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We formulate a two-party communication complexity problem and present its quantum solution that
exploits the entanglement between two qutrits. We prove that for a broad class of protocols the entangled
state can enhance the efficiency of solving the problem in the quantum protocol over any classical one if
and only if the state violates Bell’s inequality for two qutrits.
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start the protocol, Alice and Bob are allowed to share
(classically correlated) random strings which might im-
prove the probability of success.

plexity problem which will be our case of study. This
problem is of a different kind than the standard commu-
nication complexity problem where the two parties try to
Entanglement is not only the most distinctive feature of
quantum physics with respect to the classical world, as
quantitatively expressed by the violation of the Bell’s
inequalities [1]. It also enables powerful computation
[2], establishes secure communication [2], and reduces
the communication complexity [3–8], all beyond the
limits that are achievable on the basis of laws of classical
physics.

To date, only very few tasks in quantum com-
munication and quantum computation require higher-
dimensional systems than qubits as recourses.
Quantum-key distribution based on higher alphabets
was shown to be more secure than that based on qubits
[9]. A certain quantum solution of the coin-flipping prob-
lem uses qutrits (three-dimensional quantum systems)
[10], and the quantum solution of the Byzantine agree-
ment problem utilizes the entanglement between three
qutrits [11].

Here we formulate a two-party communication com-
plexity problem and present its quantum solution which
makes use of the entanglement between two qutrits. We
prove that for a broad class of protocols the entangled
state of two qutrits can enhance the efficiency of solving
the problem in the quantum protocol, over any classical
one if and only if the state violates Bell’s inequality for
two qutrits as derived by Collins et al. [12].

In this Letter, a variation of the following communi-
cation complexity problem will be considered. Two sep-
arated parties (Alice and Bob) receive some input data of
which they know only their own data and not the data of
the partner. Alice receives an input string x and Bob an
input string y and the goal is for both of them to deter-
mine the value of a certain function f�x; y�, while ex-
changing a restricted amount of information. While an
error in computing the function is allowed, the parties try
to compute it correctly with as high a probability as
possible. An execution is considered successful if the
value determined by both parties is correct. Before they
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In 1997 Buhrman, Cleve, and van Dam [7] considered
a specific two-party communication complexity problem
of the type given above. Alice receives a string x �
�x0; x1� and Bob a string y � �y0; y1�. Each of the strings
is a combination of two bit values: x0; y0 2 f0; 1g and
x1; y1 2 f�1; 1g. Their common goal is to compute the
function (a reformulation of the original function of [7])

f�x; y� � x1y1��1�x0y0 ; (1)

with as high a probability as possible, while exchanging
altogether only 2 bits of information. Buhrman et al. [7]
showed that this can be done with a probability of success
of PQ � 0:85 if the two parties share two qubits in a
maximally entangled state, whereas with shared random
variables but without entanglement (i.e., in a classical
protocol), this probability cannot exceed PC � 0:75.
Therefore, in a classical protocol 3 bits of information
are necessary to compute f with a probability of at least
0.85, whereas with the use of entanglement 2 bits of
information are sufficient to compute f with the same
probability.

There is a link between tests of Bell’s inequalities and
quantum communication complexity protocols. Bell’s in-
equalities are bounds on certain combinations of proba-
bilities or correlation functions for measurements on
multiparticle systems. These bounds apply for any local
realistic theory. In a realistic theory the measurement
results are determined by properties the particles carry.
In a local theory the results obtained at one location are
independent of any actions performed at spacelike sepa-
ration. The quantum protocol of the two-party commu-
nication complexity problem introduced in Refs. [7,8] is
based on a violation of the Clauser-Horne-Shimony-Holt
[13] inequality. Similarly three- and multiparty commu-
nication complexity tasks were introduced [7,8,14] with
quantum solutions based on the Greenberger-Horne-
Zeilinger–type [15] argument against local realism.

Let us now define the two-party communication com-
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TABLE I. A set of possible input values for x0 and y0 and the
corresponding values of the functions x0y0 and 2� x0 � y0.

x0 y0 x0y0 2� x0 � y0

0 0 0 2
0 1 0 1
1 0 0 1
1 1 1 0
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give the correct answer to a question posed to them in as
many cases as possible under the constraint of restricted
communication. Yet, one can imagine situations where not
a single but two questions are posed to the parties and
where the parties are restricted both in communication
and in broadcasting of their answers. The specific case
which is considered here is that the parties must give a
single answer to two questions. Further, the parties are
not allowed to differ in their answers. That is, they must
produce two identical answers each time.

Formally the two questions will be formulated as a
problem of computation of two three-valued functions f1
and f2. Since the parties are allowed to give only one
answer about the values of two functions, their goal will
be to give the correct value of f1 with the highest possible
probability, and at the same time, the correct value of f2
with the lowest possible probability, while exchanging
only a restricted (each party sending one trit) amount of
information [16].

We now introduce the two-party task in detail and we
give the functions f1 and f2 explicitly:

Alice receives a string x � �x0; x1� and Bob a string
y � �y0; y1�. Alice’s string is a combination of a bit x0 2
f0; 1g and a trit x1 2 f1; ei�2�=3�; e�i�2�=3�g. Similarly Bob’s
string is a combination of a bit y0 2 f0; 1g and a trit y1 2
f1; ei�2�=3�; e�i�2�=3�g (the representation in terms of com-
plex third roots of unity is chosen for mathematical
convenience). All possible input strings are distributed
randomly and with equal probability.

Before they broadcast their answers, Alice and Bob are
allowed to exchange two trits of information.

Alice and Bob each broadcast her/his answer in the
form of one trit. The two answers must be identical. That
is, they each broadcast the same one trit.

The task of Alice and Bob is to maximize the differ-
ence between the probabilities, P�f1�, of giving the cor-
rect value for function

f1 � x1y1ei�2�=3��x0y0�; (2)

and P�f2�, of giving the correct value for function

f2 � x1y1ei�2�=3��2�x0�y0�: (3)

That is, they aim at the maximal value of

� � P�f1� � P�f2�: (4)

We show that, if two parties use a broad class of
classical protocols, the difference � of the probabilities
for correct value of the two functions introduced above is
at most 0.5, whereas if they use two entangled qutrits, this
difference can be as large as 1=4� 1=4

�����������
11=3

p
’ 0:729.

Note that the first factor x1y1 in the full functions f1
and f2 results in completely random values if only one of
the independent inputs x1 or y1 is random. This is not the
case for the last factors with the inputs x0 and y0. Thus,
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intuition suggests that the optimal protocol for the two
parties may be that Alice ‘‘spends’’ her trit in sending x1
and Bob in sending y1 and that they put for the second
factor of the two functions a value which is most often
appearing for function ei�2�=3��x0y0� (compare the third
column in Table I) and, at the same time, least often
appearing for function ei�2�=3��2�x0�y0� (compare the
fourth column). The second factor obtained in such a
way is 1. Next, each of them broadcasts the value x1y1
as her/his answer. In this way, P�f1� � 0:75 and P�f2� �
0:25, which gives � � 0:5.

The second protocol suggested by intuition exploits
the fact that f2, in contradiction to f1, is a factorizable
function, i.e., f2 � �x1ei�2�=3��1�x0���y1ei�2�=3��1�y0��: Alice
and Bob can exchange the values of x1ei�2�=3��1�x0� and
y1e

i�2�=3��1�y0�. In this way, they both know the exact
value of f2. Thus, they broadcast a wrong value of it,
e.g., f2e�i�2�=3�. By looking at Table I, one immediately
sees that this operation acts effectively as subtraction of 1
from the values in the last column. The obtained values
agree with those in column three in two cases (two middle
rows). Thus, within this protocol P�f1� � 0:5 and
P�f2� � 0, which again results in � � 0:5.

Let us now present a broad class of classical protocols
which can be followed by Alice and Bob, and which
contain the above intuitive examples as special cases:

Alice calculates locally any function a�x0; �A� and Bob
calculates locally any function b�y0; �B� such that their
outputs define the trit values to be broadcast under the
restriction of communication. More precisely, Alice sends
to Bob eA � ax1 and receives from him eB � by1. Here
�A and �B are any other parameters on which their
functions a and b may depend. They may include random
strings of numbers shared by Alice and Bob. Upon receipt
of eA and eB, they both broadcast eAeB as their answers
(which always agree). Note that the first intuitive protocol
is reproduced by a � 1 and b � 1 for all inputs. The
second one is recovered by a � ei�2�=3��1�x0� and b �
e�i�2�=3�y0 again for all inputs.

Before showing what is the maximal � achievable for
such a wide class of classical protocols, we shall introduce
its quantum competitor. Let Alice and Bob share a pair of
entangled qutrits and suitable measuring devices (see,
e.g., [17]). This is their quantum protocol:

If Alice receives x0 � 0, she will measure her qutrit
with the apparatus which is set to measure a three-valued
197901-2



FIG. 1. Two-party quantum communication complexity pro-
tocol which is based on the Bell-type experiment with en-
tangled qutrits. Alice receives a string x � �x0; x1� and Bob
y � �y0; y1�. Depending on the value of x0 Alice chooses to
measure between two different three-values observables A0 and
A1. Similarly, depending on y0 Bob chooses to measure be-
tween three-values observables B0 and B1. Alice’s result of the
measurement is denoted by a and Bob’s by b. In the last step of
the protocol, Alice sends the trit x1a to Bob and Bob sends the
trit y1b to Alice.
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observable A0 (Fig. 1). Otherwise, i.e., for x0 � 1, she sets
her device to measure a different three-valued observable
A1. Bob follows the same protocol. If he receives y0 � 1,
he measures the three-valued observable B0 on his qutrit.
For y0 � 0 he measures a different three-value observable
B1. We ascribe to the outcomes of the measurements the
three values 1, ei�2�=3�, and e�i�2�=3� (the Bell numbers
[17]). The actual value obtained by Alice in the given
measurement will be denoted again by a, whereas the one
of Bob’s, also again, by b. Alice sends trit eA � y1a to
Bob, and Bob sends trit eB � y2b to Alice. Upon recep-
tion of the transmitted values, they both broadcast eAeB as
their answers.

The task in both protocols is to maximize � � P�f1� �
P�f2�. The probability P�f1� is the probability for
the product ab of the local measurement results to be
equal to ei�2�=3��x0y0� in the two (classical and quantum)
protocols:

P�f1� �
1
4
PA0;B1

�ab � 1� � PA0;B0
�ab � 1�

� PA1;B1
�ab � 1� � PA1;B0

�ab � ei�2�=3���; (5)

where, e.g., PA0;B1
�ab � 1� is the probability that ab � 1

if Alice measures A0 and Bob measures B1 (after she
receives x0 � 0 and he y0 � 0). Recall that all four pos-
sible combinations for x0 and y0 occur with the same
probability 1

4 . Similarly, the probability P�f2� that prod-
uct ab is equal to ei�2�=3��2�x0�y0� is given by

P�f2� �
1
4
PA0;B1

�ab � e�i�2�=3�� � PA0;B0
�ab � ei�2�=3��

� PA1;B1
�ab � ei�2�=3�� � PA1;B0

�ab � 1��: (6)

Finally, one notices that the success measure in the task is
given by

� � 1
4I3; (7)

where I3 is exactly the Bell expression as defined by
Collins et al. [12]. It is the combination of probabilities
obtained here when the right-hand side of Eq. (5) is
subtracted by the right-hand side of Eq. (6) and then
multiplied by 4. Collins et al. [12] showed that I3 � 2
for all local realistic theories. Recently the violation of
this inequality was demonstrated for a pair of spin-1
entangled photons [18]. In Ref. [12] the local measure-
ment results are defined differently (as numbers 0, 1,
and 2); however, this description and the one used here
are equivalent.

If one looks back at the family of classical protocols
introduced above, one sees that they are equivalent to a
local realistic model of the quantum protocol (�’s are
local hidden variables, and x1; y1 are some local variables
which are not hidden). This implies that within the full
class of classical protocols considered here � � 0:5.

Thus, the necessary and sufficient condition for the
state of two qutrits to improve the success in our commu-
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nication complexity task over any classical protocol of
the discussed class is that the state violates the Bell
inequality for two qutrits. Note that, except for shared
entanglement, the discussed classical and quantum pro-
tocols are performed under the same conditions. A wider
class of classical protocols could include local calcula-
tions of functions a�x0; x1; �A�, for Alice, and
b�y0; y1; �B�, for Bob, which depend on the full local
inputs. Note that then the quantum competitor could be
based on Bell’s experiment where the measurements can
be chosen between six alternative three-valued observ-
ables. However, the fact that � in the intuitive classical
protocols is equal to the maximal possible � in the
discussed class of classical protocols strongly indicates
that this class, although not the most general one, might
already include the optimal one. This could be due to the
different role of the entries x0; y0 and x1; y1 in the func-
tions f1 and f2.

It was shown in Ref. [19] that a nonmaximally (asym-
metric) entangled state of two qutrits that reads: j i �

1���������
2��2

p �j00i � �j11i � j22i� with � � �
������
11

p
�

���
3

p
�=2 ’

0:7923 can violate the Collins et al. Bell inequality
stronger than the maximally entangled one. In that
case, the Bell expression I3 reaches the value 1������������
11=3

p
� 2:9149. This implies that with the use of this

particular state the probability difference � in our proto-
col can be as large as 0.729.

Therefore, in a classical protocol, even with shared
random variables, more than two trits of information
are necessary to complete the task successfully with �
at least 0.729, whereas with the quantum entanglement
two trits are sufficient for the task with the same �. Note
that the discrepancy between the measure of success in
the classical and the quantum protocol is higher here than
in the two-party communication complexity problem of
197901-3
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Ref. [7] mentioned above. Here we have �Q � �C � 0:23,
whereas there PQ � PC � 0:1.

As another example, we formulate a standard commu-
nication complexity task which is an immediate general-
ization of the one of Ref. [7]. In this case the task of Alice
and Bob is only to maximize the probability for correct
computation of function f1. Since this is just a first part of
the task introduced above, the highest possible probabil-
ity of success in a classical protocol is PC � 0:75. The
connection with the violation of a Bell’s inequality is
established through equation PC � I2=4, where I2 is an-
other Bell expression [which is equal to Eq. (5) with the
factor 1

4 dropped] introduced in Ref. [12]. For all local
realistic theories I2 � 3. Therefore, all quantum states of
entangled qutrits which violate this Bell inequality can
lead to higher than classical success rate for the task.

We note that a series of similar specific two-party
communication complexity tasks can be formulated
with quantum solutions which exploit the possibility of
two arbitrarily high-dimensional quantum systems to
violate the corresponding Bell inequalities of Ref. [12].

As noted in Ref. [11], one may ask whether the use of
qutrits is necessary for any quantum information task,
because qutrits can be teleported with the help of singlets
and classical communication. Yet any such realization
would require more communication than permitted by
our protocol. One may also ask whether the exclusive use
of the states which violate Bell’s inequalities is necessary
for the problem, as there are nonseparable states which
do not directly violate Bell’s inequalities [20] but only
after local operations and classical communication [21].
Yet again such transformation would require additional
communication.

We interpret our work as a further example suggesting
that the violation of Bell inequalities can be considered as
a ‘‘witness of useful entanglement.’’ This was first coined
and suggested in [22,23] in different contexts.
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