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Abstract. We investigate the nonstationary boundary effect for a quantum flux in a double
rf-SQUID system. In a superconducting ring interrupted by a dc-SQUID (so-called double
rf-SQUID), the Josephson potential can be controlled by the magnetic flux through the dc-
SQUID ring. This system is equivalent to an anharmonic oscillator with a time-dependent
frequency. A rapid change of the magnetic flux in the dc-SQUID leads to the nonadiabatic
mixing of the quantum states for a quantum flux in a double rf-SQUID. Therefore, this
becomes a circuit analogue of the dynamical Casimir effect in quantum field theory. We
perform numerical calculations for the quantum state evolution of the quantum flux within a
harmonic approximation, taking account of the nonadiabatic effect. We found that the resulting
state distribution has a super-Poissonian character that reflects flux squeezing caused by the
Bogoliubov transformation between eigenstates at different times.

1. Introduction
The nonadiabatic effect has sometimes played a crucial role as regards our understanding of
experimental results in a wide range of systems. A noteworthy example in connection with
quantum field theory is the dynamical Casimir effect that predicts photon production out of the
vacuum as the result of a nonadiabatic effect caused by quickly moving boundaries [1]. This effect
has predominantly been studied in the electromagnetic field in a cavity with movable boundaries.
Unfortunately, although there has been experimental verification of the static Casimir effect [2],
there has been none of its dynamical counterpart. The main problems are the difficulties involved
in making a mirror oscillate at high frequencies, and in detecting a microwave photon with high
efficiency. One approach to imitating such a dynamical effect has been described by Dodonov
et al. using a Josephson junction [3, 4, 5] based on parametric processes about two decades ago.
Along the same lines, we proposed an alternative scheme for creating nonstationary situations
using a double rf-SQUID, which we regarded as superconducting artificial atoms [6]. In this
paper, we numerically investigate quantum-state evolution of a quantum flux in a double rf-
SQUID system resulting from nonadiabatic changes in the Josephson critical current.
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Figure 1. Schematics of a double rf-SQUID and its potential energy. (a) a double rf-SQUID
(b) the potential energy of the double rf-SQUID at different Φc values: the thin solid line shows
Φc = 0 and the thick solid line shows Φc = Φ0/2π.

2. Double rf-SQUID as superconducting artificial atom
Let us consider the system known as a double rf-SQUID shown in Fig. 1 (a), which consists of
a superconducting loop with the inductance L interrupted by a dc-SQUID, i.e., two Josephson
junctions. This device behaves as a normal rf-SQUID with tunable Josephson critical current.
An external magnetic flux Φc applied to the dc-SQUID controls the current, equivalently, the
Josephson plasma frequency ωJ . Figure 1 (b) shows the potential profile as a function of Φex

with different control flux values Φc, and clearly shows the Φc-dependent Josephson plasma
frequency.

Now let us consider time-dependent Φc situations. In such cases, the Josephson plasma
frequency becomes time-dependent. Thus, the system can be regarded as a time-dependent
anharmonic oscillator. With semiclassical Josephson junctions, namely, where the charging
energy of the junction Ec is less than the Josephson coupling energy EJ , the system is further
approximated by a harmonic oscillator. Therefore, the Hamiltonian that we consider hereafter
is described as

H(t) =
p2

2m
+

1
2
mωJ(t)2x2 (1)

where p and x are canonical variables, namely the momentum and position corresponding to the
charge Q accumulated across the junction and Φ in the rf-SQUID, respectively. m is the flux
mass, which is proportional to the junction capacitance.

3. Nonadiabatic quantum-state evolution
Here we investigate the quantum-mechanical evolution of a quantum flux in a double rf-
SQUID potential with time-dependent frequencies. Let us assume that the solution of
the Schrödinger equation can be approximated with the stationary eigenfunctions of the
instantaneous Hamiltonian, so that a particular eigenfunction at one time goes over continuously
into the corresponding eigenfunction at a later time. In other words, if the equation

H(t)un(t) = En(t)un(t) (2)

can be solved at each instant of time, we expect that a system in a discrete nondegenerate state
um(0) with energy Em(0) at t = 0 is likely to be in the state um(t) with energy Em(t) at time t,
provided that H(t) changes very slowly with time. In a nonadiabatic case, other states appear
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in the expansion of ψ in terms of the u’s. The wave function ψ satisfies the time-dependent
Schrödinger equation

ih̄
∂ψ

∂t
= H(t)ψ. (3)

We proceed by expanding ψ in terms of the u’s in the following way:

ψ =
∑
m

am(t)um(t) exp
[−i

h̄

∫ t

0
Em(t′)dt′

]
(4)

where we assume that the um are orthonormal, discrete, and nondegenerate. Substitution into
Eq. (3) gives ∑

m

[
ȧmum + am

∂um

∂t

]
exp

[−i

h̄

∫ t

0
Em(t′)dt′

]
= 0 (5)

where use is made of Eq. (2). We multiply through on the left by u∗
n and integrate over all

space to obtain [7]

ȧn(t) = −
∑
m

am(t)⟨ψn(t)|ψ̇m(t)⟩ exp
[−i

h̄

∫ t

0
(Em(t′) − En(t′))dt′

]
(6)

In the case of time-dependent harmonic oscillator, the overlap term ⟨ψn(t)|ψ̇m(t)⟩ can be
described as

⟨ψn(t)|ψ̇m(t)⟩ =
1

Em(t) − En(t)
⟨ψn(t)|∂H(t)

∂t
|ψm(t)⟩

=
1
2

ω̇J

ωJ

1
m − n

⟨n|(a† + a)2|m⟩ (7)

where a†(a) is a creation (annihilation) operator for the harmonic oscillator. This shows that the
nonadiabatic element is proportional to ω̇J/ωJ . Thus, this term mixes the quantum states with
different quantum numbers during the temporal evolution. In other words, the system stays in
its initial state when the frequency changes are slower than the oscillation period, i.e., the inverse
of the Josephson plasma frequency. Next we perform numerical simulations to investigate the
quantum-mechanical evolution of the quantum flux states in the nonadiabatic dynamical regime.

4. Numerical simulations
The time-dependent frequency that we use in our numerical simulations is shown in Fig. 2 (a).
It is given by ωJ(t) = ωJ(∞)+(ωJ(0)−ωJ(∞))(1− tanh c(t−a))/2 with c being a nonadiabatic
parameter, and can be realized by using the interaction with a moving fluxon. This will be
discussed in detail elsewhere. The nonadiabatic parameter is set at c/ωJ(0) = 10. This means
that the system should experience the nonadiabatic effect.

We perform numerical calculations at the above time-dependent frequency using Eqs. (6) and
(7). The quantum states of a quantum flux evolve as shown in Fig. 2 (b). The system initially
occupies its ground state. The occupation probability of the ground state suddenly decreases
followed by the frequency change as shown in Fig. 2 (a). On the other hand, the occupation
probabilities for the other states increase with the amplitude of each nonadiabatic element. The
distribution of the occupation probabilities is shown in Fig. 2 (c). This distribution |an|2 can
be fitted by a super-Poissonian distribution P (n) expressed as

P (n) =
νn

2nn!µn+1
Hn(0)2 (8)

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 052260 doi:10.1088/1742-6596/150/5/052260

3



40
0

0.5

1

t

|an|
2

|a0|
2

200

|a2|
2

|a4|
2

|a6|
2

40
0

1

2

t
200 10 14

|an|
2

0

0.2

0.4

0.6

n
0 2 4 6 8 12

P(n)

|a  | n
2

ωJ(t)

Figure 2. Numerical simulations: (a) the time-dependent Josephson plasma frequency ωJ(t)
(ωJ(0)/ωJ(∞) = 10) (b) the occupation probability for each quantum state as a function of
time: the solid line shows |a0|2, the dashed line shows |a2|2, the dotted line shows |a4|2, and the
dot-dashed line shows |a6|2, (c) the occupation probability distribution. Solid points |an|2 refer
to numerical calculations, histograms P (n) to theory Eq. (8)

where ν = sinh(r) and µ = cosh(r) with r being a squeezing parameter. Hn(x) is the Hermite
polynominal. This indicates that the produced states are squeezed vacuums since squeezed
vacuums always exhibits super-Poissonian statistics [8]. In fact, the system Hamiltonian involves
the off-diagonal element at a finite time, i.e., the Hamiltonian can be rewritten by

H(t) = h̄ωJ(0)
(

a†a +
1
2

)
+ h̄ωJ(0)

[(
ωJ(t)
ωJ(0)

)2

− 1

] [(
a†a +

1
2

)
+

(
a2 + a†

2
)]

(9)

This Hamiltonian should be diagonalized using the Unitary operator V = exp[h̄ωJ(t)(a†2 −
a2)/2], so that the Hamiltonian at t = t is described by h̄ωJ(0)(b†b + 1/2) with b†(b) being a
creation (annihilation) operator at t = t. Therefore, a squeezed vacuum might be produced as
a result of the Bogoliubov transformation between eigenstates at different times [9].

5. Summary
We have investigated the nonadiabatic effect of a quantum flux in a double rf-SQUID system.
The system is equivalent to an anharmonic oscillator with a time-dependent frequency. We have
performed numerical calculations to investigate the quantum-state evolution of the quantum flux
within a harmonic approximation, taking account of the nonadiabatic effect. We found that the
resulting state distribution has a super-Poissonian character that reflects flux squeezing caused
by the Bogoliubov transformation between eigenstates at different times.
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