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Cyber Physical Systems 

The quantity, diversity, and sophistication of Internet of Things (IoT) items are rapidly 
increasing, posing significant issues but also innovative solutions for forensic science. 
Such systems are becoming increasingly common in public locations, businesses, 
universities, residences, and other shared offices, producing enormous amounts of data 
at rapid speeds in a variety of forms. IoT devices can be used as suspects, digital 
witnesses, or instruments of crime and cyberattacks, posing new investigation 
problems, forensic issues, security threats, legal concerns, privacy concerns, and 
ethical dilemmas. A cyberattack on IoT devices might target the device itself or 
associated systems, particularly vital infrastructure. 

This book discusses the advancements in IoT and Cyber Physical Systems (CPS) 
forensics. The first objective is to learn and understand the fundamentals of IoT 
forensics. This objective will answer the question of why and how IoT has evolved as 
one of the most promising and widely accepted technologies across the globe and has 
many widely accepted applications. 

The second objective is to learn how to use CPS to address many computational 
problems. CPS forensics is a promising domain, and there are various advancements 
in this field. This book is structured so that the topics of discussion are relevant to each 
reader’s major or interests. The book’s goal is to help each reader to see the relevance 
of IoT and CPS forensics to his or her career or interests. 

This book not only presents numerous case studies from a global perspective, but it 
also compiles a large amount of literature and research from a database. As a result, 
this book effectively demonstrates the concerns, difficulties, and trends surrounding 
the topic while also encouraging readers to think globally. The main goal of this 
project is to encourage both researchers and practitioners to share and exchange 
their experiences and recent studies between academia and industry.  
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1.1 INTRODUCTION 

A term coined by Kevin Ashton, “IoT” (i.e. Internet of Things) is the trending 
buzzword in the industry these days. The IoT has become an attractive, interesting, 
and most demanding area for all researchers and experts. It is gaining popularity 
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because it can connect devices with each other without human intervention and 
therefore make technology and devices smart. The inspiration behind the IoT is to 
enhance the quality of services provided to people, to enhance the use of resources, 
and to improve people’s quality of life. The tremendous increase in the use of IoT 
devices also has reduced the gap between the physical and digital world. IoT 
technology comprises sensors or smart devices, connectivity, data processing, and 
user interface. The smart IoT nodes or sensors are capable of providing lightweight 
data, retrieving and approving cloud-based resources for gathering and extracting 
information, and then using that information to make effective decisions [1]. 

The IoT has wide applications in agriculture as smart devices are used to monitor 
soil, temperature, moisture, etc. to help harvest crops better. In healthcare, smart 
devices are used to gather and communicate data about patients to doctors for early 
diagnosis of diseases. In the home, smart devices provide ease and comfort to 
people. In education, the smart classroom helps students learn and understand 
better. In a smart city, the smart components of the city make it a smarter and safer 
place to live, provide entertainment, etc. Figure 1.1 highlights some major appli-
cation areas of the IoT. 

IoT-enabled devices are large-scale devices that allow many people to commu-
nicate, and they generate massive amounts of data. IoT devices are also called smart 
devices because they use sophisticated algorithms with powerful hardware to make 
decisions based on sensed, gathered data. The sensors or smart devices are those that 
sense and perceive the surrounding environment. IoT systems consist of billions of 
heterogeneous objects that work together to make devices smart. Some IoT devices 
are lightweight and small in size, so they can utilize less energy, for example, smart 
watches and smart lenses. The IoT requires constant connectivity for sensing, storing, 
and analyzing the data [2]. The IoT is trending in e-business also, where it is helpful in 
payment, logistics, and inventory regions [3]. Advancement in the healthcare sector is 

FIGURE 1.1 Internet of Things applications.    

2                                              Internet of Things and Cyber Physical Systems 



also gaining popularity these days as, with the help of the IoT, diseases are detected 
and cured earlier and efficiently [4,5]. 

Figure 1.2 shows some of the characteristics of IoT technologies. 
IoT technologies are used to transfer sensed data to the cloud or any central 

storage through technologies such as RFID, ZigBee, Bluetooth, WiFi, and 
Near‐field Communication, NFC. The IoT has many benefits, including making 
better use of technology, minimizing human effort, being cost effective, and 
saving time and resources. The IoT’s weaknesses are security and privacy. Other 
weaknesses include complexity, flexibility, and compliance. With the frequent 
use of IoT technologies, new horizons for attackers have also been opened. 
Sensitive data are always at risk for cyberattack. 

1.2 NECESSARY TERMINOLOGY 

Forensics describes the evidence that is collected for solving a crime, for ex-
ample, fingerprints, DNA, footprints, etc. The forensic scientist inspects and 
examines evidence from crime scenes. Consider a crime where a guilty criminal 
ran away. Now, the work of the forensic team comes into play. The forensic team 
collects the evidence, such as blood spots, fingerprints, hair, or other trace evi-
dence that will help to prove the criminal guilty in court. There are certain terms 
that are used frequently. Table 1.1 lists the basic terminology, definitions, and 
examples. 

1.3 DIGITAL AND IoT FORENSICS 

Security of data from cyberattackers or opponents is both important and crucial at 
the same time. In the past few years, there has been a tremendous increase in the 
rate of cybercrimes worldwide. The rate of cybercrime (incidents per lakh popu-
lation) has increased from 3.3% in 2019 to 3.7% in 2020 in India, as per the NCRB 
(National Crime Records Bureau) [9]. The following Table 1.2 shows the crimes 
under IPC and SLL from 2018 to 2020 in India [9]. 

Crimes that involve computers, smartphones, networks, or the Internet to steal 
information or commit fraud to gain fame or financial pleasure are generally termed 
cybercrime. There are various crimes that are listed under cybercrime, such as 

FIGURE 1.2 Characteristics of the Internet of Things.    
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identity theft, copyright fraud, child pornography, digital piracy, money extortion 
for data, money laundering, spam, cyberbullying and stalking, online job fraud, 
phishing, IoT hacking, hacking, logical bombs, and a lot more. The cases registered 
against cybercrime are alarming, and attackers are constantly inventing new ways to 
harm their victims. Figure 1.3 shows the cybercrime cases in the various states of 
India in 2020. 

To investigate cybercrime, we need the help of forensics. The evidence can be 
extracted from the IoT or smart devices such as mobile phones, laptops, databases, 
networks, etc. Forensics is the simple process consisting of the following stages, as 
shown in Figure 1.4. 

The investigation process is started as soon as any crime is detected or reported. 
The goal of computer forensics is to gather and analyze the digital evidence col-
lected from the computer to prove the cybercrime in court. First of all, we identify 
where the evidence is located and in which form. Next, we preserve that evidence so 
that no one can tamper with it. Next, tools and techniques are examined, and evi-
dence is assessed for its accuracy. In the end, a detailed report is generated re-
garding the above steps. Other computer forensics branches include email forensics, 
database forensics, memory forensics, network forensics, mobile forensics, Web 
forensics, and multimedia forensics. 

Digital forensics and IoT forensics are two different terms where IoT forensics 
can be considered a subdivision of digital forensics. Both aim to recognize and 
extract digital information in a legal way from an IoT or smart device, sensors, an 
internal network, or the cloud [10]. IoT forensics can be divided into three main 
parts: cloud forensics, network forensics, and IoT device level forensics. Figure 1.5 
depicts these three levels in detail [11]. 

As stated, forensics is the technique used to investigate a crime or to collect 
evidence that can prove a crime. The same forensics investigation tools are used in 
IoT forensics. The benefit of using the investigation tools includes the ability to 
search quickly through a huge amount of data, the ability to choose one’s own 
language and perform the investigation oneself, and the ability to recover data that 
have been deleted intentionally or accidentally. It is always preferred if we consider 
more than one tool for the investigation process. The reports generated by the 
forensics tools contain every big and small detail of evidence; hence, they can be 
used to prove a crime. Some forensics tools are freely available, and some come 
with a cost. Some tools are used only for Windows OS, some are for mobile OS, 

TABLE 1.2 
Crimes Under IPC and SLL for Duration 2018 to 2020 in India       

Years Projected Population  
(in Lakhs) 

Percentage of IPC Crimes to Total  
Cognizable Crimes  

1 2018 13233.8 61.7 

2 2019 13376.1 62.6 

3 2020 13533.9 64.4    
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and some are so flexible that they can be used on any platform. Table 1.3 shows 
some of the important recent tools that are used in forensics [12]. 

A variety of free and paid forensics tools are available, and it is important to 
document the tools and methods used. Also, the information on version and model 
used in forensics investigation should be clear. The main drawbacks to using these 
tools are as follows [13,14]:  

1. Because the source code is kept secret by the manufacturer, it lacks 
transparency.  

2. These tools sometimes modify existing data.  
3. The forensics specialist needs to maintain all the records.  
4. There is no precise standard for determining and verifying the outcomes.  
5. Some software may take a lot of time to execute the results.  
6. Understanding them and gaining command of them is a hard task. 

FIGURE 1.4 Steps of forensics.    

FIGURE 1.5 The IoT forensics. (Data from Atlam, 2020).    
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Sometimes IoT security and IoT forensics are considered to be the same, but there is 
a difference between them. IoT security means securing the IoT smart device so that 
no opponent or attacker can steal the data or can get access to confidential data. But 
IoT forensics doesn’t claim that. Its work comes into the picture when the crime has 
already been done. IoT forensics gathers the evidence that can be used to prove the 
crime against the culprit in court. 

Digital forensics is helpful because it is used to identify what was stolen, how it 
was stolen, and how data were replicated or disseminated. Apart from this, some-
times it can be used to identify the duration of unauthorized access on any network. 
In recent years, as cybercrime has increased, so has the requirement and need for 
digital forensics. Also, digital forensics gathers evidence from a variety of areas, 
such as mobile phones, computers, laptops, handprints or footprints, etc. so it is 
easy to prove the crime against the culprit. 

Similarly, IoT forensics is required because of the weakness of the IoT (i.e. security). 
IoT devices are considered to be vulnerable devices. IoT devices with public interfaces 
are unprotected and are at more risk because they can let malware in easily in any public 
or private network [15]. Some of the examples include phishing, SQL injection attacks, 
commandeering cloud-based CCTVs, node/device tempering, data leakage, identity 
theft, cyberbullying, ransomware, etc., targeting various smart devices and Voice over 
Internet Protocol (VoIP) devices. The attacks that can be performed on IoT devices can 
be categorized as attacks on IoT hardware, IoT data, and IoT software. Following are 
some reasons, application-wise, why IoT forensics is required.  

1. IoT forensics in healthcare: One of the major applications of the IoT is in the 
healthcare sector, where one can find smart equipment and wearable devices 
that help patients to keep track of their health, and doctors can monitor 
patients remotely. For a fitness tracker, a malicious person can accumulate 
the data and sell it to an insurance company or can threaten the victim with 
the compromised device. In the case of medical data, identity theft is in-
creasing alarmingly [15]. Smart wearable devices are also a good source of 
data, generated from built-in sensors. Smart wearables are used in the 
healthcare sector to gather sensitive data on patients that can be analyzed to 
check the progress of patients’ health. This data can be used as forensics to 
disprove the incorrect testimony of a suspect or to trace the actions of a 
victim. Other types of attacks may include disrupting emergency services, 
disrupting monitoring services, or sending fake or wrong information. For 
this reason, the study of wearables has become more attractive to forensics.  

2. IoT forensics in smart buildings: Smart homes are located in residential 
areas, and office buildings can be made smart with the help of sensors and 
technology to save energy and resources and to make life comfortable and 
easy. For example, automated lighting systems, air conditioners, re-
frigerators, washing machines, smoke detectors, etc. are controlled through 
the Internet. But this easy technology can be attacked by criminals who 
access and break down the system. Criminals can manipulate the system 
and break smart locks to intrude into smart houses when the owners are 
away. Also, hackers can break into the smoke detector system, which will 
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open the emergency exit of the home; thus, they gain access to the house 
for robbery. Other types of attacks include tampering with smart meters or 
disabling water, gas, or electricity supplies. IoT forensics can help by 
detecting these moments by camera and then recording them and sending 
that video to a connected or registered mobile phone.  

3. IoT forensics in smart parking: Vehicles that use green energy to keep the 
environment healthy and save energy are called smart IoT vehicles. Smart 
parking ensures parking of vehicles in proper places and spaces. Through 
sensors and connected devices, users can find empty parking for their ve-
hicles. Because the locking system of the vehicles is through the Internet and 
sensors, hackers can break into the system and steal the vehicle. Other attacks 
include controlling the car from the attacker’s phone, stopping the car’s en-
gine, and altering the car’s GPS signal. So, forensics are required in this field.  

4. IoT forensics in smartphones: Smartphones contain lots of data: phone call 
recordings, messages, photos, videos, etc. Mobile phones are devices that 
can send or receive data from WiFi access points, Bluetooth, etc. Hackers 
can delete the data or alter the data after a crime, so forensics is important. 

5. IoT forensics in the smart grid: Old meters are replaced by new and in-
novative smart meters that use IoT technology to generate bills per consumer 
use on their smartphones. But hackers can spoof usernames and addresses, 
can perform denial of service attacks, or can gain unauthorized access by 
breaching the network. So, forensics can play a crucial role here also. 

In the IoT environment, various applications help to collect evidence. As the first 
phase of the evidence life cycle, it is important and necessary to check on every detail 
to collect strong evidence against any crime. The IoT network contains a rich set of 
data and evidence that can be collected via smart devices. The following Table 1.4 
shows some of the sources of evidence from IoT-based applications [16]. 

TABLE 1.4 
Sources of Evidence      

IoT Application Area Sources of Evidence  

1 Smart Buildings Data from applications on connected smartphones, CCTVs, local 
networks, and smart appliances such as TV, fridge, AC, etc. 

2 Smart Vehicles Data from GPS system, sensor network, automotive applications on 
smartphones, etc. 

3 Smartphones Data from memory cards, contact lists, text messages, call details, 
files, etc. 

4 Smart Wearables Data from applications on wearable devices, cloud data, biometric 
information, etc. 

5 IoT Industry Data from cloud storage and applications such as details of import/ 
export, profit/loss, employee information, other important records, etc. 

6 Smart Hospitals Data from the cloud and applications such as patients’ personal records, 
medical history, hospital staff information, medicine information, 
billing information, etc.    
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1.4 CHALLENGES AND ISSUES IN IoT FORENSICS 

The IoT – being the most used, demanding, and recent technology – is also con-
sidered the most challenging one. As the IoT is dynamic in nature, all the devices 
are connected with each other with the help of the Internet for communication. The 
ease of connection and access of IoT devices opens a new horizon for hackers and 
attackers to gain access to the network and plant viruses or malware on the devices. 
The major problem that arises in this technology is security. It’s difficult to ensure 
security in IoT devices. A lot of research is being carried out to enhance the security 
of IoT devices. Figures 1.6 depicts some of the major challenges faced by IoT 
devices or networks. 

Major challenges for the IoT environment are security concerns such as con-
fidentiality, access control, protected communication, and protected storage of data 
[17]. Let’s discuss the above stated issues in detail with proper examples.  

1. Security: This term is used to specify the techniques of protection used to 
secure the IoT network. IoT security is the combination of techniques, 
tools, and approaches toward he prevention from malicious attackers. It is 
the practice that keeps devices safe. This factor basically considers two 
cases: (1) to make sure that all sensed, collected, and stored data are kept 
safe or transferred securely; (2) to detect and remove the vulnerabilities in 
IoT components. The solution to this problem is to encrypt the data with 
strong encryption algorithms. For example, in any bank the CCTV cap-
tures all the details, and these data are stored centrally on cloud storage. If 
robbers get access to that, they can delete the recording of that day and can 
remove the evidence of robbery.  

2. Authentication: In the IoT, authentication is used to prove the identity of 
authorized persons. Key generation and deployment is a major challenge in 
the IoT environment [18]. In the IoT, to prevent any data leak, only au-
thorized persons should access, alter, or insert data. Devices should have a 
strong authentication mechanism. For example, a username and strong 
password are used to authenticate IoT devices in the network.  

3. Privacy: Privacy is the concern where private and sensitive information is 
leaked to unauthorized people. For example, all the devices connected in 

FIGURE 1.6 The challenges faced by IoT technologies.    
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the IoT are constantly transmitting delicate personal information, such as 
name, contact details, residential details, credit/debit card information, 
health-card information, etc. For example, if we are purchasing any pro-
duct online and paying online, we need to insert our private information, 
Then, we need to protect this information.  

4. Authorization: For securing IoT networks, providing authorization and 
access control mechanisms plays an important role. Access to information 
should be provided only after successful authentication of authentic users. 
This can be achieved by using two-factor authentication and keeping 
strong passwords. For example, in any IoT network if the username and 
password are weak, any attacker can guess the password and can hack the 
network.  

5. Big Data: As the IoT is a network of various connected devices, data are 
constantly being created and shared between them with the help of cloud 
storage, so we have a large amount of sensitive data. It is the key foun-
dation of “big data.” So, we have to keep these crucial data safe and se-
cure, and most importantly, integrity must be maintained. So, the main 
problem arises in maintaining integrity of the message. For example, if any 
patient’s data are recorded and stored on the cloud, the hacker can change 
the patient’s medical history and health statistics if proper measures are not 
taken.  

6. Resource Limitation: The IoT network contains devices that are small and 
lightweight, mostly battery operated. So, high-security algorithms that take 
up a lot of space and time complexity make them operate slower. 
Moreover, we cannot execute intricate processing on them. They need 
lightweight, small, but strong encryption algorithms. For example, a small 
network that controls traffic for a small area can sense data and store data 
on the cloud by using small amounts of energy, but in the case of marine 
cargo or monitoring airport traffic, a big infrastructure and a big, strong 
cryptographic algorithm with large storage space is needed.  

7. System Resilience: Another challenge is system resilience; that is, when 
the system is hacked and data are breached, how does the system react to 
protect itself from further damage? For example, in a network, if one node 
is attacked and the system realizes it, then how does it protect the other 
nodes from getting infected?  

8. Complex System Architecture: The IoT involves large, heterogeneous 
nodes and devices that include sensors, storage, and computing devices, 
making it more complex to manage and keep safe and secure from hackers. 
The extra people, nodes, interaction, and boundaries increase the risk of 
safety breaches. 

The challenges faced by investigators in IoT forensics consider the size of ob-
jects; the location, such as local or remote; the ease of access; the significance of 
recognized collected devices; legal issues; wireless networks; the availability of 
tools, etc. The objective remains the same as in physical crime – to collect 
the correct evidence in the given time. Digital crime also involves the steps of 
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determining the crime, analyzing the crime, identifying the culprit, and then 
proving it by collecting various valid evidence [19]. Also, it includes cloud 
forensics as cloud storage is important in the IoT context as it contains large, 
sensitive data. The IoT soon is going to expand its boundaries from smart homes 
to smart thinking to smart cars, and we won’t be amazed by seeing it being 
abused by attackers. We can categorize the major challenges faced by an in-
vestigator during the forensics process as follows [4]:  

1. Identification of evidence  
2. Acquisition of evidence  
3. Preserving and protecting evidence  
4. Analysis and correlation of evidence  
5. Attack and deficit attribution  
6. Presentation of evidence. 

According to forensic researchers, legal aspects play an important role in creating 
problems. Figure 1.7 shows the major challenges faced by investigators during the 
forensics process. 

FIGURE 1.7 The major challenges faced by investigators during forensics.    
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1. Identification of Evidence: The first and foremost examination in for-
ensics is to search and examine for evidence. It seems to be difficult as 
the investigator may not know where the data are stored physically. The 
problem faced during this phase is that sometimes it’s difficult to re-
construct the crime scene to collect proof. In digital forensics this 
problem is not possible, but because the IoT considers real-time, in-
dependent interaction between various devices or nodes, it’s difficult to 
examine the scope of the damage. Another difficulty is to select which 
data to select and which to discard as the IoT deals with a huge amount 
of data. While communicating, IoT devices can migrate between dif-
ferent locations physically and can be confined with single or many 
hosts, so locating evidence faces challenges. In digital forensics, the 
objects are limited to the computer, laptop, or mobile phone, but in the 
case of the IoT, the device types are various and heterogeneous. Some 
devices are so small that they are unnoticeable, such as medical 
equipment sensors that collect data from the patient’s body for diag-
nosing a disease. Also, due to short battery life, some devices are hard 
to detect.  

2. Acquisition of Evidence: After identifying the device, the next step is to 
collect evidence. This step is crucial as an error in this phase can result in 
making the whole investigation process invalid [13]. The problem faced in 
this phase is lack of training and knowledge of investigators. As the saying 
goes, incomplete information is always dangerous. The investigator should 
be trained regarding the whole process, its importance, and the tools 
available and how to use them. Another issue is data encryption. Data are 
stored on the cloud after performing an end-to-end strong encryption al-
gorithm. But due to this, the user can hide or manipulate the data, so the 
cloud provider should have the decryption key. Also, another problem 
faced is extraction of evidence from IoT nodes because they can have 
different hardware and operating systems. Privacy and ethical issues are 
also concerns while collecting and accessing personal data of various 
people [4]. 

3. Preserving and Protecting Evidence: After identifying and collecting evi-
dence, the next crucial thing is to preserve and maintain its integrity. Chain 
of custody is a logical series that registers and maintains sequence of 
custody, transfer, temperament, scrutiny, and control of all types of evi-
dence, both electronic and physical. It documents the particulars of in-
vestigators who handled evidence, along with the date, time, and purpose. 
Securing the chain of custody is a challenge as it contains all the necessary 
and sensitive information about all evidence [20]. Figure 1.8 shows the 
detailed process of chain of custody and its stages. 

Another challenge in this stage is limited memory storage space in 
IoT devices. The size of IoT devices is already small, and they are 
battery operated, so the data that they store have less space. As IoT 
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devices are performing continuously, they can override the data or 
even discard some data, which can result in losing important evidence. 
The Cloud Security Alliance (CSA) conducted a survey and gave the 
top 12 threats to cloud computing, which include insecure Application 
Programming Interface (APIs), account hacking, system vulnerabilities, 
data breaches, data loss, malicious insider attacks, Denial of Service 
attack (DoS), etc. [21]. The chain of custody and IoT data are stored and 
rely on the cloud completely, so any intruder who gains access can 
modify or delete the data [22]. Also, some vendors of cloud storage do 
not provide all the information and do not maintain transparency re-
garding the internal structure of their cloud storage [23]. The duration of 
stored data on the cloud is not specified. 

4. Analysis and Correlation of Evidence: In the analysis phase, the in-
vestigator may not get the chance to examine all data as the data generated 
are numerous and their source of origin is not known to the investigator 
because the IoT network contains heterogeneous nodes. Another issue is 
that the majority of IoT nodes do not maintain metadata (e.g. time, geo-
graphical location info, copyright info), which makes correlation and lo-
gical consistency of evidence impossible. In some crimes, if the data are 
broken and stored at various nodes that are geographical places apart and 
are in different countries or states, then it is difficult to regulate them as 
they fall in different jurisdictions.  

5. Attack and Deficit Attribution: The investigation process always tries to 
find out the criminal, but if the evidence is found at one node of the IoT 
network, it does not guarantee that after identifying that device it will 
lead to the criminal. Some cloud vendors ask for minimal user in-
formation while signing up and accessing the services, and this leads to 
problems in the investigation process [24]. In digital forensics, only a 
single device is tampered with, but in the IoT, where multiple users are 
connected, this leads to problems identifying the correct owner and lists 
of illegal and legal activities. Most of the recent and modern companies 
provide private devices for work, which makes identifying liabilities 
tough [25,26].  

6. Presentation of Evidence: The last but most challenging phase is to present 
the collected and analyzed evidence in front of courtrooms with juries. It 

FIGURE 1.8 Process of chain of custody.    
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may be possible that the juries have a basic understanding of cloud 
technology and forensics, but they may not be experts in everything. So, it 
will be challenging to explain to them everything in technical terms in a 
short span of time [13]. 

1.5 IoT FORENSICS APPROACHES AND TECHNIQUES 

The IoT makes impactful applications in healthcare, entertainment, education, 
and various sectors but lacks in security and privacy [27,28]. It is the most 
popular and vulnerable area that attracts hackers and attackers to breach security 
and commit a crime. After the crime, attackers try to remove or alter the evi-
dence. In both concept and practice, researchers over the last few years have 
been continuously working on making the IoT secure and getting accurate 
evidence from IoT forensics. A lot of models and frameworks were proposed 
from 1995 until now. There are various frameworks adopting the same main 
stages to choose from for any investigation. In the end, the choice depends on 
the assessment method and strategies of the investigator. The early models that 
were suggested by researchers included the Scientific Crime Scene Investigation 
(SCSI) model [29], Digital Forensic Investigation model (DFIM) [30], Enhanced 
Digital Investigation Process (EDIP) model [31], General Digital Forensic 
Framework model [32], Extended Model of Cyber Crime Investigation(EMCI) 
[33], and Computer Forensics – Secure, Analyse, Present(CFSAP) model [34]. 
These models were just theoretical frameworks that were presented before the 
IoT became popular technology. They were not supposed to resolve the issues 
mentioned in this chapter; however, they formed a basis for the recent digital 
forensics discipline. 

From 2005 to 2015, researchers worked and adapted various challenges that 
are faced in the IoT and cloud computing. Some of the famous models include 
the Computer Forensic Field Triage Process (CFFTPM) model [35], the 
Common Process Model for IR and the forensics model [36], and the Digital 
Forensic Investigation Framework Mapping Process [37]; for Malaysian in-
vestigation, the process digital forensic model [38], digital forensic multi- 
component view model [39], Systematic Digital Forensic (SDFIM) model [40]; 
for cloud conceptual, integrated digital forensic framework model [41]; for 
cloud forensics, workflow management & processing model [42], DFS digital 
forensic as service model [43], FAIoT model [44], and many more. From 2016 
to 2021, advancement was made on recent theoretical frameworks, and they 
became more advanced against attacks and crimes: MSM mobility forensic 
model [45], LoS (Last on Scene) model [46], IoT dots [47], Blockchain-based 
forensics model [48] as Blockchain is used to provide security to IoT applica-
tions [49], Trust-IoV model [50], etc. 

Table 1.5 shows the brief summary of work done in this aspect by various 
researchers. 
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1.6 CONCLUSION 

The IoT’s characteristics have brought change and have impacted our lives in both 
positive and harmful ways. IoT smart devices have wide application areas that are 
gaining popularity, are expanding their roots in every possible area, and are perfectly 
merging with recent technologies. This exponential growth has also offered new 
openings for cyber criminals and attackers. By considering the complex nature and 
fast growth of IoT networks, security has become an important issue that needs to be 
analyzed. The IoT also contributes to collecting and preserving lots of data that can 
help in gathering forensics evidence. To fully function, IoT devices are dependent on 
cloud services, which creates lots of challenges for investigators when collecting 
evidence. The challenges are faced in each state, starting from finding evidence on 
the device to the last stage of presenting the evidence to prove the culprit guilty 
against that crime. In this chapter, we have discussed IoT and its applications, some 
important terminology, digital forensics, IoT forensics, challenges faced by in-
vestigators, and the recent work done in securing IoT platforms and also getting 
proper evidence from them. The various tools used in IoT forensics, along with their 
advantages and disadvantages, were also discussed in this work. Many researchers are 
working in this area to protect the IoT network against cyber criminals, but still there 
are many open issues that need to be focused on more, and there is a need to work 
more to make it stronger and improved against vulnerabilities. 
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2.1 INTRODUCTION 

Internet of Things (IoT) technology is one of the most appealing study areas. It 
influences a variety of researchers and government sectors due to the emergence of 
its new technologies and their limitless powers. The IoT simply refers to the ex-
pansion of computing and network capabilities to include not only computers and 
mobile phones, but also a wide range of other devices and sensors throughout the 
globe [1]. The IoT has the ability to connect and share useful and sensitive data 
among physical and virtual items that are physically connected to the Internet. To 
connect the IoT devices throughout the network, either wired or wireless commu-
nication technologies are used. The potential connection of various IoT devices and 
exchange of information among heterogeneous integrated IoT-enabled devices can 
improve our standard of living [2]. The exponential growth in network technolo-
gies, communication systems, and advanced security mechanisms allow the IoT to 
establish secure connections among billions of things. Statista [3] estimates that the 
number of IoT objects will reach 75 billion by 2025. Security is one of the primary 
concerns that threatens the adoption of various IoT devices. Because of the IoT’s 
varied and dynamic nature, protecting data from IoT devices is a complex task. 
Building an efficient and dependable security approach is now one of the most 
important things to think about. 

Despite the fact that various researchers have proposed multiple security solu-
tions to the IoT security challenge, a solid security approach to ensure data con-
fidentiality, privacy, integrity, and trust have yet to be discovered [4]. Digital 
forensics has grown in importance, and more research needs to be carried out to 
develop new investigative techniques. Various techniques under digital forensics 
are being utilized to drastically minimize the number of cybercrime incidents. As 
the Internet and communication technology have improved, the number of security 
risks and cybercrimes has increased substantially [5]. The number of data records 
compromised worldwide in the first six months of 2018 topped 4.5 billion [3]. This 
number grows every day as a result of an inability to detect attackers and suc-
cessfully repel attacks. The acquisition of legal evidence contained in digital media 
is aided by digital forensics. It also saves time throughout the investigation process 
by detecting contaminated or stolen data, which may otherwise take hours to 
identify. The IoT has become a big target for violence and criminals because of 
billions of heterogeneous devices storing sensitive and valuable data. Despite the 
tremendous advantages that the IoT provides in various applications, it creates a 
host of forensics challenges. The IoT system has billions of devices with 
insufficient security, making it an easy target for a variety of cyberattacks. 
Furthermore, due to the wide range of IoT devices, typical investigative frameworks 
are ineffective. As a result, developing an IoT-based investigative framework that 
can adapt to various devices and situations in the IoT system should be one of the 
top priorities for security experts. 

This chapter provides knowledge on IoT security, cybercrime, and digital for-
ensics. Section 2.2 introduces IoT technology. Section 2.3 presents various layers 
that are key components of IoT architecture. Section 2.4 explains IoT mechanisms 
and their building blocks in terms of IoT fundamental components and devices. 
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Section 2.5 explores various significant features of the IoT. Section 2.6 showcases 
various communication technologies are being used to exchange information from 
one IoT system to another. Further, in the subsections, various wireless commu-
nication technologies are explained. Section 2.7 elaborates on various challenges 
that are being faced in IoT systems. Section 2.8 provides a detailed discussion on 
various security threats and their consequences in IoT systems. The section explains 
how the security threats affect the performance of each layer of the IoT architecture. 
Section 2.9 provides various security solutions that are related to each layer of the 
IoT architecture. Section 2.10 introduces digital forensics, and its subsection dis-
cusses different phases that are involved in the process of digital investigation. 
Section 2.11 presents a total of three digital forensics schemes such as network 
forensics, device-level forensics, and cloud forensics that are widely used in IoT 
forensics. Further, the subsections of this section explore various types of solutions 
that have been suggested by the researchers to improve all the stages of the in-
vestigation process. In addition to this, this section presents various issues in digital 
forensics. To improve the investigation process, the section suggests different 
components that can be included in the real-time investigation process. In the end, 
Section 2.12, the chapter concludes by providing future directions that give deep 
insight to researchers to develop new schemes in the field of digital forensics. 

2.2 IOT TECHNOLOGY 

The IoT is a new technology that has emerged as a result of recent breakthroughs in 
the area of information technology (IT). The IoT refers to the capacity of many 
devices across the globe to be connected and interact with one another via the 
Internet. Currently, billions of IoT users are connected to one another over the TCP/ 
IP protocol suite and communicate various forms of data throughout the day [6]. 

With the exponential growth of the available resources and advanced technol-
ogies over the Internet, opinions are shared and data are exchanged in over 100 
countries. According to researchers and practitioners, the IoT is “An open and 
complete network of intelligent things with the potential to auto-organize, exchange 
information, data, as well as resources, reacting effectively to the face of problems 
and holds the opportunities in the network environment” [7]. The IoT is one of the 
emerging IT technologies that has attracted the interest of IT specialists all around 
the world. It has the capability of linking useful resources over the Internet at any 
time to establish a networked architecture for all IoT-enabled devices. The IoT has 
given each of its users a distinct identity; it may be thought of as a worldwide 
network that connects things and provides its unbreakable digital services to its 
users. The IoT system includes a number of applications that have a significant 
effect on practically every aspect of our everyday lives, including smart homes, 
smart cities, smart transport, linked cars, interconnected healthcare systems, and 
many more [6]. In 5G-enabled services, sometimes a high-speed data transfer is 
required. Therefore, to improve the rate of data transfer, IoT architectures are in-
troducing artificial intelligence technologies. The inclusion of blockchain tech-
nology ensures a secure and trusted environment for all the IoT-enabled devices that 
are being connected with the IoT network [8,9]. Figure 2.1 shows some useful 
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applications of the IoT that improve our standard of living and are included in 
various activities of our daily life. 

2.3 LAYERED ARCHITECTURE OF IOT 

In the IoT, there are a variety of data-gathering technologies. The wireless sensor 
network (WSN) is the most extensively utilized technology, and it combines multi- 
hopping and self-organization to keep control of the communication nodes. The 
interconnections of all the scattered nodes are controlled by the central unit in the 
WSN [10]. Each node is equipped with sensors that can sense pressure, light, and 
heat. This system functions as an integrated model in which IoT nodes accomplish 
various significant activities such as sensing, data collection, and transformation of 
raw data into meaningful information. The WSN system is capable of analyzing 
data, measuring them, and transmitting them to various IoT-based applications [11]. 
In literature [12], it has been stressed that an open architecture for IoT-enabled 
devices is very useful to interlink a diverse range of network applications. In ad-
dition to this, IoT design should be adaptive to allow the integration of data and 
worlds with the Internet. Researchers in their studies have suggested different ar-
chitecture levels in IoT architecture. Different layers in the architecture perform 
their assigned tasks and provide insights to the researchers to carry out more the-
oretical investigation. In Figure 2.2, different IoT layers such as the perception 
layer, network layer, support layer, and application layer are shown. 

FIGURE 2.1 Applications of the Internet of Things (IoT).    
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Descriptions of the layers that are the key components of any IoT architecture 
are given below. 

1. Perception Layer: In this layer, some recent technologies such as nano-
technology, tagging technology, sensors, and intelligence technology are 
being used to recognize IoT-enabled physical objects. The integration of 
advanced technologies helps to gather useful data and information via 
interconnected sensors over the IoT network [13].  

2. Network Layer: Communication systems, broadcast networks, WSNs, 
optical transmission networks, and closed IP carriers all fall under this tier. 
This layer is responsible for sending obtained information to the central 
controller so that the information can be read [14].  

3. Support Layer: The IoT’s core processing unit is found in the support 
layer, which converts the signal into another form. It also transfers the 
processed data to storage and makes it accessible whenever it is needed. 
The application layer and the support layer have a strong relationship, 
allowing IoT devices to execute all of their duties efficiently [15].  

4. Application Layer: This layer comprises unique applications that have 
been specifically built to meet the requirements of the industry or users 
such as smart transportation systems, smart houses, and smart mining 
process monitoring systems [16]. 

2.4 IOT MECHANISMS AND THEIR BUILDING BLOCKS 

The IoT can interconnect everything at any moment by utilizing network channels. 
The precise configuration of IoT-enabled devices, their identification, and ex-
ploitation of sensing devices are required to integrate heterogeneous components of 

FIGURE 2.2 Different layers in IoT architecture.    
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the IoT system. Chandrakanth et al. [17] have suggested various fundamental 
components of the IoT system, which are given below. 

1. Hardware: This component comprises all the IoT sensors, hardware de-
vices to initiate communication over the network, and central units to 
process and transform the data into a meaningful form. The central pro-
cessing unit of the IoT system also performs data management tasks and 
the exchange of sensitive information among the users. 

2. Middleware: This component is mainly used for data analysis and man-
agement. In an IoT system, cloud computing is a middleware component 
that integrates various conventional technologies such as service-oriented 
architecture, distributed computing, hardware visualization, and grid 
computing [18].  

3. Presentation: This component is widely used by consumers to visualize 
and interpret the data. 

In efficient IoT systems, the seamless communication and exchange of sensitive 
information among heterogeneous networks can only be possible by the unification 
of IoT building blocks [19]. With the proper incorporation of building blocks into 
the networks, all the subtle issues related to compatibility and interoperability can 
be resolved. The most critical devices of an IoT network are listed below. 

1. Sensors: Sensors are used to identify the physical attributes of inter-
connected IoT-enabled objects. These attributes can be temperature, 
weight, acceleration, and sound.  

2. Aggregator: This component executes mathematical operations and 
transforms raw data into a more usable format.  

3. E-utility: An e-utility is a piece of software or hardware that analyzes all 
the data it receives.  

4. Communication Channel: A communication channel is a conduit for 
transferring stored data. The flow of information can be wired or wireless 
depending upon the requirement of the user. 

5. Decision Triggers: These are utilized to offer outcomes to meet the pri-
mary goal of IoT devices. 

2.5 CRUCIAL FEATURES OF IOT 

The IoT arose from the combination of electromechanical systems and wireless 
communication technologies that provides several benefits [20]. IoT systems consist 
of several traits that are listed below.  

1. Interconnectivity: The IoT is a fast-evolving technology that provides an 
integrated global information system. It facilitates the connectivity of all 
communication devices, which speeds up global communication [21].  

2. Things-Related Services: The IoT provides a wide range of services to the 
users of IoT networks. These services utilize the physical IoT-enabled 
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devices in the IoT-based environment. Therefore, the IoT has established 
itself as a recent technology.  

3. Heterogeneity: In the IoT network, the interconnection among the IoT- 
enabled devices depends upon the type of hardware and network plat-
forms. Heterogeneity among hardware and network platforms deals with 
different types of challenges and provides concrete solutions to a variety of 
network activities [22].  

4. Dynamic Changes: IoT devices can alter their functioning modes based on 
the requirements. The IoT-enabled devices interconnected within the smart 
home or building have the potential of wakefulness and sleep, as well as 
mechanically connecting and disconnecting with other integrated IoT- 
enabled devices.  

5. Large Scale: The IoT network interconnects a wide variety of sensors and 
other useful devices. Researchers and practitioners have predicted that by 
the end of the year 2025 the number of interconnected IoT objects will 
reach up to 75 billion [3]. Therefore, the exponential growth of network 
devices establishes a large-scale network system that facilitates effective 
communication among IoT users. 

2.6 DIFFERENT COMMUNICATION TECHNOLOGIES OF IOT 

The IoT consists of a variety of items and gadgets. For proper functioning of all the 
interconnected devices, various communication protocols are being used over the 
IoT network. The interconnected devices generate a massive amount of data that is 
required to be managed through data processing services. The data can be in the 
form of images, text, video, audio, and other multimedia elements. To store and 
send high-resolution images over the network necessitates high storage require-
ments and efficient communication channels. Researchers have suggested various 
image retargeting techniques that can be used to minimize the aspect ration of the 
images [23–26]. To provide the new services to the users, billions of heterogeneous 
devices are interlinked together, which is not an easy task. Therefore, commu-
nication protocols are regarded as a critical component that enables all of the in-
terconnected components to exchange useful and sensitive information [1]. The 
primary communication technologies that are being used in the IoT-based network 
are listed below. 

2.6.1 WIRELESS FIDELITY (WI-FI) 

This technology is widely being used to exchange information among hetero-
geneous IoT networks and interconnected devices through wireless signals. In lit-
erature [27], it is mentioned that in the year 1991 the NCR Corporation developed 
the first version of the originator of Wi-Fi. WaveLAN has penetrated the market as 
the first wireless device that provides a speed of 2 Mbps. However, the quick ad-
vancement of wireless technology has facilitated innovative discoveries, and now, 
millions of public areas such as smart transportation systems, smart homes, and 
smart offices are equipped via Wireless Local Area Network (WLAN). In addition 
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to this, Wi-Fi is now built into almost all electronic gadgets, such as smartphones, 
computers, televisions, and other handheld devices [28]. Furthermore, with the aid 
of wireless access points, entire cities may be turned into Wi-Fi corridors.  

1. Bluetooth: Bluetooth is another technological miracle that employs short- 
range radio technology to offer seamless connectivity between everyday 
items such as portable PCs, notebooks, printers, and cameras across a 
distance of 100 meters. Bluetooth devices can be connected at a 1 megabit 
per second (Mbps) rate. Piconet is a popular channel of communication 
used by various Bluetooth devices. It may link two to eight devices at the 
same time for information exchange in the form of text, voice, picture, or 
video [29]. Recently, various companies such as Intel, IBM, Toshiba, 
Cisco, and HP have been contributing their significant efforts to develop 
the core Bluetooth Special Interest Group, which is responsible for fur-
thering development of the technology.  

2. ZigBee: ZigBee is an essential protocol that was created to increase the 
capabilities of WLANs. The decent price, short communication range, 
dependability, and flexibility are some major characteristics of this pro-
tocol. ZigBee is another miracle of a communication platform that pro-
vides plenty of benefits. This protocol is widely used in smart home 
devices, smart manufacturing systems, and smart power grids [30].  

3. RFID: One of the most recent communication networks for the IoT is a 
radio-frequency identification (RFID). These are small reading devices 
that receive the message. The inbuilt radio device and frequency trans-
ponders, known as RF tags, are used in this technology. The RF tag is used 
to carry programmed data and also allows the RFID to receive the signals. 
In RFID, there are two types of tags: active reader tags and passive reader 
tags. The main trait of an active tag is its high frequency over passive tags. 
The RFID technology is widely employed in many IoT-based applications, 
such as smart healthcare systems [30], smart agricultural, smart trans-
portation systems, and national surveillance systems.  

4. NFC: NFC (Near-Field Communication) is a networking technology that 
brings devices closer to establishing short-range communication to ex-
change sensitive information. The data communication principle of NFC is 
similar to that of RFID. After intensive study, it has been found that NFC 
can be utilized for more in-depth two-way communication. In commercial 
applications, smartphones, and online digital payment services, NFC is 
widely used. NFC is known for its quick connectivity and user-friendly 
functionality. In NFC, a peer-to-peer (P2P) network topology can be 
employed [6]. 

2.7 VARIOUS ISSUES OF IOT NETWORKS 

In our society, the IoT system is being used in a variety of ways. However, sig-
nificant hurdles have to be overcome to maintain the growing adoption of IoT 
devices. The difficulties that are being faced in IoT systems are listed below. 
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2.7.1 THREATS TO SECURITY 

Security risks of IoT devices are being investigated by qualified professionals. The 
hacking of IoT-enabled devices, sensitive private e-mails, and secret data are the 
most typical security challenges. The rapid increase in security risks of IoT-enabled 
devices does not only put sensitive data in danger but also the lifestyles and well- 
being of its users. Therefore, security is the most challenging obstacle that affects 
the effective deployment of IoT-enabled devices. With the exponential development 
of technology, various companies are adopting IoT-based solutions to promote their 
product into the market. To resolve security issues related to e-business and 
e-marketing, researchers have identified various cyber threats in IoT and also 
suggested various solutions [31]. 

2.7.2 CONNECTIVITY ISSUES 

Integrating a huge number of IoT-enabled devices into a common network is an-
other important challenge of the IoT that needs to be focused on carefully [32]. 
Presently, information from different nodes is authenticated and authorized via a 
centralized mechanism. However, because the existing centralized system will 
become a bottleneck, this approach will be unsuitable for connecting billions of IoT 
devices and their potential users. The future capabilities of IoT systems can be 
increased by adopting decentralized networking that provides facilities with its 
unbreakable services to interconnect billions of IoT users at the same time [33]. 

2.7.3 IOT DURABILITY AND COMPATIBILITY 

The IoT system is currently undergoing extensive growth, and several recent 
technologies are developing from it. Compatibility concerns arise as a result of 
these changing technologies, which necessitate new hardware devices and software 
systems. In addition to this, due to the lack of firmware in the IoT-enabled devices, 
problems of long-term viability have arisen [34]. For a successful IoT-based 
system, endurance and compatibility are critical concerns. 

2.7.4 CONSTRAINTS IN COMPUTING 

In an IoT-based network system, even a tiny IoT-enabled device requires an ad-
vanced communication system and protocols to be interconnected with other de-
vices [35]. The speed of information processing and other useful functionality of the 
various IoT-enabled devices can be reduced due to certain constraints. These lim-
itations of IoT networks demand secure operations and connectivity so that less 
power can be consumed by the equipped IoT devices and secure information can be 
transferred by them to other devices. The main objective of all the protocols over 
the IoT network is to strengthen the IoT devices in performing their assigned task at 
an optimum level. The authenticity and privacy of the data maintained on IoT 
devices are severely harmed by the network’s size and power limits. Digital sig-
natures, which need public key infrastructure, can be used to protect these systems. 
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However, public key infrastructure encrypts data by utilizing computational and 
memory capabilities that are not available in recent WSN technology, which is 
especially important when there is a need for frequent data transfer by the system. 

2.7.5 BIG DATA 

The IoT is composed of a network of billions of items that generate large amounts 
of data, referred to as big data. The term “big data” refers to the massive amount of 
data that cannot be effectively handled by traditional analytical methodologies. The 
massive volume of data generated by IoT devices poses several issues, particularly 
in terms of security and privacy. It’s difficult to come up with appropriate data 
analytics strategies that extract useful information. Furthermore, ensuring the in-
tegrity of data is also a big problem that researchers must consider while delivering 
appropriate and concrete solutions [36]. 

2.8 SECURITY THREATS IN IOT 

The IoT is a fast-expanding technology, and it has become the basic requirement in 
our daily lives. Establishing a secure and safe network system in any country plays 
a significant role. The principles concerned with the IoT serve as the foundation for 
the development of a secure IoT system that can resolve various primary security 
issues. All IoT-enabled devices interact with one another and exchange massive 
amounts of information via the Internet. Due to the exchange of sensitive in-
formation, IoT-based systems are vulnerable to security concerns that make the IoT 
networks inadaptable technology in the coming days [37]. This section presents a 
summary of IoT security and discusses potential threats that need to be focused 
more on every layer in the design of secure IoT systems. In addition, this section 
explores potential security solutions to counteract such risks. The IoT-based sys-
tems comprise billions of IoT-enabled devices. When the IoT technology was not 
advanced, then IoT-enabled devices were manufactured in a very simple way. The 
inadequate security features and their simple design make them an easy target for 
many forms of security attacks. Figure 2.3 shows various security vulnerabilities at 
each layer of IoT architecture. 

2.8.1 SECURITY THREATS TO THE PERCEPTION LAYER 

This layer of the IoT system is vulnerable to a multitude of security vulnerabilities. 
Therefore, to remove the weakness and to make a powerful and secure IoT network 
the perception layer incorporates sensors and intelligence technologies such as 
RFIDs. Below are some widely known security threats to the IoT system.  

1. Spoofing: In spoofing, attackers usually broadcast forged messages to the 
sensor network. These networks have no mechanism to determine the 
authenticity of the incoming messages originated from the source [38]. As 
a result, attackers frequently access sensitive information and exploit it to 
breach network security in the future. 
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2. Radio Jamming: In this security issue, the attackers utilize Denial of Service 
(DoS) to prevent the communication channels from sharing sensitive in-
formation among the IoT-enabled nodes within the IoT network [39]. 

3. Node Capturing: In this type of attack, a malicious node physically re-
places the sensor node. In addition to this, the attacker has complete 
control of the authentic IoT node. The captured node can be exploited by 
the attackers to perform harmful activities over the IoT network [40]. 

4. Node Outage: In this type of attack, the network functioning can be inter-
rupted by blocking the IoT nodes. The important sensor nodes over the IoT 
network can be disrupted either logically or physically by the attackers. As a 
result, activities such as data collection and data interpretation to obtain and 
deliver useful information can be entirely hampered [41]. 

2.8.2 SECURITY THREATS TO THE NETWORK LAYER 

In the IoT system, the network layer is vulnerable to fatal security risks. These 
dangers originate from a variety of places. The security threats that hamper the 
performance of the network layer are listed below.  

1. Selective Forwarding Attack (SFA): In this threat, the attackers utilize 
malicious nodes to stop the transmission of particular packets. The at-
tackers participate in the routing of the message as a normal network node 
and discard selective messages that are being delivered by neighboring 
nodes. The malicious nodes do not discard the non-critical data and instead 
discard the critical message. For example, information originated by the 

FIGURE 2.3 Various security threats in the Internet of Things.    

Security, Cybercrimes & Digital Forensics                                                   33 



enemy in an application that is developed to facilitate various military 
activities is kept. As a result, the entire system is vulnerable to DoS at-
tacks [42].  

2. Sybil Attack: The Sybil attack is a type of attack in which the IoT device 
that is recognized as a malicious node tries to make multiple identities or 
accounts over the network. After creating multiple identities, the intruders 
can access the network devices from more than one place [43]. After out- 
voting the non-malicious node from the network, the attackers can block 
the transmission of information and also initiate blocking of other users 
over the network.  

3. Sinkhole Attack: This is another kind of security attack in which the 
malicious nodes try to affect the network traffic by limiting the bandwidth 
of the communication channel. Therefore, the congestion over the network 
significantly increases and hampers the performance of the system. This 
attack is also used to initiate other security threats such as selective for-
warding attacks, spoofing attacks, etc. [44]. The energy consumption of 
IoT devices can be increased due to the exponential growth of traffic 
congestion.  

4. Hello-Flood Attack: This attack is similar to the sinkhole attack as it 
causes a single communication channel to get clogged with trivial mes-
sages due to excessive traffic. As a result, the primary messages become 
blocked in the clogged channels. A single malicious node generates several 
meaningless messages and blocks the communication pathways [45]. 

2.8.3 SECURITY THREATS TO THE SUPPORT LAYER 

The main objective of the intruders is to target the storage technologies that are 
being used on the support layer. These technologies are used to store and manage all 
kinds of data that are originated from the sensors. The attacks on the support layer 
are listed below.  

1. Data Tempering: In a data tempering attack, the authorized person with 
the right to access the confidential storage technologies alters the sensitive 
data for their commercial advantage. In this attack, the intruders extract 
private, sensitive information from the unprotected packets and change the 
contents as well as the destination address [46]. Data tempering is gen-
erally caused for commercial reasons, for example, a competitor company 
can attack others to obtain sensitive data related to sales, production, and 
the prototype of a new software system. The day-to-day activities of any 
company can be hampered after deleting or editing such information from 
the company’s archives.  

2. Unauthorized Access: In this attack, an unauthorized intruder invades the 
system and prevents genuine users from accessing it. Aside from that, the 
intruder destroys the IoT infrastructure and eliminates important in-
formation. Hence, these kinds of attacks are devastating to the entire IoT- 
based network [47]. 
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2.8.4 SECURITY THREATS TO THE APPLICATION LAYER 

In the IoT-based network, the application layer provides customizable services to 
the user based on their choices. The main objective of the intruders is to target 
customized services that are being offered to the intended users through the ap-
plication layer. The types of attacks that majorly influence the performance of the 
application layer are listed below.  

1. Loggers Attack: In this type of attack, the intruders can send loggers into 
the IoT-based network to get access to private data such as sensitive 
documents, messages, and passwords. The most prevalent security vul-
nerability to the application layer is loggers and sniffers. This strategy is 
commonly used by hackers to get access to private e-mails and passwords.  

2. Injections: The intruders in this attack alter the code of the applications 
through unauthorized access to the servers. The manipulation of code is 
one of the most commonly exploited flaws in the IoT-based network. 
Through this attack, sensitive and confidential data and information can be 
leaked out to the intruders from the security networks [48]. 

3. Session Hijacking: In this type of attack, the intruders utilize the authenti-
cation protocols and try to hijack the session management of the network 
system. As a result, the intruder controls the entire network as a real or 
authentic user and accesses the personal identities of the intended users [49]. 

2.9 IOT SECURITY SOLUTIONS 

In every IoT-based network system, security is the most prominent area that needs 
to be focused on more. Researchers and developers have suggested various recent 
sophisticated security methods. The secure IoT infrastructure is possible, to some 
extent, by implementing recent security approaches within every aspect of the 
network. To achieve a secure IoT-based system several security solutions can be 
utilized by the network administrators. In the subsequent subsections, various se-
curity solutions are discussed that are related to each layer of the IoT architecture. 

2.9.1 SECURITY SOLUTIONS TO THE PERCEPTION LAYER 

RFID readers, gateways, and sensors, which are critical parts of the perception layer, 
demand extra security procedures to keep them safe from possible security attacks. 
IoT systems are said to be insecure due to a lack of physical protection. As a result, the 
most important security endeavor for the IoT system is to ensure that only authorized 
users can access the private data [50]. To increase the physical security of the system, 
the IoT system requires strong authentication and authorization procedures. 
Furthermore, the data collected by sensors require a cryptographic security archi-
tecture that guarantees the confidentiality of private data by adopting the procedures 
of encryption and decryption of the data. Several researchers have shown that cryp-
tographic security protocols and their corresponding algorithms are successful to 
maintain IoT security. The researchers in their significant research have examined two 
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distinct cryptographic algorithms that are implemented on the sensor nodes. After 
keen observation, it was found that elliptic curve cryptography is more secure than 
RSA [51]. The efficiency of cryptographic security mechanisms to secure the IoT 
system has been demonstrated in a few earlier research studies. 

2.9.2 SECURITY SOLUTIONS TO THE NETWORK LAYER 

In IoT architecture, the network layer provides security by safeguarding to main sub- 
layers such as wireless and wired security sub-layers. In the wireless sub-layer, the 
network can be protected by establishing authentication protocols and key manage-
ment [52]. In this layer, the Private Pre-Shared Key (PPSK) is used to secure each IoT 
sensor and other IoT-enabled devices that are interconnected within the system. The 
wired sub-layer provides a secure communication channel for the transmission of 
sensitive information in the IoT-based network. In the wired sub-layer, the network 
can be secure by utilizing firewalls and an Intrusion Prevention System (IPS). 

2.9.3 SECURITY SOLUTIONS TO THE SUPPORT LAYER 

This layer is a very crucial layer of any IoT network system. It incorporates recent 
cloud computing technologies to store and manage all the data that are generated by 
IoT-enabled devices. Moreover, the Cloud Security Alliance (CSA) is a leading 
organization that provides various guidelines and standards that need to be followed 
within the security framework to resolve various security issues. This organization 
promotes best practices and education on the proper utilization of various func-
tionalities related to the cloud computing environment. In the support layer, sen-
sitive data related to intended users and applications are stored and managed; 
therefore, efficient security processes should be adopted. At this layer, im-
plementation of concrete encryption algorithms is essential, and the definition of 
antivirus must be regularly updated [53]. 

2.9.4 SECURITY SOLUTIONS TO THE APPLICATION LAYER 

The application layer is the important layer of any IoT network system, which 
facilitates users to interact with various computer systems integrated over the 
network. The application layers comprise two sub-layers, the same as the network 
layer. To prevent unwanted access, all local software systems are required to be 
protected in one sub-layer by utilizing encryption and authentication processes. In 
the second sub-layer, the applications that are being used to process the sensitive 
information of any nation can be secure by adopting authorization, intrusion de-
tection, and access control mechanisms within the IoT network [54]. 

2.10 INTRODUCTION TO DIGITAL FORENSICS 

The number of cybercrimes is exponentially increasing; therefore, the field of di-
gital forensics is grabbing the attention of researchers to contribute their efforts. In 
this section, firstly digital forensics is introduced. After that, its major steps are 
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discussed that are essential for the development of various digital investigation 
activities. After the technology revolution in the 1960s, the number of cybercrimes 
grew exponentially, mainly perpetrated by the heavy use of computer systems. 
Therefore, digital forensics is currently being utilized to combat any kind of attack 
or cybercrime that may occur. The National Institute of Standards and Technology 
(NIST) describes digital forensics as “the science-based process of identifying, 
gathering, examining, and analyzing data while maintaining data integrity” [55]. 
The fast growth of network technology has produced issues with data analysis 
accuracy and efficiency. The study of data obtained from digital devices is known 
as digital forensics. New devices are introduced into the market with upgraded 
platforms. Therefore, IT specialists are facing problems with creating new tools to 
evaluate their retrieved data effectively. The intricacy of digital forensics is the 
fundamental issue. For example, data from many devices are not easily obtainable 
using standard techniques; in some cases, the cumulative dataset is stored in several 
locations. Although the data can be retrieved by conventional digital forensics, their 
reconstructed form can be unreadable by conventional forensics. Drones, wearables 
[56], medical equipment, home automation, cars, safety systems, and sensor net-
work technologies are some of the pervasive technologies that provide new pro-
blems for digital forensics [57]. When a crime occurs, the forensics team arrives on 
the site and collects electronic devices to gather forensic evidence. The forensics 
expert analyzes the electronic tool to gather all relevant evidence about the crime 
and possible reasons for its occurrence. Both hardware and software digital forensic 
instruments are employed throughout the digital inquiry. These instruments and 
incorporated technologies make it easier for the examiner to find and recover the 
possible evidence. After the completion of the digital inquiry phase, the next phase 
is the generation of a report that needs to be presented by the investigators in 
testimony. In this phase, the investigator verifies the validity of digital evidence and 
provides proof that no data were changed during the inquiry process [58,59]. In the 
field of digital forensics, blockchain is playing a significant role in cybercrime 
investigation. The inclusion of blockchain technology is important because it 
guarantees the correctness of digital evidence as it moves along different levels of 
hierarchy in the chain of custody during cybercrime investigation [60]. 

2.10.1 PROCESS INVOLVED IN DIGITAL FORENSIC INVESTIGATION 

After intensive study and investigation in the field of digital forensics, researchers 
have concluded that no forensics procedure is best suited to be followed during the 
investigation process [61]. There are volunteer organizations that define standards 
that can be applied in every stage of digital forensics. Digital Forensics Research 
Workshop (DFRW) is a non-profit organization that devotes its efforts to organizing 
conferences, workshops, and demos that cover various advancements and related 
issues in the field of digital forensics. To release the useful resources to the digital 
investigators, three projects – National Software Reference Library (NSRL), 
Computer Forensic Tool Testing (CFTT), and Computer Forensic Reference Data 
Sets (CFReDS) – are ongoing at the National Institute of Standards and Technology 
(NIST). The National Institute of Justice (NIJ) is the research, development, and 
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evaluation organization in the United States. This organization is committed to 
improving awareness and understanding of the challenges that are being faced in 
crime and justice. Several academicians, practitioners, and researchers have relied 
on the stages that have been provided by the NIJ [61,62]. In Figure 2.4 different 
phases involved in the digital investigation process are shown.  

1. Assessment: Investigators specialized in the field of computer forensics 
conduct a thorough analysis of all the collected digital evidence according 
to the depth and sensitivity of the case or crime to decide the course of 
action.  

2. Acquisition: Digital evidence is sensitive by nature and can be modified, 
destroyed, or permanently erased due to improper handling or investiga-
tion. Therefore, it is preferable to conduct an investigation using a copy of 
the original evidence. This unaffected proof should be maintained properly 
by adopting some concrete investigation methods to protect and preserve 
its integrity.  

3. Examination: The goal of the examination is to extract and evaluate digital 
evidence. Retrieval is essentially the process of recovering data from their 
storage medium. 

4. Analysis: In this phase, the data are recovered and interpreted in an or-
ganized and meaningful way. A proper data format should be logically 
selected for data interpretation so that it can be understood easily.  

5. Documenting & Reporting: In this phase, it is critical to take records on 
all activities and findings during the forensic analysis of evidence so 
that they can be preserved for any further investigation. The processes 
in this phase conclude the findings by preparing a detailed written re-
port on the facts. 

FIGURE 2.4 Different phases of the NJR process for digital forensics investigation.    
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2.11 IOT FORENSICS 

For those working in the field of digital forensics, the IoT creates a slew of complex 
issues. According to some predictions, there will be 50 billion interconnected IoT- 
enabled devices in use by 2022, and these gadgets will be capable of generating 
massive amounts of data. When massive volumes of IoT data are processed, data 
centers will face a commensurate increase in workloads; as a result, providers will 
have to cope with newly emerging issues, such as analytics, privacy, and capacity. 
Assuring that the aforementioned data are handled efficiently is a critical task, as the 
application’s overall efficiency is heavily reliant on the service features that deal 
with data management. Figure 2.5 shows three digital forensics schemes – cloud 
forensics, network forensics, and device forensics – that are widely used in IoT 
forensics. 

FIGURE 2.5 Process of investigation in IoT forensics.    
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1. Cloud Forensics: In the field of IoT forensics, cloud forensics undoubtedly 
has a vital contribution. There are several interconnected IoT-enabled de-
vices that have limited storage and processing capabilities. Therefore, all 
sensitive data and important information generated by IoT devices within the 
networks are being stored and managed on the cloud. In addition to this, 
cloud computing services provide various solutions such as high storage 
capacity, on-demand availability, adaptability, and simplicity [63–65].  

2. Network Forensics: In IoT-based networks such as local area networks 
(limited range), metropolitan networks (restricted to metro cities), and Wide 
Area Networks (across countries), various IoT-based devices are inter-
connected to transmit and receive messages from one location to another. In 
the transmission of the data, different types of logs, such as firewall logs and 
intrusion detection systems, are maintained. To process the criminal cases, 
these logs are utilized as a piece of probable evidence [66–70]. 

3. Device Forensics: In device forensics, different possible pieces of evi-
dence are collected digitally from the local memory of IoT-enabled de-
vices. These devices can be mobile phones, computers, digital cameras, 
etc. In this type of forensics, audio and video recording can be obtained 
from the surveillance system integrated into companies, homes, and other 
susceptible places. Nowadays, mobile phones are widely used devices that 
also contain lots of information in the form of images, voice mail, videos, 
and text. Telephone logs and data may be used by the investigator as a 
valuable source of proof. 

Although a number of models have been created by researchers that uniquely define 
the significant features of the IoT, there are still various challenges yet to be re-
solved. The investigator can face difficulties extracting the evidence from the IoT 
infrastructure. 

This particularly happens when the relevant pieces of evidence are found to be 
concrete and admissible with regard to digital forensics; they are mainly collected 
from the IoT-enabled devices [71]. The investigators can face complexity in the 
collection of pieces of evidence due to the existence of multiple challenges, such as 
no clear relationship between the source of data and their location. The utilization of 
conventional digital forensic techniques in the process of digital forensics can also 
be highly responsible to increase the difficulty in finding out better results by the 
investigators. Although recent technologies have emerged to facilitate the entire 
process of digital forensics, various challenges are still being faced by investigators 
that must be overcome. In the next section, various challenges in the field of digital 
forensics are elaborated. In addition, possible solutions are explained to be con-
sidered while developing new schemes in regards to digital forensics. 

2.11.1 RELATED IOT FORENSICS FRAMEWORKS 

In earlier days, the framework suggested by researchers was compatible with tra-
ditional computing techniques. Based on analysis, traditional techniques are not 
best suited for recent IoT technologies. In the study, was shown by researchers that 
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recognition of the digital data and the data’s proper gathering, protection, and ex-
ploration are fundamental activities involved in all the steps of digital forensics. To 
improve all these activities, some significant processes are needed to develop and 
further integrate with the IoT. The identified vital challenges that are involved in the 
development of efficient IoT forensic systems are in the subsequent section. In IoT 
forensics, various challenges are being faced by investigators that need to be re-
solved. Researchers are contributing their efforts to propose various types of so-
lutions to improve all the stages of the investigation process. The study carried out 
by Meffert et al. [72] provides a solution through which Forensic State Acquisition 
Controller (FSAC) can be adopted to gather the digital data in real time. The 
adopted approach facilitates monitoring every state of interconnected IoT devices 
within the network. The study carried out by Hossian et al. [73] provides the so-
lution to ensure that the pieces of evidence that are collected from the public can 
also be confidential. The concrete evidence can be categorized using proper inter-
faces, and the incorporation of advanced schemes in the investigation process can 
guarantee the integrity of the evidence in all the stages of the investigation. Chi 
et al. [74] proposed a framework that can be used to collect the relevant data from 
the IoT-enabled devices for further analysis. The centralized collection of data 
facilities the investigators to formulate new ideas to come up with a specific de-
cision. Chhabra et al. [75] proposed a generalized forensic framework that is 
capable of disclosing the importance of big data in digital forensics in a well- 
defined manner. To present the proper utilization of big data in digital forensics, 
Google’s programming model can be used. Al-Masri et al. [76] proposed an effi-
cient framework that is capable of detecting cyberattacks in the early stage. The 
IoT-based systems that are implemented based on the proposed framework can 
mitigate the effect of cyberattacks that can hamper the performance of IoT systems. 
Kebande et al. [77] proposed a framework that is mainly implemented for an IoT 
ecosystem that is leveraged with the various recent digital forensics technologies. 
These technologies have the capability of evaluating Potential Digital Evidence 
(PDE) within the IoT-based ecosystem. 

2.11.2 CHALLENGES OF IOT FORENSICS 

Current digital forensics is compatible with traditional computing approaches, and 
in some circumstances, it is not efficient to be interconnected with the recent IoT 
infrastructure. With the exponential growth of IoT-enabled systems and digital 
forensics, they must be integrated to secure the admissibility of digital forensics by 
delivering data swiftly within the IoT system. Taylor et al. [78] have suggested that 
examination of the real environment is required to allow the interconnection of 
digital forensics with the IoT. The following are possible issues in the field of IoT 
forensics:  

1. Development of Investigation Frameworks: In the conventional digital 
forensics examination or investigation, a total of six stages are taken into 
consideration. However, combining digital forensics with the IoT ne-
cessitates a new investigation paradigm. IoT devices provide a vast volume 
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of data that can affect the entire forensic inquiry. As a result, enormous 
amounts of data gathered at the site might make it difficult for the in-
vestigator to determine which digital devices were used to commit a crime. 
As a result, in the IoT, evidence is gathered to investigate the circum-
stances surrounding the crime/incident. The process of relevant data col-
lection is the most significant step in any forensics inquiry. The entire 
investigation process can be thrown off if any mistake is made during the 
process of data collection. According to studies, the digital forensic 
equipment that is widely used in the investigation cannot be turned off to 
accurately record the time in which the data was accessed [79]. Many 
devices that are not compatible with IoT networks cannot be applicable in 
digital forensics. Therefore, to make such devices compatible with the IoT, 
new frameworks need to be designed to collect and preserve forensic data. 
Researchers in their study have found that the activities that are involved in 
the collection of evidence are complex due to the availability of various 
formats of data. Therefore, investigators can face various issues in digital 
forensics with a variety of protocols and interfaces that are being used in 
the conventional digital forensics approaches. The extracted data can be 
temporarily maintained on devices that are interconnected with other IoT 
devices within IoT networks. As a result, the forensic investigator in their 
examination and analysis should consider all the interconnected storage 
devices to extract all the possible evidence.  

2. Multi-jurisdictions: Investigations in IoT forensics are marred by a lack of 
defined jurisdictional lines. Data from IoT systems may be sent to other 
cloud services. As a result, locating data from the servers becomes more 
complicated for the investigator. In addition, gathering evidence from 
clouds via IoT forensic equipment is physically inaccessible. As a result, 
before combining digital forensics with an IoT system, it is necessary to 
analyze the challenges of numerous jurisdictions. Furthermore, forensic 
investigators face plenty of legal issues specialized in digital forensics. 
Problems in the digital forensics process include selecting a law for a 
particular case that should be prosecuted under device jurisdiction, data 
storage jurisdiction, or attacker jurisdiction. It will be critical in the future 
to thoroughly explore legal issues that arise due to multi-jurisdiction in 
IoT-based systems. The applicability of standard methods would be the 
crucial requirement to investigate and assess the numerous locations and to 
deal with various network challenges.  

3. Diverse Range of IoT Devices: The rapid progress of the IoT is resulting in 
the creation of new gadgets daily to benefit consumers. To provide ex-
cellent services to their clients, service providers also continue con-
tributing their best efforts to explore possible solutions. With regards to 
technology, IoT-enabled devices run numerous operating systems at the 
same time. The integration of IoT-enabled devices to exchange informa-
tion results in a complex IoT network. The intricacy of IoT-enabled de-
vices can have a great influence on forensic investigation methodologies. 
In the current scenario of digital forensics, only specialized instruments are 
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employed by forensic investigators. The dedicated tools that are being used 
in digital forensics are not compatible with the complex IoT-based system. 
Therefore, IoT is vulnerable to threats [80]. As a result, it’s critical to 
create solutions that can quickly adapt to emerging IoT devices.  

4. Limitations of IoT Devices’ Storage: The IoT-enabled devices that are 
connected to the network can be equipped with a limited number of 
computational resources. The data storage capacity of such devices can be 
very low due to the limited amount of memory. Therefore, the data cannot 
be stored in these devices for a long time. As a result, there will be a high 
probability of the forensic evidence being lost or damaged. The in-
vestigator can face several challenges while dealing with such devices 
during the investigation. The investigator can face other challenges due to 
the utilization of cloud services, particularly for data management and 
storage. It may be possible that the evidence can be altered or modified by 
the attackers during their transmission to another network. Therefore, to 
safeguard the concrete evidence from any kind of tempering, an advanced 
data transferring approach should be implemented to the IoT-based 
network.  

5. Poor Evidence Handling: To prevent manipulation of any evidence in 
digital forensics, it is critical to treat all evidence with extreme caution. 
The utilization of traditional cloud computing technique to store and 
manage data facilitate the attacker to temper the useful facts and evidence 
explored during the investigation. The management of forensics evidence 
on clouds is a very complex task in the field of IoT forensics compared to 
the traditional process. In IoT forensics, the network administrator should 
maintain and integrate IoT devices that have high storage capacity and 
computational power into the network. The proper security mechanism 
should be incorporated within the network to restrict data tampering during 
transmission.  

6. Lack of Forensics Tools: It is widely believed that existing forensic tools 
have several flaws and are unable to adapt to the latest advancements. The 
existing technologies in the field of digital forensics are incompatible with 
the IoT environment’s infrastructure (which is diverse). The massive vo-
lume of potential evidence generated by numerous IoT devices will later 
give birth to new issues in terms of obtaining evidence from distributed 
IoT infrastructures [81]. To gather forensic evidence and then evaluate it 
quickly, a mix of network forensics and computer forensics techniques is 
required. Traditional forensics technologies can be used to acquire the data 
(active data) while maintaining their integrity. It is also feasible to collect 
more data across the network using specialized network forensics tools, 
such as activity logs. 

2.11.3 ADAPTING A REAL-TIME APPROACH FOR IOT FORENSICS 

In the field of digital forensics, investigators can be benefited by adopting live 
forensic investigation that limits the constraints and issues that are mainly faced due 
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to a variety of IoT devices and their handling. Banafa [82] has suggested three 
major mechanisms that can facilitate the investigators to carry out a real-time 
forensic investigation. The components that are included in the real-time in-
vestigation are listed below. 

1. Time synchronization: In the IoT network, various devices are inter-
connected with each other to provide real-time data to the network users. 
For proper handling of data stored in the IoT-enabled devices, their syn-
chronization is required. In the real-time forensic investigation, all the IoT- 
enabled devices that contain useful data should be properly synchronized 
in the detection framework to complete all the stages of real-time forensic 
investigation.  

2. Enough storage requirements: All the devices that are storing and 
managing forensic data must have enough memory space to collect the 
data. The devices should be capable of providing the data in real time for 
further analysis by the investigator. It may be possible that the devices 
interconnected within the network have a small amount of memory to store 
the useful data. Therefore, the recovered digital data during the real-time 
forensic investigation are collected and stored in external storage devices.  

3. Communication Requirements: In digital forensics, the data stored in the 
devices should not be tempered during communication. Therefore, the 
proper mechanism is required to extract or safely handle the digital data. A 
smooth communication process should be implemented within the network 
to deliver the critical forensic data from one network to another network. 

2.12 CONCLUSION AND FUTURE DIRECTIONS 

IoT technology has benefited from advancements in network and communication 
technologies. These technologies integrate billions of communication devices 
available in the world within the network to exchange sensitive information. Several 
applications have been developed using these technologies that can facilitate in-
vestigators during different phases of digital forensics. Although the IoT provides 
incalculable benefits, it also poses new concerns, particularly in terms of security. 
Although various IoT-enabled devices are available with sufficient memory and 
computing power, by using conventional forensic techniques it is very difficult for 
investigators to reach a concrete solution, and their efforts can be futile. Therefore, 
the companies contributing their efforts in the field of digital forensics should come 
up with an objective in which the development of an IoT-based investigative fra-
mework is a top priority. As cybercrimes are exponentially increasing, the field of 
digital forensics is drawing the attention of researchers to contribute their efforts. 
There are some major steps in digital forensics that are essential for the develop-
ment of various digital investigation activities. After intensive study and in-
vestigation in the field of digital forensics, researchers have concluded that no 
forensics procedure is best suited to be followed during the investigation process. 
There are volunteer organizations that define standards that can be applied in every 
stage of digital forensics. In the field of digital forensics, several organizations are 
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committed to releasing resources and devoting their efforts toward increasing 
awareness and understanding of the challenges that are being faced in crime and 
justice. There are a set of standards established by these organizations that need to 
be followed by investigators. For those working in the field of digital forensics, the 
IoT creates a slew of complex issues. In IoT-based systems, massive volumes of 
data are processed. In this situation, data centers will face a commensurate increase 
in workloads; as a result, providers will have to cope with newly emerging issues 
such as analytics, privacy, and capacity. In IoT forensics, several schemes such as 
network forensics, device forensics, and cloud forensics are widely used to facilitate 
investigators. 

Although several models have been created by researchers that uniquely define the 
significant features of the IoT, various challenges are yet to be resolved. Investigators 
can face difficulties extracting evidence from the IoT infrastructure. This particularly 
happens when the relevant pieces of evidence are found to be concrete and admissible 
concerning digital forensics; they are mainly collected from IoT-enabled devices. 
Investigators can face complexity in the collection of pieces of evidence due to 
challenges such as no clear relationship between the source of data and the location. 
The utilization of conventional digital forensic techniques in the process of digital 
forensics can also increase the difficulty of finding better results. Although recent 
technologies are emerging to facilitate the entire process of digital forensics, various 
challenges are still being faced by investigators. In earlier days, the frameworks 
suggested by researchers were compatible with traditional computing techniques. 
Current digital forensics is compatible with traditional computing approaches, and in 
some circumstances, it is not efficient to interconnect with the recent IoT infra-
structure. With the exponential growth of IoT-enabled systems and digital forensics, 
they must be integrated to secure the admissibility of digital forensics by delivering 
data swiftly within the IoT system. 

The chapter, in the end, provides future directions to researchers for possible 
improvement in the field of digital forensics. To improve the entire process of 
digital forensics, researchers must develop advanced procedures, standards, and 
concrete guidelines through which recent IoT technologies can easily interact with 
conventional methods of digital forensics. Investigators can face difficulties while 
deciding under which law the case should be prosecuted. Therefore, multi- 
jurisdiction in the IoT-based systems is required. In an IoT-based system, inter-
connected devices produce a massive amount of data and also share it with other 
interconnected devices. Sometimes it may be difficult for investigators to deal with 
an enormous amount of information within the network, and this can influence the 
investigation. The data analysis procedure during the investigation can also be af-
fected to some extent. Hence, there is a vital requirement to explore new meth-
odologies through which the huge amount of data can be handled effectively. Cyber 
criminals and attackers can exploit the methodologies and the forensic tools that are 
being used by the investigator, which is known as anti-forensics. After discovery, 
the attackers can mislead the investigator during analysis and other tasks. In the 
current scenario of digital forensics, insufficient data are available. Therefore, 
government and the private sector should make joint efforts to share their experi-
ences and resources publically. 
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3.1 INTRODUCTION 

The incredible growth in the routine use of electronic devices, services, and their 
applications has led to huge developments in the field of information technology 
(IT), which triggered the emergence of the new concept of the Internet of Things 
(IoT). It is expected that by 2024 the number of connected devices will cross 
27 million [1]. The IoT is the part of information and communication technology 
where devices are used as objects or things, and they are responsible for sensing 
their environment, passing commands to actuators, and exchanging data over the 
Internet [2,3]. This growth is involved in various areas, such as education, smart 
homes, elder care, transportation, manufacturing, agriculture, energy management, 
healthcare, business, and more. 

This rapid growth of connected devices in the IoT has led to new challenges to 
security from various kinds of attacks [4]. The threats to these devices are rising 
daily, in terms of numbers as well as complexity. These threats make devices 
vulnerable to potential attackers, who are empowered by various tools, automated 
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scripts, and software. Hence, protection from such vulnerabilities and threats is 
required. 

As these devices are placed in the open, they are vulnerable to physical damage, 
theft, unauthorized access, and more. CIA (confidentiality, integrity, and avail-
ability) needs to be ensured all the time while utilizing these devices. Security 
requirements for this kind of IoT device are similar to the existing network systems 
but with some changes. To ensure the availability of data and devices all the time, a 
strong security mechanism is needed. The key protocols being used by IoT devices 
are CoAP, MQTT, REST, and AMQP. [5] 

If any of the IoT devices are vulnerable, then the enterprise that is utilizing these 
devices is also vulnerable. Ordinary, classic watches have now changed to smart-
watches. These smartwatches keep connected to devices or the Internet almost all 
the time. This gives an attacker space to compromise the device. For example, 
people are using smartwatches to remind themselves of medication. If a user is 
experiencing dementia, he may not remember if he took his medicine earlier. So, by 
sending frequent and fake reminders, an attacker can overdose the user with the 
medicine he is supposed to take. [6] This chapter offers a comprehensive overview 
of various attacks on IoT-based smart devices. 

3.2 THE IOT VISION 

The contribution of IoT devices has increased the value of information by allowing 
devices to communicate with each other via the network and converting the pro-
cessed information to knowledge by edge devices. Eventually, this will benefit 
society. According to 6-A Connectivity, the IoT will be accessible by anyone for 
any service from any network, from any place, anytime, and allow the system to 
connect anytime [7]. Figure 3.1 illustrates this. 

Anything
Any Device

Anyone
Anybody

Any Service
Any

Business

Any Path
Any

Network

Any Place
Anywhere

Anytime
Any Context

Internet
of

�ings

FIGURE 3.1 Interconnection of IoT’s key elements.    
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IoT architecture and intelligent middleware enhance the capabilities of the IoT 
for linking historical and multidimensional aspects to connect it with the physical 
world. The real physical world is connected with the digital and virtual cyber world, 
where IoT devices and data integration are established, respectively. The virtual 
cyber world is semantically integrated with the real physical world to provide better 
service. 

In truth, IoT devices communicate with humans as well as their surroundings 
for a variety of data. Every object of routine life (e.g. TVs, medical devices, 
smartphones, food processing units, refrigerators, ACs, vehicles) has unique 
identification features, which allows them to correspond with other devices. Also, 
when you consider that those gadgets can sense their surroundings, they may have 
the ability to confirm identities by talking to each other so that they’ll be able to 
synchronize their data. This may end up a way for information complexity, and 
the devices may correspond regularly all the time without the intervention of 
individuals. (Figure 3.2) 

IoTs have been given a variety of systems, which work automatically without the 
intervention of humans. These devices will decentralize and work with their al-
gorithms and eventually with all the other networked things to make collective, 
intelligent decisions. 

3.2.1 IOT ARCHITECTURE 

It’s essential to have an open architecture with several layers for maximizing usage 
and for sharing data across the IoT network (Figure 3.2). Numerous research ar-
ticles and studies have been done so far on the same topic. Still, there is no single 
architecture that can fulfill all the requirements. The reason is that for each orga-
nization, each user has different requirements. The simple three-layer IoT eco-
system comprises the perception layer, network layer, and Application layer, as 
shown in Figure 3.3. 

People
• Connecting people for their benefit in relevant ways.

Process

• Availability of the correct data in the expected minimal
time with data integrity and authorization.

Data

• Utilizing the existing data for better optimization and
workflow improvement.

!ings

• Physical devices interconnect with the Internet for the
exchange of data for better decision making capabilities.

FIGURE 3.2 Internet of everything.    
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This architecture can be expanded to five layers with the addition of the pro-
cessing layer and transport layer. By considering requirements for individuals, in-
dustries, medical sectors, institutes, etc., a layered structure can be designed. 

Architecture requirements must include properly described abstract records with 
replicable standard protocols and interfacing capabilities with proper binding all 
together to support a wide range of software, smart devices, operating systems, and 
programming languages [8]. 

3.2.2 IOT APPLICATION DOMAINS 

The IoT covers a wide area and almost every machine. These devices aim for 
interaction, collaboration, and sharing an exchange experience to reduce human 
intervention in the machine cycle. The IoT equips a multitude of domains and 
millions of devices with connectivity every day. The following are some of the 
important domains. 

3.2.2.1 Smart Homes 
These days, the IoT has covered a variety of areas and is being used in various 
devices such as refrigerators, TVs, washing machines, dishwashers, etc. These 
devices are capable of talking to each other and working accordingly. Apart from 
these, electricity controls, energy controls, temperature controls, and security sys-
tems are IoT devices that have marked their presence. These devices work without 
human intervention and toward saving the world with various predefined logic. For 
example, the AC is being controlled at a temperature of 24 degrees Celsius, which is 
ideal for human beings, and harm to the environment is also under control as there 
is less heat transfer. The smart refrigerator takes care of food availability within the 
refrigerator and then makes an order to the pre-registered vendor asking it to deliver 
dairy products, vegetables, etc. 

3.2.2.2 Healthcare 
The current problems faced by the healthcare industry are that no real-time data are 
available, there is a lack of smart care devices, and standard analytics are inaccurate. 

• Responsible for delivering applicationa-specific services to the user. Defines applications in
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parameters or identifies other objects in the environment.
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FIGURE 3.3 IoT ecosystem.    
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These problems have now been addressed by IoT devices. So, the system sends 
notifications to medical staff as well as takes action by sharing data with the other 
devices, like sending a signal to increase the flow of oxygen in an oxygen mask. It has 
empowered healthcare professionals and improved the quality of healthcare. This 
usage of IoT can be a lifesaver by being a passive health status monitor. For people 
experiencing paralysis, older adults, kids, and people with physical disabilities, IoT 
devices are a miracle. 

3.2.2.3 Smart Cities 
A smart city’s data are specific to that city, mostly as the geography and atmosphere 
vary from city to city. Waste control management, traffic management, water re-
source management, housing issues, and pollution – each of these areas collects 
data that are used to make decisions without human intervention. Along with these 
data, a huge amount of computations and communications are essential to fulfill the 
requirements of citizens. Various initiatives have been incorporated by individual 
governments to help make their city smarter. Smart cities include smart devices, 
smart homes, smart industries, smart traffic management, etc., and integration 
amongst these is essential. 

3.2.2.4 Agriculture 
This is the most neglected sector despite the importance it holds. The IoT can 
provide solutions like precision farming, smart irrigation, and smart greenhouses, to 
name a few. This also takes care of soil moisture monitoring and climate difference 
detection, and it makes decisions accordingly. These smart systems in agriculture 
can help farmers to select an irrigation technique, maintain the moisture level, make 
temperature-dependent changes, and feel empowered to get the maximum out of 
their land and reduce monetary losses. 

3.2.2.5 Industrial Automation 
This is one of those fields where the IoT can facilitate quick development and 
quality products by using various sensors and actuators with smart decision- 
making capabilities. The key areas where the IoT will contribute are optimization, 
quality control, cost efficiency, and security. One of the applications is an au-
tomated guided vehicle can manage the entire warehouse and material handling. 
IoT devices with long ranges have made work easy for workers in hazardous 
areas. Boilers, PLC, smart grids, steam devices, turbines, and many more ap-
pliances can be controlled and monitored from the central office. This also has the 
advantage of helping the administrative officer make a smart decision for the next 
production schedule. 

3.2.2.6 Public Safety and Environmental Monitoring 
IoT devices nowadays keep their eyes on a specific area and help to monitor ter-
ritory along with the environment. There might be an integration of radar, video, 
and satellite-based surveillance. The installation of emergency/rescue personnel 
tracking can help in finding personal belongings. Smart cities have started dis-
playing air quality, temperature, humidity, and more on public displays. 
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Apart from these, there are many more domains where IoTs are being used 
widely with the discussed advantages. Hence, with the increased usage and 
variety of areas, the possibility of attacks and threats have also increased, which 
needs attention. 

3.2.3 SUPPORTING WIRELESS COMMUNICATION TECHNOLOGIES 

As discussed in the introduction, the IoT works as a bridge between any products 
within the physical world and the virtual world. This setup may require various 
small modules, each for specific tasks, for example, sensors, actuators, embedded 
systems, data analytics, mobile applications, cloud computing, and storage; all these 
become enabling technologies. Further, this can be divided into the following 
sections. 

3.2.3.1 Perception Layer Technologies 
It is a bottom layer in the IoT business model, as shown in Figure 3.4. This includes 
a variety of devices like moisture sensor, camera, OBD-ELM327, PIR sensor, vi-
bration sensor, PH sensor, BME-280, etc. Again, this can be classified as passive, 
semi-passive, and active. 

3.2.3.2 Network Layer Technologies 
It is the second layer in the IoT model. Its technology transforms the conventional 
sensor data into smart and connected nodes. This network layer uses various 
technologies depending on the requirement [9]. Due to the limitation of power and 
computing, most IoT nodes are scalable, and efficient routing techniques are re-
quired to ensure interoperability among IoT devices. Figure 3.5 illustrates the 
various wireless communication technologies with their physical ranges. 
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• Sensors sense and gather information about the environment.
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FIGURE 3.4 IoT business model.    
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3.2.3.3 Middleware Technologies 
It is the third and essential layer of the IoT environment. Technologies in this 
layer are frequently supported with the aid of IoT systems. This layer enables 
offerings to be diagnosed and examined with details, and it empowers the de-
velopers to connect with these devices, irrespective of the precise hardware setup 
[9]. Based on their functionalities, this can be classified as service discovery, data 
exchange, and computation. 

3.2.3.4 Application Layer Technologies 
The application layer provides users with requested data, most simply and easily to 
get the usage of IoT devices. The typical user can use various modes to access 
information like web portals, mobile applications, etc. This can be further classified 
into four classes, i.e. collaborative aware services, identity-related services, ubi-
quitous services, and information aggregation services. 

3.2.3.5 Business Layer Technologies 
Similar to the application layer, the business layer provides statistical data, flow-
charts, and various analytics of the physical site. So, the administrator is being 
facilitated for analysis, design, examination, and expansion of the IoT system as the 
output of all previous layers is analyzed and certainly helps in improving the user’s 
experience. This can be further classified into two categories (i.e. semantics and big 
data analytics). 

Based on different scenarios, the combination of various technologies is being 
used for the physical setup. 

3.3 SECURITY THREATS AND CHALLENGES IN THE IOT 

IoT devices have emerged with a variety of benefits to end-users but besides that, 
use of third-party dependency needs to ensure privacy and confidentiality ac-
cordingly. The IoT is a collaboration of people, things, software, and hardware. 
This collaboration works over the public or untrusted networks many times. 
Security, privacy, and open trust problems need to be addressed [10,11], before 
moving further with the deployments. In that situation, security can be stated as 
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an organized framework that consists of concepts, beliefs, policies, principles, 
procedures, measures, and techniques required to secure individual system assets 
as well as the complete system against any planned threats. All these system 
interactions must be secured by some means to ensure unrestricted procurement 
of data and services to all significant entities and limit the number of influential 
incidents for the entire IoT. 

In this section, an overview of existing IoT security challenges and IoT security 
requirements have been discussed. 

3.3.1 INTRUDER MODELS AND THREATS 

As the conventional network is vulnerable, the IoT is also vulnerable to various 
active and passive attacks; these attacks are discussed in the next section of the 
chapter. These vulnerabilities can nullify the benefits of IoT services. Passive at-
tacks silently keep sniffing the packets moving in the network without affecting the 
behavior of the IoT device, whereas active attack affects the performance of the IoT 
device. Consideration of internal threats is crucial as the insider knows the various 
secret information that might not be known to external attackers, such as API keys, 
IP addresses, password patterns, etc. Various threats to IoT devices are discussed in 
the following section. 

3.3.1.1 Intruder Model 
The Dolev-Yao (DY) intruder shall be used as an example [8,12]. Explicitly, the 
outsider impacts the network and may intercept packets being transferred between 
IoT gadgets and hubs. 

The DY intruder is extraordinarily successful, but the experts are to some extent 
unrealistic. Hence, the safety will be much better if IoT devices are robust. But the 
DY model lacks the functionality of physical damage. Thus, the devices should be 
tamperproof to prevent such physical damage. This may not seem feasible, but from 
this point, an attacker can avoid temper detection. Intruders are usually classified as 
external and internal. 

3.3.1.2 Denial of Service Attacks (DoS) 
An attempt may be carried out to make the required resources unavailable to users 
by exhausting the resources allocated to IoT devices. With the limitation of re-
sources and computational power, these devices are vulnerable to resource en-
ervation attacks. DoS attack is realized by flooding the target with traffic or sending 
it information that triggers a crash [13]. As the IoT devices are resource- 
constrained, the high computational logic cannot be implemented [14]. The detailed 
types are discussed in the next section. 

3.3.1.3 Physical Attack 
As these devices are kept in an open environment and easily accessible by at least 
internal users, the user may perform various attacks. Moreover, this category also 
includes assaults that damage the hardware’s lifetime or functionality. A few po-
tential problems are described below in the physical attack of the IoT. 
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3.3.1.3.1 Node Tampering 
The attacker may physically replace the complete node or a specific module of the 
hardware. Using this tempered IoT, the attacker can replace the existing information 
or may start sending fraudulent requests/data, data stored on it, routing information, 
stored keys, etc. [15]. 

3.3.1.3.2 Node Jamming in WSNs 
The attacker may use a similar frequency range and interfere with radio frequencies 
and communicate with other sensors, which will result in jamming signals or DoS 
attacks. [16] 

3.3.1.3.3 Physical Damage 
The attacker may physically destruct the node. This attack differs from node 
tampering in that the attacker is focused on impacting the availability of service by 
directly damaging the node. 

3.3.1.4 Attacks on Privacy 
IoT devices collect the information and share it over the network. This information 
might be captured by internal users also. Such IoT networks increase privacy 
problems as they make available all information for remote access. Following are 
the common attacks being done nowadays: 

3.3.1.4.1 Eavesdropping and Passive Monitoring 
This is the most frequently observed attack on privacy. By sniffing the packets, the 
adversary may easily find out the conversation contents. When the traffic conveys 
the managed data approximately the sensor community configuration, which in-
corporates probably more particular information than accessible through the local 
server, the eavesdropping can act successfully against privacy protection. 

3.3.1.4.2 Traffic Analysis 
An attacker may silently monitor all traffic passing through a network. Based on 
various traffic analyses, attackers can potentially understand the data even if they 
are encrypted using a strong encryption algorithm. 

3.3.1.4.3 Data Mining 
Data mining enables the attacker to extract information from the database that is not 
disclosed directly from the database. It extracts the potential valued data from the 
comprehensive information for the specific IoT application and makes the decision. 

These techniques can provide a variety of ways out of our routine problems. 
However, this has come up with a new challenge of privacy. Privacy preservation in 
all these communications is required, and this can be achieved by various techni-
ques, such as key management, encryption, etc. 

The following mechanisms are also developed to preserve privacy.  

• Anonymity based privacy preservation [17],  
• Encryption-based privacy preservation [18],  
• Perturbation-based privacy preservation [19]. 
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According to the application, the preferred mechanism should be used by the 
administrator. 

3.3.2 SECURITY AND PRIVACY CHALLENGES IN IOTS 

The IoT consists of various sensors and devices that are connected. Based on the 
scenario, the administrator can apply security, privacy, and trust requirements. For 
an effective low-cost product, there are a lot of things that need to be incorporated 
for overcoming such security and privacy challenges [20]. 

3.3.2.1 User Privacy and Data Protection 
Privacy is considered to play a vital role while communicating over the network. 
The leakage of personal information may result in some crucial attacks. IoT devices 
are connected and render data over the Internet, which consists of various user data 
[21–24]. Although there is enough research that has been carried out with concern 
to user’s privacy, this privacy needs to be considered during data collection, data 
storage, and data sharing over the network. 

3.3.2.2 Identity and Access Management 
It’s a framework consisting of policies and technologies that ensures that authorized 
users will get appropriate access to services. Identity management ensures access 
control to the user and keeps track of all activities carried out by the user. It also 
provides role-based access to the user. This includes a certain task at the admin-
istrative level for user privileges, governing user accounts, and policy creations. 

3.3.2.3 Trust Management and Policy Integration 
As machines/things have started exchanging their information and making a deci-
sion, it’s essential to have trust amongst each other. It’s essential to have trust 
between all interconnected devices as well as users using this system [25]. In the 
collaborative environment of IoT devices, an effective mechanism of trust is re-
quired. Decentralization in the trust system is essential for the large network where 
an individual node can trust the other node. As all the data are synchronizing or 
being sent to the cloud, trust between them is also essential. 

Before decision-making a trust, the model is essential for a good policy 
framework. 

3.3.2.4 Authorization and Access Control 
After authentication, authorization allows the user to access resources. Access 
control involves authorization by policies that have been set up by the adminis-
tration. For establishing a secure network connection, it’s essential to have access to 
a control setup and authorization mechanism. For cases of the IoT, it should be 
easier to create rules and modify them whenever required. 

3.3.2.5 End-to-End Security 
Almost all the IoT requires protection from injection, eavesdropping, and mod-
ifying packets. Cryptography can be implemented to overcome these issues. The 
key exchange mechanism needs to be prepared in such a way that the attacker 
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cannot intercept the traffic. With the end-to-end security, various applications can 
use the IoT devices; otherwise, they would be difficult to use. 

3.3.2.6 Resilience to Node Capture 
As IoT devices are kept out in the open, they are physically accessible to attackers. 
Using this exposure, attackers can replace a node with a malicious node that can be 
controlled by the attacker. A solution with a certain algorithm needs to be designed 
that can prevent such node capture attacks. 

3.4 IOT SECURITY ATTACKS AND THEIR MITIGATION  
TECHNIQUES BASED ON THEIR LAYERS 

This section of the chapter describes the attacks associated with all three layers and 
provides some mitigation techniques. 

3.4.1 PHYSICAL LAYER 

The security threats in the physical layer are involved with the node level. As the 
nodes are comprised of sensors or actuators, the hacker targets such devices to 
replace the programs with their malicious codes. 

3.4.1.1 Node Capture Attacks 
With the help of some vulnerability, the attacker gains access to nodes and ma-
nipulates existing code with malicious code. This malicious code can capture and 
share important information like keys, device data, algorithms, data, etc. with the 
attacker. The attacker can inject malicious nodes within the network, which pretend 
to be part of the network. Both attacks are very crucial, and for controlling such 
access, a detailed study of the network is required [26]. 

3.4.1.2 Malicious Code Injection Attacks 
Apart from the node capture attack, the attacker may inject malicious code with the 
existing source code of the node. This malicious code may create a backdoor 
connection from where an attacker can gain full access to this node anytime. For 
prevention, effective code authentication schemes need to be integrated into the 
IoT [27]. 

3.4.1.3 False Data Injection Attacks 
The compromised node can manipulate the data being communicated with nodes 
and applications, which may result in the malfunctioning of the device and the 
ineffectiveness of the IoT applications [28]. For prevention, such false injection 
data need to be monitored and compared with regex before sending them to the 
server or receiving them from the server [29,30]. 

3.4.1.4 Replay Attacks (or Freshness Attacks) 
The attacker may use the actual identification information to communicate with the 
server, to obtain trust from the server. A replay attack is performed to validate the 
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node as authenticated [31]. For prevention, secure two-way authentication and 
validation should be designed. 

3.4.1.5 Cryptanalysis Attacks and Side-Channel Attacks 
Here, the attacker retrieves cipher text and plain text to identify the encryption 
algorithm. However, the impact of this is very low. The attacker may retrieve 
timing information, power consumption, electromagnetic leaks, and sound to pro-
vide an extra source of information. For prevention, secure and efficient encryption 
algorithms need to be developed in the IoT [32]. 

3.4.1.6 Eavesdropping and Interference 
The majority of IoTs are connected to a wireless network, and these wireless links 
can be eavesdropped on by an attacker. For prevention, secure and efficient en-
cryption algorithms need to be developed in the IoT. For ensuring the integrity and 
availability of data, effective noise filtering algorithms are required [16]. 

3.4.1.7 Sleep Deprivation Attacks 
The IoTs operate with very low power. For reducing power consumption, various 
sleep routines are required. However, the sleep deprivation attack breaks the 
scheduled sleep routines and keeps the device busy till it consumes all of the 
available power. For prevention, secured duty cycle mechanisms and other energy 
sources like solar are required [33]. 

3.4.2 NETWORK LAYER 

As the network layer’s primary aim in the IoT is to communicate recorded in-
formation, this layer’s safety issue concentrates on the effect of network resource 
accessibility. Moreover, most IoT devices are linked via wireless communication 
connections to IoT networks. In this layer, therefore, most safety problems are 
linked to IoT wireless networks. 

3.4.2.1 Denial-of-Service (Dos) Attacks 
DoS attacks can be achieved by consuming all available resources from the network 
by large traffic. DoS attack is observed widely, which results in the unavailability of 
IoT devices [34]. Improper protocol use, a poor encryption algorithm, and vul-
nerable services may lead the device to be unavailable [35]. Teardrop, SYN flood, 
tear attack, ping of death, etc. are various types of these attack schemes. For pre-
vention, a detailed working analysis of the attack is needed, followed by a defensive 
scheme. 

3.4.2.2 Spoofing Attacks 
The main aim of the attacker is to compromise the IoT device and do some mis-
chievous activity in the network [36]. Spoofing attacks include IP spoofing [37], 
RFID spoofing, device spoofing, etc. During an IP spoofing attack, the attacker 
gains access to the network and transmits malicious data with the entire network by 
spoofed IP address. The attacker with a spoofed valid identity may send malicious 
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data into the network. Specially designed trust management, identification, and 
authentication systems will help in preventing such attacks. [38]. 

3.4.2.3 Sinkhole Attacks 
High energy is required by a compromised device or node along with good com-
munication capacities, which ultimately allows nearby nodes or devices to select 
this malicious node for forwarding the information routing process due to the at-
tractive capacities [39]. So, every communication passes through the compromised 
device or node. This sinkhole attack compromises the confidentiality of data and 
raises the chance for other attacks. For prevention, multiple secure routing protocols 
are needed [39]. 

3.4.2.4 Wormhole Attacks 
This attack may be launched by two or more compromised malicious devices or 
nodes; here these two devices exchange the information of their routing table over 
the private connection [40]. As the routing table is compromised, the data will travel 
through malicious nodes, and these nodes can work as a sinkhole attack. For pre-
vention, a routing protocol needs to enhance security in selecting the route or some 
secure hardware (GPS, directed antenna) can be deployed [40]. 

3.4.2.5 Man in the Middle Attacks 
In this scenario, the attacker remains virtually present between two communicating 
nodes. By intercepting the identity of these communicating devices, the attacker 
sniffs the entire communication, and it may be stored or manipulated whenever 
required. By using this attack, attackers can monitor, tamper, or eavesdrop, and 
hence the CIA characteristic is compromised. In a malicious node capture attack, 
the attacker needs to physically tamper with the device, where, in this case, the 
attack can be launched by only intercepting network traffic. For prevention, secure 
communication protocols and key management mechanisms are essential to have. 

3.4.2.6 Routing Information Attacks 
In this attack, the attacker manipulates routing protocols in the IoT network by 
creating route loops; hence, there is a rise in the end-to-end interval in IoT networks 
[36]. Implementation of secure routing protocols and trust management techniques 
should be implemented for mitigation. 

3.4.2.7 Sybil Attacks 
In this attack, the malicious device claims several valid identities and impersonates 
them to IoT systems [36]. As the Sybil device has several valid identities, malicious 
data can be accepted by other neighbor devices. As all the communication is done 
from the Sybil device, there is a possibility of jamming and DoS. For prevention, 
secure identification and authentication mechanisms are required [38]. 

3.4.2.8 Unauthorized Access 
There are several IoT devices integrated with RFID, and these RFID tags lack 
proper authentication mechanisms. The attacker can obtain, modify, or delete the 
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information stored in RFID tags [36]. For prevention, authorization access and 
authentication mechanisms are required [25]. 

3.4.3 APPLICATION LAYER 

The primary aim of the application layer is to assist user-requested services. Thus, 
the application layer’s difficulties concentrate on software assets. Here, a few po-
tential problems are described below in the application layer of the IoT. 

3.4.3.1 Phishing Attack 
The attacker can obtain sensitive data (identification and password) of the users, by 
spoofing the authentication credentials of users via infected email or web pages 
[36], [33]. For preventing, a secure authorizing access, identification, and authen-
tication system is required. For identifying phishing, intelligent techniques are re-
quired. However, the IoT is a machine that might not have such intelligence. 

3.4.3.2 Malicious Virus/Worms 
These are the other challenges to IoT applications. The attacker can send some self- 
propagating attacks with the help of a Trojan horse, and then the attacker obtains or 
tempers sensitive data. For prevention from such attacks, firewalls, anti-virus, or 
another self-protective algorithm needs to be used [41]. 

3.4.3.3 Malicious Scripts 
These are the scripts added to harm the functioning of IoT devices [36]. These IoT 
devices are connected to the network and hence to the Internet. Once the attacker 
compromises the device, data can be manipulated. Malicious scripts can affect the 
confidentiality, availability, and integrity of the data. For preventing malicious 
scripts from being executed, detection techniques like honeypot, static, and dynamic 
code analysis need to be carried out. 
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Figure 3.6 gives a summarization of all the possible attacks on the layers of the 
IoT along with the possible countermeasures. This extensive list will help re-
searchers to correlate the impact of the various attacks on the IoT. 

3.5 FUTURE RESEARCH DIRECTIONS 

By now you must understand how these IoT devices are being used in many areas 
and how day by day the scope is increasing. This may lead to various vulner-
abilities; the same has been discussed in this chapter. Here are a few research areas 
to make the IoT paradigm reality.  

• Easy-to-use IoT devices need to be manufactured. 
• The end-user needs confidence before becoming dependent on IoT de-

vices, which can be ensured by addressing security and privacy challenges.  
• By using various data analysis techniques in real time, better security can 

be provided.  
• The incorporation of blockchain with IoT can be explored for the tamper- 

proof feature of blockchain.  
• Various IDS techniques can be identified for prevention against various 

intrusions.  
• IoT devices have constraints of power, which is advantageous for attackers 

as these devices don’t have the ability to spend their computation power on 
intrusion detection, so a workaround is required here. 

• A privacy-ensuring mechanism is needed to prevent unauthorized identi-
fication and tracking.  

• The legal liability framework needs to be designed.  
• A policy is needed to ensure and verify the CIA characteristics of data 

sensed and exchanged by IoT devices. 

3.6 CONCLUSION 

The primary agenda of this chapter is to deliver a clear idea of the various aspects, 
such as challenges, attacks, and vulnerabilities. The IoT vision will empower the 
user to utilize IoT devices. The architecture technologies associated with the IoT 
devices have been discussed to give key insights into all these areas. All the 
parameters regarding IoT security have been discussed with future directions so that 
researchers can contribute to the enhancement of security. The future of IoT se-
curity threats and challenges in the blending of existing technologies have also been 
discussed. 
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4.1 IOT INTRODUCTION 

The Internet of Things (IoT) is the network that connects different devices, objects, 
and sensors over the Internet in order to collect and exchange data. With the rapid 
development of the IoT, these technologies are being used for a variety of purposes, 
including education, transportation, communication, etc. Individuals and organi-
zations can communicate with each other using the IoT hyperconnectivity concept. 
Therefore, IoT security is a major concern in order to protect the networks and 
hardware in the IoT system. 

IoT deployment can implement different technologies, architecture, and design 
methodologies depending on their application usage. For example, for collecting 
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environmental data in some area, the IoT system can use the capabilities of a 
wireless sensor network (WSN), and a monitoring application can be run on 
smartphones to view the data. Middleware can be used to provide easy access to 
virtual services and resources. 

It has been observed that rigorous research and development is being undertaken 
in the area of IoT privacy and security. Recently, the proposed security techniques 
have been based on conventional network security methods. But it is very chal-
lenging to apply security mechanisms in the IoT system due to device hetero-
geneity, resource constraints, and trust management. 

4.2 IOT SYSTEM COMPONENTS 

The IoT has a three-layered architecture that is comprised of the perception layer, 
network layer, and application layer. Various IoT system components are hard-
ware devices, sensors, localization and tracking, communication protocols, ac-
tuators, storage devices, processing, identification, communication, etc. as shown 
in Figure 4.1. 

The IoT consists of a variety of heterogeneous devices connected over the 
Internet. IoT threats are dissimilar than traditional networks due to different end 
devices and the availability of resources. The traditional network has powerful 
servers and resources, whereas IoT devices have very limited computational power 
and limited memory. Hence, the IoT system cannot afford complex and cross-layer 
security mechanisms. Bluetooth, Zigbee, 802.15.4, and 802.11a/b/n/g/p are wireless 
communication media being used by IoT devices. Moreover, the IoT uses different 
data formats, different operating systems (OS), which makes it very difficult to 

FIGURE 4.1 Components of the IoT system (Based on  Deshmukh and Sonavane 2017).    
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design a standard security protocol (Sadique et al. 2018). All these restrictions and 
limitations make the IoT prone to various types of attacks, causing security and 
privacy threats at different layers. 

4.3 IOT LAYERED ARCHITECTURES 

Multiple IoT architectures exist in the literature. Three-layered, four-layered, and 
five-layered IoT architectures are shown in Figure 4.2. In five-layered architecture, 
each layer has a specific functionality in the IoT system. The perception layer, 
network layer, business layer, middleware layer, and application layer are various 
IoT layers in the IoT architecture. The perception layer includes hardware like 
RFID chips, sensors, actuators, barcodes, etc. and further devices connected in the 
IoT network. The network layer acts as an intermediary layer to pass the in-
formation from the perception layer to the processing layer. The processing layer 
processes the information received from the lower layer and makes decisions based 
on the ubiquitous computing. The business layer is the topmost layer in the ar-
chitecture. This layer controls the entire architecture of the IoT system, its services, 
and its applications. 

The business layer helps develop future strategies using the data and statistics 
received from the lower layer. In addition, the IoT system comprises numerous 
functional blocks that support several IoT activities, such as control and manage-
ment, the sensing mechanism, identification, and authentication (Khraisat and 
Alazab 2021). Figure 4.1 illustrates the IoT components. 

FIGURE 4.2 IoT Architectures (Based on  Acharya, V. et al. 2020).    
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4.4 SECURITY FRAMEWORKS FOR THE IOT SYSTEM 

Security frameworks play a crucial role in the implementation of IoT security ar-
chitectures. The security framework makes the system robust to security attacks. 
The IoT-based security framework is classified as protocol/functionality specific, 
application specific, and generic specific. 

In Rafique W. et al. 2020, the authors introduced the application-specific, real- 
time health monitoring system security framework, which ensures authenticity, data 
integrity, and confidentiality using MTQQ and CoAP protocols. For providing 
secure end-to-end communication, RESTful, HTTPs, and CoAP are jointly used. 
Amazon released an IoT-based cloud platform known as Amazon Web Services 
(AWS) (Aijaz and Aghvami 2015). This framework allows one to connect IoT 
devices securely with AWS cloud to use various AWS services of Amazon S3 
(Meena, S. et al 2015), Amazon machine learning (Acharya and Hegde 2020), 
Amazon DynamoDB, etc. It uses MTQQ protocol for security. 

ARM mbed is an IoT-based platform to develop applications for ARM controllers 
(Hussain, Tariq). By integrating ARM mbed services and tools, mbed OS, mbed 
cloud, ARM microcontroller, mbed device controller, and ARM mbed IoT platform 
aim to provide a scalable, secure, and connected environment for IoT devices. This 
platform has an advantage over other IoT platforms by using common OS (Bagaa 
et al. 2020). This provides support for various communication protocols to connect 
with the cloud and with other devices. Moreover, in order to solve the power con-
sumption problem, it also provides support to automatic power management schemes. 

In Horrow and Sardana 2012, the authors proposed a solution that automatically 
handles the growing need for security aspects associated with the IoT domain using 
a machine learning (ML) based security framework. To mitigate various threats, 
this framework used both Software Defined Networking (SDN) and Network 
Function Virtualization (NFV). An AI-based reaction agent and monitoring agent 
are combined in this AI framework using ML models. This framework maneuvers 
neural network, a distributed data mining system, and supervised learning to attain 
its goals. The functionality-specific framework provides solutions to specific tasks 
such as enforcing privacy, identity management, and service discovery. The 
protocol-specific framework provides solutions to the protocol vulnerabilities by 
designing and eliminating the potential of security attacks. MQTT is an example of 
publish-subscribe based IoT protocols and services under this category. In Persson 
and Angelsmark 2015, the authors proposed a MDSIoT (framework for model- 
driven security enforcement policy) for IoT devices used in an edge server. This 
framework allows the policies to be executed at the model level and added into the 
code at runtime for deployment. In Al-Qaseemi et al. 2016, the author proposed the 
Calvin framework, which includes both cloud programming and IoT models to 
analyze and develop distributed, diverse, and communication protocols. 

4.4.1 IOT SECURITY DOMAINS 

Security and privacy include data integrity, data confidentiality, and availability of 
the network as the primary goals of IoT security. The IoT needs to handle various 
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limitations and restrictions that include devices and components as well as com-
putational resources. In the IoT, data can be anything viz. data sent from a sur-
veillance camera to the server, a user’s identity information, or multimedia 
communication between two individuals. Therefore, IoT security is a critical con-
cern that needs to be addressed while implementing the IoT. Various security do-
mains in the IoT are discussed below. 

Confidentiality:  

1. The most significant concern in the IoT is confidentiality. Confidentiality 
makes each device’s data private and does not permit the device to share 
data with neighbors, or it has the capability of hiding the data from a 
passive invader so that the message that is sent via sensor networks is 
private. Data may include demographic data, smart meter measurements, 
personal information, and billing.  

2. Integrity: Integrity is the most essential part in the communication network 
that can be captured by end-to-end security protocols. The data exchange 
between different devices in the IoT system requires an integrity feature to 
ensure that the data exchange is correct and accurate between the sender 
and recipient. During data transmission, no data tampering, loss, or al-
teration should occur (Sanjana et al. 2021). By utilizing security protocols 
and services, the information traffic is managed (Hassija, S. et al. 2023). 

3. Accessibility: It enables the user to access the information when the dif-
ferent types of smart devices in the network connect with each other 
Burhan, M. 2018.  

4. Authentication: In order to ensure that only the intended users receive the 
information, it is mandatory to authenticate the source and destination 
devices. Authentication ensures that only authenticated users have access 
to this information, and diverse entities are permitted to communicate and 
exchange correct information (Iwaya et al. 2020) 

5. Light-weight Solutions: The power limitations of IoT devices is con-
sidered while enabling security procedures and services. The security 
protocols or procedures are designed to consume less energy. Since the 
security procedure implanted with certain limited capabilities will be 
executed on end devices, it has to be compatible with devices with security 
protocols (Hassan et al. 2021).  

6. Heterogeneity in the IoT system is common as different devices can have 
different underlying hardware and software. IoT devices connected with 
each other can be from different vendors, can have a different levels of 
complications, and can have different functionalities. So, in order to deal 
with these heterogeneous devices efficiently, the security protocol must be 
designed accordingly. The IoT system needs a heterogeneous network to 
establish communication between heterogeneous devices. With such het-
erogeneity, the best security and cryptography protocols must be im-
plemented to guarantee no security breach. 

7. Policies: To enable information management in an economical and pro-
tected way, a few standards and policies are required. Therefore, tracking 
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the implementation of these policies and standards is very important, 
whether the devices are adhering to these policies or not. To deal with such 
conditions, service-level agreements were presented. The IoT system 
comprises heterogeneous devices; implications of such procedures and 
policies form a sense of confidence and trust among users.  

8. Key Management Systems: To maintain confidentiality of information 
between sensors and IoT devices, a key management system is needed. To 
establish trust among various parties, a lightweight key management 
system can be used in all frameworks. 

4.4.2 IOT SECURITY AND PRIVACY THREATS 

With the increase in IoT devices and their applications, we must not ignore the 
security and risk associated with them, as shown in Figure 4.3. IoT safety is the area 
to focus on to secure connected devices and conserver networks, data, and orga-
nization in the IoT. 

With the advancements in technology, the usage of Internet devices has increased, 
which in turn multiplied security problems significantly. Due to the design of IoT 
system frameworks, traditional security mechanisms cannot be implemented. The 
problems of heterogeneity and scalability arise due to the large number of devices 
connected with limited resources available. Hence, it is important that the system is 
flexible and strong to face predictable and unpredictable risks. As the transmission 
media is wireless, it is very prone to attacks and security breaches. So, a good fra-
mework must be provided with protection measures for exchanged information. 

The security mechanism’s main (Sadique et al. 2018) intention is to attain avail-
ability, integrity, confidentiality, and reliability, which helps to resolve security issues. 

Security Issues at the Perception Layer 

An IoT node consists of various elements, such as a microcontroller, sensor, 
memory, transceiver, RFID tags, RFID reader, RFID antennas, etc. The main se-
curity threats that come across at this layer are as follows: 

FIGURE 4.3 Attacks associated with different IoT layers (Based on  Hassija 2019).    
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1. Jamming: Jamming is a type of DoS attack where adversaries prevent 
other nodes from using the channel to communicate by occupying the 
channel. The node’s signal can be interrupted completely or partly with the 
help of a jammer device. Interfering signals disrupt the wireless commu-
nication that allows opponents to easily perform radio interference and 
cause a denial of service of transmitting or receiving capabilities. 

An adversary without difficulty can accomplish these attacks by de-
touring the physical layer protocols. 

Various jamming attacks are classified as constant jamming attacks, 
frequency sweeping jamming attacks, reactive jamming attacks, and 
deceptive jamming attacks. Reactive jammers, smart hybrid jammers, 
decoy jammers, and function-specific jammers are varieties of available 
jammers.  

2. Malicious Code Injection Attack: In this attack, the assailant inserts the 
malicious code in the node’s memory and exploits the software. The IoT 
node’s software and firmware are mostly updated using the Wi-Fi network, 
which provides the gateway for the adversaries to inject malicious code. 
Using such malicious code, the invaders can access the entire IoT system 
and may pressurize the device to execute certain unintended functions.  

3. Tampering: In this attack, the assailant modifies the compromised node 
physically, such as a microcontroller, and can acquire sensitive data, like 
an encryption key. IoT nodes left unattended in the field are more vul-
nerable to such outbreaks.  

4. Eavesdropping and Interference: Nodes in the IoT are of heterogenous 
types and are placed in open environments. Therefore, IoT applications are 
vulnerable to eavesdroppers. The attacker can eavesdrop and acquire data 
during the authentication and transmission phases.  

5. Sleep Deprivation Attacks: In this attack, the batteries of IoT devices are 
drained out by attackers, which leads to denial of service by the IoT nodes. 
The battery may by drained out by increasing the power consumption of 
IoT nodes or by running the malicious code infinite times.  

6. Booting Attacks: During the boot process, IoT devices are vulnerable to 
numerous attacks because at that time the security processes are not en-
abled. The adversaries make use of these vulnerabilities and attack the IoT 
nodes when they are being restarted. 

Network Layer Security Issues 

The main activity of the network layer is to transmit the data received from the 
perception layer to the computation unit for processing. Some more prevalent at-
tacks at this layer are discussed below:  

1. Main-in-The-Middle (MiTM) Attack: In the MiTM attack, the attackers 
intercept and modify data when the sender and receiver are communicating 
with each other. The attacker can modify the data as per their need and 
control the entire session. The attacker manipulates and captures real-time 
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information, which leads to serious threats to online security (Kaushik, K. 
and Dahiya, S. 2018).  

2. Access Attack: In an access attack, the opponent gains unauthorized access 
to the IoT network. The adversary can be part of the network for a longer 
duration and have access to important data. As IoT devices endlessly send 
and receive important data, they are more vulnerable to these attacks 
(Sha et al. 2018).  

3. Routing Attacks: In routing attacks, the routing paths of IoT nodes are 
diverted to transmit data. There are various types of routing attacks. In a 
sinkhole attack, the malicious node advertises the shortest path so that data 
can be transferred through it. 

Application Layer Security Issues 

The end users directly deal with the application layer and provide services. IoT ap-
plications such as smart meters, smart homes, smart grids, and smart cities are part of 
this layer. Privacy issues and data theft are some specific security issues at this layer. 
Diverse applications have different security issues. Middleware or the application 
support layer is the sub-layer in many IoT applications (Sanjay, A. et al. 2020). This 
sub-layer provides help in optimized resource allocation and computation to support 
various business services. Various security issues at this layer are discussed as follows:  

1. Access Control Attacks: Only authorized users or processes can access 
data using access control. Therefore, access control attacks are a serious 
concern in IoT applications. If access to the IoT device is compromised, 
then the entire IoT system will become vulnerable to attacks. Therefore, in 
order to thwart these attacks, a robust IoT authentication and access 
control mechanism is required (Vijarania, M. et al. 2021).  

2. Strong IoT access control and authentication technology can help thwart 
attacks.  

3. Data Theft: In IoT applications, a lot of data movement takes place. IoT 
devices store huge amounts of critical private data. Data during trans-
mission are more at risk than stored data in IoT devices. If IoT applica-
tions are vulnerable to these data attacks, then users will be hesitant to 
register their private information on IoT platforms. A few techniques or 
protocols can be used to secure the user’s data, like data isolation, privacy 
management, data encryption, etc.  

4. Cross-Site Scripting: It is a type of injection attack where the invader 
injects a side script, like java script, into a trustworthy site. In this way, the 
attacker can alter the client’s content as per their requirements and can 
make use of the original data in an unlawful way. 

4.5 IOT PROTOCOLS AT DIFFERENT LAYERS 

This section briefly discusses the routing protocols being used at the network layer 
for routing. The network layer is divided into two sub-layers, firstly, the routing 

78                                            Internet of Things and Cyber Physical Systems 



layer that deals with the routing of information from one place node to another node 
(Kaushik and Singh 2020). The second layer is the encapsulation layer, which 
encapsulates the information in the form of packets. 

Routing protocol RPL for lossy and low-power networks (RPL) 

RPL is a distance vector routing mechanism developed for IoT systems. It is built 
on destination-oriented directed-acyclic graphs (DODAG) (Makhdoom et al. 2018, 
Singh, K. et al. 2020). This protocol discovers a distinct path from the terminal node 
to the root node, which will be used further for packet transmission. Each node 
sends a DODAG information object in the beginning to advertise itself as a root. 
The entire DODAG is formed through the propagated DIO from all nodes. The 
destination sends the DAO (destination advertisement object) when any node wants 
to communicate to its parent and propagates to the root node. Then, the root node 
decides the route based on the destination location. By sending the DODAG soli-
citation message, a new node can join the network and the root node can send the 
acknowledgment by DAO-ACK message. The entire communication in this pro-
tocol goes through the root node (Dhar, D. et al. 2021). 

Cognitive RPL (CORPL) 

CORPL protocol is the extension of the basic RPL protocol and uses the same 
method with small modifications (Brandt et al. 2012). This protocol uses oppor-
tunistic forwarding in which packets can be forwarded through multiple nodes. 
Only the best path is chosen to route the packets. Each node maintains the neighbor 
node list in place of the parent list. DIO messages are sent on any update of 
neighboring nodes. Each node updates its list of forwarders depending upon the 
updated information.  

MTQQ 

Message Queuing Telemetry Transport (MQTT) protocol is commonly used as IoT 
security protocol. It has been specially designed for unreliable or high-latency and 
low-bandwidth networks and constraint devices. MQTT protocol provides security 
at various layers: the transport, network, and application layers. Every layer is re-
sponsible for preventing a specific type of attack. MQTT uses a limited security 
mechanism in order to make it lightweight. A client identifier to authenticate de-
vices on the application level is passed with data packets. 

MQTT for Sensor Network 

MQTT-SN protocol is used for power-constrained devices of sensor networks. The 
publisher device is the MTQQ-SN client, which sends a message to the gateway, 
which transfers the MQTT-SN message to the MQTT message and forwards it to 
the broker. Hence, the broker delivers the packet to the subscriber on the other 
gateway (i.e. MQTT-SN client). 
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Secure MQTT (SMQTT) 

MQTT and MQTT-SN both use SSL/TLS for security. Secure MQTT protocol adds 
security to prevent attacks, such as CRIME and BEAST, to the basic MTQQ 
protocol (Tawalbeh et al. 2020). It has Spublish message, which is encrypted by 
attribute-based encryption (ABE) with “0000” message type. So, the subscriber can 
decrypt the message of whoever satisfies the access policy. ABE supports broadcast 
encryption, which is a requirement of IoT devices (Saif, A. et al. 2021). 

4.6 CONCLUSION AND FUTURE WORK 

The IoT is a developing technological field that provides a platform for several 
opportunities with efficient, cost effective, and convenient services and applications 
to the end users, though security of IoT systems is a critical concern towards wider 
deployment of IoT devices. This chapter presented the various security and privacy 
threats at different layers of IoT architecture and various protocols that deal with 
security for IoT systems. This chapter has discussed that the existing security fra-
meworks and architectures are not designed to deal with various attacks and threats 
in a systematic manner. Therefore, a systematic method is required to handle the 
various IoT security threats in an organized way. A secure IoT architecture needs to 
be designed that is able to capture the basic IoT security requirements for secure 
communication. 
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5.1 INTRODUCTION 

Cyber physical systems (CPSs) have become sophisticated, multifaceted, independent 
as well as intelligent. CPSs need a strategy that is different due to its firm interaction 
among components that are physical as well as cyber, from security of information 
technology that is traditional. CPSs are also exposed to essential disturbances because 
of intentional and unintentional events that affect the prediction of their behaviors that 
was classified as faulty or normal, a task that is very hard to determine. Attention of 
researchers and scientists is attracted to cybersecurity for CPSs in both academia and 
industries due to the increase in the number of cyberattacks, such as distributed denial 
of service (DDoS) attacks and more sophisticated cyber criminals’ behavior, which is 
called zero-day threats. A denial of service (DoS) attack is a type of cyberattack in 
which the perpetrator attempts to render a machine or network resource unavailable to 
its intended users by disrupting the services of a host connected to a network for a 
short or long period of time. A distributed denial of service (DDoS) attack, on the 
other hand, is a malicious attempt to interrupt the regular traffic of a targeted server, 
service, or network by flooding the target or its surrounding infrastructure with 
Internet traffic. The most affected port for DDoS attack is port 22, which is a secure 
shell (Kuyoro et al., 2017). Mechanisms of conventional cybersecurity, for example, 
access control as well as the intrusion prevention system/intrusion detection system 
(IPS/IDS), do not have the ability to block, notice, and avoid this type of cyberattack 
because of the exhibition of misbehavior that is unidentified from zero-day threats and 
that is not described in the database signature of the system’s security. A new era of 
artificial intelligence (AI), which is created with mechanisms of cybersecurity, is 
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under development to protect CPSs from zero-day attacks. The technologies of ma-
chine learning (ML) are used to manage an enormous amount of data that are het-
erogeneous and come from different information sources with a purpose of automatic 
generation of several attack patterns as well as prediction of accurate future attackers’ 
misbehavior. Hence, decision-making issues that are based on cyber defense context 
have been solved by game-theoretic techniques, that is, detecting if the suspect device 
is an attacker or not as well as predicting attacks. 

Collaboration of several AI systems is required to prevent the occurrence of 
zero-day attacks, which include game theory, ML, and the involvement of a security 
expert. Also, there is an improvement in detecting attacks through human in-
volvement in decision making because the purpose of interaction between machine 
and human is to reduce false positive numbers. It is the best time due to the op-
portunities brought by AI in deep learning (DL) particularly. DL is used on the 
contrary rather than traditional ML models due to its use of deeper and more layered 
artificial neural networks (ANNs). This increases the number of possibilities con-
sidered and the overall time the calculative process takes but significantly reduces 
the gap for the occurrence of false positives. The core function of the DL algorithm 
would be to formulate scenarios, analyze those scenarios and identify factors of 
interest, formulate the problem to be solved due to the identified factors, and finally 
orchestrate an appropriate solution based on the inferences drawn. 

CPSs adopt DL models quickly in order to prevent cyberattacks. DL is used to 
prevent CPSs because it is specially made for handling large sets of data with a 
huge number of features. A rich class of models that can estimate any function is 
provided by DL, and these characteristics are desirable by CPSs. This research 
provides DL solutions to detect cyberattack in the background of CPSs by using DL 
algorithms on DDoS dataset to generate some ML performance evaluation metrics 
to validate the best algorithm to use for identifying or detecting attacks in CPSs. 

A CPS is a collection of systems comprised of digital devices and intelligent 
hardware. These systems are a collection of integrated physical and digital devices 
used in place of traditional physical systems due to their increase in productivity, and 
they are now commonly used in industrial control systems, water systems, robotics 
systems, smart grids, smart homes, e-health, and many other aspects of our daily lives, 
which has made it an essential topic for research. As with other problems, when it is 
solved, another arises; this study focuses on how to solve cyberattacks on CPSs using 
AI techniques. The study focuses on building DL models to train the systems and 
enable them to monitor and potentially flag incoming cyberattacks. 

Greater performance is delivered to AI by adopting DL due to its algorithms that 
are effective as well as its layered setting for useful information extraction from 
training data. CPSs adopt DL models quickly in order to prevent cyberattacks. Due 
to the abundance of first-rate datasets, the ease of implementing such models is very 
high, and the conclusions drawn are extremely accurate, thus reducing the occur-
rence of the most significant drawback, which would be false positives. An AI- 
based system was developed to detect cyberattack with a DDoS dataset in the 
background of CPSs using DL algorithms. Hence, performance evaluation of the 
algorithms was carried out in order to determine the optimal one for building the DL 
model when mitigating a DDoS cyberattack on the CPS. 
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The study evaluated the models and conducted comparative analysis on four 
algorithms to determine the best DL algorithms that give the best result on the 
dataset using ML metrics such as accuracy, loss function, precision, recall, and root 
mean square error (RMSE). Feature extraction was used in classifying a dataset into 
DDoS attack or normal attack (benign). Based on the DL algorithms used for this 
study, it was discovered that convolutional neural network (CNN) gives 99.32 
accuracy, 0.0353 loss function, 0.9917 precision, 0.994 recall and 0.0805 RMSE; 
meanwhile, long short-term memory (LSTM) gives 99.92 accuracy, 0.0037 loss 
function, 0.9997 precision, 0.9992 recall, and 0.026 RMSE. The dense model gives 
76.38 accuracy, 0.6132 loss function, 0.7621 precision, 1.0 recall, and 0.4594 
RMSE, whereas gated recurrent units (GRU) gives 99.32 accuracy, 0.0353 loss 
function, 0.9917 precision, 0.994 recall, and 0.0805 RMSE in the training phase on 
the DDoS dataset. In the testing phase, CNN gives 99.27 accuracy, 0.0401 loss 
function, 0.991 precision, 0.9995 recall, and 0.0848 RMSE; LSTM gives 99.92 
accuracy, 0.0058 loss function, 0.9997 precision, 0.9992 recall, and 0.0278 RMSE; 
the dense model gives 76.45 accuracy, 0.6131 loss function, 0.763 precision, 
1 recall, and 0.4593 RMSE; GRU gives 99.27 accuracy, 0.0401 loss function, 0.991 
precision, 0.9995 recall. and 0.0848 RMSE. In conclusion, this research developed 
a DL model for mitigating CPS attacks using an emerging AI-based method called 
“deep learning.” The results showed that LSTM outperformed other DL algorithms. 

5.1.1 CYBER PHYSICAL SYSTEMS 

The CPS is a phenomenon that establishes a collection between computational 
integration and physical processes (Lee & Seshia, 2017). Going by this context, 
CPSs can be defined as a computational integration with a collection and ar-
rangement of physical objects that together perform a function that the individual 
object is not capable of, in order to achieve a particular goal. CPSs put together 
human, physical, and digitized elements in a consolidated process through the 
integration of logical and physical areas (Mohamed et al., 2020). The sensing, 
computing, supervision, and networking are integrated into physical elements and 
infrastructure through CPSs, linking them to one another and the Internet. The 
most important asset for any individual as well as organizations is holding or 
keeping data and information intact and safe (Bhardwaj & Kaushik, 2020). In 
CPSs, monitoring and controlling of the physical process are achieved using 
networks and embedded computers, commonly with response loops where 
computations are affected by physical processes and vice versa. Thus, the design 
of a CPS entails the understanding of collective dynamics of networks, software, 
and physical processes. A CPS is a multidisciplinary area that requires experts 
from different domains based on the nature of the problem at hand (Barišić et al., 
2022). Based on the foregoing, the CPS has become a prominent domain (Doghri 
et al., 2021) as its system is a blended engineered system consisting of control 
systems and different technologies such as communication, electrical, and in-
formation (Mohamed et al., 2020). This emerging domain came into being on the 
occasion of the birth of the CPS, integrating physical and computational cap-
abilities. The Internet of Things (IoT) being among CPSs’ important enablers 
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(Latif et al., 2022), its live data sensor evaluation as well as storage are required 
widely for further sensor data analysis (Pradeep & Sharma, 2020); the CPS brings 
forth monitoring and feedback to emergency circumstances, as well as delivery 
systems. Among the numerous important areas, this concept has revolutionized 
and brought forth different applications such as healthcare, transportation sys-
tems, information systems, and traffic management systems, to mention but a few. 
Some of other CPS key engineered systems that are facilitating CPS integration 
are the Internet together with other associated technologies such as cloud com-
puting and software-defined network (SDN), making possible the realization of 
Industry 4.0, smart security, smart homes, and smart healthcare systems. Also 
worthy of mentioning is industrial automation, leading to the idea of smart fac-
tories, employing the IoT and AI as the CPS key enablers (Latif et al., 2022). The 
role of cyber threats in the IoT is crucial (Kaushik & Dahiya, 2018). The IoT has 
transformed the digital world by interconnecting billions of electrical items over 
the Internet (Dhar Dwivedi et al., 2021), and it is negatively affecting a lot of 
people (Singh et al., 2020). Some of the areas where the IoT is widely applied are 
healthcare devices that are wearable, smart homes, smart farming, the smart grid, 
smart retail, as well as smart supply chain (Hinduja & Pandey, 2020). Security 
and trust are fundamental threats to the IoT (Kaushik & Singh, 2020). AI in 
particular as an enabler is a disruptive technology that has revolutionized digital 
space (Akinsola et al., 2022) and has thus affected every sector of the economy 
(Hinmikaiye et al., 2021) with specific regard to telecommunications. Some of the 
examples of CPSs and industrial automation are integration of human to robot, 
flexibility in the management of supply chain, predictive maintenance, and production 
quality (Abosaq et al., 2016). A typical example of a CPS is shown in Figure 5.1, 

FIGURE 5.1 Different components of the cyber physical system such as embedded 
systems, wireless sensor networks, the internet, satellite networks, mobile networks, and 
the Internet of Things.    
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consisting of different components such as embedded systems, wireless sensor net-
works, the Internet, satellite networks, mobile networks, and the IoT. 

Generally, the CPS is a computational system that relies on computer algo-
rithms that are integrated into real-life applications to monitor and control 
mechanisms. The CPS, being an emerging domain with potential to re-
volutionize different areas of life, has attracted a number of researchers working 
in the different ways to improve on its limitations. The authors (Pivoto et al., 
2021) worked on the perception that industries utilize the CPS with a view to 
provide better, safe, and reliable production. However, there are usually attacks 
occasioned through SQL injection attacks on intelligent systems and web ap-
plication (Akinsola et al., 2020). The author (Pivoto et al., 2021) identified 
possible limitations that AI and IoT can bring forth in Industry 4.0, bringing 
forth gaps to be enhanced in the CPS model with emphasis on technologies and 
characteristics. Some of the limitations that AI and IoT can bring about are 
interoperability, connectivity, resource optimization, smart decisions, and in-
teractivity. In the study by Koren & Krishna, 2021, different approaches CPSs 
employed for fault tolerance are considered, giving response time great im-
portance, with a view to limiting failure rate in some important applications, 
such as the power grid, aircraft, automobiles, and so on. In the same vein,  
Vinogradov et al., 2021 developed a method that utilized four information 
processing points to bring about logical inference that identifies and constructs a 
model based on the theory of patterns to ensure robotics’ behavior sufficiently 
guarantees self-actualization of a specific mission. The author’s aim is to ensure 
the CPS effectively transfers experience and also guarantees the cause-and- 
effect method and compatibility of the theological method. Also, Chechile, 
2021, used the CPS that necessitated layered simulation-centric methods that 
required visualization capabilities of two- and three-dimensions in machine 
process development, such as space systems for the verification of laws con-
trolled through the creation of synthetic realities, recreating numerical physical 
decrees in computers and the research laboratory. 

5.1.1.1 Applications of Cyber Physical Systems 
Some of the systems that employ CPSs are industrial control systems, smart grid 
systems, medical devices, and smart cars (Ruthvik, 2021). 

5.1.1.1.1 Industrial Control Systems 
These are regarded as control systems that are being utilized for monitoring, con-
trolling, and production in diverse industries such as water and sewage plants, 
chemical plants, and nuclear plants, to mention a few. It is generally controlled 
using a microprocessor that is programmable through a programmable logic con-
troller (PLC) device that involves the connection of sensors and actuators to the 
physical world. CPSs, together with AI and the IoT, offer industries a system that 
guarantees reliable, better, and safe production (Pivoto et al., 2021). Typical ex-
amples of applications of CPSs are shown in Figure 5.2. 
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5.1.1.1.2 Smart Grid Systems 
The smart grid system efficiently generates, transmits, and distributes electricity 
because of its ability to globally and automatically maintain voltage load balance 
based on demand, and it also utilizes windmills’ renewable energy generation. CPSs 
made it possible to control applications, including smart grid systems, because of 
their real-time and fault-tolerant computational capability, making a response to 
events possible within a certain time frame (Koren & Krishna, 2021). The in-
troduction of human-computer interaction (HCI), also known as man-machine in-
teraction or interfacing (MMI), has resulted in numerous advances (Alao et al., 
2019) and has thus made the devices smart. 

5.1.1.1.3 Medical Devices 
The need for safety in healthcare applications built on the IoT is important due to 
different roles on existing wireless systems (Kaushik et al., 2021). Wearable devices 
that communicate through the use of wireless technology the specific health status 
of patients to the physician are a typical example of CPSs’ application in the 
medical field. For instance, medical CPSs integrate computational and physical 

FIGURE 5.2 Typical example of an application of the cyber physical system, comprised 
of the smart grid, transportation system, healthcare medical center, and Industrial IoT, 
showing their information flow and physical sensing arrow.    
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approaches, which are deployed through examination of the Internet and computer 
algorithms (Vyas & Bhargava, 2021). 

5.1.1.1.4 Smart Cars 
The smart car is friendly to the environment because of its intelligent features through 
the use of CPSs and AI that enhance its convenience. Currently, the capability of 
smart cars to exchange data via many communication channels is a response to high- 
tech advancement in smart transport systems (Hassan et al., 2018). Therefore, smart 
cars represent typical examples of CPSs because of the embedded physical devices 
and electronic components that integrate networks, computer algorithms, and physical 
approaches to influence computing processes (Alshdadi, 2021). 

5.1.2 CYBER PHYSICAL SYSTEMS AND CYBER SECURITY 

Recently, there has been an increase in the use of CPSs in different applications 
because of their intelligence features through computing and physical object in-
tegration. Nowadays, different examples of CPSs are emerging in every area of life, 
and they are also being employed for different applications (Mohamed et al., 2020): 
cleaning robots at home, smart lighting systems on the street, and other examples 
such as ventilation and smart heating and air-conditioning (or HVAC) systems 
(Taha et al., 2020). However, CPSs are susceptible to cyber threats and hacking 
attempts like other distributed and computerized systems (Mohamed et al., 2020), 
notwithstanding the growing dependency of numerous applications on them (Gao & 
Yang, 2022). These susceptibilities have caused numbers of deadly attacks from 
people of the underworld due to attacks penetrating heterogeneous systems that are 
highly connected together (Griffioen et al., 2021). Examples of these are thousands 
of centrifuges being destroyed due to undesirable expedient acceptance of Iran’s 
uranium enhancement capacity by a state enemy (Chen, 2010), numbers of liters of 
sewage leaked due to undesirable expedient utilization of complete system 
knowledge to cause havoc on Queensland waste management system by a spiteful 
insider (Slay & Miller, 2008), and general blackouts in Ukraine due to an un-
desirable supervisory control and data acquisition system by hackers (Lee et al., 
2016). These have drawn the attention of researchers to the different ways attacks 
can be mitigated, making a secured CPS through safeguarding the heterogeneous 
items, such as sensors, computation, control, and communication between physical 
objects. Cybersecurity protects cyber devices such as software applications and 
hardware from cyberattacks, and businesses and individuals employ this approach 
to safeguard themselves from undesirable admittance to computerized networks and 
data centers (Alshdadi, 2021). Some of the defense techniques traditionally em-
ployed by cybersecurity are message verification codes, signatures, and authenti-
cation encryption, to mention to a few (Mohamed et al., 2020). These techniques 
use a computational approach to detecting integrity attacks against the highly 
knowledgeable and resourceful hackers (Griffioen et al., 2021). 

5.1.2.1 Defense Techniques in Cyber Physical Systems 
CPSs are protected from attacks using different techniques, as discussed below: 
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5.1.2.1.1 Message Verification Codes 
Message verification codes is a method used to protect Internet resources against 
intruders. Verification codes identify and provide further security when resetting or 
unlocking user accounts by sending a verification code via the configured medium 
of communication such as a mobile number or email address. In CPSs, the ver-
ification code is one of the key features in building a secured system by ensuring the 
system meets the configured requirements with high assurance level (Mitra, 2021). 
Various researchers have applied verification codes to ensure the security of CPSs. 
For instance, Shen et al., 2013, proposed a cooperative protocol for verification 
codes that share vehicle verification results with one another in a cooperative way to 
ensure a significant reduction in the number of verifications of authentication 
messages by each vehicle. This was done mainly to reduce the complexity of the 
frequent interplay, such as broadcasting of vehicle geographic information between 
cyber domains and physical objects. 

5.1.2.1.2 Digital Signatures 
A digital signature is an electronic signature that routinely employs a mathematical 
algorithm for the validation of the integrity and authenticity of messages, such as a 
digital document, online card transaction, email, and so on. It uniquely creates a 
fingerprint for both the message and the entity or person and subsequently uses the 
entity’s unique fingerprint for the identification of users during online transactions 
to protect digital messages (CISA, 2020). An example of this application is the 
enhancement of the security of data in a CPS for a water treatment and supply 
system (Vegh & Miclea, 2015). Another one is the introduction of a scheme for 
lightweight signature that protects a CPS from injection of false data to ensure the 
integrity and authenticity of continuous authentication messages being transmitted 
(Yang et al., 2020). In fact, injection attack is the most prevalent attack in the last 
ten years, and it requires taxonomical characterization for its mitigation to be ef-
fective (Idowu et al., 2020). 

5.1.2.1.3 Authentication Encryption 
In encryption, meaningful data transform into unintelligible text (Simplilearn, 2022) 
using codes that can be employed to reverse the process, called decryption. Also, 
the authentication process typically needs the codes to unlock and gain entrance to 
the system. Therefore, further authenticated data are employed in authenticated 
encryption with a view to providing data integrity and confidentiality as well as 
assurance of authenticity on data being encrypted. 

5.1.3 EMERGING TECHNOLOGIES IN MITIGATING CYBER PHYSICAL 

SYSTEM ATTACKS 

A number of technologies and methods are emerging to mitigate CPS attacks be-
cause of the computational complexity of traditional approaches and their in-
effectiveness against physical attacks. Among the emerging technologies employed 
to mitigate CPS attacks are digital forensics, IoT, AI-empowered CPSs, advanced 

Application of Artificial Intelligence                                                           91 



electronic CPSs, unified approach at run time and design time, moving target de-
fense (MTD) techniques, and so on. They are discussed as follows: 

5.1.3.1 Digital Forensics 
Digital forensics aims to recover and investigate artifacts established on a digital 
device such as smartphones, external drives, laptops, memory cards, computers, and 
so on. Forensic analysis is incorporated in CPSs as a security measure to support the 
investigation of criminal activities and hacking attempts (Mohamed et al., 2020). 
Some of the recent trends in the application of digital forensics in cybersecurity 
include IoT, social media, and cloud forensics. Professionals in cybersecurity use 
these technologies for digital tracing of data stored electronically and processes 
involved, to ensure safety of data, while detecting the hackers (Alghamdi, 2021). 
One of the challenges to digital forensics has been privacy issues. The rise of social 
media has accelerated the phenomenon of cyberbullying and privacy concerns 
(Akinsola et al., 2021). 

5.1.3.2 Internet of Things (IoT) Security 
IoT security is a technological segment used in cybersecurity to protect networks 
and connected devices of the IoT (Sharon, 2021). Devices of the IoT play an 
important role in the technology era when devices that are conventional become 
smarter as well as independent (Dhar Dwivedi et al., 2021). In the study by  
Alshdadi, 2021, IoT-based advanced electronic features were proposed to safe-
guard the hijacking of a virtual vehicle in transport networks. CPSs can in-
corporate advanced electronic features to reduce cyberattacks and improve the 
security of smart vehicles. 

The connection between several devices is leading to various problems related to 
IoT privacy as well as security. Due to technological advancements, various retail 
stores and e-businesses use IoT-based techniques for their marketing, promotions, 
sales, and productivity due to the advantage it brings to their customers as well as 
the owner of the business (Kaushik & Dahiya, 2018). 

5.1.3.3 Artificial Intelligence (AI) 
AI is a technology used in cybersecurity to ensure effective and efficient in-
formation security. It makes the system secure ahead of a cyber threat. Examples of 
the technologies in AI are neural networks, ML, DL, and expert systems. AI uses 
information from blogs, research, and news stories to curate threat intelligence 
through the use of natural language processing and ML, providing quick analysis of 
events and identification of vulnerabilities that may lead to an attack. Cybersecurity 
uses AI at both a social and a technical level of the CPS’s automation during the 
integration of CPSs and the IoT to mitigate possible attacks (Radanliev et al., 2021). 

5.1.3.4 Unified Approach at Design and Run-Time 
A unified approach that takes the cognizance of security and safety issues related to 
the integration of the CPS with the IoT at both design and run time is an approach 
employed to possibly mitigate cyberattacks (Latif et al., 2022). During the design, 
the strengths and weaknesses of the SDLC models must be keenly considered 
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(Adeagbo et al., 2021). Meanwhile, ambiguity in the software performance can be 
eliminated using a formal method of performance evaluation (Akinsola et al., 2020). 
Run time analysis and design can be effective when integrated with an intelligent 
user interface (Akinsola et al., 2021). As a result, it is critical to assess whether the 
software development paradigm is top-down or bottom-up (Akinsola, Ogunbanwo 
et al., 2020). 

5.1.3.5 Moving Target Defense (MTD) 
Application of MTD is a technique used to shield the CPS from memory corruption 
attacks such as code reuse, code injection, and non-control data attacks. The MTD 
techniques used in shielding systems from attacks include address space rando-
mization (ASR), instruction set randomization (ISR), and data space randomization 
(DSR) (Griffioen et al., 2021). 

5.2 LITERATURE REVIEW 

This section considers related works that have been done by several authors to 
situate important components of this study. 

5.2.1 ARTIFICIAL INTELLIGENCE 

Information technology is one of the revolutions in the history of humans. The 
introduction of smart home technology and the Internet has improved the lifestyle 
of many people. AI has reduced the Herculean task carried out by humans by 
building machines that can carry out these tasks. The term “artificial intelligence” 
was proposed in 1956 during a conference at Dartmouth University (Zhang & Lu, 
2021). It was at this point that a new area that studies how machines simulate 
human intelligence was introduced (Xu, 2013). It is currently the most significant 
area in computing. It is a production factor that has the potential to introduce growth 
sources and how work is done across several industries. AI is a way of making a 
computer or application think like or close to a human. It involves recognizing 
patterns by analyzing the process to produce intelligent software (Bansal, 2022). AI 
is a field that cannot be stopped from appearing in different areas of our society. 
Areas like medicine, agriculture, education, and so on have all benefited from the 
presence of AI. AI-based applications have shown great potential in several areas. 
AI has penetrated into all parts of society; this is due to the digital revolution and 
the COVID-19 pandemic (Tognetto et al., 2021). AI is a technique that allows 
human behavior to be mimicked by computers so as to behave close to humans in 
making decisions that can solve difficult tasks with little or no supervision. It can be 
described as the ability of computers or computing-controlled systems to carry out 
different tasks that are mostly associated with humans or intelligent beings. 

AI is a bigger field than ML, which is a statistical subset of AI, and DL, which is 
a statistical subset of AI (Krukrubo, 2020). Figure 5.3 shows how AI, ML, and DL 
have evolved over the years. It can be seen that AI dominated the space between 
1950 and 1980, whereas ML dominated the space between 1980 and 2010, and DL 
has been dominating the space since 2010. Currently, most of the intelligent or 
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smart systems that have AI capabilities rely heavily on DL and ML. ML is used to 
explain the capability of different systems to learn from training data that are 
historical in order to predict outcomes of several events based on the training data, 
thereby solving a problem (Janiesch et al., 2021). 

DL is a ML concept that utilizes ANNs. The DL model surpasses ML models in 
most cases. ML describes how a computer program’s performance improves over 
time in terms of performance metrics and task types. 

The foundations of AI as described by Janiesch et al., 2021, include ML algo-
rithms, ANNs, and deep neural networks. The relationships between these items are 
described in Figure 5.4. ANNs have a flexible structure that can be adjusted for 
several contexts that cut across the whole ML. The idea was taken from biological 
systems that consist of representing artificial neurons mathematically as processes. 
Neurons are arranged in different layers, data input which is received from the input 
layer and the result received from the output layer. Deep neural networks consist of 
two or more hidden layers that are arranged in a nested network architecture. 

5.2.1.1 Characteristics of Artificial Intelligence 
Intelligence is mostly associated with humans describing human beings as in-
telligent animals. AI is used to describe computers that can reason close to humans. 

FIGURE 5.3 Artificial intelligence evolution showing the stages from early artificial 
intelligence to deep learning breakthrough.    

FIGURE 5.4 Foundations of artificial intelligence such as machine learning, artificial 
neural network, and deep neural network.    
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AI contributes and combines its techniques with other disciplines like psychology, 
philosophy, linguistics, biology, and so on. The characteristics of AI are depicted in  
Figure 5.5. The authors (Bansal, 2022; Copeland, 2022) describe five major char-
acteristics of AI. They are learning, reasoning, problem solving, perception, and 
language understanding. They are discussed as follows. 

5.2.1.1.1 Learning 
Learning can be described as any form of knowledge acquisition through gathering 
of experience or studying. Computers also learn the way human beings learn. That 
is, they learn in different ways. AI tries to learn while solving a problem. It con-
tinues to find a solution to a problem until it gets the correct result. In this way, the 
computer keeps track of what it has encountered, takes note of such encounters, and 
proffers a solution to it if it comes across such an encounter in the future. For 
example, learning if a message is spam or not, the conditions for categorizing the 
message are noted for future detection. Trial and error is the simplest form of 
learning on a computer (Bansal, 2022). The learning component is the most im-
portant part of AI because it involves memorizing. 

FIGURE 5.5 Characteristics of artificial intelligence which are reasoning, learning, 
problem solving, language understanding, and perception.    
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5.2.1.1.2 Reasoning 
Reasoning is the act of thinking about an idea in a logical way, Decades ago, 
reasoning was based wholly on humans, but recently the computer has been sub-
jected to thinking on behalf of humans. The ability of computers to differentiate or 
draw inferences from certain situations is known as reasoning. Most times, rea-
soning draws relevant inferences from the current situation. An example is a 
message can be a spam message or a non-spam message. If it has been detected as a 
non-spam message, then it means it is not a spam message. Reasoning is common in 
science, mathematics, and logic, where theorems are designed from a basic set of 
rules and axioms. There are several solutions that draw inferences, but the true 
reasoning is beyond drawing inferences. Relevance inference is more important that 
just identifying inferences, which is one of the problems with AI (Bansal, 2022). 

5.2.1.1.3 Problem Solving 
In AI, problem solving is a way of searching a range of possible situation so as to 
attain a solution or predefined goal. There are two ways to solve a problem. The first 
one is the general purpose method, which is used to solve a problem in a step-by- 
step way. The second method is specially designed or tailored to a problem. In 
general, the AI problem-solving ability involves a lot of data. Problem solving is 
one important component of AI. 

5.2.1.1.4 Perception 
Perception is an important component of AI as the computer scans the environment 
to perceive objects. The system analyzes similar items, which might have dissimilar 
appearance, and uses their relationship and attributes to judge if they can be 
grouped together. Perception is one of the components used by cars to drive at a 
moderate speed. The environment is scanned by means of various sensors; an object 
in an environment can sense the perception of the environment using AI technology 
(Bansal, 2022). 

5.2.1.1.5 Language Understanding 
Language is a system of communicating between two entities. Human beings 
communicate through the language they understand. Computers also communicate 
with humans via high-level or programming language. It is one of the widely used 
AI components; understanding a language means the ability to derive meaning from 
certain terms. One of the important parts of language is object distinction, that is, 
differentiating between several objects with similar environments. The AI platform 
makes computers understand and execute programs easily (Bansal, 2022). 

5.2.1.2 Applications of Artificial Intelligence in Cyber  
Physical Systems (CPSs) 

CPSs are becoming more sophisticated, very complex, autonomous, and intelligent. 
Some examples of CPSs include robotic systems, medical systems, intelligent 
transportation systems, and Industry 4.0 and smart grids that appear in the energy 
sector (Sedjelmaci et al., 2020). The CPS is an emerging field in cybersecurity 
that aims to touch every area of someone’s life in the future. The Internet and 
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semiconductors transformed and revolutionized our lives, showing how humans 
interact with information technology growth. The CPS is used to represent a gen-
eration of systems that integrate communication capabilities with the flexibility of 
an engineered and physical system and any other functions (Rho et al., 2016). CPSs 
are complex systems that are multi-dimensional and that integrate computers, 
networks, and physical environments. AI in the CPS would involve intelligent edge 
devices, robotics systems, biomedical monitoring, health systems, and several 
capabilities that can be used for correcting human errors and natural disasters 
(Lv et al., 2021). 

5.2.1.2.1 Application in Building 
Lv et al. (2021) conducted a study that focused on combining AI with CPSs in 
buildings. The study was based mainly on four modules, which are communication, 
execution, control, and detection. The lowest unit of control is an agent, and the 
multi-agent system is used to imitate the connections between human neurons in 
order to provide flexible and autonomous information access. Multi-agents are 
utilized to mimic the connections between human neurons. It is possible to con-
struct the physical world link of the physics-based information fusion. The CPS 
information universe is built using the premise of granular formal concepts and the 
granular computing paradigm. The back-propagation neural network (BPNN) is 
used in the environmental information calculation module for pattern recognition 
and classification. The peak signal-to-noise ratio (PSNR), normalized root mean 
square error (NRMSE), and mean absolute error (MAE) values of the developed 
system were determined to be outstanding, indicating that the system’s resilience 
and efficacy were high. The system was put to the test by recognizing scenarios and 
related temperatures in order to see if the CPS could intelligently meet the re-
quirements for indoor temperature responsiveness. 

5.2.1.2.2 Application in Cyber Defense 
The authors (Sedjelmaci et al., 2020) described some categories of the CPS: the AI- 
assisted cyber defense, which uses non-machine learning AI methods to detect 
attackers targeting CPS, and the ML-based cyber defense for the CPS. A distributed 
control security architecture for optical networks and fog radio in CPSs is called 
brain-based distributed control security. Malicious CPS nodes may be discovered 
with a high degree of precision, whereas blocking likelihood, latency, and packet 
loss are decreased (Sedjelmaci et al., 2020). Cybercrime is evolving and has in-
filtrated even the most protected digital businesses and devices (Balogun et al., 
2019), including the CPS. 

5.2.1.2.3 Application in Resource Optimization 
A study by Lv et al., 2021, looked at a method using AI on an edge computing 
system to optimize the utilization of sensors and secure the CPS from coupling 
problems; the coupling degree of a system was reduced by two buffer queues in 
parallel. The result from the study showed that the edge computing-based method 
reduced the scheduling cost and increased resource utilization while increasing the 
CPS lifespan. 
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5.2.1.2.4 Application in Manufacturing Systems 
Cisco, GE, and IBM, which are global companies, and some other developed 
companies in Germany identified the manufacturing CPS as the core infra-
structure of the next generation. These companies concentrated on developing 
CPS utilization platforms and technologies. It is expected that the IoT infra-
structure will be converted from a closed system to an open system that can use 
the centralized cloud and further evolve into an open network that functions in 
the cloud. 

5.2.1.2.5 Application in Medical Systems 
Medical cyber physical systems (MCPSs) are a platform in which information about 
a patient’s health can be inferred from IoT sensors, pre-processed locally, and then 
processed in the cloud using powerful ML algorithms. MCPSs were introduced to 
improve the quality of life for patients, accelerate the development of new treat-
ments or drugs, and revolutionize remote patient healthcare monitoring. 

5.2.1.3 Levels in Cyber Physical Systems 
There are five levels in the CPS architecture, as shown in Figure 5.6. These cyber 
physical levels are mostly referred to the 5Cs architecture (Radanliev et al., 2021). 
The five levels are: 

5.2.1.3.1 Configure 
Configure means to allocate supervisory control that might require some actions. 
This level gives feedback to the physical part through the cyber part. It performs 

FIGURE 5.6 Five levels of cyber physical system architecture: configure, cognition, cyber, 
conversation, and connection.    
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oversight functions so as to make machines self-optimized, self-adjusted, and self- 
configured. This level applies the controls that correspond to making decisions in 
the cognition level to monitor the machines. 

5.2.1.3.2 Cognition 
Cognition describes the condition that could occur in the system. This level pro-
vides users with more detailed analytical information so as to make accurate de-
cisions. It makes decision making and collaborative diagnostics possible as the 
task’s priority for maintenance can be easily determined due to the availability of 
individual machine status and comparative information. 

5.2.1.3.3 Cyber 
Cyber does a comparative analysis across several machines. This level plays the 
control information hub role that can gather information across several machine 
networks. This level allows redundant information about analytics to be extracted 
for data collection so as to provide a clearer understanding to the machines. This 
level allows the performance of the machine to be compared with other machines. 

5.2.1.3.4 Conversion 
Conversion measures the awareness level of machines. Data can be converted into 
information at the conversion level as several mechanisms can be used to detect the 
conversion of data to information. An example is converting health information or 
values to useful information or predictive information about a disease. The machine 
has the self-awareness property at this level. 

5.2.1.3.5 Connection 
Connection uses sensors to measure the condition of a machine (Radanliev et al., 
2021). The components of machines must be connected as a first step in acquiring 
reliable and accurate data so as to develop CPSs that can be used in smart factories. 
Several sensors or devices acquire different data, which could be temperature, 
current, voltage, oil concentration of machines, and so on. 

5.2.1.4 Domains in Artificial Intelligence 
AI describes the practice of computer reasoning, action, and recognition, which is 
all about simulating the behavior of humans, most importantly the ability to be 
cognitive (Tyagi, 2020). AI is a computer or machine’s ability to emulate the in-
telligence of human beings (i.e. experience acquisition and adapting to the most 
recent information). Tyagi, 2020, describes six major branches of AI. They include 
ML, neural network, robotics, expert systems, fuzzy logic, and natural language 
processing, and they are shown with the aid of the diagram in Figure 5.7. These 
branches are discussed as follows. 

5.2.1.4.1 Machine Learning 
The aim of ML is to program computers to have the capability of learning from the 
input information. Learning literally means to convert a chunk of knowledge or 
experience into expertise (Shalev-Shwartz & Ben-David, 2014). It is the capacity of 
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computers to learn with little or no human effort. On the one hand, time required to 
create a model and precision (accuracy) are factors; while on the other hand, the 
kappa statistic and mean absolute error (MAE) are factors that must be considered 
(Osisanwo et al., 2017). Meanwhile, before selecting an effective algorithm for 
predictive analytics, each performance metric must be analyzed holistically 
(Akinsola et al., 2019). When a decision is to be made in an objective manner for 
choosing an algorithm with optimal performance by considering the No Free Lunch 
Theorem for algorithm performance, then the right approach is multi-criteria de-
cision making (Akinsola et al., 2019). 

ML can be categorized into three areas based on the type of data that are 
available for prediction. They are supervised learning, unsupervised learning, and 
reinforcement learning. Supervised learning uses a dataset that is categorized by a 
data expert for training and testing. This type of learning allows the input and output 
to be categorized before carrying out analysis. Unsupervised learning deals with the 
unlabeled dataset, that is, the dataset that has not been categorized by data experts. 
It clusters the data into groups based on their similarities. The idea is to identify a 
hidden pattern in the dataset. Reinforcement learning teaches a computer to fulfill 
some defined rules while performing a task. It also categorizes a dataset based on 
expert knowledge and makes suggestions for the computer if an instance that was 
not included in the training occurs (Tyagi, 2020). 

5.2.1.4.2 Neural Network 
A neural network is a collection of algorithms that can be used to search for 
relationship elements that spans across data by imitating the operational process 
of the human brain (Tyagi, 2020). It is a collection of neurons that are artificial, 
also known as perceptrons. A neural network consists of neurons that are 
mathematical functions that classify and gather information based on a specific 
structure. 

FIGURE 5.7 Six major branches of artificial intelligence such as machine learning, 
robotics, neural networks, fuzzy logic, expert systems, and natural language processing.    
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5.2.1.4.3 Robotics 
This is an area in AI that focuses mainly on constructing and designing robots. It is 
a field in science and engineering that incorporates computer science, electrical 
engineering, mechanical engineering, and many others (Tyagi, 2020). It determines 
operation, design, production, and usage of robots, that is, dealing with the in-
formation transformation and control of computer systems. 

5.2.1.4.4 Expert Systems 
The first successful model for AI was the Expert System (Shalev-Shwartz & Ben- 
David, 2014). It came into existence in the 1970s (Tyagi, 2020). An Expert System 
is a computer system that can imitate the decision-making capability of a human 
expert. It gets its functionality by extracting knowledge from a knowledge base so 
as to gain insight and reasoning based on the queries of users. Expert Systems have 
high execution and are understandable, reliable, and extremely responsive. 

5.2.1.4.5 Fuzzy Logic 
Fuzzy logic is used to describe the technique that modifies and represents in-
formation that is not certain by measuring the level of correctness of its hy-
pothesis. There are conditions where it is difficult to identify if a condition is true 
or false; such a condition brings about fuzzy logic (Tyagi, 2020). It is also used to 
create reasoning on uncertain natural concepts. It is used to measure the degree of 
truth of a particular occurrence, which might fall between 0.0 and 1.0. The oc-
currence is false if it tends toward 0.0, whereas the occurrence is true if it tends 
toward 1.0. 

5.2.1.4.6 Natural Language Processing 
Natural language processing is an area in computing that tries to use AI features to 
communicate between humans and computers via natural language (Shalev-Shwartz 
& Ben-David, 2014). It helps to carry out computational processes of natural lan-
guages written or spoken by humans. It tries to make the computer imitate human 
language. Natural language processing deals with deriving, analyzing, searching, 
and understanding information from textual data. 

5.2.2 APPLICATIONS OF DEEP LEARNING IN CYBER PHYSICAL SYSTEMS 

One of the evolving technologies is CPSs that contain the cyber system, physical 
system, as well as systems control integration. Industrial processes such as mon-
itoring, manufacturing, and controlling are automated by the CPS. Due to the 
complex nature of this system, AI as well as DL provide mechanisms that are 
effective for determining the performance of such compound systems with focus on 
optimization as well as design. Mechanisms of AI used in the CPS include sche-
duling, reorganization, as well as security (Padmajothi & Iqbal, 2022). 

DL has attracted a lot of attention in data science due to its enhancement in many 
areas. DL algorithms contain architectures that are in hierarchical with different 
layers, where features that are in a higher level are defined based on lower-level 
features. They are applied in the CPS because they have the ability to extract 

Application of Artificial Intelligence                                                          101 



features as well as abstract from emphasized data (Wickramasinghe et al., 2018). 
DL acts as an essential tool for identifying attacks as well as inspecting packets due 
to increases in traffic on the network as well as time consumption and computation 
for monitoring different attack types (Kamdem & Ziazet, 2019). DL has been ef-
fectively useful in CPS security for correlated purposes, which are for detecting 
malware as well as monitoring of threats, detection of intrusion, detecting anatomy, 
detecting vulnerability, black-out prevention, destructions, as well as attacks 
(Wickramasinghe et al., 2018). Finding correlation in data is one of the abilities of 
DL, so it is used effectively to detect CPS attacks as well as to acquire a high rate of 
attack identification (Kamdem & Ziazet, 2019). Some DL algorithms that are used 
in detecting and preventing CPS attacks are CNN, multilayer perceptron (MLP), 
LSTM, restricted boltzmann machines (RBMs), and deep belief networks (DBNs) 
(Wickramasinghe et al., 2018). 

5.2.2.1 Convolutional Neural Network (CNN) 
CNN is the modification of a traditional feedforward neural network. Its inspiration 
is drawn from the visual cortex of mammals, and it has become the de-facto 
standard for examining data that are images (Zargar, 2021). CNN is a supervised 
DL algorithm that makes use of large data for training. It is also useful for object 
detection, scene classification, LULC classification, and segmentation of semantics 
(Mohan et al., 2021). Three main types of layers are used in building CNN ar-
chitectures, which are the convolutional layer, layers that are fully connected, as 
well as the pooling layer (Karparthy, 2018). CNN is used in the detection of in-
trusion into the system in the CPS by extracting important features that differentiate 
one class from the others and by detecting attack-and-train classified data for in-
trusions on data tested (Kamdem & Ziazet, 2019). CNN is very effective in pre-
venting DoS attacks and detecting cyberattacks in isolation as well as in the CPS. 
CNN detects as well as puts cyberattacks into isolation, which consists of the 
elements of the CPS controller and its physical layer, where alerts to detect as well 
as generates the cyberattack origin location (Paredes et al., 2021). 

5.2.2.2 Multilayer Perceptron (MLP) 
MLP is a feedforward ANN that contains three minimum layers of nodes, which 
are layer inputted, layer hidden, as well as layer outputted. A particular output 
node in a layer is the input linked naturally as all the input in the next layer is 
fully connected (Khan et al., 2020). It is one of the ANNs that is efficient for 
classifying data in various areas that are intruding in network detection or net-
work traffic. It is very useful for detecting network traffic by reducing the amount 
of ANN error (Moghanian et al., 2020). 

5.2.2.3 Long-Short-Term Memory (LSTM) 
Recurrent neural network (RNN) is a system that is very powerful and useful, which 
was specifically developed for solving the problem of disappearing as well as 
gradient explosion, which arises typically during long-term learning dependencies 
despite the very long minimal lag time (Sood, 2020). This neural network consists 
of a unit that is special, which is known as blocks of memory in the hidden layer of 
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recurrent. Memory cells, in addition to self-connections that store the state of the 
network temporarily, is what memory blocks are made of, with multiplicative units 
that are special, which is known as gates for information flow control (Lee et al., 
2017). LSTM is used for detecting anomalies in data that differ from the proper 
system behavior. It is used as a data-driven model that can learn to predict present 
as well as future observations of the data. LSTM is very useful in learning se-
quences in time with changing length of dependencies that are temporal as well as 
an exciting general-purpose method to behavior learning of randomly compounded 
CPSs (Eiteneuer & Niggemann, 2018). 

5.2.2.4 Restricted Boltzmann Machines (RBMs) 
They are models that are graphical and probabilistic in nature, which are un-
derstood as stochastic neural networks (SNN) (Fischer & Igel, 2012). RBMs 
consist of hidden nodes and nodes that are visible where an individual node is 
linked to every single other node. It assists in understanding anomalies in the 
system by determining the regular working conditions of a system. A sub-division 
of Boltzmann machines (BM), which have a boundary or limit on the number of 
networks between hidden and layers that are visible, is RBMs (Sarker, 2021). 
RBMs are used to extract features that are new hierarchically from the data that 
are continuous using a network that is deep of stacked RBMs in development of a 
cyber physical production system using network timed automaton that is deep 
(Hranisavljevic et al., 2020). RBMs are used for the development of an intrusion 
detection framework in smart cities due to unsecured networks, which is DDoS 
attacks in a smart city. This neural network is used due to its capability to handle 
as well as learn features of raw data that are high-level in a way that is un-
supervised as well as their skill in dealing with data representation that is real 
(Elsaeidy et al., 2019). 

5.2.2.5 Deep Belief Networks (DBNs) 
They are types of artificial neural networks derived from stacking many RBMs 
together. They act as DBN layers as well as networks among the layers in-
troduced but not inside individual layers (Gümüşbaş et al., 2021). This is one of 
DL algorithms that have the capability and efficient approach to solve neural 
networks problems with deep layers, for example, the phenomenon of overfitting 
as well as low velocity in learning. RBMs in conjunction with retuning the whole 
net with the use of back propagation is that starting point of learning DBN 
(Algarsamy & Soundar Kathavarayan, 2018). This algorithm is used in the CPS to 
detect opcode-based malware attack by using data that are unlabeled for a pre-
dicting model that is multi-layer generative for solving an overfitting problem 
during neural network training (Ding et al., 2016). It is also one of the best 
algorithms for detecting intrusion in the CPS due to fast learning methods by the 
application of a fashion that is greedy and that is layer by layer in a way that is 
unsupervised. Due to the DBN capability, it is categorized as one of the best 
methods for studying and detecting intrusion (Gümüşbaş et al., 2021). DBNs are 
also used in mitigating attacks and intrusion such as false data injection as well as 
DoS attacks in the microgrid (Durairaj et al., 2022). 
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5.3 MATERIALS AND METHODS 

The dataset was obtained from https://research.unsw.edu.au/projects/bot-iot-dataset. 
The study made use of data which consist of 19,771 DDoS attacks and 6,346 normal 
(benign) attacks. The data were pre-processed after feature selection and normal-
ization were carried out in relation to conversion of categorical values into numerical 
values for model building after principal components (features) had been determined. 
The dataset utilized for DDoS attack mitigation consisted of 25 features with 26,117 
instances. The approach used in the study to carry out implementation on the DDoS 
dataset consisted of DL algorithms, which are CNN, LSTM, dense, and GRU. The 
performances of the DL algorithms were evaluated using hold-out data mining 
technique with ratio 80 to 20 for training and testing of the DL models using metrics 
like accuracy, precision, recall, loss function, epoch, RMSE, and confusion matrix. 

These materials and methods as implemented in the detection and prevention of 
DDoS attacks are discussed in ML tools and libraries below. 

5.3.1 TOOLS AND LIBRARIES FOR DEEP LEARNING 

DL has been utilized successfully across some knowledgeable parts, such as pro-
cessing of natural language, computer vision, processing of image, robotics, as well as 
speech recognition. Its success was achieved due to its ability for data training using 
multiple artificial neuron layers through the use of some tools and libraries like 
Anaconda, Jupyter Notebook, scikit-learn, Keras, TensorFlow, and so on (Pandey & 
Windridge, 2021). DL evolves with a complex ML tools and libraries collection due 
to its numerous applications in several domains, including CPSs (Acharjee, 2021). 

5.3.1.1 Tools for Deep Learning 
A wide variety of tools are used for implementing DL. They are open-source tools 
that are well oriented and can be utilized with little or no experience with self-taught 
programming (Sánchez-DelaCruz & Lara-Alabazares, 2020). Some of the tools 
used in this research are discussed below. 

5.3.1.1.1 Anaconda 
This is Python distribution tool that simplifies the installation process that is re-
quired by some packages like Pandas, NumPy, Keras, TensorFlow, matplotlib, 
scikit-learn, etc. (Ketkar & Moolayil, 2021). It also includes Jupyter Notebooks and 
Spyder for a development environment for Python and Conda, which is a platform 
package manager that is independent (Weston & Bjornson, 2016). The tool used in 
this study is Jupyter development environment to run the Python ML code. This 
tool is also used to import some libraries such as Pandas, NumPy, TensorFlow, 
Keras, dense, sequential, and some other ML libraries used in this study. 

5.3.1.1.2 Jupyter 
It is an interactive web-based development environment (Bloice & Holzinger, 
2016). It is a fantastic environment for running DL experiments. Jupyter is often 
used in data science as well as communities of ML. A file generated by the Jupyter 
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Notebooks is known as a notebook, and it can be edited on the browser. It is a 
mixture of executing Python code with text editing that is rich in ability to annotate 
what is being done on the notebook (Chollet, 2018). This is a development en-
vironment used in this study to run or execute Python ML codes, to receive the 
output of the inputted code, and to display an error or warning if any. 

5.3.1.2 Libraries for Deep Learning 
DL libraries are used in order to carry out some activities and operations on given 
data, that is, to determine the training data, testing data, metrics, errors, and some 
tool use in DL. Some of the tools used in this research are discussed below. 

5.3.1.2.1 Keras 
It is a ML library written in Python, which operates as TensorFlow and Theano 
backend. To read and build complete solutions is easier due to the creation of one 
layer of network by each line of code (Erickson et al., 2017). It is an API for a subset 
of ML known as neural networks. It provides convolution as well as recurrent network 
support, and it can run on GPU and CPU (Veena et al., 2020). This toolkit has the 
selection of state-of-the-art algorithms that are the greatest, which are routines that are 
normalize, activation of functions, as well as optimizers (Erickson et al., 2017). This 
library is used in this study to activate, normalize, and optimize the dataset. 

5.3.1.2.2 TensorFlow 
It is a flexible, fast, as well as open-source ML library that is scalable for invention 
as well as research (Costa, 2020). This toolkit or library was created by Google, and 
it has been adopted strongly due to its high performance and provision for multiple 
GPUs as well as CPU supports (Erickson et al., 2017). This is a tool where dense, 
sequential, and epoch results are imported, as discussed in this study. 

5.3.1.2.3 Scikit Learn 
It is the most robust as well as powerful library for Python in ML due to its cap-
ability of providing effective tools selected for statistical as well as ML modeling. It 
is also a library that brings about reduction in dimensionality, classification, clus-
tering, as well as regression through a Python interface that is consistent. It is built 
upon SciPy, NumPy, Pandas, Matplotlib, and so on. 

5.3.1.2.4 PyLearn2 
It is Python language that is capable of wrapping other libraries, for example, scikit- 
learn, to support dataset interface for vector, video, images, etc. It also provides 
trained models serialization cross-platform (Khan & Zubair, 2018). Classical ML 
algorithms are introduced by Pylearn2 and algorithms of deep neural networks, 
which is written in Python. However, this library is not a complete toolkit as others 
like MXNet and Keras (Erickson et al., 2017). 

5.3.1.2.5 Deeplearning4j 
It is a DL library that is distributed and also an open-source library that is written 
for Scala as well as Java. It is an integration of Spark and Hadoop. It is a library 
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designed to be used in business environments on GPUs and CPUs that is distributed 
(Vinothina, 2017). It provides good performance and multiple supports for GPUs 
(Erickson et al., 2017). 

5.4 DISCUSSION OF RESULTS 

The study implemented predictive analytics system on DDoS network traffic da-
tasets using four DL algorithms: CNN, LSTM, dense, and GRU. The following 
results were obtained. 

5.4.1 DATA ANALYTIC AND VISUALIZATION 

Pandas is used as a data analysis tool is this study. It is a Python-based data ana-
lytics framework to analyze the dataset based on DDoS attacks and normal attacks, 
and the result gives 19,771 DDoS attacks and 6,346 normal attacks in the dataset. 
The result is comparatively represented in Figure 5.8. 

From the data representation shown in Figure 5.8, the DDoS attack covers 76% 
of the whole dataset used in this study, whereas the normal dataset covers 24%. 
Furthermore, the dataset is split into the training and testing, or validation, set – 
80% of training dataset and 20% of the testing dataset – and this gives 20,893 length 
of training dataset and 5,224 length of validation or testing dataset, as represented in  
Figure 5.9. 

5.4.2 EVALUATION OF DEEP LEARNING ALGORITHMS 

DL algorithms contain architectures that are in the hierarchy with different layers 
where features that are in a higher level are defined based on lower-level features 
(Wickramasinghe et al., 2018). DL acts as an essential tool for identifying attacks as 
well as inspecting packets due to increases in traffic on the network as well as time 

FIGURE 5.8 Dataset representation of a DDoS attack and normal attack using a pie chart.    
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consumption and severe computation for monitoring different attack types 
(Kamdem & Ziazet, 2019). There are various types of DL algorithms, but the DL 
algorithms used are CNN, LSTM, dense, and GRU. They are implemented using 
the DDoS dataset to evaluate ML metrics such as loss function, accuracy, precision, 
recall, epoch, RMSE, and confusion matrix. 

5.4.2.1 Convolutional Neural Networks (CNN) 
CNN is the modification of the traditional feedforward neural network. Three main 
types of layers are used in building CNN architectures, which are the convolutional 
layer, layers that are fully connected, as well as the pooling layer (Karparthy, 2018). The 
ML metrics result generated using the CNN algorithm based on the training set is shown 
in Table 5.1. Table 5.2 shows the ML metrics result from CNN based on the testing set.  
Table 5.3 shows the CNN epoch result on the ML metrics based on the training set. The 
CNN epoch results on the testing set on the ML metrics are shown in Table 5.4. 

5.4.2.2 Long Short-Term Memory (LSTM) 
LSTM is used in detecting anomalies in the data that differ from the proper system 
behavior. It is used with data-driven models that can learn to predict present as well 
as future observations of the data. LSTM is very useful in learning sequences in 
time with changing length of dependencies that are temporal as well as an exciting 

FIGURE 5.9 Training and testing dataset representation 
using a pie chart.     

TABLE 5.1 
Machine Learning Metrics Result for CNN 
Based on Training Set    

Convolutional Neural Network 

Metrics Result  

Loss Function  0.0353 
Accuracy  99.32 
Precision  0.9917 
Recall  0.994 
RMSE  0.0805    
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TABLE 5.2 
Machine Learning Metrics Result for CNN 
Based on Testing Set    

Convolutional Neural Network 

Metrics Result  

Loss Function  0.0401 
Accuracy  99.27 
Precision  0.9910 
Recall  0.9995 
RMSE  0.0848    

TABLE 5.3 
CNN Epoch Result on Training Set Based on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1  10s  0.66039  70.57  0.7578  0.8982  0.5255 
2  8s  0.5892  75.97  0.7591  1  0.4454 
3  7s  0.763  76.15  0.7603  1  0.4303 
4  6s  0.5498  76.09  0.7602  0.9992  0.4266 
5  6s  0.5482  76.17  0.7605  1  0.4259 
6  6s  0.5503  76.00  0.7592  1  0.4269 
7  6s  0.5491  76.08  0.7599  1  0.4263 
8  7s  0.3633  93.85  0.9419  0.9792  0.2318 
9  8s  0.047  99.12  0.9903  0.9982  0.0914 

10  6s  0.0402  99.33  0.9925  0.9987  0.08    

TABLE 5.4 
CNN Epoch Result on Testing Set Based on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1  10s  0.6169  75.81  0.758  1  0.4605 
2  8s  0.04  98.39  0.9992  0.9795  0.1 
3  7s  0.5488  76.42  0.7627  1  0.4258 
4  6s  0.0176  99.56  0.9962  0.998  0.0598 
5  6s  0.5501  76.04  0.7598  1  0.4268 
6  6s  0.0176  99.6  0.9995  0.9952  0.0593 
7  6s  0.5445  76.44  0.7628  1  0.424 
8  7s  0.0066  99.88  0.9997  0.9987  0.0315 
9  8s  0.0401  99.27  0.991  0.9995  0.0848 

10  6s  0.0366  99.23  0.9905  0.9995  0.0831    
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general-purpose method to behavior learning of randomly compound CPSs 
(Eiteneuer & Niggemann, 2018). This algorithm is used in this study to generate 
ML metrics and epoch on the training and testing datasets. Table 5.5 shows the 
LSTM result of ML metrics on the training dataset, Table 5.6 shows LSTM result 
on the testing dataset, Table 5.7 shows the LSTM result on the training dataset for 
epoch, and Table 5.8 shows the LSTM result of epoch for the testing dataset. 

TABLE 5.5 
LSTM Machine Learning Metrics Result 
on Training Dataset    

Long Short-Term Memory 

Metrics Result  

Loss Function  0.0037 
Accuracy  99.92 
Precision  0.9997 
Recall  0.9992 
RMSE  0.026    

TABLE 5.6 
LSTM Machine Learning Metrics Result 
on Testing Set    

Long Short-Term Memory 

Metrics Result  

Loss Function  0.0058 
Accuracy  99.92 
Precision  0.9997 
Recall  0.9992 
RMSE  0.0278    

TABLE 5.7 
LSTM Epoch Result on Training Set Based on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1  73s  0.0621  98.28  0.9839  0.9936  0.1186 
2  63s  0.028  99.39  99.59  0.996  0.0735 
3  9s  0.5833  76.31  0.7616  1  0.4437 
4  26s  0.0226  99.51  0.9965  0.997  0.066 
5  7s  0.5469  76.34  0.7619  1  0.4252 
6  51s  0.0098  99.78  0.9985  0.9986  0.0449 
7  8s  0.5469  76.23  0.7609  1  0.4253 
8  26s  0.0073  99.84  0.9987  0.9992  0.0378 
9  7s  0.5453  76.36  0.7621  1  0.4245 

10  26s  0.011  99.73  0.9982  0.9982  0.0477    
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5.4.2.3 Dense 
A dense network is one in which each node’s number of links is near to the 
maximum number of nodes. Each node is connected to practically every other node. 
A completely connected network is one in which every node is directly connected to 
every other node. Higher connection density examples include epidemic spread, the 
neural network of the brain, and telecommunication networks (Sharma, 2020).  
Table 5.9 shows the dense result of ML metrics on the training dataset, Table 5.10 
shows the dense result on the testing dataset, Table 5.11 shows the dense result on 
the training dataset for epoch, and Table 5.12 shows the dense result of epoch for 
the testing dataset. 

5.4.2.4 Gated Recurrent Unit (GRU) 
GRUs are a gating method in the recurrent neural networks first proposed by  
Cho et al., 2014 in 2014. The GRU functions similarly to a LSTM with a forget 
gate, but with fewer parameters because it lacks an output gate. Table 5.13 

TABLE 5.8 
LSTM Epoch Result on Testing Set Based on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss function Accuracy Precision Recall RMSE  

1  73s  0.04  98.39  0.9992  0.9795  0.1 
2  63s  0.6131  76.46  0.763  1  0.459 
3  9s  0.0176  99.56  0.9962  0.998  0.0598 
4  26s  0.5474  76.46  0.763  1  0.4254 
5  7s  0.0176  99.6  0.9995  0.9952  0.0593 
6  51s  0.544  76.46  0.763  1  0.4239 
7  8s  0.0066  99.88  0.9997  0.9987  0.0315 
8  26s  0.544  0.7646  0.763  1  0.4238 
9  7s  0.0053  99.83  0.9997  0.998  0.0345 

10  26s  0.5439  0.7646  0.763  1  0.4238    

TABLE 5.9 
Dense Machine Learning Metrics 
Result on Training Dataset    

Dense Model 

Metrics Result  

Loss Function  0.6132 
Accuracy  76.38 
Precision  0.7621 
Recall  1 
RMSE  0.4594    
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TABLE 5.10 
Dense Machine Learning Metrics 
Result on Testing Set    

Dense Model 

Metrics Result  

Loss Function  0.6131 
Accuracy  76.45 
Precision  0.763 
Recall  1 
RMSE  0.4593    

TABLE 5.11 
Dense Epoch Result on Training Set for Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1  27s  0.9574  70.88  0.7604  0.8982  0.5318 
2  8s  0.5892  75.97  0.7591  1  0.4454 
3  8s  0.555  76.25  0.7611  1  0.4291 
4  6s  0.5498  76.09  0.7602  0.9992  0.4266 
5  7s  0.5458  76.32  0.7617  1  0.4248 
6  6s  0.5503  76  0.7592  1  0.4269 
7  8s  0.5462  76.28  0.7614  1  0.425 
8  7s  0.3633  93.85  0.9419  0.9792  0.2318 
9  7s  0.5454  76.34  0.7619  1  0.4246 

10  6s  0.0402  99.33  0.9925  0.9987  0.08    

TABLE 5.12 
Dense Epoch Result on Testing Set for Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1  27s  0.6131  76.46  0.763  1  0.459 
2  8s  0.5665  76.44  0.7628  1  0.4346 
3  8s  0.5474  76.46  0.763  1  0.4254 
4  6s  0.5464  0.7636  0.7622  1  0.4247 
5  7s  0.544  76.46  0.763  1  0.4239 
6  6s  0.5506  76  0.7595  1  0.427 
7  8s  0.544  0.7646  0.763  1  0.4238 
8  7s  0.0447  99.02  0.989  0.9982  0.0941 
9  7s  0.5439  0.7646  0.763  1  0.4238 

10  6s  0.0366  99.23  0.9905  0.9995  0.0831    
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shows the GRU result of ML metrics on the training dataset, Table 5.14 shows 
the GRU result on the testing dataset, Table 5.15 shows the GRU result on the 
training dataset for epoch, and Table 5.16 shows the GRU result of epoch on 
the testing dataset. 

TABLE 5.13 
Machine Learning Metrics Result 
for GRU Based on Training Set    

GRU 

Metrics Result  

Loss Function  0.0353 
Accuracy  99.32 
Precision  0.9917 
Recall  0.994 
RMSE  0.0805    

TABLE 5.14 
Machine Learning Metrics Result 
for GRU Based on Testing Set    

GRU 

Metrics Result  

Loss Function  0.0401 
Accuracy  99.27 
Precision  0.9910 
Recall  0.9995 
RMSE  0.0848    

TABLE 5.15 
Epoch Result of Training Set for GRU on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1 90s  0.5699  75.89  0.7596  0.9968  0.5518 
2 81s  0.552  76.15  0.7604  1  0.4288 
3 80s  0.5487  76.38  0.7622  1  0.426 
4 65s  0.5481  76.34  0.7618  1  0.4258 
5 66s  0.5578  76.06  0.7605  0.9977  0.4285 
6 66s  0.5758  75.69  0.7576  0.9985  0.4313 
7 67s  0.5569  75.67  0.7567  1  0.4299 
8 65s  0.5556  75.73  0.7573  1  0.4293 
9 66s  0.5578  75.54  0.7554  1  0.4305 

10 66s  0.5553  75.72  0.7572  1  0.4292    
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5.4.2.5 Confusion Matrix 
This is a classification metric that is made of true positive, false positive, false 
negative, and true negative. The confusion matrix is a table that describes the 
classifier or classification model performance on test data for which the values that 
are true are known. Yes and No are the two possible predicted classes in the 
confusion matrix. The confusion in this study is labeled as DDoS and normal.  
Table 5.17 shows the confusion matrix for the four DL algorithms used in this 
study. The diagrammatic representation of the confusion matrix for the CNN al-
gorithm is shown in Figure 5.10. Figure 5.11 shows the diagrammatic representa-
tion of the confusion matrix for the LSTM algorithm. The confusion matrix diagram 
for the dense model is shown in Figure 5.12. Figure 5.13 shows the confusion 
matrix for the GRU algorithm. 

5.4.3 COMPARATIVE ANALYSIS OF DEEP LEARNING ALGORITHMS 

Comparative analysis was done to determine the differences in the performance of 
DL algorithms used in this study. Training and testing loss function, training and 
testing accuracy, and the confusion matrix were used for the comparative analysis 

TABLE 5.16 
Epoch Result on Testing Set for GRU on Machine Learning Metrics         
Epoch Number Metrics 

Time Loss Function Accuracy Precision Recall RMSE  

1 90s  0.5518  75.79  0.7579 1  0.4275 
2 81s  0.5455  76.4  0.7625 1  0.4245 
3 80s  0.5452  76.46  0.763 1  0.4244 
4 65s  0.544  76.46  0.763 1  0.439 
5 66s  0.5589  75.79  0.7579 1  0.4305 
6 66s  0.5543  75.79  0.7579 1  0.4287 
7 67s  0.5551  75.79  0.7579 1  0.4291 
8 65s  0.5546  75.79  0.7579 1  0.4288 
9 66s  0.5546  75.79  0.7579 1  0.4289 

10 6s  0.5534  75.79  0.7579 1  0.4283    

TABLE 5.17 
Confusion Matrix for Deep Learning Algorithms       
Algorithm Confusion Matrix 

True Positive False Positive False Negative True Negative  

CNN 1265 0 3959 0 
LSTM 1265 0 1011 2948 
Dense Model 1265 0 3959 0 
GRU 1265 0 3959 0    
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FIGURE 5.10 Confusion matrix for CNN showing true positive, true negative, false 
positive, and false negative.    

FIGURE 5.11 Confusion matrix for LSTM showing true positive, true negative, false 
positive, and false negative.    
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FIGURE 5.12 Confusion matrix for dense model showing true positive, true negative, 
false positive, and false negative.    

FIGURE 5.13 Confusion matrix for GRU showing true positive, true negative, false 
positive, and false negative.    
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on the four algorithms. Table 5.18 shows the comparative analysis of the algorithms 
using all the metrics used in this study, such as loss function, accuracy, precision, 
recall, and RMSE for both training and testing sets. 

Table 5.19 shows the comparative analysis of the training and testing results of 
the DL algorithms. It compares the four algorithms using training loss function and 
testing loss function in relation to training accuracy and testing accuracy. 

Diagrammatic representation of comparative analysis of DL algorithms using 
training and testing loss function as well as training and testing accuracy is shown in  
Figure 5.14, and Figure 5.15 shows the comparative analysis of the DL algorithms 
using the confusion matrix. Comparative analysis of metrics results of both training 
and testing datasets for CNN is shown in Figure 5.16. Figure 5.17 shows the dia-
grammatic representation of training and testing results for LSTM. A comparative 
analysis diagram of dense model results on training and testing datasets is shown in  
Figure 5.18. Figure 5.19 shows the comparison metrics between training and testing 
datasets for the GRU DL algorithm. 

TABLE 5.18 
Comparative Analysis of Deep Learning Algorithms Using Machine Learning 
Metrics        

Algorithms Training Set  

Loss Function Accuracy Precision Recall RMSE  

CNN  0.0353  99.32  0.9917  0.9994  0.0805 

LSTM  0.0037  99.92  0.9997  0.9992  0.026 

Dense Model  0.6132  76.38  0.7621  1  0.4594 

GRU  0.0353  99.32  0.9917  0.9994  0.0805 

Algorithms Testing Set 

CNN  0.0401  99.27  0.991  0.9995  0.0848 

LSTM  0.0058  99.92  0.9997  0.9992  0.0278 

Dense Model  0.6131  76.45  0.763  1  0.4593 

GRU  0.0401  99.27  0.991  0.9995  0.0848    

TABLE 5.19 
Comparative Analysis Using Training and Testing Loss Function and Accuracy       

Algorithm Training Loss 
Function 

Testing Loss 
Function 

Training 
Accuracy 

Testing 
Accuracy  

CNN  0.0353  0.0401  99.32  99.27 

LSTM  0.0037  0.0058  99.92  99.92 

Dense Model  0.6132  0.6131  76.38  76.45 

GRU  0.0353  0.0401  99.32  99.27    
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FIGURE 5.14 Comparative analysis of training loss function, testing loss function and 
accuracy using bar chart.    

FIGURE 5.15 Comparative analysis of confusion matrix results for deep learning 
algorithms using bar chart.    
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FIGURE 5.16 Comparative analysis of CNN training and testing result using bar chart.    

FIGURE 5.17 Comparative analysis of LSTM training and testing result using bar chart.    
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FIGURE 5.18 Comparative analysis of dense training and testing result using bar 
chart.    

FIGURE 5.19 Comparative analysis of GRU training and testing result using bar chart.    
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From Table 5.3, epoch number 10 gives the best metrics result and uses the 
smallest time, which is 6s on the training dataset. Based on the results in Table 5.4, 
epoch number 8 gives the best metrics result but not with the best building time on 
the testing dataset. According to Table 5.7, epoch number 8 gives the best ML 
metrics results but with 21s building time, which is not the best building epoch time 
on the training dataset. From Table 5.8, epoch number 7 gives the best ML metrics 
results but with 8s building time, which is not the best building epoch time on 
testing dataset. From Table 5.11, epoch number 10 gives the best ML metrics re-
sults at the best building time on training dataset, and on Table 5.12, epoch number 
10 gives the best ML metrics results at the best building time on testing dataset. 
From the overall result on training and testing dataset on Table 5.18, it can be 
discovered that the best DL algorithm that gives the best ML metrics result on 
training and testing dataset used was LSTM, with loss function of 0.0037, accuracy 
of 99.92, precision of 0.9997, recall of 0.9992, and RMSE of 0.026 on training 
dataset and loss function of 0.0058, accuracy of 99.92, precision of 0.9997, recall of 
0.9992, and RMSE of 0.0278 on testing dataset. 

5.5 CONCLUSION 

CPSs are a collection of integrated physical and digital devices used in place of 
traditional physical systems due to their increase in productivity. They are now 
commonly used in industrial control systems, water systems, robotics systems, smart 
grids, smart homes, e-health, and many other aspects of our daily lives. Sensing at-
tacks on CPSs became more challenging due to the increase in cyberattacks by cyber 
criminals, which has made it an essential topic for research. This study considered 
IoT-based CPSs and cybersecurity as well as the emerging technologies used in the 
IoT and CPS attack mitigation. It has been observed that among the technologies 
discussed for mitigating CPS attacks, DL offers the best solution due to its ability to 
extract features as well as abstract from data. DL has been useful in CPS security for 
correlated purposes, which are for detecting malware as well as monitoring of threats, 
detection of intrusion, detecting anatomy, detecting vulnerability, black-out preven-
tion, destruction, as well as attacks. The DL algorithms such as LSTM can be used for 
detecting and preventing DDoS attacks on CPSs due to their superlative performance. 
Based on the findings from this study, LSTM outperformed other DL algorithms for 
the mitigation of DDoS attacks. Consequently, the developed model will help secure 
cyber space, particularly against DDoS attacks. 
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6.1 INTRODUCTION 

The Internet of Things (IoT) is a system that connects all the things or places in the 
world to the Internet. These things can be any computing device that can perform 
some action based on data received from the outside world. Kavin Ashton, the 
founder and executive director of Auto-ID Center, first coined the term “Internet of 
Things” in 1999. Because of its features that can directly or indirectly influence 
human existence in a positive way, IoT grew in popularity quickly. However, 
managing trust among IoT devices is a very complicated operation due to their 
functioning mechanisms and features such as their resource-constrained nature, being 
placed at different and remote locations, the vast scale of the number of devices, and 
heterogeneous protocols adopted by the devices. It leads to people having concerns 
about the privacy and integrity of their data, making trust management in IoT systems 
more important (Frustaci et al. 2018). Trust management identifies malicious nodes 
based on their reputation, calculated by different techniques, and maintains only 
trusted nodes or devices in the communication process. Researchers proposed many 
trust management approaches using conventional methods such as machine learning 
and mathematical calculations based on the behavior of nodes during the commu-
nication process (Ud Din et al. 2019). However, trust-related information propagates 
through the same network (Internet), which makes it vulnerable to many attacks. 
These attacks can alter traveling information, and the false reputation of nodes can be 
provided. Additionally, some other attacks are specially developed for manipulating 
trust information by misguiding algorithms of trust management. 

Furthermore, blockchain technologies such as Bitcoin, Ethereum, Hyperledger, 
and others have shown their security qualities in a variety of fields outside of cryp-
tocurrencies, attracting a large number of research communities. Moreover, ad-
vancements in this technology, such as smart contracts, have widened its application 
area. Smart contracts add a programmability feature that provides more control over 
data processing in it. Initially, blockchain was public in nature, which limits its use 
in some real-world scenarios, where mutual privacy and control over the commu-
nication process are more important. Furthermore, the public blockchain has a slow 
transaction rate, which is incompatible with the need for a quick response system. 
Lack of adaptability and more energy consumption due to the consensus process are 
two more major problems of public blockchain. However, the development of private 
blockchain, which is often referred to as “permissioned” blockchain can address these 
problems. Unlike public blockchain, where anyone can download the software, form a 
node, view the ledger, and interact with the blockchain, private blockchain is often run 
and operated by a trusted intermediary. This type of blockchain system can increase 
trust among different nodes of the IoT system. Hyperledger Fabric, a popular private 
blockchain, is primarily targeted for industrial applications and has improved since its 
initial release (Androulaki et al. 2018). 

Maintaining security and trust requires the transformation of safe and original 
information, which necessitates consideration of some important criteria. It mainly 
includes authentication, access control, heterogeneity, integrity, and privacy. So, 
this chapter describes how we can leverage features of private blockchain, such 
as Hyperledger Fabric, to address these parameters and maintain trust in the IoT 
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environment. The remaining sections of this chapter are as follows: Section 6.2 
introduces trust management in the IoT followed by possible security issues and 
attacks on it. Section 6.3 explains blockchain terminology with its different types 
and protocols used. This section also highlights some important applications of 
blockchain. Section 6.4 provides the theoretical background of Hyperledger Fabric, 
including its architecture and working mechanisms. Section 6.5 provides the main 
issues and important strategies in integrating blockchain and the IoT. Finally, 
section 6.6 describes trust management issues and their possible solutions by private 
blockchain, such as Hyperledger Fabric. 

6.2 TRUST MANAGEMENT IN THE IoT: INTRODUCTION AND 
SECURITY ATTACKS 

Unlike other traditional networking environments, the IoT faces new challenges due 
to its unique characteristics. Apart from privacy and security, trust is the most 
important of these characteristics. It is difficult for users to accept aggregated in-
formation from diverse smart devices if it is harmful and not adequately trust-
worthy, even if the application and network layers’ trust are fully given. The most 
pressing challenge is how IoT-generated data are transformed into valuable in-
formation to enable secure and trusted communication (Ud Din et al. 2019). 
Consequently, the concept of trust management in the IoT comes to the attention of 
researchers. The process of removing identified malicious nodes from the com-
munication of the IoT system is called trust management. 

Researchers (Manda and Nalini 2019) define three types of trust: The first is 
“behavior-based trust,” defined by nodes’ behavior during the communication 
process. The second type of trust is “computation-based trust,” calculated among 
computational smart devices, and the last and third type of trust is “technology- 
based trust,” calculated and maintained by technology based on evaluating the value 
of device trust. Additionally, some other researchers (Fortino et al. 2020) divided 
trust into four parts: The first is “Behaviour Trust,” in which the predicted behavior 
of devices is considered trustworthy, even if it is not constant. The second is 
“Reputation,” where collected information from other nodes of the system is con-
sidered as a node’s reputation. This collected information is generally based on 
previous behavior and the present reputation of nodes in a particular environment 
and period. The third factor is “Honesty,” which has a significant role in de-
termining trustworthiness. Decent models do not suggest expecting that nodes will 
be honest if they are not evaluated. If the information obtained from nodes is similar 
as predicted in a particular environment and period of time, the recommender is 
regarded as an honest node. A clever technique is required to find out honest nodes 
in order to design a good trust management architecture. The last is “Accuracy,” 
wherein a trustworthiness threshold is used as a metric of recommender accuracy. It 
is considered accurate if the provided and real information fall within a certain 
range. Information is more dependable over the network if it is accurate. Depending 
on the requirements, trust management systems with a variety of algorithms and 
characteristics can be deployed at various points in IoT networks. This hetero-
geneity of IoT networks makes it difficult to manage trust. Furthermore, because of 
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their limited resources, nodes can or cannot be supportive of this arrangement. As 
a result, despite many security solutions and standards, trust management systems 
are vulnerable to a variety of attacks. Some of the important trust-related security 
attacks are discussed in the next subsection. 

6.2.1 TRUST-RELATED SECURITY ATTACKS 

Transforma Insights estimates that by 2030, there will be 24.1 billion active IoT 
devices. The IoT system of these devices has applicability almost everywhere in the 
world. Despite the numerous solutions available, managing security and trust in 
applications such as industries and e-businesses is not an easy task (Kaushik and 
Dahiya 2018). Trust-related attacks should also be examined to better understand 
trust-related concerns and challenges (Djedjig et al. 2018). Surely, it will help in 
understanding security and trust-related issues. Some trust-related attacks on the 
IoT can be seen in Figure 6.1 that are categorized by their biased recommendations, 
inconsistent behavior, and attacks on the identity of nodes. 

6.2.1.1 “Self-Promotion Attacks” 
When a malevolent node manipulates its reputation or trust score by making po-
sitive suggestions, this is called a “self-promotion attack”. It’s commonly done with 
trust management systems that calculate trust via a positive feedback mechanism. 

FIGURE 6.1 Security attacks on trust management in the IoT (Modified from ( Ahmed 
et al. 2019)).    
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Systems with weak or no integrity and authentication mechanisms are more sus-
ceptible to this type of attack. 

6.2.1.2 “Bad-Mouthing Attacks” 
By providing incorrect recommendations for another reputable and trusted node, 
any malevolent node might influence its reputation. This attack acts opposite of the 
self-promotion attack. 

6.2.1.3 “Ballot-Stuffing Attacks” 
Multiple malicious nodes cooperate with each other to trigger this attack. A mal-
icious node provides positive suggestions to another malicious node to make its 
reputation positive. 

6.2.1.4 “Opportunistic Service Attacks” 
In this attack, a malicious node provides good services to make its reputation po-
sitive and tends to be a trusted node. Later, this node takes advantage of its high 
reputation for malicious activities. 

6.2.1.5 “On-Off Attacks” 
Malicious nodes alternate between providing good and bad services in this attack. 
They want to maintain a good reputation, so they can influence the network by 
giving good recommendations to malevolent nodes and poor recommendations to 
trusted nodes. These attacks are not easy to detect. 

6.2.1.6 “Selective Behavior Attack” 
A malicious node behaves well from the perspective of most of its neighbors, but 
terribly from the perspective of the remainder of the nodes. As a result, the average 
recommendation value will stay positive, although some nodes can be harmed. This 
type of attack is very hard to detect due to its dynamic behavior. 

6.2.1.7 “Sybil Attack and Newcomer Attack” 
Any malicious node in an IoT system with a poor authentication and access control 
mechanism can construct, imitate, or impersonate other nodes of the system by 
changing their reputation values. Using these techniques, these malicious nodes can 
promote themselves as a trusted node and mask their negative reputation by creating 
a new identity. 

6.2.1.8 “Collusion Attack” 
In this scenario, a group of malevolent actors collaborates in order to carry out the 
illegally biased recommendation. Malicious nodes not only increase their trust value 
but also decrease others’ reputations. 

6.3 BLOCKCHAIN TECHNOLOGY AND ITS APPLICATIONS 

In 1991, Stuart Haber and W Scott Stornetta introduced the concept of blockchain 
technology. Later, developer(s) working under the project pseudonym “Satoshi 
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Nakamoto” successfully implemented the first blockchain network application called 
Bitcoin. Transactions in this project are made using Bitcoin, which is an electronic 
currency. To keep track of transactions, a public ledger, subsequently called block-
chain, was used. Blockchain keeps every record in continuous blocks, which are 
chained together using a cryptographic hash. These blocks are interconnected, and all 
information is dispersed among them. Although blockchain was created to support 
Bitcoin money transactions, it has many other uses also. In 2014, researchers ex-
amined blockchain and discovered that it can protect a variety of other financial 
applications, including inter-party contracts, IoT applications, banking transactions, 
etc. Apart from financial uses, blockchain systems like Ethereum and Hyperledger can 
be used to safeguard crucial information like digital criminal evidence (Kaushik, 
Dahiya, and Sharma 2022) and educational mark sheets and other documents. Since 
Bitcoin was the first digital currency, it made a significant contribution to the study of 
blockchain. In Bitcoin, transactions could be carried out without the involvement of a 
central authority due to the existence of the distributed ledger. Bitcoin, the largest and 
original blockchain application, is still operating and processing its transactions 
successfully. Some other advanced blockchain technology-based projects, such as 
Ethereum and Ripple, are currently operational and generating revenue. 

6.3.1 TYPES OF BLOCKCHAIN 

Different researchers have identified that blockchain can be divided into four types 
based on current requirements and accessibility of information (“What Are The 
Different Types of Blockchain Technology? | 101 Blockchains” 2021). These types 
of blockchain are defined below: 

6.3.1.1 “Public Blockchain” 
This type of blockchain is permissionless and distributed in nature, where anyone is 
allowed to join, mine, and send transactions to the blockchain. Every entity in the 
system has equal rights to access blockchain data, functionalities, and features. 
Bitcoin and Ethereum are two popular examples of public blockchain. 

6.3.1.2 “Private Blockchain” 
This is the permissioned blockchain that is controlled by some of its entities. The 
controlling authority determines who can join the blockchain and which service is 
allowed to which node. Not every node needs to be given equal rights to perform 
functionalities on the blockchain. Examples of private blockchains include 
Hyperledger Fabric and Corda. Its applications include supply chain management 
systems, asset ownership management, etc. 

6.3.1.3 “Consortium Blockchain” 
This type of blockchain is controlled or administered by a consortium of nodes in 
the network. Instead of a single administrator like in private blockchain, all forms of 
blockchain controls are distributed across a group. This form of blockchain is 
especially useful for firms that require collective work. 
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6.3.1.4 “Hybrid Blockchain” 
This type of blockchain combines the main features of public blockchain and pri-
vate blockchains, such as access control and transparency. It allows organizations to 
maintain the information private or public as per their requirements. IBM Food 
Trust is an example of a hybrid blockchain, which was created to improve effi-
ciency across the whole food supply chain. A popular example is IBM Food Trust, 
where a complete supply chain is based on hybrid blockchain. 

6.3.2 “BLOCKCHAIN BASIC STRUCTURE AND PROTOCOLS” 

The basic structure of blockchain consists of a chain of blocks that has mainly two 
sections. First is the “header” that holds information about the previous block hash 
and a unique number called “nonce,” which is used for the mining process. The 
second section holds all transactions record. The hash value contained by every 
block is the combined hash of the previous block and current block. 

If an attacker tries to change even a single bit of the hash value of any block, all 
the hash values of the following blocks will also be changed till the last block. So, 
for changing hashes of all blocks, attacks have to change and recalculate it, which is 
nearly impossible as of now. This mechanism makes blockchain completely im-
mutable. Some related protocols and techniques of blockchain are described in 
detail below (Jesus et al. 2018). 

6.3.2.1 Block Identity 
The important metadata that identify and locates the block include block height 
and header hash. Block height indicates the position of blocks in the blockchain 
by a numeric value, and header hash is defined as the hash value of the block. 
(Figure 6.2).   

FIGURE 6.2 Structure of blocks in the blockchain (Modified from ( Kumar and Sharma 
2021)).    
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6.3.2.2 Block Header 
The header of a block in blockchain mainly contains the hash of the immediate last 
block, nonce, root of Merkle tree, and difficulty. The preceding block’s hash linked 
the current block to the prior one. This technique is found in every block and creates 
a chain of blocks. 

6.3.2.3 Merkle Tree 
In 1979, Ralph Merkle patented the name “Merkle tree”. This data structure has the 
same qualities as a binary tree, such as having two children nodes and having the 
same level of all leaf nodes. The Merkle tree is used to summarize all transactions 
of blockchain. It composes the hashes of all other nodes. Every parent node in the 
Merkle tree holds the combined hash of its child node hashes. This process con-
tinues until every child node and all transactions of blockchain can be traversed 
using this data structure. Blockchain systems like Bitcoin and Ethereum use the 
Merkle tree for their operations. 

6.3.2.4 Nonce 
It is a variable number used by blockchain miners for meeting difficulty-level re-
strictions. This number is changed continuously by miners to achieve the desired 
hash value of the block. For instance, if the difficulty is set to four zeros for the first 
four digits of the hash, then nonce is changed continuously by miners until the given 
criterion is satisfied. This process of finding required partial hash collisions is 
known as the difficulty level of mining. 

6.3.2.5 Mining 
This process verifies the valid block and adds it to the blockchain. Miners, which are 
some special nodes developed for the mining process, are responsible and get awarded 
for this process. This mechanism eliminates the need for a central authority. Miners 
validate new blocks before adding them to the blockchain using their computation 
power and special resources. After having some special software and resources, anyone 
can become a mining node and can communicate with other miners. 

6.3.2.6 Consensus 
This process maintains a common agreement among nodes of blockchain about the 
present state of its distributed ledger data (Chen et al. 2011). It ensures any in-
consistencies or errors in the data contained by block ledgers. “Proof of Work 
(PoW),” “Proof of Stake (PoS),” “Practical Byzantine Fault Tolerance (PBFT),” 
and “Round Robin (RR)” are some important consensus algorithms used by dif-
ferent blockchain networks. 

6.3.2.7 Smart Contracts 
These are the pieces of software that act as transaction protocols and make blockchain 
systems programmable. In 2015, Mr. Vitalik Buterin first introduced a programmable 
blockchain named Ethereum. “Smart Contract” is the main additional feature in 
Ethereum with basic blockchain features. Some other programmable blockchain 
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examples are Hyperledger, Corda, etc. These technologies use Smart Contracts for the 
automation of events while maintaining predefined agreements. At first, Smart 
Contracts were designed in Solidity programming language, but later other popular 
programming languages such as Go, Python, Java, etc. were also included. 

6.3.3 BLOCKCHAIN APPLICATIONS OF IOT 

Despite the fact that blockchain technology began with Bitcoin, it already has far- 
reaching applications outside of the cryptocurrency. Most of the security and 
trust-related challenges of the IoT can be tackled by blockchain features such as 
decentralization and encryption of information. Some important IoT-related ap-
plications are described below: 

6.3.3.1 IoT-based Healthcare Systems 
The IoT is widely used in healthcare systems for monitoring sensitive information of 
patients (Kaushik, Dahiya, and Sharma 2021). Moreover, the use of cutting-edge 
wearable IoT-based devices can make life easier for those who are afflicted with 
some serious diseases (Singh et al. 2020). So, the IoT and blockchain can be used to 
store and share the important medical data of patients securely and in a distributed 
way. And not only can this information be safely exchanged via blockchain in real 
time, but it can also be utilized to assure authorized user access (Ramani et al. 2018). 

6.3.3.2 Internet of Vehicles (IoV) 
Blockchain can assure basic trust and security characteristics such as vehicle 
identification management, reputation and communication channel integrity, system 
automation, etc. in connected vehicles over the Internet. Blockchain can also ensure 
trust management and social relationships in social IoV applications efficiently 
(Iqbal et al. 2019). With the advancement of blockchain, all vehicle communica-
tions can be performed in real time also. 

6.3.3.3 IoT-based Supply Chain Management Systems 
Using the IoT, we can develop a smart supply chain management system, allowing 
for efficient control of product and service flow from manufacturer to end-user. 
However, to create a robust and trusted supply chain management system, the 
safeguarding of the information that flows through it is a must. Blockchain tech-
nology has the potential to be the ultimate solution to this issue (Hasan et al. 2019). 
It can eliminate the need for centralized authority and provide a secure, fully au-
tomated, and robust supply chain management system that can maintain the in-
tegrity of data also. 

6.3.3.4 Industrial Internet of Things (IIoT) 
The integrated architecture of the IoT and industries allows us to monitor its ac-
tivities with minimal or no human participation. Integrating blockchain with IIoT 
can solve most of the issues such as access control, authentication, privacy, 
transparency, etc. (Latif et al. 2021) and can develop a smart and trusted industrial 
infrastructure. 

136                                          Internet of Things and Cyber Physical Systems 



6.3.3.5 Authentication and Access Control in IoT 
Important security and trust parameters such as authentication and access control 
can be tackled by a combination of blockchain and smart contracts (Yavari et al. 
2020). Private blockchain such as Hyperledger Fabric has special mechanisms for 
access control and authentication in terms of policies in addition to smart contracts. 

6.3.3.6 Trusted Firmware Updates 
Limited resource availability of IoT devices make it difficult to push out correct 
firmware updates. Another difficulty is scalability, as updating thousands of end 
devices manually is not feasible. Furthermore, due to the centralized nature of 
present architectures in front of such a large number of devices, a single point of 
failure is a possibility. The distributed nature of blockchain can provide the solution 
to this problem (Pillai, Sindhu, and Lakshmy 2019). The integrity of firmware data 
can also be managed using blockchain (Yohan and Lo 2019). 

6.4 HYPERLEDGER FABRIC ARCHITECTURE AND WORKING 
MECHANISMS 

The blockchain can revolutionize the way we process business information. The 
combination of a shared immutable ledger and smart contract can reshape how trust 
is expressed in business organizations. However, privacy, authentication, proces-
sing speed or response time, and scalability are some of the important requirements 
of conducting business properly. So public blockchain mechanisms are not able to 
handle all these needs, and private blockchain such as Hyperledger Fabric can be a 
complete solution due to its specific features. This section describes Hyperledger 
Fabric Blockchain technology in detail. 

Hyperledger Fabric is an openly available, private, and permissioned blockchain 
framework for generating and maintaining distributed ledgers of records. It is a 
modular framework where different independent technologies can be plugged in 
and used. It is managed by the Linux Foundation and intended to provide trust 
operations with confidentiality, flexibility, and scalability. It can operate with such 
consensus protocols that are pluggable and can work without any cryptocurrency 
for the costly mining process and smart contract execution. The practice of avoiding 
cryptocurrencies in the Hyperledger Fabric system enables its deployment with 
normal operational cost. 

6.4.1 HYPERLEDGER FABRIC ARCHITECTURE 

The architecture of Hyperledger Fabric is the combination of multiple pluggable 
components that are integrated for performing specific tasks. Every component 
works independently and can be configured according to developers and business 
needs. High-level architecture (see Figure 6.3) and key components of Hyperledger 
Fabric are given below: 
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6.4.1.1 Peer Nodes 
These nodes are the endpoints that reside at organizations and are responsible for all 
communication processes in Hyperledger Fabric Blockchain. These nodes hold the 
latest states and copies of distributed ledgers and channels they have joined by 
receiving orderer state updates in the form of blockchain blocks from the orderers. 
Based on special tasks performed, peer nodes are of mainly two types: the first is 
Commiter Peer, and the second is Endorser Peer. Commiter Peer commits trans-
actions and adds received blocks to its copy of blockchain. This block, which is 
received from ordering services, contains the list of transactions that are marked 
either valid or invalid by Committer Peer. Every valid or invalid transaction is 
committed and added to the blockchain ledger. Endorser Peer performs the addi-
tional task of endorsing, which is a process of simulating a client’s requests based 
on the policies defined and smart contract installed. This node generates the result 
set or reads/writes set after the execution of the transaction and returns it to the 
client without committing it to the ledger. Additionally, some peer nodes are de-
fined as anchor nodes also that are responsible for all communication processes with 
other anchor nodes. 

6.4.1.2 Ordering Nodes 
Ordering is the mechanism that ensures the consistency of distributed ledgers. 
Consensus algorithms order the transactions and then bundle them into blocks of 
blockchain. In public blockchains such as Bitcoin and Etherium, any node can 
participate in the consensus process based on the probabilistic approach. But this 
approach is very resource-consuming and vulnerable to ledger forks, where dif-
ferent nodes can have a different view of distributed ledgers that is against con-
sistency. But Hyperledger Fabric follows a different approach for ordering services 
such as Raft (“Raft Consensus Algorithm” 2021). It consists of a special and 

FIGURE 6.3 Architecture of hyperledger fabric network.    
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independent node for ordering services called Orderer. Ordering service can have 
multiple orders to make it robust against the failure of an orderer node. Orderer 
services work separately from the chaincode services, which makes them scalable 
and improves performance. Consensus in Hyperledger Fabric follows a determi-
nistic approach in which final and correct blocks are validated by peers. It simply 
avoids the ledger fork in Hyperledger Fabric. 

6.4.1.3 Membership Service Providers (MSP) 
Since Hyperledger Fabric is a permissioned blockchain, every entity in this network 
must have an identity that needs to be validated before participating in the com-
munication process, and MSP does this job. Certification Authorities provide pri-
vate and public key pairs to the entities to generate identities where the private key 
is secretly held by nodes and their corresponding public keys are held by MSP. 
Nodes have to be digitally signed or endorsed transactions before submitting them, 
and they are validated by corresponding public keys stored by MSP without re-
vealing nodes’ private keys. The MSP implementation process includes the addition 
of sets of folders to the network configuration and to defining who is the admin 
within the organization and who has which authority from outside the organization. 
MSP is defined locally and for channel configurations. 

6.4.1.4 Chaincode 
Chaincode in Hyperledger Fabric is the group of related smart contracts. Smart 
contracts are the logic written in some high-level programming language and 
define some executable logic for the blockchain. They ensure some agreement 
and define transaction logic among participating organizations before submitting 
transactions. Smart contracts on Hyperledger Fabric are linked to an endorse-
ment policy that specifies which organization must approve a transaction before 
it is declared valid or invalid. Chaincode invocation includes a six-step proce-
dure, such as packaging of smart contracts, installing on peers, proving by peer 
nodes, committing chaincode in the channel, invoking initials, and finally query 
transactions. 

6.4.1.5 Channels 
Hyperledger Fabric supports multiple channel capabilities for communication 
among organizations. This functionality allows enterprises to retain their privacy, 
and they can join any number of channels also. After the invocation of the 
chaincode on a channel, all smart contracts of that chaincode become available to 
participating organizations of that channel. Channels are mainly two types: The 
“system channel” is the first and only channel. This channel is defined for or-
dering services and contains all orderer organizations. The second is the “ap-
plication channel,” which can be more than one channel in a Hyperledger Fabric 
Blockchain network and can provide private communication between partici-
pating consortium organizations. 
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6.4.1.6 Policies 
Policies are the set of rules that are defined initially and make Hyperledger Fabric 
different from other blockchain networks. Policies in the Hyperledger Fabric net-
work are defined at multiple levels such as at the system channel, application 
channel, and ACL (Access Control Lists). System channel policies define the 
consensus protocol used by ordering services and govern new block creation. 
Which member of the consortium is allowed to create a new application channel is 
also defined by these policies. Application channel policies control adding and 
removing of member organizations. These policies also govern the system about 
organizations that are responsible for approving a chaincode before its commitment 
to the channel. Access control list policies control access to the system’s resources, 
such as functions or block events. 

6.4.2 WORKING MECHANISM OF HYPERLEDGER FABRIC 

We can divide the working mechanism of Hyperledger Fabric into five steps, which 
are given below: 

First, any member client invokes a request through a client application to initiate 
a transaction. Client applications broadcast that request to an endorser peer. 

Second, after verifying all identities using MSP certificates, the endorser peer 
executes the chaincodes and sends back a response to the client in terms of 
approval or rejection of the transaction. 

Third, if the transaction is approved by an endorser peer, it is sent to 
the orderer node or peer to be ordered and included in the block of 
blockchain. 

Fourth, the orderer node orders the transaction according to consensus pro-
tocol and adds it to the block. This block is then forwarded to the anchor peers 
of the remaining participating organizations of the channel. 

Finally, these anchor peers broadcast this new block to other peers within 
their organization. Thus, all peers of all organizations update their local 
ledgers with this latest block.  

6.5 INTEGRATION OF BLOCKCHAIN AND THE IOT: ISSUES AND 
TRUSTED STRATEGIES 

The IoT and blockchain are emerging technologies that are gaining popularity day 
by day. Features and security mechanisms of blockchain can provide an ultimate 
solution to many security issues of the IoT. However, the integration of blockchain 
and the IoT is a very complicated process due to the structure and working nature of 
both technologies. For instance, the IoT is designed for centralized systems, 
whereas blockchain is decentralized in nature. In this section, the IoT and 
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blockchain integration issues and some possible solutions are discussed (Kumar and 
Sharma 2021; Reyna et al. 2018). 

6.5.1 INTEGRATION ISSUES 

6.5.1.1 Issue of Processing Data Size 
The size of data has no limit because some data in terms of transactions and blocks 
are added to blockchain regularly. According to Statista.com, the size of Bitcoin and 
Ethereum will be over 380 GB and 1.2 GB, respectively, until May 2022. On the 
other hand, IoT devices and protocols are designed for processing limited data with 
limited resource availability. IoT systems are not directly capable of handling such 
data generated by blockchains. Cloud computing may be an option for storing 
certain blockchain partial data in the cloud, but cloud computing’s centralized 
nature may conflict with blockchain’s decentralization. 

6.5.1.2 Issue of Computation Power 
The computational power required for blockchain activities is far higher than that 
required for the IoT. For example, in public blockchains, such as Bitcoin and 
Ethereum, authentication is done by cryptography, and a complicated problem has 
to be solved by miners for the consensus process. It requires very high processing 
machines and energy. However, IoT smart devices are very constrained with dif-
ferent resources, such as processing power and energy, and generally batteries are 
used for their power sources. So, solving and processing complex tasks and algo-
rithms by IoT devices is not possible directly. 

6.5.1.3 Issues of Privacy of Users 
The initial architecture of blockchain was intended to be transparent, and privacy 
was not the main goal. But many applications of the IoT, such as medical systems, 
business systems, etc., may need a high level of privacy. Some public blockchain 
systems can have serious privacy issues, which may lead to many severe attacks 
(Dorri, Kanhere, and Jurdak 2018; Conti et al. 2018). So, integrating blockchain 
with the IoT can have an issue of privacy of users’ data, and private blockchains can 
have different approaches for handling this issue. For instance, Hyperledger Fabric 
uses identity management services, access control lists, and the concept of private 
channels for privacy management (Androulaki et al. 2018). 

6.5.1.4 Issues of Processing Speed 
The transaction speed of blockchain networks is generally slower than the re-
quirements of modern-day applications. Many blockchain projects such as Bitcoin 
and Ethereum can process 4–15 transactions per second, which is very slow for 
many IoT applications and can create a bottleneck for IoT data transmission (Dhar 
Dwivedi et al. 2021). However, private blockchains like Hyperledger Fabric in-
creased processing speed to 3,000 times per second. This speed makes Hyperledger 
Fabric eligible for business needs and can be applied for IoT-based applications 
where a quick response time is required. 
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6.5.1.5 Issues of Scalability 
When the transactions and connected nodes increase in a blockchain system, the 
main issue that arises is scalability. In most public blockchain networks, every node 
has to compute and store a complex task to validate a new transaction. It makes it 
very difficult to scale this network due to the need for very large storage and 
computation power (Scalability et al. 2021). Along with it, a very high bandwidth 
network is required for transferring data from one node to another. On the other 
hand, IoT systems demand a high level of scalability due to their applications such 
as smart cities, where the home appliances have to increase at any time. 

6.5.2 TRUSTED INTEGRATION STRATEGIES 

Integration of the IoT and blockchain can cause many issues, as discussed above, but 
most of them can be tackled with smart strategies. So, a carefully deployed approach 
based on application requirements must be considered. These strategies are generally 
based on the communication process between the IoT and blockchain (Reyna et al. 
2018). Cloud computing is commonly used by IoT systems for data storage and 
processing; therefore, we can use it to integrate blockchain with the IoT (Nartey et al. 
2021). Possible IoT and blockchain integration strategies are given below: 

6.5.2.1 IoT to IoT Model 
In this model (see Figure 6.4), different nodes of IoT communicate directly with 
others, and a network of blockchain is used for holding communication and 
transaction records. Since there is no direct involvement of blockchain in the 
communications process among IoT devices, this model responds faster compared 
to others. 

However, the separation of blockchain makes this model more vulnerable to at-
tacks as data injected in blockchain travels through insecure channels. Applications 
with a low level of latency and security requirements can use this model. 

6.5.2.2 IoT-Blockchain-IoT Model 
This model (see Figure 6.5) uses most of the security features of blockchain 
technology. Data from IoT devices is first stored in blockchain and then accessed by 
other IoT devices or applications. Blockchain ensures the immutability of this data 
through a ledger of records. But latency of data is the main issue of this model if it 
uses public blockchain architectures. 

FIGURE 6.4 IoT to IoT model (Modified from ( Kumar and Sharma 2021)).    
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6.5.2.3 Cloud-based IoT-Blockchain-IoT Model 
This model (see Figure 6.6) was designed by taking advantage of both the above 
models. Cloud computing is a groundbreaking technology that enables us to execute 
tasks that require a lot of resources in terms of computation power, energy, etc. that 
are very costly and time-consuming for IoT devices. This model takes advantage of 
the cloud and fog computing for handling these types of tasks of blockchain, such as 
hashing and cryptography algorithms. 

6.6 IOT TRUST MANAGEMENT ISSUES AND THEIR SOLUTIONS 
USING HYPERLEDGER FABRIC 

IoT systems have many trust-related challenges due to their functioning limitations 
such as limited resources, lack of proper firmware updation process, the remote 
location of IoT devices, etc. Private blockchains are more capable of addressing 
these issues compared to public blockchains because they are designed and de-
veloped to overcome the limitations of public blockchain systems. This section 

FIGURE 6.6 Cloud-based integration model of IoT and blockchain (Modified from 
( Kumar and Sharma 2021)).    

FIGURE 6.5 IoT-blockchain-IoT model of integration (Modified from ( Kumar and 
Sharma 2021)).    
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describes the main trust management issues of IoT systems and tries to find the 
solution to those issues using the Hyperledger Fabric Blockchain framework. 

6.6.1 TRUSTED AUTHENTICATION ISSUE 

Authentication is the process of identifying authentic devices. This process marks 
authentic devices as trusted so that they can perform operations in the system. For 
the authentication process, some unique id is provided to the nodes using some 
cryptographic protocols. These protocols may be based on the symmetric, 
asymmetric, or hybrid approaches (Ferrag et al. 2017). Due to the availability and 
diversity of their resources in the connection process, IoT devices can only im-
plement lightweight and multifactor authentication protocols. Many researchers 
(e.g. Shin and Kwon 2018 and Wang, Wang, and Wang 2020) have proposed a 
protocol for authentication to authenticate users at both ends of communicating 
nodes. The bulk of protocols relies on public-key or private-key cryptography, 
which is difficult for IoT devices with low resources to deal with. Examples of 
authentication protocols are “X.509 certificates,” “Hardware Security Module,” 
“Trusted Platform Module,” etc. 

6.6.1.1 Possible Solution 
Hyperledger Fabric has a separate authentication mechanism called MSP, and this is 
provided by a separate server named Certificate Authority. From the IoT systems 
perspective, every node can be first registered and assigned an identity that can be 
used for authentication of that particular node. Since Certificate Authority resides at 
a separate location, IoT devices are free of this burden. It not only addressed the 
computation overhead problem of IoT devices, but any protocol can be plugged into 
it at any time also (Kurian and Subramanian 2021). 

6.6.2 TRUSTED ACCESS CONTROL ISSUE 

In IoT systems, access control is used to bind specific services to specific nodes or 
users. Access control is required to preserve trust among IoT devices, but it is 
problematic due to the huge number of IoT devices and the variety of protocols they 
utilize. Furthermore, most of the present access control solutions use local data 
available in devices for making decisions that cannot be considered secure and 
trusted mechanisms. Local device information can be easily fabricated, particularly 
in the case of IoT devices, which are typically located in faraway places. Some 
other popular techniques, such as OAuth, JASON Web Token, Web Token (CWT), 
etc. use the authentication server and token-based protocols for access control or 
authorization. However, these techniques require constant connectivity of IoT de-
vices, which may not be possible for some systems. 

6.6.2.1 Possible Solutions 
The immutability feature of blockchain can provide an ultimate solution for this 
problem when we integrate blockchain and authentication protocols such as OAuth 
2.0. Some researchers (Siris et al. 2020) combined authentication protocols with 
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public blockchain and successfully addressed most of the access control trust issues. 
However, as discussed earlier, some limitations of public blockchain are low rates 
of transactions committed, poor scalability, and privacy management. So, instead of 
using public blockchain, we can use Hyperledger Fabric, which can address most of 
the limitations of public blockchain. Hyperledger Fabric has some special me-
chanisms, such as multiple smart contracts and policies, that can be used for access 
control (H. Liu, Han, and Li 2020; Iftekhar et al. 2021) in IoT systems. 

6.6.3 TRUSTED PRIVACY ISSUE 

Privacy is another important parameter that needs to be addressed for trusted IoT 
scenarios. IoT applications such as healthcare systems, smart homes, industrial IoT, 
etc. sometimes need more privacy, which is not easily possible in current cen-
tralized IoT systems. A single point of failure or compromised central node may 
breach all private information of the participant nodes. Trust issues become more 
complicated when users are not aware of how and from where data are coming and 
are being shared. Some researchers (Luo et al. 2020) have provided cryptography- 
based privacy solutions, but they may or may not fit in resource-constrained IoT 
devices. 

6.6.3.1 Possible Solution 
Private blockchains can address this issue since these are specially designed for 
privacy preservation, unlike public blockchains, where everyone has access to all 
the data. Hyperledger Fabric has a great mechanism of separate channels that can be 
used to communicate privately by different organizations. Since every channel has 
its separate ledger and other channels cannot access it, users can trust their privacy 
(Islam, Rehmani, and Chen 2022). 

6.6.4 TRUSTED INTEROPERABILITY ISSUE 

One of the great features of the IoT is interoperability, which allows IoT systems to 
work with diverse and heterogeneous environments. But this feature also creates 
many security and trust issues. IoT systems might include a variety of hetero-
geneous components, such as smart devices, networks, protocols, and other com-
ponents that were built by various organizations and adhere to different operating 
standards. Therefore, interoperability can create compatibility issues in front of 
third-party systems, and trust cannot be maintained in such scenarios. 

6.6.4.1 Possible Solutions 
To tackle this problem, blockchain can be used as a service layer that can interact 
with external different technologies in standardizing a general framework of the 
IoT. This framework can work in not only an automated way but a trusted de-
centralized manner (Y. Liu et al. 2020). Hyperledger Fabric supports pluggable 
standards or protocols that can be a great solution for interoperability in the IoT. 
Developers can decide the best-suited standards for a particular IoT system and can 
plug or unplug it as per requirements. 
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6.6.5 TRUSTED INTEGRITY ISSUE 

The integrity of data in IoT-like systems is a big concern because data can be 
transmitted via trusted or untrusted nodes. IoT systems can have a network of 
thousands of nodes, and it is very hard to monitor them regularly. Reaching 
these nodes is not difficult for attackers since they don’t have trusted security 
features due to their limited resource availability. Some protocols such as “hash 
algorithm (SHA)” and “advanced encryption standards (AES)” can maintain 
data integrity in IoT systems. However, these algorithms use some typical 
mathematical calculations as their basic techniques, which may or may not be 
possible to perform for IoT devices. Software-level and hardware-level security 
systems such as MLS (multilevel security) and TPM (trusted platform module) 
can be used, but these techniques may not be compatible with IoT system ar-
chitectures (Musonda 2019). 

6.6.5.1 Possible Solutions 
Immutability, decentralization, and distributed ledgers are the main features of 
blockchain that can be used for maintaining IoT data integrity. Hyperledger Fabric 
is featured with multiple distributed ledgers with respect to channels in the network. 
These ledgers ensure the integrity of stored information because once a transaction 
is committed in the ledger, it cannot be updated or removed (Hang and Kim 2019). 
Hyperledger Fabric can store large-scale IoT data in a special database such as 
MongoDB, which is cryptographically secured from unwanted access. 
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7.1 INTRODUCTION 

The term cyber physical system (CPS) emerged for the very first time in 2006 by Helen 
Gill at NSF (National Science Foundation) in the USA [1]. CPS is a smart and 
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intelligent computer system whose set of actions and mechanisms are governed through 
a specific algorithm. It has a deep integration of software components and physical 
components [2]. In these systems, the computational capabilities are utilized in order to 
increase the efficiency of the conventional physical systems. CPSs can view things from 
physical as well as virtual perspectives in order to autonomously evaluate the conditions 
and then perform the process of decision making based on those sets of conditions 
without the involvement of any human activity. They have the potential and capability to 
impact various sectors of the economy. CPSs can bring advancements to the healthcare 
industry, automobile industry, traffic flow management of the city, smart homes, smart 
appliances, and anything that can be termed “smart”. We can encounter many examples 
of CPSs surrounding us in our daily lives, such as smart heaters that we have in our 
homes, which automatically get switched on and adjust the temperature of the room 
when the room temperature goes below a minimum threshold. Other examples could be 
an air conditioning system, cleaning robots, and smart ventilation systems. In short and 
crisp words, CPSs can link the physical world with the virtual world in order to carry out 
a set of tasks that can impact our daily life tremendously. 

7.1.1 3C CONCEPT OF CYBER PHYSICAL SYSTEMS 

Just like the transformation of the Internet over the years, the manner or the way in 
which people have started interacting with information has changed. CPSs have 
transformed the way in which people interact with intelligent systems. CPSs are 
integrating computation, communication, sensing, control, and networking into 
physical objects and then connecting these objects to each other through the 
Internet. The 3Cs in the concept of CPS stand for computation, communication, and 
control. The software performs the computation part based on a given or provided 
code in order to filter out the desired information from the bulk of provided in-
formation and then accordingly communicate or interact with the physical system 
through the networks in order to control the system. The figure shown below depicts 
the way in which the 3Cs of CPSs work. (Figure 7.1). 
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Channel

Controlling the
System

Gathered
Information

FIGURE 7.1 3C Structure of cyber physical systems.    

152                                          Internet of Things and Cyber Physical Systems 



7.2 FEATURES OF CYBER PHYSICAL SYSTEMS   

1. CPSs have the capability to train and adapt themselves under several 
circumstances under which an ordinary system might not work.  

2. The whole principal of CPS is based on the interaction of cyber and 
physical components that can solve as well as can handle real-time 
problems that might be a tedious task to solve and overcome.  

3. CPSs ensure that the system is reliable and any operation performed must 
be ensured; for example, we can think about a fire alarm system, which 
has to be reliable in order to ensure that there is no loss of property or life 
in an unprecedented situation. 

4. CPSs can perform the process of data transmission under wireless net-
works, which removes the complexities that are associated with the wired 
connection.  

5. Real-time capability is one such feature of the CPS that holds the key to 
many applications of the CPS as there are certain activities and tasks that 
require real-time monitoring and viewing (the healthcare sector and au-
tomation sectors are perfect examples that require real-time monitoring), 
and CPSs can be a boon for such sectors of the economy.  

6. CPSs have high computational capabilities that can be very useful in 
solving complex problems that might be a tedious task for a human or 
any ordinary system.  

7. Decentralization refers to the independent decision-making capability of 
the CPS that must be reliable and should be in alignment with the ulti-
mate goal of the organization.  

8. CPSs are also used for efficient, effective, and safe transmission of the 
energy supply. (Here, smart grids can be a perfect example that uses 
CPSs.) 

9. CPSs are efficient as well as cost effective: energy efficient, where lim-
ited amounts of power resources are used, and time efficient, where 
limited amounts of memory and excessive computational time are 
avoided. These are a few parameters on which CPSs are efficient. 
Similarly, because of the features that come with a CPS, its cost in due 
course of time becomes a good deal for a customer or any user.  

10. CPSs have the ability to operate in autonomous as well as semi- 
autonomous configurations, which gives them an edge over traditional 
systems. 

7.3 CHARACTERISTICS OF CYBER PHYSICAL SYSTEMS 

7.3.1 AGRICULTURE 

In the next 20 years, it is estimated that the population will grow by double digits; 
therefore, there is a dire need for incrementing food production, and CPSs can be 
used for this purpose. CPSs can optimize the quality of food production as well as 
increase quantity. CPSs can be used to improve agricultural management for the 
sustainability of agricultural systems, crop production, and maintaining the quality 
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of the environment. CPSs can be used in the agricultural sector in order to perform 
precise farming. CPSs can monitor climatic changes and the soil on a different set 
of parameters, like mineral content, moisture, and granularity. Moreover, CPSs can 
be very useful in scheduling and monitoring irrigation activities, fertilization ac-
tivities, and harvesting activities. CPSs can help farmers to monitor fields and make 
resource plans in case there are any unpredictable circumstances and events. Also, 
CPSs can optimize the schedules of food production by connecting them with the 
supply chain and can perform activities like harvesting, seeding, and using robots 
and other intelligent tools. 

7.3.2 TRANSPORTATION 

When a traditional transportation system is compared to a transportation system that 
involves the use of CPSs, the later achieves higher reliability, efficiency, and robust 
performance because of the continuous interaction between the software or the 
cyber systems and the physical systems involved in transportation. CPSs can ef-
fectively reduce road accidents that are caused by human error, and not only that. 
The CPSs can also effectively manage the flow of the traffic, thereby eliminating 
the chances of traffic jams and unwanted wastage of time; therefore, all these 
properties of the CPSs make them very useful in saving time and money and also 
improving security standards. Many countries are expected to move toward this 
domain in the near future. 

7.3.3 AUTOMATION 

CPSs can increase production and also make the process much more flexible by 
using the self-regulatory system and autonomous production unit. CPSs can auto-
mate the industry by using robots, which can result in increases in production as 
well as quality. Also, the use of CPSs can bring down the cost that the company 
incurs due to wages given to workers. There would be a cost associated with the 
purchase and maintenance of the robots, but in due time these costs would come 
down, thereby providing profit to the organization. 

7.3.4 HEALTHCARE 

Today most of the components of healthcare systems operate in either limited or 
complete isolation, which results in a tedious task for the patient as well as the 
healthcare system to maintain synchronization. However, with the continuous 
evolution of technology, these devices in the healthcare system may be com-
bined through a network in order to maintain synchronization between the pa-
tient and the healthcare system. Also, nowadays CPSs have become important in 
the healthcare sector. CPSs can limit the cost of healthcare that the patient has to 
bear by providing real-time monitoring of the patient. CPSs can be extremely 
helpful in the healthcare industry by providing high-quality treatment and also 
limiting hospitalization charges, which will ultimately lead to a quality health-
care infrastructure. 
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7.3.5 OCEAN MONITORING 

CPSs can be used for ocean monitoring. Using smart video, unmanned vessels can 
perform real-time monitoring of the underwater environment. The set of algorithms 
and information will make sure that the vessel adapts to different challenging 
conditions that it might have to face underwater. These robots are equipped with 
high processing powers and sensors to perform navigation operations, process data, 
and also make sure that they remain charged using natural resources like wind, solar 
power, etc., to ensure uninterrupted transmission of data. 

7.3.6 SMART GRID 

Smart grids are essentially a large network of interconnected physical networks 
that serve as a backbone for the supply of energy. They are basically an electric 
network that performs the delivery of a reliable energy supply. In recent years, 
the demand for clean, efficient, reliable, and secure energy generation and 
transmission has increased tremendously, and deployment of smart technologies 
has become a must. That’s where smart grids could be used that have CPSs 
already built inside them. These smart grids have advanced monitoring and 
control technologies. Smart grids are basically a combination of cyber systems 
and physical networks. These smart grids can adjust to changes if required and 
can reconfigure themselves in order to avoid blackouts and thereby reduce en-
ergy costs. 

CPSs are not limited to the applications that we discussed earlier. There are 
lots more applications that include education, energy management, environment 
monitoring, smart cities and smart homes, intelligent transportation, and process 
controls. The figure below shows some of the applications of CPSs. (Figure 7.2). 
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FIGURE 7.2 Applications of cyber physical systems.    
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7.4 CHALLENGES FACED BY CYBER PHYSICAL SYSTEMS 

CPSs involve many interconnected systems that are used for monitoring and pro-
cessing objects and processes. In today’s world, CPSs have evolved our way of life. 
They are providing services in different sectors, including e-healthcare, smart 
homes, e-transportation, and many more. Since CPSs deal with several complex 
components, they are prone to threats and attacks, and there is a need to mitigate 
such attacks or threats for the security of CPSs and their components. 

7.4.1 DATA PRIVACY 

Data privacy is the ability of an individual to determine to what extent the per-
sonal information of the individual is shared or communicated with a third party. 
As the use of the Internet has increased drastically over the years, so has the need 
for data privacy. There are many websites, social media platforms, as well as 
applications that take the details of the user on the pretext of providing services; 
however, some of these applications, platforms, and websites use the data in such 
a way that it compromises the privacy of the user’s information. CPSs manage a 
huge amount of sensitive, confidential, and private data such as phone numbers, 
addresses, and details; therefore, concerns regarding the privacy of data are al-
ways raised in cases of CPSs. 

For example, we can think of the healthcare sector where the medical monitoring 
system contains sensitive information about the patient, such as the patient’s 
medical report, prescriptions, etc. The security of such information must be dealt 
with high precision so that it does not fall into the hands of someone who could 
exploit it. 

7.4.2 DATA MANAGEMENT 

Data management is the practice of collecting, storing, protecting, and organizing 
data so that proper analysis can be made before making any decision. Data man-
agement also provides invaluable insights that can be used by an organization to 
enrich the user’s experience. Data management provides multiple benefits such as 
visibility, which can help an organization to become more productive and organized 
by making sure that the right data get accessed by employees quickly and effi-
ciently. Data management also provides reliability for decision making, which is 
made after analysis of the data, as this will help the organization get synchronized 
with market changes and customer demands. Similarly, security and scalability are 
other benefits that data management brings. The data that CPSs receive from var-
ious connected modules must be managed and analyzed properly before making any 
decisions because any decision made without proper study can result in loss of 
property and even loss of lives. 

For example, in a fire alarm detection system, it is necessary that the system 
analyzes unprecedented situations and makes quality decisions as these decisions 
hold the key to saving precious lives and properties. 
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7.4.3 RELIABILITY 

Reliability, in simple words, is defined as the probability that the system or software 
performs the required set of functions for a specified amount of time without failing. 
Reliability is considered to be one of the most important parameters, along with 
availability and serviceability, when buying or using a component. Theoretically, 
reliability means being totally free from any sort of error, but in real life reliability 
is always specified as a percentage. This percentage value keeps increasing as (and 
when) the next version of the product comes. Since CPSs are linked to very 
complex systems configured using several cyber and physical subsystems, the re-
liability of such systems and subsystems must be ensured. Otherwise, it may lead to 
a major risk to life and property. 

For example, cars have airbag systems that must open up in case of a crash or 
accident. Therefore, the reliability of such systems must be guaranteed. 

7.4.4 REAL-TIME CHALLENGES 

Real-time systems are subjected to real time; that is, for such systems, the response 
should be generated within the specified limit or time constraint. There are two ca-
tegories of real-time systems. The first is hard real-time systems, which are required to 
perform the given task within the specified time only. For such systems, if the spe-
cified deadline is missed, then it can lead to disastrous consequences. A flight control 
system can be considered an example of a hard real-time system. The second is soft 
real-time systems. For such systems, missing the deadline will not lead to a disastrous 
consequence. These systems can accept the response even if the received response is a 
little delayed. We can think of telephone switches as example of soft real-time sys-
tems. Since the majority of CPSs are required to perform real-time challenges and 
objectives, the proper configuration and adequate bandwidth should be in place. 
Otherwise, it may lead to serious consequences in the case of hard real-time CPSs. 

For example, in medical monitoring systems present in the healthcare sector, if 
the system monitors the heart rate of patients, then the system must perform the 
activity in case of emergency, which could be beeping or informing the doctor 
and staff. 

7.4.5 EAVESDROPPING 

Eavesdropping means intercepting the information that is being communicated by 
the system. These types of attacks are passive attacks, where the attacker does not 
modify data. Rather, the attacker observes the propagation of data. In today’s digital 
world, eavesdropping has taken the form of sniffing, which is a specialized program 
created to record the packets flowing over a network and then decrypt them using 
cryptographic tools to get plain text. For example, in the case of VoIP (i.e. voice 
over IP), communication can be sniffed and converted to audio data using spe-
cialized software. CPSs are prone to this type of attack, where the attacker can 
perform traffic analysis in order to monitor the transmitting data. Therefore, we 
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need to protect the data flowing through the network in order to protect the data as 
well as the CPSs. 

7.4.6 MAN IN THE MIDDLE ATTACK 

The man in the middle attack is a sort of eavesdropping attack where the attacker 
places itself between legitimate users and then pretends to be a legitimate user to both 
the actual users. This enables the attacker to catch the data flowing between both the 
legitimate users and also allows the attacker to send malicious packets to both the 
users by pretending to be a legitimate user. CPSs are vulnerable and prone to such 
attacks, where the attacker can send false messages to CPSs through the network in 
order to make CPSs perform activities that the attacker wants. Such attacks are very 
dangerous as they may trigger false alarms and create panic among people. 

For example, the fire alarm system may get activated and perform activities for 
which there is no need. 

7.4.7 DENIAL OF SERVICE ATTACK 

A denial of service (DoS) attack is an attack in which the hacker tries to flood the 
network with a large amount of malicious packets so that the network becomes so busy 
that legitimate users are unable to perform activities. DoS attacks generally exploit a 
vulnerability present in the network or software or even the design of the hardware 
itself. A DDoS (distributed denial of service) attack is an attack like DoS, but in this 
case the attackers flood the network through malicious packets coming from different 
devices that are distributed geographically. Again, the network becomes so busy that 
legitimate users cannot perform activities. DDoS attacks have more disruptive cap-
abilities compared to DoS attacks because in DoS attacks, the attacker just uses a 
single system, whereas in DDoS attacks, multiple systems are used. Such types of 
attacks are possible in CPSs. The attacker can perform flooding of malicious packets 
on the network and prevent the normal activities of the CPS as well as prevent le-
gitimate users from accessing the CPS. 

For example, the attacker makes an ATM or POS server so busy that legitimate 
users cannot perform their transactions on the ATM or POS machine. 

7.4.8 INTEGRITY 

The word “integrity” means that the data present in the system have not been 
modified by an unauthorized user. Integrity involves processes that make data 
consistent and trustworthy throughout their entire life span. For example, when a 
message is being sent from entity A to entity B, the message that is being received 
by entity B should be original. That is, the message should not get tampered with or 
altered while it reaches entity B. In the context of CPSs, it may happen that the 
information that a user sends to the system is different from what the system re-
ceives; therefore, we can say that an unauthorized entity can make changes to the 
data or can corrupt the data or programs intentionally if CPSs are not properly 
controlled and monitored. 
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7.4.9 ROBUSTNESS 

In today’s world, CPSs have become an integral part of all major industries and 
organization. We can view the smart grid as a perfect example of the CPS in which the 
network of the grid and the communication network are coupled together for op-
erational controls. Here, the communication network controls the grid, and the grid is 
responsible for providing power to the communication network. Now, such systems 
in which the components are interdependent upon each other for a particular set of 
activities tends to make the system fragile. Any failure in one component of the 
system makes the entire system stop, and this is one of the major problems, where 
failure of any interconnected component leads to the failure of the entire system. 

7.4.10 UNTRAINED EMPLOYEES 

CPSs are prone to various threats, and these threats keep on evolving. But one threat 
that is consistent is the vulnerability of the system due to untrained employees. The 
people working at an organization are the most frequent cause for the system or data 
to be compromised. It might happen unintentionally or even with ill intentions in 
some cases. Users with privileges to access sensitive data are one of the biggest 
threats to data breach, followed by contractors and regular employees of the or-
ganization. There are several reasons why untrained employees are one of the 
biggest threats to an organization, such as presence of insufficient protection 
methodologies and solutions, very high volume of devices being given access to 
sensitive data, everybody associated with the organization accessing the network, 
and increased usage of cloud storage and other infrastructure. 

Therefore, it is necessary to make sure the employees are well trained before 
they handle real-world activities and tasks. 

For example, Snapchat became victim of such an attack in 2016, when an out-
sider tricked an employee over mail into providing information. This led to the 
leakage of payroll information of Smapchat employees. 

Several other challenges that make CPSs vulnerable, like power management, 
complexity, connectivity, sensing, data management, and others, are illustrated in  
Figure 7.3. If these vulnerabilities are not addressed properly, then major risks to 
life and property are possible. 

7.5 REAL-LIFE INSTANCES   

• In 2010, an attack named “STUXET” targeted the military and nuclear 
systems of Iran in order to disrupt services.  

• In 2011, the drone system of the US military got hacked. The attacker 
performed a spoofing attack in order to capture the drone system.  

• In 2012, a private gas company in Qatar became the victim of a CPS 
breach when an attacker tried to disrupt the entire working mechanism of 
the company using a virus.  

• In 2013, the Saudi Arabian defense ministry system was breached through 
account hijacking in order to extract sensitive information. 
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• In 2015, attackers hacked into the Ukraine’s power grid, which resulted in 
power outrages to a population of more than 230,000 for more than 
6 hours.  

• In 2015, the Istanbul airport online passport system was attacked by 
hackers who tried to flood the network with malicious packets, preventing 
legitimate users from accessing the features and facilities.  

• In 2015, an energy company in UAE became a victim of a Trojan Horse 
attack, where hackers tried to extract sensitive information about em-
ployees working at the energy company.  

• In 2016, Jeep became the victim of a CPS breach when attackers hacked 
onto the braking and steering system of the car; a similar incident hap-
pened with Toyota and Ford in 2009.  

• In 2016, the Turkish police database system was hacked in order to extract 
sensitive information about employees, staff, and prisoners in Turkey.  

• In 2017, the power and transmission sector of Turkey became the victim of 
a CPS breach, where attackers tried to disrupt the transmission of energy 
across the country. 

The graphs provided below indicate the number of CPS breaches that happened per 
country, as shown in Figure 7.4, and also the number of incidents that happened per 
year from 2010 to 2017, as shown in Figure 7.5. 
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FIGURE 7.3 Challenges to cyber physical systems.    
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7.6 RISK MITIGATION TECHNIQUES  

1. In order to improve the security of the smart grid, a two-step mutual au-
thentication scheme was proposed by Fouda et al. [3]. According to this 
scheme, “the process of key exchange was done using the Diffie-Hellman 
exchange algorithm and the message that travels between the smart meters 
can be authenticated using a key and hash function”.  

2. Newman [4] provided the “security analysis of the CPSs, which included 
the CPSs. All these analysis should be done while designing the CPSs in 
order to make it secure and reliable”. 
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3. A method was proposed by Vegh and Miclea [5] that included both 
cryptography and steganography in order to make CPSs secure. In this 
proposed method, “the data as well as the key used to get encrypted and 
stored in different files which basically made sure that even if a part of the 
data gets compromised the other data is still secure and protected, that is it 
made sure that the entire data do not get compromised”.  

4. Ali et al. [6] proposed “a two tier based approach in order to make CPSs 
secure and reliable, those two tiers were the internal trust layer and the 
external trust layer. Before getting the access to the network the user 
must authenticate himself by providing desired credentials and there 
should be an establishment of trust between the nodes of the CPS which 
can be used in order to eliminate the malicious data from the CPS 
and give the ability to the CPS to reconfigure themselves in any un-
precedented situation”. 

7.7 PREVIOUS SOLUTIONS   

1. In terms of confidentiality, securing the communication lines of CPSs is 
very important. With regard to that, several cryptographic solutions were 
provided. Using compression technique before performing encryption 
using this solution, the overhead was reduced, and the problem was also 
mitigated [7]. Shahzad [8] suggested that if we could install encryption and 
decryption modules at both ends of a mod bus, then it protects the con-
nection from confidentiality threats. Vegh [9] suggested a hierarchical 
cryptographic method that can be obtained through the ElGamal algorithm 
in order to protect the CPS’s communication lines.  

2. In terms of integrity, where there is a need to prevent any modification 
done on either incoming or outgoing data, several solutions were provided. 
Omkar [10] addressed the problems associated with the software re-
configuration through the presented approach called TAIGA (Trustworthy 
Autonomic Interface Guardian Architecture).  

3. In terms of availability, Thiago [11] combined machine learning with an 
open source PLC in order to secure an OpenPLC version and give it power 
against numerous attacks. This approach showed the ineffectiveness of 
attacks like DoS, DDoS, injection, and interception. The Tennessee 
Eastman Process Control System (TE-PCS) was used to check the DoS 
attack. Upon testing, it showed how the DoS attacks were ineffective 
against the sensor networks.  

4. In terms of authentication, which is often considered to be a first line of 
defense, Halperin [12] presented a public key exchange authentication 
process in order to make sure that no unauthorized entity gains access. 
This mechanism was based on radio frequency as an energy source. 
Also, Ibrokhimov [12] presented a user authentication scheme that was 
based on five-level features, which included security, privacy, and other 
aspects. 
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7.8 METHODOLOGY 

Certain methodologies can be used in order to provide security to CPSs:  

1. Security of sensor networks is very important, and these networks must be 
prevented from getting hacked by performing several security measures, 
like user authentication, data confidentiality and integrity check, and de-
tection of intruders in the network using an intrusion detection system.  

2. It is also important to protect user data from getting hacked. For example, 
in the healthcare sector, the medical monitoring system may contain 
sensitive and confidential data about patients, like patients’ medical re-
cords, personal information, etc. Therefore, it is important to keep such 
data private. Several security measures can be taken into consideration, 
like using security software for such data, access control systems, etc. in 
order to keep the data safe and secure.  

3. CPSs may receive malicious data from attackers. Therefore, it is important 
for CPSs to analyze collected data before making any decisions. Decisions 
made without proper analysis can cause catastrophic damage to life or 
property. Security measures like detection of viruses, verifying the cred-
ibility of the sender, and verifying reliability can be used to provide se-
curity to CPSs in such situations.  

4. Also, the security structure and design of CPSs has to be well structured 
and maintained in order to avoid security threats like hacking of the in-
ternal system, access control of the network resources, etc. Security 
measures like cross-network authentication and port blocking can be used 
to provide security to the design and structure of the CPS.  

5. In order to counter security threats like data privacy, there is a need to 
perform security measures like privacy protection mechanisms, updating 
systems frequently, using access control features, and using standardized 
security software.  

6. In the context of security threats to data confidentiality and the integrity of 
data, several security measures can be used, like making sure the source of 
data is reliable, performing encryption of data for its integrity, and using 
other data mining procedures for maintaining the confidentiality and in-
tegrity of data.  

7. There are other security threats, like remote accessing. The security of the 
routing system when the hosts are present in two different networks is also 
important. Security measures like performing hop-by-hop encryption, 
doing key management and password negotiation, and performing end-to- 
end encryption of data are very important for the security of the CPS. 

7.9 RESULTS 

CPS security has always been important because of the nature of the work and tasks 
that are performed by CPSs. CPSs’ challenges have captured the attention of the 
industry and researchers around the globe. CPSs involve cybernetics, transdisciplinary 
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approaches, design, and process science, so their complexity is very high. Therefore, 
security of such systems should be given very high priority in order to avoid any loss 
of property and life. In this chapter, we looked at the various security aspects of CPSs, 
reviewed the key issues and challenges of CPSs, discussed mitigation techniques and 
previously proposed solutions by several researchers that can be helpful in reducing 
the volume of damage, and dealt with several threats and challenges that were faced by 
CPSs, which can give the reader a comprehensive overview of security aspects of 
the CPS. 

7.10 CONCLUSION 

The security of CPSs is a high priority because CPSs deal with certain applications 
whose security, if compromised, can cause major risks to life and property. CPSs have 
become an important component of Industry 4.0. The ultimate aim of CPSs is to 
enhance quality with reliability intact and to be available whenever required, but there 
are certain loopholes that make the security of such systems vulnerable. It is necessary 
to counter those loopholes with high precision. In this chapter, we gave a proper 
overview of CPSs, their features, different applications, and various threats to which 
CPSs are vulnerable. Then, we provided various real-life instances where the security 
of CPSs was compromised, and we looked into methodologies that can protect CPSs 
from various threats. Several startup companies are now offering security services for 
CPSs, but they are still few in number. We are at the starting point as far as security of 
CPSs is concerned, but in the coming years, we may see other threats, challenges, and 
security measures countering those threats as research moves forward. 
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8.1 INTRODUCTION 

Tremendous advancements are happening in the technologies implemented in the 
automotive industry, such as ad-hoc vehicles, electric vehicles, etc. [1]. The Internet 
of Things (IoT) is one of the major paradigms that is seen in developing smart en-
vironments. The key issues that hinder the path of smart environments (Figure 8.1) 
using the IoT model is privacy and security. Manufacturing can be expanded and 
public demand fulfilled mainly because of the widespread usage of technology [2]. 
Because of the important functions they represent, these structures are considered to 
be critical systems. Use of technology in the role of critical systems, however, permits 
many attacks to target infrastructures’ weaknesses [3]. The research community has 
focused on determining weaknesses, threats, and attacks on infrastructure systems so 
that security systems may be constructed to avoid these attacks. The intrusion attack is 
one of the most well-known and often used forms of attack. 

Smart environments have evolved from the usage of the IoT paradigm. To make 
people’s lives more comfortable and productive, smart environments have a major 
part in resolving issues related to energy consumption, daily life, and various needs of 
industry. Sensors in smart environments help to carry out processes. The development 
of smart environments was assisted by wireless sensor nodes, wireless communica-
tion techniques, and IPv6. Smart cities and smart buildings, and also smart factories 
and smart systems, are examples of such environments. If we integrate IoT devices 
with smart environments, we get more effective results regarding the IoT. IoT ap-
plications, however, are prone to a range of security threats, including attacks of 
denial of service (DoS) and distributed denial of service (DDoS). In an IoT infra-
structure, IoT applications and smart applications might be severely harmed as a result 
of such assaults. As a result, protecting IoT technologies became a top priority [4]. 

Societies must maintain the resources they use in order to stay productive and 
preserve their economy from catastrophe [5]. As a consequence, organizations rely 
on architecture to manage and deliver various resources like electricity, commu-
nication, and transportation. Critical infrastructure parameters are water treatments 
plants, electricity grids, security, the health sector, etc. 

Although these structures are centrally managed for the benefit of society’s 
functioning, all vital infrastructures are interrelated and interdependent with one 
another as well as with the economy’s many sectors. Because of the strong link 
between critical infrastructure, any harm to one industry’s services – and worst of 
all, the elimination of one sector – will undoubtedly affect the other critical 
structures to the same or larger extent. 

The pressing need for countries to meet the aforementioned standards resulted 
in a flood of technology into vital infrastructures, allowing them to better regulate 
their operations and optimize their output. Modern computers, meanwhile, have 
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shortcomings and are unsecure. The increased frequency of cyber threats on key 
infrastructures, such as the well-known Stuxnet virus, which intended to cause 
damage to an Iranian nuclear power station [6], highlights the need to develop 
algorithms, methodologies, and programs to prevent such attacks. 

Intrusion detection in infrastructure systems is the topic of this study. More 
precisely, we’re talking about some of the most frequent techniques that an attacker 
might employ to gain control of a system or destroy it [7]. This study also includes a 
summary of methodologies and models used in various traditional intrusion de-
tection systems (IDSs). The system where security is applied that works on the 
network layer of the IoT is an IDS. 

Evaluation of data packets should be performed by IDSs in real time. They 
should not only examine the data packets at various levels of the IoT network but 
they should also work on various series of protocols and should be adaptable for 
diverse technology [8]. 

This chapter describes the most common and well-known attacks that can de-
stroy critical infrastructure and create major issues and losses [9–11]. 

8.2 IOT PARADIGM 

8.2.1 DEFINITIONS 

The IoT evolved from the Auto-ID Center at MIT, which was founded in 1999. The 
EPC (electronic product code), which relies on RFID, was invented by the Auto-ID 
Center in 2003. This concept is the IoT’s most important technology. However, the 
IoT, being well-established, may be characterized in numerous ways. The IoT is 
described by [12,13] as a collection of digital and hardware information flow 
formed on RFID tags. The next sections will go through the various IoT designs and 
descriptions supplied according to the standards and industries. 

FIGURE 8.1 IoT-based smart environments.    
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8.2.2 ARCHITECTURE 

A well-defined project is IEEE P2413, which was developed by IEEE to identify the 
architectural framework of the IoT. Various fields of the IoT and their applications 
are briefed in this project [14]. The IoT architecture has three layers: the application 
layer, network layer, and perception layer. 

The IoT’s overall design is separated into various layers that cover the three 
mentioned domains according to [15–17], allowing the IoT to be tailored to meet 
the demands of various smart settings. Management and usage are included in the 
application domain. Data transmission is handled by the network domain. The 
perception domain is in charge of information gathering. 

The hardware layer (perception layer) is made up of various sensors and physical 
things. Identifying, storing, collecting, and processing the information are all pro-
vided by these physical parts. This layer’s output is forwarded to the next layer (the 
network layer), where it is processed. 

The transmission layer is none other than the network layer that uses a com-
munication system to convey data from a tangible entity or sensors to the processing 
unit over the protected belt. Determined by the physical entity or sensors, the tel-
ecommunication network can be wired or wireless, which can use a variety of 
technologies. The layer transfers the data on to the middleware layer. 

The application layer is responsible for IoT applications worldwide [18]. The 
information processed at the middleware layer is being used by the application 
layer. Additionally, the application layer relies on various characteristics of many 
applications of the IoT that have been developed, such as smart industries, smart 
buildings, smart cities, and smart applications related to the health sector. 

The business layer manages worldwide administration of service of IoT de-
vices. The aim of the business layer is to develop a model based on unified data 
in the application layer and examine activity output of the processing of the 
information [19]. 

8.2.3 CLOUD COMPUTING FOR THE IOT 

Various devices and sensors are linked together by the IoT system, which helps 
them to transfer data and impart a vast number of services. Administration and 
examination of big data necessitates a number of unique capabilities, including 
strong computing, huge storage, and high-speed networking [20]. Smart objects can 
be readily accessible and controlled at any time and location by various systems of 
cloud computing and smart environments formed on IoT systems, and improved 
services can be delivered through the IoT paradigm. 

The biggest barrier in using a system enabled with cloud computing for the IoT, 
according to [21], is synchronization across multiple cloud suppliers. A second 
problem is ensuring that standard cloud service infrastructures and the IoT’s needs 
are compatible. The primary barrier to corporations and government entities 
adopting cloud computing is security concerns [22]. As a result, the ability to re-
spect the appropriate security limits in a cloud computing platform to meet the 
objectives of the IoT is a critical necessity. 
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One approach is to use a reliable and effective security solution like an IDS. 
Additionally, standardization, improvement, and administration of IoT systems and 
their connectivity to the cloud needs to be considered. 

8.3 SMART ENVIRONMENTS USING THE IOT 

8.3.1 DEFINITIONS 

“The term smart refers to the ability to independently gain and use information, 
whereas the term environment refers to the surroundings,” [23] write. One sort of 
smart environment is a smart city. 

Smart surroundings can also include smart health, smart industries, smart 
buildings, and smart residences. The aim of this smart work is delivering services 
based on data gathered by IoT-enabled sensors that use smart methodologies. 

Smart surroundings that use the design of the IoT have unique characteristics, 
which necessitate specific considerations in their adoption. Smart objects, for ex-
ample, require remote monitoring and control capabilities in order to gather and 
analyze data and carry out activities. Furthermore, with such a system, the capacity 
to make decisions is a critical feature. Using various approaches like data mining to 
obtain usable information, an object can have the capability of being “smart,” or 
making intelligent judgments without the need for participation of humans [24,25]. 

Other forms of smart environments include smart health, smart industry, smart 
buildings, and smart residences. The purpose of various smart surroundings is 
delivering services that rely on information fetched by the IoT through sensors. 

8.3.2 SMART SURROUNDINGS ENABLED IOT 

Governments are working over the infrastructure of ICT to tackle challenges in 
conventional public management activities. Establishing a smart city is one of the 
most recent and successful options [26]. The smart city notion is a major aspect 
under the smart environment concept. 

The smart city idea has several advantages that are worth transforming con-
ventional user services and measures, including increased public service quality and 
lower public administration running costs [27,28]. Moreover, the administration and 
delivery of conventional services in a smart city necessitate the use of a robust 
network. 

However, there are impediments for construction of an IoT-enabled smart city. 
The most challenging aspect of IoT systems is their novelty, complexity, and 
technological hurdles. Furthermore, the lack of broadly agreed criteria for a smart 
city creates governmental and economic impediments that prohibit the smart city 
idea that is properly implemented. 

Various examples of smart cities, like Padova Smart City located in Italy, have 
successfully surmounted these constraints. The primary purpose behind building 
this city was to provide information processing systems for administration purposes 
by utilizing various forms of information and technology [29]. 
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The design of IoT applications for developing smart surroundings, especially 
smart cities, confronts various technological obstacles. Precision, latency, and 
available bandwidth are all key factors in many smart contexts, including industrial 
and healthcare settings. The platforms in IoT systems have the potential to increase 
the efficiency of data management services and the quality of service of applications 
in smart environments [30]. 

8.4 SECURITY AND PRIVACY ISSUES 

8.4.1 SECURITY ISSUES IN IOT LAYERS 

As growing services and customers enter systems of the IoT, securing systems in 
the IoT is becoming a real issue. The combination of IoT-enabled systems with 
smart environments improves the effectiveness of smart items [31]. 

The major security issues in the IoT make industries that utilize smart en-
vironments, like the health sector, at risk. Functions and operations are jeopardized 
in IoT-enabled smart surroundings that lack adequate security mechanisms. 

IoT-based smart houses confront the risk of privacy and security problems that 
transcend the layers in the IoT infrastructure [32]. 

Establishment of smart environments faces two significant hinderances: IoT 
system privacy and the intricacy and affinity of IoT settings. Attacks on IoT networks 
affect IoT services and, as a result, the services supplied by smart environments. 

Scholars investigate the various security concerns of the IoT from all perspec-
tives, among which is the susceptibility of IoT communication protocols [33]. 

The major inclination is to add IDSs to the design of the IoT, regardless of rules 
defined; consequently, the research relies on the security concerns confronting IoT 
systems based on the IEEE definition and the overall IoT architecture. 

8.4.2 CHALLENGES 

As per the author [34], every IoT system’s privacy vulnerabilities can be placed into 
four categories: authentication & physical dangers, confidentiality hazards, data 
integrity difficulties, and privacy concerns. Figure 8.2 depicts the relationships 
between these groupings. The security issues that happen in the various IoT tiers are 
briefly explored here. 

The initial obstacles that an IoT system faces are authentication issues and physical 
dangers. Many IoT devices, such as sensors, are included in the perception layer and 
rely on their own security systems, making them vulnerable to physical attacks. 

Risks to confidentiality exist in devices enabled with the IoT and gateways on 
the network layer [35,36]. 

The integrity of information between applications and services is the subject of 
the third class of security difficulties. Attacks like spoofing or noise disrupt an IoT 
system; then, data integrity issues arise. DoS, DDoS, and probe assaults are ille-
gitimate attacks that disrupt IoT approaches and resources [37]. 

Smart surroundings that incorporate IoT technology are complicated systems 
since they comprise goods from various firms that rely on various technology that 
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has no common language. As a result, uniformity is another critical feature of se-
curity in IoT systems. Developing a common IoT design to establish a single 
standard technology for all users will improve the integration of all devices and 
sensors in an IoT system. The success of this integration will be determined by 
company participation in developing a uniform standard. Such standardization will 
make IoT network deployment much easier. 

8.5 INTRUSION DETECTION SYSTEMS 

8.5.1 OVERVIEW 

IDSs’ performance is separated into the mentioned parts. The first part is observation, 
which employs the network. The next part is analysis, which is based on characteristics 

FIGURE 8.2 Different challenges in security IoT layers.    
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of algorithms. The detection step that is final level, and it is abnormality based. IDS 
copies data flow in an information system and then analyzes it to find destructive actions 
[38]. Over the last 30 years, the notion of IDS as a securing system has evolved sig-
nificantly. Throughout these years, researchers have presented a variety of ways and 
tactics for employing IDSs to secure various systems [39]. 

8.5.2 METHODS AND TECHNIQUES 

The deployment of an IDS is dependent on the surroundings. An IDS that is host 
enabled (HIDS) is intended to defend system against encroachment or incursion 
assaults that might destroy its operating system or data [40]. 

Algorithms are used by IDSs to implement the various phases of intrusion de-
tection. There are several algorithms available for IDS kinds and approaches. Out of 
those algorithms, IDS will be summarily explored in this section [41,42]. 

Furthermore, several of these IDS methods may be employed for various de-
tection strategies. As a result, this part is inclined toward the IDS algorithm’s 
lightweight anomaly, which depends on the intricacy, implementation time, and 
detection time requirements, that can be employed in IoT-based contexts. A 
lightweight method, principal component analysis (PCA), may be utilized for a 
variety of detection strategies in IDSs. [43,44]. 

8.6 IDS FOR THE IOT 

8.6.1 METHODS AND TECHNIQUES 

According to the author [45–51], “principal component analysis (PCA) is a 
widely used descriptive multivariate approach for dealing with quantitative data 
and may be expanded to deal with mixed measurement level data.” As a result, 
the algorithm is broadly used in a variety of disciplines. According to [46], the 
algorithm creates a collection of variables based on the original variables’ 
variance-covariance structure. 

8.6.2 INTRUSION DETECTION BASED ON ANOMALIES 

Formal data create patterns built on information fetched from regular users. They 
are compared against current data patterns online to find abnormalities in the in-
trusion detection approach. Such abnormalities occur as a result of noise or other 
phenomena that may have been caused by hacking tools. 

Anomalies are thus unexpected actions generated by attackers who leave traces 
in the computer’s surroundings. The traces are used to identify assaults, particularly 
unknown ones. 

IDS containing abnormalities finds deflection from normal behavior in the 
computer surroundings by continually updating a model of fine behavior in the 
working environment based on input from normal users [47]. Table 8.1 summarizes 
the benefits and drawbacks of several anomaly-based intrusion detection ap-
proaches. These methods will be explained more below. 
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A data mining strategy is a method of obtaining information from enormous 
amounts information, similar to digging coins from various mountains [48]. The 
retrieved information is characterized as intriguing data samples. 

The technology machine learning contains two parts (i.e., training and testing). 
The first step is based on calculation-based algorithms or methods that learn the 
properties of the computer environment by using basic data as a reference input. 
These traits are then employed for detection and categorization during the detection 
step. Statistical mathematical operations are used in an analytical procedure. 

This method enables a model to develop a set of rules based on the computer’s 
surroundings. The rules are derived from patterns of data transmission. The model- 
enabled rules for IDS identify any unusual data flow that violates these criteria and 
classifies it as an attack. For a given application, the payload model method is 
determined by the packet flow of a certain port or user. 

The protocol model technique is based on monitoring protocols at various levels of 
the computer environment. Based on this method, an IDS Table 8.2 identifies anomalies 
linked by a certain set of rules or such rules that cannot be included in regular designs. 

The methodology based on signal processing technologies is used in traffic 
analysis. 

TABLE 8.2 
IDS Techniques With Advantages and Disadvantages     

Techniques Advantages Disadvantages  

Data Mining  1. Models are created 
automatically  

1. Based on historical data   

2. Applicable in different 
environments  

2. Depends on complex algorithm   

3. Suitable for online datasets  

Machine Learning  1. High detection accuracy  1. Requires training data   

2. Suitable for massive data 
volumes  

2. Long training time 

Statistical Model  1. Suitable for online dataset  1. Based on historical behavior   

2. System simplicity  2. Detection accuracy depends on 
statistical and mathematical operations 

Rule Model  1. Suitable for online datasets  1. High false positive rate   

2. System simplicity  2. Privacy issues 

Payload Model  1. High detection accuracy for 
known attacks  

1. Long processing time 

Protocol Model  1. High detection accuracy for a 
specific type of attack  

1. Designed for a specific type of 
protocol 

Signal Processing 
Model  

1. High detection accuracy  1. Depends on complex pattern- 
recognition methods   

2. Low false positive rate     
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8.6.3 INTRUSION DETECTION BASED ON SPECIFICATIONS 

The author [49] presented the notion of a specification-based IDS. They presented 
an observation and a system to detect the security standards, which defines a typical 
behavior of the protected system. The security standards are based on the system’s 
functionality and security rules. As a result, operational patterns that are not part of 
the machine behavior are regarded as privacy breaches . First and foremost, diffi-
culty in establishing a strong requirement-enabled IDS is developing a conformity 
that encapsulates the system’s legitimate operational sequences. As a result, the 
value of developing the requirement’s “trace policy” and complexity of fetching 
and validating specifications restricts specification-based IDSs’ real-world useful-
ness. A specification-based IDS, like a misuse-enabled IDS, gains the root features 
of assaults and finds the familiar attacks, but it also has the capacity of anomaly- 
based IDSs to find unexpected attacks, like working patterns, which cannot be part 
of the system’s regular behavior. 

8.6.4 IDSS WITH IOT SYSTEMS 

The study explains the aspects of techniques for IDS in the IoT that may be used in 
smart settings, based on suggestions from previous studies of IoT-enabled IDS . IoT 
devices need additional security measures with unique properties that typical IDSs 
do not provide. The primary characteristics of this system are that it functions in 
real time and performs well in detecting intrusions in an IoT system utilizing an 
event-processing mechanism. 

For anomaly-based and signature-based intrusion detection, the author [50] suggested 
a NIDS that relies on machine learning. The system framework is intended for CoAP- 
enabled smart public transportation applications. This system’s major characteristics are 
its adaptability to CoAP applications and its dependence on a lightweight algorithm. 

The author presented a NIDS for WSNs that blends the statistical model method 
with the rule model approach. According to the hierarchical WSN structure, the 
system is built on a downward-IDS and an upward-IDS. The downward-IDS 
identifies anomalous activity in member nodes, whereas the upward-IDS detects 
abnormal behavior in cluster heads. The major characteristics of this system are its 
adaptability to hierarchical WSNs and its reliance on WSN clustering. 

The author [51] suggested a constraint-based specification IDS for 6LoWPAN- 
based IoT networks. While identifying sinkhole attacks, our system maintains ef-
ficiency in terms of QoS metrics. The technology separates malicious nodes and 
rebuilds the network in their absence. This is a specification-based IDS that relies 
on behavioral rules and employs the protocol model methodology. 

In this paper, the author [52] suggested a hybrid IDS for IoT networks that uses 
6LoWPAN to identify multiple RPL attacks. This system is built on specification- 
based intrusion detection modules in the router nodes that serve as IDS agents, and 
an anomaly-based intrusion detection module in the root node that serves as the 
primary IDS. The key advantages of this system are the reduced amount of com-
munication messages as a result of the lack of extra control messages or monitor 
nodes in the IDS architecture, as well as its adaptability to large-scale networks. 
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The author [53] suggested a WSN NIDS based on a machine learning technique 
and a signature model. To increase the detection rate and FPR, they employed a 
signature-based detection engine and an anomaly-based detection engine. The 
technology is intended to assist smart city managers in detecting attacks by utilizing 
an IDS and an attack categorization schema. The system’s goal is to identify in-
trusions in WSNs in various smart city scenarios. The fundamental advantage of 
this technology is that it can be used with large-scale WSNs. 

This work [54] presents the primary aspects of the mentioned structure cate-
gorization assaults in three types and the creation of graphical user interface 
(GUI) tools to graphically depict the abstract activity flows and identify probable 
intrusions. 

This system’s major characteristics are its low computational complexity and 
minimal resource needs. The author suggested a NIDS based on the SFC and PCA 
designs and algorithms. For the upgradation and enhancement, the competence of 
intrusion detection in high-dimensional space, mentioned method integrates artifi-
cial intelligence and data processing. The PCA technique is used to extract features. 
The adaptation of this system to provide IoT space for high-dimensional areas is its 
defining quality. Furthermore, the IDS’s efficiency and efficacy are improved by 
lowering detection time and enhancing accuracy through a frequency self- 
adjustment algorithm. 

The author [55] suggested a simple malicious-pattern-matching IDS. They em-
phasized that typical IDSs are inapplicable to smart items because of their restricted 
memory capacity and battery life. As a result of these constraints, a powerful and 
lightweight IDS is necessary. The key advantages of these algorithms are their small 
size, low energy consumption, and suitability for use in healthcare settings [56]. 

8.7 CONCLUSION AND FUTURE DISCUSSIONS 

In IoT systems, three critical factors are integrity, confidentiality, and availability. 
Most IoT-based applications, likely manufacturing and preventive applications, are 
regarded as critical. Besides, because the mentioned apps might be actual, com-
pleteness and latency have a direct impact on their performance. Attacks like DoS, 
DDoS, and probing, lately, might affect the usefulness of such apps. Consequently, 
in digital healthcare systems, security concerns might be deemed a life-threatening 
concern. As a result, strong precautionary systems are essential in networks of the 
IoT. A protection system of this type must secure the system and its methods while 
not interfering with system performance or user privacy. 

Furthermore, smart surroundings enabled with IoT systems are made up of a 
diversified machine, objects, and sensors from many suppliers and elicited from 
various policies and surroundings of the IoT. As a result, interoperability difficulties 
limit the widespread use of IoT technology [57–59]. When creating IDSs developed 
to create IoT-based smart environments, interoperability and standards must be 
taken into account. 

IoT networks have poor power efficiency, necessitating the use of a lightweight 
IDS with a limited amount of computing operations. These challenges should be 
prioritized in HIDS research for such contexts. 
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Another major consideration with IoT systems is privacy. Deep packet inspec-
tion is seen as a breach of privacy. As a result, such strategies, as well as others with 
comparable qualities, are undesirable. Furthermore, the blockage of regular data 
packets has an impact on services and various applications built on the IoT. This 
impact is extremely damaging, especially in critical and concurring applications 
such as industrial and medical applications. As a result, implementing a smart 
system without deep packet inspection necessitates believing that the processes in 
the IoT system would prevent any illegal access to IoT devices, therefore assisting 
in the resolution of the user privacy problem. 

Several publications were investigated in this chapter. In IoT design, the pub-
lications primarily investigated the blueprint and application of IDSs, which may be 
implemented in smart environments. The characteristics of all IDS approaches re-
ported in these publications have been summarized. 

The future studies encourage the development of better outcomes of hybrid 
IDSs, mostly for IoT-enabled smart settings. Further, the design of IDSs considers 
the risks related to security of IoT-enabling technologies and sets of rules. 
Furthermore, it allows adaptability to IoT-based smart settings. 

In recent findings, the succeeding research will focus on the enhancement of IDS 
working performance in the environment, particularly for IoT-based smart settings. 
Furthermore, the security and privacy risks of the technologies incorporated with 
the IoT are handled by IDS designs and sets of rules. To allow adaptability to IoT- 
based smart environments, we apply programmed and reconfigured devices like FP 
GAs. The design should be adaptable to both distributed and centralized deploy-
ment tactics, as well as capable of detecting various forms of threats. 
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9.1 INTRODUCTION 

The Internet of Things (IoT) is the most interesting technology in the Information 
Technology (IT) age. Every day, the Internet allows linked devices to develop tre-
mendously, and it has been predicted that by 2020, more than 50 million gadgets will 
be connected to the Internet. The goal of IoT technology is to link all devices in such a 
manner that all computers become programmable, intelligent, and safer to commu-
nicate with people. Things can communicate directly with one another because 
of sensors and networks. Machine-to-machine correspondence (M2M) will be con-
ceivable in the future. Various IoT applications might be utilized in an assortment 
of enterprises and industries, including savvy/smart city applications (smart houses, 
smart matrix, smart medical care, and others), where they work on improving an 
individual’s life. 

The point of an intrusion detection system (IDS) is to recognize a network as-
sault, and it effectively screens the network by identifying imminent occasions. An 
IDS is a software or hardware part that identifies and distinguishes destructive 
movement on PC frameworks or networks, permitting security to be saved. 
Network intrusion detection systems (NIDSs) focus on a whole network, though 
host-based intrusion detection systems (HIDSs) focus on a solitary PC framework. 
NIDSs are network-based equipment or programming parts that analyze and break 
down traffic created by hosts and gadgets. 

The IoT is the newest correspondence worldview in which gadgets with sensors 
and actuators might work as articles or “things,” detecting their environmental 
factors, speaking or corresponding with each other, and trading information through 
the web (Elrawy et al., 2018). The IoT needed a stage with which all applications, 
merchandise, and services might be connected and used to assemble, convey, store, 
access, and offer/communicate data from this present reality (Muntjir et al., 2017). 
There are already over 50 billion IoT devices linked to the network, and this number 
is anticipated to skyrocket in the next few years (Almiani et al., 2020). This massive 
number of gadgets generates a significant quantity of data. The IoT may be defined 
as an interconnected system based on authorized protocols that communicate data 
across Internet-connected objects. 

Smartness is being assigned to devices, sensors, homes, streets, and cities as a 
result of recent breakthroughs in the IoT. The IoT is the most growing, evolving 
discipline of modern computer and communication technology, with significant 
contributions in many fields from agriculture to vehicle automation. Because it 
interacts with each form of linked device in daily life, the IoT is now referred to as 
the Internet of Everything (IoE) (Statista Research Department, 2020). The number 
of connected devices is expected to increase to 21.5 billion by 2025 (Statista 
Research Department, 2020). 

As an example, by 2025, there will be 15.3 billion IoT devices for smart and 
advanced agriculture (Ferrag et al., 2020). For real-time monitoring and environ-
mental control, a huge number of sensors and actuators are needed to give relevant 
information and make timely choices across a wide range of industrial areas (Ruan 
et al., 2019). Many obstacles, however, stand in the way of the IoT’s widespread 
acceptance in both academics and industry. These difficulties include but are not 
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limited to, security and trust, dependability, scalability, and mobility, to name a few 
(Pal et al., 2020). 

In recent years, the scientific community has become more interested in the IoT. 
The IoT is a newly developed technology that will be the web’s future, allowing 
common things to connect without the need for human contact. For present and 
future study topics, it is one of the most passionately disputed disciplines in both 
academia as well as industry. The security and privacy of IoT devices have proven 
to be key goals. 

9.1.1 IOT ARCHITECTURE 

The IoT is the next generation of the Internet; it comprises various ad-hoc inter-
connected devices with very limited functionalities. The core of the IoT architecture 
is made up of three layers, as shown in Figure 9.1.  

• Starting with the perception layer, which is the lowest level and inputs data 
for the IoT, where connections among devices and nodes occur, it is vital 
to have privacy measures to protect against any compromise. M2M, radio- 
frequency identification (RFID), and sensor networks are components of 
the perception layer (Abdul-Ghani and Konstantas, 2019). First, M2M is 
the key component of the IoT, since it facilitates machine interaction and 
interoperability through a network (Halak et al., 2016). Second, RFID 
enables an object to wirelessly send various sorts of data across an IoT 
environment, allowing data to be monitored. The last sensor network is 
another characteristic that feeds the signal database and is regarded as vital 
information in the perception layer. 

LAYERS

APPLICATION LAYER

NETWORK LAYER

PRECEPTION LAYER

· Cloud application vulnerability

· Large users' accessibility &
Data Sharing

· Data interchange vulnerability

· Congestion attack

· Physical Damage

· Storage vulnerabilities

SECURITY ATTACKS

FIGURE 9.1 IoT three-layered architecture.    
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• The most important is the network layer, which allows IoT devices to 
connect with application services (Sethi and Sarangi, 2017). Sensor data is 
processed and sent using network characteristics (Mendez et al., 2017). 
These sensors are tiny and have limited computational capacity and pro-
cessing capabilities.  

• An IoT structure contains a connection of devices, such as a cloud-based 
system for data collection and actuators, and an application layer. It’s 
in charge of deciphering the data collected and transmitting them to other 
IoT layers. The application layer technique filters related data, which are 
commonly located by transmitting a message from the perception layer via 
all parts of the network (Zarpelao et al., 2017). Although the application 
is intended to have high security standards, it does have certain typical 
security challenges, such as data integrity, dependability, and privacy 
protection. As a result, IoT security must be addressed. 

To reduce security threats, multiple standards and protocols must work together. 
Besides the IoT industry’s various technology, heterogeneity, and scattered nature. 
The complexity of IoT networks is increased by the nature of IoT applications, 
which magnify the risks. Because of these flaws, the IoT network is vulnerable to a 
variety of security threats, concerns, as well as cyberattacks. As a result, having an 
accurate anomaly-detection IDS model is critical. 

In the computer science field, solutions to defend against security attacks or 
intrusion toward networks comprise three components (Sankar, 2014):  

• Prevention: This component seeks to prevent threats from happening in the 
first place. In this instance, any recommended solution must be capable of 
devising countermeasures to the specific sort of assault(s). Intrusion pre-
vention systems can protect wireless sensor networks (WSNs) and the IoT 
from external attackers, but they aren’t meant to protect internal attackers.  

• Detection: If an attacker succeeds in advancing the steps taken by the 
preventive component in the case of an assault, this indicates that the 
defense against the attack has failed. At the time, security solutions de-
signed for the detection component of the linked attack would take over 
and focus on detecting the affected nodes in particular. IDSs are the only 
option to respond to continuing attacks, particularly internal ones (IDSs). 
When an intrusion is discovered, a mitigation mechanism is activated to 
reduce the impact of the continuing assault.  

• Mitigation: The last component seeks to mitigate assaults after they occur. 
For example, to secure a network, a security step such as “dismissing the 
afflicted nodes in a network” or “disabling the ports of a computer that 
were utilized during the attack” should be adopted. 

9.2 LITERATURE 

Elrawy, M., Awad, A. & Hamed, H. Intrusion detection systems for IoT-based 
smart environments: a survey. J Cloud Comp 7, 21 (2018) This review describes the 
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relationship between IoT architecture, new security vulnerabilities, and architectural 
layers. Despite earlier research on the design and implementation of IDSs in the IoT 
paradigm, this study demonstrates that designing efficient, reliable, and resilient 
IDSs for IoT-based intelligent settings remains a critical job. After this study, 
important issues for the development of such IDSs are offered as prospects. 

Rajni Singh and Keshav Kaushik (2021) This article offers several possibi-
lities and industrial packages of 5G-enabled IoT gadgets together with the supply 
chain, e-voting, Enterprise 5.0, intelligent home, and so on. Moreover, this study 
gives the primary stressful conditions integrating blockchain with IoT devices, 
including storage and throughput scalability, network scalability, and security. In 
this paper, a designed framework solved network scalability problems by using 
BDN and the slow throughput problem with the resource of the usage of using Raft 
consensus. 

Keshav Kaushik and Kamal Preet Singh (2020) This paper spotlights a few 
fundamental threats to protection within the IoT and the current structure. The paper 
explores numerous commercial possibilities alongside the reason for using the 
hardware-sponsored protection. With the growing use of IoT programs in numerous 
businesses, the need to defend those devices against threats has emerged. Various 
situations for IoT use involve the need for protection, both because of the deployment 
of IoT devices inside the IoT or their requirement of being flexible. These necessities 
require a mixed combination of conventional protection enforced alongside device- 
orientated support. Distribution of this combination of support with constructing- 
constructing and protection enforcement among IoT devices and the community assists 
in supplying flexibility and scalability to the ideas of technical tasks. 

Kamal Preet Singh, Keshav Kaushik, Ahatsham, and Vivek Shahare (2020) 
This paper focuses on the position of wearables in IoT healthcare, and the reference 
structure of today’s technology utilized in wearables, as well as the diverse verbal 
exchange protocols utilized in the IoT. This chapter additionally describes the many 
wearables utilized in IoT healthcare with their characteristics. These wearable 
gadgets are synthetic with a few characteristics, which lead them to a suitable part 
of the human body. New technology like side computing also are supporting 
wearables to supply the predicted overall performance. Therefore, there may be a 
want for non-stop improvements in software programs in addition to hardware 
components to supply the predicted overall performance in close to the future. 

Keshav Kaushik and Susheela Dahiya (2018) This study defines the upward 
push of cybersecurity threats in the IoT, the commercial view of the IoT for 
Electronic Business & Retail Security, improvements in e-commerce and retail 
due to the IoT, and risk marketers associated with safety and security worries in 
e-commerce and retail. The IoT gives quite a few programs in diverse domains. 
However, while speaking about e-commerce and retail, the IoT will modify this 
business in the future. This alternative is phenomenal; it gives rise to diverse 
troubles associated with safety and security, which need to be addressed on pre-
cedence with the aid of networks to make e-commerce and retail stable around the 
IoT. This study has shown the IoT business enterprise structure in e-commerce and 
retail. In addition, foremost safety and security threats of the IoT in e-commerce and 
retail with their possible answers are provided. 
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Allen (2021) Despite investment and promises to become mainstream tech-
nology in the future, the IoT still faces challenges that impede its spread. Security 
challenges are paramount, as the proliferation of IoT devices creates security issues 
at all three layers of the IoT architecture. Intrusion detection, which has been de-
veloped for over 30 years, is said to have the potential to overcome IoT security 
issues. The information in the article provides an overview of IDSs, IoT security 
issues, and some research on IoT IDSs. 

A. Shaver, Z. Liu, N. Thapa, K. Roy, B. Gokaraju, and X. Yuan, (2020), 
Inspected the situation of IDSs to provide an alternative to protect IoT devices by 
using anomaly detection to classify whether network communication represents a 
potential attack. Integrating various popular machine learning models to improve 
existing IDSs could be a logical solution to this problem. This study contributes by 
reviewing various machine learning models and comparing them to intrusion de-
tection. In this comparative analysis, the experimental results of the integrated 
machine learning model were promising, with 99 achieved accuracy in both binary 
and multiclass classifiers for intruder detection. 

K.V.V.N.L. Sai Kiran, R.N. Kamakshi Devisetty, N. Pavan Kalyan, 
K. Mukundini, R. Karthi (2020) This paper explains how to create a model; you 
need to generate regular and attack data from your IoT network. Using the node 
MCU ESP8266, DHT11 sensor, and WiFi router, the test environment is created to 
emulate an IoT ecosystem. A laptop system is used to set up the adversary system, 
which executes sniffing and addiction attacks. Temperature, humidity, and setting 
data are gathered by the sensors and communicated to the ThinkSpeak platform via 
the wireless gateway. Sensor values are gathered by the node MCU and commu-
nicated to the ThinkSpeak server during the usual period. These servers are saved as 
regular data and designated as such. The aggressor watchfully intercepts data from 
the assailant’s framework and modifies data communicated between the node and 
the ThinkSpeak server during the assault stage. During the assault stage, a man-in- 
the-middle assault utilizing ARP harming/poisoning is performed on the network, 
and the gathered data are set apart as assault data. Machine learning/artificial in-
telligence classifiers, for example, NB, SVM, DT, and Adaboost have been formed 
to arrange data into ordinary, regular, and assault classes. 

M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, This paper focuses 
on protecting the IoT network against hostile assaults, which may be accomplished by 
carefully establishing and deploying appropriate security controls, one of which is an 
IDS. This study offers a new attack detection technique for the IoT that uses deep 
learning concepts to classify traffic flow. We derive general features from field data at 
the packet level using a new available IoT dataset. We foster a feedforward neural 
network model to arrange IoT device assaults into two-fold and multiclass classifi-
cations, including disavowal or DoS, dispersed and DDoS, surveillance, and data 
burglary. The proposed framework has a high arrangement exactness, as per the after- 
effects of its assessment utilizing the handled dataset. 

A. J. Meera, M. V. V. Prasad Kantipudi, Rajanikanth Aluvalu, This paper 
states that the IoT has recently become important in the creation of smart homes. The 
IoT connects items to the Internet to make our lives easier, but it also makes IoT 
environments vulnerable to many types of assaults. Because a significant number of 
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devices with different standards are connected, IoT threats are growing. The IDS is 
used to defend against a variety of assaults. An IoT system’s IDS operates at the 
network layer. This study analyzes the problems surrounding IoT security. It reviews 
the literature on IDS for IoT implementation using machine learning and offers a few 
recommendations. An IDS built for the IoT should be able to withstand extreme 
environments. To detect important events, more IDS must be developed. 

N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, The 
IoT is rapidly expanding around the globe. The Dyn breach in 2016 uncovered 
fundamental flaws in smart networks. IoT security has become a major problem. 
Infested IoT devices pose a threat not just to IoT security, but also to the entire 
Internet ecosystem, which might be exploited by botnets based on susceptible 
“things” (smart devices). Mirai malware infiltrated video surveillance systems and 
used distributed DoS assaults to bring the Internet to a halt. Security assault vectors 
have advanced both concerning intricacy and variety in recent years. As a result, 
analyzing approaches in the context of the IoT is critical for identifying, preventing, 
or detecting novel assaults. The threats and challenges to IoT security are classified 
in this survey. 

E. Hodo et al, This paper explains that the IoT is still in its early stages, but it has 
piqued interest in a variety of industries, including medicine, logistics, smart cities, 
and automobiles. It is, nevertheless, vulnerable to a variety of serious infiltration 
concerns as a paradigm. This study examines IoT security vulnerabilities and employs 
an ANN to address them. The capacity of a multi-level perception, a kind of ad-
ministered ANN, to overcome DDoS/DoS assaults is tried by utilizing Internet packet 
traces. On an IoT network, this examination centers around the order of typical and 
danger patterns. A simulated IoT network is utilized to test the ANN technique. The 
findings of the trial show that it is 99.4% accurate and can correctly detect. 

Y. Zhang, P. Li, and X. Wang, With the rising use of the IoT, the network 
layer’s security is becoming increasingly important. Previous intrusion detection 
solutions are less effective with the IoT’s complicated Internet. In the case of a deep 
learning attack detection technique, a neural network algorithm may get an ex-
cellent detection result for a similar type of attack but poor detection accuracy for 
others. As a result, it’s critical to create a self-adaptive model that can change the 
network structure depending on the sort of assault. A detection algorithm is pre-
sented in this research paper based on an upgraded Genetic Algorithm (GA) and a 
Deep Belief Network (DBN). When confronted with various forms of attacks, the 
ideal number of iterations is the GA. 

9.3 IDS CLASSIFICATION (FIGURE 9.2) 

9.3.1 SIGNATURE-BASED IDS 

These IDSs are used for defending organizations against a variety of known threats 
where signatures are stored in a database. This search compared a pattern to a list of 
harmful bytes and recognized patterns. The cause of an intrusion warning is 
communicated by signature-based IDS (Jacob, 2018). SIDS can quickly detect old 
assaults, but it fails to detect new assaults when a pattern is unknown or the 
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database is not updated. This problem can be solved by updating patterns in the 
database regularly. Signature-based detection does not perform effectively when the 
user employs sophisticated technologies to mount attacks, such as No Operation 
generators and encrypted data channels. Creating a fresh signature for each al-
teration reduces its efficiency greatly (Rao and Raju, 2019). The system engine’s 
performance also degrades as the number of signatures grows. Working in the field 
of anomaly detection is necessitated by a failure to identify innovative assaults and 
to continually update a database for new patterns (Rao and Raju, 2019; Kang and 
Kang, 2016). 

9.3.2 ANOMALY-BASED IDS 

By monitoring the system, AIDS can detect both computer and network breaches. 
Instead of signatures, it employs rules to characterize occurrences as normal or 
abnormal and seeks to discover aberrant operations after monitoring (Farzaneh 
et al., 2019; Worku, 2019). Although anomaly detection systems can identify new 
assaults, creating the ruleset is a time-consuming effort. As shown in Fig. 9.1, AIDS 
is again divided into three categories: knowledge-based IDS, statistical IDS, and 
machine learning approaches. 

9.3.2.1 Statistical Anomaly IDS 
Previously, IDSs were used to identify intrusions in information systems. To see if 
the observed behavior differed from the predicted behavior, statistical tests were 
used. Previous signature knowledge and frequent signature changes are not ne-
cessary for statistical techniques. They can identify low-level and slow-moving 
assaults, as well as DoS attacks. Statistical techniques have drawbacks in that they 
take a long time to learn how to produce accurate and useful findings. The Markov 
technique, deviation method, multivariate method, and time series method are the 
most often used approaches in this area. 

9.3.2.2 Knowledge-based IDS 
This system works by accumulating information regarding threats and system flaws. 
To identify an assault, it scans through its knowledge base. Knowledge-based 
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IDSs include techniques such as expert systems, Petri nets, signature analysis, 
and state transition. The data provided by these approaches have a high accuracy 
rate and a low rate of false alarm (FAR). Attack data must be updated frequently 
to maintain knowledge-based IDS effectiveness. Regular data updates take 
a long time, which is the fundamental drawback of that IDS (Hussain and 
Khan, 2020). 

9.3.2.3 Machine Learning 
Machine learning is a broad topic for research that incorporates principles from a 
variety of related fields, including artificial intelligence. The field focuses on learning 
or gaining skills or information via experience. This usually entails combining 
practical notions with historical facts. Most researchers nowadays concentrate on 
machine learning approaches because of their inherent qualities such as robustness, 
tolerance to noisy data, and flexibility. Researchers who are interested in learning 
more about the subject can visit the website. 

9.3.3 NETWORK-BASED IDS 

A NIDS, sometimes known as a network-based IDS, is security hardware that 
monitors vital network traffic from a strategic location. Traditional NIDS can scan 
network traffic and compare it to a database of known assaults. 

9.3.4 DISTRIBUTED IDS (DIDS) 

For attack detection, incident monitoring, and anomaly detection, DIDSs will have 
numerous IDSs spread around a system and linked to one another. To monitor and 
react to outside actions, DIDSs require a central server with high processing and 
orchestration capabilities. 

9.3.5 HOST-BASED IDS (HIDS) 

The server is connected to a HIDS, which monitors the system’s harmful or mal-
icious behaviors. The HIDS examines network traffic, system calls, ongoing pro-
cesses, changes in file communication, and application logs, among other things. 
The disadvantage of this form of IDS is that it can only detect attacks on the system 
that it is designed to protect. 

9.4 TECHNIQUES OF INTRUSION DETECTION SYSTEMS 
(FIGURE 9.3) 

9.4.1 SUPERVISED LEARNING IN AN INTRUSION DETECTION SYSTEM 

IDS-based monitoring systems detected attacks using tagged trained data. The su-
pervised approach has two steps: the training method and the assessment method. 
During the training phase, appropriate structures and categories are identified, and 
algorithms learn by samples. In a managed read IDS, all data contain a network pair 
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of data sources as well as the output (i.e. label), such as login or standard. After that, 
you may utilize feature selection to delete features that aren’t required. Algorithms 
consist of DT, rule-based systems, SVM, N-Bayes, and KNN, to name a few. Each 
approach makes use of a getting to know the technique to expand a classification 
model. 

9.4.1.1 Decision Trees 
The decision tree is made up of three parts. The decision node is the first component 
and is used for identifying the test attribute. A second type is a group of the branch, 
in which every one indicates a potential decision depending on the result of the test 
attribute. The third element is the last, which contains the model section (Rutkowski 
et al., 2014). ID3, C4.5, and CART are the few available algorithms of the decision 
tree (Breiman, 1996).  

• Naïve Bayes 

The Bayes principle is used in conjunction with the strongest independent as-
sumptions among the characteristics in this technique. Using conditional probability 
equations, Naive Bayes solves queries like “What is the likelihood that a specific 
type of assault is occurring, given the observed system activities?” Traits that have 
a different probability of arising in assaults and normal behavior are used by 
Naive Bayes.  

• Genetic algorithms (GA) 

GA is a heuristic approach of optimism based on a theory of evolution. Every 
possible solution is represented by a set of bits, and the accuracy of the output 
increases over time due to the use of optional production operators in favor of better 
responses. There are usually two chromosome transcription methods in which a 
genetic algorithm is used to solve an entry phase problem: one is based on merging 
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to create a binary chromosome code, and the other is based on the choice of 
clustering prototype matrix.  

• Artificial neural network (ANN) 

ANN is the most widely used machine learning method, and it is effective in 
identifying many types of malware. The backpropagation algorithm is the most 
widely used learning method for supervised learning. This method assesses the 
gradient error network concerning its variable weights. The detection accuracy and 
accuracy of ANN-based IDS still need to be improved, especially in rare attacks. 
Common attacks have a smaller training database than regular attacks, making it 
difficult for an ANN to understand the characteristics of various attacks accurately. 
ANNs have become useful tools for a variety of classification problems, including 
IDSs, due to the development of many species such as duplicate neural networks 
and convolution.  

• Fuzzy logic 

There is a common Boolean concept of truth or fiction based on modern PCs. 
This approach is based on uncertainties. As a result, it provides an easy way to 
reach data-based input that is confusing, ambiguous, noisy, erroneous, or non- 
existent. With an obscure background, the subconscious mind allows, for ex-
ample, that we have multiple classes at once, almost partially. As a result, the 
unconscious mind is an excellent source of IDS problems, because security is not 
inherently accurate, and the line between normal and unusual situations is not 
clearly defined. Additionally, the problem of access detection includes many 
aspects of quantitative data obtained and the number of mathematical metrics 
generated. Creating an IDS using numerical data and strict conditions results in a 
significant number of false notifications. A slight deviation from the model may 
not be noticeable, or a slight change in normal behavior may trigger false alarms. 
This slight inconsistency can be modeled in an incomprehensible way to keep 
false positives low.  

• Support vector machines (SVM) 

The dividing hyperplane defines SVM, which is a discriminatory category. 
SVMs use the kernel function to transfer training data to a high-density area, 
allowing linearization of interference. SVMs are best known for their practical 
capabilities and are very useful when there is a high number of signals and a 
limited number of data points. By using a kernel, such as linear, polynomial, 
Gaussian Radial Basis Function (RBF), or hyperbolic tangent, many types of 
hyperplanes can be created. Many features in IDS data sets are unnecessary or 
have little effect on separating data items. As a result, feature selection should 
be considered during SVM training. SVM can also be used to classify data into 
multiple categories. 
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• Hidden Markov model (HMM) 

HMM is a Markov mathematical model that assumes that the simulation system is a 
Markov process with anonymous data. HMM analysis is already being used to 
identify certain types of computer malware, according to a previous study 
(Annachhatre et al., 2015). In this way, the Markov Hidden Model is trained against 
the known features of a malware program (e.g. performance code sequence) and 
used to receive incoming traffic when the training step is complete. After that, the 
result is compared to a predetermined limit, with a higher score than the limit 
indicating a malware program. Similarly, if a school falls below the limit, traffic is 
considered normal.  

• K-Nearest Neighbours (KNN) classifier: 

The KNN algorithm is a common non-parametric classifier (Lin et al., 2015). The 
goal of these methods is to give uncategorized data names based on the class of 
their K closest neighbors (where k defines the number of neighbors to be con-
sidered). Because it delivers high classification performance in most IDSs, KNN 
may be used as a baseline for all the other classifiers.  

• Ensemble methods 

A few machine learning algorithms can be combined to improve predictive per-
formance over any individual algorithms. Multiple class dividers are trained 
simultaneously to fetch various attacks, and their results are then compiled to 
increase the acquisition rate. The strength of the cluster is generally higher than 
that of individual dividers, as it may develop weaker dividers to produce good 
output than a single component. Boosting, bagging, and stacking are some of the 
few integrated methods introduced. Boosting is a term that describes a group of 
algorithms that can convert weak students into strong students. Training divides 
the same categories into different subsets of the same database called folding 
bags. Packing uses a meta-classifier to mix several categories. The authors have 
proposed a compounding approach that combines a compound that combines the 
C5 decision tree section with a single-phase vector machine. In the IoT data entry 
database C5, the mean accuracy of malware detection is 94%, whereas it is 92.5% 
in the second phase. They reported that the accuracy of the sections was 99.97% 
in the stacking ensemble. 

9.4.2 UNSUPERVISED LEARNING IN AN IDS 

It is a machine learning type that extracts useful information from input databases 
outside of class labels. In most cases, input data act as a group of random variables. 
The data collection is then assigned to a shared density model. Output labels are 
provided and used for teaching the system to achieve the desired results of a data 
point that is not visible in the supervised reading. Unattended reading, on the other 
hand, does not require labels; instead, data are automatically grouped into several 
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groups throughout the learning process. Unregulated reading refers to the use of 
labeled data to train the model to detect interference in the context of building IDS 
network traffic. The IoT is grouped, based on traffic similarities, without the need to 
define these groups.  

• K-means 

This method is a popular method for combining the need to separate the data of “n” 
into a “k” cluster, each data object is assigned to a group with a nearby definition. 
It is a multiplication method that helps to obtain the maximum amount of each 
multiplication, as shown by the letter K. 

As a metaphor, it uses the Euclidean metric. The user selects several collections 
ahead of time. Generally, many options will be tried before the best option is selected.  

• Probabilistic clustering 

Probabilistic clustering is a process that uses the distribution of opportunities to 
create clusters. The probability phase is a machine learning phase that can predict 
the distribution of opportunities over a set of classes given input inputs, rather than 
the most likely phase of awareness to be related.  

• Key component analysis 

It is a common way to obtain the set of bottom-level features from a large collection of 
features. PCA is a method for minimizing the size of big data sets by converting a large 
collection of the variables into a few that store most of the information in a large set.  

• Hierarchical clustering 

It is a merging method that generates a cluster category. The data are collected into 
a group tree through the merging process of categories. Every data point is con-
sidered to be a separate set of consecutive combinations. Thereafter, it repeats the 
following steps:  

• Find out which two groups are most closely related, then combine the two 
groups most closely related.  

• We should repeat these processes until all the collections are put together. 

Agglomerative – Bottom-to-bottom combining methods, where clusters have small 
clusters, with their cluster, and clusters of clusters are joined as move upward in a 
phase. (Figure 9.4) 

Divisive – It is the exact opposite of agglomerative hierarchical clustering. In 
divisive hierarchical clustering, we treat all data points as one group and remove 
data points from incomparable clusters for each duplication. Frequently, a group 
with the largest width in the feature spaces is selected and divided into smaller two 
groups. (Figure 9.5) 
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The singular value decomposition method of decomposing a matrix in other 
matrices in the order of line values that reflect the basic meaning of the matrix. The 
purpose of the price decrease is to find the best collection of earning indicators.  

• Independent component analysis 

This analysis is used to display hidden features behind a set of random features. 
Through unsupervised learning, much work has been done in the domain of CPCS 
to detect attacks as well as to reduce aggressive attacks. 

9.4.3 REINFORCEMENT LEARNING 

Deep reinforcement learning builds IDSs by combining deep as well as re-
inforcement learning techniques. An agent interacts with surroundings in re-
inforcement learning. Within the surroundings, the agent is trying to obtain a few 
types of objectives. The agent’s purpose is to discover ways to engage with its 
environment in a manner that lets it perform its objectives. The use of re-
inforcement studying to teach deep neural networks is called deep reinforcement 
learning. 

Deep Q-network It’s a large-scale combination of reinforcement and deep 
neural networks. The technique was created by combining deep neural networks 
with a standard RL algorithm called Q-Learning. 

9.4.4 DEEP LEARNING 

Deep learning is a kind of machine learning in which a computer generates a 
hierarchy of data layers as an output based on experience. Deep learning may be 
both supervised and unsupervised. In supervised deep learning, data can be clas-
sified, but in unsupervised deep learning, data patterns may be analyzed. Artificial 
intelligence, in which robots learn via experience and eventually replace human 
intelligence, is closely connected to deep learning. Deep learning makes effective 
use of ANN to analyze massive amounts of data using algorithms devised by 
humans. 
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• Fully connected neural networks (FCNN) 

The FCCN approach that is every neuron inside the preceding layer is attached to 
each neuron inside the subsequent layer. The term “feedforward” refers back to the 
truth that neurons in a preceding layer are by no means linked to neurons in a later 
layer. For characteristic extraction, completely connected neural networks may be 
employed (Wang et al., 2020).  

• Recurrent neural network (RNN) 

The RRN is a procedure for a succession of information with various input lengths 
effectively. RNNs utilize the records from their previous state as an entry for their 
modern-day forecast, and we can also additionally hold this procedure for an ar-
bitrary quantity of steps, permitting the network to propagate information 
throughout time through its internal state. Giving a neural network a short-term 
memory is essentially the same thing. This property makes RNNs ideal for dealing 
with data sequences that occur across time. Using RNNs, a deep learning technique 
for intrusion detection was designed by the authors. (RNN-IDS).  

• Generative adversarial networks (GAN) 

GAN is a deep learning neural network that mixes two deep learning neural networks: a 
generator network (GN) and a discriminator network (DN). The GN generates artificial 
data, while the DN tries to differentiate between real and artificial data. These networks 
are competitors in the feel that they may be each looking to outperform the other.  

• Convolutional neural network (CNN) 

As in an average multilayer neural network, a CNN is made up of one or more 
convolutional layers, which are then coupled via a means of one or more related 
layers (Vasan et al., 2020b). An entry and output layer, in addition to numerous 
hidden layers, make up a CNN. A succession of convolutional layers involved with 
a multiplication inside the hidden layers of a CNN is usual. 

A CNN takes 2-D input and, using a series of hidden layers, abstracts high-level 
information. CNNs benefit from spatial features because they improve the design of 
typical neural networks (Vasan et al., 2020c). In the field of IDS, spatial char-
acteristics are the most commonly used forms of traffic features. Network traffic 
is formed in traffic images when spatial characteristics are applied; as a result, the 
image classification approach is utilized to categorize the images, achieving the goal 
of identifying intrusion traffic. Although this approach is relatively new, multiple 
recent study findings demonstrate its enormous potential.  

• Autoencoder 

An autoencoder is a machine that can be taught to rearrange its inputs. Online IoT IDS 
has been developed using autoencoders. An autoencoder that has been trained on 
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X will be able to regenerate unseen instances from the same data distribution as X. If 
an instance is not suited for the model learned from X, the restructuring is likely to 
have a high mistake rate. 

9.5 SECURITY THREATS TO THE INTERNET OF THINGS (IOT) 

9.5.1 PHYSICAL LAYER 

Assaults are predicated on characteristics of devices and resources that are hidden. 
By messing with hardware, these attackers can seize control of the device. When 
an assault is conducted against a network or an IoT device, it is called a physical 
attack. The following are major dangers:  

• Node tampering 

A physical attack, such as connecting wires to the sensor node’s circuit board and reading 
its data, allows an attacker to seize control of the sensor node. Furthermore, opponents can 
alter the original via tampering, modify the composition of the electrical board’s wiring, 
or utilize the seized slave node’s memory and the node’s memory in any case. Capturing 
a node may reveal its important information, and data, particularly cryptography-related 
keys and information. As a result, the entire WSN might be jeopardized. 

In this scenario, there are two issues:  

• The captured node can conduct arbitrary requests on behalf of the user or 
the attacker (DoS attack against availability).  

• A captured node may offer erroneous information to genuine users (attack 
against integrity).  

• Radiofrequency Interface 

RF is a wireless communication technology utilized by the IoT. This wireless data 
transmission technique is subject to many assaults that can easily harm IoT devices.  

• Node jamming 

These threats are a kind of DoS intrusion wherein an attacker sends out a long- 
variety signs to disrupt communication. A rogue node inside the sensor community 
announces a jamming sign that has the same set of frequencies as the sensor nodes 
in a jamming attack. By generating noise within, the IoT community and rendering 
offerings inaccessible, this jamming assault prevents sensor nodes from transmitting 
or accepting data.  

• Node attack 

The cyber criminal may be able to take complete control of the sensor nodes. 
Because IoT devices are placed in various locations, tags are vulnerable to physical 
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assaults. A cyber criminal might easily clone these tags and pass them off as 
legitimate ones to take advantage of an RFID system.  

• Physical damage 

In this attack, attackers are physically present within the attack to alter the in-
formation or to steal exclusive information. Physical dangers include physical 
attacks. An attack denotes the presence of an attacker and his purpose to attack, 
injure, or cause damage.  

• Social engineering attacks 

The attacker utilizes socially engineered techniques to take advantage of un-
authorized get admission to a system and discreetly set up victim software. IoT 
devices, especially wearables, acquire huge quantities of personally identifiable 
information (PII) with the purpose of offering clients a personal experience. 
Customers’ personal information is also used by IoT devices to provide user- 
friendly features, such as buying things online using voice control. Cyber criminals, 
on the other hand, can utilize PII to get unauthorized access to sensitive statistics, 
which include consumer passwords, buying histories, and private data. 

9.5.2 SOFTWARE/APPLICATION LAYER 

In the IoT, the software is advanced with the usage of API, and those programs 
are Internet programs that cannot run without putting in a software program. 
Software assaults are carried out through the usage of the software programs as well 
the usage of attacks, viruses, or some other malicious content material, which may 
also consist of spyware and adware.  

• Buffer overflow 

When an attacker manipulates a code flaw to carry out malicious operations and 
compromise the compromised system, that is referred to as a buffer overflow attack. 
The attacker modifies the application’s execution route and overwrites sections of 
its memory, inflicting current documents to be broken or information to be exposed. 
Buffer overflow attacks regularly entail breaking programming languages and 
overwriting the boundaries of buffers. The majority of buffer overflows are because 
of a combination of memory manipulation and wrong facts composition or length 
assumptions.  

• Data privacy issue 

The attackers may use RFID tags on many items. Tracking IoT devices with the 
use of RFID tags can steal the privacy of users by monitoring their activities and 
creating a personal profile (Figure 9.6). 
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• Malware 

Malware is a malicious software program that is supposed to damage or spoil 
computer systems and PC systems or harm IoT architecture. The term “malware” is 
an abbreviation for “malicious software program.” A broad variety of malware 
paperwork exists, together with viruses.  

• Phishing attack 

The attackers make use of an IoT aspect node as a trap. The purpose is to gather 
records like passwords, usernames, etc. Phishing is a type of cybersecurity risk 
wherein hostile actors send communications posing as trustworthy persons or or-
ganizations. Phishing communications trick users into doing such things as 
downloading a damaging file, establishing a risky link, or disclosing private data 
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like login credentials. The maximum popular form of social engineering is phishing, 
that’s a big word for trying to misinform or deceive laptop users.  

• Side-Channel attack 

This assault breaks cryptography through records disclosed through cryptography. 
A side-channel assault makes use of indirect results of the device or its hardware 
to gather data from or affect the system execution of a machine, instead of 
immediately attacking this system or its code. 

9.5.3 NETWORK LAYER 

Data transmission is where security vulnerabilities arise and attacks can occur. 
Eavesdropping, DoS attacks, storage assaults, exploit attacks, spoofing attacks, and 
other types of attacks may be used. IoT attacks are a variety of information security 
threats that can be directed at single components, networks, or data sets. Devices on 
IoT networks might be targeted, and physical security assaults could be carried out. 
The bulk of IoT threats are network-based or targeted at individual information 
attributes. These are frequently premeditated assaults aimed at jeopardizing the IoT 
application’s availability or jeopardizing the data’s confidentiality.  

• DoS attack 

A DoS attack prevents a system’s services from being available consistently. 
Legitimate system users are denied access to the system’s resources. This attack is 
known as distributed DoS when it is initiated by a large number of hostile nodes. 
Instead of losing information owing to service bearers moving from the original 
provider due to security concerns, a DoS attack costs the victim time and money. 
There is a massive hazard of an assault on the IoT network for the purpose that 
devices and gadgets are associated with the Internet for 24 hours and are typically 
on power-on mode.  

• Distributed denial of service (DDoS) 

In a DDoS assault, an attacker momentarily infects many IoT gadgets right into a 
botnet, then sends synchronized requests to a server or a group of servers for a sure 
service, overloading the server and forcing it to reply to valid requests from end- 
users. It usually happens when all the gadgets are managed and messages are 
overburdened by IoT devices, and it’s far most usually applied to reason traffic 
congestion within the gadgets.  

• Sybil attack 

This attack is when a group of nodes impersonates different peer identities to 
corrupt an IoT system. It’s used to broadcast erroneous data from a random net-
work. An intruder might utilize phony identities to deliver fraudulent information 
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through these assaults. As a result, either a true emergency is overlooked. A rogue 
node in a network has numerous identities in this attack. In a peer-to-peer network, 
a rogue node can impact the routing mechanism and detection method.  

• Sinkhole attack 

It is used to attack data transmission between nodes in the neighborhood. This is 
mostly accomplished through the use of a routing algorithm. A sinkhole attack is an 
internal assault in which a rogue node tries to lure network traffic to itself by 
feigning routing modifications. An attacker launches an attack by inserting bogus 
nodes into a network (Can & Sahingoz, 2015). The fundamental purpose of that 
assault is to redirect traffic from a sure region via a hacked node that appears to be 
specifically attractive to the encircling points (Singh et al., 2015).  

• Wormhole attack 

In this attack, victim nodes provide an illusion to both the sender and recipient 
devices at all times. A virtual tunnel is created that purports to be the smallest path 
between the endpoints, which are the malicious nodes, so the base station may send 
information without it getting lost. The attacker node takes data and sends it to a 
remote site, where it is then locally sent. The attack can be carried out in either 
a hidden or participatory mode (Khabbazian et al., 2016).  

• Hello flooding attack 

This type of intrusion, which forces IoT gadgets to emit Hello messages to an-
nounce themselves to their neighbors, is one of the most prevalent network layer 
assaults. The initial message is broadcast as a Hello packet to connect the network 
node. By sending a Hello message, the cyber criminal can advertise himself as a 
neighbor node to a large number of nodes. When a node gets a Hello packet, it 
assumes that it is within the range of the node that delivered it.  

• Blackhole attack 

When a router deletes all messages it is supposed to forward, it is called a blackhole 
attack. A router may be misconfigured from time to time, resulting in a zero-cost 
route to every destination on the Internet. As a result, all traffic is routed through 
this router. The router fails because no device can handle such a load. In that type of 
attack, a malicious tool incorrectly offers the shortest path to the destination, after 
which it stealthy drops all packets on its path, creating a blackhole in the network.  

• Man-in-the-middle (MITM)attack 

Wireless sensor networks may be vulnerable to man-in-middle attacks, which 
might jeopardize the IoT communicant’s confidentiality, integrity, and availability 
(Neshenko et al., 2019). A MITM attack happens when an attacker alters messages 
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between two parties who believe they are secretaries talking with one other without 
the authenticating user’s authorization. It’s similar to an eavesdropping attack, in 
which the attacker may listen in on two people’s conversations. 

9.6 IOT SECURITY ISSUES AND CHALLENGES 

The IoT has a lot of potential, and one of its key goals is to change the way we 
do things and the quality of life of people in the modern world. Wireless network 
systems have been vulnerable to security flaws since their beginnings; as a result, 
it’s critical to emphasize the security and privacy challenges of the IoT, which may 
be described as confidentiality, availability, scalability, and integrity.  

• Confidentiality: Trust is an important concern for Internet users of devices 
that share data to help them avoid theft. If the attacker can easily block 
communication sent by a recipient, the recipient’s privacy may be changed 
and disclosed. As a result, secure messages are required in the IoT context.  

• Availability: As we depend on IoT security in our daily life, it is necessary to 
remember the provision of the IoT, the ability to be disrupted due to the 
failure of communication tools, and powerful attacks including DoS and 
DDoS, as well as jamming attacks, which are thought to be more of a dis-
traction. That is why the result of the loss of discovery should elevate the loss.  

• Coherence: Due to the drift of large records generated through a huge 
quantity of linked devices, making sure the integrity of information in an 
IoT network is taken into consideration is another difficulty for security. 
The network needs to assure that messages aren’t attacked by an attacker 
or unwanted person even in transfer over the network to keep the integrity 
of the IoT. Data integrity can be ensured through efforts. Data integrity in 
the IoT needs to appeal to several interests in the future.  

• Heterogeneity: Because IoT-enabled devices have distinctive hardware, 
including a reminiscence footprint, computation power, protocols, and so 
on, assaults on confidentiality, availability, and integrity are too compli-
cated to prevent because of IoT safety heterogeneity issues, and the 
shortage of a not unusual place protection provider is the most important 
problem. 

9.6.1 CHALLENGES 

The security as well as privacy of IDSs for the IoT environment are described in 
this part as it is critical to upkeep and a major concern. Given that the IoT is still a 
relatively new idea, security goals must be developed. As an output of the dynamic 
environment of the IoT, many protection concerns remain open at many layers:  

• Attack model: Considering numerous smart devices are interconnected, 
cyberattackers can create superior and complex attacks. Therefore, it’s 
important to know the assault models and improve your detection rate and 
useful resources consumed. 
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• Secure alert traffic: Another continual worry for the IoT system is the 
safety of IDS communication lines. To protect the connection among IDS 
nodes, a variety of networks assume control. Weak intrusion detection and 
protection measures in secure connections between nodes and sensors in 
the IoT allow hackers to easily monitor and decode network data. IoT 
security requires a powerful IDS.  

• Trust: It is based on the assumption nothing will have an impact on the 
desired individual. As a result, various heterogeneous networks can 
compromise by linking over the Internet through the IoT program. Because 
of the link to other systems, security standards are less stringent, which 
might lead to trust issues. Even though various scholars have suggested 
assessing only trusted networks, further study is necessary.  

• Malicious code attacks: Numerous assaults in the IoT that focus on 
software packages, including DoS and worms, also attack cameras and 
routers. These styles of assaults can take advantage of the presence of 
software program vulnerabilities. A commonplace assault mechanism is a 
new computing gadget that includes IoT protection.  

• Privacy: The IoT needs to save user’s records over the network. Ensuring 
privacy within the IoT is taken into consideration as a mission for setting 
up steady verbal exchanges of associated data. Privacy concerns arise 
because an item inside the IoT collects a mixture of fragments of data. 

9.7 IMPORTANCE OF INTRUSION DETECTION SYSTEMS IN 
CYBERSECURITY   

• There is no firewall that anyone can make, and no network that cannot be 
penetrated. Attackers are constantly developing new exploits and attack 
methods to evade defenses. Many attacks use other malware or social 
engineering to obtain user credentials that allow access to networks and 
data. The benefit of the IDS is that it alerts IT staff in the event of a 
potential network attack or intrusion. 

• NIDS monitors each incoming and outgoing community site visitor, in ad-
dition to site visitors among structures inside the community. Network IDS 
video display units show community site visitors and trigger indicators while 
suspicious pastimes or regarded threats are detected. This lets IT workers 
analyze it and take suitable steps to dam or prevent the attack.  

• There are no completely secure firewalls and no inadequate networks. 
Attackers are constantly developing new tricks and techniques to defeat 
defenses. Most attacks use other social techniques and malware to obtain 
user credentials that allow access to networks and information.  

• Being able to detect and respond to malicious traffic is critical to network 
security. The agenda of NIDS is to ensure that IT professionals are aware of 
potential attacks and network intrusions. Incoming and outbound traffic in the 
network, and traffic between devices in the network, are detected by the NIDS.  

• With the proliferation of technology, businesses of all sizes have benefited 
significantly from the use of resources. 
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• Virtual security threats are becoming more and more problematic, and the IDS 
helps protect businesses from external threats and ensure network security.  

• IDSs screen community site visitors and alert community directors to 
uncommon activity, like a house alarm that indicators an interloper has 
tried to break a window or door. For example, while a hacker tries to get 
entry to a PC or community, the intrusion detection gadget at once notifies 
the community administrator of the potential protection breach. Once re-
ported, managers can perceive the precise region of suspicious activity and 
comply with suitable protection protocols.  

• Wide range of protection 

IDSs can guard your community and your PC from numerous threats. In addition 
to hackers, IDSs can guard against all sorts of malware and net worms. NIDSs are 
mainly designed to screen community visitors and monitor for signs of uncommon 
activity. Whether it is a synthetic virus or a worldwide hacker, community IDSs are the 
final defense toward all kinds of safety threats. There are three components of an IDS. 

Network ID machine includes three specific additives. Sensors are a key aspect that 
makes it feasible to detect instantaneously protection threats. They typically have a 
signature database that permits them to identify malicious activity. The backend is the 
second aspect, chargeable for signals and occasion logging. Alerts may be dispatched in 
many ways, such as database logs, email, and console displays. Depending on the 
version, a few backend additives can offer a brief connection lock that forestalls hackers 
from having access to the unique target. The front end is the remaining aspect that 
represents the person interface. Through the person interface, the person can view all of 
the occasions detected through the sensor and set the IDS configuration. Users also can 
replace the sensor and signature database. All of those additives paintings together offer 
remaining safety toward hackers and all forms of malicious software programs that 
threaten community protection. 

As you can see, in modern global technology, community protection is important 
for organizations of all sizes. More state-of-the-art new protection threats are 
continuously being created. Fortunately, online security is the main enterprise, 
focusing on online protection. We offer 24/7 tracking offerings and always replace 
our community assault detection machine. We recognize that the risks of the 
Internet and protection are our pinnacle priorities. 

9.8 FUTURE WORK AND CONCLUSION 

Many IoT users, services, and applications are growing, and there is an urgent 
requirement for a security solution to be used in IoT contexts. Since the IoT is 
the foundation of intelligent surroundings, any security vulnerabilities in these 
networks directly impact the intelligent environments in which they are built. 
DoS, DDoS, and RPL assaults impact services and software available in in-
telligent IoT-based environments; therefore, the security of the IoT environment 
is a major concern. A possible solution to this problem is an IDS. In this study, 
a survey was conducted on IDSs designed for IoT contexts. There were also 
proposals to develop the strongest and most lightweight IDS. 
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Several publications were reviewed in this chapter. The design and implementation 
of IDS for use in the IoT that can be implemented in intelligent systems is the focus of 
these studies. The properties of all IDS approaches discussed in these publications 
have been summarized. In addition, this chapter provided several recommendations 
that need to be considered when creating intrusion detection for the IoT. This chapter 
has highlighted the need for an integrated IDS that can be used in intelligent IoT- 
enabled environments. This idea needs to be tested in a centralized IoT database. With 
this design, the issue of placement strategy needs to be considered. 

Based on the recommendations, a future study will explore the creation of a 
high-performance hybrid intrusion detection specifically designed for intelligent 
IoT-related environments. 
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10.1 INTRODUCTION 

The Internet of Things (IoT) is technology that does not need human intervention to take 
many kinds of actions. There are sensors attached to IoT devices to gather, transmit, and 
analyze data and then act on that data, providing new opportunities for technology, 
media, and telecommunications companies to produce value. 

Consider a car garage door opener that can also deactivate the home alarm 
system as family members enter. This is a useful function for a homeowner who 
needs to get into the house quickly. But, if the garage door opener is hacked, the 
complete alarm system may be disarmed, leaving the house unsafe. In fact, all the 
devices in the house – TVs, thermostats, door locks, alarms, and garage door 
openers – create a plethora of opportunities for intruders to get access to the house 
through the IoT. 

IoT technology-based devices are becoming popular worldwide very quickly. The 
ubiquity, variety, and heterogeneity of this technology is removing all boundaries 
around the living, non-living, and digital worlds. The presence of IoT technology in 
the business world cannot be ignored today, hence the attacks and threats on IoT 
devices, too. Such attacks or crimes are increasing day by day. There is no doubt that 
IoT technology has shown new paths to organizations for adding value and creating 
new business models, but at the same time has given opportunities to cyber criminals 
to hack the systems due to constant connectivity and data sharing. 

As every coin has two sides, the risks associated with the IoT cannot be ignored, 
although the IoT provides many benefits, too. Cyber criminals have become a major 
threat to the government and business infrastructures all over the globe and are 
destroying these infrastructures through their criminal behaviors. Cyberattacks over 
IoT devices and systems are affecting the lives of users, so looking into solutions is 
mandatory now. Secure IoT is the need of the hour, and understanding of attacks 
and threats in the IoT structure should be common knowledge. 

The IoT invites cyberattacks as it is widely used. The IoT infrastructure can be 
used as the main platform for cyberattacks, and the IoT infrastructure’s security is 
threatened. IoT forensics supports investigators in gathering clues from smart de-
vices and their network to reconstruct historical incidences. Due to the sophisti-
cation of the IoT architecture, digital investigators face lots of obstacles when 
conducting IoT-related investigations using current investigation methodology, 
necessitating the creation of a new dedicated forensic framework. 

This chapter consists of the below mentioned topics and subtopics to discuss IoT 
technologies, IoT’s main features, security challenges, suggested security solutions, 
and how the IoT allows cybercrimes to happen. The chapter also explains digital 
forensics as well as IoT forensics before concluding the chapter. 

10.2 INTERNET OF THINGS 

The IoT is a group or network of devices, living or non-living things that are able to 
communicate with each other by exchanging data collected, with the help of 
Internet connectivity, without any human support. Smart cars and smart homes are 
few examples that work by using IoT technology. 
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10.2.1 BASIC CHARACTERISTICS OF THE IOT 

Many characteristics in the broader context can be used to define the IoT. There are 
seven important IoT characteristics: (Figure 10.1)  

1. Connectivity – Connection of everything in the network is a must. There 
are multiple levels of connections within IoT devices and other hardware 
used in the network.  

2. Things – Any device, hardware, or animal or human that can be labelled or 
connected in the network is known as a “thing” in the IoT network. 
Sensors and household equipment are all part of things.  

3. Data – The content exchanged among the devices and hardware connected 
through IoT technology is “data.” It is the first step toward action and 
intelligence. 

4. Communication – Exchanging data among devices is called “commu-
nication” among them. There may be short-distance communication or 
long-distance communication among devices under this technology.  

5. Intelligence – The sensing capabilities in IoT devices and insight gained 
from big data analytics is counted as intelligence of IoT devices.  

6. Action – This is the result of intelligence. Action can be manual or based 
on debates about phenomena, or automation, which is usually the most 
essential part of the IoT. 

IOT

Connectivity

 ings

Data

Communi
cationIntelligence

Action

Ecosystem

FIGURE 10.1 Characteristics of the Internet of Things.    
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7. Ecosystem – The specific position of the IoT adjusting with other existing 
technologies, communities, and the overall picture into which the IoT fits 
automatically is called an “ecosystem.” 

10.2.2 BUILDING BLOCKS OF THE IOT 

There are four basic components of an IoT system. The features of each system are 
listed below:  

1. Sensors 

Sensors are the IoT devices’ front end. In the IoT, they really mean “things.” Their 
primary responsibility is to collect necessary data from the environment and 
transmit it on to database or processing systems. Because they are the basic frontend 
interface in a huge network of other devices, they must be easily searchable via their 
IP address. Sensors capture data in real time and can either act autonomously or be 
directed by the user. A gas sensor, a water quality sensor, and a moisture sensor are 
examples of sensors.  

2. Processors 

Processors serve as the brain of the IoT system. The main responsibility of pro-
cessors is to convert raw data gathered by sensors into useful information. 
Basically, it provides intelligence to the raw data. 

Processors are easily controlled by applications. Data security is also one of the 
major tasks done by processors. It is done through cryptography.  

3. Gateways 

The IoT system needs communication and network access to work properly. 
Gateways are used to define the route of the processed data for transmitting it to 
suitable servers or databases. Gateways include LANs, WANs, PANs, etc.  

4. Applications 

Another end of an IoT system is applications. Applications utilize collected data. 
They provide users an interface to interact with the data. Most of the time applications 
are cloud-based and are used to display collected data. These applications can be 
controlled by users for various activities. A few major examples of such applications 
are apps for smart homes, security system control, and industrial control. 

10.2.3 TECHNOLOGIES USED FOR IOT COMMUNICATION 

Smart IoT-connected gadgets are more vulnerable to cyberattacks. And it’s critical 
to utilize the correct protocols to close these security gaps. IoT communication 
protocols are forms of communication that offer the highest level of security for 
data shared between IoT-connected devices. The following are the primary ad-
vantages of standardized communication protocols: 
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1. High quality and credibility 

Communication technologies that adhere to standards provide good service quality 
and resistance to interference. Furthermore, they provide dependable and secure 
transmission of large amounts of IoT sensor data at the edge.  

2. Interoperability and innovation flexibility 

Standard protocols can be programmed on a variety of commodity and off-the-shelf 
hardware, including gateways and chipsets. As a result, multi-vendor support so-
lutions assist end customers in avoiding vendor lock-in issues.  

3. Global scalability 

Every business organization desires IoT connectivity that can be adopted inter-
nationally. Furthermore, established communication protocols provide universal 
connectivity while reducing installation complexity. 

10.2.4 IOT PROTOCOLS 

There are various IoT protocols that may be used for IoT-related communication.  

1. IoT Network Protocols 

IoT network protocols are intended to connect low- to high-power devices 
through a network. They enable data communication within the network’s 
boundaries. Some prominent IoT network protocols are HTTP, LoRaWAN, 
Bluetooth, and Zigbee.  

2. IoT Data Protocols 

IoT data protocols are intended to link low-power IoT devices. They can provide 
end-to-end communication with the hardware even without an Internet connection. 
Some common IoT data protocols are MQTT, CoAP, AMQP, and XMPP. 

10.2.5 IOT LAYERS 

Though IoT components represent the key fundamentals of a complete Information 
Technology system, IoT layers are the foundation for the overall network and play a 
significant role in the overall success of the whole IoT network. Each layer has a 
distinct objective in addressing the IoT complexity across the network. The fol-
lowing are the layers of an IoT system:  

1. Perception Layer 

The perception layer takes care of managing smart devices throughout the system. 
The digital and physical worlds are connected through this layer. This layer helps 
in conversion of analog signals into digital signals and vice versa. This layer 
includes: 
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a. Sensors: These are very small objects used to recognize and detect changes 
in their environment and convert that information into digital form to make 
it more suitable for the system to understand. Since the sensors are rela-
tively small, they need less power to function. Sensors detect physical 
characteristics of surroundings, such as humidity or temperature, and ex-
change this information to the next device in the form of electronic signals.  

b. Actuators: The actuators are critical components of IoT networks. These 
receive the electrical signals from sensors and convert them into physical 
actions.  

c. Machine and Devices: These are all the things and devices under the IoT 
network that hold actuators and sensors. 

Without any geographical location restriction, devices can be scattered throughout 
the globe while being part of the IoT network.  

2. Transport Layer 

It enables data transmission between the cloud and IoT devices. Also, it holds 
several features of gateways and networks. This layer is responsible for successful 
communication between devices and the IoT architecture, which occurs in two 
ways:  

1. By using a TCP or UDP/IP stack;  
2. Through the gateways, which helps transmission of data through multiple 

protocols. Several network technologies are integrated into IoT systems. A 
few are listed below:  
• WiFi – It is the most widely used and adapted technology in the world 

these days. This is the basic support of smart devices to function. This 
technology is extensively used for smart buildings and provides flaw-
less connectivity to users in the networking environment. 

• Ethernet – It is the system that helps connect devices like video cam-
eras, gaming consoles, and security devices in the IoT environment.  

• Bluetooth – It is a good technology to use when the devices are placed 
very near to each other. This technology is also used extensively be-
tween devices. For example, headphones that can operate on low 
power.  

• NFC (Near Field Communications) – When two or more devices are a 
maximum of 4 inches apart, this technology enables communication 
between them.  

• LPWAN (Low Power Wide Area Network) – This technology helps 
connect long-distant devices. The main advantage of this technology is 
that even after consuming very low power, it supports the network for a 
long period of time and may provide exact information. Examples are 
smart homes.  

• ZigBee – This technology is based on a wireless network and uses low 
power. The limitation of this technology is that it transmits limited data. 
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ZigBee was designed with home automation in mind, but it has also 
demonstrated extraordinary effectiveness with medical, scientific, and 
industrial protocols.  

• Cellular networks – These show greater confidence and reliability in 
long-distance and short-distance communication worldwide. For cel-
lular networks, IoT layers can be classified as below:  
• LTE-M – For providing a very high rate of data transmission, Long 

Term Evolution for Machines networks are used through the cloud.  
• NB-IoT – When a low rate of data transmission is required, 

Narrowband networks are used. 

In addition, messaging protocols are incorporated in the IoT system, allowing for 
easy data sharing. The majority use protocols in the IoT architectural layers, as 
listed below:  

• Data Distribution Service (DDS) – In IoT systems, it represents a machine- 
to-machine real-time communications infrastructure.  

• Advanced Message Queuing Protocol (AMQP) – This protocol encrypts 
messages or data, which are transmitted between two or more organiza-
tions and applications. It is used in client/server messaging services.  

• Constrained Application Protocol (CoAP) – It is one-to-one protocol for 
transferring state information between client and server. It is used for 
overly controlled devices that have limited power and memory. A good 
example for this is wireless sensors.  

• Message Queue Telemetry Transport (MQTT) – This protocol for IoT is 
used for data transmission between remote devices when the network 
bandwidth is very low.  

3. Edge Computing Layer 

It collects information at the device’s edge or close to it. In the beginning, when IoT 
networks were becoming bigger, the potential of the network became a significant 
hurdle. When multiple devices try connecting to each other and to the main center, 
the whole system gets congested. It delays the procedure of data transmission. Edge 
computing provides a one-of-a-kind solution that increases the overall expansion of 
IoT systems where multiple devices may get connected to the main server 
simultaneously. 

Systems have started analyzing data conveniently with the help of edge IoT 
layers. Edge allows the systems to connect to more devices with lower latency. All 
IoT network procedures happen at the network’s edge, resulting in saved time and 
resources and increased performance.  

4. Processing Layer 

IoT systems collect, store, and process data to get insights or useful information for 
further decision making. There are two major phases in the processing layer, which 
are listed below: 
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• Data Accumulation 
It is a very important activity in which data from different sources are 

collected. Every gadget transmits lots of data through the IoT. Data 
streams may be in a variety of formats, speeds, and sizes. 

In the processing layer, the useful data are filtered from these massive 
streams. Unstructured data can be larger and must be processed rapidly in 
order to acquire intelligence aspects for further decision making. The 
knowledge of corporate activities helps to understand data requirements 
for future benefits.  

• Data Abstraction 
After collection of the data, specific data are extracted from the datasets 

and are used in optimizing business procedures. The methods used for data 
abstraction are as follows:  
• Collection of data from the network (CRM, ERP, and ERM)  
• Use of data virtualization for ensuring availability of the data from all 

sources.  
• Manage data in several systems. 

After the completion of data collection and abstraction, data analysts may easily 
utilize business insight to extract intelligence components.  

5. Application Layer 

The application layer helps in data analytics, device control, and creation of reports 
by end-users. For business intelligence, the data are processed and analyzed further 
in this layer. Here, IoT systems are linked with software to understand data. The 
application layer contains tasks like:  

• Maintaining business decision-making software  
• Controlling and monitoring the devices  
• Finding analytical solutions by using AI and machine learning and  
• Maintaining mobile application for further interactions 

Every system is designed with specific objectives to meet business requirements. 
But the maximum IoT applications are complex and use several technology stacks 
to execute specialized functions for organizations. 

Due to the continuous changes in the IT environment, many firms proposed the 
addition of three more layers to their infrastructure, which are listed below:  

6. Business Layer 

This layer derives data-driven information and decision-making analysis. 
Once obtained, IoT data are only useful if they are applied to corporate planning 

and strategy. Every organization has specific goals to achieve by using data in-
telligence process. The data collected previously, as well as currently, help the 
business stakeholders’ future predictions. 
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Now, data analysis has emerged as a magic tool for firms looking forward to 
increasing production. The firms collect more data to analyze more useful business 
decisions. To support the betterment of performance, software like CRM and 
business intelligence solutions are extensively used in almost all business sectors.  

7. Security Layer 

Security is one of the most important requirements of IT architecture. The security 
layer protects all components of the IoT architecture. The key issues with the se-
curity layer in integrating IoT systems include data leaks, tracking bad software, 
and hacking.  

• Device Security 

The security of devices in the IoT layers are of utmost importance. Most manu-
facturers adhere to security rules when installing IoT integration firmware and 
hardware. These are:  

• Use a secure boot process for preventing malicious programs.  
• Trusted Platform Module chips must be used along with cryptographic 

keys to save devices.  
• Use an extra physical layer to prevent direct device access.  
• Update security patches on a regular basis.  

• Cloud Security 
For data storage and communication of devices, use of clouds is a new 

normal now. Hence, security of the cloud is very important, especially for 
IoT systems. The cloud security includes encryption to prevent data 
breaches. Authorization of devices is a complex procedure, and strong 
device identity management is required.  

• Connection Security 

In an IoT network, encryption of data is a must while being transferred across the 
network. For protection of sensitive data, DDS, AMQP, and MQTT message 
protocols are used. TSL cryptographic protocol is a proposed industry standard for 
data transfer across IoT architecture. 

10.3 CYBERCRIMES 

Although technology provides many benefits to consumers, it also has a negative 
side effect that degrades the quality of online activities. Cybercrime is one of those 
negative side effects, which involves the use of a computer, a network, and the 
Internet. Cybercrime can take several forms:  

a. Computer integrity crimes – Integrity of data means that the data are 
trustworthy and have not been modified. These crimes occur when a 

Cybercrimes and Digital Forensics in IoT                                                   217 



breach of security of the computer network happens. Data are modified by 
the intruder, and incorrect data are received by the receiver. For example, 
hacking; malware creation, possession, and distribution; denial of service 
(DoS) attacks; distributed denial of service (DDoS) attacks; and website 
defacement.  

b. Computer-related crimes – These crimes directly target a computer or 
computer system and use the Internet to communicate with victims with 
the goal of defrauding them of cash, commodities, or services. A few 
examples of such crimes are hacking, criminal damage, online theft, etc.  

c. Computer content crimes – These crimes involve the illicit circulation of 
data on a computer network. Examples of such crimes are the trade and 
distribution of pornographic items and the dissemination of hate crime 
materials. 

10.3.1 ROLE OF THE IOT IN ASSISTING CYBERCRIMES 

The IoT connects practically all physical and virtual things in the environment via 
the Internet to create new digitized services enhancing life’s comfort and ease. 
Smart buildings, smart agriculture, smart energy, smart healthcare, and smart cars 
may be considered to be applications of IoT technology. Although such applications 
provide various benefits to mankind, they bring a number of security concerns. 

In order to maintain the successful deployment of IoT applications in society, it 
is necessary to resolve security issues. IoT device owners must ensure that adequate 
security mechanisms are built into their equipment. Security threats and cyber-
crimes have increased over the years. With inadequate security measures installed 
in IoT devices, the IoT system gives more opportunity to cyber criminals to attack 
various IoT applications and services, resulting in a direct impact on consumers. 

10.4 DIGITAL FORENSICS 

Digital forensics is the application of scientifically derived and proven methods to 
the preservation, collection, validation, identification, analysis, interpretation, 
documentation, and presentation of digital evidence derived from digital sources for 
the purpose of facilitating or furthering the reconstruction of criminal events or 
assisting in the anticipation of unauthorized actions that are disruptive to planned 
operations. 

10.4.1 DIGITAL FORENSICS PROCESS MODEL 

There is a need for an integrated digital forensics process model to solve the pro-
blems of forensic investigators. There may be numerous issues faced by the in-
vestigators like:  

• Differentiability of types of devices used  
• Multiple types of media  
• High volume of evidence that is distributed across the wireless network. 
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• Virtualization  
• Live response  
• Anti-forensics  
• Encryption of static data and data in transit  
• Dependency on the cloud for data storage and communication  
• Lack of use of standards 

So far, various models have been proposed, all of which share the same structure or 
stages. Hence, each new model strives to improve the fineness and clarity of the 
inherited technique. 

Starting from the old and conventional to the most contemporary models, there 
are several important and notable digital forensic process models with more clarity 
of the tasks. 

The Forensic Process Model, Abstract Digital Forensics Model, and Integrated 
Digital Investigation Model are among these process models. Another model is 
based on the digital forensic framework and data protection of cloud-based data 
collecting for digital investigations. The integrated digital forensic process model 
includes the phases as shown in Figure 10.2. 

10.4.1.1 Preparation 
Since the number of cyberattacks has been increasing, preparation and planning are 
necessary before conducting any forensic investigation. Lack of preparedness re-
sults in a delayed inquiry and the loss of essential artefacts, such as volatile data, 
that are only available shortly after an incident. The preparation phase includes the 
selection of appropriate persons, tools, and techniques for the security issue. This 
step adheres to the system’s forensic readiness. 

10.4.1.2 Incident 
A cyber incident is an occurrence that alters the state of a system in such a way that 
it threatens the necessary security mechanisms and disturbs normal operations of 
the system. Cyber incidents are defined as violations of a system’s privacy policy 
that result in the loss or breach of secretive information; interruption of services to 
authorized users; unauthorized data processing, hardware, or software; and so on. 
As a result, an event has an impact on the availability of information linked with a 
system. Early detection of an occurrence is critical in forensic investigations and 
plays a significant role in deciding the effectiveness of an inquiry. Before initiating 
an incident response, the proper approach must be determined based on the un-
derlying compromised system. Before responding to an IoT-related issue, a number 
of aspects must be considered. 

10.4.1.3 Incident Response 
An incident reaction is the sum of all the measures taken prior to conducting the real 
digital inquiry. Both digital forensic investigations and incident response work 
together hand in hand. Incident response immediately controls the problem in order 
to prevent further possible damage. It also helps in recovering from the damage. 
Therefore, it reduces the overall impact on the compromised system. 
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An organization needs proper preparation for taking an immediate action in 
response to an incident. The Computer Security Incident Response Team (CSIRT) 
or Computer Emergency Response Team (CERT) plan implementation of any in-
cident response. Personnel from the organization, as well as technical and legal 
support, are part of the team. Occurrence Response entails a team of first responders 
assessing, analyzing, and reporting on the incident in order to locate and isolate 
hacked systems and identify artefacts of evidence. 

It is always good to respond immediately or as soon as possible to the CSIRT or 
CERT with an occurrence as it helps to save a significant amount of cost, time, and 
effort while doing the forensic investigation. The process of digital investigation 
focuses on its main digital evidence, which has to be presented in front of a court of 
justice. Originality of the digital evidence is a must before presenting it in front of 
the court. The digital evidence will be accepted only when the digital investigation 
is done in the right manner. 

Incident Response helps the team collecting all digital evidence, like memory or 
stored files, configuration of the network, movement of network packets, open and 
backdoor ports, sockets, and many more. Other than this, information like login 
session, system time, etc. are also collected, which helps make the plan of 
investigation. 

10.4.1.4 Investigations 
Two types of investigations are done throughout the process:  

1. Physical  
2. Digital 

In the case of any cybercrime, both physical and digital evidence may exist, and 
both must be analyzed and kept in order to obtain a definite solution. The research 
method for both is distinct, despite the fact that they must be carried out 
concurrently. 

Being the root of the entire Incident Response process, digital investigation plays 
an important role. It gives a framework of the methodical implementation of several 
phases to obtain a perfect result. The actual procedure begins with the collection of 
every small and bigger actions’ details or picture of the evidence in response to 
relevant media proof or direct evidence of acquisition. The confirmation of keeping 
the original evidence is necessary. Also, it is necessary to check that no changes are 
made to it for it to be accepted in court. Originality of the evidence makes the task 
of investigators easier to conduct thorough investigations without danger of unin-
tentional evidence change or deletion. The hash value of both the original and 
working copy is calculated through a secure hash algorithm just to make the task 
more authentic and foolproof. 

After that, the evidence is checked to see if important data have been erased or if 
there are any hidden data there or not. Various forensic tools support the completion 
of such tasks. Investigators look for remains of erased data, such as metadata that 
can be used to harvest or save the deleted evidence. 
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Following this phase, certain reduction strategies may be used to further mini-
mize the content base to be studied and inspected, bearing in mind the amount and 
format diversity of IoT-related data. The evidence may also be reduced by com-
paring known data and software to the National Software Reference Library. This is 
a library of calculated hashes of known software with the help of which the hard 
work and resources required for forensic investigations may be reduced as it 
eliminates the need to examine the evidence. 

The evidence collected from an IoT device is in a highly unstructured form. 
Hence, extra attention is paid to such evidence as it is converted into structured data 
through long, technical methods. This whole process helps in the extraction of facts 
from the acquired data set. The readability of the evidence gets improved in this 
manner, which helps the organization to reach the final solution. 

Based on the comprehension of the available facts, a detailed report of the in-
cident is made. Now, the examination phase is started in which extraction of evi-
dence is done with the help of additional connected procedures to verify the 
proposed solution. Once established, the chain of events may be reconstructed for 
security issues. The final decision is conveyed to the appropriate staff for further 
processing, which includes analyzing and validating the forensic data in relation to 
the proposed original hypothesis. 

10.4.1.5 Presentation 
In front of a court of law, the presentation is a short and to-the-point description of 
inferred investigation results, conclusions, and facts. Since the start of an investiga-
tion, a complete record of each and every act has been kept and is presented. It is 
concerned with facts and the collection of evidence. To add credibility to the final 
report, supporting papers from the investigations are provided. Records referring to 
any modifications introduced to the evidence, their relevance, and who they affected, 
among other things, may be included. In order to uncover the root cause of the in-
cidence, the final report should be accurate and impartial rather than emotional. 

The case is decided based on the digital evidence provided. 

10.4.1.6 Documentation 
Documentation is a crucial component of digital forensic inquiry and begins with an 
incident involving security. Documentation captures all crucial information about 
the forensic procedure, which aids investigators and legal personnel in making 
decisions. The documentation of forensic investigation should be maintained since 
the beginning of the incident to increase the chances of its approval by a court of 
law. As the documentation is continuous, it should have all the content that supports 
a digital witness in court. This may include:  

• Duration of the incident  
• Evidence procurement  
• Digital location of evidence along with details of system software, file 

system, and computer network  
• How many connections were broken  
• All kinds of evidence related to as much information as possible. 
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This documentation aids the final forensic report submitted in court. During the 
inquiry, any changes made to the evidence or the system are meticulously docu-
mented. The sheer volume of digital data complicates the digital investigation 
process in terms of evidence gathering, storage, processing, and presentation. There 
is a methodology for dealing with massive amounts of data for fast forensic as-
sessment triage. 

The dependence of the IoT on various devices, networks, protocols, services, 
applications, and technologies raises concerns about hazy network boundaries and 
ambiguous identification of items of forensic relevance. 

10.5 IOT FORENSICS PROCESS 

The major infrastructure used for the IoT can be classified as:  

• Wireless Sensor Networks  
• Near Field Communication  
• Radio Frequency Identification 

Sensors and actuators in IoT devices help them get information from their sur-
roundings and communicate with people. Software built expressly for interoper-
ability across various, heterogeneous devices does this. The middleware layer 
supports in developing connections between data, applications, and devices. The 
IoT software is required to have the quality of accommodating the dynamic, mobile, 
and massive nature of the information. The IoT architecture is dispersed and highly 
diverse, involving hardware such as networks, software, processes, and general 
infrastructure. 

However, with the rapid advancement of IoT technology and the penetration of 
smart devices into almost every sector of the physical world, new avenues for 
cybercrime are opening up in response to existing weaknesses. As the cybercrimes 
are increasing day by day, IoT devices are either direct attack targets or are used to 
carry out a cyberattack. When harmful actions break security barriers, IoT forensics 
comes into play. 

However, due to the vast differences between traditional computing and the 
IoT, the forensic processes and standards used in IoT-related investigations ne-
cessitate a new approach. Standard digital forensic techniques and approaches 
must be revised to account for the dynamic nature of evidence from the cloud 
infrastructure. During a digital inquiry, the devices that serve as evidence sources 
are typically turned off to prevent evidence alteration. The investigators have 
little or no such provision in IoT-related investigations, which increases the 
complexity of the investigations. 

IoT forensics is a subfield of digital forensics that integrates various subfields of 
traditional forensics. In the IoT paradigm, they include device forensics, network 
forensics, cloud forensics, mobile/mobility forensics, live forensics, and so on. 
Smart forensics and Forensics of Things are other terms for IoT forensics. 

Each phase of the forensic model may be subdivided into sub-phases to clarify 
the entire inquiry. IoT forensics is dependent on modern forensic models. 
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10.6 THE INTERNET OF THINGS’ ROLE IN DIGITAL FORENSICS 

The technology of the IoT can be used as a digital witness or a stumbling block in 
digital investigations. Both the ways are explained below: 

10.6.1 ROLE OF THE IOT IN ASSISTING DIGITAL FORENSICS 

The IoT is a network of uniquely identified digital devices and digital objects that are 
networked and interoperable, allowing data to be transferred between them without 
the need for human interaction. Over time, IoT technology is growing in size as new 
devices are introduced to the IoT network on a daily basis. These application func-
tions collect an increasing amount of information about their consumers from their 
daily routines, which can then be used to get access to large amounts of private or 
confidential data. The information acquired, processed, or transmitted by an object 
may be crucial to a given investigation case, and when gathered, assessed, and pre-
sented correctly, it can operate as a digital witness to assist in the resolution of the case 
within the time limit. These IoT devices’ digital witnesses can either confirm or deny 
the occurrence of a security incident. As a result, given the IoT’s leading role, the data 
can be used as a gold mine for investigators, assisting in the prompt conclusion of a 
case by providing the perfect timing of an occurrence or cyber event, as well as other 
log data essential to break the case. 

This information aids detectives in gathering crime-related intelligence and helps 
them to concentrate on a small number of suspects. This saves forensic resources in 
terms of money, time, and effort, resulting in a reduction in case backlogs. 

10.6.2 ROLE OF THE IOT IN ASSISTING CYBERCRIMES 

While the IoT offers countless new opportunities and advantages, the inherent 
hazards and dangers associated with it should not be overlooked. IoT security 
vulnerabilities present new opportunities for cyber criminals to commit IoT crime 
due to its massive diverse and inclusive networks, low standards, and bad design 
architecture. IoT devices or items can be exploited as a direct target or as a tool or 
method to commit acts of violence. In either situation, there is a security breach, 
which leads to the serious problem of compromised information or services. When 
an IoT device is employed as a target, assaults are carried out directly on the smart 
device by exploiting its weaknesses. When an IoT device is employed as a tool, it is 
used to commit the crime, making it more difficult to pinpoint the source of the 
attack. In the latter situation, often, manufacturer-introduced security flaws or other 
technical flaws are exploited. 

Because IoT security is still in its early stage, the processing power of IoT de-
vices can be used to carry out cyber crimes with disastrous effects that are physi-
cally palpable and real in most circumstances. These assaults include remote control 
of objects, such as cars, light bulbs, or other connected home appliances; eaves-
dropping on residences; identity theft; DoS or DDoS attacks; and so on. As a result, 
given the antagonistic function of the IoT, hacked IoT devices can serve as a source 
of attacks and the most significant barrier for digital forensic investigators. 
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10.7 CHALLENGES OF IOT FORENSICS 

Current digital forensic methods and practices are not specifically designed to meet 
the requirements of investigations into IoT-related crimes. In dealing with such 
instances, investigators have significant obstacles, necessitating a shift in forensic 
approach. Several of these are mentioned below: 

10.7.1 DIVERSITY 

The IoT has a high level of engagement and dynamicity, which increases its 
complex nature on all fronts. It also shows that “everything” is rapidly connecting 
over the network in every domain. As a result, there is diversity in the IoT infra-
structure, including gadget type and number, data structures, interfaces, software 
platforms, and so on. Although this level of heterogeneity is unavoidable in the 
adoption of IoT ecosystems, it leads to new security threats. 

Due to diversity problems, the decline of standard procedures for data storage, 
processing and maintenance, and forensic investigations is happening. Due to a lack 
of specific equipment or software support, forensic investigators feel extremely 
troubled to conduct investigations. The forensic tools must be compatible for in-
vestigations to support all types of hardware and software. 

Furthermore, investigators struggle to detect and identify devices in a timely 
manner during the identification process. If it takes a long time to identify devices, 
they are more likely to be in a passive or off state due to power limits. Aside from 
the variety of data formats caused by different devices, data generated by an IoT 
device can be displayed in a different format on the cloud, which further compli-
cates digital investigations. 

10.7.2 IOT DEVICES AND DATA LOCATION AND IDENTIFICATION 

Multiple connected smart devices disperse throughout cyberspace, making it more 
difficult for forensics experts to discover or locate the target devices. These devices 
contain a variety of data that can be beneficial in forensic investigations. More devices 
collect more data, which leads to a better understanding of whatever happened. 
Evidence based on the IoT can be found in IoT devices, network devices, cloud 
infrastructure, and client applications. These data can only be extracted and analyzed 
if all of the devices are recognized shortly after an occurrence by first responders. 

As a result, in the case of an incident, finding and collecting IoT devices is a 
critical first step in launching a forensic investigation. Because most IoT devices are 
hidden from view or are located remotely, they might be difficult to uncover or 
detect and are outside an investigator’s control. Devices in IoT environments can be 
passive or active, posing distinct challenges for investigators. Most IoT-connected 
devices are mobile, which investigators must take extra time, resources, and skill to 
identify. 

The devices or objects provide raw data collected from their immediate sur-
roundings and may lack any related metadata, whereas the network, cloud, or ap-
plication maintains complete and processed data as well as any relevant metadata. 
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However, having quick access to network devices and cloud infrastructure is nearly 
challenging, if not impossible. Forensic investigators must also deal with a variety 
of legal and regulatory difficulties that occur as a result of the geographical de-
ployment of IoT ecosystems. 

One of the most significant tasks of investigators is to maintain evidence 
throughout the investigation. The gadgets or nodes have autonomous and real-time 
interactivity, which makes it difficult to establish specific boundaries to limit the 
area of investigation. 

10.7.3 INADEQUATE STANDARDIZATION 

Since properly made standards and uniform agreements are lacking in the IoT 
system, the current IoT ecosystem is extremely fragmented and badly lacks the 
ability to collaborate on common ground, which further affects the growth and 
security of the IoT ecosystem. Due to this lack of uniformity, the open design and 
architecture of IoT settings is rapidly developing. The immediate consequences of 
this are a lack of standard or agreed-upon operating systems, programming lan-
guages, interfaces, communication protocols, and so on at various layers of IoT 
systems. Also, the IoT lacks universal standardization, so the diverse IoT ecosys-
tems may never speak the same language. 

In forensic investigations, evidence obtained by IoT devices, such as logs, 
contributes to building a timeline of occurrences. However, because there is no 
clear structure or standard for representing these evidence logs, the clarity in 
comprehending and presenting evidence suffers greatly. The connected smart 
gadgets are further hampered by a lack of wireless protocol standardization, which 
allows them to operate on different frequencies. Some devices may be forgotten 
during the forensics device identification process, resulting in insufficient evidence. 

As the IoT evolves, gaps of IoT interoperability, portability, and manageability 
needs will be filled. This will preserve the integrity of evidence in these complicated 
and distributed systems. 

10.7.4 IOT EVIDENCE LIFESPAN 

Big data is utilized to derive evidential information from IoT environments during 
digital forensic investigations. However, it is a must for investigators to gather all 
necessary artefacts to present those in a court of law. 

IoT devices may keep the data for a lesser time as the devices have limited power 
and storage capabilities. Therefore, the data stored on IoT devices have a short 
lifespan as they are quickly overwritten. As a result, possible evidence that would 
have been necessary for investigation may be lost, resulting in gaps in the gathered 
evidence set. 

Furthermore, an IoT device can be either active or passive while working. 
Active mode may result in quick battery drainage, due to which evidence may 
be lost. If the device’s battery power is depleted, all volatile data may be lost. In 
contrast, being passive may slow down the process of device tracking and 
identification. 
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As a result of the lack of completeness, the trustworthiness of evidence is called 
into doubt, making it difficult for evidence to be acceptable in court. Therefore, 
having an incident response team ready to record all possible evidence as soon as 
feasible is an effective investigation practice. Although the data are stored to the 
cloud, data volatility will always be a gap. 

10.7.5 CURRENTLY AVAILABLE FORENSIC TOOLS 

The variety of IoT settings, as well as the massive data created by the IoT setup, 
pose different problems that render current digital forensics investigation technol-
ogies insufficient to meet the actual requirements. As the science of digital forensics 
is continuously evolving day by day, there are many difficulties dealing with the 
diversity, heterogeneity, complicated architectures, and huge volume of big data 
generated by the IoT. As the gadgets based on IoT technology are less secure than 
traditional digital gadgets, the powerful tools must be used to collect evidence from 
them. Otherwise, the veracity of the evidence will be called into question. 

Furthermore, the IoT requires cloud forensic tools for evidence mining and 
analysis, but such tools are not successfully developed yet. Due to the lack of 
suitable tool support, cloud data extraction is difficult. The use of cloud platform 
implies that forensic tools must deal with virtual environments, which complicates 
the problems that such tools must encounter. Currently available forensic tools are 
unsuitable for investigating IoT systems. 

The IoT’s quick expansion and innovation does not provide enough time to 
decide and incorporate the required set of protocols for security and privacy con-
cerns, insufficient testing of nodes and communication protocols, and so on. The 
IoT connects the physical world to the digital world, which reduces the possibility 
of faults bringing down the entire system or having catastrophic consequences and 
allowing error propagation to other components. This creates confusion in IoT 
contexts that must be solved as soon as possible. 

If the above-mentioned challenges are not taken into account when investigating 
an IoT-related case, serious consequences may occur. 

10.8 CONCLUSION 

As more firms migrate toward these future solutions, the IoT is one of the rising 
technologies in the worldwide IT market. Advances in network and communication 
technologies have aided IoT technology in connecting and communicating billions 
of things over the Internet, allowing it to create a plethora of applications. The IoT 
can connect practically all physical and virtual items in the globe. Although IoT 
technology provides innumerable benefits, it also poses unique concerns, particu-
larly in terms of security. Similarly, with the increasing number of cybercrimes, IoT 
forensics has emerged as one of the hottest subjects attracting the attention of 
numerous experts and businesses. 

Due to the variety of IoT devices, however, using one of the traditional in-
vestigative frameworks will be futile. As a result, an IoT-based investigative fra-
mework should be one of any organization’s top goals. This chapter provided an 
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overview of IoT system security, cybercrime, and digital forensics. It began with a 
review of the components and building blocks of an IoT device, critical char-
acteristics, architecture levels, communication technologies, and IoT system pro-
blems. Then, IoT security was discussed, covering security threats and solutions for 
IoT architecture levels. 

Digital forensics and the major steps of an investigation procedure were also 
highlighted. Finally, IoT forensics was reviewed by examining similar IoT forensics 
frameworks, evaluating the need for adopting real-time techniques, and discussing 
the main issues of IoT forensics. 

Given the complexity and rapid growth of IoT systems, security and forensic 
specialists face a slew of new issues. IoT systems are diverse and highly distributed, 
with a complicated architecture and limited resources, posing new challenges to 
researchers. IoT systems generate and consume massive volumes of data, which can 
be utilized as evidence in forensic investigations. 
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11.1 INTRODUCTION 

The population of urban regions has been quickly expanding in recent decades. 
According to a survey by the United Nations Populace Account, more than half of the 
world’s population lives in cities [1]. Due more to its possibilities than its practical basis 
in urbanized environments, the notion of a “smart city” has gained far too much at-
tention from academics and businesses. Some cities have begun to build their smart city 
initiatives to improve inhabitants’ quality of life and deliver healthier facilities [2]. 

Several nations with growing populations are thinking deeply about smart city 
initiatives. China, for instance, is working on more than 200 proposals aimed at 
implementing the smart city model. Smart city-related technology enables urban 
municipalities to manage their everyday operations to make working class life 
simpler [3]. The substructure of smart cities consists of various gadgets and in-
terconnected systems that help persons in a range of areas such as smart healthcare, 
smart transport, smart space, smart traffic systems, smart cultivation, and smart 
housing, to mention only a few. 

Information-centric communication is an interacting architecture that can keep 
packets delivered even in unstable circumstances. As a result, ICN might be viewed 
as another IP-based system in smart cities. The addition of multiple affordable 
smart-sensing strategies and sensors, as well as the quick growth of wireless 
communication skills allowing small and affordable objects to attach to the Internet, 
has caused an increase in the implementation of the Internet of Things (IoT) [4], in 
which things are being replaced by smart devices in everyday life. 
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Because of its strong, reliable promise and realistic substance in a more built-up 
sphere, the idea of a “smart city” has shown increasing interest in both industrial 
and academic disciplines in the last few years [5]. Referring to the most recent 
United Nations Population Account report, over half of the world’s people now live 
in cities, and it is anticipated that up to 66% of the world’s population will live in 
cities by 2055, subsequent in extreme hardships in the weather, energy, environ-
ment, as well as air quality [6]. 

An increasing number of cities throughout the world have begun to build their 
smart plans to address these issues and improve inhabitants’ well-being, stimulate 
economic development, and administer contemporary cities sustainably and in-
telligently [7]. Cisco proclaimed a one billion dollar smart city initiative in 2017. 
China, being the biosphere’s maximum populated country, has more than 200 smart 
city initiatives in the works. Predictably, a city’s infrastructure is interwoven with 
billions of devices that, via different applications, may be mutually advantageous 
for people, such as smart transport, etc. [8]. 

Because of the weaknesses that happen at each layer of a smart design, the 
growth of these smart applications may pose significant safety and confidentiality 
concerns [9]. Illegal admission, Sybil, and DoS attacks can all decrease the 
quality of smart services. For instance, almost 230,000 persons in Ukraine were 
deprived of power for an extended length of time in 2015 as a result of a Trojan-horse 
assault on the power network system [10]. Furthermore, over-collection of data 
by service providers and some third-parties, such as smart cars, smart governance, 
smart healthcare, smart surroundings, and smart homes, exposes citizens to privacy 
risks [11]. 

Several studies on this theme have been done in recent years, the majority of 
which have focused on the whole IoT ecology. Sicari et al., for example, provided 
an impression of present concerns and solutions in IoT systems, such as safety, 
confidentiality, and faith. Recently, Nia et al. explored safety challenges of the IoT. 
In comparison, the number of review articles on smart city safety and confidentiality 
remains minimal. Gharaibeh et al. performed a comprehensive study in 2017 that 
discussed the accomplishments of smart cities and then analyzed existing security 
challenges from a data-centrical approach. Zhang et al. developed a classification of 
diverse security answers for dissimilar security concerns, with a focus on security 
and privacy [12–15]. 

11.2 OVERVIEW OF A SMART CITY 

After studying many designs used in different cities to meet the criteria of a smart 
city, it is noted that the heavy usage of technology, particularly telecommunications 
technologies, to enable resource monitoring is valued. It is here that you may 
discover a method for effective resource management, the need to monitor energy 
resources, humans, and so on to manage them more efficiently [16]. 

Then, under the description of smart city, we may use the term “monitoring” to 
create a system that permits us to be productive and sustainable [17]. To monitor a 
city, one must first classify the many zones or regions that comprise it, apart from 
the situation’s own set of circumstances [18]. 
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Monitoring the flow of automobiles in the city center is not the same as mon-
itoring the movement of passengers within a railway or bus terminal. Sensors, 
connection protocols, data analytics, and so forth will all be different [19]. 

There are two types of architecture in a smart city: one that monitors the city’s 
exteriors, such as its roads and streets, parks and leisure places, and so on, and one 
that screens the interiors of structures, the movement of persons, and supplies, air 
conditioning, water, and so on [20]. 

The architecture used in a city for outside monitoring is based on long-range 
communication procedures, allowing only a few devices to cover the whole city [21]. 
Because of interference with walls and electrical or pipe infrastructure, these com-
munication protocols are unable to enter buildings [22]. 

Building architecture often makes use of the telecommunications infrastructure 
or, in the absence of one, the wired electrical system; it is easier and less expensive 
to trust in these resources [23]. 

The right selection of exterior and interior designs appropriate to the reserves to be 
covered will allow precise communication with all of the city’s devices and equipment, 
as well as correct and error-free data for resource analysis and optimization [24]. 

Several designs have been planned to anticipate the growth of smart cities. 
However, to the best of our knowledge, no universal IoT building exists. Because the 
focus of this chapter is to outline health and security concerns in smart cities, the 
building presented here is based on the famous three-layer building and the typically 
recommended design. The architecture, as seen in Figure 11.1, may be separated into 
four strata; a quick explanation follows [25]. 

FIGURE 11.1 Architecture of smart cities.    
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The perception layer, also accompanied by the network layer, support layer, or 
application layer, is the architecture’s lowermost layer. The perception layer is 
chiefly responsible for gathering data from things in the physical environment and 
delivering it to the network layer for additional processing [26–28]. 

The network layer is the substance of the IoT architecture, and it relies on 
fundamental systems such as the Internet, WSNs, and network services. The support 
layer, which collaborates closely with the network layer, provides smart computing 
approaches to satisfy the requirements of diverse requests. The application layer, as 
the top layer, offers smart and applied facilities or requests to consumers depending 
on their exact wants. In the next subsection, we offer a full explanation [29]. 

11.3 ARCHITECTURE ON THE OUTSIDE 

To understand what occurs in a city, it is required to install a set of sensors to collect 
certain characteristics and variables that can be used to make judgments about the 
procedures that happen in the entire setting [30]. Numerous sensors supply various 
structures to the city, the most prevalent of which being star architectures or mesh 
networks. 

11.3.1 SENSOR PLACEMENT 

Most cities that are pursuing a smart city proposal have chosen to install devices on 
community lighting. What is the rationale behind this choice? This is in response to 
numerous factors:  

• Because community lighting is an vital city system, it is available in all 
developed cities.  

• Because it is a connected network, electric power is needed to power the 
sensors; and  

• The components may be set at a specific height to minimize vandalism.  
• The luminary preparation adjusts to the illumination demands of the road 

in which they are put, thus there will never be a shortage of locations to 
install the instruments.  

• If the devices screen for people, we will have a system for distant lighting 
organization, allowing us to save energy. 

In certain places, sensors have been placed in various parts of the city, such as trash 
cans, recycling containers, bus stops, and in specific key areas of the city. 

Any element of the city may be placed independently. Every feasible site has 
more drawbacks than the possibility of being placed in public lights. 

11.3.2 INFRASTRUCTURE 

The many technologies for smart city sensors create infrastructure in the city; the 
most frequent mockups are the substructure in star. 
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Use of a star architecture allows sensors dispersed across a zone to attach straight to an 
admission point, which transfers the data to a file for collecting and additional analysis. 

The mesh net substructure lets the devices communicate with one another, and 
the information is dumped into the database via the sensors nearest to the access 
point. The structure of a smart city is shown in Figure 11.2. 

11.3.3 INTERNAL STRUCTURE 

The method of sensor placement inside a structure is heavily dependent on the 
following parameters:  

• The structure’s regular form.  
• Whether the structure is designated as a heritage item.  
• The usage of the building; sensoring an office building will not be the same 

as sensing a railway station.  
• Private possession or public.  
• The existing structure 

Another planning milestone in new buildings is the architectural and sensor layout. 
However, in the present construction, it is important to analyze the above- 

mentioned criteria and arrange an appropriate disposition of devices and actuators 
aimed at the IoT system to work properly [31–33]. 

FIGURE 11.2 Structure of smart cities.    
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11.4 OBJECTIVE OF SMART CITIES 

Unique goals of developing smart cities is to help citizens in areas that are carefully 
connected to their life values, such as health, environment, manufacturing, lifestyle, 
and facilities. In Figure 11.3, we depict the rising smart requests of smart cities and 
discuss them in-depth. 

11.4.1 SMART GOVERNANCE 

A smart city relies heavily on smart government. The goal of smart government is 
to help residents and groups by linking data, organizations, processes, and bodily 
substructures through info skill. Furthermore, smart government allows individuals 
to participate in community choices and city preparation, which can enhance 
competence while also enhancing info transparency. E-government, for example, 
enables citizens to access government services online [34–37]. Various objectives 
of smart cities are shown in Figure 11.3. 

11.4.2 TRANSPORTATION 

Transportation attempts to enable “smarter” use of transportation designs. Smart 
transportation networks, in particular, can improve community service by im-
proving safety, speed, and dependability. Consumers may quickly arrange their 
schedules and identify the most cost-effective and shortest routes by using 
transportation-related smartphone applications. Driver’s passports, credit cards, and 

FIGURE 11.3 Various objective of smart cities.    
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car parking, traveling, and directions are also typical uses in smart transportation 
facilities as shown in Figure 11.4 [38]. 

11.4.3 ENVIRONMENT 

A smart environment may make a important influence to the growth of a sustainable 
society. A smart city, for example, can monitor energy consumption, air quality, 
building mechanical dependability, and traffic jams, as well as treat pollution or 
trash effectively, by using technical management tools. In the future, innovative 
conservational device nets may even be able to foresee and notice usual accidents as 
shown in Figure 11.5 [39]. 

11.4.4 UTILITIES 

Smart utilities enable smart cities to decrease resource overconsumption, such as 
water and vapor, while also boosting financial development and contributing to 
ecological conservation. 

Applied smart utility application, smart metering, is frequently used in smart 
grids to monitor dispersed energy supplies. Smart water meters and smart light 
devices are also utilized to save money and decrease energy waste as shown in  
Figure 11.6 [40]. 

FIGURE 11.4 Transportation mechanism of smart cities.    
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11.4.5 SERVICES 

Citizens benefit from smart facilities in a diversity of ways. Smart healthcare apps, 
for instance, may display common health problems in real time using smart 
wearables and medical devices. Additionally, certain smart buildings, such as re-
mote switches for home appliances, can help to build pleasant, smart, and energy- 
saving living quarters. Last but not least, social interacting, entertaining, smart 
spending, and additional smart facilities must significantly enhance people’s daily 
life as shown in Figure 11.7 [41–44]. 

11.5 CHARACTERISTICS 

It is critical to comprehend the distinctions between the aforesaid smart apps and 
regular ones. 

Furthermore, before building any new security or privacy protection solution, the 
features of smart cities should be studied and merged as shown in Figure 11.8. 

11.5.1 HETEROGENEITY 

High heterogeneity is the main distinctive feature of IoT-based systems, which implies 
the systems are independent, dispersed, and stowed or utilized by diverse operators. 

FIGURE 11.5 Smart environment.    

FIGURE 11.6 Various utilities in smart cities.     
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It also mentions to a extensive range of IoT bulges, communication procedures 
and knowledges, mobility options, hardware performance, platforms, and so on. 
To the best of our knowledge, there is no universal meaning of a smart city, and an 
IoT building differs from a smart city. As a result, another important issue is the 
absence of a unified safety structure and facility [45]. 

11.5.2 RESOURCES 

Many sensor nodes are reserve restricted, which means they have incomplete 
memory, battery, and processor competences, as well as net borders that are con-
fined owing to low-power radio protocols. In particular, inexpensive, lesser, but 

FIGURE 11.7 Various services in smart cities.    

FIGURE 11.8 Characteristics of smart cities.    
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energy-inefficient fixed electronics are commonly used in smart cities. With 8-bit or 
16-bit embedded systems, these devices often have limited random-access memory 
and storage capacity. The IEEE 802.15.4 radio in wireless networks results in 
modest data rates and frame sizes [46]. 

11.5.3 MOBILITY 

Urban mobility has been identified as a critical driver of modern city growth and 
development. Mobility in smart cities relates not only to movement within a urban 
and the transportation of commodities from one location to another but also to skill 
such as citywide wireless connectivity and actual monitoring of air flow, as healthy 
as adaptable responses to problems [47]. 

11.5.4 SCALABILITY 

Small devices can connect to the smart world thanks to connectivity. It is the 
greatest essential aspect of a fruitful smart city besides consumers been recognized 
as critical to bringing smart city designs forward. Simultaneously, scalability is an 
obvious aspect in smart cities. Smart cities are quickly expanding from small to 
large scale, subsequent in an short-tempered rise in data and net traffic. As a result, 
a smart cities cannot function well without scalable systems and procedures. 

11.5.5 PARTICIPATION OF USERS 

The concept of a smart city includes more than simply leading-edge technology and 
substructures; human aspects are equally important for the growth of smart cities. 
Meanwhile, the primary goal of constructing smart cities is to help countries. 
Besides, community participation can help to recover the excellence of these smart 
apps. For instance, an early grasp of their security measures and concerns will yield 
the greatest results in terms of defense solutions (Figure 11.9). 

11.6 PRIVACY AND SECURITY 

Even though the above-mentioned growths in smart cities have donated significantly 
to societal developments, almost each smart request is susceptible to hacking 
via current attacks such as contextual information attacks, conspiracy attacks, 
Sybil attacks, spying attacks, spam attacks, etc. 

In past years, grave concerns have been uncovered in a variety of program 
settings. Advanced metering technology in microgrids may be used to observe 
people’ private lives, such as their dwelling patterns and working hours. In relation 
to smart homes or healthcare, device manufacturers and providers may potentially 
have access to sensitive data. Furthermore, smart mobility applications’ massive 
amounts of trajectory data may be used to deduce a user’s location and mobility 
habits. The following are the most current concerns that have came as a result of 
the fast growth of smart applications, in additional to these obstacles. 
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11.6.1 BOTNET ACTIVITIES IN THE INTERNET OF THINGS (IOT) 

Cyberattacks targeting IoT networks have recently emerged as a big threat. For 
example, the Mirai botnet may attack devices, spread infection to a huge number 
of disparate IoT devices, and then launch a DDoS attack on target servers. IoT 
devices, compared to PCs and smartphones, are usually built with insufficient 
security, if any at all. Sadly, this risk did not become obvious till the second half 
of 2016. As a result, much more effort will be necessary, and the security 
community will need to develop new protections. Or else, the IoT-enabled en-
vironment will be injured by this new normal of DDoS assaults as shown in  
Figure 11.10. 

11.6.2 DANGERS OF SELF-DRIVING CARS 

Robot vehicles have cost billions to develop, and they have helped to minimize car 
crashes and build a cleaner, more intelligent society. 

Nevertheless, because hacking an antivirus puts both life and data secrecy at 
danger, this rapidly growing application has been labelled a severe security 
threat. 

FIGURE 11.9 Various smart objectives.    
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11.6.3 VIRTUAL REALITY’S PRIVACY ISSUES 

Many governments and items in technology-driven smart cities have used virtual 
reality technology, such municipality planners, community hospital homemakers, 
and the industrial industrial sector. Nevertheless, sensitive data traded with third 
parties, unencrypted VR device interactions, and sensor data all pose privacy 
concerns. 

However, because these new applications were rushed to market, developers and 
users neglected to adequately manage security. 

11.6.4 ARTIFICIAL INTELLIGENCE THREATS IN SMART CITIES 

Smart machines are important in a wide range of smart systems, such automatic 
exchange systems, domestic applications, or pacesetters. The growing use of 
smart devices, however, presents security issues. Network operators and device 
makers, for example, might employ data mining to study personal information 
inappropriately and extract delicate information that goes beyond the primary 
purpose of linked services. Attackers with AI knowledge are also growing in-
creasingly adept. Hackers could be able to understand how machine learning- 
based safety systems were built or taught, enabling them to apply specific 
methods to weaken the learning lessen the systems’ reliability as shown in  
Figure 11.11. 

FIGURE 11.10 IoT in smart cities.    
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11.7 REQUIREMENTS FOR SECURITY 

The remainder of this part focuses mostly on defining the needs associated with 
safeguarding smart cities, taking into account the features of IoT plans, the mul-
tifaceted setting of smart cities, and the security and confidentiality risks outlined 
previously (Figure 11.12). 

FIGURE 11.11 AI threats in smart cities.    

FIGURE 11.12 Requirements for security in smart city.    
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11.7.1 CONFIDENTIALITY AND AUTHENTICATION 

Authentication is a fundamental need for the various levels of a smart design since it 
is required to prove individualities and guarantee that only authorized customers 
may access facilities crossways a heterogeneous design. IoT plans in smart cities, 
for example, can validate the network, other nodes, and organization position 
communications. Also, because the amount of verification data in smart cities is fast 
growing, it is dangerous to building superior technology. 

11.7.2 INTEGRITY AND AVAILABILITY 

In general, availability refers to the capacity of devices and services to function 
when they are required. About our issue, smart systems or apps should be able to 
continue to function effectively even when under assault. 

Furthermore, because these plans are vulnerable to assaults, a smart design must 
be able to identify any unusual situations and prevent further system damage. 

The capacity of a system to withstand different defects and disappointments 
produced by assaults and large-scale tragedies is referred to as resilience. To cope 
with more smart threats, protection methods should have high resilience and the 
capacity to continue learning adaptively. 

11.7.3 DETECTION AND PREDICTION OF LIGHTWEIGHT INTRUSION 

Unless a system can monitor its operational circumstances and detect any unexpected 
events in a timely manner, it cannot be called safe. Classic intrusion detection systems 
(IDSs) employ three techniques: misuse detection, anomaly-based, and complier 
detection. In the incredibly diverse smart city context, however, the basic adaptation 
of a global IDS solution is not adaptive and practicable. Compact IDSs must also be 
developed so bulkly sensors and devices have fewer materials. 

11.7.4 PROTECTION OF PRIVACY 

Privacy and security are inextricably linked; any of the above requirements might 
have an impact on privacy protection. This paragraph is necessary because it covers 
various security requirements that were not enclosed in earlier subsets. 

In smart city situations, subtle data leaks, whether deliberate or not, are the major 
source of confidentiality breaches, adding to other shared damages such as pack capture 
in message, malware in mobile plans and apps, server riding, and falsifying authorization. 

According to a 2017 poll, four types of data may be used to attack privacy, which 
covers a huge quantity of sensitive information about individuals. Appropriate and 
effective countermeasures, such as encryption, are required to prevent unwanted usage. 

11.7.5 SECURITY AND PRIVACY 

This section provides crucial visions into the present and upcoming skills used to 
address safety and confidentiality issues in the smart city setting. 
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11.7.6 CRYPTOGRAPHY 

Cryptographic procedures are the foundation of safety and confidentiality defense 
for smart application facilities since they prevent unauthorized parties from ac-
cessing data along the information lifetime cycle of storage, dispensation, and 
distribution. In this section, we describe the existing cryptanalytic gears used in 
smart designs while also highlighting some unique and interesting facts. 

11.7.7 BLOCKCHAIN 

Even though the blockchain approach is a skill rather than a punishment, we 
utilize this part to present it due to the significant increase in interest in recent 
years. Christidis et al. conducted a comprehensive assessment on this subject 
in 2016, confirming the feasibility of using blockchain in the IoT area and in-
dicating its substantial request value in developing IoT bionetworks, as shown 
in Figure 11.13. 

11.7.8 BIOMETRICS 

Biostatistics are usually used for verification in IoT-based systems. This skill may 
be used to recognize a person automatically based on their unique behavioral 
and biological traits. Fingerprints, faces, voices, handwritten signatures, and other 

FIGURE 11.13 Application of blockbhain in smart cities.    
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biometrics are used to extract biometric data. Brainwave-based authentication is one 
approach worth noting here since it can reach a high level of authentication ac-
curacy while also ensuring efficiency. 

11.7.9 DATA MINING 

Machine learning skills have been secondhand to increase the performance of 
interruption discovery designs, which is one used safety substructures to defend 
networks from assaults, based on current actual conditions. Wireless service 
networks (WSNs), a critical constituent of the smart world, are gaining popu-
larity. In a detailed review, three benefits of using machine learning technology to 
protect WSNs were identified, as well as a summary of several machine learning 
techniques. 

11.7.10 ONTOLOGY 

Ontology has been highlighted as a viable method for addressing diverse difficul-
ties, particularly for formless data, information, and customizable designs, and is 
one of the major disciplines of philosophy. Ontology is used to better comprehend, 
characterize, and reuse certain officially documented information, as well as to hunt 
for new information and separate discrepancies. 

11.7.10.1 Supplements Without a Technical Connection 
Protection cannot be achieved just via the use of technical solutions. Existing 
technological limits can be reduced by strengthening relevant legislation, regula-
tion, governance, and education, among other things. According to [13], effective 
governance is essential for the development of a dependable smart system. 
Walravens suggested that governments must carefully assess whether data may be 
opened and who has access to the data. Likewise, Batty et al. stated that within a 
smart city architecture, government-enforced policies necessitate secure data and 
perfect expansion. 

11.8 FUTURE PROSPECTS 

We looked at existing data security protection measures for smart cities. A flood 
of innovative responses has been created in a range of fields in recent years. 
However, based on previous hazards and security requirements, it’s reasonable 
to expect that more efficient security measures will be required to keep up with 
the growing popularity of smart cities. Based on our analysis, the following 
things represent future prospects and research paths, as shown in Figure 11.14. 

11.8.1 IOT-BASED NETWORK SECURITY 

The IoT can be thought of as a network of networks that connects and integrates 
heterogeneous networks. To deal with the newest issues in this sort of complicated 
environment, more effective solutions are required. 
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11.8.2 FOG-BASED SYSTEMS 

Fog-based structures, as a novel skill for implementing smart cities, provide sig-
nificant security issues since discrete fog arrangements’ operating systems are more 
susceptable to assaults than central clouds. 

11.8.3 PROTECTION METHODS THAT ARE USER-CENTRIC AND PERSONALIZED 

Customers must have the ability to remove or change data from one service pro-
vider to another at any time in user-centric smart cities. Also, people’s preferences 
for security and privacy must be taken into account, as attitudes and requirements 
differ from person to person. 

11.8.4 COMPLEMENTARY THEORY 

Smart applications are being discussed worldwide, and practically every gov-
ernment is working on smart initiatives. However, there is no universally ac-
cepted architecture for a smart city. As a consequence, most current security 
protection mechanisms and network protocols are focused on a specific place, 
making it difficult to combine or distribute them during the whole urban planning 
ecosystem. As a result, more theoretical research is needed to reduce the barriers 
to smart city security. 

11.9 CONCLUSION 

The rising use of smart applications has resulted in several security and privacy 
issues. The development of increasingly complicated protection frameworks is vital 
and in short supply in both business and academic realms. Motivated by these 
concerns, we investigated current countermeasure initiatives and developments 
from a variety of perspectives. In order to provide the basis for further studies, we 
also looked at current problems and unresolved difficulties that have developed in 
recent years. A range of defensive tactics and procedures have been developed in 
recent years. Nevertheless, there is also a long gap in terms of addressing the 
varying security requirements of these rapidly changing smart proposals. It is 

FIGURE 11.14 Important things for smart cities.    
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realistic to expect that in the future, minimizing the issues will be the major focus of 
the government. The disruption of the IoT and new communication technologies 
will enable a substantial decrease in global energy usage, and with it, our en-
vironmental effect and carbon footprint, in the next few years. It will be a huge step 
forward for cities in terms of sustainability and resource optimization in the face 
of the projected super-population challenge in the next 30 years. 

We are on the verge of entering a new digital era in which the sensory world will 
play a more important role in our daily lives. 

REFERENCES  

[1] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “Phy-layer spoofing detection with 
reinforcement learning in wireless networks,” IEEE Transactions on Vehicular 
Technology, vol. 65, no. 12, pp. 10037–10047, 2016.  

[2] X. Liu, K. Liu, L. Guo, X. Li, and Y. Fang, “A game-theoretic approach for 
achieving k-anonymity in location-based services,” in INFOCOM, 2013 
Proceedings IEEE. IEEE, 2013, pp. 2985–2993.  

[3] M. Kearns, M. Pai, A. Roth, and J. Ullman, “Mechanism design in large games: 
Incentives and privacy,” in Proceedings of the 5th conference on Innovations in 
theoretical computer science. ACM, 2014, pp. 403–410. 

[4] L. Xu, C. Jiang, Y. Chen, Y. Ren, and K. R. Liu, “Privacy or utility in data col-
lection? a contract theoretic approach,” IEEE Journal of Selected Topics in Signal 
Processing, vol. 9, no. 7, pp. 1256–1269, 2015. 

[5] Z. Anwar Razzaq, H. F. Ahmad, K. Latif, and F. Munir, “Ontology for attack de-
tection: An intelligent approach to web application security,” Computers & Security, 
vol. 45, pp. 124–146, 2014.  

[6] A. Mozzaquatro, R. Jardim-Goncalves, and C. Agostinho, “Towards a reference 
ontology for security in the internet of things,” in Measurements & Networking 
(M&N), 2015 IEEE International Workshop on. IEEE, 2015, pp. 1–6. 

[7] M. Tao, J. Zuo, Z. Liu, A. Castiglione, and F. Palmieri, “Multi-layer cloud archi-
tectural model and ontology-based security service framework for IoT-based smart 
homes,” Future Generation Computer Systems, vol. 1, pp. 1–10, 2016.  

[8] M. Mohsin, Z. Anwar, F. Zaman, and E. Al-Shaer, “Iotchecker: A data-driven 
framework for security analytics of internet of things configurations,” Computers & 
Security, 2017.  

[9] S.-H. Kim, I.-Y. Ko, and S.-H. Kim, “Quality of private information (copy) model 
for effective representation and prediction of privacy controls in mobile com-
puting,” Computers & Security, vol. 66, pp. 1–19, 2017.  

[10] O.-J. Lee, H. L. Nguyen, J. E. Jung, T.-W. Um, and H.-W. Lee, “Towards ontological 
approach on trust-aware ambient services,” IEEE Access, vol. 5, pp. 1589–1599, 2017.  

[11] R. Kitchin, “Getting smarter about smart cities: Improving data privacy and data 
security,” 2016.  

[12] G. Xu, Y. Cao, Y. Ren, X. Li, and Z. Feng, “Network security situation awareness 
based on semantic ontology and user-defined rules for the internet of things,” IEEE 
Access, vol. 5, pp. 21046–21056, 2017.  

[13] Meijer and M. P. R. Bolívar, “Governing the smart city: A review of the literature 
on smart urban governance,” International Review of Administrative Sciences, 
vol. 82, no. 2, pp. 392–408, 2016.  

[14] N. Walravens, “Mobile business and the smart city: Developing a business 
model framework to include public design parameters for mobile city services,” 

Security and Privacy                                                                               249 



Journal of Theoretical and Applied Electronic Commerce Research, vol. 7, no. 3, 
pp. 121–135, 2012.  

[15] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. 
Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the future,” The 
European Physical Journal Special Topics, vol. 214, no. 1, pp. 481– 518, 2012.  

[16] S. Misra, M. Maheswaran, and S. Hashmi, Security Challenges and Approaches in 
the Internet of Things. Springer, 2017.  

[17] W. Hurst, N. Shone, A. El Rhalibi, A. Happe, B. Kotze, and B. Duncan, “Advancing 
the micro-ci testbed for IoT cyber-security research and education,” Cloud 
Computing, vol. 2017, p. 139, 2017.  

[18] N. Aleisa and K. Renaud, “Yes, I know this IoT device might invade my privacy, 
but I love it anyway! a study of Saudi Arabian perceptions,” 2017.  

[19] C. Perera, R. Ranjan, L. Wang, S. U. Khan, and A. Y. Zomaya, “Privacy of big data 
in the internet of things era,” IEEE IT Special Issue Internet of Anything, vol. 6, 
pp. 15–27, 2015.  

[20] Z. Yan, P. Zhang, and A. V. Vasilakos, “A survey on trust management for internet 
of things,” Journal of Network and Computer Applications, vol. 42, pp. 120–134, 
2014.  

[21] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community: An 
internet of things application,” IEEE Communications Magazine, vol. 49, no. 11, 
2011.  

[22] L. Brandimarte Acquisti, and G. Loewenstein, “Privacy and human behavior in the 
age of information,” Science, vol. 347, no. 6221, pp. 509–514, 2015.  

[23] C. McCormick Perera, A. K. Bandara, B. A. Price, and B. Nuseibeh, “Privacy-by- 
design framework for assessing internet of things applications and platforms,” in 
Proceedings of the 6th International Conference on the Internet of Things. ACM, 
2016, pp. 83–92. 

[24] K. Xu, Y. Qu, and K. Yang, “A tutorial on the internet of things: From a hetero-
geneous network integration perspective,” IEEE Network, vol. 30, no. 2, pp. 102–108, 
2016.  

[25] V. Angelakis, E. Tragos, H. C. Pöhls, A. Kapovits, and A. Bassi, Designing, 
Developing, and Facilitating Smart Cities: Urban Design to IoT Solutions. Springer, 
2017. 

[26] Z.-K. Zhang, M. C. Y. Cho, and S. Shieh, “Emerging security threats and coun-
termeasures in it,” in Proceedings of the 10th ACM Symposium on Information, 
Computer, and Communications Security. ACM, 2015, pp. 1–6.  

[27] A.-S. K. Pathan Abduvaliyev, J. Zhou, R. Roman, and W.-C. Wong, “On the vital 
areas of intrusion detection systems in wireless sensor networks,” IEEE 
Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1223–1237, 2013.  

[28] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis-a system for knowledge- 
driven adaptable intrusion detection for the internet of things,” in 2017 IEEE 
37th International Conference onDistributed Computing Systems (ICDCS). IEEE, 
2017, pp. 656–666.  

[29] K. Xynos, I. Sutherland, and A. Blyth, “Effectiveness of blocking evasions in 
intrusion prevention system,” University of South Wales, pp. 1–6, 2013.  

[30] J. Wu, K. Ota, M. Dong, J. Li, and H. Wang, “Big data analysis based security 
situational awareness for smart grid,” IEEE Transactions on Big Data, vol. 10, 
pp. 243–253,2016.  

[31] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity 
in private data analysis,” in TCC, vol. 3876. Springer, 2006, pp. 265–284.  

[32] L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: 
privacy and data mining,” IEEE Access, vol. 2, pp. 1149–1176, 2014. 

250                                          Internet of Things and Cyber Physical Systems 



[33] N. Kumar Dua, A. K. Das, and W. Susilo, “Secure message communication protocol 
among vehicles in smart city,” IEEE Transactions on Vehicular Technology, 
vol. 10, pp. 34–45, 2017.  

[34] Abdallah and X. Shen, “A lightweight lattice-based homomorphic privacy- 
preserving data aggregation scheme for smart grid,” IEEE Transactions on Smart 
Grid, vol. 6, pp. 30–37, 2016.  

[35] R. Li, T. Song, N. Capurso, J. Yu, J. Couture, and X. Cheng, “IoT applications on secure 
smart shopping system,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1945–1954, 
2017.  

[36] M. S. Dousti and R. Jalili, “An efficient statistical zero-knowledge authentication 
protocol for smart cards,” International Journal of Computer Mathematics, vol. 93, 
no. 3, pp. 453–481, 2016.  

[37] S. S. Kanhere Dorri, R. Jurdak, and P. Gauravaram, “Blockchain for IoT security 
and privacy: The case study of a smart home,” in 2017 IEEE International 
Conference on Pervasive Computing and Communications Workshops (PerCom 
Workshops). IEEE, 2017, pp. 618–623.  

[38] H. Cruickshank Lei, Y. Cao, P. Asuquo, C. P. A. Ogah, and Z. Sun, “Blockchain- 
based dynamic key management for heterogeneous intelligent transportation sys-
tems,” IEEE Internet of Things Journal, vol. 21, pp. 21–56, 2017. 

[39] H.-S. Choi, B. Lee, and S. Yoon, “Biometric authentication using noisy electro-
cardiograms acquired by mobile sensors,” IEEE Access, vol. 4, pp. 1266–1273, 
2016. 

[40] Z. Mahmood, H. Ning, and A. Ghafoor, “Lightweight two-level session key manage-
ment for end-user authentication in the internet of things,” in 2016 IEEE International 
Conference on Internet of Things (iThings) and IEEE Green Computing and 
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing 
(CPSCom) and IEEE Smart Data (SmartData). IEEE, 2016, pp. 323–327.  

[41] N. Li, D. Liu, and S. Nepal, “Lightweight mutual authentication for IoT and its 
applications,” IEEE Transactions on Sustainable Computing, vol. 6, pp. 11–21, 
2017.  

[42] M. S. H. Talpur, M. Z. A. Bhuiyan, and G. Wang, “Shared–node IoT network 
architecture with ubiquitous homomorphic encryption for healthcare monitoring,” 
International Journal of Embedded Systems, vol. 7, no. 1, pp. 43–54, 2014. 

[43] Jabbar and S. Najim, “Using fully homomorphic encryption to secure cloud com-
puting,” Internet of Things and Cloud Computing, vol. 4, no. 2, pp. 13–18, 2016. 

[44] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of inter-
active proof systems,” SIAM Journal on Computing, vol. 18, no. 1, pp. 186–208, 
1989.  

[45] Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet 
of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016. 

[46] Biswas and V. Muthukkumarasamy, “Securing smart cities using blockchain tech-
nology,” in High-Performance Computing and Communications, 2016, pp. 1392–1393.  

[47] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software-defined fog node based 
distributed blockchain cloud architecture for IoT,” IEEE Access, vol. 9, pp. 23–33, 
2017.  

Security and Privacy                                                                               251 



http://taylorandfrancis.com
http://taylorandfrancis.com


12 Network Vulnerability 
Analysis for Internet of 
Things (IoT)-based 
Cyber Physical Systems 
(CPS) Using Digital 
Forensics 

J. E. T. Akinsola, F. O. Onipede, S. O. Osonuga,  
S. O. Abdul-Yakeen, R. O. Olopade,  
A. O. Eyitayo, and H. A. Badmus  
First Technical University, Nigeria    

CONTENTS  

12.1 Cyber Physical System...............................................................................254  
12.1.1 Areas of Application of Cyber Physical Systems in Different 

Domains........................................................................................255  
12.1.2 Digital Forensics...........................................................................256  

12.1.2.1 Benefits of Digital Forensic ........................................257  
12.1.2.2 Drawbacks of Digital Forensics..................................258  

12.1.3 Areas of Application of Cyber Forensics....................................258  
12.1.4 Network Forensics........................................................................259  

12.1.4.1 Network Forensic Tools ..............................................260  
12.1.4.2 Network Forensics Challenges....................................262  

12.1.5 IoT and CPS Vulnerabilities........................................................263  
12.1.5.1 Vulnerabilities of Booting Process .............................263  
12.1.5.2 Exploitation of Hardware ............................................263  
12.1.5.3 Exploitation of Chip-Level..........................................264  
12.1.5.4 Hash Function, Encryption, and Authentication 

Implementations...........................................................264  
12.1.5.5 Backdoors in Remote Access Channels .....................264  
12.1.5.6 Exploitation of Software .............................................264 

DOI: 10.1201/9781003283003-12                                                                  253 

https://doi.org/10.1201/9781003283003-12


12.1.6 Attacks on the IoT and CPS........................................................265  
12.1.6.1 Steps in Preventing Against Attack ............................265  
12.1.6.2 Classes of Attack and Vulnerabilities on CPS...........266  

12.1.7 Network Vulnerability on IoT-Based CPSs ................................266  
12.1.7.1 Denial of Service (DoS)..............................................268  
12.1.7.2 Eavesdropping..............................................................268  
12.1.7.3 Replay Attack ..............................................................268  
12.1.7.4 Sybil Attack .................................................................268  
12.1.7.5 Sinkhole Attack ...........................................................268  
12.1.7.6 Man-in-the-Middle Attack...........................................268  
12.1.7.7 Traffic Analysis ...........................................................269  

12.2 Literature Review.......................................................................................269  
12.2.1 Forensic Analysis .........................................................................269  

12.2.1.1 Types of Computer Forensics .....................................270  
12.2.1.2 Forensics Analysis Methodology................................271  

12.2.2 Related Work................................................................................272  
12.3 Materials and Methods...............................................................................273  

12.3.1 Forensic Analysis Framework .....................................................273  
12.3.2 Wireshark......................................................................................275  
12.3.3 TCPDump.....................................................................................275  

12.4 Results and Discussion of Findings...........................................................278  
12.4.1 Digital Forensic Analysis Using Wireshark................................278  
12.4.2 Digital Forensic Analysis Using TCPDump ...............................280  

12.5 Comparison of Wireshark and TCPDump Forensic Analysis ..................280  
12.6 Conclusions and Recommendations ..........................................................281 
References..............................................................................................................281   

12.1 CYBER PHYSICAL SYSTEM 

Cyber physical system (CPS) refers to the systems developed to perform some 
actions or work that are performed by humans in order to reduce the stress of 
carrying out a task and also to perform a task in an accurate and timely manner. 
These systems have the competency to interrelate with humans with the help of the 
built-in computational and physical competencies. In other words, a CPS is an 
advancement in technology that involves creating a human-like system to act on 
behalf of humans. These systems were created to reduce the effort being done by 
human beings. These systems have the characteristic of increasing the world of 
technology with the help of computation (Baheti & Gill, 2011). 

CPSs involve the interrelation of software and physical components in order 
to perform functions on various aspects. Development of CPSs requires different 
knowledge domains, which include computation, automation, mechatronics, etc. 
It also involves the use of different algorithms on computer systems to perform 
human tasks in a very easy and less time-consuming manner (Wikipedia, 2021). 
CPSs are beneficial in diverse areas such as engineering, medical applications, 
and airline systems. Health monitoring systems, industrial control systems, and 
autonomic pilot avionic systems are some of the examples of CPSs. There are 
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different components that make up a CPS. They are communication, computation, 
and controls. Figure 12.1 gives the diagrammatic representation of the components 
of a CPS. 

12.1.1 AREAS OF APPLICATION OF CYBER PHYSICAL SYSTEMS IN  

DIFFERENT DOMAINS 

CPSs have been beneficial in many application domains. They perform different 
works in an efficient and reliable way. The following are areas in which CPSs have 
been useful (Vanderbilt School of Engineering, 2022):  

i. Agriculture: CPSs have been applied in the agricultural domain to make 
the production of agricultural products more effective. They also involve 
the innovation of sensors to agricultural machinery to work on the soil. 
This sensor can detect the type of soil and its characteristics in order to 
determine the best soil to use for the planting process.  

ii. Security: As technology increased, so did fraud. CPSs can be applied to 
protect technology from easy penetration. An example of a CPS for se-
curity purposes is the alarm installed in most organizations that signals if 
an intruder is trying to break into the organization. With the improvement 
of innovative technologies, a lot of devices that are computational with 
networking as well as sensing power are connected to each other with the 

FIGURE 12.1 Components of a cyber physical system: computation, communication, 
control, and the connection between the components, which is information.    
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communication process, which gives rise to many trust and security 
concerns (Kaushik & Singh, 2020).  

iii. Medical: CPSs have caused great advancements in the field of medicine. 
CPSs can be used to examine patients; for example, a CPS can be used to 
determine how a cancer patient is responding to medical treatments. This 
reduces the effort of medical personnel in examining the health condition 
manually. CPSs will also help in the medical field to get accurate diag-
nostic results. They have also helped some machines to provide treat-
ments to patients. IoT devices that have the ability to handle a large 
number of problems like scalability, reliability, as well as security, are 
pervasive in the system of healthcare and are called smart gateways 
(Kaushik et al., 2021).  

iv. Industries: In industries today, many things that were done manually and 
consumed a lot of effort and time have been automated with the use and 
knowledge of CPSs. Many industries today use automatic doors. Censors 
are mounted to the doors, which sense the arrival of a person, and the door 
automatically opens without any effort.  

v. Automobiles: Development has been made to the automotive industry 
using the knowledge and ideas of CPSs. In the United State, censors 
are used to monitor collisions, lane departures, and the likes. These 
sensors sense danger and warn the driver in order to reduce the risk of 
accidents. 

12.1.2 DIGITAL FORENSICS 

In the modern world, the computer has been used to facilitate and enhance the work 
of human beings in order to perform some tasks effectively and in a timely manner. 
The introduction of these modern computers has resulted into a high rate of criminal 
cases. Many criminals now take advantage of these new technologies to improve 
the rate of criminal offenses. They indulge in this because they believe it is difficult 
for them to be caught and punished for their offense. This led to the creation of 
new ways to track computer-based criminal offenses, known as digital forensics 
(Reith et al., 2002). 

Digital forensics is a method that involves investigation and getting con-
firmation of digital criminal offences. It involves the use of scientific procedures 
that are consistent with actions for the purpose of tracing criminal cases. The 
procedures may involve identification, gathering, and documentation of proof of 
digital-based criminality (Reith et al., 2002). Digital forensics, in other words, 
can be defined as a security means for protecting all computer-based devices, 
such as mobile phones, digital cameras, flash drives, etc. The IoT plays a lot of 
roles in digital forensics by making it useful in all areas of computer forensics 
(Kaushik et al., 2022). 

Computer forensics is synonymous with digital forensics. Computer forensics 
can be defined as a way of getting statistical details about an intruder off a com-
puter, whereas digital forensics can be used to get evidence about invaders off all 
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digital devices that serve the purpose of data repository (HowStuffWorks, 2000). 
Smart computing paradigms can be employed for forensic results analysis. 

The usage of social networking, microblogging, photo sharing, and video 
sharing applications has brought about loss of values and disrespect for human 
dignity (Akinsola, Awodele, et al., 2021). Cybercrimes and other social vices 
are initiated through these applications, and this has called for serious attention. 
The pervasiveness of cybercrime in the world portends to destroy the most im-
portant component of the essence of human existence – peace (Balogun et al., 
2019). There are various phases or procedures to follow when investigating cy-
bercrimes using the knowledge of digital forensics. There are basically four distinct 
phases of digital forensics, which are acquisition, identification, evaluation, and 
admission (Patil & Kapse, 2015). Figure 12.2 gives the visual presentation of the 
four distinct phases of digital forensics.  

i. Acquisition phase: This is the first phase of digital forensics. It involves 
gathering or collecting evidence in a proper way. This evidence must be 
approved by the authority.  

ii. Identification phase: This is the next phase after acquisition. This phase 
aims at detecting the digital component using evidence from the acqui-
sition phase. This is later converted to human readable form to ease the 
understating of humans.  

iii. Evaluation phase: In the evaluation phase, the components that were 
detected are checked against the evidence in the first phase to assure 
conformity.  

iv. Admission phase: The admission phase involves the exhibition of the 
gathered proofs in court. 

12.1.2.1 Benefits of Digital Forensic 
The following are the advantages of digital forensics (Guru99, 2022): 

FIGURE 12.2 Phases of digital forensics, which include collection, examination, analysis, 
and reporting.    
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i. Reliability: Digital forensics makes the user of a computer system put 
more trust in the computer system as it provides all means of catching any 
intruder.  

ii. Apprehending information: Digital forensics makes it possible for an 
organization to get useful information about any invader, which can be 
used as evidence in a court of law. 

iii. Protection: It can be used for security purposes to protect the organiza-
tion from any forms of fraud. 

12.1.2.2 Drawbacks of Digital Forensics 
The following are the drawbacks of digital forensic (Guru99, 2022):  

i. Prosecution of criminal: Any criminal cases that have been traced with 
digital forensics might not allow the main invader to be given the de-
served punishment.  

ii. Lack of technical knowledge: Evidence from digital forensics cannot be 
understood by a jury who has no technical knowledge about the domain.  

iii. Any evidence that is derived using tools that are not up to standard can be 
disregarded in the court of law. 

Cyber forensics is the process of analyzing and creating solutions to data or in-
formation that have been affected by an attack. Many Information Technology 
(IT) departments deal with a large amount of data. These data need to be pro-
tected from hackers. If there is any attack on the data, cyber forensics is in-
troduced to analyze and create a solution to retrieve the exposed data. It is a way 
to get rid of a disturbing action that prevents the main functionality (Katz, 2008). 
Hacking and denial of service has become widespread in society. Cyber forensics 
can be used to combine information about these problems and analyze the 
gathered information. This analyzed information is used as evidence in a court of 
law. Cyber forensics is the intersection between the domain of law, military, and 
industry (Vidas, 2006). Cyber forensics acquires information about the attacked 
system. Necessary procedures are carried out such as information gathering, 
analysis of the information, and documentation (Katz, 2008). This documentation 
is used in a court of law as evidence for the detected attack. The approved evi-
dence in the court of law will be used in the military department to punish the 
criminal based on his/her offences. Figure 12.3 below gives the visualization of 
the three domains in cyber forensics. 

12.1.3 AREAS OF APPLICATION OF CYBER FORENSICS 

According to the authors (Ademu & Imafidon, 2012), as technology improves, the 
devices are also exposed to unnecessary attacks such as denial of service (DoS), 
introduction of viruses, hacking, etc. These vulnerabilities cause great losses to the 
organization. In order to reduce these defects, the use of cyber forensics is adopted 
to analyze and track the criminals involved in these cybercrimes. The following are 
the areas where it can be applied: 
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i. Embedded system: Embedded systems such as smart cards, smart-
phones, and other systems that contain information may be open to threat. 
Cyber forensics can be used to break down the attacked system, and 
evidence can be mined from it.  

ii. Communication system: The systems that are used for easy interaction 
between people from different places can also be used to generate in-
formation about cybercrimes using cyber forensics. Human computer 
interaction (HCI), also known as man-machine interaction or interfacing 
(MMI), has resulted in various improvements and has therefore made 
devices smart (Alao et al., 2019). This, in turn, has created a lead-way for 
cyber criminals.  

iii. Open source system: cyber forensic can use the open system which is 
a combination of hardware, software, and server as source of infor- 
mation. These open systems have the features of increasing repository of 
information. 

12.1.4 NETWORK FORENSICS 

One of the most important things for some organizations today is network 
forensics due to its ability to learn about intruder attack details from similar 
attacks and prevent future attacks. Network forensics is a network security 
extension model that emphasizes traditional network attack detection as well as 

FIGURE 12.3 Tripod of digital forensic science showing its three domains that cyber 
forensics cuts across and their areas of application; law enforcement which is applicable to 
court, information welfare which is applied in military operation, and critical infrastructure 
protection which is applied in business and industry.    
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prevention (Almulhem, 2010). The various forms of sniffing techniques used 
in gathering data have brought about legal concerns, privacy concerns, and 
ethical dilemmas to determine the security vulnerabilities usually exploited by 
hackers while employing forensic analysis methodology. Nonetheless, the 
availability of enormous data through sniffing techniques can be efficiently 
analyzed for mitigating security vulnerabilities using forensic analysis tools 
such autopsy, FTK imager, and Encase. Intelligent user interface needs to be 
incorporated into the forensic analysis tool to examine cyber threats effectively 
(Akinsola, Akinseinde, et al., 2021). 

Due to the wide range in the usage of the Internet, network forensics has 
become a major part of computer forensics. Network forensics captures, ana-
lyzes, and records events on the network for evidential information discovery 
about the security attack source (Meghanathan et al., 2010). Network forensics 
can also be defined as practices that are proven scientifically for fusing, ex-
amining, analyzing, and identifying as well as digital evidence documentation 
from actively processing multiple as well as digital sources with the aim of 
exposing related facts for the determined, planned, and successful evaluation of 
unauthorized activities that are meant to corrupt, compromise, and disrupt 
components of a system and provision of information to render assistance in 
response to and recovery from these activities (Pilli et al., 2010). To ensure 
reproducible and accurate evidence of network forensics, the OSCAR method of 
network forensics is used. The acronym OSCAR stands for (Qureshi et al., 
2021): (Figure 12.4)  

i. O for obtaining information  
ii. S for strategizing  

iii. C for collecting evidence  
iv. A for analyzing evidence  
v. R for reporting 

12.1.4.1 Network Forensic Tools 
These are tools used in carrying out investigations on networks for gathering 
critical information on the activity of intrusion. Analyzing of traffic on the net-
work is done using network forensics tools for the nature as well of the type 

FIGURE 12.4 OSCAR method of network forensics which is obtaining information, 
strategizing, collecting evidence, analyzing evidence, and reporting.    
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identification of the attack within the network in a duration that is specific. These 
tools are developed for compatibility with hardware devices of the network, for 
example, firewalls that make preservation as well as collection of traffic on the 
network possible (Qureshi et al., 2021). The tools used in network forensics are 
discussed below. Various types of network analysis discussed in this research is 
shown in Figure 12.5. 

12.1.4.1.1 Fidelis XPS 
This type of network forensics tool is used for recording an interesting session of 
traffic on the network as well as capturing that traffic. Reduction in cost, response 
that is automatic, alertness that is proactive, bandwidth increment, visualization of 
real-time results, as well as granular control are provided by this network forensic 
tool. It brings about information that is sensitive in communication through mal-
icious communication guiding as well as payload collected by systems that are 
compromised, which is information based (Khan et al., 2016) 

12.1.4.1.2 Wireshark 
This tool was developed for filtering, analyzing, as well as capturing traffic on the 
network. It is a graphical user interface (GUI) that is open source that can be used 
easily as well as help with network forensic analyzing. It has more capabilities of 
filtering packets, features of protocol decoding, as well as packets detail markup 
language (PDML). Viewing packets of network is easier and possible as they are 
captured in real time, and the tool also shows the lost pocket results because of the 
power of the CPU (Qureshi et al., 2021). 

FIGURE 12.5 Network forensic tools such as Fidelis XPS, Wireshark, NetDetector, 
Ethereal, Dumpcap and TCPDump.    
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12.1.4.1.3 NetDetector 
It is a full-featured tool used in network forensic, which was built on the archi-
tecture of NIKSUN’s Alpine. This tool is based on anomaly discovery of statistics, 
which is combined with an intrusion detection system that is based on signature, 
rebuilding of full application, decoding of packet level, and so on. The user is alerted 
about the breaches of security, and the tool takes measures that are preventive, for 
example, blockage of malicious traffic from getting access to the system. Application 
as well as session reconstruction, analysis of multi-timescale, as well as capturing of 
traffic on the network, intelligent security for big data, scheduled and ad hoc reporting 
as well as anomaly identification in addition to signature-based integration are the 
characteristics of this network forensic tool (Joshi & Pilli, 2016). 

12.1.4.1.4 Ethereal 
It is a tool that is commonly used for analyzing packets on the network. It is 
open-source network forensic software for capturing live packets on the network. 
The information about the packet captured is displayed on the headers of all pro-
tocols used in the all-captured packet transmission. Packets are filtered depending 
on the requirements of the user. This tool allows packet search using some speci-
fications (Meghanathan et al., 2010). 

12.1.4.1.5 Dumpcap 
This is a network traffic analysis tool (NTST) that was developed for data 
packets capturing. It is a distribution tool of Wireshark, which arises in com-
mand line. Traffic is captured from a network that is live as well as fortified to 
write the result in a paging file format. It has the merit of fewer resources of the 
system usage, which makes it possible for capture abilities boosting (Qureshi 
et al., 2021). 

12.1.4.1.6 TCPDump 
It is a common command line tool that is available for analyzing as well as cap-
turing traffic on the network. It is based primarily on Unix systems. Capturing of 
traffic as well as storing of the output in a file that is compatible with TCPDump, 
such as Wireshark, for analyzing further is possible using this tool. It can be used 
both for capturing traffic on the network continuously in volumes that are large or 
on fast packet capture for troubleshooting for carrying out analysis in the future. 
This tool also has the ability to use filters in addition to its capability to capture a 
large amount of traffic that is unnecessary avoidance as well as to capture only the 
interested traffic (Srin, 2021). 

12.1.4.2 Network Forensics Challenges 
A major network forensics challenge is ensuring whether the network is ready 
forensically or not. The network must be infrastructurally equipped for a successful 
investigation of the network to support this investigation fully. The infrastructure 
should ensure that the needed data exist for a full investigation (Almulhem, 2010). 
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Some of the major challenges of network forensics are discussed and shown 
in Figure 12.3. 

12.1.4.2.1 Sources of the Data 
Unprocessed packets of the network as well as network services and device records 
are several network data sources. In an ecosystem that consists of a large infra-
structure of the network, the option to collect data from all sources is not always 
feasible. Therefore, selection of sources of data where good coverage of the net-
work is provided is a decision that is important as well as making the process of 
collection practical (Almulhem, 2010). 

12.1.5 IOT AND CPS VULNERABILITIES 

There is significant increase in IoT as well as CPS evolvement due to their ability 
to provide convenience for the industrial production as well as their customers. 
IoT devices perform an important role in the modern age when devices that are 
conventional become smart as well as independent (Dhar Dwivedi et al., 2021). 
Interconnection between different things is leading to many problems in relation 
to privacy as well as security of the IoT platform. Many electronic businesses as 
well as retail stores depend on solutions that are IoT based for their everyday 
marketing, promotions, sales, as well as productivity (Kaushik & Dahiya, 2018). 
Although the IoT as well as CPSs have some challenges that are new, security is a 
main concern. The IoT and CPS are suffering from various widespread flaws in 
security, which is security vulnerabilities, and it ranges the gamut full of faults, 
from an intruder having the ability to get access to crucial information to having 
full control of the system. The CPS is even suffering from this fault with greater 
consequences due to its growth in infrastructure dependence. Vulnerabilities for 
the IoT and CPSs are vulnerabilities of the booting process, the hash function, 
encryption, as well as authentication implementations, hardware exploitation, 
chip-level exploitation, backdoors in remote access channels, and software ex-
ploitation (Ly & Jin, 2016). 

12.1.5.1 Vulnerabilities of Booting Process 
The booting sequence process can be altered by boot process vulnerability injection, 
and many operations can be interrupted. The initial command in the device is 
usually interrupted or hackers are tempted to reject the complete process 
(Prathibanandhi et al., 2020). It is a component that is commonly targeted in attacks 
because it is the root of trust and the device’s operation starting point, and any 
attacks that successfully gain access to this component have the capability to control 
anything that happens in a stage of operation that is subsequent (Ly & Jin, 2016). 

12.1.5.2 Exploitation of Hardware 
Development as well as advancement in devices that are wearable using IoT 
techniques makes things easier for patients who have some disease issues in 
healthcare. Some properties are used in manufacturing those devices that make 
them an approved part of the human’s body (Pradeep & Sharma, 2020). This is 
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the critical level, and it’s mostly overlooked by designers for whom security at 
the firmware or software level is their main concern. These attacks depend on the 
hardware itself, which mostly includes some strategies like looking for debugging 
ports left exposed by designers, external flash memories modification, address 
lines glitching, and so on, which thereby causes potential threats to models built 
on the IoT-CPS (Ly & Jin, 2016). A well-articulated Software Development Life 
Cycle (SDLC) model (Adeagbo et al., 2021) with dynamic runtime analysis 
will help forestall the hardware loophole (Akinsola, Ogunbanwo, et al., 2020). 
Modeling and analytic approaches may be used to evaluate the performance of 
hardware, systems, and software (Akinsola, Kuyoro, et al., 2020) so that critical 
parts are not overlooked in the design. 

12.1.5.3 Exploitation of Chip-Level 
These attacks occur mostly in the IoT-CPS chip. Devices built on IoT-CPS depend on 
the chip for operation. The complete system is alleviated, and security threats are 
posed to devices that are connected to the Internet (Prathibanandhi et al., 2020). 
Exploitation of chip-level includes invasive as well as semi-invasive on the chip itself, 
and these are serious threats to smart devices that depend on the boot sequence’s trust, 
which relies on the chip assets that are hardware for security (Ly & Jin, 2016). 

12.1.5.4 Hash Function, Encryption, and Authentication Implementations 
A lot of today’s attacks are generated from weak mechanisms of authentication. 
Strong mechanisms are imposed by system designs such as certificate based. Unless 
the credentials, such as keys, are stored safely, they can be an attack subject. As IoT 
devices are visible in public spaces, the attacker’s ability to recover credentials 
becomes an attack that is insignificant, and once the keys are recovered, the 
identities are compromised, preventing the properties of security afforded by any 
mechanism of encryption (Ly & Jin, 2016). 

12.1.5.5 Backdoors in Remote Access Channels 
Smart devices are now equipped with channels that allow for communication that is 
remote as well as debugging after manufacture for convenience sake. These 
channels are commonly used for upgrading over-the-air (OTA) firmware. Any in-
securities in the protocol used for upgrading OTA firmware would give the attacker 
control over the device firmware as well as full control over the device conse-
quently. In addition, producers may leave in APLs used during the development that 
would allow executing commands arbitrarily or it may lead improper commu-
nication channel security (Ly & Jin, 2016). 

12.1.5.6 Exploitation of Software 
General purpose computing software code is mostly reused in software stacks of 
smart device, which leads to transferring of any vulnerabilities in the existing code 
to the new code. Therefore, software patches can be used for prevention of these 
attacks. For example, stack overflow attacks in GNU C Library (glibc) and else-
where in the code base affect several devices in a smart house (Ly & Jin, 2016). 
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12.1.6 ATTACKS ON THE IOT AND CPS 

The IoT and CPS have been widely used in modern days to interchange data be-
tween devices and make connections. The IoT will continue to evolve and be 
used in a large scale (Butun et al., 2019). These technologies have been opened to 
different attacks during connection and data exchange due to their wide range 
of usage. The IoT has the challenge of poor security, which makes it easy for 
IoT-based devices to be prone to different attacks during communication and data 
exchange. The rate of risk associated with the IoT increases as it gets vulnerable 
and open to attack (Kandasamy et al., 2020). 

Attacks on the IoT can be grouped into active and passive attacks (Butun et al., 
2019). Active attack involves the hacker or attacker trying to intrude data or in-
formation that are exchanged between devices. Examples of this attack include 
masquerade attack, message modification attack, session hijacking attack, DoS, etc. 
On the other hand, passive attack involves the attacker working on data whereby the 
intruder is hidden and is hard to detect. In passive attack, the communication link is 
tapped in order to access useful information. The passive attack categories are node 
outage, node malfunctioning, eavesdropping, etc. 

IoT devices become vulnerable due to some reason (Kandasamy et al., 2020), 
such as inappropriate security measure, insecure software, composite design, etc. 

12.1.6.1 Steps in Preventing Against Attack 
Many researches have been learned how to prevent attacks on IoT-based devices. 
There are three steps to stop IoT-based device attacks. They are avoidance of attack, 
recognition of attacks ,and mitigation (Butun et al., 2019).  

i. Avoidance of attack: This step involves carrying out all activities to 
prevent devices from all forms of attacks. It is a way to make restrictions 
to external attacks. Once all prevention activities have been done, the 
device is said to be safe from external attackers, and all data transmissions 
are said to be secured. This method contains all activities that are to be 
done before an attack. These activities are done to repel external attacks 
and not internal attacks.  

ii. Recognition of attacks: This step is carried out to figure out all types of 
attacks on a device, in order to get solutions to the attack. Sometimes, 
prevention on a device might fail. Once this happens, this step is done to 
highlight all attacks on the device. The steps make use of devices known 
as intrusion detection systems (IDSs) to detect attacks and intrusion on the 
data on the device. Internal attacks are mostly detected in this step since 
they cannot be prevented in the above step, that is, avoidance of attacks.  

iii. Mitigation of detected attacks: This is the last step in preventing attacks 
and intrusion on IoT-based devices. It is intended to reduce or eradicate 
the detected attack on any device. When eradicating attacks on any de-
vice, the affected part of the device is deactivated. 
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12.1.6.2 Classes of Attack and Vulnerabilities on CPS 
CPSs are said to be vulnerable if they can be exposed to attacks. A CPS is open to 
attacks due to the various components, such as network technology and the physical 
system. These combinations are intended to improve the productivity of the devices. 
Contrarily attacks on the system cause the opposite, that is, reduce the effectiveness of 
the device (Sui et al., 2021). The device can be attacked through the physical com-
ponents such as input and output. Vulnerability of a CPS device is a symbol that the 
device is weak and is open to attack (Singh & Jain, 2018). Vulnerability can occur in 
hardware or software, or the device can have technical or network vulnerability:  

i. Hardware Vulnerability: This vulnerability indicates weakness in the 
hardware component. It can allow attackers to get into the device through the 
input and output devices. Finding these vulnerabilities is somewhat tedious.  

ii. Software vulnerability: This is the most vulnerable part of CPSs, which 
is common to most systems. It is the weakness that happens in the soft-
ware part of the device, such as the control software (e.g. devices driver), 
operating system, and application software.  

iii. Network Vulnerability: This is the integral weakness of CPSs. It is the 
combination of hardware, arrangement, and monitoring vulnerabilities.  

iv. Technical Vulnerability: It is a type of weakness that mostly occurs as a 
result of human feebleness. 

12.1.7 NETWORK VULNERABILITY ON IOT-BASED CPSS 

The IoT consists of many types of networks, including the wireless sensing network 
(WSN) as well as the Internet. The emergence of artificial intelligence has brought 
about disruptive technology, which has several pros and cons (Akinsola et al., 2022). 
Therefore, disruptive technology regulatory response must be institutionalized 
(Hinmikaiye et al., 2021). Different protocols and devices are used by different 
networks, which makes network attacks diverse. The most popular of all network 
attacks is DoS, which has the ability of exhausting resources of the network as well as 
affecting network service. Eavesdropping can be used to obtain patterns of commu-
nication as well as network traffic analyzing. A malicious agent can perform an attack 
after obtaining the pattern of communication, and the attack is known as replay attack. 
There are some specific attacks on the node of the network in which the attackers can 
gain access to information transmitted as well as gain network control, for example, 
man-in-the-middle attack, replay attack, as well as Sybil attack. A network attack has 
the ability to damage communication of the network through the use of network 
protocols and node vulnerabilities (Chen et al., 2018). Network vulnerability on IoT- 
based CPS is shown in Figure 12.7. 

A CPS is the combination of different components, that is, computer and physical 
systems in order to achieve an efficient operating process. IoT-based CPSs are devices 
that operate using network protocols (Prathibanandhi, 2020) to communicate with 
each other. IoT-based CPSs mostly work based on communication protocols, such as 
CoAP for flexible facility, DCCP to control network congestion, AMQP in business 
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application for message transfer, MQTT for bandwidth effectiveness, etc. Figure 12.6 
gives the graphical representation of IoT-based CPS architecture. In IoT-based CPSs, 
as they involve communication between devices, data transmission is most essential. 
The data involved in these devices are stored on the cloud. The security and privacy of 
these devices are not taken seriously. This makes the devices vulnerable and open to 
attack. Data in the device can be accessed by external entities (attackers). They either 
make changes to the data or intrude the privacy of users. 

The following are some of the attacks that can be launched against IoT-based 
CPSs: 

FIGURE 12.7 Network vulnerability on IoT-based CPS which are denial of service, 
eavesdropping, replay attack, sybil attack, sinkhole attack, man-in-the-middle attack, and 
traffic analysis.    

FIGURE 12.6 IoT-based CPS in industries with the connections between CPS and the IoS, 
which is connected directly to the Cloud/Server.    
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12.1.7.1 Denial of Service (DoS) 
It is a network attack that denies the mechanism of security to bypass it as well as 
uncover flaws of the system. It destroys security mechanisms and exploits un-
responsive networks (Mourtzis et al., 2019). User information that is unencrypted 
can be leaked, and it can combine several computers as a platform of attack as well 
as introduce DDoS attacks to one or more computers (Chen et al., 2018). 

12.1.7.2 Eavesdropping 
It gains usernames, node identifiers, passwords, as well as other useful data of 
the system (Millar, 2021). The device can be easily eavesdropped, especially in 
wireless communications. An attacker can record communication between tags as 
well as readers that are legitimate through the use of antenna in a RFID system 
(Mourtzis et al., 2019). In eavesdropping, messages or information are read, saved, 
and intercepted for future purposes (Millar, 2021). 

12.1.7.3 Replay Attack 
In this attack, information is gained between the two parties by attackers through 
the use of eavesdropping. The information received is repeatedly transmitted 
among the communication pairs, which leads to exhausting resources for com-
munication. This attack often occurs in RFID technology in the communication 
among RFID tag and reader. This attack can not only exhaust communication 
resources but also exhaust backend database resources (Chen et al., 2018). 

12.1.7.4 Sybil Attack 
In this attack, an attacker can be in more than one place at once because multiple 
identities are presented by one node to other nodes in the network (Millar, 2021), 
which enables execution of an operation multiple times by the victim node, thus 
defeating redundancy. Since the attacker has many identities, in WSN, information 
can be transmitted by the victim node through the compromised node, leading to a 
route distance that is longer (Chen et al., 2018). 

12.1.7.5 Sinkhole Attack 
In this attack, all traffic is decoyed from an area through a compromised node, 
where selective forwarding can follow, with the attacker determining what data to 
allow through (Millar, 2021). The system is fooled by considering that the data have 
already reached their destination. The attacker may use a node that is malicious for 
network traffic attraction in a WSN, and then the sensor data can be arbitrarily 
operated (Chen et al., 2018). 

12.1.7.6 Man-in-the-Middle Attack 
This attack occurs between two communication victim nodes where the attacker dis-
guises a malicious node as a node that is genuine and communicates with two victim 
nodes. The trust of the two nodes is gained by the attacker as well as information about 
the two victim nodes (Chen et al., 2018). It manipulates routing chain for data packets 
exfiltration as well as obtaining important information (Mourtzis et al., 2019). 
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12.1.7.7 Traffic Analysis 
Through analyzing number as well as size of the transmitted data packets, the 
pattern as well as load of communication is detected by attackers. The value of the 
information available is determined by how large is the number of packets that can 
be analyzed. Traffic analysis can be applicable to encrypted packets; a commu-
nication pattern that can be analyzed. Network activity, physical location of wire-
less access points, as well as learning the information about the protocol type used 
in the transmission process by the attackers are the three important things that can 
be obtained from WSN through analyzing traffic (Chen et al., 2018). 

12.2 LITERATURE REVIEW 

This section discusses forensic analysis, types of computer forensics, forensics 
analysis methodology, and related work. 

12.2.1 FORENSIC ANALYSIS 

Digital forensic analysis is a method used by forensic experts for digital data 
examination. Forensic analytics, according to Koroniotis et al. (2018), is a for-
ensic technique that utilizes machine learning and big data. In the examination 
phase, forensic analytics might be employed to identify patterns that would 
provide answers to the aforementioned queries about the occurrence of a crime. 
According to Mane & Shibe (2019), the study described Big Data Forensic 
analytics as a new method for data collection and for analysis of a large bundle of 
gathered data. Chuprat et al. (2019) created a malware forensic analytic frame-
work that blends big data security solutions with the investigative process to meet 
the needs of storing malware attack evidence, describing malware trends, vi-
sualizing patterns, and predicting future attack patterns. In addition to providing 
diverse analytics methodologies/algorithms at different phases, the forensic 
analytics process in big data assists the deep process/methodology in forensic 
science. Forensic analytics also branches down into network analytics, where 
analyzing network data is the responsibility of network forensics analytics, such 
as network packets, emails, and logs in which their data formats are often in 
packet capture files. 

Forensic analysis deals with the examination of data extracted during live or 
post-mortem forensic investigation. Forensic analysis is a field under computer 
forensics that deals with preserving data’s integrity, availability, and confidentiality. 
In other words, forensic analysis preserves the security triad of various domains 
such as network and digital, among others. Bhat and Wani (2018) discussed file 
system forensics that entailed the forensic analysis investigation of Linux FSs, also 
known as File Systems, and referred to approaches for retrieving forensic proof or 
traces by examining various FS data structures and modifications that occur in the 
directories and files, particularly deletion actions. Wang et al. (2019) studied that 
forensic analysis details the process users must follow in order to perform well 
presented digital forensics. The control and analysis of computer network traffic 
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using both WAN/Internet for the purposes of collecting information, detecting in-
trusion, and gathering evidence is the primary concern of network forensics. The 
intercepted data traffic is either archived for later study or filtered in real time 
(Pansari & Kushwaha, 2019). According to Sridhar et al. (2011), identification, 
extraction, and reporting on data retrieved from a computer system are all part of 
forensics analysis. 

12.2.1.1 Types of Computer Forensics 
Lin (2018) described computer forensics and what it entails. The study discussed 
retrieval of digital evidence from suspicious systems in a legal-worthy manner, using 
that evidence to create and confirm hypotheses regarding crimes, and finally pro-
viding prosecutors with the proof they need to bring offenders to justice. Computer 
forensics is a very broad field that can be formed into various types, namely: network 
forensics, web forensics, system forensics, data forensics, enterprise forensics, 
proactive forensics, e-mail forensics, and malware forensics (Figure 12.8). 

12.2.1.1.1 Network Forensics 
Network forensics involves the investigation and analysis of data captured from 
network traffic. That is, it is the extraction of data from an embodied network, such 
as a local area network (LAN), personal area network (PAN), metropolitan area 
network (MAN), wireless local area network (WLAN), wide area network (WAN), 
etc. It analyzes packets that are being/were transmitted over the network. 

FIGURE 12.8 Types of computer forensics, which includes network forensics, enterprise 
forensics, system forensics, web forensics, proactive forensics, email forensics, and data 
forensics.    
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12.2.1.1.2 Data Forensics 
Data forensics is the detailed observation and investigation of digital evidence or data 
found in a computer system. It analyzes the data property, such as how the data were 
created and how they were used. It investigates data from different sources, such as 
downloaded files, operating system (OS) files, created files and documents, etc. 

12.2.1.1.3 System Forensics 
System forensics, otherwise known as OS forensics, involves the detailed analysis 
of important information related to the OS of the mobile phone or PC involved, 
such as file systems (e.g., FAT, NTFS, Ext3fs) and OSs (e.g. Linux, Windows, Mac 
OS X, Android). 

12.2.1.1.4 Web Forensics 
Web forensics, otherwise known as web application forensics, involves the detailed 
forensic investigation of web applications and their related contents, such as con-
figuration files, logs, www directory, etc. in order to perform identity reversals on 
the originating attack, to determine the behavior of the attack pattern along with the 
identification of the device used by the perpetrator. 

12.2.1.1.5 Email Forensics 
Email forensics involves the detailed investigation and analysis of the component 
and content of an email source. It analyzes evidence such as the email architecture, 
the email header, the email data and attachments, and so on. 

12.2.1.1.6 Proactive Forensics 
Proactive forensics deals with the systematic investigation of digital incidents while 
the attack is still in place. The organization collaborates with an internal or external 
investigation team in order to pinpoint the loophole. 

12.2.1.1.7 Enterprise Forensics 
Enterprise forensics, otherwise known as enterprise computer forensics, involves 
setting in place security measures that help protect information in an enterprise, 
ensuring integrity and availability of data. In other words, a security strategy is put 
in place depending on the amount of data the enterprise wants to protect, and the 
security strategy helps prevent data loss in the phase of any unexpected incident. 

12.2.1.2 Forensics Analysis Methodology 
Forensic analysis methodology entails the steps and processes used to carry out a 
forensic analysis investigation associated with a particular organization. That is, 
depending on the forensic expert, the methodology of the forensic analysis may 
vary but will still be in line with the general known methodology. Digital forensic 
analysis has three (3) process in its methodology, and examiners puts in efforts to be 
detailed about their methodology process. The digital forensic analysis methodol-
ogies are identification, extraction, and analysis. 
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12.2.1.2.1 Identification 
In the digital forensics process, identification is the initial stage. The evidence is 
assessed in this step according to its nature, location, format, and condition. The 
process starts by identifying the item’s type. Mobile phones, personal computers, 
servers, networks, and other digital sources can all be used as storage mediums. 
Identification of potential data sources, acquisition of non-volatile and volatile data, 
and verification of data integrity to assure chain of custody are among the proce-
dures (Packetlabs, 2021). If an examiner finds something related but outside the 
scope of the original search warrant, just like in a physical search, it is suggested 
that the examiner halt immediately and report the case to the appropriate agency in 
order to get a second warrant to explore the data. But if the examiner finds non- 
related data during identification, they just mark it as processed and move on as it 
has no relevance (Carroll et al., 2008) 

12.2.1.2.2 Extraction 
The examiner analyzes if there is sufficient data to continue the investigation 
throughout the extraction procedure. The analyst must authenticate each set of 
hardware and software once it has been brought in and before it is used as part of the 
digital forensics technique. When the examiner’s forensic platform is available, he or 
she duplicates and verifies the forensic data in the request. This method implies that 
law enforcement has previously collected the data and developed a forensic copy 
using the proper legal procedures (Packetlabs, 2021). A forensic copy is a precise 
replica of the data stored on the initial medium. The important information is gathered 
then further organized into a list called “extracted data list,” which is a separate list. 
Then, the identification process is repeated by the examiners on the extracted data list 
items to confirm the integrity of the leads (Carroll et al., 2008). 

12.2.1.2.3 Analysis 
The analyst tries to figure out the reason why the information is important to the 
inquiry during the analysis phase. They begin by attempting to envision the sequence 
of events that occurred during the organization’s attack. Examiners connect the dots 
and give the requester a complete picture. Examiners respond to questions such as 
who, what, when, where, and how for each item on the relevant data list. They then 
attempt to investigate any item’s creation, alteration, or deletion. Finally, the expert 
uses digital forensics methodology to try to uncover the attacker’s manifesto, which 
will aid in establishing a theory to law authorities (Carroll et al., 2008). 

12.2.2 RELATED WORK 

The widespread use of the IoT has also increased the rate of its openness to attack and 
different threats from cyber criminals. This paper focuses on how to analyze these 
various attacks and provide security for the devices. Dehghantanha & Franke, 2018, 
describe in the work the cyberattack issues on the IoT and how to get the IoT more 
secured. Authentication, privacy, and access control issues were the major security 
factors that were discussed in their work. Al-sharif et al., 2018, explain in their work a 
new technique for detecting cyberattacks. This technique is based on getting 
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information about the crime from the executing program. The study was on the use of 
Java Virtual Machine to capture a cybercrime. It was conducted on three executions of 
JVM. It was concluded that this will help to detect the software that was used for the 
attack. In the paper published in April 28, 2021, Rani et al., 2021, carry out a survey 
on the threat on the IoT and a way to get the corrective measure. The study explains 
the wide range of use of the IoT and the threat the IoT encountered. The survey was 
compared with the past work using some features, such as cyberattack and security, 
cybercrime, security in IoT devices, etc. Vulnerability of CPSs was also discussed in a 
work published in 2019. Yeboah-Ofori et al. (2019) discussed in their work some 
vulnerabilities of CPSs and the risk it causes to the systems. They also explained 
different attacks on CPSs such as ransom ware, malware, DOS, resonance attack, etc. 
The work also discussed the different weak location CPS that can easily be penetrated 
by the likes of routers, network, firewalls, HTTP header etc. 

The IoT is evolving in the modern world. This makes the passing of messages 
stress-free for people. There is always the need for IoT devices to be linked together 
to ease communication. The linking of these devices is done through networking. 
Many intruders and cyber criminals have also sought this advantage to get access to 
other IoT devices. This has prompted researchers to work on how to secure these 
devices. Dehghantanha & Franke, 2018, discussed in their work the problem of 
security encountered by many IoT devices. Some problems were explained, the 
likes of authorization and access control, privacy and authentication, etc. They also 
described various ways to capture these attacks with genuine evidence.  
Jayakrishnan, 2021, carried out a survey on network forensics on IoT devices. He 
categorized network forensics into two classes. “Catch-it-as-you-can” and “Stop, 
look and listen”. Methods in network forensics were explained in his work. The 
approaches in network forensics are quite similar to that of digital forensics. It is 
abbreviated as OSCAR: Obtaining information, Strategizing, Collecting Evidence, 
Analyzing Evidence, and Report (Qureshi et al., 2021). He also explained that the 
network forensic process can be automated using some tools to gather information 
and carry out analysis on them. Examples of the tools are NetDetector, Iris, etc. 

12.3 MATERIALS AND METHODS 

The study utilized the forensic analysis framework in the examination of vulner-
abilities in IoT-based CPSs. Digital forensic analysis was implemented using 
Autopsy and TCPDump forensic tools. 

12.3.1 FORENSIC ANALYSIS FRAMEWORK 

Forensic Analysis Framework is a method or procedure that guides forensic ana-
lysts when performing a forensic examination on any given platform. These fra-
meworks are proposed by experts in the field and adopted overtime. Hikmatyar 
et al. (2017) proposed a framework model for network forensics called Integrated 
Digital Forensics Investigation Framework (IDFIF) version 3, branching them all 
into four processes, namely preparation process, proactive process, reactive process, 
and presentation process, in which each process has some phases with subphases. 
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FIGURE 12.9 Framework for forensic analysis.    
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The study further discussed each process, with the preparation process having the 
notification, authorization, and preparation phases. Then, the proactive process has 
securing the scene, documenting the scene, event triggering, proactive preservation, 
proactive analysis, and preliminary report. The reactive process has identification, 
collection & acquisition, preservation, examination, analysis, and documentation 
phases. Finally, the presentation process has the conclusion reconstruction and 
dissemination phases. Figure 12.9 shows the framework for forensic analysis used 
for this study. Two digital forensic analysis tools were used to examine the vul-
nerabilities in IoT-based CPS, which are Wireshark and TCPDump. 

12.3.2 WIRESHARK 

Wireshark is a digital forensic tool compatible for use with Linux Distribution OS, 
Windows OS, and OS X, with the graphical interface to the sleuth kit. It is used in 
the military, in law enforcement, and by corporate examiners to analyze and in-
vestigate data stored on a computer. Wireshark has a lot of forensic features, such as 
multi-user cases, keyword search, timeline analysis, web artifacts, registry analysis, 
email analysis, LNK file analysis, robust file system analysis, file type detection, 
Unicode strings extraction, and Android support. It extracts data from call logs, 
SMS, and contact among many others on Android systems. 

12.3.3 TCPDUMP 

TCPDump is an effective network packet sniffer tool, which offers an application in 
the command line of Unix-like OSs, such as Berkeley Software Distribution (BSD), 
Solaris, OS X, Linux, Android, and HP-UX, among others (Pandit, 2021). It is an 
open source tool, which is launched as a superuser or as root user in order to make use 
of promiscuous mode on the network mode. TCPDump has a variety of functions, 
such as intercepting and outputting data communication occurring between hosts in a 
network to the user host’s terminal. It captures TCP/IP packets only from the network 
and allows the user to export captured network traffic for further analysis (Goyal & 
Goyal, 2017). A TCPDump captured packet shows the date in which the packet was 
captured, followed by the time (including milliseconds), then shows the source IP and 
port address with destination IP and port address, followed by the TCP flags type (e.g. 
[S], [F], [.], [P], [R]), still including the sequence number, window number, and length 
of packet. The TCP flag [S] (Synchronize) is displayed when there is a new syn-
chronization request of a new connection. Flag [F] (Finish) is displayed when there is 
a closed connection, flag [.] (Acknowledge) is displayed when there is an established 
connection. Flag [P] (Push) is displayed when there is a push of data from source 

FIGURE 12.10 TCPDump TCP packet transmission.    
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to destination address. Flag [R] (Reset) is displayed when either host resets the 
connection. Figure 12.10 shows a typical TCPDump packet transmission. 

12.4 RESULTS AND DISCUSSION OF FINDINGS 

The results of forensic analysis of the vulnerabilities on IoT-based CPSs are dis-
cussed below. The forensic analysis was carried out using Autopsy and TCPDump. 

12.4.1 DIGITAL FORENSIC ANALYSIS USING WIRESHARK 

An IoT Packet Capture (PCAP) dataset for network vulnerability assessment on a 
CPS was analyzed, and it was duly observed that on the captured network, there were 
a total of four attackers on the network. Figure 12.11 shows that an attacker using the 
Internet protocol (IP) address 192.168.100.147 directed lots of traffic into the victim 
machine with IP address 192.168.100.3, overloading the victim’s transmission control 
protocol (TCP) port 80 (HTTP) with a constant length of sixty (60) Reset [RST] 
packets per millisecond without going through the normal TCP handshake process. 
One of the attacks discovered on the network was DDoS. A DDOS attack is the 
process whereby a group of attackers (host) cooperate in the process of flooding a 
victim’s host, causing the device to fail or crash within a short period of time. It was 
also identified in Figure 12.12 that the attackers with an IP address 192.168.100.149 
performed a TCP SYN flooding to the same victim’s host 192.168.100.3 with a packet 
length of 154 per millisecond, causing the network to expectedly go down because in 
a normal TCP handshake process. After a host sends a SYN packet to another host, the 
receiving host sends an acknowledge packet to the sender, but in this scenario the 

FIGURE 12.13 Wireshark destination packet showing percentage statistics.    
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sending host failed to wait to receive an acknowledgment packet and kept transmitting 
the SYN packet in milliseconds. So, the receiving host got overloaded with SYN 
packets, causing it to get temporarily down. Then, after a full analysis of the whole 
packet transmitted over the network, it was discovered in Figure 12.13 that 1,164,262 
of 1,391,810 packets that were passed through the network were directed to one 
destination logical address, being the victim’s address 192.162.100.3, at a burst rate of 
152.1600 out of 225.5500. That is, 83.65% of packets transmitted on the network 

FIGURE 12.14 TCP and UDP network protocol showing percentage statistics.    

FIGURE 12.15 TCPDump network forensic analysis.    
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were directed to the victim’s TCP port 80. The data from the CPS traffic file are shown 
in Figure 12.14, which shows TCP and UDP as protocols with TCP having a total 
1,373,445 of 1,391,810 packets and UDP having a total of 18,365 packets. That is, 
98.68% of packets that transmitted on the network were found on the TCP, and that 
was the only used network protocol in which most of the attack was derived from, 
being the targeted network protocol. 

12.4.2 DIGITAL FORENSIC ANALYSIS USING TCPDUMP 

An IoT PCAP dataset for network vulnerability assessment on a CPS was also 
analyzed using the TCPDump tool, which was implemented through a command 
line, as shown in Figure 12.15, and the date and time of attack was displayed, which 
is crucial for detecting time in which an attack took place. In Figure 12.15, it was 
noticed that computer A (192.168.100.148) was spontaneously sending a syn-
chronize TCP (Flags [S]) packet in a sequence 0.00001s, which normally isn’t 
possible for humans to work at that speed, and due to the rate at which the syn-
chronize (SYN) packet is being requested, computer B (192.168.100.3) takes its 
time to respond to the packets according to its arrival time, and due to that, com-
puter B wouldn’t be able to respond to any other incoming packets until the SYN 
packets have been responded to. Computer A is using a program to cause the DoS 
attack by overloading computer B with SYN packet to cause it to be temporarily 
down, and this is called TCP SYN flood attack. Computer A then floods computer B 
with the reset TCP (Flags [R]) packet so that it won’t be able to acknowledge the 
connection while computer A keeps flooding computer B with TCP SYN flood 
attack, causing a full DoS attack. 

12.5 COMPARISON OF WIRESHARK AND TCPDUMP 
FORENSIC ANALYSIS 

Digital forensics was carried out on an IoT based CPS network where Wireshark 
forensic analysis tool was used to capture the traffic going on in the CPS network. The 
analysis of the traffic was made using Wireshark analyzer, and it was discovered that 
there was a DDoS attack launched directed to the CPS host, causing downtime on the 
CPS system. The use of TCPDump was also applied to analyze the traffic that went on 
in the network, and it was discovered that DDOS attack occurred within 2 minutes, 
causing the network to go temporarily down. Figure 12.15 shows that the attack took 
place in the year 2018, 4th of June, and it was duly observed that the attack occurred 
for 1 minutes and 22 seconds, with a total of 1,373,445 packets transmitted since 
TCPDump is only capable of capturing traffic that passes through the transmission 
control protocol. The use of Wireshark analyzer for analyzing the network helps users 
to get the statistics of the protocol used in the network and also helps users analyze the 
behavior of the attacker with its interactive graphical interface through a wider scope 
of protocol analysis, while the use of TCPDump is better for analyzing the data. It 
helps users track the timestamp of the traffic on the TCP protocol only, but the 
command line interface is not user friendly as it takes more and dedicated time for 
analyzing a network traffic using TCPDump. 
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12.6 CONCLUSIONS AND RECOMMENDATIONS 

Wireshark can be used for digital forensics analysis when several network protocols 
will be examined. The network vulnerability assessment shows that more attacks are 
targeted at TCP as opposed to UDP. That is, 83.65% of packets transmitted on the 
network were directed to the victim’s TCP port 80. Hence, port 80 should be critically 
monitored consistently on an IoT-based CPS due to its highly vulnerable exposure 
components. TCP has a total 1,373,445 of 1,391,810 packets, and UDP has a total of 
18,365 packets. Also, this signifies that 98.68% of packets that were transmitted on the 
network were found on the TCP, and it was the only network protocol used in which 
most of the attacks were derived from as the network protocol. TCPDump can be used 
for digital forensics analysis when the date and time of the attack are very crucial. It is 
effective for detecting the time in which an attack takes place and the period. Through 
TCPDump network analysis, the attack occurred for 1 minute and 22 seconds, with a 
total of 1,373,445 packets transmitted since TCPDump is only capable of capturing 
traffic that passes through the transmission control protocol. The study therefore re-
commends the usage of other network forensic analysis tools, such as Dumpcap and 
Ethereal, for live network analysis; NetDetector for instant blockage of malicious 
traffic; and Fidelis XPS as a type of network forensics tool that is used for recording 
interested session of traffic that can be used for effective network post mortem analysis. 
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