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We report extensive experiments on the diffraction of very cold neutrons (A = 100 A) at large-area transmission phase 
gratings with grating constants d = 2km and d = 1 pm. respectively. The experimental results are compared with 
Fresnel-Kirchhoff calculations showing agreement in great detail. Using phase gratings it is possible to shift intensities 

between different diffraction orders, thus making them very useful for other neutron-optics experiments at low energies. 

Also, the excellent manufacturing precision of our transmission phase gratings meets the requirements for such 

experiments like very-cold-neutron interferometry. 

1. Introduction 

For the development of a Mach-Zehnder-type 
interferometer for A = 100 A neutrons [l] new 
neutron-optics devices had to be tested at the 
new very-cold-neutron (VCN) optics facility at 
ILL [2]. We chose transmission phase gratings as 
beam splitting devices. Thus, extensive experi- 
ments had to be performed in great detail to find 
gratings of satisfactory quality for our neutron 
interferometer. 

Recently, Baumann et al. published results on 
the diffraction of A = 20 A neutrons by transmis- 
sion absorption gratings [3]. Diffraction by re- 
flection gratings has been observed for thermal 
neutrons [4] and ultra-cold neutrons [5]. Various 
investigations of neutron diffraction using macro- 
scopic objects other than gratings have also been 
reported [6]. 

2. Experimental set-up 

The experiments were performed on the opti- 
cal bench of the new VCN optics facility [2] at 
the Institut Laue-Langevin, Grenoble. This 
bench is mounted at the exit of the VCN port 
which uses half the cross-section of the neutron 
beam emerging from the TGV neutron guide 
that is connected to the new vertical cold- 
neutron source of the Grenoble high-flux reac- 
tor. The other half feeds a neutron turbine which 
produces ultra-cold neutrons. The optical table is 
of a honeycomb structure and is supported by 
pneumatic vibration isolation legs. Both are 
necessary to avoid the effect of background vib- 
ration on the operation of any optical device 
mounted on top of the bench. Its structure also 
reduces influences from internal temperature 
gradients. The table has a size of 6 X 1.2 m. 
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The set-up for our experiment is seen in fig. 1. 
The neutrons leave the VCN port having a broad 

wavelength distribution with a peak wavelength 
of about 60 A. There, the beam has a cross- 
section of 17 x 70 mm’. The VCN are then rc- 
Aected by a 2000 A thick nickel mirror which is 
set at a grazing angle of approximately IO”. This 
is also the critical angle for external total reflec- 

tion of A = 100 A neutrons. Thus, short wavc- 
length neutrons preferably just pass through the 
mirror and, therefore, are cut off from the origi- 
nal wavelength distribution. Hence we obtain 
spectra with a peak wavelength around 100 A. 
Figure 2 shows a typical neutron spectrum mca- 
sured with a time-of-flight technique. The sharp 
narrow maxima and minima at short wavelengths 
arise from constructive and destructive intcrfer- 
ence of waves reflected at the front face and the 
back face of the nickel mirror. 

Slits S, and S,, both having a width of 1 mm, 
define the width, the angular divergence and the 
wavelength distribution of the neutron beam 
(since the latter depends on the direction of the 
beam). Thus, the wave front incident to the 
phase grating situated just behind slit S2 has an 
area of I x 70 mm’. The 1 mm wide scanning slit 
S, and the neutron detector are mounted on a 
translation stage 1.632 m downstream from the 
grating. Between S, and SL and between the 
diffraction grating and S, we placed helium-filled 
tubes in order to avoid neutron losses due to 

scattering and absorption in air. The aluminum 
windows of the tubes had to be kept very thin 
(9 pm) to minimize small angle scattering effects 
in the windows. Also, the neutron counter. a 
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Fig. I. Sketch of the experimental set-up (not drawn to 

scale). The neutron detector and slit S, are scanned along the 

scattering vector during the measurement. 
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BF., detector. has been shielded against back- 
ground radiation. All slit edges arc made of 
cadmium; the slits and the grating wcrc each 
mounted on combinations of precision rotation 
and translation tables permitting the alignment 
of these optical elements. The alignment was 
achieved by means of a theodolite and a laser 
ruler 

The translation stage with both the scanning 
slit Sj and the detector was shifted along the 
diffraction vector by a step-motor-driven mi- 
crometer screw. The position of the stage was 
controlled by an optical encoder. At each posi- 
tion the neutron intensity was counted during 
measurement times of typically 500 s. The whole 
measurement procedure was supervised and con- 
trolled by a personal computer. 

3. Theoretical considerations 

Diffraction effects arc best explained on the 
basis of the wave nature of the neutrons. Ac- 
cording to Huygens’ principle, every point of a 
wave front may be considered as a centre of a 
secondary disturbance which gives rise to spheri- 
cal wavelets. and the wave front at any later 
instant may be regarded as the envelope of these 
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wavelets. This is a simple intuitive picture which 
permits an “understanding” or interpretation of 
the Fresnel-Kirchhoff diffraction formula which 
may be derived directly from the scalar wave 
equation 

(V’ + k2)U = 0 (1) 

by application of Green’s theorem. This deriva- 
tion is a standard one, reproduced in many 
physics texts and will not be repeated here (e.g. 

]71). 
Due to the vertical symmetry of our experi- 

ment we could restrict the computation of the 
Fresnel-Kirchhoff diffraction formula to two di- 
mensions, i.e. neglect the vertical direction. 
Therefore, we also could neglect the influence of 
gravity on the very cold neutrons, although they 
fall about 5 cm in the earth’s gravitational field 
on the path from the VCN port to the detector. 
The amplitude at a given point n in the plane of 
observation due to a point source at position (T in 
the entrance slit S, is 

Cr(q, A, c) - 
I 

e’k(r+s)f( [) d5 , (2) 

where r is the length of the path from the source 
point to a point 5 in the diffraction plane (object) 
and s the length of the path from there to the 
point of observation 7. The integration is done 
over the width of the aperture enclosing the 
diffracting object. The transmission function 
f( [) describes the influence of the object, i.e. 
the modification of the plane wave A = 2Tlk 
incident to the diffracting object. This function is 
in general complex, since both the amplitude and 
the phase of the wave may be altered on passing 
through the object. If it alters the phase but not 
the amplitude (i.e. ]f(,$)] = 1) we speak of a 
phase object. Then f( [) = exp(i#( [)) with $( 5) 
denoting the phase shift. For an amplitude ob- 
ject only the amplitude is altered (then 

arg(f(5)) = 0). 
Equation (2) describes a coherent summing 

over the individual paths through the diffracting 
object. Initially we consider the entrance slit S, 
to be illuminated with a single plane wave, which 

implies a coherent sum over the individual 
source points v in the entrance slit. Therefore 
the amplitude at the point of observation n (due 
to a single plane wave incident on S,) becomes 

VT, 6 A) - e Ikcr+$)f( c$)g(~) dt da , (3) 

with g(c) describing the variation of the relative 
phase of the source points excited by the plane 
wave incident at angle E. 

The integration over the distribution u(e) of 
the different incident directions of the wave front 
present, i.e. over the angular divergence of the 
radiation, was then performed on the intensity 
level. For u(e) we assumed a Gaussian dis- 
tribution with a FWHM defined by the geometry 
of slits S, and S,. This means that neutrons 
incident from different directions onto the en- 
trance slit S, were assumed to be incoherent with 
respect to each other. Likewise, the integration 
over the wavelength distribution w(A) (e.g. fig. 
2) was also done incoherently. This assumption 
is justified because a static experiment can never 
reveal the wave-packet nature of the radiation 
studied [S, 91. In a final integration step the finite 
width of the exit slit S, had to be taken into 
account by summation over exit slit points 7, 
which simply is a convolution integration. The 
final intensity for a given position of the exit slit 
therefore is 

I- 
ll! 

IU(q, E, A)(2~(~)~( A) dh de dn . (4) 

In order to reduce the computation time on our 
computer we used the Fresnel approximation of 
eq. (2); i.e. the exact integral is substituted by 
Fresnel integrals, which can be evaluated 
through power series [7]. The theoretical intensi- 
ty distributions thus obtained were then used in 
the comparison with the experimentally deter- 
mined diffraction patterns. 

The much simpler 
would only hold, if 

otherwise, the width D of the diffracting object 

Fraunhofer approximation 

(5) 



would be much greater than the width s( A /D) of 

the diffracted beam at distance s in the plane of 
observation. Although, for the numbers of our 
experiment (D = 1 mm and s(A/D)= 0.016 
mm), condition (5) is not satisfied, the Fraun- 
hofer approximation is good enough to study the 
basic features of our gratings. Consider a dif- 

fracting object of infinite width that has an arbi- 
trary periodic transmission function .f( 5) with a 
period d. Also, permit only one wavelength A,, 
for the incoming wave, neglect any angular di- 
vergence E and set the width of the entrance and 
the exit slit to x, i.c. no convolution with both 
slits is applied. Then, according to the Fraun- 
hofer approximation, eq. (4) reduces to 

f(K) = f,,ff(K)IF(K)I' , (6) 

where I,, denotes the incident intensity. K = 

d/A,, . sin( 6) the normalized diffraction angle (6 
is the true diffraction angle) and H(K) the intcr- 
ference function. F(K) is the Fourier transform 

of the transmission function f( 5) in one period 
cl. (F(K)\’ is called the grating form factor; it 
modulates the interference function H(K). The 

latter exhibits the periodicity of the transmission 

function. H(K) has its maxima at angles K = fI 

where II is an integer; for an object of infinite 
width it simply is \‘,, s(K - n), a sum of Dirac’s 

delta functions. 
For our new VCN interferometer [I] it wa\ 

dccidcd to USC a Mach-Zehnder topology with 
transmission phase gratings, which clearly arc 

preferred to absorption gratings for intensity 
reasons. If one employs such an interferometer 

with gratings. it is advantageous to LISC zcro- 

order and first-order diffraction only. Therefore 
it would be preferable to avoid losing too much 
intensity into higher orders. Since, in simple 
cases. higher-order intensities decrease by the 
square of the number of order anyway, specifi- 
cally the second-order intensity should be kept as 

low as possible. As stated above, the transmis- 
sion function for a pure phase object has the 
form .f’( 5) = exp(ib( 0). In our case. a grating 

profile with steps and grooves of equal width and 
rectangular shape was chosen. then (b( 5) is a 
square-wave function with period d. The phase 
shift is determined by the height 11 of the stcpx 
and the A-thickness II,, i.e. that thickness of a 

-0 
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DA/2 

Fig. 3. Intensities for three of the first four orders of the diffraction at a phase grating (grating constant (i) with equal width ot 

steps and grooves as a function of the step height 11. The second order is zero for all possible phase shifts (solid: zero order. 

dashed: first order. and short-dashed: third order). 
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particular material which leads to a phase shift of 
27r rad. 

4=2+. 
h 

(7) 

Figure 3 shows the dependence of the grating 
form factor IF(K)]” on the step height h for the 

first four diffraction orders, for this particular 
grating geometry. The chosen profile achieves 
the goal of reducing the second-order intensities 
perfectly well; in fact, all even-order diffracted 
maxima are suppressed. Also, fig. 3 exhibits an 
important feature of phase gratings, since for 
them the distribution of intensity between differ- 
ent orders can be manipulated, while for absorp- 

h= DA/2 
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Fig. 4. Intensities for the first four orders of the diffraction at a phase grating (grating constant d) with rectangular steps of 

varying width m and a height h of the steps corresponding to phase shifts 4 = T rad (a) and I$ = 7ri2 rad (b) (solid: zero order, 

dashed: first order, dash-dotted: second order, and short-dashed: third order). 
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tion gratings this intensity ratio is fixed. The 
zero-order maximum is a superposition of trans- 
mitted waves with relative phase $. Clearly, if 
the amplitudes of the two waves are equal, which 
is the case for a grating with a step-to-groove 

width ratio of 1: 1. and if 4 = 7~ rad (i.e. h = 
D,/2), the zero-order maximum is canceled. 
This is the choice for the second grating of our 
interferometer, since there only first-order dif- 
fraction is needed and the zero-order diffraction 

ORDER NUMBER 

---_ 

SLOPE WIDTH z 
d/2 

3 I -------------e-e_________ 2 _._.-.-._._ 
0 

SLOPE WIDTH z 
d/2 

Fig. 5. Intensities for the first four orders of the diffraction at a phase grating (grating constant n) with steps of trapezoid 

with varying width z of the slopes and a height h of the steps corresponding to phase shifts 4 = 71 rad (a) and 4 = CT/~ rad (t 

width m of the steps is equal to d/2 (solid: zero order, dashed: first order, dash-dotted: second order. and short-dashed 

order). 
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intensities would not contribute to the interfer- 
ence pattern. The first and the third grating 
employ both a zero-order and a first-order dif- 
fraction. For intensity reasons two n/2-gratings 
were selected for these two gratings, where n/2 
refers to the selected phase shift; then the trans- 
mitted intensity is maximal. But as the h-thick- 
ness D, depends on the wavelength, these phase 
shifts can be met for one particular A only. 

Due to limitations of the manufacturing pro- 
cess exact rectangular steps could not be 
achieved. Then, a good approximation of the 
square-wave transmission function f( 5) is a 
trapezoid-wave function where the steps are of 
trapezoid shape with a height h, a width at 
half-height m (which is not necessarily equal to 
d/2) and two slopes of width z. Figure 4 shows 
the influence on the grating form factor for the 
first four diffraction orders of a rr- and a n/2- 
grating due to variations of the step width m, 
neglecting possible slopes of width z (z = 0). The 
ideal case is given by m = d/2. Clearly, for m = 0 
no diffraction occurs, since then the steps have 
vanished. A step-to-groove ratio of 1: 3 is repre- 
sented in the center of the plots by m = d/4. The 
influence of trapezoidal deviations z of steps of 
constant width nz = dl2 are seen in fig. 5. Here, 
z = 0 marks the ideal case, and for z = d/2 the 
trapezoid has deformed to a triangle with 
equal legs. Deviations from the ideal case - wider 
or narrower steps and/or trapezoidal distor- 
tions - always contribute to a higher zero-order 
maximum, lower the first-order intensities and 
generate non-zero even orders. The former can 
be remedied by an improved manufacturing pro- 
cess. In the case of n/2-gratings we decided for 
higher steps, i.e. a phase shift of more than 
n/2 rad, since then the effects mentioned above 
are corrected to some extent, because bigger 
phase shift means lower zero-order and higher 
first-order maxima. For m-gratings there is no 
such remedy. But, even with an ideal profile, if 
one has to cope with a broad wavelength dis- 
tribution, one has to accept a non-ideal dis- 
tribution of the diffracted intensities. As stated 
above, the phase shift 4 depends both on height 
h and neutron wavelength A, so a particular 4 
can only be achieved for one particular A and h. 

4. The gratings* 

In order to achieve appreciable diffraction an- 
gles for A = 100 A neutrons one has to use struc- 
tures of micrometer size. Thus, we chose grating 
constants d = 1 pm and d = 2 km, respectively. 
The low neutron flux necessitates a large area 
(13 x 80 mm”) for the gratings. As optical reduc- 
tion of a mask of different size would produce 
unavoidable aberrations one has to use a mask 
with the same size and grating period as the final 
gratings. This implies the need for high precision 
of the mask manufacturing process. The gratings 
were supported by SiO, glass plates of thickness 
t = 2.5 mm. The thickness has to be constant 
over the whole area of the plate to avoid differ- 
ent phase shifts for neutrons passing through 
different parts of the plates. The A-thickness of 
quartz glass, which corresponds to a phase shift 
of 2nrad, is Dloo~ = 1.7 pm; thus, we used 
plates where the thickness was constant to better 
than 50.025 t.r,rn (Alight/ 10). 

For a first series of 2 km gratings a diamond 
tip which is controlled by a light interferometer 
ruled a gold foil to produce a master mask. By 
this means the error of the grating period d could 
be kept as a low as 100 A over the whole area of 
the grating. By an electroplating process nickel 
steps were brought onto the quartz-glass plates. 
But, due to the abrasion of the diamond tip (the 
tip has to travel 500 m to rule the whole mask!), 
the step-to-groove width ratio of the mask 
changed from 1: 1 to 3 : 1, which, of course, is 
not satisfactory. 

For a second series of gratings a new mask was 
made by use of electron lithography. This time, 
copper was electroplated onto the SiO, glass 
substrate, because of possible variations of the 
magnetization of the nickel steps. Unfortunately, 
due to the large area of the mask it was imposs- 
ible to produce it as one piece; it had to be 
joined together from smaller parts. This resulted 
in stacking faults at the joints of those parts. 
Furthermore, oxidation of the copper structures 
and other unknown imperfections due to the 

*The gratings were manufactured by Dr. J. Heidenhain 
GmbH, D-8225 Traunreut, Germany. 
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complicated manufacturing process caused 

severe problems. All those facts made the grat- 
ings unsatisfactory for interferometer use. 

Finally, for a third series, mask 1 from the first 
series was chosen again, but this time the photo 
resist was exposed twice. After the first exposure 
the mask was rotated by 180” and then it was 
exposed a second time, thus averaging possible 
variations of step width m. Grooves were then 
sputter-etched into the SiO, glass. By this pro- 

cess good quality gratings -could be obtained. 
The 1 pm gratings were produced the same way 
but by using, of course, a different mask. 

5. Experimental results 

A wavelength A = 100 A and a grating constant 

d = 2 km lead to a first-order scattering angle 
6 = 5 x 1V3 rad. This results for our set-up (s = 
1632 mm) in a splitting of the neutron beam of 
about 8 mm. The beam divergence chosen by the 
geometry of the slits S, and S1 leads to a 
broadening of the beam profiles. Furthermore, 

one expects an additional broadening of the 
non-zero diffraction orders due to the broad 

wavelength distribution (AA/A = 22%) we had to 
use, since the scattering angle 6 depends also on 
the wavelength. The latter effect and the wave- 
length dependence of the phase shift of the 
grating also distort the profiles of the non-zero 
maxima: long-wavelength neutrons are diffracted 
to the “far side” (bigger scattering angle) of the 
peaks. The intensity distribution between differ- 

ent orders due to the phase shift in the phase 
grating (fig. 3) differs in general from the one of 
the short-wavelength neutrons on the “near 
side” - even if the original wavelength distribu- 
tion of the neutrons would be symmetrical. Of 
course, our nonsymmetrical distribution of neu- 
tron energies (fig. 2) contributes to a distortion 
of the peaks, too. All above effects are well 
observed in all patterns. Thus, if one wants to 
compare different order intensities, one has to 
compare the peak areas. Also, in our calcula- 
tions we neglected trapezoidal imperfections, i.e. 
z =O. 

For the experiments with the series I and II 

gratings we chose a peak wavelength of 107 A. 
Figure 6 shows a typical measurement of a series 
I grating. The nickel steps had a height of 

0.38 pm which corresponds to a phase shift of 

1.22 rr rad (D;;,, = 0.623 pm). For the numeri- 
cal calculation a step width m = 1.40 km had to 
be assumed to fit the data. These imperfections 

and the wavelength distribution (see above) con- 
tribute to a large first-order maximum. But as 
stated in section 4, the deviation of the step 
width m strongly varied with the illuminated area 

of the grating. 
The diffraction pattern of a series II grating 

(fig. 7, 0.48 km Cu, lI:$, = 0.900 km) shows 
that, although the step-to-groove width was 

nearly 1 : 1 as could be seen by means of a 
microscope, other grating faults as oxidation and 
stacking faults (see section 4) contributed to a 
large “numerical” deviation m = 1.25 pm from 
the ideal case m = 1 km_ 

We chose a slightly different peak wavelength 

of 102 A for the measurements with our SiO, 
glass gratings; then D~~~,~‘-“““ = 1.768 km. The 
diffraction pattern of a grating with a step height 
of 0.58 t_rm exhibits a satisfactory result (fig. 8). 
Similar results were also met by other gratings of 
different phase shifts. There is also only a very 
small second-order maximum stemming from im- 

d=2pm 
h=0.38pm Ni 
#= 1.22YT rod 
m=l.4,um 

Fig. 6. Zero- and first-order diffraction pattern of a phase 

grating with nickel steps (D’$n = 0.623 km) and a grating 
constant d = 2 pm. The solid line represents a numerical 

calculation (refer to text). 
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Fig. 7. Zero- and first-order diffraction pattern of a phase 
grating with copper steps (DF&* = 0.900 urn) and a grating 
constant d = 2 urn. The solid line represents a numerical 
calculation (refer to text). 
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Fig. 8. Zero- and first-order diffraction pattern of a phase 
grating with quartz-glass steps (D~$~z-g’as* = 1.768 pm) and a 
grating constant d = 2 pm. The solid line represents the 
numerical calculation (refer to text). 

Fig. 10. Zero- and first-order diffraction pattern of a phase 
grating with quartz-glass steps (D;I$~~K’arr = 1.768 urn) and a 
grating constant d = 1 Fm. The solid line represents the 
numerical calculation (refer to text). 
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Fig. 9. First- and second-order diffraction pattern of a phase 
grating with quartz-glass steps (D~~$Jz~“‘“” = 1.768 pm) and a 
grating constant d = 2 pm. The solid line represents the 
numerical calculation (refer to text). 
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perfections (fig. 9) which shows the good manu- 
facturing quality of the gratings. Figure 10 dis- 
plays the diffraction of a grating with a period 
d = 1 km and a step height h = 0.57 km. In this 
case the first-order peak widens dramatically due 
to the greater diffraction angle. The waviness of 
the line of the numerical calculations stems from 
the behavior of the Fresnel approximation. 

6. Conclusion 

We have shown that it is possible to obtain 
large-area diffraction gratings to the precision 
required for the work with very cold neutrons. In 
particular, we think that all features of the dif- 
fraction patterns are well understood and that it 
therefore is possible to use phase gratings to shift 



338 K. Eder et al. I Very cold neutron diffraction at phase gratings 

the intensities between different diffraction or- 
ders as needed by the specific requirements of 
the experiment. We would also like to point out 
that standard Fresnel-Kirchhoff calculation 
leads to a satisfying quantitative agreement with 
experimental observation. It is not unreasonable 
to expect that such diffraction gratings will play a 
major role in future neutron-optics experimenta- 
tion at very low energies. 
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