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We present an approach to describe state-of-the-art photonic
quantum experiments using graph theory. There, the quan-
tum states are given by the coherent superpositions of perfect
matchings. The crucial observation is that introducing complex
weights in graphs naturally leads to quantum interference. This
viewpoint immediately leads to many interesting results, some
of which we present here. First, we identify an experimen-
tal unexplored multiphoton interference phenomenon. Second,
we find that computing the results of such experiments is #P-
hard, which means it is a classically intractable problem dealing
with the computation of a matrix function Permanent and its
generalization Hafnian. Third, we explain how a recent no-go
result applies generally to linear optical quantum experiments,
thus revealing important insights into quantum state genera-
tion with current photonic technology. Fourth, we show how
to describe quantum protocols such as entanglement swapping
in a graphical way. The uncovered bridge between quantum
experiments and graph theory offers another perspective on a
widely used technology and immediately raises many follow-up
questions.

quantum experiments | graph theory | linear optics | multiphoton
quantum interference | quantum entanglement

Photonic quantum experiments prominently use probabilistic
photon sources in combination with linear optics (1). This

allows for the generation of multipartite quantum entanglement
such as Greenberger–Horne–Zeilinger (GHZ) states (2–5), W
states (6), Dicke states (7, 8), or high-dimensional states (9, 10);
proof-of-principle experiments of special-purpose quantum com-
puting (11–18); or applications such as quantum teleportation
(19, 20) and entanglement swapping (21, 22).

Here we show that one can describe all of these quantum
experiments∗ with graph theory. To do this, we generalize a
recently found link between graphs and a special type of quan-
tum experiments with multiple crystals (23)—which were based
on the computer-inspired concept of entanglement by path iden-
tity (24, 25). By introducing complex weights in graphs, we can
naturally describe the operations of linear optical elements, such
as phase shifters and beam splitters, which enables us to describe
quantum interference effects. This technique allows us to find
several results: (i) We identify a multiphotonic quantum inter-
ference effect which is based on generalization of frustrated
pair creation in a network of nonlinear crystals. (Frustrated pair
creation is an effect where the amplitudes of two pair-creation
events can constructively or destructively interfere.) Although
the two-photon special case of this interference effect was
observed more than 20 years ago (26), the multiphoton general-
ization with many crystals has not been investigated theoretically
or experimentally. (ii) We find these networks of crystals cannot
be calculated efficiently on a classical computer. The experi-
mental output distributions require the summation of weights of
perfect matchings (the weight of a perfect matching is the prod-
uct of the weights of all containing edges) in a complex weighted
graph (or, alternatively, probabilities proportional to the matrix
function Permanent and its generalization Hafnian), which is

#P-hard (27, 28) (a #P-hard problem is at least as difficult as any
problem in the complexity class #P)—and related to the Boson-
Sampling problem. (iii) We show that insights from graph theory
identify restrictions on the possibility of realizing certain classes
of entangled states with current photonic technology. (iv) The
graph-theoretical description of experiments also leads to a pic-
torial explanation of quantum protocols such as entanglement
swapping. We expect that this will help in designing or intu-
itively understanding novel (high-dimensional) quantum proto-
cols. The conceptual ideas that have led to this article are shown
in Fig. 1.

Connections between graph theory and quantum physics have
been drawn in earlier complementary works. A well-known
example is the so-called graph states, which can be used for
universal quantum computation (31, 32). That approach has
been generalized to continuous-variable quantum computation
(33), using an interesting connection between Gaussian states
and graphs (34). Graphs have also been used to study collec-
tive phases of quantum systems (35) and used to investigate
quantum random networks (36, 37). The bridge between graphs
and quantum experiments that we present here is quite differ-
ent, thus allowing us to explore entirely different questions. The
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Fig. 1. A rough sketch of the influences that have led to the current paper.
Three seminal papers (26, 29, 30) have influenced entanglement by path
identity (25), which itself has led to quantum experiments and graphs in
ref. 23. Here we connect these ideas with the mature field of research that
investigates passive linear optics in the quantum regime. The results of the
merger are described in the current paper.

correspondence between graph theory and quantum experiments
is listed in Table 1.

Entanglement by Path Identity and Graphs
In this section, we briefly explain the main ideas from entan-
glement by path identity in ref. 25 and quantum experiments
and graphs in ref. 23, which form the basis for the rest of this
paper. The concept of entanglement by path identity shows a
very general way to experimentally produce multipartite and
high-dimensional entanglement. This type of experiment can be
translated into graphs (23). As an example, we show an exper-
imental setup which creates a 2D GHZ state in polarization
(Fig. 2A). The probabilistic photon pair sources (for example,
the nonlinear crystals) are set up in such a way that crystals I and
II can create horizontally polarized photon pairs, while crystals
III and IV produce vertically polarized photon pairs. All of the
crystals are excited coherently and the laser pump power is set
such that two photon pairs are produced simultaneously.†

The final state is obtained under the condition of four-
fold coincidences, which means that all four detectors click
simultaneously.‡ This can happen only if the two photon pairs
originate either from crystals I and II or from crystals III and IV.
There is no other case to fulfill the fourfold coincidence condi-
tion. For example, if crystals I and III fire together, there is no
photon in path d , while there are two photons in path a . The
final quantum state after postselection can thus be written as
|ψ〉= 1√

2
( |H ,H ,H ,H 〉abcd + |V ,V ,V ,V 〉abcd), where H and

V stand for horizontal and vertical polarization respectively, and
the subscripts a , b, c, and d represent the photon’s paths.

One can describe such types of quantum experiments using
graph theory (23). There, each vertex represents a photon path

†The pair creation process of SPDC is entirely probabilistic. That means, the probabil-
ity that two pairs are created in one single crystal is as high as that of the creation of
two pairs in two crystals. That furthermore means that if creating one pair of photons
has a probability of p, then creating two pairs has the probability p2. In the exper-
iment depicted in Fig. 2A, with some probability, more than two pairs are created.
These higher-order photon pairs are the main source of reduced fidelity in multipho-
tonic GHZ-state experiments (4). However, the laser power can be adjusted such that
these cases have a sufficiently low probability (of course, with the drawback of lower
count rates). The same arguments hold for all other examples in this paper (as they do
for most other SPDC-based quantum optics experiments).

‡Most multiphotonic entangled quantum states are created under the condition of N-
fold coincidence detection (1). It allows for investigation and application of these states
as long as the photon paths are not combined anymore, such as in a subsequent lin-
ear optical setup. In that case, one needs to analyze the perfect matchings after the
entire setup. Alternatively, one can use a photon number filter based on quantum
teleportation in each output of the setup, as introduced in ref. 20.

and each edge stands for a nonlinear crystal which can prob-
abilistically produce a correlated photon pair. Therefore, the
experiment can be described with a graph of four vertices and
four edges depicted in Fig. 2B. A fourfold coincidence is given
by a perfect matching of the graph, which is a subset of edges
that contains every vertex exactly once. For example, there are
two subsets of edges (Eab , Edc) and (Eac , Ebd ) in Fig. 2B, which
form the two perfect matchings. Thus, the final quantum state
after postselection can be seen as the coherent superposition of
all perfect matchings of the graph.

Complex Weighted Graphs—Quantum Experiments
Quantum Interference. Now we start generalizing the connection
between quantum experiments and graphs. The crucial obser-
vation is that one can deal with a phase shifter in the quantum
experiment as a complex weight in the graph. When we add phase
shifters in the experiments and all of the crystals produce indistin-
guishable photon pairs, the experimental output probability with
fourfold postselection is given by the superposition of the perfect
matchings of the graph weighted with a complex number.

As an example shown in Fig. 3A, we insert a phase shifter
between crystals I and III and all of the four crystals create hor-
izontally polarized photon pairs. The phase ϕ is set to a phase
shift of π and the pump power is set such that two photon pairs
are created. With the graph–experimental connection, one can
also describe the experimental setup as a graph which is depicted
in Fig. 3B. The color of the edge stands for the phase in the
experiments while the width of the edge represents the absolute
value of the amplitude. To calculate fourfold coincidences from
the outputs, we need to sum the weights of perfect matchings
of the corresponding graph. There are two perfect matchings of
the graph, where one is given by crystals III and IV while the
other is from crystals I and II. The interference of the two per-
fect matchings (which means of the two fourfold possibilities) can
be obtained by varying the relative complex weight e iϕ between
them. Therefore, the cancellation of the perfect matchings shows
the destructive interference in the experiment.

More quantitatively, each nonlinear crystal probabilistically
creates photon pairs from spontaneous parametric down-
conversion (SPDC). We follow the theoretical method presented
in refs. 29 and 38 and describe the down-conversion creation
process as

Û ≈ 1 + g(â†b̂†) +
g2

2
(â†b̂†)2 +O(g3), [1]

where â† and b̂† are single-photon creation operators in paths
a and b, and g is the down-conversion amplitude. The terms
of O(g3) and higher are neglected. The quantum state can be
expressed as |ψ〉= Û | vac〉, where | vac〉 is the vacuum state.

Table 1. The analogies for quantum experiments and graph
theory

Linear optical quantum experiments Graph theory

Quantum photonic setup including linear Complex weighted
optical elements and nonlinear crystals undirected graph
as probabilistic photon pair sources

Optical output path Vertex set S
Photonic modes in optical output path Vertices in vertex set S
Mode numbers Labels of the vertices
Photon pair correlation Edges
Phase between photonic modes Color of the edges
Amplitude of photonic modes Width of the edges
n-fold coincidence Perfect matching
#(terms in quantum state) #(perfect matchings)
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Fig. 2. Generation of 2D four-photon GHZ state using entanglement by
path identity (25) and corresponding graph description of the setup (23). (A)
An optical setup consists of four probabilistic photon pair sources, for exam-
ple nonlinear crystals. The crystals (gray squares) I–IV are pumped coherently
and the pump power is set in such a way that two photon pairs are pro-
duced. Here we take the polarization for simplicity—crystals I and II each
produce a photon pair with |H, H〉 while crystals III and IV create a pho-
ton pair with |V , V〉. The fourfold coincidence requires a photon in each
detector simultaneously, which can happen only when crystals I and II or
crystals III and IV fire together. (B) The corresponding graph of the exper-
iment. Each vertex stands for a photon path and each edge represents
one crystal. Thus, the graph has four vertices and four edges. The condi-
tion of fourfold coincidence is represented by the perfect matchings of the
graph—a subset of edges that contains every vertex exactly once. There
are two subsets of edges (Eab, Edc) and (Eac, Ebd) which form the perfect
matchings in the graph. The final output state with postselection is in a
superposition of all of the possibilities. Therefore, it can be seen as a super-
position of all of the perfect matchings of the graph, which gives the result
|ψ〉= 1√

2
( |H, H, H, H〉abcd + |V , V , V , V〉abcd).

Here we neglect the empty modes and higher-order terms and
write only first-order terms and the fourfold term for second-
order spontaneous parametric down-conversion. The full state
up to second order can be seen in SI Appendix. Therefore, the
final quantum state in our example is

|ψ〉= g( |H ,H 〉ab + |H ,H 〉cd + |H ,H 〉bd + e iϕ |H ,H 〉ac)

+g2(1 + e iϕ) |H ,H ,H ,H 〉abcd + . . .
.

[2]

We can see that the fourfold coincidence count rate varies
with the tunable phase ϕ while the twofold coincidence count
rate remains constant, which is depicted in Fig. 3C. This is
a multiphotonic generalization of two-photon frustrated down-
conversion (26) that has never been experimentally observed.

Special-Purpose Quantum Computation. We here show a general-
ization of the setup in Fig. 3A, where the experimental results
cannot be calculated efficiently on a classical computer. The out-
put requires summation of weights of perfect matchings of a
complex weighted graph, which is a remarkably difficult prob-
lem that is #P-hard (27, 28). The experiment consists of N
nonlinear crystals and M optical output paths in total. We
call this type of experiment “the crystal network” for the rest
of this paper. One can experimentally adjust the pump power
and phases for every crystal, which allows one to change every
single weight of the edges of the corresponding graph inde-
pendently. The crystals are pumped coherently and the pump
power is set such that n (n <N ) crystals can produce photon
pairs and higher-order pair creations can be neglected. Then
we calculate the 2n-fold coincidence in 2n (2n <M ) output
paths. Now one could ask, What is the probability of the 2n-
fold coincidences in one specific 2n output when all crystals are
pumped?

In Fig. 4, we show some examples to answer this question.
In the first example, we have in total six output paths (a − f :

M = 6) and nine crystals (N = 9) from which probabilistically
two (n = 2) produce photon pairs. Now we calculate the fourfold
probability for a subset of four output paths (for example, a , b, c,
and d highlighted in orange). With the graph–experimental link,
a subset of four outputs in the quantum experiment corresponds
to a subset of four vertices in the corresponding graph, depicted
in orange in Fig. 4A. The experimental outcome corresponds to
summing weights of perfect matchings of the subgraph, which
is related to calculating the Permanent of the submatrix of the
adjacency matrix. (An adjacency matrix is a square matrix used
to represent a simple graph. The elements of the matrix stand
for the weights of the edges between two vertices.) Therefore, we
find that the probability Pabcd is proportional to the Permanent,
Pabcd∝ |Perm(UPs )|2.

For experiments with general arrangements of crystals, the
2n-fold probability can be calculated by a generalization of the
Permanent—the so-called Hafnian (39), shown in Fig. 4B. When
the crystal network consists of a large number of crystals, it is
unknown how to efficiently approximate the Hafnian (40, 41). To
the best of our knowledge, the fastest algorithm to compute the
Hafnian of an n ×n complex matrix runs inO(n32n/2) time (42).

The task described above is connected to BosonSampling
(11, 13–17), which requires the matrix function Permanent to
calculate the experimental results. However, the experimental
implementation is fundamentally different. In BosonSampling
experiments to date, single photons undergo a multiphotonic
Hong–Ou–Mandel effect (43–45) in a passive linear optical
network. In contrast to that, our concept is based solely on
probabilistic pair sources where frustrated pair creation occurs.
Computing Hafnians has only recently been investigated by
a complementary approach called Gaussian BosonSampling
(46–48).

An interesting question is the scaling of expected count rates
of BosonSampling and the approach presented here. In the orig-
inal BosonSampling proposal, n pairs of heralded single photons

A B

C

Fig. 3. Interference of perfect matchings. (A) A setup with all crystals pro-
ducing horizontally polarized photon pairs. A phase shifter with a phase
of ϕ is inserted between crystals I and III. (B) The corresponding graph of
the experimental setup. The complex weight eiϕ introduced by the phase
shifter (eiϕ, here ϕ=π) is depicted with different colors. Here red and blue
of each edge stand for 0 and π phase shifts. There are two perfect match-
ings of the graph, which come from crystals I and II and crystals III and IV,
respectively. When one calculates the sum of the perfect matchings, the
quantum state is given by |ψ〉= (1 + eiπ) |H, H, H, H〉abcd = 0. This means
the two perfect matchings cancel each other. (C) When the phase ϕ changes
from 0 to 2π, one can see the fourfold coincidence [depicted as #(abcd)]
count rate changes while the twofold coincidence [for example, number
of photon pairs in outputs a and b, depicted as #(ab)] count rate remains
constant.
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Fig. 4. Quantum experiments and computation complexity. (A, Top) An experiment consisting of 9 nonlinear crystals (with labels I–IX) and 18 phase shifters
(gold-colored lines). They are arranged such that paths a, c, and e are parallel. All of the crystals are pumped coherently and can produce indistinguishable
photon pairs. The pump power is set in such a way that two crystals can produce photon pairs. One can adjust the phase shifters and pump power to change
the phases and transition amplitudes (the values are shown in SI Appendix). (A, Bottom) The corresponding graph GP and its adjacency matrix adj(GP) for
the setup. The ordering of the columns and rows is (a, c, e, b, d, and f). Calculating fourfold coincidences in one specific subset path (a, b, c, and d) of four
outputs relates to summing the weights of perfect matchings of the subgraph with related vertices, which corresponds to computing the matrix function
Permanent of submatrix UPs highlighted in orange. Thus, the probability that a certain arrangement of detectors clicks is proportional to |Perm(UPs )|2. All of
the combinations for the fourfold coincidence are depicted in the histogram (details in SI Appendix). (B, Top) A crystal network that shows the general case.
The 9 crystals and 18 phase shifters are randomly put in order. Analogous to A, the pump power is also set such that two photon pairs can be created. (B,
Bottom) The corresponding graph GH and its adjacency matrix adj(GH), where the ordering is the same as UP . Again, we calculate the fourfold coincidence
in specific outputs a, b, c, and e. This corresponds to computing the Hafnian of submatrix UHs , which is a generalization of the Permanent. The probability
Pabce is given by the matrix function Hafnian, Pabce∝ |Haf(UHs )|2.

from n SPDC crystals (with emission probability p) are the
input into a linear optical network with m input and output
paths. The count rate for n-fold coincidences R is RBS ≈ pn .
Later, two independent groups discovered a method to exponen-
tially increase the count rate, called Gaussian BosonSampling
and Scattershot BosonSampling (46, 49). There, each of the
m inputs of the BosonSampling device is fed with one out-
put of an SPDC crystal (the second SPDC photon is heralded).
That means, there are m SPDC crystals (m >n). That leads to
an exponential increased count rate for n-fold coincidences of
RSS ≈

(
m
n

)
pn (1− p)m−n .

Estimating the count rates in our approach needs a slightly
more subtle consideration, as our photons are not the input to a
BosonSampling device, but their generation itself is in a super-
position. Let us look at the example given in Fig. 4A. Here we
compare a complete bipartite graph to Scattershot BosonSam-
pling. For a complete bipartite graph, we have two sets of paths
{a, c, e} and {b, d , f }. To calculate the probability of detecting a
fourfold coincidence, we first derive all possible crystal combina-
tions that could lead to a fourfold detection. There are

(
3
2

)
ways

to choose two elements from the two sets of paths. Therefore,
there exist

(
3
2

)
×
(
3
2

)
combinations of crystal pairs that produce

fourfold coincidences. In general, for m2 crystals and 2n-fold
coincidences we have

(
m
n

)2. Furthermore, each combination can
arise due to two (in general n!) indistinguishable crystal com-
binations. For example, an (abcd) fourfold detection can arise
from a photon pair emission from either crystals I and IV or
II and VI, as depicted in Fig. 4A. Of course, the relative phase
between these possibilities determines whether we expect con-
structive or destructive interference. The latter case would not
contribute any counts. Since for BosonSampling the phases are
randomly distributed, we average over a uniform phase distribu-
tion to account for all possible phase settings. This is equivalent
to a 2D random walk. Thus, in general the average magnitude
of the amplitude gives

√
n!. Therefore, the count rate is mag-

nified by n!. Finally, the estimated count rate for our approach
based on path identity is RPI ≈

(
m
n

)2
n!pn (1− p)m

2−n . The
ratio of the path identity sampling and Scattershot Boson-
Sampling thus is RPI

RSS
=
(
m
n

)
n! (1− p)m(m−1). This exponential

increase is due to the additional number of crystals (while
Scattershot BosonSampling uses m crystals, we use m2) and
the coherent superposition of n! possibilities to receive the
output. We compare now this ratio for two recent experimen-
tal implementations of Scattershot BosonSampling. In 2015,
a group performed Scattershot BosonSampling with m = 13
and n = 3 (50). With P ≈ 0.01, our approach would lead to
roughly 350 times more 2n-fold count rates. In 2018, a differ-
ent group performed Scattershot BosonSampling with m = 12
and up to n = 5 (51). With the same number of modes and
photon pairs, we would expect roughly 25,000 more 2n-fold
count rates. In SI Appendix, we explain the scaling based on
an example.

For realistic experimental situations, one needs to care-
fully consider the influence of multipair emissions, stimulated
emission, loss of photons (including detection efficiencies),
and amount of photon-pair distinguishabilities in connection
with statements of computation complexity (such as done, for
instance, in refs. 52–55). A full investigation of these very
interesting questions is beyond the scope of the current paper.

Linear Optics and Graphs. With the complex weights, one can
apply the graph method to describe linear optical elements in
general linear optical experiments. First, we describe the action
of a beam splitter (BS) with our graph language. A crystal pro-
duces one photon pair in paths a and b while no photon is in
path c, as shown in Fig. 5. Therefore, there is an edge between
vertices a and b and there is no edge connecting vertex c. The
incoming photon from path b propagates to the BS, which gives
two possibilities: reflection to path b or transmission to path c.
In the case of reflection, photons in path b stay in path b with an
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Fig. 5. The action of a beam splitter described with a graph. Here we show
a simple linear optical setup with one 50:50 beam splitter. Using graph tech-
nique, one can describe the setup as a graph depicted at Right. Step 1: A
crystal produces a correlated photon pair in paths a and b and no photon
goes to path c. Therefore, there is an edge between vertices a and b and
there is no edge connecting vertex c. Step 2: The photon in path b propa-
gates to the beam splitter which will transmit to path c or reflect to path b
with an additional phase of π/2. Therefore, in the case of transmission, the
existent red edge Eab will connect the vertices a and c. While in the case of
reflection, the existent edge Eab gets a complex weight with phase of π/2
shown in green.

additional relative phase of π/2. Thus, the correlation between
paths a and b will stay and get a relative phase of π/2. This can
be represented as the original red edge keeps connecting ver-
tices a and b while the color of the edge changes to green, which
stands for a relative phase shift π/2. In the case of transmission,
photons in path b go to path c, which changes the original cor-
relation between paths a and b to that between paths a and c.
Therefore, the original red edge is changed to connect vertices a
and c.

From the description of the BS above, we can derive the fol-
lowing general rules for BSs, which we call BS operation: (i) A
BS has two input paths v and w , which correspond to vertices v
and w of the graph. Take one input path v as the start. (ii) For
transmission, duplicate the existent edges to connect the adjacent
vertices of v with vertex w which stands for the other input path
of the BS. (iii) For reflection, change the colors of the existent
edges to the colors which represent a relative phase shift π/2.
(iv) Apply steps ii and iii for path w .

Another important optical device in photonic quantum exper-
iments is the mode shifter, e.g., half-wave plates for polarization
or holograms for orbital angular momentum (OAM). The action
of mode shifters can also be described within the graph language
(Fig. 6A). The crystal produces an orthogonally or horizontally
polarized photon pair in paths a and b. A mode shifter (such
as half-wave plates) is inserted in path a , which will change the
photon’s horizontal polarization to vertical polarization and vice
versa in path a . In the graph, we introduce labels for each vertex
(small light-gray disks), which indicate the mode numbers of a
photon. For example, vertices a and b carry the labels H and V,
which stand for the horizontal and vertical polarizations. All of
the mode numbers of one photon in one path are included in a
large black circle—a vertex set. In the graph language, the oper-
ation of a mode shifter can be represented by changing the labels
of the vertex.

As another example for the use of the graph technique, we
describe the manipulation of the polarizing beam splitter (PBS)
shown in Fig. 6B. In quantum experiments, a PBS transmits
horizontally polarized photons and reflects vertically polarized
photons with an additional phase of π/2. If the crystal produces
horizontally polarized photon pairs ( |H ,H 〉ab), photons in path
a go to path b and photons in path b go to path a . The connection
between paths a and b remains. Therefore, the edge between
vertices a and b stays as the original red one. If the crystal pro-
duces orthogonally polarized photon pairs ( |H ,V 〉ab), there are

two photons in path b—one photon comes from path a and
another photon with an additional phase of π/2 comes from path
b because of reflection. Thus, in the corresponding graph, there
are two labeled vertices in vertex set b and there is no vertex in
vertex set a.

Introducing linear optical elements in the graph representa-
tion of quantum experiments allows us to describe a prominent
quantum effect—Hong–Ou–Mandel (HOM) interference (57),
which is shown in Fig. 6C. HOM interference can be observed if
two indistinguishable photons propagate to different input paths
of a BS.

By using the BS operation, one can obtain the final graph.
When the crystal produces a horizontally polarized photon pair,
we can immediately see that the edges between vertex sets a
and b vanish. Thus, the experimental setup shows the destruc-
tive interference. If the created photons are in orthogonal

A

B

C

Fig. 6. (A) An example for describing mode shifters with a graph. (A, Left) A
crystal generates a polarized photon pair in paths a and b. A half-wave plate
(HWP@45) changes the photon’s polarization such that horizontal polariza-
tion changes to vertical polarization and vice versa. A, Right depicts the
corresponding graphs. The vertices with labels H or V represent horizon-
tal or vertical polarization of photons. Therefore, the label H changes to
V in the vertex set a. (B) Graph description for the polarizing beam split-
ter (PBS). A PBS can transmit a horizontally polarized photon and reflect a
vertically polarized photon. When the crystal creates a horizontally polar-
ized photon pair, photons in paths a and b transmit to paths b and a. When
the crystal produces an orthogonally polarized photon pair, the photon in
path a is transmitted and the photon in path b is reflected with phase of
π/2. Therefore, there are two correlated photons in path b. In the graph
(B, Right), there are two labeled vertices in vertex sets b with a green edge
connecting them. (C) An optical setup for Hong–Ou–Mandel (HOM) inter-
ference. A crystal produces a photon pair in paths a and b which propagate
to a 50:50 BS. By using the BS operation, we get the final graph. Now let
us look at two cases where the photons are indistinguishable or distin-
guishable. For simplicity, we show the example with polarization. When the
two photons are indistinguishable—all of their mode numbers are identi-
cal such as |H, H〉ab—the edges that connect vertices a and b cancel. The
remaining green edges with two vertices in vertex sets a or two vertices in
vertex sets b show that there are two photons in path a or path b. This
is a manifestation of the HOM interference. While in the case that the
input photons have orthogonal polarization such as |H, V〉ab, we clearly see
that no interference can be observed. Therefore, the four possible outputs
remain ( |H, V〉aa; |H, V〉ab; |V , H〉ab; |V , H〉bb).
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polarization, the superposition of the perfect matchings is
not zero and then no interference can be observed in the
experiment.

Every other linear optical element can be described with
graphs. That is because linear optics do not change the number
of photons and cannot destroy photon pair correlations. They
can change phases (which changes the complex weight of edges),
intrinsic mode numbers (such as polarization or OAM, which
changes the mode number in the vertex set), or the extrinsic
mode number (i.e., the path of the photon, which leads to recon-
nection of edges). All of these actions can be described within
our graph method. Thus, every linear optical setup with proba-
bilistic photon pair sources corresponds to an undirected graph
with complex weights.

Therefore, we are equipped with the powerful technique of
the mathematical field of graph theory, which we can now apply
to many state-of-the-art photonic experiments.

Restriction for GHZ State Generation. In ref. 23, we have shown a
restriction on the generation of high-dimensional GHZ states.
The limitation stems from the fact that certain graphs with spe-
cial properties (concerning their perfect matchings) cannot exist.
Since we have extended the use of graphs to linear optics, this
restriction applies more generally. We show this restriction by
investigating a particular linear optical experiment.

To understand this example, let us first analyze the creation
of the 2D GHZ state. For creating a three-particle GHZ state,
we can connect two crystals with a PBS. If the two crystals both
create a Bell state, a three-photonic GHZ state with a trigger in

a is created (shown in Fig. 7A) (58). Extending this to a four-
particle GHZ state, we add another crystal that is connected
via a PBS as depicted in Fig. 7B. (A four-particle polarization
GHZ state can also be created in a simpler way by connecting
two crystals via a PBS without a trigger with the same setup
in Fig. 7A. However, thereby we emphasize the analogy to the
3D case.)

Now we are trying exactly the same in a 3D system. To
create a 3D GHZ state, we can use two crystals (each gen-
erating a 3D entangled photon pair) and connect them with
a 3D multiport (10), as shown in Fig. 7C. The graphical
description for the setup is depicted in Fig. 7E. There are
five perfect matchings of the final graph. When we calculate
the sum of the perfect matchings (two of them cancel), we
can get the final quantum state written as |ψ〉= 1√

3
( | 3, 1, 1〉−

| 2, 0, 0〉− |−1,−1,−1〉)bcd, which describes a 3D three-particle
GHZ state. [Three-particle GHZ state can be written as |ψ〉=
1√
3
( | x , y , z 〉+ | x̄ , ȳ , z̄ 〉+ | ¯̄x , ¯̄y , ¯̄z 〉), where m⊥m̄⊥ ¯̄m with m =

x , y , z . The properties of entanglement cannot be changed by
local transformations.]

In exact analogy to the 2D case, we add another crystal to
the setup and connect it with another multiport (Fig. 7D). As in
the 2D case, we would naturally expect to create a four-particle
GHZ state in 3D with this setup. However, in this setup, six pho-
tons are used (two triggers and four photons for the GHZ state),
and therefore the corresponding graph has six vertices. From ref.
23 we know that such graphs cannot generate high-dimensional
GHZ states because additional terms (so-called Maverick terms)

A B E

FDC

Fig. 7. Generating high-dimensional multiphotonic states with linear optical setups. (A) An optical setup for creating a 2D three-photon GHZ state. In this
example, each crystal produces an entangled state |ψ+

〉
= 1/
√

2( |H, H〉+ |V , V〉). The photons propagate to a polarizing beam splitter (PBS), and fourfold
coincidences lead to a 2D three-photon GHZ state (where the photon in path a acts as a trigger). (B) For generating high–photon-number GHZ states, one
can add more crystals and connect them via many PBSs. (C) In an analogous way, a 3D three-photon GHZ state ( |ψ〉= 1/

√
3( | 0, 0〉+ | −1, 1〉+ | 1,−1〉)) has

been created recently, by connecting two crystals (each producing a 3D entangled photon pair) with a 3D multiport (MP) (10). The MP consists of a reflection
(R, such as mirrors), a spiral-phase plate (SPP), a BS, an OAM mode sorter (56), and a coherent mode projection (CMP) which projects the photon in path a
on |+〉= | T〉= 1/

√
2( | 0〉+ | −1〉). (C, Bottom) The corresponding transformation is described in ref. 10. (D) To create a higher-dimensional GHZ state, we

now want to extend the setup to create a 3D GHZ state with four particles. However, since this setup uses six photons, we expect (due to the result in ref.
23) to get an additional term in the final quantum state after postselection. (E) The graphs describing the setup in C, where the vertex set (large black circle)
shows the mode numbers of the photons. The initial state shows three connections for each vertex set, which stands for the initial 3D entanglement (details
in SI Appendix). The quantum state conditioned on fourfold coincidences is obtained by calculating the perfect matchings of the graph. There are five
perfect matchings and two of them cancel each other, which results in a 3D GHZ state after triggering the photon in path a on | T〉= 1/

√
2( | 0〉+ | −1〉).

(F) These graphs describe the experimental setup in D. As expected, it has four perfect matchings (the other four perfect matchings are canceled), three
corresponding to the GHZ state while the fourth one (highlighted in light blue) is the so-called Maverick term.

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1815884116 Gu et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815884116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815884116


PH
YS

IC
S

occur in the final state. (If the quantum state is independent of
the trigger photons, then it consists of only four vertices, and
these can be in a 3D GHZ state. Independent means that edges
between the trigger vertices and the state vertices do not appear
in any perfect matching.) And indeed, when we compute the
perfect matchings of the graph, the final quantum state with
postselection is given by |ψ〉= 1

2
( | −1,−1, 1, 3〉− | 2, 0, 0, 2〉+

| 3, 1,−1,−1〉+ | −1, 0, 0,−1〉)bcde, which is not a GHZ state
because of the additional term | −1, 0, 0,−1〉bcde. This is the
additional perfect matching that leads to the Maverick term
(Fig. 7F), which comes from the tripled photon pairs emission
of the middle crystal.

For higher dimensions, even more additional terms will
appear—which can be understood by perfect matchings of
graphs. The Maverick term is therefore a genuine manifestation
of the graph description in a linear optical quantum experiment
with a probabilistic photon source. Therefore, 2D n-particle
GHZ states can be created while the 3D GHZ state with four
particles is the highest-dimensional entangled GHZ state pro-
ducible with linear optics and probabilistic photon sources in
this way (for instance, without exploiting further ancillary
photons).

Graphical Description for Quantum Protocols. Finally, we show
that using graphs can also help to interpret quantum proto-
cols. In Fig. 8, the entanglement swapping is described with
graphs (1, 59). One crystal produces an entangled state |ψ−

〉
=

1√
2
( | 0, 1〉− | 1, 0〉). Therefore, the initial graph has two edges

between the vertex set a and b and two edges between c and
d . The weights of the two edges have a phase difference of π.
With the BS operation, we can obtain the final graph. In the
end, we obtain all perfect matchings and redraw the graph, which
shows the entanglement swapping. The link between graphs
and quantum experiments offers a graphical way to under-
stand experimental quantum applications such as entanglement
swapping.

Conclusion
We have presented a connection between linear optical quantum
experiments with probabilistic photon pair sources and graph
theory. The final quantum state after postselection emerges
as a superposition of graphs (more precisely, as a superpo-
sition of perfect matchings). With complex weights in the
graphs, we find interference of perfect matchings which describes
the interference of quantum states. Equipped with that tech-
nique, we identify a multiphotonic interference effect and show
that calculating the outcome of such an experiment on a
classical computer is remarkably difficult. Different from the
interference which occurs in the BosonSampling experiments
with linear optics, the underlying effect in our crystal net-
work is multiphotonic frustrated photon generation. It would
be exciting to see an actual implementation in a laboratory—
potentially in integrated platforms which allow for on-chip
photon pair generation (60–67). While we have shown that
the expected n-fold coincidence counts will be larger than
in conventional BosonSampling systems, an important ques-
tion is how these systems compete under realistic experimental
situations.

Another important question is how these setups can be applied
to tasks in quantum chemistry, such as calculations of vibrational
spectra of molecules (68, 69), or topological indexes of molecules
(70), or graph theory problems (71).

So far, we have focused on n-fold coincidences with one
photon per path, which is directly connected to perfect match-
ings. A generalized graph description which allows for arbitrary
photons per path would also be a very interesting question
for future research, which will need to exploit not only per-

A

B

Fig. 8. Experimental diagram for entanglement swapping and correspond-
ing graph description. (A) An experimental setup for entanglement swap-
ping. Each crystal probabilistically generates an entangled state |ψ−

〉
=

1√
2

( | 0, 1〉− | 1, 0〉). When the photons emerge in paths b and c after the

BS, the two-photon state in a and d is projected into the Bell state in |ψ−
〉
.

(B) Here we show the experiment using graphs. The initial |ψ−
〉

states
(depicted in dashed box I) both have a relative phase of π, which is repre-
sented by edges with different colors (red and blue). Using the BS operation,
we get the final graph shown at Right. There are eight perfect matchings,
and four of them cancel (highlighted in gray). Due to the symmetry in the
quantum state (for example, | 0, 0, 1, 1〉abcd = | 0, 1, 0, 1〉acbd), we rearrange
the edges between different vertices after identifying perfect matchings.

With e
i3π

2 e
i3π

2 = eiπei2π = eiπe0, perfect matching of two purple edges can
be redescribed as one edge in red and another in blue. The perfect match-
ing for green edges is depicted in the same way. Finally, we obtain the final
graph shown in dashed box II. From the two dashed boxes, we can clearly
see the swapping of quantum entanglement.

fect matchings, but also more general techniques in matching
theory.

With this connection, we uncovered restrictions on classes
of quantum states that can be created using state-of-the-
art photonic experiments with probabilistic photon sources,
in particular, higher-dimensional GHZ states. The graph–
experimental link could be used for investigating restrictions
of other, much larger types of quantum states (72, 73) or
could help in understanding the (non)constructability of cer-
tain 2D states. Restrictions for the generation of quantum states
have been found before, using properties of Fock modes (74)
for instance, and it would be interesting to discover whether
those two independent techniques could be merged. Also severe
restrictions on high-dimensional Bell-state measurements are
known (75), which limits the application of protocols such as
high-dimensional teleportation. The application of the graph-
theory link to such types of quantum measurements would be
worthwhile.

As an example, we have shown that entanglement swap-
ping can be understood with graphs. A different graphical
representation has been developed to describe quantum pro-
cesses at a more abstract level (76, 77). Furthermore, directed
graphs have recently been investigated to simplify certain cal-
culations in quantum optics, by representing creation and anni-
hilation operators in a visual way (78–80). A combination of
these pictorial approaches with our methods could hopefully
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improve the abstraction and intuitive understanding of quantum
processes.

In ref. 23, we have shown that every experiment (based on
crystal configurations as shown in Fig. 2) corresponds to an undi-
rected graph and vice versa. It is still an open question whether
for every undirected weighted graph, one can find a linear optical
setup without path identification. This is an important question
for the design of new experiments.

Our method can conveniently describe linear optical exper-
iments with probabilistic photon sources. It will be useful to
understand how the formalism can be extended to other types
of probabilistic sources, such as single-photon sources based on
weak lasers (81), or three-photon sources based on cascaded
down-conversion (82, 83), or general multiphotonic sources (84).
Can it also be applied to other (nonphotonic) quantum systems
with a probabilistic source of quanta?

A final, very important question is how to escape the restric-
tions imposed by the graph-theory link. Deterministic quan-
tum sources (85–87) would need an adaption of the descrip-
tion, and it is not yet known how to describe active feedfor-
ward (88–90). Can they be described with graphs? What are
the techniques that cannot be described in the way presented
here?
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