a slightly different region of the Si-crystal slabs than the neutron 
beams;21 that is, the correction for bending effects using X rays may be in error. 
Recent X-ray experiments of Arif et al. 1 1  have shown that the bending effects are 
considerably more complicated than originally thought and corrections using X rays 
to the neutron frequency of oscillation will require additional analysis. 

A way to eliminate the effects of bending and thereby facilitate a more accurate 
comparison with theory is to float the interferometer in a fluid of density equal to 
that of Si. This suggestion was first made by Zeilinger (see comments at the end of 
reference 10). Implementation of this idea presents several experimental challenges. 

THE NEUTRON SAGNAC EFFECT 

The French scientist, M. G. Sagnac, was the first to demonstrate that optical 
interferometry is sensitive to angular rotation.22 This effect is now used in navigation 
and is the basis for the ring-laser gyroscope. In 1925, Michelson, Gale, and Pearson 
carried out an heroic experiment.23 They constructed an interferometer in the form 
of a rectangle of size 2010 ft x 1 1 13 ft and were able to detect the retardation of light 
due to the Earth's rotation, corresponding to about Y. of a fringe, in agreement with 
relativity theory. Because the coordinate transformation properties of light waves 
and neutron matter waves are different, it cannot be taken for granted that an 
analogous quantum mechanical effect will exist for neutrons. 

The gravitationally induced quantum interference experiments were carried out 
on the surface of our rotating Earth, a noninertial frame of reference. The classical 
Hamiltonian governing the neutron's motion in the gravitational field and frame of 
our rotating Earth is24 

(24) 

where L is the angular momentum of the neutron's motion about the center of the 
Earth (r = 0), namely, 

L = r  X p, (25) 
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and where p is the canonical momentum and c.> is the angular rotation velocity of the 
Earth. The third term in equation 24 gives rise to the Coriolis and centripetal 
accelerations. Over the distances involved in the interferometer, the Coriolis force 
has a negligible effect on the neutron's trajectory. However, its effect on the 
neutron's phase is measurable. Using Hamilton's equation v = iJK/iJp, we see that 
the neutron's canonical momentum is 

p = m ;v + m ;c.> x r. (26) 

We have been more careful here to distinguish between the neutron's inertial mass 
m; and its gravitationai mass mg. The Hamiltonian in equation 24 is velocity
dependent, but time-independent; thus, the energy ft' is conserved. According to our 
prescription of the second section for calculating the phase shift, we get two terms 
from equation 26, namely, 

A<I> = (�) � p · ds = A<l>grav + A<l>sagnac· (27) 

Using elementary vector calculus, the Sagnac phase shift is easily found to be 

A <l>sagnac = ( °;' i) Co> • ��· (28) 

where Ao 1s the normal area vector of the interferometer loop ABDCA. When the 
incident beam is horizontal and directed along the local North-South axis of the 
Earth, equation 28 gives 

(4mn;wA0) A<l>sagnac = h COS (OL) COS (a) = qSagnac COS (a). (29) 

The colatitude angle is OL = 51 .376° at Columbia, Missouri. Because this phase shift 
depends upon the cosine of the interferometer tilt angle a and A<l>grav depends upon 
the sine of a, the frequency of oscillation of the interferogram can be written as 

q = Jq�av + q�agnac = qgrav [ 1 + (�) q!�:·] • (30) 

Numerically, qsagnac/qgrav = 0.02. Thus, the effect of the Earth's rotation adds a small 
correction of only 2 parts in 104 to the interferogram frequency due to the Earth's 
gravity. 

However, in an experiment carried out in collaboration with Staudenmann and 
Colella, 12 a vertically directed beam was used as shown in FIGURE 6. The Sagnac 
phase shift was measured (using the phase-rotator technique described earlier for 
the gravity experiments) as a function of the interferometer orientation angle a 
about the vertical axis. From symmetry, it is clear that there is no a-dependent 
gravity-induced phase shift for this geometry. In terms of the colatitude angle eL at 
the point on the Earth's surface where the experiment was done and of the angle a, 
the Sagnac phase shift (from equation 28) is given by 

A<l>sagnac = (°;'}oA0 sin (eL) sin (a). (31) 
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The experimental results are shown in FIGURE 7. When the normal area vector Ao 
points West or East, the phase shift is zero; when Ao is directed North or South, it is 
+95° and -95°, respectively. This experimental result is in reasonable agreement 
with equation 31 ,  which predicts that �<l>Sagnac should be +92° and -92° for the North 
and South orientations, respectively. 

It is interesting to note that the results of this experiment depend only upon the 
inertial neutron mass m;, whereas the results of the gravity experiment depend upon 

phase 
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FIGURE 6. Schematic diagram of the vertical beam geometry used in observing the neutron 
Sagnac effect. 12 

the product of the gravitational mass m8 with the inertial mass m;. Thus, one can 
interpret the combination of the two experiments as a quantum mechanical interfer
ence measurement of the inertial and gravitational masses. We point out that 
neutrons are much more sensitive to the Sagnac effect than photons. This can be seen 
if we write mv = Ilk  and replace m;fh in equation 28 by k/v. For photons, v = c, the 
velocity of light, which is about 105 times larger than for our thermal neutrons. 
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FIGURE 7. Effect of the Earth's rotation on the quantum mechanical phase of the neutron. 
The angle a specifies the orientation of the interferometer's normal area vector with respect to 
the local N-S axis of the Earth at Columbia, Missouri.12 The ordinate, labeled 13, is the Sagnac 
phase shift, &cl>Sagnac· 

mE AHARONOV-CASHER EFFECT 

According to the Maxwell theory of electrodynamics, potentials are merely 
convenient mathematical tools for calculating the electromagnetic fields of force. In 
quantum mechanics, potentials enter the Schrodinger equation and produce phase 
shifts, even in geometries where the potential gives rise to no electromagnetic field. 
These are the situations of interest in the topological interference effects of Aha
ronov and Bohm.25 For electrons, the effects are of two types: the magnetic (or 
vector) AB effect and the electric (or scalar) AB effect. We have observed directly 
analogous effects with neutrons. We describe the neutron vector AB effect in this 
section, called the Aharonov-Casher (AC) effect.13 

In 1984, Aharonov and Casher proposed that a beam of neutral particles with a 
magnetic dipole moment passing around opposite sides of a line charge will undergo 
a relative quantum phase shift. This AC effect is considered to be an electrodynamic 
and quantum mechanical dual of the Aharonov-Bohm effect for charged particles, as 
can be understood by the schematic diagram shown in FIGURE 8. The AB ftux tube 
has been replaced by a line of electric charge of lineal density A and the electron 
beam of charge e- has been replaced by a beam of neutrons with magnetic moment 
IL· If one views the AB flux tube as a line of magnetic dipoles, one sees that the roles 
of charge and magnetic dipole have been interchanged between the AB effect and 
the AC effect. 

For a neutron of mass m and magnetic moment ,..., moving in the region of an 
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electric field E, the Hamiltonian is26 

2 = (;:) - (�c) JL · (E x p). (32) 

Thus, using Hamilton's equation v = iJ2 / iJp, we see that the canonical momentum is 

p = mv + (�) x E. (33) 

It is a straightforward matter to show that there is no force on the neutron if the 
electric field comes from a line charge along the z-axis, and the neutrons are 
polarized along .z. An expression for the acceleration a is obtained by taking the total 
time derivative of the velocity v above, using the second of Hamilton's equations p = 
- iJ2 / iJr and elementary vector algebra. The result is27 

a =  (-�c) (JL • V)(v x E). (34) 

For neutrons polarized in the .z-direction, 

(35) 

However, for a line charge, E = E(x,y), independent of z; thus, 

a = O  (36) 

for this line charge geometry. 
In other words, the velocity v is a constant of the motion. For a neutron 

(a) (b) 
FIGURE 8. Diagram illustrating the duality between (a) the Aharonov-Bohm effect for 
electrons diffracting around a tube of magnetic ftux and (b) the Aharonov-Casher effect for 
neutrons diffracting around a line charge. 
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diffracting around a line charge of lineal density A, one obtains the AC phase shift by 
evaluating the line integral ofp, namely, 

(37) 

where er = ± 1 depending upon whether the neutron spin is up or down with respect 
to the plane of the neutron's motion. We have used the fact that the electric field due 
to a l ine charge is E = 2Ai/r. As pointed out by AC, this phase shift depends only 

Sm Co MAGNETS 

FISSION CHAMBER 
M A BEAM MONITOR 

" °"'STAC '"""''ROM�__, 
FIGURE 9. Schematic of the AC effect experiment. An unpolarized neutron beam of wave
length X = 1 .477 A is used. The neutron wave on path II passes through a region of electric field 
E and then through a vertical magnetic bias field B. The neutron wave in path I passes on the 
opposite side of the center electrode, whose polarity was reversed periodically as described in 
the text. The interferometer, along with the entrance slit, the vacuum electrostatic cell, and the 
bias magnet, could be tilted about the incident beam direction to adjust the spin-independent 
gravitational phase shift, .1«1>8, •• . 14 

upon the lineal charge density A, enclosed by the beam paths, but not on any details 
of their geometrical shape. In this sense, the effect is topological . Thus, instead of a 
line charge, a prism-shaped electrode was placed between the splitter (S) and mirror 
plate (M) of the interferometer as shown in FIGURE 9, thereby enabling a much 
larger lineal charge density to be obtained. An electrode can be regarded as the 
superposition of many line charges. The experiment was a collaborative University of 
Melbourne-University of Missouri project carried out in Columbia, Missouri . 

For the electrode assembly of FIGURE 9, Gauss' law allows us to replace A by 
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2VL/4-rrD. Here, V is the potential difference between the electrodes, D is their 
separation, and L is the effective path length as shown in FIGUR,E 9. In terms of these 
parameters, for D = 0. 154 cm, L = 2.53 cm, and V = 45 kV ( = 150 stat volts), we find 

.:1<1> AC = 1 .50a milliradians. (38) 

It was assumed in the derivation of equation 37 that the neutrons are polarized along 
an axis parallel to the line charge, that is, the z-axis. However, it is not necessary to 
use polarized neutrons if an additional spin-independent phase shift is judiciously 
introduced and fine-tuned. In this experiment, gravity was used for this purpose. The 
introduction of a further spin-dependent phase shift .:1pM, by means of a magnetic 
bias field, enabled maximum sensitivity to the AC effect to be accomplished. 

An unpolarized beam can be thought of as consisting of two beams, one spin-up 
and the other spin-down. For the spin-up component, the counting rate in detector 
C3 is 

n = G) (a3 + b3 cos (.:1a + .:1p)]. 

whereas, for spin-down neutrons, it is 

IJ = G) [a3 + b3 cos (.:1a - .:1P)] . 

(39) 

(40) 

The spin-independent phase shift is called .:1a and the spin-dependent phase shift is 
called .:1p. Thus, for an incident beam of unpolarized neutrons, we have 

(41) 

We adjust .:1a by gravitationally induced quantum interference to be zero (mod 2-rr) 
and we adjust .:1PM to be -rr/2 or 3-rr/2, where 

.:1p = .:1pM + .:1<1> AC· 

Thus, because .:1<1>Ac is such a small phase angle, we have 

/3(± ) = 03 ± b3 l .:1<l>Acl 

(42) 

(43) 

from equation 41 ,  where the + sign is for negative center electrode polarity and the 
- sign is for positive center electrode polarity. A similar expression applies to the 
counting rate in detector C2, namely, 

(44) 

Thus, the count rates are linearly proportional to .:1<1>Ac· 
The magnetic bias field was varied by changing the reluctance of a magnetic 

circuit. To find the correct operating point for .:1a and .:1PM, the following procedure 
was followed: With the magnetic field B set equal to zero, the interferometer was 
tilted in steps. The first maximum near zero tilt angle sets .:1a = 0 (mod 2-rr) .  Leaving 
the tilt angle fixed at this maximizing value, operating points of negative slope 
(.:1PM = -rr/2) and positive slope (.:1PM = 3-rr/2) were selected by scanning the mag
netic field as shown in FIGURE 10. The magnetic field was then changed in small 
increments around the value giving .:1PM = -rr/2 or 3-rr/2. Gravity scans were then 
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FIGURE 10. Magnetic scan interferogram when the interferometer tilt angle is a = 1 . 1°.14 

carried out for each value of the magnetic field and the optimum was chosen as that 
giving minimum oscillation. 

A complete sequence of magnetic scans for various tilt angles and of gravity scans 
for various magnetic fields is shown in FIGURE 1 1 . The procedure for selecting the 
precise operating points was repeated every week during the course of the experi
ment. 

After the optimum operating conditions were established, the 45-kV high voltage 
was switched on across the electrode gap and then periodically reversed in polarity. 
Each switching cycle (positive, zero, negative) took about 30 minutes. The total data 
accumulation time was about 2 years. A summary of the data is given in TABLE 2. 
C2( +) and C3( +) are the total number of counts accumulated in detectors C2 and C3 
per cycle for a positive center electrode polarity, whereas C2( -) and C3( -) are for a 
negative center electrode polarity. Only the difference counts, llC2 = C2( +)  - C2(- )  
and /lC3 = C3( + )  - C3(- ), per cycle are given i n  TABLE 2 .  The positive slope data 
apply to when the bias magnetic field is adjusted to give /l�M = 3-rr/2, whereas the 
negative slope data apply to the case /l�M = -rr/2. Notice that the expected symmetry 
and sign reversals for the difference counts are found in the data of TABLE 2. 

By statistically combining the results for the positive and negative slopes accord
ing to the rule 

(45) 
where 002 ( = 0.24) and w3 ( = 0.76) are the statistical weighting factors (inversely 
proportional to the square of the standard deviations), we obtain the last column of 
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TABLE 2. A fit to the magnetic scan of FIGURE 10 gives the slope of the interferogram 
at the operating points, namely, 

b = b2 = b3 = 1234 ± 15 counts/cycle. (46) 

The phase shift due to the AC effect is then obtained from the difference counts and 
this slope, as shown in TABLE 2. 

Combining the positive and negative slope data, this experiment yields the first 
measurement of the AC phase shift: 

.:1«1>Ac = 2. 1 1  ± 0.34 mrad. (47) 
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FIGURE 11. A complete sequence of magnetic scans for various tilt angles (left) and a 
complete sequence of gravity scans at various bias magnetic field values (right ) . 14 
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This result is to be compared to the theoretical prediction of 1 .50 mrad. The accuracy 
of the experiment is limited by available neutron intensity and long-term apparatus 
stability. Obviously, the much larger interferometers currently being designed and 
fabricated in our laboratory will be important in the next generation of AC effect 
experiments. Changing the charged electrode geometry is necessary to elucidate the 
topological aspects of the AC predictions. An experiment is being developed to 
pursue this feature of the theory. 

The essential necessity of the AB effect for the self-consistency of quantum 
mechanics was first clearly elucidated by Furry and Ramsey in 1960.28 Recently, 
Ramsey has given a similar argument for the AC effect and has discussed the 
complementarity of two-path neutron interferences with separated oscillatory-field 
resonances.29 An experimental observation of the AC phase shift by the Ramsey 
technique, which can be viewed as interferometry in spin space, has recently been 
achieved by Sangster et al. in a beautiful molecular beam experiment using thallium 
fluoride molecules. 30 They were able to verify the velocity independence of .:1«1> AC and 
its linear dependence on the electric field E by observing the interference of the two 
spin states of the fluorine nucleus. 

TABLE 2. Difference Counts/Cycle 

Experimental Condition C2( + ) - C2( - ) 
positive slope, 3539 cycles, 

74 days 
negative slope, 3654 cycles, 

76 days 

+7.66 ± 2.48 

-5.43 ± 2.36 

-4.80 ± 1 .39 

+4.66 ± 1 .32 
positive slope: .1<1>Ac = (.1C)/'2h = 2.22 ± 0.49 mrad 
negative slope: .1<1>Ac = ('1C)/'2b = 1 .96 :!: 0.46 mrad 

CONCLUDING REMARKS 

5.49 ± 1 .21  

4.84 ± 1 . 15 

The three experiments discussed in this report (gravitationally induced quantum 
interference, neutron Sagnac effect, and Aharonov-Casher effect) show the didactic 
aspects of neutron interferometry and its impact on understanding the nonlocal 
nature of quantum mechanics. The extensive list (TABLE 1) of experiments carried 
out with the perfect Si-crystal interferometer encompass a large number of the 
central ideas and the "magic" of quantum theory. Our current agenda of experi
ments at Missouri for the immediate future include the following: 

(a) A Berry phase experiment along the lines of the proposal of Wagh and 
Rakhecha, where the nonlocal neutron spin is allowed to precess .about 
magnetic fields B1 on path I and B2 along path II, where there is an angle p 
between B1 and B2•3 1 A geometric phase shift .1«1>geom = p is expected, in 
addition to the dynamical phase shift due to local spin precession. 

(b} A multiphoton absorption experiment using polarized neutrons with large 
amplitude RF flipper coils within the interferometer according to the ideas 
proposed by Summhammer.32 
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( c) A phase shift due to accelerated matter within one leg of the interferometer. 
Recently, Kowalski has challenged the validity of the principle of equivalence 
under conditions where phase shifts due to gravity and matter occur simulta
neously.33 He finds a problem in second order, that is, for terms involving the 
product of the gravitational potential Ugrav and the mean nuclear potential of 
a slab of matter Umatter in the index of refraction, n = ( 1  - U/£0) 1 '2• 

( d) As mentioned in the previous section, the topological aspects of the AC 
effect have not yet been verified. We intend to pursue this by varying the 
geometry of the charged electrode assembly within the interferometer. 

( e) A cross-correlation Wheeler-delayed-choice experiment, in which He-3 neu
tron detectors with a 50% transmission are placed in each leg of the 
interferometer. 

Even more challenging experiments have been discussed for some time. They include 
a neutron version of the Michelson-Morley experiment, a neutron Cavendish experi
ment where the phase shift due to local moving masses is pursued, the gravitational 
phase shift due to the Moon and the Sun, and a gravitational version of the AB effect. 
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INTRODUCTION 

Different kinds of neutron interferometers have been tested in the past. The slit 
interferometer is based on wave-front division and provides long beam paths, but 
only a very small beam separation. 1 •2 The perfect-crystal interferometer3·4 provides 
the highest intensity and the highest flexibility for beam handling and is now most 
frequently used due to its wide beam separation and its universal availability for 
fundamental, nuclear, and solid-state physics research. The interferometer based on 
grating diffraction is a more recent development and has its main application for very 
slow neutrons.5 A schematic comparison is shown in FIGURE 1 .  

The perfect-crystal interferometer represents a macroscopic quantum device 
with characteristic dimensions of several centimeters. The basis for this kind of 
neutron interferometry is provided by the undisturbed arrangement of atoms in a 
monolithic perfect silicon crystal.3•6 An incident beam is split coherently at the first 
crystal plate, reflected at the middle plate, and coherently superposed at the third 
plate [FIGURE 1 (middle) and FIGURE 2). 

From general symmetry considerations, it follows immediately that the wave 
functions in both beam paths, which compose the beam in the forward direction 
behind the interferometer, are equal (iii� =  !Ji�1) because they are transmitted
reflected-reflected (TRR) and reflected-reflected-transmitted (RRT), respectively. 
The de Broglie wavelength of the neutrons diffracted from such crystals is about 1 .8 
A and their energy is about 0.025 eV. The theoretical treatment of the diffraction 
process from the perfect crystal is described by the dynamical diffraction theory, 
which can also be found in the literature for the neutron case.1-10 Inside the perfect 
crystal, two wave fields are excited when the incident beam fulfills the Bragg 
condition, one of them having its nodes at the position of the atoms and the other in 
between them. Therefore, their wave vectors are slightly different (k1 - k2 = 10-s · 
k0) and, due to mutual interference processes, a rather complicated interference 
pattern is built up, which changes substantially over a characteristic length �o-the 
so-called Pendellosung length, which is of the order of 50 µm for an ordinary silicon 
reflection. To preserve the interference properties over the length of the interferom
eter, the dimensions of the monolithic system have to be accurate on a scale 
comparable to this quantity. The whole interferometer crystal has to be placed on a 
stable goniometer table under conditions avoiding temperature gradients and vibra
tions. A phase shift between the two coherent beams can be produced by nuclear, 
magnetic, or gravitational interactions. In the first case, the phase shift is most easily 

263 
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FIGURE 1. Scheme of a slit, a perfect-crystal, and a grating interferometer. 

calculated using the index of refraction: 1 1 . 12 

k 
(
A.2N

) 
C(;;\( cr' ) (cr,NA.) 

n = ko = 1 - 211" Vb� - \ii} + i 4tr ' 

which simplifies for weakly absorbing materials (er, -+ 0) to 

n = 1 - xi (Nbc) 211" • 

(1) 

(2) 

where be is the coherent scattering length and N is the particle density of the 
phase-shifting material. The different k-vector inside the phase-shifter causes a 
spatial shift A of the wave packet that depends on the orientation of the sample 
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surface s: 

- (k - k0) 
� =  -- Do k with 

- - (1 - n)kS 
k - k0 = -(k,...._-5-) - . (3) 

As in ordinary light optics, the change of the wave function is obtained as follows: 

(4) 

Therefore, the intensity behind the interferometer becomes 

(5) 

The intensity of the beam in the deviated direction follows from particle conserva
tion: 

10 + /H = const. (6) 

Thus, the intensities behind the interferometer vary as a function of the thickness D 
of the phase-shifter, the particle density N, or the neutron wavelength >.. . A 
wave-packet description has to be used to define the coherence properties in real 

NEU TRONS 

PERFEC T 
SILICON 
CRYSTAL 

FIGURE 2. A perfect-crystal symmetric neutron interferometer. 

--
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experiments: 

(7) 

Standard quantum mechanics defines the momentum distribution of the beam by 

g(k) = l i!i(k) l2 = l a (k) l2; (8) 

therefore, one gets the real part of the coherence function as the Fourier-transform 
of the momentum distribution, 

l f(ii) I ex IJ g(k)�k·.id3k , , (9) 

which simplifies for Gaussian momentum distributions, 

g(k) ex exp [- (k - k0)2/2&'ic2J, (10) 

with characteristic widths &k; to 

l f(iio) I = IT exp [- (.:1;8k; )2/2]. (11) 

The mean square distance related to I f(ii) I defines the coherence length L\,, which 
for Gaussian distribution functions is directly related to the minimum uncertainty 
relation [.:1� = l /(2&k;)] . 

Any experimental device deviates from the idealized assumptions made by the 
theory: the perfect crystal can have slight deviations from its perfectness and its 
dimensions may vary slightly; the phase-shifter contributes to imperfections by 
variations in its thickness and inhomogeneities; and even the neutron beam itself 
contributes to a deviation from the idealized situation because of its momentum 
spread 8k. Therefore, the experimental interference patterns have to be described by 
a generalized relation, 

I ex A + B cos (x + «1>0), ( 12) 

where A, B, and «1>0 are characteristic parameters of a certain setup. It should be 
mentioned, however, that the idealized behavior described by equation 5 can nearly 
be approached by a well-balanced setup. IJ The reduction of the contrast at high 
order results from the longitudinal coherence length, which is determined by the 
momentum spread of the neutron beam [.:1 .. = (2&1c .. )- IJ .  This causes a change of the 
amplitude factor iJ of equation 12 as B -+ Bexp[-(.:1;&k;)2/2). The wavelength 
dependence of x in equation 4 disappears in a special sample position where the 
surface of the sample is oriented parallel to the reflecting planes, and the path length 
through the interferometer becomes D0/sin 88; therefore, the phase shift x = 
-2dAft!lb,/)0 becomes independent of the wavelength, and the damping at high 
interference orders is strongly reduced and does not appear as in the standard 
position. Related results showing the interference pattern in the 256th interference 
order in the dispersive and the nondispersive sample position are shown in FIGURE 
3.14 The much higher visibility of the interferences in the nondispersive sample 
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arrangement is visible and is caused by the much smaller momentum spread 
perpendicular to the reflecting planes. 

Various postselection measurements in neutron interferometry have shown that 
interference fringes can be restored even in cases when the overall beam does not 
exhibit any interference fringes due to spatial phase shifts larger than the coherence 
length of the interfering beams.IS-IS This indicates that the simple picture that 
predicts interference only when wave packets spatially overlap is untrue. Interfer
ence actually occurs no matter how large the optical path difference may be. From 
classical optics, it has been known for many years that the coherence properties 
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FIGURE 3. Interference pattern observed at high order (m = 256) with a dispersively (a) and a 
nondispersively (b) arranged sample.14 (Dashed lines correspond to measurements at low 
order.) 

manifest themselves in a spatial intensity variation for phase shifts smaller than the 
coherence length and in a spectral intensity variation for large phase shifts. 19-23 This 
phenomenon becomes more apparent for less monochromatic beams and can cause 
overall spectral shifts24•25 and even squeezing phenomena.26•27 The related phenom
ena for matter waves have been discussed recently:ZS.29 and will be elucidated in more 
detail in this report. 

All the results of interferometric measurements obtained up until now can be 
explained well in terms of the wave picture of quantum mechanics and the comple
mentarity principle of standard quantum mechanics. Nevertheless, one should bear 
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in mind that the neutron also carries well-defined particle properties, which have to 
be transferred through the interferometer. These properties are summarized in 
TABLE 1 together with a formulation in the wave picture. Both particle and wave 
properties are well established and, therefore, neutrons seem to be a proper tool for 
testing quantum mechanics with massive particles, where the wave-particle dualism 
becomes very obvious. 

All neutron interferometric experiments pertain to the case of self-interference, 
where during a certain time interval only one neutron is inside the interferometer, if 
at all . Usually, at that time, the next neutron has not yet been born and is still 
contained in the uranium nuclei of the reactor fuel. Although there is no interaction 
between different neutrons, they have a certain common history within predeter
mined limits that are defined, for example, by the neutron moderation process, by 
their movement along the neutron guide tubes, by the monochromator crystal, and by 
the special interferometer setup. Therefore, any real interferometer pattern contains 
single-particle and ensemble properties together. 

PARTIAL BEAM PATH DETECTION EXPERIMENTS 
. 

A certain beam attenuation can be achieved either by a semitransparent material 
or by a proper chopper system. The transmission probability in the first case is 
defined by the absorption cross section a0 of the material [a = 1/10 = exp (-a,,ND)) 
and the change of the wave function is obtained directly from the complex index of 
refraction (equation 1 ): 

(13) 

Therefore, the beam modulation behind the interferometer is obtained in the 
following form: 

10 ex 1 "1� + "1�1 12 ex [(1 + a) +  2.(a cos x] .  (14) 

On the other hand, the transmission probability of a chopper wheel or another 
shutter system is given by the open-to-closed ratio, a = topcn/(topen + tc1oscc1), and one 
obtains (after straightforward calculations) 

/ ex [(l - a) l "1�1 12 + a l "1� + "1�1 12] ex [(l + a) + 2a cos x]; ( 15) 

that is, the contrast of the interference pattern is proportional to ,/Q in the first case 
and proportional to a in the second case, although the same number of neutrons are 
observed in both cases. Absorption represents a measuring process in both cases 
because a compound nucleus is produced with an excitation energy of several MeV, 
which is usually de-excited by capture gamma rays. These can be easily detected by 
different means. 

FIGURE 4 shows the dependence of the normalized contrast of the measured 
interference pattern on the transmission probability.30-32 The different contrast 
becomes especially obvious for low transmission probabilities where the interfering 
part of the interference pattern is distinctly larger than the transmission probability 
through the semitransparent absorber sheet. The discrepancy diverges for ii -+ 0, 
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but it has been shown that in this regime the variations of the transmission due to 
variations of the thickness or of the density of the absorber plate have to be taken 
into account, which shifts the points below the curve.33 This can most easily be 
understood if the variation of the beam attenuation due to variations of the thickness 
or density fluctuations is included, a = a + .ia, which yields after averaging 

ra < �. 
indicating that the points fall below the .[a curve. 

O} b} 

Q2  

0 

ABSC1181NG -
LATTICC 

srOCHAsric 
ABSIJRPrKJN 

t} 

i 0o 02 a• o& oa 10 
- TRANSMISSION PROBABN.I TY o 

FIGURE 4. (Top) Sketch of the experimental arrangement for absorber measurements: (a) 
stochastic absorption; (b) deterministic absorption; (c) attenuation by a transmission grating. 
(Bottom) Reduction of the contrast as a function of beam attenuation for different attenuation 
methods.3 1 .32 

The region between the linear and the square-root behavior can be reached by 
very narrow chopper slits or by narrow transmission lattices, where one starts to lose 
information concerning which individual slit the neutron went through. This is 
exactly the region showing the transition between a deterministic and a stochastic 
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situation and, therefore, it can be formulated by a Bell-like34,3S inequality: 

.fa > x > a . 

271 

(17) 

The stochastic limit corresponds to the quantum limit when one does not know 
anymore through which individual slit the neutron went. Which situation exists 
depends on how the slit widths I compare to the coherence lengths A; in the related 
direction. In case that the slit widths become smaller than the coherence lengths, the 
wave function behind the slits shows distinct diffraction peaks that correspond to new 
quantum states (n ¢ 0), which now do not overlap with the undisturbed reference 
beam. The creation of the new quantum states means that those labeled neutrons 
carry information about the chosen beam path and hence do not contribute to the 
interference amplitude.36 A related experiment has been carried out by rotating an 
absorption lattice around the beam axis, that is, where one changes from I « A.r 
(vertical slits) to I ::> A, (horizontal slits) (see FIGURE 5), because the coherence 
length parallel to the reflecting lattice vector is much larger than in any other 
direction. Thus, the attenuation on factor a has to be generalized, including not only 
nuclear absorption and scattering processes, but also lattice diffraction effects if they 
remove neutrons from the original phase space. 

A very similar situation exists if a very fast chopper produces beam bursts (packet 
lengths) shorter than the coherence time of Ate = A/v. In this case, diffraction in time 
occurs, which also removes neutrons out of the original phase space. This limit is very 
difficult to reach with a mechanical chopper, but it can probably be tackled with a 
high-frequency spin flipper. 

NEUTRON JOSEPHSON EFFECT 

This phenomenon is based on the dipole coupling of the magnetic moment jl of 
the neutron to a magnetic field B(H = - jlB), which causes the famous 4ir-symmetry 
of spinor wave functions, as measured in early neutron interferometer experi
ments.37·38 The change of the wave function reads as 

(18) 

where ci represents a formal description of the Larmor rotation angle around the 
field B (a = (2µ/h) J Bdt = (2µ/hv) J Bds) .  This enabled also the realization of the 
spin superposition experiments where spin-up ( I f > ) and spin-down ( I ! > ) states 
are superposed, producing a final state perpendicular to both initial states.39·40 It is 
interesting to mention that, in the case of spin reversal by means of a resonance 
flipper, the spin term is accompanied by an energy exchange equal to the Zeeman 
energy, hw,. = 2µB. This provided the basis for the observation of a new quantum 
beat effect: the magnetic Josephson analogue. 

A double-coil arrangement has been used for the observation of this new 
quantum beat effect. If the frequencies of the two coils are chosen to be slightly 
different, the energy transfer becomes different too [AE = h(w,1 - w,.2)). The fre
quency difference can be made very small, if high quality frequency generators are 
used for the field generation. The flipping efficiencies for both coils are always very 
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close to unity (better than 99% ). Now, the wave functions change according to 
"1 -+ e;c .. -..... )11 l > + eiXei<'"-..,.2>1 1 l > : 

273 

(19) 
Therefore, the intensity behind the interferometer exhibits a typical quantum beat 
effect, given by I ex: 1 + cos [x + (w,1 - w,2)t] . (20) 
Thus, the intensity behind the interferometer oscillates between the forward and the 
deviated beam without any apparent change inside the interferometer.41 The time 
constant of this modulation can reach a macroscopic scale that is correlated to an 
uncertainty relation fl.E flt � h/2. FIGURE 6 shows the result of an experiment where 
the periodicity of the intensity modulation, T = 2Tr/(w, 1 - w,.2), amounts to T = 
( 4 7 .90 ± 0. 15) s, caused by a frequency difference of about 0.02 Hz. This corresponds 
to a mean difference (fl.E) of the energy transfer between the two beams of fl.E = 
8.6 · 10-17 eV and to an energy sensitivity of 2.7 · 10- 19 eV, which is by many orders of 
magnitude higher than that of other advanced spectroscopic methods. This high 
resolution is strongly decoupled from the monochromaticity of the neutron beam, 
which was fl.E = 5.5 · 10-4 eV around a mean energy of the beam E8 = 0.023 eV in 
this case. It should be mentioned that the result can also be interpreted as being the 
effect of a slowly varying phase ll.(t ) between the two flipper fields, but the more 
physical description is based on the argument of a different energy transfer. The 
extremely high resolution may be used for fundamental, nuclear, and solid-state 
physics applications. 

The quantum beat effect can also be interpreted as a magnetic Josephson effect 
analogue. In this case, the phase difference is driven by the magnetic energy 
(fl.Bo = B02 - Bo1), 

and therefore 

( 8 ) 2µ.fl.Bo 
81 (fl.2 - fl.1) = w,2 - w,1 = -11- ,  

(2µ.fl.Bo) ll.(t ) = (w,2 - w,1)t = -11- • t. 

This yields the observed modulation (compare equation 20): I ex: [ 1 + cos ll.(t )]. 

(21) 

(22) 

(23) 

This is analogous to the well-known Josephson effect in superconducting tunnel 
junctions,42 where the phase of the Cooper pairs in both superconductors is related 
according to 

(24) 
which is driven by the electric potential Vbetween both superconductors. This gives 

cl>(t ) = (�� . t (25) 
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and a superconducting Josephson current of 

/5 = /sMax sin cl>(t ) . 

POSTSELECTION OF MOMENTUM STATES 

275 

(26) 

In the course of several neutron interferometer experiments, 15-18 it has been 
established that smoothed-out interference properties at high interference order can 
be revived even behind the interferometer when a proper spectral filtering is applied. 
The experimental arrangement with an indication of the wave packets at different 
parts of the interference experiment is shown in FIGURE 7. An additional monochro
matization is applied behind the interferometer by means of various single crystals 

SKEW-SYMMETRIC 
IEIJTRON �  

3 He OElECTOR  

FIGURE 7 .  Scheme o f  t h e  experimental arrangement with a skew-symmetrically cut perfect
crystal interferometer and a postselection analyzer crystal . 1 8•28 

brought into Bragg position. Using equations 5 and 7, the momentum-dependent 
intensity reads as 

10(r, k) = 1 '1i� (r, k) + lji�1 (r + �. k) 1 2 ex l a (k) i 2{ 1 + cos[.i(k) · k) j ,  (27) 

whereas the overall beam reads as 

(28) 

where .io represents the spatial phase shift for the �o component of the packet. 
Equation 28 describes the interference fringes when �o is varied. The formula also 
shows that the overall interference fringes disappear for spatial phase shifts larger 
than the coherence lengths [�; � �� = 1 / (2&k;)] (see equation 1 1 ) . This behavior is 



276 ANNALS NEW YORK ACADEMY OF SCIENCES 

ilJ[_ j 50 -50 50 1 50 
x (A) 

2 

-
s -

f:LL 
2.60 3.10 I 3.60 k (A- ) 

o ....., ..................................................................................................................... .J....J 
0 50 

t 

iUc - 1 50 -50 50 1 50 fLL 2.60 3. 1 0  I 5.60 
x (A) k. - (A- ) 

1 00 

FIGURE ts. Interference pattern as a function of the relative phase shift (middle) and related 
wave packets and momentum spectra behind the interferometer for different values of the 
phase shift. 18 

shown in FIGURE 8 and has been verified experimentally by several investigations for 
Gaussian and non-Gaussian neutron beams.43-45 

In our experiment, we deal with the coherence properties along the interferom
eter axis (x}, where-according to basic quantum mechanical laws-the (tangential) 
components of the momentum vectors (and coherence length} do not change due to 
Bragg diffraction. The related momentum distribution follows from equation 27 and, 
for Gaussian packets, it can be rewritten in the form, 

Io(k) = exp [- (k - k0)2/28k2 ){ I + cos [ xo(:0)] } , (29) 

where the mean phase shift is introduced (xo = k�o = NbcXoDcff). The surprising 
feature is that /0(k) becomes oscillatory for large phase shifts where the interference 
fringes described by equation 28 disappear (see FIGURE 8). This indicates that 
interference in phase space has to be considered46•47 rather than the simple wave 
function overlap criterion described by the coherence function (equation 10). The 
second beam behind the interferometer (H) just shows the complementary modula
tion, /H = l101a1 - lo. 

The wave function48 of the packets arising from beam paths I and II determines 
the spatial shape of the packets behind the interferometer, that is, 

lo(x) = I "1(x) + lji(x + .:1) 1 2, (30) 

which separates for large phase shifts into two peaks (FIGURE 8). For Gaussian 
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packets, having a spatial width lk, which corresponds to the coherence length .10, the 
minimum uncertainty relation &8/c = 1h is fulfilled. For an . appropriately large 
displacement (.1 » .10), the related state can be interpreted as a superposition state 
of two macroscopically distinguishable states, that is, a stationary Schrodinger-cat
like state, 26•49.S0 but here first for massive particles. These states-separated in 
ordinary space and oscillating in momentum space-seem to be notoriously fragile 
and sensitive to dephasing effects.s t-54 

Measurements of the wavelength spectrum were made with a silicon crystal with 
a rather narrow mosaic spread, which reflects in the parallel position a very narrow 
band of neutrons only (8/c ' /k0 = 0.0003), causing an enhanced visibility at large 
phase shifts (FIGURE 8). This feature shows that an interference pattern can be 
restored even behind the interferometer by means of a proper postselection proce
dure. In this case, the overall beam does not show interference fringes anymore and 
the wave packets originating from the two different beam paths do not overlap. 

The momentum distribution has been measured by scanning the analyzer crystal 
through the Bragg position. The related results are shown in FIGURE 9 for different 
phase shifts. These results clearly demonstrate that the predicted spectral modula
tion (equation 29) appears when the interference fringes of the overall beam 
disappear. The modulation is somehow smeared out due to averaging processes 
across the beam due to various imperfections, unavoidably existing in any experimen
tal arrangement. The contrast of the empty interferometer was 60%. 

Each peak in the momentum distribution shown in FIGURE 9 corresponds to a 

FILTERED 
4500 
4000 
HOO 
3000 

i:: .5 4000 
0 3500 
""' 3000 ' 
Ill = 4000 
g HOO 

u 3000 

4000 
HOO 
sooo 

-0.1 -0.4 o.o 0.4 

a (deg) 

UNFILTERED 

110000 
D = Omm 

1 20000 
1 10000 

D = 4mm 
140000 

120000 

1 40000 

1 10000 
D = 20mm 

140000 

110000 0.1 -0.1 -0.4 o.o 0.4 

a (deg)  

O.B  

Spectral Dist r i bu t ion 
•,. (d•t) .... [TI···· 22.2 .... .. .. 

IOOO 
D cm Bi 

.... 
2000 2.J4 Z.Jll 2.JI 2.40 -� -�l(l) � 

0 1 cm Ii en !:::_ IOOO g ., -- ....... § 4000 !! 
0 c 0 � 
,.., 2000 8 
0 2 . .14 2.JI 2 . .JI 2.40 l (1) 

1000[2] 
2 cm Ii 

.... . r/\/\ 4000 J � 
2000 2 . .J4 Z . .JI 2 .Je J.40 

q.l) 

FIGURE 9. Interference pattern of the unfiltered overall beam (&k/ko = 0.012, middle) and 
the filtered beam reflected from a nearly perfect-crystal analyzer in the antiparallel position 
(&k ' lko = 0.0003, left), and the observed spectral modulation (right) of the outgoing beam for 
different phase-shifter thicknesses. •B 
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different number of phase shifts . experienced by the neutrons of that wavelength 
band during passage through the interferometer. In that sense, the minimum 
quantum entity of the incident wave packet becomes a new diverse entity represent
ing different quantum states with distinguishable properties. This kind of labeling 
shows that constructive interference is restricted to a certain wavelength band 
only-a situation similar to that where new quantum states have been created due to 
lattice diffraction inside the interferometer (FIGURE 5).36 

The new quantum states created behind the interferometer can be analyzed with 
regard to their uncertainty properties. Analogies between a coherent state behavior 
and a free, but coherently coupled particle motion inside the interferometer have 
been addressed previously.32 In such cases, the dynamical conjugate variablesx andp 
minimize the uncertainty product with identical uncertainties: (4.x)2 = (ak)2 = 1/2 

6 6 

,•: 

t 2 2 t 

2 x=t>/2 6x 

FIGURE 10. Spatial and momentum uncertainties of the outgoing beams with the indication of 
squeezing in the momentum domain.ts 

(in dimensionless units) . Using /0(k) and /0(x) (equations 29 and 30) as distribution 
functions, we get in our case 

f(A) = (iti*(O)iti(A)} 
and (for 8k/k0 « 1 ) 

((af<)2) = (k2) _ (k)2 = (8k)2 1 _ ___£, e cos o o e 
. I ( Ii  )2( - (.�o/2&}/2 (Ii k ) + -(.1o/2&)2]1 

2&x (1 + e -<6ot2&-J212cos (lioko)]2 

(31) 

(32) 

These relations are shown in FIGURE 10, indicating that, for (ak)2, a value below the 
coherent state value can be achieved, which in quantum optic terminology means 
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1,,,m · e  - ..i,.  

· · · · ·< . . . . . . . . . . . . . . . . . . . 0 L,_ ___ ..:::::c:..-..;.;.;.:::.:.:� 
0 3 

Time Interval ( -r /-:t) 
5 

FIGURE 11. Sketch of the experimental setup for time-selection experiments and the pair
correlation function for the maximum and minimum of the interference pattern. 60 

squeezing.26.SS-58 One emphasizes that a single coherent state does not exhibit 
squeezing, but a state created by the superposition of two coherent states can exhibit 
a considerable amount of squeezing. Thus, highly nonclassical states are made by the 
power of the quantum mechanical superposition principle . 

0.010 -.,, 
f -

0.005 
0 10 

Time Interval ( 't' / 't' ) 
FIGURE 12. Measured phase sensitivity of an interference pattern for the case of proper 
time-correlation measurements in comparison with the phase sensitivity related to the overall 
beam (dashed line).60 
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POSTSELECTlON IN IBE TIME DOMAIN 

Instead of measuring the interference pattern by scanning the phase-shifter, one 
can measure additionally the intensity correlation function, 

fC2>(.i, T) = (/(0, O)/(.i, T)), (33) 

which defines the probability of registering a neutron at time T, if there was another 
one measured at T = 0. This probability to measure a neutron at a time T after 
another neutron has arrived reads for a stationary beam of a thermal (statistical) 
source as59 

Bi Ti 

skew symmetric 
interferometer 

W(T) = /(�) exp[-T · /(�)], (34) 

4000 
3000 (a) Open Beam 

2000 
1 000 

.. 0 ., (b) "Bmm Bi Sample :; �000 c ':.i .... 1 000 ...... 0 .. c 2000 (c) 10mm Ti Sample 
:J 0 0 1 000 .... 0 0 

� 2000 (d) Bi + Ti Samples 
1 000 

0 
- 1 .0 -0.5 0.0 0 .5  1 .0 

Phase Rotator Angle a (deg) 
FIGURE 13. Loss of contrast at high interference and its retrieval by an opposite phase-shifter 
inserted into the same beam.45 

which exhibits an intensity-dependent "decay time" of T(�) = [/(�)J - 1 •  FIGURE 1 1  
shows the experimental arrangement and the probability of measuring neutron pairs 
with a time separation T for the case when the overall interference pattern is turned 
to its maximum or minimum, respectively (in our case, the overall contrast was 40% ) . 
It becomes visible that the contrast for neutron pairs arriving within short time 
intervals is higher than the overall contrast. For larger time separations, the contrast 
vanishes and appears with an opposite sign, reaching values of 100% for timely wide 
separated pairs. This behavior has been verified experimentally60 and it has been 
shown that remarkably higher phase sensitivities can be achieved by using this new 
measuring technique (FIGURE 12). 

These results demonstrate that considerably more information can be deduced 
even from a statistical beam if the individual arrival times of the neutrons are 
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additionally registered to define the pair-correlation function inherent to the quan
tum system. 

CONTRAST RETRIEVAL BY PHASE ECHO 

Phase echo is a similar technique to spin echo, which is routinely used in neutron 
spectroscopy.61 A large phase shift (4 > 4•) can be applied in one arm of the 
interferometer, which can be compensated by a negative phase shift acting in the 
same arm or by the same phase shift applied to the second beam path.44•45•62 
According to equation 4, the phase shift is additive and the coherence function 
depends on the net phase shift only. Thus, the interference pattern can be restored 
as it is shown schematically and in the form of an experimental example in FIGURE 
13 .  The phase-echo method can also be applied behind the interferometer loop when 
multiplate interferometers are used.63 In this case, the situation becomes even more 
similar to the situation discussed in the previous section. 

These results tell us that information first appearing in a spatial phase shift 
becomes transferred into a momentum modulation, which can be revived to ordinary 
space modulation effects again. A comment has to be made that it becomes 
intrinsically more difficult to restore the original contrast when the separation of the 
wave packets in ordinary space increases. 

REQUEST FOR POSTSELECTION IN EPR EXPERIMENTS 

The previously discussed neutron experiments have shown us that phase space 
coupling persists even if the overlap in one parameter space does not exist anymore. 
The stored information becomes exchanged between parameter spaces and can be 
measured by a proper experimental method. This has consequences for EPR 
experiments too. The entangled states (e.g., see reference 64) of two photons 
produced by an atomic decay cascade (FIGURE 14), 

are correlated due to the energy conservation of the transition: 

k1 + k2 = k01 + k02 = coast. 

(35) 

(36) 

This produces a momentum- and space-dependent intensity distribution when the 
packet structure of the related wave functions is taken into account, 28 that is, 

I(k1 , k2, i") = I "1 1 2 = 2 l a (k1 ) I 2 l a(k2) 1 2 · { 1 + cos [2(k2 - k1 )r) } . (37) 

This shows a characteristic intensity modulation for each photon pair (FIGURE 14) 
and indicates that individual l k) states remain interacting even at an arbitrarily large 
spatial separation of the wave packets. For large distances [r > (28k) - 1 ), the 
appearance of a momentum distribution modulation follows from equation 37 as 
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well . 2s If one of these photons are registered on one side, its wave function collapses, 
which instantaneously changes the wave function on the othei side to l l k)i l 2• This 
again shows that much more information can be gained than is usually extracted. 
Therefore, it is recommended to repeat this experiment with a proper momentum 
resolution, which would show that the right and the left wave fields of the related 
momentum band (i.e. , the partner photons) remain coupled even at an arbitrarily 
large spatial separation of the overall wave packets. 

REVERSIBILITY - IRREVERSIBILITY 

D D D 'Voit 
.. 

/L .., 1xj+ k(r; - rj)) �- .. 'Vo + �aye 
I,) 

-���- .. ix f �x1 + k(r1- r1)) 'Vo e + b;je i,j=l 

Source) 
-++-

(Detector 
FIGURE IS. Approximate and complete wave functions behind a compact and a split interac
tion region. 

Related experiments will show that this coupling of the partner pairs of photons 
persists independently from its overall spatial separation. This also indicates that 
locality should be treated in phase space rather than in ordinary space only. Here, 
too, the required momentum resolution becomes more stringent when the packets 
become wider in their separation in ordinary space. 



284 ANNALS NEW YORK ACADEMY OF SCIENCES 

IRREVERSIBILl1Y AND THE MEASURING PROCESS 

In the previous sections, it has been shown that more information about a 
quantum system can be extracted when more experimentally accessible parameters 
are measured. It becomes obvious that a system remains coupled in phase space even 
when it becomes separated in any parameter space. Thus, interference properties 
can be shifted from one parameter space to another and back again. Related bands 
of plane wave components that compose the wave packets (equation 7) may be 
considered as a responsible factor for the understanding of the nonlocality phenom
enon in quantum mechanics. 

The summaries drawn for the different experimental situations discussed in this 
article are qualified by a statement that the retrieval of the interference properties by 
several postselection procedures becomes increasingly more difficult as the width of 
the separation of the quantum system increases. In fact, a more detailed view shows 
that a complete retrieval is impossible in principle, as is shown in FIGURE 15 for the 
case of a phase-echo system. In a more complete and more accurate measurement, 
more and more parts of the complete (not approximate) wave functions become 
visible, which contain more and more of the detailed history that the quantum system 
has experienced between the source and the detector. This indicates a basic 
irreversibility process not caused by parasitic effects li!se absorption or incoherent 
scattering processes, but by the appearance of an infinite number of additional terms 
in the wave function, indicating that the original state can by no means be restored 
completely. Unavoidable fluctuations (even zero-point fluctuations) cause an irrevers
ibility effect that becomes more influential for widely separated Schrodinger-cat-like 
states. All these effeccs can be described by an increasing entropy inherently 
associated with any kind of interaction.65 This also supports the idea that irreversibil
ity is a fundamental property of nature and reversibility is an approximation only, as 
stated by several authors (e.g., see references 66-68).  

This shows that irreversibility and therefore the measurement process start with 
the first interaction that the quantum system experiences in the experimental setup. 
The assignment of a source and a detector region defines the direction of increasing 
entropy. 

DISCUSSION 

All the results of the neutron interferometric experiments are well described by 
the formalism of quantum mechanics. According to the complementarity principle of 
the Copenhagen interpretation, the wave picture has to be used to describe the 
observed phenomena. The question of how the well-defined particle properties of 
the neutron are transferred through the interferometer is not a meaningful one 
within this interpretation, but from the physical point of view it should be an allowed 
one. 

The newly discovered persisting phase space coupling in cases of large spatial 
shifts of the wave packets may bring some attenuation to the action of plane wave 
components outside their packets. The shown results clearly demonstrate that a 
spectral modulation can be observed in neutron interference experiments at high 
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interference order and that interference has to be treated in phase space rather than 
in ordinary space. It looks like the plane wave components of the wave packets, that 
is, narrow band width components, interact over a much larger distance than the size 
of the packets. This interaction guides neutrons of certain momentum bands to the 
0- or H-beam, respectively. These phenomena throw a new light on the discussion of 
Schrodinger-cat-like situations in quantum mechanics and therefore on the discus
sion about the EPR experiments too.28.64•69-71 Spatially separated packets remain 
entangled in phase space and nonlocality appears as a result of this entanglement. 
The analogy with optical experiments performed in the time-frequency domain is 
striking.23 An analogous situation exists in neutron spin-echo systems, where mul
tiple spin rotation plays an equivalent role as the high order interferences discussed 
here .61,11 

More complete quantum experiments show that a complete recurrence of all 
wave components behind an interaction that the quantum system has experienced 
becomes impossible in principle. This implies-<m a high accuracy level-a basic 
noncommutativity of operators A · B and indicates that the irreversible quantum 
measuring process starts with the first interaction of the quantum system with the 
experimental setup. 
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Experimental Tests of the Foundations of 

Quantum Mechanics Using Neutrons: 

The Scalar A-B Effect" 

A. G. KLEIN 

School of Physics 
University of Melbourne 

Parkville, Victoria 3052, Australia 

INTRODUCTION 

An experiment using a perfect crystal neutron interferometer, performed by a 
University of Melbourne/University of Missouri-Columbia collaboration,1 •2 has 
verified an effect closely analogous to the electric Aharonov-Bohm effect, which 
shows that scalar potentials, even in the absence of forces, have observable effects in 
quantum mechanics. The experiment, employing t ime-dependent interferometry, 
exhibits certain features that bear upon the famous "delayed choice" proposition by 
J. A. Wheeler3 in that, from a classical standpoint, the particles have their motion 
influenced by a pulse applied after they have left the first beam-splitter. 

DISCUSSION 

The well-known Aharonov-Bohm (A-B)4•5 effect demonstrates the fact that 
electrons suffer additional phase shifts when propagating through regions of space 
that carry nonzero potentials, even in the absence of forces acting on the particles. 
The usual magnetic A-B effect, amply verified by beautiful experiments with electron 
holography, 6 exhibits the influence of magnetic vector potentials. Somewhat less well 
known is the electric, or scalar, A-B effect, which concerns the phase shift caused by 
the scalar potential V = -eU in the Schrodinger equation: 

(H0 + V) = ilialjl/at . (1) 

Consider FIGURE 1 a, which shows the split halves of an electron wave packet 
entering conducting cylinders, the interiors of which act as Faraday cages, that is, 
have field-free interiors no matter what electrostatic potential U they carry. In order 
to exhibit the scalar A-B effect, the potent ials of the cylinders are made to change in 
a t ime-dependent manner while the wave packets are in flight through them. Thus, if 
the cylinders had voltage pulses U(t ) applied to them during that time, the electrons 
would not experience any force; however, a relative phase shift would nevertheless 

0This work was supported by the Australian Research Council and the United States 
National Science Foundation (Grant No. NSF-PHY-9024606). 
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nGURE 1. Schematic diagram of the scalar Aharonov-Bohm experiment for (a) electrons and 
(b) neutrons. The waveforms of the applied pulses are also shown. 

arise, given by 

(2) 

Although few would doubt the correctness of the A-B predictions, the effect is of 
such fundamental importance to the internal consistency of quantum mechanics that 
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a practical realization of the experiment deserves a serious attempt. However, this 
simple (in principle) experiment has not yet been carried out because of technical 
difficulties with existing types of electron interferometers and the lack of suitable 
interferometers for protons or ions. 

Hence, an analogous experiment, with neutrons rather than charged particles, 
was suggested by Zeilinger7 and Anandan.8 We designed and performed such an 
experiment, making use of a perfect single-crystal neutron interferometer. The 
experiment is shown in schematic form in FIGURE lb, which shows the split halves of 
a neutron wave packet entering solenoids, the interiors of which contain uniform, 
gradient-free magnetic fields. Thus, neutrons, assumed to be polarized along the 
direction of B, the axis of quantization, find themselves in force-free regions inside 
the solenoids, but experience scalar potentials of V = - p. · B, where p. is the 
magnetic dipole moment of the neutron. If current pulses, i(t ), are applied to the 
solenoids while the neutrons are in the force-free environment of their interior, they 
give rise to magnetic fields B(t ) and the relative phase shift produced is given by 

dcj> = ( 1 /h) I (p. . B1(t ) - .... . B2 (t))dt, (3) 

in complete analogy with equation 2. In the actual experiment, short-duration 
current pulses (of a few microseconds) were applied to suitably designed solenoids 
placed inside a neutron interferometer. The counts·detCfted were gated according to 
the position of the neutron wave packet relative to the solenoids at the time when the 
pulses were applied. The phase shift of neutrons that traversed the solenoids when 
the current was zero may thus be compared with the phase shift of neutrons that 
traversed the center of the solenoids when the current was at a maximum. For typical 
solenoid dimensions of = 40 mm and a neutron velocity of = 2 mm per microsecond 
(de Broglie wavelength = 2 A), magnetic fields of about 20 gauss were required in 
the solenoids in order to give rise to a relative phase shift of 'IT radians. 

The experiments, carried out at the University of Missouri Research Reactor 
(MURR), are described in detail in the papers of Allman et al. 1 •2 The results, shown 
in FIGURE 2, are in excellent agreement with the predictions of equation 3. In what 
follows, we shall attempt to clarify several aspects of this experiment that have 
elicited comment.9,to 

First, regarding the topological nature of the A-B effects, it is easy to see in our 
experiment that the phase shifts are independent of the exact paths taken by the 
neutrons through the apparatus, in exactly the same way as in the case of the 
electrons in the electric A-B experiment of FIGURE 1. The rather artificial definition 
of what is topological by Peshkin10 tends to obscure this simple fact. As for his claim 
that the interiors of the solenoids are not field-free, this is patently true. They are, 
however, gradient-free and hence force-free, as far as neutrons are concerned, and 
this, in analogy with the force-free regions in which the electrons travel in FIGURE l , 
is the crux of the matter. As further evidence of the fact that there are no forces and 
hence no dynamical phase shifts involved, it may be shown that the momentum of the 
particles, and hence their kinetic energy, stays constant when the pulsed magnetic 
fields are applied, as opposed to the case when the particles enter, traverse, and exit 
a static magnetic field. This has been demonstrated experimentally in the very 
beautiful experiment carried out by Badurek et al. showing that the A-B phase shifts 
are nondispersive. 1 1 
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In the actual scalar A-B experiment with neutrons, the prospect of a considerable 
experimental simplification led us to employ an unpolarized be;im of neutrons on the 
grounds that polarized neutrons would have given exactly the same result as an 
unpolarized beam, which may be regarded as an incoherent mixture of a = + 1 and 
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FIGURE 2. Interferometer output signals as a function of pulse coil field strengths. 

a = - 1 neutrons. Because the interferometer signal depends on the cosine of the 
phase shift, -1<!>, the two polarization states corresponding to a = ± 1 give rise to 
identical outputs, that is, counts proportional to cos( ±-1<1> ) . The critical comment by 
Peshkin9 is based on an alternative interpretation, namely, the precession of neu-
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trons in the B field. This is a perfectly valid alternative viewpoint, but it does not 
vitiate the analogy on which the A-B interpretation is based. 

The whole of the above polemic appears to attack the scalar A-B experiment, as 
well as the earlier Aharonov-Casher12 (A-C) experiment,13 on the grounds that they 
arc not identical to the A-B experiments. Evidently not: the neutron, with a finite 
dipole moment, but zero charge, is only to be expected to lead to a richer phenom
enology that is nevertheless related to the electron effects by simple and highly 
suggestive analogies. Furthermore, just as the electric and magnetic A-B effects 
taken jointly are manifestations of the (A, V) 4-vector, the scalar A-B effect with 
neutrons may be regarded as the fourth component of the Aharonov-Casher effect, 
as shown by Anandan. 8 . 

A final observation concerns the time-dependent nature of the scalar A-B 
experiments: The current pulse applied to the solenoid occurs while the neutron 
traverses its center, that is, well after the corresponding classical particle had left the 
first beam-splitter. In other words, the classical particle had already "chosen" the 
path through the interferometer. Because the output path, behind the interferom
eter, is determined by the pulse of potential applied after the initial choice of path at 
the first beam-splitter, this time-dependent interferometry situation bears a close 
resemblance to the famous "delayed choice" experiment discussed by John Wheeler,3 
to whom this contribution is dedicated. 

ACKNOWLEDGMENTS 

I wish to thank my Melbourne colleagues, Alberto Cimmino and Geoffrey Opat, 
and my former student, Brendan Allman, now at Missouri, as well as my collabora
tors at the University of Missouri-Columbia, Helmut Kaiser and Sam Werner. 

REFERENCES 

1 .  ALLMAN, B. E., A. CIMMINO, A. G. KLEIN, G. I. 0PAT, H. KAISER & S. A. WERNER. 1992. 
Phys. Rev. Lett. 68: 2409-2412. 

2. ALLMAN, B. E., A. 0MMINO, A. G. KLEIN, G. I. 0PAT, H. KAISER & S. A. WERNER. 1993. 
Phys. Rev. A 48: 1799-1807. 

3. WHEELER, J. A. 1978. /n Mathematical Foundations of Quantum Theoiy. A. R. Marlow, 
Ed.: 9-48. Academic Press. New York. 

4. AHARONOV, Y. & D. BOHM. 1959. Phys. Rev. 1 15: 485. 
5. PESHKIN, M. & A. TONOMURA. 1989. The Aharonov-Bohm Effect: Lecture Notes in 

Physics, Vol. 3450. Springer-Verlag. Berlin/New York. 
6. TONOMURA, A. 1987. Rev. Mod. Phys. 59: 639. 
7. ZEILINGER, A. 1986. In Fundamental Aspects of Quantum Theoiy. NATO ASI Series 

B144. V. Gorini & A. Frigerio, Eds. : 33 1 .  Plenum. New York. 
8. ANANDAN, J. 1990. /n Proceedings of the Third International Symposium on Foundations 

of Quantum Mechanics in the Light of New Technology. S. Kobayashi et al. , Eds. Phys. 
Soc. Japan. Kyoto. 

9. PESHKIN, M. 1992. Phys. Rev. Lett. 69: 2017. 
10. PESHKIN, M. 1995. This volume. 
1 1 . BADUREK, G., H. WEINFURTER, R. GAHLER, A. KOLLMAR, S. WEHINGER & A. ZEILINGER. 

1993. Phys. Rev. Lett. 71: 307. 
12. AHARONOV, Y. & A. CASHER. 1984. Phys. Rev. Lett. 53: 3 19. 
13. CIMMINO, A., G. I .  0PAT, A. G. KLEIN, H. KAISER, S. A. WERNER, M. ARIF & R. 

CLOTHIER. 1989. Phys. Rev. Lett. 63: 3803. 



Diffraction in Time and a New 

Type of Interferometry 

with Nonseparated Beamsa 

A. I. FRANKb AND V. G. NOSOVc 
b /. M. Frank Laboratory of Neutron Physics 

Joint Institute for Nuclear Research 
I41980 Dubna, Moscow Region, Russia 

cinstitute of General and Nuclear Physics 
Russian Scientific Center "Kurchatov Institute " 

I23I82 Moscow, Russia 

INTRODUCTION 

The problem of nonstationary quantum effects in neutron optics has lately been 
the subject of extensive discussions. Moshinsky was, apparently, one of the first 
persons to approach this problem in 1952. 1 He considered the evolution of a neutron 
wave upon instantaneous extraction of a perfect absorber from a beam of monochro
matic neutrons. His result for the wave evolution in the right half-space coincided in 
form with the familiar pattern of the Fregnel diffraction of light on an abrupt edge. 
That is why he named the considered phenomenon, "diffraction in time". Ya. B. 
Zel'dovich analyzed the general problem of periodic processes in 1966 and intro
duced the concept of quasi-energy.2 In reference 3, a number of nonstationary 
quantum phenomena, which, in principle, could be observed in experiments with 
ultracold neutrons (UCN), were considered. The problem of using a "quantum" 
chopper as a possible device for performing experiments with cold neutrons was 
discussed in references 4-6. It is natural to assume that a real chopper operates in a 
periodic mode and the notion of quasi-energy most closely corresponds to the 
physical picture of the process. This fact has been noted in references 7 and 8. 

NEUTRON QUASI-ENERGY AND THE PROBLEM OF PERIODIC 
INFLUENCE ON A NEUTRON BEAM 

Quasi-energy, as a new physical characteristic, has a clear formulation when the 
Hamiltonian exhibits an explicit periodic time-dependence . A concrete case for such 
a phenomenon has been considered in references 7 and 8. The problem considered 
therein is related to the periodic influence of a perfect chopper, which, when 
removed from the beam at t = 0, put into the beam at time t = T/2, and removed 
again at t = T, has a total period of T. 

0This work has been partially supported by the International Science Foundation (Grant No. 
ISF RFH 000). 

293 



294 ANNALS NEW YORK ACADEMY OF SCIENCES 

On the basis of the Moshinsky solution1 and the principle of superposition, the 
following wave function is found in reference 7 for a periodic chopper: 

lji(x, t) = - eiCkx-.,,) + - L , ( 1 ) ( i ) "' ei(knx-.,,,1) 2 'IT n=-oo (2n - 1) 
- [2'1T(2n - 1)] 

Wn - w +  
T ' = 

(2mw,,) l/2 kn Ii • 

( I )  

(2) 

Thus, the state in the right half-space represents a nonstationary superposition of 
waves, each of which has an energy liw,, and a corresponding wave number kn. These 
equidistant satellites correspond, together wi�h the nonshifted wave w, to the same 
quasi-energy of a particle. It should be noted that the amplitudes of the satellites are 
Fourier coefficients of a rectangular function characterizing the influence of the 
chopper. 

The relationship with the Fourier transform becomes even more evident when 
the problem of the diffraction of monochromatic neutrons on a moving grating is 
being solved.9-1 1  Solution of the diffraction problem for a moving reference system 
connected with a grating reduces to a Fourier transformation of the coordinate part 
of the wave function. The wave function in the laboratory reference system is found 
by subsequent application of the Galilean transformation. At the limit, when the 
grating has a high enough velocity V and its period is 2a,_with the value of T = 2.a/V 
remaining constant, one readily arrives a t  equations 1 and 2 given above. In the same 
way, a solution was found for the moving phase "'IT-grating": ( 2 ) "' ei(knx-.,,,1) 

ljs(x, t) = i'IT n�oo (2n - 1) · (3) 

To extend Moshinsky's analogy, we may refer to the above results as a "diffrac
tion on a time grating". 

mE GENERAL CASE OF NEUTRON WAVE MODULATION 

The conclusion concerning the appearance of a discrete energy spectrum with 
partial amplitudes associated with Fourier coefficients could naturally be made in a 
more direct way. Let the action of some device placed at the origin of a reference 
system result in periodic variation of the amplitude or phase of the initial plane wave. 
Then, at small distances from this device, the wave function will have the form, 

k- 1 < x « vT, (4) 

where f (t )  is, generally speaking, a complex function of period T and v is the neutron 
velocity. Representingf(t) in the form of a Fourier expansion over the frequencies 
n!l, one obtains, for x > 0, 

f (t)  = L c�-inn1, lji(x, t) = L C�i(knx-.,,,,>, (5) n=-oo n=-oo 
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where 

<i>n = oo + n!l, 
211' 

!l = 
T ' 
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y·= !l/oo « 1 .  (6) 

The function f(t) is what we will term the function of modulation. For an 
absorbing chopper and a modulation function of rectangular shape, it can be seen 
that we arrive at equation 1. In the case of 11'-phase modulation, we arrive at 
equation 3. 

Note that the requirement of smallness of the modulation region as compared 
with the size of the spatial element vT in equation 4 is not essential, but is rather of a 
technical nature. If this region exhibits a significant extension, the main features of 
the phenomenon are conserved. For a quantitative description, however, somewhat 
more cumbersome calculations are required. A more detailed analysis of the 
concrete case of a neutron crossing the region with an oscillating magnetic field is 
presented in reference 12. 

IBE WAVE STRUCTURE OF A STATE AND LARGE-SCALE BEATS 

Turning to the transformation in equations 5 and 6, we note that its peculiar 
characteristic is the nonlinear relationship between the quantities k and oo. The same 
situation is encountered in the propagation of an electromagnetic wave in a dispers
ing medium. 

Passing in equation 6 to the expansion of kn in ny and substituting the result into 
equation 5, we obtain, with a precision up to the included quadratic terms, 

(7) 

A beam that has passed through the chopper forms a rather complicated wave 
structure. At points where 

(p = integer), (8) 

it is readily seen that the wave function (equation 7) assumes the form, 

ljl(x, t) = ei(/a:-Oll) L C�i(10-1')1in = ei(la:-"">f(t - to) (to = xiv). (9) 
n=-oo 

Precisely the same wave picture is reconstructed in the vicinity of these points that is 
observed immediately behind the chopper. Thus, the transmitted wave exhibits a 
structure characteristic of spaced beats. Their large-scale period is8 

1611' (vT)2 
L = - = --

yzk 'TT� 
, (10) 

This pattern of long-scale beating will spread again when the third (cubic) term in 
the expansion of kn in ny becomes significant and will then reconstruct again at the 
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distance of 

3211" 
L (2) = 

-y3k ' (11)  

where the phases connected with this term will be equal to 211". We can see that a 
characterist ic length hierarchy takes place in the case under consideration. 

Note that the length, vT, of the reconstructed "primary" structural elements is 
much smaller than the magnitude of spatial spreading, � == ./Xik, of a single neutron 
bunch. The nature of this reconstruction is the result of interference of the number 
of waves and occurs only due to the validity of the superposition principle and the 
linearity of the SchrOdinger equation. 

THE JOINT ACTION OF 1WO CHOPPERS (MODULATORS) 
AND A TIME INTERFEROMETER 

Now, let us see what happens if, at a certain distance I from the first chopper, a 
second chopper with the same frequency n is installed. Clearly, its action also 
reduces to the Fourier transformation of each parti_1;1l wave�Thus, we have 

"1(x, t) = ei<kx-O>I) x � � C,.ei"'"C,,.eif(n +m>ll'Yl2)kx-n11- 1<n+m)21s)'Y2kxl, (12) 
n=-co m=-co 

(13) 

For convenience, the x-coordinate is now read from the second chopper, and the 
time t is from the moment it is fired. In addition, T is the time interval between the 
moments when the choppers are fired and is determined up to an integer number of 
periods T. 

Because the indices n and m in the sum (equation 12) run through the same 
values from minus infinity to infinity, the energy spectrum of this state may also 
include a wave of initial energy liw, for which n + m = 0. The amplitude of this 
wave is 

Ao = � CnC_,.ei<Pn. (14) 
n=-ao 

It is easy to show that in the case of amplitude modulation, when/(t )  is real, IAo l � 
I Co l ,  where Co is the amplitude of the unshifted wave w behind the first modulator. 
What this means is that the second modulator can only attenuate this wav� . 

Another situation occurs in the case of the pure phase modulator. This is easy to 
show if we restrict ourselves to considering a sole class of symmetrical periodic 
functions of phase modulation: 

f(t) = eiY(' ), y(t + T/2) = -y(t) .  (15) 
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The Fourier coefficients of such functions satisfy the condition 

en = (- l )nc�n · 
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( 16) 

Thus, if one sets 'Pn = mr in equation 14, the initial wave is totally reconstructed 
because 

n= -:ic n= -oc n = -:ic 

To meet this requirement, it is necessary that the conditions, 

(p = integer), ( 18) 

be satisfied. 
Consider our modulators to be initially synchronized and tuned so that the 

conditions in equation 18 are fulfilled. Imagine that there is a region in the gap 
between the modulators with a certain potential field or where a refractive substance 
is present. In either case, refraction results in all the waves acquiring certain phase 
shifts. To be more definite, we shall deal with a refractive plate of thickness �- The 
material of the plate can be characterized by the potential U. It can be shown that, in 
this case, the relative phase shift of each wave to an accuracy of the second-power 
terms of 'Y and � is 

u 
� = hw « 1 .  ( 19) 

Setting 'Pn = n(<I> + '11') in equation 14, we obtain the expression for the wave 
function in our case. Now, in the wave picture, all the waves corresponding to 
harmonics with indices µ = n + m appear. Their amplitudes are determined by the 
sums, 

(20) 
n=-oo  n=-ac 

Substituting the Fourier coefficients C.,.-n into this expression and changing the order 
of summation and integration (taking into account equation 16), we obtain 

A = (_.!._) r2.,, f (x.)f*(x - <I> )ei"'x dx. "' 2'11' Jo (x. = flt) . (21) 

In the absence of refraction, when <I> = 0, and in accordance with the above 
reasoning, it is readily seen that the following occurs: 

A0 = 1, A.,. .. 0 = 0. 

The appearance of the refractive plate, which alters the phases of all the waves, also 
decreases the amplitude of the reconstructed wave that had an initial energy hw. 
Naturally, satellites will again appear here. Because the phase angle <I> is propor
tional to the quantity �. the amplitudes of all waves exhibit a periodic dependence on 
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the thickness of the plate. Here, the amplitude Ao of the nonshifted wave changes 
from unity toA g'in, where 

. ( 1 ) L2 ... 
A min = - /2(x) dx. 0 2ir 0 (22) 

The value of A :;iin depends on the concrete form of the modulation function and, 
generally speaking, may equal zero. 

The picture obtained is quite reminiscent of a multiray interferometer. Indeed, 
after the first modulator, instead of the initial wave, a set of coherent waves arises 
with differing energies and wave numbers. Consequently, it acts like a wave-splitter 
in the space of momenta and frequencies. The second modulator, if correctly 
adjusted, results in reconstruction of the initial state; that is, it acts like a recombiner. 
Introduction into the system of an additional region with a refractive material or 
potential field leads to a periodic change in amplitude A0(t) of the reconstructed 
wave with energy liw. Note that a very similar situation takes place when a neutron 
with a precessing spin passes through the refractive plate. As has been shown 
previously, an additional spin rotation angle occurs in this case. 13 The value of this 
"optical spin rotation" angle coincides in form with the expression of equation 19 if 
we replace the modulation frequency .0. with the Larmor precession frequency wL = 
2µ/J/li. This permits us to interpret the spin echo appa'\"atus14 as a neutron spin 
interferometer with two nonseparated beams. 15 •• 

CHROMATIC ABERRATIONS AND THE THREE-MODULATOR 
INTERFEROMETER 

Clearly, the phasing condition (equation 18) can be satisfied only for a single 
wavelength. Therefore, it is important to analyze which are the practical require
ments for monochromatization of the initial wave. Such qualitative analysis can be 
started from the expression for phases (equation 13). Elementary calculations lead to 
the result, aa� = (- �) nl. 

The main contribution to the intensity of the reconstructed wave is, apparently, 
given only by the lowest harmonics, n = 1 .  Therefore, the condition 81Pn « 1 ,  
necessary for obtaining a satisfactory contrast, leads to the requirement, 

8k T k « � , to = -;; . (23) 

If the distance I between the modulators is on the order of L (the period of spaced 
beats), then equation 23 becomes 

8k y « -y « l .  (24) 

The problem of chromatic aberrations may be analyzed analytically as well .  It is 
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easy to find that the amplitudes of the partial waves will be expressed by the 
formulae, ( l ) f2w . ( 'f) . A ... (M) = 2ir Jo /(x)f*(x - 8q>)e•11-x dx, 8q> = - 2 l&k, f(x) = elYM, (25) 

analogous to equation 21 . 
If the function y(x) is analytical, then the value of the chromatic aberration may 

be calculated. For a change in amplitude M0 of the nonshifted wave, one can receive [ (8<P ) 2] f"' 
Mo =i - ""2:;- Jo (y ' (x)F dx. (26) 

It is possible to very effectively decrease the chromatic aberration. It is useful to 
consider, from this point of view, a system consisting of three modulators at identical 
distances I from each other. Let the first and third modulators be identical and let the 
depth of modulation of the middle one be twice that of the other two. As before, we 
shall consider the modulation function /(t)  of the extreme modulators to belong to 
the class given in equation 15 and to satisfy the condition given in equation 16. Then, 
the modulation function/2(t) of the middle device is 

/2(t) = e2iy<•> = [f(t)]2. (27) 

Clearly, it too satisfies the condition given in equation 16. In a general case, there 
may be waves with arbitrary frequencies w + v!l after neutrons pass through the 
system. However, for the appropriate tuning of the device, it is possible to obtain, 10 as 
for a simple interferometer, 

A0 = l , 
Such a device happens to be achromatic in the third order of the wave number 
variation. Nevertheless, in spite of a quadratic decrease of the chromatic aberration, 
the requirement of 8q> < 1 and the estimation given in equation 24 stay formally true 
in this case as well. 

POSSIBLE REALIZATION AND APPLICATION 

Obviously, for the successful operation of a time interferometer, one must 
resolve at least three problems: phase modulation, monochromatization, and analy
sis of the final state. For the phase modulation, it is natural to seek a solution of the 
problem on the basis of the possibility of rapidly changing the energy of the neutron 
magnetic interaction. Transmission of neutrons through an oscillating magnetic field 
(see reference 12) or magnetic film seems to be most suitable . In this last case, a 
frequency on the order of 10-20 MHz may be possible to achieve. This corresponds 
to an energy split of tz!l = 20-40 ne V. 

Monochromatization of the primary beam and the energy-analyzing of the final 
state at the level of some neV appear quite within the possibility of UCN spectrom
etry.9·16 Unfortunately, a difficulty appears in this case connected with the shortly 
spaced beats period, L, which is defined by equation 10. In the case under consider-



300 ANNALS NEW YORK ACADEMY OF SCIENCES 

ation, the beats period is on the order of some tens of microns, whereas the distance 
between the modulators may be of some millimeters. The value of L is inversely 
proportional to the square of the modulation frequency, but spectroscopy difficulties 
increase with a decrease in modulation frequency. 

The energy region of very cold neutrons (VCN) with velocities on the order of 
20-50 m/s seems to be preferable from this point of view. Then, primary monochro
matization may be achieved by the time-of-flight method. For example, it could be 
possible to construct a VCN source at the IBR-2 pulsed reactor (Dubna, Russia). 
Then, the duration of the neutron pulse would be on the order of 300 µs. At a flight 
length of 10 m, the relative velocity resolution would be on the order of 1 x 10-3 for a 
neutron velocity of 30 m/s, which must be compared with the value of 'Y "' 9 x 10-3 
for the 10-MHz modulation frequency. It is possible to use a relatively wide spectral 
interval if one changed the modulation frequency periodically to keep the value of 
the space beats period L constant as neutron energy changed with time. 

At the same time, it is necessary to measure the relative intensities of the 
reconstructed wave with an initial energy lzw as well as the intensities of the satellite 
waves. There are several ways to solve this problem, but it seems that the best one is 
not connected with direct spectroscopy. 

It is possible to show17 for a state of the type of equation 7 that the beam intensity 
may oscillate. Thus, oscillation occurs in pure phase modulation as well . In this last 
case, the oscillation takes place "far" from the modulator and is maximal atx = L/4. 
This wholly concerns the state behind the interferometer. When the interferometer 
is tuned in such a way that the initial wave is fully reconstructed, these intensity 
oscillations disappear. Therefore, the analysis of the time structure of the beam 
intensity may be successfully used instead of spectroscopic analysis to detect the 
presence of satellite waves in the final state. 

Finally, we shall briefly discuss the possible application of the proposed device. In 
our opinion, experimental verification of the above theoretical predictions is very 
useful in itself, being a direct manifestation of the validity of the nonstationary 
SchrOdinger equation. We stress again that the linearity of the Schrodinger equation 
is the fundamental principle forming the foundation of this theory. It is possible to 
roughly estimate the significance of the possible nonlinear term to our problem. Let 
us put 

b "' (!)(=) "' (!)((�)2) . (28) 

Here, b is a constant with a dimension of energy that characterizes the possible 
nonlinear term (see, for example, reference 18), limiting wave packet spreading. 
Using for .:1x the length of the spread of the wave packet after the neutron passes 
along pathx, that is, 

l1x = ,/Xik, 
we obtain b "' 4.3 x 10- 15 eV forx = 1 m and k = 4.7 x 106 cm- I (v = 30 m/s). This 
is very close to its upper limit of 3.3 x 10- 1s eV estimated in reference 19. More 
detailed calculations are needed to more accurately find the sensitivity of the 
experiment to the possible nonlinear term. 
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The proposed interferometer may be very useful for performing experiments on 
measurement effects connected with gravity or with neutron motion in noninertial 
reference systems that seem very important for the test of 'neutron gravity and 
inertial mass equivalence.20-26 For an estimation of its sensitivity, imagine that a 
neutron is moving with acceleration a along the interferometer base of /. Then, for 
the phase difference in equation 21 ,  we obtain 

fla/2 
c1> = -3

. 
v 

(29) 

Substituting I = 102 cm, / = (!l/2'11') = 20 MHz, and v = 3 x 103 cm/s, we find cl> = 
50a [cm/s2] .  Assuming that the accuracy of the phase shift measurement is 8cl> = 
0.05, the accuracy of the acceleration measurement is 

&a = 1 x 10-3 cm/s2 = ( 1  x 10-6)g, 

where g is the acceleration of gravity. 
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Two-State Quantum Asymp�otics 

MICHAEL BERRY 
H. H. Wills Physics Laboratory 

Bristol BS8 J TL, United Kingdom 

Only wimps specialize in the general case. Real scientists pursue examples. 
-Adapted from a remark by Beresford Parlett 

INTRODUCTION 

John A. Wheeler's distinctive intellectual stamp includes the choice of simple 
examples to demystify difficult and subtle ideas, and I will follow that lead here. In 
the last decade, we have learned about several general quantum phenomena that 
share the property that they are emergent as a parameter (e in what follows) 
vanishes. Remarkably, all can be illustrated by the simplest nonsimple quantum 
problem, namely, the evolution of two-state systems with a time-dependent Hamilto
nian. 

Such systems are governed by the Schrodinger equation, 

io, 1 "1) = R(Et)  · S l iti). (1) 

Here, the state is the 2-spinor 

1 "1) = l i!i(t, E)) = (:�) ; (2) 

S is the vector of spin-� matrices, 

(3) 

and the vector that drives the system is 

R(Et) = {X(Et), Y(Et ), Z(et) } .  (4) 

R(Et) will be called the Hamiltonian vector and its track over -co < t < +co will be 
called the Hamiltonian curve. The Hamiltonian itself is ( 1 )( Z(Et) 

H(Et) = R(EI) . S = 2 X(Et) + iY(Et) 
X(Et) - iY(et)) 

-Z(Et) · (5) 

Vanishing asymptotic parameter E is the adiabatic limit of slow driving (except for 
the final example in the last section below, where E will have a different interpreta
tion). This two-state formalism has several physical interpretations; one is the spin 
state of a neutron in a slowly changing magnetic field R( Et) . 

In each of the five examples to follow, I shall first give a brief description of the 
general phenomenon and then proceed to its two-state illustration. 

303 
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GEOMETRIC PHASE 

A quantum system driven by parameters that are slowly changed round a cycle C 
will, because of the quantum adiabatic theorem, 1 cling closely to an eigenstate of the 
instantaneous Hamiltonian and thus return to its original state, apart from a phase 
factor. This phase factor2-6 is 

Here, n labels the state being transported round C. The first factor, involving the 
instantaneous energy En(EI), contains the dynamical phase, generalizing the -iwt in 
the evolution of any wave. The second factor contains the geometrical phase, given 
by the line and surface integrals 

"Yn (C) = -Im ,,;. (n l dn) = -Im J f (dn l /\ l dn), Ye J�=C (7) 

where I n) is the instantaneous eigenstate, with the phase chosen so that I n)  is 
single-valued round C. 

For a two-state system, the parameters are the compobents (equation 4) of the 
Hamiltonian vector, C is a loop in R space, and. n labels the state with energy 
(±Yi) I R I (that is, spin (± Yz)h ]. Then, the geometric phase is2 

"Y± (C) = (+ Yz)fi(C), (8) 

where n is the solid angle subtended by C at R = 0. This version of the geometric 
phase has been measured with a neutron beam,7 along which the direction of a 
magnetic field is varied round a cone. A different implementation was known much 
earlier8-1 1  for light beams whose state of polarization was cycled; in this case, 
parameter space is the Poincare sphere of polarizations, that is, I R I = 1 .  

The geometric phase has been generalized t o  nonadiabatic cycle evolutions, 1 2 for 
which the state returns exactly apart from a phase factor (this can be made to happen 
even if the Hamiltonian does not depend on time). Then, equation 8 still holds, but 
now n is the solid angle of the loop traversed by the vector (ljl(t) I S l lli(t)) (which 
coincides with R only adiabatically). 

However, the adiabatic case contains surprising richness, in the form of correc
tions13 to equation 6 containing higher powers of E. When E is small, but not zero, the 
state does not return exactly. Instead, we have 

(llin(beginning) I llin(end)} = a (E) exp{icf>(E)} .  (9) 

If the Hamiltonian curve is analytic, the deviation from unity of the modulus a (E), 
corresponding to transitions out of the initial state, is exponentially small, that is, 
beyond all orders, in E. However, the phase cf>(E) does have a power series in E, whose 
first two terms (those not vanishing in the adiabatic limit) are given in equation 6. 
The geometric phase is the term not involving E and can be expressed as an 
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adiabatically emergent phenomenon according to 

'Yn (C) = Jim (dd ) [e<f>(e)] . 
E-+0 E 
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( 10) 

An iteration method13 for calculating higher orders of the expansion consists of 
successive ("superadiabatic") transformations to moving frames, aimed at freezing 
the Hamiltonian vector R(t) .  These are time-dependent transformations, which 
change the Hamiltonian, so the freezing is not quite successful. Instead, C transforms 
to a sequence of renormalized loops that initial ly get rapidly smaller and whose 
geometric phases are the corrections to 'Yn(C); the r-th such correction is of order E'. 
The sequence diverges and the divergence has a universal form13 related to the 
exponentially small transition probability. 

GEOMETRIC AMPLITUDE 

If the adiabatically varied Hamiltonian parameters depend analytically on time
and now the Hamiltonian curve need not be closed-the exponentially small final 
probability for transitions out of the initial state also contains, in general, a geometric 
correction, 14· 15 independent of e. This was as unexpected as the geometric phase, of 
which it is an analytic continuation. The geometric amplitude is associated with 
complex times for which the instantaneous eigenstates are degenerate (it being 
assumed that there are no real degeneracies); these degeneracies are the source of 
the weak adiabatic transitions. 

For two-state systems, degeneracies arise from complex times T* when 

R(T*) = [X2(T*) + Y2(T*) + Z2(T* )J 1 '2 = o. 
The transition probability from (say) the initial state 1 "1( -oo)) 
energy +R, to that with -R is 14 

1 (-( +oo) 1 "1( +oo)) 1 2 

( 1 1 )  

l + (-oo)), with 

= exp{{- �) I Im LT* dTR(T) I }  exp{-2 Im LT* dT<i>(T) cos 9(T)} . ( 12) 

Here, 9(T) and <f>(T) are the polar angles of the Hamiltonian curve. The first 
("dynamical") exponent was familiar16•17 and is the dominant contribution to the 
exponentially weak transitions. The second exponent is geometric and can be 
regarded as a complex generalization of the solid angle in equation 8. 

It follows from equation 12 that the geometric exponent is zero if the Hamilto
nian curve lies in a plane through R = 0 (as in the familiar Landau-Zener problem16) 
or is reversible in the sense that it can be rigidly rotated about an axis through R = O 
so as to coincide with its time-reverse (this case includes uniform helices). The 
simplest curve whose geometric exponent is not zero is the "winding-unwinding" 
helix, for which 

(13) 
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In this case, the geometric amplitude factor is 14 

(14) 

The successful obseivation of the geometric amplitude in a magnetic resonance 
experimentts confirms that it describes real physics in the complex plane and is an 
asymptotically emergent phenomenon, separating from the dynamical contribution 
as e -+  0. 

WKB PHASES, BOSONS, AND SEMIONS 

In the early years of the geometric phase, it was asked whether the phase 'II' 
responsible for the "W' of the "n + Yi" WKB (semiclassical) quantization of 
oscillators (exact in the harmonic case) is geometric. My first answer was no, but this 
was wrong. It turns out that this semiclassical 'II' [and related phases in optics, such as 
Gouy's ( 1899)19 '11'/2 jump through a focus and Stokes' ( 1847)20 similar jump through 
a caustic] does correspond to a geometric phase. 

One way to see this is to cast the one-dimensional stationary Schrodinger 
equation for a nonrelativistic particle in a potential well Y(z), namely, 

. •  {:)(�22)t1i(z) + [E - V(z)]tli(�) = 0, (15) 

in the form of a two-state problem. Defining z = Et, (16) 

we find equations 1-4 with 

X - iY = 2i, X + iY = 2i[V(et) - E ] , Z = O (17) 

and with the adiabatic limit now being interpreted as the semiclassical limit Ii -+ 0. 
The semiclassical quantum condition, determining the allowed energies E, is that 

the adiabatic eigenstates specified by equations 16 and 17, which correspond to 
left- and right-moving waves, should be single-valued after a circuit of the two 
classical turning points defined by V(z) = E. From equation 17, these are the 
degeneracies of the matrix H in equation 5. The quantum condition includes two 
contributions: a dynamical phase, given by the classical action of the circuit divided 
by Ii, and a geometric phase associated with the degeneracies. An immediate 
difficulty is that H is not Hermitian, but this is resolved by a generalization21 of the 
first hal( of equation 7, namely, 

. � (li l dn) 
"Yn(C) = l Yc (Ii I n) ' (18) 

where (Ii I is the left eigenvector of equation 5 (that is, the row vector given by the 
conjugate transpose of the eigenvector of Ht). 
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Application of equation 17 shows22 that equation 18 has two interesting proper
ties. First, it is real and thus does represent a phase. This is surprising because, for 
general non-Hermitian matrices, equation 18 will give a complex-number. Second, it 
is the same for both of the degenerating states, rather than opposite as in equation 8. 
This is a consequence of the fundamental property that the eigenvectors of a 
non-Hermitian matrix become parallel at a degeneracy, rather than remaining 
orthogonal as in the Hermitian case (the same property has interesting consequences 
elsewhere in physics-for example, in the optics of absorbing crystals1 1  ) .  A calcula
tion shows that the phase is 

'Y(C) = (- �) x [number of zeros of E - V(z) inside C]. (19) 

For an oscillator, there are two turning points, showing that the WKB 'TT phase can 
indeed be interpreted as geometric. 

In the Hermitian case of the second section, a planar circuit of a degeneracy gives 
the familiar 'TT geometric phase associated with rotation of a spin-� particle. In the 
present non-Hermitian case, the -'TT/2 phase associated with each degeneracy could 
also be achieved by planar rotation of a spin-V4 particle, that is, a semion. Given the 
connection of harmonic oscillators with bosons, we arrive at the curious suggestion 
that a boson can, in a sense, be regarded as made of two semions. 

STOKES' PHENOMENON AND ADIABATIC QUANTUM JUMPS 

Asymptotics, that is, the study of divergent series associated with singular limits, 
is currently enjoying worldwide resurgence. The deepest reason for this is the 
recognition23 that relations between physical theories (e .g., quantum and classical 
mechanics, and statistical mechanics and thermodynamics) take the form of limits 
(e.g., Ii --+ 0 or N --+  oo) and these limits are usually singular. A central feature of 
divergent series is that their divergent tails often yield information about exponen
tially small terms, which are beyond all orders24 of the series and whose existence is 
the cause of the divergence. As variables (not the asymptotic parameter) are 
changed, the small exponentials can appear and disappear; this is Stokes' phenom
enon.25 

Recent progress in asymptotics26•27 has enabled Stokes' phenomenon to be 
understood in detail, with results that will now be described (ignoring several 
subtleties). Let the function being expanded be G(e, X), where e is the (small) 
asymptotic parameter and the X = {Xi . X2, • • •  } terms are other variables on which G 
depends. Let the bare (i.e., not resummed) asymptotic series be 

(20) 

where To = 1 and the + indicates that the prefactor and exponent refer to the 
dominant exponential . As the order r increases, the terms e'T, first get smaller and 
then diverge (typically factorially,28 although the results do not depend on this29) .  Let 
the subdominant exponential (or the largest of these if there are several) have 
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exponent <1>- (X)/e, where 

Re <1>- (X) < Re <I>+ (X). (21) 

If now the series (equation 20) is optimally truncated, that is, summed to its least 
term r* (typically, this increases as 1 /e), the remainder can be resummed and the 
resummation26 has a remarkable universality: 

G(e, X) = M+ (e, X) exp{(;)<l>+ (X)} � e'T,(X) 

+ iS jF(e, X))M_ (e, X) exp{ (;)<l>- (X)} . (22) 

This includes the small exponential, which has been born from the divergent tail of 
the bare series (equation 20). Most important is the Stokes multiplier S, which 
describes the switching-on of the small exponential. S depends only on the disparity 
between the two exponents, denoted by F and called the singulant: 

(23) 

Stokes' phenomenon occurs when the large exp<;nential maximally dominates the 
small one, that is, when F is real and positive; this occurs on Stokes lines (generally, 
hypersurfaces). The switching is smooth and is described by the universal function,26 

S (F) = {�) [1 + erf(�)] , (24) 

where erf is the error function. Across the Stokes line, this rises from 0 to l, with a 
width Je. The universality and compactness of this result is a consequence of the 
optimal truncation of the original series; if the series is not truncated at or near the 
least term r* , these properties are lost. 

A physical illustration of this general result is provided by the adiabatic two-state 
system defined in the INTRODUCTION. Here, the dominant exponential contains the 
dynamical phase associated with the amplitude for remaining in the initial adiabatic 
eigenstate and the small exponential describes the transition to the other state. 
Stokes' phenomenon plays a central part in the history of the transition amplitude,30 
that is, in describing how the quantum jump evolves as the amplitude increases from 
zero to its final exponentially small value (discussed in the third section). A Stokes 
line issues from the complex-time degeneracy T* responsible for the transition and 
crosses the real-time axis, at (say) T = To. It is at this time that the quantum jump can 
be said to happen. 

If the transitions are considered to be between adiabatic states, that is, eigen
states of the instantaneous Hamiltonian, the transition history does not have the 
universal error function form (equation 24). The reason is that the adiabatic states 
are merely the first terms in the solution of equation 1 as an adiabatic power series in 
e. If they are used as a basis to describe the transition, the amplitude increases from 
zero to O(e) before falling to the final O(exp( - 1 /e}), with complicated nonuniversal 
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oscillations en route. However, if the adiabatic series for the solution of equation 1 is 
optimally truncated and the two solutions are employed as an "optimal superadia
batic" basis for describing the evolution, then the transition .amplitude increases 
smoothly over a time of order Je and in accordance with the error function (equation 

- 24). Detailed analysis30 shows that, for transitions from I + > to 1 - ), 

where 

( 1 ) [ { w(T) }] { l w(T* ) I } 
l ( - (+oo) l "1(t)) I  = 2 1 + erf exp - -- , 

V2e l w(T*) I E 
(25) 

(26) 

This surprising result shows that all adiabatic quantum transitions take place in 
the same way-that is, as an error function, independent of the form of the 
Hamiltonian curve-provided that the optimal superadiabatic basis is employed 
(which differs only slightly from the adiabatic one). Numerical calculations3 1 confirm 
the correctness of the theoretical ideas, even when several degeneracies are in
volved,32 which may coalesce.33 There is a possibility that the Stokes smoothing could 
be observed directly in a spin experiment or an optical analogue: the spin would be 
measured at different times in a direction not along the "magnetic field" R (which 
would represent the adiabatic basis), but in a nearby direction, precisely specified by 
the theory,30 representing the optimal basis. 

DECOHERENCE AND THE QUANTUM ZENO EFFECT 

Recent studies have identified two ways in which quantum systems are vulnerable 
to uncontrolled influences from their environment. The first is decoherence, 34•35 
which is intended to explain why superpositions of macroscopically distinct states (as 
in Schrodinger's cat joke) are not observed. The mechanism is as follows: when the 
density matrix is represented in a basis of these macroscopically distinct states, 
averaging over the environmental forces or variables induces rapid vanishing of the 
off-diagonal elements. Because these elements represent quantum interference 
between the states, decoherence obliterates such interference, so the occupancies of 
the states can be described by probabilities rather than by amplitudes. The second 
way is the Zeno effect36-39 (also known as the quantum watchdog or quantum 
watched pot) ,  which is the slowing down, or complete inhibition, of quantum 
transitions that would occur in the isolated system, again as a result of action by the 
environment; it could explain, for example, the persistence of chiral molecules that, 
when isolated, would tunnel to their opposite-handed forms. 

These phenomena are very different: in decoherence, the environment acts 
rapidly (relative to time scales associated with the isolated quantum system), 
whereas in the Zeno effect the environment induces slowing down. Therefore, it is 
worth knowing that both can be illustrated by a simple exactly solvable two-state 
model in the class defined in the INTRODUCTION (but with a different e-dependence ), 
and that is what I will present here. Neither the model nor its solution is new, 40-44 but 
I wish to emphasize how the two environmental effects are encompassed. 
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In equation 2, lji1 and lji2 represent the amplitudes for a quantum particle to 
inhabit each of the two wells, separated by a high barrier, of a double-bottomed 
potential. The wells could model, for example, the left- and right-handed forms of a 
chiral molecule. Forces within the isolated system are invariant under parity, that is, 
interchange of the two states (ignoring the small effect of weak interactions), so the 
eigenstates are even and odd superpositions of amplitudes localized in the wells. The 
energy separation of these eigenstates will be the small parameter e, which is 
exponentially small in the height and width of the barrier and in 1 /Ii. A state initially 
local ized in one of the wells will tunnel resonantly between them, with an oscillation 
time of order 1 /e. The isolated system satisfies equation 1 with a different e-depen
dence. The Hamiltonian (cf. equations 4 and 5) is 

(27) 

where the suffix 0 denotes the isolated system. 
A crude, but adequate, representation of the environment is through time

dependent random forces acting differently on the two wells (fuller treatments45,46 
include the environmental coordinates as dynamical variables). The random forces 
correspond to collisions, for example, with other molecules, or photons from the 
microwave background. In the asymptotic realm that we �re interested in, where the 
two states are well separated by a high barrier, the environmental forces are large 
compared with e and vary on time scales short compared with 1 I e. A Hamiltonian 
describing this situation is 

( l )('(t) 
H = R(t) . s = 2 E -f(t)

)
, (28) 

where/(t)  is white noise. The strength of the noise is normal ized by 

(.r dtf(t>)2 = T/To. (29) 

Here and hereafter, the overbar denotes ensemble averaging and To is a constant
the noise time-which can be interpreted as the time for the root-mean-square phase 
drift associated with/(t) to grow to unity. 

It is convenient to calculate the evolution of the ensemble-averaged density 
matrix, 

p(t) = 1 '1i(t))('1i(t) I = 
( � 
lji�(t)lji, (t ) 

1jif(t)1ji2(t)) 
l '1i2(t) l 2 

_ ( • ) ( • ) ( 1 + z(t)  
= 2 + S · r(t) = 2 x(t) + iy(t) 

conveniently expressed in terms of the Bloch vector, 

r(t ) = 2('1i(t) I s 1 '1i(t)). 

x(t) - iy(t )) (30) 
1 - z(t) ' 

(31) 
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For a pure state (p2 = p ), r lies on the unit sphere. The north pole corresponds to all 
the amplitude in well 1 and the south pole to all the amplitude in well 2. The 
off-diagonal elements of p are described by the Bloch componehts, x and y. For any 
_given /(t) (noisy or otherwise), the unitarity of quantum evolution ensures that r(t )  
remains on the unit sphere, that is, pure. However, ensemble averaging, reflecting 
ignorance of the details of the environmental forces (or possibly time averaging-this 
is a subtle point), turns the pure state into a mixture and makes r(t) flow into the 
sphere. Then, it is the fate of any density matrix starting on the surface of the sphere 
to flow to the center, where there is equal probability of finding the particle in the 
wells and no interference between their amplitudes (for chiral molecules, this 
represents a racemic mixture of the two handednesses). Decoherence and the Zeno 
effect are features of the intervening evolution, now to be described. 

The main steps in the determination of r(t) are explained in APPENDIX A. The 
form of the result depends on the parameter u defined by 

u = 4eT0• (32) 

This is proportional to the ratio of the noise time to the quantum oscillation time. We 
are interested in small e, that is, small u. For the initial condition of r(O) = r0, the 
evolution is 

where 

x(t) = exp(-t/2T0), (y(t)) = 
exp! -a+t }  ( (i + Ji - u2)y0 + uz0 ) 

z(t) 2J1 - u2 -uyo - ( i - Ji - u2)zo 

expl-a_t )  (- ( i  - Ji - u2)y0 - uz0) 
+ r;--:, (33) 

2Ji - u2 uyo + ( i + v l  - u2)z0 ' 

(34) 

From the limits 

i 
a+ -+ 2To ' as u -+ 0, (35) 

we arrive at the following picture of the density matrix flow described by equation 34. 
On the scale of the noise time To. which is fast as compared with the quantum 
oscillation time i /e, the fast exponential, involving a+, causes the Bloch vector to 
flow from the surface of the sphere towards the line x = 0, y = -zu/ ( 1  + Ji - u2) ,  
which is close to the z-axis. Thi!i fast flow, in which the off-diagonal elements of p 
disappear, is decoherence. Thereafter, the flow down the z-axis towards r = 0 is 
dominated by the slow exponential involving a_, whose time scale is of order 1/ ( e2T0) 
and thus long as compared with the quantum oscil lation time. This slowing down of 
the quantum transitions (tunneling) is the quantum Zeno effect. 
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Loosely speaking, it is possible to regard the environment, acting through the 
random force f(t) ,  as monitoring, or measuring, the transitions of the particle 
between the wells, with the result that a pure state is rapidly reduced to a mixture 
(decoherence) and transitions are inhibited (Zeno). If r0 is on the line x = 0, 
y = -zu/ ( l + Ji - u2), there is no decoherence, but only the Zeno effect in its 
simplest form; if r0 is in the plane z = -yu/( 1 + Jt - u2) (close to the xy plane), 
there is no Zeno effect, but only decoherence in its simplest form. 

It is clear that decoherence and the Zeno effect are phenomena that are 
asymptotically emergent as the parameter e gets small and the quantum particle 
becomes increasingly vulnerable to its environment. Then, the three time scales, T0 
(noise and decoherence), l /e (quantum oscillation), and l /(e2T0) (Zeno), separate. 

The mechanism of the Zeno effect is that the fluctuating environment randomly 
shifts the wells up and down relative to each other. Then, only a small fraction of the 
time is available for tunneling because this can occur only when wells are within e of 
each other and the eigenstates are shared between them (rather than being localized 
in an individual well). For this mechanism to operate, it is essential for the 
environment to fluctuate rapidly on the time scale of the transitions; otherwise, as 
the quantum adiabatic theorem implies, the amplitude will be completely transferred 
to the other well during each passage. Detailed analysis47 of a single passage shows 
how the quantum and classical adiabatic theorems coniradict each other in this 
situation and how this contradiction can be resolved; the same idea has been used in 
a discussion48 of the persistence of chirality. 

-

An interesting fact about the Zeno effect is that there is a sense in which its onset 
is independent of the form of the function f(t ), provided this is nonzero. I show in 
APPENDIX B that, if the initial amplitude is all in one well, the probability of finding 
the particle in the other well is always smaller withf(t) than for the isolated system, 
provided t is less than the time v I e for the amplitude to first switch wells in the 
isolated system. 
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APPENDIX A 

Exact Solution of the Two-State System Forced by White Noise 

For convenience, we show here how the explicit solution of the model for 
decoherence and the quantum Zeno effect can be obtained by elementary means. 
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From equation 1, it follows that the Bloch vector r(t), defined by equation 31 without 
ensemble averaging, satisfies 

ar(t ) = R(t ) I\ r(t ), 

where 

R(t ) = {e, 0, f(t) ) .  

Regarding r as a column vector and introducing the matrix 

M(t ) = ( Z�t) 
-Y(t ) 

-�(t ) Y(t) ) 
0 -X(t) , 

X(t) 0 

we obtain the formal solution of equation Al as the time-ordered product 

r(t )  = T exp{ fo' M(T)dT}ro 

(Al) 

(A2) 

(AJ) 

(A4) 

for any f(t) .  This must be ensemble-averaged. When /(t ) is white noise, averaging 
can be accomplished by dividing the time into smal!.interva1s .:1 and using the fact that 
f is independent in different intervals. Then, the ensemBle average is 

r(t) = (exp{M(T).:1))'16r0• (AS) 
To find the evolution of the density matrix, it is therefore necessary to exponenti

ate M, average the result, and raise this to the power t / .:1. The exponential is 

oxp{MAJ = (,, : rl[ 
f2 

1 

0 

ef 

x -ifJe2 + f2 

-ef 

0 

0 

0 

ef 
0 + Re exp{i.:1Je2 + /2) 

f2 

ifJe2 + f2 - ef 

l 1 + f2 ieJe2 + f2 (A6) 

-ieJe2 + f2 e2 

Ensemble averaging eliminates the terms odd in f, and from the terms even in/ it is 
necessary to retain only those contributions that will not vanish in the limit .:1 -+ 0, 
after raising to the power t / .:1. To obtain these contributions, we need the variance of 
f over the interval .:1; from equation 29 (replacing the integral by a sum over intervals 
.:1), this is 

(A7) 
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Then, the average of equation A6 is ( 1 - (l/i)Aifi 

· exp{MA
) 

-+ : 
0 0 

1 - (l/i)Aij2 -eA 

eA 

1 - (�) 2T0 
0 

0 1 - (�) 2T0 

0 eA 

Raising this to the power ti A gives thex evolution as 

and the {y, z J evolution as 

where (cf. equation 3) 

x(t) = exp{- 2�J 

(y(t)) (Yo) z(t) = exp
{
-tNJ Zo ' 

N = ( l /2To e ) ( 1 ) ( 1 ) -e 0 = 4To 1 + 2eS_. + 2To S,. 

This is easily exponentiated to give 

exp{-tNJ = exp{- 4�J [cosh{(4�JJ1 - u2}1 

315 

0 

-eA . (AS) 

(A9) 

(AlO) 

(All) 

- (R) sinh{ (4�0)�} (�u �
1 ) ] · (A12) 

where u is defined by equation 32. 
Taken together, equations A9, AlO, and A12 yield the claimed evolution (equa

tion 33). It is interesting to examine the case where the noise is not large in 
comparison with e; then, it is possible to have u > 1 and equation A12 is more 
conveniently written as 

exp{-tNJ = exp{- 4�J [ cos{(4�JJu2 - 1 } 1 
- (�) sin{(4�0)Vu2=1}( �u �

1 ) ] · (A13) 
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This is the regime of quantum oscillations damped by tunneling friction.43•46 The 
quantum Zeno effect corresponds to overdamping. Separating these two cases is 
critical damping (u = 1 }, for which 

(Al4) 

(I mention in passing that the matrix here is of the same degenerate non-Hermitian 
kind as discussed in the fourth section and this fact is responsible for the linear 
t-dependence. 1 1 ) The limit of the isolated quantum system (no noise) is T0 -+ oo, for 
which the evolution is unitary and consists of undamped quantum oscillations 
between the wells: 

exp{ -tN} = cosjet}l - sin{etl(�1 �). (AIS) 

APPENDIX B 

Initial Slowing Down of Transitions by Any Environment 

For the two-state system (equations 1-4) witfi Hamiltonian (equation 28), the 
Schrodinger equation reduces, after the transformation ("11 (t)) (a 1 (t) exp{ (- 1h)iw(t) }) 

"12(t) = a2(t) exp{ (+ 1h)iw(t)} ' 

to the off-diagonal form 

where w(t) :: Io' d'f/(T), (Bl) 

(a 1 (t)) = - ·(�)(a2(t) exp { +iw(t)}) a, a2(t) - 1 2 a 1 (t ) exp{- iw(t)} · (B2) 

We start the system in the state 1, that is, a 1 (0) = 1 and a2(0) = 0. Next, we express 
the amplitudes a 1 and a2 in terms of moduli l a 1 I and l a2 1 and phases x1 and x2, that is, 

(83) 
Thus, ad 2 is the survival probability (for remaining in the initial state) and l a2 1 = 

( 1  - lad 2). 
From equat ion B3, it follows that 

This has the solut ion 

where c!>(t) = w(t) + x2(t) - x1(t). (84) 

(BS} 



BERRY: 1WO-STATE QUANTUM ASYMPTOTICS 317 

Now, if there is no noise, that is , f = 0, the exact solution of equation B2 is 

a1 (t) = cos{(Yi)EI) ,  a2(t) = -i sin { (Yi)et} if f = 0, (86) 

so 

if f =  0, (B7) 

corresponding to cl> =  -rr/2 if/ = 0. For any nonzerof(t), sin cl> < l, so l a 1 1 2 decreases 
from unity more slowly than equation B7, at least until the first zero of equation B7, 
that is, t = -rr I e. This is the result stated at the end of the last section in the main text: 
for any environmentf(t), the survival probability exceeds that for the isolated system 
until its amplitude has switched wells for the first time. 
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Recently, quantum billiards with nonintegrable boundary conditions have been the 
subject of many theoretical and experimental investigations in the context of 
quantum chaos. The experimental investigations presented here are concerned with 
wave functions and energy levels of quantum billiards under a perturbation of the 
boundary conditions. They resemble a simplified model for either the electronic 
wave function of a molecule that depends on the positions of the nuclei in the 
Born-Oppenheimer formalism or the wave function of a nucleon depending on the 
shape of the nucleus. 

Mostly for experimental reasons, we used polygonal quantum billiards. Polygonal 
quantum billiards are not chaotic systems: this means th$it there is no exponential 
instabili:y of neighboring trajectories in the phase space of the classical billiards. 
They arc pseudointegrable 1 or presumably ergodic systems, depending on whether 
the angles of the polygon are rational or irrational multiples of 'II'. Generally, 
polygonal quantum billiards do not have any symmetry or conserved quantum 
number besides energy. They are generic quantum systems, in contrast to textbook 
examples, which are szparable and have as many conserved quantum numbers as 
degrees of freedom. 

According to a theorem of von Neumann,2 generic quantum systems do not have 
degenerate energy levels. It is not even possible to enforce a degeneracy of two 
adjacent states by an external perturbation. Typically, two energy levels approaching 
each other under increasing perturbation will not cross, but will separate again like 
two branches of a hyperbola (avoided crossing). However, in systems with a real 
Hamiltonian, like quantum billiards, accidental degeneracies may occur, if two 
independent perturbations are applied. In case of the quantum billiards investigated 
here, the boundary conditions are perturbed by shifting one of the corners of the 
billiards in two dimensions. In the following, the space of corner positions, or 
different resonator shapes, will be referred to as configuration space. 

The planes of energy levels plotted over configuration space do not intersect, but 
just touch each other at isolated points. These points are called diabolic points 
because in their vicinity two energy levels split linearly and form a double-cone 
structure3 ( diabolo ) . 

At very small level spacing, both states can be regarded as a two-level system, 
described by a linearized 2 x 2 submatrix of the Hamiltonian. This matrix is 
equivalent to the Hamiltonian that describes the Zeeman effect of a spin-Yi particle 

0This work has been funded by the German Federal Ministiy of Research and Technology 
(BMFT) under Contract No. 06TM661 .  
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in a magnetic field B, which is confined to the xz-plane: 

(Eo + B, Bx ). 
H = Eo + uxBx + u,B, = E _ 

. 
Bx o B, 

319 

(1) 

Rotating B adiabatically by an angle 9 will transform an initial state I up(O)} or 
l down(O)} into 

( l up(9)} ) (cos(9/2) -sin(9/2)) ( l up(O)} ) 
l down(9)} 

= 
sin(9/2) cos(9/2) l down(O)} · (2) 

Because the mixing matrix depends on half the rotation angle, the spinor undergoes 
a sign change, that is, a phase shift of ±1T. This sign change has to occur for the real 
wave functions of the quantum billiards too, if they are transported along a loop in 
configuration space, which encircles the degeneracy.4 It is the simplest example of a 
geometric phase. 

The most popular concept of a geometric phase, discovered by Berry,5 is the 
phase acquired by a pure state transported adiabatically on a closed loop in 
parameter space. The adiabatic condition ensures that the system will remain in a 
pure state, whereas the state itself changes during the evolution of the whole system. 
When the system returns to its initial configuration, the final state can only differ 
from the initial state by some phase factor, t!Y. The phase 'Y consists of a dynamical 
part, which is the usual time evolution of the state, but additionally there may be a 
contribution, 'Ygeo• depending only on the topology of the energy levels over the 
parameter space: 

'Y = ( � l ) LT H[R;(t)]t dt + 'Vgeo· (3) 

This geometric phase can be easily calculated for spin states, which are coupled to 
the three components of an external magnetic field. It depends on the magnetic 
quantum number m of the state and on the solid angle under which the loop in the 
space of magnetic fields appears from the origin:5 

'Ygeo = -mn. (4) 

The existence of the geometric phase 'Ygeo in spin systems has been experimentally 
verified using neutrons,6 nucleF (spin �). and photons8 (spin 1 ). 

Strictly speaking, the adiabatic condition is not necessary to determine the 
geometric phase of a system with a real Hamiltonian. Adiabatic transport of a state is 
equivalent to parallel transport of a state vector,9 which means that 

Im(l!i · il,"1) = 0. (5) 

Therefore, for a small adiabatic change, any real wave function will change into a 
slightly altered real wave function and will only acquire a dynamic phase in the 
adiabatic case. Hence, all the information needed to determine the geometric phase 
is the knowledge of how the wave function rearranges along a closed loop of the 
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system in configuration space. �ese rearrangements of the wave functions for small 
steps in configuration space can be easily measured by microwave experiments. 

An investigation of the electric field in a microwave resonator is equivalent to a 
quantum mechanical investigation because the stationary SchrOdinger equation for 
quantum billiards is equivalent to the Helmholtz equation in two dimensions with 
Dirichlet boundary conditions: 

(d + k2)1j#(x, y) = 0 inside 
(6) 

ljl(x, y) = 0 at the boundary. 

For flat microwave resonators, in which the wavelength of the microwaves is larger 
than twice the height of the resonator, the wave equation for the electric field also 
reduces to this form. 

Our investigations of the mixing of states near a diabolic point and near a triple 
degeneracy were done with flat microwave resonators of triangular and quadrilateral 
form. These resonator shapes are easy to change experimentally. A triangular 
resonator was used for the investigations of diabolic points because triangular 
quantum billiards were already the subject of a numerical study by Berry and 
Wilkinson. 10 These researchers discovered several diapolic degeneracies of the 
lowest 1.3 energy levels, which could not be relate.d to any symmetry of the triangles. 

Our triangular resonator is composed of three brass bars resting on a copper 
plate. They are covered by a second copper plate with a small antenna. The resonator 
can be moved underneath the cover so that the coupling antenna can be positioned at 
any point of the triangle. Using a technique described by Stein and Stockmann, 11 it 
was possible to measure standing wave patterns via the reflected microwave intensity 
at the different coupling points. The shape of our resonator is changed by moving the 
tip C of the triangle, while keeping its base at a fixed length (cf. FIGURE 1 ) . Each 
shape is thus defined by two independent parameters: the height H of the triangle 
and the length P, given by the projection of C on the base of the triangle. Moving C in 
the whole half-plane above the base line, triangles can be built that are just mirror 
images of each other or that can be mapped onto each other by a combination of 
scaling, rotation, and mirroring operations. The spectra and wave functions of these 
similar triangles scale simply with the size of the triangle and do not contribute any 
additional information. All unique triangles can be built by restricting the position of 
C to the gray area in FIGURE 1. Our investigations were confined to a square grid in 
the HP-plane. H ranged from 13 to 22 cm and P from 8 to 17 cm. This grid is shown in 
FIGURE 1. For a first survey of the energy surfaces, we measured all resonances in the 
range from 2 GHz to 7.5 GHz for 100 different shapes, corresponding to the grid 
points in FIGURE 1 .  

In  order to  suppress the effects of  different mean level densities, the spectra were 
normalized to a mean density of one, using area- and perimeter-dependent terms of 
Weyl's formula12 for the mean number of levels (N) below frequency (v), that is, ('ITAv2) (Lv) N(v) = 7 + 2c , (7) 

where A is the area of the billiard, L is its perimeter, and c is the velocity of light. 



LAUBER: QUANTUM BILLIARDS 321 

FIGURE 2 displays the normalized spectra in 10 groups. In each group, P varies from 8 

cm to 17 cm, whereas His kept constant. The series of avoided crossings observed for 
different values of H can be identified as parallel cuts through double-cone struc
tures, as illustrated in the inset in FIGURE 2. 

In order to measure the sign change of the wave function due to the geometric 

phase, we concentrate on the diabolic degeneracy between levels 13 and 14, plotted 
as bold lines in FIGURE 2. This degeneracy was not included in the analysis of Berry 
and Wilkinson. to 

The position of the degeneracy was determined to an accuracy of 1 mm in the 
HP-plane. The standing wave patterns of the 13th and 14th resonances were 

p 

FIGURE I. Construction and deformation of the triangular microwave resonator. The grid 
shows the different locations of the upper corner, C. All triangles may be built by moving C 
inside the gray area. 

measured for 12 resonator shapes encircling the diabolic point. Each wave pattern 
depicted in FIGURE 3 is derived from measurements of the reflected microwave 
intensity at some 1300 positions within each resonator. Bright regions correspond to 
high intensities of the standing wave. 

The relative phase of the maxima in one mode could be determined by measuring 
the phase of transmitted microwaves between two antennas positioned at the 
maxima. However, because the nodal lines of the wave patterns can be clearly 
identified in each picture, the opposite sign between adjacent maxima can be 
determined without this measurement. Thus, the wave functions can be determined 
out of the intensity pattern by tagging adjacent maxima at opposite sides of a nodal 
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p 
FIGURE 2. Measured spectra of the triangular resonators for 100 different shapes (H, P); 
levels 13 and 14 (bold lines) trace out the double-cone structure investigated in this article. 

line with opposite signs, ( +) and ( - ) . For the patterns at resonator shape no. 1, this 
tagging may be done starting with an arbitrary sign at one maximum (cf. FIGURE 3). 
At the next resonator shape no. 2, tagging is done according to parallel (or adiabatic) 
transport of the state. This means that there is a phase relation between states 
belonging to the same energy surface at different points in configuration space. 
Because the wave function just changes a little from no. 1 to no. 2, maxima in both 
patterns can be identified and thus assigned identical phases. As is clearly visible in 
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FIGURE 3, this procedure cannot be continued after one full revolution around the 
diabolic point. The topology of wave pattern no. 1 is regained in no. 12, but the 
positive and negative regions have interchanged, that is, the wave function has 
changed sign, and I 'Ygeo I = 'TT as predicted. Also, note that the topologies of the upper 
and lower states interchange for half a revolution starting at any point; that is, 
pattern 1 for the upper state coincides with pattern 7 for the lower state, etc., as 
expected for a spin-Yi system. 

level 1 4  

. 
. 7�··+ . . . . . . + ·  + - -"· + - + ..... . a�: + _. _ ' -+ - - + .... 

level 1 3  

A �. �-./ 
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FIGURE 3 .  Measured wave patterns in the triangular resonator. 
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y 

A x 

. .  

FIGURE 4. Construction and deformation of the rectangular resonator. Corner C was set to 16  
positions on  the elliptical path around the rectangular configuration marked by + .  The mirror 
plane in configuration space (M) is indicated by a dashed line. 

In a second series of experiments, we focused on a pointlike degeneracy of three 
levels. Because the mixing of states at a diabolic point is similar to the mixing of 
"fermionic" (spin-Yz) states under rotation, a question arises as to whether a triple 
degeneracy resembles a "bosonic" (spin 1-like) system. However, in this case, it was 
not possible to look for an accidental degeneracy of three levels. According to the 
theorem of von Neumann, an accidental triple degeneracy can only be found in a 
configuration space of dimension five or bigger. 

In a five-dimensional space, the number of different shapes that must be 
investigated is too high for the experimental method used here. Hence, we chose a 
rectangular resonator with a length-to-width side ratio of ./3. This resonator has 
many triple degeneracies in its spectrum for number-theoretical reasons.13 The 
triplet investigated here consists of the 18th, 19th, and 20th resonance. The shape of 
the resonator can be changed by moving one of its corners (C) along a loop around 
the rectangular configuration (cf. FIGURE 4). It should be noted that none of the 
quadrilaterals at different positions of C can be mapped onto each other by any 
symmetry or scaling operation. 

In order to establish that the system investigated here is topologically equivalent 
to a spin-1 coupling to an external magnetic field, we verified that the three 
degenerate states split equidistantly under distortion of the corner position in each 
direction. An elliptical path was determined along which the splitting of levels was 
sufficiently high, to resolve all levels experimentally well . For 16 different quadrilat
erals on the path, the wave functions of each of the three states were measured. 
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Subsequently, a similar tagging scheme as in the case of the triangular resonator 
was applied. FIGURE 5 displays the results of the measuremonts. During the first 
half-revolution around the rectangular configuration (pictures 1 through 8), the wave 
functions of the 18th and 20th states interchange and the wave function of the 19th 

level 20 

level 1 9  

level 1 8  

FIGURE S. Measured wave patterns in the deformed rectangular resonator. 
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undergoes a sign change, as expected for a spin-1 system under a rotation by ir. 
However, when the loop is continued to the initial configuration (pictures 9 through 
1 6), the outcome is surprising. Again, the wave function of the 19th state changes 
sign, thus returning to the initial state, and the 18th and 20th states interchange a 
second time. However, after one full revolution, the wave functions of the 18th and 
20th states return to their initial form with opposite signs. This sign change is not 
expected for a spin-1 system. 

Closer investigation reveals another unexpected feature of the wave functions. 
The wave functions in the left half of FIGURE 5 are nearly mirror images of the wave 
functions in the right half, although the resonator shapes are not mirror images of 
each other. (Compare pictures 2 and 15, 3 arid 14, and so on.) 

The symmetry of the wave patterns indicates that there exists a local mirror 
symmetry with a mirror plane M in the configuration space, which is shown in 
FIGURE 4. This symmetry is not obvious when comparing the resonator shapes 
belonging to points that are mirror images with respect to M. This symmetry is 
responsible for the unexpected sign change because it occurs in connection with 
opposite internal parity of the wave functions of states 18 and 20 at the mirror plane. 
The wave functions of states 18 and 20 interchange after half a revolution from a 
starting point at M. Hence, the wave functions have to c1oss the mirror plane two 
times, but once with odd and once with even parity. For state 20, a continuous 
crossing of M at the starting point requires that all pairs of wave functions ( 16-1, 
15-2, . . .  ) are mirror images of each other, including the sign tags of the maxima: 

(8) 

At the second crossing, where the parity of state 20 has become negative, continuity 
requires that the pair of wave functions are inverse mirror images: 

(9) 

Both conditions cannot be fulfilled simultaneously. Thus, a sign change after a full 
revolution has to occur. For state 18, a similar line of reasoning holds. State 19 
crosses M both times with even parity and therefore acquires no sign change after a 
full revolution. 

We then tried to construct a matrix that describes the mixing of the three states. 
A mixing of three states can always be described by an orthonormal 3 x 3 matrix like 
the Kobayashi-Maskawa matrix. This matrix may be parametrized by three angles 
(cl>;) and one phase (8) : ( 1 20;(8))) (C1CzC3 - SzS�8 -S1Cz C1CzS3 + SzC�3) ( 1 7, 1 )) 

1 19;(0)) = S 1C3 Ct S1S3 1 5,3) , 

I 18;(0)) C1SzC3 + CzS3ff8 -s 1s2 C1SzS3 - CzC�8 1 2,4) 

(10) 

where C; = cos( cl>;), S; = sin( cl>;), and states 1 2,4), 1 5,3), and 1 7, 1 )  are states 1 18), 1 19), 
and 1 20) at the initial configuration no. 1. We looked for a matrix where the angles cl>; 
should depend only on the rotation angle in configuration space and where the phase 
8 has the values of 0 or ir. 

For the mixing matrix that best describes the observed wave functions from no. 1 
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to no. 8, cl>1 increases from 'IT to 2'1T, whereas the angles cl>2 and cl>3 have fixed values of 
-'IT/4 and (%)'IT. The phase 8 is always 0. This results in a mixing.matrix, 

/(, -0 ... 1' -

( 1  + c) 
2 

s 

./2 
( 1  - c) 

2 

s ( 1  - c) 

./2 2 

-s 
-c ./2 ( 1 1 )  

-s  ( 1  + c) 

./2 2 

where c = cos(9) and s = sin(9); here, 9 is the orbiting angle. This matrix is 
equivalent to the mixing matrix for spin-1 states under rotation. Because it depends 
on 9 instead of 9/2, no sign change of any wave function is expected after a full 
revolution. 

This, though, indicates that K0 . . .  ,. is only a good approximation for the right side of 
the mirror plane. For the left side from no. 9 to no. 16, it does not at all describe the 
observed mixing. In order to have good agreement for the second half of the 
revolution, it is necessary to change the angles cl>2 and cl>3 instantaneously by 'IT/2 to 
'll"/4 when M is crossed. The mixing matrix for the second half then reads as 

( - 1 - c) s ( 1  - c) 
2 .fi. 2 

-s -s 
K,. ... 2,. = ./2 -c ./2 (12) 

( 1  - c) s ( - 1  - c) 
2 ./2 2 

Notice that this leads to no discontinuity of the mixing scheme at 9 = 'IT because the 
nonzero matrix elements K13, K22, and K31 do not suffer any sign change. However, 
there is a sign change of K1 1  and K33, which leads to the observed sign change after a 
full revolution. 

The wave functions calculated with these matrices are displayed in FIGURE 6. 
The good agreement with the observed nodal patterns is evident when comparing 
FIGURES 5 and 6. 

In conclusion, using a noninterferometric method, the sign change of a wave 
function in a resonator was measured. This sign change is due to a geometric phase 
that builds up whenever an accidental "fermionic" double degeneracy (effective spin 
Yz) is encompassed. Surprisingly, it was also found that "bosonic" triple degeneracies 
can lead to a sign change of the wave function when an additional and local mirror 
symmetry is present. This symmetry is not visible in the different boundary condi
tions, nor does it change the topology of energy surfaces over configuration space . 
Therefore, it is not possible to predict the geometric phase of multiple degenerate 
states from the topology of the energy surfaces alone. 
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FIGURE 6. Calculated wave functions according to the discontinuous mixing matrices, K. 
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On the Aharonov-Bohm Effect with 

Neutronsa 

MURRAY PESHKIN 

Physics Division 
Argonne National Laboratory 
Argonne, Illinois 60439-4843 

This work was done in collaboration with Harry J. Lipkin. As it has been submitted 
for publication elsewhere, I will be concise here. 

Later in this conference, you will hear of a series of neutron interferometry 
experiments• to demonstrate a new phenomenon that the experimenters have called 
the "Scalar Aharonov-Bohm effect" (SAB). In an idealization of those experiments,2 
polarized neutrons enter a Mach-Zehnder interferometer, one arm of which con
tains a region to which an external magnetic field B can be applied. B vanishes except 
during a time interval of length T during which a neutron's partial wave packet in that 
arm is entirely within the field region, and then it bas the value B, uniform 
througnout the support of the wave packet. The "neulron has u2 = + 1 at all times, 
where z is the direction of the magnetic field. From the Hamiltonian 

p2 
H = 2m - µa · B (t) , (1)  

i t  follows that the partial waves in the two arms of the interferometer will acquire a 
relative phase 

(2) 

That relative phase is measured by observing the intensities of the two emergent 
beams after the partial waves in the two arms are mixed. Thus the motion of the 
neutrons is influenced by a field in which the neutrons are never subjected to a force, 
and the experimenters have interpreted their results as demonstrating a new kind of 
topological effect, similar to the electric version of the usual Aharonov-Bohm (AB) 
effect (EAB),3•4 but with the electromagnetic field interacting with the neutron's 
magnetic moment µ instead of with the electron's charge e. 

I will assert here that this interpretation is wrong. SAB is brought about by an 
ordinary action of the Maxwell field that has all the properties of all other local 
interactions and shares none of the topological features of EAB. On the other hand, 
SAB does measure an apparently novel kind of spin correlation that may be of 
interest. 

Let me remind you briefly about EAB. In an adequate idealization, the magnetic 
moment of the electron can be ignored and we can pretend that spinless electrons 

0This work was supported by the United States Department of Energy (Nuclear Physics 
Division) under Contract No. W-3 1-109-ENG-38. 
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enter the same Mach-Zehnder interferometer. Instead of having a magnetic field 
region in one arm, each arm is surrounded by its own conduoting cylinder which 
serves to shield an electron from any external electric field while the electron's wave 
packet is split into two pieces, each deep inside one of the cylinders. Now potentials 
Vi and Va are applied to the two cylinders for a time T while the electron is shielded, 
and the two beams acquire a relative phase given by 

e(AV) 
8.1.. = -- T  'I' ,, ' (3) 

where AV = Vi - Va. The observable effect is the same as in SAB with the 
substitution e(AV) • µ.B. 

There are of course major differences between SAB and EAB. The SAB 
Hamiltonian (equation 1) involves the local, contemporaneous Maxwell field B, 
whereas the EAB Hamiltonian 

p 2  
H = - - eV(t) 2m (4) 

involves only the gauge field V. Also, the operator equations of motion for the 
observable spin components er .. and cry in SAB, 

,, 2 er .. = - µ.Bery, (Sa) 

(Sb) 

exhibit the usual torque in a local magnetic field, whereas the operator equations of 
motion for the only observables in EAB, the electron's position and velocity, are 
those of a free particle and involve no electromagnetic fields. However, it is argued 
that B enters the Hamiltonian as a potential acting on a magnetic moment and that 
one can replace er, by the number + 1 ,  reducing the SAB Hamiltonian to 

p2 
H = 2m - µ.B(t). (6) 

Then the Hilbert space is truncated to single-component wave functions with er, = 
+ 1 ,  so the two phenomena are described identically in the theory under the 
substitution eV • µ.B. SAB appears from that formal argument to be a topological 
phenomenon in the same sense as is EAB. To complete that argument, equations 5a 
and 5b have to be written off as questionably involving observable quantities in a 
state with er, = + 1, where 

{cr .. (t)) = {cry(t)) = 0. (7) 

However, the formal similarity between equation 4 and equation 6 is misleading 
because the spin is a quantum mechanical operator and it cannot simply be replaced 
by a number, and that changes the physics. The AB effect is nonlocal in that the 
electron experiences no force and exchanges no momentum, energy, or angular 
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momentum with the electromagnetic field; and in that the Hamiltonian, the equa
tions of motion, and the commutation relations involve no local contemporaneous 
Maxwell field in the domain of the electron's position. In SAB, the torque 

L = µa X B (8) 

has vanishing expectation in a state with a, = + l, but its fluctuations 

(L;) = (L;) = (µ8)2 (9) 

do not vanish. Angular momentum is exchanged between the electron and the local 
electromagnetic field. That exchange, as described by the equations of motion of the 
observables, is local in the sense of Faraday and Maxwell. 

This locality is manifested especially clearly by the spin autocorrelation opera
tors: 

C(t) = (�)[a..(O)a..(t) + ay(O)ay(t) + h.c.], 

S(t) = (�)[a..(O)ay(t ) - <ry(O)<rx(t ) + 
.
h.c.]. 

They obey the equations of motion 

. 2µ8 C(t) = -11-S(t), 
. 2µ8 S(t) = - --,;-C(t), 

(10) 

(Ila) 

( l ib) 

which depend upon the local contemporaneous magnetic field. These spin autocorre
lations are Hermitian operators, measurable in principle, and they commute with <rz, 
so there is no question of their observability in a state of definite a,. The solutions of 
equations l l a  and l lb are given by 

C(t) = cos(<i>t), 

S(t) = -sin( <i>t), 

2µ8 (I) = -,,- . (12) 

Thus the spin autocorrelation precesses in the magnetic field under the influence of 
the local torque according to the usual law. 

The autocorrelation has a simple semiclassical meaning that can be seen in the 
vector model. There, in a state with a, = + 1, the spin vector precesses around the 
magnetic field on a cone, with random starting phase. However, the angle 

'6(t) = wt ( 13) 

between the projections of a(O) and a(t) on the xy plane is not random, but grows 
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under the action of the torque. When the two beams merge at the exit from the 
interferometer, a =  a(T) in the beam that traversed the magnetic field and a =  a(O) 
in the other arm, so the spin correlation angle is {} = WT, and· that influences the 
interference. In that sense, SAB actually measures what appears to be a new kind of 
spin correlation. 

The SAB interaction is therefore local, unlike that in the EAB effect to which 
SAB is mathematically analogous. In SAB, the local magnetic field creates a torque 
that acts on the spin in the ordinary way. The field thereby influences the interfer
ence when the neutrons exit the interferometer. The correlation angle is twice the 
phase shift, as one expects for rotations of spin 1 /2. 

What about topology? EAB is topological in that the phase shift cannot be 
ascribed to one particular arm of the interferometer because a gauge transformation 
can change the individual values of Vi and Vi. The only relevant gauge-invariant 
difference between the two arms is that they have different topological winding 
numbers. (This point is much clearer in the magnetic version of the AB effect.3•4 
There, electrons are diffracted by a cylinder centered on the z-axis. The electrons are 
excluded from the interior of the cylinder, which contains a magnetic field in the 
z-direction with flux <I>. Feynman path amplitudes for paths that end on some point 
on the diffraction screen may go around the cylinder any number of times. Each path 
amplitude acquires a phase 

e<I> 
cl> = n l'lc , (14) 

where n is the topological winding number of the path, and the diffraction pattern is 
affected by those phase shifts even though the electron never enters the magnetic 
field.) 

SAB has no analogous topological character. We know exactly in which arm the 
interaction took place, rotating the spin autocorrelation and exchanging angular 
momentum with the field. 

It has been argued1 that SAB is in fact a topological effect because the phase shift 
&cl> is independent of the energy of the neutron. However, it has only been shown5,6 
that energy-independence of the phase shift is a necessary condition for a force-free 
effect, not that it is a sufficient condition for a topological effect. One can imagine an 
experiment in which one arm of the interferometer contains a phase-shifter consist
ing of a box whose index of refraction can be varied by pumping some gas in and out. 
The index of refraction can be made equal to unity except during the time when the 
neutron wave packet is entirely inside the box, and the energy-dependence of the 
index of refraction can in principle be such that the phase shift is independent of the 
neutron's energy over the energy range of the experiment. To accept the energy
independence of the phase shift as proof that SAB is a nonlocal or topological effect, 
one would also have to accept that the action of this ordinary phase-shifter is also 
nonlocal or topological . 

The same comments apply to the Aharonov-Casher effect (AC)7 as to SAB. In 
AC, the neutron moves through an electric field and the torque is J.L x v x E. 
Otherwise, the discussion is the same. 
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Earlier discussionss,s of what is now called SAB have dealt with some of the issues 
presented here from a different perspective. 
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INTRODUCTION 

The temporal evolution of a quantum mechanical system, initially prepared in an 
eigenstate of the unperturbed Hamiltonian, is known to be roughly characterized by 
three distinct regions: '  a Gaussian behavior at short times, a Breit-Wigner exponen
tial decay at intennediate times, and a power law at long times. It is well known that 
the asymptotic dominance of the exponential behavior is representative of a purely 
stochastic evolution and can be derived quantum mechanically2 in the weak
coupling, macroscopic limit (the so-called van Hove's limit). One may expect a close 
connection between dissipation and exponential decay.3 The Gaussian short-time 
behavior is of particular significance due, in particular, to the so-called quantum 
Zeno effect.4.S 

Khalfin6 and Misra and Sudarshan4 discovered that, if the short-time behavior is 
Gaussian and not exponential, it is possible to inhibit the decay of unstable quantum 
mechanical systems by performing frequent "observations" in rapid succession. This 
phenomenon was named the quantum Zeno paradox or the quantum Zeno effect 
(QZE) after the Greek philosopher, Zeno, whose arrows, although darted, did not 
move. However, the experiment was very difficult to perform. 

Recently, Cook7 proposed an experimental test that made use of a two-level 
atom. It should be noted, however, that the proposed test did not involve observation 
of a naturally unstable quantum system, as in the original idea by Misra and 
Sudarshan. Following Cook's proposal, ltano and his group8 carried out this experi
ment and claimed, by obtaining the same result as theoretically predicted by Cook, 
that the QZE had been proven experimentally. This conclusion has provoked an 
interesting debate9-14 on whether this effect is really ascribable to frequent observa-

a A major portion of this report will appear in Physical Review A (see reference 18) and is here 
contained by courtesy of the American Physical Society. 
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tions, each of which is described by the naive wave-function collapse (i.e., von 
Neumann's projection rule), or is rather a purely dynamical process. In particular, 
Petrosky, Tasaki, and Prigogine9 strongly claimed the latter point of view. 

In this context, it is important to notice that, in fact, llano et al. observed only one 
photon at the final step, but not at every step. Therefore, strictly speaking, they 
performed a different experiment from the original proposal put forward by Cook.7 
Thus, we are led to an interesting question: why did their experiment (in which one 
photon was observed only at the final step) yield the same result as the one 
theoretically derived under the assumption that the naive wave-function collapse 
(i.e., the simple projection) takes place many times? The main objective of the 
present report is to answer this question. 

In previous papers, we proposed13•15 to use neutron spin-flip processes, instead of 
atomic transitions, in order to simplify and clarify the discussion. We drew conclu
sions essentially similar to those of Petrosky et al. 

As the whole class of phenomena hinging upon the controversial issue of 
wave-function collapse,16•17 the QZE is very interesting from the point of view of 
quantum measurements. In particular, it seems worth clarifying that the notion of 
"collapse", as given by von Neumann's projection rule, is not a fundamental requisite 
for the occurrence of a QZE. Therefore, in our opinion, the widespread belief that 
the QZE is a clear-cut evidence in support of the wave-fU'llction collapse, as given by 
von Neumann's projection rule, is a misunderstanding. Indeed, we shall endeavor to 
show that the quantum Zeno phenomenon is a pure dynamical process, always 
governed by strictly unitary evolutions. 

We shall also shortly consider the implications of the QZE on the quantum 
measurement theory. 16 We shall explain why we believe that the measurement 
process should be derived as a consequence of the interaction with measuring 
devices, within the framework of quantum mechanics, and should be ascribed to a 
dephasing process. 17 This will help us to clarify that the occurrence of the QZE is no 
evidence in support of the Copenhagen interpretation. 

More details on the analysis to be shown in this report can be found in refer
ence 18. 

MISRA AND SUDARSHAN'S FORMULATION 

We shall first formulate the quantum Zeno effect by following the seminal 
procedure by Misra and Sudarshan,4 which is entirely based on von Neumann's 
projection rule. The reader should notice the fundamental role played by the 
projection operator E in the present section. 

Let Q be an unstable quantum system, whose states are vectors in the Hilbert 
space Jr and whose evolution is described by the unitary operator U(t) = exp(-iHt), 
where H is a semibounded Hamiltonian. The initial density matrix of 

·
system Q is 

assumed to be an undecayed state, p0, and let E be the projection operator over the 
subspace of the undecayed states. By definition, 

Po =  Epo£, Tr[po£) = 1 .  (2.1) 
Assume that we perform a measurement at time t, denoted by the projection 
operator E, in order to check whether Q is still undecayed. The measurement is 
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idealized to be instantaneous. Accordingly, the state of Q changes into 

Po --+ p(t) = EU(t)p0Ut(t)E, 

.so the probability to find the system undecayed is given by 

p(t)  = Tr[U(t )p0Ut(t)E] . 
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(2.2) 

(2.3) 
We shall refer to the process of equation 2.2 as the "naive wave-function collapse". 
We are now ready to review briefly Misra and Sudarshan's original formulation of 
what they named the "quantum Zeno paradox". We prepare Q in the initial state Po 
at time 0 (this is formally accomplished by performing an initial, "preparatory" 
measurement of E) and perform a series of observations at times TIN, 2T/N, . . . , 
(N - l )T/N, T. The state p<N>(T) of Q after the preparation and the above
mentioned N measurements reads 

and the probability to find the system undecayed is given by 

p<N>(T) = Tr[VN(T)p0yX,(T)) . 

(2.4) 

(2.5) 

Equations 2.4 and 2.5 display what will be referred to as the "quantum Zeno effect": 
repeated observations in succession modify the dynamics of the quantum system, by 
slowing down the decay process, as we shall see in a particular example in the 
following section. 

In the N --+  oo limit (continuous observation), Misra and Sudarshan proved under 
general conditions that 

.9(T) = limP<N>(T) = Tr(poE) = 1 . (2.6) 
N-oo 

If the particle is continuously observed (to check whether it decays or not), it is 
"frozen" in its initial state and will never be found to decay. This is the essence of the 
"quantum Zeno paradox". 

It is worth stressing the profound difference between the N-finite and the 
N-infinity case. To perform an experiment with N finite is only a practical problem 
from the physical point of view. On the other hand, the N --+  oo case is physically 
unattainable and is rather to be regarded as a mathematical limit (although a very 
interesting one). In this sense, we shall say that the quantum Zeno effect, with N 
finite, becomes a quantum Zeno paradox when N --+  oo. 

Finally, if the Q system is let to follow its "free" evolution under the action of the 
Hamiltonian H, its final state at time T reads 

p(T) = U(T)p0Ut(T) 

and the probability that the system is still undecayed at time T is 

P(T) = Tr[U(T)p0Ut(T)E) .  

(2.7) 

(2.8) 
We shall now endeavor to show that the consequences of the above theorem are 

liable to a pure dynamical explanation that does not make use of projection operators. 
In this sense, we believe that the quantum Zeno effect is just a consequence 
(although a peculiar one) of the Schrodinger equation. In the following, we shall 
show that one needs only a particular quantum dynamics in order to "freeze" the Q 
system in its initial state. 
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B B B 
FIGURE IA. "Free" evolution of the neutron spin under the action of a magnetic field. An 
emitter E sends a spin-up neutron through several regions where a magnetic field B is present. 
The detector Do detects a spin-down neutron: no Zeno effect occurs. 

It is necessary to stress again that the observations (measurements) schematized 
via the operator E are instantaneous. This is a rather general characteristic of von 
Neumann-like descriptions of a measurement process: the Q system instantaneously 
makes the transition of equation 2.2 by measurement (naive wave-function collapse) .  
Even though such a picture i s  often accepted among physicists, i t  is misleading. 
Indeed, a measurement process, as a physical process, takes place during a very Long 
time on a microscopic scale, although we can regard it as if it happened instanta
neously on a macroscopic scale. 

For a discussion on this point, see reference 1.9. 

QUANTUM ZENO EFFECT WITH NEUTRON SPIN 

We shall now discuss a particular solvable example 15 that, in spite of its simplicity, 
yields rich physical insight and turns out to be very useful for the general analysis 
found in the next section. We shall show how the same "Zeno-type" evolution can be 
obtained both by making use of the technique of the previous section and by means 
of a purely dynamical process. 

The example we want to consider is a neutron spin in a magnetic field. 15 (A 
situation analogous to the one described in this section was outlined by Peres20 with 
photons.) We shall consider two different experiments: refer to FIGURES lA and 18. 

B B 
Fl�URE 18. The neutron spin is "monitored" at every step, by selecting and detecting the 
spm-down component. Do detects a spin-up neutron: the Zeno effect takes place. 
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In the case schematized in FIGURE IA, the neutron interacts with several identical 
regions in which there is a static magnetic field, B, oriented along thex-direction . We 
neglect any losses and assume that the interaction is given by theilamiltonian, 

(3. 1) 

with µ being the (modulus of the) neutron magnetic moment and with er; (i = 1 ,  2, 3) 
being the Pauli matrices. We denote the spin states of the neutron along the z-axis by 
I t ) and I ! ) : these can be identified with the undecayed and decayed states of the 
previous section, respectively. 

Let the initial neutron state be p0 = P a = I t )( t I · The interaction with the first 
region simply provokes a rotation of the initial state around the x-direction: 

Po -+ p(t) = e-iH1thp aeiH1th 
= cos2 (�) P a + sin2 (�') Pu - i cos (�) sin (�) p 11 + h.c., (3.2) 

where w = 2µB/h, t = I' Iv (I' is the length of the region where B is present and v is 
the neutron speed), and the other notation is obvious. (In this section, we do not set 
h = 1 .) 

We repeat the process N times, as shown in FIGURE IA. The final density matrix 
at time T = Nt is 

p(T) = e -iHTlhprf!;HTth = cos2 (w[) Pa + sin2 (�T) P u 
- i cos (�T) sin (�T) p 11  + h.c. (3.3) 

We call this a "free" evolution, during which the system evolves under the sole 
influence of H. Note the presence of the off-diagonal terms with respect to the spin 
states. If T is chosen so as to satisfy the "matching" condition cos wT/2 = 0 (notice 
that this can also be viewed as a fine-tuning requirement, similar to the one 
experimentally realized by Itano et al. 8), we obtain 

p(T) = Pu [ T = (2m + 1) ; , m E N] . 
so the probability that the neutron spin is down at time T is 

[ T = (2m + 1) � ,  m E N] . 

(3.4) 

(3.5) 

The above two equations correspond to equations 2. 7 and 2.8 for a specially chosen 
T. In our example, H is such that, if the system is initially prepared in the up state, it 
will evolve to the down state after time T. Notice that, within our approximations, the 
experimental setup described in FIGURE IA is equivalent to a single region of length 
L = NI' with magnetic field B. 

Let us now modify the experiment just described by inserting at every step a 
device able to select and detect one component [say, the down ( ! ) one] of the 
neutron spin. This can be accomplished by a magnetic mirror (M) and a detector (D) .  
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The former acts as a "decomposer" by splitting a neutron wave with indefinite spin (a 
superposed state of up and down spin) into two branch waves, each of which is in a 
definite spin state (up or down) along the z-axis. The down state is then forwarded to 
a detector, as shown in FIGURE lB. 

The magnetic mirror yields a spectral decomposition17·21 with respect to the spin 
states and can be compared to the inhomogeneous magnetic field in a typical 
Stem-Gerlach experiment. It is very important, in connection with the QZE, to bear 
in mind that the magnetic mirror does not destroy the coherence between the two 
branch waves. Indeed, the two branch waves corresponding to different spin states 
can be split coherently and can be brought back to interfere.22 

We choose the same initial state for Q as in the previous experiment (FIGURE 
IA). The interaction with B in the first region still provokes the evolution of equation 
3.2. The spectral decomposition and the detection of a spin-down neutron, provoked 
by M and D, respectively, are (formally) globally represented by the operator E = P tt  
(remember that we follow the evolution along the horizontal direction i n  FIGURE lB, 
which corresponds to spin up), so equation 2.2 yields 

Po --+ p(t) = EU(t)PoUt(t)E = (cos2 �) P tt • (3.6) 

where U = exp(-iHt/h). If the process is repe!'<ted N limes, as in FIGURE lB, we 
obtain 

p<NJ<T> = vNcr>Povi<T) = (cos2 �rPn = (cos2 ;rp" , (3.7) 

where VN(T) has beea defined in equation 2.4 and the "matching" condition for T = 
Nt (see equation 3.4) has been required again. The probability that the neutron spin 
is up at time T, if N observations have been made at time intervals t (Nt = T), is 

P)Nl(T) = ( cos2 ;r (3.8) 

This discloses the occurrence of a QZE. Indeed, pCfl(T) > pCf- 1 >(T) for N :<!: 2, 
so the evolution is "slowed down" as N increases. Moreover, in the limit of infinitely 
many observations, 

and 

N-+ao 
p(N)(T) --+ p(T) = P tt 

.9 1 (T) = lim pCf>(T) = 1 .  N-+ao 

(3.9) 

(3.10) 

Frequent observations "freeze" the neutron spin in its initial state by inhibiting 
(N � 2) and eventually hindering (N --+ oo) transitions to other states. Notice the 
difference with equations 3.4 and 3.5: the situation is completely reversed. 

The above result, peculiar as it may seem, is a straightforward consequence of the 
quantum formalism. It is worth stressing that (by setting, for simplicity, m = 0 in 
equation 3.4) the condition, wT = wNt = v, which is to be met at every step in 
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FIGURE lB, means that 

trliv 
Bl' = 2µN = O(N-1) ,  (3.1 1 )  

where I' and v were defined after equation 3.2. This implies that the practical 
realization of the experiment becomes increasingly difficult as N increases in the 
above equations. We shall come back to this point in the final discussion. 

Notice that the final results, equations 3.9 and 3. 10, are automatically properly 
nonnalized: the probability of detecting a spin-down neutron vanishes in the N --+ co 

limit. This is the essence and the peculiarity of the Zeno argument. We stress that in 
the above analysis we have neglected any losses and reflections at the mirrors. 

If the state of the total (neutron + detectors) system is taken into account, we 
obtain the following density matrix in the channel representation: 

c2N 0 

i, j = 0, 1 ,  · · · , N, (3.12) 

0 s2 

where c = cos(tr/2N) and s = sin(tr/2N). This corresponds to the case of frequent 
observations, in which we confirmed, at every step, the neutron route among the 
various possibilities (0, 1 , · · · , N). Notice that the i = j = 0 component corresponds 
to detection by D0, whereas the i = j = n (n = 1, · · · , N) component corresponds to 
detection in channel N - n + 1 .  Observe that in the above expression the 
off-diagonal terms disappeared as a consequence of the "wave-function collapse" by 
measurement. 

It is easy to realize that the same result can be obtained without making use of 
projection operators by simply performing a different analysis involving only unitary 
processes. Assume that D i . · · · , DN are removed in FIGURE lB. In other words, we 
make no observation of the neutron route, except the final one performed by D0. The 
correspondent density matrix is readily shown to be 

c2N isc2N- I isc2N-2 iscN 

-isc2N- t s2c2N-2 s2c2N-3 s2cN- t  

=ij = -isc2N-2 s2c2N-3 s2c2N-4 s2cN-2 ' i, j = 0, 1 ,  · · · , N. (3.13) 

-iscN s2cN- 1 s2cN-2 s2 

Equations 3 . 12 and 3 . 13 clearly show that we have the same probability p<f> = 
[cos2(tr/2N)JN of detecting a spin-up neutron at Do in both cases with the detectors 
Di. · · • , DN present and absent in FIGURE lB. It appears therefore that no projection 
rule is necessary in this context. 

Physically, the situation just described corresponds to performing a coincidence 
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experiment between the emitter E and D0, as was explicitly shown in reference 15. 
One can also consider this result as a consequence of a negative-result measure
ment23 of the neutron spin. See reference 15. 

Notice that the diagonal elements of the two density matrices (equations 3.12 and 
3.13) are the same. Moreover, in both cases, in the N -+ oo limit, only the c2N 
( i  = j = 0) element survives. Al l  other terms disappear because they contain at least 
an s factor. The correspondent density matrix is 

1 0 0 
0 0 0 

Sij = 0 0 0 i, j  = 0, 1, . . . .  (3.14) 

We stress that the N -+  oo limit is only mathematical and is impossible to realize 
physically because the elapse of time TIN, even though it can be considered very 
short on a macroscopic scale, is in fact the time spent by the neutron in each 
B-region. We have to keep in mind this remark throughout this report. 

We shall now generalize this conclusion. We shall also see that the experiment 
performed by ltano et al. , 8 in which a photon was observ6d only at the final step, will 
appear as a particular case of our analysis. Indeed, if one identifies the effect of the 
mirrors in FIGURE lB with the effect provoked by the laser pulses in reference 8, the 
above discussion unequivocally implies that the same result would be obtained if 
Itano et al. observed the intermediate photons or not. Their experiment is just 
equivalent to a series of spectral decompositions performed by the laser pulses. 

QUANTUM ZENO EFFECT AS A PURELY DYNAMICAL PROCESS 

We shall give in this section a general formulation of the QZE as a dynamical 
process without making use of von Neumann's projection postulate. We shall see 
when a system evolves under particular conditions and undergoes a "generalized 
spectral decomposition" (the precise meaning of which will be explained in a while) 
that its initial state becomes "frozen", in the sense explained in the previous sections. 

The evolution we are going to consider is peculiar in that it involves the creation 
of several quantum correlations in rapid succession. We start (without loss of 
generality and in line with the formalism of the previous sections) from a two-level 
quantum system Q, living in a Hilbert space KQ, and embed the latter in the larger 
space, K = KQ ® Ku, where the subscript U stands for universe. Our "universe" can 
be anything: the spatial component of the total wave function of Q (as in the previous 
section), a quantized electromagnetic field interacting with Q (as in the experiment 
by Itano et al. ), some detectors surrounding Q, or any atmosphere in which Q exists. 
Two points are worth noticing. First, it is essential that the universe be treated 
quantum mechanically: if a "classical" behavior were postulated, we would conceptu
ally go back to von Neumann's projection rule and to Misra and Sudarshan's seminal 
idea. Second, the only purpose for introducing the universe is to "follow" the 
quantum correlations engendered by Q, namely, to monitor their "spreading" 
towards other degrees of freedom of the total wave function ("leakage" and 
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"environment" may be better words than "spreading" and "universe'', respectively, 
but we prefer the former expressions because, as we shall _see, the quantum 
coherence can eventually be recovered). 

We start from the initial state 

N t' 
1 w,) = I ± )  �oj� 1 o;n>) = l ± ) I O)N, (4. 1) 

where I ±) denotes any state of the two-level system Q, o;ni·s are occupation numbers, 
and I O)N is the ground state of the universe. The state + (-) plays the same role of the 
state t ( l )  in the previous section and of the undecayed (decayed) state in the 
section before that. The structure of Ku can be understood by looking at FIGURE 2: 

1 2 3 N-1  

2 

+ . j ---Q--!-C2J- 1 
- 2j 

N 
FIGURE 2. The quantum correlation "tree".  After N steps, there are 2N branches. The value of 
n (n = l, · · · , N) is indicated on the bottom. 

the "universe" consists of many channels (labeled j, 11) that can be in either of the 
two possible states, OJ"> and tj"l. The state o;n> ( lj">) denotes the absence (presence) 
of an excitation in the corresponding channel. The index 11 labels the "step" 
(horizontal direction in FIGURE 2), whereas the indexj labels the "branch" (vertical 
direction) at step n. After n steps, there are 2n branches. 

For the sake of simplicity, the following analysis is performed in terms of wave 
functions instead of density matrices. 

The "Free" Evolution 

We assume that the system undergoes two different types of evolution at every 
step in FIGURE 2. The first evolution is governed by the Hamiltonian Ho and takes 
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place in the rectangular regions. The second evolution is governed by the Hamilto
nian H ' and takes place in the circular regions. 

The effect of the two evolutions is profoundly different. The evolution engen
dered by H0 is identical at every step and will be written as 

U0(t) I +) ® I " ·) =  e-iHot l + ) ® I · · - ) = b+(t) I + ) + e_ (t ) l - )J ® I · · · ), 

U0(t) 1 - ) ® I · · ·) =  e-iHot l + ) ® I · · · ) = [e+(t) I + ) + 'Y- (t) 1 -)J ® I · · ·), (4.2) 

where the dots denote any state of the universe. Notice that this leaves the universe 
unaltered. We shall be interested in the behavior for small t, which is, in general, 

E±(t) = O(t), 'Y±(t) = 1 - O(t2). (4.3) 

The Hamiltonian Ho plays the same role as H in equation 3 . 1 .  In some sense, we can 
consider the above evolution as "free'', where "free" simply means that the behavior 
of the Q system is not "monitored", and Q is let to fol low a natural, smooth evolution, 
under the action of H0• 

The Generalized Spectral Decompolition . . 
The second interaction, governed by H' ,  is a sort of spectral decomposition: 

different states of the Q system become entangled with different states of the 
universe. One can think, for example, of a sort of Stern-Gerlach decomposition of an 
initial spin state (so that f'Very component of the spin becomes associated with a 
different wave packet, as in the previous section), of an entanglement of a two-level 
atomic system with a photonic state (see the analysis of the experiment by ltano et aL 
in the following section and the lucid discussion of Petrosky et al. on this point), or (to 
be more general) of an entanglement of each state of Q with different degrees of 
freedom of the universe. In this sense, we shall speak of the generalized spectral 
decomposition (GSD) of the Q states. 

In order to describe this situation, refer to FIGURE 3 and assume the following 
Hamiltonian: 

H' (t) = g(t)[ l + )(+ l <T� + 1 -)(- 1 <1-y]<Ta = g(t)H' , foT g(t)dt = b E �. (4.4) 

where the interaction is switched on during the time interval [O, T], g is a real 
function, <J� = <T,.. (the index µ = a, p, 'Y labels the channel), and the effect of <T,.. is 
defined by 

<T,.. I o,..) = 1 1 ,..), 
<T,.. 1 1 ,..) = I o,..) ;  (4.5) 

thus, if there is a "particle" in channel µ, the operator <1µ. destroys it, whereas, if 
there is no particle, <T,.. creates one. The effect of <T,.. (Vµ) is therefore identical to that 
of the first Pauli matrix. (We are implicitly assuming that there cannot be more than 
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one "particle" in channel µ.) We set 

(uµ., CTv) = 0 Vµ, v. (4.6) 

It can be shown 18 that H '  acts by sending the + ( - ) state of the Q particle in the 
upper (lower) channel in FIGURE 3, performing in this way a GSD. 

In general, the only effect of a GSD is to set up a correlation between the two 
states of Q and the different states of the universe. Obviously, for the purpose of our 
analysis, we are interested in obtaining a perfect GSD (namely, a univocal and 
unambiguous correspondence between different states of Q and of the universe). 
This can be easily accomplished by setting b = -rr/2 in equation 4.4: this is a sort of 
fine-tuning and corresponds to the so-called -rr-pulse condition, widely used for 
electromagnetic cavities. 24 This condition was experimentally realized in reference 8. 
As explained in reference 18, b = -rr/2 can also be viewed as the requirement that the 
GSD be "reftectionless". Notice also that all losses are neglected. 

+ 

a + 

FIGURE 3. The generalized spectral decomposition. 

The evolution engendered by H '  can be calculated explicitly . 18 The final result is 

U ' (t)(c+ I +) + c_ l - )) @ 1 10, 0p, O-y) = e -ifOH'(t ')dt '(c+ I + ) + c_ l - )) @ 1 10, 011, 0'Y) 
= -iH '(c+ I + ) +  c_ 1 - )) ® I la• Op, O'Y) 
= -i(c+ I + ) ®  I Oa, l p, 0-y) + c_ 1 - ) ® I Oa, Op. l y)) 

(t > T, b = -rr/2) (4.7) 

and yields a genuine GSD. 
Our idea is to get a Zeno-type dynamics without making use of nonunitary 

evolutions (projection operators) . In the second section of this report, the operator E 
represented a measurement that was assumed to be instantaneous. As already 
emphasized, this is clearly an idealized situation that cannot correspond to a real 
physical process, taking place at a microscopic level. The problem is therefore to 
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understand how we can simulate such an instantaneous and unphysical process in 
our analysis that makes use of only unitary evolutions. 

We observe that, in general, a GSD must take place in a very short time. 
Obviously, the term "very short time" must be understood at a macroscopic level of 
description because, microscopically, the time required to efficaciously perform a 
GSD is very long. Therefore, if we restrict our analysis to a macroscopic level of 
description, we can describe an (almost) instantaneous GSD by means of the 
so-called impulse approximation, 

rT g(t)dt = Tf/2, Jo . T -+ Q+, (4.8) 

which roughly amounts to setting g(t) --+ (v/2)8(t) as T --+  o+, where 8 is the Dirac 
function foT l>(t) = 1. This is our alternative description of a von Neumann-like 
instantaneous projection. 

The Evolution at the n-th Step 

We can now tackle the general case. Refer to FIGURlt2 and assume the following 
Hamiltonian at the n-th step: 

· ·  

2"- 1 
= g(t) L H (n).j• 

j= I  
foT g(t)dt = b E IR, (4.9) 

where the interaction is switched on during the time interval [O, T] and the action of 
of"> is defined by 

(4.10) 

thus, if there is a "particle" in the i-th channel at the n-th step, the operator of"> 
destroys it, whereas, if there is no particle, of"> creates one. We set 

'lli, k, n , m. (4.1 1) 

It can be shown again that H (nJ.i acts on the + [ - ) state of the Q particle in the j-th 
channel at the (n - 1)-th step by sending it into the (2j - 1)-th [2j-th) channel at step 
n, performing in this way a GSD. 
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If the condition b = -rr/2 is used again, one obtains after some algebraic 
manipulations 

-U (n)(t)(c+ I + ) + c_ 1 - )) ® I · · · ,  ®{:�1 1;n- 1 >, · · · ) 
= e-if0Hin1(1 ')d1'(c+ I + ) + c_ 1 - )) ® I · . .  , @{:� 1 1Jn- t ), . .  · ) 

= ( -i)t'- 1 (c I + ) 'X' I · · ·  'X't'- 1 1 <n )  · · · ) + C 1 - ) 'X' I · · ·  l)(lt'- 1 1 <n) · · · } ) + 'Cl ' 'Cl1 = l 21- 1• - 'Cl , 'Cl1 = l 21 ' 
(t > 'T, b = -rr/2), (4.12) 

where the dots will henceforth signify that all other occupation numbers are 0. 
Summarizing, at every step of the process described in FIGURE 2, the system 

evolves according to 

(4. 13) 

where U0 was defined in equation 4.2. 
Our interest will be focused on the evolution engendered by the limiting 

operator, 

».T.. U'fr}r(T) = ».T.. [ft Ucn>(Ti / N, T2/ N) ]u,, (4. 14) 

where T = T1 + T2 and the operator U1 creates the initial incoming Q state at t = 0. 
Notice that T = T1 + T2, that is, the total duration of the "experiment", is kept finite 
in taking the above limit. 

The N -+ oo Limit 

Let us study the action of the operator ulfJr(T) on any initial state of the Q 
system. (The universe is initially taken to be in the ground state . See equation 4. 1 . ) If, 
for instance, the initial Q state is I + ), the final state is readily computed from 
equations 4.2, 4.3, and 4 . 12-4.14 as 

ulfJr(T) I + ) ® I O)N = ( -i)iHb+(T2/N)JN I + ) ® I ·  . .  ' 1\NI, . . · ) + 0( 1 /N). (4. 15) 

On the other hand, if the initial state is I - ), the final state reads 

This clearly displays a QZE for N finite and a quantum Zeno paradox in the N -+ oc 

limit. Indeed, observe that 

(4. 17) 

where we made use of equation 4.3. In other words, in the limit of infinitely many 
GSD's, both states of Q are "frozen", while the universe evolves into the uppermost 
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or lowermost state in FIGURE 2, according to whether the initial Q state is + or - , 
respectively. Moreover, the final result does not depend on Ti. that is, the total time 
needed to perform GSD's. In particular, in the impulse approximation (equation 
4.8), we can get Ti = 0 and the total duration of the "experiment" is just T = T2• This 
is interesting and reflects, in our opinion, the essence of the "dynamical QZE": the 
final state does not depend on the "GSD" time, which can be made arbitrarily small 
in order to mimic the effect of an instantaneous projection E like in the second 
section. Notice, however, that it is not necessary to take the Ti -+ 0 limit because we 
would obtain a dynamical QZE even if Ti = NT is kept finite. On the other hand, if 
the total duration of the experiment T = T1 + T2 (with Ti = NT) is kept finite, the 
N -+ oo limit can be taken only in the impulse

-
approximation (equation 4.8). 

We stress again that the T -+ 0 limit is unphysical and impossible to realize in 
practice. Indeed (as already emphasized in the previous section), even though T can 
be considered very short in a macroscopic sense, it is in fact a very long time on a 
microscopic scale. In the case considered in the previous section, for instance, T is the 
time elapsed during the interaction between the neutron and a magnetic mirror M, 
which is of the order of 10-1-10-6 s. 

However, there is more to this: experimentally, even the requirement that the 
total time spent in "free" evolutions T2 be finite appears prohibitive. Indeed, such a 
total time should be divided into many small time"inteJVals whose duration (T2/N) 
vanishes as N -+ oo. This additional problem is manifest when one looks at the 
examples of FIGURES lA and lB. There is no conceptual problem related to the 
experiment in FIGURE lA because, within our approximation, the experimental 
arrangement is equivalent to a magnetic field B in a region of length L = NI' (see 
definitions after equation 3.2). On the other hand, in the experiment sketched in 
FIGURE lB, each single region containing B must have a length I' = LIN that 
vanishes in the N -+  oo limit. Consequently, the time T2/N spent by the neutron in 
each single region should also vanish. This is clearly impossible to realize in practice. 

Observe that the final state at time T is fully coherent: the evolution is obviously 
unitary and no "collapse" of the wave function has taken place. Needless to say, this 
result holds true for any possible state of Q. Indeed, application of the superposition 
principle yields. 

ur:'Jr(T) (c+ I + )  + c_ I -))  ® I O)N = C+ (-i)zv['Y+(T2/N)]N I + ) ® 1 · . .  ' l �N>, . .  ·) 

+ c_ (-i)zv('Y_ (T2/N)]N I - ) ® I . .
. 
' 1��) + 0( 1 /N), (4.18) 

which is still a pure state. At least, the underlying quantum coherence can be simply 
brought to light by "recombining the two beams" (the uppermost and lowermost 
states in FIGURE 2) by means of the operator UF (which plays the same role as U1 in 
equation 4. 14). By defining 

[NJ' _ [NJ U ror(T) = UFU ror(T), (4.19) 
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we obtain 

U��(T)(c+ I + ) + c_ j - )) © I O)N 

= (-i)ZV+ 1 (c+ ['Y+(T2/N)JN I +) + c_ ['Y_ (T2/N)f I - )) © I O)N + 0 ( 1 /N) . (4.20) 

In conclusion, by denoting I O) as the ground state of the universe in the N --+  oo limit, 
we get 

lim U��(T)(c+ I +) + c_ j - )) © I O)N ex (c+ I +) + c_ j -)) © 1 0) 
N-.. • 

(4.21) 

up to a phase factor. This result is stronger than the one obtained in reference 4 and 
outlined in the second section. Indeed, we have shown that it is possible, by making 
use of a dynamical process, to freeze any initial Q state and not only a suitably chosen 
initial Q state. 

THE EXPERIMENT BY ITANO AND COWORKERS 

The recent experiment performed by ltano, Heinzen, Bollinger, and Wineland8 
has provoked a renewed interest and a lively debate on the meaning of the QZE. The 
above-mentioned investigators claimed to have observed experimentally the quan
tum Zeno effect by making use of atomic transitions on the basis of Cook's proposal. 7 

This conclusion was challenged by Petrosky, Tasaki, and Prigogine,9 among 
others, who proved via a detailed theoretical calculation that the experimental 
results in reference 8 are liable to a dynamical explanation and therefore need not be 
ascribed to any collapse of the wave function. Itano et al. replied to the above 
criticisms12 without anyway withdrawing their original conclusion. 

Let us therefore briefly review this experiment and discuss its meaning and 
implications from the point of view outlined in this report. Itano et al. put 9Be+ ions 
in an rf cavity. The ion energy level configuration was such that £ 1 < E2 < £3, and 
the resonating rf-field frequency w2 = (E2 - £1)/fl created a coherent superposition 
state of the two lower levels. Upon measurement, the ion can be found in level 1 or 2, 
but never in both levels at the same time. 

We denote the probability of finding the atom in level 1 [2] at time t by P1 (t ) 
[P2(t)] . If the initial condition P1(0) = 1 is chosen, it is possible, by making use of a 
"11'-pulse",24 to find a time Tsuch that P1 (T) = 0. Notice that the "11'-pulse" condition 
is essentially similar to that described in the third section (see, in particular, 
equations 3.4 and 3.5) and can be viewed as a fine-tuning condition, as explained in 
the subsection on the generalized spectral decomposition. 

In order to observe the state of the atom, ltano et al. irradiated it with very short 
optical pulses of frequency w3 = (£3 - £1 )/fl and chose the level configuration in 
such a way that the spontaneous decay 3 --+ 1 was strongly favored, whereas the decay 
3 --+ 2 was forbidden. In this way, the atom is known to be in the first level if a photon 
of frequency w3 is observed, whereas it is in the second level if no photon is observed. 

According to quantum measurement theory, the wave-function collapse takes 
place as a consequence of observation and, consequently, the density matrix of the 
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atom loses its off-diagonal components (with respect to the first and second atomic 
states). If N obseivations are performed during the time inteival (0, T), the probabil
ity of finding the atom in the first level is given by 

P�N)(T) = cos2N (Z:,). (5.1) 

This displays the quantum Zeno effect because P\Nl(T) > P\N-l l(T) for N > 2 and 
limN ...... P\Nl(T) = 1. Itano et al experimentally confirmed the above prediction25 by 
sending N optical pulses and then claimed to have obseived the quantum Zeno 
effect. 

A dynamical explanation, involving no collapse of the wave function, was 
suggested in reference 9 and is, in our opinion, very convincing. 

By making use of the techniques used in the previous section, we propose the 
following purely dynamical explanation: Let the Q system be the atom, whereas the 
"universe" is the Fock space of the photons absorbed and then reemitted in the 
1 ++ 3 transition. The initial state of the total system is 

(5.2) 

where i cf>;) represents the atomic level i (i = l, 2r and I 0) is the ground state of the 
Fock space. 

The "free" evolution yields simply the Rabi oscillations between the atomic 
levels 1 and 2 and is obviously in agreement with the general behavior of equa
tions 4.2 and 4.3: 

where !l. is the frequency of the Rabi oscillations between levels 1 and 2. Notice that 
we are not mentioning the atomic level 3. 

The w3 pulse yields in a very short time T the following evolution: 

where 1 1 )  denotes a one-photon state. Equation 5.4 is a generalized spectral 
decomposition, in the sense explained in the earlier subsection on that subject (in 
FIGURE 3, channels a and � coincide and correspond to the vacuum, whereas 
channel 'Y represents the one-photon state) .  The analysis can now proceed along the 
lines sketched in the previous section. 

Obseive also that, by repeating the reasoning outlined in the third section, the 
same result is obtained independently of whether a photon of frequency w3 is 
obseived only at the final step, after the N-th optical pulse was irradiated (like in 
reference 8), or after every pulse irradiation. This was discussed at length in 
reference 15. 



PASCAZIO & NAMIKI: QUANTUM ZENO EFFECT 351 

DISCUSSION 
. 

We have shown that the QZE is liable to a purely dynamical explanation that 
does not involve any projection operator. Therefore, against widespread belief, we 
claim that a quantum Zeno-type dynamics is not an argument in support of the 
"collapse of the wave function", provided we observe the same state as the initial one 
at the final detector D0• The SchrOdinger equation alone can yield a satisfactory 
explanation of the phenomenon. 

Even though we do not question in the least the effectiveness and the practical 
validity of the projection postulate, we have critically discussed its physical meaning 
on several occasions.17• 19 We believe that a projection does not correspond to any 
physical operation and thus should be regarded only as a convenient expedient (a 
"working rule") in order to account for the loss of quantum mechanical coherence 
(the "collapse" of the wave function). In this sense, von Neumann's projection rule is 
to be considered as purely mathematical and no physical meaning should be ascribed 
to it. In our opinion, the projection technique is artificial and extraneous to quantum 
mechanics as a physical theory. 

We stress, in this context, that an alternative explanation for the loss of quantum 
coherence has been proposed, 17•19 in which the decoherence ("collapse") is viewed as 
a physical dephasing process, ascribable to the interaction of the quantum system 
with a macroscopic object. Notice that, in this approach, the macroscopic system is 
always treated quantum mechanically and the unitarity of the evolutions is always 
kept. Dephasing is viewed as a statistical effect, even though it can also be shown to 
take place (and can be given a definite meaning) for single events. 

It is worth stressing that our analysis has been performed under the assumption 
of "lossless" and "reftectionless" GSD's. In order to realize practically this type of 
experiment, we have to estimate the effects of such "losses" and "reflections" on the 
final results. It would also be interesting to understand whether these effects would 
yield additional phases in the transmitted states. Indeed, in such a case, interesting 
links with "decoherence" effects17 might come to light due to (partial) phase 
randomization. The connection between decoherence, dephasing, and the occur
rence of an exponential behavior for very short times has been discussed elsewhere26 
and has interesting spin-offs on the analysis of quantum measurements.3 

Finally, it is worth noting that there is also another reason for why the N -+  oo 

limit is physically unattainable. Because of Heisenberg's uncertainty relations, the 
condition of equation 3. 1 1  must be investigated in great detail.27 Indeed, it is 
reasonable to assume that I' cannot be made smaller than the spread of the wave 
packet of the incoming neutron. On the other hand, this bounds the uncertainty on 
the neutron speed and makes the N -+  oo limit in equation 3 . 1 1 impossible to realize 
from the conceptual point of view. 
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INTRODUCTION 

Quantum Zeno Effect (QZE) was theoretically suggested by Misra and Sudar
shan, 1 who proved that the frequent measurements would inhibit the decay of 
unstable quantum systems. However, as is well known, this effect could never be 
observed in those quantum systems whose time-dependent laws can strictly obey the 
negative exponential decay law. Chiu et al. 2·3 have pointed out that, for any unstable 
quantum system, there is a time scale ti . in the time region (0, t 1 ), where its decay law 
has a significant departure from the negative exponential law. By the Flemming rule,4 
Peres estimated that the time of transformation (t 1 ) is about 10- 16 & and 10-21 &, 
respectively, for the typical unstable systems of atoms and nuclei.5 However, now 
neither the resolving time of the apparatus nor the time interval of successive 
measurements can reach the order of magnitude given above. This situation has 
brought the experimental difficulty to test this effect. In fact, the conclusion obtained 
in reference 1 is also suitable for transitions between quantum states; that is, a 
similar proof process can show that the frequent measurements would "freeze" the 
quantum system in its initial state and would suppress or inhibit the transitions to 
other quantum states.6 Therefore, Cook reexamined QZE from the viewpoint of 
transitions between atomic states and proposed an actual experimental scheme.7 In a 
recent paper, ltano et al. 8 claimed to have observed experimentally QZE on the basis 
of Cook's proposal. This conclusion has been analyzed in references 9-13 from 
different standpoints; an argument among the above references is that the same 
result can be obtained by using the notion of "wave function collapse" by measure
ments14 or simply regarding the phenomenon as just the natural consequence of a 
dynamics evolution about the wave function. 

In view of the above arguments, it is necessary in order to reveal the genuine 
meaning of QZE to find new physical examples and design the corresponding 
experiments. Because the proof of Misra et al. is not direct and concise, we give a new 
proof here, which is more obvious and simple. By references 7, 9, and 1 1 , we easily 
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know that, no matter from what standpoint, the disturbance will have a notable 
influence on those quantum systems whose "survival probability" P(t) has a signifi
cant departure from the negative exponential law. Thus, these quantum systems may 
be used as the proper research objects; by using them, we could find the differences 
between the two standpoints and could reveal the genuine meaning of QZE. 

A THEORETICAL PROOF AND SOME ANALYSES ABOUT QZE 

Before starting our analysis, let us introduce the appointment of QZE: "we shall 
state that a QZE occurs if the 'survival' probability of the initial state increases with 
N". 1s 

Because the usual quantum mechanics could not give a satisfactory description 
about the reverse effect of the quantum system to the measurement apparatus, it is 
necessary to use the classical terminology to describe the measurement result; the 
description of the measurement effect on the quantum system is given by the 
decomposition law of the probability amplitude. 16-18 According to this law, we could 
obtain three kinds of meanings for a one-time measurement of some observable 
quantity: first, measurement means to make a sp.ectra d'ecomposition for the mea
sured wave function with the eigenfunction series of the corresponding mechanical 
quantity operator; second, the measured wave function will collapse (or transit) to 
one of these eigenstates (of course, if the measured state has been one of the 
eigenstates, such collapse will not occur); third, the collapsed or transited state (no 
matter whether the wllapse occurs or not) will independently restart its evolution by 
taking this moment as the initial moment-that is, this is the preparation of the 
initial state. It should be emphasized that, in the second and third meanings, the 
incoherence would be introduced inevitably, that is, there is not any coherence 
between the different collapses,19 and the new initial state after the collapse will not 
inherit the coherence possessed by the original measured state. Just as pointed out in 
references 11 and 15, the spectra decomposition is not necessary to destroy the 
coherence of systems, but by the above statement we could say that each time of 
measurement completed always means the destruction of coherence (and the 
production of new coherence) . Therefore, the incoherence introduced by measure
ment is the most important character of the quantum measurement effect. 

Let us consider an unstable quantum system prepared at moment zero (its initial 
state is denoted as l lfi)), where the evolution of the initial state is given by 

(iii) 
d l��t)) 

= H(t) l lfi(t)). (1)  

Here, the Hamiltonian H(t) depends on time; thus, this quantum system will decay or 
transit to the other states. We define 

P(t) = l (lfi l lfi(t)) l 2 (2) 
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as the "survival probability" with which the system is still in its initial state. From 
equations 1 and 2, we have 

• 

dP(t) d -;ft = dt {(lfl l lfl(t))(lfl(t) l lfl)} 

= (lfll [f, 1 \fl(t ))llfl(t) l lfl) + (lfl l lfl(t)) [f, (lfl(t) l ] l lfl) 

= ("' l��) l "'(')){lfl(t) l lfl) - (lfl l lfl(t )){lfl(t) l��) I"'). (3) 

As t __,, 0, we have l lfl(t)) __,, I \fl); thus, 

dP<'> j 
= 

o. (4) dt t=O 

Equation 4 indicates that the initial transition ratio of an unstable state prepared just 
now to other states is zero. 

However, from the usual negative exponential law of decay, we know 

dP<'> j 
= 

-x 
dt t=O 

' (5) 

where A is the decay constant. Equation 5 shows that the decay ratio at the initial 
moment is not zero and this contradicts equation 4. However, we know that equation 
4 is deduced directly from the SchrOdinger equation without using any other 
postulations. We have no reason to doubt it. Hence, at least we can say that, for the 
neighboring region of the initial moment, the decay law of the unstable system will 
deviate from the negative exponential law. In fact, the negative exponential law 
originates from the postulation of independence among the decaying particles5 and 
from the approximation of the pole point.2 Thus, the negative exponential law has 
two meanings: first, after a short-time evolution since the preparation, the coherence 
among particles has been relieved by various disturbances experienced by the 
particles during the evolution; therefore, as a statistical law, it is valid for any 
independent unstable particle ensemble regardless of the decay law of the single 
unstable particle; second, by the approximation of the pole point, we can say for most 
of the unstable particles after a very short-time evolution that the decay law of the 
single unstable particle will be approximately valid as well . These are the reasons why 
we cannot observe the obvious deviation from the negative exponential law in the 
usual statistical experiment of radioactive decay. 

Now, we consider the following problem: When an unstable system is in state I \fl) 
at the initial moment, what is the survival probability Pc(t) that the system will still 
remain undecayed in its initial state I \fl) after carrying out a continuous observation 
for a period of time t? 

In order to calculate Pc(t ) , we first consider the following case: The system begins 
to evolve from its initial state I \fl) and undergoes a series of measurements at the 
moments, tin, 2t/n, . . .  , (n - l )t/n, t. We denote Pn(t) as the probability that the 
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system remains undecayed after these measurements. If the measurement times in 
the period (0, t) tend to infinity and the limit Pn-"'(t) exists, then we can naturally 
identify 

Pc (t) = lim Pn(t) .  (6) 
n--+oo 

From the viewpoint that the measurement certainly prepares the initial state, after 
being measured at moment t In, the probability that this system will collapse back to 
its initial state is P(tln). Afterward, it will again begin its evolution from the initial 
state I lfl). Thus, we can obtain the following expression for Pn (t) :  

When n is large enough, we can write P(t In) as 

dP I , P(tln) = P(O) + -d - . t t = O n 
Substituting equations 7 and 8 into equation 6, we have 

Therefore, we obtain 

( dP I ' )n Pc(t) = lim 1 + dt - . • n-+oo t:;O n 

After considering equation 4 with equation 10, we have 

(7) 

(8) 

(9) 

(10) 

( 1 1) 

Equation 1 1  means the following: if an unstable system is undergoing the continuous 
measurements, it will remain in its initial state all the time. Its decay or transition to 
other states is inhibited completely. At least, in principle, we can delay the decay or 
suppress the transitions to other states by means of the frequent measurements. 
Therefore, we have completed the concise theoretical proof to QZE. 

The aforementioned theoretical deduction about QZE shows that, provided the 
measurement is instantaneously completed (the definite measurement result is 
given), the QZE will be assured by equation 10, which is derived from the Schro
dinger equation and the fact that the measurement is the preparation of the initial 
state. In fact, the incoherence (i.e., the destruction of the original coherence in the 
decomposition of the measured state) plays a decisive role in this process. However, 
from the general viewpoint, it should be emphasized that this is only the sufficient 
condition for the emergence of QZE. Just as stated above, the spectra decomposi
tions do not necessarily destroy the coherence and, after the frequent spectra 
decompositions that preserve the coherence, the transitions between quantum states 
can be suppressed. 1 1 • 15 However, it should be pointed out that, after each time of 
spectra decomposition in the experiment of reference 15, the measurement result 
about the probability of neutron spin downward is only related with the wave 
function along the direction of flux and there is not the interference process with the 
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wave functions of other directions; that is, here the so-called coherence does not 
affect the result of the experiment. Thus, the wave function along the direction of flux 
can be treated independently and as if this branch underwent a series of preparations 
.of the initial state. Hence, in a generalized sense, the initial state preparation could 
include two cases for having the wave function collapse and only spectra decomposi
tion in the above case. For this case, we easily find that the above proof process is also 
suitable. 

Here, if an unstable system obeys the exact negative exponential law of decay, by 
combining equations 5 and 10 we can see that 

P.(t) = e -M = P(t). ( 12) 

This shows that the measurements (even the continuous measurements) will not 
influence the negative exponential decay law; that is to say, QZE does not exist or 
can never be observed in principle. Of course, as it has been pointed out, the negative 
exponential law of decay is not exact about the neighborhood of the initial moment 
where this unstable state is prepared. 

APPLICATION IN NEUTRON INTERFEROMETRY 

Equation 12 shows that, in order to obviously observe QZE, it is necessary to find 
those quantum systems whose decay laws have significant departure from the 
negative exponential law. As an example, we consider the experiment of neutron spin 
state in the magnetic field. 

Denoting the spin states of a neutron in the Z direction as I t ) and I ! ) , let us 
consider the following experiment where an incident neutron in the initial state I ! ) 
entered a static magnetic field in the direction of the X-axis. At the moment t, the 
system will evolve into 

l i!i(t)) = exp (-iµ.Ba1t/li) I ! ) = cos (Yzwt) I ! ) - i sin (Yzwt) I f ), (13) 

where w = 2µ.B/li, µ. is the magnetic moment of the neutron, and a1 is the Pauli 
matrix. Then, the probability that the spin of the neutron remains in its initial state is 

P(t) = cos2(�) . (14) 

Now, let us consider the following experiments where, in the period (0, T) of 
evolution, the neutron spin state undergoes N times of measurements, which make 
the neutron spin take a certain direction (upward or downward, respectively) along 
the Z-axis. Also, assume that each time of measurement has a detection efficiency 9J 
( s; 1) and that this almost does not change the momentum of the neutron. Then, the 
flying direction of the neutron is still along the direction of the Z-axis after each time 
of measurement. Because the measurement partly destroyed the coherence of the 
spin superposition states of the neutron, the final state must be a mixed state, instead 
of the pure state. Now, we introduce a measurement operator p: 

(15) 
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Here, the direct sum symbol E9 means that, under the action of p, the system will 
collapse to the I f ) or I ! ) state by the probability fu, with the respective proportions 
besides the part of free evolution given by probability ( 1  - fu), and there is not the 
coherence among the various altematives. 19 Moreover, if the N points of the 
measurement positions are arranged with equal distance from each other, the 
probability amplitude that the neutron spin remains downward at the moment T is 
given by 

A <f1 (T) = ( ! l e -iH(T/n+ l )/hpe-iH(T/n+ l )/h • • •  pe -iH(T/n+ l )lh I ! ) . (16) 

For example, ifN = 1 ,  we have 

A� li (T) = �A i t {0A t i (0 $�A i  i (0A i i (0 $ Jl - fuA �  l (T), (17) 

whereAxy(t) = (y l e -iHi/h lx) (x,y could be ! or f ) . Therefore, 

P1 (T) = fui1 1 (0 + fui �  t {0i t 1 (0 + (1 - fu)i i  i (T), ( 18) 

where ixy(t)  = IAxy(t) 12• For an arbitrary N, we define 

Therefore, we have 

� (�i �  l fo) . 
l Lin (t) = 

�i � f (t) 
, 

� (�i � l (t)) l � .out(t) = �i f l (t) 
, 

A (t )  = {fu� l i (t ) fui f i (t) 

N-2 � � 

( 
K1T ) (K2 - K1 ' (N + 1 - K2 ) + (1 - fu) � 'Ln N + 1 A N + 1 T l Lout N + 1 T I = K1(K2) 

+ · · ·  

. � (N + 1 - KN- I ) N �+ 
( 

K1T ) ' Lout N + 1 T + L ' Lin N + 1 l =K1(·· -)KN 

· A
(K2 - Ki r) (KN - KN- I )� (N + 1 - KN ) N + 1 . . .  A N + 1 T l Lout N + 1 T . (19) 
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If fu = l, we return to the ideal case: 

Piv(T) = 1Ln(N � 1 ) [A (N � 1 )r- l
i Lout(N � 1 ) . 
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(20) 

The establishment of equation 19 enables us to solve the difficulty in performing the 
experiment scheme designed in references 13 and 15; that is, in order to assure the 
successive spectra decompositions, the intensity of neutron flux will be reduced again 
and again so that the number of events will markedly decrease. Because the above 
measurements do not decrease the intensity of neutron flux, the QZE could be easily 
tested provided that the PN(T) increases as the number N of measurements increase 
in this experiment. 

DISCUSSION 

In proving the existence of QZE, we can see that this effect is based only on two 
things: ( 1 )  the SchrOdinger equation, which ensures that the speed of transition to 
the other states at zero moment is zero; (2) the fact that the measurement or spectra 
decomposition prepares the initial state as discussed above, which ensures that the 
system (or some branch of it) evolves from the initial state after every time of 
measurement (or spectra decomposition) .  These two conditions are the sufficient 
and necessary physical basis of QZE. Meanwhile, the analysis in this report shows 
that those quantum systems whose decay laws departed from the negative exponen
tial law in a larger time region, for example, the k0 - k0 system, the B0 - B0 system, 
and the neutron spin system in the magnetic field, are proper research objects to test 
QZE. For further works about the k0 - k0 system, see our discussion in references 20 
and 21 . 
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INTRODUCTION 

Recently, we have proposed protective measurements1 •2 that allow the measuring 
of the Schrodinger wave of a single particle. We have argued that the possibility of 
such measurements tells us that a quantum state has more physical meaning than is 
usually assumed; that is, the Schrodinger wave is real in some sense. A quantum state 
is not only a statistical property of an ensemble, but it is a property of a single system. 

Also, in recent years, we developed an approach in which a quantum system is 
described, at a given time, by two (instead of one) quantum states: the usual one 
evolving toward the future and the second evolving backwards in time from a future 
measurement. 3-41 This approach proved itself fruitful at least for describing measure
ments performed on preselected and postselected ensembles. In this approach, the 
vector describing a quantum system at a given time consists of two states. 

The following questions arise : Is there a contradiction between these two 
approaches? Which description is appropriate: the standard, single-state or our 
two-state description? Does the two-state vector have physical meaning for a single 
system? Is it possible to measure this vector on a single system? In this work, we shall 
try to answer these questions. 

In the following section, we present our method of protective measurements of a 
single quantum state. This is followed by a brief review of the two-state vector 
formalism. Then, the main result of this work-the method of protective measure
ment of a two-state vector-is presented. We conclude with a discussion of the 
obtained results. 

MEASUREMENT OF THE SCHRODINGER WAVE OF A SINGLE PARTICLE 

At present, the commonly accepted interpretation of the Schrodinger wave is due 
to Born. He proposed to interpret the wave intensity not as the density of distribution 
of actual matter, as Schrodinger first imagined, but as a probabil ity density for the 
presence of a particle. Schrodinger, however, wanted to believe that his wave 

aThis research was supported in part by Grant No. 425/92- 1 of the Basic Research 
Foundation {administered by the Israel Academy of Sciences and Humanities). 
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represents a single particle: the wave is an extended object really moving in space. 
Born's interpretation was supported by the fact that nobody knew how to measure 
the density of the Schrodinger wave on a single system. There was a general belief 
that the Schrodinger wave could only be tested for an ensemble of particles. We have 
proposed a new type of measurement: "protective measurements" that allow direct 
measurement of the Schrodinger wave density on a single particle. We have shown 
that one can simultaneously measure the density and the current of the Schrodinger 
wave in many locations. The results of these measurements then allow the reconstruc
tion of the Schrodinger wave. 

The simplest protection procedure is introducing a protective potential such that 
the quantum state of the system will be a nondegenerate eigenstate of the Hamilto
nian. In fact, in many important cases, this protection is given by nature: almost 
isolated systems will ewntually decay to their ground state or to some stable excited 
state. 

As an example of a simple protective measurement, let us consider a particle in a 
discrete nondegenerate energy eigenstate 'l'(x). The standard von Neumann proce
dure for measuring the value of an observable A in this state involves an interaction 
Hamiltonian, 

H = g(t)PA-; (1)  

coupling the system to a measuring device, or pointer, with coordinate and momen
tum denoted, respectively, by Q and P. The time-dependent coupling g(t ) is 
normalized to J g(t )dt = 1 and the initial state of the pointer is taken to be a 
Gaussian centered around zero. 

In standard impulsive measurements, g(t ) � 0 for only a very short time interval. 
Thus, the interaction term dominates the rest of the Hamiltonian, and the time 
evolution e -(ilh)PA leads to a correlated state: eigenstates of A with eigenvalues an are 
correlated to measuring device states in which the pointer is shifted by these values 
an. By contrast, the protective measurements of interest here utilize the opposite 
limit of extremely slow measurement. We take g(t ) = 1 / T for most of the time T and 
assume thatg(t ) goes to zero gradually before and after the period T. We choose the 
initial state of the measuring device such that the canonical conjugate P (of the 
pointer variable Q) is bounded. We also assume that P is a constant of motion not 
only of the interaction Hamiltonian (equation 1 ), but of the whole Hamiltonian. For 
g(t ) smooth enough, we obtain an adiabatic process in which the particle cannot 
make a transition from one energy eigenstate to another and, in the l imit T � oo, the 
interaction Hamiltonian does not change the energy eigenstate. For any given value 
of P, the energy of the eigenstate shifts by an infinitesimal amount given by 
first-order perturbation theory: 

(A )P 
8£ = (Hint ) = T "  (2) 

The corresponding time evolution e-iP(A)!h shifts the pointer by the average value (A). 
This result contrasts with the usual (strong) measurement in which the pointer shifts 
by one of the eigenvalues of A. By measuring the averages of a sufficiently large 
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number of variables Am the full Schrodinger wave 'l'(x) can be reconstructed to any 
desired precision. 

As a specific example, we take the An terms to be (normalized) projection 
operators on small regions Vn having volume vn: An = 1:n ' 

0, 
(3) 

The measurement of An yields 

(4) 

where I '1'nl2 is the average of the density p(x) = I 'l'(x) 12 over the small region Vn. 
Performing measurements in sufficiently many regions Vn, we can reconstruct p(x) 
everywhere in space. (Simultaneous measurement of all the variables An requires 
slower and weaker interactions and thus takes more time.) For a real state, the 
density p(x) is itself enough to reconstruct the Schrodinger wave; we can fix the sign 
by flipping it across nodal surfaces. 

In the general case, however, we have to measure current density in addition to 
measurements of the density p(x) . This time we also adiabatically measure the 
averages of 

(5) 

Indeed, the (Bn) terms are the average values of the current j = ( 1 /2i )  · 
('i'*V'I' - 'l'V'I'*) in the region Vn. Writing 'l'(x) = r(x)ei&(rl with r(x) = Jp(x), we find 
that 

j (x) 
= Ve 

p(x) 

and the phase 9(x) can be found by integrating j Ip. 

(6) 

For a charged particle, the density p(x) times the charge yields the effective 
charge density. In particular, it means that an appropriate adiabatic measurement of 
the Gauss flux out of a certain region must yield the expectation value of the charge 
inside this region (the integral of the charge density over this region). Likewise, 
adiabatic measurement of the Ampere contour integral yields the expectation value 
of the total current flowing through this contour in the stationary case. 

Our procedure is not applicable to degenerate energy eigenstates. The simplest 
way to deal with this case is by adding a potential (as part of the measuring 
procedure) to lift the degeneracy. This protection does not change the state. 
However, one can argue that it changes the physical situation. We can bring this 
change to a minimum by adding strong protection potential for a dense set of very 
short time intervals. Thus, most of the time, the system has not only the same state, 
but also the original potential. 
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We can measure even a superposition of energy eigenstates by a similar proce
dure. We add a dense set of time-dependent potentials acting for very short periods 
of time such that the state at all these times is the eigenstate of the Hamiltonian 
together with the additional potential. Still, most of the time, the system evolves 
under the free Hamiltonian. The proof of the efficiency of the above strong impulsive 
potentials is similar to the proof of the Zeno "paradox" in which a quantum system 
under a dense set of observations evolves in accordance with the evolution tested and 
not according to the free Hamiltonian. In our case, the two evolutions are identical. 

1WO-STATE VECTOR DESCRIPTION OF A QUANTUM SYSTEM 

In 1964, Aharonov, Bergmann, and Lebowitz9 considered measurements per
formed on a quantum system between two other measurements, results of which 
were given. They proposed describing the quantum system between two measure
ments by using two states: the usual one, evolving towards the future from the time of 
the first measurement, and a second state evolving backwards in time from the time 
of the second measurement. If a system has been prepared at time t1 in a state 1'11 1 ) 
and is found at time t2 in a state 1 '112), then at time t, It < t < t2, the system is 
described by . .  • 

(7) 

For simplicity, we shall consider the free Hamiltonian to be zero; then, the system at 
time t is described by the two states ('1121 and I '1' t ) . In order to obtain such a system, 
we prepare an ensemble of systems in the state I '111 ), perform a measurement of the 
desired variable using separate measuring devices for each system in the ensemble, 
and perform the postselection measurement. If the outcome of the postselection was 
not the desired result, we discard the system and the corresponding measuring 
device. We look only at measuring devices corresponding to the systems postselected 
in the state ('112 1 . 

The basic concept of the two-state approach, the weak value of a physical variable 
A in the time interval between preselection of the state I '1' t ) and postselection of the 
state I '112), is given by 

(8) 

Let us present the main idea by way of a simple example. We consider, at time t, a 
quantum system that was prepared at time It in the state IB = b) and that was found 
at time t2 in the state I C = c) (t1 < t < t2). The measurements at times It and t2 are 
complete measurements of, in general, noncommuting variables B and C. The free 
Hamiltonian is zero and therefore the first quantum state at time t is IB = b). In the 
two-state approach, we characterize the system at time t by the backward-evolving 
state ( C = c I as well .  Our motivation for including the future state is as follows: if we 
know that a measurement of C has been performed at time t, then the outcome is 
C = c with probability 1 .  This intermediate measurement, however, destroys our 
knowledge that B = b because the coupling of the measuring device to the variable C 
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can change B. The idea of weak measurements is to make the coupling with the 
measuring device sufficiently weak so that B does not change. In fact, we require that 
both quantum states do not change, neither the usual one IB = b) evolving towards 
the future nor (C = c I evolving backwards. 

During the whole time interval between 11 and 12, both B = b and C = c are true 
(in some sense). However, then B + C = b + c must also be true. The latter 
statement, though, might not have meaning in the standard quantum formalism 
because the sum of the eigenvalues b + c might not be an eigenvalue of the operator 
B + C. An attempt to measure B + C using a standard measuring procedure will lead 
to some change of the two quantum states and thus the outcome will not be b + c. A 
weak measurement, however, will yield b + c.  

When the "strong" value of an observable is known with certainty, that is ,  we 
known the outcome of an ideal (infinitely strong) measurement with probability 1 ,  
the weak value is equal to the strong value. Let us analyze the example above. The 
strong value of B is b, its eigenvalue. The strong value of C is c, as we know from 
retrodiction. From the definition (equation 1 ), it immediately follows that Bw = b and 
Cw = c. However, weak values, unlike strong values, are defined not just for B and C, 
but for all operators. The strong value of the sum B + C when [B, C] ;a! 0 is not 
defined, but the weak value of the sum is defined: (B + C)w = b + c. 

The system at time I in a preselected and postselected ensemble is defined by two 
states, the usual one evolving from the time of the preparation and the state evolving 
backwards in time from the postselection. We may neglect the free Hamiltonian if 
the time between the preselection and the postselection is very short. Consider a 
system that has been preselected in a state I '111 } and shortly afterwards postselected 
in a state I '112} .  The weak value of any physical variable A in the time interval between 
the preselection and the postselection is given by equation 8. Let us show briefly how 
weak values emerge from a measuring procedure with a sufficiently weak interaction. 

We consider a sequence of measurements: a preselection of 1 '11 1 ) ,  a (weak) 
measurement interaction of the form of equation 1, and a postselection measure
ment finding the state I '112) . The state of the measuring device (which was initially in 
a Gaussian state) after this sequence is given (up to normalization) by 

(9) 

After simple algebraic manipulation, we can rewrite it (in the P-representation) as 

If � is sufficiently large, then we can neglect the second term of equation 10 when we 
Fourier-transform back to the Q-representation. Large � corresponds to weak 
measurement in the sense that the interaction Hamiltonian (equation 1 )  is small. 
Thus, in the limit of weak measurement, the final state of the measuring device (in 
the Q-representation) is 

<l>(Q) = (�2ir)- 1 14e- (Q-Aw)2/262
• (11)  

This state represents a measuring device pointing to the weak value, Aw. 
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Although we have shown this result for a specific von Neumann model of 
measurements, the result is completely general: any coupling of a preselected and 
postselected system to a variableA, provided the coupling is sufficiently weak, results 
in effective coupling to Aw. This weak coupling between a single system and the 
measuring device will not, in most cases, lead to a distinguishable shift of the pointer 
variable, but collecting the results of measurements on an ensemble of preselected 
and postselected systems will yield the weak values of a measured variable to any 
desired precision. 

When the strength of the coupling to the measuring device goes to zero, the 
outcomes of the measurement invariably yield the weak value. To be more precise, a 
measurement yields the real part of the weak value. Indeed, the weak value is, in 
general, a complex number, but its imaginary part will contribute only a phase to the 
wave function of the measuring device in the position representation of the pointer. 
Therefore, the imaginary part will not affect the probability distribution of the 
pointer position, which is what we see in a usual measurement. However, the 
imaginary part of the value also has physical meaning. It expresses itself as a change 
in the conjugate momentum of the pointer variable. 7 

Let us consider a measurement of a spin component of a spin-1 /2 particle. We 
shall consider a particle prepared in the initial state spin "up" in the .i direction and 
postselected to be "up" in the y direction. At t.be intermediate time, we measure, 
weakly, the spin component in the � direction, which Is the bisector of.i andy, that is, 
aE = (a,. + a1)1/i.. Thus, l '1'1)  = I t ,.), l'1'2) = I t 1), and the weak value of aE in this 
case is 

( 12) 

This value, of course, is "forbidden" in the standard interpretation where a spin 
component can obtain the (eigen)values ± 1 only. 

The Hamiltonian for measuring aE is 

(13) 

After the measuring interaction, the quantum state of the system and the pointer of 
the measuring device is 

(14) 

The probability distribution of the pointer position, if it is observed now without 
postselection, is the sum of the distributions for each spin value. It is, up to 
normalization, 

(15) 

In the usual strong measurement, .:1 « 1 .  In this case, the probability distribution of 
the pointer is localized around - 1 and + 1 and it is strongly correlated to the values 
of the spin, O'z = ± 1 .  

Weak measurement corresponds to  a .:1 that i s  much larger than the range of  the 
eigenvalues, that is, .:1 » 1. The pointer distribution has a large uncertainty and it is 
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peaked between the eigenvalues-more precisely, at the expectation value ( t x lud t x) 
= 1 / .fi. An outcome of an individual measurement usually will not be close to this 
number, but it can be found from an ensemble of such measurements. Note that we 
have not yet considered the postselection. 

In order to simplify the analysis of measurements on the preselected and 
postselected ensemble, let us assume that we first make the postselection of the spin 
of the particle and only then look at the pointer of the device that weakly measures 
uE. We must get the same result as if we first look at the outcome of the weak 
measurement, make the postselection, and discard all readings of the weak measure
ment corresponding to the cases in which the result is not O'y = 1. The postselected 
state of the particle in the uE representation is I t y) = cos('ll'/8) I t E) -
sin('ll'/8) 1 ! E). The state of the measuring device after the postselection of the spin 
state is obtained by projection of equation 14 onto the postselected state : 

2 2 • 2 2 
<l>(Q)  = A'[cos2('11'/8)e- <Q- l) '2A - sm2('11'/8)e -(Q+ I ) /2A ], (16) 

where .A' is a normalization factor. The probability distribution of the pointer 
variable is given by 

If the measuring interaction is strong, that is, 4 « l, then the distribution is 
localized around the eigenvalues ± 1 (mostly around 1 because the preselected and 
postselected probability to find uE = 1 is more than 85%); see FIGURES la and lb. 
However, when the strength of the coupl ing is weakened, that is, 4 is increased, the 
distribution gradually changes to a single broad peak around .fi, that is, the weak 
value; see FIGURES le-le. 

The width of the peak is large and therefore each individual reading of the 
pointer usually will be pretty far from .fi. The physical meaning of the weak value, in 
this case, can be associated only with an ensemble of preselected and postselected 
particles. The accuracy of defining the center of the distribution goes as 1 I ./N; thus, 
by increasing N (the number of particles in the ensemble), we can find the weak value 
with any desired precision (see FIGURE lf) .  

PROTECTION OF A 1WO-STATE VECTOR 

We are familiar with measurements performed on a single system. In fact, the 
first work on weak measurements3 considered such a case. We have shown how a 
single measurement of the spin component of a spin-N system could yield the 
"forbidden" value /iN with the uncertainty ./N. This is the weak value of St for the 
two-state vector (Sy = Nl lSx = N). Another example that we have investigated is the 
measurement of the kinetic energy of a tunneling particle. 10 We have shown for any 
precision of the measurement that we can ensure a negative value reading of the 
measuring device by an appropriate choice of the postselection state. 

However, in these examples, there is no measurement of the two-state vector. If 
our measuring device for the spin measurement shows ..{2N, we cannot deduce that 
our two-state vector is (Sy = Nl lSx = N). Indeed, there are many other two-state 
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FIGURE 1. Measurement on the preselected and postselected ensemble. Probability distribu
tion of the pointer variable for measurement of 11( when the particle is preselected in the state 
I t ,} and postselected in the state I t y}. The strength of the measurement is parameterized by 
the width of the distribution, 4: (a) 4 = 0. 1 ;  (b) 4 = 0.25; (c) 4 = l; (d ) 4 = 3; (e) 4 = 10. 
( f )  Weak measurement on the ensemble of 5000 particles; the original width of the peak, 4 = 
10, is reduced to 10/JSOOO <= 0. 14. In the strong measurements (a-b), the pointer is localized 
around the eigenvalues � l ;  in the weak measurements (c-£), the peak of the distribution is 
located in the weak value ( 11()w = ( t y l11d t ,} I ( t y I t ,} = ./i.. The outcomes of the weak 
measurement on the ensemble of 5000 preselected and postselected particles ( / )  are clearly 
outside the range of the eigenvalues ( - 1 ,  1 ). 

vectors that yield the same weak value for the spin component, but we cannot even 
claim that we have one of these vectors because the probability to obtain the 
"forbidden" outcome St = .r2N due to a statistical error of the measuring device is 
much higher. The same applies to the measurement of kinetic energy of a tunneling 
particle .  The negative value shown by the measuring device usually is due to a 
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statistical error and only in very rare cases does it correspond to a particle "caught" 
in the tunneling process. 

We could try to use several weak measurements on a single preselected and 
postselected system in order to specify the two-state vector. However, in that case, 
these measurements will change the two-state vector. Therefore, as in the case of the 
measurement of the forward-evolving single-state vector of a single system, we need 
a protection procedure. 

At first look, it seems that protection of a two-state vector is impossible. Indeed, 
if we add a potential that makes one state to be a nondegenerate eigenstate, then the 
other state, if it is different, cannot be an eigenstate too (the states of the two-state 
vector cannot be orthogonal) .  The Zeno-type protection does not work either: if we 
test that the system is in one state, then we know that it is not in another state. 
Nevertheless, protection of the two-state vector is possible, as we will show next. 

The procedure for protection of a two-state vector of a given system is carried out 
by coupling the system to another preselected and postselected system. The protec
tion procedure takes advantage of the fact that weak values might acquire complex 
values. Thus, the effective Hamiltonian of the protection might not be Hermitian. 
Non-Hermitian Hamiltonians act in different ways on quantum states evolving 
forward and backwards in time. This allows simultaneous protection of two different 
states (evolving in opposite time directions). 

Let us start with the description of the protection of a two-state vector of a spin-Yi 
particle considered previously, ( t , II t x). The protection procedure uses an external 
preselected and postselected system S of a  large spin N that is coupled to our spin via 
the interaction 

Hprot = -S · u. (18) 

The external system is preselected in the state I Sx = N) and postselected in the state 
(S, = NI ;  that is, it is described by the two-state vector (S1 = NllSx = N). When N is 
large and the interaction with our spin-Yi particle is not too strong, the latter cannot 
change significantly the two-state vector of the protective system S, and the spin-Yi 
particle "feels" the effective Hamiltonian in which S is replaced by its weak value, 

(19) 

Thus, the effective protective Hamiltonian is 

Heff = -N(ux + Uy + iu,) . (20) 

Straightforward calculations show that this (non-Hermitian) Hamiltonian has two 
(nonorthogonal) eigenstates: I t x) (with eigenvalue -N) and 1 l 1) (with eigenvalue 
N). This result provides a certain test of our approach. When we consider the original 
problem given by the Hamiltonian (equation 18), we can easily see that if we start in 
the state I t x) then all following measurements of Ux must yield the value l , whereas if 
we start with the state 1 l 1) then all following measurements of u1 must yield the 
value - 1 .  

However, for backward-evolving states, the effective Hamiltonian is the Hermi
tian conjugate of equation 20 and it has different eigenstates: ( t .1' 1 (with eigenvalue 
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-N) and ( ! xi (with eigenvalue N). Again, it is easily seen that if the particle is 
postselected in the state ( f Y I then all preceding measurements of ay must yield ay = 
1 ,  whereas the postselection of I ! x) ensures ax = - 1 for all preceding measure
ments. 

The two-state vectors ( f y ll f x) and ( ! x ii ! y) do not change under the action of 
the Hamiltonian (equation 18) .  In order to prove that this Hamiltonian indeed 
provides the protection, we have to show that measuring interactions with the spin 
components of the particle will not lead to significant changes. For example, we must 
show that we can measure the weak value of a� = (ax + ay)l ./2, which is (a�)w = ./2, 
on a single particle. (As previously shown,5 without protection, this weak value is 
obtained only with an uncertainty that is larger than the observed value; therefore, in 
order to find the weak value, the preselected and postselected ensemble has to be 
used (see FIGURE 1) .) The effective Hamiltonian during the measuring process is the 
sum of equation 1 and equation 20: 

Herr = -N(ax + 11y + iaz) + (;)(ax + ay)· (21) 

For any realistic measurement, P is effectively bounded; thus, for N large enough, the 
second term will not change significantly the eigenvecjors. The two-state vector 
( f y ll f x ) will remain essentially unchanged duriag the measurement and therefore 
the measuring device on this single particle will yield (a�)w = ./2. This weak value by 
itself is not enough to establish the two-state vector, but we can perform several weak 
measurements such as (ax)w = l, (ay)w = l ,  and (az)w = i that uniquely define the 
two-state vector. 

We have shown that the Hamiltonian (equation 18) ,  with an external system 
described by the two-state vector (Sy = NllSx = N), provides protection for the 
two-state vector ( f y ll f x) . It is not difficult to demonstrate that any two-state vector 
obtained by preselection and postselection of the spin-Yi particle can be protected by 
the Hamiltonian (equation 18). A general form of the two-state vector is ( f 11 11 f a), 
where a and f3 denote some directions. It can be verified by a straightforward 
calculation that the two-state vector ( t 11 1 1 f a) is protected when the two-state vector 
of the protective device is (S11 = Nll Sa = N). 

One can naively suggest the following simple explanation of the above procedure. 
We preselect the external system in a state !Sa = N). Large N corresponds to the 
classical limit, so this is equivalent to a "magnetic" field in the -a direction. Thus, 
the quantum states of the system under study evolving to the future "feel" this strong 
magnetic field. The state of the system, I f a), is a ground state and therefore it is 
protected. Similarly, for the states evolving backwards in time, there is a strong 
"magnetic" field in the - p  direction, protecting the state ( t 11j .  However, this picture 
is too naive. Based on this argument, one would expect that, in addition to I f a), the 
forward-evolving state I ! a) is also protected; however, this is not so. There exists 
another forward-evolving protected state, but it is I ! 11). Also, in addition to ( f 11 1 , 
there exists another protected backward-evolving state; however, it is ( ! al and not 
the expected state ( ! 11 1 . 

The failure of this naive explanation does not allow a simple protection scheme of 
the two-state vector of an arbitrary quantum system, ('1'2 11'1'1). According to this 
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scheme, we construct a coupling of the system under study to the external system 
such that I '111 ) is a ground state when the external system is in a state 1 <1>1 ) and ('112 1 is 
a ground (backward-evolving) state when the external system is in a state (<1>21 . The 
difficulty here, namely, that the postselection of the state ('112 1 is impossible because 
usually in this situation (<1>2 1 <1>1) = 0, cannot be naively solved by adding a tiny 
component of the preselected state to the postselected one, that is, postselecting 
(<1>21 + e(<l>d instead of (<1>2 1 .  Even for e very small, the backward-evolving state is not 
protected and therefore the two-state vector is not protected either. 

The proper way for protecting a two-state vector of an arbitrary system is a 
generalization of the protection procedure of the two-state vector of a spin-1h 
particle described above. The task is to protect a two-state vector ('112 11 '1'1 ) . Let us 
decompose the postselected state 1'112) = a l'1'1) + b 1'11.L) .  Now, we can define "model 
spin" states: 1 '111 ) = I f z) and 1 '11.L)  = I l z) . On the basis of the two orthogonal states, 
we can obtain all other "model spin" states. For example, I f x) = 1 I ./2( I f z) + i l z)) 
and then we can ,jefine the "spin model" operator iT. Now, the protection Hamilto
nian, in complete analogy with the spin-1h particle case, is 

Hprot = -S · a. (22) 

In order to protect the state ('1'2 I I '111), the preselected state of the external system has 
to be I S. = N) and the postselected state has to be (Sx = NI ,  where the direction x is 
defined by the "spin model" representation of the state I '112) : 

(23) 

For general quantum states 1 '11 1 ) and ('112 1 ,  the required protection is a gedanken
experiment. In general, the protection Hamiltonian (equation 22) generates nonlo
cal interactions that can contradict relativistic causality. However, what we investi
gate here is a conceptual question in the framework of nonrelativistic quantum 
theory, where any Hamiltonian is al lowed. 

CONCLUSIONS 

We have shown in the framework of nonrelativistic quantum theory that we can 
measure (or, maybe a better word, "observe") two-state vectors describing prese
lected and postselected quantum systems. A number of (nonideal) measurements 
define the two-state vector and we have a procedure to protect the two-state vector 
from significant change due to these measurements. In order to protect, we have to 
know the two-state vector. Thus, this procedure is also liable to the criticism1 1 • 12 
leveled at our first proposal. Our response to this can be found in reference 13 .  
Although we consider our present proposal as a measurement performed on a single 
system, it should also be mentioned that in any realistic practical implementation, we 
will need ensembles of particles, protective systems, and measuring devices. The 
external system of the protective device has to be not only prepared (preselected) in 
a certain state, but also postselected in a given state. In all interesting cases, the 
probability for an appropriate outcome of the postselection measurement is ex
tremely small .  Still, there is a nonzero probability that our first run with a single 
system, a single protective device, and a single set of measuring devices will yield the 
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desired outcomes. In this case, we have a reliable measurement performed on a 
single system. However, even when we use a preselected ensemble, we actually use 
only a single preselected and postselected system. After achieving the first successful 
postselection, we have completed the experiment. For more discussion of this point, 
see reference 14. 

It is interesting to notice that our procedure cannot protect a generalized two-state 
vector,s which is a superposition of two-state vectors. The system described by a 
generalized two-state vector is correlated to some external system. It seems that it is 
impossible to find any protective procedure of the generalized two-state vector that 
does not involve coupling to that external system. This feature hints that the 
generalized vector, although useful as a tool, is not a basic concept. The composite 
system consisting of the system under study and the system correlated to it is 
described by the usual, basic two-state vector. 

Let us come back to the questions raised in the INTRODUCTION: is there a 
contradiction between "reality" of the Schrodinger wave, that is, the single-state 
vector, and "reality" of the two-state vector? Our answer is that the complete reality 
is described by the two-state vector. The single-state vector gives a partial description 
when we have only partial information. The apparent paradox of the descriptions is 
as follows. Consider a spin-Yi particle described by the two-state vector ( t y I I  t x) · The 
value u1 corresponding to this particle is uy = 1 .  How�ver, because it is described by 
the single (preselected) forward-evolving state I t x) , the value of uy is considered as 
the expectation value, ( t x I uy I t x) = 0. According to our claims, both are observable; 
thus, how can they be different? 

In order to observe a quantum state, it has to be protected. When we discussed 
the protective experiments of single-state vectors, we did not say anything about 
quantum states evolving backwards in time. (It was not related to the point we 
wanted to make.) However, the protective procedure that we proposed automatically 
protects identical backward-evolving states. Thus, what we have proposed as an 
observation of a SchrOdinger wave is indeed an observation of a two-state vector with 
identical forward- and backward-evolving states. For example, the protection of a 
spin-Yi particle state,2 a strong magnetic field in a given direction, protects the 
two-state vector with either both states parallel or antiparallel to this direction. This 
procedure is incompatible with the protection of the forward-evolving state parallel 
to one direction and the backward-evolving state parallel to another. If the particle is 
described by ( t y I I t x), then the strong magnetic field in the i direction will change 
the backward-evolving spin-state. There exists a protection procedure for I t x) that 
does not change the backward-evolving state as was described in the preceding 
section. The "observation" of the state protected in such a way will not yield the 
preselected quantum state, but it will yield the picture defined by the two-state 
vector. 

Thus, the contradiction is resolved by giving a more accurate interpretation of 
our original protective measurement of the Schrodinger wave. We observed not a 
single-state vector, but a two-state vector with identical backward- and forward
evolving states. 
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INTRODUCTION 

Classical charged particle spectrometers have their basis on the fact that particles 
with different energies follow different individual trajectories. Different arrival sites 
in the plane of observation correspond to different energies of the particles. The 
quantum mechanical counterpart of such a classical measurement is to extract the 
particle spectrum from the spread of momentum, t'1.at is, from the corresponding 
spread of the de Broglie wavelengths of the ensemble of particles that make up the 
wave packet. For photons, the spectral decomposition of such a wave packet was 
proposed and realized for the first time by Michelson at the end of the last century. 1 

MICHELSON'S "LIGHT-WAVE ANALYSIS" TECHNIQUE0 

In a Michelson interferometer, the path length of one of the two beams is 
increased continuously and the visibility ( = contrast, which is used today preferen
tially) C of the interference fringes is recorded as a function of the path-length 
difference: 

(1) 

11 denotes the intensity at the center of a bright interference band and Ii denotes the 
intensity at the center of the adjoining dark band. The right-hand side of equation 1 
shows that the visibility of the interference fringes is the product of the Fourier 
transformations Gq of the spatial and Gp of the spectral intensity distribution of the 
light source. This result is obtained under the assumption that the components k of a 
narrow spectral line are distributed symmetrically around the midfrequency k0 
( l k - ko l « ko). The experiment described below is performed in such a way that 
Gq = 1; that is, from contrast C as a function of the longitudinal shift, the power 
spectrum can be calculated. The contrast vanishes for longitudinal shifts exceeding 

a Michelson in his 1 892 paper1 introduces the term "light-wave analysis" (which we venture to 
call the foregoing method). 

374 
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the coherence length. By Fourier-analyzing the contrast of such a complete (coher
ence length-limited) system of interference fringes, the specu;:um making up the 
wave packet is obtained. 

Since Michelson's early experiments for electromagnetic waves, this method has 
been refined into a precision method causing Wiener to write (in 196 1 )  the following 
about Fourier spectroscopy: "It is indeed the most accurate type of spectrometer 
known to us."2 To realize this very promising spectroscopic method also for matter 
waves was out of reach until recently due to the lack of a phase- or wave packet
shifting device for matter waves. 

THE WIEN FILTER: A WAVE PACKET-SHIFTING DEVICE FOR 
CHARGED PARTICLES 

In 1979, Mollenstedt and Wohland discovered in a Wien filter (crossed electric 
and magnetic fields) a wave packet-shifting device and measured the coherence 
length of electron waves for the first time.3 The interferometer they used was not of 
the Michelson type, but a biprism interferometer because, for electrons, the most 
versatile beam-splitter has proved to be the electron optical biprism according to 
Mollenstedt and Diiker. 

A sketch of the measurement method is given in FIGURES la and lb. FIGURE l a  
gives the l ight optical analogue and FIGURE lb gives its realization for charged 
particles. On the left-hand side of FIGURE la, the situation for a full overlap of the 
two wave packets in the interference plane is presented. In the observation plane, 
maximum fringe contrast is observed. By moving the right-hand-side mirror back
wards, an artificial continuously increasing time delay can be inserted into one leg of 
the interferometer. The contrast of the fringes decreases continuously with increas
ing delay until the coherence time is exceeded (FIGURE l a, right). FIGURE lb shows 
that the moving mirror, that is, the device introducing a time delay, in our charged 
particle interferometer is replaced by a Wien filter. 

A brief outline of the action of the Wien filter on electron wave packets is given in 
FIGURE 2. A Wien filter consists of crossed electric and magnetic fields, both 
perpendicular to the beam path. The Wien filter is said to be in its compensated state 
when the electric and magnetic forces on the charged particles just cancel each other; 
that is, the trajectories of the particles are not affected by the electromagnetic fields 
in the Wien filter. For the case of the compensated Wien filter, it can be shown easily 
(e.g., see references 4 and 5) that the phase shifts exerted by the electric and 
magnetic potentialsb are opposite to each other and are of exactly the same 
magnitude. To state it differently, the electron optical index of refraction equals 1 (to 
first order) inside and outside of the Wien filter.4.S Therefore, in FIGURE 2, the planes 
of equal phase (e .g., crests) of the electron waves, represented by the horizontal 

bElectric and magnetic Aharonov-Bohm phase shifts.5 The magnetic flux enclosed by the 
coherent beams creates a certain phase shift that is exactly compensated by the phase shift that 
arises due to the fact that the waves travel through the Wien filter on paths of different electric 
potential. In essence, by taking into account the well-known experiments that prove the 
magnetic Aharonov-Bohm6 effect, we have here an indirect proof of the existence of the electric 
(scalar') Aharonov-Bohm effect. 



a) 
lig

ht 
op

tic
al 

cas
e 

� L
1 

j�
 

L i
� 

Sp
l 

(J 

b) 
ele

ctr
on

 op
tic

al 
cas

e 
� !

 t 

+ 

·.
 

0 b
ser

va
tio

n 
Pl

an
e 

r�
 

i � Bip
ris

m 

-
·-

· 
0 1-Wien-fil

ter
 

B 
+ 

r�
 

: � 

1:-rli
1- ' 

F
IG

U
R

E
 l

. 
Pr

in
cip

le 
of

 m
ea

su
re

m
en

t o
f c

oh
er

en
ce

 le
ng

th
s a

nd
 in

te
rf

er
om

et
ric

 sp
ec

tro
sc

op
y 

ac
co

rd
ing

 to
 M

ich
el

so
n 

fo
r e

lec
tro

m
ag

ne
tic

 w
av

es
 o

n t
he

 
lef

t a
nd

 ch
ar

ge
d m

at
te

r w
av

es
 o

n 
th

e 
rig

ht
. 

..
.. 

-.J
 

°'
 � � z � � "' :ii: > � 0 t!l � 0 .., Cl'l

 <"l � <"l f;l 



HASSELBACH et al.: LIGHT-WAVE ANALYSlS 

-

B 
0 
0 

fl y I 

� fl x . : 
I I 

� � 

L [ 
\_ \. 

1. r. x ] ] 
� 

J 

fl X I I• • I  
I 

1 J 

wave packets 

Wien-filter 
. 

. ;� 
E 

interference fringes 

377 

FIGURE 2. The influence of a Wien filter in its compensated state on two spatially separated 
electron wave packets. The right-hand-side wave packet travels inside the Wien filter on a more 
negative potential than the left-hand-side one, that is, with a lower group velocity. The acceleration 
and deceleration of the wave packets takes place in the fringing fields of the Wien filter. 

lines, and the phase velocity are not affected at all by the electromagnetic fields of the 
compensated Wien filter, irrespective of its excitation. 

In other words, when we increase the excitation of the Wien filter while always 
staying in its compensated state, we observe in the observation plane a stationary 
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field of interference fringes; however, with increasing excitation, fringe contrast is 
decreasing continuously. This is due to the fact that the electron wave packets travel 
on paths of different electric potentials with different group velocities inside the 
Wien filter. This leads to a longitudinal shift of the wave packets at the exit plane and 
consequently to a reduced contrast of the interference fringes.c For longitudinal 
shifts larger than the coherence lengths, fringe contrast vanishes. 

It is important to direct attention explicitly to the fact that the Wien filter in its 
compensated state is not a phase-shifter. The wave packets are shifted longitudinally 
in a stationary "phase wave sea"; in other words, the internal phase structure of the 
wave packets is not affected at all when traveling through the electromagnetic fields 
in a compensated Wien filter. 

Refinement of a Wien Filter to a High-Precision Retarding Device for Wave Packets 

The delay, that is, longitudinal shift, caused by a Wien filter can be adjusted with 
a precision of a small fraction of a wavelength when, first, the Wien filter's 
construction allows the adjustment of the electromagnetic fields in very subtle steps 
and, second, when it is aligned to its compensated state in a two-step process8 as 
follows: At first, the magnetic and electric fields are zero (FIGURE 3a). The full 
overlap of the wave packets corresponds to maximum' fringe contrast. Now, we 
increase in a first step the electric field only. The -Wien condenser works as a 
deflection element. The interference fringes are deflected, for example, by two fringe 
widths to the right on the fluorescent screen of the interferometer (FIGURE 3b ). This 
is due to the fact that the wave packet traveling in the more negative region is slower 
and arrives in the interference plane with a delay. FIGURE 3b demonstrates that a 
delay of 2'A/v, where v is the phase velocity, corresponds to a shift of the interference 
fringes of exactly two fringe widths to the right-hand side. We now increase the 
magnetic field until the deflection due to the electric field is just compensated. This 
state of the now again compensated Wien filter corresponds to the following physical 
situation (FIGURE 3c) : Both beams travel rectilinearly through the Wien filter, but 
the right-hand-side wave packet is retarded longitudinally by two wavelengths in the 
Wien filter. The overlap of the wave packets is reduced by two wavelengths and so 
too the contrast of the interference fringes correspondingly. 

Measurement of Coherence Lengths 

In order to measure the coherence length, this procedure is repeated while 
counting the total number of fringes until the contrast in the fringe field vanishes or 
(per definitionem) decreases, for example, to 1 /e. The coherence length is then given 
by twice this number of fringes times the wavelength of the electrons. With the l /e 
definition, a coherence length of 280 nm was measured5 for field-emitted electrons of 
4 keV with an energy spread of 0.36 eV. The error margin was as small as 3%, 
compared to 20-30% in Mollenstedt and Wohland's first experiment.3 

cThe electric potential difference on the two paths increases with increasing excitation of the 
Wien filter. The acceleration and deceleration of the wave packets to the value inside the Wien 
filter occurs in the electric fringing fields of the Wien filter condenser. 
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Let us mention here that this measurement method works without any knowl
edge about the field strengths and (in-)homogeneities of the electromagnetic fields in 
the Wien filter, not to mention that of the fringing fields. It therefore is intrinsically 
extremely precise and enables us to measure the longitudinal shift exerted by the 
Wien filter with a precision on the order of 1 % of a wavelength or less. This high 
precision is a prerequisite for realizing Michelson's visibility technique and Fourier 
spectroscopy for matter waves. 

"Light-Wave Analysis" of Electron Waves 

In the following model experiment, the spectrum of a field emission electron gun 
has been measured. The contrast of the interference fringes must be recorded 
quantitatively as a function of the longitudinal shift in the whole interference field, 
consisting of up to 20,000 fringes for the experimental parameters used in our 
low-voltage interferometer (a few keV of total energy of the field-emitted electrons 
at an energy spread of about 0.4 eV). This has been done by recording the whole 
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FIGURE 4. Spectrum of a field electron emitter obtained by Fourier analysis. The total energy 
of the electrons was 2.4 keV. 

interference field in sets of, for example, 10 fringes successively with a CCD-camera 
densitometer. The digitized data sets were corrected for the (small) cylinder lens 
action of the Wien filter, were put together with matched phases in a personal 
computer, and were subsequently transferred to a VAX computer for Fourier 
analysis. In the first experiment,9 a resolution of about 0.6 eV has been obtained. The 
state of the art is now about 125 mev. 10 As an example, the energy spectrum of 
field-emitted electrons measured by this method is given in FIGURE 4. 
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This result was obtained by taking into account 12,800 interference fringes with a 
contrast of C � 10%. About 2000 low-contrast fringes were negl�cted, which results 
in an error of less than 50 me V of the full width at half-maximum of the spectrum 
given in FIGURE 4. The total error of 125 me V contains 75 me V of error caused by the 
fact that we recorded 16 sample points per fringe and had an array size of 219 with 
which we execute the Fourier transformation. 

Hence, the present resolving power surpasses that of electron spectrometers 
used in today's analytical electron microscopes by about an order of magnitude. 

CONCLUSIONS 

Our Fourier spectrometer is the first spectrometer for particles that fully rel ies 
on quantum mechanics, that is, the wave properties of matter. It seems remarkable 
that the quantum mechanical probability waves exhibit the same features as the 
"real" classical waves, for example, of an electromagnetic field, in spite of the fact 
that a field of electrons (fermions) is intrinsically nonclassical .  All conventional 
spectrometers for charged particles are based on the dispersion of particle trajecto
ries in electromagnetic fields and, in turn, their resolution suffers from the well
known aberrations of charged particle optics. The advantages of Michelson's light
wave analysis technique cannot be summarized better than he did in his seminal 
paper1 in 1892: "The principal object of the foregoing work is to illustrate the 
advantages which may be expected from a study of the variations of clearness of 
interference fringes with increase in difference of path. The fundamental principle 
by which the 'structure' of a line or a group of lines is determined by this method is 
not essentially different from that of spectrum analysis by the grating, both depend
ing, in fact, on interference phenomena; but in consequence of the almost complete 
freedom from errors arising from defects in optical or mechanical parts, the method 
has extraordinary advantages for this special work." 
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INTRODUCTION 

"No observation can be made with less than one quantum passing through the 
observed object": so is it stated in an article by D. Gabor, in the first volume of 
Progress in Optics. 1 Recently, Elitzur and Vaidman have pointed out that it is possible 
to make "interaction-free" quantum mechanical measurements, in which the exis
tence of an object in a given region of space may be ascertained seemingly without 
interacting with it.2•3 This possibility is nonclassical , in that it relies on the wave
particle duality. The initial proposal employed a Mach-Zehnder interferometer (see 
FIGURE 1) ,  aligned so that incident photons (or any other interfering particles) exit 
to detector D1 with certainty, in the absence of any object within the interferometer. 
Thus, detector D2 never fires under this configuration. The presence of an absorbing 
(or, more generally, a nontransmitting) object in one of the arms changes completely 
the possible outcomes. For a 50-50 beam-splitter, the photon will encounter the 
object with 50% probability and will be absorbed. To make the argument more 
dramatic, Elitzur and Vaidman suggested the notion that this absorption of a single 
photon would trigger the explosion of an ultrasensitive bomb. There is a 25% 
probability that the photon will still exit port no. l, yielding no information. However, 
there is also a 25% probability that the photon will exit via the other exit port, to 
detector D2• Detecting this photon, one can conclude that an object was certainly 
within the interferometer, even though the photon could not have interacted with it. 
Put differently, one has managed to detect the presence of the ultrasensitive bomb 
without triggering it, an impossible feat in classical physics. 

If one performs the above procedure only once, it is clear that one can have 
interaction-free verification of the presence of the bomb only 25% of the time. 
However, by repeating the experiment or recycling the photon in cases where it 

0This work was supported by the Austria Science Foundation (FWF) under Project No. 
S065/02. 

bp_ Kwiat was supported by FWF Lise Meitner Postdoctoral Fellowship No. M0077-PHY. 
383 
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FIGURE I. Simple Mach-Zehnder interferometer, with and without a sensitive bomb-trigger 
in one path. 

leaves the interferometer by port no. 1, one can increase the total probability of an 
interact ion-free measurement . A useful figure of merit in evaluating any potential 
scheme is the following: 

P(Det 2) 
(1) Tl = P(Det 2) + P(boom) · 

For a lossless system, this is basically the proba.bil ity of making an interaction-free 
measurement (assuming some measurement was made), or the fraction of bombs 
that can be saved. For the simple case considered above, the fraction of measure
ments that can be interaction-free is thus YJ. 

It is important to stress why this is a quantum mechanical effect. Using purely 
classical field calculations, it is certainly true that one arrives at the same probabili
ties appearing in equation 1 . The difference is that, with a classical field, it is possible 
for both detector 2 and the bomb detector to be triggered in a given run. However, if 
we use a single-photon state incident on the interferometer, this outcome is 
impossible. Complementarity is essential : in the absence of the object, it is the 
wavelike nature of the incident quantum that allows us to establish, through 
destructive interference, a condition in which detector 2 never fires; in the presence 
of the object, it is the indivisibility of the quantum that enforces the mutual 
exclusivity of the possible outcomes. 

EXPERIMENTAL DESCRIPTION 

In our experiment (FIGURE 2), pairs of correlated photons were produced via the 
process of spontaneous parametric downconversion in a nonlinear crystal (Lil03). 
The pump beam at 35 1 nm originated in an argon-ion laser; using irises and 5-nm 
(FWHM) interference filters, we selected downconverted photon pairs at 702 nm. 
One member of each pair was directed to the "trigger" detector Dr, whereas the 
other one was directed to a Michelson interferometer, adjusted to lie within the 
"white-light fringe" region so that the difference in path lengths was always less than 
3 µm. The detector Dum looked at the output port of the interferometer. By means of 
a translatable mirror, it was possible to direct the photons from one of the arms to the 
detector D8, thereby producing the "bomb in" configuration. In the absence of the 
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"bomb mirror", the path difference in the interferometer was adjusted to produce a 
minimum number of counts at D1rm; that is, most of the photons exited the 
interferometer via the entrance port . This position was stabilized by employing an 
extra helium-neon alignment laser (not shown in FIGURE 2) and a feedback system to 
piezoelectrically translate one of the interferometer mirrors. 

It has been previously shown that by counting the downconversion photons in 
coincidence one may prepare a very good approximation to a single-photon Fock 
state.4 Therefore, our data consist of various coincidence rates between OT and D1rm 
and between OT and 08. After locking our interferometer to a minimum of Dlfm• 
data were recorded, periodically switching from a "bomb out" to a "bomb in" 
configuration. Typical results are shown in FIGURE 3, where the open and filled 
symbols refer to the "bomb out" and "bomb in" conditions, respect ively. It is 
immediately seen from the data that, even in the absence of a bomb, one still has 
counts at Dlfm• falsely indicating the presence of the bomb mirror. These counts 
constitute the background or noise of our detection scheme, arising from accidental 
coincidences and nonunity interference fringe visibility. 

The beam-splitter in our interferometer was a I -mm-thick glass plate, with one 
side antireflection-coated and the other side coated in five sections, each with a 
different reflectivity. Thus, by horizontally translating the beam-split ter in its plane, 
we were able to readily choose between reflectivities (measured directly with the 
downconversion photons) of 54%, 43%, 33%, 19%, and 1 1  % without changing the 
relative path lengths in the interferometer. The expected figure of merit (equat ion 1) 
when the bomb mirror is inserted is a function of beam-splitter reflectivity. In the 
absence of losses, the probability of an incident photon going towards the bomb is R, 
whereas the probability of it going towards the interferometer detector is RT. 
Assuming a lossless beam-splitter, T = 1 - R, we have 

UV 

R T  1 - R 
11 = RT + R = 

2 - R ' (2) 

FIGURE 2. Schematic of a downconversion experiment to demonstrate the principle of 
interaction-free measurement. 
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FIGURE 3. Typical experimental results for an interaction-free measurement (from the setup 
in FIGURE 2). The open symbols refer to the "bomb out" condition, whereas the filled symbols 
refer to the "bomb in" condition. The five graphs correspond to the five beam-splitter 
reflectivities examined; the reflectivity R is listed in the upper right corner of each. 
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a plot of which is given in FIGURE 4. To obtain the figure of merit described by 
equation 2 from the experimental results, one must account far the finite detector 
efficiencies. For the purpose of this "proof of principle" experiment, it was conve

. nient to equalize (to within 0.06%) the net detection efficiencies of the bomb 
detector D8 and the interferometer detector Dum by adjusting the detector overbi
ases (the actual efficiencies were approximately 2% ) . Under these conditions, the 
efficiencies cancel out of equation 2 and one may simply use the rates directly: 11 = 
C(Ifm)/ [C{Ifm) + C(B)] . The experimental results for the five regions on our 
beam-splitter are displayed in FIGURE 4. 

HIGH-EFFICIENCY INTERACTION-FREE MEASUREMENTS 

Note from equation 2 that the fraction of interaction-free measurements tends to 
the value of 50% as the reflectivity becomes small . As previously stated by Elitzur 
and Vaidman,2 this is the upper limit possible with the interferometer schemes 
discussed thus far. We have recently discovered5 that one may exceed this l imit by 
using an application of the quantum Zeno effect.6•7 Indeed, in principle, the fraction 
of interaction-free measurements may be made arbitrarily close to unity. Recall that, 
in the Zeno effect, the evolution of a quantum system is altered by repeated 
measurements made on the system (see FIGURE 5). Consider now the related scheme 
in FIGURE 6. Single-photon states are produced using correlated downconversion 
photons. One of the photons is again used as a trigger, whereas the other photon 
makes a specified number of cycles in the system before being detected. The number 
of cycles is determined either from geometry (e.g., the photon spirals up in the loop, 
until it passes over one of the components) or with fast timing (based on the arrival 
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• Data 
- Theory - Eq. (2) 
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Beam spl itter reflectivity 
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FIGURE 4. Experimental and theoretical values for the figure of merit 1J in a Michelson
interferometer scheme, as a function of beam-splitter reflectivity. 
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Polarization: - - I 
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b. �Horizontal polarizers� 
FIGURE S. Simple optical version of the quantum Zeno etfect.7 (a) A series of polarization 
rotators is used to rotate the polarization of the input photon from horizontal to vertical. No 
light is seen at the final detector. (b) When a series of horizontal polarizers is interspersed 
between the rotators, the light is at every stage projetied back onto a state of horizontal 
polarization, resulting in l ight at the final detector. If the number of stages is � 4, more than 
50% of the input light will be transmitted. In particular, for the case shown (N = 6), the chance 
of transmission is very nearly twice the chance of absorption. 

time of the trigger photon, a fast switch [not shown] can be used to direct the other 
photon out of the system after N cycles). We choose the value of the polarization 
rotation to be -rr/2N so that, in the absence of any bomb, the initially horizontally 
polarized photon is found after N cycles to be vertically polarized.e 

The presence of a "bomb" or any nontransmitting object in the lower path of the 
internal Mach-Zehnder interferometer changes the situation completely. Now with 
each cycle there is only a small chance that the photon chooses this lower path and 
triggers the bomb, and a large probability, P = cos2(-rr/2N),  that it travels the upper 
path instead. In this second possibility, the polarization after the recombining 
polarizing beam-splitter is once again horizontal and the whole process repeats. 
Clearly, the probability that the photon is found after N cycles to be still horizontally 
polarized is just the probability for it to have taken the upper path during each cycle : 

(3a) 

eTo meet this condition, it is important that the path lengths in the internal Mach-Zehnder 
interferometer (upper right corner, with polarizing beam-splitters) be the same to within 2ir; 
otherwise, incident linear polarization can become elliptical due to the relative phase shift 
between the vertical and horizontal components. 



KWIAT et al.: INTERACTION-FREE MEASUREMENTS 389 

which in the limit of large N becomes 

(3b) 

Of course, the probability that the bomb is triggered is just the complement of P. 
Equation 3a is plotted in FIGURE 7. One sees immediately that, as long as N � 4, 
there exists a greater than 50% probability of making an interaction-free measure· 
ment, thereby surpassing the limit of the original Elitzur· Vaidman configurations 
discussed in the previous sections. 

It should be noted that the use of polarization is not essential for these 
high-efficiency tests. Due to the isomorphism of all two-state systems, it should be 
possible to use these techniques with any two-level scheme. For example, using two 
identical cavities that are weakly coupled by a highly reflective beam-splitter, one can 
realize a practical implementation (see FIGURE 8). A photon is inserted into the left 
cavity at time T = 0. If the beam-splitter reflectivity is given by cos2(-rr/2N), then in 
the absence of any absorber the photon wil l be located with certainty in the right 
cavity at time TN = N x (round-trip time), so long as the lengths of the two coupled 
cavities are identical. This is true even if the coherence length of the photon wave 
packet is much shorter than the cavity length. Therefore, a detector inserted into the 
left cavity at time TN would not fire. However, in the presence of an absorber or 
scatterer (e.g., our ultrasensitive bomb) in the right cavity, the photon wave function 
is continually projected back onto the left cavity. By making the coupling weaker 
(and the number N greater), one can arbitrarily reduce the probability that the 
photon ever leaves the first cavity when the bomb is in the second; now a detector 
inserted into the left cavity at time TN will nearly always fire . Consequently, one can 

Polarization 
rotator 

Pump 

r-- Polarizing beam 
--.� splitters 

FIGURE 6. Simplified schematic of one method to obseive a greater than 50% interaction-free 
measurement. The downconversion photon makes N cycles before being removed (due to 
geometry or a fast switch) and its polarization measured. 
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FIGURE 7. The probability P(I.F.M.) of an interaction-free measurement and the probability 
P(Boom) that the bomb is triggered, as a function of the0 total-number of cycles, assuming ideal 
optical components. 

in principle make the probability of an interaction-free measurement arbitrarily 
close to I . 

Again, downconverted photons are an appropriate choice because the strong 
time correlations yield exact information as to when one should "insert" a detector 
into the cavity. Also, one has the capability of actually creating one of the downcon
verted photons inside the cavity, removing the need for some kind of optical switch at 
this stage. In practice, losses reduce the effectiveness of such schemes, but it should 
still be possible in a real setup to have interaction-free measurements more than half 
of the time. 

Photon Bomb 
) 

R = cos2(n/2N) 
FIGURE 8. A purely interferometric interaction-free measurement system. In the absence of a 
bomb in the right cavity, a photon initially in the left cavity will be found with certainty in the 
right cavity after N cycles (where N depends on the precise value of the coupling beam-splitter's 
reflectivity R). With the bomb, and when N ;::: 4, the photon will more likely be found in the left 
cavity on the N-th cycle. It is assumed that the cavity lengths are identical. 
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EXPERIMENTAL DEMONSTRATION OF REPEATED INTERROGATION 

We have performed a simple experiment to illustrate the optical version of the 
quantum Zeno effect presented in FIGURE 5 .  It may be interpreted as a limited 
version of a true high-efficiency interaction-free measurement scheme: one is able to 
detect a polarization-sensitive bomb more than 50% of the time without losing the 
incident photon. Again, we employ the single-photon states available through 
parametric downconversion (see FIGURE 9). Photons at 788 nm were used as a 
trigger (not shown in the figure), whereas the conjugate photons at 633 nm were sent 
into the quantum Zeno apparatus. The case of six stages was investigated; however, 
rather than employing six different polarization rotators and six different polarizers, 
we sent our photons in a spiral through the same components six times. We call this 

From down-
conversion crysta 

M#l 

Polarization 

Detector B "-Q <•nsertable) 
__...,.. Polarizing 

beam splitter 

� Polarizer 

��tJ)--IV 
M#3 

FIGURE 9. Schematic of the experimental setup used to demonstrate the quantum Zeno 
effect. The photon "cyclotron" consisted of five loops, allowing six interactions with the 
polarization rotator. In the absence of the polarizing beam-splitter, the polarization is rotated 
by is• each cycle. We record the coincidence rates between the trigger detector (not shown) 
and the D and B detectors. 

arrangement a photon "cyclotron". The horizontally polarized photon initially 
passed (horizontally) over the top of the first mirror, passed through the rotator/ (and 
possibly through a removable polarizing beam-splitter), and reflected off mirror no. 
2. The photon's trajectory was directed downward by mirror no. 3 so that it could 
reflect off mirror no. 1, aligned such that the trajectory was once again horizontal. 
The process was repeated for five loops (six times through the rotator), after which 
the photon trajectory passed under mirror no. 2 to a detector. 

As expected, when the polarization was rotated by 15° each cycle, the photon was 
vertically polarized at the output and essentially no coincidence counts were seen 

fFor a polarization rotator, it sufficed to use a simple half-wave plate, oriented with its axis at 
7.S0 from the horizontal. That this functioned was a surprise to us, as we expected that the 
polarization would simply alternate between horizontal polarization and polarization at + is• 
with each cycle, yielding no net rotation. The secret to this wonderful surprise is that an odd 
number of mirrors (three in our case) inverts left and right so that, just before encountering the 
wave plate for the second time, the polarization of the photon is at - is•, which is then rotated 
to + 300 by the wave plate, and so on. 
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after a horizontal polarizer. {Actually, due to imperfect polarizers, there was a 
horizontal component at a rate of 5 .5 s- 1 , compared to the vertical component of 44 1 
s- • .  The noise figure of this scheme in terms of interaction-free measurements is thus 
1 .2%.) However, when the polarizing beam-splitter was inserted, we saw that the 
light reaching the detector was then horizontally polarized, with a rate of 243 s- 1 • 
The probabil ity of transmission is then 243/441 = 55 . 1  ± 0.4% . However, if one 
corrects for the separately measured transmission factor of the polarizing beam
splitter {= 0.826 ± 0.006, for six passes), this becomes 66.7 ± 0.7%, to be compared 
with the predicted value of 66.0%. 

As indicated in FIGURE 9, we were also able to look directly at the output of the 
polarizing beam-splitter, using a lens to focus the six parallel output beams onto the 
surface of another photodiode, suggestively labeled 08. The temporal distribution of 
coincidences between this detector and the trigger detector is interesting (see 
FIGURE I 0), as one can see explicitly when the photons leave the cyclotron {if they do 
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FIGURE IO. The time spectrum of the rate of coincidences between the trigger detector and 
the detector looking at the output of the polarizing beam-splitter. The time separation between 
peaks corresponds to the photon time-of-flight through one loop of the "cyclotron". Total 
accumulation time = 300 s. 

not make it to the exit detector). The separation of the peaks is 1 . 18 ns, precisely 
what one would expect from the delay of traveling around the equilateral loop with a 
side of 1 1 .5 cm and through the 2-cm-thick polarizing beam-splitter. That the first 
peak is actually smaller than the second is due to a problem with our polarizing 
beam-splitter and is not yet fully understood. 

In summary, we have demonstrated in our Michelson-interferometer experiment 
an interaction-free measurement with a figure of merit 11 of nearly Yi; that is, almost 
half of our measurements could be interaction-free. In the last experiment discussed, 
we were able to detect a polarization-sensitive bomb with an TJ of 7). Work is 
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currently in progress to demonstrate the high-efficiency interaction-free measure
ment of any nontransmitting bomb, based on the repeated-interrogation schemes 
presented here. 
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INTRODUCTION 

When the word "quantum" first entered the language of physics, it meant a 
restriction on possible values of energy, and it is still axiomatic that the only 
observable values of a physical quantity are the eigenvalues of a corresponding 
quantized operator. When we obtain values that are not eigenvalues, we interpret 
them as errors. Still, measurements are uncertjlin in practice and can even yield 
classically forbidden, "unphysical" values. We have uncovered remarkable regulari
ties in the way that "unphysical" values can appear in sequences of measurements, 
suggesting that these values may not be unphysical at all. In quantum theory, it 
seems, not only are physical quantities not restricted: they can take values outside the 
classically allowed range. Here, we discuss this new effect in the context of barrier 
penetration by quantum particles. 

Barrier penetration, such as tunneling out of a potential well, is a classically 
forbidden quantum process. Quantum particles can be found in regions where a 
classical particle could never go: it would have negative kinetic energy. However, the 
eigenvalues of kinetic energy cannot be negative. How, then, can a quantum particle 
"tunnel"? The apparent paradox is resolved by noting that the wave function of a 
tunneling particle only partly overlaps the forbidden region, whereas a particle found 
within the forbidden region may have taken enough energy from the measuring 
probe to offset any energy deficit. Nevertheless, actual measurements of kinetic 
energy can yield negative values. Here, we present a model experiment in which we 
measure the kinetic energy of a bound particle to any desired precision. We then 
attempt to localize the particle within the classically forbidden region. The attempt 
rarely succeeds, but, whenever it does, we find that the kinetic energy measurements 
gave an "unphysical" negative result; moreover, these results cluster around the 
appropriate value, that is, the difference between the total and the potential energy. 
This consistency, which seems to come from nowhere (a background of errors), 
suggests strongly that the notion of ·a quantum observable is richer than generally 

0This research was supported by Grant No. 425/91-1 of the Basic Research Foundation 
(administered by the Israel Academy of Sciences and Humanities) and by Grant No. 
PHY-8807812 of the National Science Foundation. 

b Also at Department of Physics, University of South Carolina, Columbia, South Carolina 
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realized. Previous papers making this suggestion have analyzed a measurement of 
spin1 and a quantum time machine2 as well as negative kinetic eAergy.3•4 

NEGATIVE KINETIC ENERGY 

Our example may be summarized as follows: We prepare a large ensemble of 
particles bound in a potential well, in an eigenstate of energy, and measure the 
kinetic energy of each particle to a given precision. Then, we measure the position of 
each particle and select only those cases where the particle is found within some 
region "far enough" from the well, with "far enough" depending on how precisely 
the kinetic energy was measured. In almost all such cases, we find that the measured 
kinetic energy values are negative and cluster around the particular negative value 
appropriate to particles in the classically forbidden region. Also, the spread of the 
clustering is the characteristic spread for kinetic energy measurements with this 
device. 

We begin with a particle trapped in a potential well .  The Hamiltonian is H = 
(p2/'2m) + V(x), with V(x) = - V0 for lx l  < a  and V(x) = 0 for lx l > a . We prepare 
an ensemble of particles in the ground state, with energy £0 < 0: I W;n) = 1 £0). 
Following von Neumann,5 we model a measurement of kinetic energy with an 
interaction Hamiltonian H;ni = g(t )P( p2/'2m), where P is a canonical momentum 
conjugate to the position, Q, of a pointer on the measuring device. The time
dependent coupling constant g(t ) is nonzero only for a short time interval and is 
normalized so that f g(t )dt = 1. When the time interval is very

. 
short, we call the 

measurement impulsive. For an impulsive measurement, H;ni dominates the Hamilto
nians of the measured system and the measuring device. Then, since Q = 
(i/h) [Hin,, Q), we obtain 

(1)  

for the operator Q.  
In an ideal measurement, the position of the pointer i s  precisely defined and thus 

we read a precise value of kinetic energy. However, in practice, measurements 
involve uncertainty. To model a source of uncertainty, we take the initial state of the 
pointer to be 

(2) 

The uncertainty in the initial position of the pointer produces errors of order e; when 
e - 0, we recover the ideal measurement. Thus, any measured value is possible, 
although large errors are exponentially suppressed. There is no mystery in such 
errors; they are expected, given the uncertainty associated with the measuring 
device. Measurements can even yield negative values. The negative values may be 
unphysical, but they are part of a distribution representing the measurement of a 
physical quantity. They should not be thrown out because they give information 
about the distribution and contribute to the best estimate of the peak value. Given 
the fact that these errors originate in the measuring device and not in the system 
under study, it seems that they cannot depend on any property of the system. 
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However, closer analysis of these errors reveals a pattern that clearly reflects 
properties of the system under study. The pattern emerges only after selection of a 
particular final state of the system. 

Initially, the particle and device are in a product state 'l';n(x)<l>;n(Q ) ; after the 
interaction is complete, the state is e-(ilft�2/2m'11;n(x)<l>;n(Q ), in which the particle and 
the device are correlated. Now, we consider kinetic energy measurements followed 
by a final measurement of position, with the particle found far outside the potential 
well. For the final state, we choose a Gaussian wave packet with its center far from 
the potential well, 

(3) 

and we require 8 > ali2/me. The condition for the particle to be "far enough" from 
the potential well is 

(4) 

Since a.2112 /'lrn = I E01 , the expression in the parentheses is the ratio of the magnitude 
of the effect, I E01 , to the precision of the measurement, e. For more precise 
measurements of kinetic energy ( e --+ 0), the final state is selected at increasing 
distances from the potential well (x0 --+ oo) . 

The state of the measuring device after the measur�ment, and after the particle is 
found in the state '11.fin(x ) , is obtained by projecting the correlated state of the particle 
and measuring device onto the final state of the particle, '11.fin(x). Apart from 
normalization, it is <l>Jin(Q ) = {'11.fin 1 e -(ilft�2121n I %n)<l>;n(Q ). For simplicity, we take 
V(x) to be a delta-function potential (a --+ 0). Then, 'l';n(x) is ,/a. exp(-a Ix I ) . As an 
integral over x, the final state is 

cf>jin(Q ) = i: dx e-(.r-xo)2/2&2e-(i/h�2/2me-a ! X lcf>;n(Q ) (5) 

up to normalization. Note that the exponential of -iPp2/'lrnli acts to translate Q in 
<l>;n(Q ). If we could ignore the part of the integral nearx = 0, we could replace p2 with 
-a2 in equation 5 and the final state of the measuring device would be <l>Jin(Q ) = 
<l>;n(Q + a.2112/'lrn). We cannot ignore this part of the integral, but we can suppress it 
by choosingxo in '11.fin(x) to be large. Ifwe express 'l';n(x) via its Fourier transform and 
replace the operator p with its eigenvalue, we obtain (up to a normalizing factor) 

( ) [ -p26212A2 _ ipxo/h] 
<l>jin(Q ) = :a eaxo - a2&2/2 J dp 

e 

(a2fi2 + p2) 
<l>;n(Q - p2/'lrn). (6) 

This integral has poles at p = ±iali; we evaluate it by integration on a contour 
including a line of p with imaginary part -ip0, for any p0 > ha. The integral in 
equation 6 then reduces to two terms: a pole term, 

<l>;n(Q + a2fi2 /'lrn ), (7) 

and a correction term, the integral in equation 6 withp replaced by p - ip0• The pole 
term represents the measuring device with its pointer shifted to the negative value of 
-a.2112/'lrn. A short computation (see reference 4) shows that the correction term can 
be made arbitrarily small by taking x0 large, as in equation 4. For x0 large, the final 
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state of the measuring device shows the "unphysical" result of -a2h2/'lm for the 
kinetic energy, up to a scatter e characteristic of the device . 

We thus obtain a correlation between position measurements and prior kinetic 
energy measurements: nearly all particles found far outside the potential well yielded 
negative values of kinetic energy. On the other hand, we could consider all particles 
that produced negative values of kinetic energy and could ask about their final 
position. We would find nearly all these particles inside the well . The correlation 
works one way only. Prior kinetic energy measurements on particles found far from 
the wel l  cluster around a negative value, but position measurements on particles 
yielding negative values of kinetic energy cluster around zero. How do we interpret 
this one-way correlation? 

INTERPRETATION 

Our example suggests that particles in a classically forbidden region have 
negative kinetic energy. The conventional interpretation of quantum mechanics has 
no place for negative kinetic energy. However, the conventional interpretation 
involves an assumption about how measurements are made. The conventional 
interpretation considers measurements on ensembles of systems prepared in an 
initial state, without any conditions on the final state of the systems. Such an 
ensemble, defined by initial conditions only, may be termed a preselected ensemble. 
By contrast, we consider measurements made on preselected and postselected en
sembles, defined by both initial and final conditions. The experiment of the previous 
section is an example of a measurement on a preselected and postselected ensemble. 
It is natural to introduce preselected and postselected ensembles in quantum theory: 
in the quantum world, unlike the classical world, complete specification of the initial 
state does not determine the final state. 

Also, the measurements that we consider are not ideal. Real measurements are 
subject to error. At the same time, the disturbance they make is bounded. These two 
aspects of nonideal measurements go together. Suppose our measuring device 
interacts very weakly with the systems in the ensemble. We pay a price in precision. 
On the other hand, the measurements hardly disturb the ensemble and therefore 
they characterize the ensemble during the whole intermediate time. Even noncom
muting operators can be measured at the same time if the measurements are 
imprecise. When such measurements are made on preselected and postselected 
ensembles, they yield surprising results. An operator yields weak values that need not 
be eigenvalues or even classically allowed. 1 •6 The negative kinetic energy of the 
previous section is an example of a weak value. Another is a measurable value of 100 
for a spin component of a spin-1 /2 particle. 1 

Let us briefly review how weak values arise. The initial wave function of the 
measuring device is <l>;n(Q ). After an impulsive measurement of an operator C on an 
initial state l a), and projection onto a final state l b) ,  the final state of the measuring 
device is (b l e-iPCth l a)<l>;n(Q ) = I;(b l c;)(c; l a )<l>;n(Q - c; ) . If <l>;n(Q ) is sharply peaked, 
then the various terms <l>;n(Q - c; ) will be practically orthogonal. However, suppose 
<l>(Q) has a width of e. Its Fourier transform has a width in P of h/e. Small I P I  
corresponds t o  a measuring device that is coupled weakly to the measured system. If 
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e is large, then I P I  is small and we can expand the exponential e-iPC/h to first-order in 
P to obtain {b l e-iPClh l a )<l>(Q ) = {b 1 1  - iPC/11 l a )<l>(Q ) = {b l a )e-iPCwlh<I>(Q ). Here, 
Cw = {a I C l  b) I {a I b) is the weak value of the operator C for the preselected and 
postselected ensemble defined by {b I and I a) .  

The definition of a weak value provides us with a new and intuitive language for 
describing quantum processes. In our example, the operators of total energy E, 
kinetic energy K, and potential energy V do not commute. Therefore, the classical 
formula E = K + V applies only to their expectation values, and the expectation 
value of K in any state is positive. However, the formula applies to weak values, Ew = 
Kw + Vw, and the weak value of K is not necessarily positive. We know that Ew = E0 = 
-a2112 /2rn because the preselected state is an energy eigenstate, and that Vw vanishes 
because the postselected state is far from the potential well. Then, Kw = - a2112/2rn, 
the "unphysical" result obtained above in our example. 

In our example, instead of the condition on the initial state of the measuring 
device ( e large), we had a condition on the final state of the particle (x0 large and 8 > 
ali2/me). The price is that we must wait for increasingly rare events. As measure
ments of kinetic energy become more precise ( e --+ 0), they disturb the particle more. 
To get negative kinetic energies, we must postselect particles further from the 
potential well (x0 --+ co) . As the precision of the measurement increases, negative 
kinetic energies become less and less frequent; in the lirflit of ideal measurements, 
the probability vanishes and thus ideal measurem.

ent!l-of kinetic energy never yield 
negative values. 

CONCLUSIONS 

From the point of view of standard quantum theory, all that we have produced is 
a game of errors of measurement. Ideal measurements of kinetic energy can yield 
only positive values because all eigenvalues of the kinetic energy operator are 
positive. However, in practice, measurements are not exact and, even if their 
precision is very good, sometimes-rarely-they yield negative values. If particles are 
subsequently found far from the potential well, we have seen that the measured 
kinetic energy of these particles comes out negative. Consistently, large measure
ment "errors" did occur, producing a distribution peaked at the "unphysical" 
negative value £0• 

What special properties of nonideal measurements led to this result? First, these 
measurements involve only bounded disturbances of particle position. Second, 
because their precision is limited, they can supply, "by error", the necessary negative 
values. These two properties are intimately connected: any measurement of kinetic 
energy causing only bounded changes of position must occasionally yield negative 
values for the kinetic energy. The change of x due to the measurement is x = 
(i/h)g(t)[x, Pp2/2rn]. P and p are unchanged during the measurement, SO Xfin - x;n = 
Pp/m. From here, it follows that the change ofx is bounded only if the pointer is in an 
initial state with P bounded, that is, if the Fourier transform of <l>;n(Q ) has compact 
support. Then, however, the support of <l>;n(Q ) is unbounded,7 which immediately 
implies a nonzero probability for the pointer to indicate negative values (Q < 0). 
Indeed, the "game of errors" displays a remarkable consistency, and this consistency 
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allows negative kinetic energies to enter physics in a natural way. The concept of a 
weak value of a quantum operator gives precise meaning to the statement that the 
kinetic energy of a particle in a classically forbidden region is negative: namely, the 
weak value of the kinetic energy is negative. 
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It is well known that quantum mechanics implies faster-than-l ight influences, for 
example, in the Einstein-Podolsky-Rosen "paradox". These instantaneous actions-al
a-distance, or nonlocal effects, arise in the context of multiparticle systems, where 
spacelike-separated correlations arise as a result of measurements of an entangled 
many-body quantum state. However, no genuine signal can be transmitted by these 
effects. What is less well known is that faster-than-light phenomena can also arise at 
the single-particle level, for example, in tunneling. We shall review here recent work 
at Berkeley on this and other closely related superlutninal propagation effects. 
Again, as we shall see, these effects do not permi(genuine faster-than-light commu
nication. 

At the classical level, Sommerfeld and Brillouin1 early on treated the problem of 
propagation of light in dispersive media. They studied the propagation through such 
media of sinusoidal ell"ctromagnetic waves with an abrupt tum-on. When the 
medium possesses anomalous dispersion, they found it necessary to introduce five 
different kinds of wave velocities: 

( 1 )  the phase velocity, at which the zero-crossings of the carrier wave would 
move; 

(2) the group velocity, at which the peak of a wave packet would move; 
(3) the energy velocity, at which energy would be transported by the wave; 
(4) the "signal" velocity, at which the half-maximum wave amplitude would 

move; 
(5) the front velocity, at which the first appearance of a discontinuity would 

move. 

They found that all five velocities differ from each other in the region of anomalous 
dispersion near an absorption line. The first two kinds of wave velocities, the phase 
and group velocities, may be superluminal ( in fact, they may become infinite or even 
negative), but the next two kinds, the energy and "signal" velocities, are subluminal 
under all the circumstances they considered. The last kind, the front velocity, is equal 
to the vacuum speed of light c. The question naturally arises whether there can be 
media in which the energy and "signal" velocities, like the phase and group 
velocities, may become superluminal. Of course, special relativity rules out the 

0This work was supported by the Office of Naval Research under Grant No. N00014-90-J-
1259. 
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possibility that the front velocity exceeds c, but it is not clear whether or not media 
with superluminal energy and "signal" velocities can exist. Recently, our group at 
Berkeley has demonstrated that it is indeed possible to find examples of such media. 

Garrett and McCumber2 have already shown that Gaussian wave packets propa
gating in the region of anomalous dispersion near an absorption line can in fact 
propagate at superluminal, infinite, or negative group velocities. Within certain 
realistic approximations, they showed that an incident Gaussian wave packet will be 
reshaped by the absorption process (in which later parts of the wave packet are 
attenuated to a greater extent than the earlier parts) in just such a way as to produce 
a smaller, but undistorted, Gaussian wave packet at the exit face of the medium. The 
peak of the wave packet appears to have moved at an abnormal group velocity inside 
the medium. Chu and Wong3 verified that this unusual behavior actually occurred for 
weak picosecond laser pulses propagating near the center of the bound A-exciton 
line of a GaP:N sample. 

Recently, we have verified experimentally that a similar effect occurs in the 
tunneling of wave packets through a barrier.4 We showed that single-photon wave 
packets tunnel superluminally through a ID photonic bandgap material in the 
forbidden midgap region. Again, the transmitted wave packets were Gaussian in 
shape and, although much smaller in amplitude, they had essentially the same shape 
and width as the incident wave packets. We observed that the peaks of these 
tunneling wave packets appeared on the far side of the tunnel barrier earlier than the 
peaks of control wave packets, which had propagated through air instead of the 
barrier. Our results are consistent with the theoretical predictions of MacColl,5 
Eisenbud,6 and Wigner7 for the tunneling time based on the stationary-phase 
method. This theory predicted that the peaks of wave packets would appear 
superluminally on the far side of the barrier. Again, one can understand this as a 
pulse-reshaping phenomenon and there is no violation of Einstein causality. Also, 
recently, superluminal tunneling of classical electromagnetic wave packets was 
observed in experiments involving microwaves propagating through waveguides 
beyond cutoff.8 

One situation in which one might expect superluminal propagation of wave 
packets is in media with inverted atomic populations. We review here the simplest 
case of superluminal phase, group, energy, and "signal" velocities for wave packets 
propagating in a transparent spectral region far away from the resonance of such an 
atomic medium, namely, near zero frequency. Sommerfeld and Brillouin's "signal" 
velocity is rather arbitrarily defined as the propagation velocity of the half-maximum 
amplitude point of a step-modulated sinusoidal wave. If one adopts this definition for 
the analytic pulses considered here, then the "signal" velocity for the case of an 
inverted atomic medium can be equal to the group velocity and can thus also be 
"superluminal", as we shall see. Quotation marks will henceforth be omitted on 
"signal" and also on "superluminal", but the reader should remember that there i s  
no genuine violation of Einstein causality because Sommerfeld and Brillouin's.from 
velocity in this medium never exceeds the speed of light in the vacuum. Hence,  no 
genuine faster-than-light communication is possible. 

In contrast to Sommerfeld and Brillouin, who considered disco111in11011s (stcp
modulated) signals, we consider here the propagation of conti11uo11s, smooth wave 
packets, for example, Gaussians. It is important to note that there is no i11formatio11 
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contained in the peak of an analytic wave packet that is not already contained in its 
forward tail. Hence, only the front velocity is the genuine information velocity. The 
superluminal propagation of wave packets can always be thought of as a pulse
reshaping phenomenon, without any violation of causality. However, in contrast to 
the previous cases of anomalous dispersion and tunneling, here there is no attenua
tion of the wave packet after its propagation through the inverted atomic medium 
because this medium is essentially transparent when it is excited sufficiently far off 
resonance. One purpose of this report is to dispel the widely held misconception that 
the group velocity, when it is superluminal, infinite, or negative, is somehow 
unphysical or unuseful.9 . 

Here, we shall consider optical pulse propagation in a wide transparent spectral 
window far below the resonance of a two-level atomic medium with completely 
inverted populations. '° Although we shall consider for simplicity only the region near 
zero frequency for the special case of inverted atoms, it should be noted that the 
superluminal phenomena discussed here can be found in other transparent spectral 
regions and also in other media that possess gain, for example, in lasers without 
inversion. 1 1  Therefore, the inversion of atomic populations is not an essential 
prerequisite for superluminality. Nevertheless, let us start by considering a gas of 
completely inverted two-level atoms in a cell of length J...... Treat the electromagnetic 
field classically. Let a limited-bandwidth (but other.wise arbitrarily shaped) wave 
packet, whose carrier frequency w, and all of its other frequency components lie far 
below the resonance frequency Wo of the two-level atoms, be incident on this 
medium. The amplitude of this wave packet will be sufficiently small so that only the 
linear response of the medium to this weak perturbation need be considered. The 
coherent atomic response of the medium to the wave packet, consisting of an 
ensemble of spatially coherent oscillating atomic dipole moments, gives rise to a 
macroscopic polarization in the medium, which radiates with such a phase that it 
advances the wave packet. This is in contrast to the more familiar case of an 
uninverted medium, in which the radiation from the macroscopic polarization retards 
the wave packet, leading to subluminal phase and group velocities. The overall effect 
of the medium on the wave can be most easily calculated starting from a generalized 
Lorentz model, in which the atomic oscillator strength/ is replaced by its negative -f 
to characterize an inverted two-level atom. This Lorentz model is a good approxima
tion to the density-matrix equations of motion for a weakly perturbed atomic 
system12 and describes the effect of the coherence of the inverted atoms on the 
propagation of the wave packet. However, note that these results do not depend in 
any crucial way on the Lorentz model; rather, the crucial assumptions here are ( 1 )  
that the system responds linearly to  the classical electromagnetic field and (2) that 
this response is causal, so the Kramers-Kronig relations are valid. 

From the generalized Lorentz model, the refractive index of this inverted atomic 
medium is [ ( (1)2 ) ] 1 /2 

n(w) = 1 - P 
wfi - w2 - i'YW 

' (1) 
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where 'Y is a (small) phenomenological line width and wp is the effective plasma 
frequency,13 

wP = (47rNe2 I/ I /m) 1 12, (2) 

where N is the atomic number density, e is the electron charge, and m is the electron 
mass. The real part of the index calculated from equation 1 is shown in FIGURE 1. In 
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FIGURE 1. The real part of the refractive index for an inverted two-level atomic medium (solid 
line) calculated from equation 1 as a function of circular frequency w, compared with that for 
the same medium with uninverted populations (dashed line). As w -+  0, note that the slope of 
both of these curves vanishes. Therefore, all frequency components sufficiently near zero 
frequency travel with essentially the same phase velocity. Thus, in a large spectral window 
below the resonance at wo, the medium is essentially transparent and dispersionless for both 
inverted and uninverted cases. In this window, it follows that the phase, group, energy, and 
"signal" velocities for the inverted atomic medium are all "superluminal". However, a signal 
with a discontinuous step (or front) possesses high-frequency components extending to infinity. 
Because n -+ 1 as w -+ oo, the front velocity is the vacuum speed c and Einstein causality is not 
violated. 

typical situations, the inequalities 'Y « wp « Wo are obeyed. Note that the minus 
sign in front of the second term on the right-hand side of equation 1 arises from 
atomic population inversion : it differs from its usual positive sign for an atomic 
system in its ground state. As a result of this sign change, the index of refraction near 
zero frequency is less than unity: 

n(O) = (1 - w�/wij) 1 12 < 1 .  (3) 
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From equation 1, it follows that the slope d{Re n(<i>)}/d<i> approaches zero as <i> -+  0 
(see FIGURE 1 ) .  Hence, the medium is essentially dispersionless near DC. 

The fact that n(O) < 1 implies that the phase velocity, 

vp (O) = c/n(O) > c, (4) 

is greater than the vacuum speed of light c. Near zero frequency, the group velocity, 

(5) 

is equal to the phase velocity and is therefore also superluminal; that is, it also 
exceeds the vacuum speed of light c. Furthermore, in contrast to the absorptive media 
considered by Sommerfeld and Brillouin, here the energy velocity is also superlumi
nal because an inverted atomic medium can temporarily give up part of its energy to 
the forward tail of a signal: 

(S) c c 
vE(O) = (u) = Je(O) 

= n(O) = vp(O) � c, (6) 

where (S ) is the time-averaged Poynting vector, " (u) is the time-averaged energy 
density, and e(O) is the zero-frequency dielectric constant. Also, the half-maximum 
amplitude velocity (the signal velocity of Sommerfeld and Brillouin) is the same as 
the group velocity because there is little distortion in the shape of the pulse during its 
propagation, due to the negligible dispersion in this large spectral window. These 
velocities are. all equal to each other because the inverted atomic medium near zero 
frequency is essentially transparent and dispersionless. In these respects, it is no 
different from a normal, uninverted atomic medium near <i> = 0. (For details 
concerning the approximations made in deriving the above wave velocities, see 
reference 10.) 

A more general way to demonstrate these results is to start from the Kramers
Kronig relations for the dielectric constant, 14 from which one can derive the 
zero-frequency sum rule: (2c) f"' [K(<i>' )] 

e(O) = I + -:;;:- Jo (<i>') Z d<i>' , (7) 

where e(O) is the zero-frequency dielectric constant and where, given the susceptibil
ity X(<i>), 

(4'TT<i>) K(<i>) = -c- Im x(<i>) (8) 

is the absorption or the gain coefficient of the medium, depending on the sign of 
Im X(<i>). In the case of an inverted two-level atomic medium with a single, isolated 
gain line, 

Im X(<i>) < 0 or K(<i>) < 0. (9) 
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From the zero-frequency sum rule, it follows that the dielectric constant near zero 
frequency is less than unity and hence that the index of refraction near zero 
frequency is also less than unity. Therefore, the phase, group , energy, and signal 
velocities near zero frequency all exceed the vacuum speed of light, as before. 
However, because we have now proved this beginning from the Kramers-Kronig 
relations, it is clear that this result does not depend on the validity of the Lorentz 
model nor on that of the two-level model. Also, because we have assumed causality 
from the very beginning, it is clear that causality cannot be violated. The Kramers
Kronig relations imply that any medium with gain must in general give rise to 
superluminal propagation in a transparent spectral window separate from the region 
with gain. 

To understand how this process of superluminal propagation arises physically, it 
is helpful to consider the behavior of the electric susceptibility x(O) of the medium 
near DC. In the normal case of an uninverted (absorbing) atomic medium, the 
susceptibility x(O) is always positive, as can be seen from the above zero-frequency 
sum rule. Thus, if one were to insert such a medium between two charged capacitor 
plates, energy flows from the electric field into the medium. As a consequence of the 
fact that energy is initially transferred from the wave to the medium in order to 
polarize it, the phase shift of the forward scattering amplitude from each atom in this 
medium near zero frequency has a sign such as to retard the transmitted wave 
packet. Therefore, the index of refraction of the medium is greater than unity and 
the propagation speed is subluminal. However, when the medium possesses an 
inverted atomic population (maintained, for instance, by optical pumping), energy is 
stored in the medium. It now becomes possible to transfer this energy from the 
medium to the wave. The DC susceptibility of the medium x(O) is now negative. 
Hence, the sign of the phase shift of the forward scattering amplitude from each 
atom is reversed. As a result, the transmitted wave packet is advanced rather than 
retarded and the index of refraction is now less than unity, leading to superluminal 
propagation. 

In analogy with magnetism, where diamagnetism and paramagnetism correspond 
to the screening and antiscreening, respectively, of the magnetic field by the medium, 
here we have the phenomena of dielectricity and parelectricity corresponding to the 
screening and antiscreening of the electric field, respectively (see FIGURE 2) .  
Parelectric susceptibilities x(O) < 0 always lead to superluminal phase veloci ties of 
low-frequency (e.g., radio) waves through the relation, n (O) = ( 1  + 41'Tx(O)] l 2, and 
thus to superluminal group velocities for wave packets because the medium is 
essentially dispersionless at low frequencies. Also, just as a small magnet can be 
levitated above a superconducting surface, here a small ferroelectric sphere can in 
principle be levitated above a strongly parelectric surface. The origin of this 
phenomenon lies in the fact that the image charge seen by a real charge outside the 
parelectric medium has the same sign, leading to electrostatic repulsion. This 
levitation phenomenon should occur at room temperature, in contrast to the low 
temperatures needed for the analogous superconducting phenomenon. However. 
note that parelectricity is only possible in media not in thermodynamic equilibrium. 14 

In the case of normal (uninverted) transparent media, it is possible to view wave 
packet propagation as a pulse-reshaping process, in which the early part of the 
incident wave packet is absorbed by the medium in the process of virtual absorption. 
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(a) Diamagnetism (Xm < 0) (b) Paramagnetism (Xm > 0) 

(c) Dielectricity ex. > 0) (d) Parelectricity ex. < 0) 

FIGURE 2. The response of media to an applied static B or E field: (a) diamagnetism (the 
screening of the B field, as in the Meissner effect), (b) paramagnetism (the antiscreening of the 
B field, as in the alignment of electron spins), ( c) dielectricity (the screening of the E field, as in 
ordinary dielectrics), and (d) parelectricity (the antiscreening of the E field, as in media with 
inverted atoms; see FIGURE 1 ). The last case is always accompanied by superluminal propaga
tion (e.g., of radio-frequency wave packets) because the medium is dispersionless near DC. 
Note that the parelectric medium should not be confused with the paraelectric one, which is a 
ferroelectric medium above its Curie point. 
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followed by the process of emission during the later part of the incident wave packet, 
thus producing a retarded transmitted wave packet (see FIGURE 3a). It should be 
emphasized that no real transitions occur during these processes. In particular, the 
emission during the later part of the incident pulse, for example, the trailing 

retardation 

transmitted wave packet incident wave packet 

� virtual absorption 

z 
(a) normal, uninverted atomic medium 

incident wave packet 

reabsorption 

\..__;' 

advancement 

, ' 

·I 
transmitted wave packet 

virtual emission 

(b) inverted atomic medium 
FIGURE 3. (a) A wave packet propagating through an uninverted atomic medium and (b) a 
wave packet propagating through an inverted atomic medium. The insets depict Feynman 
diagrams where (a) virtual absorption by an atom in its ground state g is followed by reemission 
by the atom in its excited state e and (b) virtual emission by an atom in the excited state e 
precedes reabsorption by the atom in its ground state g, thus leading to an advanced wave 
packet and hence superluminal propagation. 
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exponential tail of a Gaussian wave packet, is not accompanied by any real stimu
lated emission. It therefore follows that there cannot exist spontaneous emission 
accompanying the emission process during the trailing tail of the incident pulse. 
Hence, no quantum noise is added to the transmitted wave packets in these 
transparent media, in spite of the large apparent amplification of the exponentially 
small tails of the incident wave packet during 1he pulse-reshaping process. Note that 
the retardation of the transmitted wave packet due to this medium can be arbitrarily 
large, so the apparent amplification of the exponentially small tails of the Gaussian 
must also be arbitrarily large, and yet there is no accompanying addition of noise 
during this propagation process. 

Likewise, in the case of transparent media with inverted atomic populations, it is 
also possible to view wave packet propagation as a pulse-reshaping process, in which 
the early part of the incident wave packet is apparently amplified by the medium in 
the process of virtual emission, followed by the process of absorption of the later part 
of the incident wave packet, thus producing an advanced transmitted wave packet 
(see FIGURE 3b). Expressed as a Feynman diagram, this process corresponds to a 
crossed diagram (see the inset of FIGURE 3b) , in which virtual emission precedes 
absorption, and thus leads to an advanced wave packet. Again, no real transitions 
occur during these processes. In particular, the virtual emission during the early part 
of the incident pulse, for example, the leading exponentfal tail of a Gaussian wave 
packet, is not accompanied by any real stimulated emission. Therefore, it follows that 
there cannot exist any spontaneous emission during the virtual emission process. 
Hence, virtually no noise is added to the transmitted wave packets in these transpar
ent media. However, in contrast to the case of the uninverted medium, here 
spontaneous emission from the inverted atoms in the extreme low-frequency tails of 
the Lorentzian gain line can exist in principle. Nevertheless, spontaneous emission 
near zero frequency is suppressed due to the two facts that Im x( w) -+ 0 as w -+ 0 and 
that the phase space volume for the spontaneously emitted photon rapidly vanishes 
as w -+ 0, so an arbitrarily small amount of noise can in principle be added to the 
leading tail of the transmitted wave packet. 

To sum up, the Kramers-Kronig argument demonstrates that, in principle, 
Sommerfeld and Brillouin's phase, group, energy, and signal velocities can all be 
superluminal far below a gain line, without violating causality. 10.is Tne front velocity, 
however, is never superluminal because a discontinuity possesses frequency compo
nents that extend to infinity and thus propagate at the vacuum speed c (see FIGURE 
1) .  Note that the infinite-frequency (or "f") sum rule implies that any real medium 
must have spectral regions with absorption as well as gain. Nevertheless, it should be 
possible in practice to obseive superluminal effects outside of a strong gain line. For 
example, a sufficiently strong, low-frequency gain line can give the dominant contri
bution to the zero-frequency sum rule, in spite of stronger absorption lines at higher 
frequencies. As a second example, for the case of two nearby gain lines of compa
rable strength, Steinberg and Chiao16 have shown that there exists a point between 
these lines with a highly superluminal group velocity, but with zero group-velocity 
dispersion, so nearly dispersionless superluminal propagation is also possible there. 
As a third example, within a bandwidth of approximately half the effective plasma 
frequency on either side of a strong gain line, but outside the gain bandwidth 'Y 
(assuming that wp » -y), Bolda et a/. 1 7 have recently predicted that negative group 
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velocities should be obseivable. A possible practical problem with the above schemes 
might be the onset of oscillation due to spurious feedback, whiclt will produce laser 
action on the gain line; however, even in the presence of such lasing, the gain will 
clamp at a value equal to the loss and thus will still lead to substantial superluminal 
effects. 

These predicted superluminal effects are different from the pulse-reshaping 
phenomena, which arise from the propagation of laser pulses inside the gain band, 
known as "superluminous" propagation.2•18 Here, we are outside of the gain band, in 
a spectral window in which the medium is essentially transparent. It is important to 
differentiate "superluminous" from "superluminal" propagation. In the former, 
there exists real amplification and hence real transitions associated with stimulated 
emissions occurring during the pulse reshaping, whereas there are only virtual 
transitions in the latter. Because spontaneous emissions always accompany stimu
lated emissions, "superluminous" propagation is always accompanied by noise, 
whereas "superluminal" propagation is virtually noise-free. 

These effects, of course, are also different from the highly subluminal ones in 
transparent spectral regions next to an absorption line. 19-21 (Obviously, the sublumi
nal case does not even pose an apparent conflict with relativity, whereas the same is 
not true of the superluminal case, which makes it the more important one to 
understand.) Moreover, these effects are different from the previously obseived 
superluminal group velocities of wave packets propagating inside an absorption band 
discussed above.3 Here, the transmitted wave packets are unattenuated; further
more, Sommerfeld and Brillouin's energy and signal velocities are now superluminal. 
These effects are different from the recently obseived superluminal tunneling of 
photonic wave packets4•8 for the same reasons. Also, recently, a superluminal 
nonlinear pulse-reshaping phenomenon has been obseived,22 but here we shall 
restrict ourselves only to linear phenomena. 

The explicit calculations discussed so far have all been carried out using the 
classical Maxwell equations and this immediately raises the question of their quanta) 
significance. The experimental situations under discussion involve the propagation of 
weak, off-resonance fields; consequently, they are described by the linear Maxwell 
equations for a fixed medium. Because this classical model provides no scale of field 
strengths, the natural scale is set by the vacuum fluctuation fields that occur in the 
quantum theory. Thus, the question is whether quantum fluctuations can somehow 
wipe out the superluminal propagation phenomena obseived in the classical theory. 
The answer to this question is no, provided that the classical solutions can be given a 
Born-like interpretation as "photon wave functions". This approach requires some 
care because of the nonexistence of a photon position operator or, equivalently, the 
nonexistence of a local number operator representing the number of photons in a 
finite volume.23 Fortunately, this fundamental property of the electromagnetic field 
does not pose a serious difficulty in the cases of interest. These experimental 
situations satisfy the conditions for the slowly varying envelope approximation and it 
has been argued by several researchers24 that there is a uniquely defined local 
number operator in that limit. This supports a Born-like interpretation of the 
classical wave packet; that is, the photodetection rate will be proportional to the 
square of the field. Thus, the advancement of the classical wave packet correspond
ing to a superluminal group velocity can be interpreted as an advancement of the 
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time at which the photon counting rate is a maximum. The classical group velocity is 
the most-probable-photon velocity, that is, the single-photon wave packet group 
velocity, which can therefore become superluminal. In this context, the fact that the 
classical front velocity is the vacuum speed of light is closely related to the vanishing 
of the field commutators for spacelike separations. This fact has been used to show25 
that no information can be transmitted superluminally; this suggests that the 
arbitrary definition of signal velocity used by Sommerfeld and Brillouin should be. 
replaced by the front velocity as the information velocity in the quantum theory. 
However, the meaning of information at the quantum level needs further clarifica
tion. 

As further support for the general arguments adduced above, we have formu
lated a microscopic, second-quantized model for the quantum propagation of 
few-photon states through an inverted system of two-level atoms and we are 
currently beginning to carry out stochastic simulations of the operator equations. We 
will also investigate an equivalent formulation in which one solves the equations of 
motion for photon correlation functions. This procedure has the advantage that the 
correlation functions directly describe the results of counting experiments. Both of 
these techniques will allow us to investigate the influence of spontaneous emission in 
the few-photon limit. As pointed out above, there are essentially no real transitions, 
and hence no stimulated emission, associated .with th� low-frequency tail of the 
Lorentzian gain line, but the continuous pumping required to maintain the inverted 
system can lead to superfluorescence or amplified spontaneous emission near the 
line center. The effects of these phenomena on the superluminal propagation of 
off-resonant test wave packets will also be calculated by means of the microscopic 
model. 

We are performing experiments to demonstrate these striking phenomena using 
a resonantly enhanced stimulated Raman transition in an optically pumped ru
bidium vapor cell to generate a strong gain line. Pulses propagating in transparent 
regions with bandwidths on the order of a gigahertz adjacent to this line should 
exhibit negative group velocities, in which the peak of the transmitted wave packet 
should leave the exit face of the cell before the peak of the incident wave packet 
would enter the entrance face of the cell. 

Applications of this superluminal effect extend beyond optics. In electronics, one 
can use this effect to compensate for the retardations of signals (e.g., in computer 
circuits) caused by ordinary dielectrics, but not beyond the limit set by Einstein 
causality. In astrophysics, superluminal group velocities may be responsible for 
certain phenomena observed in radio galaxies. In condensed matter physics, superlu
minal, indeed infinite, group velocities are also possible. One example may arise in 
the "incompressible quantum fluid" described by the Laughlin wave function for the 
quantum Hall system. 26 Because of the scarcity of low-lying excited states, this system 
is "incompressible"; that is, in its linear response to weak perturbations, it remains 
everywhere adiabatically in its ground state, implying an infinite group velocity for 
these weak perturbations. 

Another example of superluminality may occur in superftuid helium, arising from 
what London called "the rigidity of the macroscopic wave function", which is 
associated with the entangled many-body quantum state of the superfluid. Long
range, macroscopic quantum interference in superfluid 4He manifests itself in the 
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quantization of vortex circulation in units of h im,  where m is the mass of the 4He 
atom.27 Due to the Bose nature of the 4He atoms, long-range atomic coherence 
between atoms in the superfluid, no matter how distant they are from each other, 
-becomes possible. Again, due to a scarcity of low-lying excited states, the superfluid 
system stays adiabatically everywhere, and hence "rigidly", in its ground state when it 
is weakly perturbed on an atomic scale. 

Specifically, all the streamlines around a weakly perturbed vortex line, whose 
velocity remains at all times less than the Landau critical velocity, follow the moving 
vortex center instantaneously in the quantum adiabatic approximation. Note that the 
spatial scale of the perturbation is determined by the vortex core size, which is on the 
order of angstroms. From the known dispersion relation for the elementary excita
tions of the superftuid, it follows that the adiabatic approximation should be valid 
when the frequency components of the motion of the vortex core are less than the 
roton gap frequency (180 GHz). (Note that the roton gap frequency does not depend 
on the spatial extent of the superfluid.) Then, the many-body wave function can 
adjust itself everywhere adiabatically, and hence instantaneously (within a time scale 
set by the inverse of the roton gap frequency), to the changing position of the vortex 
core. This implies an effectively instantaneous response of all streamlines, no matter 
how far away they are from the vortex center, to the motion of the vortex core. This 
conclusion also follows from solutions of the Kirchhoff-Onsager equations.27•28 

The physical origin of this "rigidity" lies in the discreteness of phonon emission 
(i.e., the fact that the vortex core can only emit zero, one, two, etc., phonons, but not 
a fraction of a phonon). Combined with the restriction that the vortex velocity never 
exceeds the Landau critical velocity, this implies that phonon emission by the vortex 
core is forbidden at all times during its motion. Because no sound waves can be 
emitted at all by the gently perturbed vortex core, the speed of sound cannot be the 
relevant speed responsible for the retarded response of distant streamlines to these 
weak perturbations. (If we assume the contrary, then a sound pulse would be 
produced at the sonic front upon the application of a weak pulsed perturbation to the 
vortex, contradicting the assumption that no sound is emitted at all by the vortex 
core.) This is similar to the Mossbauer effect, in which the entire crystal in a 
zero-phonon state recoils in recoilless nuclear emission of gamma rays: here, the 
entire superftuid stays adiabatically in the zero-phonon, zero-roton state and thus 
responds instantly everywhere, and hence "rigidly", to the motion of the vortex core. 
This situation is also similar to that of the Born-Oppenheimer approximation, in 
which the electronic wave function adjusts itself effectively instantly everywhere 
inside a molecule to slow changes in the configuration of its nuclei. This effective 
instantaneous-action-at-a-distance (i.e., infinite phase and group velocities) only 
works for gentle perturbations of the vortex position that are smooth and finite in 
bandwidth, for example, for a Gaussian pulse whose frequencies are much less than 
the roton gap frequency, so the adiabatic approximation is valid. Again, as in the 
above optical case, Einstein causality is not violated. 

There results the possibility of long-range mass currents that can oscillate at high 
frequencies. This leads to a possible application to gravitational antennas: These 
high-frequency mass currents can generate as well as detect gravitational radiation, 
in a superfluid helium gravitational wave antenna. Because of the linear, reciprocal 
nature of this antenna, it can be used as both an emitter and a receiver of 
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gravitational radiation, with equal efficiencies.29 The efficiency of existing gravita
tional antennas, such as a Weber: bar constructed out of normal matter, is extremely 
small because the velocity of sound v5, whose magnitude is a measure of the rigidity 
of the bar, is typically five orders of magnitude smaller than the velocity of light c. As 
a result, the length of the Weber bar is far too short compared to the gravitational 
radiation wavelength for it to be an efficient antenna. Because the Weber bar is a 
mass-quadrupole antenna, its efficiency30 is reduced by at least a factor of (v5/c)6 = 
10-3o from an analogous electromagnetic antenna. The search for an efficient 
gravitational antenna is therefore the search for an extremely rigid or incompressible 
state of matter, in which the effective velocity of sound for some unusual mode is 
luminal or superluminal. In a rigid system, 'Ye can make the individual parts radiate 
together coherently, whereas, in a typical Weber bar, the velocity of internal 
mechanical modes is quite small and the individual parts are phased very poorly 
(destructive interference results). The question arises as to whether or not the 
"rigidity of the macroscopic wave function" in superfluid helium, in the sense 
discussed above, may provide a solution to this problem. [Although light can be used 
in a gravitational antenna, as in UGO (Laser Interferometer Gravitational wave 
Observatory), the mass contained in the light is extremely small, so again the antenna 
efficiency is extremely low.] 

One way to construct such an antenna is to attach a charged particle, for example, 
an electron, to the core of a vortex in superfluid heliul]l. The binding energy31 of an 
electron to the vortex core ( 1040 GHz) is much larger than the roton gap energy (180 
GHz), so it is rigidly attached at all times (again, in the quantum adiabatic approxima
tion, the electron stays adiabatically in the lowest bound state of the potential 
well formed by the gently moving vortex core; also, although the electron forms a 
bubble of a size of 20 A, it cannot generate any elementary excitations when it moves 
slower than the Landau critical velocity). Now, let us drive (by means of the Magnus 
force) high-frequency, small-amplitude oscillatory motions of the vortex by means of 
an electromagnetic wave, for example, in the few gigahertz range. In this way, 
macroscopic, high-frequency (but adiabatic) mass currents throughout the superfluid 
can be driven by electromagnetic radiation. To calculate these currents, we start 
from Kirchhoff-Onsager equations of vortex motion, modified to include the effect of 
a tightly bound electron coupled to external electromagnetic fields: 

dy; 
= - [  Q 'E0t ] sin flt - {�) [( 1  + R2)] � (x; - xi) 

dt PmK( l + R1 ) 4'11' ( 1 + R1 ) i"i ri 
' 

Q 'B 4'1T(Q ' )2 
ri = (x; - xi)2 + (Y; - Yi)2, R1 = pKC , and R2 = 

PK2 , 

(10) 

(11) 

(12) 

where Pm is the mass fluid density, Q' is the charge per unit length on a vortex, and 
K = him is the unit of vorticity. 

In this section, we explicitly calculate the gravitational radiation emitted by an 
oscillating superfluid vortex. The calculation must be done within the framework of 
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classical general relativity, where space-time curvature is related to massive sources 
by the Einstein field equation: 

(µ., v = 0, 1, 2, 3), (13) 

where R,..v is the Ricci tensor, g,..v is the metric, R = R: is the scalar curvature, G is 
Newton's constant, and T,..v is the stress-energy tensor. In our case, the sources are 
quantum mechanical in nature, so we make the assumption that T,..v should be 
replaced by its quantum expectation value (T,..v), just as in semiclassical optics one 
substitutes (P; ) for the polarization P; as the source in the wave equation V2E -
( 1 /c 2 ) iJ2E/iJt 2 = (4-rr/c 2) iJ2P/iJt 2. When the field equations are linearized 
[g,..v = T)p.v + h,..v, where 'l'l,..v = diag(- 1 ,  + 1 ,  + 1 , + 1 ) and l h,..v l  « l], they reduce 
for nonrelativistic sources to32 

V2ho; - (.!.)(!...)ho; = - ( 16-rrG)j; 
c2 iJt2 cl 

(i = l, 2, 3), ( 14) 

where j; is the mass current density, and we have chosen the gauge where h00 = 0, hii = 0, and ho; ¢ 0. The problem is formally identical to electromagnetic radiation in 
the Lorentz gauge, where V2A - ( 1 /c2)iJ2A/iJt2 = -(4-rr/c)j. The solution for the 
vector potential is 

AEM(t) = (�) i £ I dV, 
c v r 1-r/c 

(15) 

where r is the distance from the observer to a given infinitesimal source volume 
element and V is the volume of the radiator. The solution to equation 14 can be 
found by replacing on the right-hand side of equation 15 the electrical current 
density by the mass current density as the source and by replacing on the left-hand 
side the vector potential by the components of the metric ho; as the generated fields. 
In other words, we can calculate the electromagnetic power (treating the mass 
currents as electrical currents) and then substitute e2 -+ 4Gm2 at the end to find the 
radiated gravitational power. 

The flow of helium around a superfluid line vortex is quantized according to the 
Feynman-Onsager relation: 

( 16) 

where the oriented path C contains a single vortex of topological charge ± 1 inside. 
For a single vortex in an infinite fluid, we must have, by symmetry, 

( 17) 

These velocity fields add linearly when several vortices are present. Also, there is a 
finite vortex core radius r0 to prevent divergence near r = 0, where h/mr0 is roughly 
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the Landau critical velocity. However, for 4He, this core size is microscopically small 
and can be ignored for the remainder of the calculation. 

The geometry of a possible gravity wave emitter is shown in FIGURE 4. A 
cylindrical Dewar of radius R contains a single line vortex near the wall. To this 
vortex, we attach charges, as discussed above, and then apply an oscillating electric 
field to cause radial harmonic motion of the vortex center. (The Magnus force law 
causes the vortex to actually move perpendicular to the applied field.) Care must be 
taken so that the velocity of the vortex never exceeds the Landau critical velocity, 
roughly 50 m/s. The oppositely charged image vortex at radius R2/r acts to satisfy the 
boundary condition that the radial component of the velocity field must vanish at the 
Dewar wall . 
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FIGURE 4. Gravitational wave antenna consisting of a vortex line in superfluid helium 
undergoing simple harmonic motion near a cylindrical Dewar wall. 

To complete the calculation, we need to make the following assumpti�ns: ( 1 )  the 
system is changing slowly enough that no elementary excitations can occur; thus, by 
the quantum adiabatic theorem,33 the system remains in its instantaneous ground 
state; (2) the vortex remains parallel to the Dewar's axis at all times, with no pinning 
at the ends lest longitudinal vortex wave (Kelvin) modes be excited; (3) the Dewar 
walls are infinitely massive. Assumption 2 requires a somewhat idealized situation, 
whereas assumption 3 ensures that the fluid center of mass cannot move. These 
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assumptions allow us to use the known fluid flow pattern to calculate AEM for an 
observer in the radiation zone using equation 15 for the equivalent electromagnetic 
problem. This solution gives E and B and hence the Poynting ve�or S. As mentioned 
above, we then substitute p; --+ 4Gp� to get the gravitational power flux. The 
resulting power is 

(h2Gp�2)(v0)2 
P grav = m2c ;- J /(!l, kR) d!l, (18) 

where 
m 

is the 4He atomic mass, v0 is the oscillation speed of the vortex core relative 
to the Dewar (v0 < Vmax = 50 m/s), L is the length of the Dewar, kR = (w/c)R is the 
size of the system relative to a wavelength, and /(!l, kR) is an angular factor of order 
unity. Using an external electric field to accelerate the vortex, the equations of 
motion (equations 10-12) yield the oscillation speed, v0 = Q 'E0/KPm• and substitu
tion into equation 18 gives 

(GQ2E�) 
P grav = -

c
-3 - J /(!l, kR) d!l, ( 19) 

where Q is the total charge on the vortex. This leads to the Larmor-like formula for 
total power radiated gravitationally by an accelerated mass M, whose acceleration is 
a :  

(20) 

where F = Ma is the force exerted on this mass. Here, F = QE0 is the force exerted by 
the external field on the charged vortex line. To get an estimate of the size of this 
effect, we assume Q = 300e and £0 = e I a � = 6 x 109 VI cm. Then, P grav = 2 x 10-45 
W, an undetectably small quantity for a single vortex line. In effect, only the matter 
within a distance d of the vortex line, where d is the amplitude of its oscillation, is 
radiating appreciably. This power would increase by a factor of N2 due to coherence 
for the case of N vortex lines moving synchronously, but it would be difficult to 
achieve the vortex line density required to obtain a measurable power output. An 
alternative geometry would be a system of vortex rings, but we have not yet done the 
explicit calculations. 
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Qualitative View of Quantum Shot Noise 
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INTRODUCTION 

The last decade has seen an explosion of interest in electron transport in 
mesoscopic systems. 1 •2 In these systems, we can view much of the quantum mechani
cal world known to us from atoms and molecules, in laboratory structures. Noise in 
such systems is a subject of growing interest and is more sensitive to the correlation 
between electrons than steady state transport . The correlations involved include 
those due to the Pauli exclusion principle, as well as those due to the Coulomb 
interaction between electrons. Thus, for example, we can calculate the electrical 
conductance of an elastically scattering sample, in the noninteracting electron 
approximation, from the transmission of wave packets without regard to the occupa
tion probability of the receiving reservoir.3 On the other hand, in noise calculations,4 
we have to go beyond that. If an incident wave packet from the left-hand reservoir 
and one from the right scatter into the same outgoing state, in the noise calculation 
we have to allow for the relative probability with which none, one, or both of the 
incoming states are occupied. Let us make this distinction between noise and 
conductance in an even simpler way. lf we calculate the conductivity of a metal from 
the classical Drude formula, u = ne2T/m * , we get a reasonable answer (n is the 
electron density, T is the mean free time, and m * is the effective mass). On the other 
hand, in the evaluation of noise currents, the totally occupied energy ranges, way 
below the Fermi level, do not contribute . A stream of electrons, for example, a 
succession of wave packets in a given energy range, which is fully occupied, is 
noiseless. This was understood more than 50 years ago,5 in contradiction to some 
implications in the mesoscopic noise literature, suggesting that as modern understand
ing. 

An electron stream is regulated not only by the Pauli principle, but also by the 
Coulomb interaction between electrons. This was well understood in the analysis of 
noise in vacuum tubes.6 In a vacuum diode, where the applied voltage is large enough 
so that the space charge field due to the emitted electrons is negligible, all thermally 
emitted electrons are collected at the anode and we observe shot noise. If the voltage 
is reduced or the emission current increased, then we observe a transition to space 
charge-limited emission, where the current is determined by the applied voltage, and 
the Coulomb interaction between electrons becomes significant. Some of the emitted 
electrons are returned to the cathode by the repulsion of other electrons. In this case, 
the fluctuations in the current reaching the anode are reduced well below that 
predicted by the shot-noise equation for the arriving current. 

The use of noise as a diagnostic probe, which is more sensitive than simple 
transport, has been recognized elsewhere.7•8 On the other hand, this must be 
balanced, realistically, against the fact that conductance measurements can be 
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accurate. Noise measurements, even under the best conditions, are difficult and 
inaccurate. This intrinsic difficulty is further aggravated by the fact that mesoscopic 
samples are typically beset by a number of additional noise sources, less fundamental 
than those we will emphasize. 

Shot noise in diodes in which the applied voltage is large enough to overcome the 
retarding space charge field in front of the cathode is given by 

(i 2)av = 2e2(dn/dt)llv. ( I.I) 

Here, (i 2)av is the mean squared noise current in a frequency range llv; e is the 
electronic charge, but more generally can be interpreted to be the charge flow in an 
external circuit due to the elementary stochastic event; and (dn/dt) is the rate at 
which these events occur. The right-hand side of equation 1 . 1  is, more frequently, 
written in the form 2e/llv, where I is the current flow. 

DICHOTOMY IN IBE LITERATURE 

Mesoscopic samples, which scatter elastically, are typically characterized by a 
transmission matrix tii, denoting the ratio of the wave transmitted into an outgoing 
transverse channel i to that incident in channel j. The characteristic values of ut are 
denoted by T;. In this case, a widely accepted result9 f?r the noise current, at zero 
temperature, is 

(2.1) 

Under the same conditions, the current flow is given by 

I = v(�) � T;, (2.2) 

where V is the applied voltage. We see that the result in equation 2.1 is less than the 
result obtained by applying equation 1 . 1  to equation 2.2. This is manifested by the 
appearance of the factors (1 - T;) in equation 2. 1 .  These results apply to the case of 
independently transmitted electrons; no Coulomb correlation is taken into account. 
The factors (1 - T;) are attributed to the Pauli principle and this is most easily 
understood in terms of a wave packet representation. IO The Pauli principle prevents 
the assignment of more than one outgoing electron per successive emerging wave 
packet and thus regulates that outgoing stream more than equation 1 . 1 ,  derived for 
classical particles, would allow. This reduction is now often referred to as shot-noise 
suppression. Beenakker and Biittiker1 1  pointed out that the distribution of the 
eigenvalues T; is bimodal, in the case of a channel with diffusive carrier motion. 
There are a few relatively well transmitting channels and many that transmit very 
poorly, 12 as made particularly clear in reference 13. As a consequence, reference 1 1  
showed 

1 � T;(t - T;) = 3 L T;. (2.3) 
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Thus, the shot noise is cut to one-third of the naive classical expectation, 2e/tlv. 
There are other cases that have been analyzed, 14 not corresponding to diffusive 
scattering, that behave similarly, but with coefficients in the eqJivalent of equation 
2.3 differing from the exact value of VJ. 

A much more drastic reduction, of order I'/ L, where I' is the mean free path and 
L is the sample length, has been obtained1 1 for the case where there is incoherent 
scattering along the sample and Coulomb interactions are taken into account. In this 
particular analysis, the scattering is provided by entry of the electrons into reservoirs 
tied into the sample, along its length. The reservoirs provide a source of incoherence; 
the carriers emerging from the reservoirs do not remember their earlier history. The 
reservoirs absorb carrier energy and the reservoirs are presumed to have no net input 
current. As a result, fluctuations in current in one link cause the electrochemical 
potential of adjacent reservoirs to change and hence change the current in the 
remaining links. 

Essentially the same l'/L reduction was obtained 15 from a semiclassical model of 
a metallic conductor. Another example is as follows: Take a set of N identical 
classical diodes with full shot noise, connected in series, and allow for their shunt 
capacitances. Then, the mean squared current fluctuations in an external short 
circuit will be ( 1 /N)2e/tlv, with 1 /N taking the place of l'/L. Note that al lowance for 
capacitive circuit effects is equivalent to some allowance for Coulomb interactions. 
Shot-noise reduction similar to that for series diodes has been observed for tunneling 
junctions placed in series, in the case where quantum coherence is disrupted after 
each tunneling event . 16 This observation is related to a number of theoretical 
analyses.8• 1 7-19 The original prototype for such noise calculations, with incoherent 
tunneling structures in series,20 addressed the more difficult question of the probabil
ity of large noise excursions rather than the small signal noise spectrum of interest 
here. 

A very similar sort of I'/ L reduction was also invoked in a derivation, by Albert 
Rose,21 of thermal equil ibrium noise, for nondegenerate conductors, from a shot
noise viewpoint. He takes the elementary stochastic charge transfer event in equa
tion 1 . 1  to be the result of an electron moving through a single mean free path. 
Therefore, he replaces e in that equation by e(l'IL). This approach was also 
described in section III of reference 15, without awareness of Rose's earlier 
discussion. 

A number of other theoretical calculations end up with results that do not exhibit 
an I'/ L reduction. This includes a semiclassical theory22 where noise is evaluated in 
terms of the transmitted carriers crossing a surface at the ends of the sample and 
where no Coulomb interactions of any kind are allowed. Nagaev's theory of noise in 
metallic point contacts23 averages carrier flow over a volume and fails to exhibit the 
I'/ L reduction. Calculations by de Jong and Beenakker24 for semiclassical diffusive 
transport, with no quantum mechanical coherence, but with energy-preserving 
elastic scattering and with noise evaluated at a plane near the terminating reservoir, 
also yield (Vl)(2e/tlv) for the noise current, without an l'/L factor. It is our purpose to 
elucidate this dichotomy and to gain a better understanding of the I'/ L factor. We do 
so in a qualitative and suggestive physical way, leaving room for more definitive 
theories. A much more formal set of discussions, complementary to this one, is 
presented in reference 25. That is a more explicitly quantum mechanical discussion, 
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following the photon literature. Number and phase noise, as well as squeezing, will 
be found there, but no reference to electron-electron interactions. 

We conclude this section with some simple circuit theory that will typify the cases 
in which an I'/ L reduction is observed. FIGURE 1 shows a set of N identical elements 
in a series, each with a resistance R and a capacitance C. Each element has a noise 
current generator in in parallel; this is the noise current that would flow if the element 
were by itself and short-circu ited. We, instead, now ask what is the noise current 
through a short circuit for the overall series combination of N elements. (Note that a 
de short circuit is not required, only one that is effective at the measurement 
frequency.) Each noise current generator feeds into the parallel combination of its 
own RC combination and a series combination of (N - 1) elements in parallel with 
that. Thus, the externally measured current due to one of the noise generators is 

(2.4) 

FIGURE 1. Each RC combination is fed by a noise current generator, in· The noise current 
measured in the external circuit is ir. The circuit supplying the de current is not shown. 

where Y1 is the admittance of a single element, :9' + iroC, whereas YN- t is the 
admittance of the (N - 1) series elements, (N - 1 )- 1 (:9' + iroC ). Thus, 

(2.5) 

Now, however, we have N of these contributions, one for each noise generator. These 
noise sources will be uncorrelated; the mean squared noise contributions will add. 
Thus, the total measured noise current is 

(2.6) 

Therefore, the total root-mean-squared noise current is reduced by the factor 1 /N, 
analogous to I'/ L. Note that the relative values of R and C do not matter. We can, in 
fact, include an inductor in series with each resistor, to represent electron inertia, 
and leave equations 2.4-2.6 unchanged. The case of shot-noise diodes in series is a 
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case where � = 1 IR = 0. The current through the diodes is determined by 
thermionic emission and is independent of the voltage across the diode, if that 
voltage is large enough to collect the total thermionic emission current. The 
discussion of reference 11 with reservoirs tied in along the length of the sample is at 
the other extreme. The capacitances are omitted; only resistive equilibration is 
allowed. In the case of FIGURE 1, where � and C are both present, it is the 
measurement frequency that determines whether resist ive equilibration or capaci
tive equilibration is dominant. In the low-frequency limit, it is the resistive circuit 
that matters. 

NOISE MEASUREMENT 

Noise theory papers often invoke a quantum mechanical operator and tell us that 
it is noise. Alternatively, a fictitious plane, unrelated to any measurement apparatus, 
is used and the electron flow across it is calculated. In actuality, noise is measured in 
one of two ways. Li et al. 26 use a small series resistor and measure the voltage across 
it; the series resistor is preferably kept small compared to the sample resistance. 
Alternatively, we can feed a fixed current to the sample, through a large resistor, and 
can measure the voltage fluctuations across the sample.27 The voltage fluctuations, V, 
for an open-circuited sample (at the measurement frequency) must induce a current 
that exactly cancels the noise current i flowing in the short-circuited sample. 
Therefore, 

(3 .1)  

where Z is the sample impedance. For conceptual simplicity, we will hereafter 
concentrate on the current flow as measured via the small series resistor. 

The above methods are not necessarily the only way to measure noise. However, 
in that connection, we need to warn theoreticians fascinated by quantum mechanical 
measurement. The transport systems under consideration here are dissipative. In the 
case of purely elastic scattering, the dissipation may occur in the attached reservoirs 
and not in the sample. This is not a closed Hamiltonian system. Persistent current 
flow in closed rings without attached leads, in the presence of magnetic flux, has been 
studied1 and a number of the papers in reference 1 relate to this topic. That is a 
Hamiltonian system. Furthermore, the conventional methods that we have described 
measure noise through an apparatus that is quantum mechanically incoherent with 
the transport in the sample. It is not like a Stern-Gerlach experiment or a spin-flip 
coupled to a passing electron. It is the total current, electronic flow plus displace
ment current, that is continuous in a closed circuit. Thus, the current flow in the 
small series resistor measures that total current in the sample. 

Theories that invoke the expectation value of an operator, or the electron flow 
across a fictitious plane, do not necessarily give incorrect results. However, it is 
incumbent upon those investigators to relate their methods to experimental reality. 
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WHERE IS THE IMAGE CHARGE? 

The lines of force emanating from a moving carrier in a circuit terminate 
somewhere. Following that terminating charge is a key ingredient in addressing the 
issue we raised in the second section. 

Let us first consider the case of a charge in a large metallic conductor, a medium 
densely populated by electrons. Let us also assume that there are terminating 
electrodes with magic properties, still to be defined. What happens if a carrier moves 
from position A to position B, taken for the moment to be the terminating points 
between inelastic scattering events? The carrier effectively disappears at A and 
reappears at B. We can make it disappear by neutralizing it with a compensating 
charge. Thus, the change in the image charge is that obtained by injecting a 
compensating positive charge of magnitude I e I at position A and an electronic charge 
at B. If this seems illegitimate, then break up the path between A and B into many 
smaller subsegments. At the point separating two such subsegments, we will have an 
injected electron, followed by an injected compensating positive charge. The two 
successive compensating events from such an intermediate point will cause a 
compensating time sequence of charges on the electrodes and elsewhere. Because 
the two compensating events follow each other immediately, or with a very short lag, 
no low-frequency charge transients appear else�here. Those must come from the 
charges injected atA and B. 

The electrodes are assumed to have a very high density of electrons and very little 
scattering, so the injected charge first produces an effect in the electrodes before 
producing one in the conducting sample. After a short transient related to the 
surface plasma frequency in the electrodes, this charge will be the classical image 
charge. In the case of plane-parallel electrodes held at fixed potential and large 
enough to make fringing fields negligible, the two electrodes will bear image charges 
in inverse proportion to their respective distance from the injected charge. 

The injected charge will then produce a response within the conducting medium, 
which may at first be dominated by plasma effects. 28 In the long term, however, just as 
if we injected a charge into the network of FIGURE 1, the charge redistribution will be 
dominated by conductive effects. FIGURE 2 shows a network view of this process. 
There are capacitive and resistive paths from A to each electrode with respective 
resistances and capacitances that we denote by RA i. CA i .  RAZ• and CAZ· There are also 
parallel paths directly between the electrodes, unconnected to A. A much more 
complex network between the electrodes, and including point A, can always be 
replaced by the equivalent one shown in FIGURE 2. 

A charge injected at A will first generate respective electrode image charges in 
proportion to CA t and CAZ· Subsequently, however, the actual current flow division 
will be in proportion to (RA 1) - 1  and (RAz) - 1 • Ifwe apply a voltage Vto the electrodes, 
the voltage across RA 1 will be RA 1 V/(RA 1 + RA2) and that across RA2 will be RA2VI 
(RA 1 + RAz). Thus, the conductive current flow to the respective electrodes divides in 
inverse proportion to the respective voltage drops resulting from an externally 
applied voltage. Therefore, if we inject a charge at A and then a compensating 
charge at B, the resulting charge flow in the external circuit will be eVA8/V, where VAB 
is the voltage difference between A and B resulting from the externally applied 
voltage V. 
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If we have a homogeneous medium and can neglect capacitive fringing effects, 
then RAi lRA2 = CA21CA1 and the initial capacitively caused flow in the external short 
circuit is the only external flow. These image charges then flow in through the 
conducting medium to neutralize the injected carrier, without further charge flow in 
the external circuit. In general, however, as a result of sample inhomogeneity or 
geometry, this will not hold and the long-term (low-frequency) external current flow 
is determined only by RAi and RA2· 

Quantum mechanical particles are, of course, not localizable to a point A as 
suggested in FIGURE 2. Furthermore, the neutralizing charge flow from the elec
trodes does not actually reach the injected particle, but reaches only to within a 
screening length. Nevertheless, we believe that our discussion covers the essential 
physics. In particular, if the "blemishes" just discussed are identical at A and at B, 
then our circuit theory results may, in fact, be exact. On the other hand, a conducting 
sample viewed at a sufficiently microscopic level is inevitably inhomogeneous. 

FIGURE 2. A charge injected at A will, at first, 
induce charge changes in the electrodes accord
ing to the electrostatic fields, symbolized by ca
pacitors. Over the long term, it is the conductive 
effects that matter. 

2 

The conductive response discussed above represents the Coulomb interaction 
between electrons. One carrier moving through a mean free path produced a 
response from the other carriers. In a homogeneous system, where a voltage applied 
between electrodes is dropped uniformly, an electron moving through a distance Az 
in the direction between electrodes will induce an external current flow eAz/L, 
where L is the electrode separation. Whether homogeneous or not, the sum of all the 
conductive contributions from a carrier crossing the sample will be e. There may be a 
temptation then to regard the total current flow as a sequence of uncorrelated 
electron traversals of the sample, each contributing a charge flow e. However, that 
would be wrong, the electrons are correlated, and this must serve to reduce the noise . 
This is the reduction evaluated in section IV of reference 15 and in the closely 
related earlier discussion of reference 1 1 . (Note that, in the discussion of section IV 
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of reference 15, the conductive equilibration was not invoked explicitly, but would 
yield the result given there.) 

We have left the exact definition of the extent of the journey, between two points 
A and B, somewhat vague. We alluded to A and B as terminating points between 
inelastic scattering events. This is an oversimplification. In the detailed analyses of 
reference 15, care was taken to identify separate uncorrelated charge transport 
events. The purpose of this section is to justify the ll.z/L factor, once ll.z has been 
provided from other considerations, and to emphasize that it results from electron
electron interactions. The considerations in this section are an elaboration of 
reference 29 and are closely related to a more detailed treatment provided by 
Biittiker.30 

GATE ELECTRODES 

Mesoscopic samples often have nearby electrodes in addition to those actually 
connected for current flow and for voltage measurements. These additional elec
trodes are used to define the conducting regions by repelling carriers within regions 
of a two-dimensional electron gas. If the conducting portion of the two-dimensional 
electror. gas is dense enough so that a carrier is s<;reened

.
within that gas, then these 

gate electrodes will change the short-term capacitiv1: response discussed in the 
preceding section, but will not affect the conductive response above and beyond the 
role of the electrode in defining the carrier density in the sample. After all, it is really 
the disappearance of the screening charge at an initial point A,  through conductive 
processes, and its reappearance at B that produces the external current flow. 

Let us, instead, now consider the case where the moving carrier has its image 
charge on a gate electrode rather than in the conducting medium. When the carrier 
leaves the source region and induces an image charge on the gating electrode, there 
is a capacitive charge flow into that electrode. It is the displacement current that 
flows into that electrode from the conducting region. If the carrier continues to the 
other destination electrode (drain), then the inverse sequence takes place there. 
Nothing happens at the destination electrode, and its external circuit connection, 
until the carrier leaves the screening of the gate electrode. After that, current flows 
in the circuit connected to the drain, with the details depending on the electrostatic 
geometry, the carrier density in the channel, and the scattering in the drain end of 
the channel. Clearly, while the carrier is screened by the gate, the external circuit 
sees none of the carrier's details: the Coulomb interaction and the mean free path I' 
involved in the I'/ L noise reduction cannot be effective. Thus, either the // L 
reduction will not be present or there will be a lesser reduction, depending on the 
details between the screened region and the drain. 

Clearly, a myriad of variations will be possible. If the screening by· the gate is 
incomplete, and there is some by carriers in the channel, then the conductive 
contributions reaching the drain, during the traversal under the gate, will be present 
to some extent. 

Noise measurements in reference 3 1 ,  in an ordinary field effect transistor 
configuration, under a high source-drain voltage, yielded (i 2)4v = 2.e/ll.v, where I is 
the actual source-drain current. Neither the 1'/L reduction nor the factor Yl shows 



LANDAUER: QUANTUM SHOT NOISE 425 

up. These measurements were made at a gate voltage below threshold, with a very 
small channel current. The factor \13 is derived from the exclusion principle, whereas 
these measurements are probably made on nondegenerate electrons. The lack of the 
-1'/L reduction is, presumably, due to gate screening in the presence of a very low 
carrier density. The lack of an 1'/L reduction observed in reference 27 may also be 
due to gate screening. 

OVERVIEW 

We now view the preceding discussion in the light of the matrix shown in FIGURE 
3; the left-hand labels refer to the Coulomb interaction between the carriers in the 
channel: 

(I) The upper left-hand corner of the matrix corresponds to the case that yields 
equation 2. 1 .  It is the best-understood corner of the matrix, with no 
apparent controversy. 

( I I)  If the carriers do not interact, then at low measurement frequencies noise 
cannot depend on the fine details of the trip through the sample. All that 
matters is the extent to which the number of traversing electrons, within a 
time interval, deviated from the average. Thus, the rate at which carriers 
are incident on the sample matters; after that, it depends on whether they 
are transmitted or not . Furthermore, exactly how they emerge after trans
mission matters, in view of the Pauli principle. Therefore, whether the 
scattering is coherent or incoherent (for a given resulting average transmis
sion) can only be manifested through the Pauli principle. The so-called 
"reduction" taught in reference 1 1 , resulting from the Pauli principle, was a 
result of random matrix theory applied to the transmission matrix t; ; and 
thus seems intimately related to quantum mechanically coherent transmis
sion. Surprisingly, reference 24 shows that the same results as obtained in 
reference 1 1  turn up when incoherent elastic scattering in a semiclassical 
treatment is invoked. Is the distinction between this answer and the I'/ L 

NO COULOMB 
INTERACT I ON 

STRONG COULO M B  

INTE RACT I O N  

COHE R E N T  

SCAT T E R I N G  

I 

m 

INCOHE R E N T  

SCAT T E R I NG 

II 

FIGURE 3. Classification scheme for discussion. Coulomb interaction is with other transport 
carriers within the conducting sample . 
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reduction for incoherent scattering1 1  due to the use of elastic scattering in 
reference 24? I see no reason for this and presume, instead, that the 
absence of an I'/ L reduction results from the absence of Coulomb interac
tions in reference 24. Nevertheless, it is impressive and intriguing that 
(T;( l - T; )) = (!h)(T;) can be obtained from an incoherent model. 

(III) This corner is best left to the sophisticated many-body theoreticians.32 I do, 
however, have some observations. First of all, as long as electrostatic 
interactions are present, we can expect these to regulate the electron flow 
and can expect some relative of the l'/L reduction to appear. Additionally, 
we can expect the somewhat complex electrostatic geometry to show up, 
manifesting some relative of our question: Where is the image charge? All 
too many sophisticated treatments of Coulomb interactions ignore this very 
elementary aspect. 

(IV) This is the corner that has already been treated via the lateral reservoirs1 1 
and for bulk samples15 and where the 1'/L reduction shows up clearly. 

Our discussions leave the role of incoherent scattering as the biggest mystery. It 
has been invoked in our discussion of class IV in FIGURE 3, but this does not imply 
that it is a necessary condition for that result. 

[Note added in proof: I have ascribed a reduction factor I'/ L to reference 1 1 . That 
is an oversimplification. In the model of referencc. n 1 ,  the inelastic scattering length, 
the phase coherence length, the length over which the internal electric field is 
constant, and the length over which currents can fluctuate independently are all the 
same. If that length, /in , exceeds the mean free path I', then it is (1';0/L) that 
determines the applicable reduction. However, that does not affect the basic 
dichotomy that we have stressed between reduction factors of order VJ versus those 
that can be much smaller.] 
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WOPHOLES IN BELL INEQUALITY EXPERIMENTS 

Many empirical tests of local-hidden-variables (LHV) theories (or local realism), 
via Bell's theorem, have been performed in the last two decades. 1-3 In general, the 
reported results agree with the quantum predictions, but the experiments have not 
yet refuted the whole family of LHV theories, as loopholes exist in all performed 
tests. In view of the remarkable implications of an empirical refutation of local 
realism, the performance of a loophole-free experiment becomes an important task. 

Two loophole-free experiments have been recently proposed, one by Fry,4 
involving the spin correlation of atoms, and the other by Chiao et al. ,5 involving the 
polarization correlation of photon pairs produced by parametric downconversion. 
Here, we propose a new experiment that will consist of measuring the polarization 
correlation of photon pairs produced in atomic cascades. The novelty with respect to 
previous experiments of this type1 •2 is the detection of the recoil atom. 

There are many gedankenexperiments that have been discussed as tests of local 
realism, but only a few classes of real experiments have been either performed or 
seriously proposed. In fact, most of the performed tests of the Bell inequality have 
used entangled optical photon pairs. In the seventies and early eighties, photon pairs 
were typically produced in atomic cascades1 •2 and the polarization correlation was 
measured. In the last decade, the typical sources have been nonlinear crystals, where 
photon pairs are created by parametric downconversion.3 All experiments involving 
optical photons suffer from a loophole due to the low efficiency of single-photon 
detectors. This loophole is very well known1 •2•6 and we shall not discuss it anymore 
here. However, there are other loopholes, less well known, that we shall consider 
below. 

Atomic cascade experiments are currently considered to be the �most reliable 
tests of local realism ever made. The setup of a typical experiment 1 •2 is sketched in 
FIGURE 1 (ignore, for the moment, the atomic detector). A pair of photons, emitted 
from an atomic source placed at the origin of the coordinate system, are collected by 

0This work was supported financially by DGICYT Project No. PB-92-0507 (Spain) and 
Universidad de Oviedo Project No. DF-93-2 14-42 (Spain) . 
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FIGURE I. Experimental setup for the proposed atomic cascade test. 

an appropriate lens system. Each photon in a pair may cross a polarizer and arrive 
eventually at a detector. The single and coincidence detection probabilities pre
dicted by quantum mechanics are1 

P12 = (Y.)tn[l + E cos(2a - 2b)), 
where a and b are the angles of the polarizers with respect to a given plane and fo(e) 
is an overall efficiency (correlation) parameter, which is a function of the solid angle 
covered by the lenses and depends also on all practical inefficiencies (of filters, 
polarizers, detectors, etc. ). Similarly, t1 and t2 are single efficiencies. 

A test of local realism involves checking whether equation 1 violates the Bell 
inequality,6 

Pda, b) - Pn(a, b ' )  + P12(a ' , b) + Pn(a ' , b ' ) - P1 (a ' )  - P2(b) s;; 0. (2) 

It is easy to see that equation 2 can be violated only if 

W + ../2e) > 2, (3) 

that is, the violation of local realism will occur in the region of the t, E plane 
represented in FIGURE 2 by the hatched triangle area in the upper right corner. 
However, that region is not accessible in atomic cascade experiments, even if all 
devices (detectors, polarizers, etc.) were ideal. Indeed, typical experiments lie close 
to the upper left corner, as shown by a dot in FIGURE 2; that is, the parameter E is 
fairly close to the ideal value of unity, but t is much smaller (less than 0.01) .  There 
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are two reasons for this: the low efficiency of photon detectors and the low angular 
correlation of the two photons emitted in a (three-body decay) atomic cascade. Even 
with perfect detectors, the value of t would be about 0.2, still far from the 
Bell-forbidden region, due to the fact that, most of the time, one of the photons in a 
pair enters the corresponding aperture, whereas the partner does not. On the other 
hand, if we attempt to increase t by increasing the solid angle covered by the lenses, 
then the parameter E decreases because photons not emitted in opposite directions 
are not well correlated in polarization. The net result is that all real experiments lie 
to the left of the continuous curve in FIGURE 2, always far from the Bell-forbidden 
region. This is the angular correlation loophole, pointed out 20 years ago by Clauser 
and Horne, 6 but not well appreciated until the discovery of an LHV model reproduc
ing all quantum predictions, even for ideal measuring devices. 7 Our proposed 
experiment is able to block this angular correlation loophole by detecting the recoil 
atom, as explained in the next section. 

Before discussing the experiment, we shall explain why photon pairs produced in 
a nonlinear crystal by parametric downconversion (PDC)5 or spin entangled atoms4 
may not be better candidates for a loophole-free test of LHV theories. The first 
reason is that our experiment tolerates a greater amount of noise. In fact, we propose 
to measure the single and joint probabilities involved in the Bell inequality (equation 
2) via the measurement of coincidence rates (atom-photon and atom-two photons, 
respectively). In contrast, in the other proposals,4•5 the measurement of single and 

0 . s  

0 . 5  

FIGURE 2. Polarization correlation e versus overall detection efficiency parameter t in atomic 
cascade experiments. The hatched region at the upper right corner is forbidden by the Bell 
inequality,2 whereas quantum predictions for standard experiments lie to the left of the 
continuous curve. The small dot in the upper left corner represents the experiment by Aspect, 
Grangier, and Roger. The small dot in the upper right corner is the quantum prediction for the 
proposed experiment, with ideal polarizers and detectors. 
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coincidence rates is required, which demands a strict control of noise. As is well 
known, any source of noise (e.g., ·dark rate in photon detectors or accidental counts 
in atom detectors) should increase single probabilities relative to joint probabilities, 
thereby preventing or making more difficult the violation of equation 2. 

In addition to the noise problem, both PDC and molecular experiments have 
specific problems that we shall discuss below. 

The quantum state of a photon pair produced by PDC may be represented8 by 

l lfi) = v-•  � <l>(k1s . . k�2) exp{ -i((k1r1 + k:zr2) - (w1 + w2)to1 J l k1s1 ) l k�2). (4) 
k1ok2 

where I k;s;) is a one-photon Fock state of momentum k; and spin s;. The weight 
function <I> is appreciably different from zero only when the frequencies and wave 
vectors fulfill the matching conditions 

(S) 

Due to the existence of a sum over modes, state 4 (i.e., equation 4) is entangled, 
which is a necessary condition for the violation of a Bell inequality. (If there were 
only two modes, one per photon, the state would be factorable and no violation 
would be possible. )  On the other hand, if we consider all the modes compatible with 
equation 5,  so many photon pairs are produced that any correlation between the two 
photons of every pair (so-called signal and idler) would be lost. In practice, it is 
necessary to select, by means of appropriate filters or pinholes, two (or more) narrow 
ranges of wave vectors for the signal (say, around ks and around ks· ) and similarly for 
the idler (around k; = ko - k. and around k;· = ko - ks·).  All this is very well known 
and a standard practice, but we recall it in order to emphasize that it is not just a 
convenient procedure for an easy performance of the experiment, but a fundamental 
requirement for the test of LHV theories. 

If we put two ideal detectors (i.e., 100% efficient at all frequencies) after two 
appropriate filters, the quantum prediction for the coincidence detection probability 
is 

t12 = C J dwi J dw2 l f.(w1 - w.) 1 2 l f;(w2 - <a>;) l 28(w1 + <a>2 - <a>o), (6) 

where 8(w1 + w2 - <a>o) is the (Dirac's delta-like) function that results after integrat
ing over angles and summing over polarizations the function 1 <1> 1 2, with <I> being the 
weight function introduced in equation 4. The constant C depends on the setup (e.g., 
nonlinear crystal, pumping intensity, or detection window) and/. (f;) is the transmis
sion function for the signal (idler) filter. Similarly, the single detection probabilities 
for the signal and idler will be 

t1 = C J dw1 J dw2 l /,(w1 - w,) 1 28(w1 + <a>2 - <a>o), 
t2 = C J dw1 J dw2 l .fi(w2 - w;) l 28(w1 + <a>2 - Wo)· (7) 

The relevant question is whether the parameter t. defined in equation 3, is high 
enough to allow the violation of the Bell inequality (equation 2). Despite the 
assumption of ideal detectors, we see that the parameter may be less than 100% due 
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to the filter functions. It may appear that the value t = 1 can be reached with filter 
functions having a value of 1 within some interval and 0 outside, so chosen that t1 = 
fo = t2• (We point out that one of these equalities may be easily obtained and this 
fact has been used for the absolute measurement of detector efficiencies.9) However, 
t = 1 is not possible because the filter function should be causal, that is, complex 
functions analytic in the upper-half plane of the complex variable w, in addition to 
having a modulus bounded by unity. Then, causality of the filter functions introduces 
a fundamental detection inefficiency and the question is how big it is. This question is 
equivalent to the mathematical problem of finding the maximum value of t, defined 
by equations 3, 6, and 7, compatible with the causality and boundedness require
ments of the filter functions. We have not been able to solve the problem, but it is not 
difficult to realize that the best-known causal functions, that is, the Lorentzians, give 
t s Yi, far from the value needed to violate the Bell inequality. Ifwe use pinholes and 
not filters, the situation is similar due to the strong correlation between direction of 
emission and frequency in downconverted photons. In summary, the difficulty of 
guaranteeing that whenever we collect two photons they are a correlated pair is the 
PDC equivalent to the angular correlation loophole in atomic cascade experiments. 

For the sake of completeness, we conclude this section with a discussion of 
loopholes in molecular experiments,4•10 where a diatomic molecule in an initial state 
of zero total angular momentum dissociates into two identical spin-Yi atoms in an 
(entangled) singlet spin state. In contrast with optical photon experiments, there 
exist highly efficient atom detectors, although the situation with respect to spin 
discrimination is less clear-cut than in the corresponding case of linear polarization 
of photons; Stern-Gerlach devices of the necessary efficiency, for example, certainly 
do not yet exist. However, there is another important loophole. In fact, it is extremely 
difficult to perform the measurements on the two atoms at two spatially separated 
regions, that is, in such a way as to prevent the possibility of connection between the 
measurement regions by signals propagating with the velocity of light. The reason is 
as follows. Assume that the molecule has an initial velocity dispersion �11, which 
corresponds to an energy £0 = m�v2 for the center-of-mass motion, with m being the 
mass of an atom. Ifwe use these detectors placed at a distance d from the source, the 
uncertainty in the time of arrival of the atoms to the detectors will be �T = d�< • l i • � .  
Now, the condition of spatial separation of the two detection events puts the 
constraint �T < d /c, with c being the velocity of light. This provides the upper bound 
to the energy of the center-of-mass motion, 

E0 < D2/mc2 , (8) 

with D = mv2 being the dissociation energy. For a typical experiment IO with D == 0. 1 
eV and mc2 = 104 MeV, the bound is as small as 10- 12 eV, corresponding to a 
temperature of about 10-8 kelvin. 

Fry4 proposed to ensure spacelike separation by measuring the spin projection of 
the atom by means of a short laser light pulse that selectively excites the atom to one 
of two hyperfine levels. However, no empirical data about the efficiency of th is 
technique have been reported so far. 
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ATOMIC CASCADE EX�ERIMENTS WITH DETECTION OF THE 
RECOIL ATOM 

In atomic cascade experiments, a good angular correlation could be obtained if 
the recoil atom is detected. This additional requirement allows one to increase the 
angular correlation of the photon pairs involved, provides an operational definition 
for this ensemble, and constitutes a feasible scheme for "event-ready-detectors". 1 1  
Provided that measuring devices have an efficiency above a certain threshold, 
quantum mechanical (QM) predictions for this ensemble would contradict Bell's 
inequality, making possible an experiment aJ>Je to discriminate between local realism 
and quantum mechanics at high efficiencies. 

Consider a typical experimental setup as sketched in FIGURE l, where a J = 
0-1-0 cascade in calcium-40 is selectively excited by two-photon absorption. Fluores
cence light is collected by spherical lenses and reaches an analyzer-detector assem
bly. The arrangement is combined with a detection system for the recoil atoms. The 
beam's axis has been chosen in the vertical direction Y to avoid gravitational effects. 
In a standard setup, where the beam's axis is horizontal, the gravitational field will 
deflect the scattered beam by a significant amount. As a consequence, some 
difficulties arise, for example, the nonfactorizable fonfl of the distributions that 
describe the x and z components of the incident v�Jocity and the fact that a static slit 
will collect only a small percentage of the atoms that would reach the slit without the 
gravitational field. This could be solved if the acceptance slit moves down with a 
velocity of approximately 1 mm/s. 

In order to evaluate the QM predictions for the ensemble of interest, we assume 
that each photon has a well-defined linear momentum. Provided that the recoil atom 
is detected, we can differentiate three kinds of events that could yield single or 
double counts; the cones subtended by each detector aperture are taken to be equal, 
with -3 being the half-angle: R1 [resp. R2] will refer to events such that 

and O s 82 S ir - '3 

[resp. a s 81 s 1T 

and B will refer to events such that 

and 

and 

(10) 

that is, both emissions are collected for the corresponding lens system. Note that, 
with the chosen geometry, cl>; is always between 0 and 2ir. 

If there is no absorption in the corresponding polarizer, events R; {i = 1, 2) will 
contribute as single counts, whereas events B will produce double counts if none of 
the photons are absorbed and single counts if one of the photons is not absorbed, 
independently of what happens to the other member of the pair: 

If N is the number of atoms that have actually decayed in the source and N(B) 
and N(R;) are the number of events of the corresponding class, we can write the 
quantum mechanical (QM) predictions for the probabil ities involved in equation 2 as 
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follows:6 

_ 
(�) . [N(B) N(R;)] 

P; - 2 11E'+ N + N 'Ila (i = 1 ,  2), 

( 1 ) [N(B)] 
P12(<1>) = 4 112 � [E�E� + E�E:.F(it) cos(2<1>)]1la• 
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(1 1 )  

where <I> i s  the relative angle l b - a I ;  11 i s  the quantum efficiency of  the photodetec
tors; 'Ila is the efficiency of the atomic detector; E:!: = EM ± Em, where EM and Em are the 
maximum and minimum transmitivities of the analyzers relative to an appropriate 
orthogonal basis; and F(it) is a factor that takes into account the fact that the 
polarization correlation of a photon pair decreases when the angle between their 
wave vectors departs from ir.6 Substitution of these predictions in equation 2 gives 
the following: QM predictions will violate Bell's inequality if the following inequality, 

[N(R1 ) + N(R2)] t •= N(B) (12) 

is satisfied, where we have taken E� = E; = E:!: for simplicity. In a more compact form, 
we can write the condition of equation 12 for incompatibility between the two 
formalisms as 

(t + 2) 
11 � k(it) ' 

(13) 

The minimum 11 to obtain a violation of Bell's inequality requires an arrangement 
in which the atomic detector is placed in such a way that the ratio t is minimized. We 
have found that this corresponds to a situation in which the number of events R; is the 
lowest possible. This location will be denoted OR (optimal region). 

In order to increase the recoil effect, we propose reducing the mean velocity in 
the beam, typically of order 700 m/s, by one order of magnitude with a velocity filter. 
As we will show below, a reliable experiment is obtained if we carry out a strong 
collimation process and if the atomic detector is placed far away from the interaction 
region. 

The OR is estimated by a Monte Carlo simulation. We assume that, after 
collimation and crossing the velocity filter, the atomic beam is characterized by 
normal distributions relative to the velocity components, with parameters (µ, a) 
equal to (70, 1 .4 x 10- 1 ) for the longitudinal component and equal to (0, 2. 1 x 10-4) 
and (0, 7 x 10-3) for the z and x components, respectively. Then, for transverse 
recoil momenta bounded by 

P"' E [ -0.415 , 0.4 15 ] and PTZ E [0.301 ,  0.3 19] , (14) 

where all momenta are written in cgs units normalized to 10-22, and taking a detector 
half-angle it = 32°, we obtain the following results for a simulation with N,01•1 = 5 x 
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106 events: 

N(B) 
4744.79 
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N(R1 )  
132.309 

N(R2) 
1 18.395 

and the mean value for the ratio t is 0.053. The angular correlation has been taken 
into account, giving different weights to different emissions, according to the value of 
the angle (ki . k2) .  The resulting value for the parameter C defined in equation 3 is, for 
ideal devices, equal to 0.97, whereas the parameter e takes the same value found in 
previous atomic cascade tests. Then, the proposed experiment would be represented 
by a point in FIGURE 2 that belongs to the Bell-forbidden region, as expected. 

The solid angle subtended by the atomic detector can be calculated as 

t:J' r./:J' rz !l = 2 ' Po 
(15) 

where the subscript r refers to the recoil component and P0 stands for the mean 
incoming momentum. With bounds given by equation 14, the selected solid angle is 
equal to 6.92 x 10- 10 sr, which corresponds to an area of 0.069 mm2 for a radial 
distance of R = 10 m from the interaction region. With these values, the detector 
acceptance slit must have z-edges at 647.6 µm and 686.3 µ]11, that is, its z-dimension 
must be 39 µm, with thex-dimension being almost 46 times this value. A vacuum less 
than 10-10 torr is required to reduce the probability of scattering of one calcium atom 
by background gas to 10-4• 

Substitution of the typical values for E+ = 0.99 and e_ = 0.94 gives the value of 
2.2328 for the function k( {} ) . Inserting the value of t just obtained in the inequality of 
equation 13, we require that the quantum efficiency of the photodetectors has to 
satisfy Tl � 92. 1 % for quantum mechanical predictions to violate Bell's inequality. In 
these conditions, a reliable experiment can be performed. For a detailed analysis 
concerning precise experimental requirements, resulting statistics, and production of 
spurious events, see reference 12. 

DISCUSSION 

The experiment proposed here blocks the angular correlation loophole in atomic 
cascade experiments and provides the possibility of discriminating between quantum 
mechanics and local realism in the high efficiency domain. For the proposed 
experiment, no LHV model in agreement with quantum mechanics would be tenable 
with detection efficiencies above a threshold of 0.92 and the previous compatibility 
for all ranges of efficiency is no longer valid. Only a loophole due to the static 
character of the experiment would remain open, which might be blocked using a 
scheme analogous to the one employed by Aspect et al. 2 in their third experiment. 

Let us finish with a possible improvement of the setup described here. The idea is 
to manipulate the atomic beam before it reaches the interaction region by means of a 
laser cooling technique. Preliminary results indicate that a reduction of the mean 
velocity in the beam to 2 m/s combined with suitable collimation would allow us to 
reduce drastically the distances involved in the experiment. Moreover, if the residual 
dispersion in the longitudinal velocity is reduced using a velocity filter, the allowed 
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dark rate for the photodetector could be increased by a factor of 10. A detailed study 
is in progress. 
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An Experiment to Decide between the 

Causal and the Copenhagen 

Interpretations of Quantum Mechanics 
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INTRODUCTION 

The recent findings by Rauch, Werner, and others1 demonstrating that the 
general criterion for neutron interference to occur is interference in phase space 
rather than simple wave function overlap have important consequences for the 
understanding of quantum mechanical nonlocality. The latter can be understood as 
"the far-reaching action of the plane wave components of jhe wave function as well. 
The bandwidth of these plane wave components is determined by the momentum 
resolution of the measurement with an upper limit defined by the inverse of the 
source-detector distance."2 The fact that in EPR experiments individual l k) states of 
an entangled quantum state, Iii oc 1 -k)d kh + 1 -k)i l k) i .  remain interacting at 
arbitrarily large spatial separation of the wave packets raises the question of how the 
plane wave components eikr are acted upon such as to provide the correct quantum 
mechanical results, namely, the violation of Bell's inequalities. 

In the causal interpretation of quantum mechanics (CIQM), nonlocal informa
tion transfer is attributed to "some new subquantal superluminal mechanism some
how related to Dirac's ether model."3 The CIQM is thus not very specific on the 
nature of this mechanism, apart from the statement that the velocity of the correspond
ing "phase waves" eik·4r, u = c2/v, is inversely proportional to the particle's velocity v. 
This, however, cannot explain EPR experiments with photons where v = u = c. In a 
series of papers,4 I have argued that such phase waves should rather be inversely 
proportional to the velocity of the alteration of the boundary conditions, and the 
following discussion with the aid of the standard quantum mechanical formalism is 
aimed at showing just that. 

Any experiment in interferometry is spatially confined to the region between 
source(s) and detector(s). Thus, instead of the free particle case, where the wave 
function is defined by the integral 

+ ... 
ljl(x, t) = f dka(k)e -i<t>, 

one has to acknowledge that the maximal half-wavelength is given by the distance Lo 
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between source S and detector D such that the wave function is now defined by 
+oc 
J dka(k)e -i� - L a(kn )e-i� •. ( 1 ) 

n 

Therefore, in fact, any particle in an interferometer can be treated as a "particle in a 
box" (limited by practically infinite potential walls next to S and D), where the wave 
function effectively vanishes for all times outside the said l imits. Thus, a treatment of 
the wave function similar to Greenberger's discussion5 of a nonlocal effect of moving 
the walls of a box on the phase of the wave function is required, the only difference to 
Greenberger's case being that the particle starts next to one wall and ends up next to 
the other. 

"LATE-CHOICE" EXPERIMENTS 

Now, considering that the displacement of a wall, say of the detector D, by some 
amount t::J.., = L - Lo is equivalent to the insertion of a phase-shifter in the region 
between S and D (FIGURE la), this relative displacement can be detected if the phase 
shift is inserted in one arm of the interferometer only.6 The crucial point is that an 
effect can be obtained in so-called "late-choice" experiments4 even when the 
phase-shifter is inserted at a location in the interferometer that the main bulk of the 
wave packet has already passed (FIGURE lb). As the phase-shifter acts on the plane 
wave components, this information is (in CIQM language) transported with (super
luminal) phase velocity to the last slab of the interferometer. Surprisingly, this 
statement is in accordance with the standard quantum mechanical formalism, as 
shall be shown now. 

The corresponding SchrOdinger equation is given as in reference 5 by 

1i2 a211i ( x ) a11i 
-

2m ax2 + V L(t) Iii = ih at '  
with the boundary conditions now being {O 0 ± Sy ::s; y ::s; 1 ± Sy V(y) = 

oc elsewhere 

wherey = x/L and I Sy I « 1 .  
With 

L(t ) = L0 + !::J.., (t) = L0 + ext, 

where ex can be positive or negative, and with 

o2L 
- = O  
at2 ' 

(2) 

(3) 

(4) 

(S) 
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T 
I 
I 
I 

FIGURE la. Equivalent altering of boundary conditions: shifting of a wall (left) is equivalent to 
insertion of a corresponding phase-shifter, M> (right). 

one obtains the exact solutions subject to the boundary conditions: 

(6) 

with 

(7) 

Thus, even though the functions IJln are not "stationary" in the usual sense 
because L = L (t) , one has 

(8) n 

and one obtains the expressions for the dynamical and geometrical phase contribu
tions; that is, the interference term is given by 

{ [En (L0) tlL ] max2} 
I =  2 cos �<I> = 2 cos(�<l>d + �<Pg) == 2 cos -

,,
- L t -

lrL(t) 
· 

Note that the solutions in equation 6 can be rewritten as 

'1-n (X, t) = e -ilEn(Lo)lhJl l - (.U.IL))teikn( l - (.U.!L))x 

such that, relative to the phase of the undisturbed wave function given by 

En (Lo) 
<P = -- t - k x  Ir n ' 

the total phase shift in equation 9 can be rewritten as7 

(9) 

(IO) 

(11) 

(12) 
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This expression vanishes, �<I> = 0, because 

x d [En (Lo)] v = - = - ---1 dkn h · ( 13) 

Thus, as long as in our case one continually moves a "wall" by � (t) (or inserts an 
increasingly larger phase-shifter, or moves a mirror uniformly, as in double interfer
ometry experiments), dynamical and geometrical phase shifts will always cancel each 
other exactly. However, once the movement of the wall is stopped (or the phase
shifter is inserted completely), that is, a = 0, one obtains a history-dependent net 
phase shift, 

( 14) 

where t '  measures the time span of the completely inserted effective phase-shifter. 
Considering that the phase of the "undisturbed" wave function (equation 1 1 )  may be 

s 

FIGURE lb. Schematized Mach-Zehnder interferometer within the "walls of a box" of length 
Lo l imited by source S and detectors D and D' (M, mirror; HSM, half-si lvered mirror; act>, 
phase-shifter). The path difference between the second HSM and D or D ' ,  respectively, can be 
easily compensated and is therefore neglected. 
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defined as 

En(Lo) 
<l> = -- t - k x  •= 0 h n ' 

the resulting phase shift can now be written either as 

or, equivalently, as 

(15) 

(16) 

( 17) 

where the latter expression reduces to the familiar case of a permanently inserted 
phase-shifter by choosing x = L in the phase, that is, 

(18) 

SUPERLUMINAL SIGNALIN<9 
. •  

I f  equations 3, 4, and 5 are reasonable assumptions,8 i t  follows that quantum 
mechanics predicts superluminal signaling: in a very large interferometer, one may 
let the wave packets travel to a region outside the phase shift's light cone and still 
have the effect of the inserted phase shift "practically instantaneously" in the 
interference region. This is due to the very small time lag, 

where 

8x 
8t - 81 ' = -u ' 

8x L 8x L  t c2 
u = - - = - - - = - > c  8t /li, 8t t /li, a · 

( 19) 

(20) 

Hence, if a "no signal" operation of the interferometer were such that the 
maximum number of particles is registered in the final D-beam due to total 
constructive interference, an effective "late-choice" relative phase shift of 4<1> = 'TT 
would make the particles arrive in the D' -beam instead (FIGURE lb). The superlumi
nal switching of the maximum count rate from detector D to detector D' could then 
be used for signaling. 

As has been shown earlier, this would still be completely in agreement with 
relativity theory. (For example, the resulting net phase shift can always be written 
covariantly as 

(21) 

For more details, see, for example, references 9 and 10.) 
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Also, with the superluminal phase waves thus introduced, the causality problem 
usually associated with superluminal signaling would not exist. 1° Concerning the 
well-known argument by Brillouin and Sommerfeld 1 1  that the 'front velocity t'F• at 
which the first appearance of a discontinuity propagates, never exceeds c and is thus 
the genuine "information" velocity, their analysis only holds for infinitely long phase 
waves. However, with the discrete sum over the modes of the wave function subject 
to the boundary conditions, equation 1 , the usual requirement of complex integra
tion for the wave function to vanish, that is, when k --+ x. is changed into l!ln (x. t) = 0 
for x > tip, where ''F = wn lkn = 11 � c. As to the superluminal signaling itself. it 
should be possible even if there were a substantial uncertainty .lT in the timing of the 
insertion of the phase-shifter. which would only provide a modulation of the pure 
effect, that is, 

[�<l>(.;h)] I = 2 cos �<I> cos --2- . (22 ) 

In effect, the possibility to causally influence real plane waves would thus clearly 
contradict any version of the Copenhagen interpretation of quantum theory. 

Why has this effect not been seen earlier in time-dependent experiments? One 
can assume that this is basically because of the continuous movements of the objects 
defining the boundary conditions, which, as we have seen, cance l the effect. or 
because of too-low time resolutions. The only cases where the effect has been 
observed implicitly, of course , are EPR-type experiments. which can thus be ex
plained by the action of the plane wave components. However. in principle. no 
superluminal signaling can be performed in EPR-type experiments unless they are 
also of a ' ' late-choice" type as presented here. 
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444 ANNALS NEW YORK ACADEMY OF SCIENCES 

changed. Concerning the assumptions of equations 4 and 5, one can see that the smaller 
that a is, the better the corresponding approximation will hold. See also equations 19  
and 20. 

9. GROSSING, G. 1989. Nuovo Cimento B 103: 497-510. 
10. GROSSING, G. 1988. In Problems in Quantum Physics. L. Kostro et al. , Eds. World 

Scientific. Singapore. 
1 1 .  BRILLOUIN, L. & A. SOMMERFELD. 1960. Wave Propagation and Group Velocity. Aca

demic Press. New York; see also, for example: CHIAO, R. et al 1995. This volume. ·  



Relativistic Quantum Measurementsa 

ASHER PERES 

Depanment of Physics 
Technion-Israel Institute of Technology 

32 000 Haifa, Israel 

Relativistic quantum measurements have been a controversial subject since the early 
days of quantum theory. i-4 The root of the difficulty is that macroscopic observers, 
who are inherently localized, cannot perform exhaustive tests on quantum systems, 
which are inherently nonlocal . As a simple illustration, consider the familiar pair of 
spin-i/2 particles, prepared in a singlet state and moving apart from each other 
toward two distant observers. Assume further that these particles do not interact 
with each other or with any external agent from the moment they have been 
produced in the singlet state (their Hamiltonian is H = 0) . The role of the observers 
is to ascertain the nature of the preparation state. 

Conceptual difficulties arise if you demand that every physical system, such as 
this pair of particles, has, at every instant, a well-defined quantum state (some 
authors would even want the entire universe to have a quantum state). To illustrate 
the difficulty, let our two observers be attached to different Lorentz frames, as shown 
in FIGURE 1 :  they recede from each other, with a constant relative veloci ty. Thus, in 
each one of the Lorentz frames, the test performed by the observer who is at rest 
appears to occur earlier than the test performed by the moving observer. If the first 
observer got a bad education in quantum theory and believes that the pair of 
particles has, at each instant, a definite wave function, he will say that the singlet 
state, which existed for ti < 0, collapsed into an eigenstate of S 1x and of Six for t i > 0. 
In the same vein, the second observer may say that the singlet state held for t2 < 0 
and thereafter collapsed into an eigenstate of S i,. and of S2>., as a result of her test. 

Statements like those of our fictitious observers are not only contradictory, but 
they are utterly meaningless . There is no disagreement about what was actually 
observed. However, a situation involving several observers cannot be described by a 
wave function with a relativistic transformation law. No single covariant state history 
may be defined that properly accounts for all the experimental results.5 

In this article, I shall examine whether a generalized version of the "collapse" 
postulate can be formulated in a relativistic framework. This issue was discussed by 
numerous investigators, who reached conflicting conclusions: depending on the point 
of view taken, the collapse would occur along past light cones6•7 or future light 
cones,S-10 or both, 11 or on arbitrarily curved spacelike hypersurfaces. i2 

However, we first need to understand how the notion of collapse arises in 
conventional, nonrelativistic quantum theory. The point of view that I take here is 
the "orthodox" one-the only one that is actually used by experimental physicists for 
analyzing the results recorded by their macroscopic instruments. i3 In this orthodox 

0This work was supported by the Gerard Swope Fund and by the Fund for Encouragement of 
Research. 
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FIGURE 1. In this space-time diagram, the origins of the coordinate systems are the locations 
of the two tests. The IA and t8 axes are the world lines of the observers, who are receding from 
each other. In each Lorentz frame, the ZA and zs axes are isoehronous: IA = 0 and ts = 0, 
respecti\lely. • •  

(sometimes called "Copenhagen") interpretation, quantum theory does not provide 
a universal description of nature. It merely is a set of rules for computing the 
probabilities of occurrence of definite outcomes, in tests that follow definite prcpara
tions. 14· 15 Anyone who wants to see more than that in quantum theory does so at his 
own risk. 

FIGURE 2a is a symbolic sketch of the domain of existence of a state vector-or a 
wave function-or, more generally, a density matrix. These notions do not refer to 
physical objects, akin to classical fields; they are mere mathematical tools for 
computing probabilities (more precisely, amplitudes). Note that there is no meaning 
to a quantum state before the preparation of the physical system nor after its final 
observation ( just as there is no "time" before the big bang or after the big crunch). 

When a physical system is closed, that is, completely described by its Hamilto
nian, the evolution of the state vector is a unitary mapping if we use the Schrodinger 
picture (or else, if we use the Heisenberg picture, the state vector is constant). The 
so-called collapse, which is a sudden nonunitary jump of the state vector, occurs only 
for open systems and is due to temporary external interventions, as sketched in 
FIGURE 2b, where we see a quantum system with initial state p; interacting with an 
external object (in this case, a macroscopic apparatus). After that interaction, the 
quantum states of these two systems are correlated: we no longer have tWo distinct 
systems, but a single, indivisible, nonlocal quantum system. No collapse has occurred 
as yet. However, if we deliberately ignore the quantum correlations (formally, if we 
force a classical description on the apparatus in spite of these correlations), the new 
state, Pb is essentially different from the former, p;. It is this "quantum jump" of p 

that is called a collapse and is sketched in FIGURE 2b. There is nothing mysterious 
here : the jump is solely due to an arbitrary change of the description of the 
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apparatus. This dichotomy in the description of the apparatus was repeatedly 
emphasized by Bohr:I6 

However far the [quantum) phenomena transcend the scope of classical physical 
explanation, the account of all evidence must be expressed in classical terms. The 
argument is simply that by the word "experiment" we refer to a situation where we can 
tell others what we have done and what we have learned and that, therefore, the account 
of the experimental arrangement and the results of the obseivations must be expressed 
in unambiguous language with suitable application of the terminology of classical 
physics. 

It is not the quantum system that jumps. It is our description of the apparatus that 
jumps from the classical language to the quantum language and then back to the 
classical one. 15 As a consequence of the measuring process, the apparatus has 
become inseparably entangled with the system under observation, but the language 
used for describing this event wants to distinguish that quantum system from the 
observing apparatus. That language also fundamentally distinguishes the past from 
the future, even if the dynamical laws are basically time-symmetric. 

An ideal measurement is repeatable 17 and it is mathematically represented by a 
complete set of orthogonal projectors. 18 It essentially amounts to the preparation of a 
new state, identical to the one that has just been observed. In real l ife, typical 
measurements are not of this type. They are represented by positive operator valued 
measures (POVM) with noncommuting elements. 15 If we still want to use a "col
lapse" description, that collapse must then be considered as incomplete. 19 In the 
following discussion, I shall consider only ideal measurements. 

A typical example is the double Stern-Gerlach experiment illustrated in FIGURE 
3. Here, we assume that the angular separation of the beams that leave the first 

Observation 

(a) p 

Preparation 

(b) 
Intermediate 

measurement 

FIGURE 2. (a) The state p exists between the preparat ion of the quantum system and its final 
obseivation. (b) An ideal intermediate measurement is equivalent to an obseivation followed 
by a preparation and causes a "jump" in the quantum state. 
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FIGURE 3. Two consecutive Stern-Gerlach experitnents. The drawing has been compressed by 
a factor of IO in the longitudinal direction. From left to right: the oven from which the atomic 
beam originates, the inhomogeneous magnets, and a detector plate. 

magnet is sufficient so that they do not overlap when they enter the second magnet. 
If, and only if, this condition is satisfied, it becomes possible to imagine the existence 
of quasi-classical trajectories. On the other hand, this separation should not be too 
large so that the second magnet performs essentially the same test for each one of the 
two beams that impinge on it. We may then consider the setup shown by FIGURE 3 as 
two consecutive tests rather than a single test with .four possible outcomes. We may 
imagine that each impact on the detector plate is the ena point of a trajectory that is 
not seen, but that can be calculated semiclassically. The location of the impact point 
reveals not only the outcome of the final test, but also the outcome of the test 
performed with the first magnet. (Moreover, we assume that if the second magnet 
had not been there the trajectory through the first magnet would have remained the 
same. This is a natural, but unverifiable, counterfactual assumption.) 

Taking all these assumptions for granted, the four spots on the detector plate can 
be unambiguously identified as corresponding to definite outcomes of the first test 
and also definite outcomes of the second test. Note that the first test is repeatable: its 
different outcomes are preparations of pure states. Therefore, it is admissible to say 
that the first Stern-Gerlach magnet "collapses" the state of each impinging particle 
into an eigenstate of the spin component along the magnetic field. In the present 
case, this terminology is justified, but only provided that we waive the (admittedly 
difficult) possibility of reuniting in a coherent way the two beams that leave the first 
magnet before they enter the second one. 

How does relativity theory affect these notions? The new feature is that, if 
observers are localized at different space-time points, the speed of information 
transfer between these observers is finite so that, when a delocalized quantum system 
is subject to tests by independent observers, the latter may acquire different types of 
information. Thus, having different knowledge and predictive power, they will 
legit imately attribute different state vectors to the same physical system, as was 
illustrated in FIGURE 1. Note that FIGURE 1 involved both time and space dimen
sions, whereas in FIGURE 2 there is only a time axis: nonrelativistic time does not mix 
with the space coordinates. 

Under these conditions, is it still possible to describe a partially ordered set of 
measurements by a suitably modified "collapse" formalism? I sketched an attempt to 
do so in FIGURE 4, which is the relativistic generalization of FIGURE 2. A single 
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preparation-obseivation pair of events is easy to represent. Instead of the time 
segment in FIGURE 2a, we now have a pair of light cones. The region enclosed by 
these cones is compact even if space-time is cuived, provided only that it is globally 
hyperbolic.20 The quantum state p refers to that compact space-time region and it 
allows one to compute probabilities for the various preparations and obseivations 
that can possibly be performed at its two vertices. 

If there also are intermediate measurements by mutually spacelike localized 
obseivers and we still want to use a similar language, the best that can be done is 
shown in FIGURE 4b, which is the relativistic generalization of FIGURE 2b. The 
vertically hatched regions represent the situation as it could be described by the 
initial preparer, obseiver A, and the final obseiver. The horizontally hatched regions 
have a similar meaning with respect to obseiver B. Obviously, there is no universal 
wave function valid everywhere in space-time or even in the compact region between 
the two light cones. Likewise, there is no way of defining global quantities, such as the 

(b) 

FIGURE 4. This is the relativistic generalization of FIGURE 2. (a) A wave function is a 
meaningful concept in the compact space-time region enclosed by the future light cone of the 
preparation event and the past light cone of the observation event. (b) If intermediate 
measurements are performed by mutually spacelike observers, different wave functions hold in 
partly overlapping regions of space-time, depending on who are the relevant observers. 
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total charge of a physical system, nor are there any means for actually preparing and 
observing such quantities, as this- would require having simultaneous access to a 
complete spacelike hypersurface. 

All these conclusions apply only to the case of observers whose measurements are 
highly localized, when compared with the space-time region under consideration. 
More sophisticated, nonlocal measuring processes can also be imagined. 21 In particu
lar, quantum teleportation22 could be used, with the initial preparer sending EPR 
pairs of test particles-one particle of each pair to each one of the sites being tested 
and the other particle of that pair to the final observer. The information flow then 
becomes inherently nonlocal and there is no way that I can imagine for drawing 
diagrams such as FIGURE 4b to represent these more general processes. 

In conclusion, the notion of collapse, which is of dubious value in nonrelativistic 
quantum mechanics, appears to have no meaning whatsoever in a relativistic context. 
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INTRODUCTION 

I want to discuss some aspects of the relation, or perhaps it would be better to say 
conflict, between quantum theory and relativity. It seems clear that, in order to 
understand the nature of this conflict, we need a complete quantum theory. Attempts 
to suppress this need, by using the obscurities of the Copenhagen interpretation, for 
example, merely hide the conflict and give neither motivation nor guidance towards 
its solution. 

To my knowledge, there are only three methods of providing a "complete" 
quantum theory that are presently available. These involve hidden variables, in 
particular as in the Bohm model; 1-3 explicit collapse of the wave function, as in the 
work of Ghirardi, Rimini, and Weber4 and of Pearle5 (see reference 6 for a recent 
review and further references); or some form of the many-worlds plus consciousness 
model, as proposed by Albert and Loewer,7 Lockwood,8 Stapp,9 or (in a form that 
naturally I prefer) Squires. 10 This last method inevitably takes us outside of what we 
conventionally (at present) regard as physics, so I shall ignore it (which is not to say 
that I do not believe it might be true). Mainly, I shall concentrate on the Bohm model 
because there the issues seem more clear (I guess because the concept of trajectories 
is one with which we are familiar-certainly more so than with stochastic background 
fields) . 

THE BOHM MODEL AND WRENTZ-INV ARIAN CE 

In the standard version of the (nonrelativistic) Bohm model, the velocity of 
particle 1, at time t, is given by the expression, 

( 1 )  

where '11 i s  the quantum wave function. The nonrelativistic nature of  this i s  apparent 
from the fact that the velocity of particle 1 at a given time is assumed to depend on 
the position of the other particles at the same time. 

A simple (in principle) way to demonstrate the conflict in an experiment is 
discussed in Hardy and Squires. 1 1  This paper, based on earlier work by Hardy, 1 2 also 
demonstrates that any hidden-variable model (at least within some class defined in 
the paper) must inevitably violate either Lorentz-invariance or quantum theory. It is 
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important to recognize that this conflict has nothing to do with the fact that particle 
number cannot be conserved in Lorentz-invariant theories and that it is necessary to 
use field theory. Indeed, the experiment referred to can be performed with arbi
trarily low velocities for all the particles involved, so the field-theoretic aspects 
should not be important. 

Although pre-1905 physicists were, apparently, happy with an absolute concept 
of simultaneity, as required in equation 1 and in the quantum understanding of the 
above experiment, it is hard for those of us trained in relativity to accept it. As we 
shall see below, the idea becomes even harder in more general space-times required 
in general relativity. Hence, it is natural to suggest that the conflict should be 
resolved by relaxing the requirement of perfect agreement with the predictions of 
standard quantum theory. The way to proceed then becomes rather obvious. The 
problem arises essentially because the wave function, used in calculating the veloci
ties (or the quantum potential, if we write the theory as a Newton-like equation for 
acceleration), is defined in configuration space; that is, it depends on the position of 
all the relevant particles. This, however, is normal in nonrelativistic physics; it is true, 
for example, of the electrostatic potential of several charged particles. There, the 
conflict with relativity is resolved by going from electrostatics to electrodynamics, 
which is a fully relativistic theory. What this does, among other things, is to replace 
the "simultaneous" positions by so-called retarded pesitions. I have therefore 
proposed13 to make a relativistic version of the 'Bohm model by the same device. 
Thus, we replace equation 1 by 

(2) 

where 

t2 = t - lx1 (t ) - x2(t2) I /c. (3) 

Of course, the formal similarity between the electrostatics case and quantum 
theory is probably misleading. For one thing, the wave function usually has an 
explicit dependence on time, and it is not clear how to treat this. Nevertheless, there 
is no ambiguity if we apply equation 2 to situations where the particles are far apart, 
compared to the quantum uncertainty in their positions, and each is described by a 
wave function that is evolving independently. Then,13 we use the retarded time t2 to 
describe the wave function associated with particle 2, etc. 

In order to understand some of the effects of this, we consider an EPR-like 
measurement of the spins of two correlated particles, for example, in the singlet 
state. First, we use the standard Bohm model, where it is important to realize that the 
measured value of the spin is determined by the hidden variables in the detector. 
(Examples of this are given in the work of the Portsmouth group. 14 Exact calculations 
for a very simple case are given in references 13 and 15.) Suppose, first, that there is 
only one detector, say, in the path of the L particle. Then, equation 1 shows that it 
will record + Yi and - Yi with equal probability, with the actual value in a given case 
depending on the values of the detector hidden variables. Similar results hold if only 
an R detector is present. When both detectors are included, the value that is 
recorded depends on the relative values of the hidden variables in the two detectors. 
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The way that the Bohm model is constructed guarantees that the resulting probabili
ties are correlated exactly as required by the predictions of quaf}tum theory. This is 
all illustrated schematically in FIGURE 1 .  

To see how this changes i f  we use the retarded model (equation 2), we consider 
the process depicted in FIGURE 2. The left particle reaches the detector at time t . ,  

but it is not until the later time t2 that the formula given in equation 2 can "know 
about" the presence of the right detector. Clearly then, in the time between t1 and t2, 

the left (L) detector begins to record the two values with equal probability. The same 

FIGURE l. A schematic representation of the effect of the L and R detector variables (dt. dR) 
on the measurement outcomes (L,,, R,,) .  The horizontal (vertical) divisions are relevant when 
only the L (R) detector is present. The line at 45° gives the division with both detectors. The 
hatched areas show where the outcome from one detector is affected by the presence of the 
other. The crosshatched area is where "wrong" results might occur in the retarded model. 

thing is true of the right (R) detector. At time t2, the information about the other 
detector becomes available and, now, one of several things might happen, depending 
on the detector hidden variables. Consider, for example, the extreme case where the 
detectors are measuring spins in the same direction. Then, in half of the cases, the 
initial movement of the detectors will correspond to "wrong" results, that is, both 
giving the same value of the spin in contrast to the perfect anticorrelation expected in 
the singlet state. Suppose, for example, that these are + values, which occur if the 
hidden variables of both detectors are in the regions of space that lead to such values. 
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When evolution beyond 12 is considered, the detector whose hidden variable is 
furthest from the boundary of the region will be unaffected. However, the other will 
in some cases reverse, to give the "correct" result ( -) , but in others it will not, and 
hence the wrong result will be the final reading of the detectors. The condition for 

t 

t, --

, ____ particle paths 

L- detector R - dete c tor x 

FIGURE 2. The space-time diagram for an EPR-like event in which a correlated pair leavesx = 
0 at t = 0 and arrives at the detectors at t1 • In the retarded Bohm model, each detector, during 
the time t 1 < t < t2, behaves as though the other were absent. 

the wrong results is that the initial hidden variables are sufficiently close to each 
other, with how close depending on the time difference 12 - 11 • 

This is again illustrated schematically in FIGURE l, where the enormous number 
of hidden variables in each detector is represented by one variable for each detector. 
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In this figure, the crosshatched region is the one that gives "wrong" results, and the 
crucial issue is how large it is in relation to the region available for the hidden 
variables. We expect (see also reference 13) that the condition for agreement with 
quantum theory is 

T 
TM « l , (4) 

where T = t2 - t1 is the time for a signal to travel from one detector to another, 
that is, 

L 
T = 

c 
(5) 

(L being the separation between the detectors) and TM is the time taken for the 
"measurement" to be complete. Clearly, without a more adequate model of the 
measurement apparatus, it is difficult to estimate TM; however, if we say that 
macroscopic systems are unlikely to make significant responses to microscopic 
stimuli in times less than about 10-s s, then we only expect departures from quantum 
theory to occur with reasonable frequency if L is of the order of kilometers. I believe 
that there is a need here for a careful study of actual measurements in order to obtain 
reliable estimates of what effects might be expected. Without such a study, it is, in my 
opinion, premature to claim that quantum nonlocality has been experimentally 
established. (Very similar considerations can be made for explicit collapse models; 
see reference 16.) 

It is worth noting here that we could imagine relativistic models that are more 
effective in hiding departures from quantum theory (and from angular momentum 
conservation) than the retarded Bohm model considered here . We could, for 
example, suppose that the particles carry information about their spin direction; that 
is, one will be positive in a particular hemisphere, the other negative in the same 
hemisphere. Then, regardless of any information coming from the other measure
ment, there will be no violation of strict anticorrelation. Then, the disagreement with 
quantum theory would arise only because, for sufficiently large separation, the 
results would have to be consistent with Bell's inequality. Clearly, evidence for this 
would be harder to find because it would depend on a statistical analysis, whereas, in 
principle, just one result in violation of the anticorrelation would be sufficient to 
establish a disagreement. 

THE BOHM MODEL AND INFORMATION LOSS 

Since Hawking demonstrated that black holes radiate a thermal spectrum, there 
has been growing interest in the apparent loss of information associated with parts of 
correlated wave functions disappearing down black holes. It seems that an initially 
pure quantum state turns into a mixed state. However, if the quantum state is 
supposed to be a statement about "what is", rather than about what we know about 
it, then this is hard to interpret in a way that makes sense. The statement that the 
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universe is either in state A or state B surely means that it is actually in one or the 
other; we may be unsure about which, but the universe itself can have no such doubt! 

The Bohm model is ideally suited to considering questions of this type because it 
has a clear ontology. We can ask whether the Bohm model continues to work in its 
usual deterministic way even in the presence of black holes. To answer such a 
question requires a formulation of the model that is applicable in nonflat background 
space-times, and a student of mine (Steve Mackman) is working on this problem here 
in Durham. Even without this, however, we can discuss the application of the model 
in flat space-times, which are topologically nontrivial-in particular, which contain 
closed timelike loops. These allow information loss very similar to that which occurs 
in black holes. 

t -t-x 
x= O 

FIGURE 3. The topology of the two·dimensional space used to consider the problem of 
information loss. 

As an example, we consider the two-dimensional space shown in FIGURE 3. This 
is made from an infinite x, I plane with a cut alongx = 0 from I = -oc to I = 11 > 0 and 
from I = 12 > 11  to I = +oc, and with the region x < 0 being rolled up by the 
identification of I = 13 with I = 11 • We impose the boundary condition that the wave 
function is zero on the cut. 

We take a two-particle wave function chosen by the initial condition that, at I = 0, 
it has the form, 

(6) 

where the states <l>�.b and "2.b are normalized to unity and the latter are chosen to be 
orthogonal, 

(7) 
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Explicitly, we suppose that these states are wave packets approximately localized 
around y = a , y = b > a, x = a + c > b, and x = b + c, as sho\vn in FIGURE 4. We 
assume that the states are solutions of the two-dimensional Dirac equation so that 
they move as indicated in the figure (see reference 1 7) . 

Consider now the trajectory of the x-particle. This is given by the usual Bohm 
expression, 

which becomes 

x = .9i Px'P 
m'P ' 

x = .9i ax.,(Y)Px'l>a(x) + �Xb (Y)Px<l>b (x) 
mx., (y)<l>0(x) + mx,, (y)<l>b(x) ' 

(8) 

(9) 

an expression that clearly shows how the trajectory for the x-particle depends on the 
value ofy. As long as the two x wave packets do not overlap, the value ofy ensures 
that the trajectory is determined entirely by either <l>a or <l>b, exactly as would be the 
case for a mixed state, rather than the pure state of equation 6. This is no longer the 
case, however, when the x states overlap, even though the states remain orthogonal. 
This fact, that in the Bohm model there is a clear distinction between a mixed state 
and a pure state, was made already in 1980 by John Bell. 18 I am grateful to Shelly 
Goldstein for tell ing me about this work. 

Now, we suppose, again as shown in FIGURE 4, that the two wave packets (Xa.b )  
for they-particle enter the "black hole". In this case, i t  clearly makes no sense to use 
the correlated wave function at much larger times, in particular, the shaded region of 
the figure. It is not reasonable to suppose that anything that happens to they-particle 
as it moves along the tube can have any effect on the x-particle outside it. It is this 
that gives rise to the loss-of-information problem in "orthodox" quantum theory. 
Because we cannot use the state 'P to describe thex-particle for large times, we have 
to use the mixture: either <l>a or <l>b· In the Bohm model, however, there is a natural 
resolution of this problem. At all stages, the x wave function that is used to calculate 
the x-trajectory is determined by the value of y; thus, at the moment when the 
y-particle enters the black hole, with a consequent ending of the correlation, we have 
a unique wave function as a function of x. This wave function, evolved forward in 
time by the Dirac equation, determines the trajectory at all future times. 

In fact, it seems most natural here to define the time when the correlation ceases 
as being along the forward light cone from the point x = 0, t = t2 (see FIGURE 4 ) . 
Thus, we use the Lorentz-invariant modification of the Bohm model, discussed 
above, to calculate the trajectory from the complete wave function throughout the 
unshaded region of the figure. On the boundary, that is, along x = t - t2, the x wave 
function is taken to be 

'P,(x) = ax.,[y(t - Ix - y l )]<l>0 (x) + �x,, [y(t - Ix - y l )]<l>b(x), ( 10) 

with y of course being the position of the y-particle. This is a function of x along the 
boundary and, as such, it can be calculated for all future times using the Dirac 
equation. The trajectory followed by the particle outside the black hole is now no 
longer correlated with anything inside and there is no loss of information. Thus, here , 
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as elsewhere, the Bohm model successfully removes any ambiguities in the applica
tion of quantum theory. 

THE BOHM MODEL AND TIME IN QUANTUM COSMOWGY 

As is well known, the wave function of the universe in canonically quantized 
gravity is independent of time. Many workers have considered how this fact should 
be reconciled with a world of change. For a recent review and many other references, 
see Isham. 19 To some extent, the solutions l'roposed depend on the attitude adopted 

/ 

FIGURE 4. Possible paths of two correlated particles: the shaded region is where the possible 
loss of information might occur. 

to the quantum measurement problem. For example, if we follow the explicit 
collapse route, then there appears to be a natural way of introducing time because, 
although the uncollapsed wave function might be annihilated by the Hamiltonian, 
this will not normally be the case with the collapsed wave function · (because in 
general the collapse function will not commute with the Hamiltonian). Thus, "time" 
begins with the first collapse. In many-worlds quantum theory, on the other hand, 
there really is no such thing as external time in physics and an endeavor is made to 
understand our experience of time by equating it to some other variable, that is, 
something that plays the role of the hands of a clock. Again, I believe that this pushes 
the issue outside of present physics and into "consciousness". 
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In the Bohm model, there is, at first sight, a natural solution to the missing time 
problem because the Bohm formula does not necessarily give zero velocities when 
the wave function is constant. In other words, a constant wave function need not 
eorrespond to a situation where nothing is changing. There are, however, some 
difficulties with this. The first is conceptual. Ifwe regard the Bohm equation as being 
the condition that preserves the property that an initial distribution of positions, 
agreeing with the quantum probability law, will still agree at all later times, then the 
natural solution for a constant wave function will clearly be that with zero velocities. 
The Bohm formula is just one possible way of satisfying this condition and, at least 
for a constant wave function, it is not the simplest. 

The second difficulty is more practical. Although nonzero velocities are possible, 
they are not easy to obtain and the obvious (real) solutions of the Wheeler-de Witt 
equation have zero velocities. For this reason, the Bohm model actually makes the 
problems arising from a constant wave function harder, not easier, to resolve. A 
model that does not actually have a radius of the universe, say, is not troubled by its 
rate of change, but such a thing actually has a value in the Bohm model, so it had 
better not be a constant! Note also that there seems to be an important difference 
here between the Bohm model as used in the microscopic world and as used in 
cosmology (see reference 20). In the former, we are not unduly disturbed by the fact 
that the model gives zero velocities for particles in systems that are in energy 
eigenstates, for example, for the electrons in a hydrogen atom. We know from the 
way that the model is constructed that it will give the correct distribution for 
measured velocities. In other words, measurements of velocities are not "faithful"; 
that is, values are observed being different from the preexisting values given by the 
Bohm formula. In quantum cosmology, however, this "escape" is not possible : if 
everything has zero velocity, according to the Bohm expression, then there simply is 
no possibility that anything can change with time. There can, indeed, be no 
"measurements" even. 

We can see the relevance of all this if we think about the Bohm description of 
reflection by a potential barrier. This should be analogous to cosmological models in 
which an initially expanding universe recollapses after the radius has "bounced" off 
some potential barrier. We therefore consider a particle, moving in one dimension. 
under the influence of a square barrier. This is described by the Schrod inger 
equation: [ hz 02 ] 

-
2m axz + V(x) ljJ = Elji, 

where the barrier potential is given by 

V(x) = 0, x < 0, 

V(x) = V. > E, x > 0. 

( I I ) 

( 1 2 )  

The standard method of  solution, given in every quantum theory course, leads to the 
wave function, 

( IJ )  
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in the region x < 0, where k2 = 2mE/lz2• The reflection coefficient, R, is given by 

(K + ik) 
R = -

(K - ik) ' (14) 

where K2 = [2m (Vi - £)] /lz2, so of course IR  1 2 = 1 , corresponding to  the fact that 
all particles are reflected. The "story" that accompanies this in typical quantum 
theory courses is that particles move from the left and hit the barrier, where, after 
penetrating for a short distance, they are reflected. This, however, is not what 
actually happens in the Bohm model, for which the usual formula gives 

. (t - IR l 2)k 
x = l eikr + Re -ikr j 2m (15) 

= 0. (16) 

In other words, the particles do not move. There is thus a big difference between the 
usual story and the actual behavior in the Bohm model .21 This difference does not, of 
course, contradict the well-known agreement between the Bohm model and the 
predictions of orthodox quantum theory. This agreement refers to statistical predic
tions for position observations and, because in the above situation we have a constant 
wave function, it is quite in order for the particles t(; be stationary. 

Note that we can recover the usual story if we consider a time-dependent wave 
function with an incident wave packet. This, of course, corresponds more closely to 
the actual situation in a laboratory experiment, but is not an option that is available 
for the cosmological case, at least not if we wish to maintain the Wheeler-deWitt 
equation. 

Of perhaps more relevance is the fact that it is possible to obtain nonzero 
velocities from the Bohm expression even with a stationary wave function. To see 
this, we write the solution, in x < 0, as 

\fl = Aeikr + Be -ikr; 
then, the velocity will be given by 

. ( IA l 2 - IB l 2)k 
x = 

( IA l 2 + I B l 2 + 2.9PA *Be-2ikr)m . 

( 17) 

(18) 

The condition that IA 1 2 = I B l 2 arises from the physical requirement that only the 
decreasing exponential exists in the "forbidden" region, x > 0. If we ignore this 
requirement, then the Bohm model has nonzero velocit ies. Of course, such a solution 
does not show any reflection by the barrier; the particles just move into (or out of) the 
infinite sink in the region x > 0. A model somewhat similar to this is suggested in the 
work of Kiefer,22 where it is claimed that "decoherence" may be responsible for 
effectively removing one of the exponential terms in the allowed region. It is not clear 
what effect this has on the wave function in the forbidden region, but any solution 
where this wave function increases exponentially is surely not relevant to physics. 
Nevertheless, this opens up the possibility that coupling to other systems will in fact 
allow the static wave function to have nonzero, and even reversing, velocities. 
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To see how these might occur, we here take a very simple "minisuperspace" 
model, which has at least some of the desired properties. We write the metric in the 
form, 

• 

(19) 

where the last term is the interval on a spatial hypersurface of constant curvature, k. 
In fact, we take k = 1, corresponding to a closed universe. We also introduce a 
constant scalar field, cl>. For the "Wheeler-de Witt" equation, we take 

with 

and 

A (a) = A0, 

A (a) = A . , 

B(a) = B0, 

B(a) = B. , 

a <  0, 

a >  0, 

a <  0, 

a >  0. 

In the region a < 0, we write the solution of equation 20 as 

'I{! = L (a,,eika + b,,e -ika)J<!.Ol(cf>), 
n 

where the x!,0> terms are harmonic oscillator bound states, 

with 

and where 

k� = (2n + l)A�12 - B0• 

The kn terms are all real, corresponding to a classically allowed region, provided 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

In restricting the solution to this form, in particular by using equation 24, we have 
imposed the physical requirement that the wave function should be square
integrable in cf>. We cannot impose a similar requirement on the a-dependence, but 
we shall require at least that it should not increase exponentially. Thus, in the region 
a > 0, we write 

'I{! = L Cne -""0Jd.1 1(cf>), (28) 
n 
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where the �1> terms are defined by a similar equation to equation 24, but with z0 
replaced by Z i .  defined by 

Z1 = A : 14tJ>. (29) 

Similarly, the Kn terms are defined by 

� = B1 - (2n + l)A l '2• (30) 

In order that the region a > 0 should be classically forbidden, we require the K,, 
to be real, which means that B1 must be many times larger thanA l 12• For sufficiently 
large n, however, it is inevitable that the right-hand side of equation 30 will change 
sign, so there will be some "leakage". 

To be specific, we choose 

(31) 

as the boundary condition, which corresponds to associating the expansion term 
(with positive a) with the ground state of the 4> field. Other modes become excited at 
the a = 0 boundary. To prevent any leakage, we truncate the expansions at the first 
nontrivial term, that is, that with n = 2. The problem is ,then completely solved by 
imposing continuity of the wave function and its fir.;t derivative at the boundary. 

For details, we refer to Hind and Squires.23 Here, if we ignore the 4> field, it is not 
possible for the expansion to reverse unless the wave function is double-valued in a, 
which in these models it is not. This, of course, follows directly from the Bohm 
formula where the velocity (a) is a function only of the value of a (for a wave function 
that does not have any explicit dependence on time). In the presence of the 4> field, 
such a reversal is possible because the velocity can now depend also on the value of tj>. 
Indeed, we have a prediction: when the universe recollapses, it does so with different 
values for the fields (only one in our case). In other words, there is not an effective 
reversal of the direction of time, in the sense of everything returning exactly to its 
initial state. This would appear to be contrary to the claim of Kiefer and Zeh,24 who 
of course do not explicitly use the Bohm model in their discussion. 

In actual fact, the velocity given in the above model tends to oscillate (the details 
depend on the starting points; see reference 23) . This occurs because of interference 
effects between the various terms in the expansion of equation 23. If we were to 
include more complex states coupling to the a variable, then it seems likely that such 
oscillation would be suppressed, essentially because there would be less likelihood of 
the many hidden variables having values that allow both the two exponentials in 
equation 23 to contribute. This would be analogous to the phenomenon of decoher
ence, 22 except that here it is not orthogonality of the states that is significant, but 
rather their limited spatial overlap. 

Clearly, much more work is required before reliable conclusions can be drawn 
from discussions of this nature. In our model, the expansion is associated with low 
excitation of the 4> field, whereas in fact it is more likely that it is the de-excitation 
that causes the bounce (see, for example, equation 30). Also, more complex 
situations than that involving only a single constant field need to be analyzed. 
Nevertheless, the results show that there is a real role for the Bohm model in 
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quantum cosmology. In this connection, earlier work by Vink25 and by Valentini26 
should be mentioned. 
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DEDICATION 

This paper is dedicated to John Archibald Wheeler, the honoree of this confer
ence, whose search for the understanding of both gravitational and quantum physics 
has inspired the author for over 45 years, as a listener and learner in his courses and 
as a seeker of advice and counsel on physics research. Some items in the latter 
category are the following: The Lunar Laser Ranging (LLR) experiment1 originated 
in the research group of Robert Henry Dicke at Princeton for the primary purpose of 
testing the Brans-Dicke theory2 of gravity. Wheeler strongly encouraged this investi
gation. (The result did not confirm the failure of the principle of equivalence for 
massive bodies predicted by the Brans-Dicke theory.) In my research group at 
Maryland, we had to learn how to detect and time the arrival of single light quanta in 
the LLR experiment because of the very weak signals. This technical knowledge 
provided the basis for the first explicit realization of the Delayed Random Choice 
gedankenexperiment so strongly emphasized by Wheeler.3 This experiment led to 
the first use of parametric downconversion to perform the Einstein-Podolsky-Rosen 
experiment4 (Ph.D. thesis of Yan Hua Shih), which has led to so many applications 
being reported at this conference. Our atomic clock relativity experiments with 
aircraft5 were explicitly and effectively endorsed by Wheeler.6 

In regard to the subject of this paper, Wheeler has urged that the investigations 
of the differences between the gravity theories of Einstein and of Yllmaz be 
conducted by calculations, citing the words of Leibniz,7 that in matters of scientific 
dispute, "Let us calculate"-"Calculemus". 

INTRODUCTION 

This report summarizes the physical and mathematical structure of the Yllmaz 
theory of classical gravity to prepare the reader for the later report of Yllmaz 
showing how it can be quantized. In these proceedings, Y Ilmaz has included such 
summaries in his own paper (see reference 8), which the exposition here may serve to 
illuminate. We will state and comment on some of the most important physical and 
conceptual differences between the Einstein and the Yilmaz theories. The most 
striking concrete results of the "Calculemus" approach, showing explicitly the failure 
of general relativity to predict the gravitational attraction in a two-slab Cavendish 
experiment, will be described in some detail. The treatment is similar to that in the 
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written version of my lecture at the Olympia Conference on the Frontiers of 
Fundamental Physics.93 

The compatibility of the new theory of gravity with quantum field theory results 
from its possession of a field Lagrangian and the resulting canonical field stress
energy tensor of the two-index relativistic generalization of the Newton-Poisson 
gravitational potential field. This allows the construction of Feynman propagators as 
in the usual quantum field theories, but would still lead to unrenormalizability 
because of the dimensional coupling constant. The remarkable approach of Y1Imaz, 
described in print for the first time in these proceedings, gives a physical reinterpre
tation in terms of local dynamical causality to the loop integrals, avoiding infinite 
quantities altogether. This eliminates the need for renormalization of any quantum 
field theory and yields for the first time a viable quantum field theory of gravity. 

PHYSICAL AND CONCEPTUAL DIFFERENCES BE1WEEN THE THEORIES 
OF EINSTEIN AND OF YILMAZ 

The description of gravitation by curved space-time is a grand concept due to 
Albert Einstein. The form of his field equations for the determination of the metric 
coefficients for a given distribution of matter and field stress-energy is an assumpt ion . 
The source term (right-hand side) of these equations for the Einstein-Hilbert 
curvature tensor is taken to be the stress-energy tensor T� of all matter and fie lds. 
except that of the gravitational field itself: 

( I ) 

The theory of Hiiseyin Ydmaz explicitly includes as an additional source term the 
stress-energy tensor t� of a gauge field, which is a relativistic general ization of the 
Newton-Poisson potential field in a conservative system: 

(2 ) 

where G� and t� have the usual meanings. The expression for t� in the low-ve locity 
limit is given in equation 11 below and, more generally, in reference 8. 

It is my opinion that the explicit inclusion of the gravitational field stress-ene rgy 
tensor in equation 2 is as important for our understanding of physics as Maxwctrs 
addition of the displacement current in his equations for the elect romagnet ic field. 

The new theory emphasizes potentials in a successful relativist ic genera l iza t ion 
of the Newton-Poisson field theory. The metric coefficientsg11v thus become funct ion
als of this gravitational field 'P� and are relieved of the double burden of serving hoth 
as potentials and as space-time metric. The relation is formally exponent ial :  

g = (...,e2<.,, i-2.P>) '1-V " I  JLV' ( 3 )  
where 11 = diag(l ,  - 1 , - 1 , - 1 ), 'P = tr( 'P�). i i s  the unit matrix. and  <fl i s  t h e  matr ix 
array 'P�· 

The quantity 'P� is analogous to the four-potential Av in electrodynamics i n  that 
the g11v are determined from it ,  as the electromagnet ic field F11•· is dete rm ined from 
Av. With suitable gauge and/or coordinate condit ions, 'P; sa t isfies the covariant 
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d' Alambert equation with the matter tensor as source: 

(4) 

Exact solutions are known in the low-velocity limit where <P; --+ 1pg --+ <P and 
equation 4 becomes the Poisson equation, and for traceless transverse gravity waves. 

Many strong physical results are obtained by the new theory, some of which are 
briefly stated and discussed below. 

Newtonian Correspondence in Second Order 

This allows N-body interactive solutions including concentrated "point par
ticles". Our calculations show that in general relativity there are no interactive 
N-body solutions at all. 

Local Correspondence to Special Relativity 

The metric becomes locally Minkowskian for any observer, even when in acceler
ated motion. The exponential metric allows the subtrac;tion of a constant from the 
potential (including the kinematic potential). There is an unambiguous prediction 
for the local isotropy of the speed of light even for iccelerated observers (e.g., an 
observer on the rotating Earth). 

Principle of Equivalence by Local Kinematic Potential Compensation 

The transition to a freely falling system is achieved by the addition of a kinematic 
potential to the gravitational potential. This is the appropriate way of describing the 
equivalence of gravitational and kinematical accelerations. (Explicit examples are 
given in reference 9a.) 

Localized Stress-Energy of the Gravitational Field 

This exists in the new theory as the tensor t; and plays a central role. In general 
relativity, it is argued10 that there can be no localized stress-energy tensor since, in 
that theory, local free-fall is described by a coordinate transformation to a local 
Riemannian normal coordinate system, where the first derivatives of the metric 
coefficients vanish. The stress-energy tensor is a quadratic expression in the first 
derivatives and vanishes in that system, hence vanishes in all coordinate systems. 
Because the new theory describes the vanishing of t; at a point in a freely falling 
frame by a compensation, or balancing, of the gravitational potential with a kine
matic potential, not by a coordinate transformation, the argument does not apply. 
Local energy-momentum transfer between matter and gravitational field is consis
tently treated in the new theory. The serious problems in general relativity with local 
energy-momentum conservation are well known. (A recent review of the difficulties 
is given by Carmeli et al. 1 1  See also an early critical comment by Weyt. 12) 
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Exact Gravity Wave Solutions of Arbitrary Strength 

These waves actually carry localized energy-momentum, with an analogous 
poynting vector, between quadrupole sources and sinks. In general relativity, gravity 
wave treatments require the limitation to first-order expansions of the metric tensor. 
A localized stress-energy tensor for the gravity wave is assumed even though this is 
inconsistent with the argument against it given in reference 10. 

The Strong Principle of Equivalence 

This is the name often given to the equivalence of inertial mass, active gravita
tional mass, and passive gravitational mass. It is readily deduced in the new theory 
from its second-order Newtonian correspondence. It is not deducible in Einstein's 
theory. 13 

SOME MATHEMATICAL RESULTS 

The above-stated physical differences between the two theories can, of course, 
only be fully understood and comprehended in mathematical form. A brief exposi
tion of some important results will be given in this section. 

Exponential Metric 

This is most readily discussed for the low-velocity limit where IP� -> 'Pg --+ 'P· The 
solution of equation 4 for t� = cm.,.uv, Fgu = I mA&(x - xA), becomes 

""' mA q>(x) = � I I + constant; 
A x - xA 

(5) 

the exponent in equation 3 evaluates as 

0 
2 - 4 

0 

0 

and the metric becomes 

(6) 

The very interesting history of the exponential metric is discussed in reference 9a. 

Energy-Momentum Conservation 

Perhaps the major result of the theory of special relativity is the possibility of 
transforming rest mass into other forms of energy. The general conservation law that 
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encompasses this possibil ity is the vanishing divergence of the matter stress-energy 
tensor T; = au.,.u•: 

(7) 

However, in general relativity, this conservation law is replaced by the conserva
tion of rest mass14 in order to get the equations of motion from the field equations. 
The argument runs as follows: Take the covariant divergence of the field equations, 
which is zero by the Bianchi identity, 

1 
!D.G; = D.(uu.,.u") = A iJ.(�au.,.u") - !iJ.,.g .. 11au"ull = 0. (8) 

Then, differentiate the first term on the right as a product to yield 

1 

A iJ.(Fgau•)u.,. + au•iJ.u.,. - !iJ.,.g .. 11au"ull = 0. (9) 

The second term is u(ax•/iJT)iJ.u.,. = udu.,./dT, which would produce the geodesic 
equations of motion if the first term were zero. It is argued that one should require 
iJ.(Fgau•) = 0 as a conservation law. However, this is the conservation of rest mass, 
not the conservation of energy-momentum. This whole procedure is illegitimate in 
view of the Freud identity, to be discussed below, which requires the identical 
vanishing of expression 7. If the first term in equation 9 is set equal to zero, the 
second must also be zero, and one does not get the geodesic equation of motion. 

In the new theory, one has 

(10) 

Now, one can require the first term in equation 10 to vanish, expressing the desired 
conservation law of energy-momentum, and one gets the equation of motion because 
the divergence of the gravitational field stress-energy tensor 1; is the force udu.,./dT. 
In the low-velocity limit, 1; is given by 

( 11 )  

Taking the divergence, one obtains 'V2q>iJ.,.q>, which i s  just u0iJ.,.1P by the Poisson 
equation, where u0 is the active gravitational mass. This is instrumental in establish
ing the strong principle of equivalence in the new theory.t3 

The Freud Identity 

It has become clear recently that there is a mathematical requirement that forces 
the first term of equation 10 to vanish identically in the most general form with 
au.,.u• � T; = YzG; in Einstein's theory. In 1939, P. Freud published15 a decomposi
tion of the Einstein-Hilbert tensor YzGV = u· - u• ' where u v is the quantity . d d b  E" . 

.,. 
.,. .,. .,. 

mtro uce y mstem to describe the stress-energy of the gravitational field. He 
transformed the "obstreperous term" in equation 8 (phrase used by Schrodinger16) 
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as follows: 

1 -!o11gapou"uP = � a.(Fgu�). 
v -g 
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(12) 

U: is an expression satisfying the identity a.( ,t=gV:) = 0. This is an indicial 
identity resulting from the antisymmetry of the superpotential Ir;' given by the 
determinant 

( 13) 

and the relation FKU: = ClaH;'· It has been shown more recently that such an 
identity is true for a Riemannian geometry of any dimension and arbitrary signature 
for all symmetric nonsingular metrics. 17 The similarity of the Freud identity as 
discussed by Pauli 18 to a simpler expression used by Ydmaz to formulate the 
conservation laws was noted by the author. Their equivalence was established by 
Ydmaz, who has shown that the Freud identity is nested so that the anharmonic part 
(the last two terms of U: as given in reference 13, appendix B, p. 959; in harmonic 
coordinates, they themselves vanish) and the coordinate-dependent part separately 
satisfy the same identity. Freud had actually written U: = YiG: - u: and used the 
identity to produce the energy-momentum conservation law of general relativity, 
a.<FK-r: + Fgu�) = 0. However, writing the decomposition as YiG� = U: - u� 
shows that the difference of the two "pseudotensors" must be the true tensor YiG�. 
There must be a common nontensor part z� for each of U: and u� in addition to their 
tensor parts, and there must exist coordinate systems in which 

u: = T� + z� and (14) 

In Einstein's theory, the field stress-energy tensor r: is required to be zero in 
equation 1 and therefore also in equation 14, forcing the identification of u� with the 
nontensor or coordinate artifact z�. This has led to all of the difficulties with the 
energy-momentum concept in general relativity discussed in references 1 1  and 1 2. It 
was already noted in 19 18  by Schrodinger19 that u: evaluated to zero for the 
Schwarzschild solution when expressed in Cartesian coordinates and by Bauer20 that 
u: evaluated to nonzero expressions for the flat space Minkowski metric expressed in 
polar coordinates. Schrodinger's criticism was replied to by Einstein2 1 with the 
additional remark that u11• � 11.11, leading to problems with angular momentum 
conservation. However, he stated that the strange properties of u� in the Schwarz
schild solution were due to its one-body nature and that u� would have appropriate 
physical properties as soon as the two-body solution to his equations was found. 
There is no two-body (or N-body) solution for Einstein"s equation with interaction 
between the bodies (see below and references 9b and 13). 

In a conservative system, the nontensor z: can be identified by starting with a 
coordinate system in which it is zero and transforming to another coordinate system 
where it is not. From equation 14, it can be seen that z� arises from the nontensor 
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part of the transformation of Christoffel symbols. From the indicial nature of the 
Freud identity, both T; and z; have separately vanishing density divergences.9b, l3 
Therefore, in Einstein's theory, where t; = 0 and thus u; = z;, av( F8u;> ; 0. 

COMPUTER CALCULATIONS 

It is important to provide concrete examples of the foregoing assertions. Using 
Mathematica (from Wolfram Research) and MathTensor (from Math Solutions) 
running on Digital Equipment Corporation 5000/240 workstations operating under 
Ultrix and on a DEC 3000/400AXP workstation under OSF-1 ,  many different 
metrics for solutions of the new and old theories have been used to evaluate the 
curvature tensors, Christoffel symbols, etc., emphasizing the study of �. u;, and 
their density divergences. There is space for only a very limited presentation of some 
significant results. 

Parameterized Schwarzschild Solution 

The following parameterized metric satisfies e�uatiod 1 for the values of e = ± 1 
and equation 2 for e = 0. The equations of g�neral relativity give two distinct 
solutions: ( �-II• ( 2�1+(1/•) ( 2£�\! I• 
ds2 = 1 + -r-) dt2 - 1 + -�-) (r2d82 + r2 sin29dip2) - 1 + -r-�) dr2. 

(15) 
If one sets Mir = q> in equation 21 below and evaluates the Einstein-Hilbert 

tensor, one finds 

1 
- Gv = 2 IL 

1 + E 

0 'P r 

E 
2 

(16) E 
2 

0 

where V2ip is the covariant Laplacian and tv is given by equation 1 1 .  By correspon
dence with Newtonian theory, V2ip should b� the mass density er in the matter tensor, 
T; = cmµ.uv, which in the low-velocity limit should be Tg = er. However, for e = - 1 ,  
Gg = 0 and, for e = + l ,  YiGg = 2V2ip. Also, V2ip appears i n  the G� and GIP  positions. 
These properties seem physically wrong. In the Ytlmaz theory, e = O l;ads to the 
exponential metric (equation 6) expressed in spherical polar coordinates and the 
Laplacian occurs as expected only in the Gg position. 
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The Schwarzschild solution in general relativity clearly seems not to describe a 
physical mass concentrated at the origin. Does it properly describe any real physical 
situation in nature? • 

The metric (equation 15) for e = - 1  ( Gg = 0) is the "standard" form, 

ds' - ( I - �t' -
I -
(7t' - Ni9' - " ,;n'Od•'. ( 17) 

which is said to have an "event horizon" at r = 2M. 
For e = + 1 (YiGg = 2V2q> ), the metric is 

ds' -
I +  (7) dt' - ( I + �" - ( I + 7)\Ni9' + " ,;n'<ld•'l. ( 18) 

giving no "event horizon" .  
For e = 0, the new theory, equation 15 becomes 

(19) 

with q> = M /r. 
It is interesting to calculate the square of the Riemann tensor R.«ll..,&Ro.11..,a = K 

(referred to as the Kretschmann invariant and used as an indicator of singular 
behavior in the current literature). For general relativity22 

whereas for the YJ!maz theory23 

4M2(7M2 - 16Mr + 12r2) K =  _,. O  e4Mtrr8 ,......0 
· 

The new theory has neither singularities nor "event horizons". 

Parameterized Two-Slab Metric 

(20) 

(21) 

Consider the configuration of two plane-parallel slabs whose separation d in the z 
direction between their central planes is small compared to their finite transverse x. y 
dimensions so that one can ignore edge effects-the situation often used in capacitor 
problems in electrostatics. A realizable experimental arrangement could be a 
circular disk surrounded by a large annulus of the same thickness, a configuration 
also often used in electrostatics to achieve a uniform field. Denote the uniform mass 
densities of the slabs by u1 and u2 and their thicknesses by w1 and w2, as shown in 
FIGURE 1 .  

The Newtonian potentials i n  regions I through V are sketched and their 
expressions are written beside the drawing. The potentials and their slopes are 
continuous at the boundaries. The quantities y1 and y2 are the magnitudes of the 
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acceleration of gravity in the external regions produced by the respective slabs. They 
are related to the density and thickness by 'Y = aw/2. 

The metric24 

(22) 

has been used to evaluate all of the relevant quantities for each of the five regions.25 
It provides an exact solution of the new theory for e = 0 in each region. However, 
both e = + 1 and e = - 1 provide exact solutions for Einstein's theory. Thus, there is 
no unique solution even for this simple case. The two solutions cannot be related by a 
coordinate transformation since they have different curvatures. The evaluation of 
G� yields a general expression in each region that has exactly the same structure as 
for the parameterized Schwarzschild solution: equation 16 with (t, e, cp, r) -
(t, x, y, z). 

In this two-body case, one can evaluate the right-hand side of the geodesic 
equation, which by Einstein's introduction of u� is given by equation 12. In reference 

0 w1 a1 z 

® 

p1 2 a2w2 2 
•• cp 11 =  2 z - 2 (z-d) + a ,w,18 

a w  a w  cp 111 • ..:.p z- � (z-d ) 

a w  a w  cpv a  -T z +  � (z-d) 
F1GURE 1. Two slabs, neglecting edge effects. 

9b, the left-hand side of equation 12 is evaluated for the slabs. Here, we give the 
results of the computer calculation in region II of av(J=iu�). The only nonzero 
component is 

(23) 

The presence of ( 1 - e2) in equation 23 makes it zero for the Einstein case. For 
the new theory, it has the expected Newtonian value. Integrating over the thickness 
of the slab (the Jacobian Fg in the integration cancels the Fg in the denominator 
of the right-hand side of equation 12), the self-force �z vanishes and the force per 
unit area, Vi(a1w1)(a2w2), to the right remains. For slab 2, one finds the same 
expression, but with opposite sign, giving a force to the left. 

. 

In this simplest of all gravitational problems, the Einstein theory predicts no 
interaction: the slabs would remain fixed, contradicting the results of Cavendish-type 
experiments.26 The Yilmaz theory, in strong contrast, describes the expected Newto
nian interaction and predicts that the slabs will accelerate toward each other. 
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Einstein often wrote that "above all else" his theory should have the appropriate 
Newtonian correspondence. In this concrete example, it is shown not to be the case. 

The lack of Newtonian correspondence in general relativity holds for any shapes 
of finite mass (see reference 8) and therefore applies also to binary pulsars. In this 
respect, a recent remark by J. H. Taylor is particularly significant.27 

CONCLUDING REMARKS 

In the implementation of Einstein's grand design of gravitation as curved 
space-time, serious problems have appeared. The theory does not possess N-body 
interactive solutions, nor does it generalize correctly the energy-momentum conser
vation law of special relativity and relativistic field theories, to mention only two 
major problems. The computer calculations of simple examples supporting these 
conclusions seem incontestable. A theory with such defects cannot serve as the 
foundation on which to build our understanding of the physical universe. 

There is a consistent curved space-time theory of gravity that does not have these 
problems and that is compatible with quantum field theory.8 I urge that the physics 
and astronomy communities shift the paradigm from general relativity and concen
trate instead on the development and application of the theory of Y1lmaz. 

ACKNOWLEDGMENTS 

I wish to express my gratitude to Hilseyin Yllmaz for the pleasure and privilege of 
many illuminating and clarifying discussions about physics and its foundations. Ching 
Yun Ren (now chairman of the Department of Physics, Soochow University, Taipei, 
Taiwan) developed the computer programs for these investigations and applied them 
with great knowledge of physics to many different metrics. These programs have 
been extended with great skill by Robert Kirk Burrows and used to study many 
additional metrics. Our computer systems have been managed by Steve Sabean. 

The endorsement by Willis Lamb of the new theory of gravity and his encourage
ment of this research is greatly appreciated. Robert Henry Dicke's example of 
combining experimental and theoretical investigations of gravity has been a continu
ing inspiration. We thank George Keros for his active interest and encouragement 
during a critical period of the investigations. The invitation of Daniel Greenberger to 
present these results at this conference is greatly appreciated. 

I have benefited from discussions with many colleagues at College Park, espe
cially James Griffin, George Snow, William MacDonald, Ching Hung Woo, Joseph 
Weber, Dieter Brill, and Charles Misner. 

Finally, I also appreciate the general support by members of my quantum 
electronics research group at the University of Maryland: P. K. Aschan, R. K. 
Burrows, T. E. Kiess, A. Krikoriantz, S. W. Sabean, A. V. Sergienko (who also has 
given very able help in the technical composition of this paper), Y. H. Shih, T. Van 
Flandern, B. C. Wang, and M. Z. Zhang. 



474 ANNALS NEW YORK ACADEMY OF SCIENCES 

REFERENCES AND NOTES 

l .  ALLEY, C. 0., P. L. BENDER, R. H. DICKE, J. E. FALLER, P. A. FRANKEN, H. H. PLOTKIN & 
D. T. WILKINSON. 1965. Optical radar using corner reflectors on the moon. J. Geophys. 
Res. 70; ALLEY, C. 0. 1983. Laser ranging to retro-reflectors on the moon as a test of 
theories of gravity. In Quantum Optics, Experimental Gravitation, and Measurement 
Theory. P. Meystre & M. Scully, Eds.: 429-495. Plenum. New York; DICKEY, J. 0., P. L. 
BENDER, J. E. FALLER et al. 1994. Lunar laser ranging: a continuing legacy of the Apollo 
program. Science 265. 

2. BRANS, C. & R. H. DICKE. 1961 .  Mach's principle and a relativistic theory of gravity. Phys. 
Rev. 124: 925. 

3. ALLEY, C. 0., 0. G. JAKUBOWICZ & W. C. WICKES. 1986. Results of the delayed random 
choice quantum mechanics experiment with light quanta. In Proceedings of the Second 
International Symposium on Foundations of Quantum Mechanics in the Light of New 
Technology. M. Namiki et al. , Eds.: 36-47. Phys. Soc. Japan. Kyoto. 

4. ALLEY, C. O. & Y. H. SHIH. 1986. In Proceedings of the Second International Symposium 
on Foundations of Quantum Mechanics in the Light of New Technology. M. Namiki et 
al. , Eds.: 47. Phys. Soc. Japan. Kyoto. 

5. ALLEY, C. 0. 1986. Proper time experiments in gravitational fields with atomic clocks, 
aircraft, and laser light pulses. In Proceedings of the Second International Symposium 
on Foundations of Quantum Mechanics in the Light of New Technology. M. Namiki et 
al. , Eds.: 363-427. Phys. Soc. Japan. Kyoto; REISSE, R. A. 1976. The effect of gravita
tional potential on atomic clocks as observed with a laser pulse time transfer system. 
Ph.D. thesis. University of Maryland; WILLIAMS, R. E. (976. A direct measurement of 
the relativistic effects of gravitational potentiaf on the rates of atomic clocks flown in 
aircraft. Ph.D. thesis. University of Maryland. 

6. CALDER, N. 1979. In Einstein's Universe, p. 38. Viking. New York. The experiment is also 
used as an example in: TAYLOR, E. F. & J. A. WHEELER. 1992. Space-Time Physics, p. 
133. Freeman. San Francisco. 

7. LEIBNIZ, G. W. 1961 . In Philosophischen Schriften. Volume 7. C. J. Gerhardt, Ed. :  200. 
Olms Verlagsbuchhandlung. Hildesheim. 

8. YILMAZ, H. 1995. This volume. 
9. (a) ALLEY, C. 0. 1994. Investigations with lasers, atomic clocks, and computer calculations 

of curved space-time and of the differences between the gravitation theories of Y ilmaz 
and of Einstein. In Frontiers of Fundamental Physics. M. Barone & F. Selleri, Eds.: 
125-137. Plenum. New York. (b) The above paper was a complement to: YILMAZ, H. 
1994. Did the apple fall? In Frontiers of Fundamental Physics. M. Barone & F. Selleri, 
Eds. : 1 15-124. Plenum. New York. 

10. MISNER, c. w., K. s. THORNE & J. A. WHEELER. 1973. Gravitation, p. 466-468. Freeman. 
San Francisco. 

1 1 .  CARMELi, M., E. L1EBOWl1Z & N. N1SSANI. 1990. Gravitation: SL(2,C) Gauge Theory and 
Conservation Laws. Chapter 4. World Scientific. Singapore. 

12. WEYL, H. 1950. Space, Time, Matter. Fourth edition, p. 270. Dover. New York. 
13. YILMAZ, H. 1992. Towards a field theory of gravity. Nuovo Cimento 1078: 941 .  
14. YILMAZ, H .  1973. Correspondence paradox i n  general relativity. Nuovo Cimento Lett. 

7: 337. 
15. FREUD, P. 1939. On the expression of the total energy and the total momentum of a 

ma!erial system in the theory of general relativity. Ann. Math. 40: 417. 
16. SCHRODJNGER, E. 1950. Space-Time Structure, p. 102. Cambridge University Press. 

London/New York. 
17. RUND, H. 1991 .  The Freud identity in Riemannian geometry. Algebras, Groups, and 

Geometries 8: 267. 
18. PAULI, W. 1958. Theory of Relativity. Supplementary note Sa, p. 215. Pergamon, Elms

ford, New York. Pauli acknowledges being informed of Freud's result by V. Bargmann. 
The present author attended lectures by Bargmann at Princeton in the 1950s on general 
relativity that included the Freud work. Notes on these lectures were made and 
retained by D. Brill. 



ALLEY: THE YILMAZ THEORY 475 

19. SCHRODINGER, E. 1918.  The energy components of the gravitational field. Phys. Z. 19: 4. 
20. BAUER, H. 1 918. On the energy components of the gravitational field. Phys. Z. 19: 163. 
21 .  EINSTEIN, A. 19 18. Note on E. Schrodinger's paper. Phys. Z. 19: 1 15 . •  

22. BAHDER, T. B. 1995. Mathematica for Scientists and Engineers, p. 540. Addison-Wesley. 
Reading, Massachusetts. 

23. VIRBHADRA, K. S. Private communication. 
24. YILMAZ, H. 1979. Einstein, the exponential metric, and a proposed gravitational Michelson

Morley experiment. Hadronic J. 2: 997. 
25. BURROWS, R. K. 1994. A brief study of the metric theory of Hiiseyin Yilmaz using symbolic 

computer calculations. Scholarly paper to fulfill a requirement of the Graduate School 
of the University of Maryland at College Park. The calculations were performed under 
the direction of H. Yilmaz and the author. The paper gives the complete details of the 
two-slab geometry, but is only a small fraction of the many different metrics evaluated 
by R. K. Burrows. 

26. CAVENDISH, H. 1798. Experiments to determine the density of the earth. Philos. Trans. R. 
Soc. London MDCCXCVIII(part 1 ) :  469-526. It is ironic that Cavendish's experiment 
was originally constructed by John Mitchell, who also suggested the concept of "black 
hole". A modern account of such experiments is given by: CHEN, Y. T. & A. COOK. 1993. 
Gravitational Experiments in the Laboratory. Cambridge University Press. London/ 
New York. 

27. TAYLOR, J. H., JR. 1994. Binary pulsars and relativistic gravity. Rev. Mod. Phys. 66(no. 3): 
71 1-719.  In the last paragraph of this paper, he states: "I  do not believe that general 
relativity necessarily contains the last valid words to be written about the nature of 
gravity. The theory is not, of course, a quantum theory, and at its most fundamental 
level the universe appears to obey quantum-mechanical results." 



Gravity and Quantum Field Theory 

A Modern Synthesis 

HUSEYiN YILMAZ 
Hamamatsu Photonics KK. 
Hamamatsu City, 430 Japan 

and 
Electro-Optics Technology Center 

Tufts University 
Medford, Massachusetts 20155 

INTRODUCTION 

In this article, we consider the problem of the perturbative quantization of gauge 
fields in general and that of gravity in particular. To achieve this goal, the conven
tional quantum field theory and the conventional theory of gravity had to be revised 
so that they became internally consistent and mutually compatible. The revised 
system is then conceived as a general quantum fi�Jd theory within a geometrically 
based gauge principle so as to recover all kftown experiments concerning gravity and 
the standard model of elementary particles at the respective correspondence limits. 

Despite the formidable appearance of this setting, what transpires at the end 
turns out to be surprisingly simple. The whole work can be condensed into three 
simple rules amending the conventional Feynman method of quantization, which 
then becomes finite and applicable to the perturbative calculation of any effect 
within the system and, in principle, to any desired order. 

For maximum efficiency of the communication, we shall present the three rules at 
the beginning (with examples of application) because they are simpler to grasp than 
the arguments that led to them and because they get us immediately into the 
calculations. We leave their possible proofs or justifications to a later discussion; if 
proofs or justifications are forthcoming, they will, of course, become consequences of 
higher principles; if not, they will be considered as postulates on which perturbative 
quantization may be based. 

RULE 1 :  The Lagrangian of a dynamical system of fields is the sum of the 
Lagrangians of its individual members plus their mutual interactions: 

y = .!tA + YB + YAB· 
The rule is utterly obvious, but it must never be forgotten. (We shall see an example 
of what goes wrong if one does forget it.) It owes its importance to the fact that the 
Feynman propagators, by which the perturbative quantization is formulated, are 
obtained from the Lagrangians of the individual fields. In other words, if there is no 
Lagrangian for a field, then there is no propagator for that field and hence no 
quantization. The word "dynamical" means the fields possess energy-momentum 
and can transfer such to other fields and vice versa via the mutual interaction terms, 
-2AB· The whole theory is to be relativistic; hence, when localized sufficiently away 

476 
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from each other, the individual fields are representations of local relativity groups, 
satisfy positive energy conditions, etc., as usual . Field Lagrangians contain the first 
derivatives of the fields so that .2A => 2'A (oµ.cl>• <1> • • •  ), which, for simplicity, may be 
denoted as _2A => S'A(oµ.)· 

RULE 2: The mutual interactions of a dynamical system of fields are absorbable 
into local gauge-covariant derivatives in terms of which the system appears formally 
free: 

This rule, which determines the form of the interaction terms, arises from the fact 
that -ioµ. is essentially the quantum mechanical energy-momentum operator for 
individual modes; however, in the presence of other fields, the energy-momentum 
differs. 1 For example, the energy of a charged particle at rest in a static electromag
netic field is E => mc2 + eA0 (additive change dE => edA0) and the energy of a 
neutral particle at rest in a static gravitational field is E => mc2 exp(-cl>/c2) 
[multiplicative change dE => -mdcl> => -pv d(2cl>0 - 80<1>) => - (£/c2)dcl>] . Rule 2 is 
a statement that leads to these as classical correspondence limits. The multiplicative 
gauge has a two-index potential cl>� and, when appropriately iterated, leads to a 
functional exponential for the metric (see the second and sixth sections of this 
article). 

Thus, the interaction terms are inseparably connected to the fields via the 
underlying gauges and cannot be turned off. An important aspect of the gauge fields 
is that they can be interpreted geometrically (metric connections, fiber bundles, 
torsions, curvatures). By this property, rule 2, on the one hand, restricts the kinds of 
fields to be considered physical and, on the other, unifies the description into a 
geometrically based general field theory.2 Local Lorentz gauge means that, along the 
local tangent space, the coordinates are as in special relativity (time measured with 
an atomic clock and distances by light, with the speed of light being locally c) and 
satisfy the Lorentz condition (harmonicity) ovgµ.v = ovcl>� = 0. The geometric concept 
acts as a selection principle, but allows gravity. The usual condition of renormalizabil
ity does not; hence, it must be rejected. 

RULE 3: The divergent Feynman loop amplitudes N'F(s, a ) are not physical. The 
physical (finite and unambiguous) loop amplitudes N'ph (s, a ) are obtainable from the 
corresponding Feynman amplitudes by replacing the divergent momentum integrals 
as 

where the loop defines an average I => Pav. so that p => p - Pav. is the effective loop 
momentum. G => a - 1 , a = {m2 - (p - Pav. )2}av. is the effective loop propagator, n is 
the number of internal lines, t is the degree (power) of the trace, and s = 2 - n + 
t/2 <!:: 0 is the loop index. The averages are over normalized (I;x; = 1 )  Feynman 
parameters. 
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It will turn out that the key phrase is the "normalized Feynman parameters". The 
rule seems to arise from the fact that, at the loops, the character of the energy
momentum transfer changes. Physically, the loops are different from the trees 
because they come with a factor h for each; hence, they are truly quantum mechani
cal. I t is possible to give a new physical interpretation to them: namely, a loop defines 
an average I => Pav. so that it operates relative to this average asp => p - Pav.· Then, 
the inverse propagator becomes 

G- 1 => a = {m2 - (p - Pav.>2lav. = m;v. - P;v. + (PavJ2, 

on which the amplitude depends. This suggests that the loop propagator conveys 
something like a quantum fluctuation in momentum rather than the usual interpreta
tion of a definite (prescribed) contribution. For s = - 1 , the new and the old 
amplitudes become the same and, apart from a numerical factor, are equal to a - • ,  
which provides a correspondence argument for the new amplitude. For s � 0 ,  the 
two differ: NF(s, a) becomes infinite, whereas Nph (s, a) is always finite; thus, the two 
are no longer the same. Note that the function 

K(s, a) = (i: da r•a - 1 

is a universal function, although a is different for diff;rent loops. A few of its 
members and the general form are given below: -

K(O, a) = ln(a /a0) 

K(l ,  a) = a  ln(a /a0) - (a - a0) 

K(2, a) = (a 2/2) ln(a /a0) - (%)(a 2 - a�) + a0(a - a0) 

K(s, a) = (a'/s ! )ln(a/a0) + '!.,JJ,.ark (ak - a�) . 

K(s, a) satisfies a generalized homogeneity property (called self-similarity) :3 
namely, ifa is scaled as a => �a (the same being, of course, for a0), then K(s, a) scales 
as K(s, a) => �5K(s, a). With these and other properties to be mentioned, the final 
form of a physical amplitude can essentially be written down by inspection as soon as 
the corresponding diagram is drawn. Note that K(s, a) is short for K(s, a, a0) . 

APPLICATIONS OF THE RULES 

In this section, we refer to a number of applications of the three simple rules. 
This is done essentially to get a feel of their working in actual physical situations and 
to get an appreciation of what can go wrong if they are not carefully followed. For 
convenience, we shall repeat the statement of the rule in question before the 
examples of its application. (Also, see APPENDIX A and APPENDIX B.) 

RULE 1: The Lagrangian of a dynamical system of fields is the sum of the 
Lagrangians of its individual members plus their mutual interactions. 
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Example 1. Consider the electron-photon system (QED): The Lagrangian of the 
system is 

The rule is obviously satisfied by QED. Consequently, the Feynman propagators, by 
which the quantization of "1 and A is implemented, are obtainable from the 
Lagrangians of the individual fields. (YM is the interaction term to be considered 
later under rule 2.) If there is no Lagrangian for one of the fields, there would be no 
propagator-hence, no quantization for that field. Propagators convey energy
momentum and transfer such to other fields at the interaction vertices. To do so, the 
field itself must have a nonzero stress-energy derivable from its Lagrangian.4 It is the 
field stress-energy of a field that is being quantized into discrete quanta of energy
momentum. The Lagrangian itself can be numerically zero as here (the electromag
netic case), but it must have a functional form from which a nonzero stress-energy 
tensor must be derivable. The present example satisfies all these because both the 
Dirac field and the Maxwell field possess field stress-energies t�: 

t�(Dir.) = -iii('Yva.,.w) + &�iji('y11a11 + m)i!J, 

t�(Maxw.) = -(Cl11Ax - ClxA.,.)(a>..A v  - avA >.. ) + ( 1 /4)&�(Cl11Av - Cl�11)2. 

This pattern must repeat for all fields if we are to have a consistent theory. Let us now 
see what happens in the next example. 

Example 2. Consider the electron-graviton system (QGD): According to rule 1 ,  
the Lagrangian of  the system must be  of  the form, 

y = -iji('y11a11 + m)i!J + ..5fg + Y.,,8, 

where 2g is the Lagrangian of the gravitational field that we seek to find. This Yg 
leads, by variation, to the field stress-energy of gravity, but we know that in the 
conventional theory of gravity the stress-energy of the gravitational field is zero 
because it is (arbitrarily) set to zero by hand. Hence, accordingly, there is no field 
stress-energy and no energy-momentum in the gravitational field of the conventional 
theory. In other words, unlike the electromagnetic theory, the conventional theory of 
gravity does not satisfy rule 1 . It is thus obvious that such a theory cannot be 
quantized because it does not have the field stress-energy-momentum to quantize. It 
is also clear that, by the act of setting the field stress-energy to zero by hand, the 
conventional theory of gravity sets a severe restriction on the Lagrangian so that it 
cannot lead to a nonzero stress-energy. Such a theory cannot have a meaningful 
dynamics and cannot lead to a meaningful propagator. Consequently, it also cannot 
be quantized. These statements are essentially equivalent to another statement given 
in reference 5 stating that the conventional theory of gravity is mathematically 
overdetermined because the existing field stress-energy is set to zero by fiat, imposing 
a most severe restriction. 

This problem is solved as follows: The right-hand side of the conventional 
Einstein theory of gravity is modified as 

(Y2)G� = T� + t�, 
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where t• is the stress-energy tensor of the gravitational field. The more reliable 
left-hand side in fact permits such a field stress-energy t�. This t� must be obtained 
from the gravitational field Lagrangian by variation (and it is); hence, in the modified 
theory, there must be a field Lagrangian -2g. Using two geometric identities (see the 
sixth section) and the equation above, it is then found that the gravitational field 
Lagrangian and the gravitational field stress-energy are as follows (note that they are 
nonzero):5 

and 

t�(grav.) = -2(1\ .. <f>;a·<f>� - (Y2)8�aA.<f>;aA.tf>�] + a .. <f>a•<f> - (Y2)8�aA.<f>aA.<f>, 

where cf> = trace cf>� and a.cf>� = a .. <f>� = 0. The gravitational field cf>� = cf, is defined 
ass,6 

aA.<f>� = -(Y.)gP• [r µpA. + rpµA. ] + (Y.)&�r:A. = (Y.)g .. paA.gP• 
or by its general formal solution (all members used here, however, are exact and are 
in closed form), 

. . . · r -
g ... = (11e2<t1>-t1>-t1> » .... 

wheregµ• = J-gg .. v, g  ... = g ... IJ-g, and 02 = (J-g)- •a,.(J-ga0). Note that a.g .. • = 
a.cf>� = 0-hence, the theory satisfies the harmonic gauge. Surprisingly (or not very 
surprisingly, for this is the 1,;unsistent theory), the new theory has exact interactive 
N-body solutions and exact multimode gravity waves carrying energy-momentum. 
(The usual theory does not have these because the field stress-energy is forced to 
zero; the equations are overdetermined.) The Lagrangian -2g turns out to be exactly 
-2g = (Y.)R, the source-free curvature scalar calculated in the new theory. Thus, in 
this new theory, the propagator of the gravitational field can be constructed; hence, 
applying the Feynman procedure, the gravitational field becomes quantized. That 
the Lagrangian in the usual theory is also taken to be -2g = (Y.)R is of no consequence 
because, there, its chances to be physical are killed by arbitrarily setting its field 
stress-energy to zero (that is, by rendering -2g ineffective). The above modification of 
the conventional theory of gravity was found a long time ago via other arguments. 
Here, we see another and, in fact, a most compelling argument of its necessity 
directly from the requirement of its quantizability. 

Example 3. Consider the standard model : This covers electromagnetic, elec
troweak, and strong interaction processes, where the gauge fields are not necessarily 
Abelian. For simplicity, take the quark-gluon plus the electroweak system. The 
system Lagrangian is 

.:£ = -ijja('Y .. a .. + m)ljt' - (Y.)(a .. A � - a.A : )2 + .2"+A· 
The situation is very similar to electrodynamics, except that lfi0 and A0 have 
multiplets denoted by an internal group index, a . In QCD, these are multiPiets of 
SU(3). They are quarks and gluons. There are many details, but the Lagrangian is 
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still of the above form. It is the same in electroweak theory plus the combination of 
the two, so the formalism can be taken over. In other words, these theories satisfy 
rule 1 because they follow the pattern of quantum electrodynamiCs. 

RULE 2: The mutual interactions of a dynamical system of fields are absorbable 
into local gauge-covariant derivatives in terms of which the system appears formally 
free. 

Example 1. Consider again the electron-photon system (QED): According to rule 
2, the system Lagrangian can be written, as 

D.,. = a.,. + eA.,., 

where the second line is the (linear) gauge of the electromagnetic theory. Substitut
ing and comparing with rule 1, we find the interaction term as 

.::? = -iii('Y.,.a.,. + m)IJI - (Y4)(a.,_Av - a.,A.,. )2 + 2'.i.A, 

2'.i.A = -ieiji 'YvAvlJi• 

Thus, rule 2 provides a way of finding the interaction term when the individual 
member fields (and the properties of the potentials) are known. 

Example 2. Consider the electron-graviton system: Similar to the above, we write 

Y = -iii('Y.,.a.,. + m)IJi + Yg + Y.i.g. 

where P: and Qv are likewise local gauge substitutions. Such a general ization is both 
possible and necessary because of the following: whereas in the electromagnetic case 
the potential affects the energy momentum linearly (Dv = av + eAv -+ 
E = mc 2 + eA0),  the relation in the gravitational case is mult iplicative 
(Dv -+ E = mc2 exp( -2<1>g + <!> ). The latter is due to the principle of equivalence. 
Thus, via the mass-energy relation E = mc2, one can determine P: as 

where ': is a tetrad defined by 

g.,.v = ':T1a�1e. 

According to the new theory's solutions (note that it has exact closed-form solu
tions), 

• · T l: = (1Jed>-chl> ):; 
hence (ignoring torsion) ,  the system Lagrangian can be written as 
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where we take only the gauge-covariant solutions (see the sixth section) of the field 
equations. They are the ones mentioned in connection with rule 1 and satisfy avc1>; = 
o"'ct>; = 0. Within quantum field theory, no other solution is needed. (All others 
needed can be generated via group transformations, as is also the case in electrody
namics.) The interaction term then is 

or, in its form expanded into the local Lorentz frame, 

..2"� = -;j;{-y"((cf> _ cf> _  cf>T) + (Yi)_(
cf> _ cf> _  cf>T) 2 + . . .  )!oµ.}lji. 

Note that the static limit cf> - cf> - cf>r • -cl> is similar to the coulomb case in first 
order. In higher orders, it differs because it is exponential (principle of equivalence). 
Thus, in this case, the Lagrangian is nonpolynomial. We shall see, however, that 
there is no objection to this in the new theory because (via rule 3) it is finite. In the 
hydrodynamic l imit, t;(Dir.) + t;(Maxw.) = T; = -cm"'uv. In general, there is a 
minute amount of torsion that will be neglected. When torsion is absent, cf>T = cf>. (In 
any case, torsion does not propagate; hence, the theory may be viewed as essentially a 
curvature theory.)7 For the three exact solutions to be. used, the first covariant 
derivatives of the fields reduce to a"'; hence, we can sub_!ititute for a"' so that rule 2 is 
satisfied. 

We now summarize what has transpired: If we reject the right-hand side of the 
Einstein-Hilbert field equations and work with the (more reliable) left-hand side, we 
have 26 = (Y<i)R (quadratic part of the curvature scalar) and its canonical stress
energy is t; = t;(grav.), which we take as the gravitational field stress-energy. The 
new right-hand side becomes 

where t; is not zero, nor can it be set to zero for it is needed for quantization. In fact, 
setting t; = 0 (or t; • Xt;, A = 0) forces the theory into a mathematical overdeter
mination.5 

Example 3. Generalization to the quark-gluon and lepton vector-boson systems: 
These cases work similarly to the electromagnetic case. Only the group indices for 
SU(2) and SU(3) are to be added consistently. Because of symmetry-breaking, these 
cases are more intricate because a scalar field is also involved, although gauged in a 
similar manner. Despite complexity, no new idea is involved. This extension, called 
the standard model, is found to be highly successful. 

All these theories, although experimentally viable, are nevertheless unsatisfac
tory (including QED) from a fundamental theoretical point of view: namely, they 
lead to ambiguous and infinite results that have to be removed by equally ambiguous 
and unacceptable mathematical manipulations. Rule 3, to which we now turn, seems 
to solve this problem. 
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RULE 3: The divergent Feynman loop amplitudes .w"F(s, a) are not physical. The 
physical (finite and unambiguous) loop amplitudes Nph (s, a) are obtainable from the 
corresponding Feynman amplitudes by replacing the divergent momentum integrals 
as J d4llAtX1 + · · · + Anxn ] -n = ir2/f(n) (.£: da y+I a - 1 , 

where the loop defines an average l = Pav. so that p = p - Pav. is the effective loop 
momentum. G = a - • , a = {m 2 - (p - PavYJav. is the effective loop propagator, n is 
the number of internal lines, t is the degree (power) of the trace, and s = 2 - n + 
t/2 � 0 is the loop index. The averages are over normalized (I;x; = 1 )  Feynman 
parameters. 

Note that, in this interpretation, no regularization, renormalization, or ambiguity 
is present. (In fact, the divergent momentum integrals are physically wrong and that 
is why we are replacing them.) The inverse propagator gives a = m;v. - p2av. + Pav.2 
and the calculation of a 1 -loop amplitude reduces to the mnemonic (polarization 
sums P may be subsumed in the trace), 

.w"ph(s, a ) = (S J lg2/ (411')2J lf dx . . .  J ltraceJK(s, a), 

a = m;v. - P2av. + Pav.2• {J dx . . . } = L' dx, . . . L' dxn8(x1 + . . .  + xn - 1 ) ,  

where S is the symmetry factor andg is the coupling constant. [ir2 i s  absorbed into the 
g block and f(n) is canceled with a f(n) in the J dx . . . block.] A few examples will 
show their simplicity. 

Example 1. The electron self-energy in QED (FIGURE 1 ) :  From the figure, S = 1 ,  
s = 0, g = e, etc. On  the other hand, the trace i s  tr['Y.,.(m + p - Pav.h11] = 4m -
2p(l - x) because Pav. = px, -y11m-y11 = 4m, and -y11p-y11 = -2p. Thus, the final 
expression is 

y - -
/ '\ 

> µ� > �µ > 
x, p 

Fig. l 

1 
Ip1.(0,p) = e2/(4n)2 f dx {4m- 2p(l- x)} ln(a/a0 ) 

0 
a = m2x- p2x(l- x) +A.2 y. 

This is a good model of a loop calculation because it shows the main components of 
the calculation, including the trace, in a simple and compact manner. 

Example 2. Vacuum polarization in QED (FIGURE 2): Applying the mnemonic 
above and noting that in this case the quadratic part cancels, one has the gauge-
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invariant part: 

y 

- � � -0 
I 

n,.vp,.(O, p) = - e21(41r)2 fdx {Bx( 1- x)Z,,v} ln(®o) 
0 

x, p a = ni2 - p2x<,_1 - x) 

Fig. 2 

where Z,..v = P,..Pv - &,..vp2• Here, one can set a0 = m2 because there is no infrared 
problem for this diagram. In general, a0 can be thought of as the mass-shell value, but 
it must be done together with other contributing diagrams as a physical condition. If 
the original Lagrangian starts at mass shell, the amplitudes are all zero at mass shell, 
recovering the original Lagrangian. Note that a multiple of the trace of Ilph 11-v• 
namely, Ilph = -trace IT,..vl3p2, enters into the physical calculations: 

Ilph(O,p) = -e2/ (4ir)2 £1 dx{8x(l  - x)} ln(a /a0) , 

a = m2 - p2x(l - it) . _ 

When k2 « m2, we have [setting a = e2/ (4'11')] 

Ilph(O, p) = (a/3'1T)(p2/m2)(- Ys). 

We shall use this result when calculating the Lamb-shift. 
Example 3. Vertex-function in QED (FIGURE 3): For the divergent part s = 0, we 

have 

- +  

Fig. 3 

I 1 -x 

App,/0, p,q) = e}/(41')3 fdxfdy {trace}p ln(a/ao) 
0 0 

a = nil(x + y) - (p2x + q2y) + (px + qy)2 + J..2 z 

where p and q are vectors. This is a complicated expression, but for smallp and q, that 
is, for low energy scattering, and for k2 « m2, it is calculated to be as follows (X is a 
temporary mass assigned to the photon for later convenience of fitting with the soft 
photon emissions where it cancels out) : 

Aph (P) = (a/3'1T)(p2/m2)[ln(m/X) - Ys] - (a/2'1T)CT · k/2m, 

Amag. m. (k) = -(a/2'1T)C1 · k/2m. 
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Example 4. Scalar field <!>3/3 !  in 6 dimensions (FIGURE 4): This is an example 
other than in 4 dimensions. From the figure, S = Yi, s = d/2 - n = 1, and {trace) = 1 .  
Thus, the result is • 

x, p  

Fig. 4 

1 
Iph(l , p) = 14 g2/(4n)3 fdx [a ln(a/ao)- (a - aoJ] 

0 
a = rril - p2x(l - x). 

In the usual theory of <!>4/4 ! ,  note that amplitudes in 6, 8, 10, etc. , dimensions would 
be useless because they would be unrenormalizable. Here, there is no problem. 
Results are all finite and recover the original Lagrangian at mass shell. For 
dimensions other than 4, one simply substitutes s = D/2 - n + f/2. If the external 
momenta are of the formp + q = r as in the case of <!>4/4! in D = 4 theory, one would 
use r2 (a Mandelstam variable) in place ofp2, etc. In the new theory, all powers of 
<!>-in fact, even a nonpolynomial function of <1>-would be allowable. Note that the 
arrows in these diagrams indicate momentum flows. 

Example 5. Gravitational vacuum polarization (QGD) (FIGURE 5): We can again 
use our method and evaluate, for example, the vacuum diagram in the slow motion 
(static) limit as 

y 

· · · :>-· ·  . . .  > · ·  ,.aOav 
x, p  

Fig. 5 

l 
Jll,.vph(O, a) = -j21(4n)2 fdx P {Bx(l -x)Zµv} K(O,a) 

0 
a = mz - p2x(l - x) 

where f = J( 4irG). It is similar to the electron-positron loop in electrodynamics. 
Overlapping and nested divergences do not pose problems as infinities do not 

occur. The case of QED is so simple that (after cancellations) only the K(O, k) = 
ln(a /a0) occurs. One may worry about the relativistic invariance or the gauge 
covariance, but there is no reason because the final results are ident ical to renormal
ized electrodynamics, which we know are consistent with them. What we are seeing 
seems to be the first consistent formulation of quantum field theory without infinities 
and ambiguities. 

What happens if in a diagram there is a particle-antiparticle loop? Can part of the 
momentum go via the other line? Yes, but probabilistically; one can prove a theorem 
that it makes no difference to the answer. Let a, � be the respective probabilities with 
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a + p = 1. Then, 

a = m2x + m7y - (p2a2x + p2p7y) + (pax - ppy) 2, 

where the ( -) sign exists because the other channel is the antiparticle channel. 
Substituting, we have 

a = m2 - p2[a2x + �'1 - a2x2 - �7y2 + 2axpy], 

a = m2 - p2[a2xy + p7yx + 2axpy) = m2 - p2x(l - x), 

the same as if the momentum is in one channel only. This simplifies the evaluation of 
the diagrams. 

A general feature of these calculations seems to be that we may have to take the 
virtual particle idea more seriously. Originally, this idea was introduced as a purely 
mathematical aid to describe perturbation expansions. We may be seeing the 
viability of an interpretation whereby (as Feynman already emphasized) they can be 
thought of as short-lived physical particles. If this is so, the situation is similar to 
Planck's resolution of the ultraviolet problem in 1900. The K(s, a) functions, and 
therefore the amplitudes, are analytic due to the analyticity of the Feynman 
propagators of which they are composed. The unitarity is. subtle as it depends on the 
measure and in general requires ghost states.8•9 l{gwever, the problem does not arise 
if the gauge is fixed unitary (axial) and if the tlieory is considered (at least 
temporarily) a preferred-gauge theory. 

ON THE NATURE OF THE mREE RULES 

If, without worrying about their origins or justifications, the three simple rules are 
consistently applied in conjunction with Feynman quantization, one will get finite 
and unambiguous (and experimentally viable) loop amplitudes. Because there are no 
infinities or related ambiguities, there are also no renormalizations. By this result, 
gravity is relieved from its previous bind of unrenormalizability and can now be 
quantized when it is properly formulated. What is behind the three simple rules that 
makes this development possible? 

In this section, we shall assume that rule 1 and rule 2 are more or less obvious 
(although, as we have seen, they were not always carefully applied in the past) and 
shall concentrate on the more intricate rule 3. This rule was originally arrived at in 
two different ways based on the principle of causality. As is well known, the principle 
of causality is an ancient principle having many physical implications. In its most 
primitive and, even today, most popular form, it may be stated as follows: 

( 1) every effect must have a cause; 
(2) no effect can be its own cause; 
(3) cause always precedes its effect. 

These statements, however, invite two further considerations: 

(4) how fast does the cause travel? 
(5) what exactly is a physical cause? 
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The first three statements are characteristic to Aristotelian physics. Newtonian 
physics amended them by saying that there are some motions that do not have to 
have a cause, for example, uniform motion with constant velocity. These are called 
states of the motion. Only the deviations from uniform motion need to have a cause. 
This cause is called force and its effect is a change of the state of the motion. 
However, in some cases, cause and effect may become coexistent or, as in the case of 
mechanical equilibrium, force may exist, even store energy, but does not have to 
cause acceleration. Furthermore, the Newtonian idea of force is conceived in 
relation to motion along a trajectory, which is not very useful in quantum mechanics. 

The fourth question was answered only at the beginning of this century by the 
theory of relativity-namely, cause travels, at most, with the speed of light. This 
statement is implemented in quantum field theory by the condition that physical 
observables commute at spacelike separations. Note, however, that this is only a 
kinematical condition and does not say anything about the dynamical aspects of the 
cause-and-effect relationship. 

Curiously, the fifth question, namely, what is it that constitutes an actual physical 
cause, seems never to be carefully considered, especially in relation to the loop 
processes of quantum field theory. (Drake makes a similar observation on the 
classical principle of causality-namely, philosophers talked about causality for 
centuries, but never carefully defined what actually constitutes a physical cause. 10) 
We consider here the physical cause to be the energy-momentum transfer between 
physical systems or between the internal states of a physical system. For example, if a 
proton scatters an electron in a coulomb field, the momentum transferred by the 
intermediate photon is the cause of the scattering. However, if, on its way to the 
electron, the photon creates an electron-positron pair that subsequently annihilates, 
recreating the photon, then what is the cause-and-effect relationship with the 
scattering of the electron? In the case of trees, the internal momenta are completely 
determined by the external momenta, but, in the case of loops, there can be 
circulating (should we say undetermined or spontaneous) momenta that, according 
to the rules of quantum mechanics, must be integrated (summed) over. This 
integration ranges from zero to infinity for reasons of relativistic covariance and gives 
a result as a function of the momenta p external to the loop. In certain cases, the 
result contains ambiguous and infinite terms.1 1  

However, from a causal point of  view, the result ought to be  not just a function of 
p, but a cumulative function of p. In other words, in the loop effect, p ought to have a 
lower value where the effect starts and an upper value where it describes the 
contribution to the prevailing physical situation; that is, the result ought to be a 
definite integral of p. The problem with Feynman's amplitude is that, although it is 
not wrong from a relativistic point of view, it gives the loop ampl itude as a function of 
p and not as a cumulative function of p. This ignores the dynamic nature of the causal 
connection and allows ambiguities and infinities to come into play. Mathematically, it 
is a form of underdetermination because a necessary physical condition is missing. 

If this is so, we can easily correct the deficiency by first differentiating the 
amplitude and then reintegrating with the desired integration limits. In the simplest 
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case, this would be of the form 

J: dpiJP. 
This is actually sufficient for logarithmically divergent amplitudes. If the degree of 
divergence is higher, the operations would be repeated with the same integration 
limits because the unified Feynman denominators are integrals of their lower 
powers. Also, because odd-integer divergences vanish, the variable can be changed 
top2 or, in fact, to a propagator G- 1 => a = Am2 - Bp2 (whereA and B are functions 
of Feynman parameters) . One can then rew�ite the physical condition as 

Nph(s, a) = (i: da r\iJJiJa)s+1.WF(s, a) ; 

that is, the finite and unambiguous physical amplitudes are obtainable from the 
divergent Feynman amplitudes by this operation. For s = - 1 , the two coincide, 
providing a correspondence argument. An interesting result is that, up to a numeri
cal factor, this correspondence turns out to be of the form 

- 2 2 � 2 a - mav. - P av. + Pav . . -

This version of rule 3 is sometimes very convenient because it can be automated if 
the complete integrated form of the Feynman amplitude is given. However, it 
depends on the original infinite integrals and does not explain why the loop 
propagator has the above form, which is the same as if causally the loop contributes 
not via a more or less determinate circulating momentum, but more like a fluctuating 
one. This leads to a different and independent derivation, where the intermediate 
momentum defines an average I => Pav. relative to which (p => p - Pav. ) the loop 
operates. We then arrive, via the function K(s, a), precisely at the statement of rule 3. 

There is an interesting way to see why the conventional integrals are unaccept
able. If we analyze the mathematical process leading up to the conventional mo
mentum integrals, we see that they crucially depend on a parameter, t = a + b + . . .  , 
being a variable. The Feynman parameters if defined asx = a ft, y = bit, . . .  , would 
be normalized (x + y + · · · = 1 ), but a, b, . . .  , are not. What leads to the infinities in 
the conventional theory (see, for example, reference 12) is that t varies from 0 to co 
and this produces a r function that diverges12 (note here that t = 0): 

Io" dttn - l -Di2e- '  = f(n - D/2) = r(-s) => co. 

The simplest way to prevent this disaster would be to normalize a, b, . . .  , by setting 
t = 1, that is, assuming they become normalized Feynman parameters. In that case a 
new interpretation consistent with the normalized Feynman parameters becomes 
possible. It is then obvious that we again fall on our rule 3. As a bonus, this 
interpretation allows a simpler and quicker way of writing down the expression of an 
amplitude as soon as the diagram is drawn. Diagrams are drawn with minimum 
clutter, avoiding redundant information. For example, (m), (�) and channel associa
tions are obvious; hence, they are not explicitly shown. 
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QUANTUM ELECTRODYNAMICS (QED) 
. 

In this section, we treat quantum electrodynamics both as a model of a quantum 
gauge-field theory to illustrate how the new situation differs from the old and as a 
theory rendered consistent by our revision. The Lagrangian of quantum electrody
namics is 

.:? = - ;j;('y"'il ... + m)lfi - (Y-i)(a ... A. - il.A ... ) 2 - ie;j;'Y ... A "'lfi, 
where A ... is the electromagnetic potential, Iii is the Dirac field, and e is the electric 
charge. Two more terms are usually added to this expression, namely, a gauge-fixing 
term (�)�2(iJ.,A ')2 and a photon-mass term (�)X2(A,)2. For simplicity, we ignore 
these in the Lagrangian and remember only that, in the final expression, the former 
of these will imply gauge factors k ... k. - 8 ... ,k2 for the observable quantities and the 
latter will imply a photon mass with A for the purpose of dealing with the infrared 
problems. We also omit the -ie in the propagator, but remember it whenever 
needed. In the present theory, these procedures are the same as in the usual theory. 

The Feynman method of quantization, which we adopt, works directly with the 
Lagrangian. As soon as the Lagrangian is given, we may assume it is quantized via 
Feynman's procedure. Also, the Feynman method is so worked out that we can start 
calculating as soon as the Lagrangian is given. These features are still valid within our 
three rules. Applying our rules, the three most important 1 -loop integrals, namely, 
the electron self-energy Iph (FIGURE 1 ) , the photon self-energy Ilph (FIGURE 2), and 
the vertex-function Aph (FIGURE 3), are already obtained in the previous section and 
they are finite. The vertex-function has a part describing a correction to the magnetic 
moment of the electron, which can be measured separately. It is finite and its 
expression is already given. 

As an example of application, we shall calculate below the Lamb-shift via the 
revised theory. The Lamb-shift depends on the loop diagrams Iph (k), Ilph (k), and 
Aph(k), which in the present theory are convergent and unique. The Lamb-shift also 
gets a contribution from the low-energy incoherent soft photon emission, which is 
finite and is denoted as ilph(k). Three contributions are shown below in the 
low-energy limit, k2/m2 « 1, as 

�h(k) "" (a/3-rr)(k2/m2)(-Ys), 

Aph (k) :::::: (a/3-rr)(k2/m2)[1n(m/A) - (Vs)] - (a/2-rr)<r · k/2m, 

!lph (k) :::::: (a/3-rr)(k2/m 2)[1n(X/2k0) + (%)) . 
The electron self-energy Iph (FIGURE 1 )  is not shown because, as we have said, in the 
1 -loop level it just cancels a small term in Aph(k) . Remember in the conventional 
theory that II, I, and A are, strictly speaking, not calculable because, there, they are 
divergent and ambiguous. I I  

The Lamb-Shift 

There are three very important consequences of quantum electrodynamics. The 
connection between spin and statistics, the Lamb-shift, and the anomalous magnetic 
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moment. The spin-statistic connection is the foundation of many facts (Planck 
distribution, correlated n-particle states, etc.) . The Lamb-shift is probably the 
subtlest and also the most celebrated effect. It arises from the fact that, in Dirac's 
theory of the hydrogen atom, the 2s112 and '2p112 levels are equal, whereas the 
quantum field theory contributions arising from the integrals II, A, and 0 contribute 
to each differently. In fact, the contribution to the 2s1 12 state is much larger than to 
the '2p112 state. We can therefore get a good approximate value of this shift by 
calculating the contribution to the 2s112 state. To do this, let us first remember that 
the potential energy is U(x) = -e2Z/r12 in Dirac's hydrogen atom. The effect of our 
integrals is to cause a perturbation such that U ----+ U + fiU: 

fiE = (II +  A +  O)U. 

Because the shift is very small compared to U, it can be written simply as the 
expectation value of fiU: 

fiU = iji211 12(8U)lfi211 ,2• 

Then, noting that l lf/211 12 1 2 = (Zam/n) 3/7r, the expectation value of (a/2-rr)u · k/'lm in 
the lf/21112 state is - Ya, and k2U = -llU = 4-rrfi(r), !le can immediately write down the 
contribution to the 2s1 12 state as 

fiE = (%)m(Za5/-rrn 3)[( -Ys) + ln(m/2k0) + (%)], 

where n = 2, k0 = 225 eV (fluctuation energy), and ln(m/2k0) = 7.0348. The overall 
coefficient is 135.64 MHz; hence, one finds 8£ =- 1040 MHz, which is close to the 
experimental value of 

1057.845 (09) MHz (Exp.). 

However, the theoretical value can be calculated more accurately by taking into 
account the '2p112 state and including higher-order contributions. One then gets the 
more accurate value of 

1057.857 ( 1 2) MHz (Theor.), 

which is in remarkable agreement with experiment. Of course, this is also obtained in 
the conventional theory, but not with the assurance of consistency. We can say that 
the above is probably the first consistent calculation of the Lamb-shift. 

Another triumph of quantum electrodynamics is, of course, the anomalous 
magnetic moment of the electron. Its prediction is verified to a fantastic accuracy of 
1 1  significant digits. Such numbers are sometimes used to intimidate one to accept 
the conventional quantum electrodynamics without reservation (but we now seem to 
know a little better) . Feynman, both in his original article and many years later in his 
beautiful little book QED, placed great emphasis on the problems of the physical 
basis and consistency of quantum electrodynamics. 13 It seems that at long last these 
problems have found an acceptable solution based on a physical principle. 
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QUANTUM CHROMODYNAMICS (QCD) AND THE STANDARD MODEL 

Quantum electrodynamics is a good theory. In innumerable experimental data, 
Iio deviation from it is ever observed. However, the value of quantum electrodynam
ics does not stop there. Perhaps its greatest value for the progress of physics has been 
to serve as a model for other gauge-field theories and to inspire confidence in them. 
As we all know, through the application of similar principles, great strides have been 
made in electromagnetic and weak interactions and also in the formulation of strong 
interactions. The standard model, which is a gauge theory model, seems to be able to 
explain essentially all known effects in elementary particle physics. There have even 
been some attempts to unify all interactions via gauge-field theory. Although such 
attempts did not incorporate gravity and at present are not in agreement with 
experiment, they indicate how strong their influence has been on the thinking of 
physicists. We shall not be able to go into detail on the standard model. It is a rather 
complicated theory, but its essence is the gauge-field theory conception. Its treat
ment is (despite symmetry-breaking, etc.) analogous to quantum electrodynamics. In 
the following, we shall also model the quantum theory of gravity on quantum 
electrodynamics. 

QUANTUM GRAVIDYNAMICS (QGD) 

Quantum gravity is formulated in close analogy to quantum electrodynamics. 
There are many compelling parallels between the two fields that facilitate this 
undertaking. For example, the conservation laws of gravity (Freud identity) in local 
Lorentz metric,s 

T� = 02cl>� - a,.(J-gavc1>:>1J-g, 

av( J-gT�) = 0, 

and the electromagnetic counterparts in the same gauge, that is, the conservation of 
charge, 

jv = 02A v  - a,.(J-gavA") /J-g, 

av(J-gjv) = 0, 

are identical, except for the extra index in gravity. 13 If we let Av - avA(x), we get 
jv = 0. Similarly, cl>� - avA..,(x) leads to T� = 0: namely, the fields avA(x) and avA..,(x) 
are sourceless-hence, unobservable. They have no effect on the matrix elements. 

The new theory of gravity has exact interactive N-body solutions and has exact 
multimode gravity waves carrying energy-momentum. These are members of the 
general exponential solution mentioned in the second section. For example, if only 
cl>g = cl> = cl>(x,y, z) is present (coulomb analogue), we have the N-body slow motion 
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limit (usually called time-indepen,dent or, inappropriately, static): 

If the only components present are c!>l = -cl>� = t(t, z), then 

-gu = e4t, 

t(t, z) = L (aeikx + a *e-ikx) ,  
k 

J-g =  1 

(other c ... v terms are as in 11 ... v) · Similarly, if the only components present are c!>i = 
<l>i = �(t, z), then 

-g12 = -g1 1  = cosh 4�, -c12 = -c2 1 = sinh 4�, 

�<'· z> = L (beikx + b *e-ikx>, 
k 

J-g = 1 

(other c ... v terms are as in 11 ... v) · The last two solutions 'represent T-T (transverse 
traceless) gravity waves. By quantization, they beoome graviton emission and absorp
tion operators. 

All these solutions adhere to the following: ( 1) they are exact and are members of 
the general exponential metric; (2) they are in the local Lorentz gauge 14 (i.e., have no 
pseudoparts); (3) they possess nonzero field stress-energies t�; and (4) they are 
sufficient for purposes of quantization. In the new theory, it is the time-independent 
N-body solution that is used for the laboratory and solar-system predictions and it is 
the two transverse traceless (T-T) gravity wave solutions (spin ±2) that are used for 
calculating gravity radiation. 

Given these, the construction of the Feynman diagrams is a well-defined techni
cal procedure. One needs only the photon analogue of the normalization for 
emission ( +) and absorption ( -), that is, 

ko = w = lk l , 

with 41!'hc2 = G = 1 ,  and the consequent transverse graviton propagator is 

v:e(x - x' ) = ( I T<f>(x):<t>(x ' )e l )  = (Y2)(11:11e + 11�11: - 11  ... v11"�)D(x - x' ). 

Here, D(x - x ' ) is the massless scalar propagator. By comparing the above with the 
photon propagator in the Lorentz gauge, D ... v (x - x ' ) = -11 ... vD(x - x ' ) , it is clear 
that for any loop process in the local Lorentz gauge the only difference (excepting the 
self-interactions of gravitons, which are similar to cf>" /n ! theory) is in the polarization 
sum (a factor of 2, with the longitudinal modes indefinite and metric, ghost, etc., all 
being similar). As Feynman said of quantum electrodynamics, ts the quantum theory 
of gravity is "made to appear more difficult than it actually is." If we analyze the 
works on the same problem in general relativity,S. 16 we find that they are formally 
similar to the present theory. The differences are only two: (a) they try to quantize 
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the conventional theory, which is, as we have seen, unquantizable; (b) they work 
within the usual Feynman loop amplitudes, which are, as we have �een, divergent and 
ambiguous. The value of the present approach is that both of these problems are 
overcome. However, most of the tree amplitudes obtained, for example, by Feyn
man,8 by DeWitt,8 by Isham, Salam, and Strathdee,16 and also by Mandelstam, 17 can 
be used with some reinterpretations. Further details of the quantum theory of gravity 
and its relations to stellar collapse and the early universe will be discussed elsewhere. 

DISCUSSION OF THE RESULTS 

The following statements can now be made : 

( 1 )  Through rule l ,  we find that the conventional theory of gravity is unquantiz
able. A new theory of gravity is then formulated by requiring quantizability. 
The resulting theory is identical to our theory that was found a long time 
ago using other physical arguments. 

(2) Through rule 2, a criterion is provided for admissible theories in a 
geometrically based gauge principle, in the sense that connections and 
covariant derivatives are geometrical concepts. This rule restricts the 
number of admissible fields, but allows gravity. 

(3) Through rule 3, a new "dynamical principle of causality" is introduced that 
makes all quantum field theories obeying the first two rules finite, unambigu
ous, and calculable to any desired order. Gravity is thereby quantized 
without the impediment of renormalizability. If infinities persisted, any 
theory of gravity, including our new theory, would be unrenormalizable. 

(4) In the new theory, the chiral anomalies are absent and Ward identities are 
not violated. The � -+ 2'Y problem is soluble by hadron physics indepen
dently of anomaly cancellations. Any result depending on the infinities of 
the old theory is suspect and must be reinvestigated. 

(5) The consistency of quantum field theory in general and that of QED in 
particular was not provable before because of the ambiguities and infini
ties. Now, for the first time, the consistency seems to be achieved-hence, 
the first consistent derivation of many results provided. 

(6) Coming to gravity proper, the effects depending on the graviton as a 
quantum are too small for present-day laboratory experiments. They may, 
however, have applications in the study of the early universe, collapsing 
stars, and extreme high-energy elementary particles. 

(7) The tree (no loop) limit of quantum gravity can be calculated and tested. It 
is possible to count some of these limits as tests of quantized theory 
because they depend for their existence on being a correspondence limit to 
the quantized theory. If the limit is unviable, it would certainly reflect on 
the covering theory. 

(8) The present implementation is generally covariant in the sense that one 
can go to more general coordinates by transformations, but not necessarily 
in the sense of being set up generally covariant from the beginning. I f  
the gauge condition iJpgPv = 0 i s  relaxed, T� and -t� change by z� = 
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a0[1>;apg"° - a:ap gP")/4J-g. Because a.(J-gz;) = 0, it can be removed or 
ignored. More generally, z; = (U:, + u;)/2, subject to G; = 0. 

(9) The new theory passes all available tests with flying colors, but it is 
embarrassing to say that the conventional theory can account for none of 
them. At the most elementary level, it is shown by Alley18 and myself19 that 
a Cavendish experiment performed with two parallel plates or two spheri
cal balls is predicted by general relativity to have no mutual attraction. This 
is because, in the conventional theory, 1; is absent; hence, force f .. = 

a.( J-g1;) is zero. 
( 10) Similarly, in general relativity, the period decay of the binary pulsar cannot 

be calculated consistently because of the following: ( 1 )  there are no 
interactive 2-body solutions, l8-20 so a bound system-hence also the mass 
quadrupole-cannot be formed; (2) there are no gravity waves carrying 
energy-momentum, so (whatever the rest) there can be no radiation; and 
(3) the theory is not quantizable and hence cannot be a serious contender 
in the first place. 

In the new theory, all these problems are overcome. Energy loss by the waves is 
expressible by the quadrupole formula. The rate of l'eriod decay is -dT/T = 
( 192Tn/21s)V(Gm/c2r)/( 1  - e2)S, which is very nearly 2.4 x 10- 12 as observed. (We 
have used m1 = m2 = m = 1 .41 solar mass and have approximated the effect of the 
eccentricity.) In other words, the observed period decay is actually a prediction of the 
new theory. This is true also for other predictions. The N-body equation of motion of 
the new theory in the slow motion limit is m/((J2rk/dt2 = -IMl + 6<1>Jm�rk/ llj'k l 3, 
where cl> =  m1/r1 + m2/r2 + · · · + mNlrN. It replaces the Einstein-Infeld-Hoffmann 
N-body equations of motion and gives the observed periastron advance of w = 4.226° 
per year. 

It may appear strange that workers in general relativity claim to get the same 
results. If all the things we have said are true, how can the two be the same? Very 
easily, as follows: ( 1 )  they implicitly assume that general relativity has interactive 
N-body solutions; (2) they again implicitly assume that general relativity has energy
carrying multimode gravity wave solutions; and (3) although, in general relativity, 
they are rendered empty by suppressing the 1;, the Lagrangians coming from the 
left-hand side of the field equations are formally the same. Using these implicit 
assumptions, which are actually true in the new theory, what results will be obtained? 
Of course, they will be the same as in the new theory. We describe such a situation by 
the statement, "physicists are smarter than their theories"-that is, the workers 
intuitively know what assumptions are needed and they supply them implicitly, 
although the theory itself cannot. 

Of course, we are not trying to criticize our colleagues working in general 
relativity. The problem is that, with the 1; absent, the usual theory is at most a 
test-particle theory, which for a small mass near a large one mimics the same limit of 
the Newtonian N-body theory and gives the illusion that things are working out 
nicely. Close examination, however, shows that the two bodies (the test body and the 
central body) are not symmetric (one has a field and the other does not), that is, M; 
(central body) = oo, Ma = finite ¢ M;, m; (test body) = finite, and ma = O; hence, the 
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universal interparticle symmetry of gravity (principle of equivalence) is violated and 
therein lies the hidden flaw that invalidates the general theory qf relativity for any 
realistic physical application.21 It was fortunate that this was not noticed in 1915 
because the theory might have been discarded and forgotten, making the present 
development unlikely. I would like to end the discussion with the following quote 
from Francis Crick:22 

The hallmark of a successful theory is that it predicts 
facts that were not known when the theory was presented 
or, better still, which were then known incorrectly. 

[Note added in proof: A. S. Wightman of Princeton University and C. H. Woo of 
the University of Maryland kindly suggested that possible relations of this work to 
general meromorphic functions and to the method used by T. Applequist23 and M. C. 
Bergere and B. J. Zuber24 (ABZ) be considered. A necessarily incomplete investiga
tion seems to reveal the following: (a) Both methods (ours and ABZ) are applicable 
to general (ordinary and transcendental) meromorphic functions, but our formula, 

(iu )n+ I 
f(u) - f(uo) - . . .  - ( 1 /n ! )(u - uon<n>(uo) = uo du (iJ/iJu)n+ lf(u), 

is more general than that of ABZ, 

f(u) - f(O) - · · · - (1 /n !)unf(n)(O) = fo1 
d�( l /n ! )( l - �)n(iJ/iJ�)n+ lf(�), 

as the latter can be obtained from the former by setting u0 = 0. This is already 
comforting because by using our formula in the same limit and in the same way we 
will get the same renormalized results and there will be no contradiction, although in 
the general case unitarity must be investigated. (b) Our aim is, however, to bypass the 
complications arising from the process of renormalization (regularization, renormal
ization, and the subsequent need for prescriptions) and recover the original Lagran
gian as a limit in a single step. To this end, we first note that in the case of Feynman 
diagrams one may take (iJ /iJa)n+ lf(a) = a- 1 , a =  m2av. - p2av. + (Pav.>2; hence, 

K(s, a, a0) = {£: da t 1
a - 1 

as a universal function so as to write the end result directly in terms of K(s, a ,  a0) . 
This is not necessarily equivalent to a renormalization procedure because we may 
interpret the loop contribution not as a result of a parametric integration over a 
prescribed loop momentum, but as a contribution due to the fluctuating momenta of 
emitted and reabsorbed virtual quanta. This means that the causal interpretation of 
how the loop contributes is changed. (c) We see here an interesting analogy to 
Planck's resolution of cavity divergence by changing the rule of calculation via the 
quantum principle. Here, we resolve the loop divergence by changing the rule of 
calculation via the principle of causality. What seems to be physically new is the 
extension of the principle of causality beyond the mere kinematical condition of 
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commutativity for space-like separations to the dynamics of the loops and the 
formulation of a consistent and quantizable theory of gravity that now joins the 
repertoire of standard quantum field theories of physics . ] 
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APPENDIX A 

How the New Theory of Gravity Works 

We start with the definition of the metric in terms of its connections, 

iJ>-g"'. = K ..... I":>. + Ka.r;:>-, 

and introduce the gauge potentials, <i> = cf>�. cf> = trace cf>�. as5·6 

a>-ct>� = (- '14)8'"[f"'p>- + rp"'>- 1 + (Y.)B��>- = (Y.)g"'pa>-g'"· 
The metric becomes (at least formally) an exponential of the gauge potentials, that 
is, 

g = (-ne2(<!>-cb-ci/) ) J.1.V " I  µ.V' 

because dg"'. = 2(g"',dcf> - g""' def>: - Ka. def>:). The in tegration constants, cf>� = cf>� -
c:_, are omitted, but can be used to make the kinematics locally Lorentz. 

Now, consider the following three identities:S 

(Yi)G�  = U� - u �, 

where D is covariant derivative . In general coordinates, the expressions of lJ" and 11• "' "' 
are very complicated and have a pseudotensor z�. a.( J-gz�) = 0, additive to both 
(� = T� + z� and u� = -t� + z� so that, in G' , it cancels). However, if the 
coordinates are chosen locally Lorentz and harmo� ic (local Lorentz gauge), the 
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expressions simplify enormously and the pseudotensor z� vanishes. One then gets 

T� = 02c1>� - <J-g) - 1a .. (J-gavc1>:>. 

t� = -2[o.,,cf>;avcf>� - (Yi)8�iJ>.cf>;o>.cf>!J + a.,,cf>iJVcf> - (Yi)8�iJ>.cf>iJ>.cf>· 
The original equations then become5 

where all quantities entering are true tensors. Note that, when cf>� = 0, they reduce 
to special relativity and, when T� = -au.,,u v, u.,,u v =0 urj.1° =0 1, they reduce to the 
Newtonian theory of gravitation.5 Also, the two identities have a consistency condi
tion, (Yi)iJ.,,g .. p (;r"P + t"P) = (J-g) - 1 iJv(J-gt�), which leads to the equations of 
motion, -udu.,,lds = (Yi)iJ.,,g .. p (T"P + t"P) = (J-g) - 1iJv(J-gt�), via a variation in 
the Lagrangian. By just looking at these results, it is hardly possible to avoid the 
interpretation that these equations represent . .a space-time theory of gravitation. 
Einstein's theory of gravity (t� = 0) is unacceptable because it leads to a null 
acceleration, udu.,,fds = (Yi)iJ.,,gapT"p = 0.S, 18-20 

APPENDIX B 

How the New Theory May Have Been Overlooked 

All evil seems to be hiding in a simple coincidence: namely, if one writes the field 
equations as 

(Yi)G� = T� + >.t�, 

then, in first and second order, a 1 -body solution with cf> = M0/r is found and it has 
the form, 

Koo = 1 - 2acf> + 2�cf>, -g;k = 8;k(l  + 2'Ycf> + 28cf> ), 
a = � = 'Y = 1 , 8 = (3 + X)/4; 

that is, only 8 is affected by X. Because the three test-particle predictions-the 
gravitational redshift (a = 1) , the deflection of light (a + � = 2), and the advance of 
the perihelion of Mercury (2a(a + 'Y) - � = 3)-are independent or' 8, one can, if 
everything else is all right, set ;\ = 0 and write the simpler (Einstein) equation, 
(Yi)G� = T�, which, with his characteristic love of simplicity, is what Einstein seems to 
have done. 

Unfortunately, everything else is not all right. The explanations above are made 
on the basis of a test-particle theory (one big body M in the solution plus a number of 
noninteracting test particles not in the solution) and this is unacceptable for several 
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reasons: 

( 1 )  A test-body theory (X = 0) cannot predict the 532" per •century planetary 
perturbative part of the total perihelion advance of Mercury because the test 
bodies do not interact. 

(2) A test-body theory (X = 0) predicts infinite inertial mass for the central body, 
which we know is wrong. Moreover, its active mass is finite-hence, violates 
the equality Ma = M;. 

(3) For X = 0, there are no interacting (N � 2)-body solutions; thus, for two 
finite bodies of comparable mass (binary pulsar), we cannot form a bound 
system and a mass quadrupole.5 

(4) For X = 0, there are no gravity waves carrying energy-momentum (t� = O); 
thus, even if everything else were all right, one cannot have gravity radiation. 5 

(5) From APPENDIX A, we have, for X = 0, that acceleration (force) is zero, so 
any two objects (parallel plates, point particles, spheres) do not attract each 
other . 18-20 

(6) The X = 0 theory does not satisfy the Newtonian correspondence in the 
N-body interactive sense, so even the simple Cavendish experiment cannot 
be explained. 18• 19 

(7) It is now also found that the X = 0 theory cannot be quantized because the 
necessary Feynman propagator for the gravitational field cannot be con
structed. 

In view of all these difficulties of the conventional theory (all of which are actually 
the consequences of the missing t�). it is a great relief that the X = 1 theory has none 
of these deficiencies and meets all classical demands of theory and experiment 
successfully. In fact, it is even a greater relief that the same theory is now found to be 
compatible with and obtainable from the quantum theory of fields through the 
requirement of consistency. 
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INTRODUCTION 

There arc, essential ly, two ways of solving the measurement problem of quantum 
mechanics (QM), that is, of finding a procedure that allows QM to consistently 
describe the measurement process that, at least in principle, belongs to the classical 
province. These two procedures can be called (in Stapp's1 terminology) "Heisen
berg" and "von Neumann" reductions, in the respective cases that a particular result 
is picked up from all outcomes potentially present in the wave function ("Heisen
berg") or where the coherence between off-diagonal elements of the density matrix, 
in some suitable representation, is destroyed ("von·NeJ.!.mann"). Let us point out that 
the former, which is actually endorsed by the orthodox ("Copenhagen") interpreta
tion, involves either the projection postulate (with all the metaphysics carried along 
with it) or the existence of a suitable stochastic mechanism that operates beyond 
QM, being then responsible for the quantum jumps. This is the philosophy of the 
stochastic models to be discussed at the end of this report. On the other hand, in the 
latter-"von Ncumann"--<>ne need not go beyond QM as far as a statistical (i .e., 
"ensemble") interpretation of QM is concerned. 

In this communication, the relevant features of a recent modeJ2 are discussed. 
The fundamental assumption in the model is that the space-time metric is not strictly 
defined because it undergoes very tiny fluctuations. These stochastic fluctuations 
have a conformal nature and, in spite of their smal lness, are able to produce an 
effective decoherence in the density matrix of the CM (center of mass) of a 
"macroscopic" body, without affecting at all the quantum mechanical time evolution 
of "microscopic" systems (i.e., they preserve microscopic unitary evolution). 

The general ideas of the model arc introduced in the second section, whereas the 
third section is devoted to analyzing some important features of it, especially from a 
cosmological point of view. Finally, in the fourth section, a discussion is presented 
about the possible connection between this model and the aforementioned stochastic 
reduction models. 

MAIN FEATURES OF THE MODEL 

As said in the INTRODUCTION, the main idea of the modeJ2 is the existence of 
universal fluctuations of the gravitational field (of the vacuum) that have a stochastic 
nature. Nevertheless, such fluctuations are not completely chaotic as they preserve 
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the vacuum symmetries-the assumption is then that they are conformal. Hence, one 
has 

K11v(x) = ec1><x>(g11v(x) ), ( 1) 

with <I> being a stochastic field ( < > stands for the stochastic mean and the 
background metric is taken as Minkowskian for simplicity) . 

From the above equation, one derives the following: 

(e<l>(.tl<l>11(x)) = 0, (2) 

where <l>11(x) 
implies3 

il11<l>(x). Assuming the probability distribution to be Riemannian 

(<l>11(x)) = 0, (<l> .. <I>) = 0. (3) 

The preceding properties enable us to think of the field <I> as an (approximately) 
Gaussian stochastic process whose mean, without any loss of generality, can be set 
equal to zero and having a variance 

We will also assume the following correlation function: 

{<l>(x, t), <l>(x ' '  t ' )) = u2e- <1-1 ' )2/T2e -<x-x' )2/L 2, 

(4) 

(5) 

where T = Lie and L is a free (by now) parameter representing the correlation 
length. Note that time has been distinguished somehow from space in equation 5; 
this is really a classic problem in stochastic processes (one very difficult to deal with 
in the relativistic case). It will not be discussed here any longer; however, we should 
just recall that we are in fact dealing with nonrelativistic ("low velocity") processes, 
so equation 5 is probably an adequate expression for our current purposes. 

Now, we only need to use dimensional arguments to obtain an approximate 
expression relating the parameters L and u to each other: 

(6) 

with G being the Newtonian gravitational constant. We are then left with a single 
free parameter: the correlation length L. It can be easily seen that u2 « 1 for all 
reasonable values of L,  so we are in the weak field case; all gravitational effects are 
then properly accounted for by using a stochastic Newtonian potential: 

V(x, t) = (1/z)mc2<1>(x, t). (7) 

Now, we can use the well-known Feynman and Vernon's method4 to obtain the 
following equation for the time evolution of the density matrix of a particle in the 
coordinate representation (technical details are given in reference 5): 

(�)p(x, x ' ;  t) = .2' [p] - g(x, x' )p(x, x ' ;  t), (8) 

where the operator.2' representing purely quantum (unitary) evolution is given by 
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(also in coordinate representation) 

( iii ) ( i ) 2' (p] = - 2m [11x - 11x·]P - h (U(x, t) - U(x ' , t)]p. (9) 

Here, U is any external, "deterministic" potential (of course, for a free particle, 
U = 0) and the "decoherence part" in equation 8 is 

g(x, x' ) = (;2) [(V2) - (V(x, t)V(x ', t))] . (10) 

To derive equation 10, one has to assl!me that the correlation time T is much 
smaller than the relevant quantum times of the system. As we have already 
commented, and as will be seen in more detail below, L should lie in the range of 
10-s-10-3 cm. Now, if, for definiteness, we take L = 10-4 cm, then T = 3 x 10-15 s; in 
contrast, the corresponding quantum time is = mL2/li, which for a proton, say, is 
"" 10-9 s. Hence, the above condition clearly holds. 

An explicit expression for g can be obtained by inserting the correlation function 
given in equation 5 into equation 10 (taking equation 6 into account). In order to 
obtain simple-but accurate enough-expressions, we approximate the space part as 
follows: 

cr(l - (x - x ' )2/L2], 
0, 

. .  

lx - x1 < L 

lx - x' I > L. 

This must be a good approximation, except, perhaps, for Ix - x' I "" L. 
By using equation 1 1 , equation 8 can be written as (fi) p(x, x ' ; t) = 2'(p] - (��:) (x - x ' )2p(x, x ' ; t), lx - x ' I  < L  

= 2'(p] - (�:;Jp(x, x ' ; t), lx - x ' I  > L. 

(11) 

(12) 

One can see that the nonunitary term in equation 8 is negligible in the "micro
scopic" case. For instance, with L = 10-4 cm and by taking such a system to be a 
proton, we would obtain 

Gm2 
A = -- "" 10- 11 cm-2 s- 1 m 411L3 • (13) 

Hence, the relative coherence between parts of the proton wave packet that are 
separated by up to 1 cm would survive up to - 1024 s. This means that the time 
evolution is practically unitary (quantum). Let us now go to the more interesting, in 
the present context, macroscopic case. 

First of all, it should be pointed out that this work will be concerned with 
macroscopic systems with "solid" structure; that is, the relative distance between any 
pair of constituents will not be changed by the quantum fluctuation; also-and this is 
for the sake of technical simplicity-the corresponding body is taken to be homoge· 
neous and spherical . Now, the treatment of the microscopic case can be straightfor-
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wardly extended to the present one simply by noting that the stochastic potential will 
be given by 

V(x1 > . . . , xN; t) = (lh)mc2 L cf>(x;, t) . j 
( 14) 

In the "very" macroscopic case, that is, when R » L, with R being the radius of 
the body, the CM can be factored out; then, after a long, but easy, calculation, one 
obtains the following equation for the density matrix representing the CM quantum 
state, p0: 

where 

{ f,) p0(x0, xii; t) = ..:l'[po] - }\o(Xo - xii)2Po(xo. xii; t), lxo - xii i < L 

= ..:l'[po] - 'YoPo(Xo. xii; t) , lxo - xiii > L 

}\0 ""' GMD/h, 

( 15) 

(16) 

with M and D being, respectively, the mass and density of the body. Now, equation 15 
effectively shows the decoherence between the off-diagonal terms of the CM density 
matrix of a macroscopic system. 

Consider, for instance, a body of M = 1 g and D = 1 g/cm3• From equations 15 
and 16, we see that correlations between macroscopic quantum states separated by 
more than L (10-4 cm, say) would decay in about 10- 12 s. Notice that this decoher
ence is produced just by stochastic fluctuations of the gravitational vacuum, which 
are supposed to be universal, thereby in some sense giving rise to an "effective" 
environment for any body, even in the case of it being ideally isolated. 

FEATURES OF THE CONFORMAL STOCHASTIC FLUCTUATIONS 

First, we shall discuss the energy conservation. Obviously, the nonunitary term in 
equation 15 is responsible for the change with time of the energy of the system (even 
if it is isolated). In the present model, such a change is negligible ; nevertheless, it has 
the unpleasant feature of always being positive. From equation 15, one easily obtains 

d dt (EcM) = 2GDh ""' 10-41 W, (17) 

which is independent of the mass. 
Such a constant increase of the energy can be understood by taking into account 

that the vacuum fluctuations "shake" the particle in a nondissipative way, with the 
particle's reaction on the field being disregarded. Precisely this reaction could be 
rather relevant in the "mesoscopic" case; however, its treatment in a correct 
mathematical way is quite complicated (some work has already been reported6 and a 
more refined treatment is in progress) . We think the mesoscopic case is worth 
dealing with because some kind of behavior is expected in between the quantum and 
classical ones, which perhaps could give rise to some experimental tests of the 
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present model (notice that the model predicts the aforementioned mesoscopic 
region to lie within the range of 10- 16 g < M < 10-s g). 

Let us now discuss some relevant cosmological points that could affect the 
consistency of this model. 

It has been pointed out by Di6si and Lukacs7 that the so-called K-model8 has the 
unpleasant feature (perhaps critical for the reliability of that model) of predicting a 
very large mean value of the space-time curvature-such a curvature would imply a 
mean energy density of the universe much larger than that of a neutron star. This 
unpleasant fact does not occur in the present model due mainly to the assumed 
conformal nature of the stochastic metric fluctuations. It is easy to see that the mean 
value of the curvature is given by ( c = 1 )  

R = ( - 'll)(exp(-2c!>)l6DI> + 3[(ocl>/ot)2 - (V'c!>)2] )). (18) 

Now, conformality plus the form of the correlation function (equation 5) implies 

(Del>) = 0, 

((ac1>1a1)2) = ((Vc!>)2) = 4u2/L2, 
so R = 0 + 0( cl>4) (recall that the background metric is Minkowskian) .  No problem 
then appears in the present model, in regard to the mean.curvature of the universe. 
One cart also compute the 00-component of the ener�-momentum tensor, which of 
course is not a Minkowski scalar. Note, however, that the relative dynamic velocity 
(i.e., cosmic expansion not included) between any pair of physically relevant systems 
seems to be, as a matter of fact, much smaller than the velocity of light; hence, one is 
(probably) allowed to think that < Too > [computed in the reference frame (ether?) 
wherein equation 5 holds) gives a reliable estimate of the mean energy density of the 
universe stored in the fluctuating vacuum. By using standard techniques, one obtains 

( 19) 

If it is now imposed that < T 00 >  /c2 be less than 10-29 g/cm3 (as it seems reasonable 
that vacuum fluctuations alone cannot make the universe closed) and if, according to 
equation 6, one takes er = Al L, where A is the Planck length, one can obtain a lower 
bound to L: L > 10-3 cm. Of course, this is a very rough bound, but it should give a 
hint (at least) of the order of magnitude of the parameter L. 

Finally, as to the physical origin of the hypothetical metric fluctuations intro
duced here, very little can be said at present. Perhaps one should relate such 
fluctuations to primordial gravity waves, originating at the end of the "Planck era"; 
however, as we do not have a consistent theory of quantum gravity, this is at present a 
mere speculation. 

GRAVITATIONAL FLUCTUATIONS AND STOCHASTIC REDUCTION 

As a good example of a fairly elaborate stochastic reduction model (from a 
mathematical point of view, at least), one should mention the CSL (Continuous 
Spontaneous Localization) model of Ghirardi, Pearle, and Rimini.9 In this model, 
one assumes a stochastic evolution equation of the Ito form, which, after one imposes 
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the conservation of the norm, reads 

d i e!>) =  [- (Y2)-y(A - R)2dt + (A - R)dB) l cl>), • (20) 

where A is a set of commuting self-adjoint operators (the non-SchrOdinger terms in 
equations 21a and 21 b induce, for large times, the reduction of the state vector on the 
common eigenspaces of the operators A), R = < c!> IA l c!> > ,  and dB is a (vector) 
Wiener process such that 

dB; = O, 

dB;dBi = &ii-ydt. 

(21a) 

(21b) 

In fact, the modification of "orthodox" QM represented by equations 21a and 21b 
consists of superimposing a Markov process in Hilbert space upon the ordinary 
Schrodinger (i.e., Hamiltonian) evolution, giving rise9 to a continuous spontaneous 
localization of the wave function. Furthermore, as also shown in reference 9, 
decoherence in the density matrix of "classical" systems is obtained. (However, we 
stress that the reduction obtained in models of this sort is certainly more "complete" 
than that of the simple decoherence models.) Now, the question is how to obtain a 
sensible physical process that could give rise to the aforementioned Markov process. 
When one analyzes the CSL model, he or she realizes that there are, in principle, two 
stochastic processes in it, one linear and one nonlinear. The linear one, to some 
extent, can be understood in terms of metric fluctuations; 10 however, this is not so in 
the case of the nonlinear terms. Our conjecture10 is that perhaps the nonlinearity 
apparently present once the particle's gravitational field is taken into account1 1  could 
have something to do with such a strange stochastic term. Thus, we are studying such 
a possibility at present. 
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INTRODUCTION 

With his research activity, with his deep investigations, and with his stimulating 
suggestions of new experiments, J . A. Wheeler has given extremely relevant contribu
tions to the debate on the foundational problems of quantum mechanics. Some of his 
penetrating remarks focusing in a lucid and concise way on the challenge that 
quantum mechanics represents for scientific enterprise constitute an ideal starting 
point to elucidate the motivations for the so-called spontaneous localization pro
gram. 

Let us consider one of his preferred sentences:1 "N.o elementary phenomenon is 
a phenomenon until it is a registered (observed) phenomenon." This phrase, which 
concludes the presentation of the delayed choice experiments, is accompanied by the 
following remarks: "It makes no sense to talk of the phenomenon until it has been 
brought to a close by an irreversible act of amplification." The argument acquires a 
greater strength when combined with the brilliant and picturesque way of stressing 
the enigma we have to face by rcsorting3 to the image of the "Great Smoky Dragon", 
with a sharply defined tail and mouth and a fog of uncertainty in between. 

We consider it appropriate to compare the above sentences with the desiderata 
put forward4 by J .  S. Bell for an "exact theory": " . . .  it should allow electrons to enjoy 
the cloudiness of waves, while al lowing tables and chairs, and ourselves, and black 
marks on photographs, to be rather definitely in one place rather than another and to 
be described in 'classical terms' ." The cloudiness of waves parallels the fog of 
uncertainty of the Smoky Dragon and the definiteness, the particularity of the world 
of experience, parallels the sharp definiteness of its tail and mouth, which is due to 
the irreversible acts of amplification involved in the preparation and detection 
procedures. 

With reference to the above, we consider it appropriate to stress that the 
fundamental attitude behind the spontaneous localization approach that we arc 
going to analyze in this report (contrary to the position taken by, for example, the 
supporters of hidden-variable theories) is to accept that, in general, microphcnom
cna are basically "foggy" and "cloudy", demanding however that such fogginess 
disappears as a consequence of specific events whose occurrence and effects arc 
clearly identified and described in a mathematically precise way. 

Although it is very seldom mentioned, we would like to recall that even Einstein 

0This work has been supported in part by the Sezione di Trieste of the INFN. 
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was, in a sense, prepared to accept the foggy nature of microscopic phenomena. In 
his "Reply to Criticisms'' ,5 he remarks that, in the case of the decay of a radioactive 
atom, the orthodox quantum theorist would claim that "it is nof reasonable even to 
posit the existence of a definite point of time for the transformation of a single atom" 
(i.e., the microworld is cloudy). He states clearly that such a position is sensible. 
However, he also stresses that Schrodinger taught us that the question about the time 
of decay can be straightforwardly transformed (by simply coupling the atom to an 
appropriate apparatus) into the question of the presence of a macroscopic registra
tion mark on a paper strip. He states, "the location of the mark is a fact which 
belongs entirely within the sphere of macroscopic concepts . . .  ", and there is hardly 
likely to be anyone inclined to accept that the existence of that location is essentially 
dependent upon the carrying out of an observation. In fact, " in the macroscopic 
sphere it is simply considered certain that one must adhere to the program of a 
realistic description in space and time [i .e. , the macroworld is definite], whereas in 
the sphere of microscopic situations one is more readily inclined to give up or at least 
to modify this program [ ! ] ."  Some pages later, he comes back to this point and 
stresses that his realistic attitude does not derive from a philosophical prejudice: 
"The real in physics is to be taken as a type of program, to which we are, however, not 
forced to cling a priori . No one is l ikely to be inclined to attempt to give up this 
program within the realm of the 'macroscopic' ( location of the mark on the paper 
strip 'real ') ." Then, he draws his conclusion: "But the 'macroscopic' and the 
'microscopic' are so interrelated that it appears impracticable to give up this program 
in the realm of the 'microscopic' alone." 

We have chosen to devote so much space to this quoted excerpt to call attention 
to the fact that, within the context of our analysis, the crucial problem of our best 
theory is to succeed in accounting for the smooth merging of the cloudy microworld 
with the definite macroworld-stated differently, to make precise where and how 
acts occur that can be unambiguously identified as "irreversible acts of amplifica
tion" .2 Quite appropriately, in our opinion, Wheeler held, with Bohr, that locating 
the shifty split cannot be related to acts of empirical assertions. On the contrary, the 
occurrence of the irreversible acts of amplification must be part of the physical 
description and one should not ascribe to them any exceptional position above the 
rest. 

Nowadays, this position is shared by almost all scientists seriously involved in the 
foundational problems of quantum mechanics. Many interesting attempts along this 
line have appeared recently, ranging from detailed critical investigations about the 
possibility of a deterministic completion of the theory, to the consideration of the 
so-called environment-induced superselection rules, to the interesting features of 
the so-called Quantum Histories Approach. All such lines, as well as many others 
deserving attention, are represented in this conference; we refer the reader to the 
pertinent papers in these proceedings for a general view of the status of the matter. 
From now on, we deal with the l ine of research that is the subject of this report . 

The Spontaneous Wave Packet Reduction program represents an attempt to 
answer the puzzling questions raised above by identifying in a precise way within a 
strictly quantum context (i.e., by assuming completeness of the Hilbert space 
description of the states of individual physical systems) the shifty split between micro 
and macro, and between reversible and irreversible. The very existence of precise 
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dynamical reduction models shows that, contrary to Einstein's expectations, the 
program of building up a consistent and unified theory allowing the microsystems to 
be foggy and nevertheless implying the definiteness of the macroscopic world is 
viable. It is important to stress that the emergence of such definiteness is implied and 
precisely described by the formalism so that, to account for it, there is no need to 
invoke (as many other attempts do) the practical impossibility of revealing interfer
ence effects at the macroscopic level. We leave it to the reader to evaluate the 
potential relevance of the approach and to identify its advantages and drawbacks 
with respect to the many interesting recent proposals. At any rate, it seems to us that 
having the explicit proof that a theory exhibiting such features is possible has, by 
itself, a certain relevance for the investigations about the foundations of quantum 
mechanics. 

GENERAL REMARKS ABOUT SPONTANEOUS LOCALIZATIONS 

As stressed above, the motivation for this line of research derives from the desire 
of forbidding the embarrassing superpositions of macroscopically different states 
without requiring the consideration of measuring appar'!tuses and, more generally, 
macroscopic objects as peculiar systems differing from all other physical systems. 
Because the most characteristic differences between- standard quantum evolution 
and wave packet reduction consist of the fact that the first is linear and deterministic, 
whereas the second is nonlinear and stochastic, one entertains the idea of modifying 
the standard quantum dynamics by adding stochastic and nonlinear terms to the 
evolution equation. Such modifications are assumed to describe universal mecha
nisms governing all physical processes. 

Several attempts have been made,6-1° hut they did not lead (up to recent times) to 
a real breakthrough due to some crucial problems that had been left unsolved. The 
first one is that of the choice of the preferred basis: which specific properties of 
individual physical systems should one require to be dynamically and spontaneously 
objectified? Second, how can the dynamical modifications satisfy the two diverging 
desiderata of having a practically negligible effect for all microsystems (a necessary 
requirement due to the extremely high degree of accuracy of tested predictions of 
quantum theory) and simultaneously being able to induce an extremely rapid 
suppression (the amplification mechanism) of the superpositions of macroscopically 
distinguishable states? The solution1 1 •12 came from the identification of the appropri
ate preferred basis, that is, the one associated with positions. 

Before proceeding, with reference to the celebrated sentence by Wheeler quoted 
previously and calling attention to the crucial role of the irreversible act of amplifica
tion in making it legitimate to speak of a phenomenon, we point out that the 
stochastic and nonlinear features of the theory introduce irreversibility· at the very 
fundamental level. Thus, as we will see, "irreversible acts" making an elementary 
phenomenon become a phenomenon can occur and actually do occur (even with 
extremely low probability) already at the genuinely microscopic level. To elucidate 
this point, let us consider the famous cosmological exampte2 of the gravitational lens 
effect pointed out by Wheeler. If the elementary particle coming from the quasar and 
following two faraway routes would be a massive particle rather than a photon, then, 
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due to the extremely long time (billions of years) that it has to spend traveling, it 
would surely suffer at least one spontaneous localization process.(see below) before 
reaching us, thus being compelled "to choose a specific route" . However, it is 
appropriate to remark that within the model, although a microphenomenon takes 
hundreds of millions of years to become a phenomenon in Wheeler's sense, the 
elementary and very tiny irreversibility built in it is such as to imply a tremendous 
"amplification" when such a microscopic system triggers macroscopic changes. Thus, 
irreversibility and amplification are two distinct elements of the formalism, but they 
combine just in such a way as to make appropriate Wheeler's statements about 
microphenomena and his sharing of Bohr's view that the central point is not the 
observer's consciousness, but the experimental device, bringing the phenomenon to a 
close . What is relevant about the models under discussion is that, although to 
account for this process standard quantum mechanics has to embody the (inconsis
tent) postulate of wave packet reduction, within such models the universal dynamical 
laws governing all natural processes do the desired job. 

A CONCISE REVIEW OF DYNAMICAL REDUCTION MODELS 

As already stated, a satisfactory elaboration of the spontaneous localization 
program at the nonrelativistic level requires various steps. 1 1-15 In order to grasp the 
conceptually relevant points as well as to understand precisely how the new dynamics 
works, it is useful to start by discussing the simplest model of this type: Quantum 
Mechanics with Spontaneous Localization (QMSL). 

The QMSL Model 

The first model of spontaneous reduct ion, 1 1 · 1 2 QMSL, is based on the assumption 
that, besides the standard evolution, physical systems are subjected to spontaneous 
localizations occurring at random times and affecting their elementary constituents. 
Such processes, which we will call "hittings", are formally described in the following 
way. When the i-th constituent of the system suffers a hitting, the wave function 
changes according to 

'l'(r1 , · · · , 'N) � 'l'..(r" · · · , 'N) = <l>,.(r1 , · · · , 'N ) / I I <1>,. ll , 

<l>,.(r" . . . , rN) = (ahr)314 exp[- (a/2)(r; - x)2]'1'(r1 , . . .  , rN) · (3. 1 )  

The localization processes occur a t  randomly distributed times with a mean fre
quency of � = 10- 16 s- 1 . The probability density of the process occurring at point x is 
given by ll<l> .. 1 1 2• The localization parameter 1 /Ja is assumed to take the value of 10-5 
cm. 

To understand the physical relevance of the hitting processes as well as the 
reasons for which QMSL meets the requirements imposed on it, let us consider first 
the case of a single particle in one dimension in the superposition of two faraway 
states (see FIGURES l a-c). The separation between the two regions L and R in which 
the configuration space wave function is appreciably different from zero is assumed 
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to  be much larger than the characteristic localization parameter I I Ja. In  FIGURE I b, 
we have supposed the localization to occur" around the point L Jlnd we have shown 
how such a process leads to a state that is well localized around L. This is an example 
of the irreversible acts that take place according to the model. Obviously, in the case 
of a single elementary particle, even when the separation L-R is of thousands of 
light-years, a spontaneous localization has an appreciable probability of occurring 
only after about 108 years. At any rate, if the process occurs, the microsystem has to 
choose in which space region it is. 

To understand why all those measurementlike processes that we are compelled 
to recognize as occurring almost all the time, almost everywhere in the universe, lead 
to the definiteness of the world of our experience, that is, to allow the reader to grasp 
the basic role of the amplification mechanism, we have considered, in FIGURE 2, the 

L 

Superpositions of macroscopically 
different pointer states 

+ 

Hitti ng one particle of the 
pointer reduces the state 

R 

FIGURE 2. The amplification mechanism of the QMSL model: any localization of one of the 
constituents of the pointer amounts to a localization of the whole pointer. 

case of the superposition of two faraway states of a macroscopic pointer. If such a 
state would occur, as is evident both from equations 3.1 and from the figure, a 
localization process affecting just one of the particles of the pointer would lead to a 
suppression of the linear superposition. In fact, in the state corresponding to the 
pointer being around L, all its constituent particles are around L, whereas, in the 
state at R, they are all around R. Hitting one of the particles at left means to multiply 
the whole wave function by a Gaussian centered around L in the position variable of 
the particle suffering the localization. It is obvious that, after normalization of such a 

bwe have also considered, in FIGURE le, the effect of the occurrence of one of the extremely 
improbable localizations, that is, at a point where the wave function practically vanishes. One 
sees from the figure (as one can easily understand from the precise rules governing localization 
processes) that such a process, even if it occurs, leaves the state practically unaffected. 
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function, the R term in the superposition (practically) disappears. One then simply 
remembers that the pointer contains about 1024 particles, so one of them will suffer a 
hitting in about 10-7 s. This is the way in which the elementary irreversible processes 
are amplified whenever a measurementlike process takes place. 

The QMSL mechanism does not respect the symmetry properties of the wave 
function in the case of identical constituents. Its generalization satisfying such a 
requirement, the Continuous Spontaneous Localization model (CSL), has been 
presented and discussed in various papers. 13-15 

The CSL Model 

The model is based on a linear stochastic evolution equation for the state vector. 
The evolution does not preserve the norm, but only the average value of the square 
norm. The equation, in the Stratonovich version, is 

d l 'l'w(t)} [ ( j ) ] dt = - h H + �A;w; (t) - 'Y �A? l 'l'w(t)) . (3.2) 

In equation 3.2, the quantities A; are commuting self-adjoint operators, whereas the 
quantities w;(t ) are c-number stochastic processes with a-probability of occurrence 
satisfying · · 

Pcook[w(t )) = PRaw [w(t)) 1 1 1 '1' w(t )} ll 2. 

Here, PRaw [w(t)) is equal to 

PRaw[w(t )) = (� )e (- l /2y)l:;fodTw�(T) 

(3.3) 

(3.4) 

(A' being a normalization factor), that is, equal to the probability density of a 
white-noise process satisfying 

((w;(t )}) = 0, (3.5) 

To clarify the physical meaning of the model, let us assume, for the moment, that the 
operators A; have a purely discrete spectrum and let us denote by Pa the projection 
operators on their common eigenmanifolds. 

Now, we make the following precise assumption: if a homogeneous ensemble 
(pure case) at the initial time t = 0 is associated with the state vector 1 '1'(0)), then the 
ensemble at time t is the union of homogeneous ensembles associated with the 
normalized vectors I 'l'w(t)}/ I l l'l'w(t))I!, where I 'l'w (t )) is the solution of equation 3.2 
with the assigned initial conditions and for the specific stochastic process w(T) that 
occurred in the interval (0, t). The probability density for such a subensemble is that 
given by equation 3.3. 

One can prove14• 15 that the map from the initial ensemble to the final ensemble 
obeys the forward-time translation semigroup composition law (once more, we see 
that irreversibil ity is built in the model from the very beginning). It is also easy to 
prove that the evolution, at the ensemble level, is governed by the dynamical 
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equation for the statistical operator: 

dp(t) ( i )  ('Y) { . } dt = - h [H, p(t )) + 'Y �A;p(t)A; - 2 �Af, p(t ) ; 
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(3.6) 

if one disregards the Hamiltonian evolution, one immediately sees that the off
diagonal elements P .,.p(t )PT ( u � T) are exponentially damped. 

For our concerns, the relevant feature of the dynamical process (equation 3.2) 
with the prescription (equation 3.3) is that it drives the state vector of each individual 
member of the ensemble into one of the common eigenmanifolds of the operators A;, 
with the appropriate probability. To clarify this, we consider a simplified case 13 in 
which only one operator A appears in equation 3.2. The solution of this equation 
corresponding to the particular initial condition (involving only two eigenmanifolds 
of A with eigenvalues a, �). 

I '11(0)) = Pa I '11(0)) + Pp I '11(0)), (3.7) 

when the Hamiltonian is disregarded,c is 

(3.8) 

Here, B(t) is the Brownian process: 

B(t) = L' dTW(T) . (3.9) 

Taking into account equation 3.8 and the "cooking" prescription, one gets the 
"cooked" probability density for the value B(t )  of the Brownian process at time t: 

Pcook [B(t) ) = llPa I '11(0)) 11 2( Jz�J ( - l i2'Y1)(8(1) - 2a'Y/)2 

+ l lP1:1 1 '1'(0)) 1 1 2(_l _\,,( - l i2'Y1)(8(1)- 2P'Y'( (3. 10) JzTr'Ytf 
From equation 3 . 10, it is evident that, for t -+ cc, the Brownian process B(t )  can 
assume only values belonging to an intervald of width [Yi around either the value 
2a'Yt or the value 2�"ft. The corresponding probabil ities are l lPa l 'l'(O)) ll2 and 
l lPp I '11(0)) 11 2, respectively. The occurrence of a value "near" to 2a'Yt for the random 
variable B(t ) leads (according to equation 3.8) to a state vector that, for t -+ cc, lies in 

'In equation 3.8 and the following, we have changed the notation for the state vector from 
the one labeled by the white-noise symbol w as in equation 3.2 to the one labe led by the 
Brownian motion symbol B to stress the fact that, under our assumptions, the state at time t 
does not depend on the specific sample function w(T) in the interval (0, t) , but only on its 
integral (equation 3.9). 

dEven though the spread J..,t tends to oc for t ->  oc, its ratio to the distance 2(a - j3 )'yt between 
the two considered peaks of the distribution tends to zero. 
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the eigenmanifold corresponding to the eigenvalue a of A. In fact, one gets 

(3.1 1 )  

Analogously, when the random variable B(t)  takes a value "near" to  2�'Yt, for t --.  oo, 

the state vector is driven into the eigenmanifold corresponding to the eigenvalue 
� ofA .  

I t  i s  then clear that the model establishes a one-to-one correspondence between 
the "outcome" (the final "preferred" eigenmanifold into which an individual state 
vector is driven) and the specific value (among the only ones having an appreciable 
probability) taken by B(t ) for t --. oo, a correspondence irrespective of what I '11(0)) is.e 
In the general case of several operators A;, a similar conclusion holds for the 
"outcomes" a; of A1 and the corresponding Brownian processes B1(t ). 

This concludes the exposition of the general structure of the CSL model. 
Obviously, to give a physical content to the theory, one must choose the so-called 
preferred basis, that is, the eigenmanifolds on which reduction takes place or, 
equivalently, the set of commuting operators A1• The specific form that has been 
presented and shown to possess all the desired features is obtained13-15 by identifying 
the discrete index i and the operators A1 of the above foqnulae with the continuous 
and discrete indices (r, k) and the operators 

( a )3'2 I N<k>(r) = 211' 
� dqe<-at2)(q-rJ2at (q, s)ak(q, s). (3.12) 

Here, at(q, s) and ak (q, .�) are the creation and annihilation operators of a particle of 
type k (e.g., k = electron, proton, . . .  ) at point q with spin component s, satisfying the 
canonical commutation or anticommutation relations. Correspondingly, one has a 
continuous family of stochastic Gaussian processes satisfying 

((wk(r, t ))) = 0, ((wk (r, t)wi (r ' , t ' ))) = 'Y8kj8(r - r' )8(t - t ') .  (3. 13) 

The parameter a is assumed to take the same value ( 1 010 cm-2) as in the case of 
QMSL, whereas 'Y is related to the frequency � = 10- 16 s- 1 of that model according to 
'Y = �(411'/a)312. 

How Does Dynamical Reduction Work? 

Due to the choice of the parameters for QMSL and the corresponding ones for 
CSL, the considered dynamics has the following nice features: IS 

( 1 ) In the case of microscopic systems, the non-Hamiltonian terms have negli
gible effects. 

(2) On the other hand, in the macroscopic case, the reduction mechanism is 
extremely effective in suppressing linear superpositions of states in which a 
macroscopic number of particles are displaced by more than the characteris-

eobviously, I 'l'(O)) plays a crucial role in determining the probability of occurrence of the 
Brownian processes B(t ) . 
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t ic localization length. Such a suppression occurs at the individual level, so 
any individual macroscopic system acquires16 definite macroscopic proper-
ties in a split second. 

• 

These features have already been analyzed in great detail with reference to the 
QMSL model .  To discuss the decoherence properties of CSL ensuing from the 
choice (equation 3 . 12), even though the reduction processes occur at the individual 
level, one can limit his or her considerations to the evolution equation for the 
statistical operator: 

d��) 
= - (�)[H, p(t)] + -y � J drN<k>(r)p(t)N<k>(r) - (�) � {J drN<k>2(r), p(t)

}
. 

(3.14) 

For the sake of simplicity here, we will further restrict ourselves to a simplified 
version of CSL obtained by disregarding the Hamiltonian term and discretizing the 
space. This allows us to derive in a straightforward way14• 15 the main consequences 
that are of interest for the subsequent discussion. 

We divide the space into cells of volume (a/4v)-3'2 and we denote by Nfk> the 
number operator counting the particles of type k in the i-th cell. As follows from the 
discussion of the preceding subsection, the dynamical evolution in the considered 
case drives the state vector into a manifold such that the number of particles present 
in any cell is definite. The simplified equation for the statistical operator reads 

dp(t) ( a )-3/2 [ ( 1 ) { } ] dt = "V 4v � � Nfk>p(t )Nfk> - z � Nfk >2, p(t) . (3. 15) 

In accordance with the relation of the previous subsection, we will often use the 
QMSL frequency parameter X. in place of the expression -y(a/4v)-3'2• Ifwe denote by 
l n\k>, n�k>, . . •  , nfk>, . . .  ) the state with the corresponding occupation numbers for the 
various types of particles and for the various cells, the solution of equation 3 . 15 
reads, in the considered basis, 

(n\k>, n�k), . . . I p(t) I m\k>, m�k>, . . . ) 
= e C-A.!2)IkI;(n/k>_mlk»21(n\k>, n�k>, . . .  I p(O) l m\k>, m�k>, . . .  ). (3.16) 

Equation 3.16 shows that linear superpositions of states containing a different 
number of particles in the various cells are dynamically reduced to one of the 
superposed states with an exponential time rate depending on 

The amplification process in going from the microscopic to the macroscopic case 
and the preferred role assigned to position make it clear how also CSL, like QMSL, 
overcomes the difficulties of quantum measurement theory. This is easily understood 
by remarking once more that, in measurement processes, different eigenstates of the 
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measured microobservable trigger (through the system-apparatus interaction) differ
ent displacements of a macroscopic pointer from its "ready" position. The unique 
dynamical principle of CSL leads then, in extremely short times, to the dynamical 
suppression, with the appropriate probability, of all but one of the terms in the 
superposition, that is, to the emergence of an outcome. 

The above analysis should have made it evident that Dynamical Reduction 
Models describe in mathematically precise terms when, where, and how a microphe
nomenon becomes a phenomenon as a consequence of the occurrence of an 
irreversible act and how it is brought to a close by an amplification process. 

GENERAL IMPLICATIONS OF DYNAMICAL REDUCTION 

In the previous section, we concisely presented the precise formal aspects of 
QMSL and CSL, and we clarified how such models overcome the difficulties of the 
formalism. We stress that the considered models represent truly rival theories of 
standard quantum mechanics (in fact, they can in principle be tested against it), but 
they exhibit, at the microscopic level, empirical divergences from it that are so small 
that they can claim all the same experimental support. Saifil differently, they meet the 
two divergent desiderata for dynamical reduction theorjes that have been mentioned 
previously; that is, they imply no appreciable changes in the behavior of such systems 
and, at the same time, they induce an extremely rapid suppression of the unwanted 
superpositions at the macroscopic level. 

Due to the (present) impossibility of performing experimenta crncis allowing one 
to discriminate between dynamical reduction models and quantum mechanics, to 
accept or to refuse the dynamical reduction philosophy is, to a large extent, a matter 
of taste. At any rate, we consider it to be of some conceptual interest to have shown 
that one can follow such a line of thought to overcome the "difficulties" met by 
quantum mechanics. In a recent interesting paper, 17 on the basis of a comparison of 
the effects of the CSL dynamics with those due to the environment, it has been stated 
that, in the absence of possible experimental tests, the consideration of new physical 
principles that are not motivated by the necessity of explaining new phenomena 
makes the dynamical reduction program vulnerable to Ockham's razor. 

However, we disagree on this point for two reasons. One has been sharply 
expressed by Bell: 18 "I think that theoretical physics owes much to insisting on more 
than agreement with experiment." The second emerges naturally when one takes 
into account the specific context, that is, the conceptual problems that motivate the 
reduction program. The central issue is the conceptual implications of quantum 
formalism for what concerns the possibility of adopting a macrorealistic position 
about nature. 

A quite natural way to grasp the core of the question is to consider the 
hidden-variable models that have played and that continue to play (quite appropri
ately in our opinion) an important role for the debate on the conceptual foundations 
of quantum mechanics. Within such approaches, one requires the theory to be in 
complete agreement with quantum mechanics from the very beginning. In spite of 
this, it would be quite unappropriate to deny the conceptual relevance of having been 



GHIRARDI: SPONTANEOUS REDUCTION 517 

able to prove that a deterministic completion of quantum mechanics is possible and 
of having identified the price (i .e. , contextuality) that one has to_pay for this. 

Having stated this, we will, in this section, call attention to recent developments 
.of the dynamical reduction program. As we will see, the investigations furthering the 
considered line have led to some interesting general results about the requests that 
one has to respect when attempting to modify quantum mechanics and have required 
a reconsideration of nonlocality and of the criteria for property attribution to 
individual physical systems. We will also review briefly some experimental aspects of 
the new dynamics and we will call attention to some open problems on which active 
research is still going on. 

Some General Results Concerning the Role of Nonlinearity and Stochasticity 

As is well known, 19 standard quantum mechanics exhibits nonlocal features that, 
however, allow20 its peaceful coexistence with relativity because quantum nonlocality 
is of the uncontrollable type. It can also be proved15·16 that QMSL and CSL satisfy the 
no-faster-than-light signaling constraint. 

In connection with this problem, it is appropriate to call attention to a quite 
general result by Gisin.21 It can be summarized by stating that the inclusion of 
nonlinear elements in the Schrodinger equation unavoidably leads to violations of 
the above constraint. 

On the other hand, even though the inclusion of stochastic features in the 
dynamics may lead to ensemble reduction (i .e. , to diagonalization of the statistical 
operator in the preferred basis), it is worth mentioning that one can prove 15·22 that it 
cannot induce, by itself, individual reductions (i .e. , the fact that the state vector of 
each individual system is driven into one of the preferred eigenmanifolds). It goes 
without saying that the very reason for considering the dynamical reduction program 
is the desire of accounting for individual reductions. 

The conclusion of this subsection is that it is just the combined interplay of 
nonlinearity and stochasticity that makes it possible for CSL to peacefully coexist 
with relativity and, at the same time, to satisfy the fundamental desideratum that 
individual macroprocesses have outcomes. 

Locality from the Dynamical Reduction Point of View 

Because CSL reproduces the quantum correlations about measurement out
comes at the two wings of the apparatus in an EPR-like situation, it goes without 
saying that it also exhibits nonlocal features, just as standard quantum mechanics 
does. Thus, one is led to raise the problem of the precise nature of the nonlocal 
aspects of the theory. Immediately after the formulation of QMSL, Bell felt the 
necessity of discussing this problem and reached the conclusion 16 that the model "is 
as Lorentz invariant as it could be in the nonrelativistic version." 

This problem has been reconsidered in great detail in two recent papers.23.24 In 
them, the two different kinds of nonlocality that can characterize a theory and that 
are usually denoted as parameter dependence (PD) and outcome dependence (OD) 
have been taken into account. For those who are not familiar with this problem, one 
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can state that a theory violates locality by exhibiting PD when the outcome at one 
wing can depend on the settings at the other wing, whereas, in theories exhibiting 
OD, the outcome at one wing can depend only on the outcome at the other wing. 

Although quantum mechanics exhibits OD, it is appropriate to recall that23 all 
deterministic hidden-variable theories exhibit PD. In references 23 and 24, it has 
been shown that both QMSL and CSL violate locality by exhibiting only OD. This is 
of some relevance because, as extensively discussed in reference 18 and in the papers 
under consideration, the two just-mentioned nonlocal features have a completely 
different status from the point of view of the possibility of getting relativistic 
generalizations of the theory itself. In fact, it is easily proved23 that all theories 
exhibiting PD admit, at most, what Bell has called nongenuinely relativistic general
izations;18 note that this specification makes reference to the fact that, although 
physics turns out to be the same for all observers, there is nevertheless a hidden 
preferred reference frame. On the other hand, the violation of locality by OD does 
not preclude the possibility of a relativistic generalization in the true Lorentz sense. 18 

Are Experimental Tests of Dynamical Reduction Possible? 

In spite of the fact that we have repeatedly stressed .the extreme difficulty in 
devising experimental tests of CSL against quantum me_chanics, it is appropriate to 
mention that there have been various investigations aimed at identifying possible 
ways of tackling such a problem. 

Let us list some of the effects of the modified dynamics that deserve to be 
discussed: 

( 1 )  The theory is fundamentally irreversible; as such, it implies a continuous 
increase of the energy with the elapsing of time. This is easily understood by 
taking into account the fact that localizing a system implies inducing high
momentum components. The corresponding energy increase can be explic
itly evaluated15 and turns out to be quite negligible and well below experimen
tal testability. 

(2) A quite natural area to search for effects of the modified dynamics is the area 
of so-called macroscopic quantum effects, typically superconductivity and the 
like. There have been various interesting investigations25-27 about this point, 
the conclusion being that the theory actually implies a change in the 
resistivity of a superconductor with respect to the quantum mechanical value. 
Once more, however, testing such an effect is not possible with the present 
technology. 

(3) Another effect is particularly interesting and its investigation has recently led 
to some relevant conclusions about CSL. Consider a bound system like, for 
example, a hydrogen atom and suppose that its electron suffers a localization 
process. One can easily evaluatets,28,29 the probability that such a process 
leads to the excitation or to the dissociation of the atom. Due to the fact that 
the localization accuracy is orders of magnitude larger than the dimensions 
of the atom, even if such a process occurs, the corresponding probability 
turns out to be extremely small. When one takes into account the extremely 
low probability that a microscopic system suffers a localization, one reaches 
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the conclusion that, on the average, one atom per second per mole will be 
excited or dissociated as a consequence of the modifications of the dynamics. 
This seems to be a too improbable event to be tested. In spite of this, 
investigations30 on this effect have brought a new understanding of the 
phenomenon and have suggested a modification of CSL along the lines that 
we are going to discuss. 

The argument of reference 30 goes as follows. Let us suppose that the CSL 
mechanism is operative at the level of quarks and that it makes sense to apply it to the 
quark model for nucleons (both of these assumptions are by no means obvious). 
Then, one can go through a calculation strictly similar to the previous one for the 
atom. In spite of the fact that the probability of dissociation is much smaller than 
before (due to the extremely small dimensions of a nucleon), nevertheless, if 
reduction is governed by the number of displaced particles in accordance with the 
CSL parameters � and a, one gets a lifetime for the proton appreciably shorter than 
the one already confirmed by experiments. To avoid this problem, one should change 
the parameters of the model. This in turn would imply violating the other requests 
that it must meet (typically, the suppression of the superpositions of macroscopically 
different states would require an unacceptably long time to occur). 

The authors of reference 30 then make an important remark. If one replaces the 
number density operators of the CSL model by the corresponding mass density 
operators and if one assumes the reduction rates to be those of CSL for nucleons, 
then the excitation and/or dissociation probabilities are depressed by large factors. 
The advantages are remarkable. First of all, the dissociation rate for the proton turns 
out to have a value well below the experimental bound, whereas the reduction rates 
for macroscopic objects coincide practically with those of CSL, with the decoherence 
being governed by the nucleons in ordinary matter and the contribution from 
electrons becoming negligible. Moreover, because of this, one relates reduction to 
gravity, an interesting possibility that has been suggested by various authors.6,3 I-34 
Actually, a model exhibiting this feature and having the further advantage of 
replacing one of the two parameters of CSL with Newton's gravitational constant had 
been presented35 some years ago. Other advantages of taking such a position have 
been discussed in reference 27. 

Relativislic Generalizations and Property Attribution 

In spite of the fact that, as pointed out in the subsection on locality, there is no 
reason of principle forbidding a relativistic generalization of CSL due to its nonlocal
ity being of the OD type, it turns out to not be an easy task to reach such a goal. 
Several interesting attempts have been made in recent years,36-39 but they have not 
led to a satisfactory solution of the problem. Trying to embody stochastic elements in 
a quantum field theory context leads to intractable divergences. The considered 
investigations, however, have led to a better understanding of some crucial points 
and have thrown some light on relevant conceptual issues. 

First, they have led to a completely general and rigorous formulation37•38 of the 
concept of stochastic invariance. Second, they have stimulated a critical revisitation 
of the problem of the criteria for the attribution of objective local properties to 



520 ANNALS NEW YORK ACADEMY OF SCIENCES 

physical systems. A way to do this, having the following implications, has been 
proposed. In specific situations, one cannot attribute any local property to a 
microsystem; any attempt to do so gives rise to ambiguities. However, in the case of 
macroscopic systems, the impossibility of attributing to them local properties (or, 
equivalently, the ambiguities about such properties) lasts only for time intervals of 
the order of those that are necessary for the dynamical reduction to take place. 

The above picture has stimulated a deeper investigation of the problem and a 
critical reconsideration (taking appropriately into account the role of nonlocality 
within a relativistic context) of the logical structure of the EPR argument.40 The 
conclusion is that, when the appropriate criterion is adopted, no objective property 
corresponding to a local observable can emerge, even for microsystems, as a 
consequence of a measurementlike event occurring in a spacelike separated region. 
Such properties emerge only in the future light cone of the considered macroscopic 
event. Correspondingly, it turns out to be impossible to establish, even conceptually, 
cause-effect relations between spacelike events. 

To conclude, if a way to circumvent the present difficulties (i.e., the intractable 
divergences) can eventually be found, we can anticipate that, even in the relativistic 
version, dynamical reduction models will allow microsystems to be foggy, whereas 
requiring macrosystems to always have definite macroproperties . 

. .  

Closing the Circle within the Spontaneous Reduction Program 

The last point that we consider worth mentioning is that the spontaneous 
localization models represent theoretical constructions allowing one to close the 
circle in A. Shimony's sense, that is, to elaborate a worldview based on a genuinely 
quantum formalism (i.e. , on the Hilbert space description of physical systems) that 
can accommodate our knowledge about microscopic phenomena and, at the same 
time, can account for our definite perceptions. This program has been proven to be 
viable in two recent papers.4 1 ,42 

Reference 41 gives an answer to a criticism43 that had been raised, completely in 
general, against the dynamical reduction program. It is based on the remark that one 
can easily imagine situations leading to definite perceptions and that nevertheless do 
not involve the displacement of a large number of particles. Typically, consideration 
has been given to a "measurementlike" process in which the two paths followed by a 
microsystem going through a Stern-Gerlach setup end on two different regions of a 
fluorescent screen and that then excite a small number of atoms that decay by 
emitting a small number of photons. Then, one is dealing with a superposition of two 
states corresponding to photons emerging from two different points. However, the 
process involves such a small number of particles that the CSL dynamics cannot lead 
to its suppression. On the other hand, because the visual perception threshold is 
quite low (about seven photons), the naked eye of a human observer is sufficient to 
detect the point from which the luminous spot originates. The conclusion is obvious: 
in the considered example, no dynamical reduction can take place and thus the 
measurement is not over-the outcome is not definite-up to the moment in which a 
conscious observer perceives the signal. 

This criticism is inappropriate. It is perfectly true in the considered case that the 
superposition persists for long times (actually it must do so because, due to the fact 
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that the system under consideration is microscopic, one could perform on it 
interference experiments that everybody would expect to confinn standard quantum 
predictions); however, if one takes seriously the above remark, one cannot avoid 
considering the whole system that brings about the definite "outcome", that is, the 
unambiguous perception. One must then give a simple estimate of the number of 
ions that are involved in the visual perception mechanism. Such an analysis makes it 
perfectly plausible41 that, in the process, a sufficient number of particles are 
displaced by a sufficient spatial amount to satisfy the conditions that are necessary, 
according to CSL, for the suppression of the superposition of the two nervous signals 
to take place within the perception time. 

It has to be stressed that this analysis, even though resorting to the mechanism of 
visual perception, does by no means attribute a special role to the conscious observer. 
The observer's brain is simply the only system that enters into the game in which a 
superposition of two states involving different locations of a large number of particles 
occurs. As such, it is the only place where the amplification act bringing to a close the 
microscopic phenomenon can occur. However, if in place of the eye of a human being 
one puts in front of the photon beam a spark chamber or any device leading to the 
displacement of a macroscopic pointer or producing ink spots on a computer output, 
reduction will take place. Once more, this example shows the appropriateness, 
within the considered theoretical models, of Wheeler's position that the central 
point is not the observer's consciousness, but the experimental device bringing the 
phenomenon to a close. 

Before concluding, we would like to mention that, in reference 42, it has been 
shown how a reinterpretation of the considered model theory allows one to make a 
further relevant step towards closing the circle within a nonrelativistic framework. 
One starts by defining at each fixed time t an average mass density function M(r, t) in 
the real three-dimensional space. Such a function is simply the expectation value of 
the mass operator of a cell of volume 10- 15 cm3 centered at r, evaluated on the state 
vector 1 '1', t) describing the physical system that represents "our universe". It is 
obvious within standard quantum mechanics that such a function cannot be endowed 
with an objective physical meaning precisely due to the occurrence of linear 
superpositions of macroscopically different mass distributions. One then considers a 
CSL model relating reduction to the mass density. The theory dynamically sup
presses in extremely short times the embarrassing linear superpositions. Limiting his 
or her considerations to the set of states that are allowed (i.e., are dynamically stable) 
by the model, one can give a description of the world in terms of the considered 
function M(r, t). Second, one can define an appropriate topology on such a set that 
allows a quite natural specification of macroscopic similarity of allowed Hilbert space 
states. In turn, this topology can be taken as a basis to define a sensible principle of 
psychophysical correspondence for the theory. 

CONCLUSIONS 

In this report, we have taken into account the main conceptual difficulties met by 
standard quantum mechanics in dealing with physical processes involving a macro
scopic system. We have stressed how J. A. Wheeler's remarks and lucid analysis have 
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been relevant for pinpointing and for bringing to its extreme consequences the 
puzzling aspects of quantum phenomena. We hope to have made plausible how the 
recently proposed models of spontaneous dynamical reduction represent a consis
tent way to overcome the conceptual difficulties of the standard theory. Obviously, 
many nontrivial problems remain open, the first and most relevant one being that of 
generalizing the model theories considered here to the relativistic case. This is the 
challenge of the dynamical reduction program. 
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INTRODUCTION 

The Quantum State Diffusion (QSD) modeJl-7 can be considered from two quite 
different points of view. 

From the first point of view, it provides a tool for the description of individual 
open quantum systems. With this tool , one can compute numbers that cannot be 
computed with the traditional quantum mechanical description based on the density 
matrix formalism. These numbers are directly related to experimental data. The 
power of the QSD model is due, formally, to the efficieht numerical algorithm it 
provides and, more deeply, to the fact that it " represents an actual laboratory 
experiment in a way more faithful than what density matrices can do. In particular, 
individual runs of experiments are described expl icitly. 

From the second point of view, the QSD model aroused from problems related to 
the so-called "quantum measurement problem". More precisely, it follows from the 
question, "why should a theory well known for its stochasticity be based on a 
deterministic (Schrodinger) equation?"8 and from the idea that, because classical 
(i .e. , Kolmogorov) probabilities are "seen" (frequencies are measured), why not 
introduce such probabilities in the basic equations. 

These two aspects of QSD are treated in the second and fourth sections, 
respectively. In the third section, quantum Brownian motion illustrates the QSD 
model. However, before these more technical sections, let us try to motivate the 
reader by some general statements about the QSD model: 

( 1 )  Ordinary quantum mechanics, based on the Schrodinger equation, is no 
longer the best for all practical purposes. Although the new model depends 
on ordinary quantum mechanics for its formulation, it provides very different 
pictures of what happens to an open quantum system and much better means 
of computation for al l, but the simplest, open quantum systems. 

(2) In this model, the changing state of a single quantum system is represented 
directly by a stochastically evolving pure state vector, as for a single run of a 
laboratory experiment. The state vector is then not merely a device for 
computing statistical expectations in an ensemble of systems. 

(3) Local ization or reduction appears dynamically, as a result of the diffusion 
process (in contrast to the stochastic dynamics of the quantum jump or 
trajectory methods9-1 1 ) .  

(4) Quantum measurement is  nothing special . It is just one example of the 
interaction of a system with its environment. This interaction of systems with 
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measuring apparatus can be treated in the same way and, using the same 
basic equations, as the interaction with any other envirolfment such as a heat 
bath or reservoir. 

(5) Heat baths or reservoirs produce localization or reduction, in the absence of 
anything resembling a measurement. 

(6) The state diffusion model provides graphic illustrations of quantum fluctua
tions that mimic experimental fluctuations. In particular, the time depen
dence of the mean photon number for induced atomic transitions bears a 
remarkable similarity to the corresponding experimental plots. 12 

(7) The path from an open quantum system to a closed classical Hamiltonian 
system involves two noncommuting limits. The correct order is (first) "quan
tum --+ classical" and (next) "open --+ close", as illustrated in FIGURE 1 and 
discussed in the fourth section. 

Random 

Master equation 
for density operators 

QSD 
for 1/Jt 

Open 
Quantum 
Systems 

Stochastic Classical 
equations Statistical 
for {pi , qt) Mechanics 

Fokker-Planck equation 
for distributions 

Deterministic 

Schrooinger equation 
for 1/lt 

Closed 
Quantum 
Systems 

Conservative 
Classical Local 
Systems 

Hamilton's equations 
for (pi , qt) 

FIGURE 1. Noncommuting diagram of the "classical limit" from open quantum systems to 
closed classical systems. 

QSD AS A PRACTICAL TOOL 

The evolution equation for the density matrix p, of an open system contains 
nonunitary terms characterized by "environment operators" Lm : 
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The QSD model associates to each such dissipative evolution a unique1• 13 (Ito) 
stochastic evolution for the normalized state vector ljl,: 

d 1 "1, ) = (- �)Hl l!I, ) dt + � [{L�)+Lm - (�)L�Lm - G){L�)+ {Lm )+ ] 1 "1, )dt 
+ L (Lm - {Lm)+) l ljl, )dt,. , (2) m 

where the t,. terms are complex-valued Wiener processes of zero mean and correla
tions, 

Md� = O, M(d�dt,.) = 0, (3) 

Equations 1 and 2 are related by averaging the pure states ljl, over the noises t,. : 
p, = M( l l!l, ) {"6, 1 ) . (4) 

The relations 2 and 4 are the basic equations of the QSD model. 
In reference 1, we emphasized the use of equation 2 for practical computations 

based on a Monte Carlo-type algorithm, especially in quantum optics. In reference 2, 
we proved general localization theorems and, in reference 3, we emphasized the 
physical picture and insight provided by the state diffusion model. Finally, let us 
mention some applications and tests of the model: 

( 1 ) in reference 12, QSD is used to describe a quantum jump experiment; 
(2) in reference 14, QSD is applied to some nonlinear optical processes; 
(3) in reference 15, QSD and quantum jump simulations are compared for 

two-photon processes; 
(4) in reference 1 6, quantum jumps and the "phase-space picture" of QSD are 

compared; 
(5) in reference 17, an approach to thermal equilibrium of harmonic oscillators 

is numerically investigated; 
(6) in reference 18, QSD is applied to an open angular system, such as a 

quantum capacitor or rotor; 
(7) in reference 19, some explicit solutions are presented; 
(8) in reference 20, the Heisenberg picture is investigated and algorithms for 

multitime expectation values and correlation functions are presented. 

The phenomenon of localization of QSD trajectories has been investigated in 
references 2, 3, 5, 13, 21 , and 22. In the remainder of this section, we shall simply try 
to convey some intuition for the generality of this phenomenon. Due to the random 
diffusion, the solutions of equation 2 concentrate on regions (in the Hilbert space) 
where the fluctuations are minimal. These regions are characterized by 

Min [ � l (Lk - {Lk )) l l!l)dg. 1 2] = Min � (11Lk)2 • (5) 

Accordingly, localization takes place with respect to the Lk variables. Because 
interactions are local in space, the position operator often appears in the Lk terms. 
Consequently, position localization is common in QSD (and in nature). 
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If the environment operator L is self-adjoint, the minima (equation 5) corre
spond to the eigenstates. In this way, one can model ideali"zed measurements, 
reproducing the projection postulate as asymptotic solutions: "10 -+ <l>n as t -+ oo with 
probability I (<l>n I "10) 1 2, where <l>n is an eigenstate of L. 1 .S 

If L = a or at, that is, the annihilation or creation operator of the harmonic 
oscillator, the minima (equation 5) correspond to the coherent states. This example 
is developed in the next section. 

Note that these states of minimum fluctuations are also those satisfying the 
Zurek conditions23 in that they remain maximally pure under the evolution described 
by equation 2: 

The QSD model thus provides explicit equations for the "narrow wave packets" 
discussed, for instance, by Zurek24 and by Joos and Zeh.25•26 If the states minimizing 
Ik (.:1Lk)2 are not preserved by the Hamiltonian, then the asymptotic solutions of the 
QSD model (equation 2) are no longer given by equation 5, but instead result from a 
competition between the Hamiltonian and dissipative part of the evolution equation, 
as described by equation 2. This contrasts with the Zurek condition because any 
Hamiltonian preserves pure states. 

QUANTUM BROWNIAN MOTION 

In this section, we consider a pumped and damped harmonic oscillator. We study 
its approach to thermal equilibrium, as described by the QSD model. 17 All expecta
tion values agree with standard quantum mechanics, as always with QSD. However, 
this example also illustrates some specific aspects of QSD, l ike localization for 
instance. 

Other simple examples of quantum Brownian motion can be found in references 
13 and 19. 

The master equation describing the approach to thermal equilibrium of a 
harmonic oscillator is 

p, = -iw[ata, p1) + ii'Ykp,a - (i) 1aat, p, }] + (ii +  l)'Y[ap,at - (�) lata , p, }] , (6) 

where ii is the equilibrium mean photon number, ii = (ata)equ . .  and 'Y is the inverse of 
the relaxation time. 

The corresponding QSD equation can be readily written down by substitut
ing the Hamiltonian H = wata and environment operators L 1 = ..{iryat and L2 = 
J(n + l)'Ya into equation 2. The environment operators have the tendency of driving 
the system towards states of minimum .:1L1 and .:1L2, as explained in the previous 
section. In the present case, these states are the coherent states I a), labeled by the 
complex number a =  ((q) + i(p)) //1.. Because the coherent states are preserved by 
the Hamiltonian, any initial state evolves asymptotically under the QSD equation 
(equation 2) towards a coherent state. Then, they are preserved and the complex 
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number a follows the well-known (classical) diffusion equation: 

da, = -iwa,dt - (�)a,dt + �d�. (7) 

Note that, at zero temperature, n = 0 and the fluctuations disappear. 
FIGURE 2 illustrates this example. After an initial transient time, the state tends 

first to a Gaussian wave function; next, after some oscillations of the standard 
deviations ll.p and !lq, it evolves into a coherent state. The mean position and 
momenta continue to oscil late, as should happen for an oscillator, with random 
fluctuations due to the finite temperature. . 
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FIGURE 2 .  Example o f  a realization o f  QSD illustrating the approach t o  thermal equilibrium 
of a harmonic oscillator; see the third section. The initial state is the pure number state 1 3). The 
two dotted lines represent the mean position and momentum, (p) and (q). The two full lines 
represent the standard deviations, (.:1p)2 and (�)2. This example illustrates how an arbitrary 
initial state tends asymptotically to a coherent state. The center of these coherent states will 
follow the classical stochastic process (equation 7). 

This example illustrates two general features of QSD: 

( 1) Any initial state localizes: In this example, the local ization is in phase space, 
but in general it could be on energy eigenstates or in position, depending on 
the environment operators. Most interactions, if not all, are local; hence, the 
environment operators usual ly involve the position operator. Thus, position 
localization is the most common. Combined with a Hamiltonian evolution, 
phase-space localization is also often realized. 
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(2) After localization, the wave packet spread is the minimum compatible with 
the Heisenberg uncertainty (quantum fluctuations) and the wave packet 
center follows classical trajectories with thermal fluctuations. Hence, to 
classical eyes, the quantum state solutions of the QSD equation (equation 2) 
look like classical points in phase space evolving under the classical diffusion 
equation (equation 7). 

Before concluding this section, let us note that the master equation (equation 6) 
can be equivalently written in terms of the following three environment operators: 

(8) 

Although these environment operators are different from the ones in equation 6, the 
corresponding master equations are identical. Consequently, any physically meaning
ful unraveling of that master equation must be independent of the choice of 
environment operators. This is indeed the case with QSD, 1 • 13 contrary to the 
stochastic jump process studied in references 9 and 10. 

QSD AND THE CLASSICAL LIMIT OF QUANTUM MECHANICS 

In reference 22, Ian Percival showed that, because of the generic local ization 
phenomena in QSD, the corresponding states "appear to classical eyes like phasc
space points". This localization has been explored in references 2 and 3 and is we ll 
illustrated in the previous section. This, together with the presence in QSD of 
classical probabilities and of distributions of pure states, makes it natural to 
investigate the classical limit starting from the QSD equation (equation 2) rather 
than from the density operator formalism. 

The intuitive idea, as depicted in FIGURE 1 , is the following: the two limits, 
"quantum --+ classical" and "open --+ close", do not commute. In cases where ft is 
relatively small, some effects of the environment cannot be neglected, like localiza
tion and randomness. Accordingly, the first limit should be "quantum --+ classical", 
after which classical statistical physics will be obtained. It is only after the second 
limit "open --+ close" that the classical Hamilton equations are obtained. 

Conservative classical mechanics is local and deterministic. Open quantum 
systems are nonlocal and nondeterministic. If one tries first the limit "quantum --+ 

classical", one obtains a theory (centered on the Schrodinger equation) that is 
deterministic, but nonlocal . No limit can remove smoothly this nonlocality. The 
Wigner function and related functions, for instance, reintroduce "probabil ity" 
distributions in the classical state space, but these "probabilities" arc difficult to 
interpret :  first, because of the negative values; next and mainly, because there arc no 
probabilities in the SchrOdinger equation. If, on the contrary, one tries first the limit 
"open --+ close", locality comes out naturally. Indeed, although QSD is still nonloca l. 
the nonlocal states evolve in general to local states. The mean values of these local 
states then undergo classical trajectories with noise. In the second limit "quantum --+ 

classical", this noise is smoothly removed and classical Hamilton equat ions arc 
obtained as illustrated in the previous section. 

In FIGURE 3, another example is il lustrated: a free particle with a friction .. �, la 
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FIGURE 3. Friction "a la Caldeira-Leggett-Di6si"27 in' the QSD model. Any initial state tends 
asymptotically toward a Gaussian wave function of fixed shape, as illustrated on this realization. 
The Hamiltonian H = (A.2/4){q, p} stretches the q coordinate and damps the conjugate 
coordinate p. The environment operator L = Af1 damps both the p and q coordinates in such a 
way that, together, the Hamiltonian and environment operator produce, on average,p  = -A.2p 
and q = 0. In this example, A = ./05 and the initial state is the following superposition of 
number states: llio = ( 1 4) + i l 5))/J2. The two dotted lines represent the mean position and 
momentum, (p) and (q). The two full lines represent the standard deviations, (�p)2 and (�)2. 
They tend asymptotically to (Ji - 1)/2 and (2(J2 - l) J- 1 ,  respectively. 

Caldeira-Leggett-Di6si".27 Any initial state tends asymptotically toward a Gaussian 
wave function of fixed shape (i.e., fixed ll.p and t:.q). FIGURE 4 illustrates an open 
nonlinear oscillator. The classical counterpart exhibits chaos for certain values of the 
parameters (see, for instance, reference 28). This figure illustrates again that the 
wave function tends to be close to a Gaussian (although in this case Gaussian states 
are not preserved by the nonlinear Hamiltonian). In this example, the wave function 
breathes: the standard deviations of position and momentum oscillate. The ampli
tude of this oscillation is irregular and lasts forever. 

In QSD, the randomness is not arbitrary, but follows strict laws. The relation to 
the density matrix evolution is unique (under the assumptions of Markovicity and 
continuity): all other stochastic equations unraveling the density matrix evolution do 
depend on an arbitrary choice of the explicit form of the density matrix evolution 
equation. 1 •1 3 Although the individual evolutions are not local, the statistics makes it 
compatible with relativity (no arbitrary fast signaling) .s,29 

The necessity to consider open systems has already been realized and empha
sized by Zurek and Zeh, among others.24·25 This alone, however, is insufficient30 

because a density operator mixes classical and quantum probabilities in such a way 
that, in general, many (classical) distributions of pure (quantum) states do corre
spond to a given density matrix. Moreover, classical mechanics deals with pure states 
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(points in phase space) or with distributions of pure states. There is no classical 
analogue to the density matrix. . 

The consistent history approach31 is another attempt to {ntroduce classical 
probabilities into a quantum evolution. In reference 32, we showed that this 
approach is in fact very similar to the QSD model, at least for open systems. Indeed, 
the consistent histories (also called decoherent histories) are precisely the solutions 
of the QSD equation (equation 2) .  Let us make this connection plausible by showing 
that two different realizations "1�. and "1�2 of the stochastic process (equation 2) tend 
to decohere. The mean of the square of their scalar product provides a measure of 
the mean "distance" between arbitrary trajectories in QSD: 

(9) 

In general, the trace Tr(p2) tends to zero (maximum entropy) for long times. In such 
cases, two arbitrary QSD trajectories tend to become orthogonal, that is, to deco
here, for long times. 

CONCLUSIONS 

The two aspects of Quantum State Diffusion have been presented: first, QSD as a 
practical tool; next, the emergence of classical physics out of QSD. Is it to say that 
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FIGURE 4. Open nonlinear oscil lator: H = ata + ( 1 / IO)atataa, L 1  = J(n + l )'ya, and L2 = 
.fii:tat, with n = 'Y = 1 /8. The initial state is a pure number state: lji0 = 1 3). Only one realization 
is shown. After a short transient time, the state is close to a Gaussian. However, the Gaussian 
state is not preserved by the nonlinear Hamiltonian. The pseudo-Gaussian state breathes, with 
an irregular amplitude. The two dotted lines represent the mean position and momentum, (p) 
and (q). The two full lines represent the standard deviations, (.¥)2 and (�)2. 
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QSD is a new fundamental theory? The answer is negative because of the following 
two-related-limitations of QSD: 

( 1 ) QSD applies only in the Markovian limit. This is often an excellent approxi
mation. However, it is an approximation and a fundamental theory cannot be 
based on approximations. 

(2) The distinction system/environment is in part arbitrary. The question of 
"what is a system" in quantum physics is a very difficult one, if not the most 
difficult one. 

However, QSD could be considered as providing a first approximation to the next 
theory: a kind of "semi-quantum-mechanical" approximation.33 

To conclude, let us mention a recent article from the Sussex group working on 
quantum experiments: IS 

There is thus clearly a very good case for adopting an individual system approach, like 
QSD, in tandem with the usual statistical approach when discussing such devices 
theoretically. For example, it should be an invaluable tool for providing experimenters 
with a feel for the situation in which individual events will be revealing, and those in 
which the ensemble average will be more so. Thus, when single runs are seen to exhibit 
highly characteristic features, it should provide considerable insight into the environ
ment interactions present. . . . With all this in mind, we• therefore think that the 
individual system view of open quantum mechanics should prove to be most useful, both 
from a fundamental and from a practical aspect, for future quantum device research. 
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WHAT IS THE WAVE-FUNCTION COLLAPSE? 

We shall start by reformulating the wave-function collapse along the line of 
thought of the many-Hilbert-space approach. 1 

Consider the measurement problem of an observable f performed by a detector 
D on a quantum system Q in a normalized superposed �tate: 

or 

PQ = l t!P > < l!JQ I = � c;cjl u; >  < ui l  ij 

(I) 

(2) 

with I; l c; l 2 = 1 ,  where we have assumed that F l u; > = X; l u; > and <u; l ui > = 8ii. 
When we find an eigenvalue Xk in a measurement, we often consider the 

measurement process within the scope of the naive Copenhagen view. 
Naive Copenhagen view-Projection rule: The measurement should instanta

neously change the Q-system as 

or 

all other branch waves disappear. 

(3) 

(4) 

This type of transition is often called the wave-function collapse (wfc) and is widely 
used to describe the measurement process. This wfc is usually introduced in 
theoretical calculations by hand or as a postulate, but not through a physical process. 

As for the above naive view, we should state several unsatisfactory points as 
follows: We know that the above transition is an acausal and probabilistic process to 
be found with probability l ck 1 2, but it does not describe the appearance of probabili
ties in a measurement process. For this reason, one can say that the naive view is not 
satisfactory. Moreover, we know that quantum mechanics can never give a definite 
prediction for a single experiment on a single system, but only the theoretical 
probability distribution, which is to be compared with the accumulation of many 
independent experiments performed under the same conditions. 

534 
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For this reason, we often use an improved expression called the system-only 
wave-function collapse: 

(5) 

However, this is still not satisfactory for the following reason. In the special case with 
c1  = c2 = 1/ ./1. for a dichotomic observable F, the system-only description of the wfc 
becomes 

(6) 

where u± = (u 1 ± u2) /  ./1. and �± = I u± > < u± I · This describes a measurement of F 
via the expression in the middle right-hand term, whereas it describes a measure
ment of another observable G, with eigenstates u±, via the expression in the far 
right-hand term. In general, [F, GJ  ¢ 0, so we are led to the contradiction that the 
above expression describes the incompatible measurements of two uncommutable 
observables at the same time. 

Within the scope of the naive view, it is very difficult to explain the negative-result 
measurement and we can hardly discuss the possibility of having imperfect measure
ments (see later discussions on the decoherence parameter). 

Remember that all measurement processes take place during a very long time on 
a microscopic scale, but not instantaneously, even though we can regard them as if 
they happened instantaneously on a macroscopic scale. 

The widespread idea that observation of the so-called quantum Zeno effect offers 
experimental evidence of the above naive view is misleading, as we discussed 
elsewhere in this volume.2 

Thus, we are led to the system-detector description of the wave-function col
lapse, 

as the "final goal" of the measurement theory. We should derive this type of 
wave-function collapse by applying quantum mechanics to the total (Q + D) system. 
Here, 8101 stands for the density matrix of the total system, uf stands for the initial 
density matrix of D, �9(k)i stands for the final Q-state corresponding to the k-th 
eigenvalue, and u�(k)I stands for the final D-state. Note that u�(k)l describes secondary 
processes that have the purpose of generating a signal (such as counterdischarge) to 
display the observation of the k-th eigenstate of F. As was repeatedly mentioned, 1 the 
wave-function collapse itself should be strictly distinguished from the thermal 
irreversible processes displaying the result of the measurement. 

Note that the right-hand side of this expression is the sum of the probabilities of 
finding Q in mutually exclusive states. Therefore, once a particular event takes place, 
all other results cannot occur. This is nothing other than the very original idea of 
wave-function collapse for a single measurement, as expected from the original 
probabilistic interpretation. 

Consequently, this expression exactly describes not only the statistical distribu-
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tion for accumulation of many independent measurements, but also a single measure
ment on a single system. 

Remember that the final goal of the measurement theory is not to derive the 
naive Copenhagen view for individual events, but to derive the above system
detector description of the wfc. 

or 

We should, in addition, remark the following facts: 

(a) The wave-function collapse represented by the above transition is a perfectly 
dephasing process provoked by the interaction of Q with D. 

(b) In order to experimentally observe the whole transition scheme, we have to 
repeat the same experiment many times and then accumulate many indepen
dent results. In this context, the wfc is a statistical process. 

( c) We have to repeat that quantum mechanics can never give a definite 
prediction for a single experiment on a single system, but only the theoretical 
probability distribution to be compared with the experimentally accumulated 
one. 

( d) Note that the presence of the D-states in the system-detector description of 
the wfc is very important because equation 7 goes back to the unsatisfactory 
system-only description of the wfc if we remove the D-states from equation 7. 

DECOHERENCE PARAMETER-AN "ORDER PARAMETER" FOR THE 
WAVE-FUNCTION COLLAPSE 

Let us restart our discussion from von Neumann's process: 

1 '111 > = L c; l u; >  ® l <l>o >  --+ l 'h > = L c; l u; >  ® l <I>; > (8) 
i i 

2}01 = 1 '111 > < '111 1  = L c;cjl u; >  < � I ® l <l>o> < <l>o l ij 
--+ L c;cjl u; > < ui l ® l <I>; >  < <l>i l  = 1 -q,F> < .q,F I = E}?t, (9) ij 

where <l>o and <I>; are the initial and final normalized detector-environment states 
(DE-states), subject to the asymptotic orthogonality, 

( 10) 

in which TJ is a very small number tending to zero as the number of degrees of 
freedom of the detector goes to infinity. 

Remember the following: 

( 1 ) von Neumann's process is characterized by a unitary temporal evolution, 
provoking no dephasing among different branch waves. 

(2) We often accept the simple idea that von Neumann's process with the 
orthogonality or the nonoverlapping of different <l>k's is equivalent to the wfc 
because we cannot observe interference among them. However, note that the 
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apparent disappearance of interference does not always mean the wfc 
because it is possible that coherence is still kept. • 

(3) One of the simplest ways to destroy the unitarity by hand is to take the partial 
trace with respect to the DE-states: 

( 1 1 ) 

which is derived by the above orthogonality. The result is nothing other than 
the unsatisfactory system-only description of the wfc. Note that partial 
tracing is a human-dependent manipulation. 

(4) The off-diagonal part of E�t never vanishes, even when taking the partial 
trace with respect to the DE-states, because 

Tr .;;. tot - 0 DE-F.off - ' but T [.;;. tot ]2 _. 0 roE -F,off ,,... • (12) 

as is easily derived by the asymptotic orthogonality. The vanishing of interfer
ence terms of the partial inner product with respect to DE-states does not 
imply the lack of the off-diagonal part of the whole density matrix. This 
impl ies that partial tracing or the partial inner product should not be 
considered responsible for the exact wave-function collapse. 

Here, let us recall that different incoming Q-particles in an experimental run will 
meet, particle by particle, the D-system (particularly, one of its local systems) in 
microscopically different states because of its open-system character and internal 
motions, although we can look at it as being in the same state from a macroscopic 
point of view (see FIGURE 1) .  

For this reason, we should label different repetitions of the same experiment with 
e ( e = l, . . .  , Np) ,  with NP being the total number of repetitions. Accordingly, the 
final D-state wave function and the final total density matrix for von Neumann's 
process should read 

( 13) 

respectively. The resultant total density matrix to describe the probabil ity distribu
tion should naturally be given through its average over many events: 

Etot = (_.!._) � 5totU> .  
Np t= I 

(14) 

The most important and fundamental average in the present theory is the 
bar-average, but we can usually or sometimes replace it with the statist ical ensemble
average ( « 5tot » for the total density matrix), under the assumption of ergodicity. 
Of course, the validity of ergodicity should depend on the internal state of D. 
Remember that the Gaussian distribution law that is used in our numerical simula
tion is finally introduced only as a simplified substitute for the resultant complicated 
internal states of D. 

If we can use the statistical ensemble-average, then we can put 

(15) 
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In this case, we are led to the following description of the measurement process: 

For simplicity, and without a big loss of generality, we can write 

I <l>f t» = ei"Y/ t > I <I>; > , 

(16) 

( 17) 

where "Yf t )  is in general a complex number with a positive imaginary part. Defining 

,1 . .  5 eih;--yil = «ei(-y;--y';l » IJ 

5 d; [�ij + Eq( l  - �;j )) , 

we obtain the final-state total density matrix: 

E�1 = L '1;jc; cll u; > < ui l  ® l <I>; > < <l>i l ·  
ij 

(18) 

(19) 

(20) 

In the case of no losses and no reflection, that is, d; = 1, a perfect measurement 
provokes a complete loss of coherence, yielding 

(21) 

so we obtain 

(22) 
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Thus, we can define, via equation 19, the decoherence parameter eii, which is an 
order parameter for quantum measurements. • 

Summarizing, we can conclude that 

( 1 )  Eij = 0: for perfect measurement; 
(2) eii = Bq: for perfect coherence; 
(3) 1 > I E;j I > 0: for imperfect measurement. 

DETECTOR MODEL AND NUMERICAL SIMULATIONS 

Consider the measurement of a dichotomic observable, for which we can use a 
measuring apparatus of the Stern-Gerlach type as schematized in FIGURE 2. The 
branch waves Iii � = Tl!ia and l!ib running in channels A and B at the first step are 
combined in the same channel of the second step, where T stands for the transmis
sion coefficient at D. Labeling the relevant quantities with ( f) and introducing the 
bar-averages, we obtain the detection probability by D0, proportional to 

P = l l!i�  + llib l 2  = (lli) ( l  + I T l 2  + 2ReT), (23) 

where we have assumed that I Ilia 1 2  = I llib 1 2  = I l!itl!ia I = Yi. For simplicity, we have 
suppressed the D-states. 

We can compare T< t l with ei"Y� ' '  in the above general discussion; thus, we obtain 

1 f1 2 
e = l - = 

I T l 2  
(24) 

for the decoherence parameter. Note that 1 > e > 0. This ideal is also applied to 
analyses of neutron interference experiments . 1  

By making use of a detector model as schematized in FIGURE 3, we perform 
numerical simulations of T< t l (FIGURES 4a-c) and e (FIGURE 5) .3 Now, assume that 

(25) 

A 

B 
._ __________ . . .  

FIGURE 2. The first step on the left is a measurement of the Stern-Gerlach type. The second 
step of the experiment on the right is put in for the purpose of obseiving the physical effects of 
detector D in the first step. 
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Ai · �  d i  
E .. 

• • • • • • 

\W 
• • • • • • 

1 2 3 i+1 N-2 N-1 N 
FIGURE 3. Modeling of the detector: V(x) = I.f:, 1 A;8(x - d;), with N standing for the total 
number of potentials, A; standing for the potential strength of the i-th potential, and d; = b;+ 1 -
b; standing for the spacing between the i-th and the (i + 1 )-th ones. 

k(d} = 4.5ir, and (A}/liv = O.Ql (v being the particle SP.eed) and suppose that an 
experimental run includes NP = 5000 repetitions.of the same experiment. We have 
assumed Gaussian distributions of the spacings and ihe strengths as conventional 
substitutes for the internal motions. 

For the above detector model with very weak potentials, we can easily derive the 
following formula, 

e a; 1 - exp[- {k(d))2 · (N - 1 )1:!.2], (26) 

where k(d} = 4.5ir, for the decoherence parameter (see the last paper in reference 3). 
This formula is excellently fitted to the results of the numerical simulation, as was 
seen in FIGURE 5 .  

POSSIBLE RELATION BE'IWEEN DEPHASING AND CHAOS 

FIGURE 5 indicates that we can describe e in terms of almost the same function of 
a single variable Nl:!.2 for various N and f:!.2. Therefore, we have the possibility of 
obtaining the wfc even for small N if l:!.2 is large enough. 

We may realize such a case by making use of a chaotic system with small degrees 
of freedom, as D in FIGURE 2, in order to give the wave-function collapse.4 We are 
now performing numerical simulations for a few D's with some chaotic behavior, for 
example, as given by a (classical and quantum) kicked rotator.4 In this case, we have 
to use the bar-average, 2101, but not the statistical ensemble-average, « 2101 » .  
Suppose now that we have the second moment, fourth moment, etc., for the 
momentum transfers of the incoming Q-particle in collisions with the rotator, as well 
as the rotator position in terms of the bar-averages. Assume further that we can 
approximate their resultant distributions (of the momentum transfers K and the 
rotator position x) by the Gaussian ones with the mean square deviations of them, 
Kf., K}, (l:!.xL)2, and (l:!.xT )2• Here, the subscripts L and T stand for the longitudinal 
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and transverse components, respectively. Under this assumption, we easily obtain 

e � 1 - exp[- {Kl(.1xd2 + Ki(.1xT )2}) (27) 

as a rough approximation. This work will be reported in the near future. 

CONCLUSIONS 

In this report, we first reformulated the system-detector description of the 
wave-function collapse as a dephasing process, which should be considered to be the 
final goal of quantum measurement theory. Starting from von Neumann's descrip
tion of the measurement process, we next introduced the decoherence parameter, 
which enables us to quantitatively judge whether an instrument can work well or not 
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FIGURE 4a. T-diagrams and e for various N and �: effects of fluctuations for fixed N ( = 100). 
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as a detector. The dephasing process or the wave-function collapse must be provoked 
by the fluctuations of the constituents of the detector. In the present theory, we can 
take the effect of fluctuations into account by taking the bar-average (given by 
equation 14), which was introduced by faithfully following an experimental proce
dure. This is the most important one and can be replaced with the statistical average 
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FIGURE 4b. T-diagrams and E for various N and &: the wave-function collapse for N = 5, 100, 
1000, and 10,000. 

given by equation 15, depending on the internal state of the detector, under the 
assumption of ergodicity. In the case of numerical simulations based on the Dirac
comb detector model, we further simplified the statistical average by making use of 
the Gaussian distributions of potential strengths and spacings. In this case, we found 
that the decoherence parameter e can be described by a simple function of a single 
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FIGURE 4c. Dependence of e on N and �2• 
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0 . 1  

variable Ntl.2, where N stands for  the total number o f  constituents and tl.2 stands for 
the mean square deviation of potential strengths or spacings. Finally, we discussed 
the possibility of provoking the wave-function collapse, in the case of a small system, 
through its chaotic behavior, but the problem is still open. 
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FIGURE 5. e versus N�2: the numerical results are well fitted by the theoretical formula 
(equation 26) (see the last paper in reference 3). 
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INTRODUCTION 

To summarize in one pregnant sentence the most recent result has always been 
and still is the requirement every scientist has to fulfill when he or she wants to 
explain his or her research to John A. Wheeler, the great scientist, deep philosopher, 
and extraordinary human being we honor at this conference . The central lesson of 
quantum mechanics, that is, interfering transition probability amplitudes rather than 
probabilities, stands out nowhere clearer than in the double-slit experiment, the 
center of the long-standing debate between Bohr and Einstein. 1 Nobody has identi
fied this simple, but far-reaching difference between classical and quantum physics as 
the origin of so many different physical phenomena ranging from nuclear physics2 via 
rainbow scattering3•4 to squeezed state physics5 as John A. Wheeler. Nothing is more 
appropriate at a conference celebrating this great man than to present yet another 
illustration of this one-sentence summary-path information implies probabilities, 
whereas no path information implies interfering probabil ity amplitudes. 

In this article, we transfer the double-slit configuration into the rather abstract 
space of atomic excitation and show how by erasing "which path" information6-1 1  we 
can generate quantum coherence and even do state engineering, 12-26 that is, manipu· 
late quantum states in a controlled way. Our quantum eraser is spontaneous emission 
together with reabsorption in a detector. 

The article is organized as follows: In the second section, we send two excited 
two-level atoms, one at a time, through a cavity and find noninterfering contributions 
to the photon statistics of the cavity field because we sti ll have the information of 
which atom has deposited a photon in the cavity. We erase this information via 
spontaneous emission and re absorption of the emitted photon and obtain interfering 
parts in the photon statistics of the cavity field. In the third section, we first extend 
our investigations from two two-level atoms to two three-level atoms and then to 
many three-level atoms. In the fourth section, we show that we can use the scheme of 
the third section in order to manipulate the state of the cavity field in a controlled 
way; that is, we can do quantum state engineering. In the fifth section, we give a brief 
summary of our investigations. 

a Also at Moscow Institute of Physics and Technology, Dolgoprudny, Moscovskaja Obi., 
Russia. 

b Also at Max-Planck-Institut fiir Quantenoptik, D-85748 Garching bei Miinchen, Germany. 
545 
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MOTIVATION AND BASIC CONSIDERATIONS 

We consider the interaction of two two-level atoms with a quantized field in a 
high-Q cavity. The spatial separation of the atoms is such that there is at most one 
atom inside the cavity. We describe the interaction of a single two-level atom with the 
radiation field by the well-known Jaynes-Cummings Hamiltonian : 

Hint = hg(atu + aut), 

where a, a t  and u, ut are the usual lowering and raising operators for the field and the 
atom, respectively, and g is the coupling strength. The atoms are resonant with the 
radiation field. Before they enter the cavity, we excite them by an appropriate laser 
pulse into the upper state l a ). The quantized field in the resonator is assumed to be 
in an arbitrary state l ilii) = I;=o wn l n) . After an interaction time T, the first atom 
leaves the cavity and the complete state of the system consisting of two atoms and the 
field reads in the interaction picture 

I "1) = � wn(Cn I n ; a, a) - iSn I n + 1 ;  b, a)) . 
n=O 

Here, I n + 1; b, a) describes a state where the field i� in the number state I n + 1 ), the 
first atom is in the ground state l b), and the second atom is still in the excited state 
l a). In addition, we have introduced the abbreviations Cn = cos(gTJn + 1 )  and Sn = 
sin(gTrn+T). After the second atom has left the cavity, the state of the system is 

I "1) = � wn [c; I n ; a, a) - iCnSn I n + 1; a, b) 
n=O 

- iSnCn+ 1 I n + 1 ;  b, a) - SnSn+ 1 I n + 2; b, b)) . (1) 

This state is the starting point for the considerations in the remainder of this report. 
The interesting feature about state 1 (i .e., equation 1) is that there are two 
contributions that contain exactly one atomic excitation . The probability of finding n 
photons in the cavity and one atomic excitation reads 

(probability for n photons} = ( l a , b)} - 2 2 2 2 2 
+ 1 atomic excitation - Wn lb, a) - l wn- 1 I (Cn- 1Sn- 1 + Sn- 1Cn ). 

In FIGURE 1 ,  we depict this probabil ity for the case of a coherent state with a mean 
photon number of 64 and a scaled interaction time of gT = 50. We emphasize that 
this expression does not contain interference terms because we had to sum up two 
probabil ities rather than probability amplitudes. The reason for this is that the two 
states that contribute, namely, I n + l ;  a , b) and I n + l ;  b, a), are orthogonal. 

At this point, one might ask the question of whether it is possible to figure out a 
specific mechanism that leads to interference between the two contributions. For this 
purpose, we take into account the spontaneous decay of the excited state l a) of the 
atoms outside the cavity. 
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According to APPENDIX A, we find for times much larger than the decay time 1 /f 
of the atom that an initially excited two-level atom with no photons present, that is, 
l a) ® 1 0), transforms into the state l b) ® l 'Y 1 ), where l 'Y i )  is a superposition of 
one-photon states of different wave vectors; see equation 12 in APPENDIX A. 

Now, we return to our problem of retrieving interference between the two 
contributions in equation 1 that contain the state I n + 1 ) . Let us first consider state 1 
(i.e., equation l} for a time much larger than l /f. Then, atoms in the excited state l a )  
will have decayed to the ground state l b) and state 1 reduces to 

l lfi(t » 1 /f)} = L Wn ( ·  . .  - i(CnSn l 'Y1 ) + SnCn+ i l 'Y2 }} l n + l ; b, b) + . . . ) .  (2) n=O 

Here, we have focused on the contributions containing one spontaneously emitted 
photon and have indicated the terms with two or no spontaneously emitted photons 
by dots. As shown in APPENDIX A, the field state I 'Y i ) depends on the location of the 
atom. Therefore, the field states l 'Y1 ) and l -y2) created by the first and the second 
atom are different because the location of the atoms is different. 

0.02 
W. ( la,b) ) 

n l b ,a) 

0.01 

25 50 75 n 

FIGURE 1. Probability distribution for finding n photons in the cavity field and exactly one 
atomic excitation. The initial field state is a coherent state with a mean photon number of 64. 
The scaled interaction time is gT = 50. 

Now, both atoms are in the ground state, but still we do not get interference. 
Indeed, the states l 'Y1 ) and l 'Y2) are approximately orthogonal7 provided l r2 - r1 I » 
c/w = 1'. Therefore, we are forced to consider more complicated schemes in order to 
regain interference. Suppose we place another two-level atom in its ground state as a 
detector atom in the region behind the cavity as shown in FIGURE 2. Then, the 
radiation emitted by the two atoms can be absorbed by this detector atom. Using the 
field states 
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FIGURE 2. Two two·level atoms interact with a resonant field and leave the cavity in a 
superposition of upper and lower level. An atom in the excited state will decay to the ground 
state. The emitted radiation can be absorbed by another two-level atom placed far away from 
the others. 

we can write state 2 (i .e. , equation 2) as 

l lfi) = � w{ · · - (�)Sn ((Cn + Cn+ 1) I +)  

+ (Cn - Cn+ 1 ) 1 - )) l b}det ® In + 1 ; b ,  b) + · · l 
where l b)det denotes the ground state of the detector atom. If we place the detector 
atom such that the distance to the first atom and the distance to the second atom are 
equal, the radiation described by the state I - ) cannot excite the detector atom; see 
APPENDIX B. Therefore, only radiation described by the state I + ) can be absorbed. 

Hence, the probability of finding n photons in the cavity and an excited detector 
atom reads 

(probability for n photons) 
+ excited detector atom = Wn( l b, b}; l a )de1 ) 

where .# is a normalization constant. The dots indicate another contribution to the 
photon statistics coming from the part of state 2 with two spontaneously emitted 
photons. This expression clearly contains interference-we first add probability 
amplitudes and then take the square. The physical reason for this interference is that 
there exist two different paths (in an abstract space) that in our approach cannot be 
distinguished, but they both lead to the same final state. One of these paths 
corresponds to the situation where the first atom made a transition from l a )  to l b} in 
the resonator and the second atom did not. For the other path, the roles of atoms 1 
and 2 are just interchanged. In FIGURE 3, we depict the one-photon part of the 
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probability in equation 3 for the same parameters as in FIGURE 1 .  We note, however, 
a structure completely different from the one in FIGURE 1 .  . 

We conclude this section by noting that, in order to get interference terms in the 
probability describing a joint measurement on the field and atomic part of the 
system, we are forced to erase the information 11 about which path the system actually 
took. The "which path" information about the system is hidden in the states of the 
two atoms. Therefore, as a first possibility to erase this information, we let the atoms 
decay to their ground state by spontaneous emission and absorb the emitted 
radiation by a detector atom. This very process of absorption serves as an eraser for 
the "which path" information. The central lesson is that we need a detector system 
that tells us that both atoms are in the ground state without providing us the 
information of how this happened, that is, via which path they got into the ground 
state. In the further sections of this report, we present a more sophisticated way to 
erase the "which path" information and show how the cavity field state can be 
manipulated by erasing that information. 

MULTICHANNEL INTERFERENCE BY SPONTANEOUS EMISSION 

Up to now, we have learned how, in principle, we could get interference by 
erasing "which path" information. In the present section, we extend our consider
ations from a two-level atom to a three-level system with a level scheme as shown in 
FIGURE 4. In particular, we assume that our atoms have a ground state lg) and we 
allow transitions l a ) -+ lg) or l b) -+ lg) in the optical regime and transitions l a ) -+ l b) 
in the microwave domain.27 

The first part of our scheme, namely, the interaction of the atoms with this cavity 
field, is the same as before because the resonant cavity field couples only the levels 
l a) and l b) very strongly and the third level lg) can be neglected completely. 

25 50 75 n 

FIGURE 3. One-photon part of the probability distribution (arbitrary units) for finding n 
photons in the cavity field and the detector atom in its excited state . The initial field state is a 
coherent state with a mean photon number of 64. The scaled interaction time is gT = 50. 
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FIGURE 4. Extended three-level system. State l a )  
decays to the ground state; lg) and emits simultaneously a 
photon with wave vector k, whereas the decay of state l b) 
is accompanied by the emission of a photon with wave 
vector i<. 

However, after the interaction with the resonator field, we now allow for spontane
ous decay of the levels l a) and l b) to the ground state lg) . The emitted photons are 
measured by two photodetectors as illustrated schematically in FIGURE 5 . 

Because the decay constant r (see equation 13 in APPENDIX A) contains the 
frequency to the third power, a transition with a large energy difference is very likely 
compared to one with a small difference. The transition J a) --+  J b) involves frequen
cies that are 4-5 orders of magnitude lower than those corresponding to transitions 
to Jg). Therefore, we can neglect transitions from J a )  to J b),during the evolution in 
the free-field region. We describe the complete syste.m by a state vector consisting of 
three main parts: 

� 

• the cavity field mode, 
• the two atoms, 
• the quantized free field outside the resonator that induces spontaneous 

emission. 

We start our investigation when both atoms have left the cavity, but have not yet 
decayed to the ground state. The state vector consists of the state 1 describing the 
resonator field and the atoms and, in addition, the vacuum state of the free field 

F1GURE 5. Schematic illustration of the model. Two three-level atoms interact with a 
quantized electromagnetic field inside a resonator. Only levels l a )  and l b) are important 
because the atom is resonant with the field. After the atoms have left the cavity, they decay to 
the ground state lg) and the simultaneously emitted photons are measured by two photodetec
tors. 
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outside the resonator, that is, 

I "1) = L wn [C� I n ; a ,  a) - iCnSn I n + 1 ; a ,  b) 
n=O 

- iSnCn+ i I n + 1 ;  b, a ) - SnSn+ i I n + 2; b, b)) ® 1 0). (4) 

After some time, the atoms will spontaneously emit optical photons. Although the 
emitted radiation has a whole spectrum of different wavelengths, there are essen
tially only two wavelengths that are important. They correspond to the energy 
differences between the levels l a ) , lg) and l b), lg) and the corresponding wave 
numbers are denoted by k and K, respectively (see FIGURE 4). We place frequency
sensitive and direction-sensitive detectors-one sensitive for k-photons and the 
other sensitive for K-photons-in the far-field regime. This setup selects the modes 
on which we want to perform a measurement. The detection of one photon of each 
kind corresponds to a projection of the state vector of the complete system onto the 
state 1 1,;, 1 ;;) . Which parts of our initial state 4 (i.e., equation 4) can contribute to 
such an event? Because we concentrate on those cases where one measures one 
photon of each type, it is clear that only those terms that contain the combination 
l a , b) or l b, a) can contribute. This shows that our new scheme again serves as an 
eraser because, by only measuring the two photons, we cannot decide whether it was 
l a ,  b) or l b, a ) that led to the final result. In other words, we do not know whether 
atom 1 emitted photon k and atom 2 emitted photon K or vice versa. Consequently, 
both paths are used by the system and we end up with interference between both 
contributions. 

After the detection of the two photons, both atoms are in the ground state lg); 
hence, we are left with a pure field state of the resonator field. The central question 
we now want to address is as follows: What is this pure state of the cavity field after 
photon detection? A rigorous calculation of the time evolution of the system taking 
into account the spontaneous emission and also the measurement of the photons at 
different times is rather complicated and lengthy; therefore, it will be publ ished 
elsewhere. In the present report, we only give a brief outline of the derivation. For 
this purpose, we modify the asymptotic photon states 1 -Y) discussed in APPENDIX A to 
fit our three-level problem. We introduce the statesc 

produced by the transition from Ii = a, b) to I g). Here, i = 1 ,  2 denotes the first and 
the second atom at position r1 and r2• The decay constants fa and fb are defined 
analogous to equation 13 and g;,, is the coupling constant to the mode k. For a time 
much larger than the lifetimes l lfa and 1 /fb of states l a )  and l b), respectively, state 4 

cThe label k contains also the polarization. 
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reads 

I "1) = � wn[ •  . .  - i(CnSn I "'f'i, "fi) + SnCn+ t  I "fi, 'Yi)) I n + 1 ; g, g) + · · .) 
nsO 

or 

Here, we have assumed that the decay of the atoms is independent from one another 
because the atoms are separated by a distance larger than the wavelength correseond
ing to the k or K transition. After measuring two photons in the specific modes k and 
i(, the state of the cavity field and the atoms is governed by • . -.. 
( li, li< l "1) ex � wn(Cns,,e -ik ·r1 -ii< ·'2 + SnCn+ 1e-ik ·'2-ii< ·r1 ) l n + 1 ) ® lg, g) 

n-o .. 
ex � wn(CnSn + ei(i<-k)'('2-ri )SnCn+ 1 ) l n + 1 ) ® l g, g) . 

n=O 

Hence, the field in the cavity is in the pure state 

1 .1. ) - Ar ""' (C s + i(i<-i)'('2-r1lS c ) I + 1 )  '!'cavity - -'' ,.£..J Wn n n e n n+ I n ' n=O 
(5) 

where ./Y is a normalization constant. In particular, the probability to find n photons 
in this state, 

(probability for n photo
�
ns after) _ 2 2 i(i<-i)·('2-ri ) 2 

detection of photons k and K - l./YI I wn- i l I cn- tSn- 1 + e Sn- ten I ' 

(6) 

clearly displays interference coming from the two indistinguishable paths that the 
system takes in order to arrive at the final state. 

In contrast to equation 3, equation 6 depends via the phase factor ei(i<-iHri-11> on 
the particular experimental arrangement, namely, on the mutual distance of the 
atoms and on the wave vectors of the modes we decide to measure. This allows us to 
control the final state in the resonator by changing these experimental parameters. 

The method described above can be generalized to an arbitrary number N of 
atoms. However, there exist many different ways of how to do this. We could, for 
example, repeat the experiment until we measure a fixed number, say I ( 1  :;;; I :;;; N), 
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of photons of type k and (N - /) photons of type K. In order tQ keep things as simple 
as possible, we take I = 1, that is, we concentr�te on th� case where we measure one 
K-photon and (N - 1 )  k-photons, denoted by k2, • • •  , kN. It can be shown27 that the 
field state after the detection of the photons reads 

I l!icavity) = .Al' � per Mn I n + 1 ) ,  n=O 

where the matrix 

C ( I ) n c <Z> n c CNJ n 
1 Ezz E2N 

M =  n 

1 ENz ENN 

has the elements 

and 

Here, per A denotes the permanent of the matrix A = (a;j) defined as 

The sum runs over all permutations of length N. The permanent is very similar to a 
determinant; the only difference is that the familiar factor (- l )•ign.,, is missing in the 
case of the permanent. Note that the case N = 2 immediately reproduces equation 5. 

The appearance of the permanent reflects the fact that the final state contains all 
contributions originating from different decay paths; that is, each atom could have 
emitted each of the detected photons. Each combination thus leads to one term of 
the permanent. 

Where are the parameters that determine the final field state and how many are 
there? First of all, there is the interaction time that fixes the first row of the matrix 
Mn. Then, we have the (N - 1) x (N - 1 )  submatrix Em/ at our disposal. Each of its 
(N - 1 )2 elements is a complex number with modulus unity. The corresponding 
phase is determined by the relative distance of the atoms and by the wave vectors of 
the emitted photons. 

Let us summarize the results of this section: By letting N three-level atoms 
interact with a cavity field, we create a highly entangled state. Outside of the 
resonator, we place detectors that can distinguish between k- and K-photons. Some 
time after the atoms have left the cavity, they decay to the ground state and emit 
optical photons that are detected. Just by measuring the photons, we cannot infer 
which atom emitted which photon or, in other words, we cannot infer the decay 
channel that the system took. Therefore, all possible decay channels interfere-we 



554 ANNALS NEW YORK ACADEMY OF SCIENCES 

have multichannel interference. After the detection of the photons, we are left with a 
pure field state in the resonator. Although the detection process is separated in space 
and time from the interaction with the resonator field, the mentioned field state 
depends on parameters like the direction of the wave vectors of the detected 
photons. This offers the possibility to manipulate the field state just by changing the 
position of the detectors. The method presented in this section relies on the 
entanglement between the cavity field, the atoms, and the field outside the cavity. 

QUANTUM STATE ENGINEERING USING SPONTANEOUS EMISSION 

At this stage, we want to discuss the kind of field states that we can create by the 
method described above. Because the number of parameters grows approximately as 
N2, it is very difficult to keep track of the influence of all these parameters. 
Therefore, we consider the special case where (i) all atoms are equidistant, that is, 
R1 = Iii with a fixed distance ii between consecutive atoms, and (ii) all k-photons 
are assumed to be emitted in the same direction, that is, k2 = . . .  = kN = k. This 
reduces the set of (N - 1 )2 independent parameters of the matrix e,,,1 to a single 
parameter, namely, 

. .  
for all m, 

where � = (k - i<) · ii . For this special case, it is possible to calculate the permanent 
of Mn explicitly27 and we find for the field state 

oo N 
I · • · ) _ ,,. ""' ""' ;c1- • >Pc'- •s cN-1 1 + l ) '!"cavity - ./T � � Wne n n n + I  n . 

n=O /= I 
(7) 

Let us now take a coherent state with a real amplitude ao » 1 as the initial field 
state. We get a good approximation for the coefficients in equation 7 by expanding 
the square root Jn + 1 up to first-order around the maximum n = � of the Poisson 
distribution: 

l wn l 2 = e-� (�) . 
In this case, it is possible to perform the sum over n and we can represent the field 
state as a sum of (N + 1) coherent states located on a circle of radius ao, that is, 

where 

and 

N 

l t!icaviiy) = .Al' L GA l aoe;"'� ), A=O 

IPA = (N - 2�)9 

(8) 
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FIGURE 6. Illustration of state 8 (i .e. , equation 8). It consists of (N + l) coherent states lying 
on a circle. The angle between neighboring peaks is always 29. In the case of even N, one of the 
peaks is located at ao. 

Here, the weight function Gx is a known, but complicated, function of 0, ao, N, and 
(most importantly) our parameter �-

FIGURE 6 illustrates the structure of state 8 (i.e., equation 8) in Q-function phase 
space. As is already known,28•29 the interaction of a single atom with a coherent state 
leads to a splitting of the peak in the Q-function into two counterrotating peaks. If we 
take a whole sequence of N atoms instead of l atom, each of them will lead to a 
further splitting of the Q-function. In the case of identical interaction times, some of 
these peaks overlap and effectively we get (N + l )  peaks lying on a circle. The weight 

P = 2. 1s  

FIGURE 7 .  Influence of  the parameter �· By changing � appropriately, we can suppress the 
third peak almost completely. The field is initially in a coherent state with a mean photon 
number of 25 and we have used 5 atoms. 
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of each peak depends, among other parameters, on our choice of �. By changing �. 
we are able to change the weight of the different peaks. We demonstrate this in 
FIGURE 7. Here, we use 5 atoms and the initial field state is a coherent state with a 
mean photon number of 25 . The scaled interaction time is gT = 10. From our former 
considerations, we would expect to find 1 1  peaks. However, the weight of the 
outermost peaks is already exponentially small and 2 of the visible peaks overlap 
strongly at a = -ao. By changing the parameter �. we can make one of the peaks 
vanish almost completely. 

This example demonstrates state engineering using spontaneous emission in a 
most vivid way. 

SUMMARY 

We have used a system consisting of two- or three-level atoms, one mode of a 
cavity field, and the free radiation field outside the cavity as an example to 
demonstrate some fundamental laws of quantum mechanics: (i) for distinguishable 
paths, we must add probabilities; (ii) for indistinguishable paths, we must add 
probability amplitudes. We have used the absorption of �pontaneously emitted 
photons by detectors as quantum erasers in order to ec-ase the "which path" informa
tion. Using a quantum eraser, we were able to retrieve Interference terms in the 
photon statistics of the cavity field. Furthermore, we have shown that we can use our 
erasers in order to manipulate the cavity field state in a controlled way-that is the 
idea of quantum state engineering. The way that we manipulate the field state in the 
cavity is based on another fundamental idea of quantum mechanics: a measurement 
on a subsystem of an entangled state can drastically change the state of another 
subsystem without any "physical interaction" between the two subsystems, that is, 
without an interaction described by a Hamiltonian. 
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APPENDIX A 

Asymptotic Field State of Spontaneous Emission 

In the present appendix, we consider the interaction of an initially excited 
two-level atom with a multimode field that does not contain any photons at the 
beginning. The Hamiltonian for this system readsd 

H = (�)tiwuz + t: hfi£akai + t: [g£(r1 )utai + gi(r1 )ua!J .  

where w is the atomic transition frequency, <Tz is the usual Pauli spin matrix, and 

- ( !Mli) -8£(r, ) = gfeiH• = - V 2e;;v ef . jieiH1 

is the coupling strength between an atom at position r1 with dipole moment p and the 
field mode k with polarization vector ef. We expand the state vector of the system, 

l e!>} = a(t)e -( 1 12)i"" l a ,  O} + L �i(t )e C l l2)i.,,-iOit l b, 1£ ), 
k 

(9) 

where the initial conditions are a(O) = 1 and �£(0) = 0. When we substitute this 
ansatz into the Schrodinger equation 

dThe label k contains also the polarization. 
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we find the equations of motion 

(10) 

and 

( 11) 

for the coefficients a and �i· Here, we have introduced the detuning !:.i = .O.i - w. 
Within the Wigner-Weisskopf approximation, we can solve these differential equa
tions (equations 10 and 1 1 ) and obtain, for times much larger than the atomic decay 
time l /f, the state7 [ g'f(r1 )!h l 

l <!>(t » l !f)) = � [ ( 1 ) · ] lb, li;) = l b) ® l "Y1 ). 
k t:. - + - zr k 2 

where we have introduced the asymptotic photon sta!� 

and the damping constant 

w3p2 
f = --

3'TThE(f:3 . 

APPENDIX B 

Reabsorption of Spontaneously Emitted Photons 

(12) 

( 13) 

In this appendix, we investigate the absorption of a photon by a detector atom 
after it has been spontaneously emitted by another atom of the same kind. After the 
first two-level atom at position r1 has spontaneously emitted a photon, the state of the 
radiation field is given by equation 12. Because the detector atom at position i is of 
the same kind as the atom that has emitted the photon, the interaction of the 
detector atom with the radiation field is described in the same way as the interaction 
of the emitting atom with the radiation field. We therefore make the ansatz of 
equation 9 and find equations 10 and 1 1  with r1 replaced by i as the equations of 
motion. Furthermore, because the system is initially in the state l b)det ® I "Y1 ), we now 
have the initial conditions 

a(O) = 0 
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and 

For a(t) , we find 

The first part does not depend on the position of the atoms and is usually 
approximated by (-f/2)a(t), that is, the Wigner-Weisskopf approximation for a 
two-level atom. As shown by Hillery and Scully7 for a similar expression, the second 
part depends only on the distance Ii - r1 I between the absorbing and the emitting 
atom and not on the actual positions of the atoms. Therefore, a(t) depends only on 
Ii - rd . 

We now consider the radiation field described by the state 

that is, a superposition between the radiation field generated by a photon emitted by 
atom 1 at position r1 and the radiation field generated by a photon emitted by atom 2 
at position r2• We place the detector atom such that the distance to atom 1 is equal to 
the distance to atom 2 and thus find two identical contributions to a(t) with different 
signs. Because these two contributions cancel, the detector atom cannot absorb 
radiation from the field state I - ) . 
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The problem of quantum measurement has been with us since the foundations of the 
theory were laid in the mid- 1920s. It has generated much discussion, with little 
resolution of the questions raised. I will argue here that this situation has arisen in 
part because of the confusion brought about by giving two very different concepts the 
same name, with the expected result that the valid questions related to the two 
concepts have become entangled. It furthermore has led to a restriction on the types 
of measurements considered within the theory. In this report, I am not going to 
propose any radical or even very new interpretations of the theory of quantum 
mechanics. I am rather going to engage in an ancient philosophical pastime, namely, 
to propose that we use distinct terms for distinct coocept!!, I am then going to review 
some of the novel insights that have been obtained recently (especially by the group 
around Aharonov) regarding some novel types of measurement. 

MEASUREMENT, DETERMINATION, AND KNOWLEDGE 

The concept of measurement in quantum mechanics has had a long and confused 
history. There are essentially two separate concepts that have been conflated under 
the same title, concepts with a very different status in the theory a priori. In part, the 
intense confusion surrounding the word results from the attempt to reconcile these 
two different concepts, or rather to apply the properties of one concept to the other. 

The first concept subsumed under the term "measurement" is an axiomatic 
concept. Quantum mechanics, as with all of our theories in physics, is based on a set 
of mathematical structures. In the case of quantum mechanics, these structures are 
complex Hilbert spaces and operators on those Hilbert spaces. In addition to such 
mathematical structures, the theory must also make contact with the physical world. 
Structures in the theory must be correlated by structures in our experience of the 
world itself. As with all theories, quantum mechanics is a means of answering 
questions about our experiences of the world. Furthermore, they are questions 
related to the particulars and peculiarities of the actual world we live in. The theory 
requires a mapping of the mathematical structure onto our experiences. As in all 
physical theories, this takes the form of a general map, both of general structures of 
the world that we expect to have a broad range of validity and of structures that 
reflect the particulars and peculiarities of our experiences. 

a This work was performed under a fellowship and other support from the Canadian Institute 
for Advanced Research and under a grant from the Natural Science and Engineering Research 
Council of Canada. 
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In classical physics, the former constitute what is called the dynamical theory, 
whereas the latter are called the initial conditions. The theory encompasses the 
identification of dynamical variables and equations of motion, whereas the "initial 
conditions" encompass those aspects of our experiences that are felt to be peculiar to 
the individual time and place of those experiences. 

Quantum mechanics contains both of these aspects as well, but in a very different 
form from that of classical physics. The dynamics is represented by the operators, 
whereas, in the simplest case, the particulars of the situation are represented by the 
vector in the Hilbert space, that is, the wave function. I will denote these particulars 
by the term "knowledge" or "conditions" rather than the term "initial conditions" 
because, as we will see, conditions need not be initial nor are they equivalent in 
general to initial conditions (as they are in classical physics) . 

In addition to explanations, the theory must produce answers, that is, answers to 
questions that we have about the physical situations that we are interested in. It is 
here that the theory actually makes contact with the physical world. In quantum 
mechanics, these answers are in terms of probabilities. The usual phraseology goes 
something like this: "When one measures a quantity, and the system is in the state 
I <!>), the outcome of that measurement is one of the eigenvalues, say a ,  of the 
operator, say A, representing the physical variable measured, and the probability is 
given by the usual expression I (a I <!>) 12." 

However, the word "measure" brings with it the image of a physical process. 
Measurements are performed by means of measuring apparatuses. As aspects of the 
physical world, such measuring apparatuses should themselves be describable by 
quantum mechanics itself. However, it is difficult to have a system in which, at the 
same time, a concept is an axiomatic feature of the theory and one describable by the 
theory. Therefore, I would suggest that the word "determine" be used for this 
axiomatic feature of the theory. Thus, I would rephrase the above sentence as 
follows: "When one determines a quantity, and the knowledge (or conditions) under 
which one wishes to determine that quantity is represented by the vector I <!>), then 
the determination of a quantity represented by A gives one of the eigenvalues of A, 
say a ,  with probability I (a I <!>) 12." 

Determination, in this axiomatic sense, says nothing about how the determina
tion was made. It is simply a statement of a mapping from the theory to our 
experience, in which some knowledge sets the conditions on the questions we wish to 
ask and some knowledge represents the answers to the questions we want to ask. 

What then is a measurement? I will reserve the term "measurement" for a 
physical process, that is, a process describable in terms of quantum theory itself. A 
measurement is a process in which one has two separate physical systems, repre
sented by two separate sets of dynamical operators. Furthermore, the dynamical 
evolution is such that, given certain conditions on the measuring apparatus, a 
determination of some quantity associated with the measuring apparatus will give 
information about the system of interest. 

Under certain conditions, as von Neumann 1 showed, a measurement on a system 
could be treated as a determination of that system; that is, certain types of 
measurement (in which one makes a determination of some aspect of the measuring 
apparatus only) acted in all ways as though one had instead made a determination of 
the system itself. There is a consistency in quantum mechanics such that the 
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axiomatic concept that I call determination is closely related to the physical process 
that I call measurement. However, in von Neumann's analysis, notice that one has 
not done away with the concept of determination. One still must apply the axiomatic 
concept of determination to the measuring apparatus before one can draw any 
conclusions at all from the theory. It is just that such measurements allow us to 
reduce a complicated system (apparatus plus system of interest) to a simple system 
(the system of interest alone) under certain conditions. This mapping of a complex 
system onto a simpler system does not, however, in any way change the requirement 
for the axiomatic concept of "determination". It simply changes the system to which 
we need to apply the concept. 

At least, in part, the measurement problem in quantum mechanics is the disquiet 
that physicists feel for the concept of "determination". I t  feels l ike an extra and 
extraneous concept, a nonphysical concept. In classical physics, one can imagine that 
the theory and reality are in complete correspondence. The position of a particle 
really is a number and our experience of that position is simply the experience of that 
number. The physical map from experience to theory is just an identification of those 
numbers in the theory with the experience. (That some fairly sophisticated manipula
tions of experience are necessary to extract that number is a technical detail .) In 
quantum mechanics, on the other hand, there seems to be no direct map from our 
experience to the theory. The operators themselves.have far too much structure for 
experience. The state, or the Hilbert space vector itself, bas the wrong properties to 
map onto our experience. The only map is the rather indirect and seemingly 
unnatural one of "determination". One would like either to subsume determination 
under some physical concept of the theory (but that would lose the only relation 
between experience and theory that the theory contains) or to introduce some other 
relation between the theory and experience from which one could derive "determina
tion" in a natural way. That neither of these objectives has ever been achieved is a 
large part of the "problem of measurement" in quantum mechanics. 

However, I do not want to spend any more of my time on this issue; rather, I want 
to point out that the concern about this problem has warped our thinking about 
quantum mechanics and about the types of measurement possible in the theory. 
Because the von Neumann type of measurement creates the possibility of reduction 
of a complex system to a simpler system, the idea has become implanted that all 
measurement must be of the same sort. It seems to be the thinking that, because 
determination has a certain form, measurement must have the same form. However, 
it is becoming clear, especially through the work of the group around Aharonov, that 
this is too restrictive. 

Measurement is a physical process by which one has two systems interacting and, 
by making a determination on one system, one can obtain information about the 
other system. In certain cases, the information obtained is the same as a determina
tion; however, in other cases, it can differ significantly. Furthermore, because of the 
similarity of wave mechanics to classical wave theory, the impression has also arisen 
that conditions in quantum mechanics are entirely equivalent to conditions in 
classical mechanics, namely, initial conditions. Let us now look at the last case first. 

It has long been known to some (but ignored or resisted by most) that the 
conditions in quantum mechanics differ significantly from those of classical physics.2 
In classical physics, all conditions can be mapped onto initial conditions by use of the 
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equations of motion. Whether one measures the position now and the momentum 
two days hence, or measures them both now, is really irrelevant: For any condition, 
_imposed at a time, one can always, by use of the equations of motion, produce initial 
conditions that are entirely equivalent in all of their predictions to those general 
conditions. However, as Aharonov et al. 2 already showed about 30 years ago (and as 
has been independently rediscovered often since; e.g., sec reference 3), setting 
conditions at different times may not be equivalent to any initial conditions. The 
simplest example is that of a spin-Yi particle whosex-component of spin is known at 9 
A. M. and whose y-component is known at 1 1  A. M. Now, say both are known to have a 
value of + Yi. The probability that the answer will be + Y2 if one determines the 
component cos(O)S_. + sin(O)S1 at 10 A. M. is 

( 1 + cos(O)] [ l  + sin(O)) Pse= • 12 = 
2( 1  + sin(O) cos(O)) 

( 1) 

Note that there exists no initial condition-wave function nor density matrix-for 
the spin-Yi particle that would give this answer. It is unity for both 0 = 0 and 0 = -rr/2. 
The conclusion drawn from this simple example is true in general-conditions in 
quantum mechanics are not equivalent to initial conditions. 

Already at the last New York Academy of Sciences meeting in 1986, Aharonov4 
mentioned a surprising new effect that combines the inequivalence of conditions to 
initial conditions with what he calls "weak" measurements. If we set both initial and 
final conditions and, at an intermediate time, perform a particular type of inexact 
measurement of a quantity, the outcome of that measurement can be very counterin
tuitive. Although the measuring apparatus and the interaction arc designed so that, if 
the initial state is an eigenstate of the measured quantity, the outcome will be 
approximately given by that value for the measured quantity, the expected value for 
the measurements in this pre- and post-conditioned experiment is impossible 
according to all the usual tenets of quantum mechanics. 

Let us make this clear by an example. Our measuring apparatus is a trivial 
infinite-mass free particle. It is coupled to a spin-s particle (in our example, s = 20). 
The coupling is of the form, 

(2) 

that is, the interaction is such that, if the initial state of the free particle is lfi(x) and 
the state of the spin is in an eigenstate of the operator S 11, say with eigenvalue a, then 
the final state of the free particle is lfi(x - ea) . Thus, by measuring the displacement 
of the free particle due to the interaction, one can estimate a and hence measure S: 1 • 

If the particle begins in an eigenstate (or almost an eigenstate) ofX (i.e. , 1fi is sharply 
peaked about some value x0 with an uncertainty much less than e), then the 
displacement during the interaction can be measured precisely by determining the 
value x of X after the interaction and a =  (x - x0)/e will be a measurement of S. On 
the other hand, if the initial lfi has a spread of Ax, then the final determination of X 
will give the displacement only to ±Ax; that is, we will have a = ((x - x0)/e) ± 
(Ax/e). This is the sense in which the measuring apparatus is inexact. The detcrmina-
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FIGURE I.  The probability distribution for the pointer of the measuring apparatus with 
pre- and post-conditions with a small error ( = 0.5) for the measurement of the spin. The 
maximum value of the spin is 20. 

tion of some variable of the measuring apparatus only gives an inexact estimate of the 
value of some dynamic variable of the system. 

Now consider the following situation. Set conditions before the interaction with 
the measuring apparatus such that the value of Sx is known to be its maximum 
possible value, s. Furthermore, after the interaction, the value of the y-component, 
S1, is known to be the maximum possible value, s. What is the distribution of possible 
outcomes for the measuring apparatus? One would expect this to be something like 
the probability distribution over the various possible values for S11 convoluted with 
the initial probability distribution for the position of the free particle; that is, one 
would expect something like I..Pal lfJ(x - ea') p, where Pa is a probability for the spin 
to have a value -s s a s s. In particular, the average value (expectation value) for X 
should lie somewhere between x0 - ES and x0 + ES. If the measurement is sufficiently 
accurate, this expectation is fulfilled. FIGURE 1 plots the probability distribution for 
the location of the particle (x0 = 0 and e = 1) in the case where the initial spread of 
the wave function for the particle is small. However, FIGURE 2 is the plot of the 
distribution for the value of the position of the particle in the case where the initial 
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spread for X is large [of order ±evfs}]. Note that the center of the probability 
distribution is atx = 28, and the probability thatx would lie bet"1¥een -20 and 20 (the 
naively expected values) is very small. Using the determined value of X to infer the 

· value of S11 gives a value at all times larger than the maximum eigenvalue of S11• 
If we regard S as a classical vector spin and if we know that Sx and S1 both have 

value s, then S11 will have value Js; + s; = ./2s '"' 28. Note also that this works in this 
way only if the initial state !Ji(x) is sufficiently smooth. (In my case, I have chosen it to 
be a Gaussian.) In particular, sharp features in !Ji will destroy this property. 

One reaction to this example is that it is not a real measurement. However, it 
meets all of the criteria of a measuring apparatus in that, if the state of the spin is an 
eigenstate, the measuring apparatus produces the value to the accuracy to which the 
apparatus is designed. What we have here is a strange result that arises from the 
combination of an inexact measuring apparatus with the inequivalence of conditions 
in quantum mechanics to be equivalent to initial conditions. (For any initial condi
tions, the expectations that the result would simply have been the sum of the 
probabilities of the result for the eigenstates would have been true.) Note that this is 

0.4 

0.3 S=20, As=5.0 

0.2 

0 1 0  20 30 40 

FIGURE 2. The probability distribution for the pointer with the same conditions as in FIGURE 
1 ,  but with a large error (5.0) for the inferred value of the spin. Note that the distribution 
centers around the value of 28 and has only a very small probability of lying between 20 and 
-20. 
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a measurement situation in which the measurement is not equivalent to any 
determination on the spin system itself. 

There is another measurement situat ion that leads to results in conflict with the 
von Neumann equivalence of measurements and determination. This is a situation 
that I call adiabatic measurement. It arises out of another situation noted by the 
group around Aharonov.5 (They call it "protected" measurements, a term I feel to be 
highly misleading. They furthermore use it to argue that the wave function is "real" 
in some sense, a conclusion I also have great difficulty with.6) This is a situation in 
which the measuring apparatus is coupled to the system sufficiently weakly, and the 
system's evolution during the interaction with the measuring apparatus is dominated 
by a Hamiltonian with sufficiently widely spaced energy levels that the interaction 
with the apparatus can be treated throughout as an adiabatic perturbation. 

Consider a system whose Hamiltonian during the course of the interaction is 
given by H0• Consider couplings to a set of measuring apparatuses (which, for 
simplicity, we will take as free infinitely massive particles again, although nothing 
changes if we use more complex measuring apparatuses): 

H = H0 + L e; (t)A;P; ,  
i 

(3) 

where the A; terms are a variety of operators associated with the system (in general, 
noncommuting) and the P; terms are the momenta of a set of free infinitely massive 
particles. We can solve this assuming that the measuring apparatuses are in the 
momentum eigenstates Ip;) to obtain the adiabatic approximation to the Schrodinger 
equation for the system: 

(4) 

(5) 

where 

E(t) = E0 + L e(t) (EolA; I Eo)p;, (6) 
i 

with I Eo) being the eigenstates of H0 and £0 being their eigenvalues. Thus, the 
equation of motion for the state of the system plus measuring apparatus can be 
written as 

I 'l'(t)) = L at:(O)eif'(Eo + l:;<(1)(EolA;I Eo)P;d1) I E(t)) II I cl>;) (7) 
E i 

= L eiEo' I E(t)) II eif<(1 )d1<EoiA;I Eo)P;cf>; (X; )  (8) 
E i 

= � eiE0' 1 E(t)) I) ct>{x; - J e;(t)dt (EolA; IEo)] • (9) 
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After the interaction with the apparatus is finished, the state is 

l 'l'(t)) = L aE(O)eiEot lE0) ij 1 c1>(x; - f ejlit (EolA;IEo)) ) . (10) 
Eo r 

Each of the measuring apparatuses has been displaced by an amount J E;(t )dt · 
(EolA;IE0), that is, by an amount proportional to the expectation value of the 
measured operator A; in the state 1 £0). Now, if we assume that the states c!>(x;) 
are sufficiently narrow that there is at least one A; such that 
J e; (t )dt((E01A;IE0) - (E0 IA; I E0)) is larger than the initial uncertainty in c!>;(x), then 
the various energy eigenvalues will decohere. The measuring apparatuses will point 
to a value of (E0IA;IE0), that is, an expectation value, for some value of £0, with the 
probability of that Eo given by I a;(O) 12 = I (Eollfi) 12• 

There are a number of strange features of this result. In the first place, the value 
to which the measuring apparatus points is not that corresponding to one of the 
eigenvalues of A;. The measuring apparatus measures A;, but the pointer does not 
give one of A/s eigenvalues; rather, it gives an expectation value, (E0IA; IE0), in any 
single measurement. Furthermore, if we repeat the experiment, we will, as expected, 
get a variety of answers that the pointer points to, namely, each of the various 
expectation values for the various possible values of £0• Over a large number of trials, 
we can expect to get a number of trials in which we get a specific value (E0IA;I £0) a 
number of times, given by Nl(Eol "1) 12• Thus, the statistical expectation value for the 
measurement of A; is 

( 1 1 )  

However, the quantum mechanical expectation value of  A; i s  given by 

(12) 

In general, these two expressions are the same only if the vectors £0 are also 
eigenvectors of A;; that is, the statistical expectation value of A; obtained by 
performing a large number of such adiabatic measurements is not the quantum 
expectation of A; in the state of the system. 

We thus have a situation that violates almost all of the standard lore about 
measurement. Because the A; terms are not necessarily commuting (there is nothing 
in the above derivation that demands that they commute), we can, in a single 
measurement, measure noncommuting variables. Furthermore, if the initial state is 
an eigenstate of H0, then every measurement in any ensemble of measurements will 
give exactly the same value for the measurement of those noncommuting variables. 
There will be no statistical uncertainty in the result. Moreover, the outcome of the 
measurement is not an eigenvalue of the operator corresponding to the measured 
quantity A;. It is rather an expectation value of that quantity. The statistical 
distribution of the results does not depend on the quantities A; being measured. 
Instead, the statistical distribution depends on the eigenvectors of the Hamiltonian 
H0, which is not coupled to any measuring apparatus at all. 
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It is interesting to note that tl�e standard von Neumann measurement falls into 
exactly this class as well. In the von Neumann measurement, the interaction with the 
measuring apparatus is such that the coupling to the apparatus dominates the 
dynamics during the measurement; for example, the Hamiltonian is of the form, 

H = Hrrce + e8(t )AP. (13) 

In this case, the dominant Hamiltonian during the interaction is A because 8(0) is 
infinite. The coupling to the measuring apparatus A clearly commutes with the 
dominant Hamiltonian A and, thus, the interaction is adiabatic for an arbitrary 
time-dependence of e(t ) = e8(t ) . According .to our adiabatic analysis, the measure
ment will give us various expectation values (E01A I E0), where the Eo terms are the 
eigenvalues of the dominant Hamiltonian A; that is, the E0 terms are just the 
eigenvalues a of A. Hence, the measured quantities will be (a IA la)  = a, that is, the 
eigenvalues of A. The probability of obtaining the value of a in the measurement is 
I (Eol IJI) 12 = I (a I IJI) 12 and the statistical expectation value of A is 

(14) 

We thus see that the usual rules on measurement are simply a special case of the 
results obtained for adiabatic measurements. 

Note, though, that the general adiabatic measurement is not equivalent to a 
determination. This, however, does not make the measurements any less interesting. 
In fact, the archetypal quantum measurement example, the Stern-Gerlach experi
ment, used in almost all the textbooks as an example of the von Neumann measure
ment is actually an adiabatic measurement, in which noncommuting observables (the 
spin in both of the transverse directions) are adiabatically measured. For details, see 
reference 6. 

CONCLUSIONS 

The key points of this report have been as follows: 

( 1 )  In the standard formulation of quantum mechanics, the term "measure
ment" is used to denote two distinct concepts. In order to clarify the problem, I have 
suggested that it would be useful to use separate terms to denote separate concepts 
and have proposed that we use "determination" for the axiomatic concept and 
reserve "measurement" for the physical notion of using changes induced into one 
system to deduce properties of another system. 

(2) I have pointed out the old, but little understood, feature of quantum 
mechanics that the conditions in quantum mechanics are not equivalent to initial 
conditions. A couple of examples have emphasized this unexpected nature of the 
results obtained in quantum mechanics when conditions span the time during which 
one wants to ask questions of the quantum system. 

(3) lfwe liberate the notion of measurement from determination, the varieties of 
measurements are in fact much larger than simply those that are equivalent to a 
determination. Although this has been well known for a long time in the case of 
inexact measurements, the example of adiabatic measurements shows that many of 
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the features of the measurements of the von Neumann type are features restricted to 
that type of measurement alone. • 
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VON NEUMANN VALUE DEFINITENESS AND SCHRODINGER'S CAT 

The quantum measurement problem is really the by-product of adopting a 
particular, rather conservative, view about the conditions necessary for an observable 
to possess a definite value. Because this view seell}S to have become entrenched by 
von Neumann's classic analysis of quantum measurement, 1 I shall call it vN
definiteness. It asserts that an observable possesses a definite value at any given time 
only if one of its eigenvalues can be predicted with certainty using the state vector 
that applies to the system at that time. One can do no better to see the awkward 
consequences that vN-definileness has for quantum measurement than to recall 
Schrodinger's simple, but striking, example.2 

Think of a device that detects whether or not a radioactive atom has decayed. If 
the answer is vN-definitely Yes, the decay products trigger off a chain of events 
rapidly culminating in the death of a cat: 

I Decay) Atom ®  1 Alive)c31 --+ I Decay)Atom ® I Dead)car ( 1) 

If the answer is vN-definitely No, no such chain of events is triggered and the cat 
remains unscathed: 

I No Decay)Atom ® 1 Alive)c31 --+ ! No Decay)Atom ® I Alive)cat· (2) 

Thus, the unitary evolutions given by equations 1 and 2 define the cat's "life 
observable" to be the pointer observable for detecting the atom's state of decay. 

Now, suppose that we use this preposterous measurement device to look at the 
atom at a moment in time when its state of decay is vN-indefinite: 

� I Decay)Atom + v'w; 1 No Decay)A1om• (3) 

where w1 + W2 = 1 and 0 < w i .w2 < 1 .  Equations 1 and 2, together with the linearity 
of the Schrodinger equation, then force the atom-cat system into the following state: 

--+ � I Decay)Atom ® 1 Dead)c31 + v'w; 1 No Decay)Atom ® I Alive)cai · (4) 

Thus, the cat, although at first vN-definitely alive, soon gets into an entangled state in 
570 
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which its life observable is vN-indefinite. The striking thing is that, once one accepts 
quantum theory as a fundamental theory with universal appl icability, vN-indefinite
ness knows no bounds and makes our perceptions of everyday macroscopic objects, 
like cats, inexplicable. 

Fortunately, the proponent of vN-definiteness has an easy way out championed 
by von Neumann himself. Faced with horrific entangled states like that of equation 4, 
one introduces another kind of state evolution according to which each member of an 
ensemble of atom-cat systems in that state stochastically "collapses" into a new 
quantum state given by either the first or second term of equation 4, with a frequency 
given by the squares of their coefficients: 

Wt W2 

,..... I Decay)Aiom ® I Dead)cao ....,. I No Decay)Atom ® I Alive)cat · (5) 

Collapse ensures that, at the end of the measurement, there will be two suben
sembles of the original ensemble, in each of which the cat's life observable can once 
again be said to be vN-definite. 

However, talk of col lapse is vague and unphysical. One may try to demystify it by 
locating the moment of collapse as far along the chain of events leading to the 
cat-or our perception of the cat-as to be effectively undetectable by any practical 
interference experiment. Better, one might seek a generalized law of evolution of 
quantum states that effectively reduces to Schrodinger evolution or stochastic 
col lapse in appropriate microscopic or macroscopic limits. However, for Kochen3 
and Dieks4-whom I will henceforth refer to as just KD-all of this adds nothing 
more than insult to injury. It is the criterion for the definiteness of values embodied 
in vN-definiteness that must go. 

In the next section, I will define KO-definiteness and show how it sidesteps 
col lapse in securing a definite life state for Schrodinger's cat in spite of entangle
ment. However, because there are a number of controversial questions surrounding 
this particular resolution of the measurement problem, my main aim, pursued in the 
final section, will be to give an analysis of the underpinnings of KO-definiteness 
without making any explicit reference to that problem. 

Specifically, I shall show that KD's new criterion for when an observable 
possesses a definite value is the only criterion that satisfies six natural conditions on 
what set of observables one should regard as having definite values-conditions that 
I believe have an intuitive appeal quite apart from Schrodinger-cat-type consider
ations. I shall also indicate how this result is meant to strengthen an earlier related 
result that I have proved elsewhere.5 

KOCHEN-DIEKS VALUE DEFINITENESS AND SCHRODINGER'S CAT 

Most presentations of KD's alternative to vN-definiteness employ the Schmidt 
decomposition of a quantum state. However, the essential idea for our purposes can 
be extracted more efficiently using the familiar concept of the statist ical operator of a 
system. 



572 ANNALS NEW YORK ACADEMY OF SCIENCES 

Due to the possibility of entanglement, a quantum system in general cannot be 
ascribed a state vector of its own. Nevertheless, we can represent the statistics of all 
measurements that one might conduct on that system alone using a trace-one, 
Hermitian operator W, that is, its statistical operator. This operator will be uniquely 
fixed at any time by the Schrodinger-evolving state vector of the composite system of 
which the given system is a part, so it seems an appropriate mathematical object in 
the theory from which to define that system's definite-valued observables. 

Here, in effect, is how KO do it. Every statistical operator W possesses a unique 
spectral decomposition: 

(6) 

where I have distinguished the 0 eigenvalue, if W has one, from its other eigenvalues 
{wk } for reasons shortly to become clear. By way of reminder, we have 

Henceforth, let Def(W) denote the set of definite-valued observables of a given 
system having the statistical operator W. 

• 

KO's proposal for this set is 

DefKD(W) = {0 1 0 = L Ok · Pk + L Om · Pm, with L Pm = Po} · (8) 
k m m 

There is no demand that lhe (necessarily real) coefficients in the above expansion for 
an observable 0 in the set DefKo(W) be distinct for distinct nontrivial (i .e., nonzero 
eigenvalue) spectral projectors of W. Thus, an equivalent way to say the above, which 
will be of use to us later, is as follows: an observable 0 is KO-definite exactly when, 
for each of W's nontrivial spectral projectors, 0 has an eigenspace that contains the 
range of that projector. Note how this differs from vN-definiteness, which corre
sponds to making the following much more straightforward proposal for the set 
Def(W): 

DefvN (W) = {O I OW = o;W, for some eigenvalue o; of O ). (9) 

Having settled which observables get definite values, KO then take the various values 
that they can possess to be statistically distributed in accordance with the usual 
formula: 

for 0 E DefKD(W), Probw(O = o;) = Tr(P01W) = L wk · dim(Pk) · (10) 
{klok=o;) 

Thus, in the most typical case, where w2 ¢ W and the system at issue is in a mixed 
statistical state, equation 10 allows us to see even more clearly that having a value for 
KO is more than just having a value predictable with certainty in that state, like it is 
for von Neumann. 

It should now be pretty obvious how KO-definiteness manages to avoid collapse 
in resolving the measurement problem. The statistical operator for Schrodinger's cat, 
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given the composite atom-cat entangled state of equation 4, is 
(1 1 )  

Supposing w 1  ¢ w2, that is, the most typical case, equation 1 1  gives the unique 
spectral decomposition for WC•1• Thus, the cat's life observable, whose spectral 
projectors coincide with those of wc.1, will get counted by DefKD(WC•1 ) as having a 
definite value, entanglement notwithstanding. For exactly the same reason and due 
to the fact that KD-definiteness recognizes no boundary between the macroscopic 
and microscopic, the state of decay of the atom will also be KD-definite at the end of 
the interaction because 

WAlom = W1 • Pl Decay) + Wz • P1 N0 Decay) • ( 12) 

However, unlike the cat's life observable, which is KD-definite both before and after 
the measurement, the atom's decay only achieves KD-definiteness afterwards. Prior 
to measurement, its state is given by equation 3, yielding the statistical operator: 

WAtom = p rw; I Decay)+ Vw; I No Decay) > (13) 

which manifestly fails to commute with either Pi o.cay) or P1 No Decay)> excluding these 
projections from the set DefKD(WAtom) by definition. Hence, there is a sense in which 
KO-definiteness, although eschewing collapse, still retains Bohr's insight that mea
surements make definite the properties of the systems that they measure. 

Now, quite apart from qualms that one might have about whether KD
definiteness is always sufficient to account for the definiteness in our everyday 
perceptions of macroscopic objects, one is compelled to pose the following question : 
why should we accept what KD say about the definite values of observables? Surely, 
KD's shift to a new criterion of definiteness just takes by theft the solution to a 
problem that should really be achieved through honest toil ! What we want is some 
sort of analysis of the underpinnings of KD-definiteness, independent of the measure
ment problem, that shows it to be a reasonable criterion to adopt in general. 

Providing an analysis of this sort will be the main aim of the next (final) section. 
However, let me be clear. Through this analysis, I do not pretend to be "justifying" 
KD's definiteness criterion once and for all. Rather, I simply wish to broaden the 
debate surrounding the criterion and try to remove the sense that KD-definiteness 
represents merely an ad hoc modification of vN-definiteness designed specifically 
with the thought of avoiding collapse. 

AN ANALYSIS OF KOCHEN-DIEKS VALUE DEFINITENESS 

Apart from the measurement problem, the project of attributing definite values 
to observables faces another long-standing obstacle: the "no-hidden-variable" theo
rems of Bell6 and Kochen and Specker. 7 This suggests using the limitations that these 
theorems impose to tighten up the reasons one might give for accepting KD
definiteness, that is, for accepting KD's new proposal for the set Def(W) over others 
that one might entertain, such as Def(W) = {O I OW = WO). 

Of course, things are not quite that easy and we need to impose further 
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conditions on the set Def( W) before there is any hope of being forced to adopt 
DefKo(W). What I have come up with is six conditions in all, each introduced below 
formally, followed by an informal discussion of its motivation. As promised, none of 
these conditions refer explicitly to the measurement problem, unlike those of my 
previous paper.5 I do not claim that these conditions are not debatable; I only assume 
that they can be reasonably entertained as constraints on Def(W). 

To check one's understanding of each condition below, it is a useful exercise to 
satisfy oneself that DefKD(W) conforms to it (in some cases, trivially). (The condi
tions labeled Invariance and Ignorance are slight strengthenings of conditions used 
in my previous paper.s ) 

Certainty: Def(W) :2 DefvN (W). 

When an observable has a value certain to be found on measurement, it is quite 
natural to suppose that it had that value all along-that much about vN-definiteness 
seems right and is worth preserving in any proposal for what gets definite values. 
However, to say that this is the only way that an observable could possess a definite 
value is to dogmatically rule out the possibility that values might come to be 
possessed by observables contingently following some indeterministic process. Thus, 
there is no reason to demand equality above. Certainty js reminiscent of EPR's 
well-known reality criterion.8 However, because Cel'tainty only refers to predictions 
with certainty obtained from the system's statistical operator, which contains no 
record of correlations with other systems, the condition does not allow such predic
tions to be obtained at the expense of conditionalizing on the results of measure
ments on other correlated systems. Hence, Bohr's specific objections9 to EPR's 
reality criterion do not apply here. 

Function: 0 = f({O; ) ), where {O; )  � Def(W) => 0 E Def(W). 

It seems intuitively plausible that any observable that is a function of (compat
ible) definite-valued observables should itself be regarded as having a definite value. 
For example, if we believe that it makes sense to entertain ideas like "the particle is 3 
cm to the left or right of the origin", attributing a definite value to its position X, then 
that should also license us to speak of such things as "the particle is to the left or right 
of the origin", which attributes a definite value to the observable IX l /X. Function has 
nothing to say about how the particular values of functionally related observables are 
themselves correspondingly related, so it brings no immediate threat of Kochen
Specker contradiction.Jo 

Locality. 

There is no elegant way to formalize this condition without introducing new, 
cumbersome notation. But the basic idea of Locality is simple: that definite-valued 
observables pertaining to spacelike separated systems must not sustain Bell inequality
violating correlations. Of course, it was Bell's great lesson to teach us that any 
interpretation of quantum mechanics, whether it be von Neumann's, KD's, or 
somebody else's, needs to be nonlocal in some sense. The sense that I want to exclude 
with the above condition dubbed Locality is what Shimonyl l has termed "parameter 
dependence" because it, in contrast to "outcome dependence", could in principle be 
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exploited to send a superluminal signal, making it all the more difficult to reconcile 
with relativity theory (although opinions about this vary). Gisi�12 has shown that, for 
any entangled state of two spacelike separated systems, there exist observables on 
each system that bear correlations violating a Bell inequality. Thus, what Locality is 
meant to exclude is the attribution of definite values to precisely such observables; 
otherwise, values would then need to change as a result of spacelike separated 
measurement events to enforce the violation of parameter dependence. 

Ortholattice: P, P ' E Def(W) =- pi, P $ P' , P n P' E Def(W). 

If we view the projection operators of a system that have definite values as 
representing the propositions that may be said to be determinately true or false of 
the system, then it is reasonable to require that negations, disjunctions, and conjunc
tions of such propositions should also be determinately true or false. This requires 
that the set of definite-valued projections-which are in 1 : 1  correspondence with the 
subspaces onto which they project-be closed under orthocomplementation ("nega
tion"), span ("disjunction"), and intersection ("conjunction"). 

Invariance: 0 E Def(W) - uou- 1 E Def(UWU-1 ). 

Following the general approach to picking out definite-valued observables as set 
out in the previous section means committing oneself to the idea of defining this set 
using the system's statistical operator and perhaps also the structure of the Hilbert 
space that represents the system. Thus, if we consider any nontrivial isomorphism of 
the system's Hilbert space that preserves its statistical operator, the definite-valued 
set that they jointly pick out should remain invariant. Moreover, if the isomorphism is 
a mapping between Hilbert spaces of the same dimension that changes the statistical 
operator to a new isomorphic one, the definite-valued set should change accordingly 
to a new isomorphic "copy" of itself. 

Ignorance: Def(W) = n n Def(P). (klwk,.01 IPIPkP=PI 

This final condition is perhaps the most difficult to motivate because it tangles 
with the thorny issue of how to interpret a mixed statistical state (the condition is 
vacuous when W2 = W). Consider first the case where the system, although in a 
mixed state, is not entangled with any other system. Then, in many circumstances, we 
want to say that each member of an ensemble of similar systems prepared in the 
mixture has really been prepared in one of the pure states lying in the range of one of 
the statistical operator's nontrivial spectral projectors (i.e., the pure states having 
nonzero probability in the mixture) and we are simply ignorant as to which pure state 
obtains in each individual case. Given this, what we say has a definite value in the 
mixed state should not be inconsistent with what we say has definite values in all 
those possible pure states that the system may be in. When the system is in the given 
mixed state, Ignorance demands that we say as much as we can say about what gets 
definite values, short of such inconsistency. What if the system is entangled with 
another so that this sort of ignorance interpretation of its mixture no longer applies? 
Still, the Ignorance condition must hold, at least formally, for the given system's 
statistical operator. For whatever that operator is, it could just as well have arisen in 
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circumstances where there is no entanglement with other systems because a system's 
statistical operator contains no record of any possible entanglement with other 
systems. Thus, because we have committed ourselves to using it alone (in conjunction 
with the system's Hilbert space) to pick out the definite-valued observables, we are 
thereby compelled to impose Ignorance regardless of whether entanglement is 
present. 

Having said about as much as one can say to cast the above conditions in a 
plausible l ight, let me state the precise result, using H to refer to the Hilbert space 
describing the system: 

THEOREM: When dim(H) > 2, 

Def(W) = DefKD(W) = {0 1 0 = L Ok · Pk + L Om · Pm, with L Pm = Po} 
k m m 

is the unique choice for Def(W) satisfying the above six conditions. 
The proof of this theorem relies on a little result proved in my earlier paper,5 

which was later strengthened by Bub. 13 I shall not take the trouble to reproduce the 
proof of that result here (which, however, only relies on some elementary Hilbert 
space geometry), but instead just state the result in the form of a lemma. It is this 
lemma that forces the dimensionality restriction (and one c�n easily see why). 

LEMMA: When W2 = W = P (i.e., W is pure) and dim(H) > 2, Certainty and 
Ortholattice jointly imply that either Def(P) contains only those projections on H 
with values predictable with certainty in state P or Def(P) contains all projections on 
H (i.e., there is no middle ground between these two extremes). 

Proof: Fix an arbitrary statistical operator W and Hilbert space H of dimension 
greater than 2. Combining Certainty with Ignorance (no irony intended), it must be 
the case that Def(W) should at least include all those observables whose values are 
predictable with certainty in each of the pure states that lie in the range of one of W's 
nontrivial spectral projectors. Call that set of observables S � Def(W). Obviously, 
DefKo(W) � S, but it is also useful (mainly for the next paragraph) to note that 
DefKo(W) � S. Thus, if some observable 0 has a value predictable with certainty in 
all pure states contained in the range of a particular nontrivial spectral projector of 
W, those pure states must all be eigenstates of 0 with the same eigenvalue because 
distinct eigenvalues require orthogonal eigenspaces. Moreover, because this point 
applies for every nontrivial spectral projector of W, 0 must have, for each such 
projector, an eigenspace that contains its range, which is the equivalent characteriza
tion of the observables in the set DefKD(W) I gave following equation 8. Thus, we 
have Def(W) � S = DefKD(W). What we are left to show is that Def(W) � 
DefKo(W), that is, that we cannot enlarge the set Def(W) beyond DefKD(W) without 
destroying the satisfaction of the six conditions. This is where the limitations imposed 
by the no-hidden-variable theorems come in. 

Suppose that we add any observable to the set Def(W) that it not already in that 
set by virtue of being in DefKo(W). Thus, because DefKD(W) = S, the observable we 
add, call it 0, must fail to have a value predictable with certainty in at least one of the 
pure states, call it P, lying in one of W's nontrivial eigenspaces. By Ignorance, this 0 
must also be in Def(P). Indeed, so must all of O's spectral projectors, by Function, 
because each can be written as a characteristic function of 0. However, at least one 
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of these spectral projectors in Oef(P), say P0;, must be such that P0;P ;ii! P and ;ii! 0 
because O's value (by hypothesis) is not predictable with certainty in state P. Thus, 
using Certainty, Ortholattice, and the lemma [whose conclusion follows whenever W 
is pure and dim(H) > 2), Oef(P) must include all projections on H. Furthermore, by 
Function, Oef(P) must include all observables on H because the spectral theorem 
tells us that every observable is some linear combination of compatible projections 
on H. Invariance then forces us to say the same for any pure state P on H because any 
two pure states can be transformed into one another by an isomorphism. Moreover, 
now that Oef(P) must include all observables regardless of the pure state P on H that 
we consider, Ignorance (trivially) implies that Oef(W) must include all observables 
for any mixed state Won H. Finally, take any mixed state W of the system at issue and 
consider another systell} described by a Hilbert space H' (of the same dimension as 
H), but in mixed state uwu- 1 = W' for some isomorphism U. Because Oef(W) 
includes all observables on H, Oef(W')  must similarly include all observables on H' 
by Invariance. However, clearly, there is an entangled state of these two systems that 
yields W and W' as their statistical operators, so we are now forced (by Gisin's 
theorem12) into violating Locality. D 

The second paragraph above gives what one might call a "slippery slope" 
argument: if we want to assert that more observables are definite than what KO 
allow, then our conditions force us in the end to admit so many definite-valued 
observables that we must violate Locality. (Clearly, the lemma is the main thing in 
the proof that makes the slope slippery!) In my previous paper,5 I had an assumption 
of Noncontextualism playing the role of Locality because, by the end of the proof 
above, one clearly has enough observables of the system with definite values that 
Kochen-Specker contradictions pose a threat too. However, I now feel that motivat
ing KO-definiteness with the requirement that it avoid the need for contextual value 
assignments is perhaps not the most convincing way to do things because interpreta
tions like Bohm's14 can quite naturally and unobjectionably incorporate contextual
ism (another great lesson from Bell 15) .  On the other hand, although the final verdict 
is not yet in on the matter, it is not so easy to swallow an interpretation that violates 
the condition that I have called Locality (i .e. , parameter independence), even given 
that Bohm's interpretation does (see reference 15 ). 

At the very least, I claim that the above analysis of KO-definiteness, which 
uniquely characterizes it, "tidies up" an otherwise unmotivated and ad hoc interpre
tation initially designed to solve the measurement problem without collapse. One 
may also feel that my analysis opens up a whole new can of worms about KO's 
interpretation, depending on how plausible or implausible the theorem's six condi
tions are taken to be. However, if that is all that one takes away from this result, I will 
still have achieved my aim of shifting the debate about KO-definiteness onto whether 
the criterion for definiteness it embodies is even a reasonable one. 
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Ail)thing I have written on the topic is primarily testimony as to how important I consider it. 
-J. A. Wheeler (private correspondence) 

We start by recalling the fundamental nature of space-time distance measure
ments. 1-4 In quantum mechanics, one specifies a space-time point by its coordinates, 
without bothering to give a prescription as to how these coordinates are to be 
measured. However, general relativity ordains that coordinates do not have any 
meaning independent of observations; in other words, according to re lativity, a 
coordinate system is defined only by explicitly carrying out space-time distance 
measurements. We will pay heed to this dictum of general relativity and will follow 
Salecker and Wigner1 to use clocks and l ight signals to measure distances (see 
reference 5) .e 

Suppose we want to measure the length between two spatially separated points A 
and B. The measurement can be carried out in the following way. A clock is put at 
pointA. Set the clock to read zero when a l ight signal is sent from A towards B, where 
a mirror is stationed to reflect the l ight signal back to A .  From the reading of the 
clock, to be denoted by t, when the light signal arrives at A, one deduces that the 
length AB is given by e = ct/2, where c denotes the speed of l ight. There are two 
major sources of errors in the length measurement: one comes from the uncertainty 
principle of quantum mechanics and the other is due to space-time curvature effects. 

First, we note that the clock is not absolutely stationary, its spread in speed being 
given by the uncertainty principle of quantum mechanics: 

&v = 
&p 

> (�) -hm - 2 m&eQJt ' 
( 1 )  

where m i s  the mass of the clock. Because the clock i s  the agent i n  measuring the 

0This work was supported in part by the United States Department of Energy under Grant 
No. DE-FG05-85ER40219 and by the Z. Smith Reynolds Fund of the University of North 
Carolina. 

eour work has some overlap with that of reference 6. 
579 
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length, the fact that it is not stationary implies an uncertainty in the length 
measurement given by, at time t, 

(2) 

where in the last two steps we have used equation 1 and t = 2e/c, respectively. Next, 
we minimize seQM(O) + seQM(t) so that the uncertainty in the length measurement 
due to quantum mechanical effects is given by 

(3) 

However, the uncertainty in the position of the clock cannot be made arbitrarily 
small by making the clock very massive as that would disturb the space-time 
curvature. 7 If one assumes the clock to be spherically symmetric and to have a radius 
(to be denoted a) larger than the Schwarzschild radius r* = (2Gm/c2), where G is 
the gravitational constant, then Se., the error in the length measurement caused by 
the curvature, may be calculated from the Schwarzschild solution. The result is r* 
multiplied by a logarithm involving r* I a and r* I (a + e). For•a » r* ,  one finds sec = 
(Yi)r*ln[(a + e)/a ]; hence, 

·· 
-

(4) 

The combined error in the length measurement, se = seQM + sec, due to quantum 
mechanical and curvature effects, can be minimized by adjusting m. Using equations 
3 and 4, we find 

(5) 

where eP = (hG /c3) 1 12 is the Planck length/ We expect the presence of the mirror at 
point B to contribute an error of comparable magnitude. We can also deduce the 
minimum error in time interval measurements by using the same experimental setup: 

(6) 

where Ip = ep/c is the Planck time. These errors in space-time measurements induce 
an uncertainty in the space-time metric. Noting that Se2 = e2Sg and using equations 5 
and 6, we readily get 

(�)2/3 
-
(2)2/3 

8g .... � e 1 • (7) 

Our results (equations 5-7) should be contrasted with those according to the 
canonical8 viewpoint. The derivation of the latter goes as follows. The vacuum 

!carrying out the measurement at nonzero temperature results in an additional error. 
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functional for the theory of pure gravity has roughly the form 

(8) 

Thus, if one is making measurements in a space-time region of volume t4, contribu
tions to the Feynman integral are more or less in phase until variations in the 
gravitational field amplitudes from their classical values become as large as 

(9) 

These represent the quantum fluctuations of the gravitational fields. They give rise to 
errors in space-time measurements that are constants: 

( 10) 

Let us see how reasonable the canonical results (equations 9 and 10) are in light 
of the analysis above for our actual experimental setup involving a clock, a mirror, 
and light signals. There, to obtain the canonical results instead of equations 5-7, all 
one has to do is to replace equation 4 by the requirement Gm /c2 � e. However, this 
requirement is trivially true because otherwise the mirror would be required to be 
inside the Schwarzschild radius of the clock, a nonsensical situation. It should be 
possible to impose a more restrictive (but still physically sensible) requirement to 
arrive at a more useful and better bound for the minimum errors in space-time 
measurements (such as those given by equations 5-7) . 

Two more comments on the results (equations 5-7) are as follows: 

( 1 )  Mathematically, it is not surprising that the uncertainty in the length e 
involves the two lengths in the problem: e and tp. There is an analogous result 
that is actually relevant for long thin rulers. A quantum mechanical calcula
tion for a one-dimensional chain of N ions with a spring of constant k 
between successive ions gives, in the high-temperature limit, 

( 1 )  � ( 1 ) � ( I ) � 
se = :;;: yNflxf = :;;: y NbT = :;;: y e ,.;-

for the uncertainty in the length;' where b is the distance between two 
successive ions when the spring is relaxed and where flxf = (1h)k8T/k, that is, 
the mean square displacement of a mass on a spring of force constant k. 
Thus, for a long thin ruler, the uncertainty in the length depends on both the 
length e itself and the lattice constant b. Note that 8t is proportional to e • 12. 
[In the zero-temperature limit, one finds 8e to be proportional to Jlog etb. J  
This i s  one of  the reasons that long thin rulers are not the best tools for 
measuring distances. In addition, rulers, being macroscopic objects, will 
influence other objects in the measurement process through their gravita
tional attraction. The Lorentz contraction of rulers will also complicate 
matters. 

KThis result is originally due to E. P. Wigner (in response to a question raised by H. van Dam 
[private communication]) .  Details of the calculation will appear elsewhere. 
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(2) Because the Planck length is so small, even for the universe,h for which e = 
1010 light-years, 8t is only 10- 13 cm long, the size of a nucleus, which is quite 
small, but in principle is there. 

As a simple application of equations 5-7, we deduce the minimum error in 
momentum-energy measurements. Imagine sending a particle of momentum p to 
probe a certain structure of spatial extent e so that 

( 11 )  

Consider the coupling of  the metric to  the ene.rgy-momentum tensor of  the particle, 

(12) 

where we have noted that the uncertainty in g,,.v can be translated into an uncertainty 
in t,,.v· Equations 7 and 12 can now be employed to give 

( 13) 

which, with the aid of equation 1 1 , yields ( p )213 8p ;;:: p mpe ( 14) 

where mp = (he /G )"2 is the Planck mass. 
[An alternative derivation of equation 14 is provided by considering 8p, the 

"uncertainty" of the momentum operator, p = (h!i)(iJ/iJx), associated with 8x = 
(xt�) 1 13 (equation 5). For any function f (x), (8p )/ is given by 

(8p)f = (�) [8x(:7z) + (:)(aa�)] · 

Taking the function f (x) to be the linear momentum eigenstate f = exp(ipx/fz ) , one 
gets 

1 (8p�pxth l = tz l [i(::)e�3x 1 !3 + (�)(�)e�3x -213]e'1xthl . 

The minimum value of 1 8]1 I is attained atx - (2h)(h/p), yielding equation 14.] 
The analogous statement for the minimum error in energy measurements is 

8£ ;;:: E(m:2Y'
3
· (15) 

For energy-momentum near the Planck scale, the error is not negligible; for example, 
at the grand unification scale - 1016 Ge V, the error is of order 1 %. In analyzing a 

h Since this conference is held in honor of J. A. Wheeler, it may not be out of place here at the 
mentioning of the word "universe" to quote him (private correspondence): "(I recall) the 
well-known statement of Rutherford, 'When a student of mine uses the word "universe", I tell 
him it is time for him to leave .' However, maybe that is why so many of us live in America!"  
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high-energy experiment, an experimentalist should keep in mind that energy
momentum conservation holds up only to the errors given by.equations 14  and 1 5 . In 
passing, we mention that the minimum errors in measurements given by equations 6, 
7, 14, and 15  are fixed by dimensional analyses once the minimum error in spatial 
distance measurements is found, given by equation 5. 

As another application of the above results (equations 5-7), let us consider the 
quantum (de)coherence phenomenon for a scalar particle of mass m moving slowly. 
Let us assume that the particle satisfies the Schrodinger-Klein-Gordon type equa
tion, 

ih(fr)� = [( - i:)(a:2
2) + V(x, t )  + g00mc2]�. (16) 

where we have kept the most important term involving g"'v. We are interested here in 
the effects caused by the uncertainty in the metric given by equation 7. Obviously, 8g 
induces a multiplicative phase factor in the wave function 

(17) 

where 

(18) 

For consistency, the integral should be fairly insensitive to the lower integration limit 
as long as t » tp. If one is making measurements in a short time interval, 
contributions to the phase of the wave function from the different time elements in 
this time interval will be more or less in phase (i .e. , 8<p « I) until the time interval 
reaches the decoherence time t0 when 8<p becomes sizable, that is, 

1 _ _ 
10 mc2 .!. dt ' _ _ 12131 1 13 = e213e1 13/ A ( 1 ) L (' )213 (mc2) 

h 0 t ' h p 0 p 0 <> ( 19) 

where Ac = (Mme) is the Compton wavelength of the particle of mass m and e0 = ct0 
is what we will call the decoherence length. This system can be treated classically if 
the decoherence length is less than the Compton wavelength-in other words, if 

or, via equation 1 9, 

m � mp. (20) 

Therefore, due to the uncertainty of the space-time metric, it suffices to give a 
particle heavier than the Planck mass a classical treatment. 
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There is a class of three-particle EPR1 experiments that depend on the detector 
angles only through their sum. Such an experiment was used to prove the GHZ 
theorem.2 One can produce a classical, realistic, local model to reproduce this 
dependence, but the restriction constrains such models to behave differently from 
what one would expect from two-particle experiments. Their expectation values 
show greater correlation than the quantum case and their detection efficiencies are 
necessarily low. For the two-particle case, the expectation value showed a necessarily 
lower coherence than the quantum case and one could have 100% counter efficiency. 

INTRODUCTION 

When the GHZ paper was being written in 1988, a model was developed in order 
to help us think through the problems of constructing a three-particle local, realistic, 
classical model to explain EPR experiments. It was included in some unpublished 
notes we made at that time, but was never publ ished, and there were no plans to 
publish it because it seemed unnecessary. 

However, recently, there have been some attempts to consider the possibility of 
performing a three-particle experiment and also there have been some attempts to 
derive inequalities for such experiments in the spirit of such inequalities for 
two-particle experiments. It turns out that our model shows that there are important 
differences between the two- and three-particle cases and, if one wants to derive 
realistic inequalities for such experiments, one had better be aware of these 
differences. 

The first limitation comes from the fact that the Bell theorem in its original form3 
treated counters with 100% efficiency. In other words, it was assumed that all 
emitted particles were to be counted. Later, in order to derive results that could be 
related to actual experiments, inefficient counters had to be considered. However, 
most of the models I am aware of treat the efficiencies of the counters as some 
constant percentage of the total particles entering the counter; that is, the counting 
rate is independent of the special values of the hidden variables of the emitted 
particles. One then makes seemingly plausible assumptions about the model one will 

aThis work was supported in part by a grant from the National Science Foundation. 

SSS 
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encounter, one arrives at upper limits for correlations that can be tested experimen
tally, and a generation of such experiments have been done.4 

In the two-particle case, the two particles enter separated detectors, each of 
which has an internal variable (such as the spin orientation to which each is 
sensitive), which we shall call a and � for the two detectors. The quantum mechanical 
correlation between these two variables, for 100% efficient counters, is -cos 9, 
where 9 = (a - �). In the special cases 9 = 0 or 'IT, when one has maximum 
correlation ( = ± 1 ), or the case 9 = 'IT /2, when there is no correlation, one can find a 
classical model that reproduces the result. However, for all other values of 0, the 
quantum mechanical correlation is greater than any possible classical correlation, 
whose upper bound is given by a linear function of 0, according to the bounds set by 
Bell's theorem. This situation is shown in FIGURE 1 ,  where the quantum correlation 
and the greatest classical correlation are drawn and labeled "Quantum" and 
"Classical '', respectively. (The other two curves will be explained later.) 

For convenience, we have removed the negative sign and have plotted the 
correlation as +cos 0. We shall do this for convenience throughout this report and it 
has no theoretical significance. Also, note that we have only plotted the correlation 
between 0 = 0 and 0 = 'IT/2 because, by symmetry, the correlation will be the same 
(except for sign) for O ' = 'IT  - 0 as it is for 0. The impor&ent thing to learn from 
FIGURE 1 is that the quantum mechanical correlation is.greater than the maximum 
classical one everywhere, except for those special angles where they are equal. This is 
the basis for the experiments that have been done to show that nature violates the 
upper bounds set by Bell's theorem. 

The second limitation is that, according to the GHZ theorem, it is impossible to 
find any model for three particles that will reproduce the results of quantum theory, 
even at the maximum correlation angles 0 = 0 and 'IT, for counters that are 100% 
efficient. Hence, in this case, it is very important to consider models that allow the 
counters to not count in certain configurations. Because the quantum correlation in 
the three-particle case will be cos 0, where 0 = (a +  � + y) (and again we forget the 
negative sign), then for a particular value of 0 only two of the variables a, �. and 'Y can 
be independent. Thus, the three variables are constrained by this fact and only two of 
them are independent. 

We will seek a classical three-particle model where the correlation depends only 
on 0 so that we can compare the classical and quantum results easily. Because this 
constrains the system as just mentioned, our counter efficiency will be a complicated 
function of the three angles, with only two of them really independent. The three 
counters will intrinsically behave the same, but in any configuration the efficiency will 
depend on 0. The variables a and � will be allowed to vary independently over their 
range, but 'Y will be fixed by the value of O; thus, there is really only a two-dimensional 
phase space over which the three variables are free. This makes inequalities derived 
on the basis of fixed efficiencies for the separate counters unrealistic in the three
particle case. 

As an example of how different the results for the three-particle case are from 
those of the two-particle case, we will state the conclusion from our model. For a 
given value of 0, it is difficult to make any consistent fit of the model and the efficiency 
of the counters will be low, much lower than the nominal efficiency of the counters 
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themselves, because only a small percentage of the two-dimensional phase space is 
compatible with there being any counts at all. In fact, it is sufficiently difficult to make 
a situation where all the detectors count-even in the case 6 = 0 and there is a 
perfect correlation-that when 6 ¢ 0 we find that it is difficult to reduce the 
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FIGURE I. Expectation values for various models versus quantum theory. In the two-particle 
case, Bell's model gives the maximum possible correlation of the two spins, yielding a straight 
line, the curve marked "Classical". The counters can be 100% efficient in this model (i .e. , they 
count at all angles and for all values of the hidden variables). This is to be contrasted with the 
quantum case, marked "Quantum", which has a higher expectation value of the spin correla
tion. In the three-particle case, to be described, the expectation values are higher than the 
quantum ones, but the counter efficiencies are necessarily lower, because of the GHZ theorem. 
The maximum efficiency for our type of model is ¥l and the expectation value is plotted as "¥l 
Effie.". For a less efficient model, where the counters fire only one-half (Yz) of the time, marked 
"Yz Effie.", the expectation value is very high . 

correlation . As a result, in this model, the classical results are always more highly 
correlated than the quantum mechanical ones. Of course, one must remember that 
this is for inefficient counters because there can be no classical model when the 
counters are 100% efficient, according to the GHZ theorem. 
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BELL'S CLASSICAL 1WO-PARTICLE MODEL 

Bell, in his early papers, gave a two-particle model that is very simple, but it gives 
a linear correlation, which is as good as one can get with a local, realistic model. In 
any Bell-type model, a single particle can decay into two particles, each of which 
heads toward a different detector. The detectors are each labeled by a setting-« for 
detector l, which catches particle l , and p for detector 2, which catches particle 2. 
Each detector can respond to the arriving particle by jumping into one of two states. 
We call these states + 1 and - 1 .  Thus, particle 1, on arriving at detector 1, which is 
set to a particular value of a, can lead to the detector ending up in either state + 1 or 
- 1 .  We introduce a function A(a, A) to describe the situation. The function A can 
take on the two values ± 1 to denote the final state of the detector. A can depend not 
only on a, but on any internal (hidden) variables given to the particle in the decay. 
We describe these by the catchall label A. Similarly, for particle 2, we introduce 
B(�. A), which also takes on the values ± 1 .  The locality condition is expressed by the 
fact that A cannot depend on p (the setting of B) and B cannot depend on a (the 
setting of A). 

The experiment is described by a correlation function, E(a, p), which is the 
classical expectation value: 

E(a, P) = J dAp(A)A (a, A)�(p, 1). 
This means that the original particle decays into particle 1 and particle 2, and each 
heads toward its respective counter; then, what is counted is the product of the 
outputs of the two detectors, AB = ± 1. The values of A are not known and, over a 
large number of counts, one may include the various possibilities by some weight 
function p(A), where 0 !!> p s 1 and fdA p(A) = 1 .  

Now, quantum mechanically, a s  we  have noted, the correlation corresponding to 
E will be Eqm = cos 8 = cos( a - �). (Here, as afterward, we are neglecting a trivial 
negative sign.) In order for a classical model to be useful for comparison purposes, it 
should be a function of 8 alone. One may wonder how a product of two functions can 
become a function of their difference, but, remember, we are averaging over a large 
number of events. The way that any correlation between a and p comes about is by 
having a correlated with Ai , a hidden variable for particle 1, and p correlated with A2, 
from particle 2, and then having At and A2 correlated. This is reasonable because 
particles 1 and 2 were produced in the same decay. Thus, we will consider At and A2 
as hidden internal angles, which we take (as also with a and �) to vary between -'IT 
and 'IT, and we write 

E(a, P) = (2�) I dA1dA28(A1 - A2}A (a - A1 )B(p - A2) = E(a - P) = E(O). 

Here, the function p has become a Dirac 8 function . 
In order to produce the linear result that we want, we can takeA and B to be {+ l ,  

A (ip) = B(ip) = - 1 ,  
-'IT/2 s 'P s +'IT/2, 

I 'P I > 'IT/2. 

This situation is depicted in FIGURE 2. In the case where a = p or 8 = 0, the two 
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disks, one for each particle, can be thought of as being superposed exactly so that the 
+ and - regions coincide. This comes about in the model because, according to the & 
function, }t1 = }t2• Hence, the angles on the two disks will coincide and, when one is 
+ ,  the other will also be. Thus, the product will always be ( +) · ( +) or ( - ) · ( - ) and 
therefore always + . Then, one will always have a perfect correlation for 6 = 0, as in 
the quantum case. However, if 0 ;z! 0, then one of the two disks will be rotated with 
respect to the other and there will be two border regions of angle 0 where the product 
will have a negative sign. Because this region varies linearly with 0, the expectation 
value E will also vary linearly. 

-rr.12 

A.-a 
0 

± 1t  

rr/2 

FIGURE 2. Detector behavior in Bell's two-particle model. In this and all subsequent figures, 
the stippled regions represent the value + 1, whereas the hatched regions represent the value 
- l. When the internal h idden variable >.. is within -rr/2 of the detector angle (a for detector 1 ), 
the detector will measure spin + 1 along the direction a; when >.. differs from a by more than 
-rr / 2, the detector will measure spin -1 along a. 

THE THREE-PARTICLE MODEL 

In order to make a classical, realistic, local model like the above, which is good for 
three particles, there is no hope in having 100% efficient detectors as in Bell's model .  
That would be self-inconsistent, according to the GHZ theorem. Thus, when we try 
to construct a model that i s  as similar as possible to the above one, we have to take 
this into account. In this case , we assume a particle that decays into three particles, 1 ,  
2 ,  and 3 ,  each of which heads toward a different detector. Again, each detector has a 
setting parameter, labeled by o:, 13, and 'Y· Also, there will be three separate functions 
that determine whether each detector will fire or not. Here, the functions are 
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A(Xi. a), B(X2, p), and C(X3, -y). Once again, locality restricts A to depend only on a 
and not on the settings of the other detectors, which may be far away, and similarly 
for B and C. We are again assuming that the general hidden variable A will reduce to 
one for each particle, which can be interdependent, as they are all determined at the 
initial decay, and we again assume that they can be in the form of angles so that, 
again, all the A; will vary between -'Tl' and 'Tl'. 

The main difference between this model and the previous one is that now we 
assume that the functions A, B, and C can have the values + 1, - 1 ,  and 0. Again, the 
± 1 values represent the two firing states, but now 0 indicates that the counter did not 
fire when the particle hit it. The counter may 11ot fire because of some experimental 
inefficiency, but this is not what interests us. We must build in the possibility that the 
counters will not fire for certain values of the A; because, even if the counters are 
experimentally perfect, the GHZ theorem guarantees that there is no combination of 
the >..; that is self-consistent for 100% efficient counters. 

In the quantum mechanical cases that have been considered, we have 

Eqm = cos( a + P + -y) = cos 8, 
8 = a + p + 'Y· 

(Again, we are ignoring a trivial negative sign.) Thus,.again, �e would like our model 
to depend on the one variable 8. Note that the perfect coirelation cases are for 8 = 0 
and 8 = 'Tl'. However, our model, like the previous one, will also have the symmetries 
that E('TI' - 8) = -£(8) and E(-8) = +£(8), so we will only be concerned with 0 s 
8 s 'Tl'/2. 

In order to have the results depend only on 8, we resort to the same trick as 
before and write 

The last equality is true because A, B, and C are periodic functions and, in fact, we 
shall takeA = B = C, so all the detectors are identical . Thus, although it appears that 
we are varying parameters within a three-dimensional space of the A;, the restriction 
I >..; = 0 nonetheless reduces it to a two-dimensional space. In our analysis, we shall 
consider X1 and A2 as varying freely, whereas X3 will be determined by the constraint. 
The quantity N is a normalizing factor, which is needed because, for most values of A;, 
at least one of the functions A, B, C will be 0 and the experimental event will not be 
completed. Thus, the definition of E above will have to be normalized to only include 
those cases where all of the counters fire. Otherwise, E will never equal ± 1 .  
Therefore, we  take N to include all those cases i n  which all three counters fire: 

N = N(a, p, -y) = J dX1dXidXlJ(A1 + X2 + X3) IA (X1 - a)B(X2 - P)C(A3 - -y) I 

= N(8). 

We define the experimental efficiency of the experiment by 

11(8) = [N(8)/ (2'T1')2] 1 12. 
This is defined over the two-dimensional subspace in which the variables are free to 
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roam and 112 gives the probability of choosing a >.. 1 and a >..2 such that all three 
counters will fire. The one-half exponent is used to give an equivalent "one-particle" 
effective detection rate. 

All we must do now is to choose a function A = B = C for the detectors. We do 
this so that at 6 = 0 we will have E = 1. For this to be so, if we choose a = � = 'Y = 0, 
and each A; = 0, and find A = B = C = l, then we may expect one or more of theA ,  B, 
C terms to become zero when we vary the A; subject to l A; = 0, but we should never 
get the product ABC = - 1 . (However, two of the functions can simultaneously 
become - 1 .) For this to be so, no region where A = - 1 can abut a region where A = 

A-CI 
0 

±1t 
FIGURE 3. Detector behavior for the maximally efficient three-particle model. In this case, the 
detector counts + 1 one-third of the time, 0 one-third of the time (meaning it does not fire at 
all), and - 1  one-third of the time. Thus, the detectors, if independent, would fire two-thirds (V,) 
of the time. However, because they are constrained, as explained in the text, their effective 
efficiency is less than this. 

+ 1. We can accomplish the above maximally by choosing the function A as 

1 + 1 , A (qi) = 0, - 1 , o � I <i> I < 'Tr /3, 

'Tr/3 � I <i> I < 2'Tr /3, 
2'Tr/3 � I <i> I · 

This is shown graphically in FIGURE 3 . The "nominal" efficiency of this counter, and 
thus also the counters B and C, is % because it will count two-thirds (79 of the time 
for random values of >.. 1 • However, the restriction I A; = 0 makes them not 
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-1t - 2rr13 -rr13 0 rr13 2rr13 1t 
-7 A  

1t 

2rr13 

rr13 
B 
t 0 

-rr13 

-2rr13 

- 1t  
FIGURE 4. Independent firing o f  two detectors. Because tile detectors A and B can fire 
independently, each two-thirds (¥>) of the time, the product of the two will show that they both 
fire together four-ninths (%) of the time. The four combinations ( ± 1 )( ± 1 )  occur with equal 
frequency, so there are as many regions where the product is + 1 (stippled) as there are where 
the product is - 1  (hatched). 

independent of each other and this will reduce the effective experimental efficiency 
of a three-particle event to much lower than this. 

There is one further simplification that we shall make in order to make the model 
easier to graph. We make the simple substitutions, 

which converts us from the restriction � X.; = 0 to � µ; = 6. Now, a, J3, and -y no longer 
appear separately, but only in the combination 6. Hence, the equation for E becomes 

£(6) = [N:6)] ff dµ1dµi-4 (µ1 )B(µ2)C(µ3 ), 
lµ,=8 

whereas N(6) is given by 

N(6) = ff dµ1dµ2 IA (µi )B (µ2)C(µ3) j . 
lµ;=8 

We shall start off with the case 6 = 0. Ifwe vary µ1 and µ2 independently in our model 
(according to the values of A and B assigned in FIGURE 3, subject only to 
-ir � µi.µ2 � ir) and if we ignore µ3 al together, we shall get for the product AB the 
values indicated in FIGURE 4. However, each value of (µ. , µ2) uniquely determines 
the value of µ3 (via the constraint �µ; = 0) and therefore C, and so too the value of 
ABC. The value of ABC is shown in FIGURE 5 for each value of (µi .µ2). Note that one 
only hasABC = + 1 ,0 for 6 = 0, as must be the case. By looking at FIGURE 5, one can 
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FIGURE 5. Firing of the three detectors when 6 = 0. When the third detector is added, the 
three detectors are constrained by the restraint Iµ; = 0. The angle µJ for the third detector is 
constant along the 45° diagonals and is labeled along the left-hand side and in the very upper 
line. For 6 = 0, there can be no negative regions for the product ABC because £(0) = + l .  

see that the fraction o f  the two-dimensional space for  which ABC ;: 0 ,  o r  "TJ2, i s  y3. 
This gives Tl = 0.577, the effective efficiency per detector. This is the maximum 
possible efficiency because, when 0 varies, Tl decreases, reaching a minimum at 0 = 
Tr/2, where Tl = 0.5. 

Next, we can calculate £(0) for 0 ::;; 0 ::;; Tr/3. The situation here is shown in 
FIGURE 6. In order to calculate £(0), we will have to be able to calculate the area in 
the partial squares, the four types of which are shown in FIGURE 7. If we normalize 
the area of each square to 1, the area of each type of square is 

Aa = (�)(�)2. Ab = 1 - Aa, 

Ac = U)( 1 - �)2. Ad = 1 - AC " 

In this case, some of the areas have ABC = + 1 , whereas some of them have ABC = 
- 1 ,  so £ <  1 .  

I n  FIGURE 8 ,  we show £(0) for Tr/3 ::;; 0 ::;; 2Tr/3. I n  this case, the area i n  the four 
types of partial squares (again as shown in FIGURE 7) can be given by 

Aa = (�)(� - 1 )2. 
Ac = (�)(2 - �r 
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FIGURE 6. Firing of the three detectors when 6 .s Tr/3. In this case, the restraint is Iµ; = 6 and 
thus the third detector is displaced by less than the side of one of the small squares. This 
introduces some negative values into the product ABC, which makes £(6) < I .  

We now present a table (TABLE I) of the values of £(9) (the expectation value) and 
112(9) (the efficiency) as determined from FIGURES 5 and 7 for angles between 9 = 0 
and 2Tr/3. (Of course, we only need them up to -rr/2.) The average is determined by 
subtracting the negative areas (striped) from the positive areas (dotted) and then 
dividing by the total area (36 squares). The efficiency 112 is determined by adding the 

( a )  

( c )  

CJ 
( b )  

D 
( d )  

FIGURE 7. The four types of incomplete squares. In calcu
lating E(O) in FIGURES 6 and 8 and in modified form in 
FIGURES 10 and 1 1 , one needs to know the areas of the four 
types of incomplete squares that appear. For each case, the 
results are given in the text. 
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FIGURE 8. Firing of the three detectors when -rr/3 s 6 s 2-rr/3. In this case, the third detector 
is displaced horizontally by between one and two lengths of one of the square sides, yielding 
more negative areas than in FIGURE 6. 

positive and negative areas and then dividing by the total area. This is the percentage 
of area in which all three detectors fire .  Here x = 6 I 'IT. 

£(6) from TABLE 1 is plotted in FIGURE 1 , labeled as "7'., Effie." because each of 
the individual detectors would be 7'.J efficient if they were not correlated . £(6) does 
not differ very much from the quantum mechanical answer; however, note that it is 
greater than the quantum mechanical one for all 6, in contrast to the case for two 
particles, where it is always smaller than the quantum mechanical one. Therefore, it 
does not seem that the way to try to detect the difference between this case and the 
quantum one is to measure averages. Rather, the thing to measure is efficiencies. The 
quantum £(6) is plotted in FIGURE 1 for a detector efficiency of 100%. However, our 
three-particle model has a maximum value of 11 2 of YJ at 6 = 0, which decreases to 
11

2 = Y. at 6 = 'TT/2. Hence, a model such as ours can be eliminated through its low 
efficiency. This is made possible, of course, by the GHZ theorem, which guarantees 

TABLE 1 . Average and Efficiency of the Model 
x = 6/-rr E(x) 

0 s x s 1 / 3  

1 /3 s x s 2/3 

(2 - 9x2) 
(2 - :u-2) 

( ( 1  - x) 2 - x2] 
( ( 1  - x)2 + x2] 

m - {�) 
(( 1 - x)2 + x2] 

2 
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A-o. 
0 

± re  
FIGURE 9. Detector behavior for a 50% efficient detector. This case is similar to that of 
FIGURE 3, except that the detector only counts half the time, excluding the region -rr/4 :S I 0 I :S 
3-rr/4. 

that no deterministic three-particle model will have 100% efficiency. If the intrinsic 
efficiency of our detectors were less than 7'3, then the overall efficiency of the 
correlated three-particle system would be even less than for the model above. We 
will now give an example of this. 

AN INEFFICIENT THREE-PARTICLE MODEL 

In order to show that one will get even more highly correlated values for £(6) by 
further decreasing the efficiency of the individual counters, and at the same time get 
lower effective values of 112, we will examine one further model . In this model, the 
intrinsic efficiency of each of the counters will be Yi. The detailed operation of each 
of the counters is shown in FIGURE 9. Here, each of the counters will count according 
to the prescription, 

! + I , A (<p) = 0, 

- 1 , 

--rr/4 :S <p :S +rr/4, 
+-rr/4 < l 'P I s; 3ir/4, 
3ir/4 < I 'P I s; ir. 

Similar to our previous case, one can give a graphic demonstration of which possible 
regions the three counters will count in simultaneously. In this case, the angles that 
separate the various cases are 0 :S 6 :S ir/4 and ir/4 < 6 s; ir/2. The two cases are 
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shown in FIGURES 10 and 1 1 . Notice that, for angles 6 � -rr/4, there are no negative 
counts at all, so £(6) = 1 .  From 6 = -rr/4 to 6 = -rr/2, £(6) must drop sharply from I to 
0. This case is also plotted in FIGURE 1, labeled as "Yi Effie." because, if the detectors 
were not coupled, each of them would have efficiency !/i. In FIGURE IO, each of the 
four incomplete square sections shown in FIGURE 7 has area 

862 A0 = -rr2 , A0 = 1 - A0, 

Ac = (�)( 1 - :)2. Ad = 1 - Ac. 

In FIGURE 1 1 ,  each of these four incomplete square sections has area 

0 

' 
' ' ' ' 

' 
' ' 

' 

' 

A0 = (�)(: - 1)2. 
Ac = G)(2 - :r 

' ' 
' 

FIGURE 10. Firing of detectors for 0 s; -rr/4 in the Y, efficiency model. This case is determined 
similarly to that in FIGURE 6, except that the squares represent only a length of -rr/4; however, 
for 0 S -rr/4, there are no regions where the product ABC = - 1 ,  so £(0) = + I ,  although the 
efficiency of the counting process is very low. 
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FIGURE I I. Firing of detectors for -rr/4 < 9 s -rr/2 in the Yi efficiency model. This case is 
similar to that of FIGURE 8, but with smaller squares. Now, there are some negative regions, but 
the counting efficiency is still low. 

We can also give the functions £(0) and 112(0) (see TABLE 2), determined in the same 
way as for our former model. (Note again that x = 0/1r.) The expectation value E in 
this case is much higher than the quantum mechanical model, but the efficiency is 
even lower than in our previous model, varying from 112(0) = :Y.6 to 112(ir/2) = Y.6. 

CONCLUSIONS 

The major lesson from this exercise is as follows: although one can always derive 
Bell-type inequalities for inefficient counters in the three-particle case, just as in the 

TABLE 2. Average and Efficiency of the New Model x = 9/-rr E(x) 
0 s x s 1 /4  

1 /4 s x s 1 /2 (4 - &) 
( 136) - x2 

(:6) - x + x2 
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two-particle case, if one wants to preserve the overall dependence on a single 
variable, as occurs in quantum theory, then the three detectors cannot possibly be 
independent of each other. We have formed a simple model that has the maximum 
efficiency allowed by the GHZ theorem and we find that the expectation value of the 
results closely approximates that of quantum theory, although with low efficiencies 
for the counting rates of the detectors. Although the results do come close to 
quantum theory, the expectation value is nonetheless always greater than the 
quantum case, in contrast with what one expects for two particles. With a model that 
is less efficient than the maximum allowed, we found that the expectation value 
became even higher, giving a large discrepancy from the quantum results, whereas 
the overall efficiency became even lower. Thus, the types of experiments that one will 
have to perform in the three-particle case are not at all the same types of experiments 
that one performed in the two-particle case. Of course, these are simple models and 
the results very well may not be general. 
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INTRODUCTION 

The Einstein, Podolsky, and Rosen (EPR) paper1 of 1935 is often presented as 
the starting point of the discussion regarding locality in quantum mechanics and 
leading to Bell's proof that quantum mechanics must necessarily be nonlocal. 
However, we will see that the essential points in the EPR argument had already been 
made by Einstein some eight years earlier at the Fifth Solvay Congress. Einstein 
il lustrated his points by considering a single particle rather than two particles as used 
later in the EPR discussion and subsequently .in most discussions of local ity. 
However, he was still able to argue that the wave function provides an incomplete 
description of a system or that there must be some kind of "peculiar action-at-a
distance", this being the same as the conclusion of the EPR argument. In order to see 
more clearly that a single particle can be used to run an argument against the 
completeness of the wave function description of a system, Einstein's 1927 argumen
tation is cast into a similar form to that in the EPR paper. One natural question that 
then arises is whether it is possible to also find a version of Bell's theorem2 
(demonstrating that quantum mechanics is nonlocal) using a single particle. In fact, 
some attempts at this have already been made. The first, using a single photon, was 
due to Tan, Walls, and Collett3 (see also Oliver and Stroud4) and it is their work that 
has provoked recent interest on this matter. However, their proof makes use of an 
untestable supplementary assumption and therefore rules out only those local 
interpretations that are consistent with this assumption.5--8 A more recent proof due 
to Czachor,9 although interesting, is cast in a form quite different to that usually 
considered in discussions of Bell's theorem. In particular, the local classical variable 
(of which there is only one rather than two) is necessarily in the past light cone of the 
region in which its variation is supposed to have no effect. It is desirable to find a 
proof of the nonlocality of a single particle that is as strong as Bell's original proof for 
two particles. In this report, we will consider a source that never emits more than a 
single photon at a time and, on average, emits less than a single photon at a time. We 
will see how, with this source, it is possible to find measurements that allow a 
demonstration of nonlocality without using inequalities. The form of the contradic
tion when locality is assumed is particularly striking. The type of proof of nonlocality 
without inequalities considered here, originally motivated by the work of Elitzur and 

0This work was supported by the Royal Society (London). bPresent address: Department of Mathematical Sciences, University of Durham, Durham 
DHI 3LE, United Kingdom. 
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Vaidman,10 was first presented in reference 1 1  and developed in reference 12 (see 
also sources cited in these papers). However, in references 1 1 .and 12, two-particle 
situations were considered. 

EINSTEIN'S REMARKS IN 1927 

A very readable account (and the source of the material in this section) of 
Einstein's remarks at the Fifth Solvay Congress is given by Jammer.13 Having 
apologized for "not having gone deeply into quantum mechanics'', Einstein pro
ceeded to consider a system in which a single particle is allowed to impinge on a hole 
in a diaphragm so that it is diffracted and then impinges on a hemispherical 
scintillation-screen placed behind the hole. The quantum mechanical description of 
this process says that the wave function, lfl, associated with the particle is spread at 
the hole to form something approximating a spherical wave that propagates towards 
the screen. Then, according to the Born probability interpretation, the probability 
(density) for the particle being detected at some particular point on the screen is 
given by the square magnitude of lfl at that point. According to Einstein, there are 
two possible viewpoints that one can take of this process. 

Viewpoint I says that lfl does not represent an individual particle, but an 
ensemble of particles. According to this viewpoint, I lfl(r) 1 2 represents the probability 
(density) that some particle of the ensemble exists at the point r. 

Viewpoint II says that the wave function is considered as a complete description 
of an individual process. Thus, just before causing a scintillation on the screen, the 
individual particle must be considered to be potentially present at all points where 
I lfl(r) 1 2 is nonzero. Then, when the particle is detected at one point on the screen, 
there is a "peculiar action-at-a-distance" that prevents the particle from being 
detected at another point on the screen. 

It is clear that Einstein had seen that one must make a choice : either one could 
accept locality, in which case "1 could not be considered to provide a complete 
description of an individual process (viewpoint I), or one could consider lfl to provide 
a complete description of an individual process, but then one must abandon locality 
(viewpoint 11). Although the issue of locality was not emphasized much in the EPR 
paper, it is clear that the conclusion of EPR is the same as Einstein's conclusion here. 
We will simplify this single-particle example by considering a single particle incident 
on a beam-splitter because then there are only two paths that the particle can take. 
First, however, we will introduce some basic tools to be used in this example and also 
in the nonlocality example. 

SOME BASICS 

In the remaining sections, we will be a little more specific and take the particle 
under discussion to be a photon. So far as the EPR discussion in the fourth section 
below is concerned, this amounts only to a convenience. However, in the nonlocality 
discussion in the sixth section, it is not the case that any type of particle could be used 
to run an analogous argument. 
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- Beam-Splitters 

Typically, a beam-splitter is a partially silvered mirror that transmits some 
fraction of the l ight. We will only consider 50:50 beam-splitters that transmit half the 
light and that reflect the other half. Let the beam-splitter have inputs a and b and 
outputs c and d. The annihilation operators for each of these modes are related by a 
transformation equation: 

(1) 

Here, we have made a particular choice for the transformation matrix. More 
generally, this matrix need only be a member of the group SU(2) (although, of 
course, additional constraints are imposed for a 50:50 beam-splitter), but the above 
choice is quite sufficient for our purposes. Using this matrix, it is possible to calculate 
the resulting output state from any input state. We require just two results. The first 
says that the vacuum transforms to the vacuum: 

(2) 
Second, if a single photon is incident on one of the iwo inp�ts, a say, with the vacuum 
incident on the other input, then there is equal probability amplitude associated with 
the photon emerging in either output: 

(3) 

This result follows because 1 1 )0 I O)b = at I 0)0 I O)b and, from equation l ,  we obtain 
at -+ ( 1 1 ./2.)(ct + id t). 

Coherent States 

The state produced by a laser is a coherent state. Coherent states14 are eigen
states of the annihilation operator d :  

a l a) = a l a), 

where a is the complex amplitude ( l a l 2 is the average number of photons). The 
coherent state can be written as a sum over number states: 

2 � a"  2 ( a2 ) l a) = e-(t /2)1nl "" - I n) =  e-(l /2)1nl 1 0) + a l l ) + - 1 2) + . . . . 
n .Jn  J2 . 

Parametric Downconversion 

(4) 

Certain crystals (referred to as nonlinear crystals), when pumped by a laser, 
exhibit parametric downconversion. 1s. i6 This means, essentially, that a photon in the 
pump laser beam is sometimes converted into two photons, one called the signal and 
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one called the idler (these names are just conventional). If the frequency and wave 
vector of the pump, signal, and idler are (wp, kp), (w,, k,) , and' (w;, k;), respectively, 
then the following conditions (called phase-matching conditions) hold to a good 
approximation: 

(Sa) 

(Sb) 

The second condition implies that the pairs have some directional correlation and, 
therefore, it is possible to pick out pairs of photons of given colors by placing 
diaphragms appropriately. If we restrict out attention to a pair of modes picked out 
in this way, then the interaction Hamiltonian between the pump beam (treated 
classically and represented by the complex amplitude V) and the signal and idler 
modes (with annihilation operators a, and a;) is 

H1 = ihgVa,ta;t + he, (6) 

where g is a coupling constant. With the initial states of the signal and idler modes as 
the vacuum, after a short interaction time t (equal to the time of passing of the pump 
photons through the interaction region of the crystal), the state becomes 

1 "1) = exp (-iH1t/h) I O}, I O); = 1 0), 1 0); + gtVl l ), I 1 }; + · · · . (7) 

This can be used as a single-photon source because, if we detect a photon in the idler 
mode, for example, then we know that there is a photon in the signal mode. 

THE SINGLE-PHOTON EPR ARGUMENT 

A very careful discussion of the EPR argument is given by Redhead 17 and we will 
follow his argumentation here. In particular, we will make use of the fact, noticed by 
Redhead, that it is not necessary to consider two possible measurements on system 1 
(e.g., O'tx and <1ty in the singlet state example considered by Bohm18). One measure
ment is sufficient. EPR introduced a necessary condition for a theory to be consid
ered complete-"Necessary condition for completeness: every element of the physi
cal reality must have a counterpart in the physical theory." Then, in order to be able 
to discuss such elements of physical reality, at least in some situations, EPR gave a 
sufficient condition for their existence. We give it in the form given by Redhead
"Sufficient condition for existence of elements of physical reality: if we can predict 
with certainty, or at any rate with probability equal to one, the result of measuring a 
physical quantity at time t, then at the time t there exists an element of physical 
reality corresponding to the physical quantity and having a value equal to the 
predicted measurement result." In addition, the EPR paper contained an implicit 
locality assumption that was !!lated explicitly by Redhead-"Locality principle: 
elements of physical reality pertaining to one system cannot be affected by measure
ments performed 'at-a-distance' on another system." 

We will now apply the above two conditions and one principle to the single
photon experiment shown in FIGURE 1. A nonlinear crystal is used as a single-photon 
source in the way described above. The single photon in the signal mode is incident 
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vacuum 
i - - - - - - - - - - - - - - • 

one photon 

system 2 

system 1 
. .  

· - - - - - - - - - - - - - '  

FIGURE I .  Apparatus used t o  illustrate the single-particle EPR argument. 

on one input of a 50:50 beam-splitter with the vacuum incident on the other input. 
Then, the two output modes, u 1 and u2, separate to two distant regions where they 
form system 1 and system 2, respectively. When the detector in the idler mode has 
clicked, we know that a photon has impinged on the beam-splitter and therefore, 
from equation 3 above, the state of the system becomes 

(8) 

(note that the coefficient i is associated with the term in which the photon has been 
reflected). Now, if we wanted, we could insert a detector U1 in path u1 • Ifwe did this, 
then there would be two possibilities: ( 1 )  the detector would fire, in which case we 
could predict with certainty that a detector U2, if it were placed in path u2, would not 
fire; in this case, we could apply the reality condition and deduce that there exists an 
element of reality corresponding to U2 that we can write as [U2] = O; or (2) detector 
U1 would not fire, in which case we could predict with certainty that a detector U2, if i t  
were placed in path u2, would fire; thus, there would again exist an element of reality, 
this time given by [U2] = 1. For an individual run, one of these two possibilities would 
have to happen. Furthermore, although we could not predict which one in advance, 
there would always be a definite element of reality associated with system 2. Now, 
according to the locality principle, any element of reality at system 2 cannot be 
affected by whether or not a detector is placed in path u1 • This means that, even in 
the case where the detector U1 is not used, there must still exist an element of reality 
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at system 2 (whether it is [U2) = 0 or [U2] = 1) because, were this detector used, we 
would then be able to deduce the existence of the element of .reality. However, the 
state vector describing the system in the absence of any measurements is I ils), given 
in equation 8. This state vector is not an eigenstate of the projection operator, {Ji, 
onto the state I l )u2• Hence, there is nothing in I "1) that can correspond to the 
element of reality [U2) that we have deduced must exist and therefore, according to 
the completeness condition above, this state vector does not provide a complete 
description of reality. 

As is now well known, the locality assumption is not consistent with quantum 
mechanics as was shown by Bell. Before giving a single-photon demonstration of the 
violation of locality, we need to consider how to produce a superposition of the 
vacuum with a single-photon state . 

HOW TO PREPARE e l O) + fl t) 

A coherent state is a superposition of many number states. However, we want to 
produce a superposition of only the vacuum and single-photon number states. This 
can be prepared using the apparatus shown in FIGURE 2. A nonlinear crystal is 
pumped by a strong laser and a low intensity state I �). of the same frequency as the 
idler mode, is incident on the crystal behind the idler mode. Ou, Wang, Zou, and 
Mandel 19 considered a similar setup to this (although they were interested in the high 
intensity limit of the laser behind the idler mode) and some of the working below is 
taken from their work. A detector is placed in the idler mode. There are two ways in 
which one photon can come to be detected at this detector (we assume that the 
detector can measure photon number, at least to the extent that it can distinguish 
between one and more photons). Either it comes from a downconversion process, in 
which case there will be an accompanying signal photon, 1 1 )., in the signal mode, or it 
comes from the low intensity coherent state source behind the idler, in which case 
there will be only the vacuum, I 0)., in the signal mode. As these two processes are 
indistinguishable, the resulting state in the signal mode will be a superposition 

pump la er nonlinear 
crystal 

FIGURE 2. Apparatus used to prepare the state e 1 0) + f 1 1 ) . 
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e l O), + fl 1 )., where e and/ are the relevant amplitudes. We can give a more rigorous 
treatment of this process by using some of the results from above. The initial state is 
I �); I 0),. After some short interaction time t, the state becomes 

1 "1) = exp(-iH1t/li) l �); I O),. 

This can be expanded as 

I "1) = I �); 1 0), + gtVa;t I �)d 1 ), + · · · . 

Substituting in the number state expansion for the coherent state (l ike that given in 
equation 4) and collecting terms, this becomes 

1 "1) = exp[( -�) 1 � 1 2) ( 1 0); 1 0), + 1 1 );(� 1 0), + gtVl l ),) + l ip)) , (9) 

black box with 
variable setting 

classical channels 

2 

black box w�h 
variable setting 

FIGURE 3. Configuration required of an experiment designed to demonstrate the nonlocality 
of a single photon. 

where the state I 'P) contains only terms with more than one photon in the idler mode. 
If we consider those times when one photon is detected in the idler mode, then we 
see from equation 9 that the required state, � I 0), + gtVI 1 ),, is produced in the signal 
mode. 

SINGLE-PHOTON NONLOCALITY 

The Rules of the Game 

First, we will set down the rules of the game-those conditions that must be 
satisfied before we can say that we have the nonlocality of a single photon. 

Rule 1 :  The experimental configuration must be as shown in FIGURE 3. From the 
source, there are two quantum channels (that is, channels that are allowed to carry a 
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quantum state from the source) that impinge on two distant "black boxes". The 
source has an event-ready device that goes "click" when a state is emitted. There are 
classical channels that are allowed to carry classical information (that is, information 
that can be put into binary code) between the source and the two ends (at speeds less 
than or equal to c). Each black box has a variable setting that can take at least two 
values. The outputs from the black boxes are some numbers (these are essentially the 
measurement results, although in an operational description like this there is no 
need to use the word "measurement"). 

Rule 2: If the source clicks at time t and a detector is placed into each of the 
quantum channels at a distance cT from the source, then, during the time interval 
t + T - T/2 till t + T + T/2, at most only one of the two detectors should click (and 
that detector should only detect one photon). Here, T is the time taken for the 
quantum state to be emitted from the source. This rule ensures that we only consider 
single photons. 

Rule 3: If the quantum channels are blocked so that the quantum state does not 
reach the black boxes, then there should be no possible way of getting a violation of 
locality between the two black boxes. 

Rule 4: The predictions must be such that the entire class of local hidden variable 
theories is ruled out (so that no supplementary assumptions are used). 

Here, we envisage a scheme in which two output quantum channels are taken 
from a single-photon source . In the case where three, four, or even an infinite 
number of such channels are taken, the above rules could be revised appropriately. 
These rules could also be revised to apply to particles other than photons. The main 
purpose of the classical channels allowed for in rule 1 would be to transmit the 
information that the source had clicked so that it is known when to take measure
ment results from the black boxes. We could have instead stated rule 2 more 
generally in the following way: if two observers, Alice and Bob say, make measure
ments in the quantum channels, Alice on the left and Bob on the right, then at most 
only one of them is able to establish on the basis of this measurement that the source 
has cl icked. Such a formulation of the rule is more operational than that above and 
captures the essential point (it is because of this property that nonlocality of a single 
particle is more surprising than the nonlocality of two particles). This formulation 
does not rule out the possibil ity of a source that emits, for example, two photons, but 
always such that they both go into the same quantum channel ; still, though, such a 
source could be regarded as a single-particle source, the two photons being a kind of 
"molecule". The purpose of rule 3 is to ensure that any nonlocality is really due to 
the state emitted from the source and not because of some preexisting entanglement 
between the two black boxes. For example, already entangled photons could be 
stockpiled. The scheme of Tan, Walls, and Collett satisfies the first three rules, but 
not rule 4. 

Four Experinumts 
The apparatus to be considered is shown in FIGURE 4. The state q l O), + r l 1 ),, 

prepared in the above way, is incident on the s input of a beam-splitter, with the 
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vacuum incident on the other input, t. The initial state is 

(q 1 0), + r l 1 ),) 1 0), = q 1 0), 1 O}, + r l 1 ), 1 0),. 
Upon evolving through the beam-splitter, this becomes, using equations 2 and 3, 

(10) 

We will now consider four different possible experiments that could be performed on 
this state. 

t 

s 

. · . 

. ·. 

FIGURE 4. Experimental setup used to demonstrate the nonlocality of a single photon. The 
state q l O) + r l l )  is incident on the s mode, the vacuum is incident on the t mode, and the 
coherent states l a.ic )  are incident on the ak modes (k = 1, 2). 

Experiment 1 :  Detectors U1 and U2 are placed in modes u1 and u2, respectively. 
We put U1 = n, where n is the number of photons detected at detector U., and 
similarly for detector U2• Because there is never more than one photon at a time, it is 
clear that 

U1 = 1 and U2 = 1 never happens. (11)  

More
. 
formally, we can see that this i s  true because there i s  no I l }u1 I l )u2 term in 

equation 10. 
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Experiment 2: Detector U2 is placed in mode u2 as before, but detector U1 is 
removed and mode u1 is al lowed to impinge onto a beam-splitter. The coherent state 
l a1)0 1 impinges onto the other input of this beam-splitter. Detectors C1 and D1 are 
placed in the output modes c1 and d1 of this beam-splitter. The state of the system 
before measurements are made is given in equation 10 and can be written 

( 12) 

Now, concentrate on the case where no photon is detected at detector U2 so that 
U2 = 0. When this happens, it follows that the state in mode u 1 becomes N[q I O)u1 + 
(ir/ J2) I l )u 1) , where N is a normalization factor. Thus, the state impinging on the 
beam-splitter is 

Expanding the coherent state (using equation 4) and collecting terms, we get 

where lip ' ) contains only terms with a total of two or more photons (as we shall only 
be interested in those cases in which a total of one photon is detected, we need not 
pay any special attention to the evolution of these terms). Upon evolving through the 
beam-splitter, the state becomes, using equations 2 and 3, 

Ne-< 1 12>1ui 12{q I O)c. I O)d. + [ <X1q - ( �)] l l )c . I O)d. + i [ <X1q + (�)] I O)cl I l )d. + I ip") } ' 

(13) 

where the state I ip' ) has evolved to I ip") . There are two terms corresponding to the 
case in which a total of one photon is detected, either at C1 or at D1• Consider the 
case where one photon is detected at D1 and zero photons are detected at C1 • There 
are two possible ways in which this could have happened. Either the photon came 
from the source along the u1 path and the vacuum came from the coherent state, or 
vice versa. The amplitudes corresponding to these two possibilities can be made to 
interfere destructively such that it never happens that one photon is detected in D1 
and no photons in C1 (remember that we are here considering the case where 
U2 = 0). It is clear from equation 13 that this condition is met when a 1q + (r/ J2) = 0, 
that is, when 

r 
<Xt = - ./2q .  ( 14) 

Assuming from now on that a1 has been set according to equation 14, we have the 
prediction 

if U2 = 0, then {D 1 = 1 & C1 = O} never happens. ( 15) 
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It follows logically from this that 

if {D1 = 1 & C1 = OJ, then Uz = 1 (16) 

because Uz can only take values of 0 or 1 .  This is the prediction of interest for 
experiment 2. 

Experiment 3: This is the same as experiment 2, but with 1 and 2 interchanged. By 
similar reasoning to that above, if we set 

(17) 

then 

if {Dz = 1 & Cz = OJ, then U1 = 1. (18) 

Experiment 4: Now, detectors U1 and Uz are both removed so that mode u 1 
impinges onto one input of a beam-splitter with the coherent state I a1) incident on 
the other input and, similarly, mode Uz impinges onto one input of another beam
splitter with the coherent state I az) incident on the other input. The settings of a1 
and az are taken to be the same as above. The resutt of interest is that 

{D1 = 1 & C1 = OJ and (Dz = 1 & Cz = OJ happens sometimes. ( 19) 

To see this, consider the evolution of the state in this case. After the state from the 
source has passed the first beam-splitter, the total state of the system, including the 
coherent states, is I '11) I a1 )0 1 I az)02, where I '11) is given in equation 10. Expanding this 
out using equations 4 and 10, we get 

e-( l /Z)( la i l
2
+ la2'

2
l [ a1a'1fl I l )0 1 I O)u 1 1 1  )02 I O)u2 + (:;) I l )a 1 I O)u 1  I O)a2 I l )u2 

+ r:;:) I O)a 1 1 1 )u 1 1 1 )a2 I O)u2 + I 'P'")] , (20) 

where I cp'") contains all those terms that do not have a total of one photon at each 
end of the apparatus. The state now evolves through the beam-splitters. We can 
concentrate only on the term relevant to the prediction in equation 19. The state 
becomes 

X I O)c 1 1 l )d1 1 0)c2 l l )d2 + l -D)} , (21) 

where all the terms that we are not interested in are in 1 -D) . Using equations 14 
and 17, we find that the square modulus of the coefficient in front of the 
I O)c1 l l )d1 I O)c2 1 l )d2 term is equal to ( l r l 4/ 1 6 l q 1 z)e-(lad

2
+1a21

2
>. Provided that q and r 
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are nonzero, this probability is  also nonzero and, hence, the prediction of equation 
19 above follows. • 

The Contradiction 

Consider two observers, Alice and Bob. Alice stands at end 1 of the apparatus 
and has a choice of whether to put detector U1 in place and measure U1 or to remove 
detector U1 and measure D1 and C1 •  Bob stands at end 2 of the apparatus and has a 
choice of whether to put detector U2 in place and measure U2 or to remove detector 
U2 and measure D2 and C2• Suppose that they make this choice randomly, not 
deciding until after the state has been emitted from the source. Now, consider a run 
of the experiment in which Alice chooses to measure D1 and C1 and Bob chooses to 
measure D2 and C2 (i .e. , the U1 and U2 detectors are removed). Furthermore, 
suppose that Alice obtains the result D1 = 1 and C1 = 0 and Bob obtains the result 
D2 = 1 and C2 = 0. That this can happen follows from prediction 19. From her results 
of D1 = 1 and C1 = 0 and prediction 16, Alice knows that if Bob has chosen to 
measure U2 then he will certainly detect a photon there (in path u2) and hence she 
may reason that the photon from the source has gone towards Bob. From his results 
of D2 = 1 and C2 = 0 and prediction 18, Bob knows that if Alice has chosen to 
measure U1 then she will certainly detect a photon there (in path u 1 ) and hence he 
may reason that the photon from the source has gone towards Alice. However, there 
is at most only one photon emitted from the source at a time and it cannot have gone 
both towards Alice with certainty and towards Bob with certainty (this would violate 
prediction 1 1 ) .  It is not possible that Alice and Bob are both right. Thus, we have a 
contradiction. This contradiction is slightly worrying because it is not clear that there 
are any assumptions in the above argument. If there really were no hidden assump
tions, then the only resolution to the contradiction would be that quantum theory is 
wrong. However, under closer scrutiny, it is clear that both Alice and Bob are making 
locality assumptions in their reasoning. Consider Alice. She deduces that the photon 
is going towards Bob, which must mean that if he had put his U2 detector in place 
then he would have detected the photon there. However, in the above scenario, Bob 
did not put his U2 detector in place. Therefore, Alice is arguing counterfactually. 
When one argues counterfactually, it is important to consider properly all the 
respects in which the world might have been different had the other choice been 
made. In this case, Alice must consider how the world might have been had Bob 
instead chosen to measure U2• In such a case, it is possible that there might have been 
a nonlocal effect (or an absence of a nonlocal effect that had actually happened in the 
world where Bob did not measure U2) with the consequence that Alice might not 
then have obtained the results D1 = 1 and C1 = 0. Consequently, Alice cannot argue 
that Bob would have obtained U2 = 1 had he measured U2 because, in the world 
where he made that choice, she might not have obtained the results on which she 
based the deduction. Similar remarks apply to Bob. Thus, by allowing nonlocality, we 
remove the contradiction. 

Actually, the situation is a little more subtle than was revealed above because of 
the possibility of indeterminism. To see this, first consider the following philosophi
cal conundrum (see reference 17, pages 92-93). A roulette wheel is spun by Alice . 
The number 6 comes up. Bob is sitting some miles away and we assume that no 
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nonlocal influence can pass between the two places. After some time, Bob finds out 
that the result was 6. Then, he asks himself the following question: would the result 
have been different if I had raised my hand while the wheel was spinning? If the laws 
that govern the motion of the roulette wheel are entirely deterministic, then it is clear 
in the world where Bob had raised his hand that the number 6 would still have come 
up because the initial conditions for the wheel that determine the outcome would not 
have been different if Bob had raised his hand. However, if the laws that govern the 
motion of the roulette wheel are indeterministic, then the answer is not so clear. 
Indeed, there is no conclusive argument against the view that, had Bob raised his 
hand, Alice might have then got some other number, even in the absence of nonlocal 
effects. Consider again the photon experiment. If we allow the possibility of indeter
minism, then it is possible that in the world where Bob had measured U2 (analogous 
to raising his hand) Alice might not have got D 1 = 1 and C1 = 0 (analogous to not 
getting a 6), even when there are no nonlocal influences. Hence, even assuming 
locality, it seems that Alice cannot infer that Bob would have got U2 = 1 for the 
reasons expressed above and thus it now seems that we can avoid the above 
contradiction even without allowing nonlocality. However, and this is the subtlety, 
this reasoning is wrong. For the particular run of the experiment that we are 
considering, Alice did actually obtain D1 = 1 and C1 = 0, although Bob was not 
measuring U2• Alice could not have obtained the result D,• = 1 and C1 = 0 had the 
probability for this particular outcome been equal to zero for this run of the 
experiment. Ifwe assume locality, then the stochastic process at end 1 cannot depend 
on whether U2 is measured or not. It follows that the probability of Alice gettingD1 = 
1 and C1 = 0 in the counterfactual world in which Bob does measure U2 must still be 
nonzero for this run of the cxpt:riment. If Bob had measured U2, then the system (or 
"local reality") at end 2 would have had to come up with a choice between U2 = 0 or 
U2 = 1. However, because we are assuming locality, there can exist no information at 
end 2 that reveals what the outcome of any indeterministic process at end 1 would be. 
Therefore, the system at end 2 would have to opt for U2 = 1 just in case the outcome 
at end 1 is still D 1 = 1 and C1 = 0 (because otherwise there is a chance of a violation 
of prediction 16). This means that, so long as she assumes locality, Alice is justified in 
deducing that the photon went towards Bob (meaning that Bob would detect it if he 
used his U2 detector). Similarly, if he assumes locality, Bob is justified in deducing 
that the photon went towards Alice. Hence, we cannot avoid the contradiction above 
by invoking indeterminism and therefore abandoning locality remains the only way 
out. 

Some Inequalities 

The above discussion, involving counterfactual reasoning, may seem a little 
involved. To put matters on more familiar ground, we will show that the predictions 
of quantum mechanics violate the Clauser-Horne-Bell inequalities.20 These inequali
ties can be put into the form, 

- 1 ;:s; Prob (F1 = 1 & F2 = 1) - Prob (F1 = 1 & U2 = 0) 

- Prob (U1 = 0 & F2 = 1) - Prob (U1 = 1 & U2 = 1 ) ;:s; 0, (22) 

where Fk and Uk are two measurements that can be made on side k (where k = 1, 2). 
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By putting Fk = 1 when Dk = 1 and Ck = 0, we see from prediction 19 that the first 
probability in equation 22 is nonzero [equal to ( l r l 4/ 1 6 l q 1 2)e-�J a1 1 2 + 1 °2 1 2>] and, from 
predictions 1 1 ,  16, and 18, we see that the other three probabilities are equal to zero. 
Hence, the upper limit of the inequalities is violated, which means that locality is 
violated. 

Multimode Treatment 

We know that the state q l O), + r l  1 ), has been created in the signal mode when 
the detector in the idler mode detects one photon. In order for the discussion of 
nonlocality to make sense, we require that this state is emitted within some time 
interval T <: L/c, where L is the dimension of the apparatus (as would indeed be the 
case because the idler and signal photons produced in parametric downconversion 
are very strongly correlated in time). Thus, if the idler detector cl icks at time t, then 
the state must be emitted during a time interval t - T/2 to t + T/2. It follows from the 
energy-time uncertainty principle that there must be a spread of frequency in the 
photons emitted from the source and, consequently, a proper treatment requires a 
full multimode calculation. The input state is actually 

q l O), + � r., 1 1 ),,., (23) ., 

where w is the frequency. The sum over frequencies will tend to an integral as the 
mode spacing tends to zero. The notation in equation 23 is shorthand: I 0), denotes 
that all frequency modes in path s are in the vacuum mode (i.e., II., 1 0), ) and 1 1 ), 
denotes that the mode with frequency w in path s has one photon and ail the othe; 
modes in this path are in the vacuum state (i .e. , 1 1 ), II.,·,.., 1 0), · ) . The photons from 
the source must be indistinguishable from the photo�s in the c�herent states used at 
ends 1 and 2. Hence, these coherent states should also have a spread of frequencies. 
Thus, we must use multimode coherent states14 l {<Xic))ak = Il., l a;;')0k .. ' where l a;;') is a 
single mode coherent state of frequency w and with the form given in equation 4. The 
first few terms in this product can be expanded out to yield 

l !<XicDak = e1-c 1 12>:E..· 1ak"1 1(1 0)ak + � ak' I l )ak .. + . . . ) , (24) 

where we are using similar shorthand as before. The above calculations can be easily 
repeated using the multimode states of equations 23 and 24, and predictions 1 1 , 16, 
18, and 19 are recovered if we set the complex amplitudes of each frequency mode 
according to 

r., 
aj = iai = -./2q . (25) 

CONCLUSIONS 

We have seen that the essential reasoning behind the EPR argument had already 
been given by Einstein in 1927 for a single-particle rather than two-particle situation. 
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Furthermore, we saw above that Einstein's reasoning in 1927 can be put into a 
rigorous form similar to that of the EPR argument. Next, a demonstration of the 
nonlocality of a single photon was given without using inequalities (although it was 
shown that some Bell inequalities are violated) .  The four rules listed in the first 
subsection of the sixth section are all satisfied. A number of questions are raised by 
this proof. First, it is the case that, on average, less than a single photon was used. 
The above proof does not go through in the case where q = 0, that is, in the case 
where there is no vacuum term. This raises the question of whether it would be 
possible to construct a proof where there was exactly one photon each time. One 
such proof has been constructed8 in which n:vo atoms sitting in the paths from the 
source go into an entangled state as a consequence of the interaction and some 
postselection. This method is rather cumbersome. It seems likely that this could be 
done, instead, by taking a similar approach to that above. However, this comes down 
to a matter of calculation and will be the subject of future work. The second question 
is as follows: how significant is the role of the vacuum in this nonlocal effect? Could 
these predictions be recovered without having to incorporate the vacuum as a 
quantum object in the calculations? The answer to this is not clear. It is, however, 
interesting to note that a mixture, rather than a superposition, of 1 0) and 1 1 ) would 
lead to quite different predictions. The third question, already hinted at above, is as 
follows: could a proof of a single particle be run for'imy �e of particle? The answer 
to this is almost certainly no. The above proof makes use of a superposition of the 
vacuum and the single-photon state in the source and also in the measurement 
process. As just mentioned, it is possible that this superposition is not necessary in 
the source. However, it is difficult to see how it could be avoided in the measurement 
process. Nonlocality in quantum mechanics is always a second or higher order 
interference effect. To obtain such an effect when only a single photon comes from 
the source, it is necessary that we take advantage of the quantum uncertainty 
pertaining to which direction the photon went at the beam-splitter. To do this, we 
must consider measurements that destroy this information. Without making use of 
the indistinguishability of photons, and using a superposition of different number 
states, this could not be done. Indistinguishability is a property of any given class of 
quantum particles. However, there exist superselection rules for a vast range of 
particles that rule out the possibility of forming a superposition of different number 
states (even a superposition of the vacuum and the single-particle state) and, in such 
cases, it seems that no proof for a single particle could be given. Boson statistics for 
the photons, however, appear to play no significant role and a proof like that above 
could be constructed for a fermionic particle if it were possible to prepare a 
superposition of a vacuum and a single-particle state. 
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LUCIEN HARDY'S GEDANKENEXPERIMENT 

Consider two far-apart black boxes, each with a switch that can be set in one of 
two positions. The boxes act as detectors for a pair of particles emanating from a 
distant source. Each box responds to its particle by flashing a red or green light. 
There are no connections between the detectors or between the source and the 
detectors, beyond those mediated by the particles. We press a button at the source to 
send the particles off to their detectors. After they have left the source, but before 
they arrive at and trigger the detectors, we randomly and independently set the 
switch on each detector to either of its two positions (labeled 1 and 2) by tossing a 
coin at each detector. 

The data collected in many runs exhibit the following �atures: 

(a) in runs in which the detectors end up with different settings (21 or 12), the 
lights never both flash green; 

(b) in runs in which both detectors end up set to 1, the lights never both flash red; 
(c ) in runs in which both detectors end up set to 2, the lights sometimes both 

flash green. 

Because there are no direct connections between detectors, the explanation for 
their coordinated behavior must come from the fact that both are triggered by 
particles that originated at a single source. Something in the common origin of the 
particles must be responsible for the correlations. Since the switches on the detectors 
are not set until after the particles have left their source, the features of the particles 
that produce these correlations cannot depend on the setting of the switches. And 
since each detector is triggered by only one of the two particles, it can only respond to 
features residing in that particle and not to features residing in the particle that went 
off to the other faraway detector. We can then reason as follows: Because any run has 
an even chance of ending up as a 12 or 21 run, whenever one of the particles is of a 
type that allows a type 2 detector to flash green, its partner must be of a type that 
requires a type 1 detector to flash red, for both detectors never flash green in a 12 or 
21 run. Therefore, in any of those 22 runs in which both detectors flash green, 
because each particle has revealed itself to be of a type that does allow its type 2 
detector to flash green, each must also be of a type that requires a type 1 detector to 
flash red. Thus, if the random setting of the detectors resulting in any such 22 run had 
resulted instead in a 1 1  run, both detectors would have had to flash red. Such 
behavior, however, is never observed in a 1 1  run. 

0This work was supported by the National Science Foundation (Grant No. PHY9320821 ). 
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Something is therefore wrong with the reasoning in the last paragraph. This 
gedankenexperiment, discovered by Lucien Hardy,1 offers by far the simplest and 
cleanest case for exploring where the error in this kind of reasoning might lie. I shall 
not indulge in such explorations here, except to define the central issue by adding 
three more lines to one of John Wheeler's favorite Bohr quotations: 

To be, to be. What does it mean to be? 
Or is the problem nonlocality? 
That is the question, vexing many souls: 
What 's the idea for which Bell's theorem tolls? 

The quantum mechanics underlying Hardy's wonderful trick is remarkably 
simple and general.2 Pick any nontrivial one-particle observable you like for each 
detector to measure when its switch is set to 1-spin components, polarizations, 
position, momentum, or anything else. Divide the spectrum of the observable into 
any two sets you wish and fix the detector so a flash of red or green indicates which set 
the measured value was found in. The source produces a pair of particles in a 
two-particle state I 'I') constructed as follows: Pick, for the left particle, two superpo
sitions of eigenstates of the observable measured in mode 1 on the left, taken entirely 
from the red and entirely from the green part of its spectrum. Call these two 
orthogonal states I 1R)1 and I 1G)1• Pick two states I lR), and I lG), for the particle on 
the right, similarly defined in terms of its own mode-1 observable. The two-particle 
state I 'I') is a superposition of the three two-particle states: 

I lR, lG)  = I lR)i l lG),, 

I lG, lR) = I 1G)1 1 1R),, 

I lG, lG)  = I 1G)1 1 1G),. (1) 

That both detectors never flash red when both detectors are in mode 1 is guaranteed 
by the absence of I lR, lR) from the superposition, which it is simplest to take in a 
symmetric form with real coefficients:3 

1 '11) = a  I lR, lG)  + a l lG, lR) - b l  lG, lG) .  (2) 

The choices for the observables measured by the detectors in mode 2 are also 
quite flexible. All we require is that the observable measured on the left have an 
eigenstate I 2G)1 with nonzero components along both I 1G)1 and I 1R)1• A green flash 
on the left indicates that the measurement in mode 2 did indeed find the particle in 
the state I 2G)1• Anything else results in a red flash. A similar arrangement is made on 
the right with a state 1 2G ),. As an explicit example, we take the state 1 2G) on each 
side to be the same superposition with real nonzero coefficients of the states I lR) and 
I lG)  on that side:3 

1 2G) = c l lG)  + d l lR). (3) 

The absence of two green flashes when one detector is in mode 1 and the other is in 
mode 2 is guaranteed by picking c and d so that I lG, 2G) and 1 2G, lG)  are both 
orthogonal to I 'I'). This requires 

ad = be. (4) 
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The probability of two green flashes when both detectors are in mode 2 is thus 

p(22GG) = 1 (2G, 2G l 'l') l 2 = (2acd - bc2)2 = b2c4, (5) 

so we require b and c not to be zero and then equation 4 requires a and d not to be 
zero. 

To make the probability p for the "impossible" 22GG events as large as possible, 
note that equations 4 and 5 and the normalization of the states defined in equations 2 
and 3 combine to give 

(1 - c2) 
p(22GG) = -· - c4• 

1 + c2 (6) 

This is maximum when c2 = 1 /T, where T is the golden mean, (l/i)(.[5 + 1), which 
results in a maximum probability, 

p (22GG) = 1 /-r5 = 9.017%. (7) 

[The rational approximation to the golden mean c2 = 3/5 does almost as well, 
yielding ap(22GG) that is exactly 9%.] 

How did something this simple and powerful go l!Pdiscovered during the 30 years 
since John Bell proved his theorem? My guess is that nobody noticed it before Hardy 
because everybody was too strongly focused on states that exhibited Einstein-Podolsky
Rosen (EPR) correlations. 

The Hardy state is one in which the full EPR argument cannot be made. 
According to EPR, an "element of reality"-preexisting information carried by a 
particle that specifies the color to be flashed by its detector-must exist if it is 
possible to predict in advance the result of a localized measurement of that 
observable by other localized experiments done far away. In the Hardy experiment, 
this condition of predictability is not invariably met. Sometimes you can predict with 
certainty the result of a distant experiment, but you can only do so in an uncontrol
lable fraction of the runs. Suppose, for example, you try to learn what the particle on 
the left will do at a type 2 detector by measurements on the faraway particle on the 
right. If you subject the particle on the right to a type 1 detector, then if that detector 
flashes green you can indeed predict with certainty that the particle on the left will 
cause its detector to flash red because two green flashes are never observed when the 
switches have different settings. But if the detector on the right flashes red for these 
settings, you cannot predict what wil l happen on the left. Because the outcome on the 
right is not under your control, your ability to predict with certainty the behavior on 
the left is a matter of chance. If you're lucky, you can do it; otherwise, you can't. The 
same difficulty besets any of the other ways one might try to exploit the correlations 
(a) and (b) to make an invariably successful prediction of what will happen at one 
detector, based on what happens at the other. 

Thus Hardy's data do not demand that each particle always carries a set of 
instructions telling its detector what color to flash for both settings of its switch. That 
is why the argument I gave above had to start by considering particles that "allow" a 
detector to flash green. "Allow" is as much as one can say in the Hardy experiment 
and "allow" is, in fact, much more in accord with the inherent randomness in the 
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response of a detector to a particle that quantum mechanics has taught us to accept. 
Nevertheless, that one softening of an EPR "require" to a Hardy "allow" does not 
prevent the behavior of the Hardy device from refuting the apparently obvious 
explanation for the correlations just as effectively as Bell's theorem does. 

As Alain Aspect emphasized in a discussion remark early in this conference, 
beautiful as the Hardy experiment is as a gedankenexperiment, in a real experiment 
"never" can never be established, if only because the number of runs is necessarily 
finite. Hardy's argument can, however, be cast in the form of an inequality that 
bounds the probability p (22GG) by the sum of the probabilities of the three events 
forbidden in the ideal gedankenexperiment:4 

p (22GG) s; p(21GG) + p ( l lRR) + p( 12GG). (8) 

This inequality can be derived from various sets of assumptions, none of them as 
compelling as the simple argument that led us to conclude that the vanishing of the 
probabilities on the right required the vanishing of the one on the left.5 Furthermore, 
while the Hardy state violates inequality 8 by making the left side 9% and the right 
side zero, the version of Bell's theorem subject to actual experimental tests gives a 
significantly bigger disparity, making the left side 43% and the right side 22%.  Thus, 
Hardy's argument, although of enormous conceptual interest as a gedankenexperi
ment, will not lead to a more definitive experiment than the ones already performed. 

IBE QUESTION OF POPESCU AND ROHRLICH 

One can use the Hardy state to examine a question recently raised by Sandu 
Popescu and Daniel Rohrlich.6 A maximum violation of the Clauser-Horne (CH) 
inequality 8 occurs when p (22GG) = 1 and the other three probabilities are zero. 
Although quantum mechanics violates inequality 8, it cannot give a maximum 
violation, for the analysis I have given above (more precisely, the slight generaliza
tion of it that I give in reference 3) establishes that, when the right side of inequality 8 
is zero, the largest that quantum mechanics allows the left side to be is 9.017%. Could 
there be a simple reason why the distributions allowed by quantum mechanics cannot 
give a larger violation? Popescu and Rohrlich asked whether such a reason might be 
provided by a requirement that I would call physical locality-that the distribution of 
results at a single detector should be independent of the setting of the other. 

Physical locality does indeed prohibit a maximal violation of inequality 8. For if 
p(22GG) = 1 andp(21GG),p ( 1 1RR), andp( 12GG) arc all zero, then we can reason 
as follows (now appealing only to physical locality): both detectors always flash green 
when both are set to 2. Physical locality then requires a detector set to 2 to always 
flash green even when the other detector is set to 1. (Otherwise, one could determine 
the setting of the faraway detector merely by observing the one nearby. ) Because the 
probabilitiesp(21GG) andp(12GG) are zero, this requires in turn that a detector set 
to 1 must always flash red when the other detector is set to 2. Physical locality then 
requires a detector set to 1 to always flash red when the other detector is set to 1. But 
far from happening always, this never happens because p( l  lRR) is zero. So indeed, a 
maximal violation of inequality 8 contradicts the straightforward, unambiguous, and 
experimentally testable notion of physical locality-not merely the plausible, but 
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surprisingly flawed reasoning that I set forth at the beginning of this essay, based on 
what one might call metaphysical locality. 

Avoiding metaphysical locality and reasoning only from physical locality, one can 
in fact derive a new inequality for the four probabilities appearing in inequality 8 that 
is less restrictive than inequality 8 itself, but strong enough to rule out a maximal 
violation of inequality 8 (see APPENDIX A for the derivation): 

1p(22GG) - 1 s p(21GG)  + p(l lRR) + p (12GG). (9) 

Inequality 9 constrains the size of p(22GG) not to exceed 50% when p(21GG), 
p(l lRR), andp(12GG) are al l zero. This is less than the 100% maximal violation, but 
considerably larger than the 9% limit imposed by quantum mechanics. 

Although I am not sure how meaningful it is to ask such questions about these 
kinds of inequalities, I nevertheless found this particular feature of the Hardy state 
puzzling for the following reason: Popescu and Rohrlich phrase their question in 
terms of the inequalities of Clauser, Horne, Shimony, and Holt (CHSH), 7 which have 
a different form from inequality 8. Define a variable m that is 1 if a detector flashes 
red and - 1 if it flashes green, and define the correlation coefficient (mm ' )ii to be the 
mean of the product mm' in those runs in which the right detector is set to i and the 
left toj. The CHSH inequalities are the requirement that .. 

-2 S (mm ') 1 1 - (mm' ) 12 - (mm ' )z1 - (nim'h2 S 2 (10) 

(and the three inequalities in which the + sign goes with the 12, 21 ,  or 22 correlation 
coefficient). Although quantum mechanics can violate inequality 10, it does not 
permit the magnitude that inequality 10 bounds by 2 to exceed 2,[2, even though one 
can construct general pair distributions that make this quantity as large as 4. Popescu 
and Rohrlich show, however, that physical locality is compatible with this quantity 
having this maximum magnitude. 

In view of the impossibility of maximally violating the CH inequality with 
physically local pair distributions, which follows from thinking about Hardy states, 
this conclusion of Popescu and Rohrlich puzzled me. I have always viewed the CH 
and CHSH inequalities as completely equivalent and have been criticized more than 
once for forgetting which was which. I therefore could not understand how an 
inequality from the CHSH set could suffer a maximal violation with a physically local 
set of pair distributions, while one from the completely equivalent CH set could not. 
After brooding about this paradox for longer than it should have taken me, I realized 
what was going on: the proof of equivalence between the CH and CHSH inequalities 
(see APPENDIX B) makes an implicit assumption of physical locality, which it is easy 
to overlook. Those distributions for which the CH inequalities violate inequality 9, 
but not maximally, necessarily violate physical locality and therefore do not corre
spond to any combination of correlations appearing in a CH inequal ity. 

Physical locality is so fundamental a property and so readily confirmable by direct 
experimental test that it is almost invariably taken completely for granted in 
manipulating either CH or CHSH inequalities from one form to another. Existing 
relations between and among such inequalities are infected by unstated assumptions 
of physical locality. This is true even for the relation between the form 8 in which I 
have written the CH inequalities and the form (involving single-particle distribu-
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tions as well as joints) used by Clauser and Horne. It is important to be aware of this 
when considering how such relations might be violated in the absence of physical 
locality. In the context of the question of Popescu and Rohrlich, the Hardy states 
make the importance of such an awareness quite explicit. 

REFERENCES AND NOTES 

1. HARDY, L. 1993. Non-locality for two particles without inequalities for almost all entangled 
states. Phys. Rev. Lett. 71: 1665-1668. Hardy gives an earlier version of his gedanken
experiment in: 1 992. Quantum mechanics, local realistic theories, and Lorentz-invariant 
realistic theories. Phys. Rev. Lett. 68: 2981-2984. 

2. This simplicity and generality was pointed out by: GOLDSTEIN, S. 1994. Nonlocality without 
inequalities for almost all entangled states for two particles. Phys. Rev. Lett. 72: 195 1 .  A 
very simple discussion of Hardy's gedankenexperiment has been given by: STAPP, H.  
1993. Mind, Matter, and Quantum Mechanics, p. 5-9. Springer-Verlag. New York/ 
Berlin. I have described the version of Hardy's gedanken-demonstration given here along 
with my own version of the underlying quantum mechanical analysis in: MERMIN, N. D. 
1994. What's wrong with this temptation? Phys. Today June: 9-1 1 ;  1 994. Quantum 
mysteries refined. Am . J. Phys. 62: 880-887. 

3. In the sources cited in reference 2 above, I take general superpositions, which reduce to this 
slightly simpler form when the probability of two green flashes with both detectors in 
mode 2 is maximum. 

4. This is a form of one of the Clauser-Horne inequalities. See: CLAUSER, J. F. & M. A. 
HORNE. 1 974. Experimental consequences of objective local theories. Phys. Rev. D 
10: 526-535. 

5. For example, inequality 8 follows directly from the assumption that one can simulate the 
data for all four choices of detector settings by a single statistical ensemble of particle 
pairs in which each member of a pair specifies what i ts detector will do for either setting 
of its switch. One merely notes that every member of the subensemble of pairs 
contributing to the probability on the left of inequality 8 (i.e., those pairs in which both 
members specify green for setting 2) must belong to at least one of the three suben
sembles contributing to the three probabilities on the right. The conventionally stated 
assumptions are less blatantly at odds with the spirit of quantum mechanics, but they 
invariably have the existence of just such an ensemble as a fairly straightforward 
consequence. 

6. POPESCU, S. & D. ROHRLICH . 1 994. Quantum nonlocality as an axiom. Found. Phys. 
24: 379-385. 

7. CLAUSER, J. F., M. A. HORNE, A. SHJMONY & R. A. HOLT. 1%9. Proposed experiment to 
test local hidden-variable theories. Phys. Rev. Lett. 23: 880-884. 

APPENDIX A 

An Inequality of the CH Form Based Entirely on Physical Locality 

Define p(i [j]X) to be the probability of the l ight on the left flashing X in mode i 
when the detector on the right operates in mode j: 

p (i[j]X) = p (ijXR) + p (ijXG); ( 1 1) 

similarly define 

p( [i)jX) = p(ijRX) + p(ijGX). ( 12) 

Physical locality is the requirement that each of these one-detector probabilities is 
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independent of the choice of what to measure at the other detector: 

p(i [ l ]X) = p(i [2]X), p( [ l ]jX) = p([2]jX). (13) 

To derive inequality 9 using only this condition of physical locality, note first that 
quite generally 

p ( l lRR) � p(l [ l ]R)  + p( [ l ] lR)  - 1 .  (14) 

This simply states that the fraction of 1 1  runs in which both detectors flash red 
cannot be less than the excess over unity of the sum of the fractions of runs in which 
one or the other detector flashes red. 

Note next the quite general pair of inequalities, 

p( 1 [2]R) + p(12GG) � p( [1 ]2G) ,  p( [2]2G) � p(22GG), ( 15) 

which, with the condition of physical locality given in equation 13 ,  give 

p ( 1 [2]R) + p(12GG) � p(22GG). (16) 

In the same way, physical locality extracts from the pair, 

p( [2]1R) + p(21GG) � p(2[ 1 ]G),  P.(2[2]GJ � p (22GG), (17) 

the inequality 

p([2]1R )  + p(21GG) � p(22GG). (18) 

The sum of the inequalitie& 14, 1 6, and 18 gives inequality 9 when we use physical 
locality to identify p( 1 [2]R) withp( l [ l  JR) and p( [2]1R) withp( [ l  ] lR). 

Note that equality can actually be attained in inequality 9 with physically local 
distributions by taking, for example, the 22 joint distributions to be 1 /2 for equal 
colors and zero for different colors, and the 21, 1 1 , and 12 distributions to be zero for 
equal colors and 1 12 for different colors. (This is precisely the physically local 
distribution used by Popescu and Rohrlich to violate maximally the CHSH inequali
ties. ) 

APPENDIX B 

Equivalence of the CH and CHSH Inequalities Provided Physical Locality Holds 

When physical locality holds, the inequalities given by Clauser and Horne in 
reference 4 are easily shown to be equivalent to the set of all possible versions of 
inequality 8: 

p(ijmm ' ) .S p(ij 'mm'") + p(i'j 'mn m"') + p (i 'jmnm' ) ( 19) 

(where m = -m, etc.). 
The equivalence follows from the fact that all these simple two-particle distribu

tions can be represented in terms of correlation coefficients and mean values by 

p(ijmm' ) = (�)(1 + m(m);(il + m' (m )1,1i + mm' (mm ' );j)• (20) 
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Here, (m );r.11 is the mean of the result in mode i on the left when the detector on the 
right is in mode j, and similarly for (m )[iii· If all such means are independent of the 
setting of the detector in the other wing, then they drop out of inequality 19, which 
reduces to the various forms of inequality 10 when examined for all 16 possible values 
of m, m ' , m", m"'. However, if physical locality is violated and the means are not 
independent of the faraway choice of what to measure, then there need be no 
equivalence. 
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INTRODUCTION 

The fact that pairs of photodetections can occur in coincidence is itself a 
manifestation of the nonclassical nature of parametric downconversion. Further
more, two-photon interference experiments1-3 have shown that the pairs are coinci
dent to within their coherence length, which can be much less than 100 fs. This time 
is several orders of magnitude less than the fastest resolving time of typical 
photon-counting detectors. The entanglement arising from the momentum and 
energy conservation inherent in the downconvers\pn process has provided strong 
support for the nonlocal nature of quantum mechanics� extending now out to 4-km 
separation.7 In these experiments, the coincident nature of the photon pairs is used 
to postselect the pair detection events and to define the ensemble to which tests of 
local realism can be applied. As these postselected events often form a very small 
proportion of the total number of events, this type of experiment can in principle be 
explained by hidden-variable theories and thus does not provide a watertight test for 
quantum nonlocality. 

The fact that the photons occur in coincidence can also be used to define a 
1-photon state simply by time gating8 and has been used to demonstrate true 
1-photon interference.9 Several recent papers also suggested ways of entangling a 
number (from 1 to 3) of 1 -photon states by mixing them in simple interferom
eters. JO,l I These papers have not addressed the problem of creating these states and 
ensuring that they overlap to show high visibility interference effects. As stated 
above, the time gating afforded by conventional detectors is several orders of 
magnitude longer than the typical coherence length of filtered downconverted 
photons. 

Here, we propose using a mode-locked short pulse laser as a pump for parametric 
downconversion. Gated 1-photon states from such a source are located in a time 
window governed by the length of the pump pulse. With suitable narrow band filters, 
we can arrange a coherence time that is comparable to or longer than this "gate" 
time. The "length" of the photons is now the inverse of their bandwidth, as a direct 
result of Heisenberg's uncertainty principle. Taking two such sources and feeding 
one-states simultaneously into opposite ports of a beam-splitter as shown in FIGURE 
1 will demonstrate the boson statistics first highlighted by Fearn and Loudon. 12 

0This work was supported in part by NATO Grant No. CRG.910571 .  
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THEORY 

In a simple particle picture, we expect there to be no correlation in the output 
taken by each photon of the pair. A quantum mechanical picture includes the 
I-photon probability amplitudes I l ) i and I lh and the phase shift between transmis
sion amplitude t and reflection ir. If the input photons are indistinguishable from 
measurements made at the beam-splitter outputs, the beam-splitter output state can 
be represented by 

(1)  

FIGURE I.  The interference of  two l·photon states I lh and I lh a t  a beam-splitter (BS). 
Coincidences are measured between photon-counting detectors 03 and 04. 

We see that a destructive interference effect can occur in the probability for seeing 
photons simultaneously in both beam-splitter outputs: 

(2) 

In fact, when r2 = t2 = Yi (a 50/50 beam-splitter), P34 = 0 and the photons always 
appear as pairs in random outputs of the beam-splitter. 

Originally, experiments of this type used the indistinguishable, but correlated 
photon pairs obtained from parametric downconversion. 1 •2 Essentially, the coinci
dence rate drops to near zero when the pairs overlap at the beam-splitter. By 
scanning the path length difference from the crystal to the beam-splitter inputs, one 
can show that the pairs are coincident to within their coherence length (see FIGU RES 

2A and 2B). 
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C O I N C I DENCE _ _____. 

COUNTER 

FIGURE 2A. Experiment showing the suppression o f  coincidences when correlated photon 
pairs are mixed at a beam-splitter BS. Pump beam P illuminates a downconversion crystal CR. 
Apertures A select degenerate photon pairs that are direi:ted via mirror arrangements Ml and 
M2 onto opposite sides of beam-splitter BS. Coincident detections are measured in 03 and 04 
as a function of the path length difference &- varied by moving the prism in Ml. 
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FIGURE 28. Coincidence rate as a function of path length difference &- (in microns) showing 
the reduction of coincidences when the pairs overlap. The width of the coincidence reduction 
reflects the coherence time of the light, which is less than 40 fs here. 
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Here, we propose to use uncorrelated pairs that, in principle, could have no 
common history. We can gate out single photons from a parametric downconversion 
source,8 but we cannot guarantee overlap of the photons until their inverse band
width (therefore, time uncertainty) is longer than the detector resolution time. With 
present technology, this bandwidth is about 1 GHz, which can be achieved using 
small etalons, but leads to low single-photon rates. Here, we choose to time gate 
using a short laser pump pulse. The proposed experiment is shown in FIGURE 3. A 
mode-locked laser pumps two parametric downconversion crystals cut for nondegen
erate operation. Signal and idler photons satisfying energy conservation are emitted 
in a broad band cone behind each (thin) crystal and two sets of pairs are selected by 

COINCIDENCE 
COUNTER 

FIGURE 3. Schematic experiment where a pulsed laser pumps two crystals (1 and 2). 
Apertures A select the phase-matched pairs, which are further selected by energy-matched 
filters /;1 ,;2."3."4· Coincident detections in the idler detectors D; 1 and D;2 are used to gate out 
instances when there are 1 -photon states in each signal beam at the input ports of beam-splitter 
BS. When the signal photons are indistinguishable at detectors D,3 and 054• we see the 
coincidence rate dip when the path length difference is adjusted to zero by moving the 
beam-splitter. Note that the 8X shown corresponds to the 8X in the text when multiplied by sin 
9, where 9 is the angle subtended by the beam and beam-splitter. and we assume that the total 
distance moved does not change the mode overlap significantly. In any experiment, we would 
arrange for 9 > 80". 

placing four apertures as shown. At low pump powers, the signal photons from each 
crystal are entirely uncorrelated and could in principle come from separate ( synchro
nized) pump lasers. The state 'I' at crystal 1 is obtained by integrating the interaction 
Hamiltonian13-15 over the interaction time t;01 : 

tu 

'l'(to) = l vac) + 2
a 1 1 ); 1 I 1 ),1 f dT f dwpdw,1dw;1 
ii' 
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where j vac), I l )i t , 1 1 ). 1  represent the vacuum and one-states in idler (i) and signal (s) 
modes; wp, <i>si . wi t represent the pump, signal, and idler frequencies; and we assume 
that pairs are selected to satisfy momentum conservation and have their bandwidth 
limited by external filters f.1 ( w.1 )  and /;1 (wit ). A similar equation with subscripts 1 
replaced by 2 describes the state at crystal 2. Note that a is an amplitude arising from 
the incident pump power, volume, and nonlinearity in the crystal, and frequency 
spectra are normalized such that I a2 I < 1 is the probability of seeing a photon pair 
in each pump pulse. Also, fp( <i>p) describes the pump frequency spectrum, which is 
that of a CW mode-locked laser. It is assumed that the laser is turned on at an earlier 
time, which we can approximate as - co, and runs until well after time T = t0• We thus 
can express the pump beam as a sum of infinite-duration single modes with weights 
defined by fp and can allow the interaction time l;n1 to tend to infinity. Performing the 
time integral leads to the energy conservation expressed as 8(� + wy - wp) LJ = 1 ,  2). 
Following Shih and Rubin, 16 we can define an effective 2-photon wave function at the 
detectors by 

'l'(t5, t; ) = (vac IA.(i.)A; (t; ) I '11), 

where A.,; are (multimode) annihilation operators (or electric field operators), 

A;(t) = J dwf(w')eioi; 

(4) 

(5) 

and reduced time i = t - XI c includes the propagation time from crystal to detectors. 
Here (see FIGURE 3), 

'l'iJ,(tsj, tik) = a J dwpdro>idwiJc/p(<i>p)/sj(w5 )/ik(w; )8(wsj + wik - <i>p')ei[..Ji;+coiliikl, (6) 

with j = 3, 4 and k = 1 ,  2 and with /sj,ik now being the limiting filters placed at the 
detectors. 

Referring again to FIGURE 3, we can now express the effective wave function at 
detectors On, 0;2, 053, 054 as 

'l'(i l ,  i2, s3, s4) = t2'1'14(/5 14, ii l )'l'23 (i.23, t;2) - r2'1'13 (t513, ii t )'l'24(t524, t;2), (7) 

where the subscripts define the source and detector and we ignore the irt terms 
appearing in equation 1 as they correspond to detection of pairs in either detector 03 
or 04. Higher order terms when more than one pair are produced per pump pulse 
are of order a3 and can also lead to coincident detections in 03 and 04, but are 
negligible here as we restrict ourselves to the situation where l a2 1 < 1. The 
probability P(il , i2, s3, s4) of seeing a fourfold coincidence detection in the idler and 
signal detectors gated by an electronic timing pulse from the laser at time to can thus 
be calculated from 

P(il , i2, s3, s4) = TJnTJ;2TJ53TJ54 J dti ldt;it/t.�t.4 H(/;1 - t0, tl.T)H(t;2 - t0, tl.T) 
· H(t53 - t0, tl.T)H(t54 - t0, tl.T) I 'l'(il ,  i2, s3, s4) I 2, (8) 

where Tlil ,i2,s3,s4 are effective detector efficiencies and H(tx - t0, tl.T) is a normalized 
detector response function centered on to that falls to zero when Ix - t0 > tl.T. 
Typical ly, tl.T = 1 ns and the pump pulse separation is - 10 ns; thus, by arranging all 
propagation times including electronic delays to be equal within 1 ns, the above 
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probability is confined to events arising from individual pump pulses. This allows us 
to model the pump spectrum as a continuous function of frequeocy (given by the gain 
envelope of the laser) rather than as the normal discrete sum of modes. We also note 

- that the propagation times from the crystals to the beam-splitter must be equal to 
within the pump pulse length with small adjustments AX made by moving the 
beam-splitter closer to one or the other of the crystals. We thus write 

1.24 = ts3 + 2AX/c , '•14 = 's4• (9) 

noting that no change in path length occurs on transmission. Equation 8 will in 
general involve eight independent frequency integrals, but we are using narrow band 
detectors with a long integration time, t1T » CT; 1 , CT; 1 , CTj 1 , where CTP,i,s are the pump, 
idler, and signal bandwidths. Allowing t1T -+ co and performing the time integral, we 
constrain frequency pairs at each detector to be identical, thus reducing the number 
of integrals to four. In general, we obtain 

P(i l ,  i2, s3, s4) = l a l 411 i i11 i211s311s4{r4F1�24 + t4F1�23 
- r2t2[Fin1 (AX) + Frn1(AX)] J , (10) 

where �k (j = 1 , 2; k = 3, 4) is 

�k = (2'n')2 J dwsjdwij lfp(wsj + wii) I 2 l/sk (wsj) l 2 l/ij (w;j) l 2 ( 1 1 ) 

(here, the subscripts j label the crystal source and k the detector). By contrast, the 
cross terms give rise to B(w.1 - w�)B(w.2 - w�1 ) , where the primes denote associa
tion with '11* .  This essentially characterizes the indistinguishability of signal photons 
at the detectors, thus leading to the interference effect. Fini then has the form, 

Finl = (2'n')4 J dw.1dwi ldwsidwiifp(w.1 + wi 1 )/;(ws2 + wi1 )/p(Ws2 + wi2)/;(w.1 + wi2) 
· lf.4(Ws1 )  1 2 l/;1 (wi l > 1 2 1/sJ ( ws2) I 2 l/;2(wi2) I 2ei(w.i -..,.2>·2.u. ( 12) 

In the simplest case, we specialize to energy-matched Gaussian filter functions, ( 1 ) [(wro - wp)2] 
/p(wp) = N exp � , 

and set the normalization Fjk = 1 for CT » CTp; thus, we obtain 

(13) 

[ l a l 4114 ] { [ AX2� ] } 
P(i l ,  i2, s3, s4) = ----2 _, r4 + t4 - 2Vr2t2 exp 2 _, ----2 , ( 14) ( 1 + CTp/2u-) 2c ( 1 + u-/CTp) 

where 114 implies roughly equal detector efficiencies and includes now losses due to 
filter and aperture edge effects. 17 The visibility function, 

v = ( 1 + �/oi,) 1 12 
( 1 + �/oi,) 

, ( 1 5) 
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is unity for er « up, showing that overlap is ensured when the time uncertainty due to 
detection filtering ( - u- 1 ) is larger than the time duration of the pump pulse 
( - up- 1) .  The fourfold coincidence probability shows a Gaussian dip to near zero 
(assuming ri = ti = 0.5) when llX = 0 (similar to that shown in FIGURE 2B), 
indicating that we are gating out single signal photons and seeing the nonclassical 
effect predicted in our naive picture (equation 2). Although a classical model can 
reproduce this dip, the visibility would be limited to 50%. 1 The high visibility is 
balanced by a reduction in the probability of seeing fourfold coincidences, which falls 
off as u2 I� in this region. When er � up, the width of the dip changes to reflect the 
pump bandwidth, but the visibility falls as up/er because we can no longer guarantee 
full overlap of the photons and hence they are, in principle, distinguishable. 

In the above analysis, we have not mentioned the effect of dispersion, which can 
be significant in short pulse experiments. Dispersion can be included in the above by 
adding frequency-dependent corrections to 1.1 and tsi of the form, 

(j = l ,  2). (16) 

When the paths sl and s2 contain identical amounts of dispersing material, A 1 = Ai 
and B1 = Bi. On adjusting equation 9 appropriately and substituting into equations 7 
and 8, we find that all dispersion terms cancel, indicatjng simply that this is a 
zero-order interference effect. 

PROSPECTS 

The fourfold coincidence rate (FCR) is given by the product of the laser 
repetition rate (100 MHz) and P(il ,  i2, s3, s4) .  If we assume l a l i - 0.01 « 1 and 
detector effective efficiencies of order 10%, we obtain an FCR of 0.5 counts per 
second, which, although low, is a similar rate to those achieved in the early 
experiments with correlated photons (see reference 1, for example) .  

The above estimates of  efficiency are low considering that modern photon
counting detectors can achieve greater than 70% efficiency18 in a suitably arranged 
downconversion apparatus. In interferometry measurements, however, we use small 
apertures and narrow band filters, and edge effects reduce the maximum effective 
efficiency. In interference experiments performed to date, effective efficiencies have 
not exceeded 10%. Similarly, the value of l a l i could be increased to 0. 1 without 
drastically compromising visibility. In an optimistic analysis of the experiment, we 
may assume 31 % efficiencies and I a 1 i = 0.1 and expect a coincidence rate of 500 cps. 

The experiment can be easily extended to investigate 3-, 4-, and N-photon 
interference effects, but we find that the coincidence rate is proportional to 

c oc I a I 2N112N, 

which gives 5 cps for N = 3 and 0.05 cps for N = 4. Obviously, to begin studies of 
higher order entanglement effects, we need a more efficient source of 1 -photon 
states. 

Another experiment that may be more viable with pulsed sources is the demon
stration of nonlocality in a single photon as suggested by Tan and Walls. 19 Detector 
efficiency constraints are reduced in this type of experiment and we are at present 
working on a similar simplified scheme.20 



RARI'IY: INTERFERENCE 631 

DISCUSSION 

The experiment described here has a lot in common with an earlier experiment 
· carried out by Pfleegor and Mandel21 where the interference between separate laser 
sources was investigated in the limit of extremely low power levels when only one 
photon could be in the apparatus at one time. In an experiment with a single 
beam-splitter as in our FIGURE 1 (but with classical sources), they saw interference 
effects in the detected intensity even at the lowest power levels. As the phases of the 
separate sources drifted, the fringes moved and fringe visibility dropped when the 
resolving time was long compared to the drift time. With detection times shorter than 
the fringe drift time, high visibility fringes could be seen, leading to an anticorrela
tion in the intensities in detectors 03 and 04• This effect would lead to a coincidence 
dip analogous to that discussed here. A similar effect should be seen with indepen
dent pulsed classical sources such as two mode-locked lasers producing time
bandwidth-product-limited pulses. However, a simple classical analysis averaging 
over the random relative phases shows that the coincidence dip with classical sources 
cannot exceed 50% visibility. The Pfleegor and Mandel experiment limits itself to 
considering interference of single photons, supporting Dirac's viewpoint. Here, we 
see the interference is not confined to be a single-photon effect, but arises because of 
indistinguishability of two (or more) possible paths to a measurement. 

REFERENCES AND NOTES 

1. HONG, C. K., Z. Y. Ou & L. MANDEL. 1987. Phys. Rev. Lett. 59: 2044. 
2. RARITY, J. G. & P. R. TAPSTER. 1988. /n Photons and Quantum Fluctuations. E. R. Pike & 

H. Walther, Eds.: 122. Adam Hilger. Bristol; 1989. J. Opt. Soc. Am. B 6: 1221 .  
3 .  RARITY, J. G. & P. R. TAPSTER. 1990. Phys. Rev. A 41: 5 139. 
4. RARITY, J. G. & P. R. TAPSTER. 1990. Phys. Rev. Lett. 64: 2495. 
5. BRENDEL, J., E. MOHLER & w. MARTIENNSEN. 1992. Europhys. Lett. 20: 575. 
6. KWIAT, P. G., A. M. STEINBERG & R. Y. CHIAO. 1993 . Phys. Rev. A 47: R2472. 
7. TAPSTER, P. R., J .  G. RARITY & P. c. M. OWENS. 1994. Phys. Rev. Lett. 73: 1923-1926. 
8. RARITY, J. G., P. R. TAPSTER & E. JAKEMAN. 1987. Opt. Commun. 62: 201 .  
9. GRANGIER, P . ,  G. ROGER & A. ASPECT. 1986. Europhys. Lett. I :  1 73. 

10. YuRKE, B.  & D. STOLER. 1992. Phys. Rev. Lett. 68: 125 1 .  
1 1 .  ZEILINGER, A., A .  EKERT & H. WEINFURTER. 1994. Phys. Rev. Lett. 7 1 :  4287. 
12. FEARN, H. & R. LOUDON. 1987. Opt. Commun. 64: 485-490. 
13. Ou, z. Y., c. K. HONG & L. MANDEL. 1987. Opt. Commun. 63: 1 18-122. 
14. Mouow, B. R. 1973. Phys. Rev. A 8: 2684. 
15. HONG, c. K. & L. MANDEL. 1985. Phys. Rev. A 31: 2409. 
16. SHIH, Y. H & M. H. RUBIN. 1993. Phys. Lett. A 182: 16-22. 
17. Filter edge effects in the case of identical Gaussian filter functions as here lead to an 

effective efficiency of 1J I .,fi,. This can be avoided by using broad band filters in the idler 
detectors. This then changes the effective filter bandwidth to ./'1.u, thus altering the 
form of equations 14 and 15 .  

18. KWIAT, P. G., A. M. STEINBERG & R. Y. CHIAO. 1993. Phys. Rev. A 48: R867-R870. 
19. TAN, S. M., D. F. WALLS & M. J. COLLETT. 199 1 .  Phys. Rev. Lett . 66: 252-255. 
20. RARITY, J .  G., P. R. TAPSTER & R. LoUDON. 1995. In preparation. 
21. PFLEEGOR, R. L. & L. MANDEL. 1967. Phys. Rev. 169: 1084. 



Parametric Downconversion Photon 

Sources, Beam-Splitters, and 

Bell's Inequality° 

A. GARUCCid> 
Department of Physics and Astronomy 

University of Rochester 
Rochester, New York 14627 

INTRODUCTION 

After the first generation of experiments on the EPR paradox based on atomic 
cascade sources, 1 different sources have been used in the past years in order to 
produce pairs of correlated photons. All these new sources are based on type-I 
spontaneous parametric downconversion. 

In this process, a photon beam with energy w and wave number k impinges on a 
nonlinear crystal . The impinging photons are pOlariied along the extraordinary 
direction (i .e. , in the plane containing the direction of propagation of the impinging 
beam and the optical axis of the crystal). Inside the crystal, the pump photon is split 
into two photons, called signal and idler, which satisfy the phase-matching condition, 
w = w. + w; and k = ks + k;. Both of the emerging photons are polarized along the 
ordinary direction (FIGURE 1 ) .  

In general, ks and k; make an angle 95 and 9; with the direction of  the impinging 
beam and are distributed along two coaxial cones. The condition k = ks + k; implies 
that the two photons are strictly correlated in momentum; thus, if the signal photon is 
detected along the direction defined by ks, we are sure that the idler photon travels, 
along k; = k - ks, in the plane containing the direction of the impinging beam and of 
the signal photon, at angle O; with the photon axis and on the opposite side with 
respect to ks. 

Using this source, it is possible to perform different types of tests of Einstein 
locality, using either the original Bell's inequality with polarization correlation 
functions2 or the more recently proposed Bell-type inequalities concerning momen
tum-phase3 and energy-time4 measurements. 

In all these experiments, the number of detected photon pairs is less than or 
equal to one-half of the number of total emitted pairs, even in the case of perfect 
photon detection. We will prove in this report that this fact makes the experiments, 
in principle, unable to discriminate between quantum mechanics (QM) and Einstein 
locality (EL). We will discuss in detail in the next section one of these

· 
classes of 

experiments, namely, the polarization correlation measurements, but our reasoning 
can be extended to all the other experiments. 

"The research work at the University of Rochester was supported by the Administration 
Council of the University of Bari and the INFN. bPresent address: Dipartimento di Fisica, Universita di Bari, 1-70126 Bari, Italy. 
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POIARIZATION CORRELATION EXPERIMENTS 

In the experiments on Bell's inequality concerning the polarization, with a 
· suitable choice of the angle between the impinging beam and the optical axis of the 
crystal, it is possible to obtain the condition w5 = w; or, equivalently, 05 = 0;. One of 
the two photons passes through a 90° polarization rotator, whereas the other crosses 
a compensating glass plate. The two photons are then reflected from two mirrors and 
impinge onto a beam-splitter from opposite sides (FIGURE 2) . 

If the beams emerging from the beam-splitter pass through linear dichotomic 
polarizers, set at angles 01 and 02, respectively, the correlation function between the 
results of the measurement of polarization is 

ro ,  K 

FIGURE 1. Type-I parametric downconversion. The pump beam is polarized along the 
ex1raordinary direction, whereas the two emerging photons are polarized in the ordinary 
direction. 

where the P(61i, 62i) values are the probabilities that the photon that travels along 
channel I is transmitted through polarizer I along the i-channel (i = + for the 
ordinary channel, i = - for the extraordinary one) and the photon that travels along 
channel 2 is transmitted through polarizer 2 along thej-channel. 

In 1964, Bell5 proved that for a realistic and local theory the expectation value 
(equation I )  must obey the inequality, 

(2) 

where 0i . 0 'i .  02, 02 are four different directions of the polarizers. 
In most of the performed experiments, only the photomultipliers monitoring the 

ordinary channel of the polarizers are used and therefore only the joint probabilities 
P(61+. 02+ ) have been measured; consequently, a different inequality has been used. 
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Two different approaches have been developed to deduce this new inequality. 
The first was proposed by Clauser, Horne, Shimony, and Holt6 (CHSH) in 1969 and 
the second was proposed by Cl a user and Horne 7 (CH) in 1974. Both approaches start 
from Einstein locality and, with some supplementary assumptions, arrive at the 
following inequality: 

B(61 , 6 '1 ; 62, 6 2) = P(61 ; 62) - P(6 1 ; 6 2) + P(6 '1 ; 62) 

+ P(6 '1 ; 6 2) - P(6 '1 ; oo) - P(oo; 62) � 0, (3) 

where we have dropped out the index + for simplicity and where P(6 '1 ; oo) and 
P( oo; 62) are the corresponding probabilities ·when either one of the linear polarizers 
is removed. 

KDP 

+ 

FIGURE 2. Setup of an experiment of the correlation in polarization with a parametric 
downconversion source. 

We will prove now that the CHSH approach leads to an inequality different from 
equation 3 if it is correctly applied to the parametric downconversion source.8 
Moreover, it is possible to prove that the approach of CH is not applicable in principle 
to this class of experiment.9 

In general, the following relations hold: 

P(61 + > 62+ ) + P(61+ , 62_ ) + P(61_ , 62+ ) + P(61 _ , 62_ ) = P(oo, oo), 

P(61 + • 62+ ) + P(61 + , 62_ ) = P(61 + , oo) = P(61 , oo), 

P(61 + • 62+ ) + P(6 1 _ , 62+ ) = P(oo, 62+) = P(oo, 62), (4) 

where P(6" oo), P(oo, 62), and P(a;,, a;,) are the corresponding measurable probabili
ties with one, the other, or both linear polarizers removed, respectively. 
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In the case of dichotomic observables, P(oo, oo) is equal to 1 and equations 1 and 4 
allow us to transform the Bell's inequality of equation 2 into the inequality of 
equation 3.  

However, in the case of parametric downconversion, the state of the emerging 
pair is given by 

where Ix; > [ IY; > ] is the polarization state along the x-direction [y-direction] for the 
photon in the i-th output channel of the beam-splitter and it is assumed (in order to 
simplify the reasoning) that the beam-splitter reflectivities and transmissivities are 
all equal to 0.5 for both the impinging polarizations. 

The state (equation 5) is composed of four terms: the first two give the 
contributions to the probability of detecting one photon in channel 1 and the other in 
channel 2; the last two terms give the contributions to the probability of finding both 
photons in the same channel. 

Consequently, the joint detection probability with both of the polarizers re
moved, P( oo, oo ), is less than or equal to one-half (even in the case of perfect photon 
detection) and this causes the inequality of equation 3 to be replaced by 

(-%) = (-Yi) [ l  + P(oo, oo)] � B(61 , 6 '1 ; 62, 6 2 ) � (Yi) [ l  - P(oo, oo)] = Y.. (6) 

The inequality given by equation 6 cannot be violated by the quantum mechanical 
joint transmission probabilities for the correlated photon pairs described by equation 
5. For ideal polarizers and detectors, the latter are given by 

(7a) 

(7b) 

and the maximum value of observable B according to the quantum mechanical 
predictions expressed by equations 7a and 7b is 

B0M = (Y.)( ,fi. - 1 ) < Y.. 

Therefore, the parametric downconversion photon source cannot give quantum 
states with which to test quantum mechanics versus local realism, not even in the case 
of ideal behavior of polarizers and detectors. 

This result is in contradiction with the claimed locality violation in this class of 
experiments,2 but it is in complete agreement with a deeper theoretical analysis of 
the subject. 

THEORETICAL ANALYSIS OF THE EXPERIMENTAL CONFIGURATION 

Equation 1 can be easily written in the factorized form, 
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and it has been proved that factorable states always satisfy Einstein locality or, 
equivalently, Bell-type inequalities. 10 

Furthermore, it has been observed that in Bell-type inequality only joint probabili
ties are present. Hence, to overcome the problems related to the use of equation 5 or 
8, it may seem "reasonable" to cut away the last two terms that do not give 
contribution to the joint detection probability. If this procedure is applied, the result 
will be the entangled (but not normalized) state: 

(9) 

Imposing the normalization of the quantum state to the subset of photon pairs 
traveling in both channels, the wave function becomes 

(10) 

which leads to violation of the Bell-type inequality. 
This is a crucial point. The problem of the renormalization of the state to the 

subset of "detectable" photons has been posed by several investigators. For example, 
Santos1 1  discussed in detail this problem in the context 6f atomic cascade experi
ments, denying the possibil ity to realize physic�lly -a singlet state due to the 
depolarization introduced by the finite collecting solid angle. Moreover, Lepore and 
Selleri 12 discussed the role of low quantum efficiency in decreasing the measured 
correlation function to such a small value so as to verify Bell's inequality in all the 
cases. 

We will underline that, in this particular case of parametric downconversion, in 
the reasoning previously drawn in reducing the state of equation 5 to the state of 
equation 10, there is a chain of incorrect steps either in QM or in EL. It is incorrect to 
consider the ensemble as consisting of two subensembles: one in which one photon is 
in channel 1 and the other is in channel 2, and a second in which both photons are in 
the same channel. In QM, each pair described by the state of equation 5 has the 
photons traveling at the same time along the two different channels and in the same 
channel. A set consisting of the two previous subsets is described by a state that is a 
mixture of 

50% 

50% 

(�)( lx> 1 IY > 2 + IY > dx> 2) 

(�)< 1x> 1 IY > 1 - IY > 2 lx > z) . 
(11 )  

The states of  equations 5 and 1 1  are physically distinguishable (for example, 
overlapping the two beams onto another beam-splitter); moreover, there is no 
unitary evolution from the state of equation 5 to the state of equation 1 1 . Hence, 
"discarding" the last two terms requires a state preparation or a measuring process. 

It is worth noting that, in this case, the conceptual operation of the selection of 
the subensemble of the coincidence pairs is neither a measuring process nor a state 
preparation. It is not a measuring process because the measurements are made 
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behind the polarizers and thus give a factorized state of two photons in a well-defined 
polarization state. It is not a state preparation because other pairs of photons are 
traveling along the two channels and these contribute, for example , to the measured 
single-photon detection rates. 

Moreover, the procedure of identifying an entangled state with a violation of the 
locality can lead to error. In fact, in a previous paper, 13 we argued that the entangled 
state (equation 9) can be reproduced in a hidden-variable local realistic model for 
physical correlated systems. If the quantum operation of the normalization of the 
probability amplitudes is imposed on the state of equation 9, then the state of 
equation 10 can be obtained, but any possibility of physical and local interpretation 
of the model will be lost. This result shows the critical importance of the probability 
interpretation of the wave function. In fact, quantum mechanics can be obtained 
starting from local realism, but only after the normalization step, which allows the 
raising of correlation function values and, consequently, the violation of Bell's 
inequality. Then, the entangled state is a necessary, but not a sufficient, condition for 
violating the locality. 

Even from the point of view of Einstein locality, the application to the subset of 
pairs traveling in the opposite direction presents some difficulties. The problem is 
that of the extension of the theory from the dichotomic case, in which the results are 
+ 1 or - 1 , to the three-valued observable (trichotomic) case, in which even the event 
of "no detection" or "O" occurs. The problem was posed in 1971 by Bell 14 and later by 
CH in 1974, but up to now it has not been completely solved. 

In the appendix of their famous paper, CH tried to develop a probabilistic 
hidden-variable theory based on a trichotomic observable. They deduced a new 
inequality, 

( 12) 

where Q is a linear combination of some unmeasurable quantities, and they tried to 
prove that Q s 0, but were unsuccessful. 

Recently, De Caro and myself, 15 starting from Bell's original approach to the 
problem, deduced the following value for Q: 

( 13) 

where µ0(62, 6i)  is the measure of the intersection of the two subsets A0(62 ) and 
A0(6i) of the set A of hidden variables in which we have no detection in channel 2 
when the polarizations along 62 and 6i are measured. 

Obviously, Q is model-dependent, that is, it depends in general on the model or 
on the class of models that we are dealing with. This is a limit from one point of view, 
but an improvement from another: now, we are able to insert in the hidden-variable 
theory the same assumptions that we make in the quantum mechanical treatment of 
the problem. Moreover, the quantities P(oo, oo) and µ0(62, 6i) are either measurable 
or, in principle, deducible from our assumptions. 

In general, it is possible to determine the minimum and the maximum value of Q. 
Let us suppose, for simplicity, that the probability of no detection of a photon is 

equal in both channels and for all settings of the polarizers and that its value is �- If 
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we assume that the no-detection process is a random process, then the probability of 
a double no-detection is 

whereas 

P(oo, oo) = ( 1 - p)2• 
Then, 

Q = P( l  - _p) . 
If we suppose that the sets of no-detection events are identical for each measure
ment, then 

and 

µ0(62, 0 2) = p, 
P(oo, oo) = (1 - p), 

Q = O. 
. .  

In conclusion, the upper l imit of the inequality of equation 3 becomes 0 only 
when p is 0 (i .e. , in the dichotomic case) or when the set A of hidden variables is the 
sum of two disjoint sets, A' and Ao, the first giving signals (and coincidences) 
regardless of the setting of the polarizing angles and the second giving no signal 
regardless of the value of the polarizing angles. In this case, and only in this case, we 
can take into account the photon pairs with }\. E A' ,  redefine a new density 
distribution, and reduce the original three-valued observable to a dichotomic observ
able. 

In the particular case of type-I parametric downconversion, 

P(oo, oo) = Yi 

and 

because the probability of having no counts in channel 2, either when we measure 02 
or 02, is equal to the probability of having both photons in channel 1 .  Then, Q = Ys = 
0. 125 and the maximum value of B for QM (0 . 103) cannot violate this limit. 

SOURCES OF PHOTON COUPLES BASED ON TYPE-II PARAMETRIC 
DOWNCONVERSION 

In order to avoid the previous criticisms of type-I sources, we are studying a new 
type of source of correlated photon pairs based on type-II parametric downconver
sion. Let us describe briefly this new source. 

In type-II phase-matching, the pump beam has ordinary polarization and the 
output photons have orthogonal polarization. More precisely, the signal photons 
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travel along the cone with angle a. and ordinary polarization, whereas the idlers 
travel along the cone with angular aperture 8; and extraordinary polarization 
(FIGURE 3). 

• 

Let us suppose now that we choose the phase·matching angle so that the two 
cones overlap. In this configuration, the state of the pairs travel ing in the plane 
containing the intersection points of the two cones is the superposition of signal 
photon in direction k1 and idler photon in direction k2 plus idler photon in direction 
k1 and signal photon in direction k2, or equivalently 

( 14) 

which is an entangled and normalized state. 

FIGURE 3. Type·II parametric downconversion. The two photons have orthogonal polariza
tion. In the points in which the cones overlap, the photon pair is described by an entangled 
state. 

Unfortunately, in type· II parametric downconversion, if we impose the overlap
ping of the cones, we cannot verify the condition of w. = w; . If it is possible to find a 
commercial crystal in which the energy difference of w5 - w; is so narrow as to lie 
inside the bandwidth of the filters usually used in these experiments, the two photons 
will be indist inguishable and the source will produce pairs totally correlated in 
momentum. 

A similar experiment has been proposed recently by Kwiat et a/. 16 In their 
apparatus, two parametric downconverters are used and the output beams are 
overlapped using a cube polarizer. 
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INTRODUCTION 

Recent work1-4 in N-particle Bell inequalities focuses on the entangled5 three
particle GHZ state,6 and N-particle analogues,7 to deduce quantum mechanical 
violations of local reality predictions (based on this state) that grow with N. 

This work is not the only possible approach to the issue of N-particle quantum 
violations of local reality predictions. Indeed, it lacks the flavor of some of the 
two-particle Bell inequality work, which is laden with specific choices of detection 
variables (a , b). These variables are angles of polarizers (for photon polarization 
measurements) ,8 orientation of spin direction (for spin-Ih particle measurements),9 
or phases of interferometers (for Franson-type10 interferometry) . 

Another approach1 1  is more similar to the traditional N = 2 program, 12• 13 in that 
expectation values dependent on detection variables (a , b, c) and on a hidden 
variable (�) are written prior to special ization to a particular quantum state. Then, 
specific quantum states are considered that violate the deduced inequalities. 

Our work represents another approach to the N = 3 case, more similar to 
reference 1 1  than to references 1-4. Our method differs from these and can be 
extended to arbitrary N. We generalize the method14 of Clauser, Horne, Shimony, 
and Holt (CHSH) to write down Bell -type inequalities for expectation values and 
probabilities in a three-particle situation . 

One outcome of this approach is that violations are, as in the two-particle case, 
linked to choices of as yet unspecified quantum states and detection variables. With a 
rich dependence on angle variables, we recover the statement of the N = 2 violation, 
which is absent from reference 1. We also derive an N = 3 violation differing in 
degree from that of references 1-4 and 1 1 .  It is a weaker inequality, and a weaker 
violation, and the associated detector efficiency minimum is correspondingly higher. 

However, it is straightforward to show that a violation exists with the third 
particle unentangled with the other two. This simplification of the requisite three
particle state is important in achieving a nongedankenexperimental test of a three
particle Bell-type inequality. 

REALITY DEFINITIONS AND BELL LOCALITY 

We start with a two-particle source in view of two detectors, where the detection 
variable a is set in front of detector 1 and b is in front of detector 2. The standard 
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definition of the expectation value, E12(ii, b), is 

� ( 1 ) N 
Eu(ii, b) = !� N �A;B;, 

with A; = ± l ,  O and B; = ± 1, 0 denoting the outcome of the i-th measurement of ii 
and b, respectively. Here, an outcome of + 1 denotes an alignment (or an "up") with 
ii, - 1 denotes an antialignment (or a "down"), and 0 signifies a nondetection (a no 
show or no count recorded). For this expectation value, 

- 1  .s Eii(ii, bY .s + l .  

Other quantities o f  interest are the probabilities, 

no. of ups 
p+ = ----N 

p 
no. of downs 

N 

no. of nondetections 
po = -

N 

which sum to 1. In terms of these probabilities, we may write the average value of A; 
as 

A(ii, A) = p+(ii, A) - p-(ii , A); 

similarly for B(b, A), that is, the average value of B;: 

Here, the probabilities and expectation values for recording an event at each 
detector depend on the setting of the analyzer in front of the detector and on an as 
yet unspecified parameter A, a "hidden variable" that may characterize the source or 
may even characterize the passage through the analyzer and the detection process. 
We have denoted only one such hidden variable, although there may be several. In 
this sense, the variable A symbolizes the presence of all of them and it is straightfor
ward to generalize the notation to include multiple hidden variables explicitly. This 
treatment and interpretation of the role of A follows standard practice. 

We can now write the mathematical statement of Bell locality for the expectation 
value of coincidence detections: 

(1) 

The key feature of locality is that the dependence of EJ2(ii , b) on ii and b i s  
factorizable. 

By writing A and Bin terms of the probabilities p ±, this expectation value can be 
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rewritten as 

EJ2(ii ,  b) = f d>..p(>..) [p +(ii ,  >..) - p-(ii ,  >..)] [p+ (b, >..) :_ p-(b, >..)] 

= 4Ptt (ii , b) + 1 - ZPt(ii) - 2P{(b), (2) 

where in the second line we have used the identity p+ - p- = 2.p+ - 1 and the 
following definitions: 

Pt(ii) = f d>..p(>..)p +(ii ,  >..) , 

P{(b) = f d>..p(>..)p +(b, >..), 

N2+ (ii ,  b) = f d>..p(>..)p + (ii ,  >..)p+ (b, >..) .  

THREE-PARTICLE GENERALIZATION 

Our three-particle generalization starts with the expression, 

E123(a , b, c) - E123(a, b ' , c) + E123(a , b, c ' ) - E123(a , b ' , c ' ) .  (3) 
Using a procedure analogous to that of reference 14, the inequality for expectation 
values is 

I E123(a, b, c) - E123(a , b ' , c) + E123(a , b, c ' ) - E123(a, b ' , c ' ) + E123(a ' , b ' , c ' ) 

+ E123(a ' , b, c ' ) + E123(a ' , b ' , c) + E123(a ' , b, c) I :s; 4 (4) 

and the inequality for probabilities is 

0 :s; (triples) - (doubles) + (singles) :s; 1 , (5) 
where 

triples = P123(a , b, c) - P123(a, b ' , c) + P123(a ' , b, c) + P123(a ' , b ' , c) + P123(a, b, c ' ) 
- P123(a , b ' , c ' ) + P123(a ' , b, c ' ) + P123(a ' , b ' , c ' ), 

doubles = P12(a, b) + PJ2(b, c) - P!2(a, b ' ) + P12(a ' , b ' ) + P12(a ' , c) + Pda ' , b) 
+ P!2(b, c ' ) + Pda ' , c ' ), 

singles = P1(a )  + P2(b) + (lh)P3(c) + (lh)P3(c ' ) .  
These are our three-particle Bell inequalities. 

SPECIFIC VIOLATIONS 

For a three-particle state in which the third particle is unentangled with the other 
two, the three-particle inequality of equation 5 reduces to the two-particle form of 
reference 14. 
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We shall explore this violation in more detail. For the state 

(6) 

and the choices c = c '  = 0°, ii = a . ,  ii '  = 9j ,  b = 62, and b '  = 92, equation 5 reduces to 

sin2(9 1 - 92) - sin2(91 - 92) + sin2(9 j - 92) + sin2(9 j - 92) - 1 ::s;; 1 .  

This is the familiar two-particle CHSH situation, with multiple solutions. One 
solution is given by the choice of angles, 9 1 = 22.5°, 9j = 67.5°, 92 = -45°, and 92 = 00. 
For these settings, the above inequality reads ./2 s 1. This is the violation of 
equation 5 due to the quantum state of equation 6. 

Equation 6 also conveniently generates detector efficiency requirements. With an 
efficiency e for each detector explicitly included, the above inequality becomes a 
cubic equation in e, with violations for an efficiency bound of = 91 .7%. This is 
competitive with, but larger than, the bounds in other three-particle work: 90.9% in 
reference 15 and 79.3% in reference 4. 

DISCUSSION AND CONCl.tJSI,PNS 

We have generalized the CHSH method14 to write inequalities for expectation 
values and for probabilities based only on the two assumptions of locality and reality. 
Although we have recorded here only the N = 3 results, our approach can be 
extended in a straightforward way to generate similar inequalities for arbitrary N. 

This is a different approach to N-particle Bell-type inequalities than other 
work1-4 based on arguments using the GHZ state. Here, we recover a rich depen
dence on the N detection variables to describe the degree of violation. We recover 
the N = 2 inequality and an N = 3 violation. As in N = 2, the settings of the detection 
variables control the degree of the N = 3 violation. 

In an application of this work, demonstrations of violations of the Bell-type 
inequalities shown here represent a rigorous and plausible experimental program. 
We emphasize that these inequalities contain no additional assumptions other than 
Bell reality and locality. The Clauser-Horne no-enhancement assumption,16 for 
example, has not yet been applied. 

This program can be compared to experimental realizations17·1 8 of the GHZ 
gedanken.6 The GHZ-type experiments, although originally advocated19 to be free 
from the statistics of accumulating many detection events over time, have upon closer 
scrutiny suffered from detector inefficiency loophole criteria.4.15 The result is that 
inequalities are necessarily involved. 

Although the violation of the inequality derived here is weaker than the viola
tions of the inequalities in references 1-4 and 1 1 , the advantage of our approach is 
that a less entangled state is needed. This can be appreciated in experiments 
involving two-photon decays. The atom is caught and detected to form an "event
ready" situation. Atoms, unlike optical photons, can be detected with nearly 100% 
probability. Hence, the state of equation 6 is precisely that of a cascade decay 
(photons being particles 1 and 2) from an atom (particle 3). With e3 = 1 , the detector 
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efficiency cubic equation reduces to the standard two-particle quadratic,20 with 
solution e = 82.84% for the common efficiency of detectors 1 and 2. 

Our view is that this situation is then competitive with a scheme involving the 
79.3% efficiency criterion in reference 4, especially because such a scheme involves 
the difficult manufacture of a triple entangled state, such as the GHZ state ; that is, 
we would claim that the ease of using a state entangled in only two particles is a 
favorable trade-off compared to a few percent in detection efficiency. The test of a 
three-particle Bell-type inequality of the kind considered here is then a worthy 
competitor in its degree of experimental difficulty to an experimental realization of a 
GHZ-type gedanken based on the GHZ state. This comparison shows that there 
exist different and competing approaches to the goal of exhibiting violations to local 
realism for N = 3. 
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INTRODUCTION 

The original argument of Einstein, Podolsky, and Rosen 1 (EPR) concerned itself 
with the position and momentum of a two-particle system. To keep the argument 
simple, they employed the idealized notion of a simultaneous eigenstate of the total 
momentum and relative position, idealized because of the continuous spectra of 
those observables. In a move designed to make the argument more realistic and the 
quantum correlations involved more susceptible to experimental test, David Bohm2 
reformulated the EPR argument in terms of measurements of the spin components 
of two spatially separated particles. From that day tO th�present, the observables of 
choice, in arguments demonstrating the incompatibility of quantum theory with 
noncontextual possessed values, have usually been spin/polarization or spinlike 
observables of multiparticle systems.3 In this report, I indulge my own curiosity as to 
whether versions of the simplest4 of the most recent forms of these arguments, 
discovered by Greenberger, Horne, and Zeilinger or GHZ5·6 and generalized by 
Clifton, Redhead, and Butterfield,7 have variants employing only "simple" functions 
of position and momentum observables for a single particle. I actually construct two 
arguments, of exactly the same algebraic structure as the Mermin simplification of 
the GHZ argument, the first involving three particles, as does GHZ, and the second 
employing only one particle. In Greenberger et al ,6 a three-particle argument 
involving only the momenta of the particles was given and my three-particle 
argument (which can be rephrased to focus on momenta, although in fact it focuses 
on position) is novel only in exploiting the algebraic form recognized by Mermin.4 

The reasons for the traditional preference for spin/polarization-like observables, 
in the arguments of interest heretofore, include and go beyond the original motiva
tions of David Bohm. First, discrete spectrum observables make possible a very clean 
and simple statement of the requirements of quantum theory (because normalizable 
eigenstates of the observables exist) and of the possessed value assumptions (be
cause determination of a definite value is implied by the value lying in a sufficiently 
small interval) .  This consideration will be respected in the arguments constructed 
here. Second, the spin/polarization-like observables can Jive in finite-dimensional 
vector spaces that, being factor spaces of the infinite-dimensional state spaces of real 
physical systems, keep the mathematics simple without making the argument unreal
istic. To maintain these virtues, we might note that any argument that can be carried 
out in a six- or eight-dimensional factor space, say (as the Mermin simplifications of 
GHZ are), can, in principle, be replicated in any six- or eight-dimensional subspace, 
respectively, of the infinite-dimensional state spaces in which position and momen-
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tum observables live. However, in almost all, if not all such subspaces, the relevant 
observables for the arguments would be such exotic functions of the irreducible sets 
of position and momentum observables as to disembowel the conclusions reached of 
all intuitive physical impact. Instead, by diverting the search for simplicity from a 
focus on lower-dimensional vector spaces to a focus on simple algebraic relationships 
between the relevant observables (regardless of the dimensionality of the supporting 
vector space), we will see here that we can find versions of the GHZ argument that 
arguably involve only "simple" functions of position and momentum observables. 

These versions also lend a novel perspective on the still-controversial issue of the 
role that locality considerations play in either mounting or assessing arguments of the 
GHZ type. On the one hand, my first argument involving three particles, widely 
separated spatially, yields conflicting conclusions, coming from quantum theory and 
noncontextual possessed values, respectively, which are themselves conclusions 
about just where the particles are located in space. A champion of the view that a 
nonlocal structure of quantum theory follows from GHZ-type arguments, as well as 
their predecessors,8 might regard this result as grist for his mill. On the other hand, 
my second argument, of exactly the same algebraic structure, involving only a single 
particle, yields conflicting conclusions concerning where that one particle is located 
in space. A champion of the view that locality considerations are insufficient to 
ground noncontextuality and are something of a red herring in GHZ-type arguments, 
as well as their predecessors,9• 10 might regard the existence of such a one-particle 
argument as grist for her mill ( I  have heard such rumblings). We now move to the 
arguments themselves. 

mE FORMAL STRUCTURE OF THE ARGUMENTS 

We need three mutually commuting pairs of self-adjoint operators such that, 
within each pair, the operators anticommute, that is, 

(A;, B;) i = l ,  2, 3, 

where 

( la) 

and 

{A;, B;) = 0 for each i. ( lb) 

It then follows that the operators 

(i ¢ k ¢ I ¢ i and i = l, 2, 3) (2a) 

and 

(2b) 

are all mutually commuting and therefore possess simultaneous eigenvectors. Further
more, each C operator is i tself composed of mutually commuting operators. Finally, 
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the C operators themselves satisfy 

C0C1C2C3 = A1A2A3A 1B;l3A;l3B1A3 B1B2 = -AiA��iB�� � 0; (3) 
that is, the eigenvalues and expectation values of the product of the C operators must 
always be nonpositive numbers. 

Contradiction is immediate if we now assume noncontextual possessed values for 
the observables represented by the A, B, and C operators and all products of them 
that have been listed above. Denoting the possessed values by correspondingly 
subscripted lowercase letters, a;, ht. etc., the composition of the C operators out of 
mutually commuting A 's and/or B's guarantees for the observables represented by 
the C's the possessed values given by 

(i ¢ k ¢ I ¢ i and i = 1 ,  2, 3) (4a) 

and 

(4b) 

Furthermore, the product of the mutually commuting C operators represents an 
observable, and noncontextual possessed values for it requjre that value to also be 
given by the product of the possessed values of the Gfact9rs. However, 

(5) 

and the possessed values of the product of the C's must always be nonnegative. With 
possessed values for any ohservable restricted to the eigenvalues of the representing 
operator, our conclusions are consistent iff the possessed values of the product of the 
C's are always zero. However, this requires the possessed values of at least one of the 
A's or B's to be zero. Any instance of A 's and B's satisfying the assumed commutation 
relations in which none of them has a zero eigenvalue provides a contradiction. 

In the original presentations of GHZ and Mermin, the eigenvalues of theA 's and 
the B's were restricted to ± 1. Furthermore, the need for an assumption of noncontex
tual possessed values for the C's and their product was eliminated by applying the 
operators to a simultaneous eigenstate of the C's, with eigenvalues ± i. As Mermin8 
emphasizes, the application of the argument to a specific simultaneous eigenstate of 
the composite C's, in a context in which the subscripts of the A 's and B's refer to 
distinct, spatially separated particles, allows the noncontextuality of the possessed 
value assignments to be supported by a locality assumption. 

A PHASE-SPACE VERSION OF THE ARGUMENT 

By the term "phase-space", I mean to imply a version of the argument, described 
abstractly above, that employs "simple" functions of the operators representing the 
position and momentum of particles only. In this first example, the three mutually 
commuting pairs of operators will, as was the case in the original GHZ and Mermin 
arguments, refer to three distinct particles. Let Xi. X2, and X3 denote the operators 
for the x-components of position of the three particles. Then, playing the role of the 
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A's in the abstract account are the operators 

S; = X;I IX; I .  

649 

(6) 

that is, the algebraic signs of the X;. These operators are simultaneously well defined 
only over the (nonclosed) subspace of states with position-representation state 
functions that vanish for XJ;X2x3 = 0. In that subspace, they each have infinitely 
degenerate eigenvalues of ± 1 only. To play the role of the B's of the abstract 
account, we need mutually commuting self-adjoint operators that selectively anticom
mute with the S;. These are provided by the rotations through ir radians, about the 
y-axis, generated, respectively, by the operator for the y-component of the orbital 
angular momentum of the i-th particle: 

that is, the B's are given by 

R; = exp [(i/h)L,.'11'] = cos (L1;(ir/h)] . 

Because obviously 

R;X,ft;- t = (1 - 28;k)Xk 

and R;- t = R; = Rt, it follows that 

(no sum on i or k) 

(no sum on i or k) . 

These are just the commutation/anticommutation relations that we need. 

(7) 

(8) 

(9) 

(10) 

Following the lines of the abstract argument, we now introduce the composite 
operators, 

(i ¢ k ¢ I ¢ i, i = 1, 2, 3) (l la) 

and 

( l lb) 

which are mutually commuting and are each composed of mutually commuting 
factors. Multiplying the I's together, we find 

(12) 

as a consequence of the commutation/ anticommutation relations among the S's and 
R's and the relations 

Sf = Rf = l  (i = 1 ,  2, 3). ( 13) 

However, the corresponding presumed noncontextual possessed values of the observ
ables that these operators represent must satisfy, from equation 1 1 ,  

U; = Sfil"I (i ¢ k ¢ I ¢ i, i = 1 ,  2, 3), (14a) 

(14b) 
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and, from equation 13, 

s7 = r1 = 1 (i = 1 , 2, 3). ( 15) 

Consequently, we have 

( 16) 

in conflict with equation 12. 
If, following GHZ and Mermin, we think that the assumptions of noncontextual 

possessed values are rendered more secure when made only for observables with 
widely separated spatial associations, then we can make the argument more secure 
by eliminating the assumption for the composite observables represented by the I's. 
This is done by applying the argument to specific states that give the I's their values 
by being simultaneous eigenstates of them. (Note that the particles can be guaran
teed to be far from each other in space by having their y-coordinates differ greatly; 
that is, the three-particle position-representation state function can have its support 
limited to three widely separated intervals of they-coordinates of the three particles, 
respectively. Both the S's and the R's commute with the y-coordinates.) There are 
many different choices for the simultaneous eigenfunctions. All of them will lead to 
contradiction with the presumed noncontextual possessed values of the spatially 
separated observables, the S's and the R's. Within the subspace in which the S's are 
all well defined, a state function is a simultaneous eigenstate of the I; (i = 1 ,  2, 3) 
with eigenvalues 11; = 1 iff it is of the form, 

'1'(x1, X2, x3 ) = 9(-x1 )9(-x2)8( -x3)<l>( lxt l , y1 , z1 ; lx2 l . y2, z2; lx3 l , y3, Z3 ) 

- 9(-x1 )8(x2)8(x3 )<l>( lx1 l . y1 , z1 ; lx2 l . Y2· -z2; lx3 l , Y3, -z3) 

- 9(x1 )9( -x2)9(x3)<1>( lxt l , yt> -z1 ; lx2 l . Y2· z2; lx3 I , y3, -z3) 

- 9(x1 )8(x2)8(-x3 )<l>( lxt l , y1 , -z1 ; lx2 l . Y2· -z2; lx3 l , y3, Z3 ), ( 17) 

where 9 is the standard unit step function with positive support and <I> is an arbitrary 
function except for the requirement that it vanish when xtx�3 = 0. For these state 
functions, which span an infinite-dimensional subspace, the possibilities are that all 
three particles will be found in the negative-x half-space or any one of them, but just 
one. Noncontextual possessed values for the S's and the R's allow either no particles 
in the negative-x half-space or any two of them, but just two-the strongest possible 
contradiction. 

A PHASE-SPACE GHZ ARGUMENT FOR A SINGLE PARTICLE 

This time around, I will not belabor the details so much. The role of the A 
operators is played by the algebraic signs of the three Cartesian coordinates of the 
one-particle's position: 

S; = X;/ IX; I (i = 1 , 2, 3) . ( 18) 

Unlike the previous case, we cannot use rotations through 11' radians to play the role 
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of the B's here because such rotations reverse both coordinates orthogonal to the axis 
of rotation and not just one, as we require . Instead, the role of the B's is played by the 
operators for reflection, R; (i = 1 ,  2, 3), through the three planes defined separately 
by the equations, 

X; = 0 (i = 1 ,  2, 3) . ( 19) 

As before, the role of the C's is played by the products, 

(i ¢ k ¢ I ¢ i, i = l, 2, 3) (20a) 

and 

(20b) 

Finally, as before, the required assumptions of noncontextual possessed values can 
be minimized by considering these operators in the presence of the simultaneous 
eigenstates of the I's with a; = 1 for i = l, 2, 3. A state function for the particle is 
such an eigenfunction iff it has the form, 

'l'(x1 , x2, x3) = {9(-x1 )9(-x2)9( -x3) - 9( -x1 )9(x2)9(x3 ) 

- 9(x1 )9( -x2)9(x3) - 9(x1 )0(x2)9(-x3) J<l>( lxd ,  lx2 I . lx3 1 ) ,  (21)  

where, to guarantee that all the S; are well defined on 'I', we require that <I> vanish 
whenx1x2x3 = 0. Otherwise, <I> need only be square-integrable. 

In this state, quantum theory restricts the particle's position to the four octants in 
which either all three Cartesian coordinates are negative or one and only one of them 
is. In contradiction, the assumption of noncontextual possessed values for the signs 
of the coordinates and the planar reflection observables restricts the position of the 
particle to exactly the remaining octants. 

mE STATUS OF THE REFLECTION OPERATORS 

Among all the observables of elementary quantum theory, perhaps none seem 
more likely a candidate for noncontextual possessed values than the positions of the 
particles of the system. However, what of these reflection operators? Although it 
would go against the grain of orthodox quantum theory, one might argue that the 
reflection operators do not represent any property of the particle at all , but merely an 
operation on the state function for the particle. Because a champion of noncontex
tual possessed values is going against the grain of orthodox quantum theory anyhow, 
she might very well choose to avoid the contradiction by refusing to recognize the 
reflection operators as representing a particle property in need of a possessed value 
at all. Well , the position and momentum operators do represent properties of the 
particle and, for a spinless particle, as we are considering, the reflection operators 
can be expressed as functions of the position and momentum operators. How 
"simple" are those functions? Can they force a particle-property interpretation of 
reflection on a die-hard champion of noncontextual possessed values for such 
properties? 
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For a particle in a one-dimen!!ional position space, the reflection operator is 
given by 

R = J ta l -x)(x l  = J ta exp [(i/ll)P:r) I 0 )(0 1 exp [(i/ll)P:r) 

= J ta exp [(i/ll)Px] l>(X) exp [(i/ll)Px] 

= ( l /2'11'11) J ta dp exp [(i/ll)Px) exp [(i/ll)Xp] exp [(i/ll)Px] 

= ( 1 /411'11) J ta dp exp [(i/ll)(P:r + Xp)] 

= ( 1 /411'11) I ta dp cos [(1 /ll)(P:r + Xp)], (22) 

where the next to last line follows from the Baker-Hausdorf theorem and a change of 
integration variables. For our R; in three dimensions, we need only put the subscript i 
on the X and the P operators. The assessment of the status of these operators, 
vis-a-vis the assignment of noncontextual possessed values, is left to the reader. 

A WORD ON CONTEXTUAL POSSESSED VALUES 

At the risk of belaboring the obvious, I will makcc a few oomments on the nature 
of contextual possessed value assignments that can avoid the contradictions derived 
here and in previous GHZ arguments. The perhaps obvious point is that it is not 
enough that the possessed value assignments to the relevant observables merely 
depend upon the experimental environment (pace Bell) of the system. They must 
depend upon the environment in such a way as to violate some or all of the product 
relations between possessed values that have been employed in the argument. For 
example, the environment may be such as to not perform any measurement at all, but 
if the possessed values, for that environment, are assigned so that equations 14 and 
15 are satisfied in the three-particle argument, or the analogues of equations 14 and 
15 are satisfied in the one-particle argument, then the contradiction still holds. The 
same is true for any other environment that one might consider. For an environment 
suitable for measuring the relevant position variables, equation 14b or its one
particle analogue must hold, as well as equation 15, if all possessed values must be 
possible eigenvalues. Consequently, all three or any one of the possibilities of 
equation 14a must be violated, but not just two of them. Similar considerations hold 
for the other possible measuring environments. 
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The Entanglement of Virtual Photons0 

J. D. FRANSON 

Applied Physics Laboratory 
The Johns Hopkins University 

Laurel, Maryland 20723 

Real photons exhibit a number of interesting nonlocal effects. This report will 
instead consider some of the nonlocal properties of virtual photons. They play an 
important role in many systems and, in particular, are responsible for the macro
scopic electric and magnetic fields of bar magnets, solenoids, transformers, etc. One 
might ask whether or not there might be a Bell inequality associated with bar 
magnets, for example. 

Violations of Bell's inequality involving virtual photons do exist but will not be 
discussed here. Instead, a new phase associated with the electromagnetic field that is 
dynamic in the sense that it vanishes in the quasi-static limit of slowly varying 
currents will be described. This dynamic phase is observable only through the 
entanglement of virtual photons with an electron, in whi�h case it can produce a 
fractional Aharonov-Bohm effect. I  

· ·  

Some of the results described here have been submitted for publication else
where.2 Rather than repeat those derivations, this report will review the earlier 
results while adding some intuitive comments and figures to further illustrate their 
meaning. In addition, the geometric or topological3·4 nature of the dynamic phase 
will be briefly discussed. 

Consider a known current distribution J(r, t) and suppose that it can propagate 
the field from an initial state to the same final state along two or more different paths 
in some parameter space. The final state is assumed to be the same aside from a 
path-dependent phase factor that will be written in the form 

I \Jlp) = ei�oe -if(H)dt!A I 
Iii,). 

Here the energy-dependent phase shift defined by 

4>£ = - f (H) dt/h 

(1 )  

(2) 

is the same for all paths if energy is conserved and is of no further interest. Any 
remaining phase shift is contained in cf>0, which will be shown to vanish in the 
quasi-static limit and will therefore be referred to as the dynamic phase. Mathemati
cally, cf>o is a geometric phase, but there are some physical difficulties in that 
interpretation, as will be discussed below. It should also be noted that cf>£ is often 
referred to as "dynamic" by other authors.3 

In the Coulomb gauge the Hamiltonian is given by 

H = � J [Ei (r) + c2B2(r)J d3r - J J(r, t) ·A(r) d3r = Ho +  H' (3) 

0This work was supported by the Office of Naval Research. 
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or 

H = � [ { aJa; + �)hw; - (2Eo�300J 12 
(aJj; + a;j 7)] , (4) 

where j; is the Fourier transform of the current distribution. One might expect the 
field to be essentially classical since the current distribution is classical, which 
suggests that the state of the field may be a coherent state,5 aside from an overall 
phase factor: 

1 "1(t)) = ei<f>(t l l a(t)) . 
Here the multimode coherent state is defined as usual by 

n . t 
l a(t)) = e -a ;(t )a,{t) /2ea;(t )aq O) . 

i 

(5) 

(6) 

Inserting this state vector into SchrOdinger's equation gives the following require
ments: 

i 
U; + iw,-a; = J2eoL3hw;

j;(t), 

de!> � [ W; a;j 7 i d * ] 
dt = "'7" - 2 + J2eoL3hw; - 2 di (a;a;) · 

(7) 

(8) 

Equation 7 is identical in form to the corresponding classical equation for the 
normal-mode expansion of the field, while equation 8 governs the nonclassical phase 
factor. Neglecting the zero-point energy (which is the same for any path) and taking 
the inverse Fourier transform allows this result to be rewritten as 

(9) 

Equation 5 is an exact solution to SchrOdinger's equation regardless of how fast the 
current may vary and despite the appearance of the expectation value in equation 9. 

Glauber6 previously derived a formula for cl>(t )  in the interaction picture that 
involves the commutation relations for the field operators, which are quite compli
cated in the Coulomb gauge. cl>(t) is a different function in the SchrOdinger picture 
used here and can be seen to be proportional to the expectation value of the 
interaction Hamiltonian. Glauber also noted that cl> has no effect on the density 
matrix of the field, which suggests that it is unobservable-this illustrates the need 
for the entanglement of the virtual photons with some other particle. 

The Aharonov-Bohm (AB) effect1 depends on the line integral of the vector 
potential and is the same as the expression in equation 9, aside from the rather 
surprising factor of 1 /2, which will play an important role in the AB effect for 
quantized fields. The origin of this factor of 1 /2 can be understood by considering a 
single mode of the field, for which the vector potential operator is proportional to the 
displacement x of a simple harmonic oscillator. First consider a classical oscillator 
with potential U0 = x2 to which :m external force corresponding to U'(x) = j;x is 
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FIGURE 1. Change in the energy of a classical harmonic oscillator subjected to a slowly varying 
external force, which illustrates the origin of the factor of �-

slowly applied. The total energy changes by -U'(8x)/2, where M is the displacement 
induced by the external force, as illustrated in FIGURE 1. The total energy change is 
only half of the externally applied potential due to the increase in the internal energy 
of the harmonic oscillator. 

The same results are obtained quantum mechanically in the quasi-static limit of a 
slowly varying current, in which case ci; of equation 7 becomes negligible compared to 
the current and equation 7 reduces to 

1 
a; = 

J2EoL31iwt
j;(t) .  (10) 

Substitution of this result into the Hamiltonian (and once again neglecting the 
zero-point energy) gives 

(H) = (H')/2, 
cl> = - I (H) dt/li = <l>E· (11)  

The expectation value of the energy i s  half that of the interaction energy, just as  in 
the classical case, and the total phase shift reduces to the energy-dependent phase. 
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This demonstrates that the dynamic phase <l>D vanishes in the quasi-static limit. (The 
quasi-static limit should not be confused with the adiabatic limit., as will be discussed 
shortly.) 

Now consider the opposite limit in which an impulsive current is applied over a 
time interval 8t that is much smaller than the period of the relevant modes of the 
field. Here the a;fu term is negligible compared to the current and equation 7 reduces 
to 

i 
8a; = 3 j;8t. J2e0L fuJ>; 

(12) 

If we further suppose that mode k had previously been excited to a large value of a,,, 
then to lowest order in 8t 

1 JZmp(r) · {;i(r, 10)) d3r 
8..1.. = - - 8t 'l"D 2 fl ( 13) 

because (H0)8t is negligible compared to the interaction Hamiltonian. It can be seen 
that the effect of an impulsive current is to generate a phase shift reminiscent of the 
AB effect, aside, once again, from the factor of 1 /2. 

It is instructive to consider the generation of a dynamic phase in a different 
manner, starting instead from the vacuum state. Suppose that an impulsive current 
coupled to mode k is applied at some initial time in such a way as to move the value of 
a,, along the real axis, as shown in FIGURE 2. The system will subsequently precess 
around a circle in the complex-a plane until a second impulsive current is used to 

FIGURE 2. Generation of a dynamic phase starting from the vacuum state . 
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. .  
FIGURE 3. Geometric properties of cl>o, which is equal to minus twice the area enclosed in the 
complex-a plane. 

restore the field to the vacuum state. The energy-dependent phase will have 
precessed by an amount equal to -(nk }wk during the time interval between the 
impulses, where nk is the number of photons created by the impulse. But the total 
phase would not have changed during this time because the current was zero, so we 
must have that cl>n = - <l>E· Intuitively, those excited states with large values of n did 
precess through a large phase angle, but the system essentially loses all "memory" of 
that when the amplitude of those modes is reduced to zero at the end. 

cl>n is a geometric phase as defined by Aharonov and Anandan,4 at least 
mathematically. In their classic paper, they showed that some Hamiltonian can 
always be found to propagate a system at any desired rate along a path in a projective 
Hilbert space and that the geometric phase is a function only of this path and not the 
rate of propagation. However, several difficulties arise if these ideas are applied to 
the dynamic phase. The Hamiltonian required to propagate an electromagnetic wave 
adiabatically does exist, but it is nonphysical in nature. (Imaginary currents are 
required, for example.) In addition, the electric field (conjugate momentum) de
pends on the rate of change of the vector potential and thus depends on the rate of 
propagation in the projective Hilbert space, which suggests that the physical state of 
the system is not the same for different rates of propagation. In fact, the electric field 
of a radiative state vanishes in the adiabatic limit. 

Aside from these issues of interpretation, cl>o does possess the mathematical 
properties of a geometric phase. As illustrated in FIGURE 3, the dynamic phase is 
equal to minus twice the area enclosed by any closed path in the complex-a plane. Its 
value can indeed be shown to be independent of the rate of traversal of the path and 
it can be computed using Berry's formulasl in the adiabatic limit. 
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The geometric phase of a generalized simple harmonic oscillator has been 
considered by a number of authors,7 where the Hamiltonian was-taken to be 

1 2 [Xq2 + Y(qp + pq) + Zp2] . ( 14) 

This Hamiltonian does not contain any terms linear in q or p. In contrast, the 
Hamiltonian considered here can be rewritten (for a single mode) as 

(15) 

which does contain terms linear in both q and p. In particular, the offset p0 in the 
momentum is essential in order to obtain the geometric properties illustrated in 
FIGURE 3. It is interesting to note that the "generalized" simple harmonic oscillator 
is not sufficiently general to describe the electromagnetic field. (I also recently 
learned that the geometric properties associated with the Hamiltonian of equation 
15 have been described elsewhere.8) 

As mentioned earl ier, the adiabatic limit and the quasi-static limit correspond to 
two different limiting procedures. The quasi-static limit as used here consists of 
restricting ourselves to the Hamiltonian and currents that actually occur, considering 
some finite time interval, and then taking the limit of slowly varying currents. The 
adiabatic limit consists of choosing whatever Hamiltonian is required to propagate 
the system along a chosen path given an indefinitely large time interval . Both limits 
are mathematically valid and the only question is which limit is more appropriate to 
any particular physical situation. Actually, the dynamic phase can be shown to vanish 
in both limits if the cancellation between modes corresponding to wave vectors k and 
-k is taken into account. 

An overall phase factor like cl>o can only be observed in an interference experi
ment such as the electron interferometer illustrated in FIGURE 4, which encloses a 
static current source S. An electron will become entangled with the virtual photons 
from S because a different dynamic phase will be induced in the field depending on 
which path the electron takes through the interferometer. The dynamic phase 
associated with the state of the field is in addition to the usual AB phase shift 
associated with the state of the electron. 

.. -

, ,  ® 
--

FIGURE 4. Obseivability of the dynamic phase in an electron interferometer enclosing a static 
current distribution S. 
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Consider the case in which the electron is described by a highly localized wave 
packet, in which case the uncertainty in the position of the electron (in a given path) 
is negligible and its current is essentially known. The self-interaction terms can be 
neglected because they are the same for both paths in a symmetrical interferometer. 
Under these conditions, an approximate solution to the SchrOdinger equation can be 
shown to be 

(16) 

which clearly shows the entangled nature of the system. The approximation consists 
of neglecting the A 2 terms, which is valid for a weak field, as well as 

(A - {A )) · <7 - (i)), (17) 

which corresponds to the correlation between the fluctuations in the field and the 
electron current. Both of these terms are negligible for a localized wave packet when 
ignoring any self-field effects. 

Subject to these approximations, Schrooinger's equation is satisfied with 

for each path. The nonretarded contributions to the field are negligible in the limit of 
a distant source, even in thf' Coulomb gauge, in which case 

(A
_, 

(
-

) ) = _1 _ J 
( j ,(r,, tre1)) d3_ 

e rs , t 2 r., 
4'!re..r 1- - I u- r, - rs 

where j is the component of the current perpendicular tor, - rs. 

(19) 

First consider the quasi-static limit in which the currents are slowly varying on the 
time scale of the transit time across the apparatus at the speed of light so that 

(20) 

It can then be shown that the two integrals in equation 20 are equal and 

Thus, the dynamic phase is zero and the usual AB effect is obtained in the 
quasi-static limit. 

Retardation effects are significant, however, for an electron interferometer 
located such a large distance from S that the wave packet will pass through the 
interferometer in less time than it would take for light to propagate from the 
interferometer to S, as illustrated in FIGURE 5. Then, the field A, at S must be 
evaluated at retarded times for which the electron would not yet have reached the 
first beam-splitter. A, and the second term of equation 21 are thus the same for both 



FRANSON: VIRTUAL PHOTONS 661 

paths and can be neglected, in which case equation 18 reduces to 

(22) 

When combined with the usual AB phase from the electron's wave function, this 
gives a total geometric phase of 

l q �  - - 1 (  <I> )  
<l>AB = 2 h � (As) . di = 2 2ir <Po ' 

which is half the usual AB effect. 

(23) 

That is not the end of the story, however, because we have neglected the fact that 
the electron current will generate a slightly different state of the field, I a1 ) or I a2) , 

FIGURE 5. An electron interferometer where the retarded nature of the potentials has a major 
effect on the dynamic phase. 

depending on which path it took. The difference in the phases of the parameters a1 
and a2 is not a Berry phase, but is related instead to the classical phase of the field. 
The total phase must be determined from the inner product, 

where 

. 1 f <71 - Jz) · ((A1 ) + (A2)) d3r 
'YR = Z fl 

Im L [(au - a2i)(j �; - j;;)] 
i 

(24) 

(25) 
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The diagonal terms involving 71 • A1 and72 • A2 correspond to the geometric phase, 
whereas the cross terms involving 71 • A2, etc., are due to the difference in the 
parameters a1 and a2• This restores the usual AB effect but only half of the observed 
phase is "geometric" in the dynamic limit. 

The fractional phase shift can be directly observed in an experiment of the type 
shown in FIGURE 6. Here there is no static, external field and, instead, one path of an 
electron interferometer passes through a cavity where an electromagnetic field is 
generated by the electron. This induced field in the cavity subsequently interacts with 
the electron to produce a dynamic phase shift as well as the usual AB phase. Now 
(12) is zero in equation 25 and the total phase shift is purely geometric and retains 
the factor of 1 /2. 

Most inherently quantum mechanical effects in quantum optics are due to energy 
conservation or the entanglement of two photons. However, such effects may be 
consistent with a theory by Barut and his colleagues,9 in which the field variables have 
been eliminated from the equations of motion in favor of the particle coordinates at 

1 . . 

2 

FIGURE 6. An experiment suitable for direct observation of the fractional phase shift. 

earlier times. What is normally viewed as the entanglement of two photons, for 
example, would then be a consequence of the previous entanglement of two atomic 
states. The dynamic phase, on the other hand, is a result of the quantum mechanical 
evolution of the internal degrees of freedom of the field and would appear to be 
missing in an alternative theory where those degrees of freedom have been elimi
nated. In that sense, one could say that the dynamic phase is more dependent on the 
quantization of the field than are other effects such as EPR correlations. In any 
event, the dynamic phase allows an experimental investigation of new and fundamen
tal properties of the field. 

In summary, the electromagnetic field exhibits a variety of phase phenomena, 
including the classical phase (and its quantum mechanical generalizations1D), various 
Berry phases1 1  (actually, Hannay angles), and the dynamic phase described here. 
The dynamic phase vanishes in the quasi-static limit and is only observable if the 
virtual photons become entangled with an electron or some other particle. The 
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dynamic phase allows an experimental probe of the quantum l}lechanical evolution 
of the harmonic oscillators comprising the field. 

REFERENCES 

1. AHARONOV, Y. & D. BOHM. 1959. Phys. Rev. 1 15: 485. 
2. FRANSON, J. D. 1994. Phys. Rev. Lett. Submitted. 
3. BERRY, M. V. 1984. Proc. R. Soc. London Ser. A 392: 45. 
4. AHARONOV, Y. & J. ANANDAN. 1987. Phys. Rev. Lett. 58: 1593. 
5. GI.AUBER, R. J. 1 963. Phys. Rev. 131: 2766. 
6. GI.AUBER, R. J. 1965. In Quantum Optics and Electronics: 1 964 Les Houches Lectures. C. 

DeWitt, A. Blandin & C. Cohen-Tannoudji, Eds. Gordon & Breach. New York. 
7. BERRY, M. V. 1985. J. Phys. A 18: 1 5-27; HANNAY, J. H. 1985. J. Phys. A 18: 221-230; 

KOBE, D. H. 1990. J. Phys. A 23: 4249-4268; BOSE, S. K. & B. DUTIA-ROY. 1991 . Phys. 
Rev. A 43: 3217-3220. 

8. CHATURVEDI, S., M. S. SRIRAM & V. SRINIVASAN. 1 987. J. Phys. A 20: 1071-1075; SIMON, 
R. & N. KUMAR. 1 988. J. Phys. A ll: 1 725-1727. 

9. BARUT, A. 0. & J. P. DOWLING. 1987. Phys. Rev. A 36: 649; BARUT, A. 0., J. KRAUS, Y. 
SALAMIN & N. UNAL. 1992. Phys. Rev. A 45: 7740-7745. 

10. SUSSKIND, L. & J. GLOGOWER. 1 964. Physics (N.Y.) 1: 49; PEGG, D. T. & s. M. BARNETI. 
1988. Europhys. Lett. 6: 483; NOH, J. w., A. FOUGERES & L. MANDEL 1991 .  Phys. Rev. 
Lett. 67: 1426; 1992. Phys. Rev. A 45: 424; 1992. Phys. Rev. A 46: 2840; FRANSON, 
J. D. 1994. Phys. Rev. A 49: 3221-3228. 

1 1 .  PANCHARATNAM, s. 1956. Proc. Indian Acad. Sci. Sect. A 44: 247; CHIAO, R. Y. & Y. s. 
Wu. 1986. Phys. Rev. Lett. 57: 933; TOMITA, A. & R. Y. CHIAO. 1986. Phys. Rev. Lett. 
57: 937; CHIAO, R. Y. & T. F. JORDAN. 1988. Phys. Lett. A 132: 77-81 .  



Multipath Interferometry 

of the Biphotona 

MICHAEL HORNEb AND ABNER SHIMONYc 
b Department of Physics 

Stonehill College 
North Easton, Massachusetts 02357 

c Departments of Physics and Philosophy 
Boston University 

Boston, Massachusetts 02215 

INTRODUCTION 

The purpose of this report is to suggest some extensions of two-particle interfer
ometry. Generically, two-particle interferometry considers ensembles of particle 
pairs, with each pair produced in the same quantum mechanical entangled state and 
propag&ting in several different two-particle paths to � pair of detectors. Probabili
ties of joint detection are calculated after adding the amplitudes of all the contribut
ing two-particle paths. The phases along different paths can be manipulated experi
mentally and one can observe "two-particle fringes", which essentially are the 
variation of joint detection probabilities. 

Both theoretically and experimentally, the generic field of two-particle interfer
ometry has been quite constrained. The particle pair is usually (indeed, in experi
ments so far, always) taken to be a pair of photons, aptly called a biphoton by 
Klyshko. 1 Usually, there are two paths for each photon, which gives a maximum of 
four two-particle paths to the pair of detectors, but correlations due to the entangled 
state typically reduce the number of two-particle paths to two, which implies 
sinusoidal fringes. Typically, the detections are also coincident counts, occurring 
almost at the same time, within a time window whose duration is set by the 
experimenter. 

There have already been some interesting theoretical investigations that have 
relaxed some of the foregoing constraints, for example, by using a new device called 
the multiport,2 which generalizes the ordinary beam-splitter by yielding three or 
more output paths. We shall show that further unusual phenomena will result from 
interferometric arrangements in which each particle can take more than two paths of 
unequal length and the times of joint detection are allowed to be well separated as 
well as nearly simultaneous. Two arrangements, both using biphotons, will be 
analyzed in detail : (i) one in which each photon propagates in three paths, giving 
nine biphoton paths, and (ii) a double Fabry-Perot interferometer, in which each 
photon propagates in infinitely many paths. 

The second section will briefly state the results of a theoretical analysis of the 

aThis research was supported by the National Science Foundation (Grant Nos. PHY92-
13964 and PHY93-21992). 
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propagation of a biphoton in a simple basic arrangement. The thjrd section will apply 
these basic results to the double three-path arrangement (i), whereas the last section 
. will apply them to the double Fabry-Perot arrangement (ii). 

We note that an entirely different direction of generalization is to go from 
two-particle to n-particle interferometry (n > 2), but this is outside the scope of this 
report. 

mE BIPHOTON IN A SIMPLE ARRANGEMENT 

Consider a source S that emits two beams of radiation, one along axis x1 and the 
other along x2, as shown in FIGURE 1 .3 More specifically, let the radiation consist of 

f 
I 
I 

I 
I 
f 

FIGURE 1. Schematic representation of a standard biphoton preparation. A photon of wave 
number 2.k0 illuminates the source crystal S, generating by downconversion a biphoton, which 
propagates in beams 1 and 2 with coordinatesx1 andx2. Gaussian wave number filters, labeled f, 
each with center ko and width a, prepare the biphoton in the state given by equations l a  and lb. 

pairs of photons such that, if one is in beam 1, the other is in beam 2. One way of 
achieving this direction correlation is via momentum conservation, if the pair is 
produced by the decay of a parent particle having negligible momentum in the 
vertical direction of FIGURE 1. In addition, we assume for simplicity that the parent 
particle had a specific energy and hence a specific wave number, which will be taken 
to be 2k0 if the parent is massless (notably, a photon, in the parametric downconver
sion process). Finally, we imagine that each beam is filtered by a Gaussian wave 
number filter, f, with center k0 and width u. Then, the wave function of the photon 
pair, neglecting spin, is 
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The delta function ensures energy conservation and the Gaussian factors describe 
the transmitted amplitude beyond the filters. Double Fourier transforming yields the 
equivalent configuration space wave function: 

(lb) 

It is somewhat surprising that equation lb has monochromatic one-photon phase 
factors, exp ik0(xi - cti ) (j = l, 2), whereas the entanglement of the two photons and 
the actual spread of the wave numbers of each, indicated explicitly in equation la, 
are buried in the real Gaussian factor, 

(2) 

but Fourier analysis is rich in surprises. 
The absolute square of iii is the (unnormalized) probability density of finding the 

two photons at xi , x2 at specified times ti. t2• The single-photon probability density, 

(3) 

is obviously constant for all Xi and ti .  and likewise f9r p2(x2, t2) .  The lack of 
localization of each photon singly is consistent with our assumption that the parent 
particle is monochromatic-hence, completely unlocalized. However, each photon is 
localized relative to the other. If ti and t2 are specified, then the probability density of 
x2 - Xi is Gaussian, with a center, c (t2 - ti ) ,  and a standard deviation, l /a. 
Alternatively, each xi has a Gaussian distribution when ti .  t2, and the other position 
coordinate are specified. Une can also say that, when Xi and x2 are fixed, there is a 
Gaussian distribution for the time difference, T = t2 - ti .  with a center at (x2 - xi ) /c 
and a standard deviation of 1 / (ca) .4 

We shall now consider an idealized experimental arrangement in which perfectly 
efficient detectors are placed in beams 1 and 2 of FIGURE l, equidistant from the 
source. The origins of the two coordinates Xi and x2 may both be placed at the 
respective detectors. Equation lb, evaluated at xi = x2 = 0, determines the probabil
ity amplitude of joint detection at times ti and t2, respectively: 

(4) 

Imagine that the detections are registered by dots in the left and right halves of a long 
tape on which ti and t2 are respectively represented by the vertical distance upward 
from a common origin. If we assume that the mean temporal interval between a 
biphoton and the next emitted from S is very large compared to l ieu, then the 
pattern of dots is determined by equation 4. The dots will occur in nearly simulta
neous pairs, where the meaning of "nearly simultaneous" is implicit in the Gaussian 
factor of equation 4. If there is a dot in one half of the tape, then with virtual certainty 
there will be a nearly simultaneous dot in the other half. Of course, equation 4 
contains more detailed information about the temporal correlation of the members 
of a bi photon than "nearly simultaneous" and this information would be experimen
tally interesting if coincidence time windows on the order of 1 /ca or less were 
employed,3 as is not the case in the experimental arrangements of the following 
sections. 
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A DOUBLE THREE-PATH INTERFEROMETER 

FIGURE 2 represents schematically a double three-path interferometer for the 
biphoton. The left-hand part of the apparatus (to the left of the ladders in FIGURE 2) 
is the same as FIGURE 1 .  We focus first on photon 1, which impinges on the upper 
ladder, containing three "rungs" labeled I ,  m, and u (for "lower", "middle '' , and 
"upper") .  Beam-splitters at the ends of rungs I and m, of intensity reftectivities 2/3 
and 1 /2, respectively, permit photon 1 to "choose" among possible paths with 
definite amplitudes. Three detectors, similarly labeled L, M, and U, are located to 
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FIGURE 2. The biphoton of FIGURE 1 is here fed into a double three-path interferometer. The 
beams on these paths, labeled I, m, and u, are first formed and are then recombined by 
beam-splitters at the left and right ends of the rungs I and m; the recombined beams feed 
detectors L, M, and U. Each horizontal and vertical step of the ladders has length !:J./2, and 
detectors L, M, and U are located !:J./2, !:J., and 3!:J./2, respectively, to the right of the ladders. 
When the beam-splitters on rungs I and m reflect intensities 2/3 and 1 /2, respectively, the 
probabilities of joint detection by various pairs of detectors at various time separations can be 
given as in TABLE 2. 

the right of the ladder: U on the same horizontal as m, M on the same horizontal as I , 
and L on a horizontal below the ladder. Beam-splitters and mirrors on the right-hand 
side and on top of the ladder permit photon 1 to reach detector U via either m or u 
and to reach L or M via I, m, or u. Each rung and each vertical step of the ladder have 
length ll./2, as do the vertical and horizontal steps from the lower right corner of the 
ladder to detector L. Detectors M and U are, respectively, fl. and 3/l./2 to the right of 
the ladder. Consequently, for a fixed rung, the paths to all the accessible detectors 
have the same total length, and the paths via rung u are fl. longer than the paths via 
rung m, which in turn are fl. longer than the paths via rung I. TABLE 1 gives the 
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TABLE 1 . Single-Photon Amplitudes for Each Specification of Detector and Rung 

au = -(2/9) 1 12 DMI = 1 /3 
au1 = 0 DLm = ( 1 / 18) 1 12 DMm = 1 /3 
aum = -( 1 /6) 1 12 DLu = ( 1 / 18) 1 12 DMu = 1 /3 
auu = ( 1 /6) 1 12 

amplitudes of all nine two-photon paths and also the phases due to a factor i for each 
reflection, but not the phases due to path length (which will be taken into account 
separately) . The first subscript of the amplitude labels the detector and the second 
labels the rung; for instance, aum is the amplitude for photon 1 to pass to detector U 
via rung m. Photon 2 impinges on the lower ladder, which has exactly the same 
features as the upper. Consequently, TABLE 1 also gives the amplitudes of all nine 
paths of photon 2. 

• 

In biphoton interferometry, we must consider. the amplitudes of paths in two
particle configuration space. Except for additional phase contributions due to the 
path length, these are given simply by the products of two items of TABLE 1. For 
example, the amplitude for photon 1 to impinge on its detector U via rung m while 
photon 2 impinges on its detector L via rung u is aumtZLu, multiplied by a phase factor. 
We now combine these amplitude calculations with appropriate adaptations of the 
biphoton wave function of the previous section. For specificity, focus on detectors M 
for both photons 1 and 2 and locate both detectors at the origins of the coordinatesx1 
andx2 as before. Then, the total amplitude aMM(O, 0, 1. ,  12 ) for the respective photons 
to reach the detectors at 1 . , 12 is the sum of nine terms adapted from equation lb: 

aMM(O, 0, 1 1 , 12) = aM1aM1"1(0, 0, 1. , 12) + aMmt1M1"1(A, 0, 11 , 12 ) 

+ aMuaM1"1(2A, 0, 1. , 12) + aM1'1Mm"1(0, A, 1 1 , 12 ) 
+ aM""1Mm"1(A, A, 1 1 , 12) + OMJlMm"1(2A, A, 1 1 , 12) 
+ aMlaMulfJ(O, 2A, 1. , 12) + aMmtlMulfJ(A, 2A, 11 , 12) 
+ OMJlMu"1(2A, 2A, 11 , 12 ) · (S) 

Here, the substitutions of 0, A, and 2A for x1 and x2 arise from the path lengths: 0 for 
paths via rung I, A for paths via rung m, and 2A for paths via rung u, from either 
ladder. Because of the real Gaussian factor g(x. , x2, t i .  t2 ) of equation 2, aMM is 
negligible, except when T = 12 - t1 has approximately one of the values, sA/c, where s 
= 0, 1 ,  - 1 , 2, or -2; as in the previous section, the meaning of "approximately" is 
determined by the Gaussian . To avoid the accidental confusion of members from two 
different biphotons, it is useful (though not essential) that the mean temporal 
interval of biphoton emissions from the source be greater than 2A/c; it is essential, 
however, that both A/c and the mean temporal interval be greater than 1 /ca. When s 
is specified, only three of the nine terms in equation 5 are nonnegligible. For 
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example, ifs = 0 (approximately simultaneous detection), only tbe terms with rungs 1 
for both photons, rungs m for both photons, and rungs u for both photons contribute. 
Hence, for s = 0, the amplitude aMM(O, 0, ti . t2) can be rewritten by normalizing and 
disregarding an overall phase factor as 

(6) 

where the argument 0 refers to the value of s. There are, in fact, 45 amplitudes of the 
form of au(s), where I is L, M, or U and J is L, M, or U. The normalization is imposed 
by requiring 

L l au(s) l 2 = LPu(s) = I , 
l,J,s l,J,s 

(7) 

where pu(s) is the probability that the two photons will be detected respectively by 
detectors I and J, with a time difference of approximately s!l./c. A complete 
compilation of the probabil itiespu(s) is presented in TABLE 2. 

Note that the amplitude aMM(O) of nearly simultaneous detection at the two 
detectors labeled M is, according to equation 6, a superposition of three terms 
corresponding to three different path lengths through the double interferometer and 
hence to three different transit times and hence to three different times of birth. This 
superposition is possible only because the two photons were born together, but at an 
indefinite time, and the time of birth cannot be determined without changing the 
experimental arrangement. The probability of nearly simultaneous detection at both 

TABLE 2. Probabilities of Joint Detections with Various Time Separations 

PLL(O) = 324- 1 ( 18  + 10 cos 2k� + 8 cos 4k04) 
PLM(O) = pML(O) = 324- 1 ( 12 - 4 cos 2ko4 - 8 cos 4ko4) 
pw(O) = puL(O) = 324- 1 (6 - 6 cos 2k�) 
PMM(O) = 324- 1 ( 12  + 16 cos 2k04 + 8 cos 4k�) 
PMu(O) = PuM(O) = 324- 1 ( 1 2  - 12  cos 2k04) 
Puu(O) = 324- 1 ( 18  + 18 cos 2k�) 
PLL(l ) = pLL(- 1 )  = 324- 1 (5 - 4 cos 2k04) 
PLM(l ) = PML(- 1 )  = 324- 1 ( 10  - 8 cos 2k04) 
Pw(l ) = PuL(- 1 )  = 324- 1 ( 15  + 12 cos 2k�) 
PML( l ) = PLM(- 1 ) = 324- 1 (4 + 4 cos 2k04) 
PMM( l) = PMM( - 1 )  = 324-1 (8 + 8 cos 2ko4) 
PMu( l ) = PuM( - 1 )  = 324- 1 ( 12  - 12 cos 2ko4) 
PuL( l ) = Pw(- 1 )  = 3/324 
PuM(l ) = PMu( - 1) = 6/324 
Puu( l ) = Puu( - 1)  = 9/324 
PLL(2) = PLL( -2) = 4/324 
PLM(2) = PML(-2) = 8/324 
Pw(2) = PuL(-2) = 12/324 
PML(2) = PLM(-2) = 2/324 
PMM(2) = pMM( -2) = 4/324 
PMu(2) = PuM(-2) = 6/324 
PuL(2) = Pw(-2) = 0 
PuM(2) = PMu( -2) = 0 
Puu(2) = puu ( -2) = 0 
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M's is the absolute square of the amplitude aMM (O) : 

PMM (O) = l aMM(O) l 2 = 81 - 1 (3 + 4 cos 2kod + 2 cos 4kod), (8) 

showing that the contribution of the three terms in equation 6 gives rise to a 
nonsinusoidal interference fringe pattern. By contrast, many of the probabilities 
presented in TABLE 2 do exhibit a sinusoidal fringe pattern [namely,pw(O), pMu(O), 
and pu(± l )  for many values of I and J]; for each of these, exactly two paths with 
different phases contribute to the total amplitude. Finally, a few of the Pu (±  1) and 
all of the Pu ( ±2) exhibit no fringes as d varie.s because, in each of these cases, there 
is only one contributing path in the two-photon configuration space. It is interesting 
that this variety of fringe pattern occurs in a single experimental arrangement. 

TABLE 2 shows a symmetry whose explanation is obvious: 

Pu(s) = PJ1 ( -s). (9) 

It also shows that the probability of single detection at any detector of either photon, 
at a fixed s, exhibits no fringes as d is varied, that is, 

P1 (s) = P1L(s) + P1M(s) + P1u (s) = Pu (s) + PM't(s) + Pu1(s) 
.. 

= a constant dependent on I, but independent of d. (10) 

There is a simple physical explanation. For specificity, let s = 0. Then, p1 (0) is the 
probability that one of the photons, for example, the first, goes to the detector I, 
whereas the other photon goei. to any of its three detectors. However, the paths of 
the two photons are correlated: s = 0 implies that both go via rung l, both go via rung 
m, or both go via rung u. Now, if the arrangement of FIGURE 2 is modified by 
substituting double-sided full mirrors for the beam-splitters on the right side of the 
ladder for photon 2, then clearly p1(0) will not change, even though there will be a 
change ofp1L(O),p1M(O), andp1u (O) . In the original arrangement, photons traversing 
a specific rung could go to more than one detector, whereas in the modified 
arrangement 1 feeds only L, m feeds only M, and u feeds only U. In the modified 
arrangement, one can determine with certainty which path photon 1 takes to 
detector I, by observing which detector is triggered by the partner photon 2. 
Therefore, by the classical rule of Bohr, Dirac, and Feynman, the three amplitudes 
contributing to the modified p1 (0) are absolute-squared and added, rather than 
added prior to absolute-squaring. Hence, p1 (0) is independent of d in the modified 
arrangement and, by the invariance of this probability under the change of arrange
ment, the unmodifiedp1(0) is independent of d. 

We conclude our discussion of the double three-path interferometei: with two 
remarks. First, the correlations between the various paths of photon 1 and those of 
photon 2 are an extension of the long-long and short-short path length correlations 
exhibited by Franson in a double two-path interferometer.s Second, the entries in 
TABLES 1 and 2 could be made much more uniform if the pair of beam-splitters on 
the left of the ladder of photon 1 and the pair of beam-splitters on the right were 
each replaced by a "sixport"5-a generalization of the ordinary beam-splitter in 
which each of three input beams produces three output beams with equal intensities; 
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likewise for photon 2. With the sixports, Pu (O) is nonsinusojdal for all pairs of 
detectors I and J, Pu (±  1) is sinusoidal for all pairs, and pu( ±2) is flat for all pairs. 

A DOUBLE FABRY-PEROT INTERFEROMETER 

FIGURE 3 represents schematically an arrangement that presents each biphoton 
with infinitely many path options. These options arise because each beam emerging 
from the source as in FIGURE 1 is fed at normal incidence into a Fabry-Perot 
interferometer, where each photon separately may enjoy an arbitrary number of 
reflections between the two beam-splitters, /l./2 apart, before proceeding to its 
detector. As in the previous section, imagine that detections are recorded on the left 
and right halves of a tape for photons 1 and 2, respectively, of a biphoton. The 
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FIGURE 3. The biphoton prepared in FIGURE 1 is here fed into a Fabry-Perot interferometer, 
which is formed by beam-splitters (BS) separated by distance t:../2. The amplitudes of transmis
sion of the beam-splitters are t and t ' , respectively, for external and internal incidence, and r is 
the inside amplitude of reflection for both beam-splitters. The resulting probabilities of joint 
detection by 01 and 02 with various delay times are given in equation 12. 

round-trip time, ll./c, across the Fabry-Perot interferometer is taken to be substan
tially larger than the temporal width, 1 /c<r, of the biphoton Gaussian, and the 
intensity of the source is sufficiently low that members of two different biphotons are 
seldom confused. For any biphoton, the detection dots may be "nearly simulta
neous", indicating that the photons reflected the same, but indefinite, number of 
times inside the Fabry-Perot; or the detection of photon 1 may precede [follow] that 
of photon 2 by approximately fl.le, indicating that particle 1 made round-trips in the 
Fabry-Perot one less [more] time than particle 2; or the detections may differ by 
2/l./c, indicating that one photon made two more round-trips than the other; etc. 

Let a (s), where s = 0, ± 1 , ±2, . . .  , denote the amplitude that the pair will be 
detected with a time difference of approximately t2 - t1 = sll./c. Clearly, a (O) is the 
superposition of an infinite number of terms corresponding to both particles reflect
ing zero times, once, twice, etc.; in general, any a (s) is a superposition of infinitely 
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many terms. By a straightforward generalization of the reasoning leading to equa
tions 5 and 6, we obtain, for nonnegative s, 

a (s) = t2(t ' ) 2 � ,a.,2(n+•l1fJ[nd, (n + s)d, 0, sd/c]; (I la) 
n=O 

to cover negative values of s, we use the obvious relation 

a (-s) = a (s). ( l lb) 
In equation 1 la, t and t '  are the amplitudes of transmission through either of the two 
beam-splitters forming the Fabry-Perot interferometer for a photon incident from 
the exterior or from the interior of the interferometer, r is the reflection amplitude 
on the "inner" surfaces of the two beam-splitters (assumed the same for both), n 
[n + s] is the number of round-trips of photon 1 (2) in the Fabry-Perot, and lfJ is the 
biphoton wave function of equation lb. Then, for any integer s (posit ive, negative, or 
zero), 

( 12) 

This probability of joint detection, at a temporal separation of approximately sd/c, 
when studied as a function of kcA is a two-particle fringe pitttern and it is essentially 
the same kind of function that occurs in single-particle Fabry-Perot intcrferomctry.6 
Note, however, that for the biphoton a factor r2 occurs wherever r occurs in the 
single-photon case and that the period in d is twice as large as for one-photon fringes 
in incident light of the same color. 

A number of comments arc now appropriate. 
First, equations I la and 12 were derived in the ideal case of a monochromatic, 

hence everlasting, pump beam. As a result, there is a superposition of infinitely many 
terms in a (s) for any s, each corresponding to a different transit time through the 
Fabry-Perot for each photon, and hence a superposition of infinitely many birth 
times of the biphoton. As a result, p(s) has the same form for all s, except for the 
factor r41sl . Hence, the two-particle fringe visibility is exactly the same for each value 
of s, even though the probabil ity p(s) falls off as the 4 ls I -th power of r. By contrast, 
in the double three-path interferometer (see previous section), the fringe pattern of 
Pu (s) varied with s (whether one used the arrangement of FIGURE 2 or a sixport 
arrangement) because the number of two-photon paths contributing to the total 
amplitude au (s) depended upon s. 

Second, in a realistic situation, the Fabry-Perot fringe patternp(s) will vary with s 
because the pump beam is not monochromatic and everlasting, so the number of 
superposed birth times contributing to a (s) falls off with increasing Is I · The spatial 
characteristics of the downconversion process may also affect the coherence time of 
the biphoton and could contribute to the variation of the fringe pattern of p(s) .  One 
may, in fact, be able to make inferences from the variation of the fringe pattern of 
p(s) about the spectrum and coherence time of the pump beam and about the 
downconversion process. 

Third, the Fabry-Perot arrangement of FIGURE 3 is impractical because the 
factor t2 in equation l la drastically diminishes the biphoton detection rate. Anton 
Zeil inger (personal communication) has suggested the arrangement of FIGURE 4, in 
which each beam I and 2 enjoys its own separate Fabry-Perot and, most significantly, 
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the source crystal S is now within the Fabry-Perot cavities. A similar arrangement, 
but without the multireflection aspect, has already been employed experimentally.7 
Assuming for simplicity that the lengths of the two Fabry-Perot cavities are the same 
and neglecting reflection and refraction at the crystal interfaces, one finds that 
equations l l a  and 12 still hold with a few changes: (a) the length L and refractive 
index n0 of the crystal produce an effective cavity length, !Ji. -+ !Ji. + 2L (no - 1 ) ; (b) the 
full mirrors at the left end of FIGURE 4 halve the number of powers of r; and (c) 
because the biphoton is born within the cavities, the troublesome entrance factor 12 
does not appear. If the optional mirror of FIGURE 4 is present to reflect the pump 
beam, the pump photon may downconvert "earlier" while going right or "later" 
while going left, as in the superpositions reported in reference 7; equations 1 la and 
12 would have to be modified accordingly. 

M 

2 k0 

M 

op t i on a l  ������v M ..,......._ ___ ............ 

FIGURE 4. The filtered biphoton beams of FIGURE 1, although still proceeding directly away 
from the crystal, are here reflected by two beam-splitters (BS) back through the crystal to the 
full mirrors (M) on the left, where they reflect again, etc. Thus, two separate Fabry-Perot 
cavities are formed, one for each member of the biphoton, with the crystal source in the center. 
The optional full mirror on the right reflects the pump beam back through the crystal, thereby 
providing a second opportunity for downconversion to occur. 

Fourth and last, when each member of the biphoton enjoys its own Fabry-Perot, 
as for example in the preceding paragraph and in FIGURE 4, then two cavity length 
parameters !Ji.1 and !Ji.2 can be varied independently. The evaluation of amplitudes 

a (T) for joint detection of the two photons with a time separation of T = 12 - 1 1 
becomes much more intricate than in equation l l a. Especially if !Ji.1 and !Ji.2 are 
incommensurable, there is no simple rule determining which integral numbers n 1 and 
n2 of round-trips of 1 and 2 in their respective interferometers will make the 
Gaussian of equation 2 nonnegligible. An analytic solution is likely to be difficult, but 
a computational solution may be revealing. 
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INTRODUCTION 

As Schrodinger discovered, the general principles of quantum mechanics imply 
that a quantum state of a many-particle system may be "entangled", in the sense of 
not being a product of single-particle states. The concept of entanglement enters 
some deep investigations of the foundations of quantum mechanics, including the 
argument of Einstein-Podolsky-Rosen and the theorem of Bell . It is basic to the 
program of two-particle (or n-particle) interferometry. Of course, entanglement is 
exhibited by almost all of the interesting quantum states of atoms, molecules, nuclei, 
and condensed matter systems. 

The present report exhibits some mathematical relations among three concepts 
associated with entanglement. The second section proposes a general quantitative 
definition of the degree of entanglement E(<I>) of any n-particle quantum state and 
when n = 2 evaluates £(<!>). (Note that the same symbol <I> is used for the quantum 
state and for the normalized vector in a Hilbert space that represents this state.) The 
third section is restricted to the case of two particles, each associated with a 
two-dimensional Hilbert space, called "the two-by-two case". In this case, it is 
possible to calculate the two-particle fringe visibility Vii ( <I>) and also the quantity 
B( <I>), which is the maximum deviation achievable, when the state is <I>, from the limit 
allowed by one of Bell's inequalities. It is shown that Vi2( <I>) and B( <I>) are monotonic 
increasing functions of E (<I>). 

PROPOSED DEFINITION OF THE DEGREE OF ENTANGLEMENT 

The Hilbert space for representing the states of any n-particle system 1 + 2 + . . .  
(consisting of a finite number or a denumerably infinite set of particles) is the direct 
product space, 

( 1)  

where Hk is the Hilbert space associated with the k-th particle. The dimension of Hk 
is denoted by dk> which may be denumerable infinity or an integer greater than zero. 
By a theorem of Schmidt, 1 any <I> E H can be represented without a loss of general ity 

0This research was supported in part by the National Science Foundation (Grant No. 
PHY-9321992). 
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by a sum with a single index if n = 2, 

d 

<!> = � ai(u lj ® u7J), j= I  (2) 

where ukj is a normalized vector in Ht. the °i factors are positive real numbers 
satisfying 

(3) 

and 

k = 1 , 2. (4) 

It is convenient to define the degree of entanglement of <!> only in the case of 
normalized <!>, 

l l <!> l l = 1 . (5) 
With this restriction, we propose the following definition: 

£(<!>) = (Yi)min ll <!> - x.� 2, (6) 

where x is a normalized product state in H and the minimum is taken over the set of 
normalized product states. There is a considerable amount of conventionality in this 
definition. The norm of <!> - x is a reasonable ingredient in the concept of the degree 
of entanglement, but there is no compelling reason for preferring to use the square of 
the norm rather than some other positive power. Clearly, any monotonic increasing 
function of £(<!>) gives the same ordering of normalized vectors <f>. The proposed 
definition of £(<!>) has the obvious virtue of being zero when <!> is a product state and 
the less-obvious virtue that the least upper bound of E( <!>) is unity. 

To evaluate E( <!>) for n = 2, we take a basis uki in the Hilbert space Ht. using the 
Ukt .  • • •  , ukd terms that appear in equation 2 as the first d basis vectors. If x is a 
normalized vector in H, then it can be written as 

where 

for k = 1 , 2. Then, 

where 

I I <!> - x l l 2 = 11 <1> 11 2 + ll x l l 2 - (<!>, x) - (x, <!>) 

= 2 - 2 � aj(n l ckj 1 ) cos (� e/cj) • J= I k k 

(7) 

(8) 

(9) 

(10) 
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and 

llj = O  for j > d. ( 1 1 )  

By equations 3 and 1 1 ,  the right-hand side of  equation 9 i s  minimized by choosing 6kj 
and cki such that 

� aki = o, ( 12) k 

l ck1 I = 1 ,  (13) 

and 

for j > 1 .  ( 14) 

The conclusion is that 

( 15) 

This result is remarkable not only for its general ity, but for its independence of the 
values of aj for j > 1. Clearly, 

glb E(<I>) = 0, ( 16a) 

and this value is attained when a1 = 1, that is, when <I> is a product state. For a fixed 
finite d, 

lub E(<I>) = 1 - ( 1 /,/d), (16b) 
which is attained when all the coefficients aj (j = 1 ,  . . .  , d) are equal. If d is infinite, 

lub E(<I>) = 1 ,  

but this l imit i s  not attained for  any <f> .  

DEVIATION FROM mE BELL LIMIT AND 1WO-PARTICLE 
FRINGE VISIBILI1Y 

In this section, we restrict our attention to the two-by-two case, 

dim H1 = dim H2 = n = 2. 
In this case, Gisin2 considered the Bell inequality, 

(16c) 

( 1 7) 

- 2  s E(a , b) + E(a, b ' )  + E(a ' , b) - E(a ' , b ' ) s 2, ( 18) 

where a is an abbreviation for the bivalent observable represented by the operator A0 
on Hi .  

( 1 9) 

with a being a normalized vector in H1 ; b is an abbreviation for an analogous 
observable on H2; E(a ,  b) is the expectation value of these two observables in a 
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specified ensemble; and E(a ,  b ' ), etc., have similar meanings. Gisin showed that if cl> 
is entangled, then there exist a, a ' , b, b ' such that the expectation values computed 
using the quantum state cl> will violate inequality 18. Furthermore, he showed that the 
maximum violation of the inequality for fixed cl>, but variable a ,  a ' , b, b ' , is3 

B(c!>) = 2{ [ 1  + 4ai{ l - ai)] 1 12 - l }. (20) 

Comparison of equations 15 and 20 shows that each is a monotonic increasing 
function of the other in the relevant range of ai. that is, a1 � 1 /./1.. 

Another quantity associated with entanglement is the two-particle interferomet
ric fringe visibility, investigated by Jaeger, Horne, and Shimony4 and by Jaeger, 
Shimony, and Vaidman.5 They considered a quantum state cl> in the two-by-two case 
and an experimental arrangement in which a pair of transducers (mathematically 
represented by unitary unimodular matrices T1 and T2) connect the initial states with 
two pairs of output beams. If one focuses attention upon one specific output beam 
for particle 1 and one specific output beam for particle 2, then one can consider the 
probability of joint detection by ideal detectors placed in the specified output beams, 
denoted by Pt2(T1T2c!>). One can also consider the probabilities P;(T1T2c!>) (i = l, 2) 
of single detection in the specified beams. In order . .to extract correlations, one can 
define a "corrected joint probability" as 

There is a standard expression for the one-particle interferometric fringe visibility, 

(i = 1, 2), (22) 

but the two-particle interferometric fringe visibility is most appropriately defined in 
terms of the "corrected" probabilities: 

(23) 

In both of these expressions, the maximum and the minimum are computed by 
varying T1 and T2 with cl> fixed.6 In reference 5, it is found that 

Vi2(c!>) = 2a1 ( 1 - ai } t t2. 

It is obvious that Vi2(c!>) is a monotonic increasing function of E(c!>) in the relevant 
range of a1 • 

It is satisfying that, in the two-by-two case, three quantities connected with 
entanglement, but defined in entirely different ways, turn out to be monotonic 
increasing functions of each other. This result may be of heuristic value in future 
research. As shown in the previous section, E(c!>) can be defined for any quantum 
state of a many-particle system and this quantity may be a guide to generalizations of 
B(c!>) and Vi2(c!>) beyond the two-by-two case. 
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INTRODUCTION 

We present experimental counting distributions iind interevent-time histograms 
for photon detections from spontaneous parametric downconversion, 1 both margin
ally and as coincidences. The experiments were conducted with a lithium-iodate 
downconverter pumped by 413-nm krypton-ion laser light. The data are consistent 
with Poisson statistics; a model leading to this result is presented. 

EXPERIMENT 

A block diagram of the experimental setup is shown in FIGURE 1. Light from a 
single-mode Kr+-ion laser, operated at 413 nm and attenuated to 0.75 mW, is 
directed by a lens onto an / = IO-mm-long 42.8°-cut lithium iodate (Lil03) nonlinear 
optical crystal, oriented for type-I (ooe) phase matching. Unconverted pump pho
tons pass straight through the crystal and enter a beam dump. Downconverted 
photons emerge at angles to the pump beam determined by energy- and phase
matching, with degenerate photons emerging symmetrically in a cone of full angle -
15°. By using apertures for the downconverted beams of about 2-mm diameter, we 
selected out desired degenerate photon pairs2 with center wavelengths of - 826 nm. 
The entangled photon pairs were directed to two passively quenched avalanche
photodiode (APD) counting modules. A pulse counter and a time-interval counter 
recorded events from the detectors. Coincidences were generated by passing the 
sequence of standardized pulses from the two detectors through a 10-ns AND gate. 
The coincidence events were also fed to the pulse and time-interval counters for 
statistical analysis. 

aThis work was supported by the Office of Naval Research under Grant No. N00014-93- 1 -
0547, by the Joint Services Electronics Program through the Columbia Radiation Laboratory, 
an9 by NATO Collaborative Research Grant No. CGR-910571 .  

To whom all correspondence should be  addressed. 
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In the upper portion of FIGURE 2, we present the marginal photon-counting 
distribution p(n, T) obtained from one of the twin beams (detector A) using a 
counting time of T = 1 ms (solid dots). Using a total of N = 50,004 samples, the mean 
number of photocounts was found to be n = 20.238 and the Fano factor was F = 

Var(n)/n = 0.974. 
The solid curve in the upper portion of FIGURE 2 is a Poisson distribution with 

the same mean as the data. The standard deviation of the Fano factor estimate for a 
Poisson distribution based on N samples is known to be = J2/N so that, for N = 
50,004, F is expected to lie between 0.994 and 1 .006. The Poisson distribution fits the 
data quite well, but the observed value of F ( = 0.974) is too low. 

The discrepancy is readily resolved by making use of the nonparalyzable dead
time-modified Poisson (OTMP) counting distribution.3•4 This distribution is, in fact, 
appropriate because the electronic pulses produced by the APO-module circuitry 
incapacitate the counting system for a duration Td = 1 µs following the registration 
of a photon. The theoretical expression for the OTMP Fano factor is5 

Kr+- ION 
LASER 

AND 
GATE 

PULSE 
COUNTER 

( 1 )  

& 
TIME-INTERVAL 

COUNTER 

FIGURE 1. Block diagram of the experimental arrangement. The pulse-counter electronics 
produces a pulse of finite duration that acts as a dead time Td· 

Using the observed value for F, we obtain Td = 0.64 µs, which is in reasonable accord 
with the APO-module pulse duration. Photon-counting distributions were obtained 
using counting times T ranging from 5 x 10-1 to 2 x 10-3 s, and the DTMP counting 
distribution was found to describe properly the data in all cases. 

The marginal interevent-time probability density functionp(t ) from detector A is 
shown in the lower portion of FIGURE 2 (solid dots). The histogram bins are 1 µs in 
duration and the number of samples is N = 100,000. The data are well fit by a straight 
line that, on this semilogarithmic plot, represents an exponential distribution with 
the same mean as the data. The only exception is the initial data point, which lies 
below the exponential curve, and this is a result of dead time. The observed mean 
interevent time of t = 50.336 µs accords well with the expected value of 

(2) 

using the parameters determined from the counting distribution. 
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FIGURE 2. Marginal photon-counting distribution p(n, T) versus number of counts n at the 
output of detector A (upper panel, solid dots): the solid curve is the Poisson distribution with 
the same mean as the data. Marginal interevent-time probability density function p(t ) versus 
interevent time t at the output of detector A (lower panel, solid dots): the solid curve is the 
exponential distribution with the same mean as the data. Both results are consistent with a 
photon stream at the input to the detector that obeys a Poisson point process, observed by a 
detector with dead time. 

We conclude that the photocount occurrences observed at the output of detector 
A are well modeled by a dead-time-modified Poisson point process. This is consistent 
with a photon stream at the input to the detector described by a Poisson point 
process. 

The marginal photon-counting distribution and interevent-time probability den
sity function for detector B are shown in FIGURE 3, again using a counting time of 
T = 1 ms (solid dots) . In this case, the mean number of photocounts was n = 9.501 ,  
about half that in detector A (probably as  a result of  the different quantum 
efficiencies of the two detectors). The solid curve in the upper portion of FIGURE 3 
represents a Poisson distribution with the same mean as the data. Again, it fits well, 
but the observation that F = 0.983 < 1 suggests the use of the DTMP counting 
distribution. Using this value for F in equation I leads to Td = o_ss µs, which is again 
reasonable. The observed mean interevent time i = 102.32 µs from detector B also 
accords well with the value expected from equation 2. Thus, the photon stream 
impinging on detector B also appears to be describable by a Poisson point process. 
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The statistics of the coincidences are displayed in FIGURl': 4. Using a counting 
time of T = 2 ms (solid dots), the coincidence-counting distribution is shown in the 
upper panel. Using a total of N = 25,002 samples, the mean number of coincidences 
was 'ii = 3.206 and the Fano factor was F = 0.988. The solid curve is a Poisson 
distribution with the same mean as the data. Similar results were obtained using 
counting times T ranging from 5 x 10-7 to 2 x 10-3 s. We can therefore also invoke 
the DTMP counting distribution to describe the coincidence data. Using the 
observed value for F, we infer that Td = 3.8 µs, which is somewhat greater than the 
values obtained for the rates of singles. The reason for the increased dead time in the 
coincidence case is unclear. Except for the initial point, the coincidence interevent
time probability density function is also well fit by an exponential distribution. The 
mean interevent time i = 623.77 µs is in accord with equation 2. Thus, the coinci
dences are also well modeled as a DTMP, which is consistent with the photon pairs 
arriving at the detectors as a joint Poisson point process. 

THEORY 

The theory developed by Yurke and Potasek6 for the photon statistics of 
parametrically downconverted light is based on the assumption of a classical pump 
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FIGURE 3. Same as FIGURE 2, but at the output of detector B. 
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applied for a time interval between 0 and t and of single signal and idler modes of a 
cavity that are initially in the vacuum state. Writing the Hamiltonian for the process, 
they showed that the final (pure) state is one for which the marginal photon-counting 
distributions for each of these modes constitute the Bose-Einstein distribution, and 
the numbers of photons in the two modes are always the same. In the framework of 
this model, the mean number of photons is a monotonically increasing function of 
time because the emitted photons continue to build up in the cavity. 

(!) z ,.._ 0.25 i== .... z c:: 5 Ci: 0.20 
(.) z 
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z :::> w Ill Q Ci 0. 1 0  
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FIGURE 4. Coincidence-counting distribution p(n, T) versus number of coincidences n at the 
output of the AND gate (upper panel, solid dots): the solid curve is the Poisson distribution with 
the same mean as the data. Coincidence interevent-time probability density functionp(t ) versus 
interevent time t at the output of the AND gate (lower panel, solid dots): the solid curve is the 
exponential distribution with the same mean as the data. These results are consistent with the 
photon pairs arriving at the detectors as a joint Poisson point process. 

These results can be adapted to a cavityless open system in which the pump 
travels continuously through the downconversion crystal and the emitted photons 
propagate away from the interaction region. We consider the continuous classical 
pump wave as divided into N = Th, contiguous segments, each of which has a 
duration given by the transit time T, through the crystal. Because each transit-time 
segment may be described by the Yurke-Potasek cavity formulation with l = T,, it will 
give rise to a Bose-Einstein-distributed number of photons in each of the downcon-
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verted beams. Random deletion, associated with loss and finite detector quantum 
efficiency, leaves the form of the Bose-Einstein distribution intact.7 The total number 
of photons n generated in each beam, in the counting time T, is therefore a sum of N 
independent Bose-Einstein random variables. The result is the well-known negative
binomial distribution8 with a mean n = AT that is the sum of the individual means 
and with a variance given by 

Var(n) = ii + (�) = ii( l  + AT,) .  (3) 

The quantity AT, represents the mean number of photons emitted in a single transit 
time. In our experiments, A =  n/T = 20,000 and T, = lie = 30 ps, so AT, = 6 x 10-1• 
The fact that AT, is small means that Var(n) = n in equation 3, as for Poisson 
statistics. Stated differently, the mean number of photons emitted into each downcon
version beam in a transit time is sufficiently small such that the probability of 
generating more than one photon is negligible; thus, the overall sequence of photon 
emissions is consistent with a Poisson point process. If it is desired to observe the 
bunching accompanying Bose-Einstein emissions, AT, would have to be increased 
significantly. 

The results described above assume that the pump is classical ; that is, it exhibits 
no fluctuations. It also applies if the pump exhibits phase fluctuations with coherence 
time Tc , but is effectively sinusoidal during any transit time ( T, < Tc ) . 

Using the foregoing results, we conclude that the coincidence events must arise 
from the intersection of two initially identical point processes that have been 
independently randomly deleted. Because the relevant point processes all maintain 
their form under random deletion,7 the surviving pairs of events comprising the 
coincidences follow the same statistics as the marginals, albeit with lower mean. For 
the parameters of our experiment, joint Poisson coincidences ensue, as confirmed by 
our observations. 

More comprehensive results for the statistical behavior of the downconverted 
l ight require the use of a multimode approach. Joobeur et al. 9 constructed a theory of 
downconversion based on an interaction Hamiltonian that couples a pump wave of 
finite spectral width with a nonlinear crystal of finite spat ial width I. The downcon
verted light is not cross-spectrally pure. Marginal signal and idler spectral densities, 
denoted Se, (w, ) and Se; (00;), respectively, have been calculated for different observa
tion directions. These can be used to obtain a coherence volume V,. and a degrees-of
freedom parameter Mv = V/Vc characterizing the marginal count variances. 

The signal-idler cross-spectral density Se,,e; (w, ) has also been obtained.9 It is 
characterized by entanglement volumes V. and V; and associated spatiotemporal 
entanglement degrees of freedom M, and M; that determine the joint (and coinci
dence) statistics. One important result has already emerged from ·using this ap
proach: the normalized coincidence rate R,; has been found to be suppressed 
substantially below unity unless M, and M; are both » 1 .  

All of  this notwithstanding, for the range of  parameters used in our experiments, 
the data are consistent with a simple model in which the pump may be regarded as a 
sequence of primary photons obeying Poisson statistics, each of which splits into a 
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pair of downconverted photons that are created essentially simultaneously. Models 
of this type have been considered previously in other contexts. 10-12 
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This report is organized as follows: First, I will make precise the concept of 
completely entangled states, which will be referred to as "EPR states" because of 
their relevance to discussions of the Einstein-Podolsky-Rosen problem. 1 I wil l derive 
some interesting physical consequences of the definition and then show that orthonor
mal sets of EPR states can be chosen in such a way that they also have a remarkable 
finite Heisenberg group structure that makes it possible to interpret them as points of 
a lattice phase space. A by-product will be an improvement of recently suggested 
cryptographic schemes.2•3 I will then use the lattice phase space structure to show 
that certain quadratic Hamiltonians can induce EPR states to "hop" from one site to 
another at discrete time intervals and that the solution of the SchrOdinger equation 
for these Hamiltonians exhibits peculiar phase oscillations that are expressed by the 
number-theoretic Legendre symbol. The Legendre symbol has a celebrated symme
try property given by Gauss' law of quadratic reciprocity, which now manifests itself 
as a symmetry of EPR states whose physical significance we do not yet understand. 
Indeed, as we examine the phases that appear for more general quadratic Hamilto
nians, there appears to be a fascinating relationship between the structure of EPR 
states and the theory of quadratic Diophantine equations in number theory, of which 
the law of quadratic reciprocity is the precursor. 

Consider a state l u) of two spin-J particles so that each partner inhabits a Hilbert 
space of dimension N = 2J + 1 .  Let l a) be the one-particle states. We use the 
notation I i ) (j = I ,  2, · · · , N )  to indicate an arbitrary one-particle basis with an extra 
I or 2 index when it is necessary to specify the particle in question. To carry through 
the familiar EPR argument, one requires the following properties of the state l u) : 
First, there is a probability of I IN to find particle- I in any state I a) . Second, there is a 
one-to-one correspondence l a) --+ l a) such that the conditional probability 9'(a l a) 
is unity for finding particle-I in state I a} when it is given that its partner is in state I a} . 
States with this property are said to be completely entangled states or "EPR states". 
The structure of EPR states is determined by the following theorem: 

THEOREM I: A necessary and sufficient condition that two spin-J particles form 
an EPR state I u) is that there exists an anti unitary one-particle transformation W on 
particle-2 such that 

N 
i u) = N- 112 � l j, I} W l j, 2) . 

j= I 

687 

( 1 )  
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The proof of sufficiency depends on first establishing that the expression on the right 
of equation 1 is independent of the basis. To prove basis-independence, note that if 
one makes a change of basis from I i )  to l j ' ) there will be a unitary matrix Cik such 
that 

1 n = � cjk l k' ) .  k (2) 

However, from antiunitarity of �. we have � l j )  = I,cj; � I / ), in which the " • "  
signifies complex conjugation. Thus, summing on j and using the unitarity of C, i t  
follows that the right side of equation 1 is unchanged if the j in both kets is replaced 
with j ' . Next, one deduces the EPR property as follows: Let ir(a) = l a)(a l be the 
projector on the state I a). Then, the probability of finding particle-1 in the state I a, 1 )  
when the two-particle system i s  in the state l u) will be Tr[ir(a, l )ir(u)] and, to 
evaluate this, we can change the basis in equation 1 so that I a) is one of the basis 
elements. Hence, only the a term survives in the trace, which evaluates to 1 IN as 
required. Then, if we choose 

l a) = � l a), 

the conditional probability 9'(a l a) is given by 

_ Tr[ir(a, l )ir(a, 2)ir(u)] 
9'(a l a) = 

Tr[ir(a, 2)ir(u)] = l ,  

(3) 

(4) 

where we again used the basis-independence and chose a basis containing I a) to 
compute the trace, thereby verifying the second required property for EPR states 
and completing the proof of sufficiency in theorem 1. The proof of necessity is a bit 
more involved and is given in APPENDIX A. 

Let us now explore some consequences of this theorem. First of all, we observe 
that every antiunitary operator � can be written in the form, 

� = u.9; (5) 

where .:T is some fixed antiunitary operator and u ranges over the set of unitary 
operators. Thus, we may arbitrarily select .:T to be the time-reversal operator and 
then let u range over the group UN of unitary transformations on particle-2. This 
justifies using u as a label for the EPR states as we did on the left side of equation 1. 
Hence, the EPR states form a manifold in the two-particle Hilbert space whose 
geometry is that of the set of one-particle unitary operators. There will be N2 linearly 
independent EPR states that thus span the two-particle spin space. However, it is 
important to keep in mind that the EPR states do not form a linear manifold 
because, in general, l inear combinations of entangled states will not be of this form. 
Indeed, the sum of two EPR states can be a factorized state that clearly does not 
exhibit EPR correlations. The fact that two-particle states can be labeled by 
one-particle operators was observed long ago by von Neumann4 and was extensively 
studied by Herbut and Vujcic.5•6 We shall use their term correlation operator to refer 
to u. Computations involving states of the form of equation 1 can be done using the 
representation of the state by its correlation operator because of the readily verified 
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identity: 

(6) 

Moreover, we can describe the transformation of an EPR state l u) by the action of a 
unitary transformation v acting on particle-2 through the relation, 

v l u) = l vu). (7) 

Thus, one makes new EPR states from old ones, not by adding vectors, but by 
multiplying one-particle unitary operators, thereby changing the form of the corre
spondence expressed by equation 3. When no confusion will result, we shall drop the 
ket notation and adopt the following convention: u will indicate either an EPR state 
or the operator that produces that state from some arbitrarily selected fiducial EPR 
state through a transformation on particle-2. 

Before going further, it may be helpful to see how the above general results are 
expressed in the familiar case of N = 2, that is, for spin-Yi particles. Consider the four 
orthogonal entangled states: 

w<1 > = 2- 1 121 I a, 1) I a' ,  2) - l a ' ,  1) I a, 2)), w<2> = 2- 1 121 l a, 1) l a' ,  2) + l a ' ,  1 )  I a, 2)), 

'{1<3) = 2- 1 12{ 1 a, 1) l a, 2) - l a' , 1) l a ' ,  2)), w<4> = 2- 1 121 l a, 1 )  l a, 2) + l a ' , 1) l a ' , 2)), 

(8) 

in which a and a' label an arbitrarily selected pair of orthogonal spins. (Observe that 
the sum of the first two is a factorized state .) For spin-Yi particles, one can define the 
time-reversal operator Y so that in a particular basis we have 

YI 0 = I t ), YI t )  = - 1 0- (9) 

Thus, '11< 1 > (the familiar spin-0 state) is the special case of equation 1 where u is the 
unit operator in equation 5. Observe how the four states w<n (j = 1, 2, 3, 4) are 
obtained from '11< 1 > by applying, respectively, the four unitary transformations, /, u, -r, 
O'T, to particle-2, where I is the unit operator and 

(J' 
= 
(- 1  0) 

0 1 ' (10) 

The rules (equation 3) relating I a) to I a) in the four cases are 

t = /, O', T, O'T. ( 1 1 )  

Although i t  i s  not the principal thrust o f  the present discussion, i t  i s  perhaps 
worth remarking here that there is another important fact that emerges from 
theorem 1 that has been pointed out elsewhere:7 Suppose we prepare a particle-I  
beam in the state I a) noninvasively, that is ,  by doing what one does in the EPR 
argument, admitting to the beam only the particles in an EPR state whose partners 
have passed a filter for the correlated state I a) . Let us then compute the attenuation 
of such an l a) beam when it is passed through a filter for the state I �) . If one uses 
equation 1 to compute this, the result is I (� I a) 12; that is, it is precisely the same result 
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that one would have obtained if the I a) beam had been prepared invasively by first 
passing it through a filter for this state. Thus, a corollary of theorem 1 is that 
quantum mechanics has a "Markovian" property that it shares with classical mechan
ics, by which I mean that it makes the same prediction for different methods of initial 
state preparation. In the absence of such a property, the notion of a "state" would be 
ambiguous. On the other hand, it can be shown 7 that this Markovian property cannot 
hold for any locally realistic theory that reproduces the observed one-particle beam 
result (Malus' law). In particular, the "toy" hidden-variable model given by Bell,8 
which he used to argue for the necessity of two-particle experiments, is actually 
non-Markovian. The importance of this obsetvation is that it supports the conclusion 
drawn by Griffiths9 from a consistent history analysis showing that the counterintu
itive aspect of quantum mechanics is already revealed in single-particle beam 
experiments. Thus, if one believes Matus' law and that nature is Markovian (as both 
classical and quantum mechanics agree it must be), then two-photon correlat ion 
measurements10•1 1  are unnecessary for the ruling out of locally realistic theories. To 
put the matter positively, one may say that what these experiments do accomplish is 
to verify that nature is indeed Markovian. 

Let us now return to our main theme: the analysis of EPR states in the general 
case with arbitrary N. It is the abil ity to transform J;PR stales by action on just one of 
the two particles that makes the cryptographic schemes possible. For this purpose, 
"Alice" and "Bob" agree on an orthonormal set of EPR states or, equivalently, upon 
the set of N2 operations on particle-2 that will transform the fiducial state into one of 
this set. Alice prepares one of the states and sends particle-2 to Bob while retaining 
particle- I .  Bob applies one uf lhe agreed unitary operators to particle-2 and returns 
it to Alice. Because she possesses both particles, she can determine the state and 
hence what Bob did by a general ized Stern-Gerlach measurement. No eavesdropper 
can get information because it is encoded into the relative quantum mechanical 
phase. 

Because the operators in question belong to the group UN, we now ask the 
following question : can one select N2 operators from UN so that they not only 
generate the required N2 orthogonal states, but also give the ray representation of a 
finite subgroup :ff within UN. If this is possible, the communication scheme gains 
flexibility by virtue of the fact that Bob (or Alice) can repeatedly apply the operators 
without causing the state to leave the set of N2 states that are recognizable by Alice. I 
shall next demonstrate that not only does such a possibility exist, but that the species 
of finite group generated is uniquely determined and has an elegant, physically 
interpretable structure. 

One must first observe that the qualifier "ray" is essential; that is, there will be no 
such group :ff for which we obtain a "true" representation for the following reason: 
clearly, :ff cannot be Abelian because, with N x N matrices, at most N linearly 
independent ones can commute. Now, suppose that N = p, where p is prime. It is 
known12 that the only groups of order p2 are Abelian, namely, the cyclic group of 
order p2 and the direct product of two cyclic groups, each of order p. The first 
possibility does not give a non-Abelian result even when we extend to a ray 
representation by allowing arbitrary phases. However, the second one does. To see 
why, one need only recall how the coordinate and momentum operators X, P of a 
particle each generate Abelian groups eiaX, eifJP that also commute with one another 
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except for a phase multiple. The resulting group is the so-called Heisenberg group 
over the real numbers. This immediately suggests how to construct the solution in the 
case where N is prime and leads us to expect a finite Heisenberg group over the 
integers mod(p ) . The analysis for the case of nonprime N is complicated by the fact 
that in such cases there exist EPR correlations between subspaces of more than one 
dimension (nontrivial divisors of N) as well as the familiar type of correlation 
between pure states. The theory of higher manifold entanglement is under investiga
tion by myself, but is not yet complete. Hence, I shall confine myself to the case of 
prime N for the remainder of this report and shall replace N by p to keep this 
restriction in mind. It is to be noted that the integers mod(p) form a field :Zp, which 
means that all matrix manipulations can be done just as for the reals, remembering 
only that one may not divide by multiples of p. (We shall not have to compute 
eigenvalues, so the fact that :Zp is not algebraically closed will not cause problems.) 

From the analogy with the eiaX, eilY' operators, let u, T be unitary operators in the 
p-dimensional particle-2 Hilbert space Jrf,2> satisfying 

<TT = WT<T, ( 12) 

These can be realized by introducing a basis jj ) [j = 0, 1 ,  . . . , (modp)) in ;rf> and 
letting 

u jj) = wi lj ), T jj) = jj + l ) .  ( 13) 

(Note that T IP - 1) = 1 0).) We now define the p2 u-matrices of our EPR basis to be 
u(j), where j = (j, k) withj, k = 0, 1 ,  . . . , (p - 1) and 

u(j ) = e-i1rjk1PuiTk. ( 14) 

With this choice of phases, we have the simple group multiplication law: 

u{j )u{ j ' )  = ei'llil\j ' /Pu(j + j ' ), j/\j ' = jk '  - kj ' ,  ( 15) 

which is the analogue mod(p) of the quantum mechanical rule for multiplying 
operators of the form u(a, �) = ei(aX+IY'>. Note that the phase factor on the right is 
such that the operators on the left commute whenever j and j '  are linearly 
dependent, whence in particular 

u(nj )  = [u( j ) ]n, nE:Z. 

Using the familiar character identity 

p- 1 
L e2mn ,lp = snO• n=O 

where the Kronecker symbol is understood as mod(p), one obtains 

Tr[u(j )] = pSJ ,o• 

where o is the zero vector. This gives the trace-orthonormality of the u(j) terms. 

(16) 

( 17) 

( 18) 

The Heisenberg group structure that we have obtained shows that the states of 
the lattice constitute a set of coherent states associated with a phase space on the 
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field :Zp. It is worth noting that there is a striking difference between this and the 
phase space over the real numbers .'Ye in that the former are mutually orthogonal, 
whereas the latter are not. Thus, the coherent states on :Zp give a complete rather 
than an overcomplete characterization of compatible measurements. We shall 
denote this lattice as :if,. 

The states of :if, are generated by the actions of the u(j ) on a fiducial state and 
thus we need only consider what happens to these operators when the two particles 
evolve under some specified time evolution. If unitary transformations Vi, Vi are 
applied to the two particles, respectively, then it is shown in APPENDIX B that u(j ) is 
transformed by 

u(j) -+ VzU{j)Vi. ( 19) 

Note that the trace-orthogonality of the u terms is preserved for any choice of V., Vi; 
however, to preserve the Heisenberg group structure, we must require 

V2 = Vj" 1 . (20) 
Thus, we shall restrict to dynamical laws of the form, 

V2 = U(t ), Vi = u-1(1 ).=  U(..!1 ), (21)  

which means that the two particles evolve as they would if they were antiparticles of 
one another. 

The phase space analogy now suggests that we look for dynamical processes that 
will cause the states on the lattice :if, to hop from one point to another at discrete 
time intervals. This is a difficult constraint to implement for it requires 

U(t )u( j)U- 1(t ) = u[j(t ) ], t = 0, 1 , 2, . . . , (22) 
so j(t )  defines an orbit on :if,. Indeed, it is not difficult to see that this can only be 
achieved by a linear transformation on j. For if one puts u(j ' )  = Uu( j )u- 1 , one may 
check from equations 15 and 16 that, for any integers n i . n2, we must have 

(23) 
In other words, we must have the following theorem: 

THEOREM 2: 

Uu(j )u- 1 = u(Lj ), (24) 
in which L is a linear transformation with integer coefficients mod(p) that leaves the 
cross product invariant mod(p ). Thus, L is a member of the group SL2( :Zp)· 

We then see that the quantum mechanical evolution operator U will be associ
ated with a linear transformation L on the finite two-dimensional lattice :if, of 
integers mod(p) and we note that SL2(2:p) is just the :if, analogue of a symplectic 
(canonical) transformation defining a hopping orbit at t = 0, 1, 2, . . .  , that is, 

j -+ j(t ) = L(t )j ,  

on the two-dimensional phase space lattice :if,. 
(25) 
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An elegant relationship between the quantum evolution generated by U,, and the 
:&;, hopping described by the corresponding L will now be obtained: We can guess at 
the explicit form of U = u_,, that satisfies equation 24 for various choices of L from 
our experience with X, P in quantum mechanics. There, it is quadratic Hamiltonians 
2 in X, P that generate the linear transformations of X, P, that is, 

ei"'!'e-ur = a 'X + b'P, 

2= AP2 + B(PX + XP)  + CX2. (26) 

Moreover, ei2 can be written as an integral over ei(aX+l31') in which the Fourier 
coefficient is the exponential of a quadratic form in a, ft Because the u(j ) terms that 
are the analogues of ei(aX+l31') are also complete over the p2-dimensional vector space 
of p x p matrices, we know that U,, can be similarly expressed as a linear combina
tion of them. We naturally guess that the coefficient will once again be the 
exponential of a quadratic form j � j in which � is a two-by-two matrix and the tilde 
indicates a row vector. Indeed, we find that for each L there will be a two-by-two 
matrix �" such that 

u_,, = � exp{('n'i/?p)j �_,,j )u( j )  
j 

(27) 

or possibly a degenerate form of this in which the double sum reduces to a simple 
sum. A straightforward approach to the determination of the relationship between 
�,, and L exploits the fact that the group SL2(:Zp) is generated13 by p, x with 

p = (� � ) ' x = G �) . (28) 

One readily verifies that the corresponding UP and Ux will be degenerate forms of 
equation 27. Specifically, one verifies using equation 17  that the following formula 
holds for any powers of the generators: 

p- 1 
Upm = � e-'llimi21Pu(j, 0), 

j=O 

p- 1 
Uxm = � e1limk2IPu(O, k), 

k=O 
m = I, 2, . . . . (29) 

Hence, one might, in principle, find a lf1 for any L by decomposing it into a product 
of powers of p and x and then one can use equation 29. However, simpler and more 
instructive methods are available as indicated in APPENDIX C. 

Because our primary purpose here is to clarify the relationship between the 
quantum dynamics determined by U and the associated classical motion on the 
lattice determined by L, it will suffice to focus on the simplest example, namely, the 
dynamical process obtained by iterating one of the group generators (equation 28) . 
The corresponding quadratic form gives us the lattice analogue of free-particle 
motion because the associated quadratic form is one that behaves like the frce
particle Hamiltonian P2• It will turn out to simplify matters if we consider a sequence 
of even numbers and examine 

t = 0, 1, . . . .  (30) 
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In quantum mechanics, the solution of the Schrodinger equation entails the explicit 
computation of the time-evolution operator. In the case of equation 30, this means 
that we must explicitly compute the right side for any choice oft. Now, we note that it 
follows from equation 24 that Uri" must coincide with (Up)"' up to a phase. Hence, 
equation 30 can be written as 

(31) 

in which we have an explicit formula for UP'11 from equation 29 with m = 2t; thus, 
"solving the Schrodinger equation" reduces_ to determining the phase ei•<1>. As we 
shall now see, this phase turns out to be extraordinarily interesting. First, from 
equation 29, note that the taking of traces on both sides of equation 31 will give 

(32) 
If one inserts the left side of equation 29 for UP (with m = 1 ), there will be a product 
of sums indexed by ji ,  ji, . . .  , j'2l containing u(h  + · · · + j'2J, 0) that has zero trace 
unless the sum of the j terms is 0 mod(p ) . One can then use equation 17 to pick out 
this term (a standard trick) and one obtains 

where 

Tr[(Up)'2lJ = L [F(n)P', -
n 

F(n) = L e-i ... /l.'re2winj/p = S( -2p)ei"'n2ip, 
j 

S(p) = L e2'flin21P, 
n 

in which the second step results from completion of the square. Thus, 

ei•<1> = p-• cs( - 2p)J'2lS(plt). 

(33) 

(34) 

(35) 
The function S(x) is known as a Gaussian sum and such sums are fundamental in the 
solution of quadratic Diophantine equations. Fortunately, thanks to Gauss (who is 
reputed to have worked for five years to prove it), 14 we have a beautiful formula for 
S(p/t) whenp is an odd prime, namely, 

S(p!t) = (�) Jf-!f, 
where the Legendre symbol is defined by (�) = {: � : for t a square mod(p) 

for t not a square mod(p ) . 

(36) 

(37) 

Now suppose that our U(t) is generated by a Hamiltonian. If we add an arbitrary 
constant E to that Hamiltonian, it will introduce an extra factor e-2iEt in equation 31 .  
Hence, the argument of  the factor [S( -2p)]2t can be  "gauged" away along with the 
I-independent factor in equation 36, which is removed by changing the time origin. 
Thus, due to the gauge, we have established the extremely surprising fact of 
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theorem 3: 

TuEOREM 3: 

ei•(1) = (�) , (38) 

that is, the time-evolving phase of the "free" EPR state follows a pattern of + l 's and 
- l 's in a manner with basic number-theoretic significance. Although the notion of 
"sign" in the usual sense does not exist in the field Zp, we can give it meaning if, as 
for real numbers, we define a positive number as one that is the square of something, 
whereas a negative number is one that is not. Thus, the Legendre symbol extends the 
notion of "sign" to Zp. It can also be shown that for p > 2 there are just as many 
squares (quadratic residues) as nonsquares. Therefore, we have obtained the quite 
pleasing result that the analogue of free-particle motion in the EPR lattice is 
characterized by a wave function with the Zp counterpart of a sign-alternating phase. 

The computation of the Legendre symbol is facilitated by a factorization law that 
reduces it to a product of Legendre symbols whose upper members are the prime 
factors of t. These in turn obey the celebrated and profound Gaussian law of 
quadratic reciprocity: 14, 1s 

(�*) = (�) , p* = (- l )(p- l )/2p. (39) 

One cannot avoid the obvious question here as to what this symmetry means 
physically when the Legendre symbol appears in determining the dynamical phase 
evolution of EPR states. I do not know the answer. 

It is clear from the above and from the discussion in the appendices that, when we 
come to investigate and classify more general lattice Hamiltonians, we will encounter 
generalized Gaussian sums (theta-series)13•15 and will have to invoke the general 
theory of quadratic Diophantine equations. It thus appears that we have just 
scratched the surface of fruitful connections between the lattice dynamics of EPR 
states and one of the richest areas of contemporary mathematics. 
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APPENDIX A 

Proof of Necessity in Theorem l 

Let I S } be an EPR state with each particle having spin J. Here, x, y are used as 
labels for one-particle states and Ix} -+ Ii} is the map associated with the EPR 
correlation that is presumed to exist. Thus, IS .. , 1} = (i, 2 1 S}, I S,.,, 2} = �. 1 I S} (which 
make sense notationally because I S }  is a two-particle state). Then, �. 1 I Sx, 1 }  = 

(i, 2 I Sx, 2}. One checks that the perfect correlation condition can be expressed in the 
form, 

(40) 
and is equal to the same expression with 1 replaced by 2. Hence, one deduces 

I Sx, 1} = 'Y(x) Ix, 1 }  and I s,.,, 2} = 'Y(x) Ii, 2}, (41) 
where 'Y(x) is a nonvanishing complex number. Th�n, 

'Y(x)(y, 1 Ix, 1 } = (y, 1 1 Sx, 1 )  = (i, 2 ly, 1 1 S} = 'Y(y)(i, 2 1.Y, 2}. (42) 
Multiplying the left and right members by the complex conjugate 'Y(x)* and noting 
that 

'Y(x) *�, 2 lj, 2} = 'Y(x)(ji, 2 Ii, 2}* = 'Y(Y)*(y, 1 Ix, l }, (43) 
it follows that 

I 'Y(X) I = I 'Y(Y) I if � ly} = 0, (44) 
so 'Y(x) is unimodular up to a constant factor. Hence, by redefining Ii, 2} to absorb the 
unimodular factor 'Y(x), it follows from equation 42 that the map Ix} -+ Ii} is 
antiunitary. One may then select any basis to express I S } in the form, 

N 

I S } = L U;j l i, l } l j, 2}, (45) 
i, j= I 

and can use equation 41 to show that a;; = 8;;1../N, thereby giving the theorem. D 

APPENDIX B 

Behavior of u-Operators under Dynamical Transformation of Particles 

If particles 1 and 2 are transformed by unitary operators Vi and Vi, respectively, 
one sees from the fact that the expression in equation 1 is invariant to a change of 
basis that the effect is the same as transforming the correlation operator by 

where V* a .;r-v-• y- • . (46) 
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If V is a unitary time-evolution operator associated with a time-reversal invariant 
Hamiltonian, then one sees that 

V*(t) = V(t) (47) 

as asserted. 

APPENDIX C 

Relation of tf.1 to L 

Suppose that in equation 27 we put 

tf.1 = (� �) ' (48) 

with integers a ,  b, c and with the following restrictions on the discriminant .:1 = b2 -
4ac: 

(i) .:1 "f 1 (modp), (ii) .:1 = 1 (mod 4), (49) 

that is, b odd. Then, it can be shown that �" is related to L by a Cayley transform: 

(v tf_,. + /) 
L = ...;...

( v
-�-,,,-_-1

"""
) ' (50) 

where the computations in equation 50 are in Zr One sees from equation 50 how the 
analogue of the canonical structure of quantum mechanics is expressed in the finite 
lattice phase space of EPR states: if 9l is a unimodular matrix, one verifies that 
.!Jl - 1v = v�; thus, equation 50 continues to hold under the transformation, 

(5 1) 

Therefore, each U.1 producing a "hopping" of EPR states from one lattice site to 
another will have a counterpart under the canonical transformation 9l that, as one 
sees from its relation to v, is a finite symplectic transformation of the lattice. Note 
that 9l preserves the discriminant and thus the two conditions used in deriving 
equation 50. 
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Two of us have had the privilege of being students of John Wheeler. One of us is a 
grandstudent. We have all been close enough to this great teacher to have been 
strongly influenced not only by his ideas, but also by his passionate drive to 
understand the world. It is a pleasure to present this report in his honor. 

In recent years, John has argued persuasively that physics stands to learn a great 
deal about the world by looking at it in terms of information. 1 Information occupies a 
wonderfully ambiguous place somewhere between the concrete and the subjective. It 
does not exist without observers, but it is concrete enough to be measured and 
manipulated. In this report, we look at one aspect of the measurement and 
manipulation of information, namely, the transmission of classical information via 
quantum objects. 

Our focus is on the following communication problem. Alice wants to send to 
Bob a classical message, which we picture as a long sequence of O's and l 's. We 
suppose that Alice has already compressed her classical message to the minimum 
number of bits, in which case the O's and l 's occur with roughly equal frequency. 
Unfortunately for Alice, she is required to transmit this information in a sequence of 
photons, using only the photons' polarizations to encode the information. Moreover, 
she is allowed to use only certain states of polarization and, finally, she is required to 
use them in certain specified proportions. Our question is this: Under those 
conditions, how many classical bits can Alice convey per photon? (The answer will 
always be less than or equal to 1 . )  

We can state the question again in slightly more technical terms. Alice is  given an 
ensemble with which she is required to perform her transmission, an ensemble being 
a set of quantum states with associated probabilities: 

i = l, . . .  , m. ( 1 )  
698 
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We have written p; for the states of the ensemble because in general these states may 
be mixed. However, for the time being, we will consider only pure-state ensembles. 

_ Our question can be rephrased as follows: What is the classical information capacity 
of an ensemble g"? 

In order to get a feel for the problem, i t  may help to consider various examples. 
As the first example, suppose that Alice is allowed to use only vertical and horizontal 
polarizations, and she is required to use them equally often. This is actually the best 
situation she could be in because all she has to do in that case is to let "vertical" 
represent 0 and "horizontal" represent 1. At the receiving end, Bob can distinguish 
perfectly between these two orthogonal states, so each photon carries a full bit of 
classical information. On the other hand, if Alice is al lowed to use only "vertical" and 
"45° to the right of vertical", then Bob will not be able to distinguish the states 
perfectly. In that case, Alice will have to use an error-correcting code-that is, she 
will have to use some redundancy-to make up for Bob's unavoidable errors and, as a 
result, she will have to use more than one photon for each classical bit. If we continue 
to allow Alice only two states, but make them closer and closer to each other, then it 
is plausible that she will have to send more and more photons per bit in order to get 
her message across with negligible error. In this report, we aim to find the exact 
quantitative relation that goes along with this intuition. 

Immediately one may object: What a stupid way to send information ! Why would 
Alice ever be required to use nonorthogonal states? 

There are two answers to this objection. First, in quantum cryptography, one 
intentionally uses nonorthogonal signal states to avoid undetected eavesdropping. 2 It 
is therefore interesting to ask at what rate information can be transmitted via such 
states. Second, and more generally, one would like to develop a set of concepts and 
theorems that can be used to speak rigorously and quantitatively about information 
in quantum mechanics in a variety of contexts. Much work has already been done 
toward that end, some of which we mention below. The question we have posed here 
can be thought of as one piece in a puzzle that, once it is all assembled, will constitute 
a complete theory of quantum information. 

To begin to answer our question, let us first turn our attent ion to Bob's end of the 
communication channel. Bob knows what states Alice will be sending and he is faced 
with the problem of figuring out what measurement to make. Some measurements 
will clearly be better than others, but it is by no means immediately obvious how we 
are to rate his possible measurements in a way that is relevant to our question. How 
does a particular measurement strategy at Bob's end translate into some definite 
number of photons that Alice needs to send per bit? 

As we said before, the fact that Bob cannot perfectly distinguish the states forces 
our communicators to use an error-correcting code. Does this mean that we need to 
study up on error-correcting codes before we can make progress? Fortunately, the 
answer is no. There is a wonderful, simple theorem due to ShannonJ that fully 
characterizes the capabilities of optimal error-correcting codes. Appl ied to our 
context, the theorem reads as follows: If Bob gets I bits of information on average 
from each photon, then in order to convey n classical bits with negligible error Al ice 
will need to send n il photons (as long as n is large enough). Here, the quantity I is 
defined in terms of Bob's probabilities of the possible states. Before he makes his 
measurement, the various possible states have certain a priori probabilities. After he 



700 ANNALS NEW YORK ACADEMY OF SCIENCES 

makes his measurement, he will · assign new a posteriori probabilities to the same 
states because he will have learned something. Both before and after his measure
ment, one can speak of the entropy H of Bob's probability distribution: 

• 
H = - LP; logp;, (2) 

i= l  

where s i s  the number of  states he  i s  trying to  distinguish and the logarithm i s  base 2. 
H measures the amount of information that Bob lacks about the state; for example, H 
is zero if Bob knows the state with certainty. Jf all s states are equally likely, then H = 
log s. The information I that Bob gains from his measurement is simply the difference 
between his initial entropy and his final entropy: 

f = Hinilial - Hfinal · (3) 
Once we know the average value of I for a particular measurement strategy-the 
average is over the possible outcomes of the measurement-we immediately know, 
by virtue of Shannon's theorem, how many photons Alice will have to send per 
classical bit. 

Let us now apply this tool, focusing for the next • several paragraphs on a 
particular ensemble of photon polarization states·. The ensemble consists of three 
states of linear polarization with equal a priori probabilities: vertical, 60° to the right 
of vertical, and 60° to the left of vertical. We will consider a number of strategies that 
Alice and Bob could use to send classical information via this ensemble and we will 
rate these strategies accordiug to how much information is conveyed per problem. 

To formulate the first strategy, we imagine Bob reasoning as follows: "There are 
three possible states of each photon and they are all equally l ikely. There must be, 
then, some measurement I can make that will give me, on average, the most possible 
information about a given photon's state under the circumstances." Indeed, there is 
an optimal measurement for distinguishing the three given states and one can even 
find out what it is.4 It happens not to be an orthogonal measurement, but rather a 
three-outcome generalized measurement, represented by a probability-operator
valued measure (POM).5 This particular measurement, applied to the given en
semble, always has the effect of eliminating one of the three possibilities and leaving 
the other two equally likely. The amount of information that Bob gains from this 
measurement is thus 

I = Hiniiial - Hfinal = log 3 - log 2 = 0.585 bits. (4) 
One can show that there is no measurement that Bob can make on a single photon in 
this ensemble that yields more information on average than this one. If Bob uses this 
strategy and if Alice wants to send 100 classical bits, then she must use approximately 
100/0.585 = 171 photons. 

It turns out that Alice and Bob can do better than that, as we will see shortly. 
First, though, let us pause for a moment and mention an important and relevant 
theorem from over twenty years ago. The theorem was stated by Levitin6 and the 
proof was given by Kholevo.7 It says that the amount of information that one can 
extract, on average, from an ensemble of pure quantum states cannot exceed the von 
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Neumann entropy of the ensemble,8 defined as 

S = -tr p log p, (S) 

where p is the ensemble's density matrix: p = It=,1 p; l s;)(s; i .  For our three-state 
ensemble, one finds that the von Neumann entropy is 1 bit. Hence, the theorem 
states that the amount of information that one can extract from a photon in that 
ensemble cannot exceed 1 bit. In fact, as we have just said, the actual amount of 
information that one can extract in this case is 0.585 bits, which is considerably less 
than 1 bit. Thus, the Kholevo-Levitin theorem provides only an upper bound on the 
accessible information and, at least in this case, a rather weak one. 

One of our motivations in considering the communication problem was to see 
whether the von Neumann entropy had a greater information-theoretic significance 
than merely being an upper bound on the accessible information . Somehow, one 
feels that it ought to have a greater significance, if only because in a thermodynamic 
context the von Neumann entropy is the entropy of the system. As long as one is 
dealing with single photons, though, the von Neumann entropy is indeed no more 
than an upper bound, at least as far as information theory is concerned. However, in 
our communication problem, Bob is not restricted to measuring the photons one at a 
time. He can, in principle, make a coherent measurement on several photons at once. 
We now consider strategies involving such multiphoton measurements to see whether 
the information transmitted per photon can be made greater than the amount 
achievable with single-photon measurements and, if so, whether it can be made equal 
to the von Neumann entropy of the ensemble. 

In order to make use of Bob's ability to perform multiphoton measurements, it 
turns out that Alice must introduce classical correlations among the states of the 
photons she sends. She is not allowed to introduce quantum entanglements between 
photons because to do so would amount to using a different ensemble of states. 
However, she certainly is allowed to introduce classical correlations. Indeed, an 
error-correcting code depends on such correlations. In our three-state ensemble, let 
us call the states a, b, and c (representing vertical, +60°, and -60°, respectively) .  We 
now consider all the possible states of a pair of photons; they are aa, ab, ac, ba, bb, be, 
ca, cb, cc. Now, instead of using all nine of these states in her transmission, Alice can 
choose to use only a subset, as long as the three single-particle states are still used 
with equal frequency. In particular, let us suppose she chooses to use only the three 
states ab, be, and ca; that is, she is choosing special two-letter code words rather than 
coding in individual letters. These particular code words are farther apart in their 
two-photon Hilbert space than the original letters are in their Hilbert space-76° 
apart instead of 600 apart-and they are therefore easier for Bob to distinguish. On 
the other hand, Alice and Bob are using up two photons for each code word, so it is 
not immediately clear whether the information transmitted per photon will be 
greater than it was before. 

As it happens, it is not hard to construct on paper a good measurement for Bob to 
use to try to distinguish among the three two-photon states ab, be, and ca .9 These 
three states can legitimately be represented as unit vectors in a real three
dimensional space, all separated from each other by 76°. The measurement that wc 
have in mind is the orthogonal measurement whose eigenvectors straddle symmetri
cally the three states. Not surprisingly, this measurement is not one that can be 
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realized by measuring each photon separately; it requires either that the two photons 
interact with each other as part of the measurement or that they both interact with a 
third quantum system. One finds9 that this particular measurement allows Bob to 
extract 1 .369 bits of information from each pair of photons, which translates to 0.685 
bits per photon. This amount is larger than the 0.585 bits per photon that Bob got 
earlier using a one-photon-at-a-time strategy. Thus, there is indeed an advantage in 
using multiphoton code words and multiphoton measurements. Our question now is 
how large this advantage can become. 

We jump now from two-photon code words to n-photon code words, where n is 
large. For the same ensemble of three polarization states, a string of n photons will 
have 3n allowed states. Of these 3n states, let Alice choose at random 2<1-•Jn states 
that she will actually use in her transmission. These are her code words. One finds 
that these 2< 1 -•Jn states typically become very nearly orthogonal as n becomes very 
large, so they become almost perfectly distinguishable. To put it more precisely: For 
any given e, one can find an n large enough to make Bob's probability of error as 
small as one likes. Therefore, the amount of information transmitted per code word 
becomes arbitrarily close to log[2C 1 -•ln] = (1 - e)n bits. Each code word contains n 
photons, so the information transmitted per photon becomes arbitrarily close to 
1 - e bits. We state this result here without proof; �lte proof will be published later in 
a longer paper. 10 

This result is precisely what we were hoping for, at least for our three-state 
ensemble. It shows that the classical information capacity of a photon in this 
ensemble is 1 bit because Alice can transmit up to 1 bit per photon. However, 1 bit is 
precisely the von Neumann entropy of the ensemble, so the classical information 
capacity, at least for this ensemble, is not merely bounded above by the von 
Neumann entropy; it is equal to the von Neumann entropy. The key to changing the 
inequality to an equality was to consider an arbitrarily long message rather than 
focusing on a single photon. 

Is this result general? In other words, is it always the case that the classical 
information capacity of an ensemble is equal to the ensemble's von Neumann 
entropy? Our answer is part theorem and part conjecture. We have been able to 
show that this equality holds for all ensembles of pure states in a two-dimensional 
Hilbert space. Thus, it always works for photon polarization, for example. For that 
case, we can say with confidence that information capacity equals von Neumann 
entropy. We have not yet generalized the theorem to higher-dimensional Hilbert 
spaces, but we are quite willing to conjecture that it does hold in arbitrary dimension. 

In the scenario that we have been imagining, Alice has been forced not only to 
use certain signals, but also to use them in the proportions given in the specification 
of the ensemble. It is likely, however, that in many applications only the set of allowed 
signals will be forced on Alice, and not the probabilities. For example, she may be 
constrained to use a fixed set of nonorthogonal coherent states of an electromagnetic 
mode, while remaining free to use these states in any proportions that allow her to 
transmit the most information. For a given set of quantum states, without any 
specified probabili ties, we can define the channel capacity of the set as the optimal 
amount of classical information that one can convey per signal using only those 
states. It follows from the above theorem/conjecture that the channel capacity of a 
set of states is the maximum von Neumann entropy over all ensembles constructed 
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from the given states. For example, consider the set consisting of three linear 
polarization states: vertical, horizontal, and 45° to the right of vertical. The best way 

· to use these states is to send the vertical and horizontal states equally often and never 
to send the diagonal state. This particular weighting of the signals maximizes the von 
Neumann entropy for that set of states. The channel capacity of this set is thus 1 bit, 
that is, the entropy of an equal mixture of two orthogonal states. This definition of 
quantum channel capacity is analogous to Shannon's definition of the capacity of a 
noisy classical channel, in which one likewise looks for the optimal probability 
distribution over a fixed set of signals. 3 

We have now presented our main results, but there are two more topics that we 
would like to consider briefly: (i) a possible generalization of our capacity theorem to 
ensembles containing mixed states and (ii) a comparison between the capacity 
theorem of this report and another coding theorem recently published by one of us. 1 1  

So  far, we have been considering only ensembles o f  pure states. One can, though, 
also talk about ensembles of mixed states-that is, Alice may be required to use as 
signals states that are degraded in some way; for example, she may be required to use 
partially polarized photons. It may seem that whoever is making these rules for Alice 
is now becoming unnecessarily mean. However, in real life, Alice will often have to 
use mixed states as signals. Suppose she sends a perfectly pure polarization state 
through an optical fiber. By the time it gets to Bob's end, the photon will typically 
have been degraded to some extent by unpredictable fluctuations in the fiber. As far 
as the transmission of information is concerned, it is as if she had sent the degraded 
signal; that is, it is as if we were using mixed states as signals. Thus, it is of 
considerable interest to determine the classical information capacity of an ensemble 
of mixed states. 

We have not yet made a serious attempt to determine the capacity of such an 
ensemble, but it is not hard to make a guess at the answer. Consider by way of 
analogy a purely classical communication problem. Alice sends a string of O's and l 's 
to Bob, but there is noise in the channel so that a 0 has a small probability of 
becoming a 1 and vice versa . One can say that, in effect, Alice is using two mixed 
states as her signals. One of the states---call it x-consists mostly of 0 with a small 
admixture of l , and the other state, y, is mostly 1 with a small admixture of 0. One 
knows from Shannon's theorem what the information capacity is of this classical 
ensemble. We write the result here suggestively in terms of von Neumann entropy 
because no one can stop us from regarding these classical states as special cases of 
quantum states and from computing their von Neumann entropies. The capacity, as 
given by Shannon's theorem, is the quantity x defined by 

(6) 

Here, Px and Py are the density matrices of the individual signals, Px and Py are their 
probabilities, and p is the density matrix of the ensemble as a whole: p = PxPx + PyP}'" 
To put it in words, x is the difference between the von Neumann entropy of the whole 
ensemble and the average von Neumann entropy of the individual signals. 

It is plausible that the quantity x will continue to be the correct answer even when 
we consider truly quantum mechanical ensembles of mixed states. It certainly 
reduces correctly to our above result when all the states are pure because in that case 
each signal has zero entropy and x becomes S(p). Interestingly, Levitin called 
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attention some time ago to the quantity we have called )(, referring to it as the 
"entropy deficit" of the ensemble.6 This quantity also appears in the Kholevo-Levitin 
theorem as it applies to ensembles containing mixed states.7 

We turn now to our comparison between the capacity theorem that we have 
described in this report and the quantum coding theorem of Schumacher. 1 1  Both of 
these theorems have to do with the coding of long strings of signals, both are 
quantum mechanical, and both are restricted (at present) to pure states. It may 
therefore be easy to confuse the two theorems and our intention here is to head off 
any such confusion. For simplicity, let us state Schumacher's theorem nonrigorously 
and only for photon polarization, even though it is actually quite general. It answers 
the following question : Suppose you start with a sequence of photons, each prepared 
independently from a given pure-state ensemble. To what extent can you compress 
the information contained in this sequence with negligible loss? (The test of a 
successful compression is that the original sequence can be recovered with negligible 
error.) The answer is very simple: You can compress it by the factor S, the von 
Neumann entropy of the ensemble measured in bits. For example, an ensemble 
consisting of two equally likely linear polarization states separated by 45° has a von 
Neumann entropy of 0.6 bits. If you start with a sequence of 1000 photons prepared 
from this. ensemble, you can compress all that information into 600 photons and later 
be able to reconstruct the original sequence with very small error. Moreover, you 
cannot compress it into fewer than 600 photons. 

In Schumacher's theorem, one is taking a quantum message into another 
quantum message, compressing it by a factor of S. In our capacity theorem, one is 
taking a classical message into a quantum message, expanding it by a factor of 1 /S. 
(Here, we are still assuming that the system is photon polarization.)  There is 
evidently some sort of reciprocity between the two scenarios, and the interesting fact 
is that, in both cases, the von Neumann entropy is the determining factor. In this 
respect, the von Neumann entropy plays a role in quantum communication theory 
analogous to that played by the Shannon entropy in classical communication 
theory.12 

To put the two quantum theorems in other words, one can say that Schumacher's 
theorem gives the information content of a quantum system, whereas the theorem of 
this report gives the classical infonnation capacity of a quantum ensemble. Both are 
equal to S, but we advocate using different units of information for the two concepts. 
The classical information capacity is clearly to be measured in bits (or nats, or some 
other unit of classical information) because it is classical information that is being 
measured-how many O's and l 's can be transmitted per photon? On the other hand, 
there is nothing classical in Schumacher's theorem. The units in which the com
pressed information is to be stored are not O's and l 's, but photons, whose quantum 
character is crucial to the proof of the theorem. Thus, infonnation content of a 
quantum system is to be measured in qubits, that is, quantum binary objects. Entropy 
measures both the cost of quantum information (i.e., the number of qubits necessary 
for its representation) and the value of quantum information (in bits) for transmit
ting classical messages. 

John Wheeler has raised the very interesting and difficult question: How can 
intangible bits of information be understood as giving rise to tangible entities, that is, 
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to real "its"? In this report, we have begun to answer an easier 'luestion: How many 
bits can you fit in a quantum mechanical it? 
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Long before anyone else, John A. Wheeler saw a role for information theory in 
tackling the still-unresolved foundational questions of quantum mechanics. To 
pursue this grand vision, Wheeler exhorts us to begin building a structure of concrete 
technical results. We offer one such example here in honor of Wheeler's eighty-third 
birthday. 

A quantum communication channel is defined by the action of sending one of n 
possible messages, with prior probabilities pi, . . .  , Pm to a. specified receiver in the 
form of one of n distinct (possibly mixed) density operators i'>i . • . .  , Pn on an 
N-dimensional Hilbert space. The message states p;, together with their probabilities 
p;, constitute the message ensemble. At the end of the transmission, the receiver can 
perform any generalized quantum measurement described by a positive-operator
valued measure (POVM) in an attempt to discern which message was actually sent. 
The fundamental question of quantum communication theory1 is this: Which mea
surements maximize the Shannon mutual information about the actual message and 
just how much information is that maximal amount lace? Previous results on lace 
include an upper bound due to Holevo,2-4 a lower bound recently exhibited by Jozsa, 
Robb, and Wootters,5 and the classification of a few examples where lace can be 
calculated exactly .5-8 Of the two bounds, both are uniquely distinguished in the sense 
that they are the best bounds expressible solely in terms of the total density operator 
p = Ip;p; whenever all the p; are pure states. For this reason, however, both bounds 
are fairly loose for many message ensembles. Here, we derive ensemble-dependent 
bounds (an upper bound for the general channel and a lower bound for the binary 
channel) by way of reexamining and simplifying Holevo's original derivation. 

The quantum communication problem1 is made precise through a formalization 
of the most general measurements allowed by quantum theory, the POVM.9 A 
POVM is a set of nonnegative, Hermitian operators Eb, which are complete in the 
sense that I�b = ]_ = (N-dimensional unit operator) . The subscript b indexes the 
possible outcomes of the measurement; the conditions on the Eb are just those 
necessary and sufficient for the quantity tr(f>Eb) to be a valid probability distribution. 

0This work was supported in part by the Office of Naval Research (Grant No. N00014-93-1 -
0 1 16) .  
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The Shannon mutual information 10 with respect to a measurement IEb } is defined by 
.. 

n 
I = H(p) - LP;l/(p; ). 

i= I 
( 1) 

where H(p) = -Ib[tr(pEb )] In (tr(pEb )] is the average information gain upon finding 
outcome b, when the density operator is assumed to be p. 

The accessible information lace of the channel is defined to be the maximum of the 
mutual information I over all measurements {Eb ). The Holevo upper bound to lace is 

n 
lace S S(p) - L P;S(p;) , (2) 

i= l  

where S(p) = - tr(p In p) = -I/>..i In >..i is the von Neumann entropy of the density 
operator p, whose eigenvalues are >..i. Because e In e --+  0 as e --+ 0, S(p;) = 0 whenever 
p; is a pure state. Therefore, the upper bound (equation 2) reduces to lace :;;; S(p) 
when all the input states p; are pure. 

Holevo's derivation of inequality 2 can be summarized as follows. Let IEb ) be an 
arbitrary POVM. The total mutual information (equation 1 ) can be written as a sum 
of binary-channel mutual informations, 

(3) 

where sk = I�� 1p; is the probability for the first k messages and Tk = s;:1I�=iP;P; is their 
associated density operator. (All the terms in this sum containing an H(i-k )  cancel, 
except the contributions from Tn = p and i-1 = p1 .) Thus, if one can find an upper 
bound B(i-t. pk; Pklsk) for the mutual information in each of these imagined binary 
channels, one can immediately build an upper bound for the general case: 

(4) 

The bound (equation 2) can, in fact, be built in just this way; the derivation thereby 
reduces to a study of the binary case. 

For a binary channel specified by density operators Po and p1 with probabilities 
1 - t and t, the mutual information I = I(t) can be considered as a function of 
the parameter t; so, too, in this case can the Holevo bound S(t) = S(p) -
(1 - t)S(flo) - tS(p1 ) ,  where p = ( 1 - t)p0 + tp 1 = p0 + ti1 = p1 - ( 1  - t )i1 and i1 = 
Pt - Po· The key to deriving the bound lacc(t) :;;; S(t) is in realizing the importance of 
properties of l(t) and S(t) as functions of t. Note first that /(0) = /( 1 )  = S(O) = 
S(l)  = 0. Moreover, both l(t ) and S(t ) are downwardly convex, as can be seen by 
working out their second derivatives. For l(t) , this is 

(5) 
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S"(t)  is most easily found by representing S(p) as a contour integral: 1 1  

S(p) = (- 2�i)�(z In z)tr[(z :D. - p) - 1 ]dz, (6) 

where the contour c encloses all the nonzero eige�values of e; b� �ifferentiating 
within the integral and using the operator identity (A - 1 ) '  = -A -1A 'A - 1 , one finds 
that 

(7) 

where <l>(x, y) = (In x - lny)/(x - y) ifx ?! y, <l>(x, x) = 1 /x, Aik = (j j A j k), and j j) is 
the eigenvector of p with eigenvalue Xi. Equations 5 and 7 are clearly nonpositive. 

The conjecture that S(t) is an upper bound to I(t) for any t is equivalent to the 
property that, when plotted versus t, the curve for S(t) has a more negative curvature 
than the curve for l(t) (regardless of which POVM {Eb) is used in its definition); 
that is, 

S"(t) :s; /"(t) s 0 for any POVM {Eb } .  (8) . 
The meat of the derivation is in showing this inequ�lity. Holevo . does this by 
demonstrating the existence of a function L"(t), independent of {Eb), such that 
S"(t) :s; L"(t) and L"(t) :s; l" (t) .  From this, it follows, upon enforcing the boundary 
condition L (O) = L (l)  = 0, that Iacc(t) :s; L (t) :s; S (t) (although, in reference 2, L (t) 
is never explicitly computed) . 

It is at this juncture that a fairly drastic simplification can be made to the original 
proof. The easiest way to get at such a function L"(t) is simply to minimize r(t)  over 
all POVMs {Eb } and thereafter to show that S"(t) :s; L"(t) .  This is distinctly more 
tractable than maximizing the mutual information I(t) itself because no logarithms 
appear in /"(t). It turns out that this approach generates exactly the same function 
L"(t) as used by Holevo, although the two derivations appear to have little to do with 
each other. The difference in substance-aside from a deeper understanding-is 
that this approach pinpoints a measurement that actually minimizes /"(t) .  This 
measurement in turn, although it generally does not maximize I(t) itself, necessarily 
provides a lower bound M(t) to the accessible information Iacc (t ) . 

The difficulty that crops up in extremizing quantities such as equation 5 is that, so 
far at least, there seems to be no way to make the problem amenable to a variational 
approach. Nevertheless, there is an easy way to minimize l" (t) through a clever 
application of the Schwarz inequality, as shown in a recent paper by Braunstein and 
Caves. 12 The problem considered here, in fact, is formally the one considered there: 
the expression for -l"(t) is well known as the Fisher information,13 a quantity used in 
statistical parameter estimatio�. �e steps are as fo�lo�s. The Sc��arz in.equality for 
the operator inner product tr (AtB)  is given by j tr (AtB) l2 :s; tr(AtA )  tr(WB), where 
equality is achieved if and only if A = µ.iJ for some constant µ. The idea now is to 
think of the numerator within the sum (equation 5) as analogous to the left-hand side 
of this Schwarz inequality. One would like to use the Schwarz inequality in such a 
way that the tr(pEb) term in the denominator is canceled and only an expression 
linear in Eb is left; for then, upon summing over the index b, the completeness 
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property for POVMs will leave the final expression indep.,endent of the given 
measurement. This is done by introducing the "lowering" linear superoperator 2',;, 
whose action on the operator A is defined by 

(�)(p2',;(A) + �(A)p) = A. 

In a basis I j) that diagonalizes p, 2',;(!) becomes 

2',;(ii) = L [ex : x >].cijk l i)(k l .  fi,/clAjHk,.O} j k 

(9) 

(10) 

which depends on the fact that .ciik = 0 if Xi + Xk = 0. (For further discussion of why 
equation 10 is the appropriate extension of 2',;(A ) to the zero-eigenvalue subspaces 
of p, see reference 12; note that 2',; is denoted there by !iRi 1 .) This superoperator has 
the property that it acts much like "division by p" when used within a trace; in 
particular, using equation 9, one easily derives the identity that tr(B!) = 
Rel tr(pB�( ! ) ] )  for Hermitian B. 

The desired optimization now follows in short order: 

(A) 

(B) 

( 1 1 )  

The conditions for equality in  equation 1 1-that is, for the achievability of  the lower 
bound-arise from steps A and B: Im!tr(pEb.2',;(!)) } = 0 for all b and (with a l ittle 
rearrangement) 

( 12) 

As discussed more fully in reference 12, these conditions can always be met by 
choosing the operators Eb to be one-dimensional projectors onto a basis that 
diag�nalizes 2',;(!) and by choosing the constants µb to be the inverse eigenvalues of 
2',;(.ci). Note that this set of projectors is ensemble-dependent in that it depends not 
only on p, but also on ! = P 1 - Po· 

The function L" (t ) can now be defined as 

L"(t) = -tr[!.2',;(!)J = -L [ex 
2
x )] 1 .cijk l 2• U.klAj+� .. 01 'i + k 

( 13) 

This, as stated above, is exactly the function L" (t ) used by Holevo, but obtained there 
by other means. The remainder of the derivation of equation 2, to show that S"(t ) s; 
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L"(t), consists of demonstrating the arithmetic inequality <l>(x, y) ;;;::: 2/ (x + y) (see 
reference 2). The bound (equation 2) then follows from equation 4 by the particular 
structure of the bound S(t). This completes our discussion of the Holevo upper 
bound. 

Now, we focus on deriving explicit expressions for the binary-channel ensemble
dependent upper and lower bounds L (t)  and M(t). The lower bound M(t), in 
particular, can be written in a surprisingly simple form. We start with the generic 
formula for the binary-channel mutual information expressed in a slightly different 
guise, as the weighted sum of two Kullback-Leibler informations: l4 

( 14) 

Using the linearity of the trace operation, this becomes 

I(t ) = tr[ ( 1 - t)fJo � (In ab)Eb + tp1 �(In Pb)Eb] • (15) 

where 1X1J = tr(poEb)/tr(pEb ) and Pb = tr(p1Eb)/tr(f>Eb1 The lower bound M(t) is 
defined by inserting the projectors Eb onto a basis that diagonalizes £"p(.i) into this 
formula. Now, a curious fact can be used: even though Po and p 1 need not commute, 
2'p(.i), £"i>(Po), and £"P(p1 ) do all commute . This follows from the linearity of the £"p 
superoperator: £"i>(Po) = £"i>(P - t.i) = i - t.5fp(.i) and �(p1 ) = 2'p[P + ( 1  - t).i] 
= i + ( 1 - t)£"i>(!). Thus, the same projectors Eb that diagonalize £"p(!) also 
diagonalize �(Po) and £"p(p1 ) . With this, it immediately follows from equation 9 that 
1X1J and Pb are the respective eigenvalues of £"i>(Po )  and £"p(p1 ) corresponding to the 
projector Eb. Hence, M(t ) takes the form, 

(16) 

The trace of the operators p0 ln[£"p(Po)] and p1 ln[£"p(p1 ) ) in this expression can be 
interpreted, to an extent, as quantum analogues of the Kullback-Leibler informa
tions in equation 14. 

The upper bound L (t )  has not so far yielded such a simple form. Of course, all 
that need be done in principle is to integrate equation 13 twice, applying the 
boundary conditions of L (O) = L( l )  = 0; the problem lies in finding a tractable 
representation for �(.i). At least when p is  invertible, 2',;(A ) can be written as a 
contour integral :  

(17) 

where the contour contains the pole at z = "><j for all eigenvalues "><i of p, but does not 
contain the pole at z = - � for any j. This contour representation leads to a Fourier 
series expansion for L(t) .  It is not difficult, again using the operator-inverse differen-
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tiation formula, to work out that 

( 18) 

where 

( 19) 

With this, one can derive a Taylor series expansion for L"(t )  and then use the 
standard algorithm for Fourier expansions to obtain 

L(t)  = 2 bmsin(mvt), (20) 
m= I 

where 

bm = ( 3�.) f (n ! ) [b(n ; m) - (- 1r :± ( ( � .) , ) b (j; m) ] :± (- l)ktr[Di>o(n ; k)] m 1T "l n =O i=O n J · k=O 

(21) 

and b(j; m) = (- l )i'
2[1 + (- l)i ](mv)-i. The advantages of this representation are 

that it automatically satisfies the boundary conditions and only the first few terms in 
equation 20 are significant. 

Finally, we consider a special case of some practical interest-binary communica
tion channels on two-dimensional Hilbert spaces. Here, the new bounds are readily 
expressible in terms of elementary functions and, moreover, the optimal orthogonal 
projection-valued measurement can be found via a variational calculation. With this 
case, one can gain a feel for how tightly the new bounds delimit the true accessible 
information I acc (t ). 

Let the signal states Po and p1 be represented by two vectors within the Bloch 
sphere, that is, p0 = (Yz)( ii. + a ·  a) and p1 = (Yz)( ii. + b · a), where a 2 S 1, b2 S l , 
and a is the Pauli spin vector. (In this representation, the signal states are pure if a 
and b have unit modulus.) The total density matrix for the channel can then be 
written as p = (Yz)( ii. + c · a), where c = (1 - t)a + tb = a + td and d = b - a. For an 
orthogonal projection-valued measurement in the direction specified by the unit 
vector n, the mutual information l(t ) takes the form, 

where 
l(t) = (1 - t )K(Pf p0 ) + tK(Pf p 1 ), 

( 1 ) [ ( 1 + a  · n) (1 - a ·  n)] 
K(Pfp0) = 2 ( l + a · n) ln l + c · n  + ( 1 - a · n) ln l - c · n  

(22) 

(23) 

and similarly for K(P/ p 1 ). The optimal projector can be found by varying equation 22 
over all unit vectors n (i.e., the variation satisfies 8n · n = 0). The resulting equation 
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for n is 

( ( 1 + c · n)(l - a ·  n)) (( 1  + c · n)(l - b • n)t 
O = ( l - t) ln ( 1 - c · n)(l + a · n) 0.L  + t in ( 1 - c · n) ( l  + b · n)f.J.. • 

(24) 
where a .L = a - (a · n )n and b .L = b - (b · n )n are vectors perpendicular to n. 
Equation 24 i s ,  of course, a transcendental equation and, as such, generally has no 
explicit solution. Nevertheless, there are four nontrivial situations where it can be 

nats 

0. 1 5  
= 
0 � 
e .g .!:i 0.1 
ta .a 
§ 

0.05 

0.2 0.4 0.6 0.8 
prior probability t 

FIGURE 1. The signal states in this example are a pure-state Bloch vector a aligned along the 
z-axis and a mixed state b, with b = %, aligned at an angle of Tr/3 away from the z-axis. The 
respective prior probabilities for the messages are (1 - t) and t. Pictured are the Holevo upper 
bound S(t), the ensemble-dependent upper bound L(t), the information /(t) extractable by the 
optimal orthogonal projection-valued measurement, the ensemble-dependent lower bound 
M(t), and the Jozsa-Robb-Wootters lower bound Q(t). 

solved exactly: (i) a classical channel, where p0 and Pt commute (a and b parallel); (ii) 
Po and Pt both pure states (a = b = 1 ); (iii) a = b and t = �; and (iv) ·1 = (1 + 
J(l - b2) / ( 1 - a 2)] - t .  When these conditions are fulfilled, equation 24 can be 
solved by choosing n such that (1 - t)a.L = tbJ. and by requiring that the arguments of 
the logarithms be multiplicative inverses. 

In case ( iv), the optimal n (unnormalized) is given by 

[a ·  (a - c) ] [b · (b - c) ] n ex b - a . a · (a - b) b · (b - a) (25) 
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In cases (i)-(iii), the optimal n is 

n = (M((l - a  · c)b - ( 1 - b · c)a] = (�)(d + c x (c x d)), (26) 

where c · n = c · d/D, D = J82( 1 - c2) + (c · d) 2, and 

8 = JDd · n  = Jd2 - l e x d l 2 = Jd2 - la x b l 2• (27) 

Cases (ii) and (iii) of these have been reported by Levitin.8 Case (ii), in particular, is 
of special interest because two pure states in a Hilbert space of any dimension still 
span only a two-dimensional subspace; hence, it remains valid as the optimal 
orthogonal projection-valued measurement for a pure-state binary channel in all 
dimensions. 

Under the assumption of an orthogonal projection-valued measurement in the 
direction n, r(t) takes the form, 

(d · n )2 l"(t) = - ( 1 - (c · n)2] • (28) 

The vector n that minimizes this is given easily enough by a variational calculation; it, 
too, is given by equation 26. Inserting this vector into equation 23 produces the lower 
bound M(t), which as we now see sometimes coincides with the maximum informa
tion attainable from an orthogonal projection-valued measurement . The upper 
bound L (t), found by integrating r(t) back up with this measurement in place, is 
given by 

L (t ) = (-�2)((8 - c · d) ln(8 - c · d) + (8 + c · d) In(8 + c · d)) + P 1t + p2, (29) 

where P1 and P2 are easily determined by the L(O) = L ( l )  = 0 boundary condition. 
The extent to which these bounds are tighter than the Holevo upper bound and the 
Jozsa-Robb-Wootters lower (ensemble-independent) bound is illustrated by a typi
cal example in FIGURE 1 . 
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INTRODUCTION 

Recently, Bennett et al. 1 have proposed a scheme for "teleporting" an unknown 
quantum state by splitting it up into a purely classical channel and a purely quantum 
channel. The quantum channel consists of a pair of particles with perfectly correlated 
spins, such as a spin singlet state of two spin-Yi particles (henceforth referred to as an 
EPR pair1) .  One of the two EPR particles is sent to the sender of the state (Alice) 
and the other is sent to the receiver (Bob). To send the unknown state (labeled l u)), 
which is also carried by a spin-Yi particle, Alice makes a measurement in an 
entangled state basis (made up of the four orthogonal two-particle states of perfectly 
correlated spins) on the two-particle system consisting of the particle in the state l u ) 
and her EPR particle. She sends the result of her measurement (one of four possible 
outcomes) via a classical channel to Bob, who then applies one of four corresponding 
unitary transformations to his EPR particle, leaving it in the state l u ). It is important 
to note that, in this scheme, Alice need not have any knowledge about the state l u ), 
nor does she learn anything about l u ) in the teleportation process. 

The crucial point in the teleportation scheme is the measurement of the 
two-particle system in the basis of entangled states (also referred to as "Bell 
states"2) . This type of measurement is also important for a related scheme, in which 
one can transmit two bits of information with a single two-level system, effectively 
doubling the channel capacity.3 In references 1 and 3, l ittle discussion was devoted to 
how one could carry out the measurement of the two-particle system in the Bell-state 
basis. A Bell-state measurement of spin entangled particles using upconversion of a 
photon pair in a nonlinear crystal3 does not seem feasible due to its very low 
efficiency. On the other hand, a measurement by linear optical elements only cannot 
be performed unambiguously.4 

In this report, we describe how one can use cavity QED techniques to produce 
EPR correlations and to make measurements in the Bell-state basis. This will form a 
basis for a specific implementation of the te leportation scheme of Bennett et al. ,3 as 
well as that of encoding two bits of information on a single two-level system. 3 In these 

cH. Weinfurter was supported by the Austrian "Fonds zur Forderung der Wissenschaft l .  
Forschung" (Project No.  S6502). 
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implementations,s one of the EPR ·particles is replaced by a cavity mode and the 
other particles consist of two-level atoms, at or near resonance with the cavity. 
Recent experiments6•7 involving the interaction of spherical Rydberg atoms with a 
microwave cavity demonstrate that the atom-cavity interaction is sufficiently strong 
and that the atomic and cavity lifetimes are sufficiently long that an experimental 
implementation of the proposed schemes should be feasible. 

We also discuss in this report how one could produce perfectly correlated states 
of n two-level systems, as well as demonstrate some applications of cavity QED to 
quantum computation. 

ELEMENTS OF mE SYSTEM 

Our proposed implementation for teleporting quantum states, which is shown in 
FIGURES 1 and 2, consists of a microwave cavity, two Ramsey zones, and a set of 
two-level atoms. There is never more than one photon in the cavity, so the state of the 
cavity field can be described in terms of the basis states I O) and 1 1 ) ,  corresponding to 
the vacuum and one-photon states, respectively. The atoms are described by the 
basis states lg) and l e) . 

· • 

Two different kinds of atom-cavity interactions are used in our schemes; an 
"on-resonant" and an "off-resonant" interaction. The on-resonant atom-cavity 
interaction can be described by the Hamiltonian, 

( 1) 

where <r+ = l e)(g l and u_ = lg)(e l are the raising and lowering operators for the 
atom, and 0.1 is the one-photon Rabi frequency. In our schemes, the purpose of the 
on-resonant interaction is to prepare the cavity in the desired initial state and to read 
out the final state of the cavity. 

In the off-resonant interaction, the lg) to l e) transition is sufficiently detuned 
from the cavity frequency that there are no transitions between these two levels 
during the interaction. We can model the corresponding interaction Hamiltonian by7 

(2) 

where .ni is the change in atomic level spacing per photon in the cavity. The two types 
of interactions described above could be produced from a single atomic species by 
appropriate Stark shifting of the atomic levels. 

The Ramsey zone consists of a classical rf-field, whose interaction with the atoms 
can produce a general unitary transformation on the atomic two-level systems when 
appropriate values of the frequency and amplitude of the field are used. In the 
special case where a resonant field produces a -rr/2 rotation about the y-axis in 
spin-space, the effect of the Ramsey zone can be described by the operator, 

R = (/ + iuy)f /j., (3) 

where <Ty =  i( l e)(g l  - lg)(e I ) . 
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FIGURE I.  Cavity preparation (a) and generation of entanglement (b) used in the teleporta
tion scheme. In both cases (a and b ), the figure shows the state of the atom and cavity before the 
interaction (upper part) and after the interaction (lower part). The arrow represents the atom 
and the larger rectangular box depicts the cavity. The smaller rectangular box labeled "R" 
represents the Ramsey zone. "On-Res." indicates that the interaction is on-resonant and 
"Off-Res." indicates that it is off-resonant. The "ir" indicates that the interaction strength 
satisfies fiT = ir, as described in the text. 
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DESCRIPTION OF THE CAVI'IY QED TELEPORTATION SCHEME 

The first step of the scheme-the production of an entangled atom-cavity EPR 
pair-starts by preparing the cavity in the state ( I 0) + 1 1 ) ) /..fl. (a superposition of the 
ground and one-photon states). This is done by passing an atom prepared in the state 
lg ) through the Ramsey zone and then resonantly (equation 1 ) through the cavity, as 
shown in FIGURE la . After passing through the Ramsey zone, the atom is in the state 
( lg) +  l e))//j.. The atom-cavity interaction time -r1 is chosen to satisfy !l1-r1 = 'IT so 
that, after the interaction, the atom is left in state lg) (independent of its initial state) 
and the cavity in the state ( I 0) + 1 1 ))//j.. The effect of this resonant atom-cavity 

(a) Off-Res. : 1t R 

lu) I I n  
I I LI ------� I lg) or le)? I 

. 

(b) On-Res. : 1t R 

19) I I n  
I I LI 

..........._ ______ , lg) or le)? I 

FIGURE 2. Setup used for Bell-state detection in the teleportation scheme: (a) Unknown atom 
passes first through the cavity and then through the Ramsey zone. The box on the right 
measures the atomic state in the { lg), j e) } basis. (b) Cavity state is "read out" when an atom 
prepared in the ground state passes through the cavity and Ramsey zone and the final atomic 
state is measured. Other symbols are defined in the caption to FIGURE 1 .  

interaction i s  to transfer the state o f  the atom to that o f  the cavity. The atom can now 
be discarded. 

After the cavity is prepared in the state (I 0) + 1 1 ))/ ..fl., a second atom is sent first 
through the Ramsey zone and then nonresonantly through the cavity, as shown in 
FIGURE lb. After passing through the Ramsey zone, the atom is in the state I + ) = 
( lg) +  l e))//j., where the definition of I + ) is used for notational convenience. The 
atom-cavity interaction time -r2 for this nonresonant interaction is chosen to satisfy 
!l2-r2 = 'IT. With this interaction strength, we find that the interaction results in a 
transformation defined by the unitary operator, 

U = exp(i!l2-r:zll ta l e)(e I) = ( I +  )(- 1  + 1 -)( + 1 ) 1 1 )( 1 1 + 1 0)(0 1 , (4) 
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where we have defined 1 - )  = ( lg) - l e))//i.. Equation 4 can be interpreted in the 
following way. If there is no photon in the cavity, then the atom emerges from the 
. cavity in the same state as it entered. If there is a photon in the cavity, the atomic 
excited state undergoes a 'IT phase shift and the atomic transformations I + ) --+ I - ) 
and I - ) -+ I + ) take place. For an initial state l '1'm) = ( 1 //i.)( 1 0) + 1 1 )) 1  + ), the 
atom-cavity interaction leaves the system in the state 

1 w<+ >) = <Fii> ( 1 0) 1 + ) + 1 1 ) 1 - )). (5) 

We have generated an EPR pair consisting of the cavity field and the nonresonant 
atom. The atom is then sent to the receiving part of the apparatus (Bob). 

In the next phase of the experiment, a measurement is made on the system 
consisting of the cavity field and the unknown state to be teleported. According to 
the scheme of Bennett et al. , the measurement is made in the Bell operator basis2 
defined by the states 

1 '11(± )) = <Fii> ( 1 0) 1 + ) ± 1 1 ) 1 - )) (6) 
and 

l <l>(±l) = <Fii> ( 1 0) 1 - )  ± 1 1 ) 1 + )) .  (7) 

We now outline the method by which such a measurement can be made. We consider 
the result of an off-resonant interaction (equation 4) between an atom and the cavity 
field, where the atom-cavity system is initially in one of the states defined by 
equations 6 and 7. One can show from equation 4 that the interaction results in the 
following transformations: 

l 'J1(± )) -+ <Fii> ( 1 0) ± 1 1 )) 1 + ), 

I <1><±>) --+ < Fii> < I o) ± 1 1 )) 1 -). 
(8) 

The atom-cavity interaction has removed the entanglement. Thus, a pair of single
particle measurements in the appropriate single-particle bases after the interaction is 
equivalent to a measurement before the interaction in the Bell operator basis of 
equations 6 and 7. The single-particle measurements are made as follows. After the 
atom in the unknown state has interacted with the cavity, it passes through a Ramsey 
zone (FIGURE 2a). The effect of the Ramsey zone, defined by equation 3, is to 
produce the transformations I + ) --+ lg) and 1 - ) --+ - l e). The atomic state is then 
measured in the { lg), l e)} basis by an ionizing detector.7 

To complete the measurement, one must measure the state of the cavity in the 
basis {( 1 0) ± 1 1 ))//i.). The cavity measurement is achieved by passing an atom, 
initially in the state lg), through the cavity with the on-resonant interaction (equation 
1) and then through the Ramsey zone (FIGURE 2b). The effect of this atom-cavity 
interaction is to transfer the state of the cavity to the atom (the cavity is left in the 
vacuum state) . Examination of equations 1 and 3 shows that, after the atom interacts 
with the cavity and Ramsey zone, it will emerge in the state lg) if the initial cavity 
state is ( I O) + 1 1)) //i. and will emerge in the state - l e) if the initial cavity state is 
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( 1 0) - 1 1 )) //i.. Thus, a measurement of the atom in the basis ( lg), l e) }  constitutes a 
measurement of the cavity in the basis { ( 1 0) ± 1 1 )) //i.}. 

Before Alice's measurement, the three-particle system (consisting of the cavity, 
the atom to be teleported, and Bob's EPR particle) is in the state 

l 'l'm) = (�)lu) i( I O) l +h - 1 1 ) 1 - h), (9) 

where we have labeled the particles to distinguish the particle in the unknown state 
( 1 ) from Bob's EPR particle (3). Following reference 1 , we express the unknown 
state as l u) i  = c+ I +) i  + c- 1 - ) i  and write the �tate of the three-particle system as 

l 'l'm) = (!h)[ l 'l'<->) ti(-c+ I +h - c_ l -h) + l 'Jl<+ >) ti(-c+ I +h + c_ l -h) 
+ 1 «1><->)dc+ I +h + c_ l -h) + 1 «1><+ >) 12(c+ I + h  - c_ l - h)] . (10) 

Thus, Alice's measurement projects the state of Bob's EPR particle into one of four 
states. These states differ from the state l u )  by one of four unitary transformations, 
depending on the outcome of Alice's measurement. In our proposed implementa
tion, one can transform the state of Bob's particle into l u )  by applying an appropriate 
signal to a second Ramsey zone, through which Bob's paiticle passes after Alice's 
measurement is made. · ·  

This completes our description of the implementation. To test the scheme, one 
would use it to teleport a known state I u), which could be prepared by an additional 
Ramsey zone. Bob's particle could then be analyzed in a basis consisting of the state 
l u) and an orthogonal state. The necessary measurements can be made by using a 
Ramsey zone and an ionizing detector. One would then repeat the experiment using 
a variety of initially prepared states and measure the fidelity of transmission. More 
detailed discussions of transmission fidelity in teleportation have been made in 
references 8 and 9. 

RELATED CAVITY QED SCHEMES 

In a closely related paper, Bennett and Wiesner3 have suggested a scheme by 
which two bits of information could be transmitted by a single two-state particle. In 
this scheme, an EPR pair is created, one particle going to Alice and the other to Bob. 
Bob is now able to send two bits of information to Alice by applying one of four 
transformations on his EPR particle and sending that particle to Alice. Alice can 
unambiguously determine which transformation Bob applied by making a measure
ment in the Bell operator basis. An experimentally realizable implementation of this 
scheme could be made with a slight modification to our implementation of the 
teleportation scheme. After the cavity-atom EPR pair is created (equation 5), the 
atom (Bob's particle) would pass through a Ramsey zone and would undergo one of 
four transformations. This atom would then be sent back through the cavity for the 
measurement in the Bell operator basis (by Alice) . To facilitate this scheme, the state 
of Bob's particle could be stored in a second cavity. Some time later, another particle, 
traveling in the opposite direction, would pass through this cavity and would pick up 
the cavity state. It would then go through the first cavity, where the measurement is 
made. 
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Another modification to our scheme could be used to genecate perfectly corre
lated states of n particles (n � 3). Such n-particle correlated states have been of 
great interest recently10• 1 1  because of their potential to provide a strong test of 
nonlocality in quantum mechanics. Very little discussion, however, has been given to 
their production. 12 In our scheme, such states could be produced by first creating the 
EPR state of equation 5. One could then send an arbitrary number (n - 2) of atoms 
(prepared in the state lg)), first through the Ramsey coil and then through the cavity 
with the off-resonant interaction. It can be shown that the resulting state of the 
system will be 

l 'I') = ( JY;) ( 1 0) 1 + ) i · · · I + )n- 1 - I l ) l - ) 1 · · · I - )n - 1 ) , ( 1 1 )  

which leaves the system of  (n  - 1 )  atoms and the cavity in  an entangled state. One 
could read out the state of the cavity by sending through a resonant atom prepared in 
the ground state to obtain the n-atom entangled state. An additional feature of this 
method of producing n-particle entangled states is that one could use a very similar 
technique for detecting such an n-particle state. This would be done essentially by 
running the above procedure in reverse. 

APPLICATION TO QUANTUM COMPUTATION 

It has recently been shown that for certain applications, such as factoring, 
quantum computers are potentially much faster than "classical" computers. 13 In this 
section, we briefly outline some applications of cavity QED to quantum computation. 
Specifically, we indicate how one may produce quantum gates. A quantum gate is a 
generalization of a logic gate, with the additional property that superpositions of 
input states will yield superpositions of output states. We discuss how one can 
produce a reversible quantum "exclusive-or" (or XOR) gate, as well as a quantum 
"Toffoli" gate. 

A reversible XOR gate has two input channels (which we denote a; and b;) and two 
output channels (a0 and b0) . The values on the output channels are determined by 
a0 = a;  and b0 = a;  E9 b;, where the XOR operation E9 is defined to be 0 if the two inputs 
are the same and 1 if the two inputs are different. 14 

For a cavity QED scheme, the logical states 0 and 1 can be encoded as the ground 
and excited states, respectively, of the atoms or of the cavity. The XOR gate can be 
realized in a similar manner to the quantum teleportation scheme (see the third 
section of this report) by first transferring the state of atom a to the cavity field (using 
the on-resonant interaction), as shown in FIGURE 3a. Atom b then passes through the 
cavity (FIGURE 3b) and the interaction is chosen to be off-resonant with a strength 
determined by Otr2 = 'IT (see equations 2 and 4). Equation 4 indicates that, if the 
cavity is in the state 1 1 ) (logical "1 "), the state of atom b is switched from I +) to 1 - ) 
or from 1 - )  to I + ). By placing a Ramsey zone R (equation 3) before the cavity and its 
inverse R- 1 after the cavity, we find that a logical " l"  of atom a results in the logical 
transformations 0 -+  1 and 1 -+ 0 of atom b and that a logical "O" of atom a leaves the 
state of atom b unchanged. This is just the action of the XOR operation. Afterwards, 
the state of the cavity can be transferred again to that of an atom, thereby 
accomplishing the operation of the quantum XOR gate. 
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(a) R On-Res. : 1t 

a n 1  IO) I 
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Li l  I 
n 1  a I 19) 

) 

Li l  I 
(b) R Off-Res. : 1t - R-1 

b n 1  a I n  
)Ii 

Li l  I U  
n 1  a I n  a E0 b 

) 

Li l  I U 
FIGURE 3. The operation of a reversible quantum XOR gate: (a) The state of atom a is 
transferred to the cavity. (b) Interaction between the cavity and atom b yields a E9 b. Interaction 
parameters are defined in the caption to FIGURE 1 . 

The outputs of the reversible quantum Toffoli gate are defined as a0 = ah b0 = b;, 
and c0 = (a; · b;) ED c;. An additional AND operation of inputs a and b (a · b) is needed 
in combination with the XOR operation . This universal gate can then be used for all 
necessary quantum logic operations. 14 The operation of the Toffoli gate is achieved 
by the following steps: (i) the states of atom a and atom b are transferred to the fields 
in two cavities (labeled C1 and C2); (ii) a third cavity (C3) is put into the state a; ED b; 
(this can be accomplished by preparing C3 in state I 0) and then sending an atom 
through C1,  C2, and C3, with appropriate interaction parameters); (iii) atom c passes 
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through the three cavities (and two Ramsey zones) in the manner shown in FIGURE 
4. The atom-cavity interactions are all off-resonant and satisfy the conditions !l2T2 = 
-rr/2 for both C1 and C2 and !l2T2 = --rr/2 for C3. 1 5 Under these conditions, the total 
phase shift experienced by the excited state of atom c after interacting with the three 
cavities is 0 unless both a and b are initially in the excited state, in which case the 
phase shift of atom c is Tr. By taking into account the action of the two Ramsey zones, 
we find that we have produced the logical transformation c0 = (a; · b;) El) c;. 
Appropriately resetting C3 (to the ground state) and transferring the states of C1 and 
C2 back to atomic states assures the reversibility of the operation. Because the atoms 
can always be in any superposition of ground and excited states, this scheme enables 
one to perform a fully quantum logic computation for the first time. 

It is interesting to note that we have constructed the three-bit Toffoli gate with 
the use of only two-particle interactions. In doing so, we have demonstrated that, in 
quantum mechanics, the Toffoli gate can be reduced to a finite number of smaller 
(two-bit) quantum gates. 16 

CONCLUSIONS 

In conclusion, we have presented an implementatio!l of the scheme of Bennett et 
al. 1 for teleportation of an unknown quantum state based on cavity quantum 
electrodynamics. We have shown that the high coupling strength of the atom-cavity 
interaction allows one to disentangle a system of two two-state particles and to make 
a measurement in a basis of entangled states. This so-called Bell-state measurement 
is also essential to a dense coding quantum communication scheme, which could be 
implemented in a very similar way. In addition, it was shown how cavity QED 
interactions could be used for the production of n-particle entangled states, neces
sary for new tests of basic features of quantum mechanics. Finally, the application of 
cavity QED to the construction of universal quantum gates was outlined. 
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INTRODUCTION 

Quantum mechanics was originally developed to account for a number of 
unexplained phenomena on the atomic scale. The theory was not thought to be 
applicable to physics at larger scales, nor was there felt any need to do so. Indeed, it 
was only by reference to an external, classical, macroscopic world that the theory 
could be properly understood. This view of quantum m�chanics, the Copenhagen 
interpretation, has persisted for a very long time with J!Ot one shred of experimental 
evidence against it. 1 

Today, however, more ambitious views of quantum mechanics are entertained. 
Experiments have been contemplated (e.g., involving SQUIDS) that may probe 
domains traditionally thought of as macroscopic.2 Even in the absence of such 
experiments, the Copenhagen interpretation rests on unsatisfactory foundations. 
Macroscopic classical objects are made from microscopic quantum ones. The dualist 
view of the Copenhagen interpretation may therefore be internally inconsistent and 
is at best approximate. Most significantly, there has been a considerable amount of 
recent interest in the subject of quantum cosmology in which the notion of an 
external classical domain is completely inappropriate.3 Generalizations of conven
tional quantum theory are required to meet these new challenges. 

John A. Wheeler was one of the very first people to be so bold as to even talk 
about "the wave function of the universe".4 He has contributed extensively to our 
understanding of quantum mechanics and quantum cosmology, both through his own 
work and through his inspiration to many others in the field. It is a great pleasure to 
contribute to this conference organized in his honor. 

The Histories Approach 

The object of this report is to review one particular approach to quantum 
mechanics that was specifically designed to overcome some of the problems of the 
orthodox approach. This is the decoherent (or "consistent") histories approach due 
to Griffiths,5-9 Gell-Mann and Hartle, 10-19 and Omnes.20-26 It is, in particular, a 
predictive formulation of quantum mechanics for genuinely closed quantum systems 

0This work was supported by a University Research Fellowship from the Royal Society. 
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that is sufficiently general to cope with the needs of quantum co�mology. In brief, its 
aims are as follows: 

( 1) To understand the emergence of an approximately classical universe from an 
underlying quantum one, without becoming embroiled in the details of 
observers, measuring devices, or collapse of the wave function. Prediction of 
a classical domain similar to the one in which we live will generally depend on 
the initial condition of the universe and, moreover, could be one of many 
possibilities predicted by quantum mechanics. Accommodation, rather than 
absolute prediction, of our particular classical universe may be as much as 
can be expected. 

(2) To supply a quantum mechanical framework for reasoning about the proper
ties of closed physical systems. Such a framework is necessary if the process 
of prediction in quantum mechanics is to be genuinely quantum mechanical 
at every single step. That process consists of first logically reconstructing the 
past history of the universe from records existing in the classical domain at 
the present and then using the present records together with the deduced 
past history to make predictions about the future (strictly speaking, about 
correlations between records at a fixed moment of time in the future) . A 
framework for reasoning may also lead to clarification of many of the 
conceptually troublesome aspects of quantum mechanics, such as the EPR 
paradox. 

In more detail, the primary mathematical aim of the histories approach is to 
assign probabilities to histories of a closed system. The approach is a modest 
generalization of ordinary quantum mechanics, but relies on a far smaller list of 
axioms. These axioms are basically the statements that the closed system is described 
by the usual mathematical machinery of Hilbert together with a formula for the 
probabilities of histories and a rule of interpretation. The approach makes no 
distinction between microscopic and macroscopic, nor does it assume a "system
environment" split; in particular, a separate classical domain is not assumed. It 
makes no essential use of measurement or collapse of the wave function, although 
these notions may be discussed within the framework of the approach. What replaces 
measurement is the more general and objective notion of consistency (or the stronger 
notion of decoherence ), determining which histories may be assigned probabilities. 
The approach also stresses classical (i.e., Boolean) logic, the conditions under which 
it may be applied, and thus the conditions under which ordinary reasoning may be 
applied to physical systems. 

The decoherent histories approach is not designed to answer the question held by 
some to be the most important problem of quantum measurement theory: why one 
particular history for the universe "actually happens", whereas the other potential 
histories allowed by quantum mechanics fade away. Although some aspects of this 
problem are clarified by the decoherent histories approach, a satisfactory solution 
does not appear to be possible unless something external is added (see, for example, 
reference 27); nor is the approach intended to meet some philosophical prejudice 
about the way the world appears to be. Its aims, for the large part, are of a rather 
pragmatic nature, namely, answering the very physical question of why the world is 
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described so well by classical mechanics and ordinary logic when its atomic constitu
ents are described by quantum mechanics. 

Jt7iy Histories? 

The basic building blocks in the decoherent histories approach are the histories 
of a closed system-sequences of alternatives at a succession of times. Why are these 
objects of particular interest? 

(a) Histories are the most general class of situations that one might be interested 
in. In a typical experiment, for example, a particle is emitted from a decaying 
nucleus at time t1; then, it passes through a magnetic field at time t2; finally, it 
is absorbed by a detector at time t3• 

(b) We would like to understand how classical behavior can emerge from the 
quantum mechanics of closed systems. This involves showing, amongst other 
things, that successive positions in time of a particle are approximately 
correlated according to classical laws. This involves the probabilities for 
approximate positions at different times. 

(c) The basic pragmatic aim of theoretical physics is to find patterns in presently 
existing data. In cosmology, for example, one tr.ies to explain the connections 
between observed data about the microwave background, the expansion of 
the universe, the distribution of matter in the universe, the spectrum of 
gravitational waves, etc. Why, then, should we not attempt to formulate our 
theories in the terms of the density matrix of the entire universe at the 
present moment? There are at least two reasons of why not. First, present 
records are stored in a wide variety of different ways-in computer memo
ries, on photographic plates, on paper, in our own personal memories, in 
measuring devices, etc. The dynamical variables describing those records 
could be very hard to identify. The correlations between present records are 
far easier to understand in terms of histories. The patterns in current 
cosmological data, for example, are explained most economically by appeal
ing to the big bang model of the history of the universe. Second, the 
correlation between present records and past events can never be perfect. In 
order to discuss the approximate nature of correlations between the past and 
the present, it becomes necessary to talk about the histories of a system. 

THE FORMALISM OF DECOHERENT HISTORIES 

I now briefly outline the mathematical formalism of the decoherent histories 
approach. Further details may be found in the original papers cited above. 

Probabilitksfor Histories 

In quantum mechanics, propositions about the attributes of a system at a fixed 
moment of time are represented by sets of projection operators. The projection 
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operators Pa effect a partition of the possible alternatives a that Q system may exhibit 
at each moment of time. They are exhaustive and exclusive: 

(2. 1) 
a 

A projector is said to be fine-grained if it is of the form I a)(a j ,  where { I a) } comprises 
a complete set of states; otherwise, it is coarse-grained. A quantum mechanical 
history is characterized by a string of time-dependent projections, P!1(t1), • • • , P'o.,,(tn), 
together with an initial state p. The time-dependent projections are related to the 
time-independent ones by 

(2.2) 

where H is the Hamiltonian. The candidate probability for such histories is 

This expression is a familiar one from quantum measurement theory, but the 
interpretation is different. Here, it is the probability for a sequence of alternatives for 
a closed system. The alternatives at each moment of time are characterized by 
projectors. The projectors are not generally associated with measurements, as they 
would be in the Copenhagen view of the formula (equation 2.3). They cannot 
because the system is closed. 

It is straightforward to show that equation 2.3 is both nonnegative and normal
ized to unity when summed over ai . . . .  , an. However, equation 2.3 does not satisfy 
all the axioms of probability theory and, for that reason, it is referred to as a 
candidate probability. It does not satisfy the requirement of additivity on disjoint 
regions of sample space. More precisely, for each set of histories, one may construct 
coarser-grained histories by grouping the histories together. This may be achieved, 
for example, by summing over the projections at each moment of time: 

P- = � P a ""-i a 
aECi 

(2.4) 

(although this is not the most general type of coarse-graining) . The additivity 
requirement is then that the probabilities for each coarser-grained history should be 
the sum of the probabilities of the finer-grained histories of which each comprises. 
Quantum mechanical interference generally prevents this requirement from being 
satisfied; thus, in general, histories of closed quantum systems cannot be assigned 
probabilities. 

The standard illustrative example is the double-slit experiment. The histories 
consist of projections at two moments of time: projections determining which slit the 
particle went through at time t 1 and projections determining the point at which the 
particle hit the screen at time t2• As is well known, the probability distribution for the 
interference pattern on the screen cannot be written as a sum of the probabilities for 
going through each slit; hence, the candidate probabilities do not satisfy the 
additivity requirement. 

There are, however, certain types of histories for which interference is negligible 
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and the candidate probabilities for histories do satisfy the sum rules. These histories 
may be found using the decoherence functional: 

(2.S) 

Here, a denotes the string ai. a2, • • •  , a,,. Intuitively, the decoherence functional 
measures the amount of interference between pairs of histories. It may be shown that 
the additivity requirement is satisfied for all coarse-grainings if and only if 

Re D(�· �' ) = 0 (2.6) 

for all distinct pairs of histories �· �· .5 Such sets of histories are said to be consistent, 
or weakly decoherent. (Note that this definition of consistency is stronger than that 
originally introduced by Griffiths.5 See reference 12 for a discussion of this point.) 

Consistency and Classical Logic 

Why are sets of consistent histories of interest? As stated, propositions about the 
attributes of a quantum system may be represented by projection operators. The set 
of all projections has the mathematical structure of a lattice. This lattice is nondis
tributive and this means that the corresponding propositions may not be submitted to 
Boolean logic. Similar remarks hold for the more complex propositions expressed by 
general sets of quantum mechanical histories. 

The reason why consistent sets of histories are of interest is that they can be 
submitted to Boolean logic. Indeed, a theorem of Omnes states that a set of histories 
forms a consistent representation of Boolean logic if and only if it is a consistent 
set;20•25•26 that is, in a consistent set of histories, each history corresponds to a 
proposition about the properties of a physical system and we can meaningfully 
manipulate these propositions without contradiction using ordinary classical logic. It 
is in this sense that the decoherent histories approach supplies a foundation for 
reasoning about closed physical systems. 

An important example is the case of retrodiction of the past from present data. 
Suppose we have a consistent set of histories. We would say that the alternative an 
(present data) implies the alternatives a,,_ 1 • • •  a 1 (past events) if 

p(a1 , . . .  ' an ) p (a 1 , . · · , an- 1 l a,, ) = ( ) = 1 . p an 
(2.7) 

In this way, we can in quantum mechanics build a picture of the history of the 
universe, given the present data and the initial state, using only logic and the 
consistency of the histories. We can talk meaningfully about the past properties of 
the universe even though there was no measuring device there to record them. 

There is, however, a caveat. It is very frequently the case that the same initial 
state and present data will admit two or more inequivalent sets of consistent 
histories, the union of which is not a consistent set. Then, there often exist 
propositions about the past properties of the system that are logically implied by the 
present data in some sets of histories, but not in others. Omnes refers to such 
propositions as "reliable'', whereas propositions that are implied by the present data 
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in every consistent set of histories are labeled "true"28 (see also .reference 29). The 
existence of these so-called multiple logics means that one cannot say that past 
properties corresponding to reliable proposit ions "actually happened" because they 
depend on a particular choice of consistent histories. In the histories approach, the 
reconstruction of history from present records is therefore not unique. This means 
that the approach does not in general al low one to talk about the past history of the 
universe as "the way it really is". 

Is this a problem? Some feel that it is.30 For the immediate practical purposes of 
quantum cosmology, however, it does not appear to be a difficulty. Recall that what 
quantum mechanics must ultimately explain is the correlation between records at a 
fixed moment of time. As stated earlier, it is easiest to understand those correlations 
in terms of histories, but histories enter as an intermediate step. The correlations 
between two records at a fixed moment of time predicted by quantum mechanics are 
unambiguous, even though the histories corresponding to these records may not be 
unique. 

DECOHERENCE, CORRELATION, AND RECORDS 

How may the consistency condition of equation 2.6 come to be satisfied? First of 
all, it is straightforward to show that, with some exceptions, histories of completely 
fine-grained projection operators will not generally lead to consistency. The consis
tency condition is generally satisfied only by sets of histories that are coarse-grained. 
When sets of histories satisfy the consistency condition of equation 2.6 as a result of 
coarse-graining, they typically satisfy, in addition, the stronger condition that both 
the real and imaginary parts of the off-diagonal terms of the decoherence functional 
vanish: 

D(�. �· ) = 0 for a 71! a' . (3. 1 ) 

This I shall refer to quite simply as decoherence . (It is sometimes referred to more 
specifically as medium decoherence, 12 but we shall not do so here.) 

Physically, decoherence is intimately related to the existence of records about the 
system somewhere in the universe. In this sense, decoherence replaces and general
izes the notion of measurement in ordinary quantum mechanics. Sets of histories 
decohere and hence the system "acquires definite properties'', not necessarily 
through measurement, but through the interactions and correlations of the variables 
that are followed with the variables that are ignored as a result of the coarse
graining. 

Decoherence is typically only approximate, so measures of approximate decoher
ence are required. First, note that the decoherence functional obeys the simple 
inequality,31 

I D(�. �' ) 1 2 :s; D(�. �)D(�· · �' ) . (3.2) 

Intuitively, this result indicates that there can be no interference with a history that 
has candidate probability zero. It also suggests a possible measure of approximate 
decoherence: we say that a system decoheres to order e if the decoherence functional 
satisfies equation 3.2 with a factor of e2 multiplying the right-hand side. This 
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condition may be shown to imply that most (but not all) probability sum rules will 
then be satisfied to order e.31 

Approximate decoherence to order e means that the probabilities are defined 
only up to that order. In typical cases, e is substantially smaller than any other effect 
that could conceivably modify the probabilities and, hence, they may be thought of as 
precisely defined for all practical purposes. Alternatively, it has been conjectured 
that a generic approximately decoherent set of histories may be turned into an 
exactly decoherent set by modifying to order e the operators that are projected onto 
at each moment of time.30 

Records Imply Decoherence 

I now exemplify the connection between records and decoherence. Consider a 
closed system S that consists of two weakly interacting subsystems A and B. The 
Hilbert space 2 of S is therefore of the form � ® Kg. For simplicity, let � and Ks 
have the same dimension. Suppose we are interested in the histories characterized 
solely by properties of system A; thus, B is regarded as the environment. The system 
is analyzed using the decoherence functional (equation 2.5), where we take the Pa to 
denote a projection on � (hence, the projections in the d�coherence functional are 
of the form Pa ® 18, where 18 denotes the identity on Kg). I also introduce 
projections Rp on the Hilbert space Kg. 

I shall show that histories of A satisfy the decoherence condition (equation 3.1 ) if 
the sequences of alternatives that make up the histories exhibit exact and persistent 
correlations with sequenrei1 of alternatives of B. To be precise, suppose that the 
alternatives of A characterized by pk

"k at each moment of time tk are perfectly 
recorded in B as a result of their interaction . Suppose also that this record in B is 
perfectly persistent (i.e., permanent). This means that at any time t1 after the time tn 
of the last projection on A there will exist a sequence of alternatives of B, namely, 
�t • • •  �m in perfect correlation with the alternatives of A, namely, a1 . . .  an, at times 
ft • • • In • 

For each moment of time tk, the decoherence functional (equation 2.5) may be 
written 

D(!!_, !!' ) = L Tr(JA ® R�k . . . P� ® JB . . .  p . . .  P!i ® 18 . . .  ) (3.3) 
Pk 

using the exhaustivity of the projections R� , where the dots denote the projections at 
times other than tk and the unitary evoluti�n operators between them. Now, because 
R�kis a projector, it may be replaced by (R� ) 2• Furthermore, the assumption of 
persistence then allows us to move the project�r R� through all the unitary evolution 
operators occurring after time tk on each side of thekdecoherence functional, with the 
result 

D(!!, !!_' ) = L Tr( . . .  P� ® R�k . . .  p . . . P!i ® R�k . . .  ). (3.4) 
Pk 

Finally, the assumed correlation between the alternative aic in A and �k in B means 
that the terms of the form P! ® R� on each side will yield zero when operating on 
everything that came earlier i� the chain, unless ak = �k· Equation 3.4 will therefore 
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be diagonal in <lk· Repeating the argument for all other values of k, we thus find that, 
as advertised, a perfect and persistent correlation of alternatives of A with those of B 
leads to exact decoherence of the histories of A.  It is not just the consistency 
condition of equation 2.6 that is satisfied through persistent correlation with another 
subsystem, but the stronger condition of decoherence (equation 3.1 ) . This argument 
was inspired by an argument given by Hartle 14 in his discussion of the recovery of the 
Copenhagen interpretation from the decoherent histories approach. A more de
tailed version of it is given in reference 32. 

Decoherence Implies Generalized Records 

There is a converse to the above result: namely, that equation 3. 1 ,  in a certain 
sense, implies the existence of records. 12 Consider the decoherence functional 
(equation 2.5) for any system (not just the special one discussed above). Introduce 
the convenient notation 

(3.5) 

Let the initial state be pure, p = I '11)('1' I ·  In this case, the decoherence condition 
(equation 3 . 1 )  is referred tc as medium decoherence. It implies that the states 
Ca I 'I') are an orthogonal (but in general incomplete) set. Thus, there will exist a set 
of projection operators R� (not in general unique) of which these states are 
eigenstates: 

(3.6) 

Note that the Ca terms are not themselves projectors in general. One may then 
consider histories consisting of the string of projections (equation 3.5) adjoined by 
the projections R� at any time after the final time. The decoherence functional for 
such histories is 

(3.7) 

These extended histories decohcre exactly by virtue of equations 3. 1 and 3.6 and, 
thus, the diagonal clements of equation 3.7, which we denote p(�, (!), are true 
probabilities. The correlations contained in these probabilities may therefore be 
discussed. Indeed, equation 3.6 implies thatp(�. (!) = 8�(� and thus � and I! are 
perfectly correlated. 

Medium decoherence thus implies the existence of a string of alternatives � 1 • • •  

�n at some fixed moment of time after tn perfectly correlated with the string o:1 • • •  an 
at the sequence of times t 1 • • •  tn . For this reason, the projection operators Ra are 
referred to as generalized records: information about the histories characterized by 
alternatives o:1 • • •  o:n is recorded somewhere . However, it is not possible to say that 
the information resides in a particular subsystem because we have not specified the 
form of the system S; indeed, it is generally not possible to divide it into subsystems. 



734 ANNALS NEW YORK ACADEMY OF SCIENCES 

TOWARDS A QUASI-CLASSICAL DOMAIN 

Given the framework sketched above, one of the principal aims of the decoherent 
histories approach is to demonstrate the emergence of an approximately classical 
world from an underlying quantum one, together with the quantum fluctuations 
about it described by the familiar Copenhagen quantum mechanics of measured 
subsystems. Such a state of affairs is referred to as a quasi-classical domain .n-13 In 
more technical terms, a quasi-classical domain consists of a decoherent set of 
histories, characterized largely by the same types of variables at different times, and 
whose probabilities are peaked about deterministic evolution equations for the 
variables characterizing the histories. 

Moreover, the histories should be maximally refined with respect to a specified 
degree of approximate decoherence; that is, one specifies a decoherence factor e in 
the approximate decoherence condition discussed above. This should, for example, 
be chosen so that the probabilities are defined to a precision far beyond any 
conceivable test . Then, the histories should be fine-grained (e.g., by reducing the 
widths of the projections) to the point that further fine-graining would lead to 
violation of the specified degree of approximate decoherence. The resulting set of 
histories will then be called maximally refined. The reason for maximally refining the 
histories is to reduce as much as possible any appareat subjective element in the 
choice of coarse-graining. 

Given the Hamiltonian and initial state of the system, one's task is to compute the 
decoherence functional for various different choices of histories and to see which 
ones lead to quasi-classical behavior. As suggested by the discussion at the end of the 
second section, there could be-and probably are-many such sets of variables 
leading to quasi-classical behavior. An important problem is to find as many such sets 
as possible and to develop criteria to distinguish between them. One useful criterion 
is whether a quasi-classical domain can support the existence of an information 
gathering and utilizing system (IGUS). This is a complex adaptive system that 
exploits the regularities in its environment in such a way as to ensure its own survival. 
This particular criterion may rule out domains described by particularly bizarre 
decoherent sets of histories, such as ones described by completely different variables 
at each moment of time, because the IGUS may not have sufficient information
processing capabilities to assimilate its environment. Also, criteria such as the 
existence of IGUSs alleviate to some degree the multiplicity of consistent sets of 
histories discussed in the second section. These issues are discussed further in 
references 1 1-13, 30, and 33-35. 

Histories of Hydrodynamic Variables 

What are the sets of variables that can lead to quasi-classical behavior? One 
particular set of variables that are strong candidates for it are the integrals over small 
volumes of locally conserved densities. A generic system will usually not have a 
natural separation into "system" and "environment", and it is one of the strengths of 
the decoherent histories approach that it does not rely on such a separation. Certain 
variables, however, will be distinguished by the existence of conservation laws for 
total energy, momentum, charge, particle number, etc. Associated with such conser-
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vation laws are local conservation laws of the form, 

(4.1 )  

The candidate quasi-classical variables are then 

Qv = J:, d3xp(x). (4.2) 

If the volume V over which the local densities are smeared is infinite, Qv will be an 
exactly conserved quantity. In quantum mechanics, it will commute with the Hamil
tonian and, as is easily seen, histories characterized by projections onto Qv will 
decohere exactly. If the volume is finite, but large compared to the microscopic scale, 
Qv will be slowly varying compared to all other dynamical variables. This is because 
the local conservation law (equation 4. 1 )  permits Qv to change only by redistribution, 
which is limited by the rate at which the locally conserved quantity can flow out of the 
volume. Because these quantities are slowly varying, histories of them should 
approximately decohere . Furthermore, the fact that the Qv terms are slowly varying 
may also be used, at least classically, to derive an approximately closed set of 
equations involving only those quantities singled out by the conservation laws. These 
equations are, for example, the Navier-Stokes equations and the derivation of them 
is a standard (although generally nontrivial) exercise in nonequil ibrium statistical 
mechanics.36 One of the current goals of the decoherent histories approach is to 
reexpress this derivation in the language of histories.37 

Quantum Brownian Motion Models 

Many concrete investigations of the mechanics of decoherence have actually 
concerned quantum Brownian motion models, primarily because calculations can be 
carried out with comparative ease. 12•3 1 These have proved to be quite instructive. 
Very briefly, such models consist of a particle of mass M in a potential V(x) linearly 
coupled to an environment consisting of a large bath of harmonic oscillators in a 
thermal state at temperature T and characterized by a dissipation coefficient -y. The 
types of histories commonly considered are sequences of approximate positions of 
the Brownian particle, specified up to some width u, whereas the environment of 
oscillators is traced over. 

The results may be summarized briefly as follows. Decoherence through interac
tion with the environment is an extremely effective process. For example, for a 
particle whose macroscopic parameters (mass, time scale, etc.) are of order 1 in cgs 
units and for an environment at room temperature, the degree of approximate 
decoherence is of order exp(- 1Q40), a very small number. The probabil ities for 
histories of positions are then strongly peaked about the classical equations of 
motion, but modified by a dissipation term, 

Mi + M-yi + V' (x) = 0. (4.3) 

There are fluctuations about classical predictabil ity, consisting of the ubiquitous 
quantum fluctuations, adjoined by thermal fluctuations from the interaction with the 
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environment. There is generally a tension between the demands of decoherence and 
classical predictability due to the fact that the degree of decoherence improves with 
increasing environment temperature, but predictability deteriorates because the 
fluctuations about equation 4.3 grow. However, if the particle is sufficiently massive, 
it can resist the thermal fluctuations and a compromise regime can be found in which 
there is a reasonable degree of both decoherence and classical predictability. 

DECOHERENT HISTORIES AND QUANTUM STATE DIFFUSION 

The decoherent histories approach is closely connected to the quantum state 
diffusion (QSD) approach to open systems. In that approach, the master equation 
for the reduced density operator of an open system (essentially, a closed system in 
which one focuses on a particular subsystem) is solved by exploiting a purely 
mathematical connection with a certain nonlinear stochastic Schrodinger equation 
(Ito equation) .38 Solutions to the Ito equation turn out to correspond rather closely 
to the results of actual laboratory experiments (e.g., in quantum optics) and are 
therefore held to describe individual systems and processes. For example, in a 
quantum Brownian motion model, the solutions to the Ito c;quation become localized 
about points in phase space following the classical equations of motion. The 
connection with the decoherent histories approach is that, loosely speaking, the 
solutions to the Ito equation may be thought of as the individual histories belonging 
to a decoherent set.39 More precisely, the variables that localize in the QSD 
approach also define a decoherent set of histories in the decoherent histories 
approach. The degrees of localization and of decoherence are related and the 
probabilities assigned to the histories in each case are essentially the same. This 
connection could be a very useful one, both conceptually and computationally, and 
efforts to exploit it are being made. 

WHAT HA VE WE GAINED? 

In this contribution, I have tried to give a brief overview of the decoherent 
histories approach to quantum theory. What has the decoherent histories approach 
taught us? 

At the level of ordinary quantum mechanics applied to laboratory situations, two 
things have been gained. First of all, a minimal view of the decoherent histories 
approach is that, in a sense, it is a more refined version of the Copenhagen 
interpretation. It rests on a considerable smaller number of axioms and, in particular, 
it is a predictive formulation of quantum mechanics that does not rely on any kind of 
assumptions referring to measurement or to a classical domain. It is internally 
consistent and reproduces all the experimental predictions of the Copenhagen 
approach. Second, it provides a clear set of criteria for the application of ordinary 
logic in quantum mechanics. Because many of the conceptual difficulties of quantum 
mechanics are essentially logical ones (e.g. , the EPR paradox), a clarification of the 
applicability of logic has been argued to lead to their resolution.1,21,24 Such a 
resolution is not strictly possible in Copenhagen quantum mechanics because it does 
not offer clear guidelines for the application of ordinary logic. 
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Of course, there will always be some who claim that they c�n finesse their way 
through any difficulty of quantum mechanics without having to worry about the 
�mewhat cumbersome machinery of the histories approach described here. In this 
connection, Omnes has to say the following:26 

It may be true, as some people say, that everything is in Bohr, but this has been a matter 
for hermeneutics, with the endless disputes any scripture will lead to. It may also happen 
that he guessed the right answers, but the pedagogical means and the necessary 
technique details were not yet available to him. Science cannot, however, proceed by 
quotations, however elevated the source. It proceeds by elucidation so that feats of 
genius can become ordinary learning for beginners. 

Intuition alone may be sufficient to see some through the difficulties of nonrela
tivistic quantum mechanics, but if we are to extend quantum theory to the entire 
universe, a reliable vehicle for travel beyond the domain of our intuition is required. 
For quantum cosmology, the development of the decoherent histories approach has 
been a considerable bonus. The decoherent histories approach supplies an unambigu
ous, workable, and predictive scheme for actually applying quantum mechanics to 
genuinely closed systems. Furthermore, as discussed at some length in this report, it 
supplies a conceptually clear method of discussing the emergence of classical ity in 
closed quantum systems, and this is perhaps its greatest success. 

Still outstanding are the largely technical difficulties of quantum cosmology 
connected with quantizing gravity. However, it is possible that the histories approach 
might be of use there also. The focus on histories may circumvent the "problem of 
time" encountered in most canonical approaches to quantum gravity. Isham and 
collaborators, for example, are currently exploring the possibility of histories-based 
formulations of quantum theory that do not rely on the conventional Hilbert space 
structure or on the existence of a preferred time coordinate,40-42 building on an 
earlier suggestion of Hartle. 16 Much remains to be done, but the histories approach 
to quantum cosmology appears on both conceptual and technical grounds to be a 
particularly promising avenue for future research. 

Further aspects of the decoherent histories approach are discussed in references 
43-63. 
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VACUUM FLUCTUATIONS AND PHOTON EMISSION 

It is well known that the interaction of a quantum system with its environment 
can destroy quantum coherence. In this report, a particular example of this phenom
enon will be discussed: the coupling of coherent electrons to the quantized radiation 
field. This coupling gives rise to the possibility of photon emission and of interaction 
of the electrons with the electromagnetic vacuum fluctuations. Consider an electron 
interference experiment in which coherent electrons may travel from x; to x1 along 
either of two classical paths, C1 or C2• First, let us recall the analysis of this 
experiment when the effects of the electromagnetic field are ignored. Let i!i1 and i!i2 
be the amplitudes for an electron to travel along C1 and C2, respectively. Then, the 
superposed amplitude is iii = i!i1 + i!i2 and the number density of electrons detected at 
x1 is 

( 1 )  

with the last term being responsible for the interference pattern . Note that C 1  and C2 
are space-time paths, as the events of emission and detection of the electrons occur 
at different times as well as at different points in space . 

We now wish to (i) couple the electrons to the quantized electromagnetic field 
and (ii) examine the effect upon the interference pattern. This problem has been 
analyzed in detail in reference 1. Here, we will quote and discuss some of the main 
results. When both photon emission and vacuum fluctuation effects are present, the 
number density of electrons detected at x1 becomes 

(2) 

Here, «!> is a phase shift introduced by the interaction and W is a function that 
describes the change in the amplitude of the interference oscillations (the contrast). 
The phase shift «!> includes the Aharonov-Bohm shift due to any classical electromag
netic fields generated by the electrons. However, in this report, we will be primarily 
concerned with the amplitude of the interference oscillations, as this quantity carries 
the information about the vacuum fluctuations. The explicit form for Wis 

w = -2va "° dx  "° dx '  n 11v(x x ' )  Ye JJ. Yc  " ' , 
(3) 

where a is the fine-structure constant and C = C1 - C2 is the closed space-time path 

0This work was supported in part by National Science Foundation Grant No. PHY-9208805. 
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obtained by traversing C1 in the forward direction and C2 in the backward direction. 
Note that equation 3 is independent of the direction in which the integrals around C 
are taken. The photon Hadamard (anticommutator) function, D"'v(x, x ' ), is defined 
by 

By means of the four-dimensional Stokes theorem, we may write 

W = -2Tra fda11-v fda;,.,n11-v;pa(x, x ' ), 
(4) 

(5) 

where da"'v is the area element of the timelike two-surface enclosed by C and where 

(6) 

is the Hadamard function for the field strengths. Equation 5 has the remarkable 
interpretation that the electrons are sensitive to vacuum fluctuations in regions from 
which they are excluded. This is analogous to the situation in the Aharonov-Bohm 
effect,2 where the phase shift can depend upon classical electromagnetic fields in 
regions which the electrons cannot penetrate. The space-time geometry of the paths 
C1 and C2 encircling a region is illustrated in FIGUR�.1 . • 

In equation 2, it was assumed that both photon emisston and vacuum fluctuation 
effects are present at the same time. This is the usual case in an interference 
experiment in which no attempt is made to detect the emitted photons. However, in 
principle, it is possible to distinguish the two by means of a veto experiment. Suppose 
that we arrange for the flux of electrons to be sufficiently low that only one electron is 
in the apparatus at any one time and that any photons emitted be detected. 
Whenever a photon is in fact detected, the electron counters are switched off for a 
sufficient time to insure that the associated electron is not counted. In this way, we 
guarantee that the interference pattern comprises only those electrons that have not 
emitted photons. In this case, the relevant contrast factor is no longer ew, but rather 
ewF, where 

(7) 

This function describes the effect of the vacuum fluctuations. Similarly, the effects of 
photon emission are described by the function, 

Wy = W - WF = 2Tra{.(.1ttx ... .(.2ttx� + .(.2 ttx ... .(.1ttx�}n11-v(x, x ' ) . (8) 

Note that the vacuum fluctuation effect involves a double line integral over each path 
separately, whereas the photon emission contribution is a cross term involvi'ng a l ine 
integral over each path. 

EFFECT OF A CONDUCTING PLATE 

The line integrals in equations 3 and 7 are divergent due to the short distance 
singularity of D11-v(x, x ' ) when x --+ x' . This is one of the familiar ultraviolet 
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( x ,t) 
t 

x 
FIGURE I. Electrons traverse space-time paths C1 and C2 to reach point (x,t) . The interference 
pattern depends upon vacuum fluctuations in the crosshatched region in the interior of these 
paths, which is the domain of integration in equation 5. The cylinder is the world history of an 
object contained within the electron paths. The spatial projections of the space-time paths C1 
and C2 onto the xy plane are Ci and C:l, respectively. The shaded region in this plane is the cross 
section in the xy plane of the object around which the electrons travel. 

divergences in quantum field theory. A simple way to avoid dealing with this 
divergence is to consider only changes in W or WF due to an external influence, such 
as the presence of a conducting boundary. In this case, we replace Dµv(x, x ' ) by 
Dr(x, x ' ) , that is, the renormalized Hadamard function obtained by subtracting the 
empty space function. Let WR be the function obtained by making this replacement in 
equation 3. As compared to the empty space case, the amplitude of the interference 
oscil lations is multiplied by the factor e wR. The interference pattern can now become 
sensitive to shifts in the vacuum fluctuations, including shifts occurring in excluded 
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regions. In this case, one has an effect that combines aspects of both the Aharonov
Bohm and the Casimir effects.3 The simplest geometry in which the effects of vacuum 
fluctuations may be investigated is where one of the electron paths skims above a 
perfectly conducting plate. Suppose that path C 1 travels for a distance L at a height z 
above the conducting plate and later recombines with path C2, which travels far away 
from any conductors. Let v be the speed of the electrons. In the limit that Le Iv > z, 
that is, the electron's flight time over the plate is long compared to the light travel 
time to the plate, we have 

(9) 

Note that this is the small z approximation to a function that vanishes in the limit that 
z -+  oo, as required by the fact that WR = 0 in empty space. We first observe that 

( 10) 

This means that the shift in the vacuum fluctuations due to the plate causes a 
decrease in the contrast and, hence, there has been a loss of quantum coherence . 

The fact that photon emission can cause decoherence is no surprise. The 
detection of sufficiently short wavelength photonf could reveal which path the 
electron has taken. It is perhaps less obvious that vacuum fluctuations are also 
capable of causing decoherence. One might intuitively think of the electrons as being 
subjected to random force fluctuations that eventually lead to decoherence . Al
though in the above example WR < 0, there is in principle no reason why one could 
not have WR > 0, in which case the presence of the conducting boundary would 
suppress the decohering effects of the vacuum fluctuations. 

SQUEEZED STATES OF TIIE RADIATION FIELD 

Such a situation may be displayed explicitly when one replaces the boundary by 
photons in a squeezed vacuum state. Let the photon field be in a squeezed vacuum 
state for a single mode, which can be defined as4 

( 1 1 )  

where t = re;& i s  an  arbitrary complex number. lt may be  shown that, in this state, 

(12) 

and 

(a 2) = -ei& sinh r cosh r. ( 13) 

We wish to calculate the shift in W from the actual vacuum state. This shift, WR, is 
given by equations 3 and 4 with the expectation value taken in the state I t) .  The 
photon operator product is now understood to be normal-ordered with respect to the 
vacuum state. The result is 

WR =  -4rra l 11 1 2sinh r(sinh r + sin(28 + 8) cosh r], ( 14) 
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where 

( 15) 

and /11(x) is the mode function of the excited mode. The key point is that one can 
arrange for WR to have either sign by an appropriate choice of the state parameter &. 
Thus, the effect of the squeezed state can be to either enhance or suppress 
decoherence. In the above example, both vacuum fluctuation and photon emission 
contributions were included. However, one can treat them separately and show that 
the shifts in each of Wv and Wy can have either sign. The fact that squeezed states can 
suppress the effects of quantum fluctuations below the vacuum level is well known. A 
squeezed vacuum state necessarily has the expectation value of the energy density 
negative in certain regions as a result of this suppression. A phenomenon somewhat 
analogous to the present situation arises when one considers the coupling of a spin 
system in a classical magnetic field to the electromagnetic vacuum fluctuations. 
These fluctuations tend to cause a depolarization of the system. Photons in a 
squeezed state can temporarily reduce this effect and cause the mean magnetic 
moment of the system to increase relative to the vacuum value.5 

PROBING THE INTERIOR OF MATTER 

Let us now return to the issue of nonlocality, that is, the ability of electrons to 
serve as remote probes. A simple illustration of this would arise in the following 
experiment: Send electrons around either side of a cylinder of radius R filled with a 
material of finite electrical conductivity, as illustrated in FIGURE 2. Also arrange that 
the outer wall of the cylinder is made of a material of very high conductivity. This wall 
both excludes the electrons and insures that the renormalized-field-strength Hada
mard function, D}t;pcr(x, x ' ), outside the cylinder is independent of the material on 
the interior. However, the change in the interference pattern contrast due to the 
presence of the cylinder also depends upon v�·;pcr(x, x ' )  inside the cylinder and 
hence upon the conductivity of the material on the interior. An explicit calculation of 
D�•;pcr(x, x ' )  in the interior requires a knowledge of the dielectric function e( w) of the 
metal in question. However, we may make an order-of-magnitude estimate without 
this detailed information. We may adapt equation 9 to obtain an estimate of WR for 
the present situation. Let 'Ap be the wavelength associated with the plasma frequency 
in the metal in question. It is essentially the cutoff wavelength, in that only modes 
whose wavelengths are of this order or longer are affected by the interior material. It 
plays a role analogous to z in equation 9. Our estimate will be based upon the 
assumption that a result of the form of equation 9 also holds in the present situation. 
If we set z = 'Ap and L = R (the radius of the rod), our estimate for WR may be 
written as 

WR = (- 10-3)1n(:�) , R » 'Ap, v « c. ( 16) 

The result is only weakly (logarithmically) dependent upon the cutoff, 'Ap. For 
example, if R = 1 cm, 'Ar = 810 A (the approximate plasma wavelength of alumi-
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FIGURE 2. A "coaxial cable" consisting of an 
outer cylinder, which prevents electrons from 
penetrating to the interior, and an inner rod, 
with radius R, of material of finite conductiv
ity. 

num), and v = 0. lc (corresponding to 2.5-keV electrons), we find that WR == - 10-2• 
Because the amplitude of the interference oscillations is proportional to eWR == 1 + 
WR, we see that the effect of the presence of the rod is to decrease this ampl itude by 
about 1 % in this example. If one were to use a material with a different plasma 
wavelength, x;., the amplitude shift would now be WR = WR + awR, where 

(17) 

This change will typically be of the order of a few times 10-4 of the interference 
oscillation amplitude. Thus, measuring the electron interference pattern to this 
accuracy would enable one to ascertain whether the material in the rod is, for 
example, aluminum or magnesium (Xj. = 1 170 A). The effect that we have estimated 
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is primarily due to the effects of the vacuum fluctuations, rathc;,r than due to photon 
emission, as the magnitudes of the integrals in equation 8 are determined by the 
separation of the paths, which is at least as large as R. 

EXPERIMENTAL PROSPECTS 

Let us conclude with some remarks on the possibility of experimentally verifying 
the effects discussed in this report . The effect discussed in the previous paragraph 
seems to be large enough to be possibly measurable. However, in this case, the 
theoretical prediction (equation 16) is only an order-of-magnitude estimate. For the 
case of the electrons moving parallel to a conducting plate, the theory is more 
clear-cut. In principle, WR as given by equation 9 could be made arbitrarily large if 
one could make L large and z and v small. In an actual experiment, the image charge 
force experienced by an electron will limit the possible range of parameters. In 
particular, the image effect is negligible so long as 

(v)( z )312 
L « (6 cm) � l µ . (18) 

It is not difficult to satisfy equation 18 with choices of parameters that yield a contrast 
shift, I WR I , of the order of 1 %. For example, if we again let v = O. lc and take L = 1 m 
and z = 1 mm, then equation 18 is satisfied and we have I WR I ::::: 2.2%. Thus, 
detection of the vacuum decoherence effect seems to be a possibility. 
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Anybody who thinks that computers can generate random numbers is living in a state 
of sin! 

-J. von Neumann 

RANDOMNESS IN QUANTUM MECf4\NICS 
. .  

Many of the basic concepts of Boltzmann's statistical mechanics1-including 
combinatorial optimization, the discretization of energy, detailed balancing, and 
ergodicity-were incorporated into theories of blackbody radiation, specific heats, 
level transitions (the A and B coefficients), the Sackur-Tetrode entropy formula, 
Bose-Einstein statistics, etc., during the era of the "old" quantum mechanics: this 
spanned the 25 years between Planck's initial lectures on blackbody radiation on 19 
October2 and 16 December 19003 and the advent of Heisenberg's matrix mechanics.4 
However, despite the wealth of fruitful physical applications, the foundations of 
statistical mechanics remained in uneasy disequilibrium with the evolution of rigor
ous mathematics. For instance, Boltzmann's "H"-theorem, with its implications of 
irreversibility, was vigorously disputed by Zermelo5 on the basis of Poincare's 
recurrence theorem,6•7 and Plancherel8 and Rosenthal9 showed that Boltzmann's 
original formulation of the ergodic hypothesis was untenable. These polemics were 
exacerbated by the chronology of events: a measure theoretic proof of the recurrence 
theorem did not appear until 19 19 10 and the ergodic hypothesis was finally proved in 
193 1 ,  but with an altered meaning-Boltzmann's intuitive idealizations of sets of 
trajectories were replaced by the abstract notion of metric transitivity . 1 1  Some 
sharp-eyed critics have warned that in this case the resort to abstraction is actually 
" . . .  a glittering deception . . .  " that promises more than it delivers. 12 

Probability and wave mechanics were first combined by Schrodinger in his fourth 
paper13 on "Quantization as an Eigenvalue Problem" (excerpted from p. 135): 

lfi lfi* is a kind of weight function in the configuration space of the system. The 
wave-mechanical configuration of the system is a superposition of many, in a strict sense 
all, kinematically possible point-mechanical configurations. Thereby every point· 
mechanical configuration contributes with a definite weight to the true wave-mechanical 
configuration; this weight being given by 1fi lfi* . If one loves paradoxes, one could say that 

0This work was supported in part by the Research Corporation. 
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the system finds itself simultaneously in all conceivable kinematic states, but is not 
"equally strong" in all of them. • 

Similar ideas were expressed concurrently by Born 14 (excerpted from p. 804 ) : 

749 

The guiding field, represented through a scalar function iii of the coordinates of all 
participating particles, and the time, evolves according to SchrOdinger's differential 
equation. Momentum and energy are exchanged as if particles (electrons) actually are 
flying around. The trajectories of these part icles are however only determined to the 
extent that they satisfy the constraints of energy and momentum conservation; the 
selection of a particular trajectory can only be assigned a probability which is determined 
by the distribution of the values of the iii function. One could summarize this in the 
following somewhat paradoxical fashion : The motion of the particles follows probability 
laws; the probabilities themselves however evolve in a causal manner; i.e., knowledge of 
a state in all points at a certain instant determines the distribution of states at all later 
times. 

Schrodinger cautiously refers to weight functions (Gewichtsfunktionen), which do 
not necessarily entail random behavior. It is Born who says straightway that Iii is 
linked to a probability (Wahrscheinlichkeit). From this point on, applied probability 
became part of the standard tool-kit of many physicists. However, the link with the 
foundations remained tenuous and compounded the controversies associated with 
the problems of measurement. 

Finally, in 1933, Kolmogorov found a concise and fruitful way of axiomatizing the 
foundations of probability within the framework of measure theory. 15 The essential 
idea is to define a random variable as a measurable function on a probability space, 
where the probability space is simply a set endowed with a normalized measure. The 
axiomatic development is deliberately silent concerning any requirements that these 
random variables be nondeterminate; nor is there any implication that the elements 
of the probability spaces correspond to inherently unpredictable events. Indeed, as 
emphasized by Kolmogorov, the axiomatics of random variables " . . .  has applica
tions in fields of science that have no relation to the concepts of random events and of 
probability in the precise measuring of these words." Plainly speaking, then, al
though a set of basic mathematical issues has been brilliantly resolved, the price is 
that a new axiomatic notion of randomness (== randomnessk) has been introduced. 
Obviously, randomnessk does not carry any of the implications of unpredictable or 
"lawless" behavior that are often presumed in physical situations. If one traces the 
precise meaning of randomness-with or without the k-through the standard 
mathematical foundations of quantum statistics, 16 one is finally led to the following 
assertion: the inherent unpredictabil ity of quantum phenomena, such as jumps 
between levels, is a physical assumption that is independent of the other foundations 
of quantum mechanics. A physical assumption of this kind is, in principle, subject to 
experimental test. 

RANDOM AND PSEUDORANDOM PROCESSES-I 

During the last few decades, advances in cryptography, complexity theory, and 
"chaos" have tended to blur the distinctions between random and pseudorandom 
processes. For example, a deterministic procedure that is effective in simulating 
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many aspects of random behavior is the iteration of mixing transformations. Prob
ably, the best-known and simplest transformation of this type is the logistic map17 on 
the interval [O, 1 ) :  

(2.1) 
which is conjugate to the second-order Cebysev polynomial. There is a constructive 
procedure for associating a mixing transformation T with any strictly increasing 
probability measure P. This is based on the following: 

LEMMA: Let P1 be a continuous, strictly increasing function from an interval /1 
onto [O, 1 ]. If/ is a continuous, strictly increasing function from Ii onto the interval Ii 
and if we define P2 by the composition P2 = P1 ° 1- 1 , then P2 is a continuous, strictly 
increasing function from Ji onto [O, 1 ) . Conversely, if P2 is a continuous, strictly 
increasing function from Ii onto [0, 1) and if/ is defined by f = P2- 1 o P., then/ is a 
continuous, strictly increasing function from /1 onto Ii. 
The functions P1 and P2 determine Lebesgue-Stieltjes measures on /1 and Ji, 
respectively; P1 and P2 may also be interpreted as cumulative distribution functions. 
We now construct the mixing transformation T by means 0£ the following: 

. . 
CONJUGACY THEOREM: 18 Let Ii, Ii. P., P2, and l satisfy the definitions and 

conditions of the lemma and suppose that T1 is mixing on /1 with respect to P1 •  Then, 
the function T defined by 

T = fo T1 of- 1 = Pi 1 0 P1 0 T1 o P! 1 0 P2 
is mixing on the interval Ii with respect to the measure P2• 

(2.2) 

What all this machinery effectively does is to mix anything "to order"; in particular, 
given any probability distribution function, it yields an explicit prescription for 
constructing a set of deterministic iterations that converge to this distribution. These 
results are sufficiently general to apply to quantum mechanical distributions. As an 
illustration, consider the ground state of a one-dimensional infinite symmetric well: 12- 112 cos[(�)x] for -2 � x � 2, 

iti(x) = 4 

0 otherwise. 

In this case, it can be shown that the appropriate mapping is given by18 

Then, equation 2.2 leads to the composite function, 

(2.3) 

(2.4) 

(2.5) 
where Cm (m ;;;;:: 2) may be any of the Cebysev polynomials. The iterations of T(x) 
generate the probability density corresponding to equation 2.3. Detailed discussions 
of these procedures and additional examples are given in reference 18. An important 
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point is that the simulation of quantum mechanical distribution!!_ by mixing processes 
does not clash with von Neumann's "hidden variables" theorem. 19 

In summary, these mixing simulations are "demonstrations by construction" that 
a wide class of nominally random phenomena-including quantum mechanical 
distributions-can be reproduced by completely deterministic means. 

This situation naturally leads to the converse question : given a nominally random 
string of symbols or numbers, is there a general procedure for distinguishing between 
inherently unpredictable or "lawless" sequences and sequences generated by deter
ministic means, even if the underlying stratagems are artfully concealed? In its 
rawest form, this problem appears with cryptographic adversaries: Group A sends 
encrypted messages interspersed among long strings of random gibberish. Group B 
intercepts the signals, but does not know which is which; this group will therefore be 
compelled to squander enormous effort in separating the encrypted information 
from the encrypted noise. However, one can make headway even in this situation. 
Specifically, suppose that one compares two long strings of ciphertext, each com
posed of the 26 letters of the alphabet. Then, as first shown by Friedman,20 speech 
and gibberish could be distinguished by looking at the statistics of matching letters in 
the two strings. In the case of encryption by simple transposition, combinatorial and 
empirical results showed that the "index of coincidence" had the following values: 

6.67 matches 
encrypted English --+ ---.---. -----

100 pa1rs of c1phertext letters 

random letters --+ 0.0385 

encrypted German --+ 0.0762 

encrypted Japanese --+ 0.0819. 
(romanized) (2.6) 

Evidently, despite ignorance of the precise rule of encryption, it is even possible to 
infer the language of the concealed message. Of course, all of this becomes 
enormously more complicated when polyalphabetic memory-dependent encryption 
schemes are utilized, but sophisticated statistical analyses still manage to break 
intricate computer coding algorithms.2 1 

RANDOM AND PSEUDORANDOM PROCESSES-II 

In parallel with the cryptographic developments, general limitations on the 
behavior of "chaotic" processes were discovered. For instance, the simple quadratic 
map (equation 2. 1 )  generates discrete ergodic flows when iterated and has many 
other "chaotic" properties, but its structure is far too trivial to qualify as a useful 
pseudorandom number generator. In analogy with cryptography, one can then 
attempt to improve matters by searching for "more chaotic" functions. Because the 
Cebysev polynomials form a kind of generic hierarchy of complex functions, their 
iterates exemplify this progressive disorder; it would, for instance, be quite tedious to 
reconstruct C10,000 from a string of iterates. Nevertheless, there are ultimate con
straints of order. 
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Consider a set S containing N distinct elements, xi ,  . . . , XN, and let F denote the 
associated set of NN functions that map S into itself; that is, F is the full transforma
tion semigroup of S. Furthermore, suppose that h is a function selected at random 
from F and thatx; is an arbitrary element of S. Then, it is an obvious consequence of 
the "pigeonhole" principle that the sequence of iterates, 

(3.1) 
must contain at least two identical elements whenever m > N. In other words, 
equation 3. 1 consists of a "free running" sequence containing no repetitions and a 
contiguous sequence that constitutes a terminal cycle. If h is a pseudorandom 
number generator, then the sequence of values in equation 3.1 will appear to vary 
erratically. However, it is precisely this requirement of pseudorandom behavior that 
imposes strong constraints on the orbit structure of h. For instance, in this pseudo
random evolution, the sequence in equation 3.1 must imitate the combinatorics of 
sampl ing from an urn with N distinct elements. It is then an elementary consequence 
of the single birthday lemma that the average length of the period of free running and 
the length of the terminal loop are both given by ( -rrN /8)111.. Much stronger constraints 
emerge from the double birthday lemma:22.23 From an urn containing N distinguish
able objects, an observer R draws one object at a time, at random with replacement, 
until a repetition occurs. A similar set of draws is made by another observer B. Then, 
it can be shown that the probability P that R and B have selected at least one object in 
common is 

p � (�) + 
(
1
�)(�) 1 '2 + (9�) + . . . . (3.2) 

If this large coincidence probability is to be simulated by pseudorandom sequences 
such as equation 3. 1 ,  then arbitrary pairs of iteration trajectories, starting at distinct 
initial points x; and xi, will have to exhibit a strong tendency to merge into a common 
track whenever m - O(N'h.). 

The birthday lemmas are merely the simplest examples of a hierarchy of 
coincidence and recurrence criteria that must be satisfied by single and/or multiple 
strings of random elements. Every single one of these randomness tests further 
narrows the possible structure of the orbits of pseudorandom functions: thus, one is 
effectively left with a single generic type of orbit. The amount of quantitative 
information that can be extracted from the "statistical topology" of these orbits
without having to specify the precise structure of h-is astonishing.23,24 For instance, 
80% of all of the trajectories (equation 3.1 ) merge into a single terminal loop 
irrespective of the starting point x; and 60% of these trajectories enter the terminal 
loop at a single point. Effectively, metric chaos results in topological order. A 
nontrivial practical application of the birthday lemmas occurs in breaking the United 
States Data Encryption Standard (promulgated by NIST), which is in widespread use 
for "secure" commercial communications.2s 

THE SINGLE-ATOM QUANTUM TELEGRAPH-I 

During the Second World War, American code-breakers succeeded in physically 
reconstructing the Japanese "purple" enciphering machine purely on the basis of the 
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ordered patterns discovered by cryptanalysis of diplomatic and (]lilitary communica
tions. Searching for ordered patterns in quantum phenomena appears to be far more 
_speculative, but actually also has a practical purpose: if quantum mechanical events 
are inherently unpredictable, then it is technically feasible to construct devices that 
are inexhaustible sources of random numbers. The initial proposals to combine 
cryptography and quantum mechanics involved a number of basic issues:26 

1 .  The Necessity of Identifying Strictly Consecutive Sequences of Events-Even the 
most ingenious cryptanalyst will be helpless if presented with arbitrary frag
ments haphazardly extracted from a message stream: random sampling obl it
erates information. It is this self-evident requirement that points in the 
direction of resonance fluorescence from single trapped atoms. As empha
sized by Dehmelt in connection with his "shelved" electron scheme, this 
experimental arrangement for the first time permits a reliable discrimination 
between the emission of a photon (sampling) and the emission of the next 
photon.21 The succession of bright and dark intervals in the resonance fluores
cence is the quantum mechanical analogue of a message stream. 

2. Finite State Spaces-The cryptanalysts' holy grail is a very, very long message 
stream because the underlying assumption of decryption is that the adver
sary's enciphering device has access to only a finite number of possible 
configurations (no infinite Turing tapes). The complexity then lies in the rules, 
which may be history-dependent, but the multipl icity of states is merely a 
complication of scale and enumeration. Similarly, all of the general criteria of 
statistical topology, or "ordered chaos", discussed in the previous section rest 
on the fundamental presumption that S is a finite set. 

Thus, is the resonance fluorescence of a single trapped (mercury) ion equ ivalent to a 
process in a finite state space? Opinions are divided on this point. What can be said 
with certainty is that all cooling schemes result in a contraction of the phase space 
available to the ion. Whether this phase space includes all the degrees of freedom 
that are relevant to the generation of the resonance fluorescence telegraph remains 
to be seen. In any event, it is easy to estimate the number of phase-space cells 
accessible to the ion: 

[ tooo A x 0.5 MeV/c]J 
,, 

- 1Ql6. (4. 1 )  

This small [sic] number i s  the result of the extraordinary cooling and localization of 
ions that is attained with current techniques. The momentum transfer is borrowed 
from relativistic cutoffs in quantum electrodynamics. If the estimate in equation 4. 1 is 
identified with the cardinality of the set S in the previous section, then one would 
crudely estimate that about 108 consecutive signals would be necessary to find traces 
of long range order. This is roughly the recurrence period of some "good" pseudoran
dom number generators. 

Another basic issue is the following: 

3. Complexity and Randomness-The basic connection between randomness and 
information can be illustrated by a simple example. Consider a long string of 
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random numbers: if a single .number is removed, there is no contextual way of 
estimating the magnitude of the missing object; information compression is 
impossible with random strings. In this sense, Kolmogorov28 and Chaitin29•30 
showed that random processes are necessarily complex. This result, of course, 
is also consistent with cryptographic experience: there are no algorithms that 
are simultaneously simple and unbreakable. The single-atom situation pro
vides an interesting contrast . From a physical point of view, this is a system 
stripped down to utter simplicity and yet it apparently provides an inexhaust
ible stream of random events. 

mE SINGLE-ATOM QUANTUM TELEGRAPH-II 

The technical details of generating and analyzing single-atom telegraph data are 
described elsewhere.31 In the original work, the durations of 640 successive bright 
and dark periods of a double-beam resonance fluorescence telegraph were extracted 
from data furnished by NIST-Boulder and were subjected to 39 statistical tests of 
random behavior. Subsequently, we received more data from a single-beam tele
graph experiment.32 This file listed the number 0(194-nm photons detected in 105 
consecutive 1 -ms time intervals. Typical "on" counts were 40/ms and typical "off'' 
counts were l /ms. The total yield of on and off pulses from this file was 1450. The 
series of 725 dark periods were subject to 20 randomness tests. Again, the results 
were consistent with random behavior, but the statistics are not really meaningful 
because this is such a small sample. Finally, we received 15 additional files containing 
data obtained in connection with the experiment described in reference 32. From 
this information, we were able to reconstruct about 104 on and off pulses, although, 
unfortunately, not all in strictly consecutive order. Nevertheless, the entire exercise 
was very fruitful because all the computer routines are now in place to process really 
long runs of data. A detailed description of these analyses will appear elsewhere. 33 

The long range recurrences that we are interested in locating are somewhat 
unusual. A typical example is the repeat test:34 Consider a data set consisting of N 
elements, of which m are distinct. The repeat test compares the number of distinct 
orderings of every I' consecutive elements to the number of distinct orderings that 
are expected to appear with random drawings. The following sequence illustrates the 
rules used to count the number of repeated elements, element pairs, etc. : 

a, b, c, d, e, a , b, d, b, c, e, e, b, a , b. (5.1) 

In this sequence, there are 5 distinct elements, a-(!. Element a occurs 3 " times; we 
count 2 repeats of a. Similarly, there are 4 repeats of element b; 1 repeat each of the 
elements c and d; and 2 repeats of element e. Therefore, in this 15-element sequence, 
there are 2 + 4 + 1 + 1 + 2 = 10 repeated singles. There are 52 possible pairs of 
these 5 elements. In equation 5 . 1 ,  there are in fact 14 consecutive pairs of elements: 
the pair a,b occurs 3 times and the pair b,c occurs twice; this yields 3 repeated 
doubles. In equation 5. 1 ,  there are no repeated subsequences of three or more 
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elements in length. With this nomenclature, the following display should be intelli
gible : 

Length of 
Sequence Doubles Triples Quadruples 

500 400 400 102 101 1 1  13 
(5.2) 1000 900 900 365 369 49 48 

2500 2400 2400 1574 1580 280 271 
5000 4900 4900 4007 4005 1050 1048 

In every double column, the first set of entries is derived from the mercury telegraph 
signals, whereas the second set is from a pseudorandom number generator.31 This 
test illustrates a crucial point in pattern recognition: one does not need high 
precision in order to identify the onset of nonrandom recurrences. 

OUTWOK 

There are many classical versions of the problems discussed in the preceding 
sections. For example, given 106 strictly consecutive outcomes of a game of roulette, 
deduce that the motion of the ball is governed by deterministic mechanics. If one 
cannot solve this problem, why bother with quantum mechanics? 

The roulette example emphasizes two features: (i) repetitive processes cannot 
necessarily be idealized as iterations and (ii) "chaotic" or mixing processes are 
sensitive to initial conditions. The first point already appears in the simplest instance 
when the logistic iteration (equation 2. 1 )  is implemented on a computer. Despite 
formal "shadowing" theorems, when Cebysev polynomials are iterated on comput
ers, the resulting orbit structures have little resemblance to analytical predictions.35 
The deviations, of course, are due to round-off and truncations. One might think that 
this could be taken into account by replacing the simple Cebysev iterations, C2 ° C2 ° 

C2 ° . . .  , by a composite sequence, 

(6. 1 )  

where the g function represents the stepwise modifications introduced by the 
computer. However, it is easy to show that this scheme is inadequate because the 
computer effects, although completely determinate, are also history-dependent, like 
cipher machines. 

In the case of roulette, the role of the "g
" is played by the croupier, who picks up 

the ball and puts it into play again. In this obvious sense, repetition is not equivalent 
to iteration. The croupier of resonance fluorescence is the laser illumination that 
"resets" the atom after the shelf state has decayed. 

Some reflection will show what is necessary in the roulette case: one has to 
intervene in order to eliminate the history-dependence (feature i) and to reduce the 
extent of the instabilities (feature ii). Replacing the croupier by a precisely con
trolled mechanical robot will make the underlying determinism more explicit, but it 
will take the fun out of the game. Whether a corresponding set of manipulations 
(Zener pulses?) is feasible in the quantum situation is an open question. 
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Quantum Chaos and Statistical 

Mechanicsa 

MARK SREDNICKI 
Department of Physics 
University of California 

Santa Barbara, California 93106 

Consider a dilute gas of hard spheres in a box with hard walls. Give the spheres some 
arbitrary initial distribution of momenta (and positions) . Classically, after a few 
mean free times have passed, we expect that the distribution of momenta will be 
given by the Maxwell-Boltzmann (MB) formula, 

fMe(P) = (2-rrmkT)-312 exp(-p2/2mkT), (1 ) 

where the temperature T is given in terms of the conserved total energy U by the 
ideal-gas relation, U = (3/2)NkT. 

To see why this should be so, first note that the Hamiltonian is simply 

1 N 1 H = - L P1 = - P2, 2m i= I  2m (2) 

where P is a vector with 3N components. Because H takes on the constant value U, 
the allowed values of P form a sphere that we will call the P-sphere. Suppose we now 
choose P "at random". For this to be a meaningful statement, we must have a 
measure that tells us which sets of P's are equally likely a priori. The obvious choice is 
to assign equal a priori probabilities to equal areas on the P-sphere. Then, if we 
choose P at random with respect to this measure, the probability that our choice 
makes an angle between 9 and 9 + d9 with respect to any particular axis is simply 

f(9)d9 - (sin 9)3N-2d9 

- (sin 9)3N-3J cos 9 

- (1 - cos29)C3N-3>12d cos 9. (3) 

Ifwe now identify (2mU)1 12 cos 9 as, say, the value ofp1, (the z component of the first 
particle's momentum), we find 

f(p1z)dp1z - ( 1 - PU2mU)C3N-3)12dp1z 

- exp(-pU2mkT)dp lz• (4) 

where in the second line we have set U = (3/2)NkT and have taken the Iarge-N limit. 
Thus, we have recovered the MB distribution for p1z. Now, consider the probability 
distribution for p1y when p1z is fixed; it is given by the first line of equation 4 with 3N 

0This work was supported by National Science Foundation Grant No. PHY-9 1 - 1 6964. 
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replaced by 3N - 1 (because theFe is one less coordinate when p1z is fixed) and with 
2mU replaced by 2mU - P�z· In the large-N limit, we can neglect p'fz compared to 
2mU and we find the MB distribution for p11• In similar fashion, we get the MB 
distribution for any n components of P as long as n « N. 

Now, our task is to justify the assumption that equal areas on the P-sphere are 
equally likely a priori. That such a justification is needed can be seen by considering 
how we would go about filling a real box with a real gas (say, helium). If the box did 
not already have some sort of valve on it, we would install one and would pump the 
air out through it. Then, we would close the valve, attach it to a tank of helium with a 
hose, and open the valve. The helium atoms. would rush in, moving preferentially in 
the direction parallel to the hose. Thus, their initial distribution of momenta would 
be strongly anisotropic. This is in sharp contrast to the prediction of the equal-area 
measure, which tells us that we will find a thermal, isotropic distribution. Clearly, 
then, the equal-area measure has nothing to do with how we put real gases in real 
boxes and thus we must seek its justification elsewhere. 

That justification comes from Sinai's theorem, 1 which states that a box of hard 
spheres is a chaotic system. The meaning of this statement in the present context is 
simple. Start off with arbitrary initial momenta and positions; the momenta can be as 
nonthermal as you like. (Actually, we must exclude a •set of measure zero; for 
example, it is possible to set up initial conditions such that no two hard spheres ever 
collide, in which case the following discussion obviously does not apply.) Wait a few 
mean free times and then note the current location of P on the P-sphere. Continue 
this procedure, keeping track of the location of P each time. Chaos implies that this 
sequence of P's appears to be chosen at random with respect to the equal-area 
measure. 

We are done. Even if we started off with a P representing a strongly anisotropic 
distribution, the next P will appear to be chosen "at random" and thus predicts a 
thermal distribution for the individual momenta. 

So much for classical mechanics. What about quantum mechanics? 
Now, we have a completely different problem.2 The N-particle Schrodinger 

equation can always be solved by going to the energy eigenstate basis: HI a) = U., 1 a) . 
The Hamiltonian is given by equation 2, supplemented by the boundary condition 
that the energy eigenfunctions iti .. (X) vanish whenever one of the hard spheres 
touches a wall of the box or whenever two hard spheres touch each other. The wave 
function in momentum space at time t is then 

+<P, t ) = L C., exp( -iUJ/h)+ .. (P), (5) 
a 

where the C.,'s specify the initial state. The probability that the first particle has 
momentum p1 at time t is found by squaring the wave function and integrating over 
all momenta, except the first: 

/(P1.  t) = I d3p2 • • • d3PN l +(P, t) l 2 

= L c:cpei(Ua-Up)llh f d3p2 . • •  d3pN+:<P>+11(P) 
ap 

= L c:cpei(Ua-Up)1/h<l> .. p(P 1 ) . 

ap 
(6) 
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In the last l ine, we have introduced 

(7) 

which obeys the normalization condition, 

(8) 

If we symmetrize or antisymmetrize each �a(P) on exchange of any two p;'s to reflect 
Bose-Einstein (BE) or Fermi-Dirac (FD) statistics, then /(Pi. t) is independent of 
whichever p; we choose. 

On physical grounds, we expect that /(Pi. t) should be the MB (or BE or FD) 
distribution for any time t greater than a few mean free times. It is not obvious how 
this can occur. Consider, for example, what happens if we take the infinite time 
average of /(Pi . t) : 

(9) 

The infinite time average is obviously not something we can actually observe, but 
theoretically, if anything is going to be thermal, this is it. The problem is that the Ca's 
are essentially arbitrary; hence, how can we possibly get the MB distribution? 

There is only one way: each ct>_(p1 ) must individually be equal to the MB (or BE 
or FD) distribution at a temperature Ta that is given (at least approximately) by the 
ideal-gas relation, Ua = (3!2)NkTa. We call this hypothesis eigenstate thermalization. 
If eigenstate thermalization is valid, then equation 9 will indeed be a thermal 
distribution as long as the uncertainty in the total energy is much less than its 
expectation value. 

Furthermore, if cl>ap(p1 ) is always sufficiently small whenever a ¢ �. then the a ¢ 
� terms in equation 6 will usually make a negligible contribution and /(Pi. t) will be a 
thermal distribution at most times t, without any time averaging at all. However, if 
the magnitudes and phases of the Ca's are carefully chosen, then we can "line up" the 
cl>ap(p1 )'s so as to get any /(pi. t) that we might want at any one particular time (say, 
t = 0) . Afterwards, however, as we see in equation 6, the phases will change in the 
usual manner; the carefully contrived coherence among the various cl>ap(p1 )'s will be 
destroyed and we will again find a thermal distribution for p1 • 

I find this to be a clear and satisfying explanation for the validity of quantum 
statistical mechanics, at least in this particular problem, and even without any further 
evidence in favor of it. However, there is more to be said: a very strong case can be 
made for the two necessary ingredients-the thermal nature of ct>""(p1 ) and the 
smallness of cl> ap(p1 )-based on the theory of quantum chaos. 

Quantum chaos is the study of quantum systems whose classical counterparts are 
chaotic. The result we will need is known as Berry's conjecture. 3-S As its name 
implies, Berry's conjecture is as yet unproved, but there is significant numerical 
evidence (reviewed in reference 2) in support of it. 

Berry's conjecture has two parts. Part one says that the energy eigenfunctions of a 
bounded, isolated quantum system that is classically chaotic appear to be Gaussian 
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random variables, in the sense that 

lim J dXIJla(X + X1 ) . . .  IJla(X + Xn) = � J(X;1 - X;2) • • . J(X; _ - X; ) . (10) 
a.-ac pairs n I n 

Here, the integration measure is normalized so that J dX = 1, and the sum is over all 
possible ways to pair up the X/s; if n is odd, the result is zero. Part two says that the 
correlation function J(X) is given by 

J(X) - J dP exp(iP · X/h)8 [H(P, X) - Ua), (11) 
where 8(x) i s the Dirac delta function and J(O) = 1 .  

It is straightforward to show that Berry's conjecture gives us the two necessary 
ingredients for quantum statistical mechanics. First, when a ¢ �. we find that 
<1>a�(p1 ) is exponentially small in the number of particles N. More importantly, we 
find eigenstate thermalization: <1>aa(P1 ) is given by the MB or BE or FD distribution 
(depending on whether we use nonsymmetric, completely symmetric, or completely 
antisymmetric energy eigenfunctions) plus corrections that depend on the specific 
energy eigenfunction, but that are exponentially small in N. To derive this, the gas 
must be dilute; there are also other, hard-to-compute corrections to <1>aa(P1 ) due to 
the finite radii of the hard spheres. We expect these to reproduce the usual 
hard-sphere corrections to ideal-gas behavior, bu!. this remains to be demonstrated. 
Another important unsettled issue is to determine how high the energy needs to be 
before equation 10 is sufficiently accurate. A naive estimate is >... � a, where >... = 
(2-rrh2/mkTa) 112 is a typical particle's de Broglie wavelength and a is the hard-sphere 
radius. With a in angstroms and m in amu, this condition becomes Ta � (300/ma 2) 
kelvin. 

To summarize, the appearance of a thermal distribution of momenta in an 
isolated, bounded quantum system of many particles can only be understood if each 
energy eigenfunction individually predicts a thermal probability for the momentum 
of each constituent particle and if overlaps of different energy eigenfunctions are 
sufficiently small when one particle's momentum is left unintegrated. Both these 
statements can be derived as consequences of Berry's conjecture, which is expected 
to hold only for quantum systems whose classical counterparts are chaotic. Thus, the 
well-known connection between classical statistical mechanics and classical chaos is 
now seen to be mirrored by an analogous connection between quantum statistical 
mechanics and quantum chaos. 
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Why Not Take All Observables as 

Beables? 

JEFFREY BUB 
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Why not take all quantum mechanical observables as beables? Jeroen Vink1 pro
posed just this and explicitly formulated a dynamics for beable trajectories that 
reproduces the quantum statistics. At first sight, the idea seems preposterous: surely, 
the phenomenon of interference, induced by the noncommutativity of the algebra of 
observables or the non-Booleanity of the algebra of idempotent ("yes-no") observ
ables, excludes this possibility. In fact, we could take all observables as beables and 
could account for the Born probabilities as the probabilities of measurement 
outcomes, in terms of an appropriate theory of measurement, but I shall argue that 
nothing is gained by this radical interpretation of Vink's theory. Instead, the theory 
should be interpreted as a type of Bohmian mechanics-a generalization of Bohm's 
hidden variable theory2 in which some privileged discrete observable, rather than 
position in configuration space, is selected as always having a determinate value. 

The term "beable" was introduced by Bell:3 
It would be foolish to expect that the next basic development in theoretical physics will 
yield an accurate and final theory. But it is interesting to speculate on the possibility that 
a future theory will not be intrinsically ambiguous and approximate. Such a theory could 
not be fundamentally about "measurements", for that would again imply incomplete
ness of the system and unanalyzed interventions from outside. Rather it should again 
become possible to say of a system not that such and such may be observed to be so, but 
that such and such be so. The theory would not be about "obsen•ables", but about 
"beables". 

In an article entitled "Beables for Quantum Field Theory", Bell sketched a 
generalization of Bohm 's theory for fermion number density as the privileged beable. 
As Bell saw it:4 

Not all "observables" can be given beable status, for they do not all have simultaneous 
eigenvalues, i .e., do not all commute. It is important to realize therefore that most of 
these "observables" are entirely redundant. What is essential is to be able to define the 
positions of things, including the positions of instrument pointers or (the modern 
equivalent) of ink on computer output. . . .  The distribution of fermion number in the 
world certainly includes the positions of instruments, instrument pointers, ink on 
paper, . . .  , and much more. 

Bell proposed a stochastic dynamics for the distribution of fermion number that 
replaces the deterministic equations of motion of Bohm's theory. He remarked that 
he found the introduction of a stochastic element for beables with discrete spectra 
"unwelcome", but he suspected that this would go away in some sense in the 
continuum limit.5 

761 
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Vink begins by reformulating and extending Bel l's stochastic dynamics and shows 
explicitly in what sense the theory reduces to Bohm's theory in the continuum l imit. 

Recall that Bohm extracts two real equations from Schrodinger's time
dependent complex equation of motion for the wave function in configuration space, 

ilialjl/ot = -(h2/2m)V2ip + Vljl, 

by substituting ljJ = R exp(iS/11): 

aS/ot + (VS)2/2m + V - (112/2m)V2R/R = 0, 

aR2/at + v . (R 2VS/m) = 0. 

The first equation (derived from the real part of the Schrodinger equation) can be 
interpreted as a Hamilton-Jacobi equation for the motion of particles under the 
influence of a potential function V and an additional "quantum potential", specifi
cally, -(112/2m )V2R/ R. The trajectories of these particles are given by the solutions to 
the equation 

dx/dt =j/p = VS/m = (11/m) Im(Vljl/ljl) = (ll/2im)(ljl*Vljl - ljJVljl*)/ l iV l 2, 

where p = R2 = l iV l 2 andj = R2VS/m = (11/m) .lm(ljl*Vljl), that is, by the integral 
curves of a velocity field defined by the gradient of the phase S. Thus, the trajectories 
x(t) depend on the wave function ljl. The second equation (derived from the 
imaginary part of the Schrodinger equation) can be written as a continuity equation 
for an ensemble density p = I iV 1 2 and a probability current j: 

op/at + v ·j = o. 
The continuity equation guarantees that p will remain equal to I iV 1 2 at all times if p = 
I iV 1 2 initially. 

Vink considers an arbitrary complete set of commuting observables Qi 
(i = l, 2, . . .  , /), with eigenvectors l q! i . q;2, • • •  , q�1), where the subscripts ni = 1 , 
2, . . .  , Ni label the finite and discrete eigenvalues of Qi. Suppressing the index i, 
these are written as l qn) . The time evolution of the state vector is given by the 
equation of motion, 

illd l ljl(t))ldt = H l ljl(t)), 
or 

illd(qn l iV)/dt = (qn lHljl) = L (qn lH l qm)(qm l iV) 
m 

in the Q-representation. 
The imaginary part of this equation yields the continuity equation: 

dPn/dt = ( 1 /11) L lnm• m 
where the probability density Pn and the current matrix lnm are defined by 

Pn(t) = l (qn l iV(t)) l 2, 

Jnm(t ) = 2 lm[(ljl(t ) l qn)(qn IH l qm)(qm l ljl(t))] . 
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For the nonmaximal (degenerate) observables Qi, the probability density and current 
matrices are defined by summing over the remaining indices, for example, 

P� = L l (q�, , 1 ,w. 
r 

where r denotes q�i (j ;z! i), and similarly for J�m· 
We want a stochastic dynamics for the discrete observable Q consistent with the 

continuity equation. Suppose that the jumps in Q-values are governed by transition 
probabilities Tm,Pt, where Tm,Pt denotes the probabil ity of a jump from value qn to 
value qm in time dt. The transition matrix gives rise to time-dependent probability 
distributions of Q-values, Pn(t), which must satisfy the master equation, 

m 

and this equation must be consistent with the continuity equation, 

that is, we require 

dPn (t) /dt = ( 1 /h) L lnm; m 

Jnmfh = TnJm - Tmnpn· 
We want solutions for T, given P andJ, with Tmn ;;::: 0. Becauselmn = -lnm (hence, 

Inn = 0), the above equation yields n(n - 1 )/2 equations for the n2 elements of T. 
Thus, there are many solutions. Bell's choice was6 

For n = m, Tnn is fixed by the normalization ImTm,Pt = 1 .  
Vink shows that Bell's choice leads to Bohm's theory in the continuum limit, 

when Q is the position in configuration space. For example, consider a single particle 
on a one-dimensional lattice. Let x = nd, with n = 1 ,  2, . . . , N and d being the lattice 
distance. Writing Iii = R exp(iS!h) and taking the derivative_, F' , of a function F on the 
lattice as defined by F'(x) = [F(x + d) - F(x)) /d, Vink shows that 

and 
lmn = (h/md)[S ' (nd)Pnfin,m - 1  - S ' (nd)Pnfin,m+ d  

Tmn = [S ' (nd)/mdJ8n,m- l •  

Tmn = [S ' (nd)/mdJ8n,m+ l •  

S ' (nd) ;;::: 0, 

S '(nd) � 0. 

For positive S ' (nd), the particle can jump from site n to site n + 1 with probability 
S ' (nd)dt/md; for negative S ' (nd) , the particle can jump from site n to n - 1 with the 
same probability. Because each jump is over a distance d, the average displacement 
in a time interval dt is 

dx = S ' (x)dt/m, 
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that is, 

dx/dt = S ' (x)/m . 

As d - 0, S' - iJxS; thus, in the continuum limit, 

dx/dt = iJxS/m 

as for the continuous trajectories in Bohm's theory. Vink shows that the dispersion 
vanishes in the limit as d - 0 and, hence, the trajectories become smooth and 
identical to the trajectories in Bohm's theory as d - 0. 

Having shown how to reformulate Bohm's equations of motion for any discrete 
observable, Vink considers two options: either we select a suitable privileged 
observable that always has a determinate value (suitable in the sense that all 
measurements can be reduced to determinations of the value of this observable) or 
we regard all observables as having determinate values simultaneously, at all times. 
Vink advocates the second option, although recognizing that the Kochen and 
Specker theorem 7 imposes severe restrictions on the simultaneous attribution of 
values to observables. If the functional relation 

holds as an operator identity among the observables of a mutually commuting set, the 
same relation 

f[v(Q I ), v(Q2), . . .  • v(Qn)] = 0 

cannot in general be satisfied for the values v(Qi) of the observables. 
Vink's insight (following Be118) is that functional relations between commuting 

observables need only be recovered for the measured values of observables. If the 
state is an eigenstate of the observables Q 1, Q2, • • •  , Qn, then the functional relation 
holds for the corresponding eigenvalues. A simultaneous measurement of Qi on a 
system S involves considering the state of a composite system S + M, where M is some 
measuring instrument, with a large number of degrees of freedom. Decoherence 
arguments show that the state function of S + M develops sharp peaks in the value 
space of the "pointer" observable R, with negligible overlap and interference, where 
each peak is associated with the product of a simultaneous eigenstate of the Qi and a 
correlated state of the measuring instrument indicating the measurement result. 

Just as in Bohm's theory, where the decoherence occurs in configuration space, 
the trajectory of R follows one particular peak of the state function, with negligible 
probability (after a very short time) of a jump to a value associated with a different 
peak. Essentially, this is because (i) the transition matrix induces transitions only 
between neighboring values, so the probability of a jump between values of R 
associated with macroscopically separated peaks is negligible, and (ii) the state 
function is effectively zero between peaks, so the trajectory of R would have to move 
through an effectively zero probability region between peaks (more precisely, the 
transition matrix would be effectively zero between values associated with the region 
between different peaks). Because different simultaneous eigenstates of the Qi are 
correlated with values of R associated with different peaks in the state function, the 
trajectories of the Qi will follow the trajectory of R. In effect, then, it is as if the state 
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evolves into a proper mixture of eigenstates of the Qi: all but. one peak can be 
neglected for the evolution of the trajectories and, for this peak, the functional 
relation holds for the values of the Qi. 

Vink remarks:9 

In general, the [functional relationship constraint] will fail to hold, even if the operators 
involved commute. However, it was discussed above that during a measurement the 
wave function of the quantum system effectively evolves into an eigenstate of the 
observable being measured, and then the [functional relationship constraint] holds 
among any set of operators that commute with the one being measured. 

Note that decoherence in the value space of the "pointer" observable R is crucial 
here. Suppose that the measured system S is not initially in an eigenstate of the 
commuting observablesA and B, where B = g(A) .  [Hence, the relation f(A , B) = 0 is 
B - g(A ) = 0.) For definiteness, suppose that B = A  2, where A is the spin of a spin-I 
particle in some direction. Then, the values of A and B will not in general satisfy the 
functional relation v(B) = v(A)2; that is, A might take the value + 1 ,  whereas B takes 
the value 0. 

As the state function of the composite system S + M begins to separate into three 
sharp peaks with negligible overlap and interference in R-space-each peak corre
sponding to one of the eigenvalues - 1 , 0, + 1 of A-the values v(A ) will evolve 
stochastically in time so as to eventually (after a very short time) follow one of the 
separating peaks of the state function, with negligible probability of jumping to a 
value associated with a different peak. Suppose that the value of A eventually evolves 
to the value associated with a particular peak-say, the peak associated with the 
eigenvalue + 1. The particular peak that the trajectory of A follows depends 
effectively on the initial value of R, not of A. Similarly, the trajectory of B depends 
effectively on the initial value of R, not of B. If the initial state of S is not an eigenstate 
of spin, the initial value of B will not in general be equal to the square of the initial 
value of A. However, the trajectory of B will evolve to a value associated with the 
same peak as the value of A, with negligible probability of evolving to a different 
value. If A ends up with the value ± 1 , then B will end up (effectively, with probability 
1 )  with the value 1 , not O; if A ends up with the value 0, then B will end up (effectively, 
with probability 1 )  with the value 0, not 1 .  

Thus, the fact that functional relations between commuting observables are 
recovered on measurement hardly supports the interpretation of all observables as 
beables because "measurement" in this theory is not a process for ascertaining the 
values of beables. Rather, it is a process that transforms the values of beables in a 
certain way. The situation is entirely analogous to measurement in Bohm's theory, 
where R is the position in configuration space. As Bell remarks on Bohm's theory: 10 

Note that from the present point of view the description of the experiment as "measure
ment" of "spin observable" [A] is an unfortunate one. Our particle has no internal 
degrees of freedom. It  is guided however by a multicomponent field and, when this 
suffers the analogue of optical multiple refraction, the particle is dragged one way or 
another depending only on its initial position. 

Consider the application of Vink's theory to a model quantum mechanical 
universe consisting of systems Si. S2, • • •  , Sn that undergo measurements by other 
systems Mi. M2, • • •  , Mn that function as measuring instruments. Each M; is 
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associated with a "pointer" observable Ri. The complete state of this universe at a 
particular time t is given by the quantum state at t and the values of all the 
observables as beables at t. The trajectory of any beable A of S; depends on the 
quantum state and the initial value of A. However, because of decoherence in a 
measurement of A by an instrument M; with "pointer" Ri, the trajectory of A during 
measurement depends effectively on the quantum state and the value of Ri at the 
start of the measurement interaction. 

Therefore, during and immediately after measurement, the value of A is effec
tively given by the value of Ri. Between measurements, the value of A and the values 
of other beables represented by operators that commute with A do not in general 
satisfy functional relations that hold between these beables. However, these values 
play no role in the dynamical evolution of the trajectories of the "pointer" beables 
(Ri )  because the trajectory of each Ri depends entirely on the initial value of R; and 
the quantum state. One might say that the values of beables other than the (Ri) 
supervene on the values of the (Ri )-they are quite redundant in the theory. In this 
quantum world, all phenomena can be completely described by the evolution of the 
commuting set of "pointer" beables (Ri )  or by a single "pointer" beable R of which 
each Ri is a function. Events described in terms of the changes to the values of 
beables other than the (Ri )  have the status of epiphenomena. Thus, nothing is gained 
by taking all observables as beables, beyond the inttfrpretative advantage achieved by 
taking R alone as the only beable. 

What we want for a consistent interpretation of quantum mechanics is a single 
suitable "pointer" observable, R, that can be taken as determinate at all times and in 
terms of which the measurement of any observable, Q, can be represented "inter
nally" in the theory as the correlation of R-values with Q-values. Although Bohm's 
choice of position in configuration space might be appropriate, it would not be 
appropriate to take R as momentum rather than position. A momentum "pointer" 
would behave rather strangely, largely because of the nature of the potentials that we 
encounter in our universe. Even with a suitable choice of a privileged beable R in this 
sense, there will always be some probability of apparently anomalous behavior, for 
example, stochastic transitions between different values of R associated with differ
ent values of a measured observable in repeated measurements as a consequence of 
interference effects. Decoherence renders such probabilities negligible, as in Bohm's 
theory. In this interpretation of quantum mechanics, decoherence explains why 
certain events that we would regard as anomalous occur very rarely. The events in 
question are always determinate and do not depend for their determinateness on the 
smallness of certain probabilities, as in orthodox quantum mechanics. 

Vink's theory should be interpreted as a generalized Bohmian mechanics for any 
discrete observable as a beable rather than a theory of all observables as beables. We 
might suppose with Vink that, on a sufficiently small scale, all dynamical variables 
take discrete values. For a suitable choice of a privileged observable R as a beable, 
the picture of a quantum mechanical universe is this: The quantum state evolves 
dynamically in time and can be understood as representing an objectively real field in 
R-space that influences the evolution of R-values. The always determinate values of 
R evolve stochastically under the influence of a transition matrix T mn that depends on 
the quantum state. The only real change in a quantum mechanical universe is the 
change in the quantum state and the change in R, and this suffices to account for all 
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quantum phenomena. All other observables are ersatz observables whose role in the 
theory is fully accounted for by the evolution of the quantum state. Insofar as they 
�n be said to have determinate values, these values supervene on the values of R. 
The virtue of the Bell-Vink analysis is that we see how adopting a suitable discrete 
observable as a beable yields a consistent interpretation of quantum mechanics, in 
which measurements can be represented internally as dynamical interactions be
tween quantum systems. 
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INTRODUCTION 

This report has three aims, one for each of the following sections. The first is to 
advertise some of the work of authors such as Landau, Summers, and Werner. 1-7 
Through their work, it is now well established that the Bell inequality is generical ly 
violated in rigorous quantum field theories, especially algebraic (relativistic) quan
tum field theories (AQFT). The second section summarizes some of their technical 
notions and results. · ·  

My second aim is to make a conceptual point about this violation: in effect, to 
relate it to the usual assumptions of Bell's theorem, especially for local stochastic 
"hidden variable" models. The above authors briefly discuss such assumptions, but it 
is worth considering the case of stochastic models in more detail. Here, my main 
point will be that AQFT violates what Shimony8 dubbed "outcome independence". 
More precisely, I will show that we can present the usual three assumptions of a 
stochastic Bell's theorem within the framework of AQFT. Of these assumptions, 
AQFT violates just outcome independence. 

Of course, that verdict is not surprising: elementary quantum theory also violates 
just outcome independence. However, the verdict yields two subsidiary points about 
a recent result of Redhead9 about strict correlations in AQFT. First, we see the 
result as directly proving outcome dependence in AQFT. Second, we see the result 
as reducing stochastic models to deterministic models, in a way analogous to a 
theorem of Suppes and Zanotti. to 

More important, AQFT's violation of outcome independence also leads to my 
third aim, namely, to connect outcome independence with stochastic Einstein 
locality (SEL) or, rather, to connect outcome dependence with the violation of SEL. 
SEL was first formulated by Hellman. 1 1  It is a natural locality condition and has been 
cited often in the philosophical literature about Bell's theorem. However, its relation 
to the usual roster of locality conditions discussed in AQFT has not been investigated 
much; so far as I know, Redei was the first to do so. 12, 13 

I will argue that SEL has two natural formulations. On the one hand, it can be 
formulated in terms of the expectation value of a single quantity. So formulated, it 
holds. (This is Redei's own verdict; 12 here, I shall report an amended proof, from 
joint work with Muller. 14) On the other hand, SEL can also be formulated in terms of 
a quantity's expectation value, conditional on another quantity taking a certain value. 
So formulated, SEL is a particularly plausible version of outcome independence. 

768 
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However, by the results of the second section, it fails: the!ein, say I, lies the 
strangeness of the Bell-type correlations. 

AQFr VIOLATES THE BELL INEQUALl1Y 

In this section, I will for the most part take notation and terminology from the 
review by Summers. 15 I begin by summarizing the situation in algebraic quantum 
theory without regard to space-time structure. First, briefly recall that a C*-algebra 
(with a unit 1) ,  C, is a Banach *-algebra (i.e. , a normed algebra with a unit and an 
involution, *• that is complete in its norm I I · • - 1 1) , with the norm satisfying the 
C*-condition that I I A* A I I = II A 1 12 for all A E C. However, in this report, we can think 
of C*-algebras as norm-closed *-algebras of bounded operators on a Hilbert space, 
containing the identity operator. 

The outcomes of an experiment are represented by projectors of a C*-algebra. 
All that follows would be unaffected if instead we took outcomes to be represented 
by effects, that is, by positive self-adjoint elements of the C*-algebra with the norm 
less than or equal to 1, of which projectors are a special case . However, for the sake 
of conformity with most authors considered, I concentrate on projectors. The 
projectors representing the possible outcomes for a given measurement apparatus 
sum to the identity. For convenience later on (in the next section), I label outcomes 
by a superscript x: IxEx = 1 . 

States on C are expectation functionals: that is, linear functionals cf> sending 
elements of C to their expectation values (complex for nonself-adjoint elements of 
C), which are also required to be (i) continuous [and so bounded in the sup-norm 
defined by l l c!> ll := sup{ l cf>(A) I : A E C, l lA l l = 1 )), (ii) positive [ i.e., for all A E C, 
cf>(A *A) � OJ, and (iii) normalized (i .e. , cf>( l )  = 1 ). A state cf> is called normal, if, for 
every monotone-increasing bounded {Ai. }  with least upper bound A, cf>(Ai. ) t cf>(A). 
These correspond in the Hilbert space formalism to density matrices. 

Accordingly, the setting for discussing Bell's inequality is as follows: the observ
ables of the system are a C*-algebra C (with a unit 1 ), containing a pair (A, B) of 
commuting subalgebras, with the outcomes of the Bell experiment represented by 
projectors E E A  and F E B. Because the subalgebras commute, joint probabil ities 
are given by cf>(EF). Furthermore, the linearity of cf> along with the existence of a 
common unit to which the (projectors representing) outcomes of each experiment 
sum directly implies that single probabilities are independent of what is measured in 
the other wing-the condition often called "locality". Thus, for the "left" single 
probabilities being independent of what is measured on the right, we have the 
following: 

Because L Fx = 1 ,  x Lc!>(EP) = cf>(E). x (2. 1) 

I should also report another way in which, in the Hilbert space formalism, having 
A and B commute captures locality. Thus, Schlieder16 proved a version of the 
so-called "no-signaling theorem": that is, that communication is equivalent to the 
preservation of one observable's statistics under nonselective Luders-rule-like mea
surement of the other observable. To be precise, he proved that two bounded 
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self-adjoint operators, A and B, on a Hilbert space commute if and only if, for any 
normal state cl> and any partition {.lj} of the spectrum of B, with B = J >.dE(�) (that is, 
the spectral resolution of B), 

cl>(A) = :t cl> [ J,; dE(�)A f,; dE(�)] . (2.2) 

It is convenient to work with a Bell inequality expressed not in terms of 
projectors, but in terms of self-adjoint contractions. Thus, given a projector E E A, 
we define A E A  by the following: A := 2E - 1 so that - 1  .s A = A" .s 1. The Bell 
inequality (in the most familiar form17) is then that for self-adjoint contractions A; E 
A,  Bi E B  (i, j = 1 , 2): 

(2.3) 

We then define the maximal Bell correlation of the pair (A , B) of commuting 
subalgebras of the C" -algebra C in the state cl> E C" to be 

where the supremum is taken over all self-adjoint contractions A; E A, Bi E B. 
Hence, the Bell inequality (equation 2.3) is �(cl>, A, ·B) � 1 .  

In the next section, I will further discuss the traditional "classical" sufficient 
conditions for the Bell inequality to hold, namely, local "hidden variable" models of 
the Bell experiment. For the moment, note that even in the general C"-framework 
(and so within any quantum theory) there are some conditions in which the Bell 
inequality must be satisfied-and it is not necessary that both A and B be Abelian. 
Thus, we have (theorem 2. 1 .3 of reference 4 and theorem 7 of reference 18) the 
following proposition: 

PROPOSITION 0. Let (A, B) be a pair of commuting subalgebras of a C*-algebra C. 

(i) If either A or B is Abelian, then �(cl>, A, B) = 1 for all states cl>. 
(ii) If cl> I A v 8, the restriction of cl> to the C"-algebra generated by A and B, is a 

convex sum of product states over (A, B) ,  then �(cl>, A, B) = 1 .  
(iii) If cl> I A or cl> 1 8 is a pure state, then �( cl>, A, B) = 1 .  
Of course, the Bell inequality i s  generally violated by quantum theories. Less well 

known is the fact that quantum theories have their own bound (proposition 1 of 
reference 1; see also reference 19): 

PROPOSITION 1 .  For any C*-algebra C, any commuting subalgebrasA and B, and 
any state cl> E C*, 

�(cl>, A, B) .s J2. (2.5) 

Hence, we define the maximal violation of the Bell inequality by � = J2. As originally 
discovered by Bell, 20 quantum theory attains this bound, provided that A and B each 
contain (copies of ) the 2 x 2 complex matrices and thus the Pauli spin matrices; one 
takes cl> as the familiar singlet state. 

Landau (propositions 3 and 5 of reference 1) showed that this maximal violation 
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was generic in quantum theories using von Neumann algebras (i .e. , C*-algebras 
closed in the weak topology) in the sense of the following: • 

PROPOSITION 2. Let A and B be commuting von Neumann algebras on a Hilbert 
space H that satisfy the Schlieder property, namely, that 0 ¢ A E A  and 0 ¢ B E B 
imply that AB ¢ 0. Then, if neither A nor B is Abelian, there is a normal state cf> on 
the set of all bounded operators B(H) such that �(cf>, A, B) = ./2. 

Sketch of Proof: First, for any projectors, P; E A and Q; E B (i = 1 , 2), and 
corresponding self-adjoint contractions, A; = 2P; - 1 and B; = 2Q; - 1 , we have 

Then, by theorem 2 of Roos,21 the Schlieder condition entails that the norm on the 
right factorizes into the product of the norms in the two algebras A and B. Final ly, 
one uses the fact that any non-Abelian von Neumann algebra contains projectors 
whose commutator norm equals �-

Remarks: The fact that the norm of the commutator of any two projectors is less 
than or equal to � has two consequences. First, equation 2.6 corresponds to the limit 
on � given by proposition 1. Second, the proof also establishes that, if we are content 
with nonmaximal violation of the Bell inequality, we can choose any projectors P;, Q; 
(i = 1 , 2) with the P terms not commuting and the Q terms not commuting (in 
algebras A and B that are commuting, non-Abelian, with Schlieder property): that is, 
there is a state violating the Bell inequality for these projectors. 

On the other hand, Summers and Werner (p. 2442 of reference 4; proposition 5 .7 
of reference 15) show that Bell 's original violation using the singlet state on the Pauli 
matrices was archetypal in the sense of the following: 

PROPOSITION 3. Let A and B be commuting subalgebras of a C*-algebra C and let 
A; and B; be self-adjoint contractions. Then, for a state cf> on C, with cf> IA faithful (i.e., 
if A E A, then both A � 0 and cf>(A) = 0 imply that A = 0) and cf> I 8 faithful, we have 
the maximal violation, that is, 

(2.7) 

Then, Ai. A2, and A3 := (-i/2)[Ai.  A2] are a realization of the Pauli matrices in A 
and similarly for the B; in B. 

I now specialize the discussion to algebraic quantum field theory.22·23 The basic 
framework is that each open bounded region 0 of Minkowski space-time is associ
ated with a C*-algebra A(O) of observables, subject to various axioms that are 
motivated by the idea that A (O) is the algebra generated by all observables 
measurable in the region 0. However, we will specialize this framework, assuming 
the A (O) to be concrete von Neumann algebras acting on a separable Hilbert space 
H. The system's overall C*-algebra of observables, C as above, is then the so-called 
quasi-local algebra generated by all the A (O). We require that C is irreducible, that 
is, that the von Neumann algebra, C", that is generated by C equals B(H ). 
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With this specialization, I can .state the axioms needed for my discussion as 
follows: 

(i) Isotony: lf 01 � 02, thenA (01 ) !;;;; A (02). 
(ii) Spacelike Commutativity: If all points in 01 are spacelike from all points of 

02, written 01 x 02, thenA (01 ) !;;;; [A (02)] ' ,  the commutant ofA(02) (this 
commutativity, of course, represents the joint measurability, and the exis
tence of joint distributions, of mutually spacelike observables) . 

(iii) Poincare Invariance: There exists on H a strongly continuous unitary 
representation U(P) of (the covering group of ) the Poincare group, which 
meshes with the automorphisms of the quasi-local algebra C, in the sense of 
the following: to each (active) Poincare transformation g acting on 
Minkowski space-time [g := (A, a), where A is a Lorentz transformation 
and a E R4 is a space-time translation], there is associated an automor
phism ag of the quasi-local algebra C, with 

ag[A (O)) = A[g(O)) 

and such that U(g)AU(g) - 1 = ag(A) for all A E A (O). 
(iv) Diamond: First, the domain of dependence, D(  O ),.of a region 0 is defined 

to be D+ (O) U D- (O), where the future dohlai11 of dependence, D + (O), is 
the set of points through which any smooth past-inextendable nonspacelike 
curve intersects O; similarly for the past domain of dependence. Then, 
Diamond requires that A (O) = A [D(O)) . 

(v) Weak Additivity: For any nonempty region 0, c• equals the von Neumann 
algebra generated by the set of all translates of A (O): that is, c• = 

{UaeR4A (Oa) )". 
(vi) Irreducibility: H has no nontrivial subspace invariant under all elements of 

all theA (O) : that is, C" = B(H). 
(vii) Spectrum: The four mutually commuting self-adjoint generators {P0, Pi . 

P2, P3 ) of the translation subgroup U(R4) obey Po :2! 0 and P · P :2! 0. 
(viii) Vacuum: There is a unique state n (called the vacuum) that is invariant 

under all translations. 

These axioms are for the most part independent. I remark that, intuitively, this is 
reasonable as regards the three "locality" axioms-Spacelike Commutativity, Poin
care Invariance, and Spectrum-because they clearly make different statements. 
Thus, it is widely accepted that some kinds of violations of Spectrum ("tachyons") 
are logically compatible with Poincare Invariance, even if physically unreasonable. 
Similarly, violation of Spacelike Commutativity seems compatible with Poincare 
Invariance and need not involve tachyons. 

So much by way of summarizing the framework. Returning to the Bell inequality, 
proposition 2 obviously makes us expect maximal violation of the inequality to be 
endemic in the local algebras of spacelike-related regions. Our first result in this 
direction is again by Landau. Regions 01 and 02 are said to be strictly spacelike if 
there is a neighborhood N of the origin in R4 with {01 + N} x 02 (the relation is 
symmetric) . Schlieder24 proved, using Spectrum and Vacuum, that the algebras of 
strictly spacelike regions satisfy the Schlieder property. Hence, we get the following 
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proposition directly from proposition 2 (p. 56 of reference 1; cf. also p. 23 1-233 of 
reference 15) :  • 

PROPOSITION 4. Under the stated axioms [(i)-(viii)], if 01 and 02 are strictly 
spacelike, there is a normal state cl> on B(H) such that �[cf>, A(01 ), A (02)] = J2. 

Remarks: First, this result establishes the remarkable fact that there is maximal 
violation of the Bell inequality independent of spatial separation. If, however, we fix 
the state considered, the degree of violation falls off rapidly with separation. For the 
vacuum, i t  is known that, roughly speaking, the degree of correlation (i .e. , the 
difference of the expectation of a product observable from the product of individual 
expectations) in the massless case decays like R-2, where R is the spacelike distance 
between regions; in the massive case, it decays like exp(-mR), where m is the mass 
gap. (See theorem 4 . 1 of reference 4; also see references 25 and 26.)  

Second, as Landau remarks, under the stated assumptions, C is simple and this 
means that there are vector states violating the Bell inequality arbitrarily closely 
to J2. 

Third, the requirement that the regions be strictly spacelike can be dropped if the 
O; are simple in the sense that 0 '1 = O.,  with 0 '1 standing for the interior of the 
causal complement of 01 . (The causal complement of 0 is the set of points spacelike 
to 0.) For such regions, if 01 is merely spacelike to 02, then theorem 3.5 of 
Driessler27 implies the Schlieder property. 

Proposition 4 is just the beginning. Much of Summers and Werner's work 
concerns special pairs of regions in which there is maximal violation of the Bell 
inequality in all normal states. (Of course, the observables concerned vary from one 
state to another.) Accordingly, they say that, in such a case, the algebras of the pair of 
regions are maximally correlated. They show, very remarkably, that such a maximal 
correlation of algebras is endemic for most rigorous quantum field theories: for all 
pairs of regions that are spacelike, but tangent (intersecting closures), and of 
prescribed shapes-namely, a pair is to consist of a wedge and its causal complement 
or of two tangent double cones. They also relate this maximal correlation to AQFT's 
usual roster of locality conditions. I can only give a taste of these results (for details, 
cf. theorems 5.8-5 . 15  and 6.9-6. 13 of reference 15) .  

First, recall that a pair (A , B) of subalgebras of a C*-algebra C are called 
C*-independent if and only if any pair of states, one on each subalgebra, have a 
common extension to a state on C. Roos21 showed that (A, B) are C*-independent if 
and only if they have the Schlieder property and if  and only if the common extension 
is a product state across A V  B. 

The results of Roos,21 Schlieder,24 and Driessler27 entail that C*-independence is 
typical in AQFT in the sense that, in an irreducible vacuum representation, the 
following results hold: for any strictly spacelike 01 and 02, [A (01 ), A (02)] is 
C*-independent; for any tangent double cones, 01 and 02, [A (01 ), A(02)] is 
C*-independent; and, for any wedge W, [A (W), A(W ' )] is C*-independent. 

Recall that a W*-algebra is a C*·algebra that is the dual of some Banach space 
(but we can think of them as von Neumann algebras because every W*-algebra is 
W*-isomorphic to a von Neumann algebra acting on a Hilbert space) .  A pair (A, B) 
of subalgebras of a W*-algebra C can be called W*-independent if and only if any 
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pair of normal states, one on each subalgebra, have a common normal extension to a 
state on C. Thus, W*-independence implies C* -independence. 

It turns out that under the assumptions (i) to (vi ii), for any spacelike double 
cones or wedges 01 and 02, [A(01 ), A (02)] is W*-independent if and only if any pair 
of normal states, one on each subalgebra, have a common normal extension that is a 
product state across A V  B. 

However, we know from part (ii) of proposition 0 above that convex sums of 
product states obey the Bell inequality. Thus, using Summers and Werner's results 
showing that algebras of wedges and their complements, and of two tangent double 
cones, are maximally correlated, we can infe� that such pairs of algebras are not 
W*-independent. 

For my purposes in the following two sections, though, I do not need details 
about (the occurrence and properties of) maximally correlated algebras and their 
consequences for AQFT's locality conditions. Rather, I need to report two theorems 
about correlations in the vacuum: a second theorem by Landau and one by Redhead. 
They both depend on the Reeh-Schlieder theorem28 (e.g., cf. p. 101 of reference 22), 
which states that, under our assumptions (i)-(vi i i) , the vacuum n is cyclic for any 
local algebra; that is, the following proposition: 

PROPOSITION 5. For any open region 0, the set o�yectors.A (O)O is dense in H. 

Remarks: In the proof, the vacuum can be replaced by any vector state with 
bounded energy. Also, the vacuum can be similarly replaced in propositions 6 and 7 
below. 

The idea of Landau's second theorem is to use proposition 5 to hit the vacuum so 
as to produce one of the states giving the (arbitrarily close to) maximal violations of 
the Bell inequality that proposition 4 provides and then to argue that this implies 
that, in the vacuum state itself, some conditional expectations violate the inequality. 
The hitting is done by an operator, say A, in the local algebra of a third region 03 that 
is spacelike to the given two regions. Landau then uses the fact that one can 
approximate the bounded self-adjoint operator AtA arbitrarily closely by a finite 
sum of its spectral projectors {Ei) to argue that, for one of these projectors, say E, 
some expectation values on A ( 01 ), A ( 02) according to the state En violate the Bell 
inequality. (These values can be interpreted in the usual way as expectations 
conditional on getting a result of + 1 in a measurement of E performed in the 
vacuum.) More precisely, for any projector E E  A (03), Landau defines the vacuum 
conditional expectation, RE, of the usual quantity, A1 (B1 + B2) + A2(B1 - B2) E 
A(01 ) V A(02), by 

RE := O([A1 (B1 + B2) + Ai(B1 - Bi)]E)!O(E) (2.8) 

and then proves the following proposition (proposition 1 of reference 2) : 

PROPOSITION 6. For any three strictly spacelike regions Oi .  02, and 03 and for 
any e > 0, there are self-adjoint contractions A; E A (01 ) and B; E A (02) and a 
projector E E A (03) such that the vacuum conditional expectation RE statisfies 
I RE I  > 2J2 - e. 

Remarks: First, as in the second remark on proposition 2, equation 2.6 means 
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that, if we are content with nonmaximal violation of the Bell inequality, we can get 
violation with (the contractions corresponding to) any projectors P; E A (01 ), 0; E 
A(02) (i = 1 , 2), with the P terms not commuting and the Q terms not commuting. 
Second, the rapid decay of correlations with spacelike separation, mentioned in the 
first remark on proposition 4, means that, for macroscopic distances, it is very rare to 
get a result of + 1 in a measurement of E in the vacuum; that is, !l(E) is very small .  

Finally, there is another sense (needed in the next section) in which the 
correlations do not decay. This concerns not the vacuum's violation of the Bell 
inequality, but its strict correlations. Using a similar method of proof (approximation 
of a bounded self-adjoint operator At A [with A given by the Reeh-Schlieder 
theorem] by a finite sum of its spectral projectors), Redhead9 has proved the 
following: 

PROPOSITION 7. For any two spacelike regions 01 and 02, for any e > 0, and for 
any projector P1 E A(01 ), there is a projector P2 E A (02) such that !l(P1P2) > 
( 1 - e)!l(Pz) .  

Remarks: First, this is compatible with the rapid decay of correlations with 
spacelike separation for the reason given in the second remark on proposition 6. In 
more detail, the rapid decay means that the difference, !l(P1P2) - [!l(P2) • !l(P1 )) , 
falls off rapidly; proposition 7, that is, !l(P1P2) = !l(P2), then implies simply that 
!l(P2) falls off rapidly for given !l(P1 ) . Second, I again emphasize that the vacuum is 
replaceable by any vector state with bounded energy. 

OUTCOME DEPENDENCE IN AQFf 

I now turn to relating the results of the previous section to analyses of exactly 
which "classical" assumptions imply a Bell inequality (and so are refuted by the 
inequality's violation). This is a big topic and I cannot do full justice to all the 
alternatives, even to those discussed by the authors mentioned in the previous 
section (Summers and Werner4·29 give the fullest discussion). I shall confine myself 
(as they do) to the traditional two-particle Bell experiment. Moreover, I a im only to 
relate the results of the previous section to a distinction that is not articulated by 
these authors, but is traditional in the literature: namely, the distinction between 
deterministic and stochastic local models of the Bell experiment. (I drop the usual 
phrase, "hidden variable".) As we shall see, this distinction has been criticized 
(sympathy with those criticisms may be the reason why these authors do not 
articulate the distinction). However, I consider it a valid distinction and (as promised 
in the INTRODUCTION) deploying it will in any case yield a novel conclusion, in the 
next section, about Hellman's condition of stochastic Einstein locality. 

Therefore, I first recall the relevant aspects of such deterministic and stochastic 
models (e.g., cf. references 17 and 30 for more details). A deterministic local model 
of the Bell experiment consists of a space A (of complete states of the pairs of 
particles; of "hidden variables"), on which the four quantities, Ai. A2, Bi .  B2, to be 
measured in the two wings (A terms on the left, B terms on the right) are represented 
as real-valued functions. A is a probability space, with measure p, for example, so that 
the A; and B; are random variables. The model assumes locality in two ways. First , p is 
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independent of which quantities are measured. Second, the model has a single 
function, Ah to represent the results obtained in a left-wing measurement, irrespec
tive of which quantity, if any, is measured on the right. These two conditions imply 
that the predicted observable probabilities for results of ± 1, obtained by averaging 
over A using p, satisfy locality in the sense of equation 2. 1 .  Thus, defining the 
preimage set for a joint result by, for example, 

[ 1 , + 1 ; 2, - 1 )  := {X E A: A1 (X) = + 1 and B2(X) = - 1 ), (3.1) 

the observable probability is given by the p-measure of the preimage, 

p(A1 = + 1  and B2 = - 1) := .[ dp, ( 1 ,+ 1 ;2,- 1 ] (3.2) 

and locality is trivial. Bell's theorem states that any such deterministic local model is 
committed to a Bell inequality.20 

On the other hand, in a stochastic local model, specifying X E A does not specify 
measurement results (by applying a random variable); it specifies probabilities-in 
general, nontrivial (neither 1 nor 0)-for the various possible joint and single 
measurements: 

prAAe .( ± 1 ,  ± 1) ,  prAA . (± 1) ,  pr�8.( :!;.l). l J • -; J 

The intuitive idea is that either the state X of a pair of particles evolves indeterminis
tically in flight or the measurement result is also influenced by features of the 
apparatus that vary from one run to another; or both. Furthermore, such a model 
need not use a single probability space, as a deterministic model does. As the 
subscripts suggest, each choice of a single quantity or a pair of comeasurable 
quantities can label a separate probability space, thus avoiding joint probabilities for 
noncomeasurable quantities. In these respects, stochastic local models generalize 
deterministic local models (but cf. the discussion below) . 

However, these models assume locality in a very similar form to the deterministic 
models. Again, there are two assumptions. First, p is independent of which quantities 
are measured. Second, all the joint probabilities are assumed to factorize into single 
probabilities; that is, for all X, A;, and Bi and resultsx,y = ± 1 ,  

(3.3) 

I shall adopt a common terminology and shall use the term "factorizability" to 
describe equation 3.3. (Thus, what I have called "stochastic local models" are often 
called "factorizable stochastic models".) The predicted observable probabilities for 
results of ± 1 are obtained by averaging over A using p. Bell's theorem is now that any 
such stochastic local model is committed to a Bell inequality. 

In assessing these models, attention has focused on "factorizability". For us, the 
crucial point is that it is the conjunction of two separate independence conditions on 
a single (marginal) probability. Roughly speaking, one is independence from the 
choice of quantity to be measured in the other wing; the other is probabilistic 
independence from the measurement result obtained in the other wing. The fullest 
presentation of this point is by Jarrett.31 However, I shall follow Shimony,8 who calls 
the conditions "parameter independence" and "outcome independence", respec-
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tively. Thus, parameter independence says that, for all �. !\. and Bi and results 
x,y = ± 1 ,  

pr, ... . (x) = prAAB (x) == prAA.8 (x, y) + prAA e (x, -y) 
..... --; I J I J I J 

(and similarly for R-probabilities), whereas outcome independence says that 

prAAiBj(x, y) = prAAiBj (x) . prAAiBj (y). 

(3.4) 

(3.5) 

It is easy to see that only parameter independence (equation 3.4) corresponds to 
equation 2. 1 and that deterministic local models automatically satisfy outcome 
independence (equation 3.5) (because each factor in equation 3.5 will be 0 or 1) .  
These points suggest the well-known verdict: that the "culprit", that i s ,  the assump
tion that we should give up so as to avoid a Bell inequality, is outcome independence. 
By doing so, we can reject both deterministic and stochastic local models. 

Furthermore, this verdict is supported by quantum theory itself. In effect, it obeys 
equation 3.4, but not equation 3.5. More precisely, suppose that we fill in sufficient 
details about the experiment so as to be able to write down a quantum theoretic 
model of it (choosing, say, photon pairs and polarization measurements) . In our 
model, either a single pure state ljl or an ignorance-interpreted mixture will replace 
all the �·s, and the probabilities will be given by the Born rule. Our model will then 
obey equation 3.4: that is just the no-signaling theorem, based on the commutation of 
the L- and R-quantities. On the other hand, our model will violate equation 3.5, 
except in some special cases, such as the model's quantum state being a product 
state. [Thus, reserving "locality" for equation 3.4, we might say that quantum theory 
itself supplies local stochastic models of the experiment, albeit nonfactorizable 
(more specifically, outcome-dependent) models.) 

Although this verdict may be compelling, note that it is by no means trivial. 
Agreed, it is trivial that stochastic theories describe correlations and that quantum 
states typically prescribe correlations between commuting quantities. However, in 
everyday life and classical physics (i.e., outside quantum theory), correlations 
between events that are not causally related (say, because they are mutually 
spacelike) are eliminated once we consider probabilities conditional on a sufficiently 
rich specification of the state prior to the correlated events (in Reichenbach's 
terminology, a sufficiently rich specification of the common cause; cf. p. 1 63 of 
reference 32). Bell's theorem (understood with this verdict) tells us that the Bell 
correlations cannot be thus eliminated. In this sense, they are indeed strange. (The 
following section develops this point, especially as regards the specification of the 
prior state; see also, for example, reference 33.) 

So much by way of recalling deterministic and stochastic local models, and the 
verdict of outcome dependence, in the usual context of the Bell experiment. We can 
now very easily lift these considerations to the previous section's context, AQFT, so 
as to produce a Bell's theorem for AQFT, in which the culprit (i.e., false assumption) 
is obviously factorizability, specifically outcome independence. 

We can work with a fixed state, say cl>, so that the locality assumption that p is 
independent of which quantity is measured falls away. I write � for the effect 
representing outcome x for the contraction A; and, similarly, I write Bf (i, j = 1, 2). 
Then, a marginal probability, for example, the probability ofx for A; in the context of 
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measuring B1, is given by summing out the B1 outcome. Hence, parameter indepen
dence says that this marginal is independent of the choice ofj = 1 orj = 2, as follows: 

cf>(Af) = cf>[Af(I,B'I)] = cf>[Af(IyB�)] (3.6) 

and similarly for cf>(B}); this condition holds, just as in the general setting at the start 
of the previous section, because of the common unit in the algebra. On the other 
hand, outcome independence says that joint probabilities factorize into their margin
als: 

(3.7) 

Just as before, the conjunction of parameter and outcome independence is factoriz
ability, namely, 

cf>(A;XSJ) = cf>(Af) · cf>(BJ). (3.8) 

From these assumptions, we can exactly mimic the usual proof for a factorizable 
stochastic model (e.g., see reference 17) to get the Bell inequality (equation 2.3) 
governjng the expectation values of the contractions. 

Of course, outcome independence (equation 3. 7) and so factorizability (equation 
3.8) are manifestly false in AQFf, just as the corresponding conditions in elementary 
quantum theory were; again, except in some special states, for example, those that 
when restricted to A V B  are product states. However, the familiarity and triviality of 
the mathematics should not blind us to the non triviality of the verdict. Just as in the 
above discussion concerning elementary quantum theory, we naturally expect corre
lations between spacelike events to be eliminated, conditional on sufficiently rich 
information about the prior state. Again, see the next section for development. 

However, before turning to that, I should briefly state two criticisms that have 
been made of the distinction between factorizable stochastic models and determinis
tic local models, report my replies to them, and then relate these criticisms to 
algebraic quantum theory. I shall set more store by the second criticism. 

The first is based on the fact that a given collection of single probabilities and 
comeasurable-pair joint probabilities can be modeled by a factorizable stochastic 
model if and only if it can also be modeled by a deterministic local model. The reason 
lies in the fact that the existence of each kind of model is equivalent to the existence 
of a total joint probability function (i.e., for all the quantities). (See, for example, 
proposition 3 of reference 34 and theorem 4 of reference 35.) Thus, says the critic, 
the move to factorizable stochastic models brings no generality. In short, my reply is 
that this equivalence is "merely mathematical". Because the physical ideas motivat
ing a factorizable stochastic model, such as indeterminism during flight and avoid
ance of joint probabilities for noncomeasurable pairs, are clearly coherent, one can 
regard the total joint probability that also delivers the given probabilities as marginal 
probabilities, as not physically real. (For more details of this reply, see section 8 of 
reference 30 and section 6 of reference 36.) 

The second criticism is also based on a result that factorizable stochastic models 
reduce to deterministic local models, but it cannot be dismissed as "merely mathemati
cal". It assumes another condition, famously satisfied in the singlet state usually 
considered: namely, strict anticorrelation. The result depends on each of the 
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quantities A; and Bi having just two possible results, x and y; however, this al lows 
more than the two quantities per wing usually considered. Thns, if for every A; andx 
there is a Bi and y such that the predicted observable probabilities obtained by 
averaging equation 3.3 over p are 0, that is, 

f pr�(x) · pr�8i(y) dp = 0, (3.9) 

we can conclude that, for almost all A., one of the integrand's factors is O; hence, by 
setting aside measure-zero sets, the model is deterministic. (The first statement of 
this seems to be theorem 2 of reference 10. ) In short, my reply is that it remains 
valuable to study factorizable stochastic models or, rather, to study how they are 
motivated by our experience, outside quantum theory, of correlations being elimi
nated by a sufficiently rich specification of the "common cause": because doing so 
pinpoints the way in which this experiment's correlations are strange. (Again, for 
more details, see section 8 of reference 30, as well as the next section.) 

Each of these two criticisms prompts a remark in the previous section's context of 
algebraic quantum theory. The first is mathematical :  namely, that the equivalence of 
a deterministic local model with a total probability function is a trivial ly simple case 
of the famous theorem of Gelfand about the representation of commutative C*
algebras as a C*-algebra of functions on a locally compact Hausdorff space; cf. 
section 4.4 of reference 37. [To prove the existence of such a model, given a total 
probability function p for N quantities, each with a finite number of values, we just 
define A to be the set of all N-tuples, (xi .  . . .  , xJV), of possible values of the quantities; 
we define the random variables representing quantities to be projection functions; 
and, for each A. = (xi. . . .  , xN), we define p(A.) •= p ((x i . . . .  , xN)). Similarly, Gelfand's 
theorem builds the representation space from simultaneous spectral values of 
elements of the abstract C* -algebra.] 

The second remark is that Redhead's strict correlation result, that is, proposition 
7 of the previous section, secures a reduction to determinism (for the vacuum state 
fl) once we assume outcome as well as parameter independence, just as in the second 
criticism above. Thus, proposition 7 tells us that, for any two space like regions 01 and 
02, any e > 0, and any projector P1 E A (01 ), there is a projector P2 E A(02) such 
that !l(P1P2) > (1 - e)!l(P1 ) .  Assuming factorizabil ity, this yields !l(Pi )!l(P2) > 
( 1  - e)!l(P1 ). Hence, because e is arbitrary, !l(P2) = 1 .  

STOCHASTIC EINSTEIN NONLOCALITY IN AQFf 

Having admitted that outcome independence is clearly false in quantum theory 
and, in particular, in AQFf, I will try in this section to make it look plausible ; that is, 
I will develop the point made in the previous section: that outcome dependence is 
strange because we naturally expect correlations between spacelike events to be 
eliminated, conditional on sufficiently rich information about the prior state. To do 
so, I will adapt an intuitively plausible locality condition for Minkowski space-time, 
namely, Hellman's "stochastic Einstein locality" (SEL), 1 1  which gives some precision 
to the idea of "sufficiently rich information about the prior state" in terms of the 
physical state of a space-time region lying in the causal past of the events concerned. 
(Of course, Hellman is not the only author in the literature to appeal to such a state 
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of a region: cf. also, preeminently, the exchange on local Beables between Bell and 
Shimony et al. 38) 

Thus, I will exhibit how outcome dependence involves violation of SEL, a 
violation that is strong (and thus strange) because the space-time region, on which 
the "prior state" is defined, is very extensive. I will confine myself to making this point 
for AQFf. (Sections 5-7 of an earlier work of mine39 make the point for elementary 
quantum theory. There, I also discuss how Hellman proposed SEL as expressing the 
prohibition of spacelike causation for any stochastic theory and how he, being keen 
to avoid the verdict that the Bell experiment involved spacelike causation, hedged his 
SEL with provisos to prevent its violation. For. the reasons given there, I drop the 
provisos. )  

The idea of SEL, roughly speaking, is that the probability at a time t of an event E 
occurring future to t is determined by the part of history up to t lying within the causal 
past of E. [Here, the causal past of E, written c- (E), is the set of space-time points 
from which a signal, at most as fast as l ight, can reach E.] To make this precise, we 
need to be precise about the ideas of probabil ity, event, history, and determination. 
How we do so will depend, in general, on both our general philosophical views and 
the specific context of discussion. Thus, Hellman's general views prompted him to 
make SEL precise in terms of formalized physical theories, with vocabulary for 
physical probability and isomorphisms of parts of their-models. At this level of 
generality, I myself am less l inguistic and more metaphysical . I instead talk of 
possible worlds, that is, total possible courses of history, where history consists of 
events (contingent, localized matters of particular fact) that have chances (time
dependent objective single-case probabil ities) .  I also express determination in terms 
of worlds matching in their history on a region. This metaphysical framework is 
inspired by Lewis,40 but neither here nor in reference 39 do I need the details of his 
views. Furthermore, this difference between Hellman and myself makes no differ
ence in appl ication to quantum theory (e.g., in our dispute about whether SEL needs 
provisos). Besides, when I discuss AQFf below, the context will be specific enough 
that I can talk of models of the theory instead of worlds, projectors instead of events, 
and states (expectation functionals) instead of chance functions. 

Before discussing AQFf, though, I should exhibit two general formulations of 
SEL, for three reasons. First, it is striking that there are two inequivalent formula
tions of the basic idea stated above [even though, as reference 39 shows, (i) they are 
both violated by the Bell experiment when we make the obvious identifications and 
(ii) they are logically equivalent under some simplifying assumptions]. Second, the 
existence of inequivalent formulations is not just an artifact of my metaphysical 
framework: my formulations correspond to two in Hellman, which he recognizes as 
inequivalent. Third and most important, these formulations will prompt two more 
specific formulations for AQFf and these latter are more than just inequivalent. The 
first provably holds in AQFf, but the second is endemically false because of the 
outcome dependence shown in the previous section. 

First, there is the direct expression, in terms of worlds, chances, etc. , of the basic 
idea stated above: 

(SEU): for any two worlds w and w '  and any hypersurface t earlier than the 
region for event E, if w and w '  match in their history in c- (E) n c- (t), 
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then they match in their chance at I of E, that is, �ith prrw for chance at I 
in w: 

(4.1 )  

Second, suppose that we assume that, within a world, history up to I and within 
c- (E) prescribes a chance function, whose domain contains possible events F 
occurring outside c- (E), but earlier than I. This is a contentious assumption because 
F can be influenced by subluminal signals from spatial infinity that never register on 
this history. Thus, assuming that this history prescribes a chance of F amounts to 
assuming that there are no such signals or that the chance function averages over 
them. However, once we make this assumption, we can take SEL to require that, 
according to this chance function, E is stochastically independent of any such event 
F. Hence, writing H for this history and prHw for this chance function, we get the 
following: 

(SEL2): for any world w, for any hypersurface I earlier than the region for event 
E, and for any possible event F in the difference, c- (1) - c- (E), 

prHw(E/F) = prffw(E), (4.2) 

where H is the history of w within c- (E) n c- (1). 

These two formulations of SEL correspond to Hellman's inequivalent (4) and (5), 
respectively (p. 446 and 495-497 of reference 1 1 ); his (5) is based on a condition of 
Bell [(2) in his contribution to reference 38]. They are both violated in the Bell 
experiment as a result of outcome dependence; cf. sections 5-7 of reference 39. 

To formulate SEL for AQFT, I follow the lead of Redei 12. 13 and Muller (in joint 
work with myself). 14 We replace worlds by models M = (M, A, <!>), where M is the 
Minkowski space-time, equipped with its open-bounded regions O;; A is the map, 
characteristic of the system of interest, associating to each O; its algebra A ( O; ) ;  and <I> 
is the system's state (expectation functional). We replace the event E by a projector, 
say A, associated with some region 0, say A E A (O). (As mentioned at the start of 
the second section, we could use effects instead of projectors, but for the sake of 
uniformity with other authors we forego this.) We replace E's chance as prescribed 
by history up to time t by A's expectation in <f>. (We shall see in a moment how SEL 
captures "as prescribed by history up to 1", despite the global nature of <f>.) We think 
of these models as satisfying (making true) various sentences of AQFT, which is cast 
in a putative formal language. These sentences will in general be about certain 
regions; thus, we write, for example, M I = R(Oi .  . . .  , Ok ), where R stands for some 
open sentence of the language. Also, among these sentences will be ascriptions of 
expectation values, say <!>(A) = x. 

Finally, we can take the region that SEL asserts to determine the chance of A to 
be bounded rather than the whole of c- (O)  n c- (t) and, in doing so, we can drop 
reference to the hypersurface t. This will make our formulations of SEL rather 
stronger; hence, whereas AQFT's satisfying the first formulation is more interesting 
than otherwise, its violating the second formulation is apparently less interesting. 
However, this is only appearance: indeed, it will be clear that the second formulation 
is violated even if the determining region is all of M. 
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Thus, we take the determining region to be a bounded region lying fully across 
the causal past, c- (O). To be precise, recall for any region O '  that the future domain 
of dependence, D + (O ' ), of O' is the set of all points through which every smooth 
past-inextendable nonspacelike curve intersects 0 '. We then define a region 0 '  to be 
a past slab of region 0 if and only if O '  c c - (o)  and 0 c D + (O ') .  

Now, we can write our first formulation of SEL, corresponding to SEU, which I 
will call SEI.S. Here, S stands for "single" because the consequent is like equation 
4.1 in considering only a single quantity A. It is, however, harmless to consider 
expectations of all elements of the algebra A ( 0) rather than just projectors. Thus, we 
get the following: 

(SEI.S): for any two models Mi = (M, Ai> <M U = 1, 2); for any region 0 C M; 
and for any past slab 0 '  of 0: 
IF: the models match in 0 '  in the sense that: 

for all k E N, for all 01 ' 
. . .  , Ok � O ', for all R: 

M1 I =  R(01, . . .  , Ok ) iff M2 I =  R(01 , . . .  , Ok ), 

THEN: they match in their expectations on 0 in the sense that: 
• 

for all A E A(O), c!>1 (A) = �2(Al; that is, for all complex 
numbers z: 

Here, S also stands for "satisfied". It is easy to prove, regardless of the details of the 
putative formal language, the following proposition: 

PROPOSITION 8. AQFT satisfies SELS. 

Remarks: The proposition follows directly from AQFT's Isotony and Diamond 
axioms; see section 5 of reference 14. The proof amends a previous one by Redei. 12 

However, suppose that we want a formulation of SEL that, like SEU above, 
considers expectations of the projector (or a harmless generality: observable), say A, 
conditional on the occurrence of a spacelike event (projector), say B. Thus, like 
SEL2, SEL says that this conditional expectation of A equals A's unconditional 
expectation. Of course, it should not say merely that, for all states cl>, for all A E 
A(01 ), and for all projectors B (associated to any region, say 02) spacelike to Oi.  
c!>(A/B) = c!>(A) because that would be a direct transcription of "naive" outcome 
independence (cf. equation 3.7 or 3.8), making no allowance for correlations. 

We need some analogue of SEU's prHw expressing the idea of probabilities 
conditional on sufficiently rich information about the prior state, probabilities for 
which we naturally expect such correlations to be eliminated. The most obvious 
analogue, namely, conditioning cl> on many projectors associated with the region 
c- (01 ) n c-(1) ,  is clearly fraught with difficulties, both mathematical and interpre
tative (i.e., about value ascriptions in quantum theory): for example, are we to 
condition ¢ on one of every pair of a projector and its orthocomplement? 

However, fortunately, we can avoid these difficulties by returning to the idea of 
matching between models: that is, we again take SEL to be a conditional, with an 
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antecedent supposing that a pair of models match on a region that is sufficiently 
extensive to incorporate all pairs of causal influences, one on"each of (the expecta
tions of) A and B, which have a common origin. [Again, such a pair could set up a 
correlation between A and B, violating the equality of conditional and unconditional 
expectation, and could give an utterly straightforward ("joint effects of a common 
cause"), and so spurious, violation of SEL.] Thus, this matching on the region 
expresses the restriction to probabilities conditional on sufficiently rich information 
about the prior state, and the consequent of SEL is then an equality of conditional 
with unconditional expectations of A. 

How should we choose this region? We cannot just choose a slab, say S, lying 
across the "apex" ("peak") of C- (01 ) n c-(02) .  Admittedly, if we also require that 
this apex lie in the future domain of dependence of S, then (by the Diamond axiom) 
pairs of influences that originate in the apex will in effect register on S; that is, they 
will be determined by the state and algebra in S. However, there could still be a pair 
of influences, one on each of A and B, that have a common origin sufficiently far in 
the past [sufficiently far back in c- (01 ) n c-(02)] and that then diverge spatially 
sufficiently rapidly so as to not register on S (nor in its domain of dependence). 

There are various possible choices for this region. (The choice will not affect my 
punch line: namely, that the second section's results show that this second formula
tion of SEL is endemically violated.) One is the intersection of the causal pasts of 
(the regions for) A and B: that is, all of c- (01 ) n c- (02) .  With this choice, the two 
models will in general differ as regards the expectation of A. Because A can be 
influenced by the "infinite strip" region, c- (  01 ) - c-(  02), and because this infinite 
strip lies outside the region of matching, the influences on A can be different in the 
two models. (Similarly, of course, for B, but we are not concerned with its uncondi
tional expectation.) Hence, with this choice, SEL's consequent will say merely that, 
within each of the two models M1 and M2, A's conditional and unconditional 
expectations are equal: cl>1 (A/B) = c!>1 (A) and c!>2(A/B) = c!>2(A). 

On the other hand, we can choose a bounded region that is extensive enough to 
register all the influences on A that have, or might have, a common origin with an 
influence on B. The obvious choice is a past slab, as defined above, of 01 : call it O ' . 
Because 01 C D+(O '), all influences on A whatsoever (and so all those that have a 
common origin with an influence on B) register on O ' .  [We could require, although 
we do not need to, that this past slab has the apex of c- (  01 ) n c-(  02) in its future 
domain of dependence; then, the past slab will register, among the "last-minute" 
influences on both A and B, the influence on B as well as the influence on A.] 
Another obvious choice is symmetrical between A and B:  we choose a past slab, as 
defined above, of the union 01 U 02. [Again, we could require, but do not need to, 
that this past slab has the apex of c- (01 ) n c-(02) in its future domain of 
dependence.] 

With both these choices-a past slab of 01 and a past slab of 01 U Or-the two 
models will agree as regards the expectation of A just because SELS holds; that is, we 
will have cl>1 (A) = cl>2(A). 

Finally, there is a minor point about the projector B. Above, I just said it is 
associated to 02. However, after our discussion of matching, we can see that this 
assertion is vague because all the above choices for a matching region allow that 
A1 (02) ?! A2(02) .  Thus, should we strengthen SEL's antecedent to assume a 
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matching, or at least a matching of algebras, on 02, that is, A1 (02) = A2(02)? 
Alternatively, should we al low different algebras and just require that B lie in the 
intersection? Again, the choice will not affect my punch line: namely, that this second 
formulation of SEL is endemically violated. I will arbitrarily take the second choice: 
B EA 1 (02) n A2(02). 

We can at last write our second formulation of SEL, corresponding to SEL2, 
which I will call SELD. Of course, D stands for "double" because we now consider B. 
As my choice for the matching region, I will take the first bounded choice above, 
namely, a past slab of A's region 01• (Again, this choice is arbitrary, but perhaps 
natural because we are not concerned with B's unconditional expectation; thus, we 
can let it vary between matching models.) Therefore, we get the following: 

(SELD): for any two models Mi = (M, Ai, cl>i) (j = 1, 2) ; 
for any region 01 C M; for any 02 that is spacelike to 01; 
for any projector B E A1 (02) n A2(02) ; and for any past slab O ' of 01 : 
IF: the models match in 0 '  in the sense that: 

for all k E N, for all 01, • • • , Ok � O ' , for all R: 

M1 I = R(01 , • • •  , Ok) iff M2 I=; R(01 , • • •  , Ok) 

THEN: they match in all their expectations on 0 in the sense that: 

( 1 )  for all A E A(O), cl>1 (A) = cl>2 (A) =: ct>(A); 
(2) cl>i(A/B) = ct>(A) (j = 1, 2). 

Here, D also stands for "denied". As mentioned, SELS implies that, given the 
antecedent, the first conjunct of the consequent, ( 1), holds, thus defining ct>(A). 
However, the second section's results directly imply that, given the antecedent, (2) is 
endemically false. Consider in particular propositions 6 and 7, recall ing that they 
hold not just for the vacuum, but for any vector state with bounded energy. These 
propositions combine matching aplenty-throughout space-time-and therefore 
satisfaction of ( 1 ) with failure of (2). 
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INTRODUCTION 

There have been two threads running through John A. Wheeler's distinguished 
career: geometry as central to physics; the puzzle of the quantum. What could be 
more appropriate than that, in this volume dedicated to Wheeler, we pursue these 
threads in our own small way by formulating a natural Riemannian geometry on the 
space of quantum states-a geometry built on a concept, statistical distinguishability, 
that can be traced to Wheeler, who encouraged Bill Woqtters' investigation of it. 
Another Wheeler theme is also important: communicate ideas clearly, as in his 
elegant summary of the key ideas of general relativity-Space-time tells matter how 
to move; matter tells space-time how to curve. We can do no better than to 
characterize statistical distinguishabil ity as Wootters did-a distance between quan
tum states, a statistical distance, quantified by how well measurements distinguish 
the states. It is a pleasure and an honor for us to dedicate this report to John A. 
Wheeler-a consummate researcher and extraordinary teacher and always a gentle
man. 

GEOMETRY ON THE PROBABILITY SIMPLEX 

In this section, we review Wootters' derivation 1 of the distinguishability metric on 
the space of probability distributions, the probability simplex. Let the n-tuple p = 
(p 1 , • • • , pn ) denote a probability distribution for discrete altemativesj = 1 ,  . . .  , n .  
After N sampl ings from this distribution, we have a frequency Ji for each alternative. 
These frequencies are distributed according to the multinomial distribution, [ N' l n 

prob(f1 , . . . , JN) = 
. II (pk)NI', n k= I II (Nfi) ! 

j= I 

(2.1 )  

0This work was supported i n  part by the Office o f  Naval Research (Grant No. N00014-93·1 -
0l  16). bcurrent address: Department of Chemical Physics, Weizmann Institute of Science, 76100 
Rehovot, Israel. 

cTo whom all correspondence should be addressed. 
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which, as N tends towards infinity, becomes proportional to a G�ussian 

exp [ (- �)� (fi �/i)2] . 
787 

(2.2) 

Thus, if p + flP is a nearby distribution, it can be distinguished reliably fromji so long asNii(llpi)2/pi is large. We can summarize this conclusion by defining a Riemannian 
line element 

ds2 = L 
(dp�> 2 

j pl 
(2.3) 

based on asymptotic distinguishability. If we use "probability amplitudes" JPj as 
coordinates, the l ine element becomes that of a sphere of radius 2: 

ds2 = 4 L (dJPj)2. 
j 

(2.4) 

Notice that the use of probability amplitudes removes the coordinate singularity on 
the boundary of the simplex, where one or more alternatives have zero probability. 
The statistical distance s along the shortest path (great circles on the sphere) 
between distributions p and q, 

(2.5) 

is twice the angle separating the distributions on the sphere. 1 

Just how natural is this distinguishability metric? Founded on distinguishability 
in Wootters' derivation, it is also the metric associated with the bilinear structure of 
statistical correlations, as we now show. To get to the metric, however, requires a 
brief digression into the differential geometry of the probability simplex. Introduce a 
set of basis vectors ei (j = 1, . . .  , n) so that the n-tuple for a probability distribution 
can be written as a vector 

(2.6) 

in an n-dimensional real vector space. The probability simplex is a manifold with 
boundary: normalization, 

LPj = 1 ,  
j 

(2.7) 

defines an (n - 1 )-dimensional "plane" within the vector space and nonnegativity of 
the probabilities, 

pi '2! 0 for j = 1, . . .  , n , (2.8) 

gives the plane a boundary. A pathp(>..) through the probability simplex has tangent 
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vector 

(2.9) 

which, due to normalization, satisfies "i.idpi/d'll. = 0. Thus, the tangent space to the 
probability simplex atp is an (n - 1) -dimensional vector space consisting of vectors 
v = "i.iviei that satisfy 

L vi = o. 
j 

(2.10) 

Affixingp to the tangent space at p recovers the original n-dimensional vector space. 
Consider now the dual vector space of linear mappings that map vectors to real 

numbers. An element of the dual space, denoted.A ,  is called a 1 -form and acts on a 
vector m according to 

A (m)  = (A , m ) = L Aimi, 
j 

whereAi = (A , ei) . Choosing a dual basis of 1 -forms wi, satiljfying 

(wi, ek) = &{ ,  

one can write an arbitrary 1 -form as 

.A =  L Aiwi. 
j 

. .  

(2.11)  

(2.12) 

(2.13) 

One sees that a 1 -form A corresponds, in statistical parlance, to a random variable, 
with Ai being the value of the random variable for alternative j and 

(A , p) = LAipi = (A ) 
j 

(2.14) 

being the mean value of A with respect to the distribution p. Notice that the product 
of random variables defines a natural product of 1 -forms, 

AB = L A/J1wi, 
j 

which is the component-by-component product in the basis wi. 
There is a special I -form, 

i = L wi. 
j 

(2.15) 

(2.16) 

This 1 -form defines the plane of the probability simplex because ( i ,  p) = 1 for any 
probability distribution p, and any tangent vector v lies in the surfaces of :ii because 
( :ii , ti) = 0. Any random variable can be decomposed uniquely as 

.A =  (A,;;) i  + �. (2.17) 

where .:1.A has zero mean with respect to p. The cotangent space to the probability 
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simplex at p is an (n - 1)-dimensional vector space made up of the zero-mean 
random variables, M; affixing i to the cotangent space recovel'S the n-dimensional 
vector space of all 1 -forms. Because the tangent and cotangent spaces can be 
extended by affixing p and i ,  we are somewhat sloppy about distinguishing these 
spaces from the spaces of all vectors and all 1 -forms. 

The linear structure of vectors and forms suffices to build the statistical structure 
of probabilities and random variables. Where then is the bilinear structure required 
for a metric? A metric tensor gp at point p is a symmetric bilinear "machine" that 
maps pairs of vectors to the reals (like an inner product). Such a machine is 
equivalent to an (invertible) "lowering" operator £"p that maps vectors linearly to 
1-forms according to 

g,;(m, ii) = (-2j;(m ), ii) = (-2j;(ii),  m) = g,;(ii, m ) . (2.18) 

The adjective "lowering" is used because £"p maps vectors, which have upper 
(contravariant) components, to 1 -forms, which have lower (covariant) components. 
The inverse linear operator .!lip, called the "raising" operator, maps 1 -forms to 
vectors; it extends the action of the metric to pairs of 1 -forms, 

g,;(A, B) = g,;[.!ltp(A), .!ltp (B)] = (A, .!ltp(B)). (2.19) 

To get a bilinear metric structure, one must consider pairs of random variables. It 
is natural to define the metric's action on a pair of random variables to be the 
statistical correlation between the two variables, 

gp(A, B) = (AiJ) = (AiJ, p) = L A/Jipi, i 

which is equivalent to the raising and lowering operators, 

and 

.!ltp(B) = LpiBii i 
-2/;(m) = L (m�)wi. i pl 

(2.20) 

(2.21) 

(2.22) 

Notice that S"p(ft) = i and that the tangent space is mapped to the cotangent 
space-that is, a tangent vector ii, satisfying equation 2. 10, lowers to a zero-mean 
random variable. 

The metric's action on vectors, mini gp(m, ii ) = (S"p(m), ii )  = L-. , i P' 

leads to a line element 

ds2 = g,;(dft, dft> = (S"p(dft), dft) = L (dp�>2 • i P' 

(2.23) 

(2.24) 
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which is identical to the line element (equation 2.3) obtained from Wootters' 
distinguishability argument. CampbelF has reviewed the history of the correlation 
metric (equation 2.23) in the statistics literature. 

GEOMETRY OF DENSI1Y OPERATORS 

The geometric structure formulated for the probability simplex can be trans
ferred effortlessly to the space of quantum states (density operators). We begin with 
an arbitrary linear operator on an n-dimensional Hilbert space, written as a vector 

(3.1) 

where the operator vectors 

j, k = 1, . . .  , n, (3.2) 

formed from vectors Ii) that make up an orthonormal basis for Hilbert space, are a 
basis for the n 2-dimensional complex vector space of linear operators, and OP< = 
(j I 0 l k) is a matrix element of the operator 0 in this basis. 

The space of density operators 
.• 

is a manifold with boundary: Hermiticity, 

p = pt C=> pik = (ifi) *, 
reduces the operator vector space to n2 real dimensions; normalization, 

tr(i>) = 1 <=> � pD = l ,  j 

(3.3) 

(3.4) 

(3.5) 

defines an (n2 - 1 )-dimensional "plane" within this real vector space; and nonnega
tivity, 

p � 0 <=> p = pt has nonnegative eigenvalues, (3.6) 

gives the plane a complicated boundary. By considering paths through the space of 
density operators, one sees that the tangent space at p is an (n2 - 1)-dimensional 
real vector space consisting of vectors v = Ii.kvikeik that satisfy 

tr(v) = o <=> � v» = o. j (3.7) 

Affixing ji to the tangent space at p recovers the entire n 2-dimensional vector space of 
linear operators. 

Consider now the dual space of 1 -forms. An arbitrary 1 -form Q acts on a vector 0 
according to 

Q(O) = (Q, a) = � QkjOik = tr(QO), (3.8) j,k 
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(3.9) 

is an arbitrary linear operator expanded in terms of the dual basis 

wki = l i)(k 1 . (3.10) 

which satisfies 

(3.1 1 )  

The dual space i s  a copy of  the original vector space of  linear operators. We find it 
useful, however, to distinguish the two spaces because a Hermitian 1-form A = .At is 
an ordinary quantum observable, with 

(A, ji) = LAft<pik = tr{Aji) = {A ) 
j, k 

(3.12) 

being the expectation value of A with respect to the density operator p. The matrix 
product of two operators defines a natural product of 1 -forms, 

(3.13) 

The unit operator 

(3.14) 

is a special 1 -form: it defines the density-operator plane because en. .  p) = 1 for any 
density operator p, and any tangent vector v lies in the surfaces of :Il. because 
( :n. ,  v) = 0. Any observable can be decomposed uniquely as 

A = {A, ii) :Il.  + d.4, (3.15) 

where M has zero expectation value with respect to p. The cotangent space at p is an 
(n2 - 1 )-dimensional real vector space made up of the zero-mean observables, M ;  
affixing :Il. to  the cotangent space recovers the n2-dimensional vector space o f  all 
1 -forms. 

Balian, Alhassid, and Reinhardt3 have stressed how quantum expectation values 
arise from the linear structure of observables as 1 -forms acting on density operators 
as vectors. They go on to define a metric on density operators by taking the second 
variation of the von Neumann entropy. In contrast, we continue the development 
begun in the previous section by formulating a metric in terms of the statistical 
correlations of quantum observables. 

We define the metric's action on a pair of observables to be the statistical 
correlation of the two observables, 

g,;(A , B) = ((Yi){AB + BA)) = tr[(Yi)(AB + BA)i>J 

= tr[A (Yi)(pB + Bji)J = {A, .91;;(B)), (3. 16) 
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which is equivalent to a raising operator, 

.9t';;(Q) = (!/z)(pQ + Qji). (3.17) 

Because the raising operator is symmetric multiplication by ji, the lowering operator 
.2";; is a sort of "symmetric division" by ji. In the orthonormal basis that diagonalizes 
ji = Iip

i I j )(j I , the actions of the raising and lowering operators become 

.9t';;(Q) = 

l: [pi ; pk] Qjl)jb 
l· k 

�-(0) = L [-.-
2 

-]Oik{j/<i. p j, k pl +  pk 

(3.18) 

(3.19) 

Notice that �(ji) = :[ and that a tangent vector ii, satisfying equation 3. 7, lowers to a 
zero-mean observable, that is, to a 1 -form in the cotangent space. 

The metric's action on vectors, 

g;;(O, N) = (.2";;(0), Fl) = tr(N.2";;(0 )1 = L [c . 

2 
k)
]okjNik, 

j,k pl•+ p (3.20) 
. .  

leads to a line element 

ds2 = g;;(dji, dji) = (�(dji), dji) = tr(dji�(dji)] = L [c . 

2 
k)
] l dpik 1 2• (3.21) 

j,k pl +  p 

The final forms in equations 3.20 and 3.21 are written in the orthonormal basis that 
diagonalizes ji. In this basis, any tangent vector can be written as 

di> = L dpi W(n - i£dh, i>1 = l: dpi U)U I  + i(pi - pk)dhjk i j)(k l , (3.22) 
i i 

where dh is an infinitesimal Hermitian operator. Plugging this form of the tangent 
vector into the line element (equation 3.21 ) gives [(dpi)2] [(pi - pk)2] 

ds2 = L -.- + 2 L < . k> l dhik 1 2. j P1 i"k pl +  p 
(3.23) 

This form of the metric is particularly useful for discussing what happens on the 
boundary, where one or more of the eigenvalues pi vanish. The second term in 
equation 3.23 has no singularity or other misbehavior on the boundary and the first 
term has only the coordinate singularity of the classical distinguishability metric 
(equation 2.3), which can be removed by using coordinates ./Pi. · 

The quantum line element (equation 3 .2 1 )  is precisely the distinguishabil ity 
metric for density operators obtained recently by us in reference 4 by optimizing over 
all generalized quantum measurements that can be used to distinguish neighboring 
quantum states ji and ji + dji. This metric has also arisen in another context: it is the 
infinitesimal form of a distance function introduced by Bures,5 which Uhlmann6 
interpreted as a generalization of transition probabilities to mixed states and which 
has been investigated further by Hiibner7,s and by Jozsa.9 We return briefly to the 
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theme of distinguishability in the fifth section, but first illustrate the density-operator 
geometry in two Hilbert-space dimensions. • 

GEOMETRY OF THE INTERIOR OF THE BLOCH SPHERE 

As a simple example, we study the geometry of density operators on a two
dimensional Hilbert space. A convenient basis for the four-dimensional space of 
linear operators (2 x 2 matrices) is provided by the unit matrix and the three Pauli 
matrices, which we write as either vectors or 1 -forms as appropriate. An arbitrary 
density operator can be written as 

Here, 

p = (Yz) ( ii.  + x · er) =  (Y2)( ii.  + rn · er). 

3 
x = � xie; = m  

i= I 

(4.1) 

(4.2) 

is the three-dimensional Bloch vector (n is the corresponding unit vector, with r = Ix I 
being the magnitude of x) and 

3 
er =  � erie; (4.3) i= l 

i s the 3-vector of Pauli matrices. In equations 4. 1-4.3, vectors in the space of linear 
operators are distinguished by an arrow and 3-vectors in Bloch space are written in 
boldface, with the 3-vector of Pauli matrices being both. The fact that states satisfy 
tr(p2) ::;; 1 implies that r ::;; 1: pure states, with r = 1, lie on the surface of a unit 
2-sphere, whereas mixed states, with r < 1 ,  lie in the interior. 

To find the line element on the interior of the Bloch sphere, we need to calculate 
the action of the lowering operator. The raising operator acts according to the 
following rules: 

Si';;( l )  = p = (Yz)( :ii + m . er), 
Si';;(n · a) = (Y2)(r ii. + n · er), 

Si';;(n .L • a) = (Yz)n .L • er, 

(4.4) 

(4.5) 

(4.6) 

where n.L is any unit vector orthogonal to n .  Inverting these rules gives the action of 
the lowering operator: 

2';;( li ) = [( 1  � r2) ] c [  - m . a), 

2';;(n . er) = [(1 � r2)] (-r :[ + n .  a), 

(4.7) 

(4.8) 

(4.9) 
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Applying the lowering operator to the tangent vector 

dp = (Yi)dx . c1 = (Yi)(dr n + rdn) . a, 

where n · dn = 0, yields 

�(dp) = [( 1  � r2)
] { -rdrD. + [dr n  + r( l  - r2)dnJ · c1) 

= [-1
-] { - (.r . d.r) ]. + [(1 - r2)dx + (x .  d.r)x) . a) . 

( 1  - r2) 

The resulting line element on the interior of the Bloch sphere is given by 

(4.10) 

(4.11) 

ds2 = tr[d�(dp)) = [( 1  �2
r2)] + r2dn · dn = [�: ����] + dx · dx. (4. 12) 

The term dn · dn is the standard line element d02 = d02 + sin20d<l>2 on a unit 
2-sphere, so a surface of constant r within the Bloch sphere has the geometry of a 
2-sphere of area 4'1rr2• The term dr2/( 1  - r2) shows that the interior of the Bloch 
sphere is curved because, as one moves away from the center, the circumference of 
the 2-spheres grows more slowly than distance from the center. 

Indeed, the form of the line element (equation 4. 12) suggests the introduction of 
a fourth coordinate: 

(4.13) 

In terms of the four coordinatesxlL (µ. = 0, l ,  2, 3), the interior of the Bloch sphere is 
a three-dimensional surface defined by 

3 
2 (x .. )2 = 1 ,  (4.14) 
.. =o 

whose geometry is induced by the four-dimensional flat Euclidean line element, 
3 

ds2 = L (dx .. > 2. (4.15) 
.. =o 

a result obtained by Hiibner.7 Thus, the interior of the Bloch sphere is the northern 
hemisphere of a unit 3-sphere. The north pole of the 3-sphere is the uni� density 
operator (Yi) ii and the equator is the unit 2-sphere of pure states. Another useful 
coordinate system uses the hyperspherical angle x defined by 

r = sin x, (4.16) 

in terms of which the line element becomes 

ds2 = dx2 + sin2xdn · dn. (4.17) 
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Geodesics of this metric (equation 4. 15) are great circles on the unit 3-sphere. 
Given any two orthogonal unit 4-vectors u tJ.  and vtJ., a great circle, parameterized by 
arc-length, can be written as 

xtJ.(s) = u tJ. cos s + vtJ. sin s. (4.18) 

Writing ui = ni sin x and vi = mi cos Hwhere n and m are unit 3-vectors), u 0 = cos x, 
and v0 = sin �. one can write the geodesic in terms of 3-vectors on Bloch space: 

x(s) = n sin x cos s + m cos � sin s, 

where tan � =  -(n · m)tan X· 

(4.19) 

STATISTICAL DISTINGUISHABILI1Y AND UNCERTAIN1Y RELATIONS 

At the end of the third section, we promised to return to the theme of statistical 
distinguishability and to apply it to density operators. To formulate precisely the 
notion of statistical distinguishability requires that we change the language slightly 
and thereby consider an apparently different problem. In addition to precision, this 
new language leads to a class of uncertainty relations that limit our ability to 
determine parameters from the results of quantum measurements. A fuller account 
can be found in references 4 and 10. Suppose that we wish to distinguish two 
neighboring density operators. The new language imagines that these two density 
operators lie on a smooth path through density-operator space, parameterized by X. 
Instead of concentrating on distinguishing two states ji(X) and ji (X + dX) = 
ji(X) + (dji/dX)dX, we ask the following: for state ji(X) or, in general, for N copies of 
it, how well can we determine the value of its parameter X, that is, its location on the 
path? 

After measurements on the N copies, we must use some estimator function x •.. to 
convert the measurement results into a number representing the estimated value of 
the parameter. It is natural to measure statistical distance along the path in units of 
the statistical noise in the estimator. If one lets 8X0,1 denote the size of the statistical 
noise, the natural measure of statistical distance is 

dX 
ds = ru . 

min( v'N8X0,1) 
(5. 1 )  

The ./N i s  included to account for the expected ./N improvement in  statistical noise 
with increasing N, and the minimum, taken over all estimators and over all quantum 
measurements, ensures that statistical distance is measured in terms of the most 
discriminating procedure for determining X. A suitable definition of the statistical 
deviation of the estimator away from the parameter value X is4• 10 

(5.2) 

where the derivative is included to remove any local difference in the "units" of the 
estimator and the parameter. 

The most general quantum measurement is described by a positive-operator-
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valued measure (POVM), E(t)dt; 1 1  the probability density to obtain an outcome t, 
given density operator j)(X), is given by 

p(t lX) = tr[E(t)j)(X)). (5.3) 

We can use the Cramer-Rao bound4•12 of classical estimation theory to perform the 
minimization over all estimator functions, that is, 

. 
1 

2 = F(X) = f dt 
[op(t lX)loX]2 

= (ds )2 ' (5.4) mm [N(8Xes1) ) P(t lX) dX classical 
x�, . 

where F(X), called the Fisher information, is a continuum version of the line 
element (equation 2.3) for classical distinguishabil ity. Generally, the Fisher
information minimum in equation 5.4 can be achieved only asymptotically for large 
N. Further optimization over all quantum measurements can be accomplished by 
appropriate use of the Schwarz inequality, giving4 

1 [(dj) fi (dj) )� (ds )2 ------ = max F(X) = tr - - - = -
mi_n [N(8Xes1)2 ) IE(�)I dX P dX dX quantum' 

Xes1olE(�)I . . 
(5.5) 

with optimal measurements described by the eigenvectors of �p(dj)/d.X). By formu
lating statistical distinguishability in terms of the asymptotic ability of measurements 
to determine the location of a density operator on a one-parameter curve, we are 
able to show that the density-operator metric based on statistical distinguishability is 
identical to the metric (equation 3.21) based on statistical correlations; moreover, 
the optimal measurement for locating a density operator is obtained by lowering the 
tangent vector dj) to be an observable. 

This change of language gives us for free a set of uncertainty relations4•10 that 
limit the precision determination of parameters. In particular, we have 

(ds )2 1 
(8Xe51) 2 dX � N .  quantum 

For paths generated by a single-parameter unitary operator, 

ji(X) = e-ilixj)(O)eilix, 

there is a simple bound to the quantum metric (cf. equation 3.23), 

(:;tantum 
= tr[(!)�P(:)] � 4((M)l). 

This gives an uncertainty relation 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

which, although less strict than equation 5.6, has the form of a standard uncertainty 
relation. 
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CONCLUSIONS 

As Anandan13 has discussed, geometric concepts have found little application in 
quantum mechanics. What little application has been found has tended to deal with 
the geometry of pure states, where the Hilbert-space inner product provides a 
natural and unavoidable notion of distinguishability, which leads to a metric called 
the Fubini-Study metric. By generalizing the distinguishability metric to mixed states, 
where no natural inner product fixes the notion of distinguishability, we aim to tackle 
old problems with new tools. The real test is whether geometric concepts can be used 
to make global, rather than just local, statements about quantum distinguishability. 
The fact that the distinguishability metric on the probability simplex can be used to 
make global statements14 is cause for optimism. The report by Fuchs and Caves in 
this volume provides a hint that global distinguishability problems in quantum 
mechanics are also susceptible to geometric attack. 
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INTRODUCTION 

Three different approaches have been considered for the theoretical description 
of quantum phenomena: 

( 1 ) The first one, based on standard quantum theory, is accepted by the large 
majority of theoretical physicists, who are impressed by the great predictive 
power of the theory. It is, however, a fact that several researchers had the 
feeling that the presently available theory cannot be-considered a reasonable 
representation of the atomic reality, in spite' of it11 undeniable successes. The 
rather long l ist of dissenters includes Planck, Einstein, Ehrenfest, Schro
dinger, de Broglie, and Dirac. 1 There are also some contemporary physicists 
who feel the same way and it is rather clear that this line of dissent is not 
going to disappear soon . 

(2) The second approach that has been considered is a modified quantum theory 
in which nonfactorizable state vectors for two correlated systems spontane
ously collapse to mixtures of factorizable state vectors when the distance 
between the two systems increases beyond a certain value. The idea was first 
studied by Furry2 and by Schr0dinger3 and could have come to an end when 
Bohm and Aharonov4 showed that it was in disagreement with the experi
ment carried out by Wu and Shaknov.5 Actually, it was later rediscovered by 
several other investigators, including Jauch,6 de Broglie,7 and Piccioni,8 who 
probably did not know about the experimental situation . Today, the idea of 
spontaneous collapse has been falsified in many other experiments, including 
those performed with atomic photon pairs.9 This is because "reduced quan
tum theory", as this approach is sometimes called, predicts not only the 
validity of the "weak" Bell-type inequalities, 10 but of the "strong" ones as 
well (for the distinction between weak and strong inequalities, see the paper 
by Lepore and myself1 1  ). Therefore, reduced quantum theory is completely 
ruled out. 

(3) The third approach is based on space-time causal models of the atomic 
reality. If a new starting point is to be found after the discovery of Bell's 
theorem, it cannot be a simple rephrasing of the old theory, but must contain 
radically new ideas. Looking for a reformulation of quantum theory is 
therefore a bet about future developments: if Bell's inequalities were to be 
found violated in a new generation of experiments using nearly perfect 
detectors, 12 there would be no point in seeking for a better theory because 

798 
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the highly counterintuitive feature of action at a distance13 would then have 
been found to be present in nature. An "unreasonable" nature can be well 
represented, of course, by an "unreasonable" theory. Local realistic models 
have been developed for the explaining of the violations of the strong 
inequalities, 14 for the prediction of new effects in experiments with three 
polarizers, is for the interpretation of the Bohm-Aharonov effect, 16 and for 
the understanding of two-photon interference experiments. 17 These models 
have the common feature of explaining the violations of strong inequalities, 
but of predicting the validity of the weak ones. 

In the present report, it will be assumed that there is a concretely real propensity 
behind every probability that can be predicted correctly before it is measured: the 
previous "reality criterion" will be shown to be compatible with Popper's idea of 
propensities. A suitable formalism will be introduced by starting from standard 
probability calculus and its frequency interpretation. A set of similar systems 
described as an eigenstate in quantum theory will be shown to be necessarily 
nonhomogeneous, if propensities are actually at work in nature. Therefore, variable 
probability is the key to the quantum world. Local propensities lead to a new proof of 
Bell's theorem and, at the same time, explain the well-known experimental results 
concerning it. Naturally, for nearly ideal detectors, the variable probability approach 
remains incompatible with the quantum mechanical predictions. 

NEED FOR PROPENSITIES 

The alternative starting point that we are looking for should look so strong and 
natural that all physicists should find it easy to accept. We will show that probabilistic 
local realism can be formulated in such general terms that it is a very natural 
candidate for such a role. In fact, (i) if there is no reality of any type behind even a 
stable and predictable probabil ity, then no material reality is left at all and (ii) even 
the quantum mechanical probabilities are local in the sense advocated in the present 
report. 

A new description of the physical reality in probabilistic terms, based on the 
conception of propensity, was proposed by Popper. 18 The main task to be achieved in 
this way is an objectivistic and realistic reformulation of quantum theory and of its 
probability calculus without relying heavily on idealistic elements. The same program 
was discussed in a paper by J. B. Bastos Filho and myself, 19 and it was shown that any 
objectivistic and local formulation of probabilities leads to the validity of Bell's 
theorem and thus to the impossibility of a full agreement with existing quantum 
theory. In spite of this, it is interesting to work on the idea of locality because the 
experimental evidence concerning the quantum mechanical predictions violating 
Bell's inequality is far from conclusive. 1 1  We assume, therefore, that the reality 
behind every stable and predictable probability is always a local propensity (the 
meaning of "locality" is discussed in the next section) . 

The idea of propensities is best introduced by observing that the classical theory 
of probability is based upon the following definition : "The probability of an event is 
the number of favorable possibilities divided by the number of all the (equal) 
possibilities." Thus, the probability of the event "tails turning up" would be I divided 
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by 2 because there are altogether two equal possibilities and only one is "favorable". 
Similarly, the probability of throwing an odd number smaller than five with a perfect 
die is 2 divided by 6 because there are six equal possibilities and only two of them (the 
sides marked " l"  and "3") are favorable to the event "an odd number smaller than 
five". 

However, what happens if the die is loaded? Then, according to the classical 
theory of Laplace, we can no longer say that its six sides represent equal possibilities 
and we cannot speak anymore of probabilities in the classical numerical sense. If we 
insert in a wooden die a small piece of lead near, say, the face bearing the number 
"3", then this number will turn up less frequently than it does in throws with a fair die 
and the number of the opposite face (which is "4") will turn up more frequently. 

A good theory of probability must, of course, include weighted possibilities, 
where the statistical weight can be interpreted as a measure of the propensity or 
tendency of the figure "3" to turn up upon repetition of the throws, always in the 
example of the loaded die. The weight, or frequency, of the event "three turning up" 
can be measured by repeating many throws with the loaded die and counting the 
number of times the face "3" shows up. Ifwe find this frequency to be 0.05, instead of 
1 /6 = 0. 1667, we can conclude that the die is not perfect and can take this frequency 
as a quantitative measure of the propensity that the die has to produce the event 
"three turning up". · •  _ 

There is an important difference between the classical situation and the one met 
in atomic physics. When dealing with photons, electrons, or atoms, one cannot 
perform more than one measurement on a single individual object because its 
quantum state is modified. A statistical experiment in the atomic domain is per
formed with a large set of objects of the same type prepared in the same quantum 
state. Obviously, this is the same as performing many experiments with one object 
only if the atomic systems of the same type (photons, electrons, . . .  ) are identical. 

Quantum theory is usually assumed to describe identical systems, for example, in 
connection with the Bose-Einstein and the Fermi-Dirac statistics, but, realistically 
speaking, the perfect identity is difficult to conceive and the explanation of the 
quantum statistics could, for example, be along the lines proposed by Tersoff and 
Bayer,20 that is, by introducing variable statistical weights of the allowed states. One 
can also observe that unstable "identical" neutrons live different individual lives 
before disintegrating and that such a concrete behavior is not quite compatible with 
their presumed identity. 

It turns out in atomic physics that one deals with situations similar to a set of dice 
loaded differently from one another, wherein each of which only one throw can be 
made. From a single act of measurement, one cannot deduce a probability and the 
individual propensities are thus not measurable. One can, however, introduce a 
propensity of a set of atomic systems to give different results with different frequen
cies. The latter propensity is instead easily measurable and can be considered as 
some kind of physical average of (undetectable) individual propensities. 

WCAL PROPENSITIES AND PROBABILITIES 

The words "probability" and "frequency" are essentially identifiable, in the sense 
that the probability of an event can be considered as nothing but its measured (or 
predicted) frequency in a given set of similar objects. A probabilistic reality criterion 
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will now be given stating essentially that there is a real propensity behind every 
probability that can be predicted correctly before it is measuted.21 An example can 
be the case of the loaded die considered in the previous section: if one can predict 
that the side marked "3" will tum up in many throws with frequency 0.05, one can 
infer the existence of a certain objectively real propensity of the die to give the result 
"3" with this particular frequency. 

Let S and Tbe two sets ofN physical objects of the same type (photons, neutrons, 
kaons, . . .  ) : 

(1) 

Let the objects be produced in pairs, a1 with �h a2 with �2, • . •  , aN with �N• and let 
different pairs be totally independent from one another. 

Suppose that one measures a dichotomic physical quantity A (a) = ± 1 on the a's 
of S and that one can predict the frequencies/(a +)  of A (a) = + 1  and/(a- )  of A (a) 
= - 1 in a subset S '  of S identified by performing some operation on the Ws of T, 
when S and T are physically separated from one another. It is natural to conclude 
that these predicted frequencies /(a± )  reflect some reality of S ' ,  in the sense that 
they are necessary consequences of some concrete physical property ("propensity") 
of S' and, possibly, of the physical apparatus used. We can therefore assume the 
following probabilistic reality criterion (PRC): 

Given a set S of N a  particles, if it is possible ( 1 ]  to predict the existence of a subset S '  of 
S such that future measurements ofA (a) on the a's of S '  will give the results + 1  and - 1  
with the probabilities (frequencies) /(a + )  and /(a -), respectively, (2] to predict the 
population N' of S' (0 < N' :;;; N), and [3] to make the previous predictions without 
disturbing in any way the a objects of S and S ' ,  then a propensity A,. belonging to S' is 
assumed to fix the probabilities: 

f(a+)  = f(a+ , Aa ), f(a -)  = f(a - ,  Aa )· (2) 

Actually, Popper also considered competing propensities for different outcomes 
of a process (e.g., of a measurement).22 In fact, in the present connection, he would 
probably have introduced two different propensities Aa:i: for the two outcomesA (a) 
= ± 1 , but our symbol Aa actually includes this because it can be written as a set of two 
propensities: 

(3) 

We can thus say that the frequency f(a +)  of the outcomeA (a) = + l is the synthetic 
result of all the propensities actively present in S '  and can write it as in equation 2; 
similarly for f(a-) .  The above PRC is not an attempt to "define" a physical reality, 
but only a criterion useful for recognizing the existence of an objective physical 
property (propensity) once a realistic attitude has been adopted. The previous PRC 
provides a natural generalization of the famous deterministic reality criterion of 
Einstein, Podolsky, and Rosen (EPR).23 In this connection, the PRC can be applied 
to the subsets S(b±) defined below that will thus play the role of S ' .  

I n  a typical EPR experiment, there are two observers: Oa, who measures the 
dichotomic observable A (a) on the a particles of S, and 011, who measures a second 
dichotomic observable B(b) on the � particles of T. Assuming that 011 performs 
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his/her measurements before Oa (in the laboratory frame), his/her results split T 
into two subsets, T(b+)  [all cases B(b) = + 1 ] and T(b-) [all cases B(b) = - 1 ) . 
Corresponding to this splitting of T, one can also consider the following: 

( 1 )  a splitting of S into S(b+) and S(b-)  composed of the a particles correlated 
individually with the � particles contained in T(b+ ) and T(b-), respectively; 

(2) a splitting of the set E of (a, �) pairs, 

(4) 

into two parts, E(b+)  and E(b-), �uch that S(b+) and T(b+) compose 
physically E(b+ ), and S(b-)  and T(b-)  compose physically E(b-) . 

Let N(b+)  be the population of E(b+ ) , S(b+ ), and T(b+)  and let N(b-) be that 
of E(b-), S(b-), and T(b-), with 

N(b+)  + N(b-)  = N. (5) 

These populations are obviously related to the probabilities g( b ±) of measuring B (b) 
in T and finding ± 1 ,  respectively. In fact, 

g(b± ) = (�r(b± ): (6) 

Given enough previous experimental activity with repetitions of the sets E, S, and T, 
it is clear that O� himself/herself will be able to predict that (later) Oa will findA (a) = 
± 1  with the frequencies /(a± l b+ )  in S(b+ ), and A (a) = ± 1  with the frequencies 
f(a± l b-)  in S(b- ). However, /(a±  l b+ ) in S(b+) and/(a± l b- )  in S(b-)  are in 
general different from the probabilities/(a± )  of findingA (a) = ± 1  in the whole set 
S. Therefore, if Oa does find experimentally the frequencies earlier predicted by O�, 
he/she can conclude that, in the physical reality of S(b±), there is something 
(namely, a propensity) that generates these frequencies. By applying equation 2 to 
S(b±), one has 

f(a± l b+ )  = f[a± ,  A0 (b+ )], 

f(a± l b-)  = f[a± ,  A0 (b-)) . (7) 

The b dependence of A0 (b±) is established at the moment of the birth of the 
pairs. The notation Aa (b± ) only means that the sets S(b± ) and their propensities are 
defined by the measurement of B(b) and is not meant to imply the existence of an 
action at a distance from T to S capable of modifying Ao· In fact, to the PRC, one can 
naturally add the following locality assumption: 

Measurement performed on the p objects of T do not in any way generate or modify the 
propensities of the a objects of S, and vice versa. 

The propensities Aa (b± )  are therefore assumed to be real properties of existing 
subjects S (b±)  of S even if no measurement of B(b) is performed. Not to admit this 
would imply that the propensities for the a particles are created via some action-at-a
distance mechanism by the measurements on the � particles, which is precisely what 
the locality assumption excludes. Actually, there should be many equivalent split-
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tings of S in S(b±)  because, in a truly probabilistic situation, it cannot be fixed a 
priori which particular � particles give the results + 1 and - 1  upon measurement of 
B(b ). This complication is irrelevant for our purpose: knowing that at least one 
splitting of the previous type exists is all we need. 

LIMITATION ON CONDITIONAL PROBABILITIES 

Other probabilities can similarly be introduced for a different splitting of E into 
E(b '  + ) and E(b ' -) arising from the actual (or the possible) measurements of B(b ') 
on the � particles. Naturally, S also splits into S(b '  + ) and S(b '  - ). Considering again 
the observableA (a) of the a particles, from the application of the PRC to the present 
case one has 

f(a± l b ' + )  = f[a± ,  Aa(b ' + )] , 

f(a± l b ' - )  = f[a± ,  A0(b ' - )] , (8) 

where the first frequency holds for S(b ' + )  and the second one for S(b ' -) .  In 
general, different subsets imply different probabilities and �(b '  + ) will thus be 
different from �(b+ )  because different effects (probabilities) imply different causes 
(propensities) . Clearly, 

S = S(b+ )  U S(b- ) (9) 

and therefore S (b '  +), which is a subset of S, is necessarily composed partly of objects 
of S(b+ )  and partly of objects of S(b- ). In fact, by equation 9, one has 

S(b ' + )  = S(b ' + ) n s = S(b ' + ) n [S(b+ )  u S(b- )] 

= [S(b ' + ) n S(b+)) U  [S(b ' + ) n S(b- )) , ( 10) 

with the last step being a consequence of the fact that S(b+ )  and S(b-) do not 
overlap. 

Consider now four of the eight probabilities (equations 7 and 8), namely, those 
referring toA (a) = + 1. If S (b+ )  were homogeneous, in the sense that every subset 
of it had a propensity �(b+)  for the measurements ofA (a), and similarly for S(b- ), 
it would follow from equation 10 that/[a + ,  Aa (b+ ) ] would apply to S(b '  + )  n S(b+ ), 
containing a fraction 'Y of the population of S(b ' +) ,  and that f[a+ ,  A0 (b-)) would 
apply to S(b ' + )  n S(b- ), containing a fraction (1 - 'Y) of the population of S(b '  + )  
(with 0 s 'Y s 1 ) ,  so one would necessarily have 

f[a+, A0 (b ' + )] = 'Y.f[a + , A0 (b+)] + ( 1  - "()/[a+ , A0(b-)) . ( 1 1 )  

This i s  a consequence o f  locality: i f  probabilities were instead created via action a t  a 
distance, they would exist literally only after a measurement on T is performed. 
However, B(b )  and B(b ') are incompatible and the previous equation could not be 
deduced. Equation 11 makes ful l  sense in the local realistic approach and it gives the 
left-hand side as a weighted average of the other two probabilities. Therefore, the 
left-hand side must be internal to the interval of positive numbers in the right-hand 
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side and one has 

/[a+ , X,, (b+ )] <!: /(a + , X0 (b ' + )] � f [a + , A0 (b- )) (12) 

if, for instance, f[a+ ,  X,, (b+ )] � f[a +, X,, (b- )). One can obviously repeat the 
previous argument for f(a + , X,, (b ' -)) by considering that an expression similar to 
equation 10 can be deduced also for S (b ' - ) and therefore that S(b '  -) is composed 
of a fraction -y' of elements of S(b+ )  and of a fraction (1 - -y') of elements of S (b-), 
with 0 ,::;; -y' .s 1. Under the hypothesis that the sets S(b±)  are homogeneous, one 
now gets 

f(a + , X,, (b+ )] � f(a + , X,, (b ' -)J � f(a + , X0 (b- )] . ( 13) 

We thus see from equations 12 and 13 that the probabilities/[a + , Xa (b ' ± )) must be 
internal to the interval defined by the other two probabilities /[a + , Xa (b±)). How
ever, b '  is arbitrary and the previous conclusion must hold for all possible b ' . On the 
other hand, b is also arbitrary and it cannot be true that it is always that value for 
which one gets the largest interval of probabilities, unless of course the probabilities 
are actually constant. The latter condition, however, is far too restrictive for 
theoretical and practical reasons, in particular because correlation experiments of 
the EPR type have shown that probabilities of the previous t1J>e do actually vary with 
a and b. Therefore, the sets S(b±)  in general cannot lie hamogeneous. 

"SINGLET" STATE AS AN EXAMPLE 

The considerations carried out up to now are totally general and apply to sets S, 
T, and E of any nature. It is, however, interesting to see how far the idea of local 
propensities applies to quantum systems. Of course, it is out of the question to 
reproduce totally the predictions of the quantum singlet state because of Bell's 
theorem. Nevertheless, it is useful to learn directly from quantum theory some 
needed features of the propensity approach. Consider the quantum observables 

A (a) = CT · a, B (b) = T . b, ( 14) 

where CT; and Tj (i, j  = 1, 2, 3) are the Pauli matrices for two spin-Yi particles, a and p, 

respectively. They are dichotomic observables with ± 1  as eigenvalues and, apart 
from a trivial factor, they represent the spin components of particles a and p along 
the directions a and b. The well-known singlet state is given by 

Tts = (�) [u (b+)v(b-)  - u (b-)v (b+)], (15) 

where 

(CT · b)u (b±) = ±u(b±), (T · b )v (b±)  = ±v(b±) ,  (16) 

so 11. is an eigenstate of CT · b + T · b with eigenvalue zero. Because the singlet state is 
rotationally invariant, the previous conclusion holds for an arbitrary direction b. 
Suppose next that T · b is measured on the set T of p particles: according to quantum 
theory, the results ± 1 will be found with the same frequency Yi. With the notation of 
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equation 5, one has 

N(b + ) = N(b -)  = N/2. 

These populations N(b± ) , of course, refer not only to the subsets T(b± ) , but also to 
E(b ±) and S(b± ) . According to quantum theory, the "reduction of the state vector" 
takes place during the measurement and one must consider the new states: 

u (b - )v (b+ ) in E(b + ) , u (b+ )v (b-)  in E(b- ) . ( 17) 

It is now a simple matter to calculate the quantum mechanically predicted probabili
ties/(a ± l b±) of the previous section. One has, for example, 

fqm(a +  l b + ) =  (u (b -)v (b + ) I ( 1 + u · a)/2 1 u (b-)v(b + )} = cos2(a - b). 

More generally, one has 

/qm(a + l b + ) =  /qm(a - l b-)  = cos2(a - b) ,  

/qm (a +  l b-)  = /qm (a - l b-)  = sin2(a - b),  ( 18) 

where a - b is the angle between the directions a and b. The main point deduced in 
the previous section from probabilistic local realism is that the conditional probabili
ties must emerge as necessary consequences of objectively existing propensities. Of 
course, propensities are always there, but probabilities become concrete frequencies 
only when they are measured. From equation 7, one has 

fi.(a + l b + ) = f[a + ,  A0 (b+ )] = F(a - b) ,  

fi.(a + l b- ) = f[a + , A0 (b -)) = 1 - F(a - b ), (19) 

where F is the (presently unknown) prediction of probabilistic local realism and the 
dependence on a - b can be justified on the basis of rotational invariance. Of course, 
Bell's theorem does not allow F to equal the quantum mechanical prediction. From 
equation 8, it follows that 

Ji.(a + l b ' + ) =  f[a + , A0 {b '  + ) ] = F(a - b ' ) ,  

Ji.(a +  l b ' - ) = f[a + ,  A0 {b ' - )] = 1 - F(a - b ' ) .  (20) 

Equation 10 shows that S(b ' +) splits into two subsets. By assuming the homogeneity 
of S(b± ), it would now follow, as a consequence of equation 12 or 13, that 

F(a - b) � F(a - b ' ) � 1 - F(a - b)  (2 1) 

if, for instance, F(a - b )  � 1 - F(a - b ) . However, equation 21 cannot be valid for 
arbitrary values of a, b, b '  if the predictions (equations 19 and 20) ,  although 
respecting Bell's inequality, are even vaguely similar to the quantum theoretical 
expressions. Therefore, the subsets S(b ±) cannot be homogeneous. Because to these 
subsets we have attributed the quantum mechanical states u (b ±)  (see equation 17), 
we are forced to the conclusion that, in an EPR situation, the eigenvectors of the spin 
observables cannot represent homogeneous ensembles. This conclusion follows 
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rigorously by starting from the singlet state, but one can guess that it could be valid 
for all states of spin-Yi particles independently of EPR correlations. 

We have so discovered a new and more general sense in which quantum theory is 
incomplete. J. von Neumann showed24 that the assumption of quantum mechanical 
completeness implies that a set described as an eigenstate is homogeneous (that is, 
every single one of its subsets must be described by the same eigenstate). We have 
instead come to the conclusion that, at least in some cases, quantum mechanical 
eigenstates actually describe inhomogeneous ensembles, if our assumptions concern
ing realism (propensities) and locality are true in nature. In conclusion: 

If probabilities are consequences of local properisities belonging to the sets S(b±)  for 
which they are predicted, they must result from averages of other probabilities, in 
general different for different subsets of S(b± ), but constant within every such subset. 

These probabilities of homogeneous subsets of S and T will be dependent on local 
propensities and will therefore be totally independent of what is eventually mea
sured on the other set of particles (T and S, respectively). This is a consequence of 
the locality assumption. 

HOMOGENEOUS SETS OF SIMI� SYSTEMS 

The conclusion of a previous section concerning the existence of a splitting of S 
into S(b+)  and S(b-)  even if no measurement of B(b) is made is now our starting 
point; the same splitting can be attributed to E, which consists of S and T. 

Previously, we have also been led to the conclusion that S(b+)  and S(b-)-and 
therefore S that represents their union-cannot be homogeneous as far as the 
probabilities of finding A (a) = ± 1 are concerned. A symmetrical conclusion is 
obtained for the probabilities of finding B(b) = ± 1  in T by repeating the proof with 
the roles of particles a and � interchanged. Recalling the results of the previous 
section, we consider now a splitting of E (arising from a similar splitting of S) into the 
subsets 

u1 (a), u2(a), . . .  , u,(a), (22) 

where u; (a) (i = 1, 2, . . .  , r) is by definition homogeneous for the local probabilities 
f;(a± ,  �) of obtaining A (a) = ± 1, respectively, and � is the local propensity for the 
same results, which is now totally independent of what is done with the Ws. 

We consider also a different splitting of E (arising from a similar spl itting of T) 
into 

T1 (b), Tz(b), . . .  , T, (b), (23) 

where Tj(b) is by definition homogeneous for the local probabilities gi(b± ,  >.t,) of 
obtaining B(b) = ± 1 (j = 1, 2, . . .  , s) . Also, >.t, is a local propensity, independent of 
what is done with the a's. 

Obviously, the union of these subsets must give E in both cases, that is, 

u1 (a) U u2(a) U . . .  U u,(a) = E, 

T1 (b) U T2(b) U . . .  U T,(b) = E. (24) 
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The dependence of u; on a and of Tj on b reflects the fact that a subset that is 
homogeneous for an observable [e.g. , A (a)] is not expected in general to be 
homogeneous for a different observable [e.g., B(b )] . 

One can, however, easily find smaller subsets that are homogeneous for two 
observables. For A (a) and B (b ), they are 

(25) 

where the single index k has been chosen, for simplicity, to correspond in a 
one-to-one way to the pair of indices (i, j). Because i can take r values andj can take s 
values, the index k can take rs different values. Notice that u;(a) [Tj(b)) remains 
homogeneous for A (a) [B (b)), no matter what is measured on the 13 [a] objects. This 
is a consequence of our assumption of separability. 

The previous approach can easily be generalized to an arbitrary number of 
observables of a and 13. Considering m values (a i .  a2, • • •  , am) of the argument of 
A (a) and n values (bi .  b2, • • •  , bn ) of the argument of B(b), the following subsets of E 
can be introduced that are homogeneous for the probabilities of the values ± 1 of the 
indicated observable: 

and 

u1 (a 1 ) , u2(a 1 ) , • • •  , u,1 (a 1) homogeneous for A (a 1 ), 
u1 (a2), u2(a2), • • •  , u,2 (a2) homogeneous for A (a2), 

T1 (b 1 ) ,  T2(b 1 ) , • • • , T,1 (b 1 ) homogeneous for B(b1 ) , 
T1 (b2) ,  T2(b2) , • • •  , T,2 (b2) homogeneous for B(b2), 

(27) 

The homogeneous nature of the subsets (equations 26 and 27) has the usual 
meaning: all the subsets of u1 (a 1 ) have the same probabilities /1 (a 1± ,  �) for the 
resultsA (a 1 ) = ±1 ,  where Aa1 is a local propensity; all the subsets of u2(a 1 ) have the 
same probabilitiesfi(a 1 ± ,  �) for the resultsA (a 1 ) = ± 1 ; and so on. 

Obviously, the union of the sets of every line of equations 26 and 27 always gives 
E, just as in equation 24. 

By means of suitable intersections, one can introduce smaller subsets in which all 
the considered observables have constant probability. One can write 

= CJ';1 (a 1 ) n . . .  n CT;)am) n Tii (b1 ) n . . .  n Tjn (bn ) (28) 

for a typical subset homogeneous for all the probabilities of the ± 1 results of the 
(m + n) considered observables. In equation 28, the single index k has been chosen, 
for simplicity, to correspond in a one-to-one way to the set of indices 

(29) 
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The number t (m, n) of such sets can easily be calculated if one notices that it can be 
chosen in r1 different ways, . . . , im in rm different ways,ji in St different ways, . . .  ,jn in 
sn different ways, all choices being independent. Therefore, 

(30) 

Notice, however, that t(m, n) is in general expected to change if some arguments 
a i. . . • , bn are modified, as it is also clear from the notation of equations 26 and 27, 
where St [which is the number of subsets of E homogeneous for B(bt )] has the same 
index as b1 precisely because they depend on one another and a modification of b1 
can give rise to a change of s1 • Therefore, the set I of indices k [set of integers from 1 
to t (m, n)] depends on the arguments of the observables: 

(31) 

The notation can be simplified if one introduces a "vector" V having, as (m + n) 
components, the arguments of the observables and given by 

V =  {a 1 , · · · , am, bl , · · · , bn ) 

because the homogeneous subsets and their populations caq, then be written as 

Ek(V) = Ek(a 1, • • •  , am, b1 , ·: • •  , "bn ) 
and 

Nk(V) = Nk(a 1, • • •  , am, b1 , • • •  , bn )· 
This simplified notation will soon turn out to be useful. 

PROBABILITIES OF HOMOGENEOUS SETS 

(32) 

(33) 

(34) 

The basic probabilities, which are all constant for pairs belonging to a subset 
Ek(V), are 

and 

fk(a 1± ,  �a)• probabilities for A (a 1 ) = ± 1 , 
ik(a2± , �02), probabilities for A (a2) = ± 1 , 

Kk (b1 ± , �b1 ) ,  probabilities for B(b1 ) = ± 1 , 
Kk(b2± ,  �b2) ,  probabilities for B(b2) = ± 1 , 

(35) 

(36) 

Of course, the probabilities fk belong to the a particles and the gk to the � 
particles. Each of them depends only on the propensity of the measured observable. 
These propensities are now assumed to be strictly local. Thus, �01 does not depend in 
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any way on the particular b; that is eventually being measured on the p particles, not 
even on the fact that a b; is being measured or not. This property of the propensities, 
of course, is a consequence of the homogeneous nature of the sets Ek(V) once the 
locality assumption has been made. 

It is important to stress that the present formulation of locality is strictly 
analogous to the quantum mechanical locality of probabilities (which is well known 
to hold in spite of the overall nonlocal nature of the theory). The present formulation 
of locality is only applied to a wider set of probabilities. 

An important feature of quantum probabilities is fully expected to hold also for 
equations 35 and 36: if/(a11±) is measured in a set S, this destroys the possibility to 
measure/(av± )  with v ¢ µ in the same S because the observablesA (a11) and A (av) 
are in general incompatible; similarly for g(ba±) and g(bT± )  in a set T, if er ¢ T. 

Obviously, if one writes 

(37) 

then 

L Pk (V) = 1 (38) kEI 

and Pk (V) is the "statistical weight" of the subset Ek (V) in the full set E. 

JOINT PROBABILITIES AND BELL'S THEOREM 

The definition of equation 37 is useful for calculating all types of probabilities in 
the set E, for example, those needed for a new proof of Bell's theorem. These are 
typically joint probabilities for observations carried out on correlated systems. 
Considering the joint probability for A (a11) = ± 1  and B(bv) = + l ,  one has 

(39) 

where the index k indicates, as before, that a probability is calculated in the 
homogeneous set Ek(V). One can obviously apply Bayes' formula and write 

(40) 

where gk (bv+ ,  �) has been introduced in equation 36 and wk (a11±,  >.., lbv+ )  is the 
conditional probabil ity ofA (a11) = ± 1, given that B(bv) = + 1. One can�also say that 
wk(a11±, >.../bv+)  is the probability ofA (a11) = ± 1  in 

(41 )  

because i t  has been concluded that a set E(bv+ )  exists with the right properties even 
if B (bv) is not measured. Remember now that Ek (V) is homogeneous, meaning that a 
probability valid for the whole of Ek(V) applies as well to every conceivable part of it, 
for example, to the intersection (equation 4 1 ). Remembering equation 35, this gives 
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immediately 

Inserting equation 42 in equation 40, one gets 

Ok(a.,.± ,  b,+ ) = fk(a.,.± ,  A0.,.)gk (b,+ , Ab) 

and consequently, from equation 39, it follows that 

O(a.,.± , b,+ ) = � Pk (V)fk (a.,.± , � )gk(b,+ , Ab ). 
kEI • " • 

(42) 

(43) 

(44) 

With a trivial generalization of the reasoning leading from equation 39 to 
equation 44, one gets 

(45) 

The joint probabilities (equations 44 and 45) look like Clauser-Horne factorizabil
ity formulae, 25 with the role of the hidden variable A being played by the much more 
transparent index k. There are, however, important diffeTences because now the 
parameters of the considered observables enter in the prQbability density Pk (V) . This 
does not imply the introduction of any nonlocality because, in principle, all the 
conceivable observables should enter in Pk(V). In practice, however, one can take 
into account only the observables relevant to the set of correlation functions 
measured in the considered experiment. The other ones are averaged away. A 
similar situation has been described by Wigner26 with his deterministically based 
proof of Bell's theorem. 

In spite of this dependence, it is very easy to deduce from equations 44 and 45 the 
usual inequalities of the Bell type.27 It is amusing to notice that we never needed to 
introduce joint probabilities for two incompatible observables, described by quantum 
mechanics with two noncommuting operators. Observables likeA (a.,.) and B(b,) are 
instead relative to two different objects and are therefore always compatible, so the 
previous obstacle does not exist and the joint probabilities (equations 44 and 45) are 
fully meaningful. 
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The significant role that the quantum theory of angular momentum plays in virtually 
every aspect of modern physics can hardly ·be overemphasized. Until recently, 1 
however, there was no acceptable quantum theory of the complementary quantity, 
that is, the angles themselves. Traditionally, in quantum mechanics, angles have been 
treated as parameters, with no adequate means of describing their direct measure
ment, so angular distributions had to be inferred from the measurement of some other 
quantity. Herein, a complete quantum theory of angle measurement is presented and 
shown to provide a variety of novel insights when applied to spin dynamics, atomic 
structure, and polarized quantum fields. Previous attempts to formulate an Hermi
tian angle operator (or, equivalently, a collapsible angle w�ve function) have been 
plagued by mathematical obstacles, resulting in eith#r a nonobservable operator2 or 
a loss of complementarity with respect to angular momen1um.3 These difficulties can 
only be overcome by working in a Hilbert space of suitably large dimension. The 
emphasis herein, however, will be on the implications of the general theory, with the 
degree of formalism increasing only as the application requires it. Nevertheless, it 
should be noted that the methods used in the first two sections can only be formally 
justified via the complete formalism, which is presented and utilized in the third 
section. 

QUANTUM ANGLE FOR A SYSTEM OF UNIQUE J 

Just as J. is the generator of translations in the azimuthal angle cl> (about the 
z-axis), complementari!}' implies that the angle operator, �. generates translations in 
m (the eigenspectra ofJ./h). For a system of known total angular momentumj, where 
j(j + 1) is the eigenvalue of12,4 these translations can be written in the form, 

j- 1 

T(&n = 1 )  = � l j, m )(j, m + 1 1 ,  (1) 
m = -j 

but this cannot be expressed as eici>&m (with � Hermitian) because T cannot be unitary 
due to the fact the m is bounded for a system of finitej. This difficulty is similar to the 
one encountered in the quantum phase problem and its solution5 is also similar-to 
completely describe the measurement of an angle, we must work in a Hilbert space 
large enough for m to range from -oo to +oo. The formalism of this complete 
description will be presented when it becomes necessary to do so in order to discuss 
its application to quantum polarization states of an electromagnetic field (this, in 

0This work was financially supported by the Welch Foundation. 
812 
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turn, will help to illustrate the meaning of the complete formalism). For the moment, 
we need only note that such spaces exist and that we can easily define complete 
translations through them as diagramed in FIGURE 1 for j = 1 (techniques for 
excitations of m that are not unique inj are presented via the discussion on photons 
in the third section). FIGURE 1 also depicts the technique ofVourdas,3 which consists 
of adding a "wraparound" term, I j, m = j)(j, m = -j I ,  to T so that unitarity can be 
achieved on a single j subspace. However, this results in a "discrete-angle" measure
ment that is not complementary to the jz measurement. 

00 

D - Fermions 
• - P hoto ns 

( • and O) - Bosons 

• • •  - oo 

' ' ' ' /� /� /� /� /� /� 0 ?,.- ,.. ..;>,,. <2 6',.-<2 <2 <2 
FIGURE 1. Translations through an infinite m-space versus wraparound. 

Quantum measurements can be described in terms of wave functions, as well as 
operators, and the wave function perspective is particularly expedient here because 
complementary wave functions are related via a Fourier transform (even for the 
cases of bounded or discrete spectra1) .  Thus, because the m-ket expansion coeffi
cients, l!im = (j, m I l!i), can be considered to be a wave function in discrete m-space, 
these must also be the Fourier-series coefficients for the complementary angle wave 
function: 

j 

"'u>< <t> > = L "'m e-im�. (2) 
m = -j 
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Thus, for a state of fixedj, the angle statistics can then be readily calculated from the 
probability distribution, 

(3) 

It must be emphasized, however, that this "obvious" approach might also be 
considered to be "utter nonsense" unless we go to a larger Hilbert space. The 
necessity of this larger space can be seen from the wave function perspective by 
virtue of the fact that a bounded Fourier series, such as equation 2, cannot yield a 
distribution that in any sense approaches a delta-function. Thus, laying aside the 
issue of how wave functions collapse, this level of description of the angle measure
ment is incomplete because the single j m-space is not large enough to even permit 
collapse of the angle wave function. 1 .S As an example, the underlying angle kets, 

j 
so that l c!>)U> = }: ei""" l j, m), (4) 

m= -j 
are not orthogonal: <i>(ct> ' I cl>)(J) � 8(cl> - cl>'), which indicates that we do not yet have 
the complete description of this measurement. They are, however, complete: 

J1T (de!>) j 
•• - • 

- l cl>)<i><i>(ct> I = }: . I i. m )(j, m I = f;, _.,. 2ir m= -1 
(5) 

which guarantees that equation 3 is a perfectly valid probability distribution function; 
thus, it must somehow correspond to a realizable quantum measurement (exactly 
how will be shown in the third section). The "discrete-angle" measurement (ob
tained via an orthogonal subset of the angle kets) would only provide a sample of the 
actual (continuous) angle distribution as depicted in FIGURE 2. Moreover, due to the 
wraparound term, these "discrete-angle" statistics are complementary to a periodi
cally replicated version of the iz spectrum rather than to the iz spectrum itself. 

IMPLICATIONS FOR SYSTEMS OF UNIQUE J 

Prior to the solution of the "angle problem", one had to infer an angular 
distribution from the measurement of some other quantity. The "vector model", for 
example, attempts to infer the longitudinal angle 6 (about the x-axis) from the 
measurement of iz. If angular momentum were a classical vector of length j(j + 1 ), 
then one would infer that discrete valued projections of that vector onto the z-axis 
must imply that the angle 6 is also discrete (simply because m is, as illustrated in 
FIGURES 3a and 3c for the case of spin Yz). In quantum mechanics, however, it is 
imperative to use a formalism that describes the measurement of quantity rather 
than attempting to infer it from some other measurement. The quantum theory of 
angle attributes the discreteness of m to the periodicity of the angle about the cl> axis 
(as an immediate consequence of the Fourier transform, although this well-known 
result has been proved in other ways). Moreover, the 6 distribution can be obtained 
from its measurement, given the iz representation, via a change of basis, followed by a 
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Fourier transform, that is, 

and 

j 

j 
'''m(.<) = � .1, d (j) 'I' ,,(;,,, 'I'm m',m m=-j 

i!i(J)(6) = � i!J�l e-im8 so that 
m=-j 

815 

(13 = --rr/2) (6) 

p(J)(6) = I i!i(j)(6) 1 2/2-rr, (7) 

where d�?.m (13 = --rr/2) is the Wigner D matrix for rotating the z-axis into thex-axis. 

· 4  · 3  · 2  . , 0 • m 

- 4  - 3  · 2  - 1  0 4 "m" 

'i'(«I>) 

. . .  f'v,. AA f\.A . . . ./ - v. !- I/ - � 
<( I I I ; I .. 

-n I I n <I> 
I I I 
I I 

I 
I I I 
+ • l 

... 1 1 1 1 1 1 1 , l l 
-n n I I  <I> 11 

nGURE 2. Continuous- versus discrete-angle representations. 

The results for a spin-� particle in the "up" state, shown in FIGURES 3b and 3d, 
demonstrate that spin up really does point up in the sense that the measurement of the 
angle between the spin vector and the z-axis yields 6 = 0 as its most l ikely value-in 
dramatic contrast with the "vector model", which erroneously predicts that 6 = 0 can 
never occur. Thus, the angle representation should prove quite useful in visualizing 
and calculating spin dynamics in magnetic resonance experiments and analogous 
phenomena. 

Similarly, the ability to correctly describe the angular distribution of orbital 
angular momentum yields dramatic new insights on atomic/molecular structure and 
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the nature of electronic "orbits". ,FIGURE 4 presents polar plots of the associated 
Legendre functions for I = 3 with m = 0, 1 , 2, and 3 in parts a, b, c, and d, 
respectively. Parts e, f, g, and h show the 0 distribution (as calculated via equations 6 
and 7) for each of these same states. The radial coordinate indicates the probability 
(compressed via a logarithmic scale so as to show the finer details) associated with 
each 0 value (all distributions are uniform in cf>). The spherical harmonics correspond 
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to the following: ( 1 ) first measure the three commuting, Cartesian spatial compo
nents.i, y, and i; then (2) rather than recording the measured result as (x, y, z), these 
data are transformed into spherical coordinates (r, 0, cf>) and the radial dependence 
is ignored. Thus, parts a through d plot the probability that when we perform this 
spatial measurement we will find the electron (or whatever system is in this I I, m ) 
state) anywhere along a radial line that is at the angle 0 with respect to the z-axis. In 
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contrast, parts e through h plot the probability that the angle between the orbital 
angular momentum vector and the z-axis will be found to be 8 when that angle is 
measured. 

The spherical harmonics by themselves do not give an indication that anything is 
moving or "orbiting". The probability flux, however, can be readily calculated for 
these cases and is shown to be only cf>-directed with an m/sin 8 dependence. Thus, we 
can visualize each of these "electron clouds" as undergoing a pure and constant 
rotation about the z-axis. Classically, if we rotate a mass density (given by the lobes of 
the Legendre polynomials) about the z-axis, we would obtain an angular momentum 
vector at the angles 8 that correspond to the main peaks given by the 8 distribution. 
The lobes of the spherical harmonics (or spatial lobes) are labeled in correspondence 
with these 8 peaks to facilitate the visualization (but recall that all of these 
distributions are uniform in 8 so that, in the m = 2 case, for example, lobes 1 and 2 
are really the same-just rotate 8 by 'tl'-as are the corresponding 8 peaks 1 and 2). 
The width of these 8 peaks (in part) reflects the width of the spatial lobes because we 
are actually rotating a "probability mass distribution" in this semiclassical picture of 
an orbit. This correspondence with previous pictures is, no doubt, comforting (and 
indeed the ability to infer an "orbit" without resorting to probability flux-a 
nonmeasurable entity-may prove to be useful), yet the most interesting results are 
always the unanticipated ones. Such is the case with tbe unlabeled 8 peaks, which 
form part of what will be referred to as "substructure". 

These substructure features are not predicted by the semiclassical notion of an 
orbit that we formed by supplementing the spherical harmonics with probability flux. 
Indeed, if we are to associate an orbit with the orbital angular momentum, then any 
time the 8 measurement yields I 8 I > 'ti' /2 the associated orbit is in a direction 
opposite to that of the probability flux. It should be emphasized that we are 
discussing the behavior of a pure I I, m) state; there is no amplitude to be in the 
standard sense of its time-reversed version, I I, -m) (which would have a probability 
flux opposite to that of the states considered here). Portions of the labeled peaks can 
be thought of as substructure because they are time-reversed in this new sense 
( I 0 I < 'tl'/2), yet not all of the substructure (any peak or feature without a semiclas
sical counterpart) is time-reversed in this way. The probability flux for thej = 3, m = 
0 case was labeled as if m > 0 to aid in the visualization, even though for m = 0 the 
flux is identically zero. The corresponding 8 distribution, however, reveals that this 
comprises equal amounts of "forward and backward orbits". The application of the 
angle representation to Rydberg states should prove interesting and, in general, we 
expect that a variety of atomic and molecular processes can be further understood via 
this new window. 

QUANTUM ANGLE FOR AN ARBITRARY SYSTEM 

Mathematically, there are many similarities between the quantum theory of an 
angle in physical space and that of an angle in a phase-plane. A more physical 
connection between the angle and phase problems is obtained through the use of 
Schwinger's harmonic oscillator model of angular momentum,6 resulting in an 
identification of the equivalence of the angle measurement and the measurement of 
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the differential phase between the two oscillatorsP Schwinger's scheme ascribes 
z-component angular momenta to a difference in the number of ·�up- and down-type" 
oscillator quanta via 

and (8) 

From the algebra of these two uncoupled oscillators, one can recover the algebra of 
angular momenta. However, these quanta are bosons that behave like spin-� 
primitives (via equation 8) and hence they are deemed unphysical. The quantum 
associated with an electromagnetic plane wave, though, is a boson that resembles a 
fermion in the sense that its spin space is two-dimensional; that is, "the photon is spin 
1 with m = 0 missing".8 Indeed, we can reconstruct the algebra of angular momenta 
from these physically significant photonic primitives via 

and (9) 

We now present the complete formalism of the angle measurement and identify 
its connection with the measurement of differential phase between two oscillators. 
Complementarity suggests that for an arbitrary two-mode (two-oscillator) excitation, 
with number representation lfln1on2 = 1 (nd 2(n2 ll lflh®2, we take a two-dimensional 
Fourier transform, 

'l'(cf>i. cf>2) = 1(cf>1 l i(cf>2 1i lflh®2 = L L 1'1n1..,rin1c1>1e-in�. (10) 
n 1=0 n2=0 

Rewriting this in terms of cf>I = ( cf>1 + cf>2)/2 and cf>4 = ( cf>1 - cf>2)/2, we have 

where 

+j 
lf/(cf>4, cf>I) = (cf>4, cf>I ll lflh®2 = L L lfli.me-imcl>&e-ii<l>l:, 

j=O m= -j 

+j 

( 1 1 ) 

I cf>4, cf>I) = L L I j, m)ei"'cl>&eiicl>I and I j, m) = l n 1h l n2h li=n 1 +n2,m=n 1 -n2• (12) 
j=O m=-j 

We see that the cf>I part of If/( cf>4, cf>I) cannot collapse due to the boundedness of its 
complement, namely, the number sum (j � 0). 

We can eliminate cf>I to obtain a complete description of the "marginal measure
ment of cf>4" on 2i®2 by applying an "absolute time average" to I cf>4, cf>I}(cf>4, cf>I I .  
resulting in 

. I+ ... (dcf>I) 
(2'1T)dilM( cf>a) = _ ,,  2'1T I cf>a. cf>I}(cf>a. cf>I I 

= � [L�i i j, m}&mcl>&)L�
-i 

(j, m ' l e-im'cl>�) ] . (13) 
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Because both of the inner sums use the same value of j, interference among the 
different j  states is excluded and we have (for pure states) the following probability 
distribution function: 

where Tr denotes trace; p is the density matrix; and 

+j 1fiCi)(cJ>4) :;; � 1'Jj,,,,e-imcl>.1. m=-j 

( 14) 

( 15) 

Thus, when we take the two oscillators to be the right and left circularly polarized 
modes of an electromagnetic plane wave, the number sum and difference are the j 
and m of the angular momentum and lfiei>( <!>4) is the single j angular wave function 
with <!>4 = cJ>. Hence, the "marginal measurement of <!>4" corresponds to an angle 
measurement in which the cl> results from each of the individual j states are (in 
principle) distinguishable. Note that it is the distinguishabil ity of the final (rather 
than initial ) state that is of issue and that equation 14 describes the adding of the 
noninterfering probabilities that eachj state contriP.utes to' the measurement. 

We can also eliminate c!>:E by conditioning I <!>4, c!>:E)(cjr.1, c!>:E I to c!>:E = 0, resulting in 

(2'1T')dilc(c!>11) = [P(c!>:E
l 

= O) ] 1 <1>11. <l>:E = O)(c!>.1, c!>:E = 0 1 

[ 1 ]( .. +j )( .. +j ' ) = - � � l j, m)eimcl>.1 � � (j ' , m ' l e-im'cl>.1 ' P( <l>:E - 0) j=O m=-j j '=O m '=-j' 
where the renormalization constant is 

( 16) 

(17) 

In this "conditional measurement of <!>4'', we are taking a "snapshot" in absolute 
time. Thus, the inner sums use different values ofj, thereby permitting interference 
among the different j states. We therefore have (for pure states) the probability 
distribution function, 

Hence, if we take the oscillators to be the photonic primitives, then this "oonditional 
measurement of <!>4" corresponds to an angle measurement in which the cl> results 
from each of the individual j states are (in principle) indistinguishable (because 
equation 18 is adding the interfering amplitudes that each contributes). Note that 
either procedure (marginal or conditional) will reduce to equations 2 and 3 for an 
initial excitation of unique j. 

The connection between distinguishability and absolute time is somewhat surpris-
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ing, but can be made palatable via example. Consider the case of the left-hand 
polarization being in the vacuum state (n1 = 0) so that each '1111, .0 corresponds to a 
different value ofj. Ifwe add interfering amplitudes, then we will get the nonuniform 
· angular distribution of the field vectors (and their quantum fluctuations) at a point in 
absolute time. In contrast, if we add the noninterfering probabilities, then we will get 
a uniform angular distribution [because each of the p<J1( «fl) will be uniform in this 
case] . This uniform distribution corresponds to letting the nonuniform angular 
"snapshot" evolve in absolute time (which we average over), thereby tracing out a 
quantum version of the polarization ellipse (which is uniform, that is, a circle, for this 
case of pure right-handed polarization) . 
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The Integration of Mind into Physics 
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A THEORY OF MIND AND MATTER 

John Wheeler has a knack for asking the right question. At the beginning of this 
conference, he directed our attention to what he deemed to be a key question in the 
foundations of quantum theory: 

H0ffding asked, "Where can the photon be said to be?" 
Bohr replied, "To be. To be. What does it mean 'to be'?" 

This report proposes to answer this question in a way that yields a parsimonious 
theory of mind and matter that reconciles the opposing views of Bohr and Einstein. 
Bohr held that quantum theory describes relationships between aspects of our 
knowledge, whereas Einstein insisted that our basic theory should describe what 
could be reality itself, not merely our knowledge of it. 

Wheeler provided guidance in our search for an answer by offering several 
further quotations: 

• "The concept of the physical object is a convenient myth." 
• "Observations are the iron posts upon which everything is based; all else is 

papier-mache." 
• "No phenomenon is a phenomenon until it is an observed phenomenon." 
Modern science grew out of Descartes' disjunction of mind and matter.' How

ever, that separation led to classical physics, not to ultimate science. Mind is injected 
back into physics by quantum mechanics because the basic problem in quantum 
mechanics is to reconcile the nonclassical character of the quantum world with the 
classical character of our perceptions of it. 

Bohr confronted this problem by adopting an epistemological approach based on 
"our knowledge": he regarded the quantum formalism as merely a set of rules that 
give statistical predictions relating our classically describable perceptions. Yet, 
Bohr's theory is limited in scope by its exclusion of biological systems. This exclusion 
entails that the physical carriers of our knowledge, namely, our brains, are not 
represented within the quantum system described by the theory. This omission is the 
basic cause of the difficulties that beset Bohr's version of quantum theory. An 
adequate dynamical theory should contain representations of the things that need to 
be related, and this means, for basic theory, both the quantum microrealities and the 
classically described experienced facts. Ideally, these two things should be repre
sented within basic theory as two aspects of a seamless dynamical unity. 

Von Neumann developed an alternative approach2 that extends quantum theory 
822 
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to the entire universe, including our brains. However, he needed two dynamical 
processes: 

• process I, consisting of abrupt "quantum jumps", called events; 
• process II, consisting of continuous deterministic evolution according to the 

Schrodinger equation. 
As regards these jumps, von Neumann's main result was that each one could be 

placed at any one of a sequence of alternative locations along the chain of causal 
connections that lead from the microworld of elementary particles to the macro
scopic level of brain activity that corresponds to our conscious thoughts: differences 
in the placement of the jump have virtually no effect on the predictions of quantum 
theory. However, von Neumann noted that there is one placement of the jumps that 
is naturally singled out from all others, namely, the placement at the level of brain 
functioning where our conscious thoughts enter. All other placements are ad hoc and 
artificial, and they disrupt the natural linkage between the physical world and the 
quantum principles. 

Wigner affirmed and reinforced the idea that the quantum jumps be placed 
exclusively at the level of brain action where conscious thoughts enter.3 This 
placement of the jumps reduces the triality consisting of the mental world, the 
classical world, and the quantum world to a duality composed of the mental world 
and the quantum world: the observer-independent classical level of description is 
eliminated, and hence the world of classically describable thoughts rides directly on 
the world of quantum potentialities. This brings von Neumann's theory into align
ment with Bohr's, in the sense that in both theories the classically described 
perceived facts are linked to each other via a purely quantum mechanical system, 
without the introduction of an observer-independent classical level of being. 

Wigner later recanted, claiming that the disruptive effects of the environment 
make quantum theory inapplicable to macroscopic systems. However, his argument 
is not conclusive. The effects of the environment on macroscopic systems have been 
studied in great detail in recent years. Interactions with the environment certainly 
produce a great loss of effective phase coherence, but the overall practical effect of 
these interactions is to convert the quantum state at the level of macrovariables to an 
approximate statistical mixture of states. Macrovariables are collective variables that 
carry a large mass compared to the energies of the disturbances coming from the 
environment. Thus, interaction with the environment converts the quantum state, 
effectively and approximately, to a statistical mixture of a thin veneer of sluggish 
macrovariables riding on an ocean of tumultuous microvariable activity. This conver
sion justifies in practice, in many cases, the use of classical statistical mechanics at the 
macrolevel, but it leaves unresolved the central problem: where do we place the jump 
that reduces the approximate statistical mixtures of classically describable mac
rostates to the individual state that we perceive? 

There is no empirical evidence for the occurrence of jumps at any place other 
than the mind-brain interface. Hence, there is no scientific basis for introducing 
other jumps. Certainly, the goal of bringing our mental image of the macroworld into 
concordance with our notoriously fallible classical intuition is not a sufficient reason. 

Jumps are definitely needed inside our brains.4 Thus, the law of parsimony, and 
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the lack of a natural criterion that picks out any other location, enjoins us to place the 
quantum jumps exclusively at the niind-brain interface. 

The following question then arises: Which brains? 
I "know" only that I, myself, am conscious. However, conversations with other 

human beings, and the writings of psychologists and philosophers, have convinced 
me that some other human beings are, in all probability, also conscious. In this 
connection, it is important to recognize that the goal in science is not certainty: 
certainty is unattainable. We create general theories, test them, and use them if they 
work; we never verify them. Thus, in view of the great similarities, both structurally 
and behaviorally, of myself and other human beings, it is reasonable to posit, as the 
foundation of a tentative theory of nature, that all normal and alert human beings 
have thoughts similar to my own. 

According to Bohr, "The task of science is to expand our experience and reduce 
it to order." Here, the "our" is, in the first instance, the human race. Science is an 
ongoing human endeavor, and the facts that it must coordinate are the facts defined 
by our collective experience. By taking only human brains to be associated with the 
emergence of the classically describable facts, we obtain a theory that is maximally 
parsimonious with respect to human-based science: the facts that are defined within 
the theory are precisely the facts that need to be explained by the theory. 

The theory specified in this way describes what could l1e reality itself, including 
our knowledge of it. Thus, it meets Einstein's dematld that basic theory must 
describe a possible reality. The virtue of theories of this kind is that they must 
conform to the strong condition that they be able, in principle, to describe all of 
nature in a completely consistent way. This rules out pretenders and retains theories 
that have a greater promise to carry us beyond what we presently know. 

One can consider theories that differ from this "standard" human-based one by 
having a larger set of brains that harbor quantum jumps: theories in which the set of 
human brains is augmented to include some nonhuman ones, such as dog brains or 
computer brains. In this connection, I note the following: 

( 1 ) Theories based on larger sets of brains lead to consequences that differ within 
the set of facts defined by human experience from those of the standard 
human-based theory. This is because the additional brains produce addi
tional quantum jumps, and these jumps, occurring outside human brains, will 
generally lead to eventual consequences also within human brains. This 
situation differs from the one in classical physics, where the occurrence or 
nonoccurrences of thoughts, per se, in other brains have no empirical 
consequences for me, because the laws of classical physics make no reference 
to subjective experiences. Thus, according to the ideas of classical physics, 
the occurrence or nonoccurrence of "experiences" in conjunction with the 
activities of a brain/body make no difference at all in the physical world and 
hence no difference in the consciousness of anyone else. 

(2) Theories that allow jumps in nonhuman brains, although different in principle 
from the standard theory, are virtually identical to it in practice, within the 
realm of human experiences. This is a corollary of von Neumann's analysis. 
Thus, for all practical scientific purposes, we, as human beings, can, without 
introducing any significant error, use the standard human-based theory, even 
if quantum jumps do actually occur in nonhuman brains: inclusion of those 
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other jumps would make virtually no changes in the predictions pertaining to 
human experiences. 

(3) By virtue of point 2, any extension of the standard human-based theory to a 
theory with jump-possessing nonhuman brains has no secure scientific justifi
cation. The standard human-based theory is the most parsimonious theory of 
nature consistent with my knowledge that I have thoughts, and that other 
human beings are structurally and behaviorally very similar to me, and 
therefore ought to be treated on a par with me in a general theory of nature. 

(4) "Science is a tiny island of knowledge in a vast ocean of nescience." Let us 
not pretend to know more than we do. There exists a huge col lection of 
theories that are different from one another in principle, but that, by 
presently available techniques, are indistinguishable in practice. In full 
awareness of this fact, we can choose, tentatively, the one that is best adapted 
to the human scientific enterprise, namely, the one that describes a possible 
reality in which the dynamically generated facts are exactly the facts specified 
by the experiences of the community of communicating human observers. 

( 5) After we have developed a satisfactory detailed understanding of the connec
tion between human brains and human thoughts, we may be in a position to 
make a reasonable extrapolation to nonhuman brains. We may then wish to 
shift to what might seem by then to be a more reasonable theory. 

(6) Within this theory, each train of thought is dynamically connected to the 
process going on contemporaneously in the associated brain, rather than, as in 
certain AI theories, to a computer program, which might be instantiated by a 
variety of alternative and different dynamical processes. 

(7) In contrast to behavioristic approaches, the primary scientific data here are 
the facts specified by our collective experience. 

(8) Within this theory, the history of the universe is defined only insofar as it is 
defined by the facts specified by accumulated human knowledge. 

This formulation of quantum theory reduces the problem of quantum measure
ment to the problem of the dynamical connection of mind to brain. Twenty years ago, 
such a "reduction" might have been tantamount to casting the problem out of 
science. Today, that is not true. Scientific pursuit of the question of the relationship 
between brain process and conscious process has become an important confluence of 
interest among increasing numbers of brain scientists, psychologists, neuropsycholo
gists, philosophers of science, and quantum physicists. The topic is rightly a "hot" 
subject because it bears directly on the core issue of our conception of ourselves: the 
question of the relationship of our thoughts to our bodies and brains, and to the 
universe around us. 

An adequate quantum theory of the relationship between brain and mind must be: 

( 1 )  concordant with all results from neurophysiology and neuroanatomy; 
(2) concordant with all results from psychology; 
(3) concordant with all results from neuropsychology; 
( 4) concordant with the demand that the full structure of each thought (i.e., each 

consciously experienced event) be fully represented in the brain state actual
ized by the corresponding quantum event; 
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(5) concordant with the demand that the brain state associated with a thought 
have the functional character appropriate to that thought: for example, my 
thought of "I will now raise my arm" must actualize a brain state that, under 
normal conditions, will cause my arm to rise. 

An outline of a theory that appears to meet these requirements is given in 
reference 4. In that book, I followed Heisenberg and allowed the quantum jumps to 
occur also at the level of quantum measuring devices, such as Geiger counters. This 
raises, though, the question of the rule that fixes the exact placement of these 
external jumps. In the present work, I have shifted to the position described above. 
However, that shift makes no change in the theory of the mind-brain interaction 
given in reference 4, which I now briefly summarize. 

QUANTUM THEORY OF BRAIN EVENTS 

The motivation within psychology and brain science for this theory of brain 
events is described in reference 4 and will not be repeated here. The essential 
postulate is that each human thought is an event that actualizes a particular pattern 
of activity in a human brain. This thought is said to beloflg to that brain and it is 
represented in the physicist's description of nature by- the action of a projection 
operator that projects the prior (Heisenberg-picture) state vector onto its successor. 
This successor contains the pattern of brain activity that is actualized by the thought 
and it contains none of the alternative possible thought-related patterns that, 
according to the quantum analogue of Newton's laws of motion, could have occurred, 
but in fact did not occur. The pattern of brain activity actualized by the thought is 
called the brain correlate of the thought and it must contain within its structure all of 
the information and structure that is present in the felt content of the thought. 

Each rudimentary thought always represents an image of the self in its environ
ment and it either updates or adds to the latest image in the case of a thought that 
"attends", or it creates a projected (into the future) image of the self in its 
environment in the case of a thought that "intends". The latter sort of image forms a 
template for subsequent motor action. Each pattern of brain activity that is actual
ized by such an event persists for a certain time and is thereby "facilitated": it is 
strengthened in such a way that subsequent excitations of portions of this pattern 
tend to excite the whole, leading to associative recall. Most such patterns are largely 
prefabricated, in the sense that they are formed from earlier patterns, or their parts, 
joined together in new configurations. By virtue of the architecture of the brain, in 
conjunction with learning, the only allowed configurations are those that correspond 
to an image of a physically possible self in a physically possible environment, or to 
some generalization of this basic form. Details can be found in reference 4. 

However, what is the physical structure of the patterns of brain activity that are 
actualized by thoughts? In the first place, each one must be an enduring, and 
presumably oscillatory, pattern of activity that, through its composition in terms of 
subpatterns, represents all of the felt structure of the associated thought. Hence, it 
must evidently cover a macroscopic portion of the brain. These spatially separated 
parts of the pattern are bound together dynamically: the entire structure hangs 
together as a resonating system by virtue of the mechanical feedback and feed
forward linkages in the brain. As a nonlinear (at the classical level) system with an 



STAPP: INTEGRATION OF MIND 827 

energy supply and feedbacks, the system is nonstable in the sem1e that, like a system 
of microphone and amplifier, once the energy in the system passes a certain critical 
·value, it evolves rapidly into an oscillatory mode that soaks up all of the available 
power. Fatigue properties of neurons eventually cause the pattern to fade out, and 
hence the conscious brain advances, step-by-step, from one of these resonance states 
to the next. 

No human being can predict the exact progression of these states. Even in a 
classical idealization, such predictions are rendered impossible by our lack of 
knowledge of the unknown and uncontrollable effects of thermal noise and interac
tions with the environment. Hence, our knowledge about the "next" state can be 
represented only by a probability function, even though, according to classical ideas, 
this "next" state is completely fixed and predetermined. In a quantum world, this 
lack of knowledge about the "next" state is elevated, through Heisenberg's principle 
of indeterminacy, to a matter of principle, and hence the form of the next state 
remains undetermined and indeterminate, even in principle, until it is actualized by a 
thought. 

A SIMPLIFIED MODEL OF THE MIND/BRAIN 

In order to make the ideas outlined above more concrete, I shall describe a 
simplified model of the mind/brain . What I shall give is very much a toy model. It 
should be understood as a simplification of what was described in more detail in 
reference 4 (chapter 6 and appendix). Nevertheless, it may be useful, by starting at a 
still simpler stage, to bring out certain rudimentary features. 

The "brain" will be taken to consist of ( 1 )  a source of power, consisting, in this 
idealization, of a very massive simple harmonic oscillator, and (2) a set of simple 
harmonic oscillators that represent the different patterns of brain activity that are the 
alternative possibilities for what the next thought can actualize. Thus, the classical 
unperturbed Hamiltonian is5 

n 
Ho = (p2 + M2w2x2)/2M + L (pf + m2w2xf)/2m. 

i= I 

Note that I have taken the frequency of the power source, w, to be the same as the 
frequency of the modes i that are the brain correlates of the possible thoughts. 
Introducings 

a; = p;1 (2mw)1 12 - i(mw/2) 1 '2x; 
and its complex conjugate af, and the analogous a0 and a�, one may rewrite Ho in the 
simpler form, 

n 
Ho = L wata;. 

i=O 

The interaction Hamiltonian has the form, 
n 

Hi = i L (a7ao - a�a;)(f; - g;), 
i= I 
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where f; and 8; are positive real functions of the variables of the problem. Thus, the 
Poisson bracket (i.e., classical) equation of motion6 

du/dt = {u, H) = -i � (au/ aa/JH/aa r - aH/aa;au /aan  = -i[u, HJ, 
i 

where [a;, a r J = 1 ,  etc., gives 

da;/dt = -iwa; + a0(f; - 8;) + (afa0 - a�;)[a;, (f; - 8;)] , 

which is also the Heisenberg (i .e. , quantum) �quation of motion if the final bracket is 
interpreted as the commutator, a;(f; - 8;) - (f; - 8;)a;. The source/sink mode is 
supposed to carry a very large amount of energy. Thus, we assume that a0 = 
A exp(-iwt), with A very large, positive, and essentially constant. Then, the ansatz 
a; = A; exp(-iwt), with A; real and positive, and the definitions/; = fi/A and8; = 8ilA 
convert this equation of motion to 

dA;ldt = Ii - 8i· 
The term proportional to fi feeds energy from the power source into the mode i, 
whereas the term proportional to 8i provides for dissipation: it gives the flow of 
energy back into the source (and sink) mode descri6ed by the variable a0• 

This power-supply term is required to have two main features. The first is that the 
coupling be nonlinear and lead to a very rapid buildup of the energy in a mode i if a 
certain critical value of that energy is reached. The energy will build up to a point 
where an equilibrium with dissipation is reached. The second feature is that the 
coupling should tend to divert, eventually, virtually all of the power flowing into this 
set of modes i into a single one of them. The rationale behind this second property is 
that the purpose of conscious thinking is to construct, as soon as possible, some single 
coordinated plan of action and to initiate it. Thus, at the classical level, the conscious 
brain process should produce one single plan, not several conflicting plans. Hence, 
the coupling should be such that it will lead fairly quickly, at the classical level, to a 
steady state where all of the available power is passing through just one of the 
oscillator modes i. At the quantum level, the upcoming thought belonging to this 
brain will be an event (i.e., a quantum jump) that actualizes such a state. In this state, 
one, and only one, of these modes i will be excited and, hence, there will be a clear 
distinction, at the level of the brain, between the various alternative possibilities 
among which the conscious thought will decide. Moreover, the selected mode will 
have the energy to initiate the chosen plan of action. 

Several points are worth emphasizing right away. The first is that the oscillator 
coordinates x; are collective coordinates: each one represents the amplitude of an 
entire organized pattern of activity, not just the position of an individual particle, nor 
even an individual neuron pulse. Each variable x; can be likened to the angle of 
rotation of a wheel or the displacement of the center of mass of a large pendulum. It 
is this whole pattern of activity that is the brain correlate of a possible thought, 
namely, the brain activity that can, at the quantum level, be actualized by the next 
thought. 

In the framework provided by classical physics, it is hard to understand how such 
an extended pattern of activity could be one single thought. The basic idea in 
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classical physics is to reduce things at the fundamental level to tiny localized objects 
or to localized values of fields: each extended thing is regarded as fundamentally an 
aggregate of tiny fundamental localized parts. However, a thought is, psychologically, 
one single unified entity. In the words of William James: "Your acquaintance with 
reality grows literally by buds or drops of perception. Intellectually and upon 
reflection you can divide these into components, but as immediately given, they come 
totally or not at all ."7 The point here is that a thought is, at the level of its ultimate 
essence, exactly what is given, namely, one single entity. However, it is represented in 
terms of the motions of billions of particles that are scattered all over the brain. In 
classical physics, an aggregation of localized interacting particles can certainly act as 
a whole, but it is nevertheless conceived to be an aggregation of localized parts: at the 
level of its ultimate essence, it is an aggregation. 

In quantum thinking, this "wholeness", or binding, problem vanishes: the quan
tum event is one single thing, which, however, can actualize an extended pattern of 
brain activity. Indeed, in quantum theory, a quantum event is allowed to actualize 
only a pattern that is sufficiently "macroscopic"; otherwise, the successful predictions 
of the theory will be lost. 

Note also that the quantum thought can be regarded as playing an essentially 
creative role: by choosing to actualize together patterns that have not previously 
occurred together, the thought creates a newly composed pattern of brain activity 
that is a new thought, or idea. In fact, every thought is in this sense a new invention, 
brought into being by the quantum event that is, or corresponds to, that thought 
itself. Of course, some thoughts are more radically inventive than others. 

Possible forms for/; andg; are 

f; = (CIA)(a 1a;) 2/ "4 (ajai)2 
J 

and 

g; = (DIA )a ;a;. 
with C and D being positive constants satisfying C » D. Then, the equation of 
motion reduces to 

dA;/dt = CA1/ "4 AJ - DAf. 
J 

Let the largest of the A; be A 1 > 1 . lfA 1 is not too large, then it will grow. Some 
other A;'s may also grow, but they cannot overtakeA 1• WhenA1 gets close to its upper 
limit at 

CA1/ � AJ = DAf, 
J 

all of the other A; with A; > 1 will be decreasing. Hence, A 1 will tend to its upper 
limit, whereas all of the other A;'s will tend to the neighborhood of zero. 

The emergence of this particular mode was, in this classical description, a 
consequence of the particular initial conditions: a different initial condition would 
have led, in general, to a different final state. Due to the initial uncertainties coming 
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from our lack of knowledge, arisirig perhaps from thermal fluctuations, our knowl
edge about the final state will be represented by a probability function, even though, 
in the classical framework, the actual final state will be fixed and definite. 

In the quantum generalization of this classical model, the quantum indetermi
nacy will lead to a quantum state that is roughiy a superposition of states ljl;, one for 
each of the alternative possible final states i occurring in the classical description. 
The state ljl; has one of the modes, mode i, highly excited and all the others unexcited. 
These different quantum states correspond to distinct and well-separated possibili
ties for the brain state and also to different classically describable perceptions of the 
self in its environment. A quantum jump will then occur: it will actualize one of these 
possibilities and eradicate all the others. 

REASONS FOR BELIEVING THAT THE MIND-BRAIN CONNECTION 
IS QUANTUM MECHANICAL 

The association of our thoughts with quantum jumps was postulated, above, in 
order to resolve the quantum measurement problem, that is, to provide a coherent 
conception of nature that parsimoniously accommodates the quantum character of 
the microworld. However, there is a long causal chain from the microscopic world of 
elementary particles to the macroscopic patterns of acilvity that correspond to our 
thoughts, and other ways of forming a coherent conception of nature might be 
entertained. There are, however, at least three reasons to favor the linkage of the 
mind-brain problem to quantum theory proposed here: 

( 1 ) the parallel dual structures of mind/matter and the quantum world; 
(2) the occurrence of consciousness where choices are needed; 
(3) the unity of thoughts, in contrast to the local reductionistic character of 

classical physics. 

As regards duality, it should be noted, first of all, that the proposed dualistiC 
quantum view of the mind/brain does not contradict the mind/brain identity theory. 
Thoughts are not only represented as aspects of the physicist's description of brain 
activity, but can reasonably be imagined to be aspects of brain activity. Indeed, with 
the classical image of the nature of physical systems eliminated, we are invited to 
form a new image of what brains are actually made of. Part of what they are made of 
would seem to be a sort of objective tendency for a thought to occur. However, the 
other part of what a brain is made of could be the actually occurring thoughts 
themselves. Indeed, how else can we make an aspect of brain activity "actual" other 
than by identifying it with something that is truly real, and thoughts (including 
feelings, etc.) are the only sorts of things that we know to be real . In a naturalistic 
scientific approach, one will want a thought to be an actual constituent of the physical 
system described by the physical theory, that is, by quantum theory, and not some 
mysterious disconnected thing that hovers around outside the physical system 
described by the physical theory. This line of argument leads one to identify the 
thought as the actual physical counterpart of the associated quantum-theoretic 
event. 

In the literature supporting the mind-brain identity theory, the usual position 
seems to be that mind-brain identity entails a monistic rather than dualistic ontology. 



STAPP: INTEGRATION OF MIND 831 

This bias evidently stems from the notion that the correct physical theory is classical 
physics. However, whereas the physical world of classical physics is monistic, the 
physical world as described by quantum theory is basically dualistic. It has two kinds 
of entities, operators and states, that evolve according to two different laws of motion 
(in the Heisenberg picture): one continuous and deterministic; the other abrupt and 
stochastic. It also has two types of beingness: that of potentiality, represented by the 
wave function; and that of factuality, fixed by the events. This dual character matches 
that of matter and thought: each mind/body has its own private subjective thoughts 
and also a tendency to produce images of its public or objective aspects in the 
thoughts, associated with other minds/bodies; that is, each mind/body has two 
different aspects-the private/subjective/mental aspect and the public/objective/ 
material aspect. This duality is not destroyed by admitting the identity of thoughts 
with certain dynamical aspects of the mind/brain system, if that dynamical system 
itself is essentially dualistic. 

As regards choice, it is a fact that thoughts occur when choices are apparently 
needed. However, in classical physics, there are no choices: everything is fixed at the 
birth of the universe. Hence, thoughts play no role in the unfolding of nature; they 
are superfluous. In the quantum theory of the mind/brain, our thoughts occur in 
conjunction with choices between bona fide alternatives. 

The issue of unity was discussed above. 

SUMMARY AND CONCLUSIONS 

Good science introduces no superfluous entities. Bohr followed this dictum: 
recognizing that the basic problem in the interpretation of quantum theory was the 
incompatibil ity of the formal quantum principles with the classical character of our 
experiences, Bohr made our classically describable experiences, and the knowledge 
derived from them, the basis of his interpretation. He interpreted the quantum 
formalism as a procedure acting on and within this knowledge, and thereby avoided 
the need to draw any line in the external world between its quantum and classical 
parts. 

The scope of Bohr's version of quantum theory was, however, limited by its 
exclusion of biological systems. Universalization of the quantum principles brings 
human beings and their brains into the quantum mechanically described system and 
this converts the problem of the interpretation of quantum theory to the problem of 
the dynamical connection of conscious process to brain process. As in Bohr's 
approach, there is no need to introduce into the external world any classicalization 
process or any exact classical variables. Such things are alien to the quantum 
principles and are superfluous: they have no empirical ramifications or, if they do 
have such ramifications, then these represent deviations from the "pure" quantum 
predictions. Of course, certain macroscopic variables have, due to their local 
interactions with the microscopic degrees of freedom of their environment, a strong 
tendency to become approximately classical in various ways, which can be specified, 
and this allows us to imagine that various "classical" macroscopic variables in the 
universe have reasonably well-defined values even if they are not being observed by 
anyone, and have never been observed by anyone. However, this approximate 



832 ANNALS NEW YORK ACADEMY OF SCIENCES 

effective classicalization of macrovariables is an automatic consequence of quantum 
theory, and there is no need within science to make it exact merely to satisfy our 
classical intuition. On the other hand, we do need to introduce quantum jumps at the 
level of our thoughts because the occurrences of these thoughts are, empirically, 
precisely the events that the quantum probabilities are the probabilities of. 

This formulation of quantum theory is a composite of elements coming from 
Bohr, Einstein, von Neumann, Wigner, Heisenberg, and James. In particular, it 
integrates: 

( 1 )  Bohr's recognition that physical sciel!ce rests on the empirical foundation of 
human thoughts that have classically describable content; 

(2) Einstein's demand that, to ensure sufficient scope, logical coherence, and an 
adequate foundation for future developments, our basic physical theory 
should describe something that at least could be reality itself; 

(3) von Neumann's demonstration that the quantum jumps can be placed 
exclusively at that level of brain activity where our thoughts enter; 

(4) Wigner's interactionist view that the quantum jumps occur at the brain-mind 
interface, and that mind and matter interact there; 

(5) Heisenberg's linkage of quantum process to the \dea that nature's process 
proceeds by deterministic continuous evollottion of potentialities, punctuated 
by abrupt actual events, where each actual - event constitutes a choice 
between the various possibilities generated by the prior deterministic evolu
tion; 

(6) James' emphasis on the wholeness of our thoughts and their close association 
with our choices. 

The cited parts of the ideas of the above-named physicists differ in important 
ways from the full ideas of these scientists: 

( 1 ) Bohr's own formulation of the idea that our classically describable knowl
edge is the foundation of physical theory was expressed in ways that 
emphasized the intersubjective agreement of the classically described as
pects of our experience. Hence it provided an intimation, though no explicit 
claim, that there may be classically describable properties existing outside of 
our thoughts, even though no such things are brought into Bohr's formula
tion of quantum theory. 

(2) Einstein's view that basic physical theory should describe "reality" referred, 
in fact, to a reality that did not include our thoughts. 

(3) Von Neumann's main point was the practical equivalence of various possible 
placements of the quantum/ classical divide. He did mention the special role 
of consciousness, but the significance of this remark was obscure. It was his 
close friend and colleague, Wigner, 3 who put the clear "mind-matter interac
tion" interpretation on von Neumann's words. 

(4) Wigner initially espoused this "interactionist" view, but later8 argued that 
quantum theory did not apply to the macroscopic systems (hence, to brains) 
because of the large effects of noise. However, the effects of noise on 
macroscopic variables are primarily to effectively decompose the pure quan
tum state into an approximate statistical mixture at the level of appropriate 
macrovariables. There is no reason to claim that the quantum principles, 
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viewed as the rules that govern our model of reality, must break down at the 
points where, due to decoherence effects, their empirical verification be
comes difficult in practice. 

(5) Heisenberg, although he used the concepts of potentia and actual events to 
describe reality, did not institute the tight connection proposed here between 
these "real" things and the quantum formalism: he continued to view the 
latter, in accordance with the Copenhagen interpretation, as a tool for 
making predictions about our observations. 

Thus, the approach to quantum theory being proposed here is not an amalgam
ation of the complete views of the above-named scientists. 
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Undecidability in mathematics comes in different varieties; so does undecidability in 
physics. In physics, we have to make sure that the theory is a suitable formal 
representation of the phenomenology. For example, if the outcome of an experiment 
cannot be predicted, does that mean that "God plays diCJ!"? Alternatively, does it 
mean that we are unable to compute a prediction, �although the causes are in 
principle known, or does it simply mean that there are causes, but these are unknown 
to us? These questions may never be fully settled, 1 but, since Godel's2•3 and Turing's4 
centennial findings, remarkable advances have been made in the formal perception 
of undecidability. In addition to this, today's computers not only serve as number 
crunchers, but are becoming a medium to "virtual" realities. This greatly promotes 
the interaction between theoretical computer sciences, formal logic, and the physics 
of "real" reality. 

Let us briefly consider the physical correspondents of two forms of mathematical 
undecidability, the first being associated with the assumption of the continuum 
(oracle computation) and the second arising in the context of finite computation. If 
one wishes to order theories with respect to the computational power necessary to 
implement them, continuum theories require more resources than theories based on 
universal computation (e.g., Cellular Automata5-7), which in turn are more powerful 
than finite models. 

Continuum theories require the generation, storage, and processing of numbers 
that are uncomputable in the sense of Turing. More precisely (and worse), "almost 
all" (with probability one) elements of the continuum "urn" must be represented by 
random sequences; stated pointedly, any bit in its binary expansion is as uncorrelated 
to the previous and the following bits as is any toss of a fair coin from other tosses.S.9 
In continuum theories, "God plays dice". In such theories, undecidability, as not 
caused otherwise, is implemented by absolute randomness. How come then, one may 
ask, that classical mechanics has been long considered as the prototype for a 
"deterministic" model? The reason for this is twofold: First, one may conjecture that 
it is possible to keep all the nice features of continuum mechanics (e.g., calculus) 
while getting rid of the nasty aspects (e.g., nonconstructive randomness) at the same 
time; indeed, there are indications that this might be possible. 10 Second, there are 
"nonchaotic" dynamical systems, in which arbitrary initial conditions yield solutions 
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that converge rapidly toward periodic behavior or at least converge toward a 
computable function (attractor) . 

Continuum theory (any dense set) allows the construction of "infinity machines", 
which could serve as oracles for the halting problem. Their construction closely 
follows Zeno's paradox of Achilles and the Tortoise (Hector) by squeezing the time it 
takes for successive steps of computation T with geometric progression: 

0 
I 

1 
I 

2 
I 

3 4 
I I 1 1  · · . , 

that is, the time necessary for the n-th step becomes T(n)  = Jen, k < 0. The limit of 
infinite computation is then reached in finite physical time: limN ...... I�= I T(n) = 
limN ...... I�= I Jen = 1 / ( 1  - k). It can be shown by a diagonalization argument that the 
application of such oracle subroutines would result in a paradox in classical physics 
(cf. p. 24 and p. 1 14 of reference 1 1 ). Therefore, at least in this example, too
powerful physical models (of computation) are inconsistent. 

A second type of undecidability that occurs in finite systems is computational 
complementarity, which is realizable already at a very elementary prediagonalization 
level, 12 that is, without the requirement of computational universality or its arith
metic equivalent. The resulting "static" automaton logic has great similarities to 
quantum logic. 1 1 • 13 

Our major concern here shall be a third type of undecidability. It will be 
demonstrated how diagonalization techniques lead to the exclusion of time para
doxes and how quantum physics implements causality. 

Classical information theory (e.g., see reference 14) is based on the bit as the 
fundamental atom. This classical bit, henceforth called cbit, is physically represented 
by one of two classical states. It is customary to use the symbols "O" and " l "  as the 
names of these states. The corresponding classical computational basis is !O, 1 }  = :Z2• 

In quantum information theory (cf. references 15-22), the most elementary unit 
of information, henceforth called qbit, may be physically represented by a coherent 
superposition of the two states that correspond to the symbols 0 and 1. The 
corresponding quantum computational basis is the undenumerable set 
I l a , b) I l a , b) = a  1 0) + b l  1 ), l a  1 2 + l b  1 2 = 1 ,  a,  b E I&' }. 

In what follows, we shall consider the hypothetical transmission of information 
backward in time. To be more specific, we shall use an EPR-type telegraph that uses 
entangled particles in a singlet state (i.e., the total angular momentum of the two 
particles is zero) as drawn in FIGURE 1 .  The apparatus is tuned to convey perfect 
correlations of the direction of angular momentum labeled by " + " and "-"; that is, 
the outcomes are either + + or - - . Perfect correlations can be achieved by choosing 
a relative angle of measurement of 'Tr. The (unphysical) assumption necessary for 
signaling backward in time is that on one side, say for particles in path 1 , the outcome 
can be controlled. This means that it will be possible to produce a particle with, say, 
direction of angular momentum "+" ("- ") in path 1 at tA , thereby transmitting a 
signal "+" ("-") via its perfectly correlated entangled partner in path 2 to a second 
observer back in time at ta; hence, tA > ta > t5, but otherwise arbitrary. 

An alternative setup for information transmission backward in time by an 
EPR-type quantum telegraph would use the stronger-than-classical correlations for 
relative measurement angles not equal to 0, 'Tl"/2, and 'Tr. In this case, the (unphysical) 
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FIGURE I. Scheme of backward-in-time signaling by an EPR-type telegraph. The postulated 
controllability of outcomes in 1, mediated via 2, is used to transmit information. The flow of 
information is indicated by the arrow. Symbols: "•" stands for the active mode, that is, 
control lable outcome (preparation); "O" stands for the passive mode, that is, measurement. 
The two signs are drawn on top and at bottom to indicate the orientation (relative angle 11') . 

assumption necessary for signaling backward in time is the parameter dependence on 
one side, say for particles in path 2, on the angle chosen for measurements on beam 1 
(e.g., by "cloning"; cf. references 23-27). 

Of course, this kind of outcome control or parameter dependence would not be 
allowed either in relativistic mechanics or in quantum mechanics. The stronger-than
classical quantum expectation functions are often considered manifestations of 
"nonlocality"28 (or, alternatively, of failure of classical probability theory29), but they 
only effect parameter dependence, not outcome dependence, of single events.30.31 

We shall make use of the EPR-type telegraph to construct a time paradox and to 
argue against outcome predictability and outcome controllability in any form. In a 
similar manner, the liar paradox32 was translated by Godel into arithmetic2 to argue 
against a complete description of a formal system within that very system.33 For 
instance, the Godelian sentence34 claiming its own unprovability in a particular 
system appears undecidable within that very system. In physical terms, undecidability 
must be translated onto the level of phenomena and, only in a secondary step, into 
their theoretic description. On the phenomenological level, there is no such thing as 
an inconsistent phenomenon. In a typical yes-no experiment that can have two 
possible outcomes, only one of these outcomes will actually be measured. However, 
this uniqueness of phenomenology does not guarantee that a theory exists that 
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predicts it completely. There might even be a "meta-physical" (extrinsic,35 exo-36) 
arena in which this particular outcome could be deterministically accounted for. Yet, 
for an intrinsic observer who is embedded in the system,37 this "meta-physical" level 
might be permanently inaccessible. 1 1.38 As will be shown below, quantum mechanics 
implements this phenomenological undecidability both by the postulate of random
ness of certain outcomes and by the superposition principle . Related arguments have 
been put forward in references 34 and 39-44. 

Consider two backward-in-time signaling EPR-type telegraphs of the above type 
arranged as drawn in FIGURE 2. Physically, the flow of information is mediated via 
the two entangled pairs in paths 1-2 and �. An information in 2 is mirrored by M in 
3. By this instrument, some mechanistic agent A (e.g., computer, deterministic 
observer) that is given the power of outcome control can exchange information with 
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FIGURE 2. Time paradox (see caption to FIGURE 1 and the text). 
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itself on closed timelike lines.45•46 Agent A shall be confronted with the following 
paradoxical task. Whenever A registers the information "+"  ("-") at time IA' • A 
must stimulate the opposite outcome "-" ("+") at the later time IA . 

Before discussing the paradox, let us consider the two states 1 0) a " - " and I I ) a 
"+" that are accessible to A .  These states can be the basis of a chit with the 
identification of the symbols "O" and "I"  for I 0) and I I ), respectively. Quantum 
mechanically, any coherent superposition of them is allowed. Agent A's paradoxical 
task can be formalized by a unitary evolution operator i> as follows: 

D I O) = 1 I ), i>� I ) = I O). (1) 

In the state basis ( 1 0), I I )} (T1 stands for the Pauli spin operator), i> is just equivalent 
to the NOT-gate, that is, - (0 1 ) 

D = T1 = I 0 = I I)(O I + I O)( I I . (2) 

The syntactic structure of the paradox closely resembles Cantor's diagonalization 
method, which has been applied by GOdel, Turing, and others for undecidability 
proofs in a recursion theoretic setup. 1 1•47-49 Therefor�. i> will be called the diagonal
izalion operator, despite the fact that its only nonvanishing components are off
diagonal. (Notice that A's task would be perfectly consistent if there were no "bit 
switch" and if thus b = J.) 

The paradoxical feature of the construction reveals itself in the following 
question: what happens to agentA? In particular, what doesA register and send? 

Let us first consider these questions from a classical perspective. Classically, the 
particles with which A operates can only be in one of two possible states, namely, in 
I 0) or in I I), corresponding to the classical computational basis :Z 2• By measuring the 
particle in beam 4, A gets either the outcome "+"  or "-". In both cases, agentA is 
led to a complete contradiction. 

If A receives "+", corresponding to chit state I, then A is obliged to send out 
"-", corresponding to chit state 0 (A has been assumed to be able to control the 
outcomes in beam I). Due to the perfect EPR correlations, the partner particle in 
beam 2 is registered as "-"  at the mirror at time Is. By controlling the outcome in 
beam 3, this mirrored chit can again be sent backward in time, where "-" is received 
by A via a measurement of the particle in beam 4. This, however, contradicts the 
initial assumption that the outcome in beam 4 is "+". 

On the other hand, if A receives "-", corresponding to chit state 0, then A is 
obliged to send out "+", corresponding to chit state I; yet, because at Is the chit is 
just reflected as described above, A should have received "+". Thus, classically, 
agentA is in an inescapable dilemma. 

The defense strategy in formal logic and classical recursion theory against such 
inconsistencies is to avoid the appearance of a paradox by claiming (stronger: 
requiring) overall consistency, resulting in no-go theorems, that is, in the postulate of 
the impossibility of any operational method, procedure, or device that would have 
the potentiality to cause a paradox. (Among the many impossible objects giving rise 
to paradoxes are such seemingly innocent devices as a "halting algorithm" comput
ing whether or not another arbitrary computable algorithm produces a particular 
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output or an algorithm identifying another arbitrary algori�hm by input-output 
experiments.) 

In the above case, the defense strategy would result in the postulate of the 
impossibility of any backward-in-time information flow or, more general, of closed 
timelike lines. Because the only nontrivial feature of the backward-in-time informa
tion flow has been outcome controllability or parameter dependence, the diagonaliza
tion argument can be used against outcome controllability and parameter depen
dence, resulting in an intrinsic randomness of the individual outcomes. 

Quantum mechanics implements exactly this kind of recursion theoretic argu
ment, yet in a form that is not common in recursion theory. Observe that the paradox 
is resolved when A is allowed a nonclassical qbit of information. In particular, agent 
A 's task can be consistently performed if it inputs a qbit corresponding to the fixed 
point state of D; that is, 

D I *) = I *). (3) 

The fixed point state I * ) is just the eigenstate of the diagonalization operator b with 
eigenvalue 1 . Notice that the eigenstates of b are 

(4) 

with the eigenvalues + 1 and - 1, respectively. Thus, the nonparadoxical, fixed point 
qbit in the basis of I O) and 1 1 ) is given by 

I *) = I I). (5) 

This qbit solution corresponds to the statement that it is impossible for the agent to 
control the outcome, a situation actually encountered in quantum mechanics.50 

We close this short discussion on the consistent use of paradoxes in physics with a 
few comments. First, it is important to recognize that the above considerations have 
no immediate bearing on quantum complementarity. We believe that complementar
ity is a general feature of the intrinsic perception of computer-generated universes, 
which is realizable already at a very elementary prediagonalization level, 1 1-13 that is, 
without the requirement of computational universality or its arithmetic equivalent. 

Second, the above argument remains valid for any conceivable (local or nonlo
cal29·5 1 ) hidden-variable theory. The consistency of the physical phenomenology 
requires that hidden variables remain inaccessible to an intrinsic observer. From an 
intrinsic, operational point of view, a paradox marks the appearance of uncertainty 
and uncontrollability. 

Third and last, an application for quantum information theory is the handling of 
inconsistent information in data hases. Hence, two contradicting cbits of information 
la )  and l b) are resolved by the qbit 1 1 /JZ, 1 /J2) = ( 1 /JZ)( l a ) + l b)). Throughout the 
rest of the computation, the coherence is maintained. After the processing, the result 
is obtained by a measurement. The processing of qbits requires an exponential space 
overhead on classical computers in cbit base.7 Thus, in order to remain tractable, the 
corresponding qbits should be implemented on truly quantum universal computers. 



840 ANNALS NEW YORK ACADEMY OF SCIENCES 

REFERENCES AND NOTES 

I .  FRANK, PH. 1932. Das Kausalgesetz und seine Grenzen. Springer-Verlag. Berlin. 
2. GODEL, K. 193 1 .  Monatsh. Math. Phys. 38: 173.  English translation in reference 3. 
3. GoDEL, K. 1986. Collected Works, Volume I, Publications 1929-1936. S. Feferman, J. W. 

Dawson, Jr., St. C. Kleene, G. H. Moore, R. M. Solovay & J. van Heijenoort, Eds. 
Oxford University Press. London/New York. 

4. TuRING, A. M. 1936/37. Proc. London Math. Soc. 42(2) :  230. 
5.  FREDKIN, E. 1982. Int. J. Theor. Phys. 21: 219; 1990. Physica D45: 254. 
6. TOFFOLI, T. & N. MARGOLUS. 1987. Cellular Automata Machines. MIT Press. Cambridge, 

Massachusetts. 
7. FEYNMAN, R. P. 1982. Int. J. Theor. Phys. 21: 4ll7. 
8. CHAITIN, G. J. 1982. Int. J. Theor. Phys. 21: 941 .  Reprinted in: CHAITIN, G. J. 1990. 

Information, Randomness, and Incompleteness. Second edition. World Scientific. 
Singapore. 

9. CALUDE, C. 1994. Information and Randomness-An Algorithmic Perspective. Springer
Verlag. Berlin/New York. 

10. BISHOP, E. & D. S. BRIDGES. 1985 .  Constructive Analysis. Springer-Verlag. Berlin/New 
York; BRIDGES, D. & R. RICHMAN. 1987. Varieties of Constructive Mathematics. 
Cambridge University Press. London/New York. 

1 1 .  Svoz1L, K. 1993. Randomness and Undecidability in Physics. World Scientific. Singapore. 
12. MOORE, E. F. 1956. Gedanken-experiments on sequential macJiines. /n Automata Studies. 

C. E. Shannon & J. McCarthy, Eds. Princeton Uni,iersity Press. Princeton, New Jersey. 
13. FINKELSTEIN, D. & s. R. FINKELSTEIN. 1983. Int. J. Theor. Phys. 22: 753. 
14. HAMMING, R. W. 1980. Coding and Information Theory. Second edition. Prentice-Hall. 

Englewood Cliffs, New Jersey. 
15 .  ALBERT, D. Z. 1983. Phys. Lett. 94A: 249. 
1 6. DEUTSCH, D. 1985. Proc. R. Soc. London Ser. A 400: 97. 
17. FEYNMAN , R. P. 1985. Opt. News 11 :  1 1 .  
18. PERES, A .  1985. Phys. Rev. A32: 3266. 
19. BENIOFF, P. 1986. Ann. N.Y. Acad. Sci. 480: 475.  
20. MARGOLUS, N. 1986. Ann. N.Y. Acad. Sci. 480: 487. 
21 .  DEUTSCH, D. 1989. Proc. R. Soc. London Ser. A 425: 73. 
22. DEUTSCH, D. & R. JOZSA. 1992. Proc. R. Soc. London Ser. A 439: 553. 
23. HERBERT, N. 1982. Found. Phys. 12: 1 171 .  
24. WOOTTERS, w. K. & W. H. ZUREK. 1982. Nature 299: 802. 
25. MILONNI, P. W. & M. L. HARDIES. 1982. Phys. Lett. 92A: 321 .  
26. MANDEL, L. 1983. Nature 304: 188. 
27. GLAUBER, R. J. 1986. Amplifiers, attenuators, and the quantum theory of measurement. 

In Frontiers in Quantum Optics. E. R. Pikes & S. Sarkar, Eds. Adam Hilger. Bristol. 
28. BELL, J. S. 1964. Physics 1: 195; 1987. Speakable and Unspeakable in Quantum Mechan

ics. Cambridge University Press. London/New York. 
29. PITOWSKY, I. 1989. Quantum Probability-Quantum Logic. Springer-Verlag. Berlin/New 

York. 
30. SHIMONY, A. 1984. Controllable and uncontrollable non-locality. In Proceedings of the 

International Symposium on Foundations of Quantum Mechanics. S. Kamefuchi et al. , 
Eds. Physical Society of Japan. Kyoto. 

31 .  SHIMONY, A. 1986. Events and processes in the quantum world. Jn Quantum Concepts in 
Space and Time. R. Penrose & C. I. Isham, Eds. Oxford University Press (Clarendon). 
London/New York. 

32. The Bible contains the following passage, which refers to Epimenides, a Cretan living in 
the capital city of Knossos: "One of themselves, a prophet of their own, said, 'Cretans 
are always liars, evil beasts, lazy gluttons' "-St. Paul, Epistle to Titus I ( 12-13) . For 
more details, see: ANDERSON, A. R. 1970. St. Paul's epistle to Titus. Jn The Paradox of 
the Liar. R. L. Martin, Ed. Yale University Press. New Haven. 

33. The following citation is taken from K. Godel's reply to a letter by A. W. Burks. Reprinted 
in: VON NEUMANN, J. 1966. Theory of Self-reproducing Automata. A. W. Burks, Ed.: 55. 



SVOZIL: PARADOXES 841 

University of Illinois Press. Urbana, Illinois (see also: FEFERM::"N, S. 1984. Philos. Nat. 
21: 546): " . . .  the fact that a complete epistemological description of a language A 
cannot be given in the same language A because the concept of truth of sentences of A 
cannot be defined in A. It is this theorem which is the true reason for the existence of 
undecidable propositions in the formal systems containing arithmetic." Nonetheless, it 
is possible for a system to contain its own "blueprint description" within itself. This 
"blueprint description" can be thought of as a string of symbols encoding an algorithm 
for a reconstruction of the original system. A. Shimony deserves acknowledgment for 
pointing to the importance of a distinction between a complete epistemological 
description and "statements of principle"; cf. SHIMONY, A. 1993. Search for a Naturalis
tic Worldview. Cambridge University Press. London/New York. 

34. POPPER, K. R. 1950. Br. J. Philos. Sci. 1:  1 17 & 1 73. 
35. Svoz11., K. 1986. Europhys. Lett. 2: 83; 1986. Nuovo Cimento 968: 1 27; also see chapter 6 

of reference 1 1 .  
36. Rossi.ER, 0 .  E .  1987. Endophysics. In Real Brains, Artificial Minds. J .  L. Casti & A. 

Karlquist, Eds. : 25. North-Holland. Amsterdam; 1992. Endophysics, Die Welt des 
inneren Beobachters. P. Weibel, Ed. Merwe Verlag. Berlin. 

37. TOFFOLI, T. 1978. The role of the observer in uniform systems. In Applied General 
Systems Research. G. Klir, Ed. Plenum. New York. 

38. The observer is situated, in 0. E. Rossler's dictum, in a "Cartesian prison"; cf. ATMAN
SPACHER, H. & G. DALENOORT, Eds. 1 994. Inside versus Outside, p. 1 56. Springer
Verlag. Berlin/New York. 

39. ROTHSTEIN, J. 1982. Int. J. Theor. Phys. 21: 327. 
40. PERES, A. 1985. Found. Phys. lS: 201 . 
4 1 .  WOLFRAM, ST. 1985. Phys. Rev. Lett. S4: 735; 1984. Physica DlO: 1; 1983. Rev. Mod. Phys. 

SS: 601 .  
42. MOORE, CH. D .  1990. Phys. Rev. Lett. 64 :  2354; cf. BENNETT, CH. 1990. Nature 346: 606. 
43. ELITZUR, A. c. 1992. Phys. Lett. Al67: 335; also see: POPESCU, s. & D. ROHRLICH. 1994. 

Found. Phys. 24: 379. These sources refer to a talk of Y. Aharonov delivered at the 
Einstein centennial. 

44. POSIEWNIK, A. 1993. On inconsistency of the language of physics. University of Gdansk 
preprint. 

45. GODEL, K. 1949. Rev. Mod. Phys. 21: 447; 1949. A remark about the relationship between 
relativity theory and idealistic philosophy. In Albert Einstein, Philosopher-Scientist. 
P. A. Schilpp, Ed.: 555. Tudor. New York. 

46. DEUTSCH, D. 1991 . Phys. Rev. 044: 3197. 
47. DAVIS, M. 1965. The Undecidable. Raven Press. New York. 
48. ROGERS, H. 1967. Theory of Recursive Functions and Effective Computability. McGraw

Hill. New York. 
49. ODIFREDDI, P. 1989. Classical Recursion Theory. North-Holland. Amsterdam. 
50. In an abstract form, the above argument is the analogon to the fixed point or paradoxical 

combinator in combinatory logic; cf. CURRY, H. B. & R. FEYS. 1958. Combinatory 
Logic, p. 151 & 1 78. North-Holland. Amsterdam; BARENDREGT, H. P. 1984. The 
Lambda Calculus (revised edition). North-Holland. Amsterdam. 

5 1 .  PITOWSKY, I .  1982. Phys. Rev. Lett. 48: 1299; 1983. Phys. Rev. 027: 23 16; MERMIN, N. D. 
1982. Phys. Rev. Lett. 49: 1214; MACDONALD, A. L. 1982. Phys. Rev. Lett. 49: 1215; 
PITOWSKY, I .  1982. Phys. Rev. Lett. 49: 1216. 



Pump-coupled Micromasersa 

PAL BOGAR, JANOS A. BERGOU, AND MARK HILLERY 
Department of Physics and Astronomy 

Hunter College of the City University of New York 
New York, New York 10021 

Two micromasers coupled in series by the common pumping atomic beam of 
two-level atoms are studied. Both lossless and lossy cavities are investigated at zero 
as well as at finite temperature. Quantum correlation between the fields builds up 
due to the two atomic paths that an atom can follow to reach the same final state, 
reminiscent of Young's double-slit experiment. 

Let us first assume no dissipation and consider the system by conditionally 
measuring the final state of the atoms emerging from the second micromaser. In the 
case of energy-preserving measurement schemes, when atoms are detected in the 
same final states as their initial ones, the steady state of the fields is an ensemble of 
distinct trapping number states. They correspond to Rabi angles of integer multiples 
of 'II' and are located under the envelope of the initial fields. Starting from uncorre
lated coherent states of the fields, the two micromasers are uncorrelated at steady 
state in this scheme. We can generate a transient entanglement of the two fields from 
initial coherent states via energy-transferring schemes when atoms are detected in 
final states different than their initial ones. Assuming initially excited atoms, correla
tion builds up due to the two possible atomic paths along which the atom can drop its 
photon in one or the other cavity. The photon number of the fields continuously 
increases until reaching a value where the measurement scheme becomes difficult to 
follow due to the small detection probabilities of the lower state of the atoms. This is 
a result of the so-called "single-" and "two-cavity" trapping effects. However, a 
combination of the two kinds of schemes can provide us with pure steady-state 
entanglement of the fields from initial coherent states by switching from an energy
transferring scheme to an energy-preserving scheme. The steady-state trapping 
number states produced by the latter scheme will be located in this case under the 
envelope of the correlated fields generated by the former scheme at the moment of 
the switching. In other words, the transient correlation produced by the energy
transferring scheme is frozen into a steady state by the trapping states of the 
energy-preserving scheme. An example illustrating this effect is depicted in FIGURE 
1 .  Arbitrary entanglement of the fields can be engineered using this method in the 
absence of losses by choosing the proper interaction parameters, gT, in the cavities (g, 
atom-field coupling constant; T, interaction time). . 

Starting from number states, IN, N), the system can be driven into trapping states 
of entangled fields of the form, IN, N  + M) ± I N +  M, N), without performing 
conditional measurements of the final atomic states. The procedure consists of two 
steps. First, we introduce some correlation by generating the above state of M = 1 
and then amplify it to a larger M corresponding to the trapping state above. Both 

0This work was supported by Grant No. N00014-92-J-1233 of the Office of Naval Research. 
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(a) (b) 

0.001 

FIGURE 1. Photon statistics of the fields: (a) at the 60th atom, starting from coherent fields of 
the average of 20 photons using an energy-transferring scheme at gT = 0. 176; (b) at the 200th 
atom, after starting from the field produced in part a using an energy-preserving scheme at gT = 
Tr/4. 

steps are based on conditions regarding the interaction parameters, g't ' and g't", of 
the two cavities. They ensure that the fields evolve along statistical mixtures of state 
vectors of the above form only. An inclusion of other quantum states or an 
asymmetrical amplification of the state vector (when g 't ' � g"t ") would result in a 
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FIGURE 2. Steady-state average photon numbers in the second cavity, (n2)coh and (n2);ncoh• and 
the correlation between the two micromaser fields, (11 12), as functions of the pumping param
eter, 11 = gT,/Fi;., depicted by the solid, dashed, and dotted lines, respectively. Here, Ne, = 20 
and the average number of thermal photons is lib = 0. 1 .  
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loss of purity and mixed quantum states of no correlation at steady state. According 
to our numerical results, the entanglement exhibiting the above form does not 
survive at steady state in the presence of dissipation, but it still can be produced in 
the short-time transient regime when the pumping, Nex = r/-y (r, injection rate of 
atoms; -y, cavity decay rate), exceeds a certain threshold established by the losses. 
Although finite temperature allows for other trapping states to contribute and at the 
same time enhances the decay of the correlation, it does not significantly affect the 
transient behavior. Our estimate suggests that these entangled trapping states are 
experimentally feasible by the presently available facilities. 

The steady-state behavior of the system in the presence of significant dissipations 
is shown in FIGURE 2, obtained from numerical simulations on computer. The 
average photon number of the second micromaser, (n2)coh (solid line), exhibits a 
second threshold below which the first-order correlation given by (n 1 2) = 

(14)((a 1al) + (ata2)) (dotted line) is positive and above which it is negative, corre
sponding to a switch in the locking of the relative phase of the fields from zero to 'II'. 
The correlation is small far above threshold. The reason for the second threshold is 
that, in the vicinity of this point, all atoms enter the second cavity in their lower state 
prepared by the first micromaser; that is, it is an incoherent effect. This is why it can 
also be found in the incoherent case, (n2);ncoh (dashed ljne), where the state of the 
atoms is measured between the cavities. Here, the loss of atomic coherence results in 
a loss of correlation between the fields due to the "which-path" information. Thus, 
(n2)coh significantly differs from (n2);ncoh in those regions where the correlation is 
large. It can be seen in FIGURE 2 that coherence contributes to the photon number of 
the second micromaser and, on the other hand, results in an interference effect 
between the two fields when superposed. 
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The quantum mechanics (QM) behavior of microscopic quantum states has been 
successfully established after about 70 years of experimental results obtained mainly 
in the field of elementary particle physics. However, problems concerning consis
tency of QM predictions with causality, relativity, and macroscopic behavior have 
been raised and discussed since the very beginning of QM. 

In the view of realizing experiments to detect the quantum behavior of macro
scopic coherent states, as investigated in several papers, 1-3 the quantum behavior of 
an rf-SQUID has been analyzed. This device, consisting of a superconducting loop 
interrupted by a Josephson junction, is described by a single macroscopic degree of 
freedom (the phase difference of the Cooper pairs across the junction) moving, 
under proper bias conditions, in a double-well potential. Each well corresponds to a 
definite macroscopic state, with a definite value of magnetic flux (say, <I>_ and <I>+) ·  In 

0This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN), Italy. 
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A 

FIGURE 1. Scheme of the experimental apparatus. 

principle, it is possible to perform an experiment to detect coherent tunneling 
oscillations from one well to the other, provided that we are able to fulfill all the 
experimental constraints necessary to get a coherent oscillation for a time interval of 
the order of a few microseconds. 

The scheme of the experiment is shown in FIGURE 1, where RF represents the 
rf-SQUID under study. To read the status of the rf-SQUID, a superconducting 
switch (SS) is used. This consists of an hysteretic de-SQUID that can either make a 
transition in the normal state or remain superconducting: depending on the sign of 
the circulating current in the rf-SQUID. A lineaf amplifier (A), in turn, reads the 
status of the switch. 

The experiment that we present here is a modification4•5 of the original one, 
discussed by Leggett and Tesche. Here, we want to present a very short description 
of the proposed measurements (see FIGURE 2). Suppose that the rf-SQUID has been 
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FIGURE 2. Quantum behavior of the probabilities to find the system in the plus or minus flux 
state. 
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prepared in the state <I>+ at t = t0 and is oscillating back and forth between <I>+ and <I>_ 
with frequency w.,. We want to perform the following flux measurements on the 
system: 

(A) Make a measurement at a generic time t* . Repeat the measurement for 
different times t *. The expected probability of finding the system in the state 
<I>+ is 

P+(t * )  = cos2[wT(t * - t0)] . 

This test should check the existence of the oscillations according to the QM 
formalism. If not observed, it would mean that QM predictions are violated 
at the macroscopic level 

(B) Make a measurement at a time t = TT/2 and another at t * � TT/2. If the 
measured P + (t * )  is equal to that found in the absence of the measurement at 
t = TT/2, the noninvasivity of the measurement (NIM) in the strict quantum 
definition is therefore proven. 

(C) Make a measurement (with the same technique used in part B to perform an 
NIM) at t = TT/8. Retain only the measurements where <l>ef = <I>+. Make a 
new measurement at t = TT/4 . If the system had a restart due to the first 
measurement, then one expects to find 

p+ (�T) = � • 

In contrast, the above probability should be 0 if no restart has taken place. 
The P = v.i result should then be evidence for the nonclassical behavior of 
our macroscopic system. 

The realization of such an ambitious experiment is related, of course, to the 
fulfillment of all the experimental constraints necessary to maintain the coherence of 
the oscillation. The major problem at the moment seems to be the correct interpreta
tion of the "quantum dissipation" that, in increasing the entropy of the system, 
should bring the oscillation from the coherent into the incoherent state. Work is in 
progress to evaluate the quantum dissipation associated with the rf-SQUID from 
both the experimental and theoretical point of view. 
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Bernstein, Greenberger, Horne, and Zeilinger (BGHZ) extended the results of the 
many-particle Greenberger-Horne-Zeilinger theorem back to a two-particle system. 1 
Unlike usual spin models, the BGHZ system uses spatial degrees of freedom in the 
form of a two-particle interferometer and identifies them as the elements of reality in 
Einsteinian sense. It was claimed that the restriction given by the spatial degree of 
freedom is powerful enough to provide a conclusive proof against the Einstein
Podolsky-Rosen-type local realism. 

However, the BGHZ theorem as it was presented (the theorem used the usual 
equal-arm interferometer such as the one devised by Rarity and Tapster2) was 
vulnerable to some classical models such as de Broglie's pilot wave that has 
succeeded in producing a double-slit interference pattern.3 The theorem would thus 
require an unequal-arm interferometer such as the one devised by Franson (see 
figure 1 of reference 4). In an unequal-arm experiment, although quantum theory 
predicts interference fringes due to the indistinguishability of two possible paths 
(i.e., either both photons take the shorter path or both photons take the longer path), 
any local realistic theory that tries to exploit the possibility of the interference 
between the two paths would violate the special relativity due to the path difference 
between the shorter path and the longer path. The other possibility that one photon 
takes a shorter path and the other takes a longer path is a distinguishable process and 
one can block this possibility by making the path difference long enough so that the 
coincidence of this type would violate the special relativity on which the local realism 
is based. 

In this revised version of the BGHZ experiment, one may establish Einsteinian 
elements of reality by placing very fast shutters at the openings and by measuring the 
time taken for a pair of photons to travel to the coincidence counters. If the photon 1 
is found to have taken the shorter path, we know that the photon 2 has also taken the 
shorter path, with certainty and without disturbing in any way the path of the 
particle. Similarly, the same thing holds for the longer paths. Therefore, this securely 
establishes the paths as elements of reality. 

The kind of separation of integral that occurs in local realistic theories in the 
proof of BGHZ was not possible in the spin model because each particle takes only 
one path. Because this separation of hidden variables by means of separation of 
paths imposes such a tremendous restriction on local realism, the loopholes that 
were exploited most by the advocates of the local realism can be effectively blocked. 
The proof goes through for a general case of an imperfectly correlated system with 
low counter efficiency. Local hidden-variable theories would produce one flat 
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straight line. This two-particle GHZ theorem, therefore, can be regarded as an 
altogether more powerful theorem than the other theorems that preceded it against 
local realism. 

The photon versions of the BGHZ gedankenexperiment may readily be imple
mented by a parametric downconversion of light technique. The experimental works 
done for Franson's model by Ou et al. 5  and Kwiat et a/. ,6 which were originally 
performed for the case of Bell's theorem, can be used to implement the two-particle 
GHZ theorem, with slight modifications.7 
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INTRODUCTION 

The Bell inequality now provides the key link in a chain of reasoning that is 
accepted by a majority of physicists as a proof that it is impossible to construct any 
theory consistent with experimental results that does not violate locality. A substan
tial minority of physicists, however, suspect that this impossibility proof is flawed, as 
was von Neumann's famous 1932 proof of the impossibility of constructing a more 
complete theory such as de Broglie's and Bohm's, consistent with the then-known 
experimental results. This minority included J. S. Bell himself, who refuted von 
Neumann's proof in 1966 and who often expressed his continuing interest in the de 
Broglie pilot-wave model. Bell presented his doubts in these words: 1 

Of the various impossibil ity proofs, only those concerned with local causality seem now 
to retain some significance . . . .  Let us hope that these analyses also may one day be 
illuminated, perhaps harshly, by some simple constructive model. However that may be, 
long may Louis de Broglie continue to inspire those who suspect that what is proved by 
impossibility proofs is lack of imagination. 

It is therefore appropriate to follow up new lines of attack, independent of the 
Bell inequality, to further exploit correlated microsystems in shedding light on the 
entwined issues of locality violation and the completeness and correctness of 
quantum theory. One such line of attack is provided by "which-path" experiments 
utilizing correlations. 

Von Neumann's treatment of correlated systems avoided predicting overt, di
rectly observable locality violations by requiring that the expectation value of an 
observable such as a phototube singles count rate, which refers to one subsystem 
alone, must be the same whether calculated from the generally nonfactorable 
representation of the composite system or for the subsystem alone.2 This require
ment forced von Neumann to postulate incoherent addition of amplitudes for paths 
from the same microscopic source that could be distinguished by observations on a 
correlated system. It is remarkable that von Neumann's 1932 textbook thus antici
pated some possible conflicts with local ity in dealing with correlated systems and 
built a resolution of these conflicts into the mathematical formalism of quantum 
theory. 
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ESSENTIAL FEATURES OF A DEFINITIVE "WHICH-PATH" EXPERIMENT 

Scully, Englert, and Walther3 have recently returned attention to the fact that the 
loss of coherence predicted by von Neumann's formalism is separate and additional 
to any uncertainty principle effects that may occur. For example, in the experiment of 
Scully et al. , when the initial maser cavity states do not have precisely known photon 
numbers, the final cavity states are then not strongly correlated with the two 
amplitudes for arrival of the atom and the ordinarily observed coherent addition is 
predicted. However, if the cavity is cooled to produce initial cavity states of zero 
photon number, the final states are perfectly correlated so that a one-photon final 
cavity state would indicate that the atom has passed through that cavity and the 
disappearance of interference is predicted. Scully et al. designate experiments like 
theirs that can demonstrate the presence of von Neumann's postulated loss of 
coherence due solely to correlations as "which-path" experiments. The unique and 
essential features of a definitive "which-path" experiment such as theirs are as 
follows: 

( 1 )  two amplitudes for the arrival of a single quantum via different paths from a 
single radiating source are put into strong correlation with orthogonal states 
of another system that can be experimentally distinguished; 

(2) the apparatus change (i.e., cooling a maser cavity or widening a slit traversed 
by an atomic beam) producing this strong correlation should have no other 
known physical influence on the coherence of the amplitudes. 

The prediction to be tested in a definitive experiment is that, because the correlation 
makes the paths distinguishable, for this reason only and without any other physical 
cause, the amplitudes will combine incoherently, no longer producing the interfer
ence previously observed when the correlations were weak or absent. 

PARAMETRIC DOWNCONVERSION EXPERIMENTS 

Recent work performed with pairs of correlated photons produced by parametric 
downconversion in laser-pumped crystals has found the postulate that amplitudes 
from distinguishable paths never interfere to be sufficient to explain the experimen
tal results without the mechanism of uncertainty principle effects. However, these 
important experiments do not bear strongly on the question of whether the postulate 
is necessary as well as sufficient and cannot be considered as definitive "which-path" 
experiments as defined here . 

A SIMPLE OPTICAL "WHICH-PATH" EXPERIMENT 

FIGURES 1 and 2 show the experimental setup and the optical geometry for a 
"which-path" experiment designed by the authors.4 The optical source volume is 
defined by the intersection of the atomic beam and laser beam and thus has a 
thickness equal to the slit width w, which determines the atomic beam dimension. A 
photomultiplier tube (fitted with a filter passing only the desired 0.6 164-micron 
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FIGURE I .  Experimental setup. 

radiation) receives both direct radiation coming upward from the source and also 
radiation that starts downward, but is reflected from an oscillating mirror at a small 
distance d below the lower slit edge. 

In contrast to Scully's "which-path" experiment, the experiment proposed here 
must l ive with an indirect uncertainty principle limitation. The width of the slit 
defining the atomic beam-and, with it, the important optical source dimension
must be comparable to the optical wavelength to obtain the small uncertainty in 
initial total momentum needed for significant localization. Thus, the near-optimum 
choice of width at the w = (Y.)A recurrence of fringe visibility results in classical and 
quantum fringe visibilities of 13% and 3.6%, respectively, compared to the values of 
100% and 0% expected by Scully et al. 

A detailed presentation of this experiment and the quantum mechanical and 
classical calculations of the interference term can be found in reference 4. 

For a one-quarter-wavelength slit, the initial atom momentum is poorly known 
because of diffraction of the atomic beam and the final state of the recoiling atom is 
not strongly correlated with the photon arrival amplitudes, so the ordinarily observed 
coherent addition is predicted. The resulting 64% interference term due to the 
coherent ampl itude addition then predicted by both classical electromagnetic theory 
and quantum mechanics would show up in a single one-hour run, at the projected 
signal and background rates, as a sinusoidal variation with time whose amplitude is 
24 times the standard deviation of the data points. Adjusting piezoelectric transduc-



ENGELKE & ENGELKE: "WHICH-PATH" 853 

ers to increase the slit width to five-quarters of the wavelength, the 13% interference 
term predicted by coherent amplitude addition would have an amplitude of about 18  
standard deviations, whereas the 3.6% interference term predicted by  the quantum 
calculation for the 98%-distinguishable paths would have an amplitude of 5 standard 
deviations. The two possible results of widening the slit to five-quarters of a 
wavelength are thus unambiguously recognizable in even a one-hour data run, once 
the adequacy of the experimental geometry has been demonstrated by the run at 
one-quarter wavelength. However, the achievement of adequate experimental geom
etry is expected to take several years of continuous effort. 

CONCLUSIONS 

In both experiments discussed, a change in the apparatus (cooling a maser cavity 
or widening a slit) varies only the initial state of the correlated system and has no 
known direct physical influence on the coherence of the amplitudes involved. It is 
precisely this fact that would make observations of the predicted reduced coherence 
following the apparatus change convincing evidence that distinguishability alone 
eliminates coherence. It should also be noted that the de Broglie concept of a 
particlelike photon, guided by an associated real wave, requires coherent addition of 
the real wave amplitudes emitted by a single source and would be disproved by the 
observation of reduced interference in such a definitive "which-path" experiment. 
On the other hand, such experiments test a hitherto unverified prediction introduced 
by von Neumann in what now appears to have been an only partially successful 

PHOTO-TUBE 

FIGURE 2. Optical path geometry. 
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attempt to impose the external -attributes of locality on a fundamentally nonlocal 
theory. 
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At each point in space, the wave function can take on a continuous range of values. 
In this work, the wave function is allowed to take discrete values only. This has 
important consequences, such as the possibility of giving a clearer interpretation of 
quantum mechanics. The technique used in these calculations is the principle of least 
action. The results for the free particle case reveal that the approach is sensible: the 
wave effects are limited to a smaller region around the particle; outside this region, 
no wave effect is present. A wave packet will not spread beyond certain limits. 

In real life, we cannot measure infinitesimal distances, times, or masses. It is 
possible to write theories that take into consideration this limitation, but a calcula
tion is simpler if we use continuous instead of discrete calculus. Whenever we use 
continuous calculus, we extrapolate our measuring abilities to unknown regions with 
the possibility of error. Today, computers can help us handle the difficulties of 
discrete calculus and our theories do not require continuity. 

In this work, the wave function is discrete or quantized. This approach does not 
discard the mathematical framework of quantum mechanics, but treats it as the 
continuous limit of a discrete theory. To calculate, I use the principle of least action. 1 

For the time-independent case with no magnetic field, only the real part of the wave 
function matters. The discrete action A in one dimension is 

(1) 

with constraint 

L 111; = constant. (2) 
n 

The wave function llln takes values proportional to 0, ± l ,  ±2, ±3, . . . . A minimum 
for the action represents a stable ground state configuration for the particle. For the 
free particle and the infinite square well potential, the term I(Vn - £)1112 is a 
constant and does not play any role in minimizing the action. Only the kinetic energy 
term need be considered. Thus, the action A will be a minimum when B = 

In(llln+ l - llln )2 is a minimum. For the free particle case, the minimum for B is found 
when all llln 's are equal to 1 (or - 1 )  in the largest connected region with the smallest 
boundary. Hence, the ground state wave function is a rectangle of height 1 and 
spatial extent 1. This is what we would expect if the wave function llln represented an 
actual particle. FIGURE 1 shows the case when the range a of an infinite square well 
potential is larger than 1. Notice that the ground state of the particle in the well is the 
same as the ground state of a free particle. In FIGURE 2, a is smaller than / and the 
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wavefunction 
of g round state 

! .. I --• / 
Li'I' = 1 

FIGURE l. When I is smaller than a, the ground state of a particle in an infinite square well 
potential is similar to the ground state of a free particle. 

, .  

wave function is compressed and should approach the -sine function of  the continu
ous case . 

The examples above show that the wave function for a free particle at the lowest 
energy level is zero in a large region of space and nonzero in a small connected 
region. The small nonzero region could be thought of as the region where the particle 
experiences wave effects. The large region would be the outside where no wave 
effects are present. Thus, the wave function of a macroscopic object will always be 
zero beyond a relatively small distance from that object and classical physics could 
describe its dynamics. 

d iscrete 
increments 
Li'I' 

� 

discrete 
space .1.x ! 

FIGURE 2. When I is greater than a, the particle wave function approaches the ground state of 
the continuous case. A smaller � will give a closer approximation. 
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The wave function corresponding to higher energies can also be obtained using 
the principle of least-action technique. For instance, the wave function for the free 
particle of nonzero momentum is the product of a constant amplitude, a rectangular 
box, times the phase ei2""'').· This wave function has the expected continuous limit. 

A discrete wave function also implies that, at a microscopic level, space and time 
are discrete too. Consider the kinetic term il.1)1/ !lX found in the Lagrangian. If the 
wave function changes in discrete steps (il.1)1), then the space interval !lX cannot be 
zero; otherwise, the ratio il.1)1/ !lX would be infinite. The discrete distances and times 
may be very small, on the order of Planck's length. Our concept of space and time 
may suffer another change. Quantum field theory presents many divergences at the 
short-distance scale. It is widely felt that the divergences are symptomatic of a 
chronic disorder in the small-distance behavior of the theory.2 Thus, a discrete space 
may be a very helpful concept in the study of quantum field theory. 
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In this report, the problem of neutron reflection from a medium with an oscillating 
potential is considered. The present report is closely related with previous work. 1 •2 

Let us consider the reflection of neutrons from a mirror located at x = 0 and 
characterized by a periodical variable potential, V(t) = U + u(t) .  Its constant part is 
just the optical potential, Uopt· It is natural to assume the time-dependent part of the 
potential, u(t) = u(t + T), to be determined by the magnetic interaction. 1  Because 
the left-hand half-space is free, the state of the reflected waves may be represented in 
the form,3 

\fl,(x, t) = L Cnei(k,,x-.,,,1), (1) 
n= -ac 

where 

Wn = w + n.n, kn = k(l + n-y) 1 12, 'Y = 0/w « 1 ,  (2) 

Therefore, the aim is to establish the form of the time-dependent amplitude, r(t). It 
is obvious that, in a low-frequency limit, it is possible to use the usual Fresnel 
formulas, which are deduced from the stationary continuity equation by a formal 
substitution in it, namely, the dependence on time. However, the quasi-stationary 
approximation is also valid in the nearby region x « 1 /k-y, x « l /k-y2 ['Y2 = hill 
I E  - V I ] . Consequently, we may use the quasi-stationary continuity equation for x = 
0 and the Fresnel formula will follow from it, even when we do not find the exact 
solution in the right-hand half-space. As a result, we have 

r(t) = 

,/E - JE - V(t) 

,/E + JE - V(t) 
if [E - V(t)] > 0 

JE - iJIE - V(t ) I 
if [E - V(t)] < 0 JE + iJIE - V(t) I 

(3) 

where E is the neutron energy. Naturally, the above arguments are also valid in the 
case of thermal or cold neutrons exhibiting grazing incidence on the mirror and not 
only the normal incidence upon the medium. In this case, the normal component, kl., 
and the quantity, Ep = h2k'1J2rn, must be respectively substituted for the wave 

0This work was partially supported by the International Science Foundation (Grant No. 
RFH OOO). 
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flGURE 1. Quantum reflection. 

number, k, and the energy, E, in all the above expressions. Thus, the reflection results 
in a set of reflected waves with differing normal wave number components: 

kin = ki [ I + n(:�))
1 '
2
, (4) 

where k i corresponds to the wave number of the incident wave. 
Because the longitudinal component of the wave vector is not changing when a 

reflection occurs, the reflected waves corresponding to various satellites will exhibit 
different reflection angles and energies. The picture that arises can be illustrated by 
FIGURE 1 . 

It seems extremely similar to the diffraction on a plane grating. This similarity, 
however, is purely superficial. In the case considered, the adjoined variables of the 
Fourier transformation are the time and frequency (and, consequently, energy), but 
not the coordinates and wave numbers. We shall term this phenomenon as "quantum 
multiray reflection". 

1 .20 
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flGURE 2. The intensities of reflected waves. A typical value of Uop• = 150 ne V is assumed for 
the optical potential. 
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The actual form of the dependent u(t)-and, consequently, r(t)-is determined 
by the experimental conditions. For simplifying the calculations, we shall deal with 
the case of a ferromagnetic mirror magnetized up to saturation and assume the 
orientation of magnetization to change after a time T/2. Then, the quantity r(t) is 
constant during a semiperiod and the calculation of the Fourier coefficients, Cm in 
equation 1 becomes trivial. 

The intensities of reflected waves of the zeroth (specular reflection) and first 
orders are plotted in FIGURE 2 versus the normal component of the incident neutron 
velocity. The angular distribution of reflected waves is given by equation 4. 

Experimental observation of a new quantum effect, such as, for instance, the 
multiray reflection considered above, is evidently of great interest for its own virtue. 
A simple estimation shows that an experiment on the demonstration of neutron 
multiray reflection is quite within the range of resolutions exhibited by ordinary 
reflectometers. 

One may try, however, to foresee the possible applications of the said effect. Note 
that the time-dependence may be related not only to the remagnetization of the 
material of the mirror, but also to rapid changes of the spin orientation . 

Moreover, we note that quantum reflection results in coherent separation of the 
beams. In essence, this gives rise to the possibility of creating a neutron interferom
eter based on a new principle. The arrangement ofthis_device may be quite similar to 
that of an interferometer based on diffraction gratings4 or on reflection from a 
vibrating surface.s 

Quantum reflection may turn out to be useful for the development of new 
techniques for magnetic studies in neutron reflectometry. 
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Quantum decay refers to the description of the time evolution of an initially confined 
arbitrary state, l!i(r, t = 0). Consider a single-channel problem characterized by a 
potential of arbitrary shape V(r) that vanishes after a distance; that is, V(r) = 0 for 
r > R. One may solve the corresponding time-dependent Schrodinger equation in 
the radial variable r for s-waves as an initial value problem. The solution l!i(r, t )  at 
time t may be written in terms of the retarded time-dependent Green's function 
g(r, r' ; t) as 

l!i(r, t) = LR g(r, r' ; t )l!i(r ' , O)dr ' .  ( 1 ) 

Two notions that have been proposed to describe the time evolution of decay are 
the survival probability S(t ) of the initial state at a time t after the start of the process 
and the nonescape probability P(t) to find the particle still confined at time t. The 
survival probability is defined as 

S(t) = I LR ili*(r, O)i!i(r, t)dr 1 2 
and, similarly, the nonescape probability reads 

P(t) = LR ili*(r, t )i!i(r, t )dr. 

(2) 

(3) 

One sees that the relevant quantity to describe the above notions is g(r, r'; t) .  A 
convenient way to determine it is by a Laplace transform into the complex momen
tum k-plane to exploit the analytical properties of the corresponding outgoing 
Green's function G +(r, r ' ; k): 

g(r, r' ; t )  = (2�) fc0 G +(r, r ' ;  k)e-ik212kdk, (4) 

where C0 represents a hyperbolic contour along the first quadrant on the k-plane. 1 
Because V(r) = 0 for r > R, G+(r, r ' ; k) may be extended analytically to the whole 
complex k-plane where it has an infinite number of complex poles distributed in a 
well-known manner.2 Moreover, it may be proved that3 

(r, r ' ) < R. (5) 
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The validity of equation 5 is based on the proof that G+(r, r ' ;  k) --+ 0 as lk I -+ oc along 
all directions of the complex k-plane, provided (r, r ' )  < R.4 This implies that the 
contour C0 in equation 4 may be deformed along the real k-axis. Then, using equation 
5 into equation 4 leads to an expansion over the full set of resonant states that may be 
written as4 

g(r, r ' ; t) = � un(r)un(r ' )M(km t), (r, r') < R, (6) 
n=-OCI 

where the functions M(km t) are defined as4 • 

M(km t) = (2�) L: (::k:Jdk = (�)e"
2
erfc(u), (7) 

with u = -exp[(-i'1T/4)knt 1 12] .  One may use the symmetry relation, M(kp , t) = e-ik1 -
M( -kp , t), with kp being a complex pole on the fourth quadrant, to exhibit the 
exponential and nonexponential contributions to equation 5. 

Equation 6 may be used to obtain resonant expansions of both the survival S(t) 
and the nonescape P(t) probabilities and to study their co1-responding nonexponen
tial contributions involving the full resonant spectra. For example, it may be proved 
that at long times S(t) behaves according to the well-mown result - r3, whereas, 
surprisingly, P(t) - r i .s 
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INTRODUCTION 

This report presents the fact that the standard quantum limit (SQL) in the 
statistical decision problem can be broken by a class of Schrodinger cat states (SC 
states). Here, the SQL in the decision problem is defined as the minimum error 
probability based on the projection valued measure (PVM) of the observable as the 
signal. The problem of finding the best quantum measurement process in order to 
distinguish the quantum states is called the quantum decision theory. Then, this 
theory predicts a possibility of overcoming the SQL. However, it is not clear what it 
means in the physical sense. 

We showed that there does not exist a distinction between classical and quantum 
probability when studying the SQL. 1 In the decision based on classical probability, if 
one wishes to break the limit, one must predict signals before observation. As a 
result, to break the SQL requires a noncausal process in the sense of information 
theory. If the SQL is broken, this is by a special feature of the quantum probability. 

In this work, it is shown that a quantum interference effect provides an interpre
tation to break the SQL. Then, it is demonstrated that a class of SC states, being a 
representative example of such a quantum interference, may provide a performance 
over the SQL. 

According to the quantum decision theory, 1 the best decision operator cannot be 
constructed by the PVM of the signal observable. On the other hand, the SQL is 
achieved by the following decision operator, which is called the standard decision 
operator: 

( 1 )  

where f (xd) i s  Wald's decision function and Ix) i s  the eigenstate o f  the signal 
observable, respectively. The generalized decision operator by which the SQL may 
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FIGURE 1. Schematic diagram of the received quantum state control system. U produces the 
Schrodinger cat state. 

be broken can be constructed by a certain evolution operator1 as follows: 

rrr = utrrp. (2) 
As an example, U = exp[ig(n)] = I;=oKn l n )(n I and g(n) is a function of the number 
operator. In this form, the problem is to find an evolution operator that provides 
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FIGURE 2. Numerical examples of system performance in quantum decision-( a) normalized 
error probabilit ies with respect to the phase shift of the cat state for a homodyne system: P, = 
P,/P.(SQL); (b) property of the normalized inner product of the Schrodinger cat state with 
respect to the average photon number for the quantum optimum receiver: Kou• = (Kou.IK;n)· 
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below the SQL. The criterion of the decision problem becomes as follows: 

-T,1>2Ilf = L"'..t <xd) I� K!Ji*(x, n)(�} -( l /2) 1 a;n l 2 r dx 

< f."'.J(xd) I �  h* (x, n)( al',. )e-< 1 12J la;,, 1 2 1 2 dx = SQL, (3) 
n=O .Jni, 

where h(x, n) = <t in) . Thus, we can see that a quantum interference effect must be 
generated by an effect of Kn if one wishes to overcome the SQL. 

ROLE OF THE SCHRODINGER CAT STATE 

We have shown by numerical analysis that the SQL can be broken by the 
evolution of the coherent state in a Kerr medium based on equation 3. 2 Here, we give 
an explicit example that the SQL is also broken by the SC state as a result of certain 
evolution . The SC state as discussed by Yurke and Stoler3 gives a typical example of 
the quantum interference phenomenon. This is related with our problem because it 
is generated by the anharmonic oscillation interaction and the interference occurs 
when we employ the homodyne process as the quantum measurement. Thus, it is 
easy to understand that this class is one of the candidates for satisfying equation 3. In 
general , the SC state is represented by I "1)sh = I�:;� Cm I am) .  This is an eigenstate of 
aN for all values of Cm, which can be generated by unitary or nonunitary evolution 
from the coherent state . In many cases, the SQL is broken and the Helstrom bound 
given by the inner product of signal states4 is also broken because the inner product 
may be reduced. Examples are shown in FIGURES 1 and 2. Hence, the received 
quantum state control4 may be realizable. Thus, it has been shown in this work that 
the breaking of the SQL may be related with the quantum interference effect in the 
quantum measurement process. 
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There has recently been renewed interest in David Bohm's 40-year-old alternative 
interpretation of quantum mechanics. 1 A key concept is Bohm's nonlocal "quantum 
potential" Q, which arises directly from the Schrodinger equation when the wave 
function is expressed in polar form ("1 = ReiSlh) .  We present here a simple applica
tion of Q to a gedankenexperiment proposed by J-M. Uvy-LeBlond2 and further 
developed by M. Razavy.3 

Uvy-LeBlond imagines a particle sent through a tube with square cross section 
of side a and length L and finds via energy conservation that its momentum in the 
tube will be reduced by an amount llp = -rr2h2/pa �, When' the particle exits the tube, 
its momentum will return to the original value; however, the particle's wave function 
will have undergone a phase shift Lllp, which is in principle measurable by tech
niques such as neutron interferometry. 

Razavy gives a detailed analysis of a particle propagating through a constriction 
and shows that a spatial boundary in one of the (separable) coordinates gives rise to a 
nonlocal potential in the wave equation of the other coordinate. He interprets this 
effect as the result of what he terms a "fictitious force law" proportional to h2• As it 
turns out, if one simply applies Bohm's Q definition to either of these problems, one 
obtains exactly the same nonlocal effect discussed by both authors. 

and 

For the Uvy-LeBlond case, we have the two wave functions, 

"1r oc eipz/h 

.1. • 1lX • '11)' . •  lh .., oc sm - sm - elf' z , 1 a a 

for the free particle and the particle in the tube, respectively. Then, Q in the tube is 
calculated from the definition (see reference 1 )  Q = (-h2/2m)(V2R/R) : 

-rr2h2 
Q = -

ma2 · 

This represents a nonlocal, but physically real potential, and we can calculate the 
particle's momentum in the tube as in the usual method for a step potential: [ 2-rr2h2] 1 /2 -rr2h2 

p' = [2m(E _ Q)) 1 12 = p2 _ -- ,,,,_ p _ - . 

a2 pa2 

Thus, we obtain the same llp and the same phase shift obtained by Uvy-LeBlond. 
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From an historical standpoint, it is striking that these two authors discovered an 
interesting nonlocal effect, but did not recognize it as att-ributable to Bohm's 
quantum potential, although Bohm had explicitly predicted just this kind of effect in 
his original papers. 1  This perhaps points up how neglected Bohm's approach has 
been over the past four decades. 
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INTRODUCTION 

. .  
Two basic values characterize a phase-invariant amplifier: the amplification 

coefficient G = (,A.)/ (a) and the noise D = (,A.tA) - (,A.t)(,A.). Here, we focus on a single 
field mode; a and A denote the field before and after amplification. We take 
expectation values in a coherent initial state I a). For a linear quantum amplifier, G is 
a constant and the minimal noise is known:1-3 D � I G 12 - 1 for I G I  � 1. Here, we 
derive lower limits for a nonlinear amplifier, in which G depends on x = a*a (but not 
on the phase of a). 

Mode operators before and after amplification are related by a unitary transfor
mation, A = utaU. To produce amplification, U must depend on the amplifier 
degrees of freedom as well as on a and at. The simplest U is U = e-iHt, with H = 
iatbt - iab; it defines a linear amplifier. (The amplifier degree of freedom obeys 
[b, bt) = 1; t is real. )  We findA = a cosh t + bt sinh t; for an amplifier prepared in the 
ground state, G = cosh t; the noise D = sinh2t saturates the bound I G 12 - 1. For 
nonlinear amplifiers, we have the following theorem: 

THEOREM: Let D = {alAtA la) - {a l  utAtU la)(a I utAU la) and 

"' xn+ I I dn 12 
E(x) = L -, -n G(x) , 

n= I n .  dx 

Then D � E(x) and D � F(x) . 

"' xn- 1 l dn 12 
F(x) = L -1 tJxn [xG(x)] - 1 .  

n= I n .  
( 1 )  

The proof i s  given in reference 4 .  I f  G i s  constant, then F(x) reduces to  the l inear 
bound I G l2 - 1 .  

0This work was supported by the SNI o f  Mexico (to D .  Kouznetsov) and the Ticho Fund (to 
D. Rohrlich). 
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EXAMPLES 

A class of amplifiers that do real ize the bound F have a linear amplification 
followed by a nonlinear refraction: A = ei1H[G0a + ( 1 Go l2 - l ) 1 '2bt]e-itH, where H 
depends only on ata .  For H = ata (ata - 1 ) /2, we have G(x) = G0 exp(-qx) and 
D = 1 Go l2[ 1 + x - x  exp(- l q l2x)] - 1 , where q = 1 - e-i1• The amplifier real izes the 
lower bound F(x) = D, whereas E(x) = D - 1 + 1 Go l2• Here, the linear bound 
D � I G(x) 12 - 1 also holds. It is broken in the next example:  the resonant interaction 
of N identical two-level atoms with a single-mode field can be described5 by the 
Hamiltonian H = iabt - iatb, where b = l':�= I bk > b,,bi = (1 - 8ik)b/Jt, bjpi = bpl for 
j � k, and bjpk + b,Pl = 1. (Note that bl is the operator for exciting the k-th atom.) 
Let all the atoms be initially excited and let U = exp( -iHt) . For N = 10, we compute 
the evolution of G and D numerically, at input intensity x = 1. FIGURE 1 represents 

1 2 3 4 5 
FIGURE 1. The noise D versus I G 1 2 for the Cummings-Tavis amplifier with N = IO atoms at 
x = 1 and 0 :S t :s: 10. 

D, versus I G, 12• The noise D, oscillates while G, has "revivals", and D � I G 12 - 1 is 
valid only at small t (for I G, 12 � 2) and is then violated. FIGURE 2 shows all the 
bounds versus I G(x) 12, for t = 0.5 and 0 s: x s: 20. The nonlinear amplifier beats the 
linear l imit, whereas the lower l imits of the theorem hold. 

CONCLUSIONS 

We have obtained lower bounds (equation 1) on the irreducible noise of a 
nonlinear, phase-preserving quantum amplifier, in terms of the ampl ification factor 
G and its derivatives. For G constant, the bound F reproduces the l inear bound. For 
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Do.s(x) , Eo.s (x) , Fo.s (x) 

41--+--!--+--+-----lf-----+---+--+--+-�--.r 
31------+----+----+--i------+---+--�l'-h'�:..+-'I ---I �� 

--'-JZ---. -::-,,;" -;F.. 
1 2 3 4 I Go.s (x) l 2 

FIGURE 2. The noise D (solid cuive) and lower bounds E (dashed cuive) and F (dotted cuive) 
versus I G 1 2  for the Cummings-Tavis amplifier with N = 1 O·atom� at t = 0.5 and 0 :s: x :s: 20. 

G not constant, the noise can undercut the linear bound, as examples confirm. 
However, we have not determined in general which functions G(x) correspond to 
nonlinear amplifiers. 
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Here, we present an attempt to interpret the quantum theory of symmetries as the 
cornerstone of quantum dynamics. 1 This program of "direct quantization through 
the symmetry" is conceivable (at least) because Lie groups can be "quantized", quite 
generally, by means of well-defined geometric methods. We refer to this generalized 
approach to quantization as non-Abelian quantum kinematics. The important point 
to remark is that the standard quantization procedure can be enlarged as a purely 
group-theoretic procedure. We next present this procedure in a rather sketchy 
manner. 

Within the rigged Hilbert space K(G) that carries both (left and right) regular 
representations of a Lie group G, we introduce a set of commuting generalized 
position operators Q0, which have the parameters for spectra. After some standard 
manipulations, we obtain 

( 1 )  

These are the generalized Heisenberg commutation relations obeyed by the general
ized position operators and the generalized non-Abelian momenta represented by 
the generators. Such a result is of potential interest for physics. In this fashion, a new 
set of invariant operators appear as linear combinations of the generators, whose 
coefficients are functions of the generalized position operators. In fact, in the left 
regular representation (for instance), the invariant Hermitian operators are given 
by2 

(2) 

for it can be shown that Ul(q)R0(Q; L)Ui(q) = R0(Q; L). (A:(q) denotes the matrix 
of the adjoint representation .] As a matter of fact, these operators are the generators 
of the right regular representation, acting as invariant operators within the left 
regular representation of G. 

Now, any reasonable physical interpretation of a quantum kinematic model of a 
Lie group G must be based on the following postulate: The only allowable physical 
states of a system, having G as symmetry group, correspond to simultaneous 
eigenkets in K(G) of a maximal set of compatible quantum-kinematic Hermitian 
invariant operators of G. Indeed, every maximal set of compatible invariant opera
tors yields a set of superselection rules, by means of which the incoherent Hilbert 
space K(G) can be "diagonalized" into invariant subspaces, each carrying a physical 
model of a G-invariant system. On the other hand, concerning the permanent 
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properties characterizing the system, one also considers the following second heuris
tic postulate: The eigenvalues of the operators pertaining to the superselection rules 
correspond to permanent intrinsic physical properties characterizing the system. 
These postulates enhance some features of the right regular representation with the 
character of an isotopic structure, describing the internal nature of a system, within 
the left regular representation of the group used as the working frame. 

Next, one builds a quantum model of the system over its configuration space X 
that preserves all the symmetry transformations x' = f(x; q) ofX described by G; that 
is, we find kets Ix) E 2( G) that are in one-to-one correspondence with the pointsx E 
X and that transform under the action of G in a covariant manner: UL(q) Ix) = 
I/ (x; q)). Such kets carry a configuration representation of G on X. They have the 
general form, 

(3) 

where the generating function E(x) is arbitrary. Accordingly, one then solves the 
simultaneous eigenvalue problem for a maximal set of compatible invariant opera
tors S .. (R ) . Thus, one searches for generating functions E such that they satisfy a 
system of coupled eigenvalue wave equations of the form, 

(4) 

for each compatible superselection rule (a = 1, . . . , s). These are generalized 
Schrodinger wave equations in configuration space-time. Once the physical configu
ration kets of a model have been found, one calculates the transition amplitudes, 

<x2; Ec2>; E lx1 ;  e(l ) ;  E) = J dµL(q)E[/(x2; q); Ec2>1E* [/(x1 ; q); e( 1 )], (5) 

for finding the system at configuration event x2 given its configuration at x1 • This 
invariant integral corresponds to the propagator kernel associated with the system of 
generalized Schrodinger equations.3 Thus, concerning the general mathematical 
traits of the formalism, we deem it as already complete. As it stands, however, 
quantum kinematics is a general framework rather than a specific physical theory. 
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It is a well-known fact that, in general, values cannot be ascribed to quantum 
mechanical observables independent of the measurement context. 1 In entangled 
systems, contextuality gives rise to the astonishing property that we cannot think of 
the results of measurements on one subsystem as being specified independent of the 
parameters of the measurements on the other subsystems. Although the different 
measurements can be spacelike separated, the results of each measurement depend 
on the complete experimental context of the whole system. An interesting conse
quence of this fact is that even entanglement itself can be an entangled property, 
which will be discussed in the following. 

Let us consider a three-particle system described by the GHZ state2.3 proposed 
by Mermin:4 l 'I') = (�)( lz+ ) l z+ ) l z+ ) + lz- ) l z-) l z-)) . ( 1 )  

The three spin-Yi particles are emitted by a common source into distinct directions. 
By adequately oriented Stern-Gerlach magnets, spin measurements along arbitrary 
directions are performed in spacelike separated regions by three observers. The 
three directions e i .  e2, and e3 are denoted by the spherical coordinates (a1 , <P 1), 
( a2, 'P2), and ( -1)3, 'PJ). For the results of the measurements on particles 1 and 2, the 
correlation function (expectation value of the product of the results) is given by 
£12(-1)1 , -1)2) = cos (-1)1) cos (-1)2) .  This function does not violate Bell's inequality 
because it is factorized with respect to the parameters -1)1 and a2• Therefore, here, the 
results of observers 1 and 2 are always correlated in a classical way. This implies that 
we can think of a hidden local-realistic arena that accounts for the measured results. 
Nevertheless, as we will show, this interpretation is inconsistent with possible further 
observations. 

Let us now turn to observer 3. Independent of observers 1 and 2, he/she decides 
to measure the spin of particle 3 along some direction e3• With probability Yi, he/she 
gets the result + 1 and - 1 ,  respectively. His/her results can be used to separate the 
results of observers 1 and 2 into two subensembles. Whenever the result + 1 ( - 1 ) 
occurs in a spin measurement of particle 3, the corresponding particles 1 and 2 are 
assigned to subensemble + ( -) (cf. FIGURE 1 ) . 

0This work has been supported by the Austrian FWF under Grant Nos. S6502 and 
P-8781 -PHY and by the NSF under Grant No. PHY92- 13964. 
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FIGURE I. After a spin measurement on particle 3 along the z-direct ion, the results of 
observers I and 2 are separated into subensembles + and - . The data within each subensemble 
are maximally random and do not contradict local-realism. 

We now consider the special case that obseivers 1 and 2 perform spin measure
ments within the x-y plane (t>1 = t>2 = -rr/2). Then, £12 = 0, which means that the 
results of obseivers 1 and 2 are maximally random. If we now separate these data into 
two subensembles by using the results of obseiver 3, we get the correlation function 
Et2 (£12) for subensemble + ( - ) : 

(2) 
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In the following, these functions are discussed for two specific measurement direc
tions e3 ( -33, qi3) . In particular, we investigate if the correlation functions Ef2( qi 1 ,  qi2) 
(equation 2) violate Bell's inequality:5 

' l  

1 
' l  

1 
1 

' l  

' l  

-2 � Ef2(� , 0) + Ef2(� , �) + Ef2(3: , 0 ) - Ef2(3: , �) � 2. (3) 

' l  
1 

' l  
l 

' l  

1 

1 
' l  
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FIGURE 2. After a spin measurement on particle 3 along the negative y-axis, the results of 
observers 1 and 2 are separated into subensembles + and - . For specific directions e1 and e1, 
the data within each subensemble are perfectly (anti-)correlated. The corre lation function 
(equation 2) violates Bell's inequality by the maximum amount (2.fi.) permitted by quantum 
mechanics. This implies that a local·realistic interpretation of the classically correlated results 
of observers 1 and 2 is not consistent in this case. Particles 1 and 2 have to be considered as 
entangled for certain measurement directions h 
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In the case that observer 3 measures along the z-direction ( {)3 = 0) (cf. FIGURE 1 ), 
there is no violation of Bell's inequality (equation 3) because Ei2 = E!2 = 0. Hence, 
the assumption that the results of observers 1 and 2 are local-real istic is confirmed. 

In contrast, we now consider the case that observer 3 measures along the negative 
y-axis ({)3 = Tr/2, <p3 = 3Tr/2) (cf. FIGURE 2) for the same measurements on particles 
1 and 2. Then, inequality 3 is violated by the maximum amount (2/i.) permitted by 
quantum mechanics. Therefore, in this case, the results of observers 1 and 2 cannot 
be understood in a local realistic way. It  can be shown that, for general direc
tions e., e2, and e3, a separation into nonlocal subensembles occurs as soon as 
sin ({)1) sin ({)2) sin ({)3) > 1 //i.. With {)1 = .{)2 = Tr/2, this inequality simplifies to 
sin {)3 > 1 //i. or Tr/4 < {)3 < 3Tr/4. 

In spite of the fact that the data of observers 1 and 2 are correlated classically, 
this demonstrates that a local-realistic interpretation is not always consistent with 
further observations. For certain measurement directions e3, particles 1 and 2 have to 
be considered as entangled. Clearly, as shown explicitly by Popescu and Rohrlich,6 
such directions exist for any entangled n-particle state (n :<!: 3). Therefore, we 
conclude that in this case the interpretation itself is a contextual property and thus 
cannot be given consistently without taking into account the whole experimental 
situation . 

. .  
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Since the first experiments of Chambers• and Bayh2 on the (magnetic) Aharonov
Bohm (A-B)3 phase shift, a number of experiments with electrons, neutrons, and 
atoms have been performed that demonstrate the coupling of the phase of matter 
waves not only to electric and magnetic, but also to gravitational and inertial 
potentials and fields. 

The formal identity between the forces in electro-magnetic fields on the one hand 
and gravito-inertial fields on the other hand, 

Fem =  eE + e(v x B) (electro-magnetic), 

F g; = mg + 2m(v x w) (gravito-inertial), 

immediately leads to a list of corresponding phase shifts in the gravito-inertial case, 
which are compiled in TABLE 1. They are classified as type I and type II in TABLE 1 
(right-hand side): Type I comprises those phase shifts caused exclusively by the 
action of potentials; their characteristic feature is that there is no deflection of the 
envelope of the entire pattern of interference fringes. In type II, the forces exerted 
on the particles by nonvanishing fields give rise to a lateral deflection of the whole 
fringe field. 

When an electric or a magnetic field deflects laterally separated coherent 
electron wave packets, one always observes the same interference field irrespective 
of the deflection angle; that is, the fringes remain at constant positions within the 
interference field. This happens even though a path length difference between the 
separated wave packets is introduced by the deflection, which should give rise to a 
corresponding phase shift .  The fact that this is not the case means that the phase shift 
caused by the change of the path length is exactly compensated by some counteract
ing effect. This compensating effect is the A-B phase shift. For an electric field, this is 
the scalar A-B phase shift ;  for a magnetic field, it is the "conventional" A-B phase 
shift of the vector potential A. Ehrenberg and Siday16 realized already in 1 949 that 
these phase shifts exist and that they are, in fact, absolutely essential for the fact that 
electron optics works; that is, that electron optical components can be used for image 
formation in electron microscopy, lithography, etc. 

0Present address: National Institutes of Health, Bethesda, Maryland 20892. 
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TABLE 1. Corresponding Electro-Magnetic and Gravito-Inertial Matter-Wave Phase 
Shift Effects and Experiments 

Electro-Magnetic 
phase shift by vec!or potegtials: 
enclosed flux f ABda = 'A · di (mag
netic A-B effect wjth e_-); 1-3 "vector 
potential" ' jl x E · di (Aharonov
Casher effect )4 

phase shift by scalar potentials (electric 
A-B effect with e- ,3 proposed; scalar 
A-B effect with neutrons6) 

phase shift and deflection by a magnetic 
field (enclosed magnetic 
flux + magnetic field) 

phase shift and deflection by an electric 
field 

mutually canceled deflection and phase 
shifts by combined electric and mag
netic fields (Wien filter), 13 only longi
tudinal shift of the wave packets14 

Gravito-Inertial 

phase shift by enclosed rotational 
- (w)-flux (Zimmerman & Mercereau 

experiment with electron Cooper 
pairs5) 

phase shift and deflection by enclosed 
- w-flux and id-field (Sagnac experi

ments, 7-9 inertial acceleration1°} 
_ gravitational acceleration (free-fall of 

neutrons and atomstt ,12) 

_ mutually canceled effects of rotation 
and gravitation, proposedlS 

. .  

Type 

II 

II 

An example of a gravito-inertial phase shift is the Sagnac effect (already 
predicted by Heer in 1961 17). This is shown by the expressions for both phase shifts: 

Sagnac phase shift Aharonov-Bohm phase shift 

where the surface integrals are to be taken over the oriented area A enclosed 
between the two partial waves. In its "pure", that is, force-free, form, it is the inertial 
counterpart of the A-B effect, and this experiment was successfully conducted by 
Zimmerman and Mercereau in a rotating superconducting quantum interference 
device (SQUID) in 1965.s 

It is of interest to note the following: ( 1 )  in fields produced by scalar potentials, 
energy is exchanged between the field and the particles (if no special precautions are 
taken to avoid field gradients, such as for a scalar A-B experiment), whereas this is 
not the case in fields produced by vector potentials; the latter therefore do not affect 
the temporal coherence of the matter waves; 14 (2) the Sagnac experiments with free 
electrons9 and with Cooper pairs5 prove that the presence of charge does not 
influence the electron's coupling to an accelerational field. 
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Let u be a quantum spin operator of a particle and let u · ii be the observable 
measuring the spin component in direction ii. Let >.,; be an eigenvalue random 
variable with values in { - 1 , 1 )  associated with the observable u · ii . This induces a 
probability measure PoM such that PoM(>.,; = 1 )  = PoM(Xa = - 1 )  = �. In quantum 
mechanics, two particles can be in a singlet spin state. We generalize this notion by 
saying that two particles can be symmetrically linked with respect to the spin 
operator a<1 > ® a<2>, where ( 1 )  and (2) refer to particles 1 and 2, respectively, if the 
probability measure PoM can be extended to cover both particles by defining a 
conditional probability PoM(�i2> = x i  ��1 > = 1 )  = , . cos2(9;2/2) and P0M(�i2> = 
:-x i �11 > = 1 )  = sin2(912/2), where x = 1 or x = - 1 and 91fis the angle between ii and 
b. 

In the case of symmetrically linked particles, it is clear that if an observation is 
made on particle 1, in a direction ii, then with probability 1 the observed value in the 
same direction can be predicted for particle 2. It can now be asked if more than two 
particles can be symmetrical ly linked to the spin operators. This would mean that at 
least three simultaneous measurements could be made on the system. It is a 
remarkable fact that they cannot. For example, if we were to assume that three 
symmetrically l inked particles existed, with 9 12, 923, and 913 being the angles between 
ii and b, b and c, and c and ii, a simple argument would lead to Bell's inequality: 

sin2(9 12/2) + sin2(923/2) � sin2(931 /2). 

Taking 912 = 923 = Tr/3 and 931 = 2Tr/3 leads to a contradiction. Therefore, 
symmetrically linked particles occur only in pairs. This is called the coupling 
principle. Armed with this, it is easy to deduce that, in a system of n particles, if the 
eigenstates are indistinguishable with respect to the spin operator, then the joint 
eigenstates of the n-particle system will obey Fermi-Dirac statistics if the system 
contains coupled particles; otherwise, they will obey Bose-Einstein statistics. This 
suggests a natural definition of fermions and bosons. Moreover, because two photons 
can be in a singlet state, they exhibit Fermi-Dirac statistics with respect to the 
permutation group s2 while coupled. This would suggest that neutrinos are perhaps 
photons. Parastatistics arises by partially relaxing the indistinguishability condition. 
Cooper pa iring in solid-state physics might be a case in point. 

Finally, the EPR paradox can be simply resolved by seeing coupled particles in a 
relativistic way. Once a frame of reference is specified, a specified value can be given 
to the spin relative to that frame. This means that, in the case of coupled particles, if 
a spin value in a certain direction is assigned to one particle, the spin value of the 
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other particle can be determined without any need for action at a distance. 
Moreover, in this interpretation, once a frame of reference is fixed and everything is 
defined relative to that frame, Bell's inequality becomes a nonissue. An analogy 
might help. The surface of the particle can be envisioned as a string or a loop with 
two twists in it, obtained by combining two Mobius strips. It is a "two-faced" surface, 
so to speak. Depending on the direction that the face is hit by the interacting field, it 
will rotate in one way or another with respect to a reference frame. Finally, note that 
what might be considered + 1 in one reference frame may be seen as -1 in another, 
although the particle is in a predetermined state. 

A comparable situation occurs in a discussion of the spin of a black hole. 
Wheeler, in referring to work of Claudio Teitelboim, points out that the spin of a 
black hole "can be given one value or another depending on our choice of reference 
frame-except that now the frame of reference that comes into consideration is not 
the Lorentz frame, but the spinor reference frame." 1 If the EPR problem is viewed as 
a comparable phenomenon on the subatomic scale, then the paradox disappears. 

To conclude, we can say that Bell's inequality gives rise to a paradox if the spinor 
reference frame is ignored. On the other hand, once this frame of reference is 
acknowledged, Bell's inequality can be used to directly prove that particles are 
coupled with probability 1 or that they are independent of each other. Moreover, the 
Pauli exclusion principle follows directly from this coupling, once the notion of 
indistinguishability is introduced. 
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The Aharonov-Bohm (AB) effect1 is simple and topological: an electron encircling a 
solenoid containing a magnetic flux «I> acquires a geometrical phase equal to ne«l>/IU:, 
where n is equal to the winding number of the electron around the solenoid. 
However, when a solenoid enters a quantum cloud of charge and there is no way to 
associate a well-defined path to the electron, the consequences of the AB effect 
might be complicated. For example, consider an electron bound in a potential well V, 
in an energy eigenstate. A solenoid crosses the well. How many times did the electron 
encircle the solenoid? There is no definite answer to this question. Of course, we can 
decompose the movement of the electron into a superposition of different Feynman 
paths, compute the phase acquired in each path, and resum, but no simple result will 
emerge . In general, the final state of the electron (once the solenoid has left the well) 
is different from the initial one (before the solenoid entered) and it depends on all 
the different parameters of the problem: the initial state, the potential V, the precise 
path of the solenoid and its velocity, and the value of the enclosed magnetic flux «I>. 
However, we have found a surprising topological effect for a solenoid containing 
exactly half a flux quantum («I> = (Yz)«l>o = (Yz)2'11'11c/e) when it adiabatically crosses 
the quantum "cloud" of an electron in a nondegenerate energy eigenstate/ (see 

0This research was supported in part by Grant No. 425-91 - 1  of the Basic Research 
Foundation, administrated by the Israel Academy of Sciences and Humanities; Grant Nos. 
PHY-88078 1 2  and PHY-9309888 of the National Science Foundation; and National Science 
Foundation Grant No. PHY-9321992 (to S. Popescu). 

fNot counting the spin degeneracy. 
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reference 2). This topological effect is an interplay of the Aharonov-Bohm and 
Berry3 phases. • 

Consider an electron in a nondegenerate energy eigenstate of an arbitrary 
potential well V and a semiftuxon moving adiabatically on a closed path C that 
crosses the electron cloud. We take the solenoid to be linelike, that is, infinitely 
narrow and long. According to the adiabatic approximation, the solenoid does not 
induce transitions and the final state of the electron is identical to the initial one, up 
to a phase ei�. Now, q> contains a dynamical phase 'Pd and a geometrical phase <Pg such 
that 

( 1 )  

We are interested in the geometrical part of  the phase. For simplicity, we first 
consider the two-dimensional situation illustrated in FIGURE 1. Two limiting cases, 
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FIGURE 1. For simplicity, we consider an infinitely deep potential well so that the electron 
cloud vanishes outside it. 

where we know how much charge the solenoid encircles, are easily computed.g When 
the solenoid moves along the path Cl , it does not encircle any charge at all. The AB 
phase is 0. On the other hand, when the solenoid moves along C2, the electron is 
encircled with certainty and the AB phase is e<f>/hc, which in the case of a semiftuxon 
(half a quantum of flux) yields 'Tl'. However, how are we to interpolate the phase for 
intermediate paths that cross the electron cloud? Apparently, as the solenoid moves 

CThe AB effect is usually illustrated by an electron that encircles a solenoid. Here, a solenoid 
encircles an electron. However, whether we consider the movement in the reference frame of 
the solenoid or of the electron, the phase is the same. 
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on paths encircling larger and larger portions of the cloud, the effective charge it 
encircles gradually increases from 0 to e. Thus, the AB phase should gradually 
change from 0 to ir. Closer inspect ion, though, leads to a different conclusion. The 
reason is that the physics manifests time-reversal symmetry. The initial wave function 
of the electron is nondcgcncratc and therefore unchanged under time reversal. 
(Assume that, initially, the scmifluxon is infinitely far from the electron and no other 
vector fields act on it.) Under time reversal, the magnetic field inside the solenoid 
changes sign and thus also the magnetic flux (<I> -+  -<I>); however, in the particular 
case of half a flux quantum, this change is not observable as long as the electron 
cannot penetrate into the solenoid because the difference between (Y.z)<l>o and 
-(Y.z)<l>0 is exactly a flux quantum. Consequently, for any path C, the geometric phase 
eiopg must be the same in whatever direction the solenoid moves. On the other hand, 'Pg 
must change sign when the solenoid changes direction (because it can be written as a 
line integral along the path C). Thus, we obtain 

(2) 

implying ei"'g = ± I . This result, corresponding to 'Pg equal to an integer multiple of 11', 
contradicts our naive expectation that the AB phase gradually changes from 0 to ir. 

What happened? Let us try to interpolate between the paths Cl and C2. We can 
gradually distort the path Cl into C2 by many steps tpat enlarge the loop by an 
infinitesimal region. In a certain region, the phase factor jumps from 1 to - 1 . We 
probe this particular infinitesimal region until we encounter a point P with the 
property that the geometrical phase jumps by 11' when P is encircled. However, what is 
the phase when the solenoid moves on a path crossing P? Our best guess is that the 
phase is not well defined. Our assumption that the solenoid moves adiabatically 
breaks down on this path. In other words, although in itially the wave function of the 
electron was a nondegcncrate energy eigenstate, it is no longer nondegencrate when 
the solenoid goes through the point P: at P, the solenoid induces a degeneracy. 

Thus, we find a clue to the puzzle of abrupt phase changes. Indeed, we can say 
that our argument for a gradual change in the Aharonov-Bohm phase was correct. 
However, wc neglected a second contribution to the geometric phase. As the 
solenoid crosses, it distorts the wave function of the electron and generates a Berry 
phase that adds to the AB phase : 

'Pg = <p AB + 'PBerry• (3) 
The Berry phase is responsible for maintaining the total geometric phase factor (1 or 
- 1 ) despite gradual changes in the AB phase. The Berry phase is also responsible for 
the jump in the total geometric phase around the point P: as Berry3 showed, isolated 
energy degeneracies can add 11' to the geometric phase . 

Returning to our original problem, we can add a few details. First, the existence 
of points of degeneracy, for any arbitrary potential well V, can be proved by using 
time-reversal symmetry in the context of a Born-Oppenheimer approximation . 
Nevertheless, finding such points appears to be a difficult problem; the only explicit 
examples we know arc for rotationally symmetric potential wells and for wells with 
even discrete rotat ional symmetries (V(r, 0) = V(r, 0 + 211'/2n)), where the center of 
the well is such a point. Second, it is clear that there might be more than one such 
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point. Any odd number of points is consistent with the phases of the extremal paths 
Cl and C2. Third, the adiabatic approximation might break do�n not only at some 
isolated point P, but in a whole region if the initial nondegenerate state becomes 
degenerate with states in the continuum. Last, but not least, a similar effect of phase 
jumps and energy level crossings arises even if the solenoid is not straight and also 
when several solenoids, each carrying half a flux quantum, enter the electron cloud. 

We find a simple rule for the geometric phase of an atom with a heavy nucleus, 
in itially in a spherically symmetric eigenstate, moving around semifluxons. (In this 
case, geometrical phases arise for both the electron and the nucleus, but the wave 
function of the nucleus is much more concentrated and semifluxons rarely penetrate 
it. Thus, its geometrical phase is simply the usual AB phase, which we neglect in the 
following.) The rule allows that we can replace the electron cloud with a point charge 
at the center of the atom and the semifluxons with "shadow" fluxons. A shadow 
fluxon is a point at which two electronic energy levels cross, if the center of the atom 
sits there. The winding number of the path of the point charge around the shadow 
fluxons gives the geometric phase accumulated by the atom. 

To derive this rule, consider two straight and parallel solenoids situated a 
distance L apart. Two extreme cases are easily solved. When the distance between 
the solenoids is much larger than the size of the atom, we can move the atom in the 
vicinity of one of the solenoids without the electron cloud touching the other 
solenoid. In this case, the atom collects a phase of 'IT each time its center encircles the 
solenoid, exactly as if the other solenoid were not present. There are thus two 
shadow fluxes, coinciding with the original solenoids. On the other hand, for L = 0, 
the two solenoids are at the same point, with their magnetic fluxes adding to an 
integer flux quantum. However, an integer flux quantum has no effect on an electron. 
There are therefore no energy level crossings and thus no shadow fluxons. When the 
solenoids are slightly separated, they do affect energy levels, but, by continuity, this 
effect is small and does not induce energy level crossing; rather, a minimal distance 
L * is required. Thus, we conclude that, in adiabatic motion, the geometric phase 
accumulated by the atom due to two parallel semifluxons is zero once their 
separation is less than some critical distance L *. We can now interpolate between 
these two extreme cases (large and small L) (FIGURE 2) . When the distance between 
the solenoids is very large, the shadows coincide with the original solenoids. When 
the distance is still large, but comparable to the size of the atom, the shadow fluxes no 
longer coincide with the original solenoids. Instead, the shadow fluxon associated to 
each solenoid is shifted towards the other solenoid. When the two solenoids are at a 
critical distance L * ,  their shadows overlap and therefore have no effect whatsoever 
on the atom. For separations smaller than L *, the shadow fluxons disappear. 

It is amusing to consider more general patterns of semifluxons carrying half a 
quantum of flux and the resulting shadows. Even in the case of a single solenoid, the 
shadow need not coincide with the original, if the solenoid is not straight. For 
example, a solenoid in the form of a ring should have a circular shadow, but of 
smaller radius. Just as in the case of two parallel solenoids, there is a critical radius 
for the ring (depending on the electron cloud) below which there will be no shadow 
at all . As a consequence, there will be no topological scattering of the atoms from 
small toroidal solenoids. For two intersecting straight solenoids, we expect hyper
bolic shadows situated in the plane of the solenoids, in the acute angles. When the 
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solenoids are perpendicular to each other, the shadows will coincide with the 
solenoids. 
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There are rather few experiments involving both quantum mechanics and the 
equivalence principle of relativity theory. We report two new experiments of this 
type. In the first one, we observed the deflection of neutrons in a slowly rotating 
perfect sil icon crystal. In the second one, which is in prepanrtion at present, we want 
to measure the deflection due to gravity. In earlier exper.iments, the phase shift in a 
neutron interferometer due to gravity1 or due to a rotation of the interferometer was 
experimentally observed.2•3 It is generally not realized that at present, for these 
interference experiments, a statistically significant discrepancy exists between the 
theoretical prediction and the experimental results.4-6 

Our experiments rely on the greatly reduced effective mass m * of neutrons under 
diffraction conditions in perfect crystals.7 In our case, the ratio m* Im is ±4.7 x 10-6• 
In the first experiment, we observed the deflection of the neutrons due to the Coriolis 
force in a rotating frame. If the crystal rotates with an angular velocity w, the effective 
acceleration is approximately given by 2m/m*wvd, with vd being the drift velocity8 of 
the neutrons perpendicular to the rotating axis. For the gravity experiment, this has 
to be replaced by m/m*gcos e, where e is the angle between the gravitational 
acceleration g and the reciprocal lattice vector G. In order to observe a deflection 
due to this effective acceleration, we use a specially shaped crystal consisting of two 
sections of a length L. Between them is a gap of width s. The whole structure is cut 
from one single crystal, which provides parallel-oriented lattice planes in the two 
sections. The first section of the crystal acts as a collimator by selecting only neutron 
trajectories with an initial slope that compensates the deflection on the way through 
this section (see FIGURE l ) . In the second section, the two trajectories corresponding 
to the two signs of the effective mass are separated. A detailed calculation leads to 
the following expression for the separation of the outcoming neutron beams; 

L2hG ( s ) 
z(w) = 2 VG sin(8eragg) 1 + L w, (1) 

a This work was supported by the Austrian Science Foundation (FWF Project No. P8767), by 
the United States National Science Foundation, and by a travel grant from the Austrian 
Academy of Sciences. 
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FIGURE 1.  Principle of the setup viewed from above. The dashed lines are the neutron trajectories 
without external force and the continuous trajectories are shown for one sense of rotation . 

where G is the reciprocal lattice vector and VG is the crystal potential. Instead of a 
continuous rotation of the crystal, we used a rotating osci llation with a frequency of 
13 or 20 Hz and a maximum amplitude between 2 and 7 µm. The neutrons came from 
a graphite monochromator at a mean wavelength of 2.35 A. They passed through the 
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crystal and were detected by a position-sensitive detector. The experiment was 
carried out at the NIST Gaithersburg reactor. 

The maximum splitting that we observed was 9.5 mm, compared to a deflection of 
42 nm for a free neutron on the same distance. FIGURE 2 shows the measured 
splitting of the two beams as a function of the angular velocity. The experimental 
results show a splitting for zero angular velocity not predicted by theory. Most l ikely, 
this effect was caused by an intrinsic bending of the crystal. If the additional 
deflection due to bending is small, this does not affect the slope of the z( w) curve, but 
causes a constant offset independent of w. 
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FIGURE 2. Measured distance of the peaks corresponding to the two effective mass states as a 
function of the angular velocity. The deflection for counterclockwise rotation of the crystal is 
defined as negative and is defined as positive for the other sense of rotation. The dashed line is 
the result of a linear fit to all shown data points. 

Very good agreement between theory and experiment was obtained by compar
ing the predicted and the measured slope of the z(w) curve. The predicted .slope of 
(1 .614 ± 0.008) m-s/rad and the value obtained from a linear fit to the measured 
data, namely, ( 1 .609 ± 0.014) m-s/rad, agree within the errors. The error of the 
predicted value results mostly from uncertainties in the wavelength. The error in the 
measured value is determined by statistical errors, calibration errors, and environmen
tal vibrations. 

The slowest detectable rotation in the current experiment was of the order of the 
rotation of the earth. This can possibly be improved by more than one order -• 
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magnitude by using a longer neutron wavelength, vibration isolation, better counting 
statistics, and smaller slit widths. 

In experiments that are in preparation at the moment, we will measure the 
deflection due to gravity. These experiments will allow us to compare the inertial and 
heavy mass of a free neutron in the quantum mechanical limit. 
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Einstein, Podolsky, and Rosen 1 (EPR) developed an experiment that questioned 
whether quantum mechanics (QM) was complete. The experiment was modified by 
Bohm2 by considering two spin-Yi particles, labeled E and P, that fly off in opposite 
directions from a system prepared in a "zero spin state". These particles, if attached 
to neutral atoms, may have their spin "responses" in any direction determined by 
Stern-Gerlach magnets. A QM probabilistic equation holds for the probability of 
finding the P particle in a spin UP-or, using the generic wotd, YES-State at an angle 
0 with respect to the same direction in which the E p�rticle was observed to have spin 
UP, or YES, namely, 

P(YES, 0) = Yi( l - cos 0) and P(No, 0) = Yi(l + cos 0). (1) 
Often, this is expressed in a correlation form: 

c (iE, ip) = P(YES, 0) - P(No, 0) = -cos 0, (2) 

with 0 being the angle between iE and Zp, the orientation of the Stern-Gerlach 
magnets. 

BelP developed a local hidden-variables (HV) model (shown in FIGURE 1) that 
allows a 50%-50% YES-NO detector response to spin orientation and showed that it 
did not give the QM statistical behavior. It seems clear that the responses need to be 
divided differently than in Bell's model if one is to achieve QM statistics. FIGURE 2 
shows the results of a form that allows any fractional division of an orientation sphere 
by dividing the sphere with a small circle to form two spherical caps, one occupying a 
fraction (to be determined),/, of the area. Bell's hidden-variable hemispherical caps 
have been shifted vertically by an offset, h, allowing an extra degree of flexibility. 
Thus, if we wish an arbitrary fraction, f, of YES responses, we choose a spherical cap 
at a height, h = 1 - 2f, and angle, 0 = arc cos (h) = arc cos (1 - 2/) . The hidden 
variable is again chosen to be a "random vector" that selects the response. This 
spherical cap correlation allows the response of the P detector, Rp, to be based upon 
two random vectors, c and s, on the following basis: if { [(iE - c) · Zp)(s · iE) � OJ, 

then Rp = YES; else Rp = NO. This provides the quantum statistics of equations 1 and 
2. 

Now, we show how angular momentum conservation (AMC) can be used to 
justify a fractional division different from the 50%-50% YES/NO Bell HV model and 
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spherical cap 
o f  YES responses 

spherical cap 
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and 5 0 %  NO = - responses 
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FIGURE I. Bell's random vector model: view of the geometry considered by Bell to calculate 
the probability of obtaining a + correlation or a - correlation for spins oriented in space. Using 
Bell's reasoning, if a particle has a spin within either of the "lunes of anticorrelation" shown 
(for the two observing instruments directed towards ZE and Zp ), then the observations should be 
anticorrelated. 
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thereby provide the quantum correlations. We define an Angular Momentum 
Conservation Principle (AMCP) as follows: 

An observation, SL = LL · ZL, in any "local" direction (e.g., it) is constrained to provide, 
on average, angular momentum balance in this local observing direction, subject to any 
external "boundary conditions" imposed. 

Let us express the AMCP in equation form for the current situation. The outside 
boundary condition includes any "constraint" associated with losses of angular 
momentum from the opposite, "nonlocal", particle. Then, the average amount of 
angular momentum in the local direction, .iL. must add to zero: 

(3) 

When the nonlocal detector observes a certain amount of angular momentum, sNL• in 
a particular direction (e.g. , ZNL), then, in this observing direction, sNL = LNL · ZNL 

spherical cap 
of fraction , f ,  
YES responses 

spherical ca 
of fraction , 
1 - f ,  NO 
responses 

FIGURE 2. The geometry involved in calculating correlations in the nonlocal random vector 
model described by equation 3. The random vector c governs whether the correlation between 
the two detectors' observations oriented towards ZE and Zp will be positive or negative; this is 
indicated by the + and - signs. The overall probability of a positive correlation is related to the 
spherical cap area. The calculation in the text follows directly. 

units of angular momentum has been lost. The average amount of angular momen
tum lost by the nonlocal particle in the local direction is (iNL · ZL) = (sNLZNL · id = 

(sNL COS 0) .  
In QM, the detectors are restricted to quantized responses. Thus, our measuring 

device cannot observe a graduated amount of angular momentum; the responses 
must be quantized in units of angular momentum, ±C units, let us say ±C = ±h/2 
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units, which we refer to as YES or NO. Let us now see how angular momentum can be 
conserved in the presence of this restricted binary response. 

As an example, we examine the two terms in equation 3 for the subset of cases 
where our nonlocal detector, labeled the E detector, measures YES 100% of the time 
in the zE direction (one can choose any subset of E responses and investigate the 
statistics). Let us evaluate the first term in equation 3.  This quantized YES observa
tion is taken to indicate that +11/2 units of angular momentum, per particle, has been 
carried by the E particles in that direction. Thus, an amount of angular momentum in 
the Zp direction, at an angle 9 from zE, equal to fi/2 cos 9 has been lost, per particle, to 
the YES E particles. This corresponds to a loss of angular momentum of iNL · ZL = 

(fi/2) cos 9 per particle, along the direction of our local P detector. 
Now, let us evaluate the second term in equation 3. Let the local P detector 

respond YES or NO, with probabilities P(Y, 9) and P(N, 9), respectively, with 
each carrying ±fi/2 units of angular momentum; then, the average amount of angu
lar momentum per P particle carried in the local Zp direction is LP = LL = 

zL[P(Y, q) - P(N, q)]f1/2. Then, equation 3 requires [P(Y, 9) - P(N, 9)] = -cos 9, 
which is just the correlation of the two detectors, c(zE, zp), of equation 2. With 
P(Y, 9) + P(N, 8) = l, one arrives at equation 1. Thus, we see that AMC appears to 
require the offset or vertical shift, h = 1 - 2/ = cos 9, discussed before. Hence, the 
QM "action at _ a  distance" and nonlocal behavior emerge as consequences of AMC. 
We further view nonlocality as an indication of the inseparability of the whole system 
into separate components and thus as a consistency requirement, which spans space 
and time, rather than as a causal influencing agent affecting phenomena. 
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On the one hand, Wigner has pondered the "unreasonable effectiveness of mathemat
ics in the natural sciences. "2 On the other hand, standard big-bang cosmology has 
difficulty explaining the 90-99% nonbaryonic dark matter or "missing mass" re
quired by observed galactic dynamics and required for n = !l.:ril = l, which closes the 
universe at t = co. Here, it is proposed that dark-matter missing mass is a necessary 
consequence of the effectiveness (algorithmic locality) of mathematics in any com
plete cosmology, that is, a "Theory of Everything" (TOE). 

Zurek and others have developed an information-theo{etic formulation of quan
tum mechanics.3 Omitting higher-order cosmic text�re,-I suggest that at the Planck 
scale the universe can be modeled as a homogenous vector field of Szilard engines 
with an average 8'!T cylinders (degrees of freedom). Strict algorithmic locality 
requires that this field of Planck engines have no memory of past states. As shown by 
Zurek, the energy of state erasure dissipated in each Planck-time cycle is 11w- = kbT 
per degree of freedom.4 The erased state energy constitutes the dark-matter missing 
mass of the Planck engine field. With suitable encoding of past states prior to 
erasure, it is shown that the proportion of dark-matter missing mass is Mm = 

{logi(t) )/ {8'1T + log2(t) ) .  Assuming Ho = 37, Mo = 1 - Mm = 0. 1 10300,;1•5 This result 
closely agrees with !lbaryon = 0. 10960.,,;1 suggested by elemental abundances, Jones' 
estimates of the Sunyaev-Zel 'dovich effect, and the apparent gravitational lensing of 
MACHOs.6 It appears, therefore, that the mathematical effectiveness of physical law 
is a good candidate for the cause of dark matter. 

Three general implications deserve mention. First, employing the exchange of 
photons (and other B-E exchange force particles) between electrons and other 
Fermi particles as the quantum mechanism of state computation, it seems possible to 
model the universe as a computer. Mathematically effective computation generates 
dark matter. There should be a physical counterpart to every component of the 
computational process, including (for a complete system like the universe) undecid
able states whose mathematical existence has been demonstrated by Godel and 
others. Second, state computation (present observations of the universe) occurs on 
the surface of a cosmological-scale expanding black hole comprising the erased past 
states of the universe. The black hole is irreversibly expanding through time "into" a 
gas of undecidable states (the GOdel gas) comprising the future of the universe. 
Third, a cosmological Turing test (extended to include undecidable states) seems 

0See reference 1, which develops the findings given here. 
896 
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required to verify the rationality or nonteleological "intelligence" of the laws of 
physics.7 
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The foundation of Bohm's pilot-wave theory1 consists of three elements: (i) the wave 
function, ljl(q, t) = R(q, t) exp (iS(q, t)/h] , whose time evolution is given by the 
time-dependent Schrodinger equation; (ii) wel l-defined particle trajectories given by 
the guiding equation, p = \JS(q, t) ; (iii) averaging over trajectories with the density 
R2(q, t) as weight. Using these elements, I will show how one can obtain an 
anholonomic effect on the particle trajectories in this formulation of quantum 
mechanics.2 

Consider a particle with unit mass on a ring of unit radius. The position of the 
particle is described by the polar angle 6. The normalized-wave function, assumed to 
be cyclic with period T, can be written as ljl(6, t) = R(6, t) exp (iS(6, t)/h] and the 
guiding equation becomes 6 = iJS/iJ6 = 0(6, X(t)] , where X(t ) = [X1(t), . . .  , XN(t)] 
are complex coordinates in the N-dimensional ray space P(K).3 0 depends on t 
through X because the guiding equation is completely determined by the physical 
state; that is, it is invariant under a time-dependent phase change of the wave 
function. 

The phase of the motion IP is defined by the equal-time parametrization, d!p/dt I x  
= 2ir[fo2'1T d6/0(6, X) J - 1 = w(X), where I x means fixed X.4 X are now 2N real 
coordinates in P(K). Using the guiding equation and averaging over the Bohm 
trajectories, the total phase shift after the cyclic change of the guiding wave function 
becomes 

4!p = foT w(X(t)) dt + * .W ,  (1) 

where the one-form .W is given by 

_ f2'1T 2 [ f8 �] ... .N - Jo d6R (6, X)iJ.,. w(X) Jo 0(-6, X) dX 
(2) 

and � is the closed path in P(K). In addition to the expected dynamical shift 
for w[X(t)] dt, we see that there is a geometric contribution given by a line integral 
over a one-form in the ray space. This extra part is the geometric phase shift 4'Pg· 

Using Stokes' theorem, the geometric shift can be written as 

4!pg = L d.w = L .'T, 
898 

(3) 
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where as = w. Explicitly, the two-form !T is given by 

(4) 

From this expression, one sees that the averaging procedure leads in general to a 
nonzero geometric phase shift. 

Moreover, an X-dependent change of the origin described by the transformation 

ip(8, X) -+ ip(8, X) + >.(X) (5) 

does not change the geometric phase shift. The reason is that this transformation just 
adds an exact differential d >. to the one-form .W ,  which clearly does not affect the 
line integral .  In other words, the geometric phase shift is gauge-invariant. 

Finally, I want to emphasize the close analogy with the classical Hannay angle .5 
The Hannay angle is generated by a closed excursion of slowly changing parameters 
and becomes nonzero because of the adiabatic averaging.6 This slow change corre
sponds here to a closed excursion in P(2) and the adiabatic averaging corresponds 
to averaging over Bohm trajectories. 
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The question of how much time a tunneling particle spends in a barrier region before 
being transmitted has long been controversial. 1 One way to answer the question is to 
explicitly consider a von Neumann-style interaction with a measuring apparatus or 
"pointer" and examine the pointer position only on those occasions where the 
particle is found to have tunneled. I have recently done this2 by applying the "weak 
measurement" formalism of Aharonov and Vaidman.3 As explained in reference 2, 
this is essentially a way of defining Bayesian "conditional probabilities" in the 
framework of quantum mechanics. I find that the transmission time so defined is 
complex in general, but that the physical meaning of the r.{!al and imaginary parts is 
clear. The real part represents an actual shift in the pointer position, that is, the 
desired measurement outcome. The imaginary part (which vanishes in the "classi
cal" limit where all incident particles reach the same final state) represents instead a 
shift in the momentum of the pointer. This reflects a back-action on the particle 
provoked by the measurement interaction rather than a physical property of the 
tunneling particle itself. To see this, one can consider a pointer whose momentum 
uncertainty is very small before the measurement. One finds that the position shift of 
the pointer is unchanged, whereas the amount of momentum it exchanges with the 
tunneling particle vanishes along with the square of the initial uncertainty. In other 
words, in the limit of a "weak" measurement, it is the real part of the calculated time 
that one will observe. For a rectangular barrier, I find that the real part of the 
transmission time is equal to the "dwell time". 1 The popular Larmor times4 are 
simply one realization of such a measurement; in reference 2, I show how it is 
possible to make the Larmor clock "weaker" by using spin-squeezed states in order 
to confirm that only the portion corresponding to the dwell time should be thought of 
as part of the measurement outcome. 

Instead of considering spin, one could imagine a scenario as in FIGURE 1. A heavy 
charged particle such as a proton is tunneling in one dimension. It passes through a 
series of grounded conducting plates (these plates themselves could even form the 
tunnel barrier). Between each pair of plates, one may have a distant electron, initially 
at rest, serve as a test particle. Each electron only feels a transverse Coulomb force 
while the proton is between the same pair of plates as that electron, so the electron 
will accumulate a momentum kick proportional to the amount of time spent by the 
proton between those plates (note that this momentum is the "pointer position" and 

0This work was supported by the United States Office of Naval Research. bpresent address: National Institute of Standards and Technology, Gaithersburg, Maryland 
20899. 
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(a) The situation for a reflected proton 

f l reflected 
p+ • 

(b) The situation for a transmitted proton f transmitted 

901 

electrons 
I 

-7C 
-:x: 

FIGURE 1. A gedankenexperirnent using distant electrons to measure how much time a 
tunneling proton spends in each of several shielded regions of space . In (a), we see the final 
state of the electrons for cases where the proton is reflected: only those electrons in the first 
evanescent decay length of the tunnel barrier feel the proton's Coulomb potential and acquire a 
consequent momentum kick. In (b ), we see what happens if the proton is transmitted: electrons 
near both edges of the barrier acquire a momentum kick, but those near the center do not. The 
tunneling proton does not seem to have spent any time in the center of the barrier. However, 
the position of the electrons gets shifted when the proton is transmitted .  As explained in the 
text, this is a measure of the back-action of the measuring electrons on the tunneling particle. 
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the electron's position thus plays the role of "pointer momentum"). The meaning of 
the present result is as follows: when the proton is reflected, only the electrons near 
the front edge of the barrier will be set in motion; in contrast, when the proton is 
transmitted, the electrons toward both edges of the barrier will receive momentum 
kicks. The electrons near the center of the barrier will receive no momentum kick at 
all : i t is as if the proton "hopped" across the barrier without spending any time in the 
middle. Like the group delay and the dwell time, the time spent by tunneling 
particles in the barrier regions saturates to a finite value as the barrier becomes 
infinitely thick. On the other hand, the back-action (the imaginary part of the 
complex time) grows linearly with barrier thickness: electrons near the middle of the 
barrier get no momentum kick, but instead are shifted in position toward the proton. 

- 1 5  

l = O  
d = 5  

k .  0.5 
ko = 1 .0 

-5 I 
I 
I 
I 
I 
I 

I , - -
I /  ,. 

'�"' I 

---- P(x) 
- Re P(xltrans) 
- - - - - Im P(xltrans) 

I 
I 5 1 5  

I 
I 

... I ' I I " I  l' 

FIGURE 2. The thick solid curve shows the "conditional probability" distribution for a 
tunneling particle as a function of position, at an instant about halfway through the tunneling 
event. This represents the force that an electron at a givenx would experience in the example of 
FIGURE I. The dashed curve represents the back-action, that is, the position shift that an 
electron would experience. For comparison, the thin solid curve shows the probability distribu
tion for the ensemble as a whole, without distinguishing between transmitted and reflected 
particles. 

This is simple to understand; the electrons had some uncertainty in their position to 
begin with. Due to the attractive Coulomb interaction, the closer the electron was to 
the proton, the smaller the potential barrier that the proton had to traverse. Thus, by 
selecting protons that succeeded in tunneling, we are postselecting states where the 
electron was nearby to begin with. Unlike the momentum kick-the measurement 
outcome itself-this effect is entirely dependent on the initial uncertainty in the 
electron position. 

In FIGURE 2, I extend this approach to calculate the conditional probability 
distribution for the tunneling part icle's position at a given instant of time during the 
tunneling process. At early times, this distribution is real and mimics the incident 
wave packet; at late times, it is also real and mimics the transmitted wave packet. 
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(Consequently, this approach does not support the assertion5 that particles that 
tunnel originated toward the front of the incident wave packet.) During the tunnel
ing, as shown here, the real part displays a growing peak at the exit face and an 
ebbing peak at the entrance face, but little penetration into the center of the barrier. 
This conditional probability distribution may traverse the barrier superluminally in 
this fashion. Meanwhile, the imaginary part of the distribution measures the back
action and is essentially constant across the barrier region. 
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Quantum mechanics is often introduced with a discussion of the two-slit experiment 
where the obseived interference pattern forces us to conclude that the particle goes 
through both slits at once and is "both a particle and a wave".  This most-basic 
argument has a loophole, however. The conclusion rests on probability theory and, in 
particular, on the fact that probabilities are nonnegative so that, when the second slit 
is opened, 

P(x) = P(x via slit 1) + P(x via slit 2) <!:: P(x via slit 1 ) ,  (1) 

where P(x) is the probabil ity for the particle to arri�e at position x on the screen. 
Perhaps, then, it is possible that the particle does go through either one slit or the 
other after all and the interference effects can be explained by modifying probability 
theory itself. Here, we give a brief oveiview of this program, which is put forward in 
references 1-3. For other approaches to exotic probability theory, see references 4-7. 

Probability theory is most often presented with the "frequentist" approach where 
probabilities are defined as l imits of experimental frequencies. For example, if n 
successes occur in N trials of an experiment, the large N limit of n/N is called the 
"probability of success" . Such probabilities are then assumed to follow Kolmogorov's 
axioms.8 From this point of view, probability theory is a theory of "random phenom
ena" that are well described by these axioms and, of course, probabilities are 
necessarily nonnegative. For our purposes, then, it is necessary to adopt the more 
general "Bayesian" view where probabi lities are not a priori defined as frequencies, 
but where, instead, a frequency interpretation is derived as a consequence of the 
fundamental axioms.9 With the Bayesian view, probabil ity is introduced as a measure 
of "likelihood" where, if proposition a is known, the likelihood that proposition b is 
true is denoted10 "(a --+  b)" . For "--+" to be a useful likelihood measure, one expects 
it to have a few properties such as (i) if (a --+ b) is known, this should determine 
(a --+ -,b) and (ii) the procedure to get from (a --+ b) to (a --+ -,b) should be 
independent of a and b. As shown by Cox, 11 such considerations are enough to 
entirely fix probability theory, which then takes the form 

(a -+ b  /\ c) = (a --+  b)(a /\ b -+  c) 

(a -+ b) + (a --+  -, b) = 1 

(a --+ -,a) = 0 
for all propositions a , b, and c.  

904 

(2a) 

(2b) 

(2c) 
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Adopting the Bayesian view, we introduce complex probabilities while keeping 
all of Cox's remaining conditions. Cox's analysis then leads to equations 2a-c again, 
except with complex (a --+ b /\ c), (a --+ b), etc. In the Bayesian view of ordinary 
probabilities, the frequency interpretation can be derived from the axioms using an 
additional condition-namely, if (a --+ b) = 0, then b never actually happens if a is 
known. In complex probability, however, a may be known and (a --+ b) may be zero, 
but b may still be found to be true. If we suppose, though, that a special set of 
propositions U exists where, for x E U, (a --+ x) = 0 does imply thatx is never true if a 
is known, then a frequency interpretation can once again be derived. This motivates 
the introduction of the realistic "state space" axioms as described in references 1 and 
2. The resulting complex probabil ity theory is then shown to have a superposition 
principle, to include wave functions that are expansions in eigenfunctions of Hermi
tian operators, to have a path integral representation, and to describe both pure and 
mixed systems. A scalar particle in Rd is shown to obey the SchrOdinger equation with 
mass, vector potential, and metric appearing as moments of a fundamental complex 
probability. 

Although probability theory has been historical ly considered to be a branch of 
mathematics, its frequency meaning makes it a physical theory that may succeed or 
fail by experimental test. From this point of view, it is natural to attempt to explain 
quantum mechanical effects by modifying probability theory. We find that there is 
essentially one possible modification of probability theory that introduces complex 
probabilities while maintaining the Bayesian consistency conditions. Although this 
modified probabil ity theory is both realistic and local,3 it nevertheless reproduces the 
predictions of standard quantum mechanics while coexisting with Bell's theorem and 
other limitations on local realistic theories. 
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