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PREFACE

Anyone who has thoughtfully taught the subject of acoustics for any 
length of time must surely be struck by the basic nature of the material, 
both in the fields of pure and of applied physics. For the student who has 
completed a general college course in physics there is hardly a better 
starting point for more advanced study. A course in acoustics very 
naturally begins with a study of vibrations, as preliminary to the intro
duction of the wave equations. It is impossible to overemphasize the 
importance of the two subjects — vibrations and waves — to all branches 
of physics and engineering. In addition, there are distinct advantages in 
first discussing waves of the mechanical type, rather than electromagnetic 
waves, with their more abstract nature and added subtleties.

Of growing importance during the last ten or twenty years is the very 
fruitful use of electrical analogs in acoustics. Electrical engineers are most 
aware of the extreme usefulness of the analog method, particularly in prob
lems originating during World War II. In a book of this type no attempt 
can be made to give a complete treatment, even in the field of acoustics 
alone, of the use of analogs taken from electrical circuits. However, the 
author believes that so useful a tool in this and other branches of physics 
and engineering should be given more attention than is ordinarily afforded 
in an intermediate text.

In connection with these more quantitative aspects of the subject, it 
might be said that the great difficulty of setting down the features of most 
actual acoustical problems in precise mathematical form is of great instruc
tive value to the physics student. Coming fresh from more elementary 
courses, where the problems supply just the necessary data to achieve the 
exact answer, he may be appalled at the extent to which approximations 
must be made to get any kind of an answer at all in acoustical problems. 
Experience of this kind is good preparation for the later practical use of, 
say, electromagnetic field equations which involve complicated boundary 
conditions, where the mathematical problems are very similar. A course 
in acoustics may incidentally serve to discourage a pure mathematician, 
to whom some of the approximations of physics are anathema, from enter
ing upon a career unsuited to his temperament and point of view.

The average undergraduate is greatly interested in many of the more 
popular and applied features of the subject. Among these are the physics 
of musical instruments, peculiarities of hearing, the design of radio loud
speakers, some consideration of electronic devices as used in electro
acoustical equipment, the acoustics of auditoriums, etc. As one whose 
interest in acoustics was originally aroused, in part, by a love of music, the 
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iv PREFACE

author believes no text in acoustics should omit some reference to these 
subjects, which are as essential in their way as a consideration of the wave 
equations.

There are a number of elementary books on acoustics published in this 
country, of which Colby and Watson are good examples. Above this level 
there is quite a choice of specialized books on the engineering or graduate 
level. By far the most original and thoughtful general book on acoustics 
is Morse’s Vibration and Sound. While of considerable use as a reference, 
this book is too difficult as a whole for undergraduate use. Chapter 5 has 
drawn generously upon certain parts of Morse. Mention should also be 
made of Acoustic Measurements by L. L. Beranek, an excellent survey of 
modern experimental techniques in acoustics. In Chapter 10 frequent 
reference is made to Beranek’s work. There is practically no book avail
able at the intermediate level except for the British imports, and it is 
hoped that the present book will help to fill the gap.

A year of college physics and a year of calculus constitute a minimum 
preparation for the subject as presented here. A previous knowledge of 
the complex notation, as used in a.c. circuit analysis, would be helpful, but 
Chapter 5 contains a summary of the essential material sufficient to the 
understanding of the text. While the book has been written mainly for 
undergraduates in physics, it is believed that engineering students who may 
later wish to specialize in communications and electroacoustics would 
greatly profit from a basic course using this kind of book.

The author wishes to thank Professor Francis W. Sears for his kind 
interest in this project and to express his gratitude to Professor A. Wilson 
Nolle of the Department of Physics, University of Texas, for his careful 
and critical reading of the manuscript and his many helpful suggestions on 
matters of precision and clarity.

Robert H. Randall 
April, 1951
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INTRODUCTION

There is no branch of classical physics that is older in its origins and yet 
more modern in its applications than that of acoustics. As long ago as the 
time of Galileo, quantitative experiments were performed on the vibrations 
of strings and the sound that is so produced. Boyle, Hooke, and Newton 
were interested in sound, and Newton undertook to compute, theoretically, 
its speed. Later on, the great mathematicians Laplace, Euler, d’Alembert, 
Bernoulli, Lagrange, and Poisson laid the bases for what was to become 
the general subject of hydrodynamics, although there was a great scarcity 
of experimental data with which to test their conclusions. In the nine
teenth century, the results of the experiments of Doppler, Kundt, Kelvin, 
and others added to the growing body of the subject. Helmholtz, that 
Leonardo da Vinci of modern times, wrote his monumental work, the 
Sensations of Tone, largely from the physiological approach. Late in the 
nineteenth and during the early twentieth century, finishing touches to 
the already elegant formulation of the mechanics of sound propagation 
were added by Rayleigh and Lamb, whose writings on the subject have 
become “standard” treatises.

Along with this continuous scientific preoccupation with the problems of 
acoustics has gone a very lively interest, among laymen as well as among 
scientists, in the more qualitative aspects of the subject. Musicians are 
closer to science than they perhaps realize when they play musical instru
ments and wonder as to the quality of the sound flowing from them. Lay
men of all kinds are interested in speech and song, music and noise. These 
are, it would appear, permanent interests which will probably persist, even 
with the competing glamour of the atom and its nucleus!

With the beginning of the twentieth century it would have been safe to 
say that the subject of acoustics was as nearly complete as it would ever 
be. Even were this so, a study of acoustics would still be a “must” for 
the proper understanding of the great body of related scientific literature. 
Vibrations, whether connected with strings and diaphragms or with sub
atomic oscillators radiating electromagnetic waves, are all of a kind, and 
to understand the one type is a great help towards understanding the other. 
In addition, the “fields” of sound and the “fields” of electromagnetic 
radiation are kindred in more ways than one, with the former a preferred 
starting point from the standpoint of concreteness and simplicity.

Two developments in the field of applied acoustics have given impetus, 
in recent years, to further study and growth of the subject. The first is 
the rise of a whole new industry, devoted to the realistic reproduction of 
speech and music through the mediums of the radio and the phonograph.
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2 INTRODUCTION

The second, less beneficent in nature, arose as the result of war needs, both 
in the field of undersea signaling and in connection with problems in aero
nautics. As so often occurs when interest in a subject revives, other fields, 
like those of medicine and pure physics, have been stimulated to make use 
of new tools and new refinements of the older theoretical work. Thought
ful comparison between acoustics and other branches of physics and engi
neering has brought to light little realized interrelations, of great use to all 
fields concerned. The electrical circuit analogs discussed in Chapter 5 are 
a good example of this.

As an introduction to a logical presentation of the subject, a broad out
line of the scope of acoustics, together with a certain definition of terms, 
will be helpful.

1-1 Sound vs acoustics. In the strict sense, the word sound should be 
used only in connection with effects directly perceivable by the human ear. 
These effects are ordinarily due to the wave motion set up in air by the 
vibration of material bodies, the frequencies which are audible to the ear 
being in the approximate range of 30 to 15,000 cycles/sec. In this book 
we shall consider the word sound to cover the entire wave phenomena in 
air of this frequency range and we shall use it as a qualifying adjective 
in connection with such wave properties as “particle displacement,” 
11 excess pressure,” and the like. Whenever the frequencies are well out
side the above range, we shall call the disturbance a longitudinal wcwe, 
rather than a sound. Waves set up in media other than air we shall also 
not call sound, since the ear is not ordinarily capable of responding to this 
type of energy directly. Waves set up within solid rods, crystals, etc., are 
of this type.

For no very good reason, the word acoustics, originally associated with 
the sound properties of rooms, auditoriums, etc., has been broadened to 
include almost the whole field of mechanical vibration and waves, whether 
of audible frequencies or not, and without regard to the medium. While 
the emphasis is still on what can be heard, many of the most interesting 
recent applications in acoustics are concerned with a range of frequencies 
well outside the audible range, particularly in the ultrasonic (high-fre
quency) region. Some of these applications will be discussed later in this 
book.

1-2 Vibrating bodies. Before there can be sound waves in air, there 
must be vibration of some material body. The character of the sound is 
so dependent upon the nature of this vibration that a careful study of the 
possible kinds of vibration is imperative. The simplest type of vibration 
to discuss is that of an idealized particle. Under certain special conditions, 
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as will be seen, actual sound sources may be discussed as if they were par
ticles. More often than not, due to the complexity of shape and motion 
of actual sound sources, such a simple picture is inadequate. Neverthe
less, a consideration of particle vibration theory is basic to the understand
ing of the more complicated motions of extended bodies such as strings, 
bars, plates, etc., to be considered later.

1-3 Frequency. The frequency of a vibrating source of sound is the 
repetition rate of its periodic motion, assuming this to be simple harmonic. 
It is usually specified in cycles per unit time. In the wave phenomenon 
set up in the air, frequency refers to the vibration rate of layers of air, and 
is to be distinguished from pitch, a word used to describe the subjective 
sensation perceived by the listener. The sensation of pitch is a psycho
physiological matter and is only imperfectly understood. As we shall see 
in Chapter 9, the relation between frequency and pitch is a complicated one. 
The range of frequencies to which a young, healthy ear will respond is 
enormous, from possibly as low as 15 cycles/sec to as high as 20,000 
cycles/sec. The ear is by no means of equal sensitivity over this frequency 
range, but in studying the complex thing called musical sound and in design
ing modern electrical and electromechanical apparatus to reproduce this 
sound, we must cover the extremes of the frequency range of the ear. The 
design of such equipment is difficult, as we shall see, and it is only recently 
that any considerable success has been achieved.

1-4 Amplitude. The amplitude of any vibratory motion has the usual 
meaning associated with simple harmonic motion, i.e., the maximum excur
sion from the mean central position. Such amplitudes may refer to the 
motion of the source, the motion of the receiver of the sound, or the motion 
of the layers of air where the wave exists. Everyone knows how a motion 
of small amplitude over a sufficiently large area may give rise to tremendous 
sound disturbances. At the receiving end, whether it be at the ear or at a 
microphone, amplitudes may be unbelievably small. An amplitude of mo
tion of the air of 10-8 cm is by no means the least to which the ear will respond.

1-5 Waves. It is one peculiarity of a fluid like air, with little or no 
resistance to shear, that only longitudinal waves may be propagated. All 
disturbances of any other nature will tend to disappear at a small distance 
from the source. A consideration of the elastic and inertial properties of 
the medium leads to a beautiful and complete theory of longitudinal wave 
propagation which is useful as well as elegant. The great difficulty with 
the differential equations for sound waves is in obtaining all the details of 
particular solutions to practical problems. Sound sources are rarely 
simple or symmetrical in shape, and the irregularities in contour introduce 
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serious trouble. Useful solutions may be obtained, if one is willing to ac
cept certain approximations. As always, approximations are dangerous 
and must be made with the utmost care, keeping in mind the essential 
physics of the problem. The results of this process might appear to be 
crude in many cases, but the student should appreciate that the ear itself 
is, fortunately for the analyst, a rather crude device, incapable under ordi
nary conditions of detecting discrepancies of less than 10% to 20%.

1-6 Wavelength. Frequency in the wave. For disturbances of a 
simple harmonic nature, the wavelength is the distance, at any one instant, 
between adjacent wave crests. The frequency, within the body of the 
wave disturbance, may be defined as the number of crests passing any one 
point in space per unit time, and is ordinarily the same as the frequency of 
vibration of the source of the wave disturbance. If the source is not sta
tionary with respect to the medium, the frequency in the wave is not the 
same as that of the source. This is a situation that is one cause of the 
well-known Doppler effect.

1-7 The principle of superposition. It is a general property of many 
mechanical systems that when two different types of motion are impressed 
simultaneously, the resultant total motion may be described as the sum 
effect of the two motions considered independently. This is one statement 
of the Superposition Theorem. It is a very broad principle in physics. 
The student of elementary physics has seen the general principle applied 
many times in connection with such subjects as the composition of force 
vectors, the summing up of assorted emf’s in electrical circuits, the inter
ference effects in light, etc. It will be a correct principle to use whenever 
the system is “linear,” that is, whenever its behavior may be accurately 
described by a linear differential equation. The vibrations of material 
bodies and of the particles in a deformable medium like air obey such 
equations, provided the amplitudes of motion are small. Fortunately, this 
is usually so in acoustics. We shall make frequent use of the Superposition 
Theorem throughout this book.

1-8 Energy density. Intensity in the wave. The average energy per 
unit volume in the medium, due to the presence of a wave, is called the 
energy density. The intensity in the wave is defined as the energy flow, per 
unit time and per unit area, across an area taken normally with respect to 
the direction of wave propagation. Energy density and intensity are 
simply related through the velocity of wave propagation. Both these 
quantities may be computed from measurements made with suitable labora
tory instruments, whose operation depends in no way upon the properties 
of the ear. The student is cautioned not to use the word “loudness” as 
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synonymous with “intensity.” The loudness of a sound, in the language 
of acoustics today, is a measure of the purely subjective sensation arising 
when a sound wave strikes the ear. The exact relationship between loud
ness and intensity is difficult to determine, as one would expect; the student 
is referred to Chapter 9 for a further discussion of this matter. (We are 
using “loudness” here in the purely qualitative sense. We shall later refer 
to the loudness level, a numerical measure of loudness which is defined 
directly in terms of the pressure in the wave disturbance, rather than the 
intensity.)

The familiar unit, the decibel, is fundamentally a quantitative measure 
of relative (not absolute) intensity, and is used to compare one sound in
tensity with another. The decibel scale is defined in a logarithmic manner, 
as will be seen in Chapter 2, to conform to the approximately logarithmic 
behavior of the ear. Its exact meaning and use will be made clear when it 
is needed.

1-9 Sound “quality.” The quality of a musical note, as played on some 
instrument, or coming from a singer’s throat, is a most important character
istic, connected, in part, with the physiological, the psychic, and the aesthetic 
in the listener. From a purely objective point of view, it has been common 
to explain quality as due solely to the number and prominence of the 
steady-state harmonic overtones. There are other factors to be considered, 
however. Recent studies by Fletcher have revealed the importance of the 
transient period of vibration, the time during which the instrument and 
sound vibrations are building up or dying down. There is even evidence 
that it is during the transient period of “attack,” for instance, that a violin 
is recognized as such, rather than as, say, a cello. The ear will apparently 
tend to confuse the two instruments when a sustained note is being played.

I-10 The use of electrical analogs. While it is somewhat in the nature 
of a digression in the logical development of the subject, the discussion of 
sound waves along classical lines will be followed by a brief introduction 
to the electrical analog method as applied to acoustics, with chief emphasis 
upon the concept of “acoustic radiation impedance.” Applied with equal 
success in the subject of electromagnetic radiation, this idea, borrowed 
from a.c. circuit theory, is of especial aid in predicting the total radiation 
of power from a given sound source. It is of considerable assistance in the 
design of aperiodic radiators, like radio loudspeakers, where the problem is 
too difficult for complete analysis by means of the classical wave equations.

1-11 Waves in solids. Plane longitudinal waves set up in solids are 
very similar to such waves in air, with, of course, different elastic and iner
tial factors. Unlike gases and liquids, solids, with their resistance to shear, 
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can sustain transverse vibrations. The simplest of all transverse vibra
tions for an extended body are those of the ideal flexible string, whose stand
ing wave characteristics are so important to all stringed instruments. In 
fact, a discussion of string vibrations leads quite naturally to a considera
tion of some design features of the violin, the piano, etc. In only a few 
cases, in particular for the piano, is the mathematics capable of pre
dicting the intensity of some of the more important harmonics that are 
so essential to the quality of the emitted sound. The great difficulty in 
precisely describing the initial conditions, when the string is struck, plucked, 
or bowed, as the case may be, is the main stumbling block to exact analysis. 
When it is realized that not only the string properties but also the shape 
and complex characteristics of the body of the instrument greatly determine 
the nature of the radiated sound, one is ready to accept the fact that the 
design of a high quality musical instrument is as much a matter of art as of 
science.

The problems of the vibration of membranes, bars, and plates become 
progressively more complicated. The more important general features of 
such motions will be discussed in Chapter 7.

1-12 Experimental technique. Sound measurements are some of the 
more difficult in experimental physics. While sensitive linear microphones 
and associated electronic amplifiers are now available, there are always two 
major difficulties with their use in a “field” of sound. First, there is the 
precise, absolute calibration of the equipment over a wide range of sound 
frequencies and intensities. Second, there is the disturbing effect that any 
detection device whose dimensions are comparable to the wavelength of the 
sound introduces upon the field of sound itself. The errors involved are 
somewhat similar to the potential errors encountered in the use of a volt
meter; one would like to measure the potentials existing before connecting 
the meter! In addition, the standing wave patterns set up in any ordinary 
room make impossible any accurate measurement of the true radiation 
properties of the source itself. One is then driven either to outdoor experi- . 
ments or to building very elaborate and expensive sound rooms with espe
cially treated wall surfaces and complicated structural supports. These and 
other difficulties will be discussed in the chapter on experimental methods.

1-13 Applied acoustics. Much of the renewed interest in acoustics 
has come from the applied field. Music has long felt itself an art to be 
insulated as far as possible from the mechanics of science. Yet the advent 
of “canned” music, deplored by so many musicians, has stimulated the 
scientific study of the quality of sound to the point where it is deemed 
possible to create new instruments having tonal qualities undreamed of by 
the old masters. It is true that thus far the instruments born of modern
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science, such as the electronic organ and the like, have aped the older 
traditional instruments. But as has been pointed out by Fletcher and 
others, the possibilities of sound synthesis have hardly been tapped, and 
entirely new instruments without prototype will undoubtedly be evolved.

Acoustics plays an important part in the reproduction of speech and 
music through the radio and the phonograph. With the refinements 
achieved in the electrical circuit and electronic fields, the importance of 
improving the acoustical features of such reproducing systems has become 
more and more apparent. As a result, much careful study of loudspeaker 
design has been made in recent years. As the musical sophistication of the 
general public rises, the results of this study will undoubtedly be realized 
in home radios and phonographs of higher acoustical quality.

Other applications of acoustics will be considered in Chapter 12. Vibra
tions and waves of ultrasonic frequency were first studied in detail by Wood 
and Loomis, and also by G. W. Pierce. Since those early experiments, 
much quantitative work has added to the knowledge. The general scope 
of the war work in connection with underwater signaling is well known. 
Industry has found many uses for ultrasonic waves in the testing of ma
terials. In the realm of pure physics the use of high frequency longitudinal 
waves has become a valuable means for the study of interatomic forces in 
solids, both at normal temperatures and near the temperature of absolute 
zero.

Interest in acoustics has stimulated further study along physiological 
lines. In Chapter 9 some of the established facts will be reviewed. While 
no attempt can be made in a book of this kind to deal with this aspect of 
acoustics exhaustively, enough will be said to impress the student with the 
essential unity of science, and the importance of considering related fields 
whenever they have some bearing upon the subject at hand.

1-14 Systems of units. The cgs system is universally employed in all 
the important acoustical literature of the past, and it is still generally used 
in the current writing. Acoustics is concerned primarily with the mechan
ics of fluids, and for mechanics the cgs system is thoroughly self-consist
ent. In addition, the centimeter, the gram, the dyne, etc., are units well 
adapted to the small scale of acoustical phenomena. With the discussion 
of electroacoustical devices, however, a hybrid cgs system becomes neces
sary. Since the mks system is far better suited to systems containing both 
electrical and mechanical features, and since the use of this system is 
rapidly becoming common in various branches of physics and engineering, 
it seems unwise to ignore it completely in acoustics. The cgs system will 
be used, generally, in this book, but occasional reference will be made to 
the mks system as well.





CHAPTER 1

FUNDAMENTAL PARTICLE VIBRATION THEORY

The production of sound always involves some vibrating source. Such 
a source is often of irregular shape, and rarely do all parts of the vibrating 
surface move as a unit. It is the very complexity of the vibration of a 
sound source that makes it necessary to consider first the simplest vibrating 
body, the particle. The motion of actual sources may approximate that 
of a particle, particularly at low frequencies. Whenever this approxima
tion may not be made, the vibrating surface may be broken up into smaller 
areas, infinitesimal if desired, the sum effect of which is equivalent to that 
of the total surface area of the actual source. The mathematics of this 
summation may be extremely complicated, but approximations will often 
lead to useful results.

1-1 Simple harmonic motion of a particle. Simple harmonic motion 
originates, in mechanics, because of the existence of some kind of un
balanced elastic force. With such a force, Newton’s second law becomes, 
for a particle of mass m, free to move along the rr-axis,

mx = —Kx. (1~1)
In the expression on the right for the force, K is called the elastic constant, 
and the negative sign indicates that the restoring force always acts towards 
the origin. Equation (1-1) may also be written

x = — a)2x, (1-2)
where w2 = Kim. This differential equation completely defines the type 
of motion and from it all other properties of simple harmonic motion may 
be obtained. By integrating Eq. (1-2) twice, the displacement equation 
may be shown to be of the form

x = xm cos (at + a), (1-3)
where xm is the amplitude of the motion and a is called the phase angle. 
The quantities xm and a are essentially constants of integration, whose 
values depend upon the mathematical boundary conditions. They may 
easily be determined, for instance, if one knows the value of x and of the 
velocity, x, at either the time t = 0, or at any other specific value of the 
time. Whether the cosine or the sine function appears in Eq. (1-3) is 
dependent upon these boundary conditions. If, for instance, a turns out 
to be ±?r/2, Eq. (1-3) may be written in the sine form. The angular 
frequency, co, is equal to 2tt/, where f is the repetition rate in cycles per unit 
time.

9
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Besides the displacement equation, two similar equations for the 
velocity, x, and the acceleration, x, are important:

x = —a)Xm sin fat + a), (1—4)
x = —&2xm cos (wi + a). (1—5)

These are obtained by a simple differentiation of Eq. (1-3). All three 
equations can also be obtained by considering the projection, on a diameter 
of a circle, of the motion of a particle moving around the circle with a con
stant speed, as is usually shown in elementary physics. The phase rela
tionship is apparent from Eqs. (1-3), (1-4), and (1-5). The velocity and 
displacement bear a 90° relationship, while acceleration and displacement 
are 180° apart. The 90° relationship which always results from differen
tiating a sine or cosine function will be an important feature of our discus
sion of sound waves in air, as will be seen later.

1-2 Energy in SHM. In sound, we are always dealing with the vibra
tion of material bodies, or media having the property of mass, and since 
the particle being considered is moving, it will, in general, have a kinetic 
energy equal to J?n(±)2. This energy varies with the velocity, being zero 
at the ends of the motion, where x = xm, and a maximum when the particle 
is passing through the position x = 0. Since no dissipative force is being 
considered, the total energy of the system must remain constant. There
fore when the kinetic energy decreases, as the particle approaches x = xm, 
the potential energy must increase. Clearly, the maximum potential 
energy must equal the maximum kinetic energy. The maximum potential

('xm
energy, (Ep)m = I Kx dx = ^Kx2m. It is easy to show that this energy

is equal to the maximum kinetic energy, (E*) w, possessed by the particle 
when it is moving through the central position. For, if xm is the maximum 
velocity,

(Ep)„ = i Kxl = i K = I (1-6)
0)

At positions other than the central one and the extreme end points, the 
energy is partly kinetic and partly potential. The total energy of the sys
tem may obviously be taken as either the maximum potential energy or the 
maximum kinetic energy. Using the latter,

Eutai = Jm(M2 = imw2x^ = ^m^TT2)/^. (1-7)
It is interesting to note that for particles of equal mass executing simple 
harmonic motions of the same energy but of different frequencies, the 
amplitudes must be inversely proportional to the frequency. The paper 
cone of a radio loudspeaker, fed with the same energy at a variety of fre
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quencies, will have imperceptible amplitudes at the high audible fre
quencies, whereas at low frequencies, visible amplitudes of as much as a 
millimeter or two may easily occur.

1-3 Combinations of SHM’s along the same straight line. The 
combination of several collinear simple harmonic vibrations may be 
discussed either analytically or, more conveniently, by use of the graphical 
method commonly employed in a.c. circuit theory. This method is funda
mentally based on the rectilinear projection of uniform circular motion, 
so often used in elementary physics to introduce SHM. In Fig. 1-1 the 
length of the vector represents the amplitude of the motion, xm. The 
vector is conventionally assumed to rotate counterclockwise at the angular 
rate, w (in radians per second). It is clear that the expression for the 
instantaneous projection of this vector, i.e., xm cos(a>£ + a), where a is the 
starting angle at t = 0, is identical with the displacement equation for 
SHM, Eq. (1-3).

Suppose, now, that we wish to represent the simultaneous execution, 
by a particle, of several SHM’s along x, of differing amplitude, frequency, 
and phase angle. Each of these separate motions may be represented 
as the projection of an appropriate rotating vector. The simplest case to 
consider is when the frequencies are the same. The total displacement 
of the particle is

xr Xi d- x% d- * * * d-
where rri, x%, etc., represent the separate displacements. Since all angular 
frequencies are the same, the relative angles between the different ampli
tude vectors are maintained at all times. Therefore it is possible at any 
time, such as at time t = 0, to sum up vectorially the several amplitude 
vectors and to consider the total motion, x, to be simply the projection of 
this resultant upon the x-axis. In Fig. 1-2 two amplitude vectors (zm)i 
and (xm)2 are drawn for the time t — 0. The magnitude of the resultant 

Fig. 1-1. Polar represen
tation of SHM.

Fig. 1-2. Amplitude summa
tion for two SHM’s of the same 
frequency.
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vector, {xrr^r, may be obtained most simply by finding its x- and y-compo- 
nents, as is done in mechanics with force vectors:

fc,!. =V[S(a:„)J2 + [2WJ. (1-8)
Also,

, S(rrTO)ytan ar =
2 \Xm) x

where and 2(xm)y are the sums of the x- and ^/-components of the 
separate amplitude vectors at the time t = 0. The total motion, xr, may 
then be written:

xr = (xm)r COS (tot + cer). (1—9)

It is seen that such a combination of SHM’s is always equivalent to a 
single pure SHM. This is a fact of fundamental practical importance in 
the production of music. In the first violin section of an orchestra, for 
instance, while at a' given instant all violins are presumably playing at the 
same frequency and with approximately the same amplitudes, the relative 
phases are quite randomly related. Since these relative phases un
doubtedly are shifting continuously due to slight frequency variations, the 
phase of the sum effect at the ear is also changing. As we shall see later, 
the ear ordinarily is insensitive to phase effects in music, and in the case 
of the violinists, only a single note of the common approximate frequency 
is heard.

This vector method of summing up SHM’s of the same frequency but 
of differing phase will prove very useful in Chapter 4 in the consideration 
of sound diffraction.

Fig. 1-3.

Example. Reduce the following two collinear SHM’s to a single equivalent 
vibration, finding the amplitude and the phase angle.

xx = 5 cos + 65°), 
x2 = 7 cos M + 30°).

The two amplitude vectors are located at the time 
t = 0, as in Fig. 1-3. Making use of the cosine law, 
the resultant amplitude, (xm)r, may be found directly:

M, =V(5)2 + (7)2 + 2(5)(7) cos 35° = 11.4.

Or, using the x- and ^-components:

S(^)® = 5 cos 65° + 7 cos 30° = 8.18,

Vlx.rn'ly = 5 sin 65° + 7 sin 30° = 8.03,

M, = + [S(im)„]! = V(8.18? + (8.03? = 11.4.
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The phase angle of the resultant vibration is arctan l^xm\/^(xm)x = arctan 
(0.982) = 44° 30'. Therefore the equation for xr is

xr = 11.4 cos (o>£ + 44° 30').

1-4 Two collinear SHM’s whose frequencies differ by a small amount. 
Beats. The phenomenon of beats, in sound, is a familiar one. As it is 
commonly observed, it is the slow, audible “throbbing,” or variation in 
intensity, associated with two sounds of nearly the same frequency which 
alternately reinforce and partially or completely cancel each other. In 
Fig. l-4a are shown two SHM’s of slightly different frequency, the ordinate 
being the displacement and the abscissa, time. In the presence of two such 
sound waves, a layer of air (equivalent to the particle under discussion) 
will execute a motion which is the graphical sum of the two separate mo
tions. In Fig. l-4b is drawn the graphical sum of the curves of Fig. l-4a. 
The periodic variation in amplitude, in the case of the sum curve, is to be 
expected, in view of the effects observed aurally.

x

(a)
x

(b)
Fig. 1-4. Beata.
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The two separate SUM’S may be represented analytically as
Xi = (Mi cos [art + aj (1-10)

and
x2 = (M2 cos [(co + Aco)£ + a2], (1-11)

where Aco is small compared with co. Equa
tion (1-11) may be rewritten:
z2 = (Xm)2 COS {art + [(Aco)£ + cv2]). (1-12) 

Both Xi and x2 may be thought of as pro
jections of rotating vectors, as discussed in

Section 1-3. Since the two amplitude vectors, (x Ji and (xm)2, rotate with 
nearly the same angular velocity, the term [(Aco)£ + a2] in Eq. (1-12) may 
be considered as a slowly changing phase angle. When the two vectors are 
in the positions shown in Fig. 1-5, the resultant vector, Mn may be com
puted by means of the cosine law:

Mr = VMJ + (Ml + ZtxMx^z COS [(Aw)£ + a2 ~ ttj. (1—13)
The magnitude of (xm)r will slowly change, as time goes on, due to the 

variation of the cosine function in Eq. (1-13) with the time. The maxi
mum and minimum values of (xm)r will occur when the cosine function is 
equal to +1 and —1, respectively. The corresponding values for (xm)r 
will be (xm)i + (xm)2 and Mi “ (^2, assuming (xm)i. > (xm)2. The 
frequency, /&, of this cyclic change in (xm)r is plainly Aco/2tf. Since Aco is 
the difference between the angular frequencies for the two vibrations, wi 
and co2, fb will equal the difference between the vibration rates, fi and f2.

If Ji is nearly equal to /2, what has been said in the preceding paragraph 
regarding the variations in (xrj)r will closely describe the variation in the 
amplitude of the motion along x, which is the projection of Mr- If is the 
projection of (xrri)r, of course, which represents the instantaneous sum of 
Xi and x2, and which directly describes the beat phenomenon. The maxi
mum value of x = Xi + x2 will vary periodically, at a frequency very close 
to the beat frequency, /&, between limits which are very nearly M)i + (xn^)2 
and (Mi — (Ma- These are not exact statements, since in general (xm}i 
and (M2 will not become coincident when in the horizontal position. 
However, since the two amplitude vectors are rotating with nearly the 
same angular velocity, it is clear that at whatever angle to the z-axis 
coincidence occurs, the two vectors will have only slight relative displace
ment by the time they do reach the horizontal, and the above statements 
are, for all practical purposes, valid. If Aco is quite large compared with 
03 (not the case in ordinary sound beats) this method of interpretation has 
little meaning.
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1-5 Mathematical vs audible beats. There is an interesting distinction 
between what might be called “mathematical” and “audible” beats. It 
can be shown that unless the two angular frequencies wi and w2 are com
mensurate, that is, unless the w’s and therefore the two actual frequencies 
fi and/2 bear a whole number ratio, the sum motion will never repeat exactly. 
Therefore no recurring beat phenomenon, in the strict mathematical sense, 
will exist. In addition, if the whole number relation does exist, each 
separate vibration must execute some integral number of cycles before a 
repetition of the sum motion can occur. To take numerical examples, 
suppose the two frequencies are 406 and 404 cycles/sec, respectively. The 
two vibrations will be in phase twice each second. This can readily be seen 
by reducing the frequency ratio to the smallest whole number ratio, i.e., 
f-J-f. If the two frequencies start in phase, after | second, when they have 
executed 203 and 202 cycles respectively, they will be in phase again. 
The two beats each second obtained in this way would indicate that the 
beat frequency is always /i — f2. This, however, is not invariably so, for 
if the two frequencies were 407 and 404 the difference frequency would 
indicate three beats a second, whereas being already the smallest whole 
number ratio, there is a mathematical repetition only once a second.

The above statements can be easily checked by consideration of the 
rotating vector example.

The audible effect of beats contains none of the subtleties discussed 
above. If two sources initially emit sound waves of the same frequency 
and then one frequency is gradually raised, the beat effect begins to occur 
smoothly and continuously, with no gaps occurring at discrete frequencies. 
This is because the ear is sensitive only to the envelope of the sum function, 
as in Fig. l-4b, and an absence of an exact mathematical repetition within 
the envelope goes unnoticed.

When the simple difference frequency becomes greater than about ten 
per second, the alternation in intensity is no longer observed and, instead, 
one receives the impression of a steady sound which is either harmonious or 
discordant, depending..on the frequency interval. (This will be discussed 
later in Chapter 9 in connection with consonance and dissonance.) With 
ordinary sound intensities a real difference frequency is never observed, 
that is, a third musical note is never evident. (With very large sound in
tensities, it is another matter. See Chapter 9.) This is not surprising, 
since there are really only two SHM’s involved. The true beat effect is 
merely the alternation in intensity of what appears to be one frequency.

1-6 Combinations of more than two SHM’s of different frequencies. 
From the discussion just concluded, a mixture of frequencies not bearing 
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a whole number relation is equivalent to no repetitive steady state vibra
tion. This situation is not often encountered in problems in sound — 
at least one does not usually attempt to analyze problems in which it does 
arise. Most musical instruments, fortunately, vibrate in such a way as to 
give rise to a “fundamental” tone and “overtones,” all of which bear 
whole number ratios to one another, and consequently the over-all vibra
tion is a repeating function. There is a theorem, due to Fourier, so power
ful in its ability to analyze such a repeating function into its separate com
ponent frequencies that it deserves considerable attention in any discussion 
of vibration and sound.

1-7 Fourier’s theorem. Stated briefly, this theorem asserts that any 
single-valued periodic and continuous function may be expressed as a 
summation of simple harmonic terms, finite or infinite in number (depend
ing on the form of the function), whose frequencies are integral multiples 
of the repetition rate of the given function.*  The restrictions that the 
function be single-valued and continuous are easily met in the case of the 
vibrations of material bodies, and the theorem is therefore of the greatest 
use in acoustics.

* There are a number of additional mathematical restrictions placed upon the 
form of the function. The theorem fully applies to all functions encountered in 
problems in acoustics.

The most useful analytic expression for the harmonic series for periodic 
functions of the time is as follows:
x = f(f) = Ao + Ai sin cot + A2 sin 2cot + • • • + An sin (ncot) + • • •

-p Bi cos cot -f- B% cos 2cot -p • • • T- Bn cos (ncot) -p • • •,
(1-14) 

where the A’s and B’s are constants, to be determined.
Every term in this series may not always be present, depending on the 

nature of the function to be expanded. This will be made clear presently 
by an illustrative example. The presence or absence of a term will be 
known when one determines the constants Ao, An, and Bn. Formulas for 
this determination are obtained quite easily.

1-8 Determination of the Fourier coefficients. The constant term, 
Ao, is obtained by multiplying both sides of Eq. (1-14) by dt and then inte
grating over the time t = T, where T is the period (T = 2tt/co) of the first 
term of lowest frequency. With this integration, all sine and cosine terms 
will disappear, since the area under any integral number of sine or cosine 
cycles is zero. Only the constant term will remain, and solving for Ao,

A0 = ^j\dt. (1-15)



1-8] DETERMINATION OF FOURIER COEFFICIENTS 17

To evaluate A 0 it is necessary, of course, to have the expression for x as a 
function of time.

To obtain a typical coefficient, An, for the sine series, both sides of 
Eq. (1-14) are multiplied by sin (nw£) dt and again integrated from t = 0 
to t = T. On the right-hand side, all but one of the integrations will 
involve products of the type sin (nw£) sin (n'ut) dt, where n and n' are dif
ferent integers. Since

. . f cos [(n — n')ut] — cos [(n + n')ut] sin (nut) sin (nW) =  ---------—----------------- '—

and since the integration will always be over an integral number of cycles, 
the result of all integrations on the right-hand side of Eq. (1-14) will be 
zero, except in the case where n = nf. For this latter case, the integration 
becomes

Therefore, integration of both sides of Eq. (1-14) yields
CT . TI x sin (W) dt = An-- 

Jo J
Solving for An, we obtain

2An = J x sin (nut) dt. (1—16)

In a similar way, by multiplying each term in (1-14) by cos (nut) dt and 
integrating, term by term, from t = 0 to t = T, one may obtain the expres
sion for Bn, the coefficient of a typical cosine term in the series:

2 CTBn = T J x cos (1~17)

Whether or not the integrations represented by Eqs. (1-15), (1-16), 
and (1-17) are feasible will, of course, depend on the nature and complexity 
of the function, x = f(t), to be expanded. In addition, while the harmonic 
series can be shown always to be convergent, so that the coefficients An 
and Bn become progressively smaller as the frequency of the term rises, 
this rate of convergence may be slow in the case of certain functions. In 
these cases, it may be necessary to include a large number of harmonic 
terms in order to achieve a reasonably good equivalence to the original 
function. In problems in sound the convergence is frequently fairly rapid. 
In addition, to the average ear, the over-all effect due to a complex sound 
vibration is often only slightly modified if the very high harmonics are 
removed or ignored.
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In a function which exactly represents the combination of a finite number 
of pure sine or cosine variations, the series obtained by analysis of the sum 
function will contain a finite, not an infinite, number of terms. Analysis, 
for instance, of the vibration effect known as beats will yield only the two 
frequencies present. Similarly, the complex sound constituting the sum 
of three pure musical notes will analyze into those three frequencies alone.

Example. To illustrate the application of the formulas developed above for 
the series coefficients, an analysis of the function represented graphically by the 
so-called “saw-toothed” wave will suffice. This function, shown graphically in 
Fig. 1-6, may be defined analytically as

for the time interval t = 0 to t = T. 
After this time the function repeats with 
a fundamental period, T (1/T is then the 
frequency of the first sine or cosine term). 
Then

Fig. 1-6. Graph of saw-tooth wave.

It should be noted that Ao is here zero because of the complete symmetry of the 
graph about the time axis. Wherever this symmetry is lacking, the constant term 
will not be zero.

The coefficient of a typical sine term becomes, in this problem,

An 26 sin (nwi) dt = —mr

26 26 
7f’ 2tt

The amplitudes of the successive terms are then 
26 
mr

The cosine series is, in this problem, completely absent, since 

cos (nwi) dt = 0,

regardless of the value of n. The complete series equivalent to the saw-tooth wave 
is therefore

x = f(t} = — (sin wi + x sin 2<xt +•••+- sin (nwt} + •••!.
7r \ 2 n /

1-9 Even and odd functions. In general, the absence of all the sine 
terms, or of all the cosine terms, depends on whether the original repeating 
function is “even” or “odd.” An even function is one such that f(t) =
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Fig. 1-7. The effect of including addi
tional terms in the Fourier series.

/(— t). An odd function, on the other 
hand, is one where f(t) =
If the saw-tooth graph of Fig. 1-6 is 
repeated to the left of the origin, 
where t is negative, it may be veri
fied that in this problem the con
ditions for an odd function are 
satisfied. Therefore the equivalent 
series contains only the sine terms. 
For the function to be even there 
must plainly be a mirror symmetry 
around the ?/-axis. This symmetry 
obtains, for instance, in the case of a 
simple cosine curve, there being, in 
this case, no sine terms. In the in
terests of saving computing labor, it 
will pay to first classify the given 
function as either even or odd. There 
are many functions, of course, which 
are neither even nor odd, in which 
case there will be both sine and co
sine terms.

1-10 Convergence. It is clear in 
the problem just discussed that the 
harmonic terms become of smaller 
and smaller amplitude as the fre
quency rises. The complete infinite 
series must be considered for a com
plete equivalence. In Fig. 1-7 one 
can see the approach to the saw-tooth 
wave as more and more terms are 
added. The precision desired de
termines how far the computation is 
carried out. In general, it is near 
points of abrupt changes of slope that 
the “fit” is poorest, when using a 
finite number of terms.

The example above will suffice to 
show the general method of com
puting the Fourier coefficients. Other 
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practice problems of a similar nature will be found at the end of the 
chapter.

1-11 Application of the Fourier analysis to empirical functions. Be
cause one starts the analysis already knowing the analytic expression for the 
function, it may appear that problems of the above type are very artificial. 
Experimentally, the motions of vibrating bodies and the vibrations of air 
itself are usually picked up by electrical or electromagnetic means and are 
studied by means of a recording galvanometer or an oscilloscope, and we 
therefore have a graph to analyze, not an analytic function. From the 
principles of the Fourier analysis just discussed, graphical methods may be 
developed whereby, through the use of selected ordinates, the amplitude of 
the various harmonic terms may be determined with any desired precision. 
(This material may be found in many texts on electrical engineering.) In 
recent years many so-called harmonic analyzers have been built which, by 
mechanical or electronic means or a combination of both, perform the 
desired analysis with great saving of labor and with the highest precision. 
In Chapter 10 there is described an acoustical equivalent to the optical dif
fraction grating that may be used to determine very quickly the approxi
mate harmonic content in any complex sound.

1-12 Damped vibrations of a particle. So far no force other than an 
elastic restraining force has been assumed to act upon the particle (or upon 
the sound source treated as equivalent to a particle). No such mechanical 
system exists in nature (at least in the large scale or macroscopic world!), 
since some sort of friction or dissipative force is always present. It will 
be assumed that the dissipative force acting upon the particle is in the 
nature of fluid friction and is of the form F = — rx. The constant r is 
the force per unit velocity. The negative sign is necessary to show that 
the force is always opposite in direction to the velocity. In general, fluid 
friction is a function of the velocity raised to some power. The first power 
is used here as a first approximation. If the velocity is not too great, this 
approximation is reasonably good and, in addition, the use of the first 
power greatly simplifies the differential equation.

For a particle moving under the action of an elastic force and also of a 
viscous force of the above type, Newton’s second law may be written

mx = —Kx — rx
or, after transposing all terms to the left,

mx + rx + Kx = 0. (1-18)
This linear differential equation arises many times in different branches of 
physics. The student of electricity, for instance, will encounter an equa
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tion of exactly this form when he studies the transient behavior of an 
L-R-C circuit. This analogy will be discussed in more detail in Chapter 5.

The solution to Eq. (1-18) may be obtained in a number of ways. In 
Chapter 5, when the use of complex quantities is introduced, a more gen
eral method of solving this and related equations will be discussed. At 
this point, a change of variable will yield results more quickly. Let

x = ye-5*,  (1-19)

where b is an arbitrary constant. Differentiating Eq. (1-19) and sub
stituting in Eq. (1-18), we obtain

y + (£ - 2b) y + (f + V - £ b)y = 0. (1-20)

In this new equation in y, the constants m, r, and K are fixed by the nature 
of the system being considered, but the constant b which appears first in 
the change of variable equation, Eq. (1-19), may be selected quite arbi
trarily. If b is chosen equal to r/2m> the second differential term in Eq. 
(1-20) will vanish and the whole equation will take the much simpler form

y + U - b2)?/ = 0, (1-21)
where has been substituted for K/m. The values of y which are solu
tions to Eq. (1-21) can be obtained quite simply. Then, according to 
Eq. (1-19), x, the actual particle displacement, may be obtained by simply 
multiplying the value of y by e~bt.

There are three important types of solutions to Eq. (1-21), whose form 
depends on the values of the system parameters, m, r, and K.

r2 \!—zb Large frictional force. When4m2/ &
1-13 Case I. w2 < b2 for - 

\ m
the system constants are such that is less than b2, the algebraic sign of

the coefficient of y in Eq. (1-21) is nega
tive. The solution to the differential 
equation can then readily be shown to be

Fig. 1-8. Graph of Eq. (1-23).

y = AiS^-W + (1-22)
Ai and A2 being integration constants. 
Therefore, using Eq. (1-19), we find that

(1-23)
The values of the integration constants 
Ai and A2 may be determined if the 
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initial or other time conditions of the problem are known. Since 
b >V&2 — w2, both exponents are intrinsically negative, and the particle, 
once displaced, will always return to the position x = 0 asymptotically 
with time. The rate of this approach to zero will depend on the values of

and b. The graph in Fig. 1-8 shows the subsequent motion after t = 0, 
in the case where both Ai and /l2 are positive. Two initial conditions, such 
as displacement and velocity at the time t = 0, may be used to determine 
the constants Ai and A2.

/ K r2 \1-14 Case II. &2(or — >-:—; • Small frictional force. In \ m &m2j
this case the coefficient of y in Eq. (1-21) changes sign, i.e., — b2) is
positive, and the equation is readily recognized as in the form for SHM. 
Clearly, then, the solution is

, y = ym cos (a>7 + a), 
and therefore

x = yme~bt cos (w7 + a). (1-24)
where  '

(jb — b2.

Equation (1-24) describes a damped harmonic motion, whose effective 
amplitude, xm = yme~bt, dies out exponentially with the time. The initial 
amplitude and phase angle are, re
spectively, ym and a. The constant 
b(= r/2m) determines the time rate of 
damping. The envelope of the curve 
represented by Eq. (1-24) is, effec
tively, the exponential curve x = 
yme~bt, as shown in Fig. 1-9.

With no damping, i.e., when b = 0, 
the frequency of the motion is (tufa. 
Where damping exists, the natural 
frequency is always lowered, since the 
frequency is o//2tt and is always 
less than In fact, as the value of b 
is increased (say, by keeping m con
stant and increasing the frictional coef
ficient, r), the oscillation frequency 
approaches zero as b approaches wu. 
Practical sound sources are usually 
so lightly damped that the damping 
factor, &, does not greatly affect the

x

Fig. 1-9.
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frequency. This is especially true because of the quadratic relation between 
w j y and 6.

The length of time required for an oscillation to die out is of practical 
importance in sound. The time for x to become zero is, of course, infinite 
from the mathematical point of view, but in the case of sound waves an 
amplitude below a certain minimum will be inaudible to the ear, and some 
quantitative measure of the rate at which the amplitude diminishes is 
desirable. A commonly used quantity for this measure is the modulus of 
decay, 1/6, often called the time constant. This is the time for the ampli
tude of the cosine function in Eq. (1-24) to drop to the fraction 1/e of its 
initial value. Since b = r12m, it will be 'Seen that a large frictional coef
ficient, r, and a small mass, m, will make the time constant small. A small 
time constant implies a rapid rate of decay. It will be seen in Chapter 7 
that the moduli of decay of the different harmonic frequencies generated 
by musical instruments are of considerable importance in determining the 
quality of the sound produced.

/ K r2 \1-15 Case III. cc2 = b2or — = 7—;• Critical damping. This is a \ m 4m2/
case of more importance in scientific instrument design than in the behavior 
of sound sources. When w2 = 62, Eq. (1-21) becomes simply

y = 0. (1-25)

The solution to this equation is a straight line, of the form

y = Ait + A2,

where Ai and A2 are again constants of in
tegration. The expression for x then be
comes

x = e~b\Ait + A2). (1-26)

Plotted, this equation does not look greatly Fig. 1-10. Graph of Eq. (1-26). 
different from the solution for the case
where b2 is greater than w2 (friction large). Figure 1-10 represents the plot 
cf Eq. (1-26) for the case where Ai is large and where both Ai and A2 are 
positive (this is, of course, not necessarily so). If Ai is numerically large, 
x will increase at first, but eventually the exponential coefficient will bring 
about a reversal of slope and x will approach zero as time progresses. 
Rarely are actual sound sources so critically damped.
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Example. An example will show how the physical constants of the vibrating 
system are used and also the technique for the evaluation of the constants of inte
gration.

A particle of mass 3 gm is subject to an elastic force of 27 dyne-cm-1 and a 
damping force of 6 dyne-cm-1-sec. It is displaced a distance of +1.0 cm from its 
equilibrium position and released. It is required to determine whether or not the 
motion is oscillatory and, if so, to find its period; also the complete equation for x 
as a function of time is to be obtained, with the numerical values of the amplitude 
xm and the phase angle a.

From the data given, = y/K/m = 3 sec-1 and b = r/2m = 1.0 sec-1. Since 
> b, the solution is oscillatory, of the form:

z = yme~ht cos (Vw| — b21 + a).

The period is 27r/v%£ — b2 = 2.23 sec. To find the initial amplitude ym and the 
phase angle a (the integration constants), the initial position and velocity may be 
used. Differentiating x, we obtain

z = — ym€~b(ly&u ~~ b2 sin (Vug — b21 + a) + b cos (V— b21 + a)].

Setting t = 0 and inserting the values x = 1.0 and x = 0, two equations may be 
obtained for the determination of a and ym, that is:

btana =------„ .......-
- b2

and
1.0

ym =----- •cos a
Solving for a and ym, we obtain

tan a =—0.353; a = —19° 30'; ym = 1.06 cm.

Therefore the complete expression for x is .
x = 1.06c-1,0* cos (2.82$ - 19° 30').

1-16 Forced vibrations. All sound sources are set into vibration by 
some external source of energy, capable of supplying some kind of periodic 
force. Sometimes the mechanism of this energy transfer is quite compli
cated, as, for instance, in the excitation of a violin string or in the sounding 
of an organ pipe. A simpler example to consider is the setting into motion 
of a pendulum by the application of an external force of a periodic nature.

In practice, the periodic driving force is rarely a simple harmonic varia
tion of a single frequency. The cone of a radio loudspeaker which is repro
ducing music, for instance, is being driven by a variable force equivalent 
to a mixture of periodic forces of assorted frequencies. If, however, we 
can discover how the particle will behave under the action of a driving force 
of one particular frequency, we are ready, by means of the superposition 
principle, to understand its motion when there are many frequencies.
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1-17 The differential equation. Let the instantaneous driving force 
be represented by F = Fm cos (at, where, as before, co = 2?r/. Writing 
Newton’s second law for a particle subject to an elastic and a damping 
force, we obtain

mx + rx + Kx = Fm cos cot (1-27)

The general solution to this equation is made up of two parts, mathe
matically speaking. The first part is the complementary function, which 
is the solution to Eq. (1-27), with the right-hand side set equal to zero. 
Since this modified differential equation is exactly the one just discussed 
under the heading of “damped vibrations of a particle,” it is clear that 
the complementary function may actually take one of three forms, depend
ing on the factors m, r, and K.

The complete solution to Eq. (1-27) must contain, besides the comple
mentary function, a second part, which constitutes a particular solution 
to Eq. (1-27), with the right-hand side 0. This particular solution must 
satisfy the complete differential equation for all values of the time t. It 
will be remembered that in the presence of damping all solutions to the 
simpler differential equation (where the right-hand side of (1-27) is set 
equal to zero) are of a form such that x approaches zero with the passage 
of time. This part of the general solution to Eq. (1-27) (i.e., the comple
mentary function) is therefore called the transient part. With physical 
vibrations it can usually be neglected after a short time. The remaining 
part of the solution, the particular or steady state solution referred to, will 
then be the only significant part, for later times. It is this important 
steady state solution that we shall now consider.

1-18 The steady state solution for forced vibrations. To obtain the 
steady state part of the solution to Eq. (1-27), it is most convenient to 
compare the differential equation with an exactly similar one arising in 
electricity. If an emf, varying in a simple harmonic manner, is impressed 
upon a series circuit with inductance L, resistance R, and capacitance C, 
we may write the equation

Lq + Rq + q = Em cos cot, (1-28)

where Em is the maximum value of the impressed emf and q is the charge on 
the capacitor at any instant. Since for an electrical circuit the current i 
is equal to dqjdt, we may write Eq. (1-28) in terms of the current:

L%+Ri + ±
Cll U

j*idt  — Em cos o)t. (1-29)

1

I
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A comparison of Eq. (1-27) with (1-28) will show the mathematical form 
to be identical. In addition, there is an equation for the mechanical system 
in terms of the velocity x, which is the exact counterpart of Eq. (1-29) for 
the current i, = q. This means that if the electrical equations have been 
solved, the equations for the mechanical system have also been solved. 
Writing down the solutions to the electrical equations, we have only to 
replace the electrical parameters with those of the particle system and to 
insert the variable x instead of the variable q to obtain the solutions to the 
mechanical equations.

The steady state solution to Eq. (1-29), the electrical equation in terms 
of the current, is the ordinary expression for the instantaneous value of the 
alternating current in an L-R-C circuit, familiar to most students of ele
mentary electricity. The expression for this current, i, is

i.= —. ■ cos (art — a), (1—30)
>+(“L - $

where

coL - -77
tan a =-----(1-31)It

In this equation the angle a represents the phase relationship between the 
impressed potential and the current. Not so familiar is the expression for 
the charge q. The equation for q may be easily obtained by integrating 
Eq. (1-30) with respect to time. (Note that the constant of integration 
must be zero, since there is no d.c. component to the impressed potential.)

q =---- -t sin (a>< - a). (1-32)
W A R2 -f" (coL — Zf)

It will be remembered that the expression in the denominator of Eq. 
(1-30) is called the total electrical impedance of the circuit, while the 
collection of terms, (oiL — -77), is called the circuit reactance, commonly 

\ coC /
represented by the symbol X.

We can now write the analogous equations for the mechanical system, 
where the displacement x replaces charge, and the velocity x replaces 
current:

x = ---- . ... = sin (o>t - a) (1-33)
co a/r2 + (a>m — —)V \ co /
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and p
x = ---- , m cos (arf - a). (1-34)

A / r2 + I wm — —) V \ co /
So exact is the parallel between the mechanical and the electrical problem 
that it is common to use for the mechanical system such expressions as 
“mechanical impedance,” “mechanical resistance,” and “mechanical 
reactance.” (This use of the concept of impedance, as applied to a particle 
or its equivalent, is not to be confused with the idea of “radiation imped
ance,” to be introduced in Chapter 5. This latter concept is used only in 
connection with wave propagation and involves a quite different use of the 
word impedance.) Note that in the comparison of the mechanical and 
the electrical parameters, r is analogous to R, m to L, and \/K to C. 1/K 
is called the “compliance” of the system, since it is the reciprocal of K, the 
elastic “stiffness” constant. More will be said about the use of analogies 
in Chapter 5.

1-19 Velocity and displacement resonance. In the electrical equation, 
(1-30), so-called series resonance occurs when the current is in phase with 
the applied potential or, from (1-31), when the reactance is zero, i.e., 
coL = 1/coC. Under these conditions, since the impedance is a minimum, 
the value of the current, Im, will be a maximum, and so will the “root mean 
square” current, IrmS- For the mechanical system, this means that the 
criterion for velocity resonance is that com = K/co. If this condition is 
brought about by the variation in the angular driving frequency co, other 
parameters remaining constant, xm will then be a maximum. This corre
sponds to the maximum current observed in the circuit.

Of more interest in the mechanical than in the electrical problem is 
another kind of resonance, displacement resonance. Again considering co 
as the variable, this resonance may be said to occur when the amplitude of 
x, i.e., xm, in Eq. (1-33) is a maximum. Since co appears outside the radical 
in the denominator, as well as inside, it is necessary to differentiate with 
respect to co the coefficient of the sine expression on the right and set the 
result equal to zero, in order to determine the exact criterion for resonance. 
The necessary condition may be stated as follows:

co2 = co2u - 2b2, (1-35)
where col,- as earlier, = K/m and b = r/2m.

It should be noted that if the frictional coefficient, r, is small, so that 2b2 
is much less than col, then the condition for amplitude resonance is very 
nearly that co2 = co2u. Since col = K/m, this condition is seen to be identical 
with that for velocity resonance. It is worth noting that with low damp
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ing the frequency f at which amplitude resonance occurs is identical with 
the natural frequency of vibration of the particle under the action of an

1 Ikelastic force only, i.e., f = y(With velocity resonance

this is always true, regardless of the degree of the damping.) When 
the damping is large, however, so that the term 2b2 in Eq. (1-35) becomes 
important, the frequency for amplitude resonance is lowered. Indeed, if 
the damping is so large that 2b2 is greater than <a%, there is then no true 
resonance at all, since in Eq. (1-35) w is then imaginary.

In Fig. 1-11 are shown a number of curves for different degrees of 
damping, each curve being a plot of the amplitude xm against the angular 
frequency of the driving force, w. With low damping it is seen that 
resonance virtually occurs when w = When the damping is increased, 
the position of the maximum shifts to the left. Curve 4 represents the 
transition case such that with any increased damping, no true maximum 
occurs.

1-20 The amplitude at resonance. It is clear from Fig. 1-11 that the 
maximum value of xm at resonance is a function of the degree of damping. 
The exact value of this maximum ordinate, (xmjres, is determined by insert
ing the condition given by Eq. (1-35) 
into the expression

A simpler, approximate expression 
for (xmjres may be readily obtained if 
the damping is low (usually the case 
in acoustics). In this case the condi
tion for amplitude resonance is prac
tically that for velocity resonance, i.e., 
that the mechanical reactance X = 
(wm — K/w) = 0. We then have

F F
(X^m)res = (1~37)wr a)ur

For low damping, it is seen that the 
amplitude at resonance is inversely 
proportional to the frictional coef
ficient, r, becoming very large as the 

I. b=.18«M
2. b=.35««
3. b -. 5 « tt
4. b=.707wM (2b2=tt1?)
5. b=»u
Fig. 1-11.
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damping factor approaches zero. As in the case of electrical resonance, it is 
near resonance that the amplitude is affected most markedly by the value 
of the dissipative element. Well off resonance, it is the mechanical react-

(K\um — —J, that mainly determines the amplitude.

1-21 Phase relationships. In general, varied phase relations will ob
tain between particle displacement and driving force, and between particle 
velocity and driving force. In the latter case, the phase angle relationship 
should be familiar from alternating current circuit theory; at velocity 
resonance, x and F are in phase. At frequencies above resonance the effect 
of the mechanical mass reactance, (am, predominates; x lags F by a greater 
and greater angle, approaching tt/2 for values of (am large compared with 
K/(a and r. Below resonance, the angle is a lead, since it is the term K/(a, 
containing the compliance, that is important, and the angle approaches 
tt/2 for large values of K/w. In the case of the displacement x the angles 
are different, since the displacement is 90° out of phase with the velocity. 
Figure 1-12 is a graph of the phase angle between the displacement x and 
the driving force, — (a + tt/2), plotted against angular driving frequency for 
various values of b. When w = wM, regardless of the value of b, the phase 
angle is tt/2 and is a lag. At very low frequencies the angle approaches 
zero; for very high frequencies the lag approaches tt. For low damping, 
where b is small, the phase angle shifts rather abruptly as the driving 
frequency is varied from a little below the value Uu/^'k to a little above. 
With greater damping the change is more gradual.

L b-O
2. b = .25e>a
3. b = .5«u
4. b = «u
5. b = 5<ott

Fig. 1-12.
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A simple demonstration of the above phase relationships can be set up 
as in Fig. 1-13. A heavy and a light plumb bob, M and m respectively, are 
suspended from a somewhat flexible common support, such as a horizon
tally stretched string. The two pendulum lengths are adjusted to be
slightly different. If the heavy pendulum is set swinging, the lighter one 
will soon begin to oscillate also, due to the coupling at the support. The

Fig. 1-13. Forced oscillations.

amplitude of this induced motion will 
alternately build up and die down as 
energy flows back and forth between 
the two pendulums in this coupled sys
tem (the heavier one, having the larger 
mass and energy, will not be appre
ciably affected). During the peaks of 
the induced oscillations, the above 
phase relations may be clearly seen.

The driven system here is one of very low damping. Therefore if the
heavier pendulum is longer and the driving frequency consequently lower 
than that of the driven system, the phase angle will be almost zero. On
the other hand, if the heavier pendulum is shortened so that the driving 
frequency is higher than that of the driven system, the two pendulums 
will be almost 180° out of phase, being at opposite ends of their motions 
at the same time. When the two pendulums are of the same length (w = wu), 
the 90° relationship can also be clearly seen.

1-22 Energy transfer in forced oscillations. Unless the two pendulums 
in the above experiment are of nearly the same length, very little energy 
will be transferred. This is in line with common experience and can readily 
be shown with equations. The instantaneous power delivered to the 
particle system is Fx. This is the analog of electrical power, ei. In both 
the electrical and the mechanical case it is the time average of this product 
over a large number of cycles which constitutes the real power delivered. 
In the electrical case the time average of the product ei( = Em cos ait 
Im cos — a)) becomes ErmsIrmS cos a = I2msR, where Erms and Irms are root 
mean square values. The angle a is the angle between current and applied 
potential, and R is the circuit resistance. Analogously, for the particle, 
since F and x are periodic functions of the time, just as are e and i, real 
average mechanical power may be written FrmsXrms cos a or (xrms)2r. The 
expression (xrms)2r shows that with a system having fixed damping char
acteristics the power delivered will be a maximum whenever the velocity, 
Xrms, is a maximum. xrms is itself a function of r and at resonance = Frms/r. 
Therefore real power, 12res, at resonance may be written
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SU = (1-38)

(Compare with the electrical equivalent, (E2rms)/R.) The lower the damping, 
obviously, the greater will be the delivered power.

Example. A particle has a mass of 2 gm. It is free to vibrate under the action 
of an elastic force of 128 dyne-cm-1 and a damping force of 8 dyne-cm-1-sec. A 
periodically varying outside force of maximum value 256 dynes is applied to the 
particle. It is required to find the frequency (fres)d for displacement resonance and 
also the frequency (fres)v for velocity resonance, and the approximate amplitude at 
displacement resonance.

In this case ca2 = K/m = 64 sec-2 and b2 = r2/4m2 = 4 sec-2. For displacement 
resonance, co2 = — 2b2. Therefore the required frequency is

(fres)d = _ 2b2 =1.19 sec-1.Z7T Z7T

For velocity resonance, cam = K/ca, or

(fres)v = Xl = L27 Sec-1-
2tt V m

Since 2b2 is considerably less than ca2, we may use the approximate expression for 
the amplitude at displacement resonance:

(Xmjres ^ — = 4.0 CHI. car

1-23 Some applications of the theory of forced vibrations. From the 
graphs of Fig. 1-11 several useful conclusions can be drawn. If we are 
interested in transferring the maximum energy at a single frequency to a 
system capable of vibration, it is obvious from the graphs and from the 
previous discussion of energy that the damping factor of the system should 
be as small as possible and that the driving frequency should be near the 
natural frequency of the system. The crystal vibrators used in the pro
duction of ultrasonic waves are good examples of low-damped systems. 
In addition, the smaller the damping factor, the longer the persistence of 
any sound energy set up after the driving force has ceased. The vibrations 
of musical instruments persist for an appreciable time after energy ceases 
to be supplied. There are two kinds of damping involved in the decay 
of these vibrations. First, there are the internal frictions set up within 
the sound source (string, bar, or plate, as the case may be). This type of 
friction is undesirable from an energy point of view, as it results in the 
degeneration of vibrational energy into thermal energy. The second kind 
of damping is due to the presence of the surrounding air, and constitutes 
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the only mechanism by which sound energy is radiated into space. For 
high radiation efficiency this type of damping should be large compared 
with the damping due to internal friction. In Chapter 5 this aspect of 
vibration will be discussed more fully in connection with 11 radiation re
sistance.”

Ever since the advent of the phonograph and the radio set there has been 
a need for a source of sound reproduction which is capable of vibration at 
all audible frequencies, with no partiality to any one such frequency. For 
many different reasons the ideal source has not been found; some of the 
difficulties will be discussed later. A study of the curves of Fig. 1-11 will 
suggest one possible solution to the problem. By designing the system 
(treated as a particle) so as to have rather high damping, and by placing 
the resonant frequency above audibility, we may obtain a virtually aperi
odic response to a driving force over a wide, useful frequency range.

In Fig. 1-11, Curve 3 shows this approximately aperiodic property for 
values of co < wu. Unfortunately, in order for the system to have this type 
of response, the damping must be quite large. If, in a radio loudspeaker, 
the damping could be mainly that due to the air load, this would be all 
to the good, for the sound radiating efficiency would then be high. Unless 
the area of the vibrating source is impossibly large, as will be shown, the 
damping due to the air is likely to be much smaller than is necessary to 
approach critical damping. The required damping must then be obtained 
by artificially increasing the internal losses, which will result in very low 
over-all sound efficiency. Fortunately for efficiency, it is actually unde
sirable for such a sound source to have strictly aperiodic properties. Sound 
sources are usually poor radiators at low frequencies, for reasons not con
nected with their own intrinsic vibration properties. By reducing the 
damping well below the critical and placing the loudspeaker resonance near 
the lower end of the audible spectrum, the increased amplitude near 
resonance will make the output more uniform.

There is another interesting use that may be made of the phase angle 
graphs of Fig. 1-12. In general, the motion of a particle undergoing forced 
oscillations, with or without damping, will lag the driving force by some 
small time which will depend, in a rather complicated way, upon the driv
ing frequency. This means that when a series of frequencies of particular 
relative phases are impressed upon the particle (constituting a complex 
forced vibration), the resulting particle motion will not be a complete 
replica of the variation in the driving force because of the assorted phase 
lags. If, however, referring to Fig. 1-12, a damping factor is so chosen 
as to make the phase angle approximately linear with driving frequency 
(such as with 5 = .75w), the original phase relationship will be maintained.
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This can be seen from Eqs. (1-33) and (1-34). If a oc w or a = Aw, then 
the angle on the right-hand side may be written [w(£ — A)], showing what 
amounts to a simple shift of the time axis, all frequencies being shifted to
gether by the amount A. In actual practice, it is usually unnecessary to 
worry about phase shifts in sound, since the ear, at least for stimuli of the 
usual steady state type, is unaware of the phase relations in a complex 
sound wave. This may not be true, however, in the case of short-duration 
transients.

1-24 The importance of the transient response. A word may be said 
here about the transient response of a system equivalent to a particle, 
undergoing forced vibrations. The transient part of the solution to 
Eq. (1-27), while of short duration, may have considerable effect on the 
quality of a musical instrument and in some cases may distort or even 
mask the desired steady state frequency. The difference in the quality 
of a violin during the rapid playing of scales as compared with the sound 
of long, sustained notes is quite apparent. It is only in the latter case that 
the transient vibrations have had time to die out. The characteristic 
sound of a drum is due entirely to a transient, the driving force being of 
very short duration. Consider again the radio loudspeaker, whose purpose 
it is to transform into sound all driving frequencies applied to it. When
ever a new driving force is applied, there may be an important transient 
response amounting to some 10 to 20 vibrations or more at the natural 
frequency of the diaphragm, this frequency having nothing whatever to 
do with the driving frequency. As a result, all sounds which are abruptly 
cut off appear to have a “tail” or “hangover.” Short duration sounds, 
like those originating from the drum, appear to have about the same 
monotonous frequency (i.e., that of the speaker resonance). These effects 
are minimized by an increase in the damping factor, but for most present- 
day radio reproducers this damping is not sufficient to overcome these 
effects.

1-25 Superposition of SHM’s mutually perpendicular. This interest
ing case is important mainly because of the modern use of the oscilloscope 
in the study and measurement of sound. In this instrument, vertical and 
horizontal motions are imparted to an electron beam by means of vertical 
and horizontal field forces. If these forces vary sinusoidally with the time, 
the luminous spot on the screen will execute the motions to be described. 
The curves traced are called Lissajous’ figures. Lissajous himself obtained 
these figures originally by observing the rectilinear vibrations of a particle 
while sighting through a microscope, itself mounted upon the prong of a 
tuning fork, free to oscillate at right angles to the particle motion.
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There is almost no limit to the variety of the curves that may be ob
tained, depending on the amplitudes, frequencies, and relative phases of 
the two motions. If the frequencies are the same, but the amplitudes and 
phase angles are different, the equations for the vertical and horizontal 
motions may be written:

x = xm cos (tat + ai) (1-39)
and

y = ym cos (wt + a2). (1-40)

If the time is eliminated between these two equations, the following equa
tion is obtained:

+ Li “ ~7 cos («i - «2) - sin2 (ai - a2) = 0. ym J-'my m (1-41)

This represents an ellipse whose eccentricity and inclination depend upon 
the phase relation^ and the amplitudes. If the relative phase angle 
(«i — a2) happens to be tt/2, the principal axes of the ellipse are vertical 
and horizontal, since the term containing the product xy is absent. If, 
in addition, xm = ym, the ellipse becomes a circle.

If the relative phase angle is zero, 
identical straight lines, given by

y = yfx. (1-42)

These curves can be made the 
basis of an exceedingly sensitive test 
for frequency measurement. If the 
vertical motion is of unknown fre
quency and if the frequency of the 
horizontal motion can be controlled 
with a calibrated variable frequency 
electrical oscillator, it is only neces
sary to adjust the oscillator until a 
stationary ellipse, circle, or straight 
line appears, and then read off the 
unknown frequency.

If the frequencies of the vertical 
and horizontal motions are not the 
same, no steady pattern will appear 
upon an oscilloscope unless the two 
frequencies bear a whole number re
lationship, as indicated earlier in con

the equation degenerates into two

Frequency ratio |:|

(b)
Frequency ratio I 2

(c)
Frequency ratio |:3 

Fig. 1-14. Lissajous figures.
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nection with beats. The steady patterns are all closed curves representing 
higher degree equations. A few of the simpler ones are illustrated in 
Fig. 1-14. Some of the patterns may be used, practically, to determine 
the ratio of a known to an unknown frequency, provided that the whole 
number ratio of the two frequencies does not involve integers which are 
too large. In this latter case, the patterns are too crowded to interpret 
easily.

PROBLEMS
1. Using a single pair of rectangular 

axes, draw three graphs to represent, for 
simple harmonic motion, the displacement 
x, the velocity x, and the acceleration x, 
each as a function of the time. Besides 
showing the relative phases, indicate the 
maximum values of the three variables in 
terms of the proper constants.

2. (a) For simple harmonic motion, 
find the displacement x as a function of 
the time, by integrating the equation 
mx = —Kx. (b) Show that the period 
of the motion is given by T =

3. (a) Find the displacement x as a 
function of the time, if the differential 
equation for the motion is mx = -j-Ax, 
where A is a constant. Assume that the 
initial velocity is not zero, but has some 
value v0. (Why is this necessary?) (b) Is 
the resulting motion periodic? Give a 
physical description of the motion.

4. A perfectly elastic ball is bouncing 
on a rigid floor. If the constant height to 
which it rebounds is h, find the period of 
the motion. Is the motion simple har
monic?

5. Two collinear harmonic motions of 
the same frequency have amplitudes of 
2 cm and 3 cm respectively, and corre
sponding phase angles of +10° and +30°. 
Find by the “method of components” 
used in mechanics (a) the amplitude, and 
(b) the phase angle of the sum vibration.

6. Two collinear simple harmonic 
motions are given by

Xi = (xm)i COS (2irft + ai) 
and

X2 — (xm)2 COS (2-irft + a2).
By expanding the cosines of the sums of 
angles and adding, show that the resultant 

displacement x so obtained is equivalent 
to that obtained by the purely vector 
method.

7. Two collinear simple harmonic mo
tions have frequencies of 1024 and 1021 
cycles-sec-1 respectively, (a) What is the 
number of “mathematical” beats per sec
ond? Of audible beats? (b) Answer the 
same questions if the two frequencies are 
1024 and 1022 cycles-sec-1.

8. (a) Which of the graphs of Fig. 1-15 
represent even functions and which repre
sent odd functions? (b) In which cases 
will a Fourier expansion involve a constant 
term?

9. Find the first few terms of the 
Fourier series equivalent to the square 
wave specified by x = a, from t = 0 to 
t = T/2, and x = — a, from t = T/2 to 
t = T.

10. Show graphically how close to the 
square wave is the sum of the first three 
periodic terms in the solution to problem 
10.

11. The current in a circuit with a half
wave rectifier is given by i = Im sin (2^/0 
from t — 0 to t = T/2, and i = 0 from 
t — T/2 to t = T. Find the first few 
terms of the equivalent Fourier series.
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12. A triangular wave is represented by 
the analytical expressions x = 2at/T from 
t = 0 to t = T/2, and x = 2a (1 — t/T) 
from t = T/2 to t = T. Find the first 
few terms of the Fourier expansion.

13. A telephone receiver diaphragm is 
considered as a particle of mass 1.0 gm. 
When displaced a distance 1.0 mm from 
its equilibrium position, the elastic restor
ing force is 106 dynes. The frictional force 
opposing its motion is 4.0 X 10  dynes per 
unit velocity (in cm-sec-1). (a) If the 
diaphragm is displaced and then released, 
will its subsequent motion be oscillatory or 
not? (b) Find its natural frequency both

3

[chap. 1

with and without the presence of the 
damping force.

14. The diaphragm in problem 13 is 
driven by a force F = 10  cos (2?r/i) dynes, 
(a) Plot a curve of velocity amplitude vs 
the driving frequency, from f = 0 to 
values of / beyond the resonance frequency, 
(b) Compute the frequency for displace
ment resonance, and compare with the 
frequency for velocity resonance.

5

15. It is desired to halve the free- 
oscillation resonance frequency (with 
damping) of the diaphragm of problem 13. 
If this is to be done by changing the mass 
alone, what will the new mass be?

1



CHAPTER 2

PLANE WAVES IN AIR

2-1 Introduction. The displacement of a single particle held in an 
elastic suspension gives rise to a simple harmonic vibration around a fixed 
point. On the other hand, the displacement of a portion of an extended 
medium, having the properties of distributed mass and elasticity, always 
results in waves, traveling out from the disturbed region. It is the mass or 
inertial property of the medium which keeps the propagation speed from 
becoming infinite, and in general the greater the specific mass (i.e., the 
density), the lower this speed will be. Conversely, the “stiffer” the me
dium, the greater will be the unbalanced force upon a portion of the medium 
adjacent to the disturbed region and the greater the resulting acceleration. 
A “stiff” medium will therefore make for a high propagation speed.

For the study of plane waves the general physical approach will be as 
follows. We will assume a deformable medium, having both elastic and 
inertial properties. A particular type of deformation will be assumed to 
exist at a certain location in space, at a particular time. Then, in view of 
the physical properties of the medium, we shall see that in the region being 
considered the degree of deformation changes with time and, in addition, 
new deformations appear in adjacent regions. This may be stated quite 
simply in terms of the rates of change of the degree of deformation with 
both position and time, i.e., in the form of a differential equation. It is 
the solution to this differential equation that describes completely the wave 
phenomena.

The student of electricity and magnetism should compare this procedure 
with the method of demonstrating the necessity, under certain conditions, 
for the existence of electromagnetic waves. In the case of electromagnetic 
waves we start, not with the mechanical properties of a material medium, 
but with Coulomb’s law and the principle of electromagnetic induction. 
Two “fields,” the electric and the magnetic, are assumed to be locally dis
torted, in the sense that they have local values differing from those existing 
in the surrounding regions. Just as the mechanical deformations in air 
then change with time and position, so one can also express the rates of 
change of the two fields with time and space coordinates. It is not strange 
that both the differential equation and the integral equation obtained in 
this manner are similar in many respects to the equations for sound waves.

As a preliminary to a more formal description of wave phenomena, 
let us clearly state the properties assumed for the medium. We describe 
it as a continuous, isotropic medium, of uniform density and having the 
property of perfect elasticity. As long as sound sources and receivers have 

37 



38 PLANE WAVES IN AIR [chap. 2

dimensions large compared with the mean spacing between molecules, air 
is, to all intents and purposes, continuous. (More will be said about the 
molecular point of view of sound propagation in Chapter 6.) The as
sumption that air is perfectly elastic deserves additional attention. Sound 
attenuation actually does occur, due to the presence of dissipative factors. 
As sound energy is projected through limited regions of the air, viscous 
stresses in the nature of shear appear near the lateral boundaries of the 
disturbance, and tend to dissipate the energy associated with the wave 
motion. Away from the boundaries these effects are of negligible impor
tance. A second possible means of wave energy dissipation is by the proc
ess of heat flow between adjacent regions of compression and rarefaction. 
Such a heat flow, because of its irreversible nature, would result in a con
stant degradation of the wave-motion energy into the energy of uncoor
dinated thermal motions. (This decrease in wave amplitude is not to be 
confused with the operation of the ordinary inverse square law in the case 
of spherical waves, where the same total wave energy simply spreads into 
a larger and larger volume.) The heat conductivity of gases is low, and 
therefore over the audible spectrum the deformation process can be de
scribed quite accurately as adiabatic, and heat flow is not a significant 
dissipative factor. More will be said on this matter in Chapter 6.

One other assumption will be made in the course of setting up the dif
ferential equations for waves, namely, that the disturbance in the normal 
mass distribution for the medium will always remain small. This is 
true in any ordinary sound wave and this assumption will greatly simplify 
the mathematics. Moreover, as a consequence of this assumption, there 
will appear certain important physical features of wave propagation char
acteristic of small amplitude waves only.

A few definitions will be of use in setting up the wave equations.

2-2 Dilatation and condensation. Let Vo be the volume occupied by 
any fixed mass of air with no wave disturbance present. Similarly, p0 is the 
density of the air under the same conditions. Then, if there is some small 
deformation of the medium, so that Vo is increased by a small amount v, 
and po is changed similarly by a small amount pd, we may state that

and
Dilatation = 6 = v/VQ

Condensation = s = pd/po.
(2-1)

These dimensionless ratios describe the instantaneous fractional change in 
volume and density at a point in a field of sound. They are small, but not 
truly differential quantities, and they vary in value both with position in 
space and with time. In the manner of physics, dilatation and condensa
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tion are sometimes treated as true differentials when their magnitudes are 
small compared with other variables.

In view of Eqs. (2-1), we may write for the volume V of the chosen mass 
of air and for the density p in the presence of the distortion in the air,

V = 70(l + 3)
and (2-2)

p = p0(l + s).
Therefore

(1 + 3)(1 + S) = 1, (2-3)
since pF is constant, for constant mass.

If s and 3 are small,
8 zzzz —3, (2—4)

neglecting the product, sS, in comparison with s or 3. The values of s and 
3 rarely exceed 10“3 for ordinary sound waves, so that the error in this 
assumption is negligible. For the large amplitude waves which accom
pany explosions, the simple relation of Eq. (2-4) can no longer be assumed 
and the exact expression of Eq. (2-3) must be used. This greatly compli
cates the mathematics, as will be seen in Chapter 6.

2-3 Bulk modulus. One other definition, from elasticity, will be useful. 
For an elastic, isotropic medium, the bulk modulus is

® = (2-5)

where P and V represent the pressure and volume respectively of a given 
mass. With this definition the constant (B is always positive, since the 
volume will decrease when the pressure increases and vice versa.

For a perfect gas there are two such moduli, the adiabatic modulus, (Bo, 
and the isothermal modulus, (Bf. The ratio (S>a/<3>i = y, where y is the 
ratio of the specific heat of the gas at constant pressure to the specific heat 
at constant volume (= 1.4 for air). Since the variations involved in 
sound propagation in air are closely adiabatic in nature, we will be con
cerned only with (Ba. Used without a subscript, (B will be assumed, there
fore, to be (Bo.

The relationship between pressure and volume for a gas is not a linear 
one, so that in general the value of (B does not remain constant, for a given 
mass of gas, when the total pressure and volume are varied. However, 
for sound propagated in the ordinary open air, any variations due to 
changes in atmospheric conditions and also due to the presence of the 
sound wave itself are quite small. Therefore there is little error in assum
ing (B constant. (For normal open air conditions, (B is of the order of 
1.4 X 106 dynes/cm2, or 1.4 X 105 newtons/m2.)
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While Eq. (2-5) is the precise definition of (S>, we may substitute small 
finite changes in pressure and volume for the differential changes without 
introducing any serious error. Let p and v be such small variations in the 
total pressure P and the volume V, due to the presence of the sound wave. 
If Po and Fo are the normal undisturbed values for a given mass of gas, 
we may write

® v/ Vo 
or

p = = ffis. (2-6)
This is a most useful relation between the small “ excess pressure” p and 
the condensation s. At any one position in space, both quantities will vary 
periodically as the wave passes by, and since they are linearly related 
through the bulk modulus, they will always be in phase.

2-4 Significant variables in the field of sound. The state of the air 
through which sound waves are traveling may be discussed in terms of 
any one of several physical variables. We have defined and related three 
such variables, the dilatation 3, the condensation s, and the excess pres
sure p. In setting up the wave equation in the next section, we shall in
troduce a fourth important variable, the 11 particle displacement” £, to
gether with its time and space derivatives. The three quantities already 
discussed are related by quite simple equations and are also simply related 
to £. It is therefore equally correct to describe the wave as a traveling 
variation in the pressure, the condensation, the dilatation, or the particle 
displacement.

In modern experimental acoustics, microphones of an electrical type are 
used almost exclusively to detect sound waves. Such microphones respond 
primarily to the pressure variable in the wave. In addition, the “particle 
velocity” |, which represents the time derivative of the particle displace
ment, presently to be introduced, will be a particularly convenient variable 
when we come to the use of electrical analogs. In our later discussion we 
shall make more use of “sound pressure” and “particle velocity” than of 
any other of the variables so far introduced. These other quantities will, 
however, be useful in setting up the wave equations and in addition they 
are important to a complete understanding of the physical nature of a 
longitudinal wave.

2-5 The differential equation for plane waves. The problem of the one
dimensional wave, where the deformations in the medium are a function of 
one cartesian space coordinate, is the simplest to analyze. Such a.wave is 
called plane because conditions are uniform over the cartesian plane speci
fied by the one space coordinate. Most sound waves are not plane, but at 
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a considerable distance from sound sources of ordinary size and of any 
shape the curvature of the wave front is small, and the wave-front shape, 
for all practical purposes, becomes plane. At nearer points, where this 
cannot be assumed, we must make use of the more complicated three
dimensional equations developed in the next chapter.

In the following sections we shall make free use of partial derivatives. 
The integral equations in this chapter will often involve three or more 
variables, the two independent ones being the space coordinate x and the 
time t. The important physical parameters in the field of sound, p, s, 
etc., will each be a function of both x and t. When we write d£/dx, we shall 
be assuming that time, t, is held constant, whereas when d^/dt is used, it is 
understood that x is held constant.

Let the air be deformed, at a given instant of time, along the ^-direction 
only (Fig. 2-1). Assume a layer of air, originally of thickness dx and of 
unit cross section, to be displaced along x in such a way that the face origi
nally at x has moved a distance £, and the face at x + dx has moved a dis
tance £ + d£. The increased thickness of the layer 
of air, due to the deformation, is plainly d£. Since 

5-

d£ can be written as -~-dx, we can then evaluate the dx ’
dilatation, at this instant, for the layer of unit area:

? = V = —• (2—7}
To dx dx } Fig. 2-1.

Due to the deformation of the medium, the pressures on the two faces 
of the layer will now be slightly different by a differential amount, dP. 
Assuming a positive increment in pressure with increasing x, the net force 
is to the left and therefore negative. This net force along the x-axis is

-Px+dx + Px = -dP = —d(Po + p) = -dp. (2-8)
Therefore, writing Newton’s second law for the matter within the layer, 
we have

-dp = po dx (2-9)

where po is the normal undisturbed density of the air. (This equation 
neglects the second order difference between the acceleration of the face 
displaced by an amount £, and that of the face displaced by an amount 
£ + d£.) The acceleration is expressed as a partial derivative in recogni
tion of the fact that £ is a function of both x and t. Since the small change 
• dpin the excess pressure dp is dx, Eq. (2-9) may be written
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j. dp =
po dx dt2 (2-10)

This form of the wave equation involves four variables. By making use 
of Eq. (2-6), the number may be reduced to three. Differentiating (2-6) 
partially with respect to x, time being assumed constant, we obtain

dP zn 55
dx dx dxz (2-11)

Therefore Eq. (2-10) may be written

or, letting ®/po equal c2,

d2£ = ® d^
dt2 po dx2

d2£ = 2d^t
dt2 ° dx2 (2-12)

This is the most common form for the differential equation for plane waves, 
where £ is the dependent variable and x and t are the independent variables. 
Equation (2-12) uniquely relates rates of change of £ with respect to posi
tion and rates of change of £ with respect to time. Before we discuss the 
solution of Eq. (2-12) and how it implies wave production, we should make 
clear the meaning of the variable £ as applied to air.

2-6 Physical significance of the particle displacement, £. A gas like 
air is not, of course, made up of molecules having any fixed mean position 
in the medium, like the atoms of a solid. Even without the presence of a 
wave, gas molecules are in constant motion, with average velocities far in 
excess of any velocities associated with the wave motion (see Chapter 6). 
However, from a statistical point of view, a fluid, either gas or liquid, may 
be treated much as a solid because, when in the undisturbed state, mole
cules leaving a certain region as a result of their random motions are re
placed by an exactly equivalent number of molecules, having exactly the 
same properties, thus keeping the macroscopic properties of the medium 
the same. Similarly, during the vibration cycle associated with the wave 
motion, the fact that a continuously changing group of molecules is involved 
rather than a fixed set is of no moment, so long as the average properties 
of the aggregate remain the same. In view of this equivalence, it is quite 
proper to speak of 11 particle” displacements, velocities, and accelerations 
for a fluid with much the same meaning as for a solid.

2-7 Solution of the wave equation. The most general solution of the 
differential equation, (2-12), can be shown to be of the form

£ = f(x ± ct), (2-13) 
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where c = V(B/po. The exact nature of the function f is determined by 
the boundary conditions peculiar to a specific problem, in particular by 
the nature and behavior of the sound source. There is no mathematical 
restriction that the function be periodic, although in practical sound 
production this is usually the case.

If the reader has never encountered an equation of the type given by 
(2-13), he will see nothing in it to indicate a wave. A closer scrutiny of 
the term (x ± ct), however, will reveal its wave implications. Let us 
assume the negative sign for the term ct. At some specific time ti and at 
some specific position Xi, £ will have some particular value £i. If a small 
increment of time is added to the time ti, so that t becomes ti + St, there
will then be a slightly greater value of x = Xi + Sx such that the total 
value of (x — ct) will remain the same (i.e., such that (x-l — ctt) =

[(rri + Sx) — c(ti + AZ)]). Therefore 
£ will still have the value £i. Putting 
it as simply as possible, after a 
short time St, the same value of £ 
will recur at a point a little farther 
along in the direction. This is 
equivalent to describing a traveling 
disturbance, where the whole graph
ical representation of Eq. (2-13) 
moves along the z-axis from left to

right. Figure 2-2 will help to clarify this interpretation of Eq. (2-13).
A similar consideration will show that with a positive sign in front of 

the term ct, the disturbance will move in the direction of — x. Whether 
the motion is in the positive or the negative direction, for identical values 
of the argument on the right of Eq. (2-13), and therefore for identical 
values of £, Sx must equal c St. The velocity of travel is therefore Sx/St = c. 
Since the quantity c, which is equal to V(B/po, is almost a constant, the
velocity is independent of the nature of the function f. It should also be 
clear, from the above analysis, that for the small amplitude disturbances 
here considered, no change in graphical “shape” will occur during the 
propagation. If this were not true, the whole character of musical sound 
and speech would vary with the distance between the source and the ob
server!

Using the adiabatic bulk modulus and the density for dry air at normal 
atmospheric pressure and 0° C, the velocity of sound c becomes very nearly 
33,100 cm/sec, or 331 m/sec. This is in close agreement with experiment. 
In Chapter 6 we shall consider some of the reasons for variations in this 
figure.
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£ = £™ cos

2-8 Disturbances of a periodic nature. The word disturbance is pur
posely used here instead of “wave” because wave generally implies a re
curring pattern or, mathematically, a repeating function, and there are no 
such restrictions on the solution of Eq. (2-12). Much of the sound asso
ciated with music is transient in nature, with no true steady state fre
quencies. The transient component of the air disturbance travels with 
the same speed as does the regularly periodic portion, and plays an impor
tant part in determining the over-all effect on the hearer. For simplicity, 
most of our attention will be directed to disturbances of a steady state na
ture, originating from sustained vibrations at the source.

The following periodic expression for £ satisfies the differential equation 
for plane waves:

£ = U cos ~ (x ± ct), (2-14)
A

since £ is a function of (x ± ci). The quantities and X are constants. 
Equation (2-14) may also be written

± V" (ci ± z) J = cos (ct ± x). (2-15)
A J A

The student may check directly that any function f(ct ± x) is a solution of 
the differential equation, as well as f(x ± ci). Written either way, the 
use of the negative sign signifies a disturbance traveling in the +z direction. 
We shall, for the most part, use the argument (ci ± x), since this form leads 
to the interpretation of phase in the conventional manner.

In physical problems, the solution of a differential equation must not 
only satisfy this equation but must also fit the boundary conditions. Sup
pose that the source of the plane waves being considered is one side of a 
rigid vibrating plate, the motion of every point of whose surface may be 
described by the equation

Q = Qm cos 2Trft, (2-16)
Q being the instantaneous displacement of the surface of the plate. Such 
a source is often called an “acoustic piston.” The air adjacent to the 
vibrating surface of the source must have a motion identical with that of 
the source itself. Let x in the wave equation (2-15) be measured from the 
source position. Then, provided that the constant X = c/f, and if = Qm, 
it is seen that Eq. (2-15) becomes identical with (2-16) at x — 0. Thus 
the form of Eq. (2-15) is correct to fit this particular boundary condition.

2-9 The wavelength. The relation X = c/f will suggest that this con
stant is the wavelength, or the distance between adjacent crests in the 
traveling disturbance. That this interpretation is correct will be evident 
if Eq. (2-15) is rewritten as
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f = f„cos2r(^ ± ?)• (2-17)
\A A/

Assuming time to be held constant, Eq. (2-17) becomes a relation between 
two variables only, £ and x, and represents a sort of “frozen” picture of 
the various air layer displacements at a given instant. It is then seen that 
there is a spatial repetition of a given value of £ every time x changes by an 
amount X. This is the ordinary idea of wavelength. With x held con
stant, Eq. (2-17) becomes a relation between the two variables £ and t. 
It then describes, as a function of time, and while the wave passes by, the 
vibration of a particular layer of air around its equilibrium position. The 
frequency of this vibration will be c/X. In either case, the plot of £ vs x 
or of £ vs £ is a sinusoid, whose position along the x- or i-axis, as the case 
may be, is determined by the particular value of x or t that is chosen.

2-10 Graphical representation. 
In the ordinary graphs of £ vs t, the 
particle displacement £ is plotted 
vertically, along the ^/-direction. 
It must be emphasized that since 
the wave is longitudinal, the actual 
physical direction of the displace
ment of a layer of air is parallel 
to the x-axis. In this connection 
it will be recalled that in setting up 
the original differential equation, 
a positive value of £ was measured 
to the right of the equilibrium 
position, i.e., in the direction of 
+x. In Fig. 2-3 the graph is 
placed below the physical picture 
in order to clarify these relation-

”lm

ships. The dashed lines represent
the equilibrium positions for se- Fig. 2_3 Graphical represeI,tation of 
lected layers of air. £ = f(x), time being held constant. Dashed

_ . . „„ ... lines in part (a) represent central position
2-11 Waves containing more for cac}} vibrating layer of air.

than one frequency component. If
the vibrating source is simultaneously executing a number of simple har
monic motions of different frequencies, each of these motions will contribute 
a separate component displacement of the air. The total value of £, by the 
superposition principle, is the sum of these contributions. In general, then, 
we may write, for a wave traveling in the direction,
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£ = (£ji cos (ct - x) + ai] + (U)2 cos (ct - x) + a2]

+ • ’ • + (^m)n COS (d — x) + «nJ, (2-18)

where each of the X’s is associated with one of the particular frequencies 
present. Note that it is necessary to introduce a separate phase angle a 
into each component of the wave expression, the values of these angles 
being determined by the exact behavior of the source, where x = 0. The 
reader should recognize that the right-hand side of Eq. (2-17) is some
what similar, in terms of the wave equation, to the harmonic series of a 
Fourier analysis, as discussed in Chapter 1.

As was brought out in Section 2-7, the speed of wave propagation, c, 
for small amplitude waves, is dependent only on the elastic and inertial 
properties of the medium. The various frequencies present in a complex 
wave, as represented by Eq. (2-18), all travel with the same speed. This 
means that the phenomenon of dispersion, so important in light, is almost 
nonexistent in sound. This is to be expected, in view of the purely me
chanical nature of longitudinal waves. At very high audible frequencies 
and in the ultrasonic region, anomalous effects do occur (see Chapter 6), 
but not for the ordinary audible range. There is one interesting special 
case where dispersion does occur in air with ordinary sound frequencies and 
intensities, i.e., in the, propagation of waves along an exponential horn. 
This will be mentioned again when this type of horn is discussed in 
Chapter 5.

2-12 Alternate forms for the steady state solution to the wave equation. 
By means of the relations given in Sections 2-2 and 2-3, it is possible to 
rewrite Eq. (2-15) in terms of any of the various field parameters. The 
results for a wave traveling in the ~i~x direction are summarized below, 
along with the original equation in terms of £.

(a) £ = cos — (ct - x), A

(b) £ = — 2tt y sin yy (ct — x), A A

(c) 8 = J. sin (cl - x), (2-19)OJu A A
(d) s = -S = -Y«”8inY(ct-a:)-

(e) p = (Bs = — (B = — (B yy sin yy (ct — x).



2-13] PHASE RELATIONSHIPS 47

(The coefficient on the right of Eq. (2-19b) could also have been written as 
2tfU)

It should be pointed out that the determination of any one of the group 
of field properties in a plane wave in free space uniquely determines all the 
others, since they are all simply related. This fact is important in connec
tion with experimental acoustical measurements in the path of plane waves. 
A “pressure” detector may be used to measure indirectly all other impor
tant quantities as well.

2-13 Phase relationships. The phase relationships which appear in the 
above set of equations are worth some attention. The particle velocity 
the condensation s, and the excess pressure p are all in phase. This means 
that the density and the pressure are a maximum when a layer of air is 
moving through its central position (where $ is a maximum), not when it is 
at the extreme ends of its motions, as one might expect. The dilatation is, 
of course, 180° out of phase with the condensation and the excess pressure. 
The quantities £, 5, s, and p are all 90° out of phase with the displacement.

The algebraic signs of these quantities introduce some subtleties in the 
phase relationships. In the first place, the variables £ and £ in Eqs. (2-19) 
represent vector quantities. As assumed in Section 2-5, + £ is in the 
direction and —£ is in the — x direction. This applies also to the particle 
velocity, £. The variables 3 and s may also be plus or minus, but since they 
represent scalar quantities, the algebraic sign simply indicates whether the 
volume or density change is an increase or a decrease. The excess pressure, 
p, is also a scalar, in this sense. This difference in the interpretation of 
sign for the vector and for the scalar equations in Eqs. (2-19) must be kept 
clearly in mind in connection with reflection phenomena.

For a wave traveling in the — x direction, where (ct — x) is replaced by 
(d + x), there will be a positive sign on the right-hand side of Eqs. (2-19d) 
and (2-19e), after the differentiation. No change of sign will take place, 
however, in Eq. (2-19b). This means that there will now be a 180° phase 
relationship between £ and either s or p. When the particle velocity is to 
the right (positive), the density and total pressure will be less than the 
normal po and Po respectively.

The vector interpretation of a positive or negative £ or £ is unaffected by 
the direction of wave propagation, since their sign is tied up with the sign 
convention associated with a fixed rr-axis.

Example. A large fiat plate is radiating plane sound waves from one side only. 
The amplitude of its motion is 0.01 mm and the frequency of vibration is 1000 cycles- 
sec-1. For any point in the path of the waves, find the maximum values of £, £, s, 8, 
and p.
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Assume the velocity of sound c to be 331 m/sec and the bulk modulus, ffi, to be 
1.4 X 106 dynes-cm-2. The amplitude of motion in the air is the same as that of 
the source. Therefore

= IO"3 cm,
= 2irf%m = 2tt(103)(10-3) = 6.28 cm-sec-1,

•>. = = v = 4 10-3 = 1-9 x io-4, 
A oo.l

p = (Bs = (1.4 X 106)(1.9 X IO"4) = 2.66 X 102 dynes-cm"2.

These values are typical of sounds of high intensity.

2-14 Energy in the wave. For the simple harmonic motion of a mass 
particle, the energy was seen to be, on the average, half kinetic and half 
potential. One would therefore suspect that in a sound wave the energy 
is also so divided. While this turns out to be the case, there are certain 
features of energy storage which are peculiar to longitudinal waves and 
deserve some discussion.

2-15 Kinetic energy. Consider a longitudinal wave of sinusoidal form, 
progressing in the +# direction. For a thin layer of air, of thickness dx 
and of unit cross section, moving with a velocity £, the instantaneous kinetic 
energy is

dEk = ipo(j)2 dx. (2-20)

The average kinetic energy density ek in the medium may be obtained by 
integrating this expression with respect to x over an integral number of 
wavelengths nX (keeping the time constant), and then dividing the result 
by the volume this total energy occupies:

o Po(£»)2 I sin2 — (c( - x)dx
ek-------------J° . wX----------------- --- MU2 = j (2-21)

It will be noted that the result is identical with what one would expect for 
the time average of the kinetic energy of a particle whose mass is the mass 
per unit volume of the gas.

2-16 Potential energy. To obtain the corresponding potential energy 
density, we must consider the properties of a perfect gas. In Section 2-3 
it was indicated that the volume and pressure changes that occur in air 
during the passage of longitudinal waves of audible frequencies are nearly 
adiabatic in character. The graph of Fig. 2-4 represents a small portion 
of a PV diagram for an adiabatic variation, using a fixed mass of gas. Let
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us suppose a volume Vo to be reduced to a 
slightly smaller volume, V, the decrease being 
called v. As a result, the pressure will rise 
slightly from Po to P, the increase being 
called p. The relations between these quan
tities are shown in the graph. Assuming 
the curve to be straight for small changes, 
the work AW done upon the gas during the 
volume change, or the energy AEP, stored 
potentially within the gas, will be the area 
under the curve between V and Vo:

AW = AEP = (Po + i p)v = Pov + i pv. (2-22)
Z Zi /

For simple harmonic variations around mean pressures and volumes, 
the Ps and p’s are alternately plus and minus. The average value of the 
first term on the right-hand side, Pow, over any integral number of cycles 
is therefore zero. In the second term, however, when v changes sign, so 
does p. The product sign is therefore always the same, showing potential 
energy to be stored in the gas whether there is a compression or a rarefac
tion. It is interesting to see that while the air is, of course, always “com
pressed” in the absolute sense, total pressures never changing sign, the 
medium nevertheless acts just like an unstressed spring which is alternately 
compressed and stretched.

The second term on the right-hand side of Eq. (2-22), ^pv, which alone 
contributes to the average potential energy stored in the medium, may be 
written in terms of the other field parameters by means of the following 
transformations.
Since

p = — (B3 and v = Vo3, (2-23)
therefore

= (2-24)

The minus sign of the first relation of Eq. (2-23) may be ignored, since a 
positive sign for p and a negative sign for 3 both signify work done on the 
gas and therefore an increase in the stored potential energy. For a thin 
layer of air of unit cross section in the path of the wave, the potential 
energy becomes

dEv = i ® S2 dx. (2-25)
2
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By partially differentiating the right-hand side of Eq. (2-13), first with 
respect to x and then with respect to t, we see that

=+ Ifl 
dx ~ cdt (2-26)

Inserting this value of d£/dz(= 3) into Eq. (2-25), we obtain 

dEp= = (2-27)

This last expression is identical with Eq. (2-20), representing the instan
taneous kinetic energy of a thin layer of air. It therefore follows that the 
average potential energy density in a region containing an integral number 
of wavelengths will also be J po(£™)2-

2-17 Total energy density in the wave. The total average energy 
density in the wave will be the sum of the kinetic and the potential energies, 
or

etotal = 7 Po(^m)2 + T Po(£m)2 = 7> Po(£m)2. 
£

(2-28)

etotal

One of the interesting things about the energy in a wave disturbance, not 
readily foreseen, is that the kinetic and the potential energies move along 
together in identical regions. Since the in
stantaneous energies can both be written 
in terms of the instantaneous particle 
velocity, they are each a maximum at 
the same position in space and also at 
other places and times are zero together. 
This is, of course, not true for the vibra
tion of a single isolated mass particle. 
A plot of the total energy distribution in 
space for the wave, Fig. 2-5, shows a sort 
of pseudoquantum nature, regions of 
large total energy alternating with regions of little or no energy. In the 
case of traveling transverse waves on a stretched string, the above remarks 
do not apply. For these waves, as will be seen in Chapter 7, the kinetic 
energy maxima and the potential energy maxima are not coincident.

x

Fig. 2-5. Graph of energy dis
tribution along x at a given instant 
of time.

2-18 Sound intensity. This important measure of sound wave ampli
tudes is defined as the energy flow across an area, per unit area and per unit 
time. This energy will plainly be equal to that contained in a column of 
unit cross section and of length c, the velocity of sound. Therefore the 
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intensity I is the product of the total energy density, derived above, and 
the velocity c.

There are several different ways of writing the expression for the sound 
wave intensity, in view of the interrelations between all the important 
parameters. Several useful forms, whose validity are given below.

(&) 2 (d) Prms£rms«

(b) LoC4^(U)2. (e) (2-29)
2 PqC

(c) Poc(^rms)2«
The form given in Eq. (2-29c) is algebraically similar to the expression for 
electrical power, BI2, where poc replaces R and £ takes the place of I. Ex
tensive use of this analogy will be made in Chapter 5.

2-19 Units of intensity. Using cgs units, intensity is measured in 
ergs-cm-2-sec-1. For ordinary audible waves, intensities range from 
about 10-9 to about 10+3 cgs units. In mks units this corresponds to a 
range of from 10“12 to 1.0 joule-meter-2-sec-1. These numbers are an 
indication of how small are the energies associated with sound. The total 
energy coming from the throats of a crowd at a football game, in response 
to some spectacular play on the field, might perhaps be enough to heat a 
cup of coffee! Even the great crescendos of a large symphony orchestra 
involve very little sound wave energy. All of this is a tribute to the sensi
tivity of the human ear.

2-20 The decibel. For two sounds of intensities Zi and Z2, one is said to 
be of a greater intensity than the other by a number of decibels (db), where

Intensity difference in db = 10 logio (2-30)

The decibel is therefore not an absolute, but a comparative measure of 
intensity and is consequently a pure number. Without the factor 10, the 
comparison is in bels, a unit too large for most practical purposes.

It is because of the sensitivity of the ear, and the range of intensities to 
which it responds, that the decibel scale has been devised. The scale is 
based on the well-known observation that the human sensory response 
to a given increase in an objective stimulus is approximately proportional 
to the ratio of the increase in stimulus to the stimulus already present. To 
give a concrete example, the ear is capable of detecting a very small in
crease in sound intensity when the background intensity is low; with a 
great deal of background noise, a much larger increase of intensity is neces
sary to give to the ear the same sensations.
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If h represents the sensation delivered to the brain, and g the objective 
stimulus, the proportion may be expressed mathematically as

h oc • (2-31)

If this statement is essentially correct, as seems to be the case for sensations 
of sight, pain, etc., as well as for hearing, then with greater changes in 
stimuli Eq. (2-31) may be integrated between definite limits, to obtain

hi - h2 = log — • (2-32)
02

It is upon this equation that the decibel scale is based.
The range of audible intensities mentioned above, 10+3 to 10-9 ergs- 

cm-2-sec-1, may be converted into a decibel comparison by inserting the 
ratio 103/10-9 = 1012 for h/I2 in Eq. (2-30). There is then seen to be an 
approximate range of 120 db between very weak and very intense sounds 
(ranging from the so-called threshold of hearing to the threshold of feeling). 
Apart from the nature of the ear response, the numerical convenience of 
this compressed scale is obvious. The decibel is also a convenient sized 
unit to use because any intensity difference of the order of one decibel may 
usually be ignored as far as the ear is concerned. The average ear is unable, 
even under ideal laboratory conditions, to tell that two sounds differ in 
intensity when their difference, measured in power per unit area, is less 
than about 10%, and under ordinary listening conditions the difference 
must be much greater.

There is an important consequence of the ear’s rather crude ability to 
differentiate among varying sound intensities. It was pointed out earlier 
that it is difficult to express the physics of actual sound problems in terms of 
precise mathematics, and often even more difficult to solve these approxi
mate equations. Fortunately, a discrepancy of 10-15% between theory 
and experiment, as far as intensity is concerned, is of no significance to the 
ear. This is a great comfort to the designer of practical acoustical equip
ment.

2-21 Intensity “level”; pressure “level.” In recent years there has 
been devised an absolute intensity scale, known as the intensity level. This 
scale is based on the arbitrary selection of a low reference intensity, Iq, with 
which other intensities are compared. The value generally used for Iq for 
plane waves is 10-16 watt-cm-2 = 10-9 erg-cm-2-sec-1, an intensity which 
corresponds approximately to the average threshold of hearing, or the weak
est sound which can be heard. With Io specified, the intensity level in 
decibels of some sound of intensity I is then computed by replacing the 
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ratio Z1/Z2 in Eq. (2-30) by Z/Zo. Using the reference intensity given 
above, the intensity level in a noisy machine shop might be 100 db.

Since virtually all modem sound detectors respond directly to the varia
tions of pressure in the wave disturbance, rather than to the intensity itself, 
the so-called pressure level is considered more fundamental than the in
tensity level. By Eq. (2-29e) the intensity in a plane wave is seen to be 
proportional to p2. Therefore we may write Eq. (2-30) in the form

Intensity difference in db = 10 logio = 20 logio —• (2-33)
Po Po

The rms value of p0, the standard reference pressure, is commonly taken 
to be 0.0002 dyne-cm-2. (This corresponds closely to the pressure in a 
wave whose intensity is the reference one given above, IO-16 watt-cm-2.) 
The pressure level in a plane wave is therefore, by Eq. (2-33), 20 times the 
logarithm to the base 10 of the ratio of the pressure in the wave to the refer
ence pressure, p0-

Neither intensity level nor pressure level is the same as loudness level, 
which is a measure of subjective response that will be defined in Chapter 9.

PROBLEMS
1. Consider a plane wave traveling 

in the +2 direction. Using the same pair 
of rectangular axes, plot as a function of 
the time, for a fixed value of x, the particle 
displacement £, the particle velocity £, the 
dilatation 8, and the excess pressure p. 
Besides showing the relative phases, indi
cate also the maximum values of each 
variable in terms of c, X, etc.

2. Repeat problem 1 for a wave mov
ing in the — x direction.

3. Two plane waves are traveling along 
the z-axis. The particle displacements 
due to the separate waves are given by

£1 = U cos (ct — x)
A

and
b = — U cos (ct + x).

A

For the two waves, at the position x = 0, 
find the relative phase of (a) £1 compared 
with £2, (b) £1 compared with £2, and (c) pi 
compared with p2.

4. For a certain plane wave traveling 
through air, the maximum value of the 
excess or acoustic pressure is 0.1 dyne-cm-2. 
If the frequency is 1000 cycles-sec-1, and 

the density of air is 1.29 X 10-3gm-cm~3, 
find (a) the maximum particle displace
ment, (b) the maximum particle velocity, 
(c) the maximum condensation, and (d) the 
maximum dilatation.

5. For the wave in problem 4, find 
(a) the average kinetic energy per unit 
volume, (b) the average potential energy 
per unit volume, and (c) the wave inten
sity, all in cgs units, (d) Also determine 
these values expressed in mks units.

6. A plane wave in air has an intensity 
of 40 erg-cm-2-sec-1 and a frequency, f. A 
second wave, also in air, has an intensity 
of 10 erg-cm-2-sec-1, and a frequency f/2. 
For the two waves, find the ratio of (a) the 
maximum particle displacements, (b) the 
maximum particle velocities, and (c) the 
maximum acoustic pressures.

7. A plane wave in air and a plane 
wave in hydrogen have the same intensity 
and are of the same frequency. Find for 
the two waves the relative values of 
(a) the maximum particle displacements, 
(b) the maximum particle velocities, and 
(c) the maximum acoustic pressures. The 
density of hydrogen is 9 X 10-5 gm-cm-3 
and the value of c is 1270 m-sec-1.
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8. The intensity level in a longitudinal 
wave in air is 20 db. Assuming a reference 
intensity of 10-9 erg-cm-2-sec-1, find the 
absolute intensity in the wave in cgs units. 
Assuming the rms reference pressure to be 
2 X 10-4 dyne-cm-2, find the rms acoustic 
pressure for the pressure level of 20 db.

9. Sound wave B has an intensity 
10 db greater than wave A. Wave C has 
an intensity 10 db greater than wave B. 
(a) What is the intensity of wave C rela

tive to wave A, in db? (b) Find the 
absolute ratio of the intensity of B to 
A, C to B, and C to A.

10. The pressure level in a sound wave 
in air is 30 db. (a) Find the absolute 
value of the acoustic pressure in the wave, 
in cgs units, (b) Also find the maximum 
value of the particle velocity. (Use the 
standard reference pressure given in 
problem 8.)



CHAPTER 3

WAVES IN THREE DIMENSIONS

Many problems in acoustics can be handled adequately by the methods 
discussed in Chapter 2. Whenever the vibrating surface is plane and rigid, 
or approximately so, the waves leaving the source are plane. The wave
front shape will be maintained as plane, provided that the surface area of 
the source has dimensions large compared with the wavelength in air (see 
Chapter 4). The waves leaving the mouth of an “ ideal” horn, for instance, 
are approximately plane and remain so provided the perimeter of the 
mouth of the horn is large compared with the wavelength. All properties 
in the resulting field of sound may then be computed to within a fair degree 
of accuracy through the use of the plane wave equations just developed.

There are, however, so many important practical problems where the 
above state of affairs does not exist that a more general consideration of 
wave phenomena is desirable. Let us therefore consider the general prob
lem of space waves.

3-1 Waves in three dimensions. The equation of continuity. Con
sider the medium to have the same isotropic properties assumed in setting 
up the differential equation for plane waves. In this case, however, we 
will consider a more general type of deformation. In Fig. 3-1 a differential 
volume element in cartesian coordinates, dx dy dz, is located at the position 
specified by x, y, z. Matter is pictured as in a general state of flux 
throughout the region, with velocity components at the point in question 
specified by u, v, and w, along the x-, y- and z-axes respectively. Positive 
vectors are assumed and u, v, and w 
are presumed to change with varia
tions in x, y, and z. Positive incre
ments in velocity accompany positive 
increments in position coordinates.

It is now possible to set up an 
equation which states, very simply, 
that the total time rate of mass flow 
out of the volume, dV, through all six 
faces of the cube, is equal to the rate 
of decrease of mass within this volume. 
This is called the equation of conti
nuity, and it is set up as follows. 
Consider the face of area dy dz, lying 
in the yz plane, on the left-hand side 
of the cube. The mass of fluid enter

. 55 
Fig. 3-1.
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ing this face per unit time is pu dy dz, where p is the fluid density at this 
face. (Note that without the factor dx dy, this expression represents the 
flow per unit area.) At the parallel face, located at x + dx, both u and 
p are assumed to be different, and greater, by a differential amount. We 
may therefore express the net rate of efflux of mass through the two 
parallel faces as

—pu dy dz + [pu + dzj dy dz = —dx dy dz. (3-1)

In a similar manner, the time rate of outward flow of mass through the 
/ X

other two sets of parallel faces may be shown to be dy dx dz and 

dz dx dy respectively. The sum of the three rates of flow represents 

the total rate at which matter is leaving the volume element, which in turn 

may be written as — dx dy dz. Equating the two expressions for the Ob 
efflux, we obtain

d(pu) d(pv) d(pw) = _ dp.
dx dy dz dt (3-2)

This is the equation of continuity and is nothing more than a statement of 
the conservation of mass.

3-2 Application of Newton’s second law. As in the case of the deriva
tion for plane waves, we shall now make use of Newton’s second law of 
mechanics. Along the z-direction there is an unbalanced force upon the 
matter within the differential cube. By an analysis similar to that just 
employed, it is easy to show that this unbalanced force, dF, is given by

dndF = —dp dy dz = — -^dx dy dz. (3-3)

Here, as in the plane wave analysis, we may use the “excess” pressure, p, 
instead of the total pressure, P, since dp = dP. The negative sign appears 
because, with P increasing with positive increments along x, the net force 
is in the — x direction. Expressing Newton’s law in the general form 
involving momentum, we now have

dP j j j d<J>u) j j j — — dx dy dz = ——— dx dy dz dx dt
or

- F = ^- <3^)dx dt v '
There are three symmetrical equations for the motions along y and along z.
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Collecting the results for all three axes, we have
/ x _ _ d(pu)
W dx dt ’
/|X _ dp = d(p^)
k J dy dt ’
(„\ _dP _ d(p™)

} dz dt

(3-5)

3-3 The differential equation for waves in three dimensions. Having 
properly expressed the physics of the situation, we may now operate upon 
Eqs. (3-2) and (3-5) in a purely mathematical manner. In outline (the 
reader should check the actual steps), this is what is done. First, Eq. 
(3-2) is differentiated partially with respect to time, holding x, y, and z 
constant. Then the first of equations (3-5) is differentiated partially with 
respect to x, the second with respect to y, and the third with respect to z. 

This process results in right-hand terms of the form k ■, etc. By adding UL UjC
the three new equations so obtained and combining the result with the 
equation which is the result of differentiating Eq. (3-2), we obtain the 
relation

d2P = d2p d2p . VP. ( .
dt2 dx2 dy2 dz2 k }

It will be noted that the dependent variable on rne left is p, while on the 
right it is p. The quantities p and p are related, however, through the 
equations

and
p = (Bs

p = p0(l + s)
(3-7)

As a result of Eqs. (3-7), it can be shown that 
d2p = ^&p 
dt2 ~ c2 dt2 ’

When this expression for d2p/dt2 is introduced into Eq. (3-6), the latter
becomes

d2p 
dy2 c2 \?2p, (3-8)

where V2 is an operator symbol, representing the process within the paren
theses.

Equation (3-8) is the general differential equation for space waves, ex
pressed in terms of cartesian coordinates. It should be admitted freely at 
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this point that precise, useful solutions of this general equation are very 
difficult to obtain. One of the great difficulties in all solutions of differ
ential equations, and especially in the field of acoustics, is to introduce cor
rectly the physical boundary conditions. The complex contour of almost 
any practical musical instrument makes impossible any accurate mathe
matical statement as to source behavior. No one, for instance, would 
attempt to write the equation for the surface of such a source as the body 
of a violin!

3-4 The differential equation for spherical waves. A special, simpler 
form of Eq. (3-8), which has greater practical usefulness, may be obtained, 
but there are definite restrictions upon its validity. This simpler equation 
expresses the situation when there is complete spherical symmetry and it 
is called the equation for u spherical waves.” To obtain the spherical wave 
equation from Eq. (3-8) is a laborious process. Equation (3-8) may be 
transformed by standard mathematical procedures to spherical coordinates, 
where the variables are the radius vector r, the polar angle 3, and the azi
muthal angle </>:

d2p _ Jd2p 2 dp 1 d2p 1
dt2 C [ dt2 r dr r2 sin2 3 d</>2 r2 sin 3 (3-9)

Since for spherical symmetry all derivatives with respect to 3 and </> are 
zero, only derivatives with respect to r are retained. It is not difficult 
to show that Eq. (3-9) then reduces to

d2(rp) _ 2 d2(rp) 
dt- ~ C dr2 ' (3-10)

(It should be pointed out that this roundabout mathematical path may be 
greatly shortened by initially setting up the equation of continuity in 
spherical rather than in cartesian coordinates.)

It is Eq. (3-10) that forms the basis for our discussion of space waves. 
Important restrictions on its use will be pointed out as we go along.

3-5 The solution of the differential equation. Except for the different 
argument in the numerator, it will be noted that Eq. (3-10) is identical in 
form with the differential equation for plane waves. Therefore we may 
write down immediately its general solution:

rp = f(r ± ct)
or

P = £/(r + ct). (3-11)
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Only the minus sign is physically significant for practical purposes; we are 
concerned only with the diverging type of wave which travels in the +r 
direction.

Both the differential equation and its solution may be written in terms 
of the density and the condensation, using exactly the form of Eq. (3-10). 
This should be apparent without formal proof, since these quantities are 
all linearly related to pressure. The differential equation when written in 
terms of the particle displacement and the particle velocity takes a 
somewhat different form. We shall not discuss these equations, since 
and are both derivable from the velocity potential <I>, discussed below.

The most obvious difference between the integral equation, (3-11), 
and the solution of the plane wave equation is the presence of the important 
coefficient 1/r. This is to be expected in view of the physical nature of 
spherical waves, where the wave energy is spreading into a larger and larger 
volume. If the reader is puzzled because the coefficient involves the 
inverse first power of r, he should remember that sound intensities are, in 
general, proportional to the pressure squared, therefore the pressure should 
fall off as 1/r.

Before applying the results just obtained to a practical problem in 
acoustics, one more basic quantity in the field of sound will be defined, 
because of its general usefulness. This is the velocity potential, <I>, first used 
by Lagrange. It is interesting to compare this function with the well- 
known electric and magnetic potentials of other branches of physics; 
the beautiful symmetry of the mathematics will become apparent in the 
next section. From a purely manipulative point of view it is possible to 
dispense with the function <I> in many practical problems. The other field 
parameters are all related to this function and it is therefore possible to 
select some other parameter (the acoustic excess pressure p is often chosen) 
and refer all other variables to this other parameter. This is exactly what 
is done in some of the current writing on acoustics, and in many cases this 
is a time-saving approach. One should, however, become familiar with 
the use of the velocity potential, partly because of the unifying part it 
plays in correlating the various sound field parameters and partly because 
of its importance in the general subject of hydrodynamics, a complex sub
ject closely related to acoustics. Whenever viscosity enters into a prob
lem in fluid motion, and most problems in hydrodynamics are of this type, 
the velocity potential is found to be an indispensable tool.

3-6 The velocity potential, F. Both the differential equations for space 
waves and their solutions may be written in terms of the new function F, de
fined as follows: 3$ 5$

—, V = — —; dx dy -=-1’ <3~12)U = —
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where u, v, and w are the fluid velocity components. The student of elec
tricity will recognize the similarity between the velocity potential and 
the electrical potential </>. Just as the space derivatives of </> represent the 
electric field components along mutually orthogonal directions, the ap
propriate derivatives of $ represent velocity components. In both cases 
the derivatives represent the magnitudes of vector quantities, whereas $ and 
</> are scalars. The usefulness of $ is exactly that of the electrical potential 
function. It is often easier to evaluate $ in the field of sound than to 
evaluate the vector quantity, i.e., the particle velocity. Once the equa
tion for $ as a function of (x, y, z) is formulated, however, u, v, and w (or 
the quantity £, in the case of plane waves) may be readily obtained. The 
exact way in which the velocity potential is so used will appear presently 
when a specific problem is considered.

When the function $ is introduced into the fundamental dynamical 
equations for a deformable elastic medium, equations of exactly the same 
differential and integral form as those just developed are obtained:

= c2 W dr
d2(r$) = , d2(r$) 

dt2 ~ C dr2
* = i/(r ± ct)

To the reader who has carefully followed the physical and mathematical 
arguments of this chapter, these equations will appear quite credible. 
Those more skeptically inclined will find the details in Appendix I.

Since for the spherical waves now under consideration the particle 
velocity, as a matter of definition, is always along the direction of the radius 
vector r, the cartesian equations (3-12) reduce to the single equation

. _ af 
” dr

Once the equation for the particle velocity is known, the expression for £ 
may be obtained by integrating Eq. (3-14) with respect to time.

The relations between the condensation s, the dilatation 8, and the excess 
pressure p, used in connection with plane waves, may be carried over 
bodily into the discussion of spherical waves, since these relations were in 
no way restricted to the geometry of plane waves. (The relation between 3 
and £ is more complicated than in the case of plane waves, since there is a 
transverse dimensional change as well as a radial one.) By a straight
forward mathematical transformation, however (see Appendix II), a most 
useful relation between p and $ may be obtained, good for any system of 

(cartesian coordinates),

(spherical coordinates), (3-13)

(spherical coordinates).

(3-14)
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space coordinates, including the case of spherical symmetry here being 
considered:

Yt = yp =c'<s- <3-15)ut Po

3-7 Application of the function T. The “pulsing sphere.” We shall 
now apply some of the above relations to the problem of radiation by a 
“pulsing sphere.” The nearest practical realization of this curious but 
mathematically convenient type of source would be a spherical balloon. 
Imagine such a balloon to be connected to a reservoir whose pressure suffers 
a small, regularly periodic variation. The balloon would then expand and 
contract with simple harmonic radial motion. (Such a model would, of 
course, only follow the pressure variations at very low frequencies.)

Let us now consider a problem where enough information is furnished so 
that the complete and exact equation for the function may be written 
down. We shall first assume a periodic form for T, since the derived 
quantities £, p, etc., are known to be periodic in actual sound waves:

<I> = — cos v- (ct — r) + a . (3-16)r a

[Note that we are using here the alternate expression (ct — r) instead of 
(r — ci).] The constants B and a are essentially constants of integration, 
to be determined from the known behavior of the sound source, the pulsing 
sphere. The amplitude and phase of the somewhat abstract function $ at 
the surface of the source, however, are not directly measurable, so we must 
express our equation in terms of the measurable quantities such as £ or £.
. B 2tt . |“27t , x "| . B F27t , \ । 1 /q 1f = - ^7 = - - — sinl— (cl — r) + aj + cos I — (cl - r) + «J. (3-17)

Example. Let us suppose that the pulsing sphere has a radius of 10 cm and that 
the maximum radial velocity of its surface is 10-1 cm-sec-1 while “pulsing” at the 
rate of 500 cycles-sec-1. (The wavelength in air will then be 66.2 cm.) The two 
periodic terms on the right-hand side of Eq. (3-17) are just 90° apart in phase and 
are therefore equivalent to a single periodic term whose amplitude is

(This follows from the discussion in Chapter 1.) The constant B may be found 
from this equation for the velocity amplitude, evaluated at the surface of the 
sphere:

B = 7.25 cm3-sec-1.
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The phase angle a may also be found, if information regarding the initial time con
ditions is available. Since we are interested primarily in the intensity distribution, 
in this problem we shall ignore the matter of phase.

We are now in a position to compute the value of the important “field” param
eters for any point outside the sphere. At the point r = 100 cm, for instance, we 
have

27T

.(100) (66.2).
= 7.25 

r=100

= 6.87 X 10-3 cm-sec-1,
£™lr=100 6.87 X 10~3

= = 2,18 X 10-6 cm- 
r=100 (2tt)(500)

If po = 1.29 X 10-3 gm-cm-3,

= 1.29 X IO"3
(7.25) (2tf) (500)

100 
= 0.291 dyne-cm-2.

Sm (— Om) —- I J
r=100 C \Ot/m r=i00

_ ipw)~|
C2L r Jr =100

= 1 [~(7.25)(27t)(500)~
(3.31 X 104)2 L 100

= 2.08 X IO-7.

3-8 Intensity for spherical waves. A special comment must be made 
regarding intensity in the case of spherical waves. If a point is located at 
a considerable distance from the spherical source, the second term in 
Eq. (3-17) is small compared with the first, since its coefficient falls off as 
1/r2, whereas the first term diminishes as 1/r. Therefore the phase rela
tionship between £ and $ is nearly 90°. From Eq. (3-15) there is also the 
same relationship between s and <3?, so that p (= (Bs) is then in phase with £. 
Since this was precisely the situation in the case of plane waves, the plane 
wave expressions for intensity may also be used for spherical waves, but 
only for distant points. Nearer the source, the second term in Eq. (3-17) 
can not be neglected and no such 90° relationship between £ and $ exists. 
Therefore p and £ are no longer in phase with each other.

This completely alters the intensity picture. In fact, much of the 
instantaneous power delivered by the source to its immediate surroundings 
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returns to the source and is not radiated as real wave energy at all. Only 
at more distant points is the energy flow all radially outward at all instants 
of time. In the next section we shall refer to this rather peculiar state of 
affairs again, in connection with the computation of the total radiated 
power of any small source. The additional techniques introduced in 
Chapter 5 on acoustic radiation impedance will also be helpful in under
standing the above phase relationships and in showing how to compute the 
intensity for near points.

The reader by now is beginning to wonder why a discussion of the field 
of sound around a “pulsing sphere” is of any practical importance, since 
actual sound sources — musical instruments, loudspeakers, etc. — have no 
such simple geometry. The,, answer to this question will be given in the 
next section, where will be explained a simple method whereby the prin
ciples just discussed may be applied to the radiation of sound by many or
dinary sources.

3-9 The “strength” of a source. This concept is primarily reserved for 
those sources whose physical dimensions are small compared with the wave
length. We shall first apply the idea to a small pulsing sphere whose 
radius r0 « X. The expression for the particle velocity, Eq. (3-17), 
evaluated at the surface of this sphere then reduces to the second term only: 

£ = cos (ci - r) + aj (3-18)

We can now define the “strength” of any small source on the surface of 
which, at any instant of time, all points are moving with the same velocity, 
as the product of the surface area times the instantaneous velocity of the surface. 
The maximum value of this strength we shall call B' = (surface area of the 
source) (£m). In the case of the small pulsing sphere under discussion, B' 
becomes

B’ = 4r(ro)21 = (3-19)
ro

Equation (3-16) may then be rewritten in terms of the maximum strength
of the source, B':

Br F~2tt , .<p = cos — (ct — r) + a .
2tt

(3-20)X
Note again that this expression is correct only when the spherical source is 
such that ro is small compared with X.

For our idealized pulsing sphere, the replacement of B by Br has no 
particular advantage. It is for the small irregular source, of nonspherical 
contour, that the concept of the strength of the source is intended. In 
Chapter 4 we shall discuss in some detail the matter of wave diffraction, 
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of so much importance in the radiation and reception of sound. At this 
point we shall simply make use of general ideas, usually presented in even 
an elementary discussion of light — ideas which are equally applicable to 
sound propagation. It will be recalled that a parabolic light reflector, 
whose dimensions are certainly very large compared with the wavelength
of light, and having a small source at 
its focal point, emits a beam of light 
whose wave front is plane and whose 
cross section remains quite constant 
(except for the scattering due to dust 
particles, etc.). However, when we 
reduce the initial cross section of the 
beam (for instance, by placing in its 
path an opaque plate with a very 
small hole), we find light diverging 
from the hole in directions far re
moved from the normal. In fact, 
when the dimensions of the hole 
approach the wavelength of light and 
become even smaller, there is an 
almost hemispherical distribution of 
energy on the far side of the obstruct
ing plate. In sound, the analogy to

Fig. 3-2. Transformation to a spher
ical wave of a plane wave originating 
from an acoustic piston whose diameter 
is small compared with the wavelength.

the hole in the plate is completely realized by a rigid acoustic piston set 
into a rigid wall whose plane coincides with that of the piston face. (The 
piston is assumed to radiate from the front face only.) The energy leaving the 
piston face will either have “beam” properties or will have a hemispherical 
distribution, depending on the ratio of piston diameter to wavelength (see 
Chapter 4). Moreover, if the piston is small compared with the wavelength 
and is radiating without the presence of the wall (or baffle, as it is usually 
called), the energy will have practically spherical distribution properties 
within a short distance of the source. In Fig. 3-2 there is shown qualitatively 
the manner in which the wave front, originating at the source contour, grad
ually transforms, through the spreading effects associated with diffraction, 
into the spherical shape characteristic of a true pulsing sphere.

3-10. Sources equivalent to a pulsing sphere. It is because of the 
effects discussed above that the concept of the “strength” of the source 
is a useful one. The various sound sources illustrated in Fig. 3-3 are all 
equivalent to a true pulsing sphere, if one considers the observable effects 
in the region where the wave front has become, effectively, spherical in
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Trumpet

Organ pipe

Fig. 3-3. Examples of single sources 
which, at low frequencies, approximate 
pulsing spheres. (The curved lines rep
resent the shape of the wave front and 
are not necessarily one wavelength 
apart.)

shape. Even though the actual source 
is not a sphere, its “strength” can be 
computed just as readily in at least a 
number of cases of practical impor
tance. The familiar loudspeaker cone, 
when vibrating at a low frequency, 
moves nearly as a unit and is a close 
approximation to an idealized acoustic 
piston whose face area corresponds to 
the area of the base of the speaker cone. 
The maximum “strength,” B', of such 
a radiating flat disk is 7rr^m; where rd 
is the radius of the disk and is the 
maximum velocity of the disk. A 
hemispherical sound source would be 
considered to have a strength B' = 
2Trr^m, th being the radius of the hemi
sphere. A rectangular plate (radiating 
from one face only) is a source of 
possible ustrength,” ab£m, a and b 
being its two dimensions, etc. In 
every case the particular value of B' is 
simply inserted directly into Eq. (3-20), 
the expression for the velocity potential.

Working with this equation for 3?, 
instead of the form given by Eq. (3-16), 
all the field parameters derivable from 
$ may be evaluated by means of the 
relations demonstrated earlier in the 
chapter. Problems illustrating this 
technique will be found at the end of 
this chapter.

3-11 Limitations on the use of the 
“strength of source” concept. It is 
imperative to keep clearly in mind the 
restrictions which must be placed upon 
the above method of analysis if any 
kind of agreement with experiment is 
to be expected. These restrictions are 
summarized as follows :

1. All source dimensions must be 
small compared with the wavelength 
of the radiated sound.
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2. The vibrating source surface must be moving as a unit if B' is to be 
evaluated simply as area X Approximate rigidity of the vibrating sur
face is often sufficient if approximate results are acceptable.

3. Equation (3-20) should not be used for points which are too close to 
the source. “Too close” means within a distance of several wavelengths.

3-12 Extension of the “strength of source” concept. The restrictions 
listed above are of major importance, and all three are difficult to realize in 
practice. If the wavelength is necessarily long to satisfy condition 1, one 
is also restricted to a consideration of the situation at correspondingly 
large distances from the source in order to satisfy condition 3. For a con
siderable fraction of the audible band of frequencies, in the middle and in 
the higher registers, the surface dimensions of musical instruments, far 
from being small compared with the corresponding wavelength, have a 
magnitude several times that of the wavelength. In addition, the surfaces 
of very few actual sound sources move as a unit, which is necessary in 
order to satisfy condition 2 above. In some of these practical cases, where 
the surface geometry is not too complicated, it is still possible to use the 
“strength of source” concept on a differential scale.

For such cases the surface area of the source is broken up into an infinite 
number of infinitesimal sound-generating surfaces and the differential 
maximum strength of each of the infinitesimal sources may be expressed, 
using the known velocity at the source. The evaluation of the total func
tion $ at some point in the medium around the source is then accomplished 
by summing up the various contributions, d$, arising from the various 
differential sources of typical maximum strength, dB', distributed over the 
finite radiating surface. In Chapter 5 we shall outline the mathematics of 
this process in more detail for the case of an acoustic piston surrounded by 
an infinite plane baffle. Few actual sound sources, however, are susceptible 
to an analysis of this type, because of the mathematical difficulties.

3-13 The double source. So far in our discussion of the production of 
sound waves we have assumed that all contributions to the disturbance 
originate at the surface of the vibrating source with the same phase. This 
assumption has been made for the production of plane waves from an 
acoustic piston and also for the case of spherical waves, whether originating 
from an idealized pulsing sphere or from sources of nonspherical contour 
which may be treated as equivalent to a pulsing sphere. All such sources 
are called “single” sources.

There is a large and important group of actual sound sources which may 
be called “double” sources, in the sense that while one portion of the 
vibrating surface is giving rise to sound waves of one particular phase,
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another part of the surface is originating waves which are exactly 180° out 
of phase with the first set. Far from being an uncommon state of affairs, 
most actual sources of sound are of this double type. A flat plate, sur
rounded by air on all sides and vibrating in a direction transverse to the
plane of its surface, is obviously such a 
as the plate moves to the right, the 
right-hand surface will be starting a 
compression, a phase where p is posi
tive, at the same time that the left
hand surface is producing a rarefaction, 
a phase where p is negative. This 
180° phase relationship will also hold 
for the other parameters in the wave, 
such as s, 5, etc. It will be remem
bered that in discussing radiation from 
an acoustic piston it was assumed that 
sound waves were produced from the 
front face only. In practice this could

double source. As seen in Fig. 3-4,

Fig. 3-4. Action of a “double” source.

only be realized by completely enclosing the back face of the piston, so 
that no radiation could occur. Without such an enclosure, an acoustic 
piston is inevitably a double source.

3-14 Examples of the double source. There are numerous examples 
of the double source. For all the stringed instruments, the transverse 
motion of the vibrating string sets up two out-of-phase disturbances origi
nating on opposite sides of the strings, the two contributions to the radiated 
energy originating in this case at two almost identical positions in space. 
A tuning fork is really a double double source, since each prong sets up its 
own pair of wave disturbances. The cone of a loudspeaker, vibrating 
freely in air, without enclosure or baffle of any kind, is another example 
of the double source.

It is quite reasonable to expect any such double source to be a poor 
radiator of sound, since two wave trains of opposing nature are set up. 
This is easily demonstrated with a tuning fork, a good example of a double 
source. When the fork is held in the hand after being struck, the sound ' 
produced will be nearly inaudible, even though the fork is vibrating vigor
ously. This will be particularly true if the frequency is low, say in the 
neighborhood of several hundred cycles -sec-1. This phenomenon of low 
radiation efficiency is a consequence of the highly localized nature of the 
disturbance of the surrounding fluid, particularly when the two out-of
phase waves are generated at points in space whose distance apart is small 
compared with the wavelength.
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The flow lines around a vibrating plate or bar are shown in Fig. 3-5. If 
the motion back and forth is slow, corresponding to a low frequency and
therefore to a long wavelength, the medium tends to circu
late from the side of the plate or bar where the pressure is 
higher than normal to the other side, where the pressure 
is below normal. As a consequence of this local compen
sation for the pressure differences, very little variation in 
pressure is observed a short distance away. In other 
words, the radiated wave energy is small. The effect may 
be clearly seen if a stick is moved slowly back and forth 
through water. Very few ripples (the evidence of wave 
production) will be visible around the stick.

Motion of bar

3-15 Radiation from a double source as a function of . Fig- 3“5- Flow 
frequency. The effects described above are most pro- &
nounced when the frequency is low. For any such vibrat
ing body acting as a double source, the energy radiated in the form of 
waves increases rapidly with increase of frequency. It is primarily the 
time factor which accounts for this frequency dependence. As the vibra
tion frequency is raised, it becomes increasingly difficult, because of the 
finite velocity of propagation for any pressure disturbance, for the local 
flow to equalize the pressures on the two sides of the plate in so short a 
time interval. As a result, larger variations in pressure occur near each 
component of the double source and two wave trains of increasing amplitude 
and intensity are set up as the frequency is increased.

3-16 Quantitative analysis of the double source. In discussing the 
radiation properties of “single” sources of sound waves it was necessary to 
introduce the concept of the strength of the source, an artifice whose use 
minimizes to some extent the mathematical difficulties associated with the 
source contour. Even so, there are serious restrictions placed upon the 
equations obtained with this approach. The difficulties are even greater 
when a careful analysis of the radiation from a double source is attempted. 
Much of the analytical information in acoustics may be obtained by con
sideration of the behavior of a highly idealized model, even though actual 
sources are but crude approximations to this model. Since the results of 
the present analysis indicate only the general behavior of double sources, 
we shall present only an outline of the mathematics.

Two small pulsing spheres of identical maximum strength B' but of 
opposite “polarity” are imagined close to each other at points Oi and O2 
in Fig. 3-6. For any point a in the surrounding air, the total velocity 
potential cta may be written in terms of the contributions due to the two 
components of the double source, that is,
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B' 
4tt

COS
"271- , -{ci — r2) + a (3-21)

r2

If the distance apart, d, of the two sources is small compared with the dis
tances ri and r2 to the point a, it is easy to show that the total value of <£o 
is, to a close approximation,

= 7^ cos 0 sin (ct — r) + aj, (3-22) 

where r is the mean distance from the point a to 
the mid-point of the line 0i02. It is interesting 
to compare this expression for the function $ 
for a double source with Eq. (3-20), which is for 
a single source. In both cases the maximum 
value of $ (= $m) is a function of Br/r, 
as would be expected. But in the case of Eq. 
(3-22) there are the additional factors cos 0 and 
d/X. At a value of 0 = tt/2, <£o is zero for all 
values of r and Z; at 0 = 0, the coefficient of the

• • • B'd a . . FlG-3-e'
sme expression, i.e., = — cos 0, is a maximum.ZrK ■
It will be remembered that this is the exact polar distribution of electric 
potential around a small electric dipole. (Indeed, the product B'd is quite 
similar to the electric moment of such a dipole.) Along a line perpendicular 
to OiO2 (0 = tt/2) and passing through its mid-point, one would expect 
the acoustic potential to be zero, since it is the locus of points equidistant 
from Oi and O2.

The appearance of the factor d/X is interesting and most significant from 
a practical point of view. As the wavelength is increased (or the frequency 
decreased), all other quantities in Eq. (3-22) remaining fixed, the maximum 
value of $ decreases. A decrease in <bm means a decreased sound intensity 
everywhere around the double source. It is easy to see why 4m varies in 
this way. From the point of view of interference, the larger X is in com
parison to d, the distance between Oi and O2, the less important becomes 
the fact that point a in Fig. 3-6 is farther from O2 than from Oi. As X is 
increased, the relative phase of the two contributions arriving at a ap
proaches that of the dipole components themselves, i.e., 180°, and 4>m, 
therefore, approaches zero. For this reason all double sources, of whatever 
shape and complexity of contour, are very poor radiators of sound at low 
frequencies.
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3-17 Comparison of total power radiated by different types of sources. 
(1) Source of plane waves. Consider a large, flat circular plate, acting as a 
single source (i.e., radiating from one side only), and vibrating so as to give 
rise to a steady stream of plane waves. The total average power radiated 
by the plate will be the product of the power per unit area and the total 
area, S. Making use of Eq. (2-29b), this total power U may be written in 
the form

U = 2>WS = (S')2, (3-23)

where B' is the maximum strength of the source.
(2) Single source of spherical waves. This classification includes an ideal 

pulsing sphere and also the more practical sources whose radiation proper
ties approximate those of a true pulsing sphere (as discussed in Section 
3-10). For a pulsing sphere of radius r0, the total instantaneous power 
associated with the fluctuating component of the pressure p is p£S, where 3 
is the area of the sphere and £ is the instantaneous velocity of its surface. 
Making use of the relationships for spherical waves, we may write for the 
instantaneous power

Ui = viS =

where $ is taken to be of the form specified by Eq. (3-20), for a spherical 
source. To obtain the expression for the average power radiated from the 
surface of the sphere, we multiply Ui by dt, integrate over the time, t = T, 
and divide the result by T. By this mathematical procedure, we obtain

U = 2tt3 ?rrJ!-S‘ = 5 (3-24)c Ac

(3) Ideal double source, or acoustic dipole. The computation in this case 
is based on the rather special assumptions which lead to Eq. (3-22). This 
equation, it will be remembered, is valid only at distances large compared 
with the distance apart, d, of the two components of the dipole. Since the 
same total energy must flow per second across the surface of any sphere 
surrounding the dipole, we might just as well take a sphere of large radius, 
where Eq. (3-22) is valid, since this expression is somewhat simpler than 
the equation for $ at nearer points. An integration process only slightly 
more complicated than that used in the case of a single source yields the 
following expression for the average radiated power:

V = I = 17T3 d2f(B')2, (3-25)
o C6 o C°

where £m, S, and B' rcicr to either component of the dipole.
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An inspection of Eqs. (3-23), (3-24), and (3-25) will show the radiated 
power U, in the three cases, to be a function of different powers of /S and 
of f. For plane waves, U a S, while for the single or double source of 
spherical waves, U S2. This shows the special importance, in the case of 
spherical waves, of using sources of large area if one is to achieve a reason
able radiation efficiency. The frequency factor f is raised to the second 
power for plane waves. In the case of the single source of spherical waves, 
however, U °c while for a double source, U °c fc>. The factor f2 is 
to be expected because of the fundamental energy considerations asso
ciated with simple harmonic motion. The dependence of U upon a higher 
power of the frequency, when the energy flow possesses spherical divergence, 
will appear more reasonable when we have developed the notion of u acous
tic radiation impedance”; for the present we shall simply note the fact. 
For the double source, however, we can say here that this extreme sensitivity 
of U to frequency changes is a direct consequence of the “local flow” that 
tends to accompany the vibration of any double source, a process which 
always reduces the radiated wave energy, especially at low frequencies.

3-18 Practical double sources. The principle of the baffle. The model
of a double source that we have set up, i.e., a pair of small spheres “pulsing”
periodically with a phase difference of 180°, is, of course, never encountered
in practice. A vibrating rigid circular plate, whose radius r0 is small com
pared with the wavelength in the emitted sound, will radiate approximately 
as would a pair of spheres, where the “strength” of each of the equivalent 
spheres is equal to 7r7o£. Since the distance apart of the dipole components
is in this case related to the thickness of the plate, the 
radiated energy will be quite small (since d is small in 
Eq. (3-25)). This is essentially the situation when a 
cone speaker is vibrating at a low frequency, with no 
surrounding box or “baffle” plate of any kind. Under 
these conditions, where X is much greater than r0, very 
little audible sound is detected a short distance away.

Most actual double sources involve, to a greater 
or less degree, the principle of the baffle. In Fig. 3-7 
a rigid plate has been inserted between the two com
ponents of a double source, as shown. It is quite 
obvious that from a qualitative point of view such a 
baffle will seriously interfere with the local flow back 
and forth in the immediate vicinity of the dipole com

Fig. 3-7. Action
of the baffle.

ponents. The length of the path over which such a 
flow might take place is shown in the figure to be
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approximately that of the line abc. If each of the source components is 
vibrating at a rapid rate, the flow will only partially equalize the pressure 
differences which tend to be set up by Oi and O2- As a result, wave gener
ation and propagation set in and the general efficiency of energy radiation 
is increased.

The geometry of many musical instruments supplies a sort of self-baffling 
action. In Chapter 7 we shall have more to say about the physics of 
the violin, but to illustrate the present point it can be said that most of the 
actual sound energy coming from a violin is not radiated directly from the 
strings, but from the larger areas of the wooden body of the instrument, 
which are set into sympathetic vibration. If one side of the instrument is 
considered to be a thin flat plate (it is not truly flat, of course), the violin 
can be pictured as a collection of small acoustic dipoles, somewhat as in 
Fig. 3-8, where the + and — signs are used to represent the 180° phase 
relationship. As the plate vibrates transversely to the plane of its surfaces, 
the plate as a whole acts a good deal like the baffle plate of Fig. 3-7 for each 
one of the small acoustic dipoles. Since the radiation of the whole plate 
is the sum effect of the radiation of its separate dipoles, any of the larger 
areas of the instrument then becomes a reasonably efficient radiator.

In a later chapter we shall return to the subject of tlib baffle in a discus
sion of the general design features of wide-range loudspeaker systems. In 
addition, some mention will be made of a speaker enclosure, sometimes 
known as a “phase inverter.” For the lower frequencies, such an enclosure 
effectively transforms the speaker cone, intrinsically a double source, into 
what is in effect a single source. This is brought about by coupling the 
rear side of the speaker cone to a resonator, the radiation from which is 
virtually in phase with the disturbance originating from the front surface 
of the cone. In this way effective radiation may be obtained down to the 
very lowest audible frequencies.

+ + + H- + H- + +

Fig. 3-8. A vibrating plate considered as an array of acoustic dipoles.

PROBLEMS
1. A pulsing sphere has a radius of 1.0 

mm and is pulsing in air at a frequency of 
100 cycles-sec-1. The maximum radial 
velocity of its surface is 0.1 cm-sec-1. 
(a) Find the value of $ as a function of r. 
At the position r = 30 meters, find (b) the 

maximum value of (c) the maximum 
value of £, and (d) the maximum value 
of p.

2. Assuming that the wave front has 
become virtually plane at the position 
r = 30 meters in problem 1, compute the 
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energy density at that point and also the 
intensity in cgs units.

3. A large pulsing sphere has a radius 
of 1 meter and is pulsing in air at the ultra
sonic rate of 35,000 cycles-sec-1. The 
maximum radial velocity of its surface is 
0.1 cm-sec-1. (a) Find the expression for 
the maximum value of $ as a function of r. 
At the position r = 2.0 meters (measured 
from the center of the pulsing sphere), find 
(b) the maximum value of CI5, (c) the maxi
mum value of £, and (d) the maximum 
value of p.

4. A pulsing sphere has a radius of 
1.0 mm and is pulsing in air at a frequency 
of 100 cycles-sec-1. The amplitude of 
motion of the surface of the sphere is 0.01 
cm. (a) Find the maximum value of 
as a function of r. At the position r = 30 
meters, find (b) the maximum value of <F, 
and (c) the maximum value of p.

5. In which of the following cases 
might it be correct to apply the concept of 
the strength of the source in order to make 
use of the spherical wave relations? (a) A 
soprano singing a note of high frequency, 
(b) A bass singing a note of very low 
frequency, (c) A loudspeaker cone of 
diameter 6 inches, radiating from onO side 
only without a baffle and vibrating at a 
frequency of 50 cycles-sec-1. (d) The ra
diation from the mouth of a large parabolic 
reflector at the focus of which is a small 
high frequency whistle. (Consider the 
mouth of the reflector as the source.)

6. Name as many musical instruments 
as you can, classifying each as predomi
nantly a single or a double source.

7. An acoustic piston is radiating into 
air from the front face only. It has a 
radius of 1.0 cm and is oscillating at a 
frequency of 200 cycles-sec-1. No baffle 
plate is used. The amplitude of motion of 
the piston face is 0.01 cm. (a) Calculate 
the strength of the source, (b) Find the 
maximum value of $ at a distance 20 
m from the center of the piston face, 
(c) Compute the maximum value of p at 
the same point.

8. An acoustic piston of radius R, 
moving with a velocity x and radiating 
from the front face only, is surrounded by 
an infinite plane baffle lying in the plane 
of the piston face. The piston may be 
considered to have a maximum strength 
2B', where B' is irR2(x)m. Explain why 
this is correct.

9. Making use of the statement in 
problem 8, compute the answers to parts 
(a), (b), and (c) of problem 7, if the piston 
face is surrounded by an infinite plane 
baffle.

10. A small pair of pulsing spheres con
stitutes an acoustic dipole. Assume a 
fixed value for the polar distance r such 
that Eq. (3-22) is valid. What is the 
effect upon the rms pressure at such a 
point (the polar angle 6 also being fixed) 
of (a) doubling the frequency, (b) doubling 
the amplitude of motion of each sphere, 
(c) doubling the distance separating the 
dipole components?

11. (a) Derive an expression for the 
dilatation 3 for spherical waves in terms of 
£ and r. (b) Show that for large values 
of r the expression reduces to d^/dr. 
(Compare with the plane wave value, 
d^/dx.)



CHAPTER 4

INTERFERENCE PATTERNS. DIFFRACTION

4-1 Definition of interference for wave motion. Broadly speaking, 
interference may be said to occur for waves whenever two or more motions 
are simultaneously impressed upon a particle or a single set of particles of 
the medium. In this sense, any complex wave consisting of two or more 
simple harmonic components, of the same or of different frequencies, might 
be described as an interference phenomenon. As the term is usually 
applied, however, interference refers primarily to combination effects 
associated with waves of the same frequency originating from different 
sources or from different areas of the same source. We have already con
sidered one such effect in the phenomenon of beats, Chapter 1. The sub
ject of stationary waves, which will be discussed in Chapter 7, is a most 
important example of wave interference. Throughout the remainder of 
this book we shall have frequent occasion to refer to interference in con
nection with almost every aspect of acoustics.

4-2 Diffraction. In this chapter we shall be concerned primarily with 
the interference effects classified under the subject of diffraction. The 
particular interference patterns set up in the medium whenever waves 
originate from sources whose dimensions are of the same order of magnitude 
as the wavelength, or whenever waves stream past obstructions of any sort, 
are, in general, called diffraction patterns.

4-3 Diffraction in acoustics and in light. The theory of wave inter
ference, and of diffraction in particular, may be discussed with perfect 
generality for any type of wave — longitudinal or transverse, mechanical or 
electromagnetic. A comparison of the interference effects in acoustics 
with those occurring in light is therefore logical. The subject of diffrac
tion is of much greater practical importance in acoustics than it is in light. 
The student of elementary physics may remember that particular care was 
needed to demonstrate even the existence of diffraction in light. Pinholes, 
slits, diffraction gratings — these are part of the paraphernalia of the 
scientist and the laboratory, not of everyday living and experience. In 
acoustics no such special equipment is required.

When a listener is directly in front of a radio loudspeaker, the music 
sounds “brilliant,” and speech is crisp and easy to understand. At posi
tions off to one side, both music and speech are somewhat muffled and are 
lacking in the important higher frequencies. This is an effect associated 
largely with the distribution of the sound diffraction pattern (although 
reflection by the walls of the room also plays a part). Similarly, the phe-- 
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nomenon of diffraction makes it possible for a shout to be heard by a person 
around the corner, even though he is out of the direct line of sight. Many 
other examples might be cited to illustrate the importance of diffraction in 
acoustics.

4-4 Importance of the ratio of wavelength to dimension. The wave
lengths for sound waves range from about one inch at the high frequency 
end of the audible spectrum to approximately 20 feet at the low frequency 
end. This range is of the same order of magnitude as the dimensions of 
typical sound sources, sound receivers, doorway openings, rooms, the 
human ear and mouth, etc. — in general, as the dimensions of many com
mon objects, animate and inanimate, in the field of sound. This is the 
primary reason why interference effects, particularly of the diffraction 
type, are so important in acoustics. In light, the wavelengths are all 
smaller than 10~4 cm. This is a number very small indeed compared with 
the dimensions of ordinary light sources, receivers, mirrors, lenses, the eye, 
etc., and it is this relationship that makes interference and diffraction 
effects of minor importance in the ordinary behavior of light. For waves in 
general, as we shall see presently, the primary factor to consider is not the 
wavelength alone or the dimensions of the source or obstruction alone, but 
the ratio of wavelength to dimension.

As an introduction to the general problems of diffraction, we shall con
sider the single slit pattern, usually discussed in books on optics. The 
simplicity of its geometry and the qualitative similarity between the 
diffraction pattern of the single slit and that of many practical sources of 
sound waves make the analysis well worth while.

4-5 The single slit pattern. Simplifying assumptions. Figure 4-1
shows, in section, a thin rigid plate, 
opaque to sound waves except for 
an opening in the nature of a 
narrow slit whose long dimension is 
perpendicular to the paper and 
whose width, measured in the plane 
of the paper, is b. A plane wave of 
wavelength X, moving up from the 
left, is supposed to strike the plate. 
Only that portion of the disturbance 
in the neighborhood of the slit will 
pass through; the rest will be cut 
off by the plate. The problem is 
to investigate the distribution of 
energy at the right of the plate.

Fig. 4-1.
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If the slit is very long, we may assume that in the region at the right of 
the plate conditions are uniform along any one line perpendicular to the 
plane of the paper (and hence parallel to the long dimension of the slit). 
Whatever deviations we may discover in uniform energy distribution will 
occur with variations of coordinates in the plane of the paper only. This 
means that the energy will have some kind of cylindrical rather than 
spherical divergence. As a result, we may, in effect, reduce the problem 
from that of a space distribution to one involving two dimensions only, in 
the plane of the paper. What is discovered to be true in this plane will be 
true for any such plane perpendicular to a long narrow slit. (Further 
reference to these statements will be made later in the chapter.)

One more assumption must be clearly stated before we proceed with the 
analysis. We shall consider the intensity only at points to the right of the 
plate whose distance from the slit is large compared with the total width of 
the slit. This means,that a line drawn from such a point to the top edge 
of the slit is essentially parallel to the line drawn from the same point to the 
bottom of the slit. As a further simplification, we shall restrict all such 
points to the arc of a circle (Fig. 4-1) whose center of curvature is the 
center of the slit. The significance of this assumption will appear presently.

4-6 Application of Huygens’ Principle. According to the well-known 
construction of Huygens, so useful in optics and of equal validity for the 
longitudinal waves of acoustics, the propagation of a wave disturbance may 
be studied by considering every point on a given wave front to be a separate 
small source of energy. The portion of the wave front that passes through 
the slit in Fig. 4-1 is a narrow rectangle in shape. Imagine this area to be 
subdivided into a large number of still narrower rectangles whose length, 
in each case, is the long dimension of the slit and whose width is a small 
fraction of the slit width. Each of these subdivisions is to be considered 
as a separate source of the Huygens type.

In Fig. 4-1 point a is located on a line making an angle /? with the normal 
to the plate. The distance from this point to the various area elements of 
the slit opening varies from element to element, being the least for the 
element next to the lower edge of the slit, at m, and greatest for the element 
at the extreme top, at m'. Assuming the width of any one area element to 
be small compared with the wavelength, we may consider its effect at a to 
be essentially that due to a very small source of the single type. The 
phase of the acoustic pressure p produced at any one instant in the air at a, 
due to this particular area element, will depend both on the particular 
phase occurring at this time at the slit and on the distance from the 
area element to the point. If, at this same instant of time, we compare
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the phase of what arrives from the lowest area element with what is contrib
uted by elements higher up, there is plainly a progressive phase lag, from 
the bottom to the top. This phase relationship will always exist, regardless 
of changes in the wave disturbance occurring at the slit.

4-7 Vector method of determining the acoustic pressure at point a. 
In Fig. 4-2a, a series of small vectors of equal length are laid off end to end, 
each one representing the maximum pressure contribution, Apm, at point a 
due to each of the area elements of the slit opening. The first vector, at 
the bottom, represents the effect due to the element next to the lower slit 
edge. Each successive vector above the first is rotated by the same small 
angle, to represent the progressive phase shift at point a due to the greater 
and greater distance of travel. The total pressure effect at a may be found 
(using the methods discussed in Chapter 1) by drawing in the vector pm, 
which represents the vector sum of the separate contributions. The 
angle y is the phase lag between the contribution from the topmost area 
element as compared with that from the first and lowest one, and is an 
angle which will enter in an important way into the analysis of this problem. 
The angle 6 is the phase lag between the resultant vector pm and the first 
small contribution. (Note that this use of vectors to indicate magnitudes 
and phases does not imply any particular spatial direction on the part of p. 
Acoustic pressure is a scalar.) i 

It should be quite obvious that 
the correct way to sum up the various 
contributions from different parts of 
the slit area will be to let the area 
elements shrink in width until they 
become true differentials. The vector 
polygon of Fig. 4-2a will then become 
an arc of a circle (Fig. 4-3), where the 
resultant pressure pm constitutes the 
subtending chord. The length of the 
arc, labeled (pw)o in the diagram, is 
the graphical equivalent of adding 
the separate small contributions, 
assuming no phase differences among 
them (Fig. 4-2b).

At the start of this analysis one of 
the simplifying assumptions was that 
the typical point, a, lies upon a circle 
whose center coincides with the center

I- M .......... -I

PnrP| •••

(b) 
Fig. 4-2.
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of the slit. The very interference effects which we are discussing depend, 
of course, on slight variations in the distances between point a and the 
different area elements of the slit, thus producing phase effects. If, how
ever, as was assumed, the small dimension of the slit is much less than the 
radius of the circle, these small variations in distance will constitute a 
negligible fractional change in the total distance from point a to any point 
on the slit area. As a result, we may assume that for any point on the 
circular arc the magnitude of the maximum acoustic pressure Apm remains 
essentially constant, even though the phase of the instantaneous pressure 
may vary. Due to the cylindrical divergence of the wave, one would 
expect, for any locus of points other than a circular arc, some kind of de
pendence of upon the distance from the slit (not the same law as for 
spherical divergence, however).

By holding the distance virtually constant, we will avoid this additional 
complication. Our primary investigation will be into the effect of varying 
the angle (3, in Fig. 4-1.

4-8 Essential geometry and equations. Consider the geometry of
Fig. 4-3. The following two equations should be self-evident:

(Pm)o = 2r0, 
and (4-1)

pm = 2r sin 0, 

where (pm)o is the total length of the arc, which 
in turn signifies the sum of all the small con
tributions, assuming no phase differences. This 
sum, (p„i)o, is in actuality the total value of pm 
to be observed at the point a0, in the direction 
normal to the plate, where the angle is zero 
(Fig. 4-1). For a point along this direction, 
all distances to the various area elements are 
virtually the same, and therefore the arc of the 
vector polygon becomes a straight line.

Eliminating r from the two equations (4-1), we may write

z x sin 0Pm — (PmjQ g * (4-2)

This is the fundamental equation which describes the diffraction pattern 
to the right of the plate. It relates the total observed pressure pm for any 
point a to the value which obtains at the central point ao, through the 
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parameter 0, which appears in the vector diagram. The angle 0 is not 
directly measurable, but it is simply related to the polar angle in Fig. 4-1. 
From Fig. 4-3,

T = 20, (4-3)

and from Fig. 4-1 the angle y is
7 = 7 2tt, (4-4)

where d is the amount by which the path am' exceeds the path am and X 
is the wavelength. In addition, from Fig. 4-1,

sin 0 = (4-5)

Therefore, combining Eqs. (4-3), (4-4), and (4-5), we have

sin 0 = - 0. (4-6)
7T 0

Equations (4-2) and (4-6) are the important ones for the determination 
of the complete nature of the slit pattern. Instead of introducing (4-6) 
into (4-2) to eliminate the parameter 0, it is more convenient to keep both 
equations, using (4-2) as a sort of “universal” relation, independent of 
X or d, and making use of (4-6) whenever we wish to describe the actual 
pattern when confronted with a particular value of the wavelength and 
the slit width.

4-9 The variation of pm with 0. The graph of pm vs 0 (the broken 
line of Fig. 4-4) is a curve having alternate algebraic maxima and minima 
above and below the line pm = 0. When 0 = 0, pm = (pjo. Between

2
s----- (pj arbitrarily taken=I.O
\n' 0

Fig. 4-4. The quantities pm and (pm)2 plotted as a function of 0, from the equation 
pm = (pm)o sin 0/0. ■
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each successive maximum and its adjacent algebraic minimum lies a 
point where pm is zero. These latter points occur when 6 = mr, where 
n is any integer. To find the values of 3 for the maximum and mini
mum values of pm, it is necessary to find dpm/d3 and set this equal to 
zero. The necessary condition is found to be that 6 = tan 3. The first 
few roots of this equation are 3 = 0, 1.43tt, 2.46tt, 3.47tt, . . ., which ap
proximate, after the first root, to ^tt, -Jtt, etc. Whether a root gives a 
maximum or a minimum for pm is of no importance as far as sound intensity 
is concerned since, in general, the intensity goes up as the square of the 
pressure and is therefore always positive whether pm is positive or negative. 
The intensity maxima are therefore approximately halfway between the 
zero or null points.

We may assume that the intensity I is proportional to (pj2. The graph 
of (p™)2 vs 6 is given in Fig. 4-4 for the first few intensity maxima symmetri
cally located on either side of the central maximum, which is by far the 
greatest. The heights of the first few secondary maxima, expressed as 
fractions of the central intensity maximum, are given in Table 4-1.

TABLE 4-1

Central maximum
1st subsidiary maximum 
2nd subsidiary maximum 
3rd subsidiary maximum 
4th subsidiary maximum

Intensity
1.0 
0.047 
0.016 
0.0083
0.0050

4-10 The variation of (pm)2 with the polar angle p. To translate the graph 
of Fig. 4-4 into its equivalent in terms of the angle P, it is necessary only 
to make use of Eq. (4-6), relating p to 0. For a given value of X and b the 
coefficient on the right of (4-6) is a constant, so that sin P 3. The plot 
of (pTO)2 vs P will look a good deal like Fig. 4-4, since P will increase with 3, 
although not linearly. In general, however, the spread or compression of 
the pattern along the P axis will depend markedly on the ratio of X to b. 
Any given feature of the curve of Fig. 4-4 will occur at large values of p 
when \/b is a large number and, conversely, at small values of P when 
X/5 is a small number.

4-11 Representation of intensity distribution on a polar graph. A con
venient way to picture the spread of wave energy from a slit or from an 
opening of any other shape is to make use of a polar graph. Figure 4-5 
is such a polar plot for a slit in the case where X is one-half of b, the slit 
width. In this diagram the radius vector, drawn from the mean position
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Fig. 4-5. Polar distribution pattern for 
a slit width b equal to twice the wavelength.

of the slit to some point on the 
curve, has a length proportional to the 
observed intensity in the direction 3*  
For the vector drawn, the intensity is 
about f that observed at the peak of 
the central maximum. A little study 
will show that this type of plot may 
be used to indicate all the features 
of a cartesian plot of intensity vs (3, 
and at the same time it gives a direct 
spatial picture of the distribution. In 
general, there will be a series of “lobes” 
of decreasing prominence at increasing 
distances from the central lobe (or 
maximum). Between lobes there is a 
direction along which the radius vector 
has zero length, corresponding to the 
null points in Fig. 4-4.

In Fig. 4-6 three polar distribution 
graphs for different values of the im
portant ratio \/b have been drawn to 
approximate shape. In Fig. 4-6a, X is 
very large compared with b. An in-

(c)
Fig. 4-6. Polar distribution of sound 

intensity for a slit width b (a) much 
less than X, (b) equal to X, (c) much 
greater than X.

spection of Eq. (4-6), relating (3 to 0, will show that the right-hand side can
be no greater than 1, since the largest possible value for (3 is obviously 
±tt/2. If the ratio \/b is large, sin (3 will become equal to unity with a 
very small value of 6. This means that for any value of (3 between ±tt/2
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we shall be dealing with practically constant ordinates in Fig. 4-4, ranging 
from some such point as a to point a'. The polar intensity graph will 
therefore be almost a circle, as shown. For the distribution in the plane 
of the paper, this behavior is essentially that of a point source.

If, on the other hand, X is very small compared with b, so that the ratio 
X/b is a very small number, there will be quite a different pattern. In 
this case will increase very slowly with an increase in 0 and the pattern 
will be highly compressed around the normal direction. In this kind of 
distribution (see Fig. 4-6c) there is virtually a “beam” of waves leaving the 
slit opening, with practically no energy spread away from the forward 
direction. This is the usual situation for light, where the ratio X/b is 
almost always a very small number.

Between the two extremes just discussed, when X is of the same order 
of magnitude as b, the polar diffraction pattern will be of the type shown 
in Fig. 4-5. If X = b, there will be just the one central lobe, since the first 
null point will occur at exactly = tt/2, as shown in Fig. 4-6b.

4-12 General significance of the diffraction pattern for a single slit. 
The detailed analysis we have just made is admittedly an approximate one. 
The assumptions are essentially those characteristic of Fraunhofer diffrac
tion in optics, where the rays leaving different parts of the slit are taken to be 
parallel. In optics, the use of a collecting lens to the right of the plate 
makes it possible to bring such a bundle of parallel rays to a focus at a 
position quite near the plate. Lenses are rarely used in acoustics, so 
we must consider the above results to be valid only for distant points. 
The general conclusions reached are nevertheless useful in predicting the 
type of radiation to be expected from a slit and from openings of other 
shapes as well. The same ratio of wavelength to dimension is the signifi
cant factor for any type of opening.

4-13 Openings of other shapes. The short rectangle or the square. 
If the long dimension of the slit is reduced so that it becomes comparable 
to the wavelength in the disturbance, one finds, as would be expected, a 
diffraction pattern in the horizontal plane (the plane including the long 
dimension of the slit) as well as in the vertical plane. The spread of the 
maximum and minimum positions, however, depends upon fundamentally 
the same relations as discussed above. Patterns occur in both planes, 
with considerable modification of each because of their interdependence. 
With a rectangle having equal sides (a square), the patterns along the verti
cal and along the horizontal are identical, as one would expect.

In this connection, a further comment may be made on the assumptions 
in the single slit analysis. As will be remembered, the slit was taken to
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be very long and from the preceding paragraph it should be clear that in the 
plane including a rectangular dimension long compared with the wavelength 

I the diffraction pattern will be beamlike, with practically uniform intensities 
over the cross section of the beam. Hence the assumption that there is no 
intensity variation along a line parallel to the long dimension of the slit 
was justified.

The exact description of the intensity distribution in all possible direc- 
Itions relative to the plane of a plate with a rectangular aperture is hard to 

give, because of geometrical difficulties in the analysis. Fortunately, in 
acoustics the diffraction from a circular aperture is of more practical im
portance than from apertures of any other shape, and while the mathe
matics is too involved to give here, the results are simple enough to sum
marize and discuss.

4-14 Diffraction pattern for a circular aperture. The intensity distribu
tion, in this case, will have circular symmetry around a line perpendicular 
to the plane of the aperture at its center. Airy, Verdet, and others have 
computed the intensity for a sinusoidal wave as a function of the angle of 
deviation from the normal to the plane of the aperture. Due to the 
symmetry in the problem, coaxial regions of maximum intensity alternate 
with regions of minimum intensity. The distribution may be visualized by 
imagining Fig. 4-5 to be rotated around its axis of symmetry. The space 
surface so produced can then be considered as an intensity plot for different 
directions. Figure 4-7 represents such a surface.

The directions of zero sound intensity (corresponding to the zero inten
sity directions for the slit) are found to be given by an equation somewhat 
similar to Eq. (4-2) for the slit. It will be recalled that in the case of the 
slit the intensity is zero when 6 is equal to nr, where n is any integer. The 
corresponding values of the angle (3 are given by

sin jS = n (4-7)

For the circular hole, Eq. (4-7) may be written

sin (3 = n' (4-8)

where D is the diameter of the hole and where nr, instead of being an integer, 
as for the slit, is now a number which must be computed for each successive 
point of zero intensity. The values of n' for the first three null points are 
1.22, 2.23, and 3.24. The secondary intensity maxima at the angles be
tween those for the null points are smaller in relation to the central maxi-
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Fig. 4-7. Space diagram of intensity distribution in front of a plate with a circular 
hole. A vector drawn from the center of the hole to any point on the surface has a 
length proportional to the sound intensity in that direction, as observed at a large fixed 
distance from the hole.

mum than in the case of the slit pattern. Table 4-2 lists the relative values 
for the first few such maxima.

TABLE 4-2

Relative 
intensity

Intensity in db 
referred to 

central maximum

Central maximum 1.0 0.0
1st subsidiary maximum 0.017 -17.7
2nd subsidiary maximum 0.0041 -23.9
3rd subsidiary maximum 0.0016 -28.0
4th subsidiary maximum 0.00078 -31.1

Since most of the energy is radiated within the boundaries of the central 
lobe, we may say, making use of Eq. (4-8), that most of the energy lies 
within a cone, half of whose plane vertex angle is given by sin /3 = 1.22X/D.
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Conclusions regarding the behavior of the diffraction pattern with varia
tions in wavelength and in hole size are quite similar to those for the slit 
pattern. When the hole is very small compared with X, the intensity dis
tribution to the right of the plate will be very nearly spherical. On the 
other hand, when the diameter of the aperture is very large compared 
with X, the energy will proceed as a narrow beam whose cross-sectional 
area approaches that of the hole. When the hole diameter is approxi
mately twice the wavelength, there will be a distribution such as is 
represented by Fig. 4-7.

4-15 Practical examples of the diffraction pattern for a circular aper
ture. In acoustics the usual aim is to spread or diffuse the sound over as 
large a solid angle as possible. A speaker standing in front of a large 
audience desires to be heard clearly by everyone, those sitting at the sides 
as well as persons directly in front of the speaker. The various observed 
relative intensities of the instruments of an orchestra should, ideally, be 
independent of the particular position of the listener with respect to each 
of the instruments. In short, the diffraction pattern of the speaker, the 
singer, or the musical instrument should be as broad as possible. The 
shapes of most sound-emitting sources are approximately circular; some, 
like the instruments of the horn family, the drum, and the radio loudspeaker 
cone, are exactly circular. A glance at Table 4-2 will show that for the 
circular hole diffraction pattern practically all of the energy is concentrated 
in the central maximum. It is therefore necessary, for wide angle radia
tion, that the first null point (0 = -tt) correspond to a value of /? close to t/2. 
This implies, from Eq. (4-8), that the effective diameter of such a circular 
source can be no greater than 1.22X. Considering an average source to 
have a radiating area whose diameter is of the order of 6 inches, this means 
that there will be good polar spread for frequencies of say 2000 cycles and 
lower, but for higher frequencies the radiation pattern will take on more 
and more of a directional nature.

Examples of such diffraction effects are numerous and commonplace. 
From a position behind or well to one side of a speaker, speech may be 
difficult to understand because the higher frequencies, so essential to speech 
comprehension, are propagated forward in a beamlike manner. The lower 
frequencies, which incidentally carry a good part of the energy in speech, 
diffract readily to the side and in the case of the very lowest frequencies, 
where the mouth and head dimensions are small compared with the wave
length, low frequencies will even diffract to the rear. Similarly, the higher 
frequencies are always more apparent in the sound from a radio loudspeaker 
when one is sitting directly in front of the cone — in the “beam.” The 
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low frequencies, on the other hand, are radiated with practically spherical 
divergence and are heard equally well from any position.

For reasons of efficiency, it is desirable in some applications to confine 
the sound radiation to a relatively small solid angle. It is highly wasteful 
of acoustical power to spread it in all directions when the listeners are con
centrated within one special area, as for instance at public meetings, out
door musical performances, and the like. The spread due to diffraction 
may be minimized by several means. If no electrical equipment is to be 
used, large curved reflectors may be erected behind the platform, to return 
the backward radiation to the audience. Factors associated with diffrac
tion are also involved and since such a device is effectively a sound source 
of large area, it will confine the reflected energy to a beam in the desired 
direction. When electrical reproducing equipment is employed it is cus
tomary to use horns, which are coupled to the loudspeaker emits. Such 
horns should have mouths of large size.

4-16 Multiple slits and openings. Books on geometrical optics com
monly consider the two-slit diffraction pattern, the multiple-slit problem 
(i.e., the diffraction grating), and also the case of two adjacent circular 
apertures. This latter consideration is essential to the understanding of 
optical resolving power, so important in the design of optical instruments. 
For certain special aspects of applied acoustics these cases are of some im
portance and full discussion of them will be found in any good book on 
optics. In Chapter 11 we shall have occasion to refer to the acoustic 
analog of the problem of two adjacent apertures in connection with the use 
of dual speakers in wide-range reproducing systems. Such speakers are 
often so placed that their diffraction patterns overlap, a matter of some 
interest in the total radiation distribution.

We might mention at this point that an acoustic diffraction grating may 
be constructed so as to operate on exactly the same principle as the optical 
grating. In the acoustic grating, the opaque regions may be wooden 
slats separated by air spaces of an inch or so. A plane sound wave, 
“sprayed” against such an array, may be analyzed for its frequency com
ponents just as light is analyzed with an optical grating. The resolution 
will be rather poor, however, since it is difficult to use many slits, due to 
considerations of size (resolution improves with the number of slits).

4-17 Diffraction effects around the edges of obstructions. In optics 
we are accustomed to the sharp geometrical shadows cast by obstructions 
opaque to light. The diffraction patterns that occur in the neighborhood 
of the shadow boundary are confined to a very small angular region and are 
ordinarily unnoticed by the eye. In acoustics the same general phenomenon 
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will occur, but because of the much longer wavelength the angular spread 
of the diffraction pattern may be quite large and the effects are therefore 
of much greater importance. As will be seen, sound waves of some fre
quencies cast acoustical “shadows” nearly as sharp as the optical ones. 
For other frequencies, however, such shadows are almost nonexistent 
because of energy which flows around the edge of the obstruction, well into 
the so-called shadow region.

An analysis (due to Fresnel) will follow in the next section. Like the 
Fraunhofer diffraction analysis for the single slit, it is somewhat of an 
approximation, but it will yield useful information nevertheless. The 
results may be used for points somewhat nearer the obstruction than was 
possible for the slit, since in Fresnel’s construction lines drawn from the ex
posed wave front to the point of observation are not assumed to be parallel.

4-18 Fresnel laminar zones. In Fig. 4-8 the line bbr lies parallel to the 
wave front of a plane wave, advancing from left to right. Consider the 
excess pressure pF existing in a layer of air located along this line, given by 
the equation

Pf = (pjr cos 2ir - t, (4-9) A
where (pm) f is the maximum value of 
pF- The problem will be to compute 
the total effect at a more distant 
point a, due to all portions of the 
wave front at bbf, the latter to be 
considered as made up of an infinite 
number of infinitesimal areas in the 
nature of thin laminar strips running 
perpendicular to the plane of the 
paper. The effect at a, due to the
motion of a strip located at a height s above point 0, and of width ds, will 
be proportional to the maximum value of the pressure (pn)r at bb' and 
also to the width ds of the strip being considered. The contribution to 
the instantaneous acoustic pressure at a, in terms of the wave equation,
may then be written

2tt

dpa « (Pm) F COS — (ct — T) ds, 
A

(4-10)

r being the distance between the infinitesimal strip and the point. (It 
should be noted, from the form of this expression, that although variations 
in the distance r are sufficient to affect the phase of arrival at point a, they 
are not so great as to seriously affect the maximum value of the pressure 
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due to any one strip, and consequently may be neglected. Otherwise there 
would have to be a factor in the nature of an inverse function of r in the 
proportionality. We are also taking no account of the so-called “obliq
uity” factor.*)

* See Jenkins and White, Fundamentals of Optics, 1950, p. 348.

If r0 is the perpendicular distance from the point to the plane of the wave 
front, we see from the figure that

r = (r§ + s2)1.
Expanding the right-hand side by the binomial theorem and retaining only 
the first two terms (an approximation, therefore), we obtain

, s2r = r0 + 7,— 2ro
If this relation is introduced into Eq. (4-10), we have

s2 \“l
’'» + 2^.P

which may be rewritten
dpa oc (pm)F COS {ct - To) - ds.

J ( \ 2?Tdpa oc (pm)FCOS —
A

(4-11)

(4-12)

If we now expand Eq. (4-12) as the cosine of the difference between two 
angles, we have

dpa (.Pm) r I cos {ct — ro) cos + sin {ct — r0) sin ds.
A Ar o A Ar o J

It is this expression for dpa that must be integrated with respect to s over 
the exposed portion of the wave front, if we are to compute the instantane
ous total pressure effect at point a:

( x r 2tt , s \pm)F cos y {ct - r0)
7TS2

COS r— as Xr0
। • 2tt , x-|- sin — {ct — r0) A (4-13)

At this point in the analysis a substitution is convenient. Let

and /
7TS2 ,

cos ;— ds = Jy cos a Xro

/. TVS2 j .sin;— ds = N sin a.\r0 .

(4-14)

If the above relations are introduced into Eq. (4-13), the latter may be 
rewritten in the form
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Pa^N^p^F COS
'27T

(ct (4-15)

In our examination of diffraction patterns of the “edge” type, we shall be 
primarily concerned with the effect of cutting out certain portions of the 
wave front at bb' in Fig. 4-8. This means that we shall be interested in 
the integrals appearing in Eqs. (4-14), since they are directly related to the 
quantity N in Eq. (4-15). The maximum value of pa is clearly proportional 
to N. Squaring both sides of Eqs. (4-14) and adding, we find that

JV2 = (/ooss<fe)2 + (/8ins<te)2, (4-16)

Again assuming the intensity to be proportional to the square of the 
maximum pressure pm, the intensity at point a will be proportional to N2. 
The integrals on the right-hand side of Eq. (4-16) enable us to compute N2, 
once the proper limits for s are specified, for any particular exposure of the 
wave front.

4-19 The Fresnel integrals. The spiral of Cornu. In order to put the 
integrals in Eq. (4-16) in a form having more general usefulness, it is usual 
to change the variable from s to v, where

(4-17)
Equation (4-16) then becomes

AT2 ^o[7 f A ¥ I / f J ¥1 1Cx
A2 = ( j cos dv\ 4- ( I sm — dvj • (4-18)

The integrals in the form given by Eq. (4-18) are called Fresnel’s integrals. 
(Note that the coefficient Xr0/2 is not a function of the degree of exposure 
of the surface of the wave front, so that in the new form N2 will still be
proportional to the sum of the squares of the two integrals.) The particular 
value of each of the Fresnel integrals, for the limits 0 to v, have been com
puted for various numerical values of the parameter v (see Appendix III). 
A graphical plot of the results is known as Cornu’s spiral and is given in 
Fig. 4-9. In this graph

Points on the curve correspond to specific values of x and y, as given by 
Eqs. (4-19), using in each case a particular numerical value of the limit, v.
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There are two symmetrical parts to the spiral, corresponding to plus and 
minus signs for v (and hence for the coordinate s on the wave front). For 
very large values of ± v (or ± s) the curve approaches the points ci and e2 
in the diagram, as limiting positions of points x, y. The numerical values 
of the abscissas and ordinates for these points are 0.5 in each case. The 
last parts of the spiral are not shown, since v must be infinite for the curve 
to reach these points.

The Cornu spiral may be used to predict the intensity at a further 
point, due to the exposure of any given portion of the wave front. As 
shown in the preceding section, the intensity I N2 = (x2 + y2), where 
x and y represent the two Fresnel integrals. Suppose that a portion of the 
wave front is exposed, extending from the coordinate Si to the coordinate s2. 
The corresponding values of v will be and v2, the exact relationship be
tween the v’s and the s’s being stated in Eq. (4-17). We may then write

Fig. 4-9. The spiral of Cornu.
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and

These integrals may be rewritten

and (4-20)

From Eqs. (4-20) it should be clear, since 
N2 = (x2 + ?/2), that the correct magnitude 
of N, on the graph of the Cornu spiral, will 
be given by the length of a line drawn be
tween the points xiyi and x2y2.

4-20 Use of the Cornu spiral to deter
mine the diffraction pattern for a straight 
edge. A single application will serve to 
show the general usefulness of the Cornu 
spiral. It may be used in a number of ways 
and several of the problems at the end of 
the chapter are illustrative.

Let us suppose, as in Fig. 4-10a, that a 
portion of a very large wave front is com
pletely blocked off by a plate opaque to 
sound, extending from point 0 to a point 
very far down in the negative ^-direction. 
The integrals in Eq. (4-16), leading to the 
intensity at point a, will then involve for s 
the limits of virtually 0 to co; and the limits 
for the Fresnel integrals, in terms of v, will 
be the same. The plot of the point x, y on 
the Cornu spiral will therefore be point 
ei. Since N2 = (x2 + y2), the intensity at 
point a in Fig. 4-10a will be proportional 
to the square of the distance from the 
origin to point e± on the Cornu spiral, i.e., 
Oei.

For points above and below point a 
in Fig. 4-10a, the geometrical equivalents 

(a)

(b)

(c)
Fig. 4-10.
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given in Fig. 4-10b and 4-10c may be used. As may be seen, moving 
the point down, as far as exposure of wave front is concerned, is 
equivalent to moving the obstruction up, and vice versa. A comparison 
of Fig. 4-10a and Fig. 4-10b will show that as the observation point is 
moved down to a' (and therefore into the geometrical shadow), the length 
of wave front exposed will decrease by the amount s', as compared with 
position a, directly opposite the edge of the obstruction. On the Cornu 
spiral the relative intensity will be indicated as the square of the length of 
the line drawn from point ei to a point such as e3 on the curve, correspond
ing to the particular value of s = s' indicated in Fig. 4-10b. As the point a' 
is moved farther down into the geometrical shadow, the line eie3 will rotate 
around ei as a pivot, the point e3 moving along the curve in a direction away 
from the origin. The intensity will therefore approach zero asymptoti
cally, since the radius of the spiral turns gradually decreases.

For positions on the plane of observation above a in Fig. 4-10a the equiva
lent geometry is that of Fig. 4-10c. It is easy to show that the intensity 
due to contributions from portions of the wave front both above and below 
the line Oa in Fig. 4-10a is correctly indicated by the length of a straight 
line drawn between points on either half of the spiral, the values for v that 
are used corresponding to the two values of s on the wave front. The line 
6164 is such a line, corresponding to the situation at point a" in Fig. 4-10a. 
The wave front exposure for this point includes all of the upper half and 
part of the lower. As the observation point is moved away from the 
geometrical shadow the line on the spiral will revolve about ei as a pivot, 
the point e4 moving along the spiral towards 62. The length of the line 
6164 will undergo a series of oscillations. At a considerable distance from 
the edge of the obstruction, the length will approach that of the line ei62, 
corresponding to total exposure of the wave front. 1

It should be pointed out that the innermost turns of the spiral, in the 
neighborhood of ei and e2, correspond only very crudely to the geometry 
of Fig. 4-8. This is because in this analysis we have neglected the so- 
called “obliquity factor,” referred to earlier, which is associated with the 
inclination of the line aO' to the plane of the wave front, and also because 
of other approximations such as the effect of an increase in the distance r 
on the intensity, mentioned in Section 4-18. However, the shapes of the 
last turns of the spiral do not affect the total intensity as markedly as do 
those of the first few turns, and the error is thus not too serious.

4-21 Direct graph of intensity. To obtain numerical results for the 
problem discussed in the previous section it is necessary to know the wave
length and the distance Tq} since these quantities enter into the relationship
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shadow shadow
Fig. 4-11. Approximate variation in sound intensity inside and outside the geo

metrical shadow of an obstructing plate for a wavelength of -g- meter, as observed along a 
plane at a distance of 4 meters from the plate (r0 = 4 m).

between s and v. To make this clear, let us suppose that X = | meter and 
that r0 = 4 meters. For the point a in Fig. 4-10a the limits for s will 
then be virtually 0 to co; and likewise for v. The intensity, from the Cornu 
spiral, will be proportional to (Oei)2 or 0.5. For a point a', 0.5 meter below 
a in Fig. 4-10a, the limits for s will be 0.5 to oo; therefore for v they are 
from 1.0 to co (Eq. 4-17). (Note that s will have the units of length chosen 
for X and rQ; v is dimensionless.) For these limits the length of the chord on 
the spiral is 0.29and theintensity is therefore proportional to (0.29)2 = 0.084. 
(The length of the chord may be conveniently found by making use of the x- 
and ^/-coordinates of its end points, as read from the table for the Fresnel 
integrals, Appendix III.) In this manner the complete diffraction pattern 
may be drawn for all points along the plane of observation.

Figure 4-11 is a graph showing relative intensities inside and outside 
the shadow for X = J meter and r0 = 4 meters. Within the shadow there 
will be appreciable sound intensities for a distance of about one meter. 
Moving away from the geometrical shadow, one finds a series of maxi
mum and minimum points, finally leveling off to a steady intensity at a 
distance of approximately 3 meters from the edge.

4-22 The shape of the diffraction pattern, as a function of X. One of the 
most important features of a diffraction pattern of the edge type, as in the 
case of the slit, is its degree of “spread” or “compression.” From Eq. 
(4-17) the limits for s, for a given value of r0, are proportional to Vx.
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Since moving downward into the geometrical shadow is equivalent to a 
corresponding rise in the position of the limit, s, on the wave front, a cer
tain value of the intensity, as read from the Cornu spiral, will appear 
close to the edge of the obstruction when X is small and far away from 
the edge when X is large. In other words, the pattern will be highly 
compressed for the short wavelengths and spread out for the long wave
lengths.

The conclusions reached above show that the bending of sound waves 
around the edges of obstructions is a prominent feature of the wave propa
gation. The bending is highly selective as regards frequency, because of 
the manner in which the wavelength enters into the problem. Let us 
consider the intensity along a vertical plane at a distance rQ = 4 meters 
from the obstructing plate. For a frequency of 650 cycles-sec-1 the inten
sity will drop by approximately 50% if one moves a distance s' of 60 cm 
from point a (Fig, 4-10a) into the geometrical shadow. On the other 
hand, with a frequency of 2600 cycles-sec-1 this same drop in intensity will 
take place within a distance of only 30 cm. With a complex sound wave, 
such as that associated with music, there will be a kind of dispersion behind 
an obstruction. For a listener sitting well within the “shadow,” the bass 
portion of the music will predominate over the treble. This effect is often 
observed when music is being played in an adjacent room, with a partially 
intervening partition.

4-23 Diffraction of waves around obstacles of various contours lying in 
a field of sound. The discussions above on the interference patterns asso
ciated with apertures and edges will suffice to give a good deal of qualitative 
insight into other diffraction problems of more complicated geometry. In 
general, the introduction of some obstacle into the path of plane or spheri
cal sound waves will disturb the conditions existent before such introduc
tion. For instance, it is shown in books on optics that there is a bright 
spot directly behind a disk held in the path of a beam of parallel light. 
The simple construction used to demonstrate the truth of this prediction 
may be applied with equal validity to either sound or light waves. At 
other points behind the disk, not lying on its axis, there may be shown to 
exist regions of maximum and minimum acoustic pressure, very similar in 
distribution to the patterns for a circular aperture. On the other side of 
the disk there will appear a somewhat similar pattern due to energy reflected 
from the disk. All of these patterns are to be expected from the previous 
analyses in this chapter.

Theoretical computations have been made by Rayleigh, Schwarz, Stenzel, 
and others on the extent of the disturbance of the sound field in the neigh-
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borhood of obstructions having 
a few simple shapes, such as 
disks, spheres, cylinders, etc. 
As one would expect, the math
ematics is complicated. Ex
perimental measurements by 
Wiener and others have con
firmed many of the theoretical 
results. Microphones and 
probes of various shapes may be 
assumed to approximate some 
such simple geometry and it is 
important to understand their 
effect upon the sound field. The 
sphere, it might be mentioned, 
is a diffracting obstacle of espe
cial interest, since the human 
head is roughly spherical in 
shape and the diffracting prop
erties of the head are of interest 
whenever listening is involved.
The pressure distribution on the
surface of such an obstacle is of concern, as well as the pressure distribution 
in the surrounding medium.

Figure 4-12 is a polar plot, adapted from Wiener, * which illustrates how 
the excess pressure in a plane sound wave is affected by the presence of a 
sphere whose radius is of the order of the wavelength. For the head, this 
corresponds to a frequency of about 2000 cycles-sec-1. The radial distance 
from the pole to the curve is proportional to the ratio of the sound pressure 
at various points on the surface of the sphere to that existing in the wave 
before the introduction of the sphere (the ratio in this case is plotted in 
decibels). The angles are measured with respect to the direction from 
which the wave is coming. The circle labeled 0 decibels crosses the curve 
not far from the 90° position. Therefore at this position the sound pressure 
will be about that in the undisturbed wave and if one is facing the oncoming 
wave, the ears will lie, effectively, in the undisturbed field. For other 
points on the head this is not so.

A problem of considerable theoretical and also of practical interest is 
the “scattering” of longitudinal waves by a large array of small particles 
(small compared with the wavelength). Rayleigh has shown that the

* Jour. Acous. Soc. of Amer., 19, 446 (1947).



96 INTERFERENCE PATTERNS. DIFFRACTION [chap. 4

Fig. 4-13. Diffraction pattern in front 
of an acoustic piston surrounded by a baffle 
of limited dimensions.

intensity of the scattered wave 
(essentially a diffraction process) 
varies, for any one such particle, as 
the fourth power of the frequency. 
This effect is of particular interest 
in the propagation of waves through 
sea water, where there may be air 
bubbles and suspended solid parti
cles . The dissipation of useful energy 
in this manner is of much impor
tance in undersea signaling.

4-24 Diffraction effects for an 
acoustic piston set in a circular plate 
of finite size. As a final example 
of a diffraction pattern of practical 
importance in sound reproducing 
equipment, let us consider the follow
ing situation. Suppose that a plane 
wave strikes a plate having a circu
lar hole, but that the size of the plate 
is insufficient to entirely cut off the 
advancing wave at the outer edges. 
One would then expect two overlap
ping diffraction patterns, one from

the aperture, the other from the energy diffracting around the edges of the 
plate. In the practical arrangement to be described, somewhat the same 
sort of thing will occur.

A loudspeaker unit (effectively an acoustic piston) is mounted at the 
center of a plate whose diameter is several times that of the speaker cone.
Let us assume the diameter of the cone to be much less than X, but the 
diameter of the plate to be at least as great as X. The back of the speaker 
unit is completely enclosed, to eliminate double source complications. 
Instead of the simple spherical divergence to be expected from what 
amounts to an aperture small in size compared with X, an interference 
pattern will be observed in front of the plate. This pattern results when 
the wave disturbance reaches the boundary of the plate, since the edge 
becomes, by diffraction principles, a new source of waves. As indicated in 
Fig. 4-13, the combination of this new wave train with the primary waves 
set up at the cone gives rise to interference effects. The ensuing irregu
larities in intensity distribution are often of practical interest in sound 
equipment and in laboratory measurements.
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If the back of the cone is not enclosed, the radiation from the rear be
comes important because additional interference effects occur due to the 
double source action. This problem involves the general behavior of the 
baffle, which was discussed qualitatively in the preceding chapter. When 
we consider the general problems of practical loudspeaker design in Chap
ter 11, a quantitative discussion will be included.

4-25 General conclusions on diffraction. It should now be quite clear 
that diffraction is a complicated matter. Only a few of the cases, of par
ticular interest in acoustics, have been presented. For the treatment of 
other problems of diffraction, reference should be made to a book on optics. 
For many practical problems the analytical work is too difficult for even 
an approximate solution and in these cases one must explore the field of 
sound with experimental probes. This is a laborious process and is sub
ject to much error, due among other things to the diffracting properties of 
the probe itself. More will be said on this point in Chapter 10.

PROBLEMS
angle /3, at a fixed distance from a slit 
whose width b is equal to the wavelength.

6. For the circular hole pattern, find 
the value of /3 for the appearance of the 
second minimum, if the wavelength is 2.0 
cm and if the area of the hole is 75 cm    .12345

7. Consider the distribution of pres
sures over a plane of observation 2 meters 
from a plate containing a circular hole 
through which sound waves are passing. 
The ratio of wavelength to hole diameter 
is 0.1. Find the radius of the circles rep
resenting the first three loci of zero pres
sure.

8. A loudspeaker cone of diameter 12 
inches is surrounded by an infinite plane 
baffle. Plot the intensity I as a function 
of the angle /3 (for a fixed radial distance) 
when the frequency of vibration is (a) 50 
cycles-sec-1, (b) 5000 cycles-sec-1. Con
sider the cone to move as a unit in both 
cases.

9. A plane sound wave in air, of 
frequency 10,000 cycles-sec-1, strikes a 
paling fence with normal incidence. The 
width of the boards may be considered 
small compared with the wavelength. The 

1. Consider the single slit pattern. 
Draw vector diagrams to show the total 
pressure pm for a value of d (see Fig. 4-1) 
equal to (a) X/4, (b) X/2, (c) X, and 
(d) 3X/2.

2. Consider a point a (Fig. 4-1) such 
that d = X/4, (a) Suppose now that the 
slit width is doubled, the wavelength and 
the position of point a remaining fixed. 
Compare the new pressure pm at a with 
the original value; also the new intensity 
with the original value, (b) Repeat part 
(a), assuming the slit width to be increased 
by a factor of 10 (the width is still small 
compared with the distance from the slit 
to the point a).

3. Repeat problem 2, assuming, how
ever, the slit width to remain fixed at the 
original value and the wavelength to be 
(a) halved, and (b) reduced to 0.1 of its 
original value.

4. Plot a curve on rectangular axes to 
show the relation between the maximum 
pressure pm and the angle for the case 
where (a) X = b, (b) X = b/2.

5. Draw a polar graph of the relation 
between the intensity I (<x (pTO)2) and the
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spacing between the boards is 5 inches. 
For the reflected energy, find the angle to 
the normal for the appearance of the first 
order and second order spectrums, assum
ing the fence to act like an optical diffrac
tion grating of the reflecting type.

10. Show that a differential distance 
measured along the Cornu spiral is equal 
to dv. (Since this is so, any point on the 
spiral for the limits zero to v may be 
located immediately by measuring off the 
value of v along the spiral curve, beginning 
at the origin.)

11. (a) Show that for a given value of 
ro and of X, the slope at any point on the 
Cornu spiral is equal to the tangent of the 
phase angle between the contribution at a 
(Fig. 4-8) from the point s on the wave 
front and the contribution from the point 
directly opposite a. ' (b) What is the 
significance of the slope of a straight line 
connecting two points on the Cornu 
spiral?

12. A point a lies directly opposite the 
center of a slit through which are passing 
plane waves. The distance from the 
point a to the upper or lower edge of the 

slit is greater than the distance to the mid
point of the slit by just X/2, (a) On the 
graph of a Cornu spiral, draw a line whose 
length is proportional to pm at point a. 
(b) Read off the values of the Fresnel 
integrals for the end points of this line, 
(c) Making use of the table of Appendix 
III, find the corresponding values of v. 
(d) If X = 1.0 cm and r0 = 10 m, compute 
the width of the slit from v. Check the 
result from the direct geometry of the 
figure.

13. (a) A point cii is directly opposite 
the lower edge of a slit 20 cm wide and is 
100 cm distant from it. Plane waves of a 
frequency of 10,000 cycles-sec-1 are passing 
through the slit. Using the proper limits 
for the variable v, find the values of the 
appropriate Fresnel integrals (Appendix 
III), (b) In a similar way, find the values 
of the Fresnel integrals for a point 
directly opposite the mid-point of the slit. 
Then determine the ratio of the maximum 
pressure at the first point to that at the 
second point.

14. Redraw the abscissa scale for Fig. 
4-11, assuming a wavelength of tk m.



CHAPTER 5

ACOUSTIC IMPEDANCE. BEHAVIOR OF HORNS

5-1 The principle of analogy. In Chapter 1 some use was made of the 
similarity between the differential equation for an electrical circuit and 
for the motion of a particle. Since the differential equations were the 
same in both cases, the form of the two solutions could also be assumed 
identical. This is only one problem among many where the solutions to 
circuit problems can be carried over into a different field, such as mechanics. 
In probably no other branch of engineering or physics has the mathemati
cal technique for handling problems been developed to such a high point 
as in the field of electrical circuits. Therefore in showing that a problem 
in another field is mathematically equivalent to some well-known circuit 
problem, one is well on the road to a solution. Great care must be taken, 
however, to establish clearly all the details of the analogy, so as to correctly 
interpret the new solutions.

5-2 Types of analogies. It is often possible to set up an analogy in 
more than one way, even between the same two sets of phenomena.*  In 
this book two general types of analogy will be found helpful. In the first, 
already made use of in connection with particle motion, a mechanical 
system is broken up into inertial, elastic, and dissipative components. 
Sometimes the inertial components are the solid masses and the elastic 
components are the springs of ordinary mechanics; sometimes the system 
comprises enclosed volumes of air, with their associated mass and elastic
ity. Frequently a system made up of both solid and air elements must 
be considered. Such systems may be said to possess mechanical impedance 
whose behavior under the action of impressed forces of various kinds may 
be compared to the part played by electrical impedances in electrical 
circuits. In the electrical case, such mechanical impedances may be 
“lumped” (ordinary inductors, capacitors, and resistors used at low 
electrical frequencies have impedances of this type). On the other hand, 
as in the case of air conduits, the impedance may be “distributed,” in the 
sense in which the term is used for electrical transmission lines.

* See Morse, Vibration and Sound, McGraw-Hill, 1948, for a discussion of various 
types of analogies useful in acoustics.

The usual procedure with the above type of analogy is to set up the 
differential equations for the dynamics of the system or for some part of it. 
These equations are then compared with those for well-known electrical 
circuits whose solutions have already been studied. In this comparison, 
two points of view may be taken. The most obvious one is to draw the 
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analogy between velocity and current and between force and potential dif
ference. This was the approach in Chapter 1, in connection with particle 
vibrations. It is also possible, by rewriting the differential equations in a 
somewhat altered mathematical form, to show a different analogy, where 
velocity is compared with potential difference and force with current. This 
latter cross-comparison has distinct advantages wherever the mechanical 
system is a complicated one. The chief of these advantages is that the 
equations for a mechanical system arranged in a physical series (or “tan
dem” manner) have then the same form as those for a series electrical 
circuit. Similarly, a parallel mechanical arrangement corresponds to a 
parallel electrical circuit. However, from the first point of view, which we 
shall use in this book, a series arrangement for a mechanical system must be 
compared to a parallel electrical circuit and vice versa, and this can be an an
noying source of confusion. Despite this disadvantage, we shall retain this 
point of view, since ,the mathematics is simpler to set up and since, for the 
most part, we shall be dealing with simple systems, having few components.

We shall presently consider certain aspects of the behavior of the 
Helmholtz resonator as an example of an analogy of the above type. 
Later we shall refer to “acoustic filters” of the type studied by Stewart 
and others. These filters are made up of air conduits of various shapes 
and sizes, with acoustic frequency characteristics closely similar to those 
of corresponding electrical filters. The various parts of these conduits 
possess mechanical impedance, in the sense used above, and the electrical 
analog may be fully represented as an equivalent circuit containing induc
tors, capacitors, and resistors.

The second type of analogy, of a somewhat more restricted nature and 
not to be confused with that discussed above, is quite useful in problems 
connected with the radiation and transmission of sound. In the develop
ment of this analogy we shall not be concerned with the impedance of 
some mechanical system or its parts, but with what is called the specific 
acoustic impedance * at a point in the medium through which sound waves 
are passing. This quantity is also referred to as specific radiation imped
ance. It will presently be defined and its general usefulness will appear 
when it is applied in some specific problems.

* See Morse, pp. 236-7, for definitions of three different kinds of acoustic im
pedance. In this chapter the term acoustic impedance will, unless otherwise quali
fied, refer to specific acoustic impedance.

Problems often arise in which it is convenient to make use of both types 
of analogy, in which case it is important to keep the definitions and proce
dures for each clearly in mind. The analysis of the Helmholtz resonator
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and certain features of the radiation of sound by loudspeakers and horns 
are cases in point.

5-3 Sound radiation and acoustic impedance. The radiation of energy 
from sources of sound has been discussed in the previous chapter from the 
standpoint of the field or wave equations. There is no other way to 
obtain a point-to-point description of the field of sound. As has been seen, 
it may be very difficult to apply the equations to practical problems, 
largely because of the complexities of the boundary conditions. Many 
approximations must be made to obtain any solutions at all.

If one is interested in the over-all radiation of real sound energy from the 
source there is another approach, through the concept of acoustic impedance. 
The results of this analysis are illuminating in connection with the be
havior of certain widely used sources of sound and will be applied to some 
of these sources later in the chapter. Other applications of the idea of 
acoustic impedance will appear in later chapters.

As a preliminary to a definition and discussion of acoustic impedance, 
it is necessary to summarize the essential features of the complex notation 
used in a.c. circuit analysis.

5-4 Elements of complex notation as applied to electrical circuits. A 
complex number, i.e., a real plus an imaginary quantity, may be represented 
in several ways:

a + jb, 
M(cos 0 + j sin 0), (5-1)
Me*.

The first of these expressions is the definition 
of a complex number, j being equal to V —1. 
The second form is based upon a plot of a 
complex number as a point in the so-called 
complex plane (Fig. 5-1). The modulus, M, 
has a magnitude which is the distance from the 
origin to the point representing the complex 
quantity, and 0 is the angle between this radius vector and the horizontal real 
axis. The whole expression can be seen to be equivalent, geometrically, 
to a + jb. The modulus M can also be written Va2 + b2. The third 
(polar) form can be shown to be equivalent to the second form by expand
ing cos 0, sin 0, and e*  into their respective equivalent power series.

To demonstrate the advantages of the use of complexes in a.c. circuit 
theory, we shall return to the differential equation for an L-R-C circuit 
(Eq. (1-29)). Instead of writing the impressed potential as Em cos (otf), 
let us use the complex expression Eme3<J>t, so that

Fig. 5-1. Polar representa
tion of a complex quantity.
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L^ + Ri + 
at = Eme]'ut = Em[cos cat + j sin wt]. (5-2)

Since the right-hand side of this equation is complex, the expression on 
the left must be complex; and since all coefficients are real, the solution 
for the current i must be a complex expression. If a solution of the 
form Aeiut is assumed and substituted into the differential equation, the 
latter will be satisfied, provided that the coefficient A is equal to the com
plex expression

4---------- -----------y (5-3)
R + 3 \ ---- 7y)

\ COU /
Therefore the current (the steady state current, assuming that the transient 
part of the solution has died away) is

i =-------
R + j \&L —

(5-4)

This may be rewritten, using the polar equivalent for a complex number,

where

(5-5)

If the usual completely real expression for the current in such an a.c. 
circuit is desired, it may be extracted from Eq. (5-5) by using only the 
real part of that is,

Eireal = ~j------- ™..... - COS (wt — 0). (5~6)

The real part of Eq. (5-5) represents the real current in the circuit, just as 
the real part of Emejwt represents the actual applied potential. It is to be 
noted also that the electrical impedance of the circuit (that quantity which 
gives the current when divided into the potential difference) may be written 
either as a complex or as a real number. From Eq. (5-4),

g = R+j(aL-^\ (5-7)
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or, from Eq. (5-6),
Z = Jli2 + (uL - TV. (5-8)

The real form for the impedance (Eq. (5-8)), is simply the modulus of the 
complex form, and the magnitudes of the real and imaginary parts of z 
in Eq. (5-7) are respectively the resistance R and the reactance X of the 
circuit. The phase angle 6 between current and applied potential is arctan 
b/a = arctan X/R.

For the solution of circuit problems, there are many advantages in retain
ing the complex form of e, i, and z. For the acoustical problems at hand 
the main advantage will be in the more ready determination of the nature 
and extent of the power radiated by a source of sound. In an electrical 
a.c. circuit it is well known that the only real power delivered is due to the 
presence of resistance. (The average value of the real power may be 
written either as ETmJTms cos 6, or Z?msE.) For acoustical problems a 
quantity in the field of sound which is analogous in many ways to complex 
electrical impedance,. z, will be defined. The nature of this acoustic 
impedance, whether it is real, imaginary, or a combination of both, will be 
closely tied up with the nature of the acoustic energy flow in the region 
where this impedance is computed. Moreover, by the use of the complex 
form for the instantaneous excess pressure p, the particle velocity £, and 
other field parameters, useful phase relationships may be quickly obtained.

5-5 Specific acoustic impedance. Specific acoustic impedance, zS} at 
a point in a field of sound is defined as

z. = ?’ (5-9)

where p and $ are the instantaneous excess pressure and particle velocity, 
respectively. For a single sound frequency, p and £ are sinusoidal functions 
of the time t but they are not necessarily in phase for all types of waves. 
Therefore specific acoustic impedance, pressure, and particle velocity are 
related exactly as are electrical impedance, potential difference, and 
current in an a.c. circuit. The dimensions of the acoustical quantities, it 
should be noted, are different from those of the electrical ones, although 
there are some similarities. The most important distinction is that elec
trical impedance, defined as e/i, exists between two points in the current
carrying circuit, whereas the specific acoustic impedance is a point property. 
The acoustic impedance, as here discussed, is completely defined as soon 
as the coordinates of a point and the corresponding values of p and £are 
specified.
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The analogy carries further than Eq. (5-9). Just as the product ei 
represents instantaneous electrical power, so the product represents the 
instantaneous acoustical power at the point in question. However, the 
power ei is total power delivered to the circuit across which the p .d. exists, 
whereas the acoustical power p%, since it involves the pressure, is the energy 
flow per unit area and per unit time. Nevertheless, the analogy is close 
enough to be quite useful. As mentioned earlier, the exact limitations of 
any analogy must be recognized.

5-6 Specific acoustic impedance for plane waves. If the specific acous
tic impedance at any point in the path of plane waves is computed, the 
result is particularly simple. We shall make use of the velocity potential 4>, 
which was first introduced in Chapter 3 in connection with three-dimen- 
sional waves. It is perfectly correct to use this function also for plane 
waves, since they are simply a special case of three-dimensional waves in 
cartesian coordinates. The first of the equations (3-13) in Chapter 3 
becomes, with a function of x only,

d2$ , d2S
dt2 dx2 (5-10)

The solution, which represents as a function of x and t for a wave travel
ing in the direction, may then be written

£ = A cos (ct — x). (5-11)
A

As is to be expected, the coefficient A of the cosine expression is a constant 
with no inverse function of the space coordinate, since in the case of plane 
waves the maximum values of p, s, etc., all derivable from the function 4>, 
do not decrease with the distance from the source. For our present 
purposes we shall write the periodic function on the right of Eq. (5-11) in 
the complex form,

$ = Ae^ct~x\ (5-12)

The quantity k here replaces the ratio 2ir/X. (The real part of Eq. (5-12) 
is identical with (5-11).)

It is now a simple matter, by means of the derivative relationship, to 
obtain the appropriate equation for the instantaneous excess pressure and

the particle velocity. Making use of p = p0 —, we find thatdt

(5-13)
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Also, for the particle velocity,

£ = - = jkAe^ct~x\ (5-14)
uX

Therefore the specific acoustic impedance (zs)o for plane waves in free space, 
at any point along the direction of propagation, becomes

/ x _ p _ jpokcAe^-^ _ . .(£s)o — £ — ~ (5 15)

(This result could have been obtained directly from parts (b) and (e) of 
Eq. (2-19), without use of the function $ and without using the complex 
form. The present method of determining zs, however, is fundamental to 
the following discussion of the more complicated cases, and is used here 
for the sake of generality.)

The simple product poc just obtained has very nearly the numerical 
value of 42 gm-cm-2-sec-1 (in cgs units) under standard conditions of 
temperature and pressure in free air (0°C, 760 mm Hg). The equivalent 
number in mks units is 420 kgm-m_2-sec-1 (these values are slightly lower 
at temperatures in the neighborhood of 20°C). The specific acoustic 
impedance for plane waves in free space is thus a constant, independent 
of x and t and also of the parameters characteristic of any particular dis
turbance, such as frequency, particle amplitude, maximum excess pressure, 
and all the other related quantities. Thinking of (zs}q in terms of the elec
trical analogy, it is real and therefore corresponds to an electrical resistance, 
with all that this implies. In an a.c. circuit the average power delivered 
may be computed as Z2rms-R, where R is the real part only in the complex 
quantity representing the total circuit impedance. In the case of plane 
waves, zs is all real, therefore the average acoustical power (per unit area) 
is femS)2PoC. (Compare Eq. (2-29c).)

All acoustical energy per unit area that arrives in the plane of the wave 
front passes on in the direction of wave propagation, away from the source, 
with no fraction “reflected” back towards the source. This would not be 
true if there were a reactive (i.e., imaginary) component of the specific 
acoustic impedance. In the latter case, some energy would periodically 
flow in the —x direction, just as in an electrical circuit instantaneous energy 
fed into an inductor or into a capacitor would presently return to the 
generator.

It should be pointed out that Eqs. (5-13) and (5-14) give a ready indica
tion as to phase. Due to differentiation, both expressions have 4-J in 
the coefficient. The exponential is a complex number which may 
be represented in the complex plane by a vector and an angle. The 
presence of the + j before the exponential has the effect of rotating this 
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vector 90° in a counterclockwise direction. (This may be readily verified 
by writing ^k{ct~x} in the form a + jb, multiplying by + j, and then inter
preting the result graphically.) From Eqs. (5-13) and (5-14) it is seen 
that p and £ are in phase with each other, but are 90° ahead of the variation 
in 4?. (It should be noted that a coefficient of — j has the effect of rotating 
the vector in a clockwise direction and therefore signifies a lag relative to T.)

5-7 Analogous acoustic impedance. Besides the concept of specific 
acoustic impedance, there is another useful quantity, the acoustic imped
ance zafor an area, S. Following the terminology of Morse, we shall call 
za the analogous acoustic impedance*  This is defined as the ratio of the 
instantaneous excess pressure to the so-called “volume current,” = X. 
Note that since za = z8/S, the analogous impedance is less than the specific 
impedance if $ is greater than unity. The definition of za is designed to be 
in line with power considerations. When the impedance of an electrical 
circuit is decreased, keeping the applied potential difference constant, the 
current will increase and therefore so will the power. In the acoustical 
case, more energy will flow per second through a large area than through a 
small area. Hence the analogous impedance is an inverse function of the 
area. Since for plane waves the instantaneous power per unit area is 
(£)2(zs)o, the power U for a total area>$ may be written in terms of the vol
ume current X and the analogous impedance (za)o, as

* Called analogous because the “volume current” is more similar to current 
in an electrical circuit than is £. The quantity £ is comparable to current density.

U = = (X)2(zo)0. (5-16)
5-8 Specific acoustic impedance for spherical waves. For spherical 

waves, the velocity potential is an inverse function of the distance r from 
the pole. Rewriting Eq. (3-16), for a sinusoidal wave in the complex 
form,

$ = — (5-17)
we find that in this case

p = pa (5-18)dtr
and

£ = - = (- + jk} - (5-19)
dr \r / r

Therefore the specific acoustic impedance zs becomes
z. = ? = Poc + + j x + fc2?.2), (5-20)
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where the result has been written in the standard form for a complex num
ber, a + jb. (Eq. (5-20) should be verified, making use of the usual 
technique for handling complex quantities.) An inspection of Eq. (5-20) 
will show that, unlike plane waves, there is an imaginary or reactive com
ponent to zS' for spherical waves. The resistive component, the only part 
involved in the radiation of real sound energy, is

(zs)r = Poc
k2r2

1 + k2r2 (5-21)

At the surface of a very small sphere, whose radius r0 «X, this may be
written in the simpler form

(zS)/2 = p0ck2rl. 
ro

(5-22)

This expression will be useful in the next section.
Before applying the results of the previous section, Eq. (5-20) merits some 

discussion. An examination of the two terms in parentheses will show 
that as the distance from the source becomes greater and greater, the term 
containing j approaches zero and the first term approaches unity, so that 
zs becomes pQc for very large distances. This is to be expected, since for 
distant points the wave front is effectively plane and the expression for zs 
should approach that for plane waves. For nearer points, where the wave 
front has greater curvature, the resistive component is smaller in compari
son with the reactive component, and the latter becomes of considerable 
importance. Near the source the power flow consists of two kinds. The 
first is real power. The second, in the language of electrical circuits, is- 
“wattless” power, involving energy which surges out from the source and 
then back towards the source, without ever being radiated as sound waves. 
Since the reactive part of zs is always positive, it is reasonable to say that it 
is the mass or inertial property of the air that is involved, just as in Chapter 
1 a particle was shown to have positive reactance due to its mass property.

One other comparison may be made. There are two kinds of electric 
and magnetic fields around a circuit carrying alternating current, the 
“induction” or “coulomb ” fields, which are not involved in the radiation of 
energy, and the “radiation” fields, which are responsible for any electro
magnetic wave which may be set up and which carry all the energy associ
ated with the wave. While there are no precise counterparts to these fields 
in the acoustic case, there is a division of the energy into two parts, that 
which is radiated and that which remains local.

5-9 The Helmholtz resonator. This well-known resonator furnishes a 
good illustration for the application of the electrical analog. It is essen
tially a rigid container, with an opening to the surrounding air. Figure 5-2



108 ACOUSTIC IMPEDANCE. BEHAVIOR OF HORNS [CHAP. 5

shows, in cross section, two different /------ 'X.
types of Helmholtz resonators. The / \
resonator in Fig. 5-2a has a simple I
circular opening, while that in 5-2b has ! V
a short attached cylindrical “neck.” \ /
If a tuning fork of a frequency to which
the cavity resonates is held near the Helmholtz resonator without "neck" 
opening, the sound intensity in the 
neighborhood will be greatly enhanced.

As a result of the following analy- x** X
sis, it is possible to predict with fair / \
accuracy the natural frequency of the / Y
resonator, subject to important restric- I y------ -—"

tions placed upon the dimensions of \ J
the resonator, as will be seen presently.

We shall make use of both types of Helmholtz resonator with "neck" 
analogy discussed at the beginning
of this chapter. First we shall con- 2
sider the dynamics of a mechanical
system consisting entirely of enclosed air and having the properties of 
mechanical reactance and resistance. The resonator with the attached 
neck is simpler to analyze and what follows will apply to this type. As 
shown in Fig. 5-2b, Vo represents the volume of the main cavity, while 3 
and I are the cross-sectional area and length, respectively, of the neck. 
All dimensions are assumed small compared with the wavelength in air. 
When a source of energy such as a vibrating tuning fork is held near the 
opening, some of the energy radiated towards the resonator will set into 
vibration a cylindrical “plug” of air within the neck, of volume IS. This 
plug of air may be assumed to move as a unit (since Z« X) under the action 
of the driving force due to the tuning fork, the elastic force on the inner 
end of the plug (due to the compressibility of the air enclosed in the 
volume To), and a force of dissipation. This last force is due mainly to the 
radiation of sound energy and may be expressed in terms of acoustic radia
tion impedance, as we shall soon see.

The equation for the motion of the air in the neck, treating the air plug 
as a particle, is

(mass) (acceleration) — Fdriving ~F Fdissipative ~F Felastic*  (5 23)

In this equation, the mass is that of the air plug, polS, where p0 is the average 
undisturbed density of the air. Therefore we may write (mass) (accelera
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tion) as polSl-, using for acceleration the particle acceleration of the air at 
the right-hand end of the plug.

To evaluate the dissipative term, use is made of the previous discussion 
of the acoustic impedance. Neglecting friction in the neck, the main force 
of dissipation is that associated with the radiated sound energy and there
fore with the real part of the acoustic impedance at the right-hand end 
of the plug of air. As the plug oscillates, its 
right-hand face acts as a single source, giving  
rise to sound waves. The generating surface _e • >0 /
may be considered a circular plane area. How- ________
ever, the diameter of this circle, like the other \
dimensions of the resonator, is small compared Fig. 5-3.
with X. As was seen in the previous chapter, a
surface of any shape whose dimensions are much less than X will give rise 
to a wave shape which is spherical at a distance not far from the source, 
due to diffraction effects. Assuming this to be the case, we may replace 
the plane generating area $ by a hemisphere whose radius r0 is that of the 
neck itself (Fig. 5-3).*

* Strictly speaking, if a hemispherical wave shape is assumed, a flange should 
be mounted at the outer end of the neck to prevent back radiation.

Consider now the energy dissipated at the surface of this hemisphere. 
Since the area S' of the hemisphere is greater than that of the cross section 
of the plug of air (actually twice as great), the particle velocity £' at its 
surface must be less than the velocity £ next to the plane end of the plug. 
(This follows from the fact that both surfaces must be of equal “strength” 
for complete physical equivalence.) The dissipative part of the acoustic 
pressure at the surface of the hemisphere may be written

Pdis = (z»W' = (zJrS'Z', (5-24)
where (z^r is the real part of the analogous acoustic impedance for the 
whole surface of the hemisphere. The value of (zo)r is

/ x = (gs)j; = Pock2rl = p0ck2
'Za R area 2tt7o 2tt ’

making use of the simpler expression for (zs^r, Eq. (5-22), since r0 is here 
much less than X. Therefore

Pdis = ST = Si. (5-25)
Z7T 27T

(The product S'£' may be replaced by S% because of the source equivalence.) 
Having determined pais, we may now compute the total axial force on the 



110 ACOUSTIC IMPEDANCE. BEHAVIOR OF HORNS [CHAP. 5

plug, Fdis, due to the dissipation, as the product of pdis and the cross- 
sectional area 3 of the plug of air:

Fdto = - palaS = - S%. (5-26)
Ztt

The velocity £ is that in the air next to the surface of the plug, or that of 
the plug itself, since the two are identical.

The elastic force in Eq. (5-23) is a result of the springlike effect of the 
air enclosed in the cavity upon the left-hand end of the plug of air. It is 
important to note that since the diameter of the cavity is small compared 
with X, no phase differences such as are associated with a wave exist 
within the enclosure. Therefore, in effect, pressures are increased and de
creased instantaneously throughout the volume V0 with the motion of the 
air in the neck. The magnitude of the elastic force per unit area is

v v
' Pelastic = ® -TT = Po^-rr (5~27)

Ko Ko

where (B and c have the usual meaning. But due to the motion of the 
plug of air, v = S%. Therefore the total elastic force on the air in the neck 
is

Felastic = $Pelastic = ~ SpoC2-^r = — (5~28)
Ko Ko

5-10 The resonance frequency. The complete differential equation for 
the motion of the plug of air can now be written

PolS'i + £ = Fme3Ut, (5-29)
Ztt Ko

where the driving force on the right, due to the arrival of wave energy 
from the tuning fork, has been expressed as a complex quantity. This 
equation is identical in mathematical form with Eq. (1-27). By com
paring the coefficients in Eq. (5-29) with those in the earlier particle 
equation and making use of Eq. (1-35), it may be verified that the fre
quency for displacement resonance is given by

If the damping factor is neglected, a more approximate but simpler expres
sion for /res is obtained:

/r“ = 2?cA^’ (5-31)

Experimentally, Eq. (5-30) agrees quite well with the lowest frequency to 
which the Helmholtz resonator, with neck, will respond. Cavities of this 
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type will also resonate to higher frequencies, not given by Eq. (5-30) or 
Eq. (5-31). These resonances are associated with the existence of standing 
waves within the cavity, occurring when the wavelength of the driving 
frequency becomes less than the cavity diameter. In these cases the 
assumptions made here are not valid and the results of the above analysis 
do not apply.

The physical behavior of the Helmholtz resonator without a neck is 
fundamentally no different from that of the one with the neck, with the 
exception that the volume occupied by the plug of air is much less well- 
defined. Instead of being cylindrical, the volume of air, moving more or 
less as a unit, is somewhat lens-shaped. Because of the difficulty of deter
mining the exact shape and size of this volume, the entire analysis is 
necessarily only approximate. The loudspeaker enclosure, known as the 
bass reflex or phase inverter type, is essentially a Helmholtz resonator. It 
will be referred to again in Chapter 11. The natural resonance frequency 
of such an enclosure may be determined most accurately by experiment.

5-11 The behavior of horns. Horn analysis, by any means, is a com
plicated procedure and involves a great deal of mathematics, in the course 
of which many approximations must be made in order to reach useful con
clusions. It would hardly be worthwhile, in a book of this kind, to give 
all the details of a complete analysis. Horns, however, are very familiar 
objects. The simple megaphone or conical horn is used at football games, 
and the use of horns of other shapes in connection with the indoor and out
door amplification of music, etc., has become very common. What will be 
attempted here, in order to explain the essential features of horn behavior, 
is a brief outline of the subject from the standpoint of acoustic impedance, 
pointing out the chief physical ideas involved, the fundamental mathe
matical process, the necessary assumptions, and the important results that 
may be obtained. Much of the material is based on an analysis by P. M. 
Morse in his book Vibration and Sound, to which the reader is referred for 
further details.

From one standpoint, a horn may be considered to be the outgrowth of 
a cylindrical tube, in which the cross section of constant area has been 
replaced by one whose area gradually increases. It so happens that com
putations which are difficult for open horns become very simple when 
applied to a closed cylindrical tube. While this latter case is trivial so far 
as any practical application as a source of sound is concerned (for, being 
closed, no sound can get out!), its analysis, as a preliminary problem, will 
help to make clear the more complicated computations necessary for actual 
horns.
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Acoustic 
piston

5-12 Radiation into a cylindrical tube closed at one end. The physical 
arrangement of such a tube is shown in Fig. 5-4. At the left is an ideal 
“acoustic piston” whose forward face is plane and perfectly rigid. It 
fits closely into one end of the air
filled cylindrical tube of length I, the 
other end of which is closed with a 
rigid flat plate. The piston is as
sumed to be driven sinusoidally at 
some fixed frequency f and with am
plitude Qm. The dimensions of the 
piston face in relation to X are of no 
consequence in this problem. Plane 
waves will be set up at the piston face and will be maintained down the 
tube, friction at the tube walls being neglected.

The air displacements produced within the tube must satisfy the general 
equation for plane waves,

£ = f(ct ± z), (5-32)

and, in addition, the boundary conditions at the piston face and at the 
closed end must be met. Making use of the complex form, these boundary 
conditions may be stated:

x=l

a

x=0

*Lo=<viut
Fig. 5-4. Acoustic piston radiating into 
closed cylinder.

©x=o = Qm^, (£)^ = 0. (5-33)

A particular solution can easily be built up to satisfy both Eqs. (5-32) 
and (5-33). The following is consistent with Eq. (5-32):

£ = A sin (ct + x) — A sin (cl — x). A A (5-34)

By expanding Eq. (5-34) as the sines of the sums and differences of angles, 
we obtain

. o . . 2ttx 2irct k = 2A sm -T- cos -t— A A (5-35)

or, expressing the cosine term in the complex form,

£ = 2A sin
A

(5-36)

Equation (5-36) may be fitted to the boundary conditions by letting

A - --------- . and by adding a phase angle, wZ/c, to the angle

2. Asin — I \ c /
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(The solution will still be a function of (ct ± x), as required to satisfy the 
differential wave equation.) The final form becomes

J - -------sin (x - Z)"l (5-37)
sin (— ] *-  J

\c /
It may be verified that this satisfies the two essential boundary conditions 
(1) that at x = 0 the air motion be identical with that of the piston and 
(2) that at x = I, £ and £ be zero, since the rigid plate at that end is always 
stationary.

In order to see what type of force and energy transfer is involved at the 
piston face, we may now compute the specific acoustic impedance at the 
plane specified by x = 0. Using Eq. (2-19e) for plane waves, the acoustic 
excess pressure at the piston face becomes

P
x=0

— PoCCoQm COt (5-38)

The particle velocity may be obtained by differentiating Eq. (5-37) with 
respect to time:

x=0
(5-39)

Therefore the specific acoustic impedance at the piston face is found to be

zs = K 
x=Q %

— jpoc cot I—)• \ C / (5-40)

From Eq. (5-40) it is seen that the air in the tube offers to the driving 
piston, per unit area, an effective impedance which is always imaginary 
and therefore in the nature of an electrical reactance. For low frequencies, 
where the cotangent function is positive, zs is negative, so that the air acts 
like a simple spring, or like an electrical capacitance, as might be expected. 
At higher frequencies, the value of zs goes through a series of oscillations, 
being alternately positive and negative as the frequency is raised indefi
nitely, and hence showing the acoustic impedance to be alternately induc
tive and capacitive. The magnitude of the reactance alternates between 
zero and infinity. These extreme limits will not obtain in any actual tube, 
where there will always be some dissipative force of friction, but assuming 
any such factor to be small, there will be certain frequencies for which 
very large motions will be imparted to the air and others for which such 
motions will be very small. This periodic feature of the behavior of the 
air in the tube is closely connected with the various standing wave patterns 
to be expected with a column of air whose length is comparable to or longer 
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than the wavelength. (Standing wave patterns will be studied further in 
Chapter 7.) In general, whenever zs turns out to be a periodic function of 
the frequency, as will be true in certain cases for horns, standing wave 
phenomena will be implied.

5-13 Force on the piston. Total radiation impedance. Before leaving 
this problem, it should be pointed out that the total force F on the piston 
due to the air load is Sp, where $ is the area of the piston and p is the 
acoustic pressure given by Eq. (5-38). Also, the total effective mechanical 
impedance (zjair, added to whatever mechanical impedance the piston 
structure itself may have, is

(zjair = 777— = = Szs = - jSpoc cot (—\ (5-41)
(£L=0 P/Zs \C/

When we come to discuss actual sound radiators whose generating surfaces 
approximate that of an ideal acoustic piston, it will be the magnitude and 
nature of this mechanical air-load impedance which will determine the 
speaker’s effectiveness as a source of sound. This air-load impedance is 
often called the total radaition impedance offered to the sound source. Note 
that (zjair equals zs multiplied by the area, whereas the analogous imped
ance za equals zs divided by area. The analogous impedance za is useful 
in connection with energy flow in the medium. The mechanical impedance 
(zjair is a measure of the reaction on the source due to the radiation.

5-14 Tube, open at one end. Once the cylindrical tube of our problem 
. is opened at the end where x = I, the analysis becomes more complex and 

we shall give only an outline of the derivations. Large gaps in the mathe
matical procedure are to be expected and many statements and equations 
must be taken for granted. If, however, the arguments of this chapter 
have been carefully followed, the results should seem plausible. Even 
though many of the details are missing, the following summary should shed 
considerable light upon some rather complicated acoustical phenomena.

Two limiting cases will be considered first. If an acoustic piston has a 
face large in diameter compared with X, it will radiate into free air a beam 
of plane sound waves whose cross-sectional area is the same as that of the 
piston itself. A closely fitting cylindrical tube placed in front of such a 
piston will obviously have no effect upon the radiation. As a result, we 
may conclude that the value of zs near the face of a piston placed at the end 
of a cylindrical tube whose diameter is large compared with X will be poc, 
just as for plane waves in free space. The quantity zs is all real. There 
are no reflections or standing waves and there is no “wattless” power 
periodically returned to the source.
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At the other extreme, when the tube diameter is small compared with X, 
practically all of the wave energy reaching the open end is reflected back 
towards the piston. It can be shown (see Morse) that the specific acoustic 
impedance at the piston is in the nature of an electrical reactance, just as 
was the case with the closed tube. A mass of air near the open end of the 
tube moves as a unit, with a reacting force proportional to its acceleration. 
When the frequency is low enough so that the length of the tube is consid
erably less than X, the specific acoustic impedance at the piston face is 
approximately

Zs ~ja)pQ(l + 0.6r), 
z=0

(5-42)

where I is the tube length and r its radius. This equation, which neglects 
the small amount of power radiated from the small open end of the tube, 
shows zs to be in the nature of an inductive reactance, since it is positive. 
With longer tubes, stationary waves may occur, and zs may be either plus 
or minus, depending on the relationship of I to X, and therefore may be 
either inductive or capacitive.

The dimensions encountered in practical sound problems are rarely the 
limiting ones that are very large or very small compared with X. Rather 
they are comparable to X. Equation (5-43) is an approximate expression 
for the value of zs at the driving end of a cylindrical tube, open at the far 
end, and for which the diameter is neither very large nor very small com
pared with X.

zs = poc tanh tt a + j (0 + y)]’. (5^3)
where a and (3 are functions of X and of the tube dimensions. The extent 
to which reflection occurs at the open end determines the value of a, while 
0 may be plus or minus, depending on the phase associated with the re
flection. As might be expected, zs is neither all resistive nor all reactive, 
but in general is a combination of both, with the proportions determined by 
the ratio of tube dimensions to wavelength. Interpreted in simple terms, 
the form of zs indicates that some fraction of the energy leaving the 
piston at any instant is reflected upon reaching the open end and the 
remainder is radiated into space as real sound energy.

A few of the wind instruments, like the piccolo and the pipe organ, make 
use of tubes of constant cross section. The mechanism by which waves 
are set up within such tubes is not easy to visualize, since no vibrating 
driver is used but instead a steady stream of air is blown in near one end. 
This will be discussed later in Chapter 7.
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5-15 Homs. When the factor of flare is added to a cylindrical tube, 
it becomes a horn. Horns are usually of circular cross section, but often 
are square or rectangular, for structural convenience. What is important 
in the following analysis is not the shape, but rather the rate at which the 
cross sectional area increases as one moves down the axis of the horn.

To obtain equations of reasonable simplicity it is advantageous to 
assume that plane waves set up at the small end of the horn by an ideal 
acoustic piston are maintained as plane all the way down the horn. This 
seemed a reasonable assumption in the case of the cylindrical tube, but 
with the introduction of flare, a gradual transformation from a plane to a 
spherical wave shape is to be expected. A more precise analysis of horn 
behavior that takes this process into account, however, will lead to the 
same general conclusions as those summarized in this chapter.

We shall also assume that friction at the walls dissipates negligible 
energy and, to encourage simpler mathematics, that the mouth of the horn 
is large compared with the wavelength of any disturbance traveling along 
the axis. (Specifically, that the perimeter of the mouth is larger than X.) 
This latter assumption is rather violent for horns of practical dimensions 
but it represents a considerable mathematical simplification because, 
from considerations of diffraction, all wave energy reaching the mouth will 
then leave the horn, with no reflections. At the end of our horn discussion 
we shall briefly consider the effect of mouth size upon horn behavior. The 
effect is complicated and only qualitative comments will be given.

Even though a plane wave front is assumed throughout the interior of 
the horn, it is necessary to alter the original differential equation for plane 
waves in free space to take account of the expanding cross section. The 
essential change is the introduction of a new expression for the dilatation, 
3 = v/Vq. This expression takes account of the variation of the cross-sec
tional area $ with the distance along the x-axis and may be written

, 1 d(W 
s~s~dT

(If $ is constant, as in a beam of plane sound waves, 5 becomes d£/dx, as 
for plane waves in free space.) With this change, it can be shown that the 
differential equation describing pressure variations as a function of time 
and of distance along the axis may be written

3 = ci£('s3- or oX \ dxj
This is the general differential equation for any horn. Once the function 
5 = f(x) is specified, the shape of the horn is defined. It remains, then, 
to integrate Eq. (5-44) in order to completely determine the pressure p 
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as a function of x and t. Once p is known, all other important wave prop
erties within the horn may be determined.

Of all the possible forms for the function $ = f(x), two only will be dis
cussed here, i.e., those defining the conical and the so-called exponential 
horn. Other shapes have been studied but these two are most widely 
used in practice.

5-16 The conical horn. The conical horn is the oldest and, at least 
until recent years, the most widely used of horn shapes. It is defined by 
the equation

Fig. 5-5. The conical horn.

S = So (1 + (5-45)

In Fig. 5-5, So is the cross-sectional 
area (assumed to be circular in shape) 
at the small end of the horn (x = 0), 
where the energy is introduced. The 
distance xQ is measured from this 
small end back to the position of the
geometrical apex of the cone. The quantities So and Xo are related to the 
rate of flare. As is seen in Fig. 5-5, the factor Xo may also be defined as 
2/o/tan </>, where yo is the radius of the small end and </> is half the plane 
vertex angle of the cone. The value of xQ is therefore essentially determined 
by the ratio of the size of the driver, placed at the small end of the horn, 
to the rate of flare as controlled by the angle </>. The parameter xQt as we 
shall see, is an important factor controlling the behavior of a conical
horn.

If the function given by Eq. (5-45) is inserted into the differential 
equation for a horn, (5-44), the result is an expression having a mathe
matical form identical with that for spherical waves in free space. (This 
is mathematically true, even with the physical assumption that the wave 
front remains approximately plane as the disturbance travels down the 
horn.) The solution for p may then be written down immediately, assum
ing the mouth of the horn large compared with X so that no reflection 
takes place. As in the case of spherical waves in free space, the pressure 
falls off inversely with the distance along the axis of the horn but the coordi
nate x for the horn replaces the coordinate r used for spherical waves.

From the expression for the pressure, the equation for the particle 
velocity % may be found by means of the usual wave relations. Hence 
one may evaluate the specific acoustic impedance at the small end, where 
x — 0. The results are
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where
(zs}x=o — R 4“ jX,

R = poc 1____
< 1 X V

and (5-46)

X = poC
1 X.

2tt x0

It will be noted that both R and X are functions of the ratio of X to the pa
rameter x0.

An interesting comparison can be made between the equations just 
obtained and the expressions for the two components of zs for a point on a 
pulsing sphere radiating spherical waves into free space (see Eq. (5-20)). 
A small pulsing sphere radiates poorly since, from Eq. (5-20), when r is 
small the real part of zs is small compared with the imaginary part. The 
quantity x0 appearing in Eqs. (5-46) affects the ratio of R to X in the same 
manner. A small vibrating source is easier to construct than a large one 
(for some of the reasons, see Chapter 11). The use of a conical horn is 
advantageous because although a small acoustic piston, like a small pulsing 
sphere, will radiate poorly, if we couple to it a conical horn for which x0 is 
large compared with X, we obtain a radiating system which possesses the 
efficiency of a pulsing sphere of much larger radius (where R is greater in 
proportion to X). Since xQ = ?/o/tan </>, we may either make y$ large or, as 
is more common with the usual driver, where is necessarily small, we may 
ensure a large value of xQ by using a very gradual taper so that </> is small.

The next section will throw still further light on this matter.
5-17 Transmission coefficient for a horn. To show how the ratio x0/X 

enters into the efficiency of a conical horn, we shall define transmission 
coefficient for a horn of any taper. The transmission coefficient is the ratio 
of the real power radiated into (and therefore out of) a given horn, to the 
power radiated by the same acoustic piston, having the same velocity, 
into an infinitely long cylindrical tube of the same cross-sectional area as 
the small end of the horn. In the case of the cylindrical tube, all instan
taneous power will flow away from the piston, since plane waves of constant 
cross section will be set up and zs at the piston face will therefore be pQc. 
The transmission coefficient consequently is a measure of the efficiency of 
a horn as compared with a simple direct generator of plane waves, the 
latter process being the most efficient from the standpoint of real radiated 
sound power.
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For the cylindrical tube, the average power fed in by the piston is
U t = (£rms)2poOSo.

For the conical horn, making use of the 
expression for R from Eq. (5-46), the 
power is

Therefore the transmission coefficient 
r for a long horn with a large mouth is

(5-47)
2ir Xo/

Fig. 5-6. Transmission coefficient r 
for a long conical horn with open end 
large enough to eliminate reflection. 
(After Morse)

Figure 5-6 is a plot of r vs the ratio x0/X, the significant parameter. It is 
seen that for a given rate of taper, where xq is constant, the abscissa is 
essentially the frequency, since x0/X « f, While the horn will radiate at 
all frequencies, its efficiency obviously falls off rapidly at the lower end of 
the spectrum. If xo is increased, one may go to longer wavelengths (or 
lower frequencies) before the transmission coefficient falls much below 
unity. However, for a driver of fixed size, it will be necessary to decrease 
the cone angle and to increase the length of the horn so that the mouth 
will be large enough to preclude reflections. A very long and therefore 
bulky horn is desirable for good efficiency over a wide frequency range. 
(Such a long horn may, however, actually decrease the efficiency at very 
high frequencies, due to frictional forces along the horn walls.) In general, 
the efficiency of the conical horn, indeed of all horns, falls off at the low 
frequencies due to practical limitations of size.

5-18 The exponential horn. It is the performance in the low frequency 
range that makes the exponential horn so superior to the simple conical 
horn. An analysis similar to that for the conical horn therefore seems 
worthwhile. An exponential horn is one whose cross-sectional area varies 
according to the equation

S = So e^h, (5-48)

where So, as for the conical horn, is the area of the small end and S is the 
area of any other cross section a distance x from the small end (Fig. 5-7). 
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The constant h is the “flare” factor. If the cross-sectional area is circular, 
Eq. (5-48) may be written

y = y^xlh, (5-49)
where yo is the radius of the small end and y is the radius at any distance 
x along the axis. If we let x — h in Eq. (5-49), y = eyo and h is thus the 
distance along the horn axis such that the radius of cross section increases 
by the factor 2.718. Note that if h is large, the rate of flare is small, and 
vice versa.

If the expression for $ given by Eq. (5-48) is introduced into the differen
tial equation for a horn, the acoustic pressure may be found as a function of 
x and t. From the pressure, we can obtain the particle velocity. The 
real and imaginary parts of zs = p/%, evaluated at the piston end of the 
horn, where x = 0, turn out to be, for outgoing waves,

R = poc
2

and (5-50)

When X approaches 2ttA, so that f^~c/\) approaches c/t2mh, the value of 
the real part of zs approaches zero. Below this critical or cutoff frequency, 
fo = c/2-Kh, no real power enters or leaves the horn. This type of behavior 
is peculiar to an exponential horn. It can be shown that an exponential 
horn transmits waves in the same way as a dispersive medium; different 
frequencies travel down the horn with different velocities. At the fre
quency f0 the velocity of propagation of any given phase becomes infinite, 
which is equivalent to saying that no true wave motion exists within the 
horn, there being no phase differ
ences along the axis.

Fig. 5-7. The exponential horn.

Fig. 5-8. Transmission coefficient r for a 
long exponential horn with open end large 
enough to eliminate reflection. (After 
Morse)
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5-19 Transmission coefficient for an exponential horn. Comparison 
with the conical horn. The characteristics of an exponential horn are
shown graphically in Fig. 5-8, which is a plot of the transmission coeffi
cient 7 against the ratio h/X (h is the flare factor defined above). For a
horn of fixed flare rate, the abscissa is proportional to 1 /X or to frequency.

In this case r = The most interesting feature of the graph

is the sharp cutoff and its relation to flare rate and frequency. The 
cutoff occurs for h/X = 0.16. From this number the critical wave
length Xo and the critical frequency f0 may be determined, once the
value of h has been fixed. A numerical illustration will show how this 
may be done.

Suppose that we wish to design a horn whose cutoff frequency is 
50 cycles-sec-1. This corresponds to Xo = c/fo = 20 ft, and therefore 
the required value of h is 0.16(20) = 3.2 ft. To ensure good trans
mission all the way down to 50 cycles-sec-1, it will be necessary to select 
an abscissa somewhat larger than the cutoff, say a value of about 0.3. 
In this case h will be 6 ft. A horn whose radius increases by a factor e 
(approximately 3) in a distance of 6 ft along the axis will be a long 
one if, for the reasons given earlier, it is 
to have a large mouth.

Experimental horns do not exhibit the 
mathematically sharp cutoff of the solid 
line in Fig. 5-8, but instead show a 
gradual tapering off at the lower end, 
somewhat as shown by the broken curve. 
This deviation from theory is not surpris
ing, in view of the approximations in the 
mathematics. The essential shape, how
ever, is as predicted.

A striking comparison can be made 
between a long, wide-mouthed conical 
horn and an exponential horn of identi
cal over-all dimensions by plotting the 
transmission coefficients of each. The 
abscissas in this case are simply frequen
cies. These graphs are shown in Fig. 
5-9, with the specific data for the flares. 
The superiority of the exponential shape 
for uniform frequency transmission is 
most apparent.

Fig. 5-9. Frequency character
istics for a conical and an exponential 
horn of the same over-all dimensions. 
(After Morse)
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5-20 Effect of reflections upon horn behavior. With horns that are 
not very long and where the perimeter of the mouth is not large compared 
with the wavelength, the conclusions reached above are subject to con
siderable modification. The specific acoustic impedance at the radiating 
mouth is no longer that for plane waves, poc, and some of the energy is 
reflected back to the source, giving rise to standing waves. This is desir
able in certain musical instruments where this resonance produces the 
characteristic pitch (and overtones). In all musical instruments some 
radiation is essential, in addition to resonance, and both radiation and 
resonance come about naturally when the horns are of limited dimensions. 
When horns are used in loudspeaker systems for the wide-range reproduc
tion of music, however, resonance is a definite drawback, giving rise to an 
unnatural enhancement of certain frequencies and attenuation of others.

When reflection takes place the analysis of horn behavior is more compli
cated and we shall not attempt it here. When an approximate expression 
for zs at the small end of such a horn is obtained, the magnitude of the real 
part, R, is found to fall off at the lower frequencies, as before, but there 
are numerous peaks and valleys at frequencies corresponding to the horn 
resonances. For practical purposes, it is clear that horns which are long 
and large-mouthed (and so, unfortunately, bulky) are the most satisfactory 
for a wide range of frequencies.

5-21 The horn as an impedance matching device. From the electrical 
analog point of view, we may make an important generalization about the 
behavior of horns. We have seen that a small vibrating surface, spherical 
in shape or otherwise, is an ineffective radiator of sound waves because of 
the large reactive component of the acoustic impedance at its surface. 
On the other hand, an acoustic piston large in diameter in comparison with 
the wavelength encounters the specific acoustic impedance poc character
istic of plane waves and is therefore an effective radiator. With the horn 
in front of it, a small acoustic impedance may be made to radiate as would 
a large piston, emitting waves that are nearly plane (since zs is then all 
real) over a large frequency range. In this sense the horn may be con
sidered as a kind of impedance matching device, transforming the acoustic 
impedance characteristic of a small source to that necessary to match the 
acoustic impedance for plane waves in free space. In this way a great 
deal more power is radiated than would be the case without the horn. This is 
the same impedance matching idea that is so important in electrical circuits.

5-22 The “hornless” or direct-radiator loudspeaker. Specific acoustic 
impedance at the surface. In recent years there has been a tendency, par
ticularly for compact sound reproducers in the home, to dispense with the 
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use of the horn entirely, and so avoid its numerous design complications. 
The radiator is then simply the equivalent piston itself, set in a large baffle 
(Fig. 5-10a) as nearly impervious to sound as possible, whose purpose is to 
ensure a single, rather than a double, source action, as discussed in Chap
ter 3. Unless the diameter of the piston face is impossibly large, one 

would expect, from the discussion at 
the end of the previous section, that 
the radiation efficiency would be 
low for low frequencies. This is in
deed true, as we shall presently see, 
even when the baffle area is vdry 
large.

The outline of the mathematical 
procedure necessary to obtain the 
acoustic impedance at the piston 
face is as follows. The baffle area is 
assumed to be infinite in extent. Re
ferring to Fig. 5-10b, the first expres

Fig. 5-10. Acoustic piston set in 
infinite baffle.

sion to be set up is for the instantaneous differential pressure dp occurring 
at a point b on the piston face, due to the spherical waves originating from 
a differential area dS at another point, also on the piston face. This is 
readily done in terms of the spherical wave equations, using suitable coordi
nates. The total pressure at b due to all such areas dS is obtained by inte
grating over the piston face. The total instantaneous acoustic force F 
on the piston is then the second integral of p dS' over the area of the piston, 
dS' being an area element at point b. The integration difficulties in this 
process are considerable but they may be overcome. The average acoustic 
pressure is obtained by dividing the total force F by the area of the piston. 
This average pressure placed over the piston velocity (the same as the 
velocity of the air next to it) yields an average value of zs. The real and 
imaginary components of zs so obtained are

R — poc

and
X = pocM(w).

(5-51)

In these expressions, w = 47rr/X, where r is the radius of the piston face. 
The symbol Ji(w) is the usual one for a first-order Bessel function. A 
Bessel function is a certain regular, convergent power series (appearing 
often in solutions to the differential equations of physics) whose sum may 
be computed and tabulated for various values of the argument w. There
fore for every value of r/X there is a specific number representing Ji(w).
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Fig. 5-11. Transmission coefficient r for 
an acoustic piston mounted in an infinite 
baffle. (After Morse)

The symbol M(w) represents a certain definite integral whose numerical 
value is a function of w and of the coordinates chosen in the integrals 
described above.

The plot of R/pqc in Fig. 5-11 is identical with a plot of the transmission 
coefficient defined earlier in connection with horn radiation. As in the 
graphs for the horns, the abscissas 
are proportional to the frequency, 
for any one piston of a given radius.

It is often thought, by practical 
workers in the field of acoustics, 
that the use of a very large baffle 
will, of itself, ensure the efficient 
radiation of the lowest frequencies 
in the audible spectrum. From 
Fig. 5-11 it can be seen that even 
the use of a baffle of infinite area 
does not prevent a serious falling off 
below a certain frequency. The 
value of this fairly critical fre
quency depends on the piston ra
dius r. If numerical values are in
serted, the results are discouraging from a practical point of view. Suppose 
that we desire a source of good radiation efficiency down to a frequency of 
50 cycles-sec-1. Taking the abscissa w = 5.0 as the lower limit of the 
horizontal portion of the curve for R/p$c, and using the proper value for X 
(in this case about 20 ft), we find that the necessary piston radius is 8 ft! 
It is quite clear, then, that with the more modest value of, at most, 0.5 ft 
for the radius of the ordinary radio or phonograph loudspeaker, the acoustic 
radiation for low frequencies, assuming constant piston velocity, will be very 
poor. Fortunately, as we shall see in Chapter 11, it is possible to compen
sate for the inherent low frequency limitations of the direct radiator quite 
satisfactorily by the use of mechanical resonance and the proper design 
of the mechanical impedance of the piston itself. When we come to this 
practical discussion, it will be seen that there are serious complications in 
the high frequency range, not apparent in the curves shown in this chapter. 
This is due primarily to the difficulty of making the piston, which is as 
large as possible for the reasons just given, respond efficiently to the driving 
force at the higher frequencies. For this and other reasons, the present 
trend is to feed the high frequencies, by means of a frequency-selective 
network, into a small horn speaker whose driving piston may be much 
smaller and lighter.
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5-23 Distribution pattern for energy leaving horns or direct radiators. 
It is to be noted that no clue has been given in this chapter as to just how the 
energy leaving the horn or direct radiator is distributed in space. This 
is primarily a matter of diffraction and certain general features of the distri
bution should be apparent from the discussions of Chapter 4. If the di
ameter of the mouth of a horn or of the end of a directly radiating acoustic 
piston is large compared with wavelength, there is a good acoustical match 
with free space for the production of a beam of plane sound waves. The 
cross-sectional area of this beam is the same as the radiating area. For 
piston or horn areas small compared with X, one would expect the spherical 
distribution characteristic of a point source. The interesting and impor
tant in-between cases, where the radiating areas have diameters comparable 
to X, give rise to diffraction patterns, the features of which were discussed 
in Chapter 4.

5-24 General significance of acoustic impedance for radiation. The 
results of the several specific problems analyzed in this chapter have wide 
application in many aspects of acoustics. The energy emitted from the 
mouth in speech or in singing is affected by the value of the acoustic imped
ance at the opening, and the design of musical wind instruments, histori
cally fashioned on a purely empirical basis, unconsciously has taken account 
of the problem of impedance matching. Instruments like the piccolo and 
the flute, with their relatively high registers, have short horns or tubes with 
mouths of comparatively small diameter, whereas the lower register brasses, 
like the contrabass tuba, require and have large radiating ends.

An interesting and important parallel to these problems in radiation 
occurs in sound reception. When sound waves strike the ear, that fraction 
of the energy that eventually passes to the mechanism of the inner ear is a 
function, among other things, of the impedance match for the particular 
frequency or frequencies involved at the entrance of the ear. Again, the 
proper design of microphones, whose operation depends on the transfer of 
acoustic energy to some mechanical diaphragm, ribbon, etc., takes account 
of the acoustic impedance in the air and its relation to the mechanical 
impedance of the instrument.

Other applications of the idea of acoustic impedance will appear later in 
this book. It is a concept of growing usefulness in problems of acoustics, 
fully as fruitful in its field as is the similar idea of radiation impedance in 
the propagation of electromagnetic waves.
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PROBLEMS
1. Find the real and the imaginary 

parts of the following complex quantities: 
(a) 10^<30°); (b) 5<r  °); (c) 2c2+< °>; 
(d) 7e~2—J<30°\

* 910 * 10

2. Rewrite the following complex 
quantities in the polar form: (a) 4 +j’3; 
(b) 10 -J3; (c) (a + jb).*

3. Reduce the following expressions 
to the form a + jb: (a) (2 + j)e^3°o); 
(b) + e-’<30°>; (c) (c - jd) (e + jf).

4. A complex expression has the form 
------—Rationalize the denominator 
e — jd

9. For the resonator described in prob
lem 8, plot a resonance curve to show £ as 
a function of frequency for a driving force
of constant maximum value.

by multiplying the expression by -
e +jd 

collect terms, and reduce to the form 
a + jb.

5. An acoustic pressure is given by 
p = The particle velocity at the
same point is £ = (£)J7le3’(w*+0). (a) Find 
the specific acoustic impedance in the form 
a + (b) What is the average real flow
of power at the point?

6. Give a physical argument to show 
why the reactive component of the specific 
acoustic impedance at the surface of a 
small sphere should be inductive (i.e., 
■VjX) rather than capacitive.

7. What is the effect upon the reso
nance frequency of a Helmholtz resonator 
of doubling (a) the volume Vo, (b) the 
length I of the neck, (c) the cross-sectional 
area of the neck?

8. Compute the approximate resonant 
frequency in air of a Helmholtz resonator 
where the boundaries of Vo are those of a 
box 1X2X3 feet and where the cylin
drical neck has a length of 6 inches and a 
diameter of 4 inches.

10. Referring to Section 5-12, discuss 
the physical situation in the closed tube 
of fixed length I for those frequencies at
which zs approaches zero or infinity.

x=o
Make use of Eqs. (5-36), (5-37), (5-38), 
and (5-39).

11. An acoustic piston sending plane 
waves into the closed tube of Section 5-12 
has itself a mechanical impedance, exclu
sive of the air load, of 80 + j’50 cgs units 
(mechanical ohms). If the tube length is 
100 cm and the cross-sectional area is 10 
cm2, find the total mechanical impedance 
of the piston at a frequency of 50 cycles- 
sec-1, including that due to the presence 
of the air in the tube.

12. Compute the total effective me
chanical impedance of the piston in prob
lem 11 if the further end of the tube is 
open. Make use of Eq. (5-42), first 
checking its validity for this case.

13. A long conical horn has a small end 
4 cm in diameter and a semiplane vertical 
angle of 10°. From the graph of Fig. 5-6, 
find the transmission coefficient for a 
frequency of 700 cycles-sec-1.

14. The cutoff frequency of a long 
exponential horn is 100 cycles-sec-1. 
(a) What is the flare factor A? (b) Along 
the horn axis, how far apart must the 
positions be for the ratio of one radius to 
the other to be 2:1? (c) If the small end 
of the horn has a radius of 2 cm, how long 
must the horn be to have a mouth radius 
of 50 cm?

15. The horn in problem 14 is being 
driven by an acoustic piston of constant 
velocity, independent of frequency. The 
decibel scale may be used to compare any 
two powers, as well as any two acoustic 
intensities. At what low frequency will 
the power output of this horn drop 1 db 
below the output at very high frequen
cies?

16. (a) For a long conical horn, plot 
the reactive component X at the piston 
end as a function of Xo/X. (b) Plot a 
similar curve for the exponential horn.
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using as abscissas the ratio h/\. Compare 
these graphs with the plots of the real 
part of the specific acoustic impedance.

17. Change the abscissa scale of the 
graph of Fig. 5-11 to frequency, assuming

an acoustic piston of radius 6 inches. At 
what low frequency will the power output 
drop 5 db below the output at very high 
frequencies, assuming a- constant piston 
velocity, independent of frequency? (See 
problem 15 for use of the decibel scale.)



CHAPTER 6

LONGITUDINAL WAVES IN DIFFERENT GASES. WAVES IN 
LIQUIDS AND SOLIDS

Throughout the preceding chapters we have been dealing entirely with 
the medium air, since longitudinal waves through air are of the most prac
tical interest in acoustics. In this connection we have been using for the 
velocity of sound in air the value 331 meters-sec-1, which has been stated 
to be the experimental value under ordinary free-air conditions. This 
value also agrees with the theoretical equation c = V(B/p0, where (B is the 
adiabatic bulk modulus. To understand more fully the transmission 
process of longitudinal waves in air and in other gases as well, let us exam
ine carefully the factprs determining the wave velocity c.

6-1 Isothermal and adiabatic bulk modulus for an ideal gas. If one 
assumes (as Isaac Newton did) that the deformation process associated 
with longitudinal waves in an ideal gas is isothermal, the proper value of 
the bulk modulus (B may be obtained directly from the equation of state for 
such a gas. Assuming the temperature to remain constant, we have

PV — constant 
and therefore

PdV+VdP = 0, 
so that

dP~^V/V = ^ = P- (6-1)

When this value of (Bi is introduced into the expression for the wave 
velocity c, one obtains a value which, for air, is smaller than the experi
mental value by about 20%. Newton had an ingenious but wholly erro
neous explanation for this discrepancy. * Laplace showed that the correct 
elastic constant to use is the adiabatic bulk modulus, (Ba. For an ideal gas 
undergoing an adiabatic change, the relationship between pressure and 
volume is

* See Miller, Anecdotal History of Sound, Macmillan, 1935.
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PVy = constant, 

where y is the ratio of the specific heat of the gas at constant pressure to 
that at constant volume. Taking differentials, we have

PV7'1 dV + Vy dP = 0
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and upon rearranging, we get
dP

^dV/V = yP = ®“' (6-2)

This value of (B, when inserted into the expression for c, gives good agree
ment with the observed value for waves of ordinary amplitudes over the 
range of audible frequencies. We may therefore write for sound waves

c (6-3)
\ Po

The value of the dimensionless ratio y is dependent upon the number of 
so-called degrees of freedom of the gas molecule, such number in turn being 
dependent on the molecular complexity. For monatomic molecules y 
turns out to be 1.66, for diatomic molecules it is 1.40, for triatomic mole
cules, 1.29, etc. In Table 6-1 are listed a few common gases, together 
with the experimentally determined values of y, all at a pressure of one 
atmosphere. Notice that for air, .whose major constituents are diatomic 
gases, the value of y is 1.40, which is characteristic of such gases.

TABLE 6-1
VALUES OF y FOR DIFFERENT GASES AT 1 ATM PRESSURE

Gas Temperature 7

Air 17°C 1.403
Carbon dioxide 15°C 1.304
Hydrogen 15°C 1.410
Nitrogen 15°C 1.404
Oxygen 15°C 1.401

6-2 Factors affecting the velocity of longitudinal waves in gases. The 
quantity y varies for different types of gases, but for any one gas it is quite 
constant for wide variations in temperature. For air, y remains at the 
value 1.40 over a temperature range of — 80°C to at least 150°C. The 
other two factors determining the velocity of waves of small amplitude are 
the density p0 and the pressure P. The density varies for different gases, 
and both density and pressure are related to the absolute temperature T 
through the gas laws. The temperature is therefore an implicit variable 
in determining the velocity of a wave. Table 6-2 gives the velocity of 
sound waves for various gases. The most precise value of c for air, as 
computed by averaging a number of the best determinations, * is

* Hardy, Telfair, and Pielemeier, Jour. Acous. Soc. Amer. 13, 226-233 (1942).
c = 33,145 ± 5 cm-sec-1
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for the conditions 0°C, 760 mm of Hg, 0.03 mole percent content of CO2 
and 0 percent water content.

We are usually interested in the velocity of sound waves in the open air. 
The variations in pressure under these conditions are not ordinarily great 
enough to affect the velocity of sound waves significantly. The variations 
in density due to temperature fluctuations, however, are more important. 
Since at constant pressure the density of a gas is inversely proportional to 
the absolute temperature T, we may write for a fixed pressure of one atmos
phere,

The velocity of propagation of ordinary sound waves is quite independ
ent of the frequency, as Eq. (6-3) indicates. At very high frequencies, 
well into the ultrasonic region, some frequency dependence is to be expected 
because the deformation process tends towards the isothermal as the fre
quency is raised to very high values. That this is so does not seem at all 
obvious. Because of the shorter time factor at the higher frequencies, one 
might think the process to be even more completely adiabatic than at 
lower frequencies. This reasoning, however, neglects the importance of 
the temperature gradient, as has been pointed out by Herzfeld and Rice.*  
The total heat flow between adjacent compressions and rarefactions during 
any one half-cycle is proportional to 1//because of the time factor, but due to 
the increased steepness of the temperature gradient (dT/dx) at the higher 
frequencies, the rate of flow will be greater in proportion to /2. As a result, 
the total flow increases as the frequency is raised and is proportional to /. 
With such a flow, the process tends to be less adiabatic. The frequencies 
at which this effect becomes significant are very high (of the order of 108 
or 109 cycles-sec-1).

* Phys. Rev. 31, 691 (1928).

TABLE 6-2
VELOCITY OF SOUND WAVES FOR VARIOUS GASES

Gas Velocity, c (calculated, cm-sec~x) 
0°C, 1 atmosphere

Carbon dioxide 2.58 X 104
Helium 9.70
Hydrogen 12.69
Nitrogen 3.37
Oxygen 3.17
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6-3 Experimental determination of the velocity of sound waves in gases. 
Careful experimental measurements of the velocity of sound waves in the 
open air were made as-early as 1738, when data based on cannon fire were 
recorded. The numerous observations taken under military auspices 
since that date have usually been made with an explosive type of source, 
giving rise to waves of rather high intensity. Using a source of more 
moderate intensity, T. C. Hebb (at the suggestion of Michelson) in 1905 
and again in 1919*  made a very careful determination of the velocity c in 
open air, through the direct measurement of the wavelength in a standing 
wave pattern set up between two coaxial parabolic reflectors. The source 
was a whistle of known frequency. Having measured the wavelength X, the 
velocity c can be computed from the relation c — f\., Most of the more 
recent experiments are basically of this same general type. Sound sources 
of standard frequency whose value is known to a high degree of precision 
are now familiar objects in every well-equipped acoustical laboratory. 
(Such frequency standards will be discussed in Chapter 10.) With such 
sources available, the precision of the determination of c is then dependent 
on the precision with which the frequency is known and on the precision of 
the measurement of X, usually rather high.

* Phys. Rev. 20, 91 (1905); also 14, 74 (1919).

Because of the ease with which the density, pressure, and temperature 
may be controlled and varied, many measurements of c have been made 
with air and other gases in closed tubes. These experiments also make 
use of a standing wave pattern and are variations on the experiments of 
Kundt in 1866. Kundt set a column of air into vibration by means of an 
exciting rod made to vibrate longitudinally by being rubbed with a rosin- 
coated piece of leather, as shown in Fig. 6-la. As the plunger A is moved 
along the tube, adjusting the length of the air column, resonance is found 
to occur for certain positions. In the associated standing wave pattern 
there are regions where the air is stationary, called nodes, and others where 
the air is in violent motion, called antinodes. As we shall see in our dis
cussion of stationary waves in the next chapter, the distance between adja
cent nodes is just X/2. The nodal planes are made visible experimentally 
by introducing into the tube light particles such as cork dust. In the 
presence of excitation these particles collect in rather sharply defined piles 
at the nodal regions. (There usually occur subsidiary striations, much 
more closely spaced than X/2. The spacing of these small striations is 
largely a function of particle size, rather than of the wavelength of the 
tube, and may be explained in terms of a Bernoulli effect upon the individ
ual particles.) In the modern versions of the Kundt’s tube experiment,
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Clamp

(a)
A

oscillator z x
(b)

Fig. 6-1. Kundt’s tube.

an electrically driveii loudspeaker, equivalent to an acoustic piston at one 
end of the tube (Fig. 6-lb), replaces the exciting rod. The frequency of 
the wave is then that of the electrical oscillator connected to the driving unit.

The wave velocity c measured for gases confined to tubes is found to be 
somewhat smaller than that measured under free-air conditions, unless the 
diameter of the tube is very large. This is due to the retarding effect 
caused by viscosity at the walls, and to heat conduction at the walls, which 
make the bulk modulus tend toward the isothermal rather than the adia
batic value. Helmholtz, Kirchhoff, and others derived formulas that give 
a theoretical value of c as a function of the tube diameter, the frequency, 
and a dissipation coefficient.

To the chemist and the physicist the velocity c is of interest beyond its 
own intrinsic value in acoustics. The direct measurement of the specific 
heats, which for any gas determine the value of 7, is a rather difficult 
matter. Equation (6—3), on the other hand, furnishes an excellent means 
of computing 7 in terms of c, P, and p0, all quite easy to determine. Many 
of the best values for 7 have been found in this way.

6-4 Transmission of longitudinal waves through gases as related to 
kinetic theory. In discussing wave propagation through gases, we have so 
far treated the medium as continuous in the ideal sense. As mentioned 
earlier, ordinary sound sources and receivers are very large indeed com
pared with the average spacing of the molecules under the usual atmos
pheric conditions, so that the assumption of virtual continuity is a valid 
one. In the microscopic sense, however, the actual transfer of momentum 
associated with the passage of a wave through the medium must be accom
plished through impacts between molecules. It is therefore reasonable to 
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assume that there is some connection between the molecular speeds of 
kinetic theory and the velocity of sound waves. This is indeed so, as we 
shall now show.

According to the kinetic theory of gases, the molecules of a gas are mov
ing about in space with assorted velocities ranging in value, for a very large 
number of particles, from near zero to near infinity. The distribution of 
the various velocities among the molecules between these limits is a definite 
one, known as the Maxwellian distribution. From the mathematical 
expression for this distribution it is possible to arrive at three kinds of 
“average” velocities, characteristic of a given gas under a given set of con
ditions. These are respectively up, the most probable velocity; ua, the 
velocity which is the arithmetic mean over all the molecules; and uk, which 
represents the kinetic energy mean and is the square root of the average 
squared velocity. These three velocities bear the ratios

Uk'.ua'.Up = 1:0.920:0.816. (6-5)
It is easy to associate the velocity ur with the velocity of sound waves, 

since
Po = | Po(uk)2, 

o

where p0 is the density of the gas and ur is the root mean square molecular 
velocity. Therefore

. W = —■ (6-6)Po

Since the total kinetic energy must be distributed equally among the ener
gies associated with the x, y, and z directions, the average squared velocity 
for any one of these directions, such as x, will be 

and the root mean square velocity along x is

M. = (6-7)
V Po

This will be recognized immediately as identical with the expression for the 
velocity of a sound wave, assuming the process to be isothermal. Since 
the above simple equations of kinetic theory assume no temperature varia
tions throughout the body of the gas, a result characteristic of an isothermal 
process is to be expected. Using the relations between Ur and the other 
velocities characteristic of a Maxwellian distribution, we may write, for air, 

^adiabatic = ^isothermal — 0.68'IZ'A — 0.741Za = 0.84'lZp. (6 8)
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The point to emphasize in this result is that the velocity of wave propa
gation and any one of the “average” molecular velocities of kinetic theory 
are virtually of the same order of magnitude. This will seem quite reason
able if one considers the order of magnitude of the particle velocities en
countered in sound waves of ordinary intensities. It is rare for particle 
velocities greater than 10 cm-sec-1 to exist in the waves associated with 
speech and music, and usually they are much smaller. On the other hand, 
the “average” velocities characteristic of the random molecular motion of 
kinetic theory are of the order of 104 to 105 cm-sec-1, some one or 
ten thousand times as great. The process of wave propagation can be 
pictured as follows. In darting about near the sound source, some of the 
gas molecules come into contact with the vibrating surface and so receive 
additional momentum, small compared with the average momentum they 
already possess. This additional increment of momentum is handed on to 
other molecules as the first set chances to strike them in the course of their 
random motion. Since the original momentum was a directed quantity, 
the disturbance propagates in a definite direction in space at a speed 
primarily determined by the kinetic theory velocities, not by the particle 
velocity imparted to the molecules at the source. Note that this picture is 
entirely consistent with the observation that the wave velocity remains con
stant even over distances great enough so that the particle velocity asso
ciated with the wave has become extremely small.

If the increment of particle velocity imparted by the vibrating source 
becomes an appreciable fraction of the random molecular velocity, the 
wave velocity becomes higher than the normal value for waves of small 
amplitude, as would be expected. Air disturbances originating with 
explosions often travel outward, in regions near the source, with speeds 
several times that for normal sound waves. Other interesting facts con
nected with high intensity waves appear in the next section.

6-5 Waves of large amplitude. In our derivation of the differential 
equation for waves of small amplitude in Chapter 2, we assumed that (B 
(nr) \

= —) was a constant. As has been seen in Section 6-1, the adiabatic-v/Vq)
bulk modulus (Ba = yP, for an ideal gas. Since the total pressure P varies 
slightly in the presence of the wave, CB cannot be said to be strictly a con
stant. For waves of ordinary amplitudes, the slight fluctuations in (B 
are of no importance but for waves of abnormally high amplitudes the 
variations in (B cannot be ignored. To see the general effect upon wave 
propagation when the intensities are very large, we shall derive the differ
ential equation for plane waves without assuming (B to be necessarily 
constant.
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It will be remembered that Newton’s second law for the thin layer of 
air, as given by Eq. (2-10), is

. = _ 1_ M
dt2 po dx

An exact relation for a given mass of gas undergoing an adiabatic change is 
P = /ToV 
Fo

where Po and To are the pressure and volume at the beginning of the change 
and P and V are the corresponding values after the change. Solving for P 
and introducing the dilatation 8, we have

p==^+5)-7-
The partial derivative of P with respect to x becomes

= I? = - TPo(l + «)-<7+I) § (6-10)

(since 3 = d^/dx). This result may be written in terms of the condensation 
s rather than in terms of <5 by making use of the exact relation between s 
and 3 given by Eq. (2-3),

. g=_7Po(1 + s)^n

Inserting this value for dp/dx into Eq. (6-9), the wave equation becomes

5=c2(i+s)(t+i>5-

Comparison of this differential equation with the one for waves of small 
amplitude will show that, in effect, c2 has been replaced by c2(l + s)(7+1). 
Since the condensation s is itself a function of x and t, Eq. (6-11) is essen
tially a more complicated mathematical equation than the usual plane 
wave equation, and the solution to the latter no longer applies. From an 
approximate point of view, however, we may conclude that the solution 
implies some kind of a traveling disturbance of the general form f(x ± c7), 
where c' is not constant but is equal to c(l + s)(v+1)/2. The condensation 
is itself a quantity that varies from point to point in the path of the wave. 
Therefore different parts of the disturbance must travel with different speeds. 
Wherever the condensation is large, the propagation speed will be greater 
than where the condensation is small. Since a wave in which the maximum 
condensation is large will also be one in which the amplitude, maximum
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(b)

Fig. 6-2. (a) There is no change in 
wave form for waves of small amplitude, 
(b) Distortion of wave form for a wave of 
large amplitude.

excess pressure, etc., are relatively 
large, the same thing may be said 
in terms of the magnitudes of the 
other wave parameters.

The significance of the statement 
above is simply that as the disturb
ance travels through the medium 
there will be a progressive change 
in the wave form, no matter what 
the wave shape may be near the 
source. Crests will progress faster 
than troughs, so that a sine wave 
will eventually become distorted in 
such a way that the portion of the 
graph just ahead of each crest will 
acquire a steeper and steeper slope, 
as indicated in Fig. 6-2 b.

Water waves behave in this manner when reaching shallow water. The 
“curling” tendency of such waves is due to just such a variation in velocity 
for different parts of the disturbance, although the physical reason is a 
different one. As the water waves move into shallow regions, the troughs 
are slowed down by frictional forces at the bottom, the crests continuing to 
advance with nearly the deep water velocity; hence the tendency for the 
crests to break over the troughs. In the case of longitudinal sound waves 
this latter effect cannot occur, since a compression would then have to 
move through a rarefaction, which is a physical impossibility. For the 
waves in air, the wave shape ahead of the crests will approach the vertical 
but the slope will never change sign. As the wave form becomes more and 
more of the sawtooth type, higher harmonics will become more prominent. 
Increased dissipation at these higher frequencies will then limit the propa
gation velocity and so stabilize the wave form.

Fortunately, such effects are negligible with ordinary sound waves, even 
after they have traveled over considerable distances. The maximum 
value of the condensation, sm, rarely exceeds the order of magnitude of 10~3, 
in which case the velocity c' differs from c, the normal velocity for small 
amplitude waves, by no more than 0.1 or 0.2%. If appreciable change of 
wave form did occur, there would be serious consequences whenever music 
and speech are involved; distortions of all kinds would be apparent as one 
moved away from the source. (As a matter of fact, “large amplitude” 
distortion of wave form occasionally does occur in the throats of horns fed 
with sound of very high intensity. This distortion is quite perceptible to 
the ear.)
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Fig. 6-3.

Temperature 
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Fig. 6-4. Path of sound pulse from 
explosion heard at a great distance from the 
source.

6-6 Miscellaneous open-air 
effects. While dispersion is a factor 
of negligible importance for sound 
waves of the usual small amplitudes, 
refraction is perfectly possible when
ever the factors determining the 
velocity c vary. In the open air, 
temperature gradients usually exist 
near the surface of the earth. In 
the daytime, temperatures generally 
decrease with height above the 
ground. Since the velocity de
creases with a drop in temperature, 
waves leaving a source in a direc
tion having a slight inclination 
above the horizontal will bend more 
steeply upward as they travel (Fig. 
6-3). This often accounts for the 

of sound to an observer 
at no great distance from the source;
the sound waves have passed over his head. A similar effect, operating 
in an inverse manner, undoubtedly accounts in part for the audibility of 
explosions at abnormally great distances, with “skip ” phenomena for certain 
regions much nearer to the source. Calculations from the geometry of the 
probable paths of sound waves indicate that, after first falling, air tempera
tures must rise again, and that they eventually reach a value of about 150°C 
at a height of 25 or 80 miles above the earth. Such a temperature gradient 
in the higher regions of the stratosphere would give to the sound waves a 
path that is concave downward, returning them to the earth at more distant 
points but not at intermediate positions (Fig. 6-4). A somewhat similar 
effect occurs when electromagnetic waves reach the ionosphere, although in
this case the physical nature of the refraction is, of course, quite different.

Wind is also an important factor in the bending of sound waves. In 
passing through a region where there is a gradient in the wind velocity, the 
portions of the wave front that lie in the regions where the air is moving 
faster will move ahead of the portions lying in the slower moving air, thus 
rotating the plane of the wave front and so bending the path of travel. 
High winds are known to exist in the upper regions of the atmosphere and 
the bending effects referred to in the preceding paragraph are undoubtedly 
due, in part, to high altitude winds as well as to the existence of tempera
ture gradients. Nearer the earth erratic behavior in the propagation of 
sound waves is to be expected whenever the air is not perfectly stagnant.
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6-7 Acoustic focusing devices. Mirrors and lenses. High frequency 
sound waves reflect well from hard smooth surfaces (see Chapter 8). It 
should therefore be possible to construct acoustic mirrors which behave as 
do optical mirrors, taking due account of the important ratio of diameter 
to wavelength, as discussed in Chapter 4. A small source of sound, such 
as a whistle, placed at the focus of a parabolic reflector of diameter much 
greater than the wavelength, will reflect a beam of waves which are approxi
mately parallel. To ensure small divergence, it is best to use an ultrasonic 
frequency (whose wavelength is therefore very short).

Since different gases transmit sound waves with different velocities, it is 
possible to construct an acoustic lens which will refract and focus in the 
manner of an optical lens. The ratio of the velocity in air to that in CO2 
is 1.28. To construct a converging CO2 lens, the gas is forced between two 
circular sheets of thin rubber bound together at the edges, thus forming a 
double convex shape., Considerable reflection will take place at the lens 
surface, but enough energy will enter and leave the lens to permit focusing 
effects.

Recently Kock and Harvey * have built acoustic lenses whose behavior 
depends on somewhat more complicated principles. These lenses are of 
two general types. The principle of operation of the first type is easier to 
understand. A lens-shaped structure is built up with flat parallel metal 
strips whose planes are tipped with respect to the horizontal and whose 
shape is such as to give to the total lens a contour similar to that of a con
verging glass lens. Figure 6-5 is a photograph of the convex side of a 
plano-convex lens constructed in this manner. The theory of operation 
of the lens may be deduced from Fig. 6-6, which shows a vertical section of 
the structure. When a plane wave front strikes the flat side of the lens, 
the energy breaks up into segments which travel through the conduits 
bounded by the metal strips. The spacing of the plates is about | the 
value of the wavelength used (the experimental frequencies ranged from 
10 to 13 kc-sec-1), so that the energy emerging on the other side of the lens 
from each conduit will diverge freely in accordance with diffraction princi
ples, The tilt and contour of the individual plates are so chosen that for 
a point a on the axis of the lens the length of the various acoustic paths, as 
measured from the various entering points to the point a, is constant for 
any one of the conduits traversed. Thus the various contributions arriving 
at a will be in phase and this point will be the focus of the lens. The 
conduits supply the delay necessary to such focusing action, although in a 
manner different from the process of true refraction. (Such a lens will 
also focus short electromagnetic waves, since the metal boundaries of the 
conduits will also “guide” such waves.)

* Jour. Acous. Soc. Am. 21, 471-481 (1949).
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Fig. 6-5.
(Courtesy Bell Telephone Laboratories)

Fig. 6-6. Section of duct-type acoustic lens, showing paths of rays.
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Fig. 6-7. (Courtesy Bell Telephone Laboratories)

A second type of lens that used “scattering” disks or strips was con
structed. It had been shown by Lamb and by Rayleigh that the presence 
of small scattering obstacles in the path of longitudinal waves has exactly 
the same effect upon the velocity of wave transmission through the region 
as does an increase in the density of the medium itself, i.e., it decreases the 
velocity. It can be demonstrated that the effective index of refraction n 
of such a conglomerate, where the obstacles are flat disks, is given by

n = Ar3)*,  (6-12)

where N is the number of disks per unit volume and r is the radius of each 
disk.

The photograph of Fig. 6-7 is such an obstacle lens of the converging 
type. For Eq. (6-12) to apply, it is necessary that the disk size be some
what less in magnitude than X/2; for larger sizes, resonance effects occur 
and the propagation velocity of the array is affected in a different manner. 
As with the conduit type of lens, electromagnetic as well as acoustical 
waves may be focused.
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6-8 Attenuation of longitudinal waves in gases. As was pointed out 
earlier, the primary reason for the decrease in intensity of sound waves 
with distance from, the source is the operation of the inverse square law. 
With a medium of infinite extent we may consider the propagation of 
longitudinal waves to be a nearly conservative process, so that virtually 
the same total energy flows per second through any sphere surrounding a 
small point source. That this should be exactly true is, of course, impossi
ble, due to the existence of some attenuation factors operating both within 
and at the boundaries of the medium. Whenever the wave encounters a 
boundary, as in passing over rough ground in the open, considerable fric
tional and therefore dissipative effects are to be expected. It is common 
knowledge that sound may be heard for a greater distance over water than 
over land. This may be due in part to the better reflecting power of the 
smooth surface of the water and in part to the lesser importance of viscosity 
at this same surface compared with land.

As regards attenuation effects within the body of the gas itself, these 
have been shown to be small for travel over moderate distances. It has 
already been stated (Section 6-2) that some departure from complete 
adiabaticity begins to occur at the higher frequencies, the effect increasing 
with the first power of the frequency. Stokes and Rayleigh have made 
theoretical studies of the effect of heat radiation between regions of slightly 
different temperatures, and also of the losses to be expected due to vis
cosity within the body of the gas. These two dissipative processes were 
also shown to be functions of the frequency, the losses in both cases increas
ing at the higher values of the frequency. Experiments by Duff * and 
Hart ** indicate the presence of such dissipative effects, but their results are 
not in good agreement with theoretical computation.

* Phys. Rev., 11, 64 (1900). t Zeits. f. techn. Physik., 7, 253 (1930).
** Proc. Roy. Soc. A, 105, 80 (1924). § Jour. Acous. Soc. Am., 5,112 (1933).
t Jour. Franklin Inst., 207, 347 (1929).

There is considerable experimental evidence that at very high frequen
cies of the order of 105 to 106 cycles-sec-1, there occurs a quite different type 
of dissipation, associated with vibrational resonances within molecules of a 
polyatomic nature. A number of workers have studied the abnormally 
high absorption (and hence disappearance of the energy in the form of wave 
motion) of CO2 for frequencies of the order of several hundred thousand 
cycles per second. Dry air containing an appreciable per cent of CO2 
exhibits this property. In 1929 Sabine reported f a similar effect in air 
containing H2O molecules (corroborated by Meyer t and by Knudsen §). 
In this case the abnormal absorption occurs at frequencies well within the 
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audible range (2000 cycles-sec-1 or over). The effect was greatest when 
the water molecules constituted about 0.5% of all those present. Con
siderable theoretical work has been done in connection with this phe
nomenon. In general, for such absorption to occur it is necessary for the 
period of the sound wave vibration to be comparable to the time required 
to establish thermal equilibrium between the normal and the vibrating 
molecules. This process should be compared and contrasted with the 
resonance absorption by gases of certain spectral lines. In this latter type 
of absorption, the absorption frequencies are exceedingly sharp as compared 
with the acoustic case and, being intra-atomic in nature, they occur at 
very much higher frequencies.

6-9 The Doppler effect. The basic principle of the frequency shift 
known as the Doppler effect is presented in most elementary textbooks on 
physics. In a wave motion taking place in a material medium like air, 
there are three fundamental velocities to consider if one is to predict the 
apparent frequency as heard by an observer. These are first, the velocity 
of the medium um, second, the velocity of the sound source us, and third, 
the velocity of the observer u0. All of these velocities are measured with 
respect to the same set of axes, fixed with respect to the earth. We shall 
restrict our attention to the simplest case, where all these velocities are 
along the same straight line.

If both the source and the observer are at rest but the medium is moving, 
as would be the case in open air if there were a wind, the apparent frequency 
f' and the true vibration rate f are the same. If the wind is blowing towards 
the observer, the crests in the disturbance will be moving towards him more 
rapidly than if the air were stagnant and will be spaced farther apart than in 
the case of no air motion. As a result, their rate of arrival at the ear is the 
same as if there were no air motion at all. (This will be shown mathemati
cally in the general formula about to be derived.) In this case, both the 
speed of the wave relative to the observer and the wavelength in the medium 
are increased, so that f' = f.

If both the medium and the observer are at rest but the source is moving, 
there will be a change in the wavelength in the medium. The crests will 
be closer together or farther apart, depending on whether the source is 
approaching or receding. In the first case, f' will be greater than f; in the 
second, it will be less.

If medium and source are stationary but the observer is in motion, the 
effect is entirely due to the motion of the observer relative to the wave. 
In moving in a direction opposite to that in which the wave is traveling, 
the observer encounters the crests more often and f' is therefore greater 
than f. If he is moving in the same direction, the crests will arrive at his 
ear less frequently and f' is less than /.
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The general equation that takes care of all 
possible velocities can be set up by reference 
to Fig. 6-8. Let us assume all velocities to 
be in the same sense. If only the medium is 
in motion (with a velocity um')! a crest origi
nating at the source position (point >8 in Fig. 
6-8a) will in one second travel a distance c + 

um to point Ai, and there will be f complete 
cycles between >8 and Ai. If at the same time 
there is a source velocity us, this same num
ber of cycles will occupy the smaller distance 
>8'Ai = c + um — us. Looking now at Fig. 
6-8b, a stationary observer at point 0 will 

(b)

Fig. 6—8.

receive each second whatever number of cycles are contained in the dis
tance OA2. If, on the other hand, he is moving with a velocity uo, he will 
receive only the number of cycles in the distance O'A2 = c + um — uo. 

The apparent frequency f' will then be a fraction of the vibration rate of 
the source f, given by

f'=f
C | Um Uo

C | Um Ug
(6-13)

This equation is in agreement with the qualitative statements made earlier 
in this section. It is to be noted that if us and uo are both zero, the presence 
of um has no effect on the apparent frequency, but that if these velocities 
are not zero, the value of um does contribute to the numerical value of the 
frequency shift.

6-10 Practical importance of the Doppler effect. Ordinarily, the veloci
ties us and Uo are small fractions of the normal velocity of sound c. To see 
how small us might be and still produce a Doppler effect perceptible to the 
average ear, we observe that two notes on the musical scale a half tone 
apart bear a frequency ratio of about 16/15. Most listeners can easily 
distinguish a difference between these frequencies; a good musical ear can 
distinguish quarter tones and less. If we assume um and uo in Eq. (6-13) 
to be zero and solve for the velocity us to make f'/f = 16/15, we find that 
us — ^c, which corresponds to about 50 miles-hour-1. As a car goes by 
on the street, sounding a horn of fixed frequency, there will not only be a 
rise in apparent frequency as it approaches, but a drop as it recedes. The 
car would therefore be traveling at something like half this speed if the 
two frequency extremes are to be in the ratio of 16/15.
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Occasionally sources of waves in air move with velocities approaching 
or even exceeding the value of c. This is true in the case of projectiles and 
modern aircraft. Projectiles almost always travel faster than the air waves 
they produce. This behavior results in a V-shaped envelope of the air dis
turbance set up, very similar to the envelope of the water waves produced 
by a boat. Like the projectile, the boat is traveling faster than the dis
turbance in the medium. Much has been said in recent years of the diffi
culties of “piercing the sonic barrier” with airplanes, i.e., traveling at 
speeds approaching and exceeding the speed of sound (equivalent to about 
750 miles-hour-1). The physical situation may be appreciated if one 
considers the behavior of Eq. (6-13) for the case where us approaches c. 
This corresponds to an effective zero wavelength, i.e., all crests are coinci
dent. If an airplane is traveling at exactly the speed c, all irregular dis
turbances of a pressure type set up in front of the plane, due to its motion 
through the medium,; tend to remain for a considerable time in the neighbor
hood of the plane, contributing greatly to instability and lack of control. 
A good deal is known about airplane behavior at speeds greater and less 
than the speed of sound; at the speed of sound the situation is most com
plex and most difficult to analyze.

Some application of the Doppler effect has been made in the field of 
measurement. For instance, an experimental device to measure wind 
velocities depends for its operation on a utilization of the Doppler effect 
associated with a moving source of sound. •

Before leaving this discussion, we might inquire into the possible impor
tance of the Doppler effect in the production of musical sound. Since 
most musical sounds are complex in nature and contain more than one 
frequency component, the moving surface of the source may be said to be 
vibrating simultaneously at a high and a low frequency. The high fre
quency is being generated by a surface which is sometimes approaching 
the observer and sometimes receding from him, this oscillatory motion 
being due to the low frequency vibration of the surface. Thus there is 
a sort of “intermodulation” effect, to use the language of electronics, 
whereby, to the ear, the higher frequency appears to fluctuate slightly at a 
rate equal to that of the lower frequency. Such a Doppler effect might 
conceivably be a significant source of distortion in the case of a cone speaker 
that is called upon to reproduce simultaneously a very large variety of 
frequencies. Fortunately, a calculation of the magnitude of the frequency 
shift to be expected due to this cause shows it to be well below that detect
able by the average ear, particularly in the presence of a large collection of 
different musical sounds. Other sources of distortion are of far greater 
importance, as we shall see in Chapter 11.
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6-11 Transmission of longitudinal waves through liquids. The process 
of the transmission of longitudinal waves through liquids (in the bulk) is 
identical with that for gases and we have therefore only to insert the 

proper values of y, P, and p0 in the equation c While the density

of water is about 800 times as great as that for air, the bulk modulus (B is of 
the order of 15,000 to 16,000 times that for air. As a result, the velocity 
of waves in water is between 4 and 5 times that for air. The quantity y 
is nearly unity for water and for many other liquids, so that the isothermal 
and the adiabatic moduli are almost the same. (In the neighborhood of 
10°C, y is 1.001 for fresh water.) For ether, however, y is about 1.3, so 
that in this case (Bo and (Bi are quite different. For liquids, as for gases, 
y is slightly sensitive to pressure variations; in the case of sea water, a 
variation in pressure from 100 atm to 1000 atm brings about a change in y 
of approximately 1%. These pressures are extreme, but the effect is of some 
importance in acoustic depth sounding. Because of the relative incom
pressibility of liquids, the variation of density under varied conditions of 
pressure and temperature is of secondary importance as far as its effect on 
the speed of longitudinal waves is concerned. Table 6-3 gives the wave 
velocity in a number of common liquids.

TABLE 6-3

Liquid Temperature 
(°Q

Velocity 
(cm-sec-1)

Alcohol 12.5 1.24 X 105
Ether 20.0 1.01
Mercury 20.0 1.45
Petroleum 15.0 1.33
Water, fresh 17.0 1.43
Water, sea (36 pts salinity) 15.0 1.50

6-12 Experimental measurement of c for liquids. Direct measurement 
of the velocity of longitudinal waves in water may be made over large 
distances. The velocity for fresh water is measured in lakes and rivers and 
the velocity for salt water in the open sea. All that is necessary is the 
use of electrical timing devices at the sending and receiving ends. As in 
the case for gases, a laboratory method for liquids is also desirable; by 
such a method liquids other than water may be measured under controlled 
conditions. It is possible to use for liquids a modification of the Kundt’s 
tube method for gases. Instead of using dust particles to locate the nodal 
planes in the standing wave pattern, these planes may be located by means 
of a vibration detector, such as a microphone, placed against the outside 
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of the tube containing the liquid. It is interesting to point out that the 
positions of the displacement nodes, or regions of no motion within the 
liquid are, as we shall see in the next chapter, positions of large pressure 
variations in a standing wave of the longitudinal type. These pressure 
variations are transmitted to the wall of the containing tube and so may 
be picked up by the microphone. (To ensure a velocity measurement 
characteristic of the elastic properties of the liquid itself, the tube walls 
must be very thick and fairly rigid.)

In the ultrasonic frequency range, the velocity of longitudinal waves in 
liquids has been measured by means of the acoustic interferometer devised 
by G. W. Pierce * for use with gases. A quartz crystal is made to vibrate 
by electrical means so as to radiate into the fluid compressional waves of a 
frequency of 50,000 cycles-sec-1 or higher. A reflecting plate is placed in 
the path of the waves, so that considerable energy is reflected back to the 
crystal. The phase of the displacement in the returning wave relative 
to the motion of the surface of the crystal depends in part on the total path 
of travel of the returning wave. If the reflecting plate is moved towards 
and away from the crystal, a position will be found such that the returning 
wave strikes the crystal surface with a particle displacement just opposite 
to that of the motion of the crystal surface. As a result, the crystal motion 
will be significantly limited, the effect being observed as an electrical change 
in the circuit driving the crystal. As the plate is moved progressively 
towards the crystal, this effect will become critical at positions X/2 apart. 
In this way the value of X may be obtained. The electrical frequency of 
the vibrations is easy to measure and therefore the velocity c can be com
puted from the relation c = fX. This procedure is equally well adapted to 
the measurement of c in both gases and liquids.

* Proc. Am. Acad., 60, 271 (1925).

6-13 Attenuation effects in liquids. Since the velocity of longitudinal 
waves in water is more than four times as great as it is in air, the wavelength 
for any given frequency is greater by the same factor. Therefore the 
high and low temperature regions will be farther apart in water than in air 
and the temperature gradients consequently smaller. In addition, the 
ratio of thermal conductivity to specific heat capacity is much smaller for 
liquids, in general, than for gases and so what heat conduction may occur 
to attenuate the wave will be much less important for water than for air. 
It can be shown also that losses of the viscous type are smaller for liquids 
than for gases. For these reasons, longitudinal waves will travel much 
greater distances through sea water than through the air. However, 
there are other factors that undoubtedly are of major importance. As we 
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shall see in Chapter 8, longitudinal waves are rather efficiently reflected at 
the boundary between water and air (because of the great difference in the 
specific acoustic impedance for the two media, poc) and consequently much 
of the energy striking the boundary is reflected back into the water. A 
similar effect occurs at the bottom of the water layer. As a result, instead 
of the spherical divergence of a medium of infinite extent, the energy is 
confined to a relatively thin two-dimensional layer. The intensity will 
therefore fall off more slowly than with the operation of the inverse square 
law. Other factors may accentuate this effect. For instance, it has 
recently been discovered that temperature gradients in the Pacific ocean 
area operate, through refraction, to confine the energy to so thin a layer 
of the sea that underwater longitudinal waves may often be picked up at 
distances as great as 1000 miles from the source.

More will be said regarding the transmission of waves through liquids 
when we come to the general subject of ultrasonics in Chapter 12.

6-14 Longitudinal waves in solids. This is a very involved branch of 
the subject of vibration and of acoustics and will not be discussed in any 
great detail in this book. We shall confine our remarks largely to a con
sideration of isotropic substances, like glass and metals, which are well 
annealed and strain-free. In such cases the elastic properties for compres- 
sional waves are the same in all directions and a much simpler state of 
affairs exists than in the case of nonisotropic substances such as crystals, 
and metals which are in a high degree of strain due to mechanical rolling, 
etc.

One of the important differences between fluids and solids is that only 
the latter offer appreciable resistance to shear. As a result, solid media can 
support and transmit vibrations of the transverse and torsional types. In 
a solid medium of infinite extent any local disturbance will ultimately give 
rise to both longitudinal and transverse waves. (Transverse waves in 
solids will be referred to again in Chapter 7.) Considering only the 
longitudinal waves set up in an isotropic medium of infinite extent, the 
velocity of propagation depends on the density p0 and on the two elastic 
constants A and p (known as the Lame constants), according to the 
equation ______

c =JK±^, (6-14)
V po

where the effective elastic factor is therefore (A + 2p).
Our chief concern with longitudinal wave propagation in solids will be 

for samples of limited dimensions, in particular for bars whose cross
sectional area is uniform and where such areas have dimensions small com
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pared with the length of the bar and with the wavelength associated with 
the disturbance. In this case the velocity for longitudinal waves may be 
expressed in terms of Young’s modulus. This may be readily shown by 
an analysis very similar to that used for plane waves in air.

Figure 6-9 shows the effect of a small longitudinal distortion upon an 
infinitesimally thin slab of a bar. The total force F elongating a bar 
originally of length I is

F = YS^,
V

where Y is Young’s modulus, AZ is the change in length, and S is the cross- 
sectional area. (The latter is assumed to change by a second-order 
amount during the deformation.) For the thin slab of Fig. 6-9, we have

F = YS^- (6-15)

Since the value of F varies continuously along the bar in the presence of 
the wave and since it is the difference in the forces acting at the two faces 
of the slab which produces its acceleration, we need

(6-16)

(6-17)

Since this differential equation is in the wave form, we may conclude that 
the velocity of wave propagation c is

c = yff- (6-18)

To make use of this result, it is not necessary to assume that the bar is 
isotropic, as long as we measure Young’s modulus for the long dimension 
of the bar. It is interesting to point out that since the elastic constant Y 
is in general smaller than the effective elastic constant A. + 2/z for the case 
of a medium of infinite extent, the velocity along the bar is smaller than 
would be the case for the same material in large bulk. This is because in 
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the latter case there is lateral as well as longitudinal resistance to deforma
tion. In the case of the bar of small cross section, the lateral resistance is 
small (and may be neglected), so that the effective “stiffness” is thereby 
reduced.

When the above assumptions of dimensions are not valid, Eq. (6-18) 
may not be used. As we shall see later, a vibrating quartz crystal is a 
very common source of longitudinal waves of ultrasonic frequency. In 
this case, the material is anisotropic and the wave velocity within the 
crystal is a function of the orientation of the crystalline axes and also of 
the particular shape of the bounding surfaces, and therefore no single for
mula will suffice.

6-15 The measurement of c as a means of studying the elastic proper
ties of solids. For isotropic solids there are two important elastic con
stants, the Lame constants X and n, already mentioned. These constants 
are simply related to the velocity of longitudinal waves in the materials 
and also to the velocity of torsional waves. Both these types of waves 
may easily be set up experimentally and the measurement of these two 
velocities enables computation of the important elastic constants. With 
the more complex situation that obtains with anisotropic solids, there may 
be 20 or more significant constants. These also are related to the various 
velocities of wave propagation. The measurement of c is therefore a very 
useful tool for determining more fully the nature and behavior of the solid 
state.

6-16 Dissipation within solids. Because of the high heat conductivity 
of solids, and of metals in particular, dissipation of energy by heat conduc
tion is of greater importance than for gases or liquids, and for many solids, 
the losses due to viscosity phenomena are even more important. Rubber is 
a good example. The sources of internal dissipation are, in general, ex
ceedingly complex for solids. In well-annealed polycrystalline metals, heat 
flow of a resonant type accounts for a considerable fraction of the dissipa
tion, under certain conditions. * In addition, the presence of internal strains 
(imperfections in the crystal structure along crystal planes) is important. 
All of these effects are usually called loosely “internal friction.” Much 
experimental and theoretical work has been done in this field. The study 
is important from a practical point of view because of its relation to the 
well-known failure of metallic structures under the influence of constant 
vibration.

* Zener, Phys. Rev. 52, 230 (1937) and 53, 90 (1938). Also Randall, Rose, and 
Zener, Phys. Rev. 53, 343 (1939).
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PROBLEMS

1. The phenomenon of dispersion is 
observed for longitudinal waves in air only 
at very high frequencies. Give the rea
sons for this statement.

2. Would the velocity of sound waves 
in the open air be expected to vary as the 
square root of the barometric pressure? 
Explain.

3. The velocity of longitudinal waves is 
being measured in a closed cylindrical tube 
immersed in a temperature-controlled bath. 
How will the velocity be found to vary 
with the temperature? Compare with the 
situation obtained in the open air.

4. An acoustic piston, producing plane 
waves in open air is oscillating at a con
stant frequency and with constant am
plitude. Compare the intensity in the 
beam at — 10°C with the intensity at 
30°C.

5. Assuming that the effective velocity 
of a wave of large amplitude is given by 
c' = c(l + s) [(7+1) /2]? (a) f|nci the value 
for the condensation s in air at 0°C and 
76 cm of Hg, for which the effective 
velocity c' exceeds the small amplitude 
velocity by 1 %. (b) Find the correspond
ing intensity level at which this occurs.

6. The apparent frequency of an auto
mobile horn when the car is approaching a 
stationary observer is 10% higher than 
when the car is moving away. There is 
no wind. Find the velocity of the car, 
assuming it to be constant. Take the 
velocity of sound waves in still air to be 
331 m-sec-1.

7. A sound source of frequency 1000 
cycles-sec-1 is mounted on the end of a 
horizontal bar rotating about a vertical 
axis. The source is 2 feet from the axis. 
An observer in the plane of rotation of the 
bar hears a periodic frequency shift, due 
to the Doppler effect. Assuming he can 
detect the presence of two apparent 
frequencies if their ratio is 20/19 or greater, 
find the minimum speed of rotation in 
rpm at which a frequency shift might be 
detected.

8. A loudspeaker cone is vibrating 
simultaneously at the frequencies 50 and 
1000 cycles-sec-1. If the amplitude of 
motion of the lower frequency is 1.0 mm, 
find the maximum Doppler shift in the 
higher frequency, which might occur, for 
an observer sitting directly in front of the 
loudspeaker.



CHAPTER 7

STATIONARY WAVES. VIBRATING SOURCES. 
MUSICAL INSTRUMENTS

7-1 Introduction. The fundamental relations for plane and for spheri
cal waves developed in Chapters 2 and 3 have assumed that a disturbance, 
once set up, travels out from the source an indefinite distance. This pic
ture of a medium infinite in extent is useful for any fundamental descrip
tion of the physics of wave propagation since, at any one point in space, 
we are concerned with waves traveling in one direction only. For sound 
sources radiating into the open air, and with few obstacles to reflect or 
scatter the energy, the medium may be considered virtually infinite in 
extent. However, when sound waves strike hard, relatively rigid struc
tures, an appreciable fraction of the incident energy may be deflected and 
perhaps returned in the direction of the source. In the region where this 
occurs there will be two wave trains moving in opposite directions, each 
contributing to the deformation of the medium.

Under certain conditions this situation may give rise to stationary or 
standing waves, with a whole new set of features quite foreign to waves of 
the unidirectional type. In this case the “pattern” of the deformation in 
the medium remains fixed in space, with no evidence at all of propagating 
crests or troughs. It is with this general phenomenon that we shall be 
mainly concerned in this chapter.

Stationary waves may occur in any medium having definite boundaries. 
In air, such waves may be of primary importance within a room, where the 
medium is confined by the surrounding walls. Wave reflection, and the 
consequent production of a standing wave pattern, may sometimes take 
place without an actual change of medium. This is the case when waves 
traveling down a cylindrical pipe reach an end open to the surrounding air. 
In this case the reflection is associated with the change in the acoustic 
impedance as the wave passes from the region within the pipe to the region 
of free space beyond it. This phenomenon is very similar to that taking 
place in an electrical transmission line whenever the line characteristics 
change abruptly and we shall have more to say about it later.

Sound, musical or otherwise, originates in many cases from the vibration 
of some solid of limited dimensions, such as a stretched string, a metallic 
bar or plate, etc. (A few sources, like the organ pipe and the siren, obvi
ously do not fall into this classification.) These elastic solids are set into 
vibration by deforming the material either by a direct contact force or, as 
in the case of sources like the radio loudspeaker cone, by forces of an electro- 
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magnetic or similar nature. As we saw in Chapters 2 and 3, a deformation 
of an elastic medium (in the earlier discussion a gas) gives rise to a wave 
disturbance traveling with a speed determined by the elastic and inertial 
properties of the medium. One would expect that waves of some sort 
would follow the deformation of a stretched string, an elastic plate, or the 
like, these waves moving within the material of the solid itself. Such 
waves do occur and in the case of solids may be either of a longitudinal or 
of a transverse type. In either case, these disturbances are sure to be 
reflected at the boundaries of the solid, so that the conditions are right 
for the production of stationary waves.

Stationary waves are inevitably present in vibrating sound sources 
whose rigidity is anything short of the infinite rigidity assumed for an 
ideal acoustic piston (only at low frequencies can any practical source be 
assumed to be equivalent to an acoustic piston). In the general subject of 
the vibration of extended bodies (rather than of particles), the variety of 
standing wave patterns that may occur is of considerable interest for its 
own sake. The study of these patterns is also important, however, be
cause of the part they play in the radiation of sound waves by such a 
vibrating body. For any one variety of standing wave in the sound source 
there will be a particular set of surface motions, these surface motions 
being, of course, the cause of the longitudinal waves in the air. In this 
way the whole character of the resulting sound waves will be significantly 
affected by the wave motion within the source itself. Waves in the source 
and waves in the outside medium are intimately connected.

The transverse motion of a stretched string furnishes the simplest ex
ample of waves in a solid having fixed boundaries, since a string can be 
considered a body of one dimension only and since the stresses in a string 
are of a particularly simple type. We shall consider first the physical 
properties of the string that make possible wave propagation. Later we 
shall investigate the effect of reflection for a string of limited length, lead
ing to the production of stationary waves. The stationary wave equations 
will prove very useful in the discussion of vibrations of strings and of air 
columns. While the physical picture is different for air columns, the 
mathematics of string vibrations may be used with very little modification.

7-2 The ideal string. Our ideal string is of uniform mass per unit 
length and is under tensile stress only, even when deformed. This implies 
that the string is perfectly flexible, so that no bending moments are ever 
called into play. The particles of the string are free to move in a direction 
transverse to the long dimension of the string under the action of restoring 
forces that are due, as will be seen presently, to the inclination of the string 
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on either side of such particles. (Any longitudinal motions of the particles 
may be ignored in view of the great stiffness of the string for deformations 
of that type.) The extent of the transverse displacement of any string 
particle will be assumed small enough so that the tension may be considered 
to remain constant in magnitude while the motion is taking place. No 
forces of a dissipative nature exist.

7-3 The differential equation. We shall assume, as we did for plane 
waves in air, a very general type of deformation. Figure 7-1 represents 
the particular shape of the string in some
local region at a given instant of time. 
A segment of the string of differential 
length dx is acted upon by two forces 
only, the tensions Ft at either end. These 
forces will not, in general, make the same 
angle </> with the x-axis, but because of 
the curvature of the string will differ by 
a small amount as shown. As a result, 
there will be a small net force in the 
transverse or ^-direction. By Newton’s 
second law, we have

Fig. 7-1. Essential geometry for 
the deformation of an ideal stretched 
string.

d^uFt sin (</> + d</>) — Ft sin </> = aidx
dr (7-1)

where ai is the mass per unit length of the string.
The net force on the left may be rewritten

Ft sin (</> + d</>) — Ft sin </> = F,d(sin </>) = Ft-^- (sin </>) dx. (7-2)
(jX

Remembering that the angle </> is never very great if the transverse string 
displacements are small, we may, with negligible error, replace sin </> by 

dytan <F Since tan </>, the slope, is equal to the net force on the string 
segment may be written

5 (fl'llFt — (sin </>) dx = Fj — (tan </>) dx = Ft^~ dx. dx dx dxz
Equation (7-1) then becomes

v d2y , d2yF,—2dx = <rldx^
or

&y. = &y, 
dt2 dx2 (7-3)
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where

7-4 The solution. Equation (7-3) is identical in form with the equation 
for plane waves in air. We may therefore write down at once its general 
solution,

y = f(ct + x), (7-5)
where y in this case refers to a transverse displacement of a string particle, 
whereas % in the plane wave solution specified a longitudinal displacement, 
The interpretations of Eqs. (2-13) and (7-5) are identical as far as wave 
propagation is concerned. Any local deformation of the string will imme
diately start two waves, one moving in the +x direction, corresponding to 
y = f(ct — x), and one moving in the —z direction specified by y = f(ct + x). 
(Functions of the form f(x ± ct) are also solutions.) The speed of travel 
will be the same, i.e., c =y/Ft/<ri. If the string is very long, so that possi
ble reflection at the ends need not be considered, there are no restrictions 
placed upon the form of the function in Eq. (7-5) as long as it contains the 
argument (ct + x). The disturbance may be periodic but it is not neces
sarily so.

The graphs of Fig. 2-3 may also be used for the case of a string, where 
they have the following particularly simple interpretation. If we plot in 
cartesian coordinates the string displacement y as a function of x at any 
one fixed instant of time, the resultant graph will be a virtual photograph 
of the string, with the wave shape “frozen” upon it. The graph is the 
string shape. In the case of longitudinal waves, it will be remembered, a 
vertical ^/-coordinate represented a particle displacement along the hori
zontal x-dir ection.

7-5 The string of limited length. For a string of limited length our 
solution must satisfy the conditions imposed at the boundaries, as well as 
the differential equation. Let us suppose that at the position x = 0 the 
string is attached to a support of infinite rigidity. (The rigidity of actual 
supports is often sufficiently great to justify this assumption.) The 
boundary condition at this point is that y must be zero at all times. Equa
tion (7-5) may therefore be written

y = fi(ct + x) + f2(ct - x), (7-6)
where /i and f2 are not necessarily the same functions. If, however, the 
functions/! and/2 are taken to be of the same form but of opposite sign, we 
may write, for the point x = 0,

0 =/(d) -/(d). (7-7)
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This is an obvious identity and the boundary condition is satisfied. The 
motion of the rest of the string will then be given by

y = f(ct + x) - f(ct - x), ' (7-8)

implying two wave trains of exactly the same wave form traveling in opposite 
directions.

7-6 Reflection at one end of a string. The graphical interpretation of 
Eq. (7-8) is interesting and important. From a mathematical point of 
view, the two wave trains exist to the left of the point x = 0 as well as to 
the right. Physically, of course, there can be no string vibrations except 
where x is positive. In Fig. 7-2a are drawn the two oppositely moving 
wave disturbances represented by f (ct + z) and — f (ct — x) at some par
ticular time t. In the figure the solid line represents the disturbance 
moving to the left and the broken line the disturbance moving to the right. 
Only to the right of the support do these disturbances have any real signifi
cance. To satisfy the boundary condition it is necessary that the ordinates 
due to the separate disturbances always be equal and opposite at x = 0 
(from Eq. (7-7)). At, other positions along the string this is not at all 
necessary, although at certain instants of time it may be true. The actual 
displacement of any particle of the string at any position x will be the 
algebraic sum at that instant of the particular ordinates associated with

x=0

(a)

(b)

Fig. 7-2. Reflection of transverse waves at a rigid boundary.
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the separate disturbances, whatever they may be. In Fig. 7-2b is shown 
the graphical sum of the solid curve and the broken curve for the time 
chosen. This sum curve represents the actual shape of the string.

The situation to the right of the string support may be summarized as 
follows. A train of waves is approaching the support and a second train 
of exactly the same wave form is simultaneously moving away from the 
support. This is the ordinary notion of reflection. In this case, where the 
support is taken to be completely rigid, the reflection is perfect. The 
energy in the reflected disturbance must then necessarily be identical to 
that in the incident disturbance. The maintenance of the wave form 
after the reflection is consistent with such a conservation of energy.

The process of reflection might have been approached somewhat differ
ently. It is possible to follow along the string a small pulse of a highly 
localized nature moving towards the support position x = 0.' As the 
deformation reaches the support, causing the string to pull, say, upward 
upon it, the support (being completely unyielding) reacts upon the string 
in such a way as to throw the string particles downward. In this way the 
arriving and departing pulses may be seen to involve ordinates of opposite 
algebraic sign at the support position, as was apparent from our more 
formal mathematical analysis. The dynamics of the situation at the 
support, as far as the string particles are concerned, is exceedingly difficult 
to follow in any quantitative way. It therefore seems preferable to use 
the approach of the preceding paragraphs. This is one instance, not at 
all uncommon in physics, where physical reasoning must bow to formal 
mathematics as the more useful tool.

If the string support is not infinitely rigid, the reflection process is modi
fied. Obviously, we may no longer use the boundary condition that y is 
at all times zero at the position x = 0. We shall have more to say later in 
this chapter on the effect of yielding supports; this matter is also related 
to wave absorption at boundaries as discussed in Chapter 8.

7-7 Simultaneous reflection at both ends of a string. For a string of 
limited length, reflection will, in general, take place at both ends. It is this 
double reflection that makes possible, indeed necessary, the periodic motion 
of a string, so important to stringed instruments as sources of musical 
sound. Consider a pulse of some sort near one end of the string, traveling 
along it to the other end and there being reflected back towards the first 
end. The total time T for the pulse to return to its starting point will be 
21/c, where I is the length of the string and c is the velocity of wave propa
gation. After a time T, therefore, a particle of the string will repeat its 
original motion. In this manner the motions of all particles of the string 
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will necessarily be periodic. It will turn out that with certain initial 
deformations of the string the period of its motion may be less than 2Z/c 
but it is never greater. In the next section we shall see just what the period 
of the string motion may be, consistent with both end conditions.

7-8 Vibrating string fixed at both ends. In view of the expected peri
odic motion of the string, let us take as the solution to the wave equation 
two periodic functions of the same form but of opposite sign, in order to 
satisfy the boundary condition at x = 0:

y = ym sin (cZ + x) + aj — ym sin (cZ - x) + aj, (7-9) 

where ym is the amplitude of motion in each of the two waves and a is a 
phase angle. Equation (7-9) may then be rewritten

Expanding the sines of the sums and differences of two angles and collecting 
terms, we find that

. (2ivx\ (2irct \ /-y = 2ym sin — cos -— + «■)• (7-10)
\ A / \ A /

At this point we may introduce the boundary condition for the right
hand end of the string. Since this end is fixed, when we insert in Eq. 
(7-10) the value of x = I, it is necessary that y remain zero for all values 
of the time. For this to be true, the value of X must be restricted by the 
relation

2tfZ
—~— = nirX 

or by

X = -, (7-11)n

where n is any integer. When the value of X given by Eq. (7-11) is inserted 
into Eq. (7-10), we obtain

o . fnir \ fmrc . . \y = 2ym sin I— xI cos I -y- Z + a I • (7-12)\ t j \ b /

This is one form of the stationary wave equation. It applies in this case to 
a string stretched between rigid supports, but with different variables it 
may be used for other vibrating bodies as well, as we shall see later, provided 
that the boundary conditions are analogous to those assumed for the string.
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7-9 Interpretation of the stationary wave equation. According to 
Eq. (7-12), there are an infinite number of possible periodic motions, 
depending on the value of the integer n. The frequencies are restricted to 
the values given by

mrc

and hence constitute a harmonic series of the Fourier type. As with the 
simple progressive type of wave, y is a periodic function of both x and t, but 
in this case there is no evidence of traveling crests and troughs. The 
amplitude of motion of the different particles of the string varies along the 
string with the value of x. For positions where (nTr/tyx is an even integral 
multiple of ?r/2, the amplitude is zero, since the sine function in Eq. (7-12) 
is zero. These points are called the nodes. Between the nodes, at posi
tions where (nir/l)x is an odd integral multiple of tt/2, the amplitude is a 
maximum and is equal to 2ym. These points are called the antinodes or 
loops.

Between an adjacent node and antinode the string particles have ampli
tudes intermediate between zero and 2ym. On opposite sides of a nodal 
position the particles are, at any one instant, moving in opposite directions. 
This may be seen by examining the algebraic sign of the expression

— x 1 in the neighborhood of a value of x for which the angle is some t /
even integral multiple of tt/2 (a nodal point). If this sign is positive on one 
side of a node it will, at the same instant, be negative on the other, indicat
ing a relative phase of 180° for the particle motions.

The distance between the nodes (or the antinodes) will depend on the 
period of vibration and hence on the value of the integer n. Let us suppose 
the integer n to be unity. Since a node will occur at intervals along the 
string whenever the angle (nirx/V) changes by an amount tt, the correspond
ing change in x will be equal to I. Hence torn = 1, the spacing of the nodes 
is the length of the string itself, i.e., there are only two nodes, at the ends. 
From Eq. (7-11), the length of the string will be X/2. This is the simplest 
mode of vibration, where //, the so-called “fundamental” frequency, is 
given by

/z = fz = ^- (7-14)

If n = 2 (/ = 2ff), the angle (nirx/l) will increase by ir when x increases by 
an amount 1/2, and there will be a node in the middle of the string as well 
as at the ends. The length of the string is then equal to the wavelength.



Fig. 7-3. Several possible stationary 
wave patterns for a string stretched 
between rigid supports.
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If n = 3, the change in x need be 
only Z/3, etc. The various possible 
patterns for the first few integral 
values of n are given in Fig. 7y3. 
The 180° phase relationship men
tioned above is also indicated.

By far the clearest idea of the 
nature of stationary waves is gained 
if a vibrating string is viewed under 
stroboscopic light. Such a light 
source is regularly periodic in char
acter and the electrical circuit is 
usually such that the frequency may 
be smoothly adjusted over quite a 
wide range. If the illumination fre
quency is set to be the same as 
that of the string while the latter 
is executing one of its possible modes 
of vibration as given by Eq. (7-12), the string will appear to stand still, 
since it will be visible only when its various particles are in the same 
position in space. If the illumination frequency is slightly higher or lower 
than that of the string, the latter will appear to vibrate very slowly, in 
the manner peculiar to stationary wave behavior. The successive changes 
in shape, the different particle amplitudes, and the phase relationships may 
then be clearly seen. (Similar effects may occur when the ratio of string 
frequency to illumination frequency has certain values differing from unity.) 
It is regrettable that no such simple demonstration is possible with 
unidirectional waves along a string, since with a finite length the pattern 
is also complicated by reflections.

7-10 Other end conditions. Both ends free. When stretched strings 
are used on musical instruments, the slight yielding of the supports is an 
important factor in the radiation of musical sound by the instrument as a 
whole. From the standpoint of the possible modes of vibration of the string 
itself, however, the assumption of complete rigidity at the points of attach
ment predicts a set of stationary wave patterns in close agreement with 
experiment. The quite different boundary condition that one end of the 
string be completely unrestrained is of interest. Such a boundary condition 
is never encountered in musical instruments, since it would then be impos
sible to maintain any tension in the string. We consider this highly artifi
cial situation only because of its mathematical importance in the later 
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discussion of stationary air waves in pipes. As mentioned earlier, the 
mathematics developed for the string is directly applicable to the resonance 
behavior of air in pipes. Such columns of air may be considered “free” 
to move at an open end, the elastic factor, in this case being present along 
the air column without the necessity for any “pull” at the ends. We con
sider the free-end condition for the string because it is easier to observe 
than in the air column.

A simple way of demonstrating the free-end condition for a body like a 
string (and therefore observing its physical effect experimentally), is to 
hang a heavy flexible rope in a vertical position. The lower end will be 
virtually unrestrained and the tension will be maintained by the weight of 
the rope itself. The transverse vibrations of such a vertical rope are 
affected in an important way by the fact that the tension is a variable up 
and down the rope, being a maximum at the top and approaching zero at 
the bottom. All transverse waves will therefore travel with a speed which 
is a function of the position along the rope. Despite this major complica

// 
//

Fig. 7-4. Simplest 
mode of vibration 
of a heavy rope hung 
vertically from a 
rigid support.

tion, the condition at the bottom is that of a “free 
end. ” If the upper end is moved back and forth with 
a periodic transverse motion, there will be some fre
quency or frequencies which will set up standing waves 
along the rope. A close observation of the lower end 
will reveal the physical effect of the free-end condition. 
The particles of the rope will there have a maximum 
amplitude of motion (as compared with particles farther 
up the rope). The motion of a heavy rope will usually 
be slow enough to show that the slope of the wave shape 
close to the lower end is zero, i.e., the end portion 
always remains vertical and therefore parallel to the 
long dimension of the rope (Fig. 7-4). Using y and x, 
respectively, to specify the transverse and longitudinal 
directions relative to the rope, the mathematical 
boundary condition at a perfectly free end is that dy/dx 
must always be zero, rather than that y must be zero. *

* The mechanism of free-end reflection may be considered somewhat as follows. 
At a rigid boundary the transverse force acting on the support upon the arrival 
of an incident wave or pulse is proportional to the slope of the string just in front 
of the boundary (it is proportional to Ft tan 0 for small slopes). If we imagine 
the mass and stiffness of the support to decrease and approach zero, this transverse 
force must go to zero also. Since T is assumed constant, the slope must therefore 
approach a zero value at the boundary as we approach the completely free-end 
condition.
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Let us return to the general solution for waves along a string (Eq. (7-5)). 
If we suppose that the end at x = 0 is free, we must in this case select two 
functions/ which are the same in form and of the same algebraic sign. For 
if the equation for y is then written

y = f(ct + x) + f(ct - x), (7-15)

it is seen that upon performing the differentiation dy/dx and setting x = 0, 
we obtain

^=/'(c0-/'(cO=O. (7-16)

The boundary condition is thus seen to be satisfied. If a periodic form for 
the two waves is chosen as in Eq. (7-9), but with a positive sign in front of 
the second part of the solution, it is easy to show by the same trigonometric 
process that y may be written

y = 2ym cos (7-17)

As in the procedure for the two fixed ends, we now introduce the condi
tion that the end at a: = I is also completely free. If we differentiate y par
tially with respect to x, we have

dy 2tt . (2ttx\ . (2nrct . \7^ = —%ym 7- sin — I sin —---- J- a •dx X \ X / \ X / (7-18)

Inserting the value x = I, we see that for dy/dx to be zero for all values of 
the time, the following relation must hold:

2irl“ — = nir 
X

or

n (7-19)

where n is any integer. This will be recognized as exactly the same restric
tion upon wavelength as was imposed by the condition that both ends be 
fixed. Therefore the possible frequencies of vibration are exactly the same 
as for fixed ends and Eq. (7-13) applies equally well for either set of condi
tions. Inserting X from Eq. (7-19) into Eq. (7-17), the complete stationary 
wave equation may be written

y = 2ym cos mrc 
. I (7-20)



VIBRATING SOURCES [CHAP. 7

Fig. 7-5. Several possible stationary- 
wave patterns for a hypothetical 
stretched string whose ends are com
pletely free to move transversely.

Fig. 7-6. Several possible stationary 
wave patterns for a hypothetical 
stretched string fixed at one end and 
perfectly free to move at the other.

While the possible frequencies are the same as for the string with fixed ends, 
the stationary wave patterns do look different, as seen in Fig. 7-5 (compare 
with Fig. 7-3). At the free ends there are always antinodes. The simplest 
mode of vibration involves a wavelength which is just twice the length of 
the string, with a single node at the center.

7-11 Vibrating string, one end fixed, one end free. This particular set 
of end conditions, like the case just discussed, where both ends were free, 
is of interest primarily in connection with air waves in pipes. Let us 
assume that the left end is fixed and the right end is free. In this case the 
stationary wave equation becomes

y = 2ym sin (7-21)

where n' is an odd integer only, 
given by

f =

The possible frequencies of vibration are

n'c _ nz [Fj 
41 ~ 4Z N ai (7-22)

Each of the higher modes of vibration is an odd multiple of the fundamental 
lowest frequency. In Fig. 7-6 are shown a few of the simpler standing 
wave patterns
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7-12 Initial conditions. Throughout the previous discussion we have 
been discovering possible modes of vibration. This does not at all imply 
that a string necessarily executes any particular one of these modes, nor 
must all modes exist simultaneously. Just how the string will move is 
determined by the initial way in which the string is deformed, as well as by 
the special boundary conditions for certain positions along x. In other 
words, since y is a function of both x and t} we must satisfy boundary con
ditions for both variables.

It must be freely admitted that to state precisely the initial time condi
tions for the vibration of strings on musical instruments is a very difficult 
matter, impossible in most cases. The most common modes of excitation 
are plucking, as in the banjo, the harpsichord, and occasionally the violin; 
striking, as in the case of the piano; and bowing, a process peculiar to the 
violin and related instruments. The initial conditions are progressively 
more complicated, in that order. While numerous analytical statements 
have been attempted, few may be said to accurately describe the situation. 
In addition, the project hardly seems worth-while from a practical point of 
view since, as we shall see presently, the resonance vibrations set up in the 
body of a musical instrument color the quality of the radiated sound fully as 
much as do the vibration properties of the string itself. In a few cases, 
however, the initial conditions are fairly simple. We shall briefly consider 
one such case, to indicate the procedure.

It will be noted that a phase angle a was included in Eq. (7-12) for the 
vibrations of a string fixed at both ends. Let us consider to begin with 
that all possible modes may exist simultaneously as well as separately (by 
the superposition principle). Then we may write for y,

where An and an are the amplitudes and phase angles, respectively, asso
ciated with each mode. This equation may be put in the form

y
7 nirc , . . nircbn cos —j— t + an sin —j— L L (7-24)

where

and
an = — An sin an 

bn — An COS (%n»
(7-25)

The problem now is to determine coefficients of the form an and bn in such 
a way as to completely satisfy the initial conditions. This process consti
tutes essentially a Fourier analysis, for at the time t = 0,



164 STATIONARY WAVES. VIBRATING SOURCES [chap. 7

'X'A . niry = >1 On Sin ~ x
Z = 0 \ 4- t

If, in addition, an initial velocity condition is imposed,

1 = 0

(7-26)

(7-27)

If we can now state y as a function of x, and y as another known function 
of x at the time t = 0, the coefficients in the cosine and sine series of 
Eq. (7-24) can be determined by use of the formulas developed in Chapter 1. 
We then have the complete picture for the subsequent motion of the string.

Example. The initial conditions for a plucked string can be stated rather simply. 
Assume that just before release the string is given the initial shape shown in Fig. 7-7. 
Let us suppose, as in the diagram, that the string is plucked at the center. Then 
at the time t = 0 we may express the function y as

2h ( n y = — x, for 0
I 2’

and
2/ = (Z — x), for < x < Z,

x= —x=0
h

Fig. 7-7. The geometry for a string 
plucked at the center.

where I is the length of the string and h is the displacement at the center. In 
addition, let us picture the string as released from a state of complete rest, i.e., 
at time t = 0, y = 0, everywhere on the string. This means, from Eq. (7-27), 
that all the coefficients of the form an must be zero, so that the sine series (Eq. 
7-24) must be completely missing. To determine the coefficient of a typical cosine 
term, we make use of Eq. (7-26) and Eq. (1-16), that is,

8h . nir

y

Plainly, the coefficients are zero for even values of n and consequently only the 
odd harmonic multiples in the harmonic series will be present after the string is 
plucked. Their amplitudes as determined from the expression above for bn turn 

out to be in the ratio of , 7^—, 7^7, etc., diminishing rapidly as the frequency 
rises. W

7-13 Other initial conditions. General considerations. The example 
just given will suffice to show the general procedure for an analysis of this 
type. Since for most modes of excitation the lowest frequency involves the 
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greatest amplitude, it will usually be the most prominent among the 
various string vibrations and will, in general, be the most prominent to 
the ear and so determine the characteristic 11 pitch. ” The amplitudes of 
the higher harmonics, so important to the quality of the emitted sound, are 
completely determined by the mathematics. It should not be concluded, 
however, that the intensity ratio as observed by the ear will bear any simple 
relation to these relative amplitudes. The vibration of the body of the 
musical instrument has an enormous effect upon the radiated sound, as we 
shall see later in the chapter, and alters radically the harmonic content in 
the transmitted sound wave.

For a string which is struck, as in the case of the piano, the initial condi
tions are more complicated, because of the added forces exerted by the 
hammer over a finite time. To represent this situation analytically is very 
difficult if one desires to take account of the transient period of the hammer 
contact. In addition, with a sharp blow (as indeed also with a violent 
plucking) the small amplitude vibration assumed for the string is easily 
exceeded and, as for waves in air, different portions of the disturbance will 
travel with different speeds. One thing may be noted, however, from the 
result for a plucked string. Any harmonic whose stationary wave pattern 
involves a node at the point of initial plucking or striking is always absent, 
e.g., the even harmonics were not present in the problem just presented. 
A piano string is struck by the hammer at a point about | of the distance 
from one end. This discourages the 7th and 9th harmonics, whose combi
nation is particularly dissonant to the ear.

A further effect of the hammer is associated with the softness of the felt 
face. Since the blow is made less abrupt and is less highly localized 
because of the felt, the harmonics above about the 6th are reduced in 
prominence in the general interests of tone purity. The hardness of the 
felt in pianos differs considerably and corresponding quality differences 
in tone are readily recognizable.

Parenthetically we might stress the point of view of the physicist in 
contrast to the opinion of many musicians as to the exact role played by 
the performer in determining the quality of a single note struck on a piano. 
Jeans and others have pointed out the purely mechanical linkage between 
the key and the hammer, whose characteristics are largely beyond the con
trol of the musician. As a matter of fact, oscillograph records of notes pro
duced by a musician’s finger and by the falling of a weight (where the 
strength of the blows is identical) are practically indistinguishable. The 
pianist, of course, must possess many technical skills relating to the manner 
in which a sequence of notes is played, but to the physicist the existence of 
any such skill in the striking of a single note is pure fiction.
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7-14 Bowing. Relaxation oscillations. The excitation of a violin 
string by bowing is too complicated to discuss in any mathematical detail. 
As the gut is slid over the string, its rosin-coated surface alternately holds 
to the string and then lets go. As a result, a disturbance of a periodic 
nature travels down the string and stationary waves are quickly set up. 
The phenomenon occurring at the portion of the string in contact with 
the bow is mainly a function of local elastic and frictional forces only. 
Nevertheless, the vibrations occurring over the string as a whole are of 
frequencies characteristic of conventional free string motion, which indi
cates that the inertial as well as the elastic properties of the string must 
enter into the total phenomenon. The bow, serving as a driving agent, 
merely supplies enough energy, through a mechanism involving rather 
weak coupling, to maintain the string vibrations at constant amplitude. 
Raman*  has been able to develop a reasonably satisfactory mechanical 
theory of the bowing process, although not complete in all details.

* Ind. Assoc, for Cult, of Science, 15, 1-158 (1918). Also Phil. Mag. 38, 573-581 
(1919).

] Phil. Mag. 2, 978 (1926); also 6, 763, (1928).

The phenomenon occurring at the contact point of a bowed string is of 
some importance outside the field of musical sound. Vibrations of this 
general type are called “relaxation” vibrations and, as has been suggested 
above, are of a frequency dependent only upon elastic and frictional factors, 
with inertia often playing a very minor part. For there to be the alternate 
slipping and nonslipping referred to, the maximum static friction must be 
regularly exceeded, with short intervening periods during which a lower 
sliding friction is in operation. A frictional force which periodically 
changes sign will, mathematically speaking, bring about such a state of 
affairs. Van der Pol f and others have studied equations involving friction 
of this type and have obtained solutions in approximate agreement with 
experiment. The period of motion, as so determined, is proportional to 
the ratio of a frictional coefficient to an elastic constant. Many examples 
of this type of vibration may be cited. The squeaking of a door hinge, the 
flapping of a flag in the wind, and the scraping of chalk on a blackboard 
are a few. The operation of the so-called sweep circuit in an oscilloscope, 
where a capacitor alternately charges and discharges, is an example of a 
relaxation oscillation of an electrical nature. In this case the period of 
the oscillations depends on the ratio of capacitance to electrical resistance.

7-15 Vibration of membranes. Stationary waves in two dimensions. 
A membrane may be considered as a two-dimensional flexible string. It 
consists of a thin sheet of elastic material under uniform stress in a direction 
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tangent to its surface and of uniform mass per unit area. A circular 
drumhead is essentially a membrane, in this case held bound at its circum
ference. The mathematics of a square membrane, although this shape is 
seldom used, is simpler than that of a circular membrane. In cartesian 
coordinates, the differential equation for the motion of a membrane may 
be written (almost intuitively) as

d2z _ Fa / d2z d2z\ 
dt2 ~ o-s \dz2 + dy2)

where x and y are measured in the plane of the membrane and z is a dis
placement perpendicular to this plane. The quantity Fs is the stress 
across unit length in the plane of the membrane (defined as for liquid sur
face tension) and <rs in this case is the mass per unit area.

If periodic deformations having circular symmetry are assumed (and 
this will obviously be the case when a drumhead is struck initially at the 
center), this equation may be transformed to read

,|^ + -^ + Az = 0, (7-29)
dr2 r dr '

where r is a radial coordinate and A is a constant related to the inertial 
and elastic factors as well as to the frequency of any simple harmonic 
motion which may take place.

The solution of the differential equation (7-29), assuming a steady state 
symmetrical stationary wave pattern, must, of course, take account of the 
boundary conditions. For a drum, z must be zero when r is equal to 
the radius of the drumhead. We will simply summarize the results of the 
mathematics. The possible frequencies do not constitute a harmonic 
series. The numerical relations between the first few higher frequencies 
and the fundamental frequency are given in Table 7-1.

TABLE 7-1

Frequency A A A A A A

Relative frequency 1.0 1.59 2.13 2.29 2.65 2.91

In Fig. 7-8a, b, c are shown the instantaneous shapes, together with the 
nodal lines for three symmetrical modes of vibration. For comparison, 
Fig. 7-8d shows a possible mode of vibration which does not have circular 
symmetry. Such a mode might be excited by striking the drumhead off- 
center.
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(0 (d)

Fig. 7-8. A few of the possible inodes of vibration of a stretched circular membrane. 
Arrows point to nodal lines. (After Morse)

The prominence and number of the possible modes of vibration which 
will exist with any practical kind of excitation will depend on the initial 
conditions, just as for a string. To determine the exact nature of the 
vibration, the procedure is similar to that employed for the string, although 
somewhat more difficult. Drumheads are often stretched over the tops of 
rigid airtight containers (as, for instance, the kettle drum of the orchestra) 
and the presence of the trapped air significantly increases the stiffness of 
the drumhead and hence raises the natural resonance frequencies.

7-16 Longitudinal stationary waves in bars. We have seen in Section 
6-14 that plane longitudinal waves travel down a bar of uniform cross sec
tion with a velocity c = W/p0. This velocity is quite independent of 
frequency, as is the case with waves of small amplitude in air and with 
transverse waves of small amplitude along a stretched string. Since the 
differential equation for the waves in a bar is identical in form with the 
equation for waves along a string, we may take over the solution and write

£ = f(ct ± x).

For a bar of limited length, one may impose boundary conditions at the 
ends which are completely analogous to the end conditions for the string, 
remembering that the particle displacement £ for the bar is longitudinal. 
This will lead quite naturally to a stationary wave equation of the same 
type as Eq. (7-12). If the bar could be clamped between infinitely rigid 
supports, the particle displacement £ at the ends would always be zero. 
Equation (7-12) would then apply exactly, except that y would be replaced 



7-17] TRANSVERSE WAVES IN BARS 169

by £. The possible periodic motions are then given by Eq. (7-13), that is,
. _ nc 

 7 “ 21*  
where c in this case is vF/p0.

Since a solid bar is itself so rigid, it is difficult to provide supports of 
greater rigidity, and hence the end conditions assumed above are hard to 
realize in practice. The free-end condition may be achieved quite readily, 
however, by supporting the bar on strings placed some distance in from the 
ends. The stationary wave patterns given in Fig. 7-5 then apply equally 
well here. To reduce the energy dissipation at the supports to a minimum, 
the strings should be located at the nodes. For the simplest mode of 
vibration, where there is a single node at the center, a knife-edge clamp 
should be used (as in Kundt’s original experiment, Fig. 6-1).

The resonance frequencies associated with longitudinal waves in a bar 
constitute a harmonic series, as they do for the string. Such frequencies 
are always much higher for the bar, however, since the velocity of wave 
propagation is much greater than for waves along a string. For a metal 
like steel, Y is 2 X 1012 dynes-cm-2, pQ is about 7.8 gm-cm-3, and therefore 
c =VY/po becomes 5.0 X 105 cm-sec-1. For a stretched string on a 
typical musical instrument, c might be of the order of 104 cm-sec-1. Since 
f = c/2l for the fundamental mode of either the string or the bar (ends 
either both fixed or both free), the lowest frequency to which a bar will 
resonate might be roughly fifty times that of a string of the same length.

7-17 Transverse waves in bars. Bars are more easily set into trans
verse than into longitudinal vibration, since they are more yielding to defor
mations of that type. Most of the annoying vibrations in the frame of a 
car, an airplane, etc., are of this kind. Vibrations of the transverse type
are of some importance in the production of 
musical sound, particularly in instruments having 
reeds, like the saxophone, and in the xylophone, 
whose bars are struck transversely.

Unlike the ideal string, a bar resists bending. 
Therefore even without longitudinal stress, flexure 
will give rise to restoring forces. These forces 
are of two general kinds over any cross section 
of the bar, as indicated in Fig. 7-9. There is a 
transverse “shearing” force FSh and a couple or 
“bending moment” Mb, the latter being the 
result of the compression and the elongation of 
opposite sides of the bar. The shearing force and

Fsh

Fig. 7-9. Forces and 
moments acting on a thin 
slab of differential thickness 
in a bar which has been 
deformed.

1



170 STATIONARY WAVES. VIBRATING SOURCES [chap. 7

the bending moment will, in general, vary along the bar in the presence of a 
deformation, as indicated in the figure. On the basis of this illustration one 
may express Newton’s second law for the transverse translation and for the 
rotation of a thin slab the area of whose face is the cross-sectional area of 
the bar. We shall not go into the details of this analysis, but shall merely 
summarize the results. * One may finally obtain a differential equation relat
ing the transverse displacement y for any point on the bar to the position x 
along the bar and to the time t, This equation, for small amplitudes, becomes 

B+a'B=°> (7-3°)

* A good discussion of the mathematics of this problem is given in FT. Lamb, 
Dynamical Theory of Sound, Edward Arnold & Co. (1931).

where A' is a constant related to the elastic and inertial properties of the 
bar and to the shape of the cross section. This is a fourth order differential 
equation and its solution presents difficulties, some of which may be best 
surmounted by the use of graphical methods. Upon examination, the 
solution implies the possibility of wave motion, but the speed of travel of 
these waves turns out to be a function of the frequency, higher frequencies 
traveling faster than lower ones. For a bar of limited length, stationary 
waves are possible at certain discrete frequencies. The higher frequencies 
do not bear any simple integral relationship to the fundamental frequency 
and hence do not comprise a harmonic series. Table 7-2 gives the rela
tionships for a few possible modes (assuming free-end conditions).

TABLE 7-2

Frequency fi h h A

Relative frequency 1.0 2.76 5.40 8.93

Number of nodes 2 3 4 5

The simplest mode involves the ex
istence of two nodes, as indicated in 
Fig. 7-10. The wooden bars of the 
xylophone are supported horizontally 
on two strings located at these nodal 
points, a little less than | the way in 
from the ends (actually a fraction equal 
to 0.224).

Node Node

Fig. 7-10. Simplest mode of vibra
tion of an elastic bar.
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If a bar is clamped at one end and the other end is left completely free, 
the possible modes consistent with these end conditions are somewhat 
different. The number of nodes (including the one at the clamped end), 
together with the frequency relationships, for a few of the various modes 
are given in Table 7-3. Other frequencies may be discovered for other 
combinations of end conditions.

TABLE 7-3

Frequency fi fa fa A

Relative frequency 1.0 6.27 17.5 34.4

Number of nodes 1 2 3 4

Node Node

Fig. 7-11. Vibration 
of a tuning fork.

7-18 The tuning fork. We should not leave the subject of bar vibra
tions without mention of the tuning fork. Such a fork is really a bar bent 
in the shape of a letter U. The bending can be shown both experimentally 
and theoretically to bring about a closer spacing between the two nodes 
which are characteristic of the simplest mode of vibration of a straight bar, 
free at the ends. Compare Fig. 7-11 with Fig. 7-10 for the straight bar. 
If a tuning fork is struck with only a moderate blow, so that the amplitude 
of the prong motion is small, frequencies higher than the fundamental will 
be of negligible prominence. In addition, since the drop in amplitude per 
cycle is about the same for all frequencies, the higher modes will disappear 

sooner than the lower ones. Also, the various 
possible frequencies are rather widely spaced, as 
was pointed out for the straight bar, and the upper 
frequencies are therefore of little consequence 
within the audible range. As a result of this gen
eral behavior, the tuning fork is an excellent source 
of pure sinusoidal vibrations of a single frequency. 
As mentioned in Chapter 3, it is a very poor direct 
radiator of sound waves, since it possesses double 
source action. Its radiation efficiency may be 
greatly enhanced by touching its stem to a table 
top or other plate of large surface area. The 
area of this secondary radiating surface, together 
with the self-baffling action of the plate for its 
own dipole components, will add much to the 
audibility of the sound.
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7-19 The vibration of plates. A plate is, in a sense, a bar with two
large dimensions and it compares to a membrane as does a bar to a string. 
Transverse deformation of a plate is always accompanied by shearing 
forces and bending moments, just as in the bar, except that in the plate 
there is the additional complication that waves may travel in any direction 
parallel to its surface. The mathematical difficulties connected with the
analysis of the vibrations of a plate are great, and we 
shall only indicate the general nature of the motion. 
For a circular plate, like the diaphragm of a telephone 
receiver, the possible symmetrical modes of vibration 
are quite similar in appearance to those of a circular 
membrane, as shown in Fig. 7-8. For a square plate, 
symmetrical modes of vibration of a different variety 
may occur. Most of us have seen demonstrated the 
classic sand patterns known as Chladni plate patterns. 
In this experiment a heavy plate is set into transverse 
vibration by means of bowing or, more effectively, by 
electromagnetic means. Sand sprinkled on the plate 
will then gravitate towards the nodal regions. The 
variety of patterns obtainable is very great. A few are 
shown in Fig. 7-12.

We should note that in general, as for a bar, the 
various possible frequencies for a plate are not related 
by integers and are relatively far apart as compared 
with those for a simple string. This latter fact is of 
some practical importance in telephone receiver design. 
Utilization of the fundamental mode is desirable from 
the standpoint of efficiency. If the diaphragm is 
designed to resonate in the middle of the useful fre
quency range, the higher resonance frequencies for the 
most part will be outside the important part of the 
audible spectrum.

Fig. 7-12. Typi
cal Chladni sand 
patterns for a 
square plate.

7-20 Stationary air waves in pipes. Resonance effects in enclosed 
bodies of air may be of two general types, the first of which was introduced 
in our discussion of the Helmholtz resonator in Chapter 5. It was carefully 
noted there that for the resonance formula developed to be valid, any 
dimension of the enclosed volume must be small compared with the wave
length of the radiated sound. The enclosed air then acts as a simple spring. 
Mention was also made of the possibility of higher resonance frequencies 
associated with stationary wave phenomena. Resonances of this latter kind 
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occur when the dimensions of enclosed bodies of air are comparable to or 
larger than the wavelength. The various modes of vibration are very 
similar to those for strings and for bars executing longitudinal motion and 
the mathematics is almost identical, as we shall see.

As an example of stationary waves in air, the vibration of a cylindrical 
air column of limited length is of the most general interest, since such a 
geometry is basically that of the organ pipe and other of the wind instru
ments. As a matter of fact, the analysis to be given does not require a 
circular cross section. The cross-sectional shape of wooden organ pipes 
is usually square and their behavior does not differ significantly from that 
of pipes having circular cross sections.

7-21 Vibrations in a pipe closed at both ends. The particular manner 
in which an air column may be set into vibration will be discussed in Sec
tion 7-27. At this point we shall simply assume that some disturbance in 
the air has started plane waves traveling along the axis of the pipe. If 
both ends of the pipe are closed with rigid plates, such waves will be 
reflected, the phase relations at the boundaries being identical with those 
for a string having fixed ends. For the air column, £ must be zero at the 
ends. As a consequence, the incident and the reflected wave must be just 
180° out of phase at those positions. The number of steady periodic 
motions consistent with the condition that the ends of the column be nodal 
points may be determined from the stationary wave equation

£ = 2^m sin (7-31)

(This equation is Eq. (7-12) for the string rewritten in terms of the air 
particle displacement £.) Just as for the string, the frequencies are given 
by

. _ nc
J ~ 21 (7-32)

The diagrams of Fig. 7-3 for the string may be taken over bodily for the 
column of air, if we are careful to interpret ordinates as longitudinal air 
displacements.

It should be understood that what has been said above refers strictly 
to the displacement variable £ in the wave. A sound wave involves other 
parameters, such as the important pressure and density variables, and 
the stationary wave picture for these latter variables is quite different from 



174 STATIONARY WAVES. VIBRATING SOURCES [chap. 7

that for the displacement. For in
stance, to see just what the pressure 
situation is at the ends of the pipe, 
let us operate upon Eq. (7-31). 
This expression is the exact equiva
lent of that for two oppositely 
traveling waves. For a plane 
wave, the relation between p and £ 
is

(7-33)
(/•€/

Hence the acoustic pressure in the 
pipe, as a function of x and t, is, 
from Eqs. (7-31) and (7-33),

(a)

(b)

Fig. 7-13. Stationary wave pattern, pipe 
closed at both ends, (a) for displacement
fundamental mode, (b) for pr,esswre-funda- 
mental mode.

(7-34)

It will now be seen that with various integral values of n the end positions 
(where x = 0 and x = I, respectively) become pressure antinodes, since at 
these points the cosine expression has its maximum value of unity. The 
same thing may be said of density, since the condensation and the acoustic 
pressure are linearly related. It is therefore correct to call the end points 
either nodes or antinodes, provided one is careful to specify the proper 
parameter. The diagrams of Fig. 7-13 emphasize this distinction.

7-22 Vibration of an open organ pipe. Organ pipes are either open at 
both ends or open at one end and closed at the other. The former is called 
an “open” pipe, the latter a “closed” pipe. In this section we shall dis
cuss the open pipe. Reflections of longitudinal air waves may take place 
at an open end as well as at a closed end. From a qualitative physical view
point the process is understandable if one looks at the pressure parameter 
in the wave. When a pulse associated with a positive value of the excess 
pressure p reaches an open end, it suddenly leaves the confines of the tube 
walls and enters the less restraining region of free space. Its abrupt exit 
leaves behind a pulse of rarefaction which propagates back down the tube 
and constitutes the reflected component. Such a conception carries with 
it the notion of a phase reversal of the pressure component of the disturb
ance upon reflection. We may verify this conclusion in a more convincing 
manner if we consider the displacement feature of the wave.

The last layers of air near an open end of a pipe are under somewhat 
smaller restraining forces than are layers well within the pipe, since the air
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beyond the end is unconfined and the medium can move laterally as well as 
axially. As far as the particle displacement $ is concerned, we may con
sider the boundary condition at an open end as somewhat analogous to the 
free-end condition assumed earlier for a string or for a solid bar vibrating 
longitudinally. If this picture is essentially correct, we may adopt as the 
expression for £ in an organ pipe open at both ends, the form of the string 
solution given by Eq. (7-20), that is,

$ = 2^m cos x j sin (7-35)

which shows the amplitude of the variation in $ to be a maximum at the 
ends. These points therefore are displacement antinodes. If, however, we 
are interested in the pressure at the ends, by making use of Eq. (7-33) 
relating £ to the acoustic pressure p, we find that

(7-36)

This equation indicates that the end points for an open pipe are pressure 
nodes, since when x = 0 or I, p is zero for all values of the time.

This result is quite consistent with the qualitative description of pulse 
behavior. If a pulse involving positive acoustic pressure returns as a pulse 
of negative pressure, the incident and reflected pulses at the open end are 
out of phase and hence the end point is located at a pressure node.

The various facts regarding the two kinds of end conditions in an air 
column are summarized in Table 7-4.

TABLE 7-4

“Displacement” wave “Pressure” wave

Closed end Open end Closed end Open end

Phase change at reflection 180° none none 180°

node antinode antinode node

7-23 Reflection and acoustic impedance. The reflection at an open 
end is not complete. The fact that wave energy does leave the pipe (since 
the sound is audible) is evidence enough that with each reflection only 
some fraction of the energy incident at an open end returns down the 
tube. When the perimeter of the pipe end is small compared with the 
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wavelength, the reflection is more complete. This follows from the dis
cussion of diffraction in Chapter 4 and from certain features of horn 
behavior as presented in Chapter 5. The open end of a pipe may be con
sidered as a possible source of waves radiating into space. If the perimeter 
is small compared with the wavelength, the energy will radiate with great 
spherical divergence and the specific acoustic impedance zs at the pipe end 
will have a relatively large imaginary or reactive component characteristic 
of a sphere of small radius (small, that is, compared with the wavelength). 
Little real power will then leave the pipe and reflection and stationary 
waves will be encouraged. Since practical organ pipes do have cross sections 
of these relative proportions, the degree of reflection is quite adequate to 
maintain stationary waves of large amplitudes. Some escape of energy 
takes place, however, because the real component of the acoustic imped
ance, while relatively small at an open end, is never zero.

We shall have more to say in the next chapter about the possible effect 
of a partial reflection at the end upon the wave pattern within the pipe. 
For the present we shall assume the reflection at an open end to be practi
cally complete and so deal with a simpler picture.

7-24 Frequencies of vibration of a “closed” organ pipe. The boundary 
conditions for a closed pipe correspond to those for a string with one end 
fixed and one end free, and have already been discussed in Section 7-11. 
The possible modes of vibration of the air column will be given by

/ = $• (7-37)

Only odd integers may be used for n', it will be remembered, and hence only 
the odd harmonics will be possible for a closed organ pipe under the ideal 
conditions assumed. The actual harmonics present when an organ pipe is 
sounded will depend upon how it is excited. This point will be considered 
when we discuss musical instruments.

7-25 General features of stringed instruments. The violin. As every
one knows, a violin is much more than a stretched string, and wind instru
ments are not, in general, simple cylindrical tubes. The design of musical 
instruments is the outgrowth of hundreds of years of experimentation, 
with until recently little or no careful scientific analysis. Empirical study 
over a long period will often achieve the desired results and the construction 
of musical instruments is a good example of this sort of development. To 
deal completely with this subject would require a book in itself. We can 
here emphasize only some of the essential physical principles involved.

A violin is a thin-walled box of unique shape, with the strings stretched 
tightly across the so-called “bridge” (Fig. 7-14). The four strings, some-
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times of gut and sometimes of metal, are all of the same length (measured 
between the bridge and the upper clamping point) but are of different 
linear mass density and are under different tensions. As a result, the fun
damental modes differ. The “open” string resonances cover a range of 

Isomewhat over an octave. The fundamental modes can be raised by 
shortening the string, i.e., by “stopping” the string with the finger. The 
range of the instrument may in this way be extended to about four octaves.

It is important to recognize that the sound waves produced by a violin 
originate almost exclusively with the vibrations of the body of the instru
ment, not with the vibrations of the strings themselves. A vibrating 
string, as mentioned in Chapter 3, is a linear array of double sources 
whose dipole components are almost coincident. The rate of dissipation 
of the vibrational energy by the radiation of sound waves is practically 
zero. Most of the energy supplied by the bowing action is transmitted

Fig. 7-14. Cross sec
tion of the body of a 
violin.

to the body of the instrument through the bridge, 
the latter being set into motion by the periodic 
shortening and lengthening of the string associated 
with the stationary wave pattern. The amplitude 
of the motion at the top of the bridge is longitudinal 
and is smaller than that of the average transverse 
displacement of the string. The ends of the string 
can therefore still be considered fixed as far as 
stationary waves are concerned. Vibrations are 
transmitted to the bottom of the instrument by 
a wooden rod called the “sounding post,” which

extends from the belly downwards (SP in Fig. 7-14). The sound waves 
originate largely with the vibration of the top and the bottom of the 
violin. These areas are enormously larger than the surface areas of the 
strings and the dipole components are separated in space by a much greater 
acoustical distance than are those of the strings. For these reasons the 
body of the instrument is an efficient radiator.

The harmonic content of a note played upon a violin is a complex func
tion of a number of different factors. The most obvious are the manner of 
excitation (bowing or plucking); the position on the string where the excita
tion occurs (although this is apparently of minor importance); the complex 
modes of vibration of the various sides of the instrument body, which are 
impossible to predict on any analytical basis; and the nature and shape of 
the air cavity within the instrument, which may sometimes act as a Helm
holtz resonator and sometimes, for the higher frequencies, may act in the 
manner of a pipe closed at one end. The wooden body possesses internal 
dissipation qualities due partly to the presence of joints and partly to the 
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nature of the wood itself. Such dissipation is greater for the higher fre
quencies than for the lower, and so contributes in an important way to the 
strength or weakness of the upper harmonics.

Many experimental studies of the harmonic structure of the sound from 
a violin have been undertaken. Figure 7-15 shows the relative prominence 
of the various harmonics present for the four strings, each vibrating as an 
“open” string (using its maximum length). Each graph is different. 
Note that although for the G and E strings the lowest frequency is not the 
most intense, the characteristic pitch is still usually associated with the 
lowest frequency. This results from an interesting property of the ear, 
discussed further in Chapter 9. If presented with a more or less complete 
harmonic series, the ear apparently will associate the whole set with the 
mathematical fundamental, even though the latter may be weak or missing 
altogether.

Except for the factor of size, the other members of the violin family are 
of similar construction and behave 
numerous stringed instruments has,

in a similar fashion. Each of the 
of course, a musical quality all its

Fig. 7-15. Harmonic content of the sound from a violin when each of the four open 
strings is bowed. (After Culver)
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own. In some cases a plucked note will sound brilliant, in others some
what muffled. This effect is associated with the degree of attenuation of 
the upper harmonics. The attenuation is rather large, for instance, for the 
banjo and is less for the guitar. A string of gut has greater attenuation 
than a string of metal. Stringed instruments have been carefully studied 
in recent years and summaries of the significant factors affecting tone are 
readily available.*

* For interesting reading, see Culver, Musical Acoustics, Blakiston Co. (1947).

7-26 The piano. The piano, certainly the most widely played of all 
the string instruments, is somewhat simpler to analyze from an acoustical 
point of view than is the violin. As with the violin, the vibrating strings 
of the piano are not direct radiators of sound waves. Instead, the vibra
tions of the strings are transmitted through the string supports to a massive 
sounding board, analogous to the light wooden box of the violin. This 
radiating plate has very broad resonance properties and is capable of 
vibrating at all the fundamental frequencies to which the strings are tuned 
and also at a great many of the harmonics which the hammer blow inevi
tably excites. Since the area of the sounding board is large, it is an efficient 
radiator for even the very low frequencies. Because of the great physical 
size of the piano, strings of considerable length may be used and this makes 
possible fundamental modes of vibration of much lower frequency than in 
the violin. By uloading” the bass strings with wound copper wire the 
wave velocity may be decreased (since a; in Eq. (7-4) is thus increased) 
and this makes possible still lower fundamentals. The range of funda
mental frequencies for the piano (over seven octaves) is wider than that of 
any other instrument except the pipe organ.

The radiated sound from a piano is rich in harmonic content, particularly 
from the strings of low register. This is a feature of piano music that 
delights the listener and is of much concern to the manufacturers of small 
pianos of the spinet type. To achieve compactness, these pianos have 
strings which are shorter than normal in the low register and these must be 
under less tension, or more heavily loaded, or both, in order to resonate at 
the proper frequencies. These shorter strings will execute rather large 
amplitude vibrations when struck and the harmonics will usually be more 
prominent than in the case of a piano of conventional size. Since the 
sounding board is also smaller, there is danger that it may not resonate at 
the lowest frequencies and also that it may be a less efficient acoustic 
radiator. As a result of all of these factors, the fundamental associated 
with the very low notes is often almost completely missing to the ear, the 
second or even the third harmonic being far more prominent. One way of 
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surmounting these difficulties is to utilize air cavity resonances but these 
are usually too sharp and an unnatural enhancement of certain notes often 
results. The building of a small piano with tonal qualities equal to that 
of a large one is still an unsolved problem.

7-27 The wind instruments. Excitation of an organ pipe. The wind 
instruments form a second large and important group of musical instru
ments. These employ resonating columns of air, either of uniform cross- 
sectional area, like the organ pipe, or with a flare, as in the horns. The 
manner in which the air column is set into vibration differs with the differ
ent instruments, although there is a certain similarity among them all. We 
shall look first at the organ pipe.

Figure 7-16 shows an organ pipe of the simple “flue” 
type in cross section. During excitation a steady stream of- 
air is blown against the rigid wooden (or metal) lip. At very 
low velocities the stream of air divides, part entering the 
pipe and part flowing to the outside. As the velocity of |e |
the stream is increased, however, turbulence sets in near the £ J I
edge of the lip and the stream begins to swing first to one side I \ 
and then to the other. Rotational motion of the air results and Lip—’P...... [
small vortices may form with each swing. As shown in the §
figure, these vortices break off at the sides of the lip. One \
set is dissipated outside the pipe. The other set, inside the 61'll 
pipe, travels along the axis of the pipe with approximately I J 
regular spacing if the stream velocity is maintained constant. Ilf 
These regularly spaced regions of disturbance represent pulses Fig 7_16 
of a periodic nature and, being pulses, may be thought of in Pulse forma
terms of a Fourier harmonic series. Some one of these har- tion during the 
monies is apt to be close to a natural pipe resonance and so an
the air column may begin to vibrate in a sinusoidal manner. A 
variation of the stream velocity may result in a variation in the spacing of 
the vortices and a consequent favoring of one or another of these modes of 
vibration. The whole process is somewhat analogous to the thermionic 
tube generator of electrical oscillations. In both the organ pipe and the 
vacuum tube circuit a nonlinear element (the lip mechanism for the pipe 
and the vacuum tube characteristic for the circuit) soon transforms a
steady flow of energy into a flow of periodic nature.

The interesting phenomenon of “singing” telephone wires is related to 
the excitation mechanism just described. When wind velocities are suffi
cient, small whirlpools will form and break off on the leeward side of a 
wire exposed to the stream. As they break off a mechanical reaction is
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exerted on the wire, which then may begin to vibrate at one or more of its 
natural modes. ■ ! ' '

7-28 Wind instruments of the reed type. Some organ pipes and many 
of the smaller wind instruments are equipped with reeds near the air 
inlet. The reed (of metal, bamboo, or some other suitable material) is set 
in vibration by a steady stream of air blown past it. The process is very 
similar to the pulse formation just described. In some organ pipes the 
reed (considered as a bar clamped at one end) is tuned so that its fundamen
tal corresponds to the fundamental or other desired mode of the organ pipe. 
In the smaller reed instruments, such as the clarinet, the reed is tuned to 
a frequency considerably higher than the fundamental mode of the air 
column. The frequency of the reed is controlled by the natural frequencies 
of the air column for the lower notes, since the coupling between the reed 
and the air column is rather close. Such frequencies are far removed from 
the natural reed frequencies. At higher modes of vibration the natural reed 
frequencies are more of a controlling factor and the reed resonances there
fore considerably enhance the higher harmonics of the instrument, giving 
to it its characteristic tonal quality. Ports, opened and closed with keys, 
are provided to give the single tube of the instrument flexibility as regards 
frequency. These keys provide a musical scale based on the fundamental 
for the tube length and determined by the particular position of a port. It 
is also possible to accentuate harmonics by opening a special port with the 
so-called “speaker” key. Other subtleties of fingering and blowing make 
the instrument increasingly flexible.

Each of the wind instruments has its own special features of control and 
its own peculiar musical quality, determined by the harmonic structure 
of the sound waves produced. It is interesting to note that in the clarinet, 
discussed above, the driving end (where the air is blown in) is virtually a 
node, instead of the antinode that might be expected. The amplitude of 
the air vibration is so small at this end compared with that at the mouth 
of the instrument that once stationary waves are set up the driving end is 
in effect a point of no motion at all. As a result, the harmonics usually 
present are those shown to be characteristic of the “closed” organ pipe, i.e., 
the odd ones only. For other of the wind instruments, such as the flute, 
the resonances are those for a pipe open at both ends, where both even and 
odd harmonics may be present. This is true for the oboe, whose tube is 
conical in shape rather than cylindrical. Such a conical tube may be 
shown to resonate like an open organ pipe and so has a complete harmonic 
series of vibrational modes.



182 STATIONARY WAVES. VIBRATING SOURCES [CHAP. 7

7-29 Wind instruments as radiating sources of sound. With the excep
tion of the open organ pipe, wind instruments are almost exclusively 
“single” acoustical sources. (An open organ pipe is a double source, and 
the two sources may be in phase or out of phase, depending upon the mode 
of vibration. In any case, the two sources are rather widely separated 
in space and cancellation effects are small.) The mouth of a wind instru
ment is the virtual source of the waves. The propagation in surrounding 
air is approximately directional for the higher frequencies but much less so 
for the lower, since the mouth size then becomes smaller in comparison 
to the wavelength. For the air column to have resonance properties it is 
absolutely necessary that there be considerable spherical divergence from 
fJhe mouth of the instrument, since such divergence is associated with a 
complex form for the acoustic impedance at the mouth and hence with re
flection back into the tube. A musical instrument must, of course, radiate 
energy to be useful, but it must also resonate (through wave reflection). 
The dimensions of the mouths of all the wind instruments are such that 
both radiation and reflection can occur. It is interesting to note that in 
this case a satisfactory design has been achieved by purely empirical means.

PROBLEMS
1. The length of a stretched string A 

is twice that of string B. The tension in 
A is twice the tension in B, but the total 
mass of A is the same as that of B. Find 
the ratio of the fundamental frequency of 
A to that of B.

2. Show that the periodic motion of a 
string fixed at one end and completely free 
at the other is given by the equation

where n' may be only an odd integer.

3. A stretched string of length I is 
pulled to one side a distance h, at a position 
| the distance from one end. The string 
is then released from rest, (a) Find 
the subsequent frequencies of vibration, 
(b) Are any frequencies in the harmonic 
series missing? If so, discuss the connec
tion between such frequencies and the 
position of plucking.

4. From the stationary wave equa
tions for p and for $, determine the specific 

acoustic impedance at the end of a resonat
ing organ pipe for (a) a closed end (infi
nitely rigid cap), and (b) an open end 
(assumed perfectly “free”).

5. Consider stationary air waves in a 
pipe, assuming perfect reflection at the 
ends, (a) Show, by considering the prod
uct that there is no average net flow of 
power at any point along the axis of the 
tube, (b) Discuss the specific acoustic 
impedance at various points along the 
axis.

6. A vibrating tuning fork held in the 
hand is almost inaudible. If held over 
the end of a pipe of the proper length for 
resonance, the sound may be clear and 
loud, (a) Why does this occur, since the 
fork is the source of energy in both cases? 
(b) Is any violation of the conservation of 
energy implied in the above phenomenon? 
Explain.

7. For what resonant frequencies will 
an open pipe 5 feet long radiate as a double 
source of the type considered in Chapter 3?
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8. (a) For a progressive transverse 
wave on a string, compare the instanta
neous distribution of potential and kinetic 
energy along the direction of wave travel 
with the energy distribution for a progres
sive longitudinal wave in air. (b) For a 
wave on a string, draw a graph of the total 
energy (potential plus kinetic) as a func
tion of x, and compare with the graph for a 
longitudinal wave (Fig. 2-5).

9. A closed organ pipe 2 feet long and 
of cross-sectional area 50 cm2 is resonating 
at its fundamental frequency. If the 
amplitude of motion of the air at the open 
end is 0.2 cm, find the average acoustic 
power radiated (Section 3-7).

10. (a) Show that the bridge of a 
violin will vibrate at twice the string 
frequency, (b) Suggest a physical pic
ture of the energy transfer which does not 
require a final frequency doubling, i.e., for 
which the body of the violin vibrates with 
the same frequency as that of the string.

11. The paper cone of a loudspeaker 
sometime generates sound waves which are 
sw&harmonics of the frequency of the axial 
driving force (applied at the apex of the 
cone). With a driving frequency, for 
instance, of 1000 cycles-sec-1 there may 
appear a 500-cycle note as well. This is 
due to the fact that the cone is not com
pletely rigid, so that flexure may occur. 
Draw a physical picture to explain the 
appearance of such subharmonics.



CHAPTER 8

REFLECTION AND ABSORPTION OF SOUND WAVES

8-1 Introduction. In the preceding chapter we have seen how a more 
or less complete wave reflection at the end of a string, a bar, or an air 
column led to the formation of a stationary wave pattern in front of the 
boundary. Two general types of end condition were considered, the im
movable or fixed end, and the end perfectly free to move, with no restrain
ing force of any kind. In the first instance the fixed end was necessarily 
a nodal point, as far as displacement of the particles of the medium was 
concerned. Interpreting this situation in terms of reflection phenomena, 
we saw that at such a node the incident and the reflected waves are just 180° 
out of phase. For the free end the conditions were right for an antinode; at 
an antinode the incident and the reflected waves are exactly in phase.

Only in special types of practical problems will these extreme conditions 
of restraint or freedom apply with any degree of accuracy. An elastic 
string stretched between rigid supports constitutes a system where the end 
conditions are close to ideal. On the other hand, an air column in an open 
pipe is under some restraint at the ends, due to the presence of the sur
rounding air, and to call the ends “free” is only an approximation. In 
general, all practical boundary conditions involve partial freedom (or 
partial restraint) and under such conditions we have no right to make use 
of conclusions as to phase, etc., that are the outgrowth of mathematics 
suited only to the two limiting cases.

It is the purpose of this chapter to examine more closely the reflection 
phenomena for longitudinal waves when the boundary conditions are 
intermediate between the two extremes. The problem is of great practical 
interest in connection with the acoustical behavior of rooms, since in such 
enclosures sound waves impinge upon wall surfaces which are rarely per
fectly rigid. The exact extent and manner of the “yielding” in the 
presence of acoustic pressures affect the reflection process in an important 
way and this in turn, as we shall see later, largely determines the suitability 
of the room for speech or music.

8-2 Reflection of longitudinal waves at a boundary between two ideal 
elastic media, each infinite in extent. As is usual in all branches of physics, 
we shall begin with a relatively simple situation and later, when we have 
developed some basic principles, proceed to the more complicated problems. 
Consider first two media, each having elastic and inertial properties, con
tinuous and isotropic in nature and separated by a plane boundary, as in 

184
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Fig. 8-1. The regions to the right and to the left of the boundary are to 
be considered infinite in extent, so that no reflections may occur except 
possibly at the boundary of separation. For the medium at the left, the 
density and wave velocity are pi and Ci, respectively; for the medium at the 
right they' are pi and c2. The density p,: as used in this chapter, will always 
refer to the average undisturbed value. No dissipative forces are present 
in either medium.

Let us assume that a periodic plane wave ad
vances toward the boundary from the left with 
exactly normal incidence. (The wave front will 
then be parallel to the plane of the boundary.) 
Assuming that reflection and also transmission 
into the second medium may take place, we 
have then to consider the presence of three 
separate wave trains in the neighborhood of the 
boundary, the incident wave and the reflected 
wave to the left of the boundary, and the trans
mitted wave set up in the second medium, to 
the right of the boundary. In Fig. 8-1 these 
wave components are labeled respectively i, r, 
and t.

Boundary

Fig. 8-1. Partial reflection 
of plane waves at a boundary 
between two different media.

As we approach the boundary plane from either side, it is necessary that 
the last layer of each medium, located at the boundary, be identical in 
motion to the other and be in a region of identical pressure. In mathe
matical terms, both particle velocity and acoustic pressure must be mathe
matically continuous across the boundary. (This notion of “continuity” 
across a boundary is used in other branches of physics. It will be recalled 
that the normal component of induction, B, is continuous across a boundary 
between two magnetic media.) To the left of the boundary, both the inci
dent and the reflected waves contribute to the total particle velocity (the 
latter is the vector sum of the two contributions). To the right of the 
boundary there is only the transmitted Wave to consider. Making use of 
i, r, and t as subscripts to indicate the three separate wave components, we 
may therefore state that

ii + & = & (8-1)
and

Pi + Pr = Pt. (8-2)

The instantaneous particle velocities in Eq. (8-1) are written arbitrarily 
as positive, the positive direction being the direction of travel of the incident 
wave. Since £ is periodic in each case, the algebraic sign will vary with the 
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time. At this point there is nothing to indicate the relative phases of ir, 
it, and ii. Such phase relationships will appear, however, in the course of 
this analysis.

The acoustic pressure p associated with each wave component is con
nected with the corresponding particle velocity by the plane wave relations. 
A comparison of Eqs. (2-19b) and (2-19e) shows that 

or
p = pci. (8-3)

As was pointed out in Section 2-13, the particle velocity is in phase with 
the pressure for a wave traveling in the positive z-direction but is out of 
phase by 180° for a wave traveling in the negative ^-direction; If we intro
duce into Eq. (8-2) the relationship given by Eq. (8-3), we must therefore 
use the negative sign for the reflected wave. The expression for the con
tinuity of pressure may then be written

PiCi4» ~ PiCiir — PzCzit- (8—4)
It is now a simple matter to discover the exact relationship among the 

three particle velocities at the boundary. If we eliminate it between 
Eqs. (8-1) and (8-4), we can obtain the ratio of ir to ii, that is,

= PlCl - P^. ; (8_5)
ii PlCl + P2C2 ;

If, on the other hand, we eliminate ir, we will have the ratio of it to ii, 
| = .2(^1) . (8-6)
ii PlCl + P2C2

It should be noted that the ratio of the particle displacements is identical 
to the ratio of the velocities. Therefore we may replace ir/ii by ir/ii} and 
it/ii by it/ii-

8-3 Relative magnitudes of the particle velocities. Equations (8-5) 
and (8-6) describe the boundary conditions for two elastic media. It will 
be observed that the ratio of ir to ii and of it to ii in each case is a function 
of the specific acoustic impedance characteristic of each medium in the 
presence of progressive plane waves. Equations (8-5) and (8-6) give the 
magnitudes of the particle velocities in the reflected and in the transmitted 
waves, relative to the incident wave. Whenever pc for the first medium 
differs from that for the second, there will be a reflected wave and also a 
transmitted wave. When pc is the same for both media, there is only a 
transmitted wave. If we use for ir and it the root-mean-square values
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(^r)rms and fa)rins, we may readily compute the relative intensities of the 
three wave components. Using the same subscripts for the intensity I as 
for the particle velocities, we may state that

_  PlCl(£r)2rms _  /P1Q P2C2V __ / fa)l fa)g\2
li PlCl(£i)2rms ~ \P1C1 + P2C2/ ~ \fa)l + (zs)2) ’ '

and .
71 __ p2p2^t)^rms __ P2C2 / 2piCj M _  (zs) 2 / 2 (zs) 1 \2 /q qx
li PlCl(£i)2rms Pl^l \P1C1 ~F p2^2/ (2s)l\(2s)l ~F (£3)2/

Since no dissipative factor is present, it is necessary that Z< = Ir + Itii It 
is easily verified algebraically that Eqs. (8-7) and (8-8) are consistent with 
this statement of the conservation of energy.

8-4 Relative phases. In Eq. (8-5) the ratio of to & may be either 
positive or negative, depending on the relative magnitudes of piCi and p2c2. 
If piCi is greater than p2c2, the ratio is positive, indicating that and 
both sinusoidal quantities for disturbances of a simple periodic nature, are 
always in phase. On the other hand, if piCi is less than p2c2, the ratio is 
negative. For and & to be always directly opposite in algebraic sign 
indicates a 180° phase relationship and since piCi and p2c2 are real numbers, 
no phase relationship other than this is ever possible.

From the phase relationship just described, we may conclude that in a 
case where is in phase with £<, the two waves will reinforce each other 
just in front of the boundary, as they do for a completely free end of a string. 
When there is a phase reversal, on the other hand, the incident and the 
reflected waves will partially cancel. The cancellation will not be complete 
because the maximum value of will, in general, be less than the maximum 
value of & and so we cannot properly call the boundary a true nodal point. 
As a matter of fact, because of the partial reflection the whole character of 
the stationary wave pattern in front of the boundary is different from that 
of a string attached to rigid supports.

8-5 Magnitudes and phases of the acoustic pressures. The pressure in 
the three wave components under discussion is of especial interest. If we 
make use of the relation p = peg, we may write Eq. (8-1) in terms of the 
pressure rather than in terms of the particle velocity. Combining this 
equation with Eq. (8-2), we find that

Pr = P2C2 ~ P1C1 = fa) 2 ~ fa)i z8_9x
Pi P1C1 + P2C2 fa)i + fa) 2 k }

and
2.------ 2p^ = 2(s,), .
Pi P1C1 + P2C2 fa)l 4- fa)2
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It will be noted that the acoustic impedances in the numerator of Eq. (8-9) 
are interchanged as compared with Eq. (8-5) for the particle velocity ratio. 
The ratio of the magnitudes of the pressures pr and pi is identical with the 
ratio of the magnitudes of the particle velocities. This is to be expected, 
since the intensity ratio for plane waves in the same medium must be pro
portional to the square of either the velocity ratio or the pressure ratio.

The phase relationships for pressures, however, are reversed as compared 
with the relationships for particle velocities. When piCi is greater than 
p2c2, pr is 180° out of phase with pi, and when piCi is less than p2c2, pr is in 
phase with pi and thus the conditions for reinforcement of £r and are just 
right for the partial cancellation of pr and p^ This is in line with the 
results of our discussion of stationary waves along strings or in pipes, as 
presented in Chapter 7. The ratio of pt to pi is always positive, as is the 
ratio of £t to £<, so that the pressures in the transmitted wave and in the 
incident wave are always in phase. The ratio of the pressure magnitudes 
differs from the ratio of the velocity magnitudes because of the part pc 
plays in the equation connecting p and £.

We must emphasize again that these simple phase relationships, 0° or 
180° as the case may be, apply only to the particular physical system de
scribed at the beginning of this analysis. We shall presently consider 
boundary conditions which are more complicated.

8-6 Practical implications. The formulas developed in the previous 
sections apply well to such a pair of elastic media as air and water. For 
air under normal conditions, pc approximates 42 cgs units. For fresh 
water, under the same conditions, p is 1.0 and c may be taken as 143,000, 
both in cgs units. Therefore pc for water is 1.43 X 105 cgs units, a figure 
about 3400 times that for air. As a result, plane waves impinging 
normally upon a boundary between air and water will, by Eq. (8-7), 
be almost completely reflected, whether the waves are incident on the air 
side of the boundary or on the water side. If the waves do not strike with 
normal incidence, we need consider only the normal component of the 
particle velocities in the incident wave, since the component parallel to the 
boundary surface remains virtually unaffected. As in the reflection of 
light waves from a polished surface, the angle of reflection will equal the 
angle of incidence, with an intensity in the reflected wave practically equal 
to the intensity in the incident wave. A longitudinal wave started within 
a relatively thin layer of water such as a shallow lake will therefore remain 
confined to the water by a process of internal reflections.

We may apply our reflection criteria to the problem of a metal bar, 
vibrating longitudinally and surrounded by air. Instead of considering 
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the bar to be completely free to move at one end, let us consider the end 
of the bar as a boundary plane between two different media, steel and air. 
We must be very careful, as usual, that the assumptions back of any equa
tions we use are at least approximately realized. To be sure that we are 
dealing with plane waves throughout, let us picture the bar as being rela
tively short and of large cross section. A short bar will have high frequency 
modes of vibration (steady state stationary wave modes) and the large area 
of its end, since the wavelength in air will be short, will ensure plane wave 
propagation in the surrounding medium. We may now apply the findings 
of the previous sections.

Suppose a single train of waves is set up in the bar by a blow at one end. 
When such a train of waves reaches the opposite end, it will encounter a 
boundary between steel, for which pc is about 3.9 X 106 cgs units, and air, 
for which pc is 42 cgs units. The difference is very great, so that, according 
to Eq. (8-7), almost complete reflection will take place. Since in this 
case piCi is greater than p2c2, we may conclude that upon reflection there will 
be no phase shift in % (or, conversely, that there will be a 180° shift for p). 
Therefore this end of the bar becomes a velocity or displacement antinode, 
corresponding to a pressure node. These results are in agreement with 
those of the earlier more direct physical argument.

The value of the product pc for liquids is much closer to that for solids 
than is the value for gases as compared with liquids, or gases as compared 
with solids. Therefore when plane waves reach boundaries between 
liquids and solids the reflection is less complete than in the cases we have 
been discussing. If we consider the two media steel and water, we find that 
for waves passing from steel to water,

Ir = r(pc)steei - (pc)water~]2 = [~3.9 X io6 - 1.43 x 105~]2 = 0 _
li L(pc)steel + (pc)waterJ L3.9 X 106 + 1.43 X 105J

Therefore 14% of the incident energy will pass into the water. It should 
be noted that this result is obtained for a wave traveling in either direction. 
This is also true, it will be recalled, for optical reflections.

Example. Plane longitudinal waves, passing first through water, strike a bound
ary between water and ice with normal incidence. Assume each medium to be 
infinite in extent. Compute the magnitudes of the following ratios:

£ t, Ir I, 
iz i? i<’ It'

Compute also the relative phases for the particle velocities and for the acoustic 
pressures.

Pwater = 1.0 gm-cm-3. cwater = 1.43 X 105 cm-sec-1.
Pice — 0.92 gm-cm-3. Cice = 3.8 X 105 cm-sec-1.
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(pc) water = 1.0 X 1.43 X 105 = 1.43 X 105 gm-cm-2sec-1. 
(pc)ice = 0.92 X 3.8 X 105 = 3.49 X 105 gm-cm-2sec-1.

= (1.43 - 3.49) X 105 =
& (1.43 + 3.49) X 105

= 2(1.43) X 105 =
(1.43 + 3.49) X 105

j = (0.42)2 = 0.177.

y = 1 - y = 0.823.
J-i

The relative phases are:
& is 180° out of phase with

is in phase with
pr and pt are both in phase with p^

If we are interested primarily in enhancing the transmitted component, 
i.e., in obtaining the maximum energy in the second medium, we should 
obviously select two media for which pc is nearly the same. As p2C2 ap
proaches the value of piCi the value of Ir approaches zero (Eq. (8-7)), and for 
the transmitted wave It approaches li, as one would expect. For a steel 
bar immersed in water the two values of pc are still quite different but less 
so than for a steel bar in air. The vibrations of a freely oscillating bar 
immersed in water will very quickly die out, due to the rapid loss of energy 
at the ends. The bar in air will continue to vibrate for a much longer 
period of time and it is evident that its rate of decay is controlled more by 
internal dissipative forces than by radiation effects. This property is of 
interest in the production of underwater longitudinal waves, where the 
problem of introducing maximum acoustical power into the medium is of 
primary concern (Chapter 12).

8-7 The effect of partial reflection upon the stationary wave pattern. 
For the stationary wave patterns considered in Chapter 7 we assumed 
perfect reflection at the boundaries. If any appreciable fraction of the 
energy incident at the boundary leaves the first medium, the reflected 
wave will have a lower amplitude than the incident wave and the stationary 
wave pattern will be altered.

Let us consider the reflection of a longitudinal wave at a boundary be
tween two media where the product pc for the first medium is less than for 
the second medium. The wave is approaching the boundary from the right,
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as in Fig. 8-2. As we have seen, there will be 
a 180° phase shift as far as £ or £ is concerned, 
and the incident and reflected waves will 
therefore partially cancel at the reflection 
boundary. The periodic solution to the differ
ential equation for plane waves may then be 
written, as before, in two parts of the same 
form, except that in this case the amplitude 
of the reflected wave (£m)r is less than that of 
the incident wave (£w)i.

2?r 2tt
£ = (£m)i COS (ct + x) - (£w)rCOS— (ct ~ x). 

A A

(8-H)

Fig. 8-2. Direction rela
tionships for partial reflection 
of plane waves.

The negative sign for the reflected wave is necessary to satisfy the condi
tion at the boundary, where x = 0.

If we now expand the cosine functions, considered as the cosines of the 
sums and differences of angles, and collect terms, we obtain

£ = Item)i ~ (£™)r] COS X cos t - [(£w)» + (£m)r] sin x sin t.
A A A A

(8-12)
Comparison of this equation with the several stationary wave equations of 
Chapter 7 will show that the complete expression on the right represents 
two separate sets of stationary waves. The frequencies associated with 
each are the same but the amplitude of motion at the antinodes is different 
for the two patterns, being the sum of the separate wave amplitudes in the 
one case and the difference in the other. The two sets of antinodes do 
not occur for the same value of x, since in one case a cosine function is in
volved and in the other a sine function. The antinodes of one set appear 
halfway between the antinodes of the other or, in other words, at the 
other’s nodal points (Fig. 8-3a, b). The two component stationary wave 
motions are 90° out of phase with each other in respect to time as well as 
position, since one involves a sine function of t and the other a cosine 
function.

The two graphs of Fig. 8-3a and b do not represent the conditions at the 
same instant of time, and consequently cannot be directly added to obtain 
the complete picture. Consideration of these two patterns, however, will 
show the envelope of the particle motions along x to be something like the 
graph of Fig. 8-3c, where the amplitude at point cti is [(£w)i + (£w)r] and 
the amplitude at point a2 is [(£w)» — (£jr], there being no true nodal 
positions at all.



192 REFLECTION AND ABSORPTION OF SOUND WAVES [chap. 8

a2 al

Fig. 8-3. Stationary wave patterns resulting from partial reflection of plane waves.

A similar pattern will occur for acoustic pressure, but with the maximum 
and minimum points interchanged, for reasons discussed earlier. As we 
shall show later, a convenient stationary wave method of measurement of 
acoustic impedance is based on pressure measurements taken in a pattern 
of this type.

8-8 The absorption coefficient. The absorption coefficient for a boundary 
between two media may be defined as the ratio of the acoustic power 
transmitted through a given area of the boundary to the power incident 
upon the same area. For normal incidence of plane waves at a boundary 
between two perfectly elastic media of infinite extent, we can, by Eq. (8-8), 
define a coefficient an as

It 1 It P2^2 ( 2piCj (qQ!n= — = 1— — = ---- I ------— — I • (O-IOJ
li li PlClXPlCi P2C2/

We are interested in acoustic absorption coefficients primarily for problems 
arising indoors, where we can in no sense assume only two media of infinite 
extent. A room has limited dimensions and, what is even more important, 
the wall itself is usually a complex structure made up of comparatively 
thin laminations, each component of which may have different physical 
and acoustic properties. More often than not the wall is constructed of 
panels of limited area, rigid at the edges and relatively flexible near the 
center. The nature of the surface material may change radically from 
one portion of the wall to another, due to curtains, windows, wood trim, 
etc. Finally, to mention one other important complication, although sound 
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waves originating within the room may reach a wall from predominantly 
one direction (rarely the normal to its plane), more often than not energy 
will arrive from practically all directions because of multiple reflections at 
other walls.

In view of the remarks above one would expect to use Eq. (8-13) with 
great caution and then only for certain special sets of conditions. There 
are, as a matter of fact, several different kinds of absorption coefficients, 
not easily defined. Before giving these definitions we shall look more care
fully into the relation between acoustic impedance and sound absorption.

8-9 Specific acoustic impedance of a boundary surface. The specific 
acoustic impedance in the path of a unidirectional plane wave is pc. For 
spherical waves radiating outward from a pole, zs is in general complex, its 
value approaching pc only at distant points. In the presence of two 
oppositely moving waves such as exist in front of a boundary, the value 
and nature of the acoustic impedance may be still different, if we consider 
it to be the ratio of a total pressure to a total particle velocity, each of 
which is dual in nature. To understand the procedure for determining 
the impedance under these conditions, we shall consider a number of 
simple special cases.

8-10 Both media perfectly elastic and infinite in extent. We shall define 
the normal specific acoustic impedance zn for a boundary surface as the ratio 
of the instantaneous total acoustic pressure at the surface to the total 
particle velocity, assuming a plane longitudinal wave to impinge upon the 
surface with normal incidence. For the system of two elastic media of 
infinite extent used so far in this chapter,

Because of the continuity of both pressure and particle velocity across the 
boundary, zn may also be written

Zn = (8-15)st
In this case, therefore, zn = zs, where zs, as defined, is the specific acoustic 
impedance characteristic of a free plane wave moving through the second 
medium only. Since pc is a real positive number, zn is comparable to an 
electrical impedance which is a pure resistance.

8-11 Boundaries for which zn is reactive. The process of reflection of 
plane waves at the end of a cylindrical tube filled with air can be as readily 
considered as that at an infinite plane. As will be remembered, plane
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waves started down cylindrical tubes of not too small cross section (so as 
not to introduce dissipation) remain essentially plane. If a rigid flat plate 
is placed at the end of the tube there will be no transmitted wave and zn 
will be practically infinite. This follows from Eq. (8-14), since will in this 
case be equal and opposite to Suppose, however, that instead the tube 
is closed by a thin circular plate mounted on a spring, allowing axial motion 
(Fig. 8-4). Now consider the effect of an acoustic pressure due to the 
arrival of a plane wave. The total force over the face of the plate due to this 
pressure is Sp, where $ is the area of the plate. This force is applied to the 
plate-spring system, whose mechanical impedance zm is reactive and is equal 
to — where K is the elastic constant of the spring (inertia and fric
tion in the plate-spring system are neglected). The velocity of the plate 
must be the same as that of the air immediately in front of the plate and £ 
will then be

i ? ' (8-16)

and the specific acoustic impedance at the surface may be computed as

^ = f=-j£ (8-17)

Since this is a purely imaginary quantity, there is no real power, on the 
average, delivered to the plate at the boundary. Just as for the case of a 
capacitor terminating a transmission line, instantaneous power is alter
nately fed to the plate-spring system and then returned to the acoustic line. 
Equation (8-17) shows that at the boundary the pressure is 90° out of 
phase with the particle velocity.

If we assume the plate to have considerable mass and the spring upon 
which it is mounted to be very weak, with a very small elastic constant, 
the mechanical impedance of the plate-spring system will be predominantly 

Area,S -

Spring constant, K, large

Mass negligible

Area,S -

Spring constant, K, small

Mass,m

Fig. 8-4. A pipe terminated by a 
mechanical reactance having the prop
erties of capacitance (compliance).

Fig. 8-5. A pipe terminated by a 
mechanical reactance having the prop
erties of inductance (mass).
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inertial (Fig. 8-5). By an argument similar to that just presented, we 
may conclude that the specific acoustic impedance at the boundary is

.comZn ~3 s ’ (8-18)

Fig. 8-6. Equivalent 
“ network ” for the normal 
specific acoustic imped
ance at the end of a pipe.

where m is the mass of the plate.
If both elasticity and inertia must be considered, and if in addition 

some frictional forces are present when the plate moves, we may conclude 
that zn, in general, is of the form

zn = R+jX. (8-19)

The imaginary part of zn maybe positive or negative 
(indicating either a lag or lead of £ relative to p), 
depending on the relative values of the constants. 
At the frequency for which the plate-spring system 
resonates, £ will be in phase with p and its root
mean-square value will be prms/R. The acoustic 
impedance zn may be considered the equivalent of a 
series LRC circuit, as in Fig. 8-6, where the impressed potential is the 
acoustic pressure.

8-12 Specific acoustic impedance at positions of discontinuity in the 
tube cross section. If the medium in a tube is air, effects similar to those 
just discussed are obtained whenever there are changes in the tube cross 
section or when there are partial obstructions. In Fig. 8-7 is shown one 
possible type of closure for a cylindrical tube. The system to the right of 
the plane aa is very similar in geometry to the Helmholtz resonator 
described in Chapter 5. In the region just to the left of the air channels 
the ratio of the acoustic pressure to the particle velocity, averaged over 
the total cross section of the main tube, will be determined by the 
inertial, elastic, and dissipative constants of the system to the right of the 
plane at aa. The air free to move in the several air channels will have 
mass, as in the neck of the Helmholtz resonator. The larger volume of air 
to the right of the channels will supply an elastic factor and friction along 
the channel walls will add the dissipative factor. As a result, one would 
expect the specific acoustic impedance at aa to be complex, its exact form 
determining the numerical and phase relationships between p and £ at that 
position. Depending upon the exact geometry, the impedance may be 
predominantly inductive, capacitive, or resistive. (Each of the special 
cases can be described on the basis of Fig. 8-7.)
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In the examples given in this and the preceding section, zn is definitely a 
function of the frequency in the incident wave. Only for the system dis
cussed in the early part of this chapter, i.e., the two elastic media of infinite 
extent, is the value of zn independent of frequency.

8-13 Specific acoustic impedance at the surface of absorbing materials. 
We are now in a better position to understand the absorption process at 
the actual wall surfaces of a room or other enclosure. Every portion of
the wall surface of a room may be considered to offer to the incident waves

Fig. 8-7. One type of closure for 
tube containing air.

a certain acoustic impedance. We shall 
presently show that the quantitative 
extent of the reflection as well as the 
phase relationships are directly related 
to the specific acoustic impedance zn, 
which in general is complex in nature. 
All wall materials are to some extent 
yielding. Some, like cloth and felt, are 
highly porous and have a structure 
(on a scale approaching the microscopic) 
similar to that shown in Fig. 8-7. There 

is clearly no possibility of a direct computation of zn in terms of the geometry 
of the channels, the mass of the filaments, etc. The obvious recourse is to 
experiment. The most common method of measuring zn experimentally is
based on observation of a stationary wave pattern. A resume of several 
methods will be given in Chapter 10.

8-14 The relation between zn and the absorption coefficient for plane air 
waves of normal incidence. Returning now to the absorption coefficient 
defined in Section 8-8, we shall show its important relationship to the 
normal specific acoustic impedance of the absorbing surface. Consider 
the total pressure p and the total particle velocity £ at the surface. By 
Eqs. (8-1) and (8-2), we may say that

p = pi + Pt (8-20)
and

£ = _ 2r, (8-21)
pc pc

where pi and pr respectively represent the pressures in the incident and the 
reflected wave at the surface, and p and c refer to air. The negative 
sign in the second equation is due to the direction of the wave velocity, as 
explained earlier.
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Since we cannot assume pi and pr to be the same in magnitude or in 
phase, we shall consider each to be a complex quantity. Therefore when 
we compute zn we shall expect to find it complex, the relationship to the 
pressures being

„  P   „ (P*  ~b /q oo\zn — £ - pc 1 _ I (8 22)
S \P‘ Pr/

The ratio of pr to pi as a complex quantity may be stated in the polar form:

= Mt10, (8-23)

where the modulus M represents the numerical ratio of the maximum 
values of the two pressures, and 0 is the relative phase angle (see the dis
cussion on complex quantities in Chapter 5). Combining Eq. (8-22) 
with Eq. (8-23), we find that

1 -I- Me19zn = R+jX = pe^^- (8-24)

By a general property of complex quantities, it is necessary that the real 
parts on each side of this equation be equal and also that the imaginary 
parts be equal. By rewriting the complex parts of the right-hand side in 
the form a + jb and collecting terms according to the rules of complex 
algebra, one may therefore obtain two independent equations. These 
equations essentially relate M and 0 to R and X. Knowing R and X, it is 
possible to find M and 0 or, conversely, knowing M and 0, it is possible to 
find R and X.

On the basis of the above mathematics, which we have here only out
lined, the normal absorption coefficient an may be determined, once zn is 
completely defined. The absorption coefficient an is given by

“”=i-f;=i-[wJ=i-M2- (8-25)
There are other mathematical and graphical tricks which may be developed 
to shorten the actual computation of the absorption coefficient (see Morse, 
Vibration and Sound and Beranek, Acoustic Measurements). In principle, 
the notion of absorption is the same for all types of surfaces. The fact 
that zn must often be considered complex is simply a computational detail.

8-15 Other absorption coefficients. The absorption coefficient an, often 
called the free-wave coefficient, is only one of several coefficients, each 
defined somewhat differently. The coefficient already discussed is perhaps 
the most fundamental from a physical point of view but it is not necessarily 
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the most directly useful. The Sabine absorption coefficient as is probably 
the most important historically and until recently has been the one most 
commonly used. This coefficient is the ratio of absorbed acoustic power 
to incident power when the latter is arriving simultaneously from all 
directions. For surfaces that react only locally to the incident wave, the 
absorption coefficient is independent of the angle of incidence. For sur
faces that transmit transverse waves well and rapidly, the coefficient is a 
function of the incident angle. The quantity as is the mean of a random 
assortment of angles and it may be computed on the basis of laboratory 
measurements or it may be determined from the reverberation properties 
of “live” rooms. It is often less than an. Table 8-1 lists values of the 
Sabine coefficient for various materials.

TABLE 8-1*
VALUES OF THE SABINE COEFFICIENT <xs

Frequency (cycles-sec-1) 128 512 1024 4096

Acoustic plaster 0.30 0.50 0.80 0.50
Brick wall, unpainted 0.02 0.03 0.04 0.05
Carpet, lined 0.11 0.37 0.34 0.24
Curtains, light 0.04 0.11 0.25 0.30
Curtains, heavy 0.10 0.50 0.80 0.75
Floor, concrete . r 0.01 0.02 0.02 0.02
Floor, wood , 0.05 0.03 0.03 0.03
Temcoustic F2 (when attached to plaster or

concrete) 0.33 0.54 0.52 0.42
Ventilator grill 0.50 0.40 0.35 0.25
Human body, seated (assuming an exposed

body area of 9 ft2) 0.17 0.42 0.56 0.50

* Based on Bull. Acous. Materials Assoc. 7, 1940.

It is to be noted that as is a function of the frequency, the values usually 
being somewhat lower at the lower frequencies. This dependence upon 
frequency is to be expected, from the complex nature of specific acoustic 
impedance. It is unfortunate that the middle and high frequency bands 
of the audible spectrum suffer greater absorption than do the low fre
quencies, since the former are the important components of speech. A 
recent solution to this problem will be mentioned presently.

A third group of absorption coefficients, called “chamber” absorption 
coefficients, are characteristic of certain particular chambers of definite 
size and shape where special conditions of intensity distribution, etc., 
lead to special values of a. For each such coefficient, the conditions of 
measurement must be described. .
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8-16 Use of panel resonance. By the use of care
fully selected panel resonances the relatively low 
values of the absorption coefficient at the lower fre
quencies, characteristic of most wall surfaces, may be 
replaced by values considerably higher. An elastic 
panel may be so constructed and supported that it 
will resonate at some particular low frequency. At 
the resonance frequency the average value of zn at 
the surface will be low, since the reactive part will 
be zero and only the resistive component will remain. 
At this particular frequency, zn takes on a value much 
closer to the pc of free plane waves in air and greater 
absorption is encouraged. In order to absorb a band 
of frequencies, the wall structure may be broken up 
into a large number of panels of assorted resonant 
frequencies (Fig. 8-8). In this way the wall becomes 
virtually a “band-pass filter/’ similar to a filter of 
the electrical variety.

Resonant 
areas

Fig. 8-8. The use 
of resonating panels to 
improve the low fre
quency absorption by 
walls.

8-17 Absorbing “layers.” The effect of thickness. If laboratory 
measurements of the value of zn or an are made at the surface of an actual 
sample of absorbing material, the results will be determined in part by 
the particular backing used. If the sample is fastened to wood, plaster, or 
any other material which is itself a good reflector, internal reflection at the 
boundary between the sample and the backing may return much energy to 
the air. A complete circuit analogy can be set up and the general results for 
any type of lamination can be predicted. In general, a surface material 
of high absorption coefficient and as thick as construction will permit is 
the most desirable. It is equally desirable that the material attenuate as 
rapidly as possible what energy does cross the surface boundary, in order 
to reduce the internal reflection just referred to. Porous materials supply 
such attenuation through viscosity and heat conduction effects along the 
minute ducts. The fibers of such materials themselves move in the 
presence of a wave, and the resultant internal friction also increases 
attenuation. All these factors, together with the important effect of the 
thickness of the material upon the emerging intensity of the internally 
reflected wave, are automatically taken into account in the measurement 
of zn and of an. Measurements should be taken with a thickness of sample 
and a type of backing characteristic of the use to which the material is to 
be put.
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8-18 Good reflectors and good absorbers. We have thus far stressed 
the quantitative features of the reflection and absorption of sound waves 
at boundaries of various sorts. Now let us consider what constitutes a 
good reflector for plane waves. Plainly, this would be a boundary at 
which the acoustic impedance is widely different from that characteristic 
of free plane waves in air. For many substances such as liquids or solids 
of the hard plaster or cement type, zn is much greater than pc and is often 
largely real in character. To compute the actual fraction of the incident 
energy which will be absorbed, we must know the value of zn (or an) and 
then proceed as in Section 8-14. Conversely, a good absorber must be a 
poor reflector. The quantity zn at the surface should approach as closely 
as possible the numerical value of pc for plane waves in air and should be 
real, so that a maximum fraction of the power in the incident wave may 
cross the boundary and never return.

A “perfect” reflector or a “perfect” absorber is quite unattainable. 
As a matter of fact, such a boundary would be highly undesirable, as we 
shall point out when we consider room acoustics in Chapter 12. By 
understanding the basic factors controlling the degree of reflection or 
absorption, we can usually design surfaces and materials which fulfill the 
necessary requirements.

PROBLEMS
1. (a) Find the expression for the 

ratio of the condensation s in the reflected 
wave to the condensation in the incident 
wave (for normal incidence), (b) What 
is the ratio of s in the transmitted wave to 
s in the incident wave?

2. A sound wave in air of pressure 
level 10 db strikes, with normal incidence, 
a boundary between the air and a second 
medium of large extent for which c = 84 
cgs units. Find (a) the rms pressure in the 
reflected wave, (b) the rms pressure in the 
transmitted wave, and (c) the phase rela
tionship at the boundary between these 
two instantaneous pressures and the in
stantaneous pressure in the incident wave.

3. If sound waves in air strike the 
surface of a second medium of large extent 
with normal incidence, what must be the 
value of zs for the second medium such 
that one-half of the incident energy returns 
to the air?

4. Will an open window allow sound 
waves of all frequencies to pass through 
undiminished? Give reasons for your 
answer.

5. A cylindrical tube is closed by a 
flat plate of negligible mass mounted on 
a spring, as in Fig. 8-4. The spring 
constant is 104 dyne-cm-1; the cross- 
sectional area of the tube is 15 cm2. A 
longitudinal wave in the tube, of frequency 
100 cycles-sec-1, impinges upon the plate, 
imparting to it a velocity of rms value 
6 cm-sec-1. Find the rms acoustic pres
sure at the surface of the plate.

6. A viscous force of friction is added 
to the plate-spring system of problem 5. 
This force is 20 dynes per unit velocity 
(in cm-sec-1) • (a) Find the acoustic pres
sure at the plate required to impart to the 
plate the same rms velocity as in problem 
5, that is, 6 cm-sec-1. (b) Determine the 
average power delivered to the plate-spring 
system under these conditions.
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7. A cylindrical tube of diameter 4 cm 
is closed by a structure similar to that 
shown in Fig. 8-7, there being a large 
number of small air channels. The aver
age value of z„ over the cross section of the 
tube is measured at the position aa, using 
waves of a certain frequency, and is found 
tobezn = 15 4-J5. (a) What is the phase 
angle between the pressure and the particle 
velocity just in front of the position aa? 
(b) If the rms pressure at the position aa 
is 3 dyne-cm-2, what is the average rate 
of loss of wave energy at the boundary aat

8. The maximum pressure in the 
reflected wave in the air just in front of 
an absorbing surface is one-half the value 
in the incident wave, and pr lags by a 

phase angle of 45°. Making use of Eqs. 
(8-23) and (8-24) and using the mathe
matical procedure suggested in Section 
8-14, find the real and imaginary parts of 
the acoustic impedance zn at the boundary, 
(b) Compute the absorption coefficient

9. A plane sound wave strikes with 
normal incidence an isolated small disk of 
absorbing material whose diameter is 
small compared with the wavelength. 
Will the value of zn at the surface of the 
disk under these conditions be the same 
as if the disk were at the end of a close
fitting cylindrical tube along which are 
traveling plane waves? (Compare with 
problem 4.)



CHAPTER 9

SPEECH AND HEARING

9-1 Importance of the subjective element in acoustics. The primary 
interest of human beings in the subject of sound arises because of the 
acoustic equipment in the possession of every normal person, the voice 
apparatus and the hearing mechanism. Since these two pieces of equip
ment make possible one of the most important channels of communication 
between individuals, it is important that we understand, as far as possible, 
their physical structures and modes of operation. Physical structure 
can be determined by dissection, but the complete physics of the production 
of speech and of the hearing process is another matter and, especially in 
the case of hearing, many uncertainties still exist. > Apart from the lo
calized complexities qf the mechanisms themselves, there are links with 
the psychological whose exact nature is difficult to discover by the usual 
procedures of experimental physics.

It will be the purpose of this chapter to describe briefly the voice and 
hearing mechanisms and to summarize the essential physics of their opera
tion, as far as it is known today. Many of the peculiarities of hearing 
will be presented descriptively, with no attempt at explanation.

9-2 The vocal apparatus. The energy associated with speech or with 
the singing voice originates with the forcible expulsion of air from the lungs. 
This steady stream of air may be looked upon as a “carrier” of energy, 
just as is the steady stream of air entering an organ pipe. In order for 
there to be audible sound, there must be a periodic variation in velocity 
(and hence in pressure). This necessary “modulation” is brought about 
in two basic ways, the type of sounds so produced being called, respectively, 
voiced sounds and unvoiced or breath sounds.

The voiced sounds include the vowels of ordinary speech and the tones 
which predominate in the singing voice. The fundamental modulating 
organ is the larynx, across which are stretched two membranelike bands. 
These are the vocal cords. In the production of voiced sounds, air is 
forced through a rather narrow slit between the bands, whose flexibility 
allows them to yield under the pressure of the air stream. The result 
is a widening of the slit, with a resultant rush of air and a consequent 
drop in the pressure. The membranes then return to their original posi
tions and the phenomenon is repeated. The action of the vocal cords is 
thus seen to be fundamentally that associated with a relaxation oscillation. 
Their behavior is similar to that of the reeds of certain musical instru

202
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ments, that is, motion induced in this manner converts a steady flow into a 
periodic one, and so makes sound waves possible.

As with any oscillation of the relaxation type, one would expect the 
generation of a fundamental frequency along with a large number of very 
prominent higher harmonics. The value of the fundamental frequency, 
and hence of the range of frequencies covered by the harmonic series, may 
be varied considerably by voluntary control of the tension of the vocal 
cords. This primarily accounts for the range in basic pitch of the speaking 
or singing voice. The numerous resonating cavities both above and below 
the larynx have a large number of assorted natural frequencies which do 
not necessarily bear a whole number relationship. Such resonances con
tribute in a very important way to the frequency content in the emitted 
sound and, in addition, their presence accounts 'for the existence of certain 
inharmonic frequencies.

It is possible for the vocal equipment to give rise to sound without 
use of the vocal cords. Such sounds are called breath sounds. A steady 
forcible exhaling of the breath will produce a hissing sound like that of 
escaping steam. This is also a result of relaxation effects due to the 
turbulence set up in the flow of air around the numerous irregularities 
along the vocal tract. An analysis of this type of sound reveals a band 
of practically continuous frequency coverage largely confined to the 
upper portion of the audible frequency range. As we shall see presently 
in connection with speech, it is the existence of this type of breath sound 
that makes whispering possible.

A third type of sound results from a combination of voiced and breath 
sounds. Such sounds as “zee” belong to this classification.

9-3 The speech process. A steady-state analysis of the frequency 
content of the various intoned vowel sounds has been made by Fletcher.*  
Figure 9-1 shows the relative amplitudes of the harmonic terms for several 
such sounds. Although the lowest frequency gives the characteristic 
pitch recognized by both the speaker and the listener, higher frequencies 
are more often than not of greater prominence (just as with some of the 
notes played on the violin). For the sounds “oo” and “oh,” for instance, 
the most prominent frequencies are the third and fifth harmonics, respec
tively, even though the fundamentals are identical (Fig. 9-la and b). For 
the sound “ee” (Fig. 9-lc), there are important harmonic frequencies as 
high as 4300 cycles-sec-1, the series from about 2500 cycles up being fully 
as prominent as the group below 2500 cycles.

* Fletcher, Speech and Hearing, D. Van Nostrand Co. (1929), pp. 51-55.
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The variation in the harmonic content of the different vowel sounds 
is brought about by a deliberate variation of the size and shape of the 
constrictions along the vocal tract, the position and shape of the tongue, 
the shape of the mouth opening, etc. In a rather complicated manner this 
alters the nature and extent of the various resonances along the way, 
thus controlling the relative prominence of the numerous frequencies set 
up at the larynx.

A single intoned vowel does not convey speech information. The process 
of speech may be described somewhat as follows.*  As has been pointed 

* For a fuller discussion of this view of speech, see Dudley, “The Carrier Nature 
of Speech,” Bell System Jour. 19, 496 (1940).
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Fig. 9-1. Relative prominence of frequency components in intoned vowel sounds.

out, the production of audible sound in the vocal tract is a process of modu
lation impressed upon the carrier motion, in this case the steady velocity of 
the expelled air. A voiced sound originating in this manner and containing 
a steady-state mixture of frequencies may now itself serve as a carrier for 
speech information contained in a second type of superimposed modulation 
associated with word formation. The steady sound wave may be compared 
to the carrier wave generated by a radio transmitter. In the latter 
case the wave form is sinusoidal and of course is of a frequency above 
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audibility, whereas in the case of a steady voiced sound the wave form is 
complex, since there are many frequency components which lie within the 
audible range. Both carriers are nevertheless similar in that no informa
tion is conveyed by their mere steady-state existence. In the electromag
netic wave the information is impressed upon the carrier in several ways, 
the most common types of modulation being change of amplitude and of 
frequency. The complicated actions of the vocal tract described above 
accomplish the same thing in the acoustic wave. For speech, the modula
tion rate, i.e., the time rate of change from one speech sound to another 
(as from one vowel to another vowel) is very low, the effective frequency 
for this variation being far below audibility. The amplitude type of modu
lation seems to be more important for conveying information, although 
frequency modulation of the carrier plays an important part, for instance, 
in the speech attribute known as inflection.

Just as the collection of frequencies set up by the vocal cord action 
may serve as the carrier for speech modulation, so may also the breath 
sound referred to earlier. It is this carrier whose frequency composition 
resembles that of a continuous spectrum, which is so essential to the 
production of the consonant sounds. Like the voiced sound, the breath . 
sound may be modulated by altering the configuration of certain features 
of the vocal tract. In actual speech, containing vowels and consonants, 
use is made either alternately or simultaneously of both voiced and breath 
sound carriers. In whispering, the breath sound alone serves as the 
carrier. It would thus seem that the exact nature and characteristics 
of the carrier are of much less importance than the modulation imposed 
by the speech information. This has, of course, been found to be true 
for a large variety of electrical carrier waves.

9-4 The vocoder. An interesting speech-synthesizing circuit known as 
the vocoder demonstrates the carrier nature of speech. By means of 
electrical filter circuits the original carrier components are removed from 
a certain sequence of speech sounds. The modulation containing the 
information is retained and then impressed electrically upon an artificial 
carrier. For the voiced type of carrier an electrical oscillator of the re
laxation type may be used. For the breath variety of carrier, a gas- 
filled tube will supply a “hisslike” output. When the low frequency 
modulation carrying the speech information is impressed upon either car
rier, intelligible speech sounds result.

One of the interesting outgrowths of the studies of Dudley on the carrier 
nature of speech is that almost any carrier sound wave of mixed frequency 
content may be used. Even orchestral music may be used to transmit 
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speech information, if it has a reasonably constant intensity level, and 
provided it is modulated at the proper rate, determined by the speech 
characteristics.

9-5 Energy distribution in speech as a function of frequency. Many 
measurements have been made of the energy distribution among frequencies 
involved in ordinary speech. Most of the earlier data must be credited 
to the Bell Telephone Laboratories, whose interest in the subject is quite

understandable. Crandall found that for the average male voice the 
energy peak lies in the neighborhood of 120 cycles-sec-1; for the average 
female voice the peak occurs at about twice this frequency. The many 
harmonics above these frequencies are associated with very low relative 
energy.

Some recent data along these lines, recorded at Harvard University,*  
are represented in the graph of Fig. 9-2. The voices of seven different 
men were studied, each one speaking the sentence: “Joe took father’s 
shoe bench out; she was waiting at my lawn.” This quaint and decidedly 
unliterary sentiment was chosen because of the wide variety of representa
tive speech sounds it Contains. The horizontal axis of the graph, is ,fre

* Rudmose et al., Jour. Acous. Soc. of Amer. 20, 507 (1948).
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quency, plotted on a logarithmic scale. The ordinates represent rms 
sound pressures, each point on the curve signifying the average pressure 
level over a band width of one cycle for the time during which the test 
sentence was being spoken. (The measurements involved the use of 
electrical filters and integrating circuits.) The central curve within 
the shaded area is an average for the seven voices. The limits of the shaded 
area are drawn so as to include all the separate curves representing individ
ual characteristics and therefore to give some idea of the spread among the 
test subjects. As may be seen, there is a progressive falling off in sound 
pressure above 800 to 1000 cycles-sec-1, indicating that by far the greater 
part of the energy in speech is carried by the lower frequencies. Since 
the vertical scale of the graph corresponds to the pressure level, it may be 
considered an intensity scale. It is interesting to note that the average 
total acoustic power in the typical speech of a single individual was of the 
order of 30 microwatts (1 microwatt = 10-6 watt). This value assumes 
hemispherical distribution.

9-6 Intelligibility of speech as related to frequency band width. Al
though most of the energy of speech is concentrated in the lower frequency 
regions, it must not be concluded that the upper frequencies are of negli
gible importance for purposes of communication. The higher frequencies 
constitute the main carrier for the important parts of the speech message 
associated with consonant production; speech with the consonant sounds 
removed is notoriously difficult to understand.

Much data on the essential factors governing the intelligibility of speech 
have been reported in the technical journals, and standard test sounds, 
syllables, words, and sentences have been devised. The tests and the 
method of analysis of the results are described by Fletcher.*  Interesting 
experiments have been performed wherein certain frequencies and bands 
of frequencies within the speech range have been suppressed by means of 
electrical filters. Data were taken on the observed articulation of certain 
sounds and syllables (the portion correctly recognized) and also on the 
intelligibility of sentences (the portion representing correct thought recep
tion). All the data point to the primary importance of the upper fre
quencies. In fact, the use of a filter designed to eliminate all frequencies 
below 500 cycles-sec-1 still permits an articulation score of 98%. For some 
of the consonant sounds the cutoff may be placed as high as 1500 cycles- 
sec-1 with negligible effect upon the articulation. Frequencies up to at 
least 3000 cycles-sec-1 are important; frequencies higher than this are of 

* Fletcher, Speech and Hearing, D. Van Nostrand Co. (1929).
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decreasing importance to articulation and intelligibility. (Much, higher 
frequencies must be included, however, for facsimile reproduction of speech 
quality and musical detail.)

9-7 Miscellaneous voice properties. To the general results summa
rized in the preceding sections may be added other significant information 
regarding the voice. Male voices are usually richer in harmonic content 
than are female voices. This is primarily because the lower fundamental 
frequencies of the male voice involve harmonics which are in general mul
tiples of the fundamental and must therefore be more closely spaced in the 
frequency spectrum. Despite the differences in fundamental pitch and 
harmonic content that distinguish between individuals of the same sex and 
also between men and women, the vowel sounds discussed in Section 9-3 
are each characterized by certain invariant clusters of closely spaced fre
quencies. The vowel sound “ah,” for instance, has a strong group of 
frequencies in the neighborhood of 900 cycles-sec~r for practically all 
individuals, the long “ee” sound almost invariably contains two clusters 
of frequencies in the neighborhood of 750 and 1600 cycles-sec-1 respectively, 
and for the long “a” sound there are two groups near 500 and 2500.

9-8 Artificial voices. Tests involving human subjects are always labo
rious and liable to errors of the statistical type. In an effort to obtain 
more standardized test conditions, artificial voice mechanisms have been 
developed. The sound source for an artificial voice may be a more or less 
conventional loudspeaker unit of appropriate size. In front of the vibrating 
diaphragm is placed an acoustically designed structure simulating the 
essential impedance properties of the mouth and the mouth opening and 
of comparable size (to supply acoustic resistance and acoustic reactance). 
Since the diffraction properties of the human head play an important part 
in determining the sound distribution pattern, it is often desirable to sur
round the artificial voice mechanism with a life-sized model of the head. 
The use of this standardized equipment facilitates testing of equipment 
such as transmitter microphones, for instance.

9-9 The hearing process. The process of hearing may be said to take 
place in three stages. A portion of the wave front is first intercepted 
by the opening of the outer ear, which funnels the energy through the 
auditory canal to the eardrum, separating the inner from the outer ear. 
At the eardrum, the acoustical energy is transformed (partially) to the 
mechanical energy of vibration of the membrane. The second stage con
sists of the transmittal of this vibrational energy, through the intercon
nection of several levers, to a second membrane which lies at the entrance
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to the liquid-filled cochlea, a complex structure within which lie the sen
sation detectors. The final stage is the translation of the physical stimuli 
of these detectors, brought about indirectly by the pressure variations set up 
within the cochlear fluid, into a definite nerve message to the brain.

9-10 The structure of the ear. An anatomical drawing of the ear 
structure is apt to be confusing because of the wealth of nonessential 
detail. Figure 9-3 is designed to emphasize the functional features of 
the various parts of the ear. The outer, visible part is vestigial in size

and shape and adds little to the collecting power of the auditory canal. 
(In many animals the external part of the ear is large and mobile and is 
more important acoustically.) The auditory canal, about 3 cm in length, 
may be considered as a pipe closed at the inner end by the eardrum. The 
calculated fundamental resonance of such a pipe occurs at approximately 
2700 cycles-sec-1, not far from that at which the average ear is most sen
sitive. The sensitivity of the ear, however, falls off much more slowly 
with frequencies lower or higher than 2700 cycles-sec-1 than would be 
expected on the basis of a pipe resonance.

The eardrum (tympanic membrane) is stretched tightly across the inner 
end of the auditory canal and separates the outer from the middle ear. 
The middle ear contains three leverlike bones that serve to transmit the 
motion of the eardrum to the oval window, a second membrane which, 
in part, separates the middle from the inner ear. The first of these bones, 
the hammer, is attached to the eardrum and to the second bone, the anvil, 
which in turn is pivoted to the stirrup. One side of the stirrup is attached 
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to the oval window. (It is interesting to compare the mechanical structure 
of the middle ear to the linkage system employed in the pickup head 
of the old-style “acoustical” phonograph.) The structure of the middle 
ear, taken as a system of closely coupled parts, has very broad resonances, 
due partly to the damping effect of tissue at the joints and partly to the 
loading supplied by the liquid on the inner ear side of the oval window. 
The response may therefore be described as approximately aperiodic in 
character.

Basilar membrane •

Fig. 9-4. Section of the 
cochlea, parallel to the axis.

The structure of the inner ear has excited great interest among research 
workers. The oval window, connected to the stirrup, is one of two mem

branes closing the end of the important spiral
shaped cavity called the cochlea. The second 
membrane, the round window, completes the clo
sure of the cavity but is not directly connected to 
the stirrup. Figure 9-4 is a diagrammatic side 
view of the cochlea. Extending longitudinally 
along the turns of the spiral are two mem
branes, the basilar membrane and the membrane 
of Reissner. The latter is very thin and flexible 
and apparently of secondary importance. Figure 
9-5 is a cross section of one of the turns of the 
cochlea, showing the nearly central position of the

basilar membrane. Close to the oval window and to one side of the basilar 
membrane is the entrance to the semicircular canals, which play no direct 
part in the hearing process.

The regions on each side of the basilar membrane contain liquid. Any 
motion of the stirrup, such as that caused by the entry of sound waves 
into the outer ear, will vary the pressure on the basilar membrane near 
the oval window, with a resultant flexure of the membrane itself (Fig. 
9-3).

9-11 The organ of Corti. Mounted along the center of the basilar 
membrane is the organ of Corti, a structure which has been the subject 
of much controversy among physiologists. The most prominent feature of 
this complex structure is the arch of Corti, a basic framework upon which 
are supported clusters of hair cells from which cilia project into the liquid 
above the membrane. As the basilar membrane moves in response to the 
pressure changes occurring at the oval window it carries with it the whole 
organ of Corti. For some time it was thought that the arch of Corti was 
the sensory organ that detects the vibrations set up in the inner ear. It 
is now known that the auditory nerves run from the hair cells and that the
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latter are the true organs of sensation. There are five rows of hair cells 
along the organ of Corti, totaling about 23,000 in number. The bundles 
of auditory nerve channels emerge 
from the center of the cross section 
of the cochlea,, as shown in Fig. 9-5.

9-12 Mechanical properties of 
the cochlea. Resonance theory of 
Helmholtz. A physicist, familiar 
with resonance phenomena for vi
brating bodies, is naturally tempted 
to picture the frequency-sensitive 
portion of the ear as made up of a 
large number of individual units, 
each tuned to a different frequency 
in the audible spectrum. Helmholtz, who was certainly part physicist, 
first believed that the rods or arches of Corti were the resonators, and that 
the vibration of the basilar membrane was the source of excitation of the 
arches of Corti. In a later development of his theory, he considered the 
fibers of the basilar membrane itself to be the group of resonators. These 
transverse fibers are shorter near the base of the cochlea than near the apex. 
There are about 10,000 membrane fibers in all; their varying lengths sug
gest the frequency distribution associated with a stringed instrument 
like the harp.

9-13 Other resonance theories. Numerous critics voiced their objec
tions to the theory of Helmholtz, even during his lifetime. The mechanical 
behavior of an individual resonator remained obscure. The stretched 
fibers of the basilar membrane appear incapable of resonance over the 
wide range required for the ear, especially near the upper frequency limit. 
By the end of the 19th century there were, for these and other reasons, 
few supporters of the Helmholtz theory.

| A number of more recent resonance theories have been suggested.
I Among several theories of a similar nature may be mentioned that of

Ewald, proposed in • 1898. Instead of concentrating upon a distributed 
set of resonators, Ewald considered the basilar membrane as a whole to 
be the single resonator for all frequencies, its response being much like 
that of a single stretched string. Many difficulties arose, however, because 
of the complexity of the stationary wave patterns which might result in 
accordance with this theory.

In 1928 Bekesy began to report upon a series of experiments with me
chanical models of the cochlea containing a thick membrane simulating 
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the basilar membrane. (Ewald had done some experimenting with models, 
also.) When excited with sound waves, this membrane was set into a 
rather complicated motion which involved vibrations of the sound fre
quency. In addition, a sort of modulation effect occurred, in the nature 
of a traveling envelope of the vibrations. The peak of this vibration 
envelope, however, always occurred for any one frequency at the same 
point, as measured along the long dimension of the membrane. For low 
frequencies this peak occurred near what would be the apex of the cochlea. 
For high frequencies its position was near the base. For intermediate 
frequencies there were corresponding intermediate positions for the peak. 
Bekesy later performed similar experiments with preserved specimens of 
human and animal cochlea, and observed motions of the same type, in 
agreement with the results of his study of models. These experiments 
would indicate that there are certainly mechanical resonant effects within 
the cochlea, apparently associated with waves moving longitudinally along 
the liquid-filled structure, with the maximum mechanical response occur
ring, as in Helmholtz’s theory (but for quite different reasons), at definite 
positions for any one particular frequency.

Various theoretical treatments of the behavior of such a liquid-filled 
tube having flexible sides have been given in recent years. Among the 
more recent are those of Ranke*  and Zwislocki.f Both formulations pre
dict cochlear resonance very similar to that found experimentally by 
Bekesy.

9-14 The organs of sensation. One of the interesting aspects of the 
behavior of the cochlea concerns the existence of alternating potentials 
within the cochlear fluid in the presence of sound stimulation. These 
so-called cochlear potentials follow closely the wave form characteristic 
of the original sound disturbance. Since these potentials appear to be non
existent in the cochlea of animals with normal ear structure except for the 
absence of the hair cells, it may be concluded that these hair cells are the 
source of the cochlear potentials. Because these cells move with the motion 
of the basilar membrane, it seems reasonable to suppose that they are 
distorted in shape as the upper ends of the cilia press periodically against 
the tectorial membrane immediately above the hair ends. The alteration 
in the state of polarization of the outer cell surfaces which results from 
this distortion is presumed to be the source of the potentials.

Since the terminations of the auditory nerve fibers are entwined around 
the lower ends of the hair cells, it seems likely that, either directly or

* 0. F. Ranke, Jour. Acous. Soc. of Amer. 22, 772 (1950).
t Zwislocki, Jour. Acous. Soc. of Amer. 22, 778 (1950).
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indirectly, the potentials developed in the hair cells are responsible for the 
nerve impulses associated with the hearing process.

9-15 Frequency perception. As has been seen, the early theories of 
Helmholtz and others assumed that the mechanical stimulation of certain
restricted areas within the cochlea accounted for a definite sense of fre
quency peculiar to that area. Later study has shown the presence of a type 
of true resonance phenomenon, but it is so widely spread along the cochlea 
that the perception of frequency at a specific “point” seems most unlikely.

In contrast to the point theories described above, Rutherford, Meyer, 
and Wrightson, among others, advanced the so-called “telephone” theory. 
By this theory the mechanical system within the cochlea is supposed always 
to be stimulated more or less as a whole. The mechanism is considered, 
like a telephone, simply to serve as a relay to transmit stimuli to the nervous
system, where the true frequency discrimination takes place.

A point of view which, in the main, concentrates upon the stimulation
of the auditory nerve fibers has been described by Wever.*  This concept
presumes that for the lower range of frequencies the nerve fibers as a whole
are stimulated (as in the older “tele
phone” theories), but because of the 
“relaxation times” of the individual 
fibers, each such unit may “fire” (i.e., 
deliver its impulse) at time intervals 
corresponding to, say, five cycles of 
the audible vibration. Because of 
the large number of such fibers there 
will always be some ready to discharge 
at each peak of the vibration stim
ulus and hence the frequency of occur
rence in the total nerve message will 
correspond to that in the sound vibra
tion (Fig. 9-6). This response of the 
nerve fibers in groups has been called 
by Wever the “volley principle.”

Fig. 9-6. Volley principle in nerve 
fiber discharge.

While for the lower frequencies there is seen to be no particular localization 
of sensation along the cochlea, there is good evidence from the study of 
impaired hearing that sensitivity to frequencies above about 2000 cycles- 
sec-1 is concentrated over the first three-quarters of a turn near the base of 
the cochlea (the region sensitive to the very highest frequencies lies near

* Wever, E. G., Theory of Hearing, John Wiley & Sons (1949).
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the beginning of the spiral). The degree of localization is believed to 
broaden from 2000 cycles downward, until at about 500 cycles-sec-1 the 
whole cochlea is effectively a detector.

It is interesting to see that the volley principle does not of itself rule 
out the importance of the mechanical resonance properties so well demon
strated by Bekesy. Wever has been able to combine the data regarding 
the variation in the mechanical stimulation along the basilar membrane 
with the essential known facts regarding the number and behavior of the 
nerve fibers affected. In this way he has obtained a theoretical sensitivity 
for the ear as a function of frequency.*  The curve representing this 
function is in fair agreement with the experimental curve known as the 
“threshold of audibility” contour, to be discussed in Section 9-17.

* Wever, op. cit., p. 296.

9-16 Hearing data for the normal ear. Under this heading we shall 
consider the results of the large number of statistical studies that have been 
made on hearing properties. It should be remembered that in this field 
we are dealing fundamentally with the subjective aspect of acoustics. 
Instruments cannot readily be placed within the hearing mechanism, and 
even if that were possible, data so obtained might bear little relation to 
the sensation called “hearing.” Hearing tests must be performed with 
care and the results must be interpreted cautiously. Since the hearing 
characteristics of different individuals differ widely, general conclusions 
are valid only for the average ear.

9-17 Threshold of audibility. The normal ear is remarkably sensitive 
to sound waves of very low intensity, the low intensity limit being of the 
order of 10~9 erg-cm~2-sec-1, the usual reference for intensity level. The

Fig. 9-7. Thresholds of audibility. (After Beranek)
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threshold of audibility is usually expressed in terms of the lowest rms acoustic 
pressure to which the ear will respond, and it varies markedly with the 
frequency. In Fig. 9-7 are shown three curves plotting the threshold of 
audibility against frequency. Curve 1 was taken with one ear only, the 
stimulation originating with an earphone and the sound pressure being 
measured at the ear. Curves 2 and 3 were taken with the listener in a 
sound field, making use of both ears. The pressure in the field was meas
ured before the subject entered it. For curve 2 several scattered sources 
were used and for curve 3 a single source was placed in front of the listener. 
Despite the differences among the curves, all three show the maximum ear 
sensitivity to be in the neighborhood of 3000 cycles-sec-1. (The wavy 
appearance of curve 3 is due to the diffraction effects of the head.) All 
three curves represent averages of data taken for a large number of subjects.

9-18 Loudness and loudness level. In our discussion of objective 
sound phenomena, we have been careful to use the word intensity instead 
of loudness because, as was pointed out, the two concepts are not identical. 
Loudness is a purely subjective quantity, not directly measurable with 
instruments. Loudness increases with intensity, but there is no obvious 
linear relationship. Each of several sounds may be classified by a listener 
as twice, five times, or perhaps ten times as loud as another. A scale 
of loudness based entirely on this type of average listener reaction has been 
devised. The fundamental unit is the sone, defined as the loudness of a 
pure 1000-cycle note whose pressure level is 40 db (a smaller unit, the 
millisone, equal to .001 sone, is often used). A sound five times as loud 
as the 1000-cycle, 40-db note would differ from the latter by a loudness of 
four sones.

Fig. 9-8. Loudness level contours.
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The loudness level of a tone of any frequency is defined numerically 
as the sound pressure level (in db) of a 1000-cycle-sec-1 tone which sounds 
equally loud to the listener. Loudness level is expressed in phons. The 
meaning of loudness level will be made clear by an inspection of Fig. 9-8. 
The curves are contours of equal loudness for a variety of sound pressures 
ranging from the threshold of audibility to what is sometimes called the 
upper threshold of feeling (where the sound becomes painful to the listener). 
The sound pressures in the free field were measured before the entry of the 
subject. It will be noted that the numbers corresponding to the loudness 
level in phons and the sound pressure level in decibels coincide in every case 
at 1000 cycles-sec-1, in agreement with the definition of loudness level. 
At lower and at higher frequencies, however, the contours bend upward, 
the rise for the threshold of audibility at the lowest frequencies being as 
much as 70 db. Interpreting the general shapes of the contours, one may 
say that except for very high-level sounds the ear requires much greater 
sound pressures at low and at high frequencies to match the loudness at 
the middle frequencies. From curve 4 it will be noted that at 30 cycles- 
sec-1 a sound of loudness level 30 phons will have a sound pressure level 
(referred to the usual zero reference level) 50 db higher than at 1000 cycles- 
sec-1. The pressure ratio corresponding to 50 db is 316, so it is obvious 
that the ear’s sensitivity at 30 cycles-sec-1 is far below that at 1000 cycles- 
sec-1.

Data for the plotting of equal loudness contours are relatively easy 
to obtain. A calibrated source of variable frequency, producing a known 
intensity at the point of pressure measurement, is adjusted by the auditor 
until to his ear a 100-cycle note, for instance, and a 1000-cycle note are 
identically loud. The pressure level produced by the 1000-cycle note is 
then the loudness level in phons for both notes. Since the pressure level 
of the 100-cycle note is known, two points for the loudness contour have 
been determined. The process is repeated for the determination of other 
contour points.

The relationship between loudness level and the quantitative subjective 
sensation called loudness is interesting and important but is difficult to 
determine with accuracy. One experimental procedure is as follows. A 
calibrated frequency source is first adjusted so as to produce a 1000-cycle 
note at a pressure level of 40 db. By definition, the loudness is then 
1000 millisones. The intensity of the note is next altered until it seems to 
a listener to be, say, one-half as loud. The loudness is then 500 millisones 
and the corresponding pressure level can be read from the calibrated source. 
Similarly, the pressure level corresponding to 2000 millisones, say, is 
determined by adjusting the intensity until the note seems to be of twice 
its original loudness. Similar measurements at a sufficient number of 
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different intensities enable loudness to be determined as a function of 
pressure level. The latter is in this case also loudness level, since the 
frequency we have selected is 1000 cycles. The relationship between 
loudness and loudness level at other frequencies can be determined by 
making use of the contours of Fig. 9-8.

Figure 9-9 is a plot of loudness, determined as above, against loudness 
level as a parameter.*  It is interesting to study the shape of this curve

* Fletcher and Munson, Jour. Acous. Soc. Amer. 9, 1 (1937).

Fig. 9-9. Relationship between loudness and loudness level.

in the light of the assumed law of sensory response referred to in Section 
2-20. If, as was suggested, the response is proportional to the logarithm 
of the stimulus, we might expect the actual loudness numbers to be linear 
with the decibel scale of loudness level (this scale being logarithmic). 
This is approximately so for loudness levels below about 15 phons but 
for higher levels there is considerable deviation from linearity. The broken 
curve of Fig. 9-9 indicates the hypothetical shape if loudness were strictly 
linear with loudness level. (Such a curve will not be straight on this 
graph because loudness has been plotted on a logarithmic scale.) At 
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higher sound levels the loudness increases much faster than the response 
law would predict.

9-19 Differential intensity level sensitivity of the ear. In introducing 
the decibel scale of intensity comparison earlier, it was mentioned that a 
difference of about one decibel is necessary before a change in intensity is 
discernible by the ear. Actually, this minimum detectable change in 
intensity level varies greatly with the intensity itself, the frequency, and,

Frequency in cycles-sec

Fig. 9-10. Curves showing sensitivity of the ear to changes in sound pressure. 
(After Fletcher)

the minimum detectable change in intensity level as a function of intensity 
and of frequency.

Smaller changes in intensity can be detected at' high sound levels than 
at low levels. Also, the differential sensitivity of the ear is much less at 
high and at low frequencies than it is at the middle frequencies. At a 
sound pressure level of 80 db and for a frequency of 2000 cycles-sec-1 (the 
most favorable conditions), the ear is aware of changes as small as 0.25 db; 
on the other hand, near the threshold of audibility changes of the order 
of 5 to 10 db produce barely audible effects for the very low and the very 
high frequencies.

9-20 Pitch vs frequency. The words pitch and frequency are com
monly used interchangeably, but in acoustics frequency is always the objec
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tive vibration rate, while pitch is reserved for that subjective sensation by 
which the listener classifies a note as high or low. Conversion scales have 
been devised whereby one may relate pitch to frequency numerically, 
just as one relates loudness to intensity. Such scales are based largely 
on psychological tests.*  The relationship is intimately connected with 
theories of hearing. We shall confine our attention here to several special 
aspects of this part of the hearing process.

* Stevens and Volkman, Am. J. Psychol. 53, 329 (1940).
t Shower and Biddulph, Jour. Acous. Soc. Amer. 3, 275 (1931).

9-21 Differential frequency sensitivity of the ear. In Fig. 9-11 are 
shown graphs of the ratio A/// plotted against frequency, where A/ is the 
minimum detectable frequency shift, f Curves are given for four different

Fig. 9-11. Curves showing sensitivity of the ear to changes in frequency. (After 
Shower and Biddulph)

sound pressure levels. Clearly, the differential frequency sensitivity of 
the ear, treated as a fraction of the frequency, is greatest for the frequencies 
above about 1000 cycles-sec-1 and becomes relatively poor at frequencies 
below that. In general, sensitivity decreases with the sound intensity. 
These data are for pure tones only. The ability of the ear to detect an 
off-pitch note in the low register of the piano is not necessarily as poor as 
these data might indicate. The low piano notes are rich in harmonics, 
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especially if struck vigorously, and the presence of the higher frequencies 
makes possible greater frequency discrimination.

It will be noted (Fig. 9-11) that at a 10-db level a 30-cycle note must 
be changed in frequency by 9% (i.e., to 32.7 cycles-sec-1) before a change 
in pitch is detectable. Hence two pure notes of frequencies 30 and 32 
cycles-sec-1 respectively will have nearly identical pitch. This is one 
example of the importance of using the words pitch and frequency carefully 
and properly.

On the basis of the graphs of Fig. 9-11 one may compute the total num
ber of frequencies distinguishable by the average ear within any given fre
quency interval. The number will obviously be greatest for the frequency 
range above about 1000 cycles-sec-1. About midway between the threshold 
of audibility and the threshold of feeling, for instance, there are something 
like 10,000 distinguishable frequencies in the range from 1000 to 2000 
cycles-sec-1. The number in a 1000-cycle interval is smaller at the high 
frequencies and very much smaller at the low frequencies.

9-22 Shift in pitch (or apparent frequency) at high intensities. When 
the ear is exposed to a pure note of constant frequency and of great intensity 
(a sound pressure level of 60 db or more), there is an apparent change in 
the frequency (or in the pitch sensation). This change is usually a decrease, 
the amount of the change being a function of the frequency of the source

Fig. 9-12. Apparent shift in frequency with high sound pressures. {After Snow)
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and the intensity at the ear. The graphs of Fig. 9-12 are from data by 
Snow.*  Apparent frequency changes are given in percent, all changes 
being negative. Data by Fletcher indicate a slight rise in pitch for fre
quencies above 2000 cycles-sec-1. The 10% change indicated in some cases 
is not unusual. Many listeners can detect a drop in apparent frequency 
when certain loud notes are sounded on the organ, an instrument of great 
acoustic power. This may be due to actual fluctuations at the source 
because of large air amplitudes in the pipe or may be an effect occurring at 
the ear.

* Snow, Jour. Acous. Soc. Amer. 8, 14 (1936).

9-23 Masking. The phenomenon of the masking of a useful sound by 
the presence of background noise (noise being undesired accompanying

Fig. 9-13. Masking effects. (After French and Steinburg)

sound, usually consisting of a heterogeneous frequency mixture) is a familiar 
one. From a practical point of view it is necessary to know by exactly how 
much the level of useful sound must be raised in order to be just detectable 
or, in the case of speech, just intelligible above background noise. It turns 
out that only the frequencies adjacent to the frequency of a useful pure tone 
affect the masking. The band width of such pertinent frequencies varies 
with the desired frequency. The curve in Fig. 9-13 shows the variation 
in band width plotted against the frequency of the desired pure tone. 
The spectrum level for a random background noise in the neighborhood of 
any one frequency may be defined as the effective pressure, due to the 
noise, in a portion of the band one cycle in width. Fletcher has shown 
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that to be barely audible, the level of a pure tone must be raised above 
the spectrum level a definite number of decibels directly related to 
the band widths just mentioned. The numbers corresponding to this 
critical level increase are shown in the figure in relation to various band 
widths. Such data are of great value in acoustical engineering, for 
instance in the problem of designing public address systems for noisy 
factories.

9-24 Sum and difference frequencies. As was emphasized in Chap
ter 1, the phenomenon of beats does not indicate a true difference frequency. 
The so-called beat frequency is merely a slow periodic variation in the 
amplitude of the sum effect of two higher frequencies. Mathematical 
analysis will fail to reveal the presence of a third frequency component, 
if the primary frequencies represent pure simple harmonic vibrations. It 
is nevertheless possible to hear difference frequencies under certain condi
tions and even to detect them objectively with instruments of the micro
phone type.

One clue to the existence of these combination frequencies lies in the 
general requirement that for their production the two primary tones must 
be of high intensity. Vibrations of large amplitude at the source will call 
into play both nonlinearities of source properties and of the behavior of the 
air immediately surrounding the source. That is, we may no longer con
sider the vibrations in the medium to be of the small amplitude type. Any 
nonlinearity in a transfer process results in intermodulation, which simply 
means that when two SHM’s co-exist, the amplitude and wave form of 
one of the frequencies is affected by the presence of the other. It can be 
readily shown that any modulation process is equivalent to the production, 
among other things, of sum and difference frequencies. Once such fre
quencies appear near the source, they will propagate and, if of sufficient 
intensity, will affect the ear. The greater the amplitude of the two primary 
vibrations, the greater will be the amplitudes of the sum and difference 
frequencies (this is the reason why these effects are observed in general 
only with sounds of high intensity).

It is sometimes possible to detect difference frequencies when the primary 
sounds are of only moderate intensity. Under these conditions it is prob
able that nonlinearities somewhere in the hearing process are responsible. 
If, for instance, the eardrum were stiffer for inwardly directed forces than 
for those directed outward, its motion during the sound cycle would be 
asymmetrical, as indicated in Fig. 9-14a, and the symmetrical pattern 
associated with beat formation would be distorted to the shape shown in 
Fig. 9-14b. Such distortion amounts to what is called “partial rectifica
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tion” in an electrical circuit. Figure 9-14c shows how this rectification 
has brought into existence the true difference frequency.

Studies of the electrical characteristics of the nerve action associated with 
the hearing process reveal certain marked nonlinearities in behavior. It 
therefore seems likely that these characteristics are more important in

(b)
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Fig. 9-14. Possible rectifying action of the ear.

accounting for the combination frequencies not present in the original 
acoustic wave than are the nonlinearities in the mechanical behavior of 
the ear mechanism, at least for sounds of moderate intensity.

For sound waves of average intensity and when many frequencies are 
received simultaneously, the sum and difference frequencies are so weak 
as to be of negligible importance for ordinary hearing purposes.

9-25 The response of the ear to a harmonic series. As we have pointed 
out, many of the notes played on musical instruments are rich in harmonics, 
some of which may be more prominent than the fundamental. Presented 
with an array of frequencies constituting a harmonic series, the ear will 
still assign a characteristic pitch to the combination, this pitch being that 
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associated with the- fundamental frequency of the series. So definite is 
this pitch sensation that it is possible, by means of filters, to eliminate the 
fundamental frequency entirely without any observable effect upon the 
pitch! The ear apparently will supply the fundamental, provided the cor
rect harmonics are present. It is this rather surprising property of the 
ear that enables a small loudspeaker, inadequately baffled, to give the im
pression of good radiation in the low frequency region. Because the 
speaker is a fairly efficient radiator for the frequencies of the harmonics, 
the listener believes he is actually hearing the low frequencies, when instead 
he is hearing only multiples of these frequencies and his ear is supplying 
the fundamental. It is possible, by deliberate distortion of the harmonics 
associated with low musical notes, to make a very small radio set, totally 
inadequate in the low frequency range, sound somewhat like a larger, 
acoustically superior console set. Such synthetic bass is, to the critical 
ear, inferior in sound to true bass reproduction, where the harmonic content 
is closer to that of the original sound.

It seems likely that this whole phenomenon is capable of explanation 
in terms of the production of difference frequencies somewhere in the 
hearing process, as discussed in the previous section. The difference in 
frequency between the various terms in a harmonic series is, of course, 
identical with the frequency corresponding to the fundamental of the series.

9-26 The importance of the transient period to sound quality. Phase 
effects. Many of the vibrations characteristic of speech and music are 
transient in nature and not susceptible to the conventional Fourier analysis. 
Such short duration motions have certain build-up and decay times whose 
particular values contribute in an important way to the over-all quality 
as perceived by the ear. Fletcher has recently demonstrated a remarkable 
synthesizer for artificially reproducing with startling realism the quality 
typical of various musical instruments. Both the steady-state harmonic 
content and the proper build-up and decay time constants of the transient 
components are included in the simulation. The transient features are 
particularly important in the case of the drum, since the motion of the 
drumhead is highly damped and the membrane is excited by a single blow. 
Such a synthesizer, largely electrical in design, has considerable flexibility 
of adjustment and would seem to lend itself, as Fletcher suggests, to the 
development of new interesting sound qualities unobtainable with standard 
musical instruments.

Ordinarily the phase relationships between the various frequency 
components in a complex sound are of negligible importance. The ear 
seems to be a fairly effective Fourier analyzer, responsive primarily to 
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the frequency structure in the wave and with little regard for over-all 
wave shape. The wave shape, of course, is radically affected by the 
relative phases. There are some exceptions to these statements. In the 
case of steep-fronted pulses, phase is apparently of some importance. In 
the field of steady-state sounds, experiments by Firestone and his associ
ates * indicate some change in loudness level and observed quality with the 
shift in relative phase of a single frequency and its second harmonic, both 
being sounded together. Some of these effects are attributed to nonlineari
ties in the hearing process and are apparently of minor importance in the 
case of a general mixture of sound of the musical variety. For instance, in 
building electronic amplifiers for acoustical purposes no particular care 
need be taken to eliminate phase shifts in the circuits. Such shifts, even 
though they are different for different frequencies, do not appreciably alter 
the effect of the final reproduced sound.

* Chapin and Firestone, Jour. Acous. Soc. Amer. 5, 173 (1934).
] Phys. Rev. 15, 425 (1920).
tPhys. Rev. 18, 431 (1921). Also see Kock, Jour. Acous. Soc. Amer. 22, 804 

(1950) for a consideration of “conscious” binaural localization.

II
9-27 Binaural effects. The ability of a person equipped with two 

good ears to locate the direction of a small source of sound is well known. 
There is no complete agreement as to the mechanism of this direction 
sensitivity but it seems likely that for frequencies below about 1500 
cycles-sec-1 it is largely due to the difference of phase in arrival at each of 
the two ears. Rayleigh recognized that phase is related to binaural hearing. 
Experiments by G. W. Stewart f and by Hartley and Fry { showed the 
effect of shifting the relative phases of two sounds of the same frequency 
fed independently to each ear. With no phase difference, the apparent 
position of the source was directly in front of the individual. With a 
gradual shift in phase the sound source could be made to “move” to the 
right or to the left, the direction being towards the ear receiving the 
leading phase. When listening to sound sources in free space one would 
expect phase effects to play a part only for those frequencies where the 
wavelength is some appreciable fraction of the distance by which the two 
ears are separated. At higher frequencies, the wavelength is much smaller 
than this distance; hence only intensity differences could conceivably give 
a sense of direction. By varying the relative intensity at the separate 
ears Stewart did produce directional effects, although the degree of angular 
shift was smaller than that produced by simple phase shift. The actual 
interpretation of phase or intensity differences probably occurs in the 
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nervous system or in the brain, rather than in the mechanisms of the 
ear.

Regardless of the explanation, the aural perception of direction is cer
tainly real. Some attempt at further realism in the reproduction of music 
has been made along these lines. It is possible to pick up sound from the 
various sections of an orchestra, send the electrical equivalent of the sound 
from each section through separate electrical channels, and finally deliver 
the energy separately to loudspeakers arranged in the same relative posi
tions as the sections of the original orchestra. This is a complicated pro
cedure and has been attempted only on a limited experimental scale. It 
does result in greater musical realism.

9-28 Hearing defects. The anatomical and neurological details of the 
causes of deafness, partial or complete, belong to the subject of physi
ology and medicine and will not be considered here. The superficial facts 
of hearing impairment are, however, clear enough. The threshold of hear
ing curve varies widely in shape and general level even among so-called 
normal ears. When the level is raised unduly, the hearing is said to be 
impaired. It is a relatively simple matter to prepare audiograms which 
represent the threshold of hearing as a function of frequency. The thresh
old may be higher over some particular part of the spectrum or there may 
be a general, more or less uniform rise from the lowest frequency to the 
highest. A decreased sensitivity for the upper frequencies is especially 
unfortunate, of course, since this part of the spectrum is so essential to the 
intelligibility of speech.

An amplifier of the hearing aid type is the usual tool of the partially 
deaf but a simple rise in the level of all received sound is not always an 
adequate solution to the problem. As the level of the received sound is 
artificially raised in this way, the upper threshold of feeling is not neces
sarily raised by a similar amount, with the result that pain may set in not 
far above the threshold of audibility. This effect may seriously reduce the 
ability to differentiate useful sounds from background noise. Other 
related difficulties often complicate the problem.

9-29 Musical intervals. Scales. A full consideration of the subject 
of musical scales and their effect upon the ear would take us well outside 
the field of physical acoustics. However, since the acoustician is often 
dealing with sound of a musical nature, he should have at least a speaking 
acquaintance with the system of intervals used in western music.

The basic diatonic scale extends over a frequency range of two to one; 
above and below such a range the pattern is repeated. Each total interval 
is called an octave. Despite the fact that the frequency doubles with each 
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successive octave, each interval of an octave seems, to the ear, to be a 
frequency difference interval. This effect compares with the ear’s roughly 
logarithmic perception of intensity. Within the interval of one octave 
the diatonic scale introduces smaller intervals according to the scheme of 
Table 9-1. The numbers in the first row represent the frequency ratios 
of each note to the lowest note, C, called the tonic. In the second row is 
given the frequency ratio of two adjacent notes. From the latter it is seen 
that the intervals within the range from the lower C to the C an octave 
higher are also determined more on a frequency ratio basis than on a fre
quency difference, the ratios varying between 9/8 and 16/15. The larger 
ratios, 9/8 and 10/9, describe a whole tone interval; the smaller one, 16/15, 
is a half-tone interval. Intervals smaller than this are rarely used in 
western music. (The Arabs and the Persians divide their note cycle into 
a larger number of intervals; quarter-tone intervals are frequently used, 
one of the features of their music which makes it seem very strange to the 
western ear.)

TABLE 9-1

If music were always written using the same frequency for the tonic 
(middle C actually has, on the modern piano, a frequency of 261.6 cycles- 
sec-1, based on a standard A of 440 cycles-sec-1), the exact relationships 
of the diatonic scale could always be maintained. If, however, it is desired 
to choose a variety of notes as the tonic, difficulties develop. Table 9-2 
shows the frequencies present if we choose to use the key of D instead of 
the key of C, the intervals in each case being based on the diatonic scale. 
(If we establish an A of 440 cycles, the diatonic scale requires C, the tonic, 
to be 264 cycles.)

TABLE 9-2

Musical note C D E F G A B C' D'

Key of C 264 297 330 350 396 440 495 528

Key of D 297 *334 *371 396 *445 495 *557 594
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The four new notes marked with asterisks would have to be added for 
the scale of D. If all possible musical keys were to be provided for, 
seventy-two notes would be needed for each octave. To avoid this tremen
dous complication, what is known as the equally tempered scale has been 
devised (used by J. S. Bach and probably earlier musicians). In this 
scheme there are 12 half-tone intervals in every range of an octave, adja
cent notes a half-tone apart bearing the constant ratio of the twelfth root 
of 2, i.e., 1.05946. Simple as this scheme is, it results in no one scale 
corresponding to a given tonic being exactly like the diatonic. Since the 
ratios of the diatonic scale were originally selected to suit the preferences 
of the ear (being made up of three sets of major triads, each of which 
constitutes a harmonious combination), this means that music which 
makes use of the equally tempered scale is not quite so pleasant to the 
ear. The difference, however, is apparently slight to any but the most 
critical.

9-30 Consonance and dissonance. What constitutes a pleasant com
bination of frequencies and what is an unpleasant combination has long 
been a subject for discussion among both musicians and physicists. The 
disagreeable sound of certain combinations was attributed by Helmholtz 
to beat effects, either between the fundamental frequencies themselves or 
between some of their harmonics. He believed that for the middle of the 
audible spectrum the difference frequency or beat rate which produced 
aural irritation covered the range of about 30 to 130 cycles-sec-1. Two 
adjacent half-tones in the neighborhood of 440 cycles-sec-1 differ by about 
25 cycles and when sounded together are on the verge of being disagreeable 
to the ear. Two adjacent whole tones in this region differ by about 45 
cycles and the combination of two such notes is usually considered dis
sonant. Even though the fundamental frequencies of two sounds with 
rich harmonic structures are far enough apart to produce consonance, 
there may be a particular harmonic of one tone which is close to a harmonic 
of the other, and the result is an over-all effect of dissonance.

There is a strong individual subjective element in the matter of conso
nance and dissonance that often determines the final impression. There 
is also no doubt that musical fashions change. Much of the music written 
in recent years is highly and continuously dissonant to ears accustomed 
to Haydn and Mozart, yet adherents of this newer musical style welcome 
each crashing “discord” with great satisfaction. Such sharp cleavages 
in musical taste make it difficult to draw any very certain conclusions in 
the matter of consonance and dissonance.
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PROBLEMS
1. The lowest note within the range of 

a bass voice has a fundamental frequency 
of about 80 cycles-sec-1. (a) In view of 
the dimensions of the vocal cavities, is it 
likely that air resonance will occur for this 
frequency? (b) Would the throat and 
mouth, considered as a horn, constitute 
an efficient radiating system for such a 
frequency? (c) In view of the above 
considerations, suggest an explanation of 
the observed pitch, corresponding to a 
frequency of 80 cycles-sec-1. (See Sec
tion 9-22.)

2. Assume the existence of an ideal 
electroacoustic transducer whose acoustic 
radiation is proportional to the electrical 
power delivered to it, at all possible audible 
frequencies. Making use of the loudness 
level contour (Fig. 9-8) corresponding to 
40 db, (a) plot the power gain (ratio of 
output to input power) vs the frequency /, 
in db, for an amplifier designed to make 
sounds of equal intensity appear equally 
loud. Assume the gain in db at 1000 
cycles-sec-1 to be zero, (b) Assuming the 
power output of the amplifier to be propor
tional to the square of the output voltage, 
plot the required voltage gain of the am
plifier vs the frequency. Use as ordinates 
the ratio of output voltage to input volt
age. (c) Would the use of such an am
plifier make the acoustic output sound 
perfectly ‘‘natural ”? Explain.

3. Compare the “dynamic range” of 
the ear (useful range of sound intensities 
in db) at 40, 1000, and 10,000 cycles-sec-1, 
using Fig. 9-8.

4. The graph representing the har
monic content of the vowel sound “oh” 
(Fig. 9-lb), indicates that the most promi
nent frequency present is 625 cycles-sec-1. 
On the basis of the discussion in Section 
9-22, explain why, to both a singer and the 
hearer, the characteristic frequency ap
pears to be 125 cycles-sec-1.

5. Considering the ear mechanism as 
a mechanical system, what is the probable

nature of its transient response (that is, its 
response to an acoustic “pulse”)?

6. In the “volley” theory of the hear
ing sensation, would a variation in the 
recovery time of an individual nerve fiber 
seriously affect the ear’s ability to perceive 
the frequency property in a sound wave?

7. Consider the graphs of Figs. 9-8 
and 9-9. If the sound pressure level rises 
from 60 db to 80 db at a frequency of 100 
cycles-sec-1, what will be the change in 
loudness in millisones?

8. (a) For the average human ear, 
what is the minimum perceptible change 
in rms acoustic pressure (in dynes-cm-2) 
if the frequency is 100 cycles-sec-1 and if 
the sound pressure level is 10 db? Make 
use of the graphs of Fig. 9-10. (b) An
swer the same question if the frequency 
is 4000 cycles-sec-1. (c) What will be 
the corresponding minimum perceptible 
changes for (a) and (b) if the sound 
pressure level is 40 db?

9. (a) Discuss the significance of the 
graphs of Fig. 9-11 in connection with ac
curately tuning a piano at very low and 
at very high frequencies, (b) By how 
much would a 100 cycle-sec-1 note have 
to be off tune at the several sound levels 
shown to be detectable by the average ear? 
Express your answer as a percentage and 
as a frequency difference in cycles-sec-1.

10. Is the effect discussed in Section 
9-20 and illustrated in the graphs of Fig. 
9-12 likely to be of significance in (a) 
speech, (b) the singing voice, (c) the music 
from a symphonic orchestra, (d) the music 
from a large pipe organ?

11. Assume that the ear is a nonlinear 
mechanism and that the relationship be
tween the driving force and the displace
ment is F = X2. If the driving force is

F = (Fm)i cos + (Fm)2 cos a>2«, 
show that the response of the system, x, 
will include both sum and difference fre
quencies.



CHAPTER 10

SOUND MEASUREMENTS. EXPERIMENTAL ACOUSTICS

10-1 Precise acoustic measurement. The theoretical and mathemat
ical aspects of modern acoustics are grounded in the thorough studies of the 
physicists and mathematicians of the nineteenth century and earlier. 
Articles published in recent years have helped to fill many gaps in the earlier 
formulations, but almost all such contributions have been in the matter of 
detail rather than of fundamental theory. It is in experimental acoustics 
that striking progress has been made, largely because of the parallel devel
opments in electrical equipment, particularly of the electronic variety. 
Modern electronic measuring devices have almost entirely replaced the 
earlier mechanical type. Their greatly increased sensitivity, ease of manip
ulation, and general flexibility of design have contributed much to the 
precision of acoustic measurements. It is now possible to test many of the 
conclusions of the earlier theoreticians and, what is perhaps more important, 
to test the performance of acoustic equipment when theoretical predictions 
are lacking due to mathematical difficulties.

Because of the widespread use of electrical equipment in acoustic meas
urement, we shall make frequent reference to specific circuits and electronic 
laboratory equipment. When questions arise as to details of the circuits 
and the equipment, one of the numerous books on circuitry and instrument 
design should be consulted. In the experimental field, acoustics and 
electronics are most intimately connected; a good understanding of elec
tronic circuits is invaluable to laboratory work in acoustics.

10-2 Free-space measurements. Anechoic rooms. When fundamen
tal data are required on the radiation properties of an acoustical device 
such as a loudspeaker, measurements are usually taken under free-space 
conditions, without the presence of complicating stationary wave patterns. 
The simplest procedure is to take all the equipment outdoors, but even 
there, reflections from the ground may introduce an important lack of 
symmetry. Many such tests are made with both sound source and receiver 
mounted high above the ground, on a tower. The use of directional 
microphones (Section 10-9) will further help to discriminate against energy 
reflected from the ground.

The advantages of an indoor method of free-space measurement are 
obvious. The weather does not always cooperate with the scientist, for 
one thing, and moreover the laboratory is a safer place to set up compli
cated electrical equipment. Indoor free-space measurements require an 
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A modern anechoic room. (Courtesy Bell Telephone Laboratories)
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anechoic room. As the name implies, this is a chamber with completely 
nonreflecting walls (walls that are complete absorbers). In addition to 
complete elimination of stationary wave patterns it is necessary to thor
oughly insulate the chamber against all disturbing sounds from the outside. 
Until lately sound test rooms have fallen far short of meeting these stringent 
requirements but recent study * has resulted in design data for a most

* Beranek and Sleeper, Jour. Acous. Soc. Amer. 18, 140 (1946). 
f A trade name.

Fig. 10-1. Wedge structure on wall surfaces of anechoic chamber. (After Beranek 
and Sleeper) Below, typical Fiberglas wedge.

efficient type of anechoic chamber. The wall structure is interesting and 
will be described briefly.

The entire surface of all six walls of a room of rectangular shape is lined 
with wedge-shaped units, the sharp edge of the wedge pointing directly into 
the room. Figure 10-1 shows how the wedges look from the inside of the 
room. The effective length of each wedge is from 4 to 5 feet and the direc
tion of the sharp edges is alternately vertical and horizontal. Between 
each wedge is a wedge-shaped air cavity. Any portion of a sound wave 
entering these cavities at an angle will be reflected back and forth several 
times. The wedges are constructed of Fiberglas, f a material of loose 
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structure and with such highly absorbent properties that there is great 
attenuation of the wave with each reflection. In addition, there will be 
losses due to increased viscous effects towards the small end of the air
wedge. It is usual to suspend a tightly stretched steel net near the center 
of the chamber in lieu of a floor; upon this net the observer may set up the
acoustic equipment.

A graph showing the reflecting power of this type of wall surface is given 
in Fig. 10-2. The ordinates represent the ratio, in percent, of the acoustic
pressure in the reflected wave to 
the acoustic pressure in the inci
dent wave, at the wall. Since for 
plane waves the intensity is pro
portional to the square of the pres
sure, the ratio of the corresponding 
intensities, in percent, will in each 
case be the square of the ordinate. 
From a frequency of 1500 cycles 
down to about 90 cycles, the pres
sure ratio is less than 5%. The 

Fig. 10-2. Reflection properties of wall 
surface like that of Fig. 10-1.

intensity ratio is therefore less than 0.25%. In terms of absorption, this 
means that 99.75% of the incident energy is absorbed. This is very close 
to the conditions in free space. In an anechoic chamber 38 X 50 X 38 
feet, the inverse square law characteristic of free space was found to hold 
to within a variation of 0.5 db in pressure level for distances up to 20 feet 
from a small source and for any frequency above 65 cycles-sec-1. At 50 
cycles-sec-1 the absorption is less effective, as the graph of Fig. 10-2 indi
cates, but even there the deviations from the inverse square law amount to 
only 3 or 4 db.

10-3 Reverberant chambers. In many problems related to the prac
tical reproduction of speech and music it is desirable to take measurements 
in rooms having partially reflecting walls of the ordinary type. Since 
every room is different in size, shape, and the reflecting properties of its 
wall surfaces, all reported measurements should, to have any physical sig
nificance, be accompanied by a full description of the room and of the 
location of the acoustical apparatus. We shall return to this discussion 
in the next chapter, in connection with the indoor performance of loud
speakers.

10-4 Standard sound sources. The thermophone. Two procedures 
for the calibration of microphones are in common use. One is a free-space 
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method, the other limits the location of the microphone and the source to 
the confines of a small cavity. In the latter method it is sometimes con
venient to have a source which will produce a known acoustic pressure. 
Several such sources whose behavior can be predicted with some degree of 
precision have been developed.

The thermophone, in its modern form, is due to Arnold and Crandall,*  
although experiments were conducted as far back as 1898 by F. Braun. 
As its name suggests, the thermophone makes use of a strip of foil or a fine 
wire, heated by passing through it superimposed alternating and direct 
current. The periodic fluctuations in the temperature of the foil or wire 
produce a heat diffusion wave in the gas in the immediate neighborhood of 
the conductor. This diffusion wave gives rise to an acoustic wave that 
propagates away from the heated surface. The purpose of the d.c. bias is 
to ensure in the acoustic wave a frequency which is the same as that of the 
alternating heating current. Without such a steady current the frequency 
would be doubled.

* Arnold and Crandall, Phys. Rev. 10, 22-38 (1917). 
f See Beranek, Acoustic Measurements, pp. 165-168.

The thermophone is generally used within a cavity whose dimensions 
are small compared with the wavelength of the sound wave. Under these 
conditions the acoustic pressure within such a volume is fundamentally 
dependent upon the temperature fluctuation at the surface of the heated 
conductor, which in turn is a function of the values of the d.c. and a.c. 
components of the currents. The main body of the cavity, including the 
walls and the gas within the cavity (up to within a few mm of the heated 
surface), may be considered to remain at constant temperature. An 
expression can be derived for the acoustic pressure within the cavity. In 
the case of the heated foil, this pressure is a quantitative function of the 
currents used, the frequency of the alternating component, the physical 
properties of the gas used, and the mean temperatures of the foil and of 
the surrounding gas in the cavity.y In view of the rather complicated 
form of this equation it is rather surprising that the pressure value which 
it yields agrees so well with experiment. The pressure in the cavity may 
be experimentally determined by using the reciprocity principle (Sec
tion 10-13). Agreement with the theoretical behavior of the thermophone 
is to within less than 1.0 db, considered a small error in acoustical measure
ments.

10-5 The pistonphone. It is possible to construct a true acoustic piston 
which will behave in a manner similar to that of the ideal piston mentioned
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Fig. 10-3. The pistonphone.

Microphone 
s diaphragm

Slotted

so frequently in this book. One such design is illustrated in Fig. 10-3.*  
The piston, driven sinusoidally in the manner of a loudspeaker unit, pro
jects into a small cavity in which is mounted the microphone or other 
device to be tested. If the dimensions of the cavity are small compared 
with the wavelength, the excess pressure p within the cavity at any one 
instant may be simply computed on 
the basis of the elasticity of the en
closed gas:

* After Glover and Baumzweiger, Jour. Acous. Soc. of Amer. 10, 200-202 (1939).

P = ~if~, (10-1)
V o

where Sp is the area of the piston 
face, Vo is the mean volume within 
the cavity, (B is the adiabatic elastic 
bulk modulus of the gas for the 
mean pressure being used, and x is 
the displacement of the piston. (If the rms displacement is used, the 
pressure will be the rms value.) The amplitude of motion of the piston 
may be observed directly with a microscope, as shown in the figure.

Equation (10-1), in practice, must be corrected for heat conduction at 
the walls. The pistonphone may be used only at low frequencies, pri

marily because of limitations associated 
with the inertia of the piston and also 
because of the requirements regarding 
cavity dimensions.

10-6 The electrostatic actuator. At 
high frequencies both the thermophone 
and the pistonphone are inadequate be
cause of the presence of phase differences 
within the cavity. Under these condi
tions a microphone may be calibrated with 
an electrostatic actuator. Strictly speak
ing, the “actuator” is not a source of 
acoustical waves at all, but a calibrated 

mechanism whereby direct forces may be applied to a diaphragm like 
that of the microphone. Since the standard sound sources, the thermo
phone and the pistonphone, are of primary utility in the calibration of 
sound receivers, we shall briefly describe the electrostatic actuator at this 
point.

Fig. 10-4. The electrostatic 
tuator.

ac-
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As shown in Fig. 10-4, a thick metallic plate having a number of slots 
constitutes one plate of a capacitor, the other plate being the diaphragm 
of the microphone to be calibrated. If a sinusoidal variation in potential 
is applied between the two plates of the capacitor, along with a biasing d.c. 
potential (the bias being used for the same reason as in the case of the 
thermophone) the electrostatic force per unit area of the diaphragm will be

8.85 Eq EIms , jPrms =-------------- 10 7 dyne-cm2, (10-2)

where Eo is the bias voltage, ETms is the rms value of the alternating com
ponent, and d is the effective spacing between the plates, corrected for the 
presence of the slots. This equation neglects the effect of the air loading, 
which the presence of the slots in the fixed plate is designed to minimize. 
This method of microphone calibration is particularly convenient, since 
the value of p does not in any way depend on the conditions within a gas. 
The actuator may be used well into the ultrasonic frequency region.

Fig. 10-5. Flow lines around a 
Rayleigh disk.

10-7 Measurements in a field of sound. The Rayleigh disk. At the 
receiving end, there are a few detectors of sound waves whose exact re

sponse to a particular intensity or pres
sure level can be predicted with good 
accuracy. Among such absolute sound 
measurement devices is the Rayleigh 
disk, suggested by Lord Rayleigh in 1882. 
In Fig. 10-5 are shown the flow lines 
around a thin flat rigid disk set at an 
angle to the general direction of motion 
of a fluid. It will be noted that there 
are two symmetrical points, a and b, 
which represent regions where the com

ponent flow parallel to the plane of the disk changes direction. At these 
points the fluid (gas or liquid) is relatively stagnant. Opposite each point, 
on the other side of the disk, is a region where the flow is relatively rapid. 
According to the theorem of Bernoulli, there will be a difference in pressure 
on the two sides of the disk in the neighborhood of points a and b, the 
sense of the net forces being such that a torque on the disk results. For 
the situation as shown, the torque is that of a couple in the clockwise 
direction. If the direction of motion of the fluid is reversed, the flow 
lines remain unchanged in shape. If such a disk is exposed to an advancing 
longitudinal wave there should be a net average torque, despite the rever
sals in the direction of motion of the air particles.
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For the steady stream velocity of an incompressible fluid around a thin 
rigid circular disk (strictly, a thin ellipsoid), the torque L can be shown to be

L = p0r3w2 sin 20, (10-3)

* See Beranek, Acoustic Measurements, pp. 149-152.

where p0 is the fluid density, r the radius of the disk, u the stream velocity, 
and 0 the angle between the normal drawn to the plane of the disk and the 
direction of motion of the undisturbed stream. For the periodic motions 
associated with a sound wave the average torque will be determined by 
the average squared velocity. It should then be correct to use for u the 
rms particle velocity in the wave, £rms-

From the form of Eq. (10-3), the torque is zero if the disk is placed 
either parallel or perpendicular to the direction of the stream velocity. 
(The latter position is actually that of stable equilibrium.) Because the 
torque is a maximum when 0 — 45°, the disk is suspended by an elastic 
fiber with the plane of the disk making a 45° angle with the direction of 
propagation of the wave. A torsion head adjustment may be used to 
maintain the disk in this position in the presence of the torque due to the 
sound wave. Knowing the elastic constant of the fiber, the value of £ 
may be computed by use of Eq. (10-3).

In actual practice a much more complicated equation than (10-3) 
must be used.*  Small second order displacements of the disk arise because 
of lack of complete rigidity in the suspension and, since the size of the disk 
is always finite in relation to the wavelength, diffraction effects must be 
taken into account. (The radius of the disk must in any case be fairly 
small compared with the wavelength X if the velocity £ is to be assumed 
uniform in the immediate vicinity of the disk.) If the radius of the disk 
is sufficiently small compared with X, a slight modification in form of the 
steady flow equation (10-3) may be taken as an accurate expression for 
the average torque, Lav:

P.r’(U)! sin 28 (10-4)O \THi “T mo/

In this equation, mi is the mass of the disk and m0 is its so-called “hydro
dynamical mass,” equal to fpor3. (This is the same quantity that enters 
into the index of refraction of an acoustic lens of the obstacle type, dis
cussed in Section 6-7.) Equation (10-4) may be used either for a pro
gressive sound wave or at a position of a velocity antinode in a stationary 
wave pattern.
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Unfortunately, the Rayleigh disk may be used for precision measure
ments only in regions where particle velocities are high. If used without 
a resonator, the pressure level must be at least 50 db in air and 85 db in 
water. By the use of a tuned resonator, sensitivities comparable to that 
of the ear may be reached, but in this case the disk ceases to be a directly 
calibrated precision measuring instrument. With a resonator, however, 
the Rayleigh disk was a convenient comparison detector before the advent 
of electrical microphones.

10-8 Other absolute detection methods. Indirect observation of the 
amplitudes of motion of air molecules in the presence of a sound wave is 
possible if the region is filled with finely divided smoke particles. After 
careful microscopic measurement of the path lengths of the smoke particles 
(whose motion was the result of the vibration of the much smaller air 
molecules'), Andrade and Parker * concluded that the amplitude of the 
smoke particles and the amplitude of the air particles were nearly identical 
(within 2%) up to a frequency of 5000 cycles-sec-1. This method of 
measurement of the particle displacement £ in a wave is hardly a practical 
technique for routine acoustical measurements.

* Andrade and Parker, Proc. Roy. Soc. London A159, 507-526 (1937).
f Larmor, Enc. Brit., 11th ed. 22, 786 (1911).

The existence of the phenomenon of radiation pressure is the basis of 
another “absolute ” measurement technique. In acoustic waves such 
pressure is the result of second-order variations in the pressure in front of 
the surface upon which the wave impinges. It will be recalled that for 
small amplitude waves we may assume that the relation between P and V 
is a linear one. Actually, the graph is hyperbolic, not a straight line. 
Therefore if we consider the situation in front of a rigid reflecting surface, 
as the particle layers surge towards and away from the boundary, we must 
recognize that the increases in pressure above the undisturbed value are 
slightly greater than the decreases. The time average of the acoustic 
pressure is then not zero, but a small positive value.

An interesting simple treatment of acoustic radiation pressure, due to 
Larmor,f is worth consideration. Assume that a steady train of incident 
waves in which the energy density is Ci impinges normally upon a rigid, 
stationary, perfectly reflecting wall. The average energy density in the 
reflected wave will be the same as in the incident wave, so that the total 
energy density in front of the wall, etotai, will be 2e$. Now imagine the 
wall to be slowly advancing to meet the waves with a steady velocity, u. 
In one second the wall will intercept a column of length c + u, where c is 
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the wave velocity. This energy will be returned to the medium, but it 
will occupy a column of reduced length, that is, the length will be c — u. 
Hence the energy density er in the reflected wave will be greater than that 
in the incident wave according to the ratio

Cr = C+u = j 2«.

ei c — u c — u
The increase in the total energy density in the region, if u is much less 
than c, will be

(
1 i 2u€i /-in n\1 4~ — 1 — Ci —----- (10—6)C J c

In a region in the form of a column in front of the wall, of length c and of 
unit cross section, the total increase in energy will be c(er — e») = 2uei. 
The work done by the force necessary to move the wall must account for 
this energy. The force on the end of a column of unit cross section may be 
called a pressure, P. lining the wall velocity, u, we may therefore equate 
the work performed per second to the energy increase in the medium per 
second:

Pu = 2uei.
Since the wall velocity u cancels out, the result does not depend on its 
value, which we may imagine to be vanishingly small. Under these con
ditions, 2ei is the total energy density in front of the wall, so that

P = ^total, (10~7)
an astonishingly simple result.

A more rigorous derivation of the pressure due to impinging radiation 
shows Eq. (10-7) to be correct also in cases of imperfect reflection. In the 
special case of a perfectly absorbing wall, the incident wave only is involved, 
so that the value of etotai is just one-half what it is for a perfectly reflecting 
wall. The radiation pressure is hence also one-half as great.

The existence of radiation pressure is more interesting than useful for 
purposes of sound measurement. Rarely, even in the case of very high 
intensity sounds, does the energy density exceed the value of one erg-cm-3. 
According to Eq. (10-7) the corresponding range of radiation pressure is 
from one to two dynes-cm-2, depending on the absorption coefficient of 
the surface. Sounds of average intensity would result in much lower 
pressures, possibly as low as 10-13 dyne-cm-2 near the threshold of audi
bility. In the field of ultrasonics the effect is more useful, since waves of 
high intensity are commonly encountered both in air and in water.

10-9 Detectors requiring calibration. Microphones. By far the most 
useful type of acoustical detector is some form of electrical microphone in
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combination with an electronic amplifier. Such systems yield an electrical 
response that varies with the pressure in the wave and in most cases with 
the frequency also. Their absolute sensitivity calibration may sometimes 
be estimated, but it is almost universal practice either to compare their 
response with that of some absolute laboratory standard, such as the 
Rayleigh disk, or else to deduce their calibration from measurements 
based on the reciprocity principle, as will be discussed presently. Un
like the detectors previously mentioned, a good microphone and amplifier 

• system will approach the sensitivity of the human ear. Such an arrange
ment is rugged and easy to adjust, in contrast to many of the earlier 
devices.

Microphones in general may be classified as either sensitive to acoustic 
pressure or to pressure gradient. (The latter are often called velocity micro
phones.) Microphones of all types almost universally have some sort of 
diaphragm exposed to the wave. The resulting motion of this diaphragm 
actuates the mechanism peculiar to the particular type of microphone. 
If one side only of the diaphragm is exposed, it is called a pressure micro
phone. Such a microphone is relatively insensitive to the direction from 
which the wave is coming, since the force on a surface in a fluid under 
pressure is independent of the orientation of the surface. Strictly speaking, 
it is the pressure aspect in the wave that actuates practically all micro
phones. However, if both sides of the diaphragm are exposed, the net 
effective force per unit area will be the difference between the pressures on 
the two sides. For a diaphragm of given thickness, the pressure difference 
will be small but it will be a definite function of the intensity and of the 
frequency and will actuate the diaphragm accordingly. If the diaphragm 
is mounted parallel to the wave front, the pressure difference will be a max
imum. If the plane of the diaphragm lies perpendicular to the wave front, 
the pressure difference will be zero. For this reason, such a pressure gra
dient microphone will be directional, often a very useful practical prop
erty. For a given diaphragm, it is the pressure gradient (or pressure 
change per unit distance in space) that determines the microphone response, 
hence the name. Since the particle velocity £ is also a vector quantity in 
the same direction as the pressure gradient, the name velocity microphone 
is also appropriate. (The response to pressure gradient and to velocity is 
somewhat different, however, as we shall see presently.)

10-10 Microphones. A thorough discussion of the design features of 
all the numerous types of microphones would occupy more space than is 
allowable in a book of this size. We shall have to be content with a brief 
description of a few of the more important kinds.



10-10] MICROPHONES 241

1, The carbon microphone. About the only remaining example of this 
early variety of microphone is the telephone transmitter, familiar in the
home and also still used in certain 
military applications where circuit 
simplicity and mechanical rugged
ness are important requirements. 
The active element in the micro
phone is a loosely confined collection 
of carbon granules, in contact with 
which is an electrode attached to the 
actuating diaphragm. A simplified 
diagram of the mechanism and the 
essential associated circuit is given 
in Fig. 10-6. The vibration of the 
diaphragm varies the resistance of 
the collection of carbon granules, and 

Fig. 10-6. Essential parts and circuit 
for modern military carbon microphone.

this variation modulates the current in an electrical circuit. It will be
noted that a d.c. source of potential is required. The battery supplying
this potential is the source of power in the circuit, the sound vibrations 
merely serving as the triggering agent. Assuming that for small displace
ments the variation in the resistance of the microphone is proportional to 
the displacement of the diaphragm, the current in the circuit due to a sinu-

soidal acoustic pressure can be 
shown to constitute a harmonic 
series, with the lowest frequency 
corresponding to that in the wave. 
The presence of the higher fre
quency terms is not too detrimental 
for purposes of speech. The size 
and stiffness of the diaphragm (the 
latter is a “plate,” not a “mem

Fig. 10-7. Typical response character
istic of carbon microphone.

brane”) are such as to cause it to have its main resonance at about the 
middle of the important range of frequencies for speech (about 2000 cycles- 
sec-1). The type of response to be expected at a constant pressure level 
is shown in Fig. 10-7.

A double-button carbon microphone makes use of two carbon packs, one 
on each side of the diaphragm. As the diaphragm moves, the resistance 
of one pack increases, while that of the other decreases. The microphone 
is connected into a push-pull type of circuit, very similar to the electronic 
amplifier circuit of the push-pull variety. As in the case of the latter cir
cuit, the even harmonics generated by the microphone cancel out (see any 
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.book on electronic amplifiers). Improved forms of the two-button carbon 
microphone compare well in uniformity of frequency response with the 
best microphones of other types. The chief drawbacks of all carbon 
microphones are the presence of background noise of the hiss type and the 
fact that the calibration of a carbon microphone may not be relied upon 
for any considerable length of time.

2. The capacitor microphone. The capacitor microphone is one of the 
earliest precision acoustical instruments. The diaphragm is a stretched

thin metallic membrane which forms 
one plate of an air dielectric capacitor,

Fig. 10-8. The capacitor micro
phone.

t-Microphone

-o
Electronic 
amplifier
-o

Fig. 10-9. Essential circuit for a capaci
tor microphone.

the other plate being relatively thick and rigid (Fig. 10-8). With waves of 
small amplitude, the capacity C may be made to vary sinusoidally accord
ing to the equation

C = Co + (Cw)8 cos bit, (10-8)

where Co is the quiescent capacity and (CTO)S is the maximum value of the 
increment of capacity due to the effect of a particular impinging wave. 
The microphone is connected in series with a resistor and a polarizing d.c. 
potential, as indicated in Fig. 10-9. The current i in the microphone
resistor loop is determined by the differential equation

n C / = ^°’ (10-9)

where Eo and r are the values of the d.c. potential and the series resistor, 
respectively, and C is the instantaneous value of the capacity in the pres
ence of the wave. If C from Eq. (10-8) is introduced into Eq. (10-9), 
the solution for small amplitude diaphragm motions for the steady state 
a.c. component zac yields, 

._______ Eq(Cto)s_____
- Co Vr2 + (l/uCo)2

cos (bit + a). (10-10)
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The microphone is thus seen to supply an open circuit emf of

e = Eo cos cat. (10-11)
to

For small amplitude motions, e will be proportional to the diaphragm 
amplitude xm, since the capacitance (CTO)S will be nearly linear with xm. 
According to Eq. (1-33), the amplitude xm of a particle (in this case an
“effective” particle) executing forced vibrations will be proportional to 
1/caZ, where Z is the mechanical impedance of the particle system. If the
microphone diaphragm is stretched 
so that its fundamental resonance 
is at the upper end of the audible 
spectrum, at lower frequencies it will 
offer to the sound wave an imped
ance Z which is largely reactive and 
of the capacitive type, of the form 
K/ca. Therefore with an acoustic 
pressure of constant peak value the 
amplitude of motion will be constant,

Fig. 10-10. Typical response charac
teristic of a capacitor microphone.

quite independent of frequency. A typical response curve for a capacitor 
microphone is shown in Fig. 10-10. The resonance peak near 8000 cycles-
sec-1 is clearly in evidence.

The chief drawback to the use of the capacitor microphone in applied 
acoustics is the high electrical internal impedance of a capacitive nature.
This necessitates placing an electronic amplifier very close to the micro
phone, since with long lines of high distributed capacitance, the electrical 
output will otherwise be very low. The necessity for a relatively high 
polarizing potential is also a detriment. In spite of these disadvantages, 
the capacitor microphone is widely used for precise acoustical measure
ments. The response is uniform, the calibration may be relied upon, and 
in view of the small physical size of Some of the recent designs, diffraction 
difficulties can be held to a minimum.

3. Electrodynamic microphones. Microphones of the electrodynamic 
type are rugged and may be designed to have a wide frequency response. 
Two general varieties are in use, the moving coil and the ribbon type. 
The electrical output in both cases is the result of the motion of a conductor 
in a magnetic field, the conductor being in the first type a helical coil and 
in the other a flat metallic ribbon or strip (Fig. 10-11). Since the potential 
developed is due to electromagnetic induction, it is, in either case, propor
tional to the velocity of the conductor.

For the velocity of the moving system to be independent of frequency, 
assuming constant sound pressure, the mechanical impedance must also
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be independent of frequency. This means, according to Eq. (1-34), that 
Z must be primarily resistive, rather than reactive. The usual design 
achieves this end by heavily loading the diaphragm with an acoustic net
work in the body of the microphone. The important resistive element is 
often supplied by a porous silk membrane placed close to the rear of the 
diaphragm. As a result, the motion of the latter is more than critically 

(a)
Fig. 10-11. (a) Moving coil electrodynamic microphone. (b) Ribbon microphone.

damped and the response can be designed to be practically free of peaks 
and valleys.

Both the moving coil and ribbon types of microphone have relatively 
low internal impedance (that of the ribbon type is lower). The use of 
long lines is perfectly feasible with the use of impedance shifting trans
formers at the microphone. No polarizing potential is necessary, of 
course.

The ribbon type of construction is especially adapted to a microphone 
of the pressure gradient type. All that is necessary is to expose both sides 
of the ribbon to the wave; since the ribbon is narrow, the phase of the 
acoustic pressure is virtually constant across its width. In this microphone 
the moving diaphragm (the ribbon) is also the electrical conductor, the 
induced potential appearing across its ends.

Inspection of Eq. (2-19e) shows that for plane waves having constant 
maximum pressure (pm), the pressure gradient (dp/dx) will be proportional 
to 1 /X or to the frequency/. If the ribbon is designed to have a mechanical 
impedance which is essentially a mass reactance (X = wm), its velocity 
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response x to the actuating force associated with the pressure gradient will 
be independent of frequency. Therefore, for a fixed microphone orienta
tion, its electrical output (°c x) will be a direct measure of either the 
sound pressure or of the particle velocity in the wave, since for plane 
waves these two qualities are proportional to each other. To give to the 
ribbon a mechanical reactance of the mass type, the resonance frequency is 
adjusted to be at the lower end of the audible spectrum.

Many practical microphones of the ribbon type may be converted so as 
to act as nondirectional pressure detectors. To accomplish this, a simple 
mechanical arrangement is provided whereby the wave is denied access 
to the back of the ribbon.

4. Crystal microphones. Many nonmetallic crystals become electrically 
polarized with deformation of the crystal shape and a variety of micro
phone designs are based on this piezoelectric effect. If metal foil is 
cemented to certain surfaces, the potentials developed can be applied to 
the input circuits of an electronic amplifier, as 
in the case of other electrical microphones. 
The type of deformation and its relation to the 
direction of the crystal axes and planes deter
mine the magnitude of the resulting potential. 
Deformations of the bending, shear, and com
pression type have been utilized, the change of 
shape being brought about by means of link
ages arranged between the crystal and a dia
phragm exposed to the sound wave.  Such a 
diaphragm type of crystal microphone is shown 
in section in Fig. 10-12.

*

* See Olson, Elements of Acoustical Engineering, p. 181, D. Van Nostrand Co. 
(1940).

The alternating voltage appearing on the 
foil cemented to the crystal surfaces, when the 
deformation is periodic in nature, is propor
tional (for small deformations) to the amplitude 
of the deformation. Hence, as for microphones of the capacitor type and 
for the same reasons, it is desirable to arrange the over-all fundamental 
mechanical resonance of the system to be at some high audible frequency. 
This can readily be done.

In order to eliminate the undesirable resonances peculiar to a diaphragm, 
a directly actuated crystal microphone may be constructed. In this case 
the sound waves impinge directly on the crystal surfaces. The output 

Fig. 10-12. Crystal micro
phone of the diaphragm type.
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voltage of this microphone is usually much smaller than for one actuated 
by a diaphragm.

The potentials developed at the terminals of a crystal microphone, 
especially of the diaphragm type, are considerably greater than for many 
electrodynamic microphones and hence less amplification is required. The 
most commonly used crystal, Rochelle salt, is a hydrate, and the crystal 
must be carefully housed to prevent dehydration. In addition, tempera
tures above 115°F will permanently injure the crystal. Nevertheless, by 
proper design, the crystal microphone can be made into a rugged precision 
instrument, especially if some of the newer, more stable crystals are used. 
One such laboratory tool reveals an absolutely flat frequency characteristic 
(for constant sound pressure) from 20 to 20,000 cycles-sec-1.

10-11 Relative sensitivities of different types of microphones. It is 
interesting to compare the sensitivities of the three principal types of 
microphone just described. For this purpose it has become common to 
specify the electrical response of a microphone to a free-field rms acoustic 
pressure of 1 dyne-cm-2. With acoustic pressures of this magnitude, the 
output voltage of any microphone is very small, being of the order of 10-3 
or 10-4 volt. It is convenient to use the decibel scale to specify this voltage 
sensitivity. The output voltage E, compared with 1.0 volt, using the above 
standard acoustic pressure, may be expressed in decibels as

EOutput voltage in db = 20 logio

On this basis the appproximate output of the three principal types of 
microphone may be stated.

Type of microphone Approximate output voltage in db above 
1 volt, for a pressure of 1 dyne-cm~2

Capacitor
Electrodynamic (after output impedance is 

brought to 500 ohms with a transformer)
Crystal (diaphragm type)

-50 db

-80 db 
— 55 db

10-12 The calibration of microphones. For many purposes in the 
laboratory a microphone is simply a comparison device, used, for instance, 
to compare the acoustic pressure at one point in space with that at another. 
For such uses, especially if one frequency only is to be used, no absolute 
calibration is necessary. There are many problems, however, in which 
it is necessary to know the acoustic pressure corresponding to a given 
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voltage appearing at the output of the amplifier. The so-called “gain” 
(ratio of output to input voltage) of an electronic amplifier is readily de
termined. But the exact relation between the potential delivered by 
the particular microphone used to the acoustic pressure at the diaphragm 
or, perhaps more important, to the acoustic pressure at the point before the 
introduction of the microphone, is quite another matter. For certain 
simple geometry, such as that of the ribbon microphone, the pressure
output voltage relationship may be computed with fair accuracy. In any 
case, careful experimental calibration is called for.

For many years the calculated response of the Rayleigh disk was the 
standard of comparison for free-field measurements. As has been pointed 
out, the Rayleigh disk is not a sensitive detector, and in recent years it has 
been observed that it is subject to many errors of a second-order variety. 
Consequently, ever since the published work of Dubois * and of MacLean f 
on the “reciprocity method” of calibration, this newer technique has been 
widely used, instead of comparison with a primary standard. We shall 
describe this method briefly.

* Dubois, Revue d’acoustique 2, 253-287 (1932).
f MacLean, Jour. Acous. Soc. of Amer. 12, 140-146 (1940).

The prin-

(b)
Fig. 10-13. The reciprocity prin

ciple.

10-13 The reciprocity method for calibrating microphones.
ciple of reciprocity, well established in electrical circuit theory, is basic to 
the calibration technique bearing the 
same name. It may be shown that for 
any passive four-terminal network, no 
change of observed current will take 
place if the generator and ammeter, 
shown in Fig. 10-13a, are interchanged 
as indicated in Fig. 10-13b. To test 
this principle, a circuit which can be “re
versed” in this sense is necessary (any 
ordinary circuit will have this property).
It is possible to construct many kinds of 
sound sources or sound detectors that 
possess electroacoustic reversibility, i.e., 
the same device can be used with equal 
facility as a source of sound or as a re
ceiver. We call such a device a reversible transducer, a transducer being any 
agent capable of receiving power from one system and transferring it to a 
different system. ,
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As we have seen, it is possible to write the electrical analogs of many of 
the quantities important in acoustical and mechanical phenomena. Simi
larly, analogous “circuit” equations may be written for the behavior of 
acoustical and mechanical systems. When a system is part acoustical, 
part mechanical, and part electrical, unifying equations for the whole may 
also be written, although we have given no example'of this procedure. It 
is therefore possible to represent a reversible transducer as coupled or 
“connected” to the surrounding medium and acting either as a generator, 
delivering power to the medium when acting as a detector, or as an imped
ance to which power is being delivered.

The following experimental technique is based on the above point of 
view. To calibrate a microphone it is necessary to have also a small 
reversible transducer and a small source of virtually spherical waves. 
Measurements are made in free space or in an anechoic chamber. The 
microphone Tx and the transducer Tr (used as a detector) are placed suc
cessively at the same distance d from the source T. The ratio of the two 
open-circuit voltages, Ex/Er, is noted. Then Tr is driven with a constant 
known alternating current Ir, Tx is placed the same distance d from Tr, and 
the open circuit voltage E'x is noted. Data sufficient for the calibration of 
the microphone have now been obtained. The circuit representing the 
transducer and its coupling to the medium (the free field) is drawn and its 
equation set up.*  The final expression for the calibration constant Mx, 
representing the ratio of the open circuit voltage at the microphone to the 
sound pressure present before the microphone was introduced, is

* See Beranek, Acoustic Measurements, pp. 116-122, for details of this analysis.

— X 10-’ volt-dyne-1-cm2. (10-12) V lr \ErJ PqC
(It is also possible to compute the calibration constant of the transducer.)

It should be noted that no previous calibration of either T or Tr is 
implied or necessary. While there are some restrictions on the method as 
to frequency (the frequency may not be too high), the technique is remark
ably straightforward. The distance d is in some doubt largely because of 
the finite size of the transducer. The errors in calibration, however, are 
in general small, and the computations take account of diffraction effects, 
always present in free-space measurements.

The reciprocity technique may be extended to the “closed chamber” 
type of calibration mentioned earlier in this chapter in connection with the 
thermophone and the pistonphone. As in free space applications, no 
primary standard source of pressure is required for the use of the reciprocity 
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principle. The closed chamber calibration of a microphone must always 
be corrected if the instrument is to be used for free-space measurements, 
since diffraction effects then enter to alter the pressure pattern.

10-14 Measurement of frequency in a wave. The frequency of a pure 
sinusoidal wave may be measured indirectly by determination of the 
wavelength X and the propagation velocity c, using the relation / = c/X. 
The wave velocity in air can be determined, as described in Chapter 6, 
by the use of any convenient source of known frequency. Knowing the 
velocity c, the wavelength X in the disturbance can be measured by setting 
up a stationary wave pattern in front of a reflecting surface. The wave
length will be twice the distance between nodes (the latter points having 
been located with a microphone of small dimensions).

The frequency in the wave may be compared directly with that of a 
calibrated laboratory oscillator of the fixed frequency type or, more con
veniently, one whose frequency is continuously variable. Fixed primary 
standards may be of two general types. The older form consists of a tem
perature-controlled tuning fork gently driven by means of electrical feed
back circuits; a very pure sinusoidal voltage may be extracted from the 
motion of the prongs by induction. By the use of special alloys, the varia
tion of fork frequency with temperature can be minimized. If the tem
perature is controlled to within 0.1°C, the frequency can be maintained 
constant to within one part in 100,000.

A frequency standard of somewhat higher precision makes use of an 
electronic oscillator whose frequency is controlled by the use of a quartz 
crystal. Such crystals are cut to resonate in the neighborhood of 50 to 
100 kc, a frequency which is, of course, far above the audible range. Pre
cise lower frequencies within the audible band may be obtained by means 
of “frequency dividing” circuits coupled to the oscillator. The latter are 
essentially multivibrator circuits, which themselves generate oscillations 
of the relaxation type, very rich in harmonics which are all multiples of 
the fundamental. If the master crystal-controlled oscillator has a fre
quency near that of one of the harmonics generated by the multivibrator, 
the latter will “lock in” with the master oscillator and so will the complete 
harmonic series. In this way frequencies lower than that of the master 
oscillator will partake of a similar high precision. Constancy to within one 
part in 107 may be attained.

Generators of alternating voltages of continuously variable frequency 
are often used in acoustic measurement. Such generators are considered 
to be secondary standards whose calibration must be checked with primary 
standards of the kind just described. Their frequencies may rarely be 
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assumed known to within 1%. Two general types of electronic circuits are 
used, that of the beat frequency oscillator and that of the R-C oscillator. 
The first employs two radio frequency oscillators whose outputs are 
coupled into a common circuit. If the separate frequencies are adjusted 
to differ by a small amount, the beat variation can be rectified and a 
difference frequency extracted. By varying the frequency of one of the 
oscillators a variable audio frequency can be obtained. The R-C oscillator 
is small, compact, and easy to adjust, although somewhat less stable than 
the beat frequency oscillator (at least at the higher frequencies). This 
interesting circuit employs no inductances, but instead utilizes the resonant 
properties of a resistive-capacitive network, together with electronic feed
back circuits. It is particularly useful at very low frequencies, since it 
can be made to operate with good wave form at frequencies of less than 
1 cycle-sec-1.

For comparing an unknown frequency with any laboratory standard, 
the most convenient instrument is the oscilloscope. The voltage output 
of the standard frequency generator is applied to one pair of deflecting 
plates while the amplified voltage from a microphone located in the sound 
field is applied to the other pair of plates. As explained in Chapter 1, the 
spot due to the electron beam will then execute Lissajous’ figures. The 
interpretation of these figures furnishes a ready means of frequency identi
fication. The simplest procedure, if the standard frequency source is con
tinuously variable, is to turn the dial of the instrument until the pattern 
on the screen becomes a steady circle, ellipse, or straight line. The two 
frequencies are then the same, and the unknown frequency is simply read 
from the calibrated dial of the standard frequency generator.

Other types of instruments occasionally used for frequency comparison 
will not be described here, since the oscilloscope method is almost univer
sally preferred.

10-15 Complex wave analysis. Sounds rarely consist of a single iso
lated frequency. Steady state sounds from a musical instrument, however, 
may consist of a fairly small number of distinct frequencies with no energy 
in the intervening frequency regions, and this type of complex sound can 
be broken down into an equivalent Fourier series. To determine the par
ticular members of the series that are present, all that is required is an 
oscillographic record of the wave shape. This record can be analyzed by 
graphical methods or in one of the many mechanical or electronic analyzers 
referred to in Chapter 1. The precision and detail of this analysis depend 
upon the patience of the computer in the one case and upon the complexity 
and precision of the instrument in the other.
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A convenient and rapid analyzing instrument for determining the 
individual frequencies and their amplitudes is the heterodyne type of 
analyzer, a simplified functional diagram of which is shown in Fig. 10-14. 
The output from a variable frequency oscillator (tuned to a frequency in 
the neighborhood of 50 kc) is combined with the signal voltage and the 
sum frequency is sent through a narrow band electrical filter. The latter 
may be designed for a band width of only a few cycles-sec-1. To the out
put of the filter is connected an amplifier and a recording meter. A signal

Fig. 10-14. Functional diagram of the heterodyne type of complex wave analyzer.

will reach the meter only when the frequency of the local oscillator, plus 
that present in the acoustic wave, lies within the narrow pass band. The 
setting of the local oscillator will obviously differ for every such frequency 
component in the wave, and consequently the dial can be calibrated in 
terms of the acoustic input frequency. The operation of the circuit is 
very similar in principle to the heterodyne circuit used in practically all 
modern radio receivers. The final recording in the analyzer may also be 
interpreted in terms of the relative amplitudes of the several components. 
This type of instrument is useful, too, for the study of noise, to be discussed 
in the next section.

Tuned mechanical reeds can be used to determine the frequencies and 
amplitudes of a complex sound wave, and a modern arrangement of this 
sort has been described by Hickman.*  An optical beam reflected from 
a mirror attached to each reed was used to determine the amplitude of a 
particular frequency. Hickman used 144 reeds for the range of 50 to 
3109 cycles-sec-1.

* Hickman, Jour. Acous. Soc. Amer. 6, 108-111 (1934).
t See Meyer, Jour. Acous. Soc. Amer. 7, 88-93 (1935).

The possibility of constructing an acoustic diffraction grating for the 
analysis of sound was mentioned in Chapter 4. Such a grating is bulky 
but quite convenient and rapid to manipulate. Meyer and Thienhaus f 
used a vibrating ribbon as a source analogous to the optical slit. The 
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grating may be used for either a “bright line” spectrum (such as that 
characteristic of a violin note) or for the continuous spectrum typical of 
“noise.”

The analysis of transient sounds presents a special problem. The 
acoustic grating and analyzers of the heterodyne and other types can, how
ever, be adapted to the short times of observation involved in transient 
study. Oscillograph pictures and records can also be taken of short 
phenomena, to be analyzed at leisure.

The calibration of analyzers is a complicated procedure and current 
technical literature should be consulted for details.

10-16 Noise. The continuous acoustic spectrum. Noise is here de
fined as undesired sound. Sometimes the sound may be musical in nature 
but undesirable because it interferes with conversation or some other useful 
occupation. Such sound at times consists of a relatively small number of 
frequency components, but more often it is a heterogeneous mixture of 
frequencies and amplitudes, both of which change rapidly with time.

Because of its great practical importance as a masking agent of useful 
sound, the general nature of noise, both in the acoustical and in the elec
trical form, has been carefully studied from a mathematical and statistical 
point of view. Besides its own intrinsic interest, this study is important if 
one is to design instruments for correctly measuring noise level. The 
final indicating device is some sort of rectifying meter, different types of 
which respond differently to noise voltages of the random type. (See 
Beranek, Acoustic Measurements, for a full discussion.)

For noise assessment, much practical use is made of the sound level 
meter (noise meter), which includes a microphone whose angular pick-up 
range should be 90°. The microphone is connected to an electronic 
amplifier in whose circuit are included three standard correction networks. 
It will be remembered from the appearance of the loudness level contours of 
Fig. 9-8 that the sensitivity of the ear varies greatly with frequency. In 
addition, the shape of the loudness level contours is a function of the magni
tude of the level. The correction networks are designed to give to the 
amplifier a gain characteristic which is the inverse of the ear characteristic 
at three definite arbitrary levels, i.e., 40 phons, 70 phons, and 100 phons. 
At the output of the amplifier is usually connected a rectifier and a d.c. 
meter whose reading gives the sound level. The characteristics of the 
whole circuit must be such as to indicate the square root of the weighted sound 
pressures of the different single frequency components in the complex wave.

The readings of the American type of sound level meter, described above, 
are only true loudness level readings at the three standard levels. Since 
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the loudness contours vary in shape continuously as the level is changed, 
the use of only three correction networks means that the readings are 
approximate at other levels. It is important to note that the contours of 
Fig. 9-8 were derived using only one frequency at a time. There is much 
evidence that the ear does not judge sounds of wide frequency range in the 
same manner as it does single frequency tones. The sound level meter in its 
present practical form is a compromise.

It is usual to introduce a time constant somewhere in the electrical cir
cuit of the sound level meter so that the fairly rapid fluctuations of the 
instantaneous sound level are averaged out at the meter. Depending on 
the purpose to which the instrument is to be put, this time constant may 
be varied considerably. For steady sounds, the calibration must in any 
case agree with the requirements stated above.

Approximate sound levels for certain typical environments are given in 
Table 10-1. It is to be noted that even in a “quiet” office the level is as 
much as 30-40 db above the threshold of audibility. The average person 
is so used to sound levels of this order of magnitude that a really quiet 
environment, such as exists within an anechoic chamber, is apt to disturb 
rather than to relax.

When the distribution of energy in the different parts of the audible 
spectrum must be known, a selective instrument is needed. In this case, 
band pass filters may be included to cover the frequency range in steps, 
the frequency width of each filter being a matter of choice.

TABLE 10-1*

Typical sound environment Sound level in db

Threshold of pain 120-130
Riveting machine 30-40 ft away 100
Subway with train passing 90
Average city street 70
Average restaurant 60
Average conversation 3 ft away 60-70
Outdoor minimum in city 30-40
Quiet office 30-40
Outdoor minimum in country 10
Threshold of audibility 0

A spectrum of particular theoretical interest is the so-called “white 
noise” spectrum. Such a distribution is uniform over the whole frequency

* Adapted from Colby, Sound Waves and Acoustics. Henry Holt & Co. (1938).
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range. It may be conveniently produced electrically by amplifying the 
noise originating at the input of an electronic amplifier. Corrective 
networks may be necessary to make the output truly “white.” Such a 
generator, connected to a loudspeaker, constitutes a useful laboratory test 
instrument.

10-17 The measurement of acoustic impedance. As we have seen in 
Chapters 5 and 8, the concept of acoustic impedance is most useful in 
problems concerned with the radiation and absorption of sound energy. 
While in the path of plane and spherical waves in free space the value of zs 
may be predicted for certain simple types of sources, there are many cases 
where this cannot be done. In particular, the important impedance znj 
characteristic of partially reflecting surfaces, must be determined experi
mentally. We shall describe briefly a few of the more important methods 
of experimental determination.

1. Direct measurement of p and % at a surface. Since specific acoustic 
impedance is defined as the ratio of the pressure to the particle velocity, it 
may be computed both in magnitude and in phase once p and £ are known. 
The pressure can be measured with probes small enough to avoid seriorts 
distortion of the sound field. A velocity type of microphone (the pressure 
gradient type) could be used to measure £, but at the present time none of 
small enough dimensions is available. A more fruitful method of approach 
for porous surfaces is to force a known volume of air through the surface 
per unit time (this is the “volume current” X) and to measure p at the 
surface with a probe tube. The analogous impedance za can then be com

small vibrating diaphragm and the 
surface of the sample may be placed 
at opposite ends of a very short cy
lindrical tube. The volume current 
is calculated from the known distri
bution of velocities over the surface 
of the circular diaphragm.

2. A coustic transmission line meth
ods. Of the several methods falling 
under this classification, that which 
involves the exploration of a station
ary wave pattern is the most widely

used. The fundamental arrangement is indicated in Fig. 10-15. The 
sample at the surface of which the acoustic impedance is to be determined 
is placed at one end of a cylindrical tube, while into the other end is piped 
the energy from a loudspeaker unit. A movable probe coupled to a de

puted by the

^-Movable probe

Loudspeaker unit

MicrophonePlane of 
measurement 

of zn

Fig. 10-15. Laboratory arrangement for 
the measurement of zn.
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tecting microphone may be slid along the axis of the tube. The probe 
commonly used for acoustical sampling is simply a small-bore tube whose 
outside dimensions are sufficiently small so as not to disturb the pressure 
distribution in the region being studied. In general, its effect is to attenuate 
the wave by the time it reaches the microphone diaphragm. This attenua
tion, as a function of frequency, can be calculated theoretically and also 
checked experimentally; hence the electrical output of the microphone can 
be corrected to indicate the acoustic pressure at the entrance to the probe.

In Section 8-7 it was shown that with the partial reflection of plane 
waves at the end of a pipe, a pattern will be produced within the pipe 
consisting of two superimposed sets of stationary waves whose antinodes 
do not coincide. The pressure amplitudes at these antinodes are

(Pm) total = (Pm)i “F (Pm)r (10_13)
and

(.Pm) total = (,Pm)i (10—14)

where the subscripts i and r refer respectively to the incident and to the 
reflected waves. By sliding the probe along the tube axis, the positions of 
greatest and least acoustic pressure can be located and the total pressures 
on the left-hand side of Eqs. (10-13) and (10-14) can be measured. The 
maximum pressures in both the incident and the reflected waves can thus 
be computed from these same equations. By Eqs. (8-23) and (8-24) the 
ratio is directly connected with the normal specific acoustic
impedance zn at the boundary of the reflecting material. If the material 
is such that zn is essentially real, and this is quite often the case, the angle 0 
in Eq. (8-23) is zero, and we may write Eq. (8-24) as

_ /I ~F M\ .— poc _ Af/ 10 1^

In this way we can compute the impedance zn from the experimental 
pressure data.

Actually, the nature of the stationary wave pattern is significantly 
affected by attenuation effects at the walls of the tube. In addition, zn

। may well be complex. Under these conditions, the equations given in
Chapter 8 are not sufficient to determine the real and imaginary parts of zn, 
but additional equations may be deduced to make the computation possible. 
It is necessary also to measure the distances from the reflecting surface at 
which the nodes and antinodes 00010*,  as well as to know the attenuation 
properties of the tube.*

* See Beranek, Acoustic Measurements, pp. 321-329.
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It should be mentioned that when zn has been measured at the surface 
of an absorbing material, the absorption coefficient for normal incidence, 
an, has also been measured indirectly. Once the pressure ratio M has been 
determined, the value of an can be computed from the relation

an = 1 — M2.

Since 0 does not enter, the determination of an is somewhat simpler than the 
determination of zn.

To determine the Sabine absorption coefficient, which assumes sound 
waves arriving from all directions, a quite different technique is usually 
employed. In Chapter 12 this measurement will be discussed in connection 
with the reverberation properties of rooms.

3. Bridge methods. There are a number of methods of measuring 
acoustic impedance which are closely analogous to the bridge methods of 
electrical measurement. Many of these arrangements involve considerable 
electrical as well as acoustical detail, and their operation would be diffi- 
cult to make clear within our allotted space. One of the earlier types of 
bridges, devised by G. W. Stewart,*  is almost wholly acoustic in character 
and its theory is fairly simple. We shall therefore describe it briefly, as 
illustrative of the measurement possibilities along this line.

* Stewart, Phys. Rev. 28, 1038 (1926).

The construction of the bridge is shown in Fig. 10-16. Two long, 
straight, cylindrical tubes are coupled, at one end, to loudspeaker units, the

two units being identical in design. The loudspeakers are driven from a 
common oscillator by means of a dividing network, so that the relative 
acoustic energy delivered to the tubes can be continuously adjusted. At 
some distance from the loudspeaker ends of the tubes, an acoustical con
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nection is made by means of the tube tc. Another pipe, leading to a micro
phone, is attached at the center of this branch tube. The microphone has 
its own amplifier and measuring meter. By means of a telescoping arrange
ment, the length of one tube can be varied as shown.

This bridge is particularly well suited to the measurement of the acoustic 
impedance at the end of a horn or acoustical conduit. The device to be 
used is attached at one side of the upper straight tube as shown. Assuming 
the loudspeakers to be operating at a fixed frequency, we may express the 
principles of continuity of pressure and of volume current X (equal to S£) 
at the junction in this way:

and
Pi + Pr = Pb = Pt

Xi - xr = xb + xt,
(10-16)

where the subscript i refers to the wave incident at the junction, originating 
at speaker Sp^, the subscript r to the reflected wave, the subscript b to the 
wave progressing into the horn or conduit, and the subscript t to the wave 
traveling towards the far end of the straight tube. To eliminate compli
cating reflections at the ends, of the long tube, the latter (and its parallel 
neighbor) is partially filled with tufts of felt.

In addition to the above relationships, we may write
X, = ^4

PoC
x, = PoC

Xt = ^4
PoC

(10-17)
Y Pb
Ab — 7 V-

(2a)fe

(10-18)

The quantity (z^b represents the analogous impedance at the entrance to 
the side branch, and is the quantity to be determined. The quantity S is 
the cross-sectional area of the bridge conduit.

By combining Eqs. (10-16) and (10-17), we obtain the ratio
Pt = 2(za)b

Pi 2(Za)b + (poC//S)
In this equation we must recognize that the pressures are the instantane
ous values in the complex form, and that pt and pi are not in general in 
phase. We express this phase relationship by stating that

v = v. (P™)*  ejQ

where 0 is the phase angle, and (pm) < and (pw) t represent peak values of the 
acoustic pressures. Hence Eq. (10-18) may be written

(.Pm)t jQ __ _____2(Zg) b______
(pm)i 2(za)b + (poc/sy (10-19)



258 SOUND MEASUREMENTS. EXPERIMENTAL ACOUSTICS [chap. 10

Equation (10-19) is the fundamental relationship for this type of bridge. 
If we can measure the ratio (pm)t/(.Pm)i and the phase angle 0, we can, by 
reducing Eq. (10-19) by the methods of complex algebra, compute the real 
and imaginary parts of (za)b-

The experimental procedure is as follows. With the branch b removed 
and the hole closed, the voltages applied to the speakers are varied until, 
due to interference, the detecting system attached to the cross tube reads 
zero. (A small adjustment of the length of the lower tube may be neces
sary to equalize the phases.) Then the branch b is introduced and the 
balance again made, both for pressure amplitude and for phase. The ratio 
(.Pm)t/(Pm)i may be computed by

(Pm)t _ Ey/E^
(,Pm)i Ei/E'2 (10-20)

where E-JE^ is the ratio of the two voltages applied to the loudspeakers 
with the branch out; and E^/E^ is the ratio with the branch connected. To 
obtain the phase angle, note is made of the change of length, d, of the lower 
tube necessary to equalize the phases after the branch is inserted. The 
phase angle (for which compensation is made in the lower tube) is then

0 = 2,A (10-21)
A

With this information, (z^b can be computed in the manner indicated above.
Measurements made on this bridge are subject to serious errors under 

certain conditions. The analyzing of the chief sources of such errors is left 
for the reader.

10-18 Conclusion. No attempt has been made in this chapter to give 
a complete detailed survey of the many special techniques of acoustical 
measurement. The apparatus of measurement is increasing steadily in 
variety and is constantly being improved. To be well informed, it is neces
sary to keep abreast of current technical literature.

PROBLEMS
1. Measurements of the absorbing 

properties of the wedge type of wall struc
ture used in modern anechoic rooms (Fig. 
10-1) indicate a reduced effectiveness at 
the lower frequencies (see the graph of 
Fig. 10-2). A major factor in this be
havior is the phenomenon of diffraction. 
Explain.

2. From the graph of Fig. 10-2, find 
the absorption coefficient for the wedge 
type of wall surface at a frequency of 
(a) 100 cycles-sec-1, (b) 1000 cycles- 
sec-1.

3. (a) In the case of the pistonphone 
(Section 10-5), why should all dimensions 
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be small compared with the wavelength? 
(b) Derive Eq. (10-1).

4. (a) If there were no slots in the 
plate of the electrostatic actuator (Section 
10-6), what error would enter into the 
calibration of the microphone? (b) Would 
the calibrated sensitivity of the micro
phone then be higher or lower than the 
actual sensitivity when operating in a 
field of sound?

5. (a) For the Rayleigh disk, why is 
the position parallel to the direction of 
stream flow unstable? (b) Why is the 
position perpendicular to the stream flow 
stable? Make this clear with a vector 
picture.

6. The double-button carbon micro
phone is briefly described in Section 10-10. 
(a) Draw a simple circuit for such a 
microphone, making clear the push-pull 
action, (b) Explain just how the push- 
pull action eliminates even harmonic dis
tortion due to the nonlinear behavior 
of each button, using an argument based 
on the graphical representation of the 
current variation for either button.

7. The spacing between the two metal
lic surfaces in the capacitor microphone 
should be small compared with the 
diameters. Why? (There is more than 
one reason.)

8. (a) From Eq. (10-11), why is a 
polarizing potential needed with the 
capacitor microphone? (b) For the volt

age across the resistor in Fig. 10-9 to be 
independent of the frequency in the sound 
wave, the value of the resistance must be 
very large. Why? (c) Would the pres
ence of distributed capacitance in a cable 
between the microphone and the resistor 
affect the sensitivity of the microphone at 
any one frequency? (d) Would this same 
capacitance affect the uniformity of re
sponse to waves of different frequency? 
(e) Answer parts (c) and (d) for the case 
where the cable capacitance operates be
tween a tap on the resistor and one end.

9. In view of the differential sensitiv
ity of the ear for sounds of variable 
intensity, is the peak in the curve of Fig. 
10-10 significant? (See Chapter 9.)

10. Practical microphones of the pres
sure type exhibit somewhat greater sen
sitivity at high than at low frequencies, 
due to diffraction effects. (The effect is 
greatest with normal incidence.) Show 
that this behavior is reasonable in the light 
of the radiation properties of an acoustic 
piston, making use of the general reciproc
ity principle.

11. (a) Discuss all the possible sources 
of error in the measurement of za by 
means of an acoustic bridge of the type 
designed by G. W. Stewart, (b) If the 
two speakers had somewhat different 
resonant frequencies, would the precision 
be affected? (c) Would one expect the 
precision to be greater at low frequencies 
or at high frequencies? Explain.



CHAPTER 11

REPRODUCTION OF SOUND

11-1 Introduction. With the almost simultaneous invention of the 
telephone and the phonograph there began a historic development in 
applied physics which was to draw strongly upon three important fields, 
i.e., those concerned with the principles of electricity, of mechanics, and 
of acoustics. The appearance of radio telephony in the 1920’s furnished 
still further stimulus to experimentation and improvement, as did also the 
revived interest in the phonograph in its newer, electrical form.

It is interesting to note that the acoustical aspects of the reproduction 
of speech and music were at first sadly neglected. For many years the 
telephone transmitter and receiver remained practically in their original 
form as electromechanical and electroacoustic devices. The early radio 
loudspeakers were simply glorified telephone receivers, and almost any 
short horn that had some kind of flare was deemed adequate as a coupling 
agent.

This lack of interest in the acoustic link in the chain seems at first diffi
cult to understand, in view of the long and honorable history of the subject 
of acoustics. The explanation of the delay is probably twofold. For one 
thing, the novelty and excitement of the appearance of the phonograph 
and the radio set were such that for a long time no serious objections were 
raised to the acoustic inadequacies. As the novelty wore off, listeners 
became more critical, and engineers began to think about the acoustical 
design, or rather, lack of design. The second reason for slow development 
along this line is that it took some time before the principles of the impor
tant “wave filter” of G. A. Campbell were applied to electromechanical 
systems. With the papers of A. G. Webster, W. P. Mason, A. C. Bartlett, 
and others, the concept of mechanical and acoustical impedance rapidly 
took shape, and the analogy between the behavior of electrical circuits and 
that of mechanical and acoustical systems was recognized as a tool of great 
usefulness. Eventually this knowledge began to affect the design of 
transducers of all sorts, such as the mechanism of the phonograph pickup, 
the telephone receiver and transmitter, and the loudspeaker constituting 
the coupling device between the electrical circuit and the sound medium.

Important advances have recently been made in the design of electro
acoustic transducers, but it is still correct to call these the weakest link in 
the chain of reproduction of speech and music. This is not due to lack of 
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attention and study in recent years, but to the intrinsic difficulties in effec
tively transforming electrical energy into acoustical energy over a wide range 
of frequencies. In this chapter, we shall try to point out some of the 
chief difficulties, and to describe a number of practical solutions.

11-2 The general problem. The problems connected with the repro
duction of sound over a wide range of frequencies really begin at the source 
itself. Whether the final acoustic output is from a phonograph, a public 
address system, or a radio loudspeaker, any initial pressure variation is 
picked up, in modern systems, by an electrical microphone and is then 
amplified electronically. Subsequently, the signal may have a varied 
history. In the phonograph it may be supplied to the cutter head of the 
recording mechanism or to the magnets of a tape recorder. In either 
system, the recorded information must eventually be extracted from the 
record or the tape in electrical form and again amplified. Eventually 
electrical power is delivered to an electroacoustic transducer (actually an 
electro-mechanico-acoustic transducer) and sound waves are set up in the 
air which it is hoped are faithful replicas of the original waves in front of the 
microphone. In the radio set, there is the additional complication that 
between the first and last amplifier appear the radio transmitter and the 
radio receiver, with all their complicated circuits and behavior.

Since this is a book on acoustics, we would naturally choose to concen
trate on the acoustic aspects of this complicated chain of transformations, 
and this chapter is devoted primarily to the final transformation back to 
sound waves. But a loudspeaker is primarily a mechanical system, free 
to vibrate, and the forces which make it vibrate are electrical or magnetic, 
or perhaps electromagnetic in nature. We are therefore led inevitably to 
a consideration of the mechanical and electrical links in the chain. Indeed, 
as we shall see, some features of the electronic amplifier that delivers its 
energy to the final transducer are closely linked with the behavior of the 
loudspeaker, so that we shall have to make some general comments on that 
score in connection with our discussion of the transducer itself.

If the system described above were to handle vibrations (currents) of 
a single frequency only, the problem would be greatly simplified, especially 
from the acoustic point of view. For most applications, the electrical 
energy supplied to the final transducer is small, so that the matter of effi
ciency is of little interest. (We shall comment on efficiency later.) It is 
not difficult to build circuits and vibrating mechanical systems whose re
sponse to amplitude variations is essentially linear at any one frequency. 
Therefore a single sinusoidal electrical voltage at the input of the system 
can be amplified with little difficulty, and the electrical energy may be 
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eventually transformed back into sound energy with little distortion of 
wave shape. Almost any type of loudspeaker, if not driven to too high an 
amplitude of motion, will give rise to a variable sound pressure which at 
any one frequency is a reasonably close replica of the electrical variation 
applied to it.

Speech and music, however, contain a wide range of frequencies. As 
we have seen in Chapter 1, the existence of a resonant frequency is one of 
the fundamental features of the motion of a particle free to vibrate. In 
the neighborhood of that frequency the response to a given outside periodic 
force may be large; at other frequencies the response will, in general, be 
much smaller. The radiating plate or diaphragm is more complicated in 
its behavior than is a particle, as we saw in Chapter 7; there may be many 
resonances. Suppose, then, that a voltage having a complex wave form 
that faithfully follows the shape of the acoustical wave is applied to the 
input of an electronic amplifier, the output of the latter being connected 
to an electroacoustic transducer. Both amplifier and transducer must be 
capable of handling all the frequency components that are present, so as 
to maintain their original relative prominences, and, one would expect, 
the original relative phases. Such a system must therefore satisfy the 
triple requirement of linearity with respect to amplitude variations, uniform 
over-all response over a frequency range of the order of 500:1, and a net 
over-all phase shift which is ideally zero degrees.

Any failure to meet the above requirements is called a source of distor
tion. As we have mentioned earlier, phase shift or phase distortion is not 
ordinarily important to the ear in sounds having a large number of assorted 
frequency components, which is fortunate, as zero over-all phase shift at 
the upper end of the audible spectrum is difficult and expensive to achieve. 
(It is difficult enough to minimize phase shift in electronic circuits; it is 
practically impossible to keep such shifts to a low value in the mechanical 
response of the transducer diaphragm, especially in the neighborhood of 
the inevitable resonances. See the discussion in Section 1-21.) It is now 
possible to build circuits and amplifiers which are linear for amplitude 
variations and have little or no frequency discrimination over a range 
greater than that to which the ear will respond. When it comes to the 
behavior of the electroacoustic transducer, however, the problem is much 
more difficult. In the next section we shall discuss some of the difficulties 
to be overcome.

11-3 An ideal transducer. Suppose the rectangular area in Fig. 11-1 
to represent an acoustic piston whose mass and stiffness (A) are negligibly 
small. The mode of support involves no appreciable dissipative force.
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Only the right-hand face is exposed to the air, so that it is a single source. 
The area £ of its radiating face has a diameter large compared with the
wavelength, and a beam of plane waves 
will therefore be produced.

Under these conditions, the instan
taneous driving force, Fdriv, will al
ways equal the total force due to the 
air, or

f7driv

zm~0

Acoustic 
piston

Areo=S

----------U>cS

Fdriv = pS = %pocS, (11-1)

Fig. 11-1. Driving force and air 
reaction force for an acoustic piston 
of negligible mechanical impedance.

where p is the acoustic pressure. Since the velocity x of the piston is equal 
to the particle velocity in the air near it, we may also write

F driv — XpQcS. (11-2)
The average power delivered by the driving force will then go entirely into 
wave motion and will equal

(F driv) rms^rms = (^rms)2PoC/S = (£rms)2poC>S. (11~3)
According to Eq. (11-1), the acoustic pressure in the radiated wave is 
proportional to the driving force. For a given value of the driving force, 
x (or £) is constant and therefore, by Eq. (11-3), the acoustic power is 
constant. Hence, if the amplifier and driving mechanism are such that 
the force applied to the piston is proportional to the acoustic pressure in 
the original wave, independent of the frequency, it should be clear that the 
pressure and intensity in the radiated wave will follow the corresponding 
variations in the original disturbance. Such an acoustic piston may then 
be called an “ideal” radiator for complex sound waves.

The quantity pqcS in Eq. (11-2) is the effective mechanical impedance 
of the air-loaded piston, or its “radiation impedance.” Entirely apart from 
the effect of the air load, for any actual vibrating diaphragm there will be 
a mechanical impedance for the driven mechanism, due to its inertia, its 
stiffness, and the presence of frictional forces at the supports. If zm is the 
mechanical impedance of the piston without the effect of the air, Eq. (11-2) 
must be written

F'driv == x(zm “I" PoC/S), (11~4)
where zm is, in general, complex. We may also write

(Fdriv),™ = imsV(R + P0cS)2 + X2, (11-5)
where R and X are the magnitudes of the real and imaginary parts of zm.

With a constant driving force, the maximum value of x in Eq. (11-4) will 
not remain constant at all frequencies, due to the variations in zm, whose re
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active component is a function of frequency. Hence the average real power 
delivered by Fm? will vary with the frequency. Moreover, not all of this 
real power will be radiated as waves, because of the dissipative part of zm, 
that is, R. The average radiated acoustic power is (xIms)2 pocS, which is less 
than the total power delivered by the driving force, i.e., (zrms)2(.R + pocS). 
In addition to these deficiencies, any actual acoustic radiator will never 
have dimensions large compared with the wavelength except at the higher 
frequencies. At medium and low frequencies it will therefore become a 
source of diverging waves, the wave front shape becoming spherical at very 
low frequencies. For purposes of sound diffusion this is good, but the 
radiation efficiency drops at those frequencies, as shown by the graph of 
Fig. 5-11. The specific radiation impedance at the piston becomes 
complex at the lower frequencies, and its real part falls below pQc. All of 
these effects cause distortion of the radiated complex wave.

We must not neglect the electrical aspects of transducer design. Since 
transducers differ in this respect, we shall now consider the particular 
features of some specific driver mechanisms.

11-4 Early types of transducers. 1. Magnetically driven iron reed. To 
this classification belongs the ordinary telephone receiver, with its circular 
iron diaphragm clamped at the edge. The plate is made to vibrate by 
virtue of the varying magnetic force between it and the pole of an electro
magnet which carries the signal current. Such a plate is attracted at each 
peak of the current, and to prevent this virtual doubling of the frequency 
of the plate vibration as compared with the frequency of the current 
variation, a constant flux component is introduced into the magnetic cir
cuit by means of a permanent magnet. The signal current will then 
strengthen or weaken the pull associated with the total flux at a rate iden
tical with that of the signal. An analysis of the behavior of the system 
shows that a sinusoidal variation in the magnet current will give rise to a 
periodic force containing frequencies which are harmonics of the current 
frequency, as well as the current frequency itself. By making the constant 
flux bias much greater than the differential flux caused by the signal, the 
harmonics can be suppressed. The driving force can be shown to be 
proportional to the value of the steady flux.

As an earphone transducer, this design is simple and adequate. The 
thick iron diaphragm has strong resonances near the middle of the speech 
band, which aid efficient reproduction of speech but which would cause con
siderable distortion in the reproduction of music. Heavier units can be 
designed to handle considerable power, but the defects remain. A mag
netically balanced version of the reed mechanism was used in early loud-
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Fig. 11-2. Balanced ar
mature type of loudspeaker 
mechanism.

If one of the plates is a

speaker design (Fig. 11-2), and this design, with a light armature coupled 
mechanically to a large paper cone, makes possible an acoustic radiator 
capable of better low frequency radiation and 
somewhat less marked resonance distortion. The 
fundamental resonant frequency in this design 
can be lowered almost to 100 cycles-sec-1, a 
change in the right direction.

2. The electrostatic loudspeaker. It is possible' 
to employ the design of the capacitor microphone 
in an acoustic radiator. As in the microphone, 
a polarizing d.c. potential, Eq, is used. If a sinu
soidal variation in potential, e, due to the signal, 
is then introduced in series with Eq, there will be 
a periodic force of attraction between the plates, 
flexible membrane, it will vibrate and radiate sound waves. As with the 
transducer just described, harmonics are generated which can be kept low 
in amplitude by the use of a high polarizing potential. . The instantaneous 
driving force per unit area is given by

“ 47Td2’

where d is the spacing between the plates. (All units are electrostatic.)
To ensure a sufficiently large driving force, Eo must be large (of the 

order of hundreds of volts) and d must be small. The membrane must 
then be stretched tightly to prevent the two plates from touching under 
the steady electrostatic force. A push-pull arrangement has been used to 
eliminate the steady force of attraction, setting the thin membrane be
tween two stationary plates, each charged to the same potential. Even 
so, the device is fragile and requires its own potential source, so that this 
type of transducer has never been widely used.

3. Piezoelectric-driven system. A piezoelectric crystal is a reversible 
transducer. An alternating potential applied to sheets of foil or to metal 
plates cemented or clamped to a pair of crystal surfaces will produce 
mechanical deformation of the crystal. This motion can be transferred, 
by the use of a lever, to a separate plate or diaphragm which then acts as 
the sound radiator. The system is not well adapted to the radiation of 
large amounts of acoustical power in the range of audible frequencies, 
since the required amplitudes of motion are in danger of shattering the 
crystal. In the range of ultrasonic frequencies, however, the crystal 
transducer has been an exceedingly useful source of high intensity longi
tudinal waves. In this frequency region the required amplitudes are
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smaller. Crystals may be cut so as to resonate at frequencies in the 
neighborhood of 50 kc-sec-1 or higher. The mode of internal vibration is
in this case perpendicular to the face of the crystal, so that the crystal

Fig. 11-3. Electro
dynamic loudspeaker, 
(a) Essential parts, 
(b) End view of mag
netic structure.

surface becomes the radiating surface. We shall have 
more to say of such generators in the next chapter.

11-5 Transducer with electromagnetic drive. The 
electromagnetic type of drive mechanism has become 
almost universal among modern transducers designed 
for the audible range of frequencies, and we shall 
therefore discuss its operation in some detail. The 
essential parts of the mechanism are shown in Fig. 
11-3. The vibrating diaphragm is in the form of 
a truncated cone, made of paper in the larger sizes or 
of light metal or plastic in units designed for use with 
a horn. At the base of the cone is attached a short 
cylindrical form, on which is wound a relatively 
small number of turns of wire. The cone is held in 
position by two elastic rings, as shown, so that the 
driving coil is normally held symmetrically within 
a radial magnetic field of constant strength. The 
source of the field may be either an electromagnet or 
a slug of permanently magnetic material. Connec
tions to the coil are made by flexible leads.

Since the conductors making up the coil lie every
where perpendicular to the radial field, the presence 
of an alternating current in the coil, constituting the 
signal current, will result in a periodic axial force 
upon the coil and therefore upon the cone to which 
it is attached. The axial vibration of the cone will 
then set up longitudinal sound waves in the air. The 
vibrating system, even with the cone exposed to the 
air, is always underdamped, so that there is a funda

mental resonant frequency. This frequency, for practical loudspeakers,
may range from several hundred down to 30 or 40 cycles-sec-1, depending
on the size of the cone and its particular construction. This resonant fre
quency is an important factor in the acoustic behavior of the loudspeaker, 
as we shall see presently.

11-6 “Blocked” vs “motional” impedance. If the movable part of the 
mechanism under discussion is clamped mechanically, the electrical im
pedance as measured at the coil terminals is called the “blocked” imped-
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ance, the complex expression for which we shall label z^ The magnitude 
of Zb (i.e., the modulus, Z&) as so measured for a typical loudspeaker, 
usually varies with frequency in the manner shown by the solid curve of 
Fig. 11-4. Up to a frequency of several hundred cycles-sec-1, Zb is prac
tically constant, and is only slightly greater than the ohmic resistance of 
the coil. As the frequency is raised, Zb rises gradually, due to the increased 
importance of the coil inductance. Even though there is iron within the 
coil, the coil inductance is small, since the iron is near saturation because 
of the large steady flux passing through it.

If the cone and the attached coil are free to move (as is true when the 
loudspeaker is in use), the graph of the electrical impedance Zb vs frequency 
has a form similar to that shown by the broken curve in Fig. 11-4. The 
peak at the lower end of the frequency scale occurs at the mechanical 
resonance frequency of the moving system; the value of Zb at this fre
quency may be many times the value in the mid-frequency region. In the 
complex form, the difference between the complex electrical impedance with 
the cone clamped and the complex electrical impedance with the cone free to 
move is called the “ motional” impedance. For this impedance we shall use 
the symbol zem. It is the existence of this motional impedance that entirely 
accounts for the production of sound waves.

11-7 Motional impedance and mechanical impedance. The relation
ship between motional impedance and the mechanical impedance of the 
moving system is easy to discover in the case of the electrodynamic trans
ducer. The driving force acting upon the coil is given by

Fdriv = Bli, (11-6)

where B is the flux density in the gap, I is the total length of the conductor, 
and i is the instantaneous current. If the coil has an axial velocity x, the 
emf induced therein due to its motion is

e = Blx. (11-7)

The electrical impedance due to the motion of the coil is

Zm = | = (Biy-f-, (11-8)
-Tdriv

from Eqs. (11-6) and (11-7). The mechanical impedance is connected 
with the driving force through the relationship

= xzm>, (U-9)
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where zm> is the total mechanical impedance of the cone system plus the 
impedance due to the presence of the air (mention of the latter was made 
in Section 11-3). By combining Eqs. (11-8) and (11-9), we obtain

= ^- (11-10)

In the mks system, this equation may be used as it stands, provided the 
appropriate units are used for B and zm> (in the case of zm> the unit is not 
the mechanical ohm characteristic of the cgs system). In the cgs system, 
Eq. (11-10) must be rewritten,

zem = IO'9 electrical ohm. (H-ll)

(The reader should check the factor 10-9.)
If there is no baffle around the speaker cone and if no horn is coupled to 

it, the total mechanical impedance zm> is mainly due to the impedance zm 
of the cone and coil system, with the presence of the air playing a relatively 
minor part. At the middle and lower frequencies, this system may be
treated as approximately equivalent

Fig. 11-4. “Free” and “blocked” elec
trical impedance of electrodynamic loud
speaker.

to a particle. At the frequency of 
mechanical velocity resonance, zm is 
a minimum and all real, since the 
mechanical react an ce is zero. There
fore, from Eq. (11-11), zem will be a 
maximum and real. This is the 
reason for the peak in the broken 
curve of Fig. 11-4. It is interesting 
to note that due to the inverse rela
tionship, at frequencies lower than 
the resonant frequency (where the 
reactive part of zm is predominantly

due to compliance), the reactive part of the motional impedance is pre
dominantly inductive. For the same reason, at frequencies higher than 
that for resonance, the reactive part of zem is predominantly capacitive.
At resonance, zem is resistive.

11-8 Motional impedance and acoustic radiation. If we apply the 
results of the previous section to the “ideal” transducer considered in 
Section 11-3, we find that since in this case zm> is due solely to the air and 
is, for the plane wave radiator, pqcS, the motional impedance is constant at 
all frequencies and is real. Hence the average electrical power radiated as 
sound power is given by PIiasZem, where in this case

= W 10-’ ohm. (U-12)



11-8] ACOUSTIC RADIATION 269

The motional impedance of practical loudspeakers cannot be discussed 
in terms of Eq. (11-12) because it is necessary to add the mechanical im
pedance of the piston itself to the mechanical impedance due to the pres
ence of the air. The correct expression is that of Eq. (11-10) or (11-11). 
Expanding the denominator, we may write

,_______________(WIO^____________ ni_nx
%em — r-/ jt\ -i’ (11 1<>)

[r + 5(^)2?] + j I (com — — J + SfeOxJ

In this expression, r is the internal damping coefficient of the cone, (^)jj 
and (.ss)x represent the real and imaginary parts, respectively, of the 
average specific acoustic impedance over the surface of the cone, and >8 is 
the effective cone area.

To estimate the acoustic efficiency of an actual loudspeaker and to see 
qualitatively how this efficiency may vary with the driving frequency, it 
is useful to examine Eq. (11-13).

The situation in the neighborhood of resonance is the simplest to analyze. 
While all but one of the terms in the denominator on the right-hand side 
of Eq. (11-13) have strong frequency dependence, the constants for actual 
loudspeakers are such that velocity resonance virtually occurs when the 
expression in j is zero. We may therefore write that at resonance

~ (JBZ)210~9

Substituting in Eq. (11-14) values which are typical of an actual cone 
speaker,*  of diameter 6 inches, mounted in a very large (virtually infinite) 
baffle, we have

* Numerical data of an experimental nature used in this discussion have been 
kindly furnished by Dr. A. Wilson Nolle, Department of Physics, University of 
Texas.

^[(10,000)(250)P(10-!)^27ohms 
"" — 100 + (130) (1) —

Such a speaker may have an “ohmic” resistance (virtually equal to the 
“blocked” impedance) of several ohms. Hence, at resonance, most of 
the total electrical impedance is due to zem.

Not all of the power delivered to zem, however, goes into sound radiation. 
Since for a given voltage Erms across the voice coil, the power Q delivered is 
inversely proportional to the electrical impedance, we may write

a [r + £(zs)2z].
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Only the power associated with the term S(zs)R represents radiated sound. 
Hence the efficiency of the speaker at resonance is

Efficiency S 100%
r + b(zs)R

(11-15)
130

= 100T130 100 = 56%-

At the higher frequencies (zs)R becomes larger and approaches the 
value poc (see Fig. 5-11). However, at frequencies well above resonance 
the reactive part of zm> predominates over the resistive portion, due pri
marily to the magnitude of the term com. If we write Eq. (11-13) in the 
form

_ (BZ)210-9 
Zem R' + jX’’

where R' and X' represent the real and imaginary parts, respectively, of 
zm', we see, upon rationalizing the denominator, that the real part of zem 

becomes
k-9

(Z ) ! - era/real (R^ (11-16)2 + (X,)2-

At the upper end of the audible spectrum the magnitude of X' is so great 
that the value of (zejre)reai may be reduced to a small fraction of an ohm. 
This is considerably less than the ohmic resistance of the voice coil. As 
a result, the over-all efficiency as a sound source is low and may drop to 
much less than 1% at the high frequencies.

In general, the efficiency of a loudspeaker at resonance represents a 
maximum. Considering the whole range of audible frequencies, few 
ordinary transducers have an average efficiency of greater than 10%.

11-9 Behavior of the transducer in a vacuum tube circuit. The elec
trical impedance of the voice coil is at all times low. To efficiently deliver 
power to the coil from a vacuum tube amplifier, an impedance matching 
transformer is necessary between the coil and the high-impedance plate 
circuit of the tube. The effect of this transformer is to introduce into 
the tube circuit an electrical impedance Ze, mainly resistive, of several 
thousand ohms, rather than the few ohms characteristic of the coil itself. 
The way in which the reactive components of the total impedance of the 
voice coil are affected by the transformer action is somewhat complicated 
and will not be discussed here. In general, the transformed impedance vs 
frequency follows a graph very similar to that shown in Fig. 11-4 for the 
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coil itself, except, of course, at the higher numerical values of the trans
formed impedance.

The behavior of the cone is markedly affected by whether the vacuum tube 
circuit can be considered to supply a constant current to the speaker, or a 
constant potential. If the internal resistance of the vacuum tube is much 
higher than the transformed speaker impedance, the variations in Ze with 
frequency will not greatly affect the current. With a constant current 
there will be a constant force on the coil. Due to the mechanical resistance, 
the velocity and amplitude of the cone will be greatly increased in the 
neighborhood of the resonant frequency (Fig. ll-5a).

Amplifier with 
high output 
impedance

Frequency
(a)

(b)

Fig. 11-5. Effect of electrical output impedance of amplifier upon loudspeaker 
steady state cone motion in the neighborhood of resonance.

If the vacuum tube has a low internal resistance, the transformed 
impedance may be considered the main impedance in the circuit. In this 
case the applied potential is approximately constant for a signal of fixed 
amplitude, regardless of frequency, and therefore when Ze is high (near 
resonance), the current will be low. This will reduce the driving force in the 
neighborhood of resonance, thus tending to make the response in that fre
quency region much less pronounced (Fig. ll-5b). This latter situation is 
generally preferred, partly to reduce the excessive response at the resonance 
frequency and partly for the following reason.

From the mechanical point of view, the cone system is actually under
damped. Therefore when the signal has stopped, a transient vibration 
may continue for a fraction of a second, producing sound which was not in 
the original wave. By connecting the loudspeaker to a vacuum tube of low 
internal resistance, electromagnetic damping due to the motion of the coil in 
the speaker magnetic field will be relatively rapid, since the induced 
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currents will be large. This effect is concerned with the loudspeaker’s 
transient response and is important in high fidelity sound reproduction.

11-10 Behavior of the cone vs the acoustic piston. It should be clear 
from the discussion of Section 11-3 that the mechanical impedance of the 
moving system (the cone and the coil) for the mechanism being considered 
should be as small as possible in comparison to the radiation impedance. 
Therefore the cone mass should be small and the compliance as great as 
possible. Also, in the interests of efficiency, the dissipative forces at the 
supports should be small. (Some dissipation at the supports is desirable, 
however, to reduce the time of the transient motion of the cone.)

A cone of paper has small mass and, because of its shape, has an amazing 
degree of rigidity under the action of axial forces. The rigidity is desir- 

c able in order that the cone behave as nearly as possible like 
5 an ideal acoustic piston; the motion of its surface will then

// most closely reproduce the motion of the small coil attached
y to its apex. At frequencies below about 500 cycles-sec-1
/ the cone is apparently quite rigid. At higher frequencies,

(/ however, the cone begins to behave like a thin plate; flex-
uuu/ ure sets in, both along and at right angles to the elements
rrmr. of the cone, and transverse motion of the paper results.

V At certain frequencies, stationary wave patterns are set up
over the surface of the cone. These transverse motions 
affect the radiation of longitudinal sound waves in a very 

X complicated manner, since the vibrations of certain regions 
A on the cone will obviously be out of phase with the motions 
J of other regions (Fig. 11-6). The many peaks and valleys 

Fig. 11-6. in the sound pressure observed in front of a loudspeaker of 
Cone breakup, typGj throughout the higher range of frequencies, are 
largely due to this so-called “cone breakup.” By pressing into the paper 
circular corrugations concentric with the axis of the cone, many of the 
transverse wave motions just referred to are discouraged.

From another point of view, these somewhat elastic regions can be 
considered elements in a mechanical low-pass filter, the inertial elements 
being the relatively rigid regions between the corrugations (see Chapter 12). 
Thus the higher frequency motions never reach the outer sections of the 
cone. This has the beneficial effect of reducing the total mass which is in 
motion at the higher frequencies. At the upper frequencies, the mechani
cal impedance of the cone system is mainly a reactance of the inductive 
type, and it is desirable to keep the mass small; otherwise the velocity 
response (x = will fall off rapidly and so will the intensity of the
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radiated sound. One might also expect that the reduction in the effective 
area of the vibrating surface would cause the radiated sound to fall off 
markedly at the higher frequencies. Actually, however, the rest of the 
cone, relatively passive in the presence of vibrations at the apex, supplies 
some of the coupling action of a horn (as discussed in Chapter 5) and so 
prevents too serious a decrease in efficiency.

11-11 Acoustic coupling problems. In Chapter 3 it was pointed out 
that when acting as a double source, an acoustic piston is a very poor 
acoustic radiator. To ensure single source action, one simple solution is to 
use a baffle. The size of the baffle depends on the desired low frequency 
limit for efficient radiation, and the effect is best investigated experi
mentally. It is found that the transition between single and double source 
behavior takes place rather critically when the baffle dimension (assuming 
a circular shape) is a little less than X/2. For example, a plate 5 ft in 
diameter will ensure single source action (each side of the cone acting 
independently) above a frequency of about 100 cycles-sec-1. Below this 
frequency the radiation will fall off rapidly because of interference between 
the front wave and the back wave. When the distances from the micro
phone to the front and to the back surfaces of the piston (or cone) differ by 
about one wavelength, a sharp dip in the acoustic pressure is observed
(Fig. 11-7). This critical cancella
tion is to be expected, since the 
front and back waves start out just 
180° out of phase.

In the frequency region where 
the baffle is effectively infinite in 
area, a constant velocity imparted 
by the driving mechanism to an 
acoustic piston does not ensure uni
form radiation of energy at all fre
quencies. As the graph of Fig. 
5-11 indicates, even with an infinite 
baffle the transmission coefficient 
r, a measure of relative radiated 
energy, falls off with frequency.
Assuming constant piston velocity,

Fig. 11-7. Relative acoustic pressure 
level 10 ft in front of an 8-inch loudspeaker 
mounted in the center of a square flat 
baffle 3 ft on a side. Dip at 500 cycles-sec-1 
is due to destructive interference of front 
and back waves. (After Olsen)

is approximately proportional
to the square of the frequency at the lower end of the spectrum, unless 
the piston has an impossibly large diameter. This would seem to be an 
insurmountable difficulty in the design of a radiator of wide frequency 
range.
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The fundamental mechanical resonant frequency of the cone and coil 
system of the average electromagnetic transducer designed for direct sound 
radiation lies in the lower part of the audible spectrum. The best design 
places the resonance at the lowest frequency which it is desired to radiate, 
or preferably slightly below this limit. The reason is simple. At fre
quencies above resonance, the reactive component of zm (large compared 
with the resistive component, except near resonance) soon becomes essen
tially inertial in nature and its magnitude is equal to wwz (neglecting the 
smaller reactance due to the compliance). As a result, the velocity re
sponse of the cone is not uniform with frequency, assuming a constant 
driving force. As the frequency is lowered, x varies inversely with/. Thus 
the increased velocity at the lower frequencies may be made to approxi
mately compensate for the reduction, at those frequencies, in the real part 
of the radiation impedance. This artifice, however, may lead to nonlinear 
distortion if the amplitude of the cone motion becomes too great at fre
quencies near cone resonance.

Below resonance both effects are in the same direction, since the mechan
ical impedance becomes that due to compliance and therefore increases 
with a drop in frequency. As a result, little radiation occurs below the 
resonant frequency. It is obviously desirable, then, to place the resonant 
frequency as low as possible. This is not difficult in cones with a diameter 
of at least one foot. In the smaller sizes it is hard to reduce the stiffness 
of the cone suspension sufficiently to achieve a low resonant frequency and 
still retain a rugged construction. However, the smaller speakers are used 
largely in compact radio sets where the baffling is very inadequate anyway, 
and an increased efficiency associated with a higher resonant frequency is 
a desirable goal.

At the higher frequencies, where according to the graph of Fig. 5-11 the 
specific acoustic impedance at the piston becomes constant at the value 
poc, the increase in the mechanical reactance with frequency, due to the 
choice of the resonant frequency, becomes a detriment and leads to reduced 
radiation. As shown in the discussion of Section 11-10, the behavior of 
the cone at the higher frequencies departs radically from that of a rigid 
piston, and other factors often control the radiation efficiency. The use 
of a separate unit for the high frequencies is becoming increasingly popular 
as a solution to the difficulties inherent in that region (Section 11-17).

11-12 Back of cone completely enclosed. To effectively ensure the 
single source type of radiation down to a frequency limit of 50 cycles-sec-1, 
a flat baffle at least 10 feet in diameter is required. A structure of such 
dimensions is hardly feasible (or tolerable!) for the average living room.
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(a) (b)

Fig. 11-8. Effect upon response character
istics of complete back enclosure of loud
speaker. Natural resonance frequency with
out enclosure is 150 cycles-sec-1. Enclosure 
in (b) is 2 ft X 2 ft X 8 inches. (After 
Olsen)

To prevent the back wave from interfering with the front wave, one might 
try the rather obvious solution of completely enclosing the back of the 
loudspeaker in a sound tight box, thus entirely eliminating one component 
of the double source. Unfortunately, this procedure has an undesirable 
consequence. As we have seen in discussing the Helmholtz resonator, 
the air trapped in such an enclosure will behave like a simple spring, at 
wavelengths large compared with the box dimensions. The effect upon 
the motion of the loudspeaker cone will be to add an elastic stiffness to 
the forces already acting upon the 
moving system, with a consequent 
definite rise in the fundamental 
mechanical resonant frequency. 
The effect is quite marked, as the 
graph of Fig. 11-8 indicates. The 
peak in the response for the loud
speaker when enclosed is about 200 
cycles-sec-1, whereas in free air it 
is at about 150 cycles-sec-1. As 
will be remembered from Section 
5-9, thq elastic force due to an en
closed volume of air, upon a given 
area of the container, is inversely 
proportional to the volume. If the 
natural cone resonance is placed 
very low, say at 30 cycles-sec-1, 
and if the volume of the enclosure 
is large (8 to 10 ft3 is none too 
large), the resonant frequency of the combination can be kept close to the 
lower limit of usable frequencies. This type of enclosure is sometimes 
called an “infinite baffle,” although its behavior, due to the stiffness of the 
enclosed air, is really quite different from that of a true infinite plane 
baffle.

The presence of reflecting surfaces within the enclosure will give rise to 
stationary waves at certain frequencies where the wavelength is smaller 
than the dimensions of the box. It is usual to line the box with sound 
absorbing material to cut down the effect of such resonances upon the 
motion of the cone. (Such material has little effect upon the stiffness 
loading of the cone at the very low frequencies.)

11-13 Loudspeaker cabinet with open back. In most radio sets de
signed for the home, the loudspeaker is enclosed in the same cabinet that
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Absorbent 
material to 
minimize 
stationary 
waves
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contains the electrical equipment. The cabinet may be small or large, 
but it is almost invariably open at the back. This is partly for cooling 
purposes and partly to prevent the stiffness effect upon the speaker cone, 
as discussed above. Unfortunately, this acoustical system is rather poor. 
The air in the open box may resonate in a number of ways, the lowest 
frequency of resonance corresponding to a mode of vibration partly of the 
Helmholtz type and partly like that for a pipe open at one end only. The 
exact frequency of this resonance is difficult to predict, but experimentally 
it is found to be in the vicinity of 100-150 cycles-sec-1 for the average con
sole radio, which is much too high in the audible spectrum. Radiation in 
this frequency region is unduly enhanced because of the efficiency of radia
tion from the open side of the box, which acts like a large piston. Below 
this resonant frequency, the acoustic radiation is very poor in the impor

tant frequency band between 100 and 
50 cycles-sec-1. For small table radio 

/ sets the resonance is even higher, so that
"Loudspeaker very little energy is observed below 

frequencies of 200 or 300 cycles-sec-1.

11-14 The acoustic phase inverter.*

* Dickey, Caulton, and Perry, Radio Engineering 8, No. 2, p. 104 (1936).

- This device, in its effect upon the low-
frequency radiation of the transducer, 
is a considerable improvement over 
the ordinary open-backed cabinet. The 

Fig. 11-9. Loudspeaker enclosure phase inverter enclosure is a simple box 
acting as a phase inverter. , . . . ,, . . „ ,, q ,which encloses the back of the loud
speaker but provides an opening which serves to couple the motion of the 
air within the box to the outside air. The position of the opening is not 
critical, but it is usually placed not far from the speaker cone (Fig. 
11-9).

The acoustic behavior of the phase inverter can be explained in several 
ways. From the standpoint of resonance, the system may be considered 
as two closely coupled tuned circuits of a mechanical type. Energy is fed 
into the loudspeaker, which constitutes a tuned primary whose separate 
resonant frequency is that of the cone-plus-voice coil system (with the 
added effect of the acoustic loading at the front of the cone). This primary 
is closely coupled, through the back of the cone, to a secondary comprising 
an acoustic oscillator of the Helmholtz type, the enclosed air supplying 
the stiffness and a plug of air at the opening furnishing the mass. The
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Fig. 11-10. Behavior of two resonant 
circuits with moderately close coupling. 
With very close coupling the peaks are 
noticeably different in height.

frequency of the Helmholtz resonator is determined by the dimensions 
and other factors discussed in Chapter 5. It is usual to tune the “second
ary” to the same separate frequency as that of the loudspeaker “primary.” 
Students of electricity will remember 
that under these conditions a complete 
electrical transformer whose windings 
are closely coupled will have an over
all double resonance, one corresponding 
to a frequency higher than the separate 
frequency of the primary or secondary 
and the other lower by the same 
amount. The two resonances will ap
pear quite symmetrical when measured 
in the laboratory (Fig. 11-10). Ex
actly the same double resonance oc
curs in the case of the speaker and 
the air cavity to which it is coupled. 
It turns out that a resonance of the 
Helmholtz type can occur at a fre
quency considerably lower than that 
for an open-backed cabinet of the same 
size. Within limits, the resonant fre
quency can be controlled by varying the size of the opening; a small 
opening gives a lower resonant frequency than a large opening (Section 
5-10). The system is damped (due partly to radiation) and the double 
resonance gives a bandlike boost to the response (Fig. 11—11).

Fig. 11-11. Typical low frequency response characteristics of loudspeaker mounted 
in enclosure of the phase-inverter type.
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The phase inversion feature of the behavior of the enclosure is even more 
important than its particular resonance properties, since it accounts for 
the radiation efficiency in the low-frequency region. Following is an 
approximate analysis of this behavior. Imagine a short neck to be attached 
to the opening near the speaker, as in our analysis of Chapter 5. Consider 
a steady state simple harmonic vibration of the cone, of a frequency low 
enough so that any dimension of the box is much smaller than the wave
length. Under these conditions, if the cone is displaced inward, the 
pressure will build up simultaneously throughout the interior of the box. 
There will then be a net outward pressure on the plug of air in the tube. 
If we neglect all dissipative forces (in the neck, and due to radiation from 
the face of the plug), we may consider the plug to be acted upon only by 
the periodic force due to the rise and fall of the pressure within the cavity. 
This net force, at the moment under discussion, is outward, and the accel
eration of the plug is therefore also outward. It will be remembered that 
in pure simple harmonic motion there is a 180° relationship between the 
acceleration and the displacement. Therefore at the moment being con
sidered, the displacement will be inward. Since the speaker cone is also 
displaced inward, the motions of the cone and of the plug of air are in phase, 
and their acoustic radiations will be additive. The opposite is true if both 
sides of the cone are exposed to the open air. It is from this effective 
phase inversion that the enclosure takes its name.

Just as for all the enclosures we have discussed, the primary improve
ment in uniformity of radiation properties brought about by the acoustic 
phase inverter is at the low frequencies. A partial lining of the interior of 
the enclosure prevents undesirable resonances at the higher frequencies. 
The phase inversion feature operates only over about two octaves at the 
low end of the audible band. Due to the dissipative factors in the neigh
borhood of the opening, the phase inversion is not the ideal one of 180° 
assumed above, since the frictional forces on the plug must be considered, 
as well as the elastic force. The phase shift is, however, sufficient to 
considerably enhance the over-all radiation in the neighborhood of reso
nance.

11-15 The half wavelength pipe. Another arrangement designed to 
increase the low frequency radiation of a relatively small acoustic piston 
depends upon the production of stationary waves in a pipe. In the usual 
design, the pipe is coupled to the back of the cone and its length is equal 
to X/2 for a frequency in the neighborhood of 100 cycles-sec-1. At this 
frequency the motion of the air at the open end of the pipe is 180° out of 
phase with the motion at the back of the cone. Therefore the acoustic 
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radiation from the open end of the pipe is in phase with that from the 
front of the cone, and there is enhanced radiation at that frequency. The 
inside of the pipe is heavily lined with absorbing material, and this fact, 
together with the presence of radiation from the open end of the pipe, 
brings about a rather high degree of damping. Hence the resonance is 
not sharp. The absorbing material serves also to damp out most of the 
higher resonances; at the middle and higher frequencies the pipe becomes 
virtually nonconducting, and practically all of the radiation comes from 
the front of the cone. At low frequencies, for which the pipe length 
becomes X/4, a different type of resonance occurs. The open end is a 
velocity antinode, as for the half-wave resonance, but in this case the wave 
reflected from the open end arrives back at the cone out of phase with the 
motion of the cone, so that the amplitude of motion of the latter is greatly 
reduced at that frequency. In terms of acoustic radiation impedance, 
this effect may be described as due to the large impedance offered to the 
back of the cone by the air in the pipe. A complete analysis of the pipe
behavior at the quarter wavelength resonance 
shows a good fraction of the acoustic impedance 
at the back of the cone to be real and connected 
with the radiation of real power from the open end 
of the pipe. Since the pipe walls are lined and 
introduce additional damping forces, the quarter 
wavelength response is fairly broad. The over-all 
effect of both half and quarter wavelength reso
nance is to enhance the low frequency radiation 
over a frequency interval of more than an octave, 
with no very pronounced peak.

A well-designed loudspeaker has a natural res
onance frequency at least as low as 50 cycles-sec-1. 
The wavelength corresponding to this frequency is 
about 20 feet, and so the pipe is made 5 feet long

Absorbing material

Fig. 11-12. Half wave
length pipe, or “acoustic 
labyrinth,” coupled to 
back of cone loudspeaker.

to properly damp the cone motion at the quarter 
wavelength resonance. Its half wavelength resonance will occur for the
frequency 100 cycles-sec-1. Good acoustic radiation will take place over 
the approximate range of 50 to 100 cycles-sec-1. The pipe may be straight 
Or may be folded for compactness (Fig. 11-12).

11-16 The use of horns. The essential behavior of a horn was dis
cussed in Chapter 5. For a long exponential horn with a mouth whose 
diameter is somewhat larger than the wavelength, the specific acoustic 
impedance at the small end of the horn will be approximately poc at all 
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frequencies, nearly down to the cutoff frequency. There is therefore a 
better real acoustic “load” on the driver diaphragm at the lower frequen
cies when a horn is used than when the loudspeaker unit is a simple direct 
radiator surrounded by a flat baffle. It is not so necessary to depend upon 
cone resonance at these lower frequencies. The use of a horn always 
increases the efficiency of any practical transducer at the lower frequencies, 
since the open end of the horn, the effective radiating area, can be enor
mously larger than any practical equivalent of an acoustic piston. The 
horn must be bulky to be effective at the low frequencies, and hence is not 
suited to home use.

11-17 High frequency radiation problems. Multiple loudspeakers. 
Most of our discussion thus far has centered around the problem of ob
taining good low frequency acoustic radiation. As pointed out in Sec
tion 11-10, no light paper cone with a diameter as large as 6 to 12 inches
can behave as an acoustic piston above a frequency of several hundred 
cycles because of cone breakup. For cones of small diameter, the breakup 
occurs at the higher frequencies, but as was seen in Section 5-20, it is 
desirable to have the cone as large as possible to obtain good acoustic 
loading at the low frequencies. The obvious solution to the problem is to 
use at least two separate acoustic radiators, one designed for the low

frequency range and the other for the middle and 
high frequency ranges, each unit being electrically 
supplied with the proper fraction of the whole 
spectrum of frequencies. The use of a small dia
phragm for the higher frequency radiator has more 
than one advantage. Besides remaining more 
rigid at higher frequencies, with a consequent 
smoother acoustic pressure response, a small dia
phragm will set up a more diffuse diffraction 
pattern (at the sacrifice, of course, of some effi
ciency). A large diaphragm, however efficient a 
radiator it may be at the higher frequencies, will 
unfortunately radiate energy in that frequency 
region as a beam, and not with the spherical 
divergence desirable for a distributed listening

Fig. 11-13. Horn clus
ter designed to increase 
divergence of radiation 
from high frequency unit 
in multiple speaker sys
tems.

audience. With a reduction in piston diameter the diffraction pattern, it 
will be remembered, will spread out. To diffuse the energy still more 
effectively at the very high frequencies, where even the small diaphragm 
of the high frequency unit (perhaps several inches in diameter) will radiate 
within a small solid angle, a cluster of small horns may be coupled to the
diaphragm (Fig. 11-13).
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Due to the special problems associated with the design of units which 
will radiate efficiently above 5000 cycles-sec-1, there is some argument for 
dividing the complete band of audible frequencies among three loudspeaker 
units. A triple unit radiator of this type is illustrated in Fig. 11-14. The 
radiator for the middle frequencies, the range from 600 to 4000 cycles-sec-1, 
is not visible in the photograph. The middle frequencies emerge from a

Fig. 11-14. Three-channel loudspeaker. (Courtesy Jensen Mfg. Co.)

short horn whose mouth opening is at the center of the large paper cone 
(the low frequency radiating surface). The surface of the cone is a con
tinuation of the horn contour and helps to couple the middle frequency 
unit to the air.

In multiple units of the dual or triple type, electrical networks are 
necessary to sort out the several groups of frequencies. This is a standard 
electrical filter problem whose solution is relatively simple. One phase of 
the acoustical problem not yet completely solved arises from the fact that 
the several units are not coincident in space, so that interference effects 
may be observed in the frequency region of crossover (where two units are 
radiating simultaneously). The coaxial geometry minimizes this diffi
culty.
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11-18 Effect of room resonances. As will now be realized, there are 
complications enough in the design of an aperiodic acoustical radiator if 
the transducer is assumed to be radiating into free space. The conclusions 
reached in the above sections are valid only if the energy radiated from the 
loudspeaker diaphragm travels indefinitely outward and never encounters

Xi

&
20 50 100 200 500 1000 2000 5000 10,000 20,000

Frequency in cycles-sec"1

Fig. 11-15. Variation in the measured response of a single loudspeaker located in a 
“live” room, depending on the position of the microphone, M. (Based on Technical 
Monograph #1, Jensen Mfg. Co.) *

any reflecting surface. However, electroacoustic equipment is more often 
than not used indoors and in small rooms. If the rms pressure is measured 
along the axis of a cone radiator, either outdoors (true free space) or in a 
good anechoic room, one obtains the type of response discussed so far in 
this chapter. If the same measurements are made in an ordinary living 
room with partially reflecting walls, the response curve (acoustic pressure 
vs frequency) may be entirely different in all but the most essential rough 
features. The curve taken indoors will have many additional resonances 
which are due to stationary waves set up within the room. The location 
of the microphone, that is, whether it is at a pressure node or an antinode
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for each of the many wave patterns, will greatly affect the magnitude of 
the measured acoustic pressure (Fig. 11-15).

This does not mean that the general radiation properties of the trans
ducer, as determined on the basis of free-space measurements, are not 
important, but it does mean that the room acoustics significantly alter the 
behavior as far as the ear is concerned. To the ear, the low frequency 
response is somewhat more pronounced within an enclosure like a room 
than it is outdoors, since the energy is confined and reflected back and forth
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Fig. 11-16. Typical measured response of loudspeaker in “live” room. Smooth 
line represents the effect to the average ear.

within a limited volume, rather than spread into regions beyond the lis
tener. (This spread is most pronounced at the low frequencies, because of 
diffraction.) Despite room peculiarities, however, it is still true that in the 
confines of a room a good wide-range transducer will sound better than one 
of narrow range.

11-19 Electrical equalization circuits. It is not within the scope of this 
book to discuss the important electronic circuits which are a part of every 
complete sound reproducing system. Mention must be made, however, 
of the possibility of correction for deficiencies in the acoustic part of the 
system by the deliberate introduction of ucontrolled distortion” into the 
electrical circuits. The graph of frequency vs sound pressure in front of 
any actual loudspeaker is a highly irregular curve of the type indicated by 
the solid line of Fig. 11-16; the general trend of the graph is represented by 
the smoother curve. (As a matter of fact, the average uncritical listener 
will picture the curve as somewhat like this anyway, since, as we have 
noted elsewhere, the ear is insensitive to rather large variations in sound 
pressure, particularly in the presence of a mixture of frequencies. To the 
human ear, the transducer will always sound better than the objective 
measurement with a laboratory microphone would indicate.)
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Fig. 11-17. Use of electrical compen

sation to correct for acoustical short
comings.

By the introduction of so-called equalizing circuits into the electronic 
amplifier that feeds the energy to the loudspeaker, it is possible to give to 
the entire system a response virtually independent of frequency, even 
though the curve for the transducer has a decided “droop” at both the 
high and the low frequency ends of the spectrum (Fig. ll-17a). All that 
is necessary is to electronically amplify both the high and the low fre

quencies more than the middle fre
quencies. An amplifier with such a 
discrimination circuit will show a gain 
which varies with frequency in the 
manner indicated by curve (b) of Fig. 
11-17. To the ear, the over-all effect 
will be somewhat like that given by 
the product of curve (a) and curve (b), 
that is, as shown by curve (c). In a 
sense, one distortion has cancelled an
other. The correction principle is es
sentially the same as that used to 
overcome the radiation deficiencies of 
an acoustic piston; we employ ahead 
of the acoustic radiation, it will be re
membered, a type of mechanical velo
city response which is high at those 
frequencies where the acoustic radia
tion is low.

It is not good practice to employ 
any more electrical equalization than 
is absolutely necessary, since there is 
some danger of overloading (with re
sultant distortion) both the electronic 
circuits and the mechanical trans

ducer system. Moreover, only gross defects in uniformity of response on 
the part of the transducer and its acoustic radiation can be corrected in 
this manner. No reasonably simple circuit has been devised to remove the 
numerous peaks and valleys due to cone breakup. These latter eccen
tricities in cone behavior can only be minimized by careful design of the 
mechanical features of the transducer itself and hence it is still desirable to 
design the transducer to be as aperiodic as possible.

11-20 Transducers for disk phonograph records. There are several 
methods whereby the vibrations associated with sound waves can be trans
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ferred to a permanent record. Three different media and techniques have 
been widely used: ordinary flat disk pressing, based on the principles of 
the early Edison phonograph, the film sound track technique, and the 
recently revived use of magnetic tape. Each system has its special prob
lems, none of which is fundamentally acoustic in nature although, since the 
vibrations are due originally to sound waves, acoustics inevitably enters 
into the larger problem.

In the system enjoying the widest popular use, that employing a flat 
grooved disk, it is necessary to use an electromechanical transducer (com
monly known as the phonograph pickup) between the record and the 
electrical amplifier that drives the loudspeaker. It is this device that 
transforms the motion of the needle, resting in the undulating record groove, 
into an equivalent alternating potential. Such a potential can be ampli
fied electronically and eventually applied to the terminals of a loudspeaker. 
The design of this transducer involves no acoustic principles. The moving 
mechanical system, however, is similar in some respects to that used in 
certain microphones and loudspeakers. This system has a mechanical 
impedance that varies with the frequency, a variation which plays an 
important part in the behavior of the phonograph transducer. Since we 
have paid some attention to the effect of the mechanical impedance of the 
loudspeaker, it will be interesting to describe briefly the phonograph 
pickup mechanism, with particular attention to the mechanical impedance 
of its moving parts.

Many different kinds of phonograph pickups have been proposed and 
manufactured. Practically all electromechanical transducers are revers
ible, and can be used either as motors or generators. The most popular 
types are three in number, the variable reluctance pickup, the electrodynamic 
pickup, and the piezoelectric pickup. The variable reluctance pickup is 
really a telephone receiver of the reed type used backwards as a generator. 
The vibrating needle is attached to a small iron armature whose motion 
varies the length of the air gap in a magnetic circuit. A coil placed some
where in the circuit thus receives a variable magnetic flux and experiences 
an induced emf of the same frequency as that of the needle vibration. The 
electrodynamic pickup is similar to an electrodynamic microphone, except 
that the motion of the coil is due to the motion of the needle rather than 
to sound pressure. In the piezoelectric or crystal pickup, the needle 
motion deforms a crystal having piezoelectric properties. (The deforma
tion is usually a torsion.)

11-21 Differences in transfer behavior. The three types of transducers 
discussed above do not all behave alike in their electrical responses to a 
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given motion of the needle. Both the variable reluctance and the electro
dynamic pickups give an output voltage which is proportional to the maxi
mum velocity of the needle (actually an angular velocity, since the needle
holding mechanism is free to rotate around a pivot). On the other hand, 
the piezoelectric transducer gives an output voltage proportional to the 
maximum displacement of the needle. These differences in behavior are 
important because of the manner in which the grooves are cut into the 
phonograph record. If one examines the record groove with a microscope, 
he will find that for a pure sinusoidal musical note the position of the center 
of the groove varies from side to side of the mean position in the manner 
of an ordinary sine curve. Since the angular frequency of the record on 
the turntable is constant, the crests of the sine curve will be close for the 
high frequencies and farther apart for the low frequencies. (The relation
ship between this spacing and the frequency is obviously not constant for 
different radii of the disk.)

Over most of the audible frequency range the modulation amplitude is 
so determined that for a given intensity of the original sound the maximum 
velocity imparted to the pickup needle is approximately the same, regardless 
of the frequency. Therefore for frequencies for which this is so, the vari
able reluctance and electrodynamic pickups will faithfully reproduce the 
original intensity distribution among the various frequencies. The crystal 
pickup, however, will give a smaller and smaller electrical output with 
rises in frequency since, with a constant velocity characteristic, the ampli
tude of the undulations decreases with frequency rise (from simple harmonic 
motion, x = x/Zirf). Below about 400 cycles-sec-1 the groove motion has 
a constant amplitude characteristic to prevent cutting into the next groove. 
Hence below this frequency the crystal pickup will respond properly, while 
the other two types will give reduced output with drops in frequency. 
Both kinds of response are easily corrected with electrical equalizing cir
cuits, so that the final sound closely simulates the original.

11-22 Mechanical impedance of moving parts. Tracking. For the 
motion of the needle to faithfully follow the record groove, it must obviously 
remain in the groove. Whether it will or not depends on the mechanical 
impedance of the moving system in relation to the driving force. We may 
idealize the system and replace it with an equivalent particle resting in the 
groove under the action of an elastic restraining force, the latter being 
actually supplied by an elastic torque at the pivot, farther up (see Fig. 11-18 
for the equivalence). The equivalent particle has mass and there is also a 
dissipative force due to the pivot construction, although this force is 
usually small. The force driving this equivalent particle during the 
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motion of the record is due to the side wall of the record groove; the undula
tions of the groove move the particle back and forth horizontally in the 
plane of the paper.

A simple consideration of Newton’s second law will show that any dis
placement of the groove position may cause the particle to “ride up” the

Elastic torque

Needle—*
Record groove

Particle

Record groove

(b)(a)
Fig. 11-18. Essential mechanical system in a phonograph transducer or “pickup.” 

(a) Simplified representation of rotating needle system, (b) Equivalent particle 
system.

wall of the groove, which is inclined at approximately 45°. To prevent 
this effect, a vertical force is necessary, and the weight of the pickup arm 
usually supplies this force. In the interests of long needle and record life 
it is highly desirable to keep this vertical force low, and therefore to keep 
low the driving force supplied by the sides of the record groove. To 
accomplish this it is necessary to keep 
the mechanical impedance of the mov
ing system in the transducer at a mini
mum.

Assuming a steady state periodic 
motion of the needle, the vector force 
relationship for the equivalent particle 
is shown in Fig. 11-19, at the critical 
situation where the needle point is 
about to slide up the groove wall. Here 
W is the force due to the weight of 
the arm, F is the force supplied by the 
smooth groove wall, and zmx is the 
magnitude of the “reversed effective” 
force due to the mechanical impedance 
zm of the particle system, whose velocity 
is x. (This last vector arises from 
Fdriv = ZmX) where Fdriv is the horizontal

Fig. 11-19. Vector relationship for 
needle about to be forced out of groove.
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Fig. 11-20. Driving force 
supplied by record groove wall 
as a function of frequency. 
Constant needle point velocity 
is assumed.

component of F and constitutes the driving force.) Due to the 45° 
slope of the wall, it may be seen by resolving W and zmx along the direc

tion of the wall slope that W must be at least 
as great as the vector zmx for the needle to 
remain in the groove.

It is usual to place the mechanical resonance 
of the moving system at about the middle of 
the frequency spectrum. The mechanical im
pedance zm will be a minimum at that fre
quency and will rise at lower and at higher 
frequencies. If we assume constant velocity 
properties for the groove undulation, a plot 
of zmx (and therefore the driving force) vs 
frequency will look something like the graph 
of Fig. 11-20. Since the vertical force W 
must at all frequencies be at least as great as 
zmx, it must obviously be designed to take care 

of the greatest recorded value of x (about 5 cm-sec-1 for 78 rpm recordings) 
at the ends of the frequency spectrum, where zm is a maximum. If zm is 
known at those points, the required value of W is determined, once the 
characteristics of the recording technique are known.

By the introduction of numerous refinements in the mechanical por
tions of the phonograph pickup it has been possible to reduce the maximum 
value of zm (at very low and at very high frequencies) to an extremely low 
value, so that the minimum “tracking force” (that is, W) is often as low 
as 5000 dynes (close to 5 gm in weight). The result is a much longer 
record and needle life than formerly, when units of much higher mechanical 
impedance were employed. It should be pointed out that the motion of 
the needle end is controlled in amplitude by the presence of the groove wall. 
No unnatural electrical response takes place at the frequency of mechanical 
resonance. The variations that occur affect the wall-needle point force 
only.

11-23 Conclusion. With this illustration of one more application of 
the principle of electrical analogy, we shall close this chapter on the repro
duction of sound. There are many other aspects and details of this branch 
of applied acoustics which have not been covered in this brief summary. 
For further information the reader is referred to the many articles appearing 
in the current journals, as well as to the specialized books on the engineering 
aspects of sound.
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PROBLEMS
1. Consider a loudspeaker mechanism 

of the electromagnetic type, in which the 
electrical losses in the voice coil due to 
heating effects are negligible. The cone, 
of diameter 10 inches, behaves as a rigid 
acoustic piston radiating plane waves. 
The internal mechanical damping constant 
is 1.5 X 10     dynes-cm-1-sec. (a) What is the 
efficiency of the loudspeaker as a radiator 
of sound waves? (b) What would be the 
efficiency for a cone of one-half this diam
eter, still assuming plane wave radiation 
and the same value for the internal damp
ing constant?

4***

2. The moving parts of a loudspeaker 
mechanism have a mechanical impedance 
which is at all times large compared with 
the impedance due to the air load. The 
resonant frequency is 60 cycles-sec-1. 
(a) Plot an approximate curve for fre
quencies above resonance to show the 
variation of the velocity x with the fre
quency, assuming a constant driving force, 
(b) Assuming the cone to act as an 
acoustic piston of constant diameter, 
radiating plane waves, plot an approxi
mate graph to show the relationship 
between total radiated power and the 
frequency.

3. A loudspeaker, whose cone has a 
diameter of 12 inches, has an internal 
mechanical impedance which is mainly 
resistive and which is always large com
pared with the impedance due to the air 
load. The cone is surrounded by a very 
large flat baffle, (a) Making use of the 
graph of Fig. 5-11, plot an approximate 
graph of the total radiated power vs the 
frequency, assuming a constant driving 
force, (b) Is this loudspeaker arrange
ment ideal? If there are any disadvan
tages, discuss them.

4. It is desired to radiate maximum 
acoustic power with a cone-type loud
speaker at a single fixed frequency of 1000
cycles-sec-1. Discuss the design features 
of the loudspeaker from the standpoint of
(a) the size of the cone, (b) the resonant 
frequency, and (c) the value of the real 
and imaginary components of the mechani
cal impedance zm.

5. Compute the rms driving force for 
an electrostatic loudspeaker (see Section 
11-4) of diameter 10 inches where Eo is 
1000 volts, d is 5 mm, and the maximum 
value of the signal voltage e is 50 volts.

6. A paper cone may sometimes 
generate sound waves which are sub- 
harmonics of the applied sinusoidal volt
age, that is, the frequencies are less than 
that of the signal. This is due to flexure 
along the elements of the cone, under the 
action of the axial force at the apex. 
Paper cones molded so as to have a 
contour somewhat like that of an expo
nential horn do not exhibit this property. 
Explain how this shape eliminates the 
danger of such subharmonics.

7. Making use of Eq. (11-13), derive 
an expression for the motional impedance 
Zem in the form a + jb.

8. From the form of the equation 
obtained in problem 7, discuss in detail 
the effect upon zem of varying the frequency 
of the voltage applied to an ideal acoustic 
piston mounted in an infinite baffle.

9. Assume an acoustic piston to be 
radiating plane waves. Its effective mass 
is 2 gm, the elastic factor K is 3 X 10  
dynes-cm-1, and the damping coefficient r 
is 200 dynes-cm-1-sec. (a) Find its reso
nant frequency, neglecting the effect of the 
air. (b) Find, at the resonant frequency, 
the value of the motional impedance zem 
if the diameter of the cone is 10 inches. 
The voice coil has a diameter of one inch 
and consists of 60 turns. It lies in a 
magnetic field where the flux density B 
has a value of 8000 gauss, (c) How, in 
general, will the resonant frequency be 
affected by the presence of the air?

8

10. Compute the over-all efficiency, at 
the resonant frequency, of the loudspeaker 
described in problem 9. The voice coil 
has a blocked electrical resistance of 3 
ohms.

11. The diameter of the effective 
radiating area of the cone of a certain 
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loudspeaker is reduced to one-half when 
the frequency of the applied signal is 
raised from 1000 to 2000 cycles-sec-1. 
Assuming the radiation of plane waves in 

both cases, what will be the relative acous
tic power output in the two cases with 
(a) constant cone velocity, and (b) con
stant cone amplitude?

j



CHAPTER 12

MISCELLANEOUS APPLIED ACOUSTICS

12-1 The acoustic properties of rooms. One of the earliest branches of 
applied acoustics to receive serious theoretical and experimental attention 
was that concerned with the acoustic properties of rooms. Because of the 
reflecting power of the average wall surface, at least part of the acoustic 
energy reaching the walls is returned to the room. Hence the whole nature 
of the energy distribution around a source located within a room is quite 
different from that around the same source in free space.

The most obvious result of the reflections at the walls will be what is 
usually called reverberation. When the vibrations of a sound source within 
the room are stopped, so that the influx of energy is cut off, the acoustic 
energy does not instantly become zero throughout the room. At the in
stant the source is cut off there is a flow of wave energy in the room along 
a large number of assorted paths, with numerous reflections at the wall 
surfaces. This flow continues after the source is stopped, the energy den
sity in the room diminishing rapidly as each reflection extracts a fraction 
of the energy in the incident wave. With such a process, one would 
expect some kind of exponential decay of the acoustic energy within the 
room. When the energy has reached a low level, the sound becomes inau
dible. This whole phenomenon of decay is called reverberation.

The reflecting properties of a room are both advantageous and detri
mental. With a steady source of sound, the extraction of energy at the 
walls is proceeding at a steady rate. Indeed, if the observed intensity of 
the sound remains constant, the total energy leaving per second through 
wall absorption must then equal the energy fed into the room per second 
by the source. This intensity, when measured at any one point, will be 
found to be much greater than would be expected at that distance from 
the source in free space. The presence of reflected energy thus greatly 
increases the efficiency of sound transmission to the hearer. Even in large 
halls, a speaker can be heard from any position, even at the extreme rear, 
whereas communication over such distances is usually difficult in the open. 
Not only does the existence of reflection make possible a more effective 
steady state sound transmission, but from the transient point of view a 
certain amount of reverberation or “acoustic hangover” is apparently 
agreeable to. the ear, particularly for music. Too abrupt a cessation of 
the various sounds in orchestral music is considered to detract from the 
smooth blending of the sound from the different instruments. Some of 
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this effect is no doubt due to psychological conditioning on the part of the 
listener, since most music has in the past been played in highly reverberant 
rooms.

The detrimental aspect of reflection is also important, particularly if 
the room is to be used by a speaker. If the energies associated with con
secutive sounds overlap at the ear of the listener to too great an extent, 
because of reverberation, speech loses clarity and the articulation score is 
low. Even in music there results an unpleasant blurring, often amounting 
to a discordant effect.

From the above discussion it is apparent that there must be an optimum 
degree of reverberation for which the room and its wall surfaces should be 
designed. To reach some definite conclusions as to the proper acoustic 
design of rooms in general, we shall discuss first a room having certain 
ideal properties.

12-2 An ideal reverberant room. Let us consider a large room whose 
walls absorb only a small fraction of the incident energy with each reflection. 
If the mean path between reflections is long and if the walls are highly 
reflecting, any wave motion started within the room will persist for a rela
tively long time after the source is stopped. The room is then called 
acoustically “live.” Also, when the source is first started it will take a 
relatively long time, as we shall see, before a steady state is reached, that 
is, an instant when the total rate of disappearance of energy at the walls is 
equal to the total rate of influx of energy from the source. If the wave
lengths are small compared with any room dimension (and if the room is 
irregular in shape), the wave energy will be distributed quite uniformly. 
As a result, the effect of stationary wave patterns will be small and may 
be ignored. It will be correct to say that in such a room the energy asso
ciated with the sound is at any one instant distributed uniformly throughout 
the volume of the room. With the situation as described, the energy density 
everywhere in the room will go up or down at the same rate during those 
transient periods of relatively slow change when the energy is either in
creasing towards the equilibrium steady state level, or decreasing towards 
the zero level.

12-3 Rate of disappearance of energy from the ideal reverberant room. 
The uniform distribution of energy assumed above implies that all possible 
directions of flow are represented at any one point, distributed in a com
pletely random manner. This means that a velocity microphone, at any 
one instant, would give the same response regardless of its orientation. 
(This ideal state of affairs assumes no significant stationary wave patterns.) 
For the same reason, the total incident energy striking any given wall area 
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per unit time will be uniform regardless of location. With this in mind, 
it is not difficult to compute the total rate of arrival of energy per unit 
area of wall surface from all directions in terms of the instantaneous energy 
density et-. The Sabine absorption coefficient a8, it will be recalled, assumes 
energy arriving from all possible directions, and under these conditions repre
sents the ratio of absorbed to incident energy. Therefore a fraction a8 of 
the energy incident per unit time will disappear from the room. Knowing 
the total surface area, it is then a simple matter to determine the total time 
rate of disappearance of energy over the surfaces of all the walls. Details 
of the above analysis are given in Appendix IV; the theory is due to Sabine 
and Jaeger. The equation for the energy u arriving per unit area of wall 
surface per unit time is

« = (12-1)

where is the instantaneous acoustic energy density in the room and c is 
the velocity of sound. The total energy Ua absorbed per unit time over 
the total wall surface £ will be

Ua = (12-2)

where a8 is the mean value of the Sabine absorption coefficient for all the 
surfaces. As would be expected, Ua is proportional to the energy density 
and to the surface area of the room. The total energy Ua is also linearly 
dependent upon the velocity of sound, since the higher the velocity, the 
more frequent will be the reflections. The factor 4 is a result of the inte
gration necessary to obtain Eq. (12-1).

If the value of a8 varies for different portions of the wall surface, which 
is usually the case, Eq. (12-2) may be written

Ua-^^M- (12-3)

In this case the wall surfaces are broken up into finite areas, over any one 
of which the value of as is constant. The summation in Eq. (12-3) is 
then performed over the whole room surface, and we obtain2 (cwS) = (a8)i& + («s)2& • • • (a.)nS„.

12-4 The steady state energy density. In the steady state, reached in 
actual rooms soon after the starting of a steady source of sound, the total 
energy U entering the room per second is equal to the total energy Ua leav
ing the room per second. Making use of Eq. (12-1), therefore,

U-e-fa.S = O, (12-4) 
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where eo is the steady state energy density and is the average absorp
tion coefficient. Solving for eo, we obtain

It is important not to confuse the energy density eo as used in discussing 
room properties with the energy density concept introduced in the chapters 
on progressive, unidirectional waves, either plane or spherical. In the 
case of free space waves, the energy enters and leaves any given small 
volume of space along one fixed direction. In the room now being con
sidered there is a simultaneous flow of energy in all possible directions, and 
because of this random directional distribution the intensity of the sound 
is not the product of the energy density and the sound velocity c, as it is for 
unidirectional flow. The correct relationship between the energy density 
and the sound intensity in the reverberant room (defined, as for uni
directional waves, as the energy flow in a given direction through unit area 
per unit time) is given by Eq. (12-1). This expression, while used for 
energy incident at the wall, is equally valid for an imaginary surface out in 
the room. Therefore the steady state sound intensity Zo anywhere in our 
ideal reverberant room is, in view of Eqs. (12-1) and (12-5),

T\ I epc U_ 
° ” 4 asS

12-5 The transient equations. During the time that the acoustic 
energy is building up to the steady state condition, the flow of energy into 
the room from the source is greater than the flow out through the walls. 
If V is the volume of the room, the total rate of increase in the acoustic 
energy in the room during this transient period is V(dei/dt). Equating 
this rate of increase to the difference between the rate of influx and the 
rate of efflux, we may write, using Eq. (12-2),

rl = t7_^5ss.
This equation may be rearranged:

+ = U. (12-7)

This is the differential equation which describes how the energy density et 
varies with the time while the source is feeding in energy at the constant 
rate U. It will be recognized as identical in form with the differential 
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equation which describes the variation in the current in an L-R circuit 
upon which has been impressed a constant emf, E, that is,

diL^. + Ri = E. (12-8)

The integration of this electrical equation gives

fl
By analogy, the expression for the acoustic energy density as a function of 
the time must be given by

et = (1 - (12-9)caab
We may simplify Eq. (12-9) by making use of Eq. (12-5):

a = e0(l - e-i<^/4^). (12-10)
The energy density eo is plainly the final steady state value which e» 
approaches asymptotically with the time.

For the transient period after the sound source is turned off, U in 
Eq. (12-7) is zero. The proper differential equation is then

v~ + e-rass = o. (12-11)at 4
This equation is analogous to the differential equation for the current in an 
L-R circuit after the removal of the emf. The electrical equation is then 
similar to Eq. (12-8), but with the right-hand side equal to zero. The 
integration of this equation yields

1 r'

and the analogous equation for a is therefore 
477

a = e-u<^/wv (12-12)
casb

or
6i = eoe-I(ca^)/4r]i. (12-13)

Since the sound intensity in the room is equal to eic/^ and therefore pro
portional to e*,  Eqs. (12-10) and (12-13) may be written in terms of the 
intensities, where h replaces a and Zo replaces eo. We then have for the 
rise in intensity,

li = Io(l - e-f(ca^/4^), (12-14)
and for the decay,

Ii = joe-[(^5)/4vj^ (12-15)
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12-6 Reverberation time. Graphs of Eqs. (12-10) and (12-13) are 
given in Fig. 12-1. The time required for to reach the steady state

Fig. 12-1. Variation in energy- 
density in ideal reverberant room.

value in the one case, or the zero value 
in the other, is obviously infinite. The 
ear, however, will judge these limits to 
have been reached in a finite time. The 
length of time required for the acoustic 
energy density to drop to some fixed frac
tion of its initial steady state value after 
the sound is turned off is a convenient 
measure of the importance of the tran
sient period to the ear. This reverbera
tion time, Tr, is defined as the length of 
time required for the energy density to de
crease to one millionth of its initial value. 
Such a decrease corresponds to a drop of 
60 db in intensity. For a sound whose 
initial intensity level is just 60 db, as 
referred to the standard zero level (which 
is near the average threshold of hearing), 
the reverberation time then corresponds 
to the actual time duration of the sound 
for the average ear.

If we set ei equal to 10_6e0 in Eq. (12-13) and solve for the corresponding 
time t = Tr) we find

4VTr = ^loge106.
Casb (12-16)

Room volumes and surfaces are usually measured in cubic feet and square 
feet respectively. Using these units and expressing the velocity of sound 
in air in ft-sec-1, we may write for Eq. (12-16),

T, = 0.049 sec, (12-17)asb

where a8 is the mean value of the Sabine absorption coefficient for all the 
wall surfaces. For rooms whose walls have variable absorption properties, 
this becomes

Tt = 0.049 — sec. (12-18)
2 (^)

There has been considerable discussion as to the optimum value of the 
reverberation time. There must obviously be a compromise, because of 
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the conflict between acoustic efficiency and clarity of speech and music. 
Experience indicates that a reverberation time of 1 or 2 seconds is desirable 
for purposes of speech, the longer time being allowable in large halls in 
the interests of efficiency of sound diffusion. For music more hangover 
time is permissible and, as mentioned earlier, may be desirable on aesthetic 
grounds.

12-7 Partially live rooms. Only large, highly reverberant auditoriums 
approach the behavior of the ideal room whose reverberation time is given 
by Eq. (12-18). A somewhat different point of view as to the process of 

I sound absorption by the room walls has been presented by Norris *and  
Eyring.f According to this theory, there is a series of discontinuous drops 
in energy with each reflection, rather than the continuous disappearance 
visualized in the theory of Sabine and Jaeger. The equation for the 
decay in energy density becomes, by this theory,

* Norris, Appendix II, Architectural Acoustics by V. O. Knudsen, John Wiley & 
Sons (1932).

f Eyring, Jour. Acous. Soc, Amer. 1, 217 (1930).

I ei = e0€^ioge(i-2s)/4^ (12-19)

The algebraic sign of the exponent is intrinsically negative, since as is 
always less than unity and loge (1 — as) is therefore always negative. The 
expression for the reverberation time becomes

Equation (12-18) may lead to errors of 20-30% in rooms whose rever
beration time is less than 3 seconds. In these cases Eq. (12-20) is in better 
agreement with experiment.

A further modification of Eq. (12-20), proposed by Millington and Sette, 
may be applied to rooms where one large surface is much more highly ab
sorbent than another. This leads to somewhat better agreement with 
experiment than Eq. (12-20), whose derivation depends on the properties 
of all the walls being fairly uniform.

12-8 Determination of as. In Chapter 8 the Sabine absorption coeffi
cient was defined as the ratio of absorbed to incident energy, assuming a 
completely random distribution of incident angles. Since*  this is also 
assumed in the theories just discussed, we may use Eq. (12-17) or (12-20) 
to compute the average absorption coefficient as, once Tr has been measured 
experimentally. Equation (12-17) is suitable for large auditoriums whose 
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walls are highly reflecting, and Eq. (12-20) is better for smaller rooms 
having walls of higher absorbing power. The determination of Tr is a 
simple matter, once an oscillograph or similar record of the sound pressure 
as a function of decay time has been made. For a number of reasons to be 
discussed presently, the experimental curves are rarely the smooth ones 
predicted by theory. The rate of decay is usually approximately expo
nential, however, and the curves can be used to determine aa with fair pre
cision.

12-9 Effect of varying frequency. As is indicated in Table 8-1, the 
value of aa for any one type of surface is a function of the frequency, 
because of the nature of the acoustic impedance at the surface. Accord
ingly, as would be expected, the reverberation time obtained for a given 
type of wall surface will depend on the frequency used. In view of the 
broad band character of speech and music, it is desirable to average the 
reverberation time over a band of frequencies. Several methods are used, 
such as multitoned generators, “white noise” generators, and the modula
tion of the frequency of a “warbled” tone at a rate rapid compared with 
the decay time. For speech, the middle and higher frequencies are the 
important ones, as has been pointed out in Chapter 9. Hence it is bene
ficial to have a high value of aa for the low frequencies, whose reverberation 
tends to mask the higher frequencies essential to articulation. Under these 
conditions it is more useful to measure Tr for a series of rather narrow bands 
of frequencies than to obtain a single average value for the whole audible 
spectrum.

12-10 Absorbing surfaces of limited area. No practical room or 
auditorium has surfaces all of uniform absorbing properties. The usual 
procedure is to place material of high absorbing power on certain limited 
portions of the wall area in order to achieve the desired value for the over
all absorption coefficient. If the value of as for each portion of the wall 
surface can be determined, an equation in the form of Eq. (12-18) can be 
used to predict the reverberation time. To determine the effective value 
of ota for a piece of material of restricted area, the sample is introduced into 
a “live” chamber whose normal reverberation time Tr is known. If the 
reverberation time is again measured after the introduction of the sample, 
it is an easy matter to compute the value of ota for the material, in terms 
of the reverberation times, the area of the sample, and the total surface 
area of the room.*  (Because of diffraction effects at the edges of an absorb

* See Beranek, Acoustic Measurements, p. 863.
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ing panel of limited dimensions, the absorption coefficient of a small piece 
of material will be less than for a larger piece. The size of the sample 
should be large enough to minimize diffraction effects.)

12-11 Computation of as from zn. In Chapter 8 it was pointed out 
that the coefficient of absorption an for normal incidence is directly related 
to the normal specific acoustic impedance zn at the absorbing surface. 
There are several methods for the measurement of the absorption coefficient 
(or the related quantity, the specific acoustic impedance) as a function of the 
incident angle.*  Once these measurements have __________________

* See Beranek, Acoustic Measurements, pp. 864 and 867.

been made, the Sabine absorption coefficient can 
be computed from the following expression:

1 r2V r^/2 s
as = — I d</> I ae cos 6 dO, (12-21)

^Jo Jo ____________________
where a9 is the absorption coefficient for the 
incident angle 6, and </> is the azimuth coordi
nate angle whose variation takes care of all 
possible directions of energy arrival. Because 
of the indirect nature of this method of com
puting the Sabine coefficient, the direct meas
urement of reverberation time is still the 
method most commonly used.

12-12 Effect of room resonances. Steady 
state. In actual rectangular rooms with walls 
which are good reflectors, there is rarely the 
uniform energy distribution so far assumed, 
even during the steady state phase. This non
uniformity is due at least in part to the presence 
of stationary waves, always a possibility in a 
medium of limited extent. The presence of 
such patterns along directions perpendicular to 
a pair of opposite walls is to be expected, but 
stationary waves may occur because of waves 
traveling in many other directions. Several 
such paths are indicated in Fig. 12-2. If a

Fig. 12-2. Paths associ
ated with four of the normal 
modes of vibration of a rec
tangular room. The exciting 
source is labeled s.

musical sound constituting a harmonic series is radiating into the room,
the modes of vibration in the room that happen to coincide with the



300 MISCELLANEOUS APPLIED ACOUSTICS [CHAP. 12

frequency components present in the sound source will be excited through 
resonance. As a consequence, there will be an uneven distribution of 
acoustic pressure due to the existence of numerous nodes and antinodes, 
which accounts for many of the irregularities observed in the radiation 
from a radio loudspeaker as the microphone is moved from one point in the 
room to another.

12-13 Normal modes of vibration. The transient period. As men
tioned in Section 12-8, the experimental decay curves for room reverbera
tion are never smooth. The irregularity may be considerable, as indicated
by Fig. 12-3. Some of this irregularity is due to the different decay times
associated with the nonuniform energy distribution which always exists to
some extent. If there is not complete and rapid sound diffusion, highly

E

Time,t
Fig. 12-3. Typical variation of 

acoustic pressure with the time dur
ing the decay period. Many modes 
of room vibration are present.

absorbent wall surfaces may remove en
ergy in their vicinities more rapidly than 
do other less absorbent surfaces. An
other source of irregularity is the variation 
of as with the frequency, when the source 
is radiating a mixture of frequencies.

Perhaps the most important cause of 
the fluctuations observed in the decay 
curves is the existence of the room res
onance referred to in the previous sec
tion. The room may be considered as a 
system capable of many natural frequen
cies of oscillation. When the sound 
source is turned off, the behavior of the 
room is similar to that of any other sys
tem after the driving force is removed: 
the room “oscillator” enters a period of

transient motion, executing those frequencies of vibration associated with 
the various stationary wave patterns, just as in the case of a stretched
string. As in the case of a plucked string, the modes that appear will be 
consistent with the particular initial conditions at the time the sound 
source is stopped. So numerous are the various modes of vibration asso
ciated with the wide variety of possible paths of reflection that many such 
frequencies are close enough together to produce beats. It is the beat 
effect between such pairs of frequencies that accountsformany of the fluctua
tions of sound pressure with time picked up by the recording microphone.

It is possible, with rooms of such simple geometrical shape as the 
rectangle or the cylinder, to develop a mathematical technique whereby
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the various normal modes of vibration of the room can be determined. 
Vibration and Sound by Morse gives full details of this analysis. One of 
the interesting results of a study of room reverberation is that in a room 
of highly irregular shape the number of normal modes of vibration that 
lie within any one narrow frequency range (often called “bunching”) is 
much reduced. Hence the chance of any considerable energy being 
associated with the beat effect referred to above is much lessened. For 
the same reasons, such rooms show less annoying resonance during the 
steady state period. These general advantages of irregularly shaped 
rooms have been known empirically for many years.

12-14 Transmission of wave energy through partitions. There are 
many times when the amount of vibrational energy transmitted from one 
room to another through a partition is of more interest than the reverbera
tion properties of either room alone. The problem is here one of wave 
attenuation. A commonly used 
measure of the effectiveness of any 
such sound insulating layer is the 
transmission loss TL through the 
structure, defined as

TL = 20 logic — db, (12-22) 

where pi is the acoustic pressure 
in front of the incident face and p% 
is the acoustic pressure on the far 
side of the conducting layer. The 
ratio pi/pz can be measured di
rectly with small microphones 
placed on each side of the struc- 

. ture. A laboratory arrangement 
suitable for the measurement of the 
transmission loss through small 
light samples is shown in Fig. 
12-4. In the case of large parti
tions, the panel to be studied is 
usually mounted between two 
highlyreverberant rooms and, with 
a test source running in one room,
the pressure levels are measured in both rooms. These pressure measure
ments need not be made near the panel, since in each room the energy 
is distributed uniformly (or nearly so). Measurements made in this

Rock 
wool

Cement -j

Cement
Panel under test

Fig. 12-4. Arrangement used to measure 
transmission loss for lightweight structures. 
(After Wallace, Dienel, and Beranek.)

Loudspeakers

"Rock
V'WOOl

Microphone to 
measure p^; •

Microphone to 
17; measure pt
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manner must be interpreted somewhat differently than when small-scale 
laboratory measurements are made, because energy is incident upon 
the panel from all directions, and also because the values of the acoustic 
pressures are affected by wall absorption.*

* See Buckingham, Natl. Bur. Standards (U. S.) Sci. Technol. Papers 20, 193- 
219 (1925).

f See Morse, Vibration and Sound, p. 365, for some equivalent circuits.

In general, good sound insulators (having high transmission loss) are 
loose and porous to provide the maximum attenuation through viscosity 
and heat conduction losses. However, internal attenuation is actually a 
factor of secondary importance in the sound insulating phenomenon. 
Rather it is the impedance 11 mismatch” that accomplishes the desired end, 
and mounting the soft material upon a relatively hard surface is good 
practice, since an abrupt change in acoustic impedance at the boundary 
will turn back much of the energy that succeeds in penetrating the absorb
ing layer. Indeed, the whole process of transmission of wave energy 
through a laminated partition may be looked upon as a mechanical filter 
network whose primary purpose is to attenuate all pressures applied to the 
“input” surface.! For low frequencies, where the wavelength is large 
compared with the wall thickness, the “circuit” contains “lumped” con
stants. For high frequencies, the wavelength may become comparable to 
the dimensions of the wall, and the circuit then must be considered to con
tain distributed properties of inductance, capacitance, and resistance.

Much of the low frequency vibrational energy which penetrates parti
tions does so by virtue of the resonance properties of large sections of the 
wall acting as a unit. The wall itself then acts as a secondary radiator of 
sound waves into the next room (a rather efficient one, because of its large 
area). Hence the second wall surface should be coupled as loosely as 
possible to the wall surface in the room containing the source of sound. 
Sound transmission into an anechoic chamber is obviously undesirable. 
To prevent the effect just mentioned, it is usual to suspend the whole 
framework of the room on a system of springs or rubber pads that act as 
mechanical filters for vibrations of audible frequency. Such construction 
is expensive and, of course, not practical for ordinary buildings.

12-15 Acoustic filters. Electrical engineers often make use of electrical 
filters. These filter circuits are electrical networks with the peculiar prop
erty of offering selective transmission for currents of varying frequency. 
The action is fundamentally based on the variation in the reactance of an 
inductance or a capacitance with the frequency. A filter may have dis
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tributed properties of inductance and capacitance, as in the case of a trans
mission line, or it may be designed with lumped circuit elements, that is, 
made up of separate coils and capacitors connected by wires having negli
gible impedance.

A simple filter network of the lumped element type is shown in Fig. 12-5. 
The impedances Zi are all alike, as are the impedances z2. The symmetry 
of the network structure is apparent, each impedance Zi and its immediate 
neighbor, z2, to its right being connected across the preceding impedance z2.

Fig. 12-5. Generalized filter circuit. Fig. 12-6. High-pass electrical filter.

The currents in each succeeding impedance Zi would appear to diminish 
from left to right, but it can be shown * that the currents in each imped
ance Zi will be the same in magnitude for those electrical frequencies where 
the ratio zi/z2 lies within the range 0 to —4. There will be attenuation for 
frequencies where the ratio zi/z2 lies outside this numerical range, and so 
the last impedance z\ carries a much smaller current than the first imped
ance Zi. If a resistor is placed at the right-hand end of the network, a 
small voltage will therefore appear across such a load at frequencies outside 
the “pass” range.

* See A. B. Wood, A Textbook of Sound, pp. 498-502, G. Bell & Sons (1941).

The range of frequencies which such a filter will pass with negligible 
attenuation can be controlled by proper selection of the impedance elements 
Zi and z2. In Fig. 12-6 is shown a high-pass filter, made up of a reiterated 
inductance L and capacitance C (the larger the number of sections, the 
greater the attenuation outside the pass band). The resistance is assumed 
to be negligible throughout the network. In this case,

= -j(l/a>C) = _ 1

z2 jwL w2LC (12-23)

Fig. 12-7. Low-pass electrical filter.
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This ratio will be zero at the frequency / = °°, and equal to —4 when 
f = 1/(4rVZC). The filter is called a high-pass filter because all frequen
cies from infinity down to a particular frequency are passed without 
attenuation.

To design a low-pass filter it is necessary only to transpose the L’s and 
C’s. This circuit is shown in Fig. 12-7. In this case,

- = " = - ^LC- (12-24)

For Zi/z2 to lie within the range of zero to —4, the frequency must lie be
tween zero and the value/ = 1/(ttVLC). Hence the network is a low-pass 
filter.1 ?

In view of the close analogy that can be drawn between the behavior of 
electrical circuits and certain acoustical systems, one would expect to be

LJ I—J UJ

Fig. 12-8. High-pass acoustic filter.

able to construct acoustical analogs to electrical filters of both the high-pass 
and low-pass types. G. W. Stewart has made theoretical and experimental 
studies of acoustical filters of all sorts. The construction of an acoustical 
high-pass filter is shown in Fig. 12-8. The sound waves enter a pipe 
having short side tubes open to the surrounding air and attached at regular 
intervals along the pipe. In Fig. 12-8 the acoustic elements which are 
analogous to the inductances are the masses or “inertances” of the volumes 
of air free to move back and forth in the side tubes (as in the neck of the 
Helmholtz resonator). Between the side tubes are sections of air whose

Fig. 12-9. Transmission properties of acoustic high-pass filter of type shown in
Fig. 12-8. (After Stewart)
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elastic properties furnish a compliance analogous to the capacitance of an 
electrical filter. A consideration of the acoustical behavior of this type of 
structure indicates that sound frequencies above a certain value will be 
transmitted down the main tube with very little attenuation, if we neglect 
friction and dissipation at the walls. Stewart constructed a filter of this 
type with six sections, and measured its transmission. The resulting 
graph is shown in Fig. 12-9. Remembering the compressed nature of the „ 
decibel scale, it will be seen that at the cutoff frequency (about 600 cycles-

Fig. 12-10. Low-pass acoustic filter.

sec-1 in this case) the drop in intensity at the output end of the filter is 
more than 20 db, and the intensity is therefore less than 1% of its initial 
value. The irregularities in the curve for the transmitted frequencies are 
probably due to edge effects, etc., not taken into account in the equations.

Figure 12-10 shows an acoustic low-pass filter. Here the air enclosed 
in the attached side chambers furnishes a compliance analogous to the 
capacitance of the circuit of Fig. 12-7, while the volumes of air in the main 
tube between successive chambers supply the inertance, analogous to the 
inductances. The transmission characteristics are indicated in the graph 
of Fig. 12-11.

Electrical filters are usually designed to be terminated at either end by 
resistances of specified value. If such terminating resistances are simu
lated in acoustical filters, even better agreement is found between the 
behavior of the acoustical and the electrical filter. In Fig. 12-12 are

Frequency in cycles-sec"1

Fig. 12-11. Transmission properties of acoustic low-pass filter of type shown in 
Fig. 12-10. {After Stewart)
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shown for comparison an electrical and an acoustical filter designed for the 
same pass characteristics. Both are simple low-pass filters.*  In the 
equivalent acoustical circuit, the compliance of the chamber V corresponds 
to the capacitance C in the electrical filter. The masses of air moving in 
the channels t supply the inductances corresponding to L in the electrical 
circuit. Frictional forces along the walls of the channels furnish elements 
equivalent to the resistances R. To terminate the filter properly, the

* Quarterly Progress Report, Acoustic Laboratory, M.I.T., July-September 1948, 
pp. 7-9.
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Fig. 12-12. Electrical filter and analogous acoustic filter. (After White and Baxter.)
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vibrating air set into motion by the loudspeaker is forced through a layer 
of porous ceramic supplying effective resistance. A similar layer of ceramic 
is placed at the output of the filter, as shown. The transmission properties 
of the electrical and the acoustical filter are almost identical, as will be seen 
from the graphs. The behavior of the acoustical filter deviates slightly 
from that of the electrical filter at frequencies above about 400 cycles-sec-1, 
partly because at the higher frequencies the dimensions become comparable 
to the wavelength and the filter begins to have distributed rather than 
lumped properties.

In systems made up partly of electrical and partly of acoustical compo
nents, it is easier to perform filter operations in the electrical sections. 
Filter behavior, however, is an important factor in many strictly acoustical 
problems. From one point of view, an exponential horn is a type of high- 
pass filter, since frequencies below a certain critical value will not pass 
through. Another example of filter action is the manner in which the 
acoustic impedance at a partially absorbing surface controls the degree of 
absorption as a function of the frequency.

12-16 Ultrasonics. Frequent reference has been made throughout 
this book to the range of frequencies for longitudinal waves to which the 
human ear will respond. The upper frequency limit for an average ear is 
no higher than about 20,000 cycles-sec-1. Frequencies higher than this 
are called ultrasonic.

The transmission of longitudinal waves of ultrasonic frequency through 
gases, liquids, and solids follows, for the most part, the same laws of 
behavior as in the case of waves within the audible frequency range. There 
are some anomalies characteristic of the higher frequencies, as already 
pointed out in Chapter 6. At very high ultrasonic frequencies, the wave 
velocity in gases tends towards the isothermal rather than the adiabatic. 
Also, there are appreciable absorptions of frequencies of the order of 108 
cycles-sec-1 by certain gases and vapors having polyatomic molecules. In 
general, however, the behavior of ultrasonic waves constitutes simply an 
extension of the properties of high frequency audible waves into the super- 
audible region.

To take one example, the diffraction pattern of a fair-sized source 
radiating at frequencies above the audible is similar to that discussed in 
Chapter 4 for high audible frequencies, except that the various diffraction 
lobes are even more crowded together because of the extreme shortness of 
the wavelength. The wavelength in air for ultrasonic frequencies of the 
order of several hundred thousand cycles-sec-1 (about the upper limit of 
frequencies which it is practical to produce) is in the neighborhood of 1 mm.
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Fig. 12-13. Sim
plified drawing of sec
tion of Galton whistle.

Hence almost any ordinary sized generator will radiate a beam in air. In 
liquids and solids, where the propagation speed is higher, the wavelength 

will be correspondingly longer.
While the transmission problems are similar to 

those for waves of audible frequency, there are special 
difficulties in the design of ultrasonic sources and 
ultrasonic receivers. We shall consider these in the 
following sections.

12-17 Ultrasonic sources. Generators of the whis
tle type have long been used as ultrasonic sources. 
Most familiar is the Galton whistle, designed by 
Edelman in 1900. In this whistle there is a short 
resonating cavity, the air in which is set into vibra
tion by blowing a stream of air against the sharp 

' edge of the opening to the cavity (Fig. 12-13). By 
adjusting the axial position of the plunger P with a 
screw, the frequency of resonance can be varied criti
cally over a wide range. Frequencies up to about 
100,000 cycles-sec-1 can be obtained and held fairly 
constant, provided the air pressure is kept steady.

This whistle is capable of generating a considerable amount of power in 
the ultrasonic region, although its use requires some care in adjustment.

It is possible to design a transducer of the electromagnetic type which 
will have a fair efficiency at frequencies as high as 20,000-30,000 cycles- 
sec-1, and is therefore capable of operating in what might be called the 
near-ultrasonic region. Above 30,000 cycles-sec-1, the output falls off 
rapidly, due mainly to the difficulty of reducing the mass to the required 
low value while still maintaining the rigidity characteristic of an acoustic 
piston.

For frequencies up to about 60,000 cycles-sec-1 the magnetostriction 
generator is a most effective radiator. Its development as an ultrasonic 
source is largely due to Pierce. All ferromagnetic metals experience a 
small change in dimension when in the presence of a magnetic field. This 
effect is called magnetostriction, and may be either an increase or a decrease 
in length. The extent of the change depends on the material, its history, 
the temperature, and the strength of the field. A rod made of nickel, a 
material whose magnetostrictive properties are well known, will shorten if 
placed parallel to the field. Hence if the rod is placed inside a coil of wire 
carrying an alternating current, the long dimension of the rod being along 
the axis of the coil, longitudinal vibrations will be set up in the rod. The
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frequency of the rod vibration will be twice that of the alternating current, 
since the rod shortens regardless of the direction of the field. Just as for 
the ordinary telephone receiver, the addition of a constant magnetic field as 
a bias will ensure a rod frequency which is the same as that of the alternat
ing current. If the frequency of the current happens to coincide with the 
frequency of a natural mode of the rod resonance, the amplitude of the rod 
motion may build up to a fairly high value. When working at the fun
damental mode of vibration of the rod, with 
a velocity antinode at each end and a node 
at the center, amplitudes of the order of 
10—4Z may be obtained, where I is the length 
of the rod.

The process involved in magnetostriction 
is a reversible one, as might be expected. 
If the rod is compressed or stretched in the 
presence of an external field, the flux density 
within the rod is varied. This makes possi
ble an electronic oscillator of the feed-back

Fig. 12-14. Essential circuit 
for magnetostriction oscillator. 
(Circuit to supply steady mag
netic field bias not shown.)

type, where the mechanical vibrations of the 
rod constitute the predominant factor de
termining the electrical frequency of oscilla
tion of the circuit. The elements of this 
circuit are shown in Fig. 12-14. The rod is clamped at the center to en
courage the fundamental mode. The L-C circuit is tuned to the natural 
frequency of the rod. The necessary steady field bias is not shown.

The velocity of longitudinal waves in metals is such that a nickel rod 
resonating at its fundamental mode with a frequency of 60,000 cycles-sec-1 
is about 4 cm long. With shorter rods it is difficult to deliver much power. 
The efficiency of power delivery for modes higher than the fundamental is 
considerably less than for the fundamental mode. Hence 60,000 cycles- 
sec--1 is near the upper practical frequency limit for magnetostriction gen
erators. For frequencies in the neighborhood of 20,000-30,000 cycles- 
sec-1, however, such generators have good efficiency and are quite rugged, 
and hence are much used in acoustic ranging devices (Section 12-21).

12-18 Piezoelectric generators. We have already mentioned the 
application of the piezoelectric effect to the design of microphones, loud
speakers, and phonograph transducers. In all these applications the 
crystal is driven at assorted audible frequencies, all of which are well below 
the natural frequency, of longitudinal vibration of the crystal. In the 
crystal microphone and phonograph pickup, particularly, the power level 
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is low and the use of a comparatively fragile crystal like Rochelle salt is
possible.

The reversible character of the piezoelectric effect suggests the use of a 
crystal as a direct source of ultrasonic waves; the efficiency should be high 
at frequencies corresponding to the natural resonances of the crystal. 
Quartz is a very strong material of exceptionally low internal damping.

Fig. 12-15. Quartz 
plate between elec
trodes.

It can be cut in the form of thin slabs whose thickness, 
if properly oriented with respect to the crystal axes, 
can be made the determining factor as far as the res
onant frequency is concerned. In Fig. 12-15 is shown 
such a crystal plate. The plate is so cut with respect 
to the crystal planes that the direction z is the optic 
axis and the direction x, normal to the flat surfaces 
of the plate, is one of the polar axes of the crystal. 
If alternating potentials are applied to electrodes 
clamped or cemented to the flat surfaces of the quartz 
slab, two types of periodic deformation will occur. 
One of these will be a change in thickness along the 
^-direction and the other will be a change in length 

along the ^/-direction. By choosing the proper frequency, longitudinal
stationary waves can be set up in the crystal along either the x- or ^-direc
tion. If we consider the fundamental modes only, “thickness vibrations”
will obviously make possible the higher frequen
cies; “length vibrations” are more suitable when 
lower frequencies are desired. In either case, 
one face of the crystal becomes the direct acous
tical radiator of longitudinal waves.

A simplified circuit for an electrical oscillator 
of the electronic type is shown in Fig. 12-16. 
As in the magnetostriction generator arrange
ment, the mechanical resonance of the radiator 
(in this case the crystal) essentially determines 
the frequency of oscillation. By tuning the 
L-C combination to one of the higher modes of 
vibration of the crystal, the latter may be made 
to generate waves whose frequencies are multi
ples of the fundamental.

Fig. 12-16. Hartley os
cillator circuit with quartz 
crystal.

It should be mentioned that during thickness vibrations the flat surface 
of the crystal does not necessarily move as a unit, like a piston. Instead, 
there are variations in phase and amplitude due to the simultaneous 
existence of longitudinal waves in the crystal parallel to the flat surfaces.
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These waves are the result of shrinkages and expansions in the length. 
Great care must be exercised to prevent such vibrations from building up 
until the crystal is shattered.

12-19 Detectors of ultrasonic waves. Ordinary microphones are un
suitable for the detection of waves of ultrasonic frequency for the same 
reasons that ordinary types of loudspeakers make poor radiators at fre
quencies above the audible. Since magnetostriction generators and gen
erators of the piezoelectric variety are essentially tuned vibrators operating 
at a fixed frequency, it seems quite feasible to use a receiver that is tuned 
to detect the one frequency radiated by the source. Piezoelectric crystals 
make especially good detectors, since the crystal is an efficient reversible 
transducer. The crystal is also a vibrator of very low damping, and its 
response as a detector depends critically on the frequency. The crystal is 
first ground to have a natural frequency as near that of the source as 
possible. Small differential changes in frequency of vibration may then 
be brought about by mounting one of the metallic plates constituting the 
electrodes slightly above the surface of the crystal and varying the distance 
between the plate and the crystal face by means of a screw adjustment. 
This adjustment introduces a variable capacitance in series with the 
effective impedance of the crystal itself, and so alters the over-all resonant 
frequency. The same thing may be accomplished with an external series 
variable capacitor. The electrical output of the crystal will, of course, be 
small in response to the incident wave, but it can be amplified electronically. 
With a liquid medium the radiation efficiency is greater than for air; the 
increased damping also broadens the resonance curve. As a result, the 
above refinements in adjustment are unnecessary.

In Chapter 10 mention was made of the possibility of making a sound 
wave detector whose response is due to radiation pressure. For intensities 
in the audible range, such a detector is not sensitive enough for any practi
cal use. In the ultrasonic field intensities are often much greater, especially 
with high frequency longitudinal waves in liquids. Under these conditions 
the radiation pressure principle has proved useful.*  “Excess” acoustic 
pressures of one atmosphere or more are not uncommon in liquids. The 
corresponding radiation pressure upon a reflecting surface in the liquid is 
then of the order of several hundred dynes-cm-2, a force of sizable 
proportions which will give good deflection if allowed to actuate a torsion 
vane.

* See Bergmann, Ultrasonics, pp. 44-49, John Wiley & Sons (1939), for a de
scription of radiation pressure detectors for use in liquids.
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12-20 Coupling between transducer and medium. In Chapter 5 and 
elsewhere considerable attention was given to the problem of efficient trans
formation of the vibrational energy of a source of sound into radiant 
acoustic energy. One of the great difficulties in introducing large amounts 
of power into air lies in the relatively small value of the specific acoustic 
impedance z8 (= 42 gm-cm“2-sec-1). Even in the ideal case where the 
waves are plane, the average acoustic power per unit area, (£rms)2poC, will 
be numerically small unless £rms is itself impossibly large. We are then 
driven to the use of sources having large surface areas, a solution which 
creates difficulties of its own. Fortunately, because of the great sensitivity 
of the human ear, very large amounts of acoustic power are rarely necessary 
or desirable.

In the ultrasonic frequency range the picture is much brighter. Due 
to the shorter wavelength in air, the radiation from most ultrasonic sources 
has less angular divergence. In liquids, where the wavelengths are several 
times as long as in air, the advantage in this respect is much less apparent. 
The important difference between a liquid and a gas, as far as the efficiency 
of energy transfer into the medium is concerned, lies in the greatly in
creased value of poc in the case of the liquid. The specific acoustic imped
ance for fresh water is 1.43 X 105 cgs units. For sea water it is slightly 
greater, 1.54 X 105 cgs units. In the commonly used ultrasonic generators, 
the mechanical energy imparted to the vibrating source exists within the 
bar or plate in the form of longitudinal waves. For the nickel rod so often 
used in magnetostriction generators, poc is 4.2 X 106 cgs units. For the 
quartz almost universally used in the piezoelectric generator, poc is 1.5 X 10G 
cgs units. These values are much closer to the value of poc for water, or 
any other ordinary liquid for that matter, than they are to the value for 
air. Hence, as pointed out in Chapter 8, the energy will rapidly pass into 
the medium, instead of remaining as useless local energy of vibration.

The transfer is still further aided because of the small amplitudes possible 
with waves of high frequency. Since the radiated power depends on the 
square of the particle velocity imparted to the medium, and since the 
velocity is in turn equal to it should be clear that as the frequency is 
raised, the amplitude may be dropped with no diminution of radiated 
power. Therefore very small amplitudes of motion at the source may give 
rise to large amounts of acoustic power. This makes possible small area 
sources operated through conservative amplitudes, as compared with the 
large area, large amplitude sources necessary at the lower audible frequen
cies.

All of the above factors leading to efficient energy transfer are important 
in the problem of underwater signaling, to be discussed in the next section.
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12-21 Undersea signaling and ranging. The idea of using high fre
quency longitudinal waves to locate underwater obstacles was suggested as 
long ago as 1912 by L. F. Richardson. It was the careful work of Paul 
Langevin during and after World War I that really laid the foundation for 
the principles of undersea signaling and for much of the general subject of 
ultrasonics as well. Despite the desperate scientific study of aqueous ul
trasonics during World War I, with an eye to the detection of enemy sub
marines, little actual use of the technique was made before the ending of 
hostilities. Between the two World Wars, however, considerable progress 
was made in the design of suitable transducers and their associated circuits. 
During World War II and afterwards much research has been done, not 
only in the development of suitable sources and receivers, but in the careful 
study of the fundamental physical phenomena associated with the propa
gation of high frequency waves through water. A considerable portion 
of the results of these studies has not been published, since the findings are 
of military interest.

Because electromagnetic waves will not propagate through sea water, 
ultrasonic waves are used as a means of friendly communication between 
submerged submarines, or in the case of disaster, between a sunken sub
marine and a surface vessel. All that is necessary is to mount a suitable 
transducer on the hull of each vessel. By a change of connections, a 
transmitter can also be made to serve as a receiver. By electrically modu
lating the superaudible frequency (usually of the order of 30,000 cycles-sec-1) 
at a rate determined by the speech frequencies, telephony is made possible.

The principle of undersea acoustic ranging is essentially that of the 
ordinary echo in air. If an acoustic pulse of short duration is radiated in 
the direction of an obstacle, such as the bottom of the sea or a submerged 
vessel, some of the energy will return in the direction of the source, arriving 
back after a small finite interval of time. The time required for this return 
depends upon the speed of the waves in water, which is known, and upon 
the distance from the obstacle. Hence it is possible to compute from the 
time delay the distance of the obstacle from the source. The operation of 
such an acoustic system is quite similar to that of the well-known radar 
ranging system, which makes use of electromagnetic waves. In the acoustic 
procedure, the time lag between the outgoing and returning pulse is much 
greater than in the radar system, since acoustic waves travel much more 
slowly than electromagnetic waves. Therefore simpler means, some of 
them mechanical in nature, can be used to record the acoustic time inter
val.*  A record on a moving strip of paper will give good precision.

* See Bergmann, op. tit., p. 198, for a description of a system used for depth 
sounding.
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Practical depth sounding systems have the transmitter and the receiver 
mounted on the bottom of the vessel. For locating distant enemy sub
marines, it is advantageous (as in radar) to have the waves concentrated 
as far as possible in the form of a beam. This energy concentration 
is desirable in the interests of energy conservation and it also gives an 
indication of the position of the enemy vessel, as well as its distance, since 
the scattered energy which returns will plainly be a maximum when the 
beam is directed towards the obstacle.

S

Quartz crystal generating 
ultrasonic waves in liquid

Fig. 12-17. Arrangement to show dif
fraction of light by liquid carrying ultra
sonic waves.

12-22 Diffraction of light by liquids carrying ultrasonic waves. In 1932 
Debye and Sears * reported the diffraction of light by liquids carrying 

ultrasonic waves. The experimental 
arrangement is shown in Fig. 12-17. 
A parallel beam of light, originating 
at the slit t, is allowed to pass through 
the cell C, containing a liquid. A 
lens on the other side of the cell 
focuses an image of the slit on the 
screen £. At the bottom of the con
tainer is an ultrasonic generator that 
sends longitudinal waves into the 
liquid in a direction transverse to 
the beam of light. In the presence 

* Debye and Sears, Proc. Nat. Acad. Sci. Wash. 18, 410 (1932).

of acoustic waves, a diffraction pattern is visible on the screen, characterized 
by a central maximum with symmetrical subsidiary orders on each side, 
much as in the usual pattern of an ordinary diffraction grating.

The cause of the above phenomenon is the presence in the liquid of layers 
of variable density, periodically arranged along the direction of travel of 
the acoustic wave. The variations in density are associated with varia
tions in the index of refraction. A scattering process results, similar in 
many respects to the Bragg scattering of x-ray energy by layers of atoms 
within a crystal. The periodic variation in the optical properties of the 
liquid are in this case analogous to the regular structure of the crystal 
lattice. The fact that the 11 lattice” in this case is traveling rapidly 
through the liquid at a speed equal to that of the acoustic wave is no 
complication, since this state of affairs will not change the essential angular 
relationship that determines the directions for reinforcement.

The simple notion that the diffraction originates with the scattering 
from regularly spaced layers would, for monochromatic light, lead to the 

1
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formation of one order only, on each side of the central image. Actually, 
as many as ten orders can be seen, their angular dispersion agreeing with 
that given by the usual equation for a diffraction grating,

sin 0 = n X (12-25)
A5

S
Fig. 12-18. Use of ultrasonic waves 

to detect inhomogeneities in solid ma
terials. (After Sokoloff.)

where \i is the wavelength of the light, Xs is the wavelength of the acoustic 
disturbance in the liquid, and n is an integer specifying the order.

There are many subtleties of acoustic diffraction patterns which become 
apparent in the complete theory of their formation. In the case of travel
ing acoustic waves, for instance, there is a small observable Doppler effect 
in the behavior of the light, due to the motion of the “grating.” We are 
mainly concerned here with the possible uses of the Debye-Sears effect as 
a tool. It is quite obvious that the spacing of the lines in the diffraction 
pattern may be used to determine the acoustic wavelength, through the 
use of Eq. (12-25), otherwise a difficult problem at these frequencies. In 
the next section we shall mention a 
further application of the Debye-Sears 
effect.

12-23 Testing of materials with ultra
sonic waves. The detection of flaws 
within optically opaque materials by 
the use of ultrasonic waves depends on 
the scattering effect associated with 
flaw regions in an otherwise homoge
neous sample. To introduce appreci
able amounts of energy into a sample, 
say, of the metal of a beam, it is com
mon to use a liquid such as oil between 
the surface of the wave generator and the surface of the material. Other
wise losses due to reflection at the somewhat irregular boundaries of con
tact may prevent entry of sufficient acoustic energy. The'same problem 
arises at the other side of the material, where the waves are detected.

Figure 12-18 shows the essential parts of one type of testing equipment, 
devised by Sokoloff.*  The cross section of the bar to be tested is repre
sented by the rectangle M. The waves are introduced at the left surface 
by means of a quartz transducer. In contact with the other side of the 
material is a liquid held in the container B. An optical system is arranged 

* Sokoloff, Phys. Z. 36, 142 (1935).
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to send a beam of light vertically through the liquid, in the manner de
scribed in the preceding section. The acoustic waves present in the liquid 
because of energy transmitted through the material cause a diffraction 
pattern to appear on the screen 3. As the sample is moved slowly along, 
the pattern will remain of constant intensity only if the material is perfectly 
homogeneous. Wherever there are internal inhomogeneities, internal 
scattering of energy will occur, resulting in noticeable variations in the 
intensity and sharpness of the interference lines. In this way internal 
defects are discovered.

The above testing method has been discussed largely because it is an 
interesting application of the Debye-Sears effect. Most of the equipment 
used for industrial testing today makes use of the echo principle discussed 
in Section 12-21. Flaws are assumed to exist wherever scattering occurs.

12-24 Other industrial applications of ultrasonic waves. Ultrasonic 
waves of great intensity produce marked effects upon mixtures of different 
liquids and upon liquids containing suspended particles. As early as 1927 
Wood and Loomis performed experiments of this sort, in which they 
showed that a mixture of oil and water can be transformed into a very 
stable emulsion. As mentioned previously, it is possible to produce in a 
liquid variable acoustic pressures of sufficient magnitude so that peak 
values of several atmospheres, plus or minus, can occur. This often results 
in violent cavitations within the body of the liquid and consequent large 
mechanical dispersive forces. Too much of this effect is a detriment in 
some experiments. It is usually desirable to maintain a sufficiently high 
external pressure on the liquid so that the total internal pressure always 
remains positive.

Ultrasonic waves have proved of considerable value in the production of 
colloidal solutions of metals with particles of controllable size. The proce
dure consists of sending the waves through an electrolytic cell. In the 
presence of the wave, the minute particles of the metal are left in suspen
sion in the liquid, and those of larger size collect at the bottom of the cell 
instead of adhering to the cathode. They are literally shaken loose from 
the cathode as soon as they touch the surface and deliver their charge.

In gases, the effect of the presence of high frequency waves is to coagulate 
small suspended particles, rather than to disperse them. This is primarily 
a Bernoulli effect, related to the process which causes the fine striations in 
the Kundt’s tube experiment (Chapter 6). In this way dust, smoke par
ticles, etc., can be removed from the air and other gases.

Many experiments are in progress to discover additional industrial 
applications for ultrasonic radiation. The chemical and photographic
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industries are particularly interested, primarily because of the effects just 
described. •

12-25 Biological effects of ultrasonic waves. Experiments performed 
by Langevin, Wood and Loomis, and others indicate the great destructive 
power of high frequency vibrations upon living tissue. The effect seems 
to be largely indirect, rather than the result of a simple mechanical shaking 
of the structure. Some of the effect is due to the severe temperature rises 
which often ensue and some to the formation of bubbles of air within the 
tissue adjacent to regions where the pressure (due to the presence of the 
ultrasonic wave) has dropped well below the atmospheric level. It is 
the formation of these bubbles which often tears the tissue apart. Small 
organisms like protozoa, and even fish and frogs, can be destroyed by this 
method. Experimentation with ultrasonic waves as a possible means of 
destroying diseased tissue such as cancerous cells has been conducted. The 
effects of the waves upon bacteria and other minute organisms are varied 
and often difficult to interpret; they are sometimes killed, while at other 
times their virulence seems to be increased. Much work remains to be 
done along these lines before a consistent picture of the effect of high fre
quency mechanical vibrations can be obtained.

Since the introduction of jet-propelled aircraft, serious thought has been 
given to the effect upon an occupant (and others outside the plane) of 
constant exposure to vibrations in the ultrasonic region. It is quite 
possible that deleterious physiological effects result from prolonged expo
sure to waves of frequencies far above the limit of audibility.

12-26 Acoustics in relation to other branches of physics. The study 
of acoustics for its own sake is well worth the attention of every serious 
student of physics, but there are also cross-relationships with other branches 
of pure physics which are important both for their influence upon the 
development of acoustics and also for their beneficial effect upon other 
fields. In this sense the subject of acoustics may be “applied” to the 
solution of problems outside its own direct field. To mention an impor
tant historical example, the notion of quantized energy states originated in 
problems of vibration in the field of acoustics, and only later was this 
concept adopted for use in problems involving electromagnetic radiation. 
The theorem of Fourier originated with a study of heat flow, was taken over 
in vibration problems like that of the string, so important to the subject of 
acoustics, and finally found its way into modem atomic radiation theory 
and even into the discussion of meson waves.

The experimental aspects of modern acoustics are reflected in a current 
project to study the scattering of electromagnetic radiation by investi
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gating acoustic scattering by an array of spheres. As an experimental 
tool, ultrasonic technique is proving most useful in experiments aimed at a 
closer determination of interatomic forces in solids at temperatures close 
to absolute zero. Such investigations involve a careful measurement of 
the speed and attenuation of high frequency longitudinal waves in super
conducting solids. Doubtless many similar research projects making use 
of modern developments in experimental acoustics are in progress.

In short, acoustics, until recent years a rather neglected branch of 
physics, is about to take its rightful place as a subject of great intrinsic 
beauty and interest, and as a field of endeavor capable of continued growth 
and development.

PROBLEMS
1. (a) By what experimental means 

would one test, in a given room, the 
validity of the equations for the ideal 
reverberant chamber? (b) How, in gen
eral, would the energy density vary with 
position, under steady-state sound con
ditions, in a practical room whose rever
beration time was very short? (c) An
swer part (b) for an anechoic room.

2. (a) Using the Sabine equation (12
18), compute the reverberation time for 
a room which is a cube 20 ft on an edge, 
where the walls all have uniform surface 
treatment. The value of as is 0.1. 
(b) Compute the reverberation time for 
the same room if for two of the walls as is 
0.1, and if for all of the remaining walls it 
is 0.2.

3. The cubical room of problem 2 has a 
uniform wall treatment where as is 0.1. 
Covering one wall with a different material 
lowers the reverberation time by 5 %. 
Find the value of as for this material. 
(Make use of the Sabine equation.)

4. Compute the reverberation time 
for the room described in problem 2(a), 
using the Norris-Eyring equation.

5. A small single source of sound is 
placed at the center of a spherical room of 

radius R having walls which are nearly 
perfect reflectors. Find all the possible 
modes of vibration of the room which 
may be excited under these conditions.

6. Assume the wall surface of the room 
described in problem 5 to have an absorp
tion coefficient as whose value is 0.25. 
(a) Find the reverberation time by both 
the Sabine and the Norris-Eyring equa
tions. (b) How will the reverberation 
time vary with the diameter of the room?

7. The transmission loss through a cer
tain partition is 40 db. If the intensity 
level on the high intensity side of the par
tition is 85 db, find the rms acoustic pres
sure on the low intensity side in dynes- 
cm-2.

8. An acoustic piston of radius 10 cm is 
surrounded by a large flat baffle and is 
radiating acoustic energy as a single 
source, the frequency being 30,000 cycles- 
sec-1. (a) Find the polar angle /3, measured 
with respect to the normal to the piston 
surface, for the appearance of the first dif
fraction minimum, assuming the piston to 
be radiating into sea water, (b) Compute 
/3 if the piston is radiating into air and 
compare the result with the angle found 
in part (a).
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The Introduction of the Velocity Potential, $, into the 
Differential Equation for Space Waves

We may start with the equation of continuity:

d(piz) ■ d(pz>) । d(pw) _ _ dp ...
dx dy dz dt V }

The first term on the left may be written:
d(pu) du . dp
-^ = pTz + uTx’

which, since p = po + pos, becomes
d(pu) du , ds z_x

to =p»to+“p«to- (2)

assuming small changes in p, so that the difference between p and po may 
be neglected.

The second term on the right, for small amplitude disturbances, is 
small compared with the first term. This may be readily seen in the 
special case of a periodic plane wave disturbance, where both u and s are 
in phase and vary periodically in space with the wavelength. In this case, 
then, the ratio of du/dx to ds/dx is of the same order of magnitude as the 
ratio of u to s. Therefore the second term on the right is to the first term 
as upQs is to upo, which is simply s. Since s is always a small fraction, we 
may therefore neglect the term upQ(ds/dx) in Eq. (2).

For the above reasons it is therefore valid to replace Eq. (1) by the 
simpler equation

du dv dw dp
p“to + p“^ + poto—di' (3)

Now, introducing the relationships between the velocity components 
and £, we may write Eq. (3) as

= _1 dp 
dx2 + dy2 + dz2 po dt

or
1 dp ds Z.KM = m' (4)
po dt dt
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We finally make use of the relationship (see Appendix 2)
d<t> 2 
— = c2s.
dt

Differentiating this equation partially with respect to the time and intro
ducing the result into Eq. (4), we obtain the differential equation in terms 
of <£:

d2<£= <>-. (5)

The same transformation to spherical coordinates discussed in Sec
tion 3-4 will then yield, for disturbances having spherical symmetry, 

, d2(r5>) = d2(r£) 
C dr2 ~ dt2



APPENDIX II
The Relationship between the Velocity Potential $ and the 

Condensation, s

We make use of Eq. (3-5a):
_ dp _ d(pu) 

dx dt 

du , dp z .
= p°Tt + udt (l)

du . ds

neglecting the second order difference between p and p0.
The second term on the right, for small amplitude disturbances, is small 

compared with the first term, essentially because the condensation s, under 
these conditions, is a very small fraction. Therefore we may write Eq. (1)
in the form

du _ ag .
p° dt dx

Introducing the relationship p = (Bs,

podt ®ta’

or
du 9 ds--- — — .
dt dx

Similar equations may be written for v and for w. We have, as a result,
the three equations:

du 9 ds
---- = --- C" ----
dt dx’

dv 2 ds zqx-dt=-c^’ (3)

dw „ ds
----  = — Of ----•
dt dz

Integrating each of these equations partially with respect to time, we
obtain:

u = — c2 f sdt, 
^Jo

v = — c2-^- 1 sdt, (4)
Qy Jo

w = — c2~ / sdt. 
dz Jo
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(Note: Any constant of integration must be zero for periodic disturbances, 
since the average value of the wave parameters is always zero.)

Now introducing the velocity potential relationships, i.e., u = —

v = —— and w = — —, we see that 
dy dz

dx

dy 

d<S> 
dz

It may therefore be seen that

= — c2

= — c2 (5)

= — c2

$ = c2
or

2
Tt=cs- (6)



APPENDIX III
TABLE OF FRESNEL INTEGRALS

irv- Cv . 7tv2x = I cos — dv, y = I sin — dv
Jo 2 Jo 2

V X y V X y

0.00 0.0000 0.0000 2.50 0.4574 0.6192
0.10 0.1000 0.0005 2.60 0.3890 0.5500
0.20 0.1999 0.0042 2.70 0.3925 0.4529
0.30 0.2994 0.0141 2.80 0.4675 0.3915
0.40 0.3975 0.0334 2.90 0.5626 0.4101
0.50 0.4923 0.0647 3.00 0.6058 0.4963
0.60 0.5811 0.1105 3.10 0.5616 0.5818
0.70 0.6597 0.1721 3.20 0.4664 0.5933
0.80 0.7230 0.2493 3.30 0.4058 0.5192
0.90 0.7648 0.3398 3.40 0.4385 0.4296
1.00 0.7799 0.4383 3.50 0.5326 0.4152
1.10 0.7638 0.5365 3.60 0.5880 0.4923
1.20 0.7154 0.6234 3.70 0.5420 0.5750
1.30 0.6386 0.6863 3.80 0.4481 0.5656
1.40 0.5431 0.7135 3.90 0.4223 0.4752
1.50 0.4453 0.6975 4.00 0.4984 0.4204
1.60 0.3655 0.6389 4.10 0.5738 0.4758
1.70 0.3238 0.5492 4.20 0.5418 0.5633
1.80 0.3336 0.4508 4.30 0.4494 0.5540
1.90 0.3944 0.3734 4.40 0.4383 0.4622
2.00 0.4882 0.3434 4.50 0.5261 0.4342
2.10 0.5815 0.3743 4.60 0.5673 0.5162
2.20 0.6363 0.4557 4.70 0.4914 0.5672
2.30 0.6266 0.5531 4.80 0.4338 0.4968
2.40 0.5550 0.6197 4.90 0.5002 0.4350
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c *cDerivation of the Expression, u = (Eq. 12-1).

In Fig. 1 we may consider dS to be an infinitesimal area of the wall 
surface and dV an infinitesimal volume element located at a distance r

Fig. 1.

from the area dS.
Let ei be the instantaneous energy 

density in the room. The energy 
within the volume dV is therefore

Fig. 2.

CidV. The fraction of this energy 11 directed” towards dS is dw/4?r, 
where dw is the infinitesimal solid angle subtended by dS. If we 
construct a ring-shaped volume element at a distance r from dS, we may 
express dV as

dV = 2?rr2 sin 0 dr d9, (1)

where 0 is the polar angle indicated in Fig. 2. Therefore the total energy 
dEr directed towards dS may be written as

dEr = ^-eidV. (2)
4tt

From Fig. 1, 
7 dS cos 6 

da> = —^2----

Inserting this expression in Eq. (2) .and making use of the expression for 
dV given by Eq. (1), we have

dEr = sin 0 cos 0 dr dO. (3)
324
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The total energy incident upon the area dS in a time dt is that originating 
within a hemisphere of radius c dt, where c is the velocity of sound:

Total energy incident upon the area 
dS in a time dt 2

’tt/2

sin 6 cos 0 dO (4)

= dS dt. 4
Therefore the energy u incident per unit area and per unit time is

u = CjC
4 ’ (5)
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B' maximum strength of an 
acoustic source

Zo reference value of acoustic 
intensity

(B bulk modulus 3 V—i
(Bo adiabatic bulk modulus k symbol abbreviation for 2ir/X

(B< isothermal bulk modulus K elastic constant (force per
c wave velocity unit displacement)
C electrical capacitance L electrical inductance
e instantaneous electrical po- m mass

tential M modulus of complex number
e energy density P instantaneous acoustic pres-
6i instantaneous energy density sure
Co initial or final energy density Pm maximum value of sinusoi-
Em maximum value of sinusoi

dally varying electrical po-
dally varying acoustic pres
sure

tential Prms root mean square value of
Erms root mean square value of 

sinusoidally varying elec-
sinusoidally varying acous
tic pressure

trical potential Po reference value of acoustic
E total energy pressure
Ek total kinetic energy P instantaneous total pressure
Ep total potential energy Po average undisturbed pressure
f frequency r polar coordinate
F instantaneous force r damping constant (force per
Fm maximum value of sinusoi- unit velocity)

dally varying force R electrical resistance
Frms root mean square value of 

sinusoidally varying force
R magnitude of real part of 

complex impedance (elec-
i instantaneous electric current trical, mechanical, or acous-
Im maximum value of sinusoi- tic)

dally varying electric cur- 8 acoustic condensation
rent S area

I acoustic intensity t
326

time
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T 

Tr 

u

U

u

V 

w.

V

V

V

Vo 
w 

x

Xm

X

^rms

X

List of Greek Symbols

period of SHM X magnitude of imaginary part
reverberation time
energy flow per unit area and 

per unit time
X

of complex impedance (elec
trical, mechanical, or acous
tic)

total energy flow per unit acoustic volume current
time Y Young’s modulus

cartesian components of in
stantaneous particle veloc
ity

z complex form of impedance 
(electrical, mechanical, or 
acoustic)

variable used in Fresnel inte
grals

%a analogous acoustic impedance 
(complex)

volume change 
instantaneous volume 
average undisturbed volume

normal specific acoustic im
pedance at a boundary 
(complex)

work
instantaneous linear displace-

za specific acoustic impedance 
(complex)

ment
maximum value of sinusoi-

Zm mechanical impedance (com
plex)

dally varying linear dis
placement

Zem electrical motional impedance 
(complex)

instantaneous linear velocity 
maximum value of sinusoi

dally varying linear veloc-

(?)b real part of complex imped
ance (electrical, mechani
cal, or acoustic)

ity.
root mean square value of 

sinusoidally varying linear

(s)x imaginary part of complex 
impedance (electrical, me
chanical, or acoustic)

velocity
instantaneous linear accelera

tion

Z modulus of complex imped
ance (electrical, mechani
cal, or acoustic)

a phase angle as
an normal absorption coefficient 
as Sabine absorption coefficient 7

average value of Sabine ab
sorption coefficient

ratio of specific heats
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3 acoustic dilatation
X wavelength
$ instantaneous particle dis

placement
maximum value of sinusoi

dally varying particle dis
placement

£ instantaneous particle veloc
ity

maximum value of sinusoi
dally varying particle ve
locity

$rm3 root mean square value of 
sinusoidally varying parti
cle velocity

P instantaneous density of me
dium

po average undisturbed density
of medium

<J> velocity potential
co angular frequency
cou angular frequency for un

damped particle vibration
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Absorption coefficients, for normal 
incidence of plane waves, 192, 293, 
299

mean value of Sabine, 293, 296 
relation to specific acoustic imped

ance, 196
table of Sabine, 198

Acoustic filters, 302
Acoustic impedance, 99, 103, 106, 193
Acoustic lens, 138
Actuator, electrostatic, 235
Adiabatic bulk modulus, 39, 128
Amplitude, definition of, 3

at displacement resonance, 27
at velocity resonance, 27
waves of large, 134

Analogs, electrical, 26, 99, 302
Andrade, E. N. C., 238
Anechoic room, 230
Arnold, H. D., 234
Attenuation of waves, in air, 141

in liquids, 146
in solids, 149

Audibility, threshold of, 52, 214

Baffle, diffraction around edges of, 96
effect of size of, 273
effect of radiation from a double

source of, 71
infinite plane, 123

Baumzweiger, B., 235
Beats, 13
Bekesy, G. von, 211
Bending of sound waves, 137
Beranek, L. L., 232, 234, 237, 248, 252,

255, 298, 299, 301
Bergmann, L., 311, 313
Bernoulli effect, 131, 316
Biddulph, R., 219
Binaural effects, 225
Biological effects of ultrasonic waves,

317
Bowing of a violin, 166
Bridge, acoustic impedance, 256

Buckingham, E., 302
Bulk modulus of a gas, adiabatic, 39,128 

isothermal, 39, 128

Calibration of microphones, 246
Carrier nature of speech, 202, 204
Caulton, 276
Chapin, E. K., 225
Chladni patterns, 172
Circular aperture, diffraction pattern of,

83, 280
Cochlea, properties of, 211

structure of, 210
Coefficient, absorption, 192, 196, 198,

293, 296, 299
damping, 20, 25, 109 
determination of Fourier, 16 
elastic, 9, 25, 110
transmission, definition of, 118

for direct radiator loudspeaker, 124
for long conical horn, 119
for long exponential horn, 119, 120

Colby, M. Y., 253
Combination of SHM’s, of different fre

quencies, 15
of same frequency, 11

Complex quantities, 101
Condensation, 38, 135
Continuity, equation of, 55
Convergence of Fourier series, 19
Cornu, spiral of, 89, 90
Corti, organ of, 210
Crandall, I. B., 234
Culver, C. A., 179
Cutoff frequency of exponential horn,

120

Damped vibration of a particle, 20
Damping, critical, 23

effect on amplitude at resonance of
Helmholtz resonator, 109

factor, 20, 25, 109
with forced oscillations, 28

Davis, H., 209
Debye, P., 314
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Decibel, 51
Density, energy, in ideal reverberant 

room, 292
in a plane wave, 4, 48
steady state, in reverberant room, 

293
Dickey, 276
Dienel, H. F., 301
Diffraction, for circular aperture, 83,280

Fraunhofer, 82
Fresnel, 87
of light by liquids carrying ultrasonic 

waves, 314
around loudspeaker baffle, 96
for multiple slit, 86
around obstacles, 94
for single slit, 75

Dilatation, 38, 135
Dipole, acoustic, 68, 273
Direct-radiator loudspeaker, 122
Disk, Rayleigh, 236
Displacement, particle, in a wave, 41
Doppler effect, 142
Double source, 66, 68, 273

effect of baffle upon radiation from, 71
radiation from, 68

Dubois, R., 247
Dudley, H., 204
Duff, A. W., 141

Ear, hearing properties of, 214
structure of, 209

Edge diffraction, 86, 96
Elastic constant, for gases, 39

for Helmholtz resonator, 110
for SHM, 9
for solids, 149

Electrical analogs, 26
Electrostatic actuator, 235
Electrostatic loudspeaker, 265
Enclosure, loudspeaker, 274
Energy, plane wave source of, 70

single source of for spherical waves, 70
in SHM, 10
in speech, 206
total, radiated by double source, 70

Energy density, for plane waves, 50
in reverberant room, 292, 293

Energy transfer in forced oscillations, 30

Equalization circuits, 283
Even functions, 18
Ewald, J. R., 211
Excitation of an organ pipe, 180
Eyeing, C. E., 297

Figures, Lissajous, 34
Filters, acoustic, 302
Firestone, F. A., 225
Fletcher, H., 203, 207, 217
Force, elastic, for Helmholtz resonator,

110
for SHM, 9

Force on acoustic piston due to air, 114
Fork, tuning, 171
Fourier’s theorem, 16, 164
Fraunhofer diffraction, 82
French, N. R., 221
Frequency, cutoff, for exponential horn,

120
definition of, 3
Doppler shift in, 142
measurement of, 249

Frequency standards, 249
Fresnel integrals, 89, Appendix III
Fry, T. C., 225
Functions, even and odd, 18

Glover, R., 235

Hardy, H. C., 129
Hart, M. D., 141
Hartley, R. V. L., 225
Harvey, F. K., 138
Hebb, T. C., 131
Helmholtz, H., 211
Helmholtz resonator, 107, 276

resonant frequency for, 110
Herzfeld, K. F., 131
Hickman, C. N., 251
Horn, conical, 117

cutoff frequency for exponential, 120
exponential, 119

Huygen’s principle, 76

Impedance, acoustic, 100, 104, 106
analogous, 106
measurement of, 254
normal specific, at a boundary, 193
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Impedance, specific, 103
for direct radiator loudspeaker, 

122
at mouth of conical horn, 118
at mouth of exponential horn, 

120
for plane waves, 104
for spherical waves, 104

Impedance, blocked, 266
electrical, 26

complex, 102
mechanical, 27, 194
motional, 266

Impedance bridge, acoustic, 256
Impedance match, 122
Integrals, Fresnel, 89, Appendix III
Intensity, 4

for plane waves, 50
for spherical waves, 62
units for, 51

Intensity level, 52
Inverter, acoustic phase, 276
Isothermal bulk modulus, 39, 128

Jenkins, F. A., 88

Kinetic theory and velocity of sound,
132

Knudsen, V. O., 141
Kock, W. E., 138, 225
Kundt’s tube, 132

Lamb, H., 170
Laminar zones, Fresnel, 87
Large amplitude waves, 134
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Source, double, 66

single, 61
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Kundt’s, 132

Ultrasonic waves, attenuation of, 141
biological effects of, 317
diffraction of light by, 314
generators for, 309
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ANSWERS TO PROBLEMS

1. Max displacement = xm.
Max velocity = ooxm.
Max acceleration = w2xm.

Chapter 1
3. x + yp^ = ^e^‘.

5. (a) 4.93 cm. (b) 21°53'.
7. (a) One mathematical beat, three 

audible beats.
(b) Two mathematical beats and 

two audible beats.

9. x = — [sin wt + J sin 3wt + J sin boot • • • ].IT
11. i = — (1 + sin 2tf/7 — | cos 4irft — cos Sirft - 

tt \ 2
13. (a) Oscillatory. 15. 6.23 gm.

(b) With damping, 390 cycles-sec-1;
without damping, 504 cycles- 
sec-1.

Chapter 2
1. Max particle displacement = £m.

Max particle velocity = %m.
Max dilatation = (27r/X)£m.
Max pressure = poC1 2(2tt/X)£to.

1. (a) = 10-3/r.
(b) d>TO = 3.33 X 10-7 cm2-sec-1.
(c) £m = 6.32 X 10-9 cm-sec-1.
(d) pm = 2.7 X 10-7 dyne-cm-2.

5. (a) ek = 1.8 X 10-9 erg-cm-3.
(b) ep = 1.8 X 10-9 erg-cm-3.
(c) I = 1.19 X 10-4 erg-cm-2-sec-1.
(d) ek = ep = 1.8 X 10-10 joule-m-3.

I = 1.19 X 10-7 joule-m-2-sec-1.
7. (a) ^a/^h = 0.517.

(b) (Ua/(UA = 0.517.
(C) (Pmja/^h = 1.93.

3. £i is 180° out of phase with £2.
£i is 180° out of phase with £2.
pi is in phase with p2.

9. (a) Ic is 20 db higher tl 
(b) Ib/Ia = 10/1 • Ic/L

xii x a*

= 10/1 • Ic/Ia = 100/1.

Chapter 3
3. (a) = 1.5/r.

(b) = 8.5 X 10-3 cm -sec-1.2
(c) £m = 4.98 X 10-2 cm-sec-1.
(d) pm = 2.13 dyne-cm-2.

337



338 ANSWERS TO PROBLEMS

5. (a) Incorrect. (b) Correct.
(c) Correct. (d) Incorrect.

7. (a) B' = 39.4 cm3-sec-1.
(b) = 1.57 X 10-3 cm1 2 3 * 5-sec-1.

1. (a) 8.66 + J5.0.
(b) 4.93 - j’0.870.
(c) 14.5+j2.58.
(d) 0.825 - j‘0.477.

3. (a) 1.23 +J1.87.
(b) 1.85 - j0.326.
(c) (ce + df) + j(cf - de).

5. (a) 2=cos0

(b) cose.
2

(c) pm = 2.54 X 10-3 dyne-cm-2.

9. (a) 
(b) 
(c)

11. (a)

B' = 78.8 cm3-sec-1.
= 3.14 X 10-3 cm2-sec-1.

pm = 5.08 X IO-3 dyne-cm-2.
3 „ 1

r2 dr
(b) For large values of r, 3 = dr

Chapter 4
7. Ri = 24.6 cm.

Rz = 45.8 cm.
Rs = 68.5 cm.

9. First order, 15°10/; second order, 
31°30'.

11. (b) The slope is the tangent of the 
phase angle between the total 
instantaneous pressure (due to a 
given exposure of the wave 
front) and the pressure contri
bution originating at a point 
directly opposite a.

13. (b) (pm)i/(pm)z = 0.51.

Chapter 5
7. (a) The frequency is reduced by the 

factor 0.707.
(b) The frequency is increased by 

the factor 1.41.

11. Z = 80 + j’19.5 ohms.
13. Approximately 0.7.
15. At approximately 188 cycles-sec-1.
17. At approximately 350 cycles-sec-1.

Chapter 6
1. Only at very high ultrasonic fre

quencies is there any variation in 
wave velocity with frequency 
change.

3. c Although the density will
remain constant, the velocity will 
change with temperature due to the 
variation in the pressure of the en
closed gas.



ANSWERS TO PROBLEMS 339
5. (a) sm = 0.008.

(b) The peak value 
densation found 

of the con- 
in (a) will

occur if the intensity level is 
152 db.

7. 133 rpm.

Chapter 7
I- fA=fB.
3. (a) The harmonic frequencies are 

given by f = nc/21, where the 
integer n may have any value 
except an integral multiple of 4.

(b) The 4th, 8th, 12th, etc., har
monics are missing, since these 
modes require a node at the 
point of plucking.

5. (a) p and £ are out of phase by 90° 
everywhere along the pipe. 
Hence the average power flow 
is zero.

(b) zs is infinite at the pressure 

antinodes, zero at the pressure 
nodes, reactive in between.

7. For resonant frequencies = (n)(217) 
cycles-sec-1, where n is any integer. 
There will be little cancellation, 
however, since the dipole compo
nents are widely separated in space.

9. 8.26 X 106 ergs-sec-1.
11. Due to the buckling of the paper 

under the action of the axial force, 
the paper along an element of the 
cone may execute one-half of a 
transverse vibration cycle during 
one complete cycle of the axial mo
tion.

Chapter 8

1 (a) — = Pi^i
Si PiCi + P2C2

(b) — = 2pici
Si C^piCi + P2C2)

3. (23)2 = 7.21 gm-cm-2-sec-1.

5. prma = 6.35 dynes-cm-2.
7. (a) £ lags p by 18°27'.

(b) 6.8 ergs-sec-1.
9. No; because the reflected wave will 

have spherical divergence.

Chapter 9
1. (a) No. (b) The throat and mouth 

constitute an inefficient radiating ' 
system at 80 cycles-sec-1. (c) The 
observed pitch is due to the ability 
of the ear to supply the fundamental 
of a harmonic series.

3. At 40 cycles-sec-1, about 70 db. 
At 1000 cycles-sec-1, about 120 db. 
At 10,000 cycles-sec-1, about 110 db.

5. Highly damped.

Chapter
1. Since the dimensions of the en

trances to the air channels become 
less than the wavelength at the very

T. About 13,000 millisones.
). (a) Percentage precision greatest 

at medium and high frequencies, 
(b) At 5 db level, 7.4 percent or 
cycles-sec-1, at 10 db level, 5.4 per
cent or cycles-sec-1, at 20 db level, 
4 percent or cycles-sec-1, at 60 db or 
higher level, 3 percent or cycles- 
sec-1.

10
low frequencies, some of the wave 
energy will be reflected due to dif
fraction effects.

i
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3. (a) So that no phase differences in 
pressure may exist throughout the 
enclosure.

5. (a) A slight displacement away 
from this position produces a torque 
tending to displace the disk further 
in the same direction, (b) A slight 
displacement away from this posi
tion produces a restoring torque.

7. The spacing should be small to 
increase the sensitivity of the micro
phone. The ratio of the spacing 
dimension to the diameter should 
be small to reduce edge effects so 

that the change in capacitance may 
be nearly proportional to the dia
phragm displacement.

9. Not if the amplified sound is to be 
received aurally.

11. (a) Possible existence of stationary 
waves, especially at low frequencies, 
where the damping by means of 
tufts is more difficult. Dimensions 
at the junction must be kept small 
compared with the wavelength, 
(b) No. (c) Best precision at the 
middle audio frequencies.

1.
3.

Chapter
(a) 58%. (b) 26.1%.

11
(b) No; since the radiation will fall 
off rapidly below about 800 cycles- 
sec-1. Also, the efficiency will be 
very low.

5. 62 dynes.

[(Biyw~*][r  +

1. (a) Set up in the room a small
steady source of sound. Verify, by
means of a microphone, the con
stancy of the acoustic pressure
throughout the room for all posi
tions and orientations of the micro
phone. (b) The energy density 
will fall off with distance from the 
sound source, although not accord

[r + <S(z.)«]1 2 * * + [(com “ f) + S(*)x]

|(B/)"10sj[(w»i - + S(z,)x]

[(r + S(z.)K)]2 + [(com ~ ~) + Wx]

9. (a) 1950 cycles-sec-1. 11. (a) The acoustic power output will
(b) 0.69 ohm. be reduced to J of the original value,
(c) It will be lowered. (b) The acoustic power output will

remain unchanged.

Chapter 12
ing to the inverse square law. 
(c) The intensity will fall off in
versely with the square of the dis
tance from the source.

3. as = 0.13.
5. f = nc/4R, where c is the velocity 

of sound and n is any odd integer.
7. prws = 3.65 X IO"2 dyne-cm-2.
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