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Correspondence between continuous-variable and discrete quantum systems
of arbitrary dimensions
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We establish a mapping between a continuous-variable~CV! quantum system and a discrete quantum system
of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a
CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally
entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of
entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
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Quantum information processing enables performance
communication and computational tasks beyond the lim
that are achievable on the basis of laws of classical phy
@1,2#. While most of the quantum information protocols we
initially developed for quantum systems with finite dime
sions they have also been proposed for the quantum sys
with continuous variables~CV!.

With the exception of two-mode bipartite Gaussian sta
@3# there are no general criteria to test separability of a g
eral state in infinite-dimensional Hilbert space. Similarly, t
demonstration of the violation of Bell’s inequalities for C
systems is based predominantly on the phase-space for
ism @4# and the generalization to CV systems of vario
Bell’s inequalities derived for discrete systems is still ope
It is thus highly desirable to find a mapping between CV a
discrete systems. This would allow us to apply all crite
known for discrete systems for the classification of sta
~e.g., for separability or for violation of local realism! to CV
systems. It would also open up the possibility for the C
systems to be exploited to perform quantum informat
tasks as if they were qunits, by applying protocols which are
already developed for discreten-dimensional systems.

Recently, a mapping between CV systems and qu
~two-dimensional systems! was introduced@5,6#, which en-
ables us to construct a Clauser-Horne-Shimony-Holt~CHSH!
inequality @7# for CV systems without relying on the phas
space formalism and to analyze the separability of
infinite-dimensional Werner states. Other Bell’s inequalit
for CV systems and dichotomic observables were deri
@8,9#. It was shown@5# that the Einstein-Podolsky-Rose
~EPR! @10# state

uEPR&5E dquq&1^ uq&2 , ~1!

whereuq&1^ uq&2 denotes a product state of two subsyste
of a composite system, maximally violates the CHSH
equality ~for maximal violation of Bell’s inequalities in the
vacuum states see Ref.@11#!, a question which remained un
answered within the phase-space formalism. This is imp
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tant because the EPR state is considered to be the na
resource of entanglement in CV quantum information p
cessing.

Similar mappings between two discrete systems with H
bert spaces of different dimensions were proposed for c
structing quantum error resistant codes@12#, certain Bell’s
inequality for higher-dimensional systems@13#, and in en-
tanglement concentration procedure@14#.

It is intuitively clear that the potentiality of an infinite
dimensional system as a resource for quantum informa
processing goes beyond that of the qubit system. In part
lar, as it will be shown below, the CHSH inequality for C
systems@5,6# can be maximally violated even with nonmax
mally entangled states. Thus to show thefull potential of
infinite-dimensional systems it will be important to find
mapping between CV and discrete quantum systems ofarbi-
trarily high dimensions. As an example of the use of thi
mapping one may check the violation of Bell’s inequaliti
for arbitrarily high-dimensional systems@15,16#. Such a
mapping is also necessary if one wants to implement th
quantum information tasks developed for discrete system
CV systems, which exclusivelyrequireshigher-dimensional
Hilbert spaces. These are, for example, the quantum key
tribution based on higher alphabets@17# and the quantum
solutions of the coin-flipping problem@18#, of the Byzantine
agreement problem@19#, and of a certain communicatio
complexity problem@20#.

Here we give a general mapping between systems w
Hilbert spaces of different dimensions. This opens up a p
sibility not only to use a quantum system of one dimens
as having another dimension, but also to study an effic
quantum interface between two different dimensional s
tems. Taking an infinite-dimensional Hilbert space as one
the two Hilbert spaces we obtain a map between a CV
discrete quantum system of arbitrary dimension~the map
‘‘embeds’’ an arbitrary qunit state in a CV system!. This
allows to exploit a CV system inany quantum information
procedure developed for discrete systems, even though
different procedures may require systems of different dim
sions. The EPR state is mapped onto the maximally
tangled state in any finite-dimensional Hilbert space. Thus
©2003 The American Physical Society05-1
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can be considered as anuniversalresource of entanglemen
We use a quantum-mechanical description based on

erators of SU(n) algebra, as introduced in Ref.@21#. One can
introduce transition-projection operators

P̂jk5u j &^ku, ~2!

whereu j & with j 51, . . . ,n are orthonormal basis vectors
the Hilbert space of dimensionn. The operatorsP̂jk will next
be used to define another set ofn221 operators, which are
formed in the following three groups:

û jk5 P̂jk1 P̂k j , ~3!

v̂ jk5 i ~ P̂jk2 P̂k j!, ~4!

ŵl52A 2

l ~ l 11!
~ P̂111 P̂221•••1 P̂ll 2 l P̂ l 11,l 11!,

~5!

where 1< l<n21 and 1< j ,k<n.
For n52, these operators are the ordinary Pauli~spin!

operators along thex, y, and z directions. In general, the
operators in Eqs.~3!–~5! generate the SU(n) algebra. That

is, the vector ŝW5(û12, . . . ,v̂12, . . . ,ŵ1 , . . . ,ŵn21) has
componentsŝj ( j 51, . . . ,n221) that satisfy the algebrai
relation

@ ŝj ,ŝk#52i f jkl ŝl , ~6!

where repeated indices are summed from 1 ton221, and
f jkl is the completely antisymmetric structure constant of
SU(n) group. The operatorsŝj fulfill the relations Tr(ŝj )
50 and Tr(ŝi ŝj )52d i j .

Any Hermitian operator in ann-dimensional Hilbert space
can be expended into a linear sum ofŝj @21#. We use this to
expend the general quantum stater̂ of a composite system
consisting ofL systems each with dimensionn as given by

r̂5 (
x1 , . . . ,xL50

n221

tx1 . . . xL
ŝx1

^ •••^ ŝxL
, ~7!

where ŝ051n is the identity operator inn-dimensional Hil-
bert space. The vector with componentstx1 . . . xL

is the ‘‘gen-
eralized Bloch vector’’ and has real components due to
hermiticity of r̂. Specifically, t0 . . . 051/nL due to the nor-
malization and tx1 . . . xL

51/2LTr( r̂• ŝx1
^ •••^ ŝxL

) for

x1 , . . . ,xLP$1, . . . ,n221%.
We consider an observableâ in the Hilbert space of the

composite system as given by

â5 (
x1 , . . . ,xL51

n221

ax1 . . . xL
ŝx1

^ •••^ ŝxL
. ~8!

The expectation value of the observableâ in the stater̂ is

given by ^â&r[Tr( r̂â)52L(x1 , . . . ,xL51
n221 tx1 . . . xL

ax1 . . . xL
.
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We now establish a mapping between Hilbert spaces
different dimensions. It will embed an-dimensional quantum
system in a Hilbert space of dimensionN>n. Roughly
speaking, it consists of dividing the Hilbert space of dime
sion N into a direct sum of ‘‘boxes’’ of dimensionn. In the
limit N→` we then obtain a mapping that embe
n-dimensional system in a CV system.

We first introduce the transition-projection operators

P̂jk~m!5unm1 j &^nm1ku, ~9!

where 0<m<@N/n#21 and 1< j ,k<n. Here @N/n# de-
notes the integer part ofN/n. For eachm one constructs the
n221 operators

û jk~m!5 P̂jk~m!1 P̂k j~m!, ~10!

v̂ jk~m!5 i @ P̂jk~m!2 P̂k j~m!#, ~11!

ŵl~m!52A 2

l ~ l 11!
@ P̂11~m!1 P̂22~m!1•••1 P̂ll ~m!

2 l P̂ l 11,l 11~m!#, ~12!

where 1< l<n21. For any givenm the set of operators

ŝW~m!5@ û12~m!, . . . ,v̂12~m!, . . . ,ŵ1~m!, . . . ,ŵn21~m!#

represents generators of the SU(n) algebra as they satisfy th
algebraic relation~6! by the definition. Thus we have decom
posed the originalN-dimensional Hilbert space into a serie
of subspaces~indexed bym) that each is made isomorphic t
the n-dimensional Hilbert space.

Next, we define the operators

Û jk5 % (
m50

[N/n] 21

û jk~m!, ~13!

V̂jk5 % (
m50

[N/n] 21

v̂ jk~m!, ~14!

Ŵl5 % (
m50

[N/n] 21

ŵl~m!, ~15!

where % denotes the direct sum of operators. The cen
point in the construction of the mapping is the introducti

of the set of operators ŜW [(Ŝ1 , . . . ,Ŝn221)
5(Û12, . . . ,V̂12, . . . ,Ŵ1 , . . . ,Ŵn21). The elementsŜj of
this set also satisfy the algebraic relation~6!. This follows
from @Ŝj ,Ŝk#5@ % (mŝj (m),% ( r ŝk(r )#5 % (m,r@ ŝj (m),
ŝk(r )#5 % (m2i f jkl ŝl(m)52i f jkl Ŝl , where one uses

@ ŝj (m),ŝk(r )#50 if mÞr . Thus, the operatorsŜW generate

the SU(n) algebra as well. Importantly, in contrast toŝW(m),

the operatorsŜW act on the fullN-dimensional Hilbert space
However, only if N is exactly divisible byn, all N dimen-
5-2
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sions of the Hilbert space will be exploited; otherwise tho
less than N will be exploited. Note that TrŜi50 and
Tr(Ŝi Ŝj )52@N/n#d i j .

Our analysis so far concerns an algebraic relation betw
Hilbert spaces of different dimensions. In what follows, w
shall give a concrete correspondence between quantum s
and observables of two systems, one with dimensionn and
the other with dimensionN.n.

With any operatorâ acting in a Hilbert space ofL
n-dimensional systems and having coefficientsax1 . . . xL

in
the expansion~8!, we associate the operator

Â5 (
x1 , . . . ,xL51

n221

ax1 . . . xL
Ŝx1

^ •••^ ŜxL
~16!

in a Hilbert space ofL N-dimensional systems, which has th
samecoefficientsax1 , . . . ,xL

in the expansion~16!. This maps
the full set of observables in then-dimensional Hilbert space
onto a specificsubsetof observables in theN-dimensional
Hilbert space.

From the physical perspective two quantum systems
be considered as equivalentif the probabilities for outcomes
of all possible future experiments performed on one and
the other system are the same.This suggests to map th
quantum states of the two Hilbert spaces as follows. W
any stater̂ @as given in Eq.~7!# of L n-dimensional systems
we associate a class@V# of states ofL N-dimensional sys-
tems with the property that the expectation value^â&r of any

observableâ measured onr̂ is equal to the expectation valu

^Â&V of the observableÂ @Eq. ~16!# measured onany state
from the class@V̂#. The mapping is established by the r
quirement

^â&r[Tr~ r̂â!5Tr~V̂Â![^Â&V ~17!

for any â and associatedÂ and for any stateV̂ from the class

@V̂#. Since the measurements are constrained to the
~16!, the proper expectation value Tr(V̂Â) can be obtained if
one represents the class@V̂# by

@V̂#ª (
x1 , . . . ,xL50

n221

Tx1 . . . xL
Ŝx1

^ •••^ ŜxL
, ~18!

with Tx1 . . . xL
5(1/@N/n#L) tx1 . . . xL

. The qunit embedded in
the N-dimensional Hilbert space has the correct inner pr
uct.

We establish a mapping between an-dimensional quan-
tum system and a CV quantum system by requiring condi
~17! also to be satisfied in the limitN→`. Note that here
one first takes the expectation value Tr(V̂Â) and then the
limit, which differs from the value which is obtained if on
first takes the limits of the stateV̂ and observableÂ sepa-
rately and then builds the expectation value~in this case one
may obtain unphysical states; see Ref.@22# for some discus-
sion of this issue!. Here it is important to note that strictl
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speaking, only expectation values~probabilities! have an op-
erational meaning neither states alone nor observables a

In order to give an example of different infinite
dimensional states that all belong to the same cl
@V#, consider the maximally entangled sta
uc&5 lim

N→`
(1/AN)( i 50

N21u j &1^ u j &2 and the mixture

ŵ5 % (m50
` p(m)uc(m)&^c(m)u @with (m50

` p(m)51] of
maximally entangled statesuc(m)&5(1/An)( j 50

n21unm1 j &1

^ unm1 j &2 , in different (n3n)-dimensional subspaces o
the original Hilbert space. Both of them are mapped onto
maximally entangled stateuc&5(1/An)( j 50

n21u j &1^ u j &2 in an
(n3n)-dimensional space. This shows that even nonma
mally entangled states can be considered as resource
maximal entanglement in lower-dimensional Hilbert spac
For example, the mixtureŵ introduced above forn52 can
maximally violate the CHSH inequality of Ref.@5#.

The EPR state is the only state which is mapped onto
maximally entangled state in any finite-dimensional Hilb
space. Thus the violation of Bell’s inequalities for arbitrari
high dimensional systems@16# or various quantum protocol
which use maximally entangled states of different dime
sions@17,19,20# canall be demonstrated by the EPR state

Experimentally, a state produced by nondegenerate op
parametric amplifier~the NOPA state! can be considered a
the ‘‘regularized’’ EPR state@note that the original EPR stat
~1! is un-normalized# @23#. The NOPA state is given by

uNOPA&5 (
k50

`
~ tanhr !k

coshr
uk&1^ uk&2 , ~19!

where r .0 is the squeezing parameter anduk&1^ uk&2 is a
product of the Fock states of the two modes, each contain
k photons. It becomes the optical analog of the EPR stat
the limit of high squeezing@23#.

In order to give an explicit example for the application
our method we will map the NOPA state onto an entang
state of two qutrits. This is important if one wants to use t
NOPA state in quantum information processes which are
veloped for entangled qutrits~see, for example, Ref.@20#!.
We will analyze the violation of Bell’s inequality for two
qutrits @15,16# by the NOPA state. This Bell inequality i
given byB<2, whereB ~Bell’s expression! is a certain com-
bination of probabilities for the measurements of two qutr
and 2 is the limit imposed by local realistic models. In R
@24# the violation of this inequality is analyzed for the stat
of the form uc&5(k50

2 akuk&1^ uk&2 and a class of observ
ables constructed by unbiased symmetric beam splitters@25#.
Hereak are real coefficients anduk&1^ uk&2 are product states
of two qutrits. The maximal value of Bell’s expression w
found to be Bmax54ua1a2u14/A3(ua1a3u
1ua2a3u) ~if ua1u>ua2u>ua3u and max$ua1u,ua2u,ua3u%
<A613A3/2, which is in our case!.

Bell’s expression in quantum mechanics is given by
expectation value of a certain operator~Bell’s operator!. The
general method for establishing the correspondence betw
CV and discrete systems implies that the entangled t
qutrit state onto which the NOPA is mapped is of the form
5-3
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given above with the coefficients ak5(tanhr)k/
A11(tanhr)21(tanhr)4, kP$0,1,2%. These states can be ob
tained by projecting the NOPA state onto any of t
(333)-dimensional subspaces spanned by the st
unm1 j &1^ unm1k&2 for a givenm and j ,kP$0,1,2%.

The amount of violation of Bell’s inequality as a functio
of the squeezing parameterr is given in Figs. 1~a! and 1~b!
for different ranges ofr. Interestingly, in the intervalr
P@0,0.5# there is no violation. This explicitly shows that fo
the set of observables considered in@15,16,24# not even all
pure entangled states violate Bell’s inequality. Further,
maximal violation (B52.9011) is atr 51.4998; not forr
→` which one would expect. This again explicitly confirm
the result of Ref.@26# that nonmaximally entangled state
can violate Bell’s inequality more strongly than the ma
mally entangled one. Finally, Bell’s expression forr→`
reaches asymptotically the value 2.872 93 which is also
value obtained for the maximally entangled two-qutrit sta
In that limit the NOPA state becomes the EPR state and
is mapped onto the maximally entangled two-qutrit state

We give a concrete proposal for an experimental met
to realize the measurement~16! in a realistic physical sys
tem, which is the key ingredient in our map between CV a
discrete quantum systems. The method, though still exp
mentally challenging, might offer a realistic possibility
perform these measurements. It follows the idea of R
@12,27#, where a state of the radiation field is measured b
coupling of the field with a single atom. The coupling
described by the perturbation:H85lâ†âŝz , whereâ† is the
creation andâ the annihilation operator andŝz is ~formally!

FIG. 1. Bell’s expressionB for the NOPA state as a function o
the squeezing parameterr for different ranges ofr. The NOPA state
is mapped onto a state of two entangled qutrits for which Be
inequalityB.2 is analyzed. In the interval@0,0.5# of r there is no
violation ~a!. For r .0.5 the amount of violation increases with a
increase ofr, until it reaches the maximal value atr 51.4998 (B
52.901). With further increase ofr, B begins to decrease reachin
asymptotically the value of 2.8729~b!.
-
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the spin operator alongz and has eigenvalues21 in the
atomic ground stateug& and 1 in the atomic excited stateue&.
By turning on this coupling for a timet5p/(2l), we ex-
ecute the unitary transformationÛ5exp@2i(p/2)â†âŝz#.
Evolving the state (ug&1ue&)/A2 under this transformation
and then measuring it in the basis (ug&6ue&)/A2, we project
an arbitrary state of the radiation field onto a subsp
spanned by the states with an even number of photons~the
photon number operator:â†â52n, nPN) and a subspace
spanned by the states with an odd number of photons (â†â
52n11).

Since this is a nondemolition measurement, it can alw
be repeated not only to improve reliability, but also to p
form further measurements. By turning again the coupli
but now for a timet5p/(4l) and repeating the procedure
we can project the component of radiation field with an ev
number of photons onto the subspaces spanned by 4n and
4n12 photon number states. One can project the com
nents just obtained even further by a suitable choice of
time duration of the coupling and repeating the proced
again and again. The component of the radiation field w
an odd number of photons can also be further projected
first removing a single photon, e.g., by adoptive absorpt
as suggested in Ref.@28#, and then repeating the procedure
given above. The method can be applied successively w
~theoretically! perfect accuracy and with only a small num
ber of atoms, however, it is not general~e.g., one cannot
project the field onto subspaces with 3n, 3n11, and 3n
12 photons!. In those cases the method results in differe
but nonorthogonal states, which can be distinguished pro
bilistically by the use of a positive-operator-valued measu

For completeness we note that a method was propo
@5,29#, to measureany observable on the radiation field b
measuring the appropriate observable of atoms interac
with the field in the limit of a large number of atoms. Wit
current technology atomic states can be measured with g
accuracy@2#.

In conclusion, we have establish a general mapping
tween CV and discrete systems of arbitrary dimension. T
allows construction ofall quantum information protocols
known for discrete systems also to CV systems.

This work was supported by the Austrian FWF Proje
No. F1506, and by the European Commission, Contract
IST-2001-38864 RAMBOQ. M.S.K. acknowledges the
nancial support by the UK Engineering and Physical S
ences Research Council through Grant No. GR/R33304.
thank Jinhyoung Lee and Wonmin Son for helpful comme
and discussions.

s

@1# M.A. Nielsen and I.L. Chuang,Quantum Computation and
Quantum Information~Cambridge University Press, Cam
bridge, 2000!.

@2# The Physics of Quantum Information, edited by D. Bouw-
meester, A. Ekert, and A. Zeilinger,~Springer-Verlag, Berlin,
2000!.
@3# L.-M. Duanet al., Phys. Rev. Lett.84, 2722~2000!; R. Simon,
ibid. 84, 2726~2000!.

@4# K. Banaszek and K. Wo´dkiewicz, Phys. Rev. A58, 4345
~1998!; M.S. Kim and J. Lee,ibid. 61, 042102~2000!.

@5# Z.-B. Chenet al., Phys. Rev. Lett.88, 040406~2002!.
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