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Atoms are diffracted at tailored time-modulated complex potential gratings made of 
light. Modulating both real and imaginary parts separately, the potential winds like 
a corkscrew in complex space. This temporal helicity induces energy transfers only 
in one single direction. As a result we present, to our knowledge, the first observation 
of asymmetric frequency sidebands of atomic matter waves. 

Keywords: non-Hermitian potential; matter wave sideband; atom diffraction; 
diffraction asymmetry; complex potential; light crystal 

1. Introduction 

Potentials in quantum mechanics have to be Hermitian in order to guarantee uni- 
tarity of the Hamiltonian evolution. However, regarding only a subsystem which 
interacts with an otherwise non-interesting environment, it is possible to create 
a non-Hermitian potential, which can cause surprising effects within the subsys- 
tem. Using an open two-level system we experimentally realize a special case of a 
non-Hermitian potential, that is a time-dependent potential modulation of the form 
V - exp(?iwt) + const. We find that such a potential induces transitions between 
the energy eigenstates of a quantum system only in one direction, i.e. to higher or 
to lower energies. The direction depends on the sign of the exponent, which also 
defines the helicity of the temporal potential modulation in complex space. These 
directed transitions violate the inherent symmetry of any 'normal' (Hermitian) poten- 
tial modulation: i.e. the transitions induce absorption and stimulated emission of a 
'modulation quantum', hw, with equal probability. Therefore, new possibilities arise, 
e.g. to create population inversion in a quantum system or to cool it to its ground 
state. 

In practice, we create the complex potential modulation by using the interaction 
of an atom with on- and off-resonant light. This allows us to design a complex inter- 
action potential between the atom and the light field, corresponding to a complex 
refractive index for the atomic matter wave. An atomic beam is scattered at a 'Bragg 
crystal' with such a complex index of refraction, which is modulated as a function of 
time. The 'crystal' consists of a thick standing light wave, which acts as a potential 
grating with an absorptive part (imaginary) and a refractive (real) part (Oberthaler 
et al. 1996), depending on the detuning of the light frequency from the atomic tran- 
sition. As a result of the modulation, we observe frequency sideband generation of 
the atomic matter waves (Bernet et al. 1996a, b). The production of the sidebands is 
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due to resonant transitions of the atoms within the energy band structure of the light 
crystal, induced by the potential modulation. Using the specific atom-light interac- 
tion in our open system, we demonstrate how to tailor the desired helical potential 
modulation of the form V ~ exp(?iwt) + const. This results in the first observa- 
tion of asymmetric atomic matter wave sidebands. This asymmetry confirms that a 
'one-way' transition of the atoms within the band structure of the light crystal has 
occurred, induced by the complex helicity of the potential modulation. The exper- 
imental realization of this strange effect exploits two recently developed techniques 
which will be described in the following sections: first the creation of complex light 
potentials for atoms, and second the diffraction behaviour of atoms at temporally 
modulated light potentials. 

2. Complex light crystals for atoms 

A light field acts as a potential for atoms if the light frequency, WL, is close to an 
atomic resonance, Wres. Using an open atomic transition, where resonant excitation 
leads to a decay of the atoms to an undetected third state (ground state), the inter- 
action potential becomes complex. Its spectral shape is described by a resonance line 
(Chudesnikov & Yakovlev 1991): 

hf2R2 
V(WL)= 

2 
(2.1) 

Wres - WL + 2 17 

where 7y is the linewidth of the transition to the undetected state and QR = dE/h 
is the Rabi frequency at resonance, depending on the light electric field E and the 
transition dipole moment d. The real and imaginary parts correspond to the real 
dipole interaction potential and to absorption, respectively. The absorption is due 
to the decay of the atoms to the undetected state. Such a potential gives rise to a 
complex index of refraction, n - 1 - V/2Ekin, for atoms with kinetic energy Ekin. 
Therefore, a standing light field represents a refractive index grating for atomic 
matter waves. We create our light gratings in front of a retro-reflection mirror by 
reflecting a collimated laser beam at the surface. Diffraction of atoms at such a light 
grating is possible in full analogy with the 'traditional' diffraction of light at material 
gratings. This has been shown in thin- and thick-grating (Bragg) (Gould et al. 1986) 
diffraction regimes, and for the diffraction behaviour at pure refractive index and 
absorptive 'light crystals' (Oberthaler et al. 1996) consisting of thick standing light 
waves. 

According to equation (2.1) it is possible to produce an almost purely real potential 
using light which is far detuned on either side of the atomic resonance, or to produce a 
purely imaginary potential with resonant light. In order to design our time-orientated 
complex potential, we use the possibility of overlapping two different light crystals 
by superposing two independent laser beams at a beamsplitter cube. If the potentials 
of the two light fields are small enough to exclude saturation effects, the resulting 
potential is just the sum of the two individual potentialst. Since the two lasers 
frequencies are closely adjacent (maximal difference 120 MHz), the two standing light 
waves lie exactly on top of each other in front of the mirror surface. By modulating 
the intensity of the two laser beams independently with the same rate wM, but 

t Note that internal coherences in the atom excitation process play no role because two independent 
lasers are used to generate the two overlapping light crystals. 
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an adjustable relative phase PM, we can create a spatially and temporally periodic 
light-crystal potential V(x, t) of the form 

V(x, t) - [Vi (1 + COS(wMt)) + V2(1 + COS(wMt + (PM))][1 + cos(Gx)], (2.2) 

where G is the common grating vector of the two overlapping light crystals, and 
V1, V2 are the amplitudes of the potentials created by the two light beams. In our 
experiments we can choose the amplitudes to be negative, positive or imaginary by 
adjusting the respective laser frequencies according to equation (2.1). The spatial part 
of the potential represents the standing light intensity grating, which is temporally 
modulated by the time-dependent factors. 

3. Bragg diffraction of atoms at modulated potentials 

The next step is to recapitulate how such a time-modulated potential affects atomic 
diffraction. It has been shown (Bernet et al. 1996a, b) that a 'normal' intensity- 
modulated light crystal produces frequency sidebands, which are symmetrically offset 
to higher and lower energies by multiples of the modulation rate. In analogy with light 
optics, the ability of a time-dependent potential to create a sideband with a certain 
frequency offset depends only on the corresponding Fourier coefficient of the temporal 
modulation. In the case of low sideband production efficiencies, the intensities of 
frequency up-shifted (Pup), frequency down-shifted (Pdown) and unshifted atoms (Po) 
should be proportional to the absolute squares of these Fourier coefficientst: 

Po ' Vl + V2I2, Pup,down - I (V1 + V2e+i M)l2. (3.1) 

Since there are three adjustable parameters V1,V2 (real or imaginary) and (M, 
these relations imply that the intensity can be redistributed arbitrarily between the 
three sidebands. 

Now the question of how to identify the frequencies of the atomic sidebands arises. 
Fortunately, this has already been solved (Bernet et al. 1996a, b). It has been demon- 
strated that atomic sidebands produced by diffraction at a time-modulated light 
crystal appear as new Bragg peaks at new incidence angles. 

This behaviour can be explained in an Ewald construction (figure 1) for first- 
order scattering processes. Due to momentum conservation, incident and diffracted 
wavevectors (kin and kout) always have to be connected by a grating vector (G). 
Additionally, in static scattering (figure la) the energy is conserved, corresponding 
to conservation of the lengths of incident and scattered wavevectors. Thus, the pair 
of allowed incident, kin, and scattered wavevectors, kcout, forms a symmetric triangle 
with the grating vector G. Since the direction and length of a grating vector in an 
extended crystal are sharply defined, there are only discrete Bragg angles for a given 
incident wavevector. 

In the case of a periodically oscillating crystal (modulation rate WM) the grating 
vector still remains sharply defined. However, for long enough interaction times (T > 

1/WM) the temporal modulation allows for a quantized energy exchange between 

t In analogy with spatial diffraction, these relations apply only for low efficiencies of diffraction or 
sideband production. However, the statement that each sideband is only influenced by its corresponding 
Fourier coefficient usually remains valid. For larger efficiencies a deviation from the quadratic dependence 
is expected. 

Proc. R. Soc. Lond. A (1999) 

1511 

This content downloaded from 130.132.123.28 on Tue, 6 May 2014 06:42:39 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


S. Bernet and others 

(a) (b) 

Figure 1. Ewald construction for first-order diffraction at a static crystal (a) and at a periodically 
modulated crystal (b). Due to energy and momentum conservation in the case of static Bragg 
diffraction (a), the pair of incident and diffracted wavevectors, kin and kout, forms a symmetric 
triangle with the grating vector G. For a given absolute value of the atomic velocity VA and 
a certain diffraction direction, there is only one incidence angle allowed. In (b) the periodic 
modulation of the crystal additionally enables a quantized energy exchange of a modulation 

quantum ?hwM. Therefore the length of the scattered wavevector can change by approximately 
(?WUM/VA). For diffraction in the same order as in (a) there are now two new possible pairs 
(kin,1 -+ kout, and kin,2 -+ kout,2) of incident and diffracted wavevectors, in addition to the 
original pair of (a). For small energy shifts and small grating vectors with respect to the atomic 
wavevector, the angular offset of the two new incidence angles from the static Bragg angle 
(indicated in the figure) is approximately symmetric, and the total scattering angle does not 

change. In our experiments, the direction of the atomic beam is kept fixed in the laboratory, 
whereas the incidence direction at the crystal is changed by rotating the crystal. Therefore, 
first-order Bragg diffraction at a given direction now appears at the static Bragg angle, and at 
the two almost symmetrically displaced new crystal angles, resulting in energetically up- and 
down-shifted atoms. The corresponding scattering angles of the three cases are approximately 
equal. 

the crystal and incident wave of ?hwM, i.e. the de Broglie frequency of the scat- 
tered atoms changes exactly by ?+M. This holds for all kinds of potential mod- 
ulations which supply time-dependent Fourier contributions of frequency WM, e.g. 
for intensity- or phase-modulated (spatially vibrating) crystals. In the Ewald con- 
struction (figure lb) this leads to a change in the length of the scattered wavevector 
of (?+M/vA), where VA is the velocity of the atoms (the approximation holds for 
small modulation frequencies with respect to the de Broglie frequency of the incident 
atoms). In this case the tips of incident and scattered wavevectors are located on 
concentric circles with different radii. Normally, both absorption and emission of a 
modulation quantum hUM are possible, resulting in two new Ewald circles for fre- 
quency up- and down-shifting diffraction, respectively. Therefore, for diffraction in 
a given direction, two new pairs of incident and scattered wavevectors are allowed 

(kin,i -4 kout,l and kin,2 -+ kout,2), each connected by the same grating vector G. The 

corresponding incidence angles are located symmetrically around the static Bragg 
angle. In our experiment the Bragg scattering angles are of the order of 20 grad. In 
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this case the separation between the incidence angles of static and frequency-shifted 
scattering is proportional to the corresponding frequency shift of the atoms, and 
thus to the modulation rate (Bernet et al. 1996a, b). In particular, the sign of the 
frequency shift corresponds to the direction of the angular deviation. Thus, a mod- 
ulated Bragg crystal represents both a sideband synthesizer and an analyser at the 
same time. This is an important prerequisite for our experiment, allowing for the 
identification of atomic frequency sidebands as Bragg peaks at the new incidence 
angles. 

4. Experiment 

In our experiment (our experimental set-up is described in more detail in Batelaan 
et al. (1997)) (figure 2), we use argon atoms that are excited by a DC gas discharge 
to a metastable state (lifetime ca. 30 s). After excitation the thermal atomic beam 
(v = 700 m s-1 i 60%) is collimated (less than 6 Rrad) by two slits (10 gm and 
5 min) separated by a distance of 1.4 m. Then the atoms pass a thick (4 cm) standing 
light wave, created by retro-reflection of two overlapped collimated laser beams at 
a mirror which can be tilted by a piezo-actuator. The grating constant (401 nm) 
corresponds to one half of the optical wavelength (801.7 nm). Atoms are diffracted 
by this one-dimensional Bragg crystal if their incidence angle corresponds to a Bragg 
angle (9B = ?18s rad). Another 1.4 m downstream a third 10 gm slit selects only 
first-order diffracted atoms, which are then counted by our 'channeltron' detector as 
a function of their incidence angle at the light crystal. The channeltron registers only 
metastable atoms, whereas ground-state atoms remain undetected. This gives us the 
chance to realize an imaginary potential by resonant excitation with laser light at 
801.7 nm (ls5 -? 2P8), which leads to a relaxation of the atoms to the non-detected 
ground state (see inset of figure 2). This corresponds to absorption and supplies the 
Lorentzian imaginary part of the potential in equation (2.1). 

The Bragg crystal is produced by superposing light from two lasers-the frequen- 
cies are locked independently on-resonance (imaginary potential) or far detuned 

(by ?60 MHz ?1%0y) on either side of the absorption line (positive or negative 
potential). The corresponding two light crystals are situated exactly on top of each 
other. Typical light intensities were ca. 0.08 mW cm-2 for the absorptive crystal and 
1.5 mW cm-2 for the light field detuned by 60 MHz (ca. 10 linewidths). Thus the 
intensities were small with respect to the saturation intensity of 2.2 mW cm-2 for 
resonant excitation. Modulating the intensity of the two lasers, by switching two 

acousto-optic modulators (figure 2) in the two individual beams on and off with 
well-defined relative temporal phase PM, allows the creation of the general time- 
dependent potential variations mentioned previously (equation (2.2)). 

We first present diffraction experiments at such a light crystal with both com- 
ponents far detuned (real potentials) and modulated with a frequency of WM - 
27r x 100 kHz. During its passage through the crystal each atom experiences about 
six switching cycles. The absolute values of the two potentials were equalized (IV,I -- 
V21 =: VO) by adjusting the light intensities of the two individual gratings for approx- 

imately the same diffraction efficiencies (ca. 20%). In figure 3 the intensity of atoms 
scattered at the first diffraction order is displayed as a function of the atomic inci- 
dence angle at the light crystal (mirror angle). The centre of each plot corresponds 
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Figure 2. Experimental set-up (not to scale). A collimated thermal beam of metastable argon 
atoms crosses a standing light wave. First-order diffracted atoms are registered by a channeltron 
detector as a function of their incidence angle at the light crystal (mirror angle). The inset shows 
the levels involved in the 801.7 nm transition of metastable argon. 

to the static Bragg angle. As explained above, atoms diffracted at other incidence 
angles are frequency up- or down-shifted, depending on the sign of the angular offset. 

In figure 3a both lasers were red detuned (V1 = V2 = -Vo) with respect to 
the absorption line, and both were periodically switched on and off simultaneously 
(PM = 0, see inset). The situation corresponds to one single intensity-modulated 
laser (Bernet et al. 1996a,b), and the results are identical: one peak at the static 
Bragg angle (centre) and two smaller symmetrically located sidepeaks consisting of 
energetically up- and down-shifted atoms. The intensity ratio between the peaks is 
approximately 1:4:1 and thus agrees with the predictions of equations (3.1). 

In figure 3b both lasers were red detuned as before (Vi = V2 = -Vo), but now 
switched with a relative phase of mpM = r, i.e. alternately (see inset). In effect, the 
atoms see a time-independent red-detuned light crystal, and the situation corre- 
sponds to the case of normal static Bragg diffraction. Consequently, atoms are only 
scattered at the static Bragg angle (one peak at the centre). 

Figure 3c corresponds to the case where the two lasers are detuned on different 
sides of the resonance frequency (V1 = -V2 = -Vo) with equal switching phase 
(PM = 0). The total potential is always zero and no atoms are diffracted at all. 

In figure 3d the two lasers are still detuned on different sides of the resonance 
frequency, but now they are switched alternately (PoM = Tr). This corresponds to 
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Figure 3. Dependence of the matter wave sideband generation on the Fourier composition of a 
real potential modulation. Diffracted atoms are plotted as a function of the atomic incidence 
angle for different realizations of a Hermitian time-modulated potential. The centre of each plot 
corresponds to the static Bragg angle. Peaks at other positions correspond to frequency-shifted 
atoms. The insets show the respective potential modulations of the two spatially coinciding 
light crystals. The situation in (a), where both lasers are red detuned and switched simultane- 
ously, corresponds effectively to one intensity-modulated light crystal resulting in both a static 
Bragg peak and two sideband peaks. In (b) the two red-detuned lasers are switched alternately. 
Therefore, the effective crystal is time-independent, thus giving only the static peak. In (c) the 
two lasers are detuned on different sides of the atomic resonance, and switched simultaneously. 
The corresponding two potentials completely cancel each other at any time, and no diffraction 
results. Finally, in (d) the two lasers with opposite detunings are switched alternately. Therefore, 
the time average of the potential vanishes, although a time-modulated contribution as in (a) 
is created. Consequently, the diffracted atoms exhibit the two sidebands, but the static Bragg 
peak at the centre is suppressed. 

the interesting situation where the atoms see a crystal jumping between a positive 
and a negative potential. The time average of the potential completely vanishes 
(V +V2 = 0), although the time-dependent contributions are the same as in figure 3a. 
Therefore the static Bragg peak is completely suppressed, whereas the frequency 
sidebands still arise. 

These experiments demonstrate that the efficiency of frequency sideband genera- 
tion depends on the Fourier composition of the temporal potential modulation, in a 
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Figure 4. Asymmetric matter wave sidebands created by a non-Hermitian potential modulation 
with an orientation in time. The first-order diffracted atoms are plotted as a function of their 
incidence angle for different temporal phases in the modulation of a resonant and an off-resonant 
laser. The centre of each plot corresponds to the static Bragg angle. The sidepeaks consist of 
atoms whose de Broglie frequency is shifted by the modulation rate WM = 100 kHz. The sign of 
the frequency shift is determined by the sign of the angular offset. Depending on the temporal 
phase, different types of non-Hermitian potential modulations result, including the extreme 
cases of V ~ exp(?iwMt) + const. at modulation phases of -1r and |wr. In these cases an almost 
complete asymmetry of the frequency sideband generation is obtained. 

similar way to spatial scattering where the diffraction efficiency of a crystal depends 
on the Fourier components of the spatial potential modulation. This model also 
describes non-trivial situations, as in figure 3d. In the following it will be applied 
even to the case of non-Hermitian potentials. 

In the next experiments we build our general time-modulated complex potentials, 
including the special cases V - e?iM't + const. The difference is that now one of the 
lasers is tuned on resonance (absorptive crystal, imaginary potential), whereas the 
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other laser remains red detuned (refractive crystal, negative potential). After adjust- 
ing the laser intensities of the two individual subcrystals for equal relative diffraction 
efficiencies, we get V1 - -iV2 = -V0. Each graph in the series of figure 4 corresponds 
to a different relative modulation phase, JM, of the two lasers, changing between 0 
and 27r in steps of ?7T. In the cases where the switching of the two lasers was per- 
formed simultaneously (pMm = 0, first and last graph) or alternately (pM = r, middle 

graph), the results are still symmetric, with one central Bragg peak and two side- 
peaks. According to equations (3.1), the peak ratios should be 1:4:1. All other plots 
show an asymmetric distribution of the sidebands as expected from equations (3.1). 
The extreme situations (M = 17 and SOM = 37r result in a completely asymmetric 
sideband production. As expected from equations (3.1) the intensity of the asym- 
metric sideband is approximately doubled with respect to the symmetric situations. 
There the time-dependent part of the corresponding potential modulation becomes 

V(t) e?iWMt, corresponding to a helix in complex space. 
A more detailed evaluation of the sidepeak intensities is plotted in figure 5. There, 

the relative efficiencies of sideband generation are determined from the integral inten- 
sities of the sidepeaks, normalized by the intensity of the static Bragg peak. The 
graph clearly shows the opposite behaviour of frequency up-shifted and frequency 
down-shifted atoms. As expected from equations (3.1), the efficiencies of sideband 
production vary sinusoidally as a function of the temporal modulation phase between 
the absorptive and the off-resonant light crystals. 

These experiments demonstrate, to our knowledge, for the first time, an asymmet- 
ric sideband production of matter waves. The discussion in the next section will show 
that this corresponds to a directed energy transfer induced by a resonant excitation, 
which violates the usual symmetry between absorption and stimulated emission. 

5. Discussion 

Interestingly, our sideband generation can also be interpreted as a transition of the 
atoms between the energy bands of the light crystal, induced by the time-modulated 
potential. In figure 6 these eigenenergies are plotted as a function of the atomic 
wavevector component kA1l parallel to the grating vector G (Dahan et al. 1996; 
Wilkinson et al. 1996). Thus, if all atomic wavevectors are assumed to have the 
same length (momentum), the kAIl-axis corresponds to the incidence angle of the 
atoms at the crystal. The dashed parabola corresponds to the dispersion of a free 
atom outside the crystal. At the crystal boundary an originally free atom is coupled 
into the particular band which matches its free (kinetic) energy parabola. Thus, at 
most incidence angles the atoms occupy only one crystal eigenstate. Since eigenstates 
do not change in time, these atoms are coupled out at the end of the crystal in the 
same way as those coupled in, and no diffraction is possible. Simultaneous population 
of two (adjacent) bands occurs only at the band gaps, for example at position 'a' in 
figure 6, followed by a time evolution and a 'normal' static Bragg diffraction process. 

However, in a time-modulated crystal, diffraction can also be observed at other 
incidence angles, where atoms 'normally' should occupy only one crystal band. The 
explanation in this picture is that these atoms can be excited resonantly into a 

superposition of two bands if the crystal is modulated with the corresponding fre- 

quency difference (e.g. arrows b or c in figure 6). This results in Bragg diffraction of 

frequency-shifted matter waves. A calculation of the modulation rate as a function 
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Figure 5. Relative efficiencies of the generation of frequency up-shifted and down-shifted side- 
bands as a function of the relative temporal oscillation phase between the absorptive and the 
off-resonant light crystals. The data points are fits of the sidepeak intensities in figure 4. 

of the incidence angle yields the same results as the generalized Ewald construction 
sketched above. Obviously, resonant transitions to higher (e.g. arrow b) and lower 
bands (e.g. arrow c) are arranged symmetrically around the static Bragg angles 
(e.g. position a), which explains the symmetric distribution of the sideband peaks in 
'conventionally' modulated crystals (Bernet et al. 1996a, b). On the other hand, the 
asymmetric sidebands of our present experiment suggest the presence of a different 
type of perturbation, which induces resonant transitions only in one direction. For 
example, although the modulation may induce a transition (b) to a higher energy 
band, there is no transition to an equally spaced lower energy band under incidence 
condition (c). The ability of such helical complex potentials to produce lop-sided 
transitions might imply applications like cooling of atoms in optical lattices, or, on 
the contrary, creating population inversion. However, in our present experiment this 
is not possible since we do not realize the pure situation V ~ eiMt. Instead we have 
to consider a constant imaginary contribution which causes absorption. Neverthe- 
less, extending our experiment to a system where repumping of ground-state atoms 
is possible might solve this problem and realize the pure case. 

It is also interesting to note that our asymmetric sideband creation has a spa- 
tial analogue, which is not trivial since the Schr6dinger equation is unsymmetric 
with respect to temporal and spatial coordinates. It consists of a violation of the 
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Figure 6. Band structure of atomic matter waves in a one-dimensional light crystal. Transitions 
within the band structure (arrows b and c) are induced by a resonant perturbation and result 
in new Bragg peaks of frequency-shifted atoms. 

typical diffraction symmetry with respect to conjugate diffraction orders, known as 
Friedel's law, as recently observed for atoms diffracted at a complex light crystal 
(Keller et al. 1997). There, the crystal was a superposition of two spatially dis- 

placed absorptive and refractive light gratings. This resulted in a spatial helicity 
of the complex crystal potential V(x) e?iGx, which permitted a transfer of a 

grating momentum ?hG (diffraction) only in one direction (Berry 1998). Similarly, 
our helicity in the time domain V(t) ~ eiWMt induces energy transfers only in 
one direction. By combining the two effects it now becomes feasible to produce a 

light potential V(x, t) - e?iGx?iwMt which has the appearance of an artificial trav- 

elling de Broglie wave. Bragg diffraction of atoms at such a potential implies the 
alternative description of an elastic collision of two de Broglie particles. We expect 
interesting new insights in quantum scattering from proceeding investigations of such 
time-modulated complex potentials. 

This work was supported by the Austrian Science Foundation (FWF), project number S6504, 
and by the European Union TMR grant ERB FMRX-CT96-0002. 
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