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We establish a mapping between a continuous-vari@ig quantum system and a discrete quantum system
of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a
CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally
entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of
entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
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Quantum information processing enables performance afant because the EPR state is considered to be the natural
communication and computational tasks beyond the limitsesource of entanglement in CV quantum information pro-
that are achievable on the basis of laws of classical physicsessing.

[1,2]. While most of the quantum information protocols were  Similar mappings between two discrete systems with Hil-
initially developed for quantum systems with finite dimen- bert spaces of different dimensions were proposed for con-
sions they have also been proposed for the quantum systeragucting quantum error resistant codd®], certain Bell's
with continuous variable§CV). inequality for higher-dimensional systerfis3], and in en-

With the exception of two-mode bipartite Gaussian statesanglement concentration proceddife].

[3] there are no general criteria to test separability of a gen- It is intuitively clear that the potentiality of an infinite-
eral state in infinite-dimensional Hilbert space. Similarly, thedimensional system as a resource for quantum information
demonstration of the violation of Bell's inequalities for CV processing goes beyond that of the qubit system. In particu-
systems is based predominantly on the phase-space forméér, as it will be shown below, the CHSH inequality for CV
ism [4] and the generalization to CV systems of varioussystemg5,6] can be maximally violated even with nonmaxi-
Bell's inequalities derived for discrete systems is still open.mally entangled states. Thus to show thdl potential of

It is thus highly desirable to find a mapping between CV andnfinite-dimensional systems it will be important to find a
discrete systems. This would allow us to apply all criteriamapping between CV and discrete quantum systenastof
known for discrete systems for the classification of stategrarily high dimensionsAs an example of the use of this
(e.g., for separability or for violation of local realigrto CV~ mapping one may check the violation of Bell's inequalities
systems. It would also open up the possibility for the CVfor arbitrarily high-dimensional systemgl5,16. Such a
systems to be exploited to perform quantum informationmapping is also necessary if one wants to implement those
tasks as if they were quts, by applying protocols which are quantum information tasks developed for discrete systems to
already developed for discretedimensional systems. CV systems, which exclusivelsequireshigher-dimensional

Recently, a mapping between CV systems and qubit$lilbert spaces. These are, for example, the quantum key dis-
(two-dimensional systemswvas introduced5,6], which en-  tribution based on higher alphabdis7] and the guantum
ables us to construct a Clauser-Horne-Shimony-HoHSH) solutions of the coin-flipping problefi8], of the Byzantine
inequality[ 7] for CV systems without relying on the phase- agreement problenfil9], and of a certain communication
space formalism and to analyze the separability of thecomplexity problen{20].
infinite-dimensional Werner states. Other Bell's inequalities Here we give a general mapping between systems with
for CV systems and dichotomic observables were derivedilbert spaces of different dimensions. This opens up a pos-
[8,9]. It was shown[5] that the Einstein-Podolsky-Rosen sibility not only to use a quantum system of one dimension
(EPR) [10] state as having another dimension, but also to study an efficient

quantum interface between two different dimensional sys-
tems. Taking an infinite-dimensional Hilbert space as one of
|EPR>=f dalg);:®|q),, (1)  the two Hilbert spaces we obtain a map between a CV and
discrete quantum system of arbitrary dimensioine map
“embeds” an arbitrary quoit state in a CV systein This
where|q);®|q), denotes a product state of two subsystemsallows to exploit a CV system imny quantum information
of a composite system, maximally violates the CHSH in-procedure developed for discrete systems, even though the
equality (for maximal violation of Bell's inequalities in the different procedures may require systems of different dimen-
vacuum states see R¢lL1]), a question which remained un- sions. The EPR state is mapped onto the maximally en-
answered within the phase-space formalism. This is importangled state in any finite-dimensional Hilbert space. Thus, it
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can be considered as aniversalresource of entanglement.
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We now establish a mapping between Hilbert spaces of

We use a quantum-mechanical description based on geutifferent dimensions. It will embed @dimensional quantum

erators of SUQ) algebra, as introduced in R¢21]. One can
introduce transition-projection operators

Pi=1i )k, 2

where|j) with j=1, ... n are orthonormal basis vectors in

the Hilbert space of dimensian The operator@’jk will next

be used to define another setrf— 1 operators, which are

formed in the following three groups:

ajk:ﬁ)jk—’_ﬁ)kj' (3)
Alz— —I(I+1)(|’:\)ll+l’:\)22+'"+|’:\)||_|ﬁ)|+l,l+l)’
©)

where I=I=n—-1 and I=j<k=n.
For n=2, these operators are the ordinary Pdspin

operators along the, y, and z directions. In general, the

operators in Eqs(3)—(5) generate the SW( algebra. That

iS, the vector §=(l]12, [P ,1312, [P ,\;\/1, e 1\;Vn—l) haS
componentsé,- (j=1,...0n?—1) that satisfy the algebraic
relation

[gj 1§k]:2ifjkI§| : (6)

where repeated indices are summed from hte-1, and

fii is the completely antisymmetric structure constant of th

SuU(n) group. The operator§j fulfill the relations Tr(§j)
=0 and Tré|§J):25” .

Any Hermitian operator in an-dimensional Hilbert space

can be expended into a linear sum§g)1[21]. We use this to

expend the general quantum stat®f a composite system

consisting ofL systems each with dimensignas given by
txl .. .><|_Sx1® e ®Sx|_v

(@)

wheres,=1, is the identity operator im-dimensional Hil-
bert space. The vector with componetits is the “gen-

eralized Bloch vector” and has real components due to the

hermiticity of ;) Specifically,ty  ~=1/n" due to the nor-
malization and t, ., =1/2Tr(p-s,® - -©s,) for
X1, ... X {1, ... n?—1}.

We consider an observabéein the Hilbert space of the
composite system as given by

axl...xl_gxl®' ' '®§x|_- (8)

The expectation value of the observablén the statep is
~ PPN 2

given by(a)pETr(pa)=2L2Ql‘l

..... xLzltxl .. .xl_a-x1 SXLt

system in a Hilbert space of dimensidé=n. Roughly
speaking, it consists of dividing the Hilbert space of dimen-
sion N into a direct sum of “boxes” of dimension. In the
limit N—oc we then obtain a mapping that embeds
n-dimensional system in a CV system.
We first introduce the transition-projection operators
Pjk(m)=|nm+j)(nm+k|, (9)
where O=m=<[N/n]—1 and l<j<k=n. Here[N/n] de-
notes the integer part d™/n. For eachm one constructs the
n2—1 operators

L]J’k(m): Isjk(m)+ Iskj(m): (10

vjk(M) =i[ Pji(m) —Py;(m)], (11)

“ 2 n n n
wi(m)=— 1/ m[Pll(m)+P22(m)+ <+ Py(m)

=IP gy (m)], (12)

where I=I<n—1. For any giverm the set of operators

s(m)=[ug(m), ... v1(M), ... We(mM), ... W,_3(M)]
represents generators of the 3 @lgebra as they satisfy the
algebraic relatiori6) by the definition. Thus we have decom-
osed the originalN-dimensional Hilbert space into a series
f subspace@ndexed bym) that each is made isomorphic to
the n-dimensional Hilbert space.
Next, we define the operators

[N/n]—1
Up=e X Up(m), (13
m=0
[N/n]—1
ij:@ 2 Ujk(m): (14)
m=0
[N/n]—1
W|:@ mE:O W|(m), (15)

where @ denotes the direct sum of operators. The central
point in the construction of the mapping is the introduction

of the set of operators S=(S;,....Sp2 1)
=2, ... Vip, ... Wy, ... W,_y). The elements; of
this set also satisfy the algebraic relati@). This follows

from [, S]=[@Znsi(M), ©,5(r)]= &= [5(m),
s(n)]=@e2n2ifjys(m)=2if;,S, where one uses
[s;(m),s¢(r)]1=0 if m#r. Thus, the operator§ generate
the SUQ) algebra as well. Importantly, in contrast$m),

the operatoré act on the fullN-dimensional Hilbert space.
However, only ifN is exactly divisible byn, all N dimen-
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sions of the Hilbert space will be exploited; otherwise thosespeaking, only expectation valugsobabilities have an op-
less thanN will be exploited. Note that B =0 and erational meaning neither states alone nor observables alone.
aay_ In order to give an example of different infinite-
Tr(SS;) =2[N/n]§;; ) :
imensional states that all belong to the same class

Our analysis so far concerns an algebraic relation betwee . )
Q], consider the maximally entangled state

Hilbert spaces of different dimensions. In what follows, we

shall give a concrete correspondence between quantum staté§ =My, JAWN)ELG)@li),  and  the  mixture
and observables of two systems, one with dimensiand = 3% _op(m)|g(m))(p(m)| [with =7 _ Op(m)zl] of
the other with dimensiol>n. maximally entangled statelg(m))=(1/yn)S]-gInm+j),

With any operatora acting in a Hilbert space ot g|nm+j),, in different (1xn)- _dimensional subspaces of
n-dimensional systems and having coefficieats . in  the original Hilbert space. Both of them are mapped onto the
the expansior{8), we associate the operator maximally entangled stalle;!/>=(llJﬁ)E?;élj)lc@Ij)z in an
(nXn)-dimensional space. This shows that even nonmaxi-
. . ~ mally entangled states can be considered as resources of
A= > a4 5.® 85 (16)  maximal entanglement in lower-dimensional Hilbert spaces.
For example, the mixturev introduced above fon=2 can
in a Hilbert space of. N-dimensional systems, which has the maximally violate the CHSH inequality of Reff5].
samecoefficientsa, . in the expansiori16). This maps The EPR state is the only state which is mapped onto the
the full set of observables in thedimensional Hilbert space maximally entangled state in any finite-dimensional Hilbert

onto a specificsubsetof observables in thé\-dimensional space. Thus the violation of Bell's inequalities for arbitrarily
Hilbert space high dimensional system46] or various quantum protocols

From the physical perspective two quantum systems caWh'Ch use maximally entangled states of different dimen-
be considered as equivaldhthe probabilities for outcomes 10NS[17,19,29 canall be demonstrated by the EPR state.

of all possible future experiments performed on one and on EXPerimentally, a state produced by nondegenerate optical
the other system are the saniBhis suggests to map the parametric amplifiethe NOPA statecan be considered as

quantum states of the two Hilbert spaces as follows. witHh€ ‘regularized” EPR statgnote that the original EPR state

any statep [as given in Eq(7)] of L n-dimensional systems (1) is un-normalized[23]. The NOPA state s given by
we associate a clag€)] of states ofL N-dimensional sys-

tems with the property that the expectation vadé%, of any INOPA) = 2
observable measured op is equal to the expectation value
(A),, of the observablé [Eq. (16)] measured omny state

from the clas§]. The mapping is established by the re-
quirement

hr)k

COShr 1®|k>2! (19)

wherer>0 is the squeezing parameter ad,® |k), is a
product of the Fock states of the two modes, each containing
k photons. It becomes the optical analog of the EPR state in
P the limit of high squeezing23].
(a),=Tr(pa) =Tr(QA)=(A)q 17 In order to give an explicit example for the application of

A LA A our method we will map the NOPA state onto an entangled
for anya and associated and for any staté) from the class  gyate of two qutrits. This is important if one wants to use the
[Q]. Since the measurements are constrained to the tyRQOPA state in quantum information processes which are de-
(16), the proper expectation value T¥@) can be obtained if veloped for entangled qutritsee, for example, Ref20]).

one represents the clag@] by We will analyze the violation of Bell's inequality for two
qutrits [15,16 by the NOPA state. This Bell inequality is
n’-1 given byB=<2, whereB (Bell's expressiohis a certain com-
[0]= > Txl"'XL§x1® oo ®3<L, (18 bination of probabilities for the measurements of two qutrits
Xps oo X =0 and 2 is the limit imposed by local realistic models. In Ref.
ith _ it h _ bedded | [24] the violation of this inequality is analyzed for the states
With Ty, ..x = (LIN/nT) ty, .« - The quit embedded in ¢ e form|y)=32_,a,]k),;®|k), and a class of observ-
the N- dlmenS|onaI Hilbert space has the correct inner prodgples constructed by unbiased symmetric beam spl[t&is
uct. . _ . _ Herea, are real coefficients arltt), ®|k), are product states
We establish a mapping betweemalimensional quan-  of two qutrits. The maximal value of Bell's expression was
tum system and a CV quantum system by requiring conditioRy;n to be Bmax=4|a,8,] + 4173 (|2,

(17) also to be satisfied in the ||mm—>3oA Note that here +lasas)) (f |a=|as/=|as] and malal,|asl.|as}

one first takes the expectation value (I) and then the <./g+3./3/2, which is in our case

limit, which differs from the value which is obtained if one  Be|I's expression in quantum mechanics is given by the
first takes the limits of the stat® and observablé sepa- expectation value of a certain operatBell's operatoy. The
rately and then builds the expectation valirethis case one general method for establishing the correspondence between
may obtain unphysical states; see R@2| for some discus- CV and discrete systems implies that the entangled two-
sion of this issue Here it is important to note that strictly qutrit state onto which the NOPA is mapped is of the form as
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Squeezing parameter r the spin operator along and has eigenvalues 1 in the
3 L L5 2 25 3 35 3 . : : i
@ 2.90 atomic ground statgy) and 1 in the atomic excited stdt).
'52'25 @c limit 2.8 By turning on this coupling for aAtime= W/(Z)\),AV\{\eA ex-
§15 286 ecute the unitary transformatiot) =exg —i(w/2)a’ac,].
Lo - . . .
2 Evolving the state |g)+|e))/\2 under this transformation
Bo.5 284 and then measuring it in the bas|gY*|e))/\2, we project
. 03 : 55282 an arbitrary state of the radiation field onto a subspace
" Squeezing parameter r spanned by the states with an even number of photibres
(a) (b)

photon number operatoa’a=2n, ne N) and a subspaces

FIG. 1. Bell's expressioB for the NOPA state as a function of spanned by the states with an odd number of photana (
the squeezing parametefor different ranges of. The NOPA state  =2n+1).
is mapped onto a state of two entangled qutrits for which Bell's  Since this is a nondemolition measurement, it can always
inequalityB>2 is analyzed. In the intervaD,0.5] of r there isno  pe repeated not only to improve reliability, but also to per-
yiolation (@. Forr>_0.5 the amount of_violation increases with an form further measurements. By turning again the coupling,
increase ofr,_ until it re_aches the maX|m§1I value at1.4998 (3_ but now for a timet=7/(4\) and repeating the procedure,
:2.901).' With further increase of B begins to decrease reaching we can project the component of radiation field with an even
asymptotically the value of 2.8728). number of photons onto the subspaces spannedrbgndl

4n+2 photon number states. One can project the compo-

given above with the coefficients ak:(tanhr)"/ nents just obtained even further by a suitable choice of the
J1+ (tanhr)?+(tanhr)? ke {0,1,2}. These states can be ob- time duration of the coupling and repeating the procedure
tained by projecting the NOPA state onto any of the2dain and again. The component of the radiation f_|eld with
(3% 3)-dimensional subspaces spanned by the stateéd? 0dd number of photons can also be further projected by
Inm+ )@ |nm+k), for a givenm andj,ke{0,1,2}. first removing a single photon, e.g., by adoptive absorption

The amount of violation of Bell's inequality as a function &S suggested in R¢28], and then repeating the procedure as
of the squeezing parameteiis given in Figs. {8) and b) ~ 9iven above. The method can be applied successively with
for different ranges ofr. Interestingly, in the intervar  (theoretically perfect accuracy and with only a small num-
[0,0.5] there is no violation. This explicitly shows that for P€r of atoms, however, it is not gener@.g., one cannot
the set of observables considered 15,16,24 not even all  Project the field onto subspaces witm,33n+1, and 3
pure entangled states violate Bell's inequality. Further, the" 2 photons. In those cases the method results in different
maximal violation @=2.9011) is atr=1.4998; not forr  Put nonorthogonal states, which can be distinguished proba-
— o which one would expect. This again explicitly confirms bilistically by the use of a positive-operator-valued measure.
the result of Ref[26] that nonmaximally entangled states _ FOr completeness we note that a method was proposed
can violate Bell's inequality more strongly than the maxi- [5:29), to measureany observable on the radiation field by
mally entangled one. Finally, Bell's expression forscc ~ Measuring the appropriate observable of atoms interacting
reaches asymptotically the value 2.872 93 which is also th&/ith the field in the limit of a large number of atoms. With
value obtained for the maximally entangled two-qutrit state CUTTent technology atomic states can be measured with good
In that limit the NOPA state becomes the EPR state and thu&ccuracy{2]. _ _
is mapped onto the maximally entangled two-quitrit state. In conclusion, we have establish a general mapping be-

We give a concrete proposal for an experimental methodwveen CV and dllscrete systems of grbnrary .dlmensmn. This
to realize the measuremeft6) in a realistic physical sys- allows construction ofall quantum information protocols
tem, which is the key ingredient in our map between CV andnown for discrete systems also to CV systems.

discrete quantum systems. The method, though still experi- This work was supported by the Austrian FWF Project

mentally challenging, might offer a realistic possibility to No. F1506, and by the European Commission, Contract No.
perform these measurements. It follows the idea of RefSI'ST-2001-3;8864 RAMBOQ. M.S.K. acknowle,dges the fi-
[12,27], where a state of the radiation field is measured by 3, cial support by the UK Engineering and Physical Sci-
coupling of the field with a single atom. The coupling is gnces Research Council through Grant No. GR/R33304. We
described by the perturbatioH:’ =\a'ao,, yvherea* isthe  thank Jinhyoung Lee and Wonmin Son for helpful comments
creation andh the annihilation operator and, is (formally)  and discussions.
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