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Preface

Chemical graph theory is an interdisciplinary field where the molecular struc-
ture of a chemical compound is analyzed as a graph, and where related math-
ematical questions are investigated through graph theoretical and computa-
tional techniques. The rapid development in this field in the last few decades
has presented us with many innovative and unique concepts and tools in such
studies. This book intends to introduce some of the most commonly used
mathematical approaches in chemical graph theory.

One of the most important ideas employed in chemical graph theory is
that of so-called chemical indices. This is to associate a numerical value with
a graph structure that often has some kind of correlation with correspond-
ing chemicals’ properties. For exactly this reason, these chemical indices are
generally considered descriptors of chemical structures. The investigation of
such a chemical index from a graph-theoretical point of view typically in-
volves studying its behavior in various classes of graphs, especially minima
and maxima as well as upper and lower bounds in terms of different graph
parameters.

In recent years numerous chemical indices have been proposed and as Ivan
Gutman pointed out, “we have far too many descriptors, and there seems
to lack a firm criterion to stop or slow down their proliferation”. Indeed, to
extensively study each chemical index is virtually impossible and likely not
informative. In this book, we chose to demonstrate some of the most common
questions and ideas through several major classes of chemical indices and their
representatives. These important classes of chemical indices include distance-
based indices, degree-based indices, indices based on counting specific sets,
and indices associated with matrices and their spectra.

After a brief introduction of related graph theoretical terminologies, we
start with the Wiener index as a representative of distance-based indices.
We then look at the Randić index and degree-based indices in general. As
representatives of indices defined by “counting”, we explore the number of in-
dependent vertex sets and the number of independent edge sets (matchings),
which are known as the Merrifield-Simmons index and the Hosoya index, re-
spectively. Lastly, graph spectra and graph energy, defined through matrices
associated with graphs, are discussed.

By no means are we attempting to be comprehensive when we discuss
the content related to each of these classes of indices. Instead, we picked,
to our best knowledge, some of the most commonly discussed problems and
their solutions. This choice is inherently subjective and reflects, at least in

ix
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part, the authors’ personal interests. Through these selected topics, we hope
to illustrate at least some of the useful techniques that are used to answer
questions in chemical graph theory.



1

Preliminaries

1.1 Basic graph notations

As can be found in any graph theory textbook, a graph G consists of a pair
(V (G), E(G)), where V (G) (or simply V when there is no ambiguity) is the
set of vertices and E(G) (or simply E when there is no ambiguity) is the set of
edges. The cardinalities of V (G) and E(G) are often called the order and size
of a graph G. In practice we often use |G| to denote |V (G)| (but not |E(G)|).

Each edge in E(G) connects two vertices from V (G), called the ends or
endpoints of this edge. For an edge e with endpoints u and v, we say that u
and v are adjacent to each other, and that u and v are incident to e. The set of
all vertices adjacent to a specific vertex v is called the (open) neighborhood of
v and denoted by NG(v) (or just N(v) for short). The set N [v] = N(v) ∪ {v}
that also includes v itself is called the closed neighborhood.

The number of edges that a vertex v is incident to in G is called the degree
of v, denoted by degG(v) or simply deg(v). Note that deg(v) = |N(v)|. A path
in G is a sequence of distinct vertices in G such that each vertex is adjacent
to the next. The length of a path is the number of edges on this path. The
distance between two vertices u, v ∈ V (G), denoted by dG(u, v) or simply
d(u, v), is the number of edges on the shortest path between them in G. A
vertex of degree 1 is called a pendant vertex or a leaf, a vertex of degree at
least 2 is called an internal vertex, and a vertex of degree at least 3 is called
a branching vertex. See Figure 1.1 for an example of these definitions.

u v

FIGURE 1.1
An example where v is a leaf, u is a branching vertex of degree 5, and d(u, v) =
4.

A cycle is a path with an additional edge connecting the starting and
ending vertices. A graph without a cycle is called acyclic. A graph is connected
if there is a path between every pair of vertices. A connected acyclic graph
is called a tree; see the next section. For a general graph (not necessarily

1



2 Introduction to Chemical Graph Theory

connected), the connected components are the maximal subgraphs that are
connected.

In chemical graph theory, the molecular structure of a compound is often
presented with a graph, where the atoms are represented by vertices and bonds
are represented by edges. Note that the difference between double bonds and
single bonds is often ignored. Consequently, there are usually no multiple
edges (no two vertices serve as the endpoints of more than one edge). The
hydrogen atoms will automatically be leaves in such a representation as the
valence of a hydrogen atom is 1, corresponding to its vertex degree. Hence, we
usually remove the vertices corresponding to hydrogens. As a result we have
what is known as the molecular graph. See Figure 1.2 for an example. Such
representations appeared as early as 1874 [13], as pointed out in [7].
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FIGURE 1.2
Structural formula for 2,2,4,6-tetramethylheptane (on the left) and its corre-
sponding molecular graph (on the right).

Most of the chemical compounds under consideration are carbon-based.
The vertex degrees are no more than 4, corresponding to the valence of carbon.
Often one uses the term chemical graphs to refer to the graphs whose vertex
degrees are bounded above by 4.

1.2 Special types of graphs

There are a number of special graphs that occur very frequently in graph
theory, and in particular throughout this book. Perhaps the simplest examples
are the complete and edgeless graphs. A complete graph Kn on n vertices is one
where every two vertices are adjacent to each other. By contrast, an edgeless
graph En is a graph on n vertices without any edges.

A graph is called bipartite if its vertices can be divided into two sets A and
B (called the partite sets) such that all edges have one end in A and one end in
B. More generally, a k-partite graph is a graph whose vertices can be divided
into sets A1, A2, . . . , Ak such that there is no edge between two vertices that
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belong to the same set Ai. The smallest integer k such that a graph G is
k-partite is also known as the chromatic number of G: the smallest number of
colors needed to color all vertices in such a way that no two adjacent vertices
have the same color. A complete bipartite graph Ka,b consists of two sets of
vertices A and B with |A| = a and |B| = b and all possible edges between A
and B. See Figure 1.3 for examples.

FIGURE 1.3
The complete graph K4 and the complete bipartite graph K2,3.

1.3 Trees

As mentioned before, a tree is a connected acyclic graph. A graph that is only
acyclic, but not necessarily connected, is also called a forest (it can be seen as
a union of trees). Since many compounds have acyclic molecular structures,
trees have been an important class of graphs in the study of chemical graph
theory.

It is well known (and easy to prove by induction) that for a tree T we have
|E(T )| = |V (T )| − 1, i.e., the number of edges is one less than the number of
vertices. It will often be important that every tree with at least two vertices
has at least two leaves. It is also worth mentioning that all trees are bipartite.

The notion of branches will frequently play a role: if v is a vertex of a tree
T , then the branches of v are the connected components of the graph that
results from removing v.

A tree is rooted if there is a specified vertex designated as the root. In a
rooted tree the height of a vertex v, denoted by h(v), is the distance between
v and the root. The height of the tree T , denoted by h(T ), is the largest
height of any vertex. For two vertices u and v that are adjacent to each other,
if h(u) < h(v), then u is called the parent of v and v is a child of u. More
generally, if u is on the path connecting the root and a vertex v, then v is a
descendant of u and u is an ancestor of v.

Two trees of order n will occur particularly frequently: the path Pn is the
only tree with only two leaves, and the star Sn is the only tree with n − 1
leaves (Figure 1.4). Intuitively, the path is the most “stretched out” among all
trees of the same order, and the star is the most “compact” among all trees
of the same order. In fact, the path and the star turn out to be the extremal
structures in the studies of many topics in chemical graph theory.
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FIGURE 1.4
A star (on the left) and a path (on the right).

Sometimes acyclic structures are needed that are “compact” on one end
and “stretched out” on the other, resulting in the so-called comet formed from
appending multiple pendant edges to one end of a path (Figure 1.5).

FIGURE 1.5
An example of a comet.

When trees with specific constraints are considered, many problems be-
come much more complicated and various special trees need to be defined. An
example of this kind is the class of caterpillars : a caterpillar is a tree with the
property that a path remains when all leaves are removed; see Figure 1.6 for
an example.

FIGURE 1.6
An example of a caterpillar.

We observe that a star has only one internal (non-leaf) vertex. A slightly
more general notion is that of a starlike tree, a tree with only one branching
vertex: given a sequence (l1, l2, . . . , lm) of positive integers, the starlike tree
S(l1, l2, . . . , lm) is the tree with exactly one vertex of degree ≥ 3 formed by
identifying one end of each of m paths of length l1, l2, . . . , lm, respectively. See
Figure 1.7 for an example.

Similarly, note that caterpillars are characterized by the property that all
non-leaves lie on a single path. Relaxing this condition slightly leads natu-
rally to the notion of quasi-caterpillars. A quasi-caterpillar is a tree with the
property that all its branching vertices lie on a path; see Figure 1.8.

Starlike trees, caterpillars and quasi-caterpillars will occur repeatedly as
extremal structures in Chapter 2.
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FIGURE 1.7
An example of a starlike tree.

FIGURE 1.8
A quasi-caterpillar.
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1.4 Degrees in graphs

As we have already mentioned, vertex degrees play a key role in molecular
graphs because of their correlation with the valences of atoms. The most
important and fundamental concept based on vertex degrees is probably the
degree sequence: the non-increasing sequence of vertex degrees of a graph. A
degree sequence is called graphical if there exists a simple graph (a graph with
no multiple edges or loops) that realizes this degree sequence.

The following well known identity, sometimes called the “handshake
lemma”, relates the degree sequence to the number of vertices: if d1, d2, . . . , dn
are the vertex degrees of a graph, and m is the number of edges, then

n∑

i=1

di = 2m. (1.1)

This identity is based on the observation that each edge is counted twice (once
for each end) in the degree sum.

In particular, we see that not all sequences of non-negative integers are
graphical: since the degree sum equals 2m, it must be even. Consequently
the number of odd degrees in a graphical degree sequence must be even. This
condition on its own, however, is still insufficient, as can be seen from examples
like the sequence (3, 1). The following sufficient and necessary condition is due
to Erdős and Gallai [26]:

Theorem 1.4.1 A sequence d1 ≥ d2 ≥ . . . ≥ dn is graphical if and only if∑n
i=1 di is even and

k∑

i=1

di ≤ k(k − 1) +

n∑

i=k+1

min{di, k}

for all k.

Much useful information about the graph can be extracted from the degree
sequence. Let G be a graph with degree sequence π = (d1, d2, . . . , dn) with

n∑

i=1

di = 2(n+ c− 1) and d1 ≥ d2 ≥ c+ 1 ≥ 1.

The cyclomatic number of G is

|E(G)| − |V (G)| + 1 =
1

2

n∑

i=1

di − n+ 1 = c,

which corresponds to the number of independent (in the sense of linear inde-
pendence in the so-called cycle space) cycles in G. As special cases, connected
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graphs with the cyclomatic number c = 0 are trees, connected graphs with cy-
clomatic number c = 1 are called unicyclic graphs, and connected graphs with
cyclomatic number c = 2 are called bicyclic graphs. More generally, graphs
with cyclomatic number c are called c−cyclic graphs.

In the case of trees, since there is no cycle, the degrees of internal vertices
decide the number of leaves. For exactly this reason, sometimes for the degree
sequences of trees we can only include the internal vertex degrees. Graphical
degree sequences that are realized by trees are called tree degree sequences.
Their characterization is somewhat simpler than the characterization of all
graphical degree sequences in Theorem 1.4.1.

Theorem 1.4.2 A non-increasing sequence (d1, d2, . . . , dn) of positive inte-
gers is a tree degree sequence if and only if

n∑

i=1

di = 2(n− 1). (1.2)

Proof:

It is clear from (1.1) and the fact that a tree with n vertices has precisely
n − 1 edges that the condition is necessary. We show by induction that it is
also sufficient: this is clear for n = 2, where (1, 1) is the only possible sequence
that satisfies the condition.

For the induction step, note first that (1.2) can only hold if dn = 1 (since
otherwise, the sum is at least equal to 2n). By the induction hypothesis, there
is a tree whose degree sequence is (d1 − 1, d2, d3, . . . , dn−1) (possibly rear-
ranged, if d1 = d2). Take a vertex in this tree whose degree is d1 − 1, and at-
tach a leaf to it by an edge. The new tree has degree sequence (d1, d2, . . . , dn).
This completes the induction and thus the proof. �

In the study of chemical graph theory, very often one has to consider
different degree sequences. In the following, we introduce a way of comparing
two degree sequences (on the same number of vertices).

Definition 1.4.1 Given non-increasing sequences π′ = (d′1, . . . , d
′
n) and π

′′ =
(d′′1 , . . . , d

′′
n), π

′′ is said to majorize π′, denoted π′ ⊳π′′, if for k ∈ {1, 2, . . . , n−
1}

k∑

i=0

d′i ≤
k∑

i=0

d′′i and

n∑

i=0

d′i =
n∑

i=0

d′′i .

The advantage of defining “majorization” between degree sequences be-
comes much clearer later on. For now, we just mention that the next lemma
has been one of the most frequently used tools in the study of graphs (trees)
of different degree sequences.
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Lemma 1.4.1 ([117]) Let π′ = (d′1, . . . d
′
n) and π′′ = (d′′1 , . . . , d

′′
n) be two

non-increasing tree degree sequences. If π′ ⊳ π′′, then there exists a series of

(non-increasing) tree degree sequences π(i) = (d
(i)
1 , . . . , d

(i)
n ) for 1 ≤ i ≤ m

such that
π′ = π(1) ⊳ π(2) ⊳ · · · ⊳ π(m−1) ⊳ π(m) = π′′,

and in addition, π(i) and π(i+1) differ at exactly two entries for every i, say

the j-th and k-th entries, j < k, where d
(i+1)
j = d

(i)
j + 1 and d

(i+1)
k = d

(i)
k − 1.

Remark 1.4.1 Lemma 1.4.1 is a more refined version of the original state-
ment in [117]. In this process, each entry stays positive and the degree se-
quences remain non-increasing. Thereby, each obtained sequence is a tree de-
gree sequence that is non-increasing without rearrangement.

Sometimes it is advantageous to consider the degrees of the vertices at a
given level, which is often the set of vertices of the same height in a rooted
tree.

Definition 1.4.2 ([94]) In a rooted tree, the list of multisets Li of degrees of
vertices at height i, starting with L0 containing the degree of the root vertex,
is called the level-degree sequence of the rooted tree.

1.5 Distance in graphs

There are many interesting concepts related to distances between vertices. We
only present the ones most related to our topics.

First, the so-called distance function dG(v) (or simply d(v)) of a vertex
v ∈ V (G) is defined as

dG(v) =
∑

u∈V (G)

d(v, u),

the sum of the distances between v and all other vertices. The centroid of a
graph G is the set of vertices minimizing d(·).

Instead of the sum, if the maximum distance from v is taken, we have the
eccentricity

ecc(v) = max
u∈V (G)

d(u, v).

The radius of G, rad(G), is the minimum eccentricity, while the diameter,
diam(G), is the maximum. The center is the collection of vertices whose ec-
centricity is exactly rad(G).

To introduce a concept analogous to the degree sequence, but related to
distances, we first define segments of a tree (or potentially general graph).
A segment of a tree T is a path in T with the property that each of the
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FIGURE 1.9
An example graph for independent sets and matchings.

ends is either a leaf or a branching vertex and that all internal vertices of
the path have degree 2. The segment sequence of T is the non-increasing
sequence of the lengths of all segments of T , in analogy to the degree se-
quence. For example, the quasi-caterpillar in Figure 1.8 has segment sequence
(5, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1).

1.6 Independent sets and matchings

An independent set in a simple graph G is a subset of V (G) in which no two
vertices are adjacent to each other. The independence number of G, usually
denoted by α(G), is the size of a maximum independent set of G. Similarly,
a matching in a simple graph G is a set of edges without common vertices. A
maximum matching is a matching that contains the largest possible number of
edges. The matching number of G, denoted by β(G), is the size of a maximum
matching of G. In Chapter 4 we shall see chemical indices based on these
concepts. In addition, the extremal graphs with a given matching number has
been studied for various concepts related to chemical graph theory. To give a
concrete example, consider the graph in Figure 1.9. Its independence number
and its matching number are both easily seen to be equal to 2.

Let a component of a graph be called odd (even) if it has odd (even) number
of vertices, and denote the number of odd components of a graph G by o(G).
The following result, known as the Tutte-Berge formula (see, e.g., [75]) is a
crucial lemma used in the study of the matching number.

Lemma 1.6.1 Let G be a connected graph of order n. Then

n− 2β(G) = max{o(G−X)− |X | : X ⊆ V (G)}.
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1.7 Topological indices

A large portion of chemical graph theory is concerned with numerical quanti-
ties associated with graphs; a famous example is the Wiener index, the sum of
the lengths of the shortest paths between all pairs of vertices in the chemical
graph representing the non-hydrogen atoms in the molecule. Its history goes
back to the papers of Wiener in 1947 [118,119], in which he noted that the boil-
ing temperatures of alkanes can be predicted well by means of a formula that
involves the Wiener index (called path number by Wiener). Distance-based
invariants such as the Wiener index will be discussed in Chapter 2.

An important aim of chemical graph theory is to come up with useful
graph invariants, which have predictive power for chemical properties of the
molecule, if computed for the molecular graph. In chemical graph theory, such
invariants are called (topological) indices, as the expectation is that the shape
of the molecule is the ultimate source of information. The discriminating power
of an index is high if different graph shapes tend to result in distinct index
values. The range of an index limits its discriminating power. We do not even
try to form a complete list of topological indices as the number of such indices
is quite large. Instead, we try to present useful techniques in the study of
chemical graph theory through some representative examples.

As mentioned earlier, the following chapter will be devoted to distance-
based indices, in particular the Wiener index and its variants. Randić [90]
introduced another very influential index, which is now named after him. Pre-
viously, it was called the branching index or connectivity index. The Randić
index, which is the prototype of degree-based indices, and its variants will
be reviewed in Chapter 3. The Merrifield-Simmons index of a graph is the
number of its independent vertex sets [77], and the Hosoya index (also called
topological Z index) of a graph is the number of its matchings [49]. We dis-
cuss these topics in Chapter 4. Finally, Chapter 5 will be devoted to graph
spectra and invariants based on spectra, specifically the graph energy that
was introduced by Gutman [33].

Many topological indices satisfy a natural monotonicity property. In the
following, we will write G−A for the graph resulting from G by removing the
vertices or edges contained in the set A. In particular, we will simply write
G − v and G − e for the graph obtained from G by removing vertex v (edge
e, respectively). We also write G+ e for the graph that is obtained from G by
adding an edge e.

A graph invariant F that assigns a value F (G) to every graph G is said to
be increasing if

F (G) > F (G− e)

for every edge e of a (non-edgeless) graph G, or equivalently

F (G+ e) > F (G)
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for every edge e added to a non-complete graph G. Likewise, F is called
decreasing if

F (G) < F (G− e)

for every edge e of a (non-edgeless) graph G, or equivalently

F (G+ e) < F (G)

for every edge e added to a non-complete graph G. In all cases, we assume that
G,G− e and G+ e are connected if F is only defined for connected graphs.

The following simple, but important, observation will be used frequently.

Proposition 1.7.1 • If a graph invariant F is increasing, then

F (En) ≤ F (G) ≤ F (Kn)

for all graphs G with n vertices. If F is decreasing, then

F (En) ≥ F (G) ≥ F (Kn)

for all graphs G with n vertices. In both cases, equality only holds if G is
edgeless (complete, respectively). If F is only defined for connected graphs,
then only the second inequality holds in each case.

• Suppose that F is increasing. For every positive integer n, there exists an
n-vertex tree T such that

F (T ) ≤ F (G)

for all connected graphs G with n vertices. Likewise, if F is decreasing,
then for every positive integer n, there exists an n-vertex tree T such that

F (T ) ≥ F (G)

for all connected graphs G with n vertices.

We conclude this introductory chapter with a general lemma, taken
from [15], that provides information on graphs with a given matching number
that maximize or minimize a graph invariant under the conditions of Propo-
sition 1.7.1. It provides a first flavor of the type of results to be found in this
book.

For two graphs G and H , G ∪ H denotes the vertex-disjoint union of G
and H . G+H (called the join of G and H) denotes the graph obtained from
G ∪H by adding all edges between every vertex of G and every vertex of H .

Lemma 1.7.1 If the graph invariant F is increasing (decreasing), the mini-
mum (maximum) of F (G) among all connected graphs of order n and matching
number β is achieved by a graph of the form

Ĝ = Ks + (Kn1
∪Kn2

∪ · · · ∪Knt)

for some s and t with s+ n1 + . . .+ nt = n.
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Proof:

We only consider the case that F is decreasing. Let Ĝ be a connected graph
having minimum F (G) among all connected graphs with n vertices and match-

ing number β. By Lemma 1.6.1, there exists a set X̂ ⊆ V (Ĝ) such that

n− 2β = max{o(Ĝ−X)− |X | : X ⊆ V (Ĝ)} = o(Ĝ− X̂)− |X̂|.

For simplicity, let |X̂| = s and o(Ĝ− X̂) = t, then n− 2β = t− s.
First suppose that s = 0, then

t = n− 2β = o(Ĝ− X̂) = o(Ĝ) ≤ 1.

When t = 0 or 1, β = ⌊n
2 ⌋ in this case and the minimum F (G) is achieved by

the complete graph.
Now let s ≥ 1 and hence t ≥ 1. We claim that there is no even component

in Ĝ − X̂. Otherwise, by adding an edge in Ĝ between a vertex of an even
component and a vertex of an odd component of Ĝ− X̂, we obtain Ĝ′ with

n− 2β(Ĝ′) ≥ o(Ĝ′ − X̂)− |X̂| = o(Ĝ− X̂)− |X̂ | = n− 2β ≥ n− 2β(Ĝ′).

Thus β(Ĝ′) = β and by the condition on F (·), we have F (Ĝ′) < F (Ĝ), a
contradiction.

Now Ĝ − X̂ contains only odd components, denoted by G1, . . . , Gt. Since
the addition of edges will decrease F (G), we can assume that G1, G2, . . . , Gt,

and the subgraph induced by X̂ are all complete and each vertex of
G1, G2, . . . , Gt is adjacent to every vertex in X̂. Let ni = |V (Gi)| for
i = 1, 2, . . . , t, the conclusion follows. �

Later, we make use of Lemma 1.7.1 to characterize or partially characterize
extremal graphs of interest in chemical graph theory.

Exercises

1. Determine whether the following sequences are graphical: (5, 3, 2, 2, 2, 1),
(5, 3, 3, 2, 2, 1), (5, 5, 5, 3, 2, 2).

2. Prove Lemma 1.4.1.

3. Prove: a non-increasing sequence (d1, d2, . . . , dn) of positive integers
is the degree sequence of a unicyclic graph if and only if

n∑

i=1

di = 2n

and the sequence contains at least three elements greater then or
equal to 2.
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4. Prove: for every tree T with n vertices, the independence number
α(T ) and the matching number β(T ) satisfy

α(T ) + β(T ) = n.

5. Prove Proposition 1.7.1.

6. Prove: if f is an increasing function on the non-negative integers,
then ∑

v∈V (G)

f(deg(v))

is an increasing invariant, and

∑

v∈V (G)

f(d(v))

is a decreasing invariant.

7. The eccentric connectivity index of a connected graph G is defined
by

EC(G) =
∑

v∈V (G)

deg(v) eccG(v).

Is this index an increasing or a decreasing invariant?
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Distance in graphs and the Wiener index

2.1 An overview

The Wiener index is commonly considered as the most classic and widely
used distance-based index in chemical graph theory. It is named after the
chemist Harry Wiener, who proposed this concept (originally calling it the
path number) in 1947 [118, 119]. Given a graph G, the Wiener index of G is
defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where d(u, v) is the distance between vertices u and v in G.
For example, in Figure 2.1, we have a graph on 6 vertices, the

(
6
2

)
= 15

distances between pairs of vertices are

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2.

Hence, the Wiener index is 1× 7 + 2× 8 = 23.

FIGURE 2.1
A graph with Wiener index 23.

It was noted by Wiener that the Wiener index (of a molecular graph),
combined with another quantity now known as the Wiener polarity index, can
be used in a formula to predict the boiling points of alkane molecules quite
accurately. The mathematical examination of the Wiener index, as the sum
of distances between vertices, probably started from [25] or earlier without
knowledge of the applications in chemistry.

Of all graphs, trees received particular attention in the study of the Wiener
index because of the many acyclic molecular structures in applications. An
early informative survey is [24]. The Wiener index of general graphs and
graphs with various given parameters have also been studied.

Among general trees of given order, the extremal trees that maximize or

15
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minimize the Wiener index have been characterized. The following theorem
will be proved later in this chapter:

Theorem 2.1.1 ([25], [73] Ex. 6.23) Among all trees of the same order,
the star minimizes the Wiener index and the path maximizes the Wiener index.

The star and the path are also extremal trees for many other topological
indices, as we will see later. Since the degree of a vertex in the molecular graph
correspond to valence of an atom in a molecule, it is natural to examine the
behavior of the Wiener index in graphs under various vertex degree restric-
tions. In particular, Fischermann, Hoffmann, Rautenbach, Székely and Volk-
mann [30], and independently Jelen and Triesch [59] characterized the trees
with minimum Wiener index among all trees (of given order) with a bounded
maximum degree, and the trees with maximum Wiener index among all trees
(of given order) whose vertex degrees are 1 or k.

The study in [30] was generalized to trees with a given degree sequence
in [111] and [128], respectively, where it is shown that the minimum Wiener
index is attained by the greedy tree, which is—intuitively speaking—the most
compact tree with a given degree sequence. Let us formally define greedy trees.

Definition 2.1.1 (Greedy trees) With given vertex degrees, the greedy tree
is constructed through the following “greedy algorithm”:

i) Label the vertex with the largest degree as v (the root);
ii) Label the neighbors of v as v1, v2, . . ., assign the largest degrees available

to them such that deg(v1) ≥ deg(v2) ≥ · · · ;
iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take

all the largest degrees available and that deg(v11) ≥ deg(v12) ≥ · · · , then do
the same for v2, v3, . . .;

iv) Repeat (iii) for all the newly labeled vertices, always start with the
neighbors of the labeled vertex with largest degree whose neighbors are not
labeled yet.

For example, Figure 2.2 shows a greedy tree with degree sequence

{4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 1, . . . , 1}.

For technical reasons, the following level-greedy tree is also defined when
considering trees with a given level-degree sequence.

Definition 2.1.2 (Level-greedy trees) For i = 0, 1, . . . , H, let multisets
{ai1, ai2, . . . , aiℓi} of non-negative numbers be given such that ℓ0 = 1 and

ℓi+1 =

ℓi∑

j=1

aij .
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v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v33 v41 v42

FIGURE 2.2
A greedy tree.

Assume that the elements of each multiset are sorted, i.e., ai1 ≥ ai2 ≥
· · · ≥ aiℓi . The level-greedy tree corresponding to this sequence of multisets is
the rooted tree whose j-th vertex at level i has outdegree aij.

Likewise, if sorted multisets {ai1, ai2, . . . , aiℓi} of non-negative numbers
are given for i = 0, 1, . . . , H such that ℓ0 = 2 and

ℓi+1 =

ℓi∑

j=1

aij ,

then the level-greedy tree corresponding to this sequence of multisets is the
edge-rooted tree (i.e., there are two vertices at level 0, connected by an edge)
whose j-th vertex at level i has outdegree aij.

Every greedy tree is clearly also level-greedy (with respect to any root
vertex), but the converse is not true (i.e., a tree can be level-greedy with
respect to a certain root without being a greedy tree). For example, Figure 2.3
shows a level-greedy tree corresponding to the following sequence of multisets:
{a01 = 3}, {a11 = 4, a12 = 2, a13 = 1}, {2, 2, 1, 1, 1, 0, 0}, {1, 1, 1, 0, 0, 0, 0} and
{0, 0, 0}.

The following theorem, which will be proved later, holds:

Theorem 2.1.2 ([111,128]) Among all trees with a given degree sequence
(and hence given order), the greedy tree minimizes the Wiener index.

To find the maximum Wiener index among trees with a given degree se-
quence is a much more difficult question. It has been shown in as early as
1993 that the extremal tree has to be a caterpillar [96]. Further studies can
be found in [97] and [127], where it was noted that the specific characteristics
of such extremal trees depend on the particular degree sequence. This ques-
tion was also examined as a quadratic assignment problem in [14], where an
efficient algorithm was provided.
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v

v1 v2 v3

v11 v12 v13 v14 v21 v22 v31

FIGURE 2.3
A level-greedy tree.

The extremality of greedy trees can be further extended to more general
distance-based indices defined through a function on the distances:

Theorem 2.1.3 ([94]) Let f(x) be any non-negative, non-decreasing func-
tion of x. Then the graph invariant

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is minimized by the greedy tree among all trees with given degree sequence.
Likewise, if f(x) is any non-negative, non-increasing function of x, then

the graph invariant Wf is maximized by the greedy tree among all trees with
given degree sequence.

With different choices of f the above theorem leads to the extremality
of the greedy tree with respect to many variations of the Wiener index. The
following are some of the most well-known ones:

• In 1993, the hyper-Wiener index [91] was introduced for trees and later
generalized to cyclic graphs [64]:

WW (T ) =
1

2

∑

{u,v}⊆V (T )

(
d(u, v) + d(u, v)2

)
,

• the Harary index was defined in [58, 88]:

H(T ) =
∑

{u,v}⊆V (T )

1

d(u, v)
,
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• and the terminal Wiener index was proposed in [36]:

TW (T ) =
∑

{u,v}⊆ℓ(T )

d(u, v),

where ℓ(T ) stands for the set of leaves of T . In addition to its application
in chemistry, the terminal Wiener index, being simply the sum of distances
between leaves, is also found to be of importance in the study of phylogenetic
trees and is known there as the gamma index [101].

Other variations of distances between vertices that have been studied in-
clude the sum of distances between internal vertices and leaves [113], the sum
of the eccentricities and equivalently the average eccentricity. The star, path,
greedy trees, and caterpillars continue to be extremal with respect to these
indices. Some lesser known distance-based indices are mentioned in [120].

The notion of majorization between degree sequences provides a means
of comparing the extremal trees (in this case, the greedy trees) for different
degree sequences:

Theorem 2.1.4 ([108]) Let f(x) be any non-negative, non-decreasing func-
tion of x, and let π and π′ be two degree sequences of trees of the same length
such that π′ majorizes π. If G(π) and G(π′) are the greedy trees associated
with π and π′, respectively, we have

Wf (G(π)) ≥Wf (G(π
′)).

Likewise, if f is a non-negative, non-increasing function, then

Wf (G(π)) ≤Wf (G(π
′)).

From Theorem 2.1.4, many interesting extremal results on distance-based
indices follow as immediate corollaries, as we will see later in this chapter.

2.2 Properties related to distances

One of the first questions one may have for the Wiener index is probably how
to compute it for a given graph. For a general graph, one may simply sum up
the distances from each vertex to the rest of the vertices, through a “breadth-
first search” algorithm. For a graph with n vertices and m edges, the time
complexity is O(nm) for this approach. For trees, the Wiener index can be
computed through a linear-time algorithm, based on the following simple but
useful observation that already appears in Wiener’s original paper [119].
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Proposition 2.2.1 In a tree T , the Wiener index can be computed as

W (T ) =
∑

uv∈E(T )

nuv(v) · nuv(u)

where nuv(v) (nuv(u)) is the number of vertices closer to v (u) than to u (v)
in T .

Proof:

Note that the Wiener index is the sum of distances between vertices, which is
the number of edges between pairs of vertices. In other words, to compute the
Wiener index, one counts the number of times each edge uv is used as part of
a path between a pair of vertices, and then takes the sum of these numbers
over all edges.

On the other hand, the number of paths containing a particular edge uv is
the number of ways to choose two end vertices of this path, one on each side
of the edge. The number of choices here is exactly the product of the numbers
of vertices on two sides of this edge. �

The very same idea applies to the computation of similar distance-based
indices. For this purpose, we let n′

uv(v) and n
′
uv(u) (n

′′
uv(v) and n

′′
uv(u)) denote

the number of internal vertices (leaves) closer to v than to u in a given tree T .
The following observations follow from exactly the same argument. We leave
the proofs to interested readers as exercises.

Proposition 2.2.2 In a tree T , the sum of distances between internal vertices
is ∑

uv∈E(T )

n′
uv(v) · n′

uv(u).

Proposition 2.2.3 In a tree T , the sum of distances between leaves is
∑

uv∈E(T )

n′′
uv(v) · n′′

uv(u).

Very often in the study of extremal structures that maximize or minimize
a topological index, we examine the impact of some graph transformation on
the value of that particular index. In the case of the Wiener index, we first
note the following.

Lemma 2.2.1 Let R be a graph with two vertices u and w such that

dR(u) > dR(w),

and let S be a graph with at least two vertices and a specified vertex (root) v.
Consider the graphs G obtained by attaching S to w (identifying v with w)
and G′ obtained by attaching S to u (identifying v with u). Then

W (G′) > W (G).
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Proof:

Consider the distances between pairs of vertices in G and G′, respectively.
Through the operation that transforms G to G′ the distances between any
two vertices both in R or both in S − v stay the same. So we only have to
consider the distances between pairs of vertices such that one is in S − v and
the other is in R.

In G, the sum of these distances is

dS(v) · |V (R)|+ dR(w) · (|V (S)| − 1)

as the distance from any vertex in S to v is counted as many times as the
number of paths from w to any vertex in R and similarly for the distance from
any vertex in R to w.

For exactly the same reason, the sum of these distances in G′ is

dS(v) · |V (R)|+ dR(u) · (|V (S)| − 1).

Thus,
W (G′)−W (G) = (dR(u)− dR(w)) · (|V (S)| − 1) > 0,

as claimed. �

Intuitively, Lemma 2.2.1 states that attaching the same “rooted graph”
(S) to a vertex that is farther away from the rest of the graph (R) results in
greater value for the Wiener index. Following the same logic, one can show
the following generalized version of Lemma 2.2.1.

Lemma 2.2.2 Let R be a graph with two vertices u and w such that

dR(u) > dR(w),

and let Si be a graph with at least two vertices and a specified vertex (root) vi
(for i = 1, 2) with

|V (S1)| > |V (S2)|.
Consider the graphs G obtained by attaching S1 to w, S2 to u and G′ obtained
by attaching S1 to u, S2 to w (Figure 2.4). Then

W (G′) > W (G).

R
u w

S2 S1 R
u w

S1 S2

FIGURE 2.4
The graphs G (left) and G′ (right).
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Proof:

Following exactly the same arguments, the only distances changed from G
to G′ are those between pairs of vertices in Si − vi and R, respectively, for
i = 1, 2.

The sum of these distances is

dS1
(v1) · |V (R)|+dR(w) · (|V (S1)|−1)+dS2

(v2) · |V (R)|+dR(u) · (|V (S2)|−1)

in G and

dS1
(v1) · |V (R)|+dR(u) · (|V (S1)|−1)+dS2

(v2) · |V (R)|+dR(w) · (|V (S2)|−1)

in G′. Hence

W (G′)−W (G) = (dR(u)− dR(w)) · (|V (S1)| − |V (S2)|) > 0

as claimed. �

Again, intuitively Lemma 2.2.2 simply says that attaching more vertices
to the further end of a graph results in greater value for the Wiener index. It
is interesting that the statement holds regardless of the specific structures of
S1 and S2.

In addition to graph transformations, it is also important to note that the
Wiener index is a “monotone” invariant in the following sense.

Lemma 2.2.3 For a connected graph on n vertices and n − 1 ≤ m <
(
n
2

)

edges, adding an edge uv between two non-adjacent vertices u and v will de-
crease the Wiener index.

Likewise, removing an edge (while keeping the graph connected) will in-
crease the Wiener index.

Proof:

Let G be a connected graph on n vertices andm edges, with m <
(
n
2

)
. Suppose

u and v are vertices of G that are not adjacent. Thus the distance between u
and v in G is at least 2. Consider now the graph G′ = G+ {uv}. The distance
between u and v in G′ is 1. And it is easy to see that the distance between
any other pair of vertices can only decrease. ThusW (G′) < W (G) as claimed.

Similarly, removing an edge uv from G will increase the distance between
u and v from 1 to at least 2, while the distance between any other pair of
vertices can only increase. �

While the Wiener index deals with the sum of distances, either between
all pairs of vertices or from all vertices to a single vertex, the eccentricity
deals with largest distance from a vertex. The following fact helps identify
this largest distance from a diametral path in a given tree. We write P (u, v)
for the unique path between vertices u and v in a tree.

Lemma 2.2.4 For a tree T and a longest path P (u, v) in T , the eccentricity
of any vertex w is obtained by at least one of P (u,w) and P (v, w).
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Proof:

Suppose, for contradiction, that the eccentricity of w is obtained by a path
that is longer than both P (u,w) and P (v, w). Consider two cases:

• If w is on P (u, v) and the eccentricity is obtained by a path P (w,w′) that is
longer than both P (u,w) and P (v, w): Assume, without loss of generality,
that

V (P (w,w′)) ∩ V (P (w, v)) = {w}.
Then, P (w′, v) is a longer path than P (u, v), a contradiction.

• If w is not on P (u, v) and the eccentricity of w is obtained by a path P (w,w′′)
that is longer than both P (u,w) and P (v, w): Assume, without loss of gen-
erality, that

V (P (w,w′′)) ∩ V (P (w, v)) = {w}.
Then, P (w′′, v) is a longer path than P (u, v), a contradiction. Note that
this argument holds regardless of whether P (w,w′′) has any overlap with
P (u, v).

�

2.3 Extremal problems in general graphs and trees

We now consider one of the most thoroughly studied questions in chemical
graph theory, the extremal problem, for the Wiener index and some closely
related distance-based indices. We will start with general graphs and trees.
More specific classes of structures will be considered later.

2.3.1 The Wiener index

First of all, it is a trivial exercise to see that the Wiener index is minimized
by the complete graphs and stars.

Proposition 2.3.1 Among connected graphs on n vertices, the Wiener index
is minimized by the complete graph (with Wiener index

(
n
2

)
).

Proof:

For a connected graph on n vertices, the distance between any of the
(
n
2

)
pairs

of vertices is at least 1, obtained by and only by the complete graph. This is
also a direct consequence of Lemma 2.2.3. �

Proposition 2.3.2 Among trees on n vertices, the Wiener index is minimized
by the star with Wiener index 2

(
n−1
2

)
+ (n− 1) = (n− 1)2.
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Proof:

For a tree on n vertices, there are exactly n − 1 edges or pairs of vertices at
distance 1. For the remaining

(
n−1
2

)
pairs of vertices, they are at distance at

least 2 from each other. This is obtained by and only by a star. �

On the other hand, the path is known to maximize the Wiener index among
trees of given order. This can be established by arguing that the “largest”
collection of distances between vertices consists of at least (n− 1) 1s, (n− 2)
2s, etc., and that this can only be achieved by a path. In the following we show,
instead of such a “numerical” proof, an approach that utilizes the structural
properties we established earlier.

Proposition 2.3.3 Among trees on n vertices, the Wiener index is maxi-
mized by the path.

Proof:

Suppose, for contradiction, that T is a tree on n vertices that maximizes the
Wiener index and that T is not a path.

Let P (u, v) be a longest path in T between leaves u and v, and let its
vertices be denoted u = v0, v1, v2, . . . , vk, vk+1 = v. Since T is not a path,
there exists a vertex on P (u, v), say vi, with the smallest subscript i such that
vi is of degree at least 3. It is obvious that i is at least 1 and at most k.

Let S be the component in T−vivi+1−vivi−1 that contains vi (Figure 2.5).
Note that S contains at least two vertices.

vi vvku

S

FIGURE 2.5
The path P (u, v), vi, and S.

Let R = T − (S− vi). It is a simple exercise to verify that dR(u) > dR(vi).
In fact, the sum of distances between u and the vertices on P (u, vi) is exactly
the same as the sum of distances between vi and these vertices. The distance
between u and any other vertex in R is exactly the distance between vi and
that vertex plus i.

We now consider the tree T ′ obtained from T by detaching S from vi and
reattaching it to u. A direct application of Lemma 2.2.1 shows that W (T ′) >
W (T ), a contradiction. �

As an immediate corollary of Lemma 2.2.3, the maximum Wiener index of
a connected graph on n vertices must be achieved by a tree (i.e., a connected
graph with the least number of edges). Then, we have the following from
Proposition 2.3.3 above.
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Corollary 2.3.1 Among connected graphs on n vertices, the Wiener index is
maximized by the path.

2.3.2 The distances between leaves

Recall that the sum of all distances between leaves is

Γ (T ) =
∑

v,u∈ℓ(T )

d(v, u)

where ℓ(T ) denotes the set of leaves of T . This was proposed independently
as the Gamma index [101] (from the study of “tree bisection and reconnection
neighborhood” in phylogeny reconstruction) and the terminal Wiener index
[36] (for similar purpose as the original Wiener index).

It is not difficult to find examples of trees, as shown in Figure 2.6, where
the Wiener index and the terminal Wiener index do not share any monotonic
functional relation. Here T1 and T2 are two different trees, not only of the
same order but also with the same degree sequence, and it is not hard to
verify that

W (T1) > W (T2)

and
Γ (T1) < Γ (T2).

r r r r r r r r r r r r r r❆
✁

✁❆

❆
✁

r✁❆
r r

r✁❆
r r

r

r

r

r

FIGURE 2.6
The trees T1 on the left and T2 on the right.

On the other hand, for two k-ary trees T and T ′ (trees whose internal
vertices all have degree k), the following is known [112]. We leave the proof
to interested readers.

W (T )−W (T ′) =

(
k − 1

k − 2

)2

(Γ (T )− Γ (T ′)). (2.1)

Such a correlation (2.1) implies that, for k-ary trees, the extremal struc-
tures that maximize or minimize the terminal Wiener index coincide with
those that maximize or minimize the Wiener index. Such extremal structures
will be discussed in more detail in later sections of this chapter. For the mo-
ment we examine more basic extremal structures with respect to the sum of
distances between leaves.

As far as extremal problems with respect to Γ (·) are concerned, it seems
reasonable to restrict our attention to trees with a fixed number of leaves as
only distances between leaves are considered. First, we claim the following
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for trees that minimize the terminal Wiener index. Recall that a starlike tree
is a tree with only one branching vertex (vertex of degree at least 3). See
Figure 2.7.

FIGURE 2.7
A starlike tree.

Proposition 2.3.4 Among trees on n vertices and ℓ ≥ 3 leaves, every starlike
tree attains the minimum terminal Wiener index (n− 1)(ℓ− 1).

Proof:

By Proposition 2.2.3, the terminal Wiener index is represented by

∑

uv∈E(T )

n′′
uv(v) · n′′

uv(u).

Since there are ℓ leaves, the product

n′′
uv(v) · n′′

uv(u) = x · (ℓ − x)

for some x ≥ 1 for any edge uv. Hence it is at least 1 · (ℓ − 1) for each of the
(n− 1) edges. Consequently,

Γ (T ) ≥ (n− 1) · (ℓ − 1)

with equality if and only if the tree has exactly one branching vertex (for
ℓ ≥ 3) or no branching vertex (in which case ℓ = 2 and T is a path). �

Next, we examine the maximum terminal Wiener index in trees with given
number of vertices and leaves. Intuitively, such extremal trees would place the
leaves as far apart from each other as possible. For this purpose we introduce
the r-dumbbell as a tree obtained by attaching pendant edges to two ends of
a path of length r, such that the numbers of pendant edges at the two ends
differ by at most 1. See Figure 2.8.

Proposition 2.3.5 Among trees on n vertices with ℓ leaves, the (n− ℓ− 1)-
dumbbell attains the maximum terminal Wiener index

ℓ(ℓ− 1) + (n− ℓ− 1)

⌊
n+ 1

2

⌋⌈
n− 1

2

⌉
.
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. . .
︸ ︷︷ ︸
r + 1 internal vertices

FIGURE 2.8
An r-dumbbell.

Proof:

Similar to the last proof, consider the formula

Γ (T ) =
∑

uv∈E(T )

n′′
uv(v) · n′′

uv(u)

from Proposition 2.2.3.
Since there are ℓ leaves, there are ℓ pendant edges. For each of these pen-

dant edges the product n′′
uv(v) · n′′

uv(u) contributes 1 · (ℓ− 1) to Γ (T ).
For any of the n− ℓ− 1 remaining edges, the product n′′

uv(v) · n′′
uv(u) is at

most ⌊n+1
2 ⌋⌈n−1

2 ⌉. Thus,

Γ (T ) ≤ ℓ(ℓ− 1) + (n− ℓ− 1)

⌊
n+ 1

2

⌋⌈
n− 1

2

⌉

with equality if and only if the tree is an (n− ℓ − 1)-dumbbell. �

2.3.3 Distance between internal vertices

Probably inspired by the distance between all vertices and the distance be-
tween all leaves, a concept named the spinal index S(·) was defined as the
sum of the distances between all internal vertices [6]. It is easy to see that
the spinal index of a tree T is essentially the Wiener index of the “skeleton”
T − ℓ(T ) of T , hence it is not surprising that many studies of the Wiener
index can be easily generalized to the spinal index [17]. We briefly mention
two simple observations here.

Any tree T that is not a star has at least two internal vertices and hence
S(T ) > 0. Since S(T ) = 0 for a star, the following is trivial.

Proposition 2.3.6 Among trees with given order, the star is the unique tree
that minimizes S(T ).

Similarly, a tree T has at most |V (T )|−2 internal vertices (with the upper
bound achieved if and only if T is a path) and S(T ) = W (T ′) is maximized
when T ′ is a path.

Proposition 2.3.7 Among trees with given order, the path is the unique tree
that maximizes S(T ).



28 Introduction to Chemical Graph Theory

2.3.4 Distance between internal vertices and leaves

Of course, the Wiener index is simply the sum of the Gamma index, the spinal
index, and the sum of all distances between internal vertices and leaves in a
tree. This last concept is denoted by

K(T ) =
∑

u∈V (T )−ℓ(T ),v∈ℓ(T )

d(u, v)

for a tree T .
It is easy to show that the star stays as an extremal structure for K(T ).

Proposition 2.3.8 For any tree T on n vertices we have

K(T ) ≥ n− 1

with equality if and only if T is a star.

Proof:

For a tree T , K(T ) is the sum of the distances between n − |ℓ(T )| internal
vertices and |ℓ(T )| leaves, hence a total of

(n− |ℓ(T )|)|ℓ(T )|

distances.
Note that this product is at least 1 · (n − 1) (only in the case of a star,

where there is only one internal vertex) and each distance is at least 1, hence

K(T ) ≥ 1 · (n− 1) · 1

with equality if and only if T is a star. �

On the other hand, the path is not extremal with respect to K(·). To
characterize the (perhaps a little surprising) structure that maximizes K(T )
among trees of given order, first note the following fact.

Lemma 2.3.1 For any u ∈ ℓ(T ) and k ≥ 2, there exists an internal vertex v
with d(u, v) = k only if there exists an internal vertex w such that d(w, v) =
k − 1.

Proof:

This can be verified by simply taking the unique neighbor of v on the path
P (v, u) to be w. �

Proposition 2.3.9 Among trees on n vertices, the maximum K(T ) is ∼ 2n3

27 ,
obtained by a tree formed by attaching a total of n−m pendant edges to the
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end vertices of a path of length m− 1 (with at least one pendant edge at each
end), where

2

3
n ∼ m =

⌊
(n− 1) +

√
(n− 1)2 + 3n

3

⌋
or

⌈
(n− 1) +

√
(n− 1)2 + 3n

3

⌉
.

In particular, the (m − 1)-dumbbell is one of these extremal structures
(Figure 2.8 with r = m− 1).

Proof:

With given number m of internal vertices, Lemma 2.3.1 implies that the sum
of distances between one leaf u and all internal vertices is

∑

v∈V (T )−ℓ(T )

d(u, v) ≤
m∑

i=1

i =
1

2
m(m+ 1). (2.2)

By applying (2.2) to every leaf of T , we have

K(T ) ≤ 1

2
m(m+ 1)(n−m) =: f(m)

with equality if and only if T is formed by attaching a total of n−m pendant
edges to a path of length m− 1 (with at least one pendant edge at each end).

Now, in order to find the extremal value of f(m), we set

f ′(m) =
1

2
(−3m2 + 2(n− 1)m+ n)

to be 0. It then follows from basic calculus that f(m) is maximized when

m =

⌊
(n− 1) +

√
(n− 1)2 + 3n

3

⌋
or

⌈
(n− 1) +

√
(n− 1)2 + 3n

3

⌉
.

�

It is interesting to note that, unlike most other known results regarding
general extremal trees, the extremal structure in this case is evidently not
unique.

2.3.5 Sum of eccentricities

Recall that the eccentricity of a vertex v in a connected graph G is defined in
terms of the distance function as

eccG(v) := max
u∈V (G)

d(u, v).
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We are interested in the total eccentricity of a tree T , defined as the sum of
the vertex eccentricities:

Ecc(T ) :=
∑

z∈V (T )

eccT (z).

It was shown in as early as 2004 [20] that the path maximizes Ecc(T )
among trees of given order. We provide a brief justification for the extremality
of the path and leave the computation of the extremal values as an exercise
to interested readers.

Proposition 2.3.10 Among trees of a given order, the path maximizes
Ecc(T ).

Proof:

Suppose for contradiction that there is a tree T with the maximum Ecc(T ),
and that T is not a path. Let P (u, v) be a longest path in T with vertices
u = v0, v1, . . . , vk, vk+1 = v. Similar to the proof of Proposition 2.3.3, let
vi be the vertex with the smallest i that has a neighbor w not on P (u, v)
(Figure 2.9).

vi vvku

w

FIGURE 2.9
The path P (u, v), vi, and w.

Consider now the tree T ′ = T − viw + uw. By Lemma 2.2.4 it is not hard
to see that the eccentricity of every vertex stayed the same or increased from
T to T ′. �

It is also not difficult to show that the star minimizes Ecc(T ) among trees
of a given order.

Proposition 2.3.11 For any tree T on n > 2 vertices, we have

Ecc(T ) ≥ 1 + 2(n− 1) = 2n− 1

with equality if and only if T is a star.

Proof:

First note that, for any tree with at least 3 vertices, there is at most one vertex
with eccentricity 1 (it has to be adjacent to every other vertex in the tree).
For every other vertex the eccentricity is at least 2. Thus, we have

Ecc(T ) ≥ 1 + 2(n− 1) = 2n− 1
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with equality if and only if T is the star. �

2.4 The Wiener index of trees with a given degree se-

quence

As already mentioned earlier in the overview section, trees with a given degree
sequence are an important class of structures in the study of the Wiener index
and other distance-based indices. The extremal problems for the Wiener index
in trees with a given degree sequence have been extensively studied. The
following has been established in [110] and [128].

Theorem 2.4.1 Among trees with a given degree sequence, the Wiener index
is minimized by the greedy tree.

We skip the proof here, as later in this chapter we will establish a general
statement regarding the extremality of greedy trees with respect to distance-
based indices including the Wiener index.

On the other hand, the problem of maximizing the Wiener index among
trees with a given degree sequence turned out to be a difficult problem. It
has been proved several times, probably first by Shi [96], that a tree with
maximal Wiener index for a given degree sequence must be a caterpillar. We
will formally introduce this statement later as part of a more general result,
see Proposition 2.6.1.

To actually characterize the caterpillar, with a given degree sequence, that
maximizes the Wiener index, is essentially impossible as the extremal caterpil-
lar depends on the specific degree sequence. To at least partially characterize
the extremal caterpillar, we first introduce the decremented degree sequence

b = (b1, b2, . . . , bk) := (d1 − 1, d2 − 1, . . . , dk − 1)

for a given degree sequence

d = dT = (d1, d2, . . . , dk ≥ 2, dk+1 = 1, . . . , dn = 1).

Given a caterpillar T , let the non-leaf vertices in the backbone be
v1, v2, . . . , vk. The Wiener index of T is given by

W (T ) = (n− 1)2 + q(x), (2.3)

where q(x) is the quadratic form

q(x) =
1

2

k∑

i=1

k∑

j=1

|i − j|xixj =
∑

1≤i<j≤k

(j − i)xixj , (2.4)
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with x being the column vector

x = (x1, x2, . . . , xk)
t,

and xi = deg(vi)− 1 for i = 1, 2, . . . , k.
This is, in fact, a direct consequence of Proposition 2.2.1, as W (T ) can be

represented as

(n− k)(n− 1) +
k−1∑

i=1






i∑

j=1

(deg(vj)− 1) + 1


 ·




k∑

j=i+1

(deg(vj)− 1) + 1






where the first term corresponds to the contribution from all pendant edges
and the second term corresponds to the contribution from all internal edges.
The formula (2.4) follows from simple algebra.

Such a formulation turns our problem into a quadratic assignment problem
that seeks to maximize the function q(x) where xt is a permutation of b for
a given degree sequence. Although such problems are NP-hard in general,
a polynomial time algorithm was found in [14]. The main tool used in the
construction of that algorithm is, in addition to formula (2.4), the following
so called ∨-property.

Theorem 2.4.2 Following the above notations, among all trees with a given
degree sequence, the Wiener index is maximized by a caterpillar satisfying

x1 ≥ x2 ≥ . . . ≥ xi ≤ xi+1 ≤ . . . ≤ xk

for some 1 ≤ i ≤ k.

Proof:

Suppose, for contradiction, that the ∨-property does not hold in a caterpillar
with given degree sequence that maximizes the Wiener index. Then, we have

xi0−1 < xi0 > xi0+1

for some i0.
Assume, without loss of generality, that

nvi0vi0−1
(vi0−1) ≥ nvi0vi0+1

(vi0+1). (2.5)

We now consider the tree T ′ obtained from T by interchanging the degrees
(and hence all corresponding pendant edges) of vi0 and vi0+1 (Figure 2.10).

Note that from T to T ′ we are simply moving y = xi0−xi0+1 pendant edges
from vi0 to vi0+1. In this process, only the distances between the corresponding
y leaves and the rest of the vertices changed. These include:

• at least nvi0vi0−1
(vi0−1) + 1 vertices whose distances from these leaves in-

creased by 1;
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↔

vi0−1 vi0 vi0+1

FIGURE 2.10
A caterpillar T with xi0−1 < xi0 < xi0+1.

• exactly nvi0vi0+1
(vi0+1) vertices whose distances from these leaves decreased

by 1.

Thus, by (2.5) we have

W (T ′)−W (T ) ≥ y ·
((
nvi0vi0−1

(vi0−1) + 1
)
−
(
nvi0vi0+1

(vi0+1)
))
> 0,

a contradiction. �

Assuming
b1 > b2 > b3 > · · · > bk

in our decremented degree sequence, full characterization of the extremal
caterpillars that maximize the Wiener index can be achieved for small values
of k. Here, we simply use a permutation of the decremented degree sequence
to denote the corresponding extremal caterpillar:

• for k = 4, (b1, b4, b3, b2) maximizes the Wiener index;

• for k = 5, there are three cases:

– (b1, b5, b4, b3, b2) maximizes if b1 − b2 − b3 > 0,

– (b1, b4, b5, b3, b2) maximizes if b1 − b2 − b3 < 0, and

– both (b1, b5, b4, b3, b2) and (b1, b4, b5, b3, b2) maximize if b1−b2−b3 = 0.

• for k = 6 there are 12 cases.

See [97] for details. In addition to the partial characterizations of the ex-
tremal caterpillars with a given degree sequence that maximize the Wiener
index, it is of practical interest to consider the same question restricted to the
“chemical trees” whose vertices are of degree ≤ 4, in which case 1 ≤ bi ≤ 3.

More generally, if

{b1, b2, . . . , bk} = {as, . . . , as︸ ︷︷ ︸
ms

, as−1, . . . , as−1︸ ︷︷ ︸
ms−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

}

with as > as−1 > . . . > a1, then in the extremal tree we must have

x = {as, . . . , as︸ ︷︷ ︸
ls

, as−1, . . . , as−1︸ ︷︷ ︸
ls−1

, . . . , a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , as−1, . . . , as−1︸ ︷︷ ︸
rs−1

, as, . . . , as︸ ︷︷ ︸
rs

}
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from the ∨-property, where li + ri = mi for i = 2, 3, . . . , s. Consequently, we
have

q(x) =
∑

Xα,β (2.6)

where α or β (might be the same) corresponds to one of the sequences of equal
entries such as {as, . . . , as︸ ︷︷ ︸

ls

} or {a1, . . . , a1︸ ︷︷ ︸
m1

}.

For instance, if α = {as, . . . , as︸ ︷︷ ︸
ls

} and β = {as−1, . . . , as−1︸ ︷︷ ︸
rs−1

},

Xα,β = asas−1

ls−1∑

i=0

x+rs−1+i∑

j=x+1+i

j =
asas−1

2
lsrs−1(2x+ ls + rs−1)

where x is the distance between α and β, ls−1+ . . .+ l2+m1+ r2+ . . .+ rs−2.
In the case α = β = {as, . . . , as︸ ︷︷ ︸

ls

},

Xα,α =
a2s
6
ls(ls − 1)(ls + 1).

Applying (2.6) to x = {3, . . . , 3︸ ︷︷ ︸
l3

, 2, . . . , 2︸ ︷︷ ︸
l2

, 1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
r2

, 3, . . . , 3︸ ︷︷ ︸
r3

} (i.e.,

the chemical trees), it follows from simple algebra that the Wiener index is
maximized when the 3s and 2s are evenly distributed on both ends. In fact,
replacing {3, 2, 1} with {a, b, c} for any a > b > c yields the same conclusion.

2.5 The Wiener index of trees with a given segment se-

quence

As mentioned earlier, fixing the segment sequence introduces a unique and
interesting restriction on trees. In this section, we consider the trees with a
given segment sequence that maximize or minimize the Wiener index.

2.5.1 The minimum Wiener index in trees with a given seg-
ment sequence

For a given segment sequence (l1, l2, . . . , lm), recall that the starlike tree
S(l1, l2, . . . , lm) is the tree with exactly one vertex of degree ≥ 3 formed by
identifying one end of each of the m segments. It was first shown in [70] that
S(l1, l2, . . . , lm) minimizes the Wiener index among all trees with segment
sequence (l1, l2, . . . , lm). To illustrate different approaches in chemical graph
theory we provide two proofs for this simple result; one has a “computational
flavor”, while the other focuses more on the structural properties.
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Theorem 2.5.1 Among trees with a given segment sequence

(l1, l2, . . . , lm),

the starlike tree S(l1, l2, . . . , lm) minimizes the Wiener index.

Proof:

• The first proof is rather similar to that for the extremality of the starlike
tree with respect to the terminal Wiener index, based on the expression

W (T ) =
∑

uv∈E(T )

nuv(v) · nuv(u)

from Proposition 2.2.1.

Note that for a segment of length ℓ, at most one end of it is a leaf, and hence
the contribution nuv(v) · nuv(u) from each edge to the above formula is at
least

1 · (n− 1) + 2 · (n− 2) + . . .+ ℓ · (n− ℓ)

where n is the number of vertices in T . This “least” contribution can be
achieved if and only if every segment has one end being a leaf, which can
only happen when the tree has exactly one branching vertex.

• As a second approach, we consider (for contradiction) a tree T that mini-
mizes the Wiener index with at least two branching vertices.

Let u and w be two of the branching vertices such that the path connecting
them is a segment (i.e., there are no branching vertices “between” them).
Now we define S to be the component containing u (with root u) in T −
P (u,w), and R to be T − (S − u).

Following the setup in Lemma 2.2.1, it is easy to verify

dR(w) < dR(u).

We leave this as an exercise to interested readers. Consequently, Lemma 2.2.1
implies that the tree T ′ obtained by identifying the root of S with w of R
has smaller Wiener index than T (considered as identifying the root of S
with u of R), a contradiction.

�

2.5.2 The maximum Wiener index in trees with a given seg-
ment sequence

Recall that a quasi-caterpillar is a tree all of whose branching vertices lie on a
path (Figure 1.8). We first show that quasi-caterpillars maximize the Wiener
index. This was conjectured in [70] and proved in [5], whose proof we provide
here.
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Theorem 2.5.2 If a tree T maximizes the Wiener index among all trees with
the same segment sequence, then it must be a quasi-caterpillar.

Proof:

Let T be an extremal tree with the given segment sequence that maximizes
the Wiener index, and let P = P (v0, vk) be a path that contains the greatest
number of segments. Then both v0 and vk must be leaves. We now label the
branching vertices on P by v1, v2, . . . , vk−1 in the order of their distances from
v0.

For each 1 ≤ i ≤ k − 1, since vi is a branching vertex, it has neighbors
vi1, . . . , vili not on P . Further let Tij (1 ≤ j ≤ li) denote the component
containing vij in T − vivij .

In every Tij , denote by uij the branching vertex (or leaf if there is no
branching vertex) closest to vi and by Sij the component containing uij in T−
E(P (vi, uij)). Figure 2.11 provides a detailed illustration for these notations.

v0 vkvi

vi2

ui2

Si2

Ti2

ui1

Si1

uili

Sili
. . .

FIGURE 2.11
The labeling of T .

Supposing for contradiction that T is not a quasi-caterpillar, we must have
some Sij with more than one vertex. Let S = Si0j0 be the one with the greatest
number of vertices among all Sij (1 ≤ i ≤ k, 1 ≤ j ≤ li), let T≤i0 denote the
component containing vi0 in T − E(P (vi0 , vi0+1)) and T>i0 the component
containing vi0+1 in T − E(P (vi0 , vi0+1)). Similarly for T<i0 and T≥i0 .

Assume now, without loss of generality, that

|T<i0 | ≥ |T>i0 |. (2.7)

We may also assume
|S| > |Sij |

for all i > i0 and all j. This is because we can always let |Sij | = |S| for some
maximal i, while still maintaining (2.7).

Now the path P = P (v0, vk), according to the above discussion, is one
containing the greatest number of segments with i0 6= k−1 (i.e., vi0 cannot be
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the last branching vertex, as then there would be a path through ui0j0 rather
than vk that contains more segments). Therefore vi0+1 is still a branching
vertex.

We will now study the subtree Ti0+1,1 obtained from adding to the subtree
S′ = Si0+1,1 the path from vi0+1 to ui0+1,1 (Figure 2.12).

v0 vi0

p

ui0j0

S

Ti0j0

vkvi0+1

p′

ui0+1,1

S′

Ti0+1,1

FIGURE 2.12
The branches that are switched.

Let p and p′ be the lengths of the paths P (vi0 , ui0j0) and P (vi0+1, ui0+1,1),
respectively. We have the following cases:

1. If p ≥ p′, let T ′ be obtained from T by “switching” the subtrees
Ti0j0 and T(i0+1),1. Or equivalently,

T ′ = T − vi0vi0j0 − vi0+1v(i0+1),j + vi0v(i0+1),j0 + vi0+1vi0 ;

2. If p < p′, let T ′ be obtained from T by “switching” the subtrees
S and S′. That is, to replace Ti0j0 with (p, S′) and T(i0+1),1 with
(p′, Si0j0 ).

In both cases, it is not hard to check that the segment sequence stays the
same from T to T ′. We will now examine, in detail, how the distances between
vertices change from T to T ′.

• In the first case, the distances change as follows:

– the distance between any vertex in Ti0j0 and any vertex in T≤i0 −Ti0j0
increases by d(vi0 , vi0+1);

– the distance between any vertex in Ti0j0 and any vertex in T>i0 −
T(i0+1),1 decreases by d(vi0 , vi0+1);

– the distance between any vertex in T(i0+1),1 and any vertex in T≤i0 −
Ti0j0 decreases by d(vi0 , vi0+1);

– the distance between any vertex in T(i0+1),1 and any vertex in T>i0 −
T(i0+1),1 increases by d(vi0 , vi0+1);
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– the distances between vertices of Ti0j0 and the vertices on the segment
between vi0 and vi0+1 change, but the total contribution to the Wiener
index remains the same; the same is true for Ti0+1,1.

– all distances between other pairs of vertices stay the same.

Consequently, the total change (of the value of the Wiener index) in this
case is

W (T ′)−W (T )

= d(vi0 , vi0+1)
(
|Ti0j0 | − |T(i0+1),1|

)
·
(
|T≤i0 − Ti0j0 | − |T>i0 − T(i0+1),1|

)
.

Note that

|T≤i0 − Ti0j0 | > |T<i0 | ≥ |T>i0 | > |T>i0 − Ti0+1,1|,

and by the fact |S| > |S′| from the assumption S = Si0j0 , we have

|Ti0j0 | > |Ti0+1,1|.

Thus W (T ′) > W (T ), a contradiction.

• In the second case, we only need to consider the distances between vertices
in S and S′ and the rest of the tree. Through similar reasoning to the first
case, we have

W (T ′)−W (T ) =
(
d(vi0 , vi0+1)

(
|T≤i0 − Ti0j0 | − |T>i0 − Ti0+1,1|

)

+ (p′ − p)
(
|T≤i0 − Ti0j0 |+|T>i0 − Ti0+1,1|

))(
|S| − |S′|

)
,

yielding another contradiction.

In both cases, we see that T cannot be extremal, hence completing the
proof by contradiction. �

2.5.3 Further characterization of extremal quasi-caterpillars

For trees with a given degree sequence, it is relatively easy to show that
the maximum Wiener index is obtained by a caterpillar (see the proof of
Proposition 2.6.1), but specific characterizations of the extremal caterpillar
turned out to be a difficult problem. In the case of maximizing the Wiener
index among trees with a given segment sequence, it is also an interesting
and challenging problem to identify further characteristics of the extremal
quasi-caterpillar that maximizes the Wiener index.

Similar to the backbone of a caterpillar, we will let the longest path of a
quasi-caterpillar containing all the branching vertices be called the backbone.
It is easy to see that each of the other segments that are not on the backbone
connects a leaf with a branching vertex. We will call them pendant segments.



Distance in graphs and the Wiener index 39

Given a segment sequence (l1, l2, . . . , lm), Theorem 2.5.2 states that the
maximum Wiener index can only be attained by a quasi-caterpillar. In what
follows we present some further characteristics of extremal quasi-caterpillars,
also established in [5]. The technical details are somewhat similar to the proof
of Theorem 2.5.2, some of which we leave to interested readers as exercises.

Theorem 2.5.3 In a quasi-caterpillar that maximizes the Wiener index
among trees with segment sequence (l1, l2, . . . , lm) we must have the follow-
ing:

• If the number of segments is odd, all branching vertices have degree exactly
3;

• If the number of segments is even, all but one branching vertices have degree
3. The only exception must be a last branching vertex of degree 4, which
must be the first (or last) branching vertex on the backbone.

This also means that the number of segments on the backbone is k = ⌊(m +
1)/2⌋ and the number of pendant segments is k′ = ⌈(m− 1)/2⌉.

Proof:

Similar to before, we start with labeling the backbone as a path P (v0, vk)
between leaves v0 and vk with branching vertices v1, v2, . . . , vk−1 (in the order
of their distances from v0).

First we show that in the extremal quasi-caterpillar, no branching vertex
is of degree greater than 4.

Supposing (for contradiction) otherwise, let vi be of degree at least 5 with
neighbors vi1, vi2, vi3, . . . not on the path P (v0, vk). Again we let T<i (T>i) de-
note the component containing vi−1 (vi+1) in T −E(P (vi−1, vi+1)) as before,
and let T≤i = T<i+1 and T≥i = T>i−1 also be defined as in the proof of The-
orem 2.5.2. Lastly, let Ti1, Ti2, Ti3 be the pendant segments at vi containing
vi1, vi2, vi3, respectively.

We may assume, without loss of generality, that

|T<i| ≥ |T>i|,

and hence
|T≤i − Ti1 − Ti2| > |T>i|.

Consider now T ′, the tree obtained from T by detaching Ti1 and Ti2 from
vi and reattaching them to vi+1. It is easy to check that T ′ has the same
segment sequence as T , even in the special case i = k− 1. Similar discussions
to those in the proof of Theorem 2.5.2 show that

W (T ′)−W (T ) = d(vi, vi+1) (|Ti1|+ |Ti2|) · (|T≤i − Ti1 − Ti2| − |T>i0 |) > 0,

a contradiction. Thus all branching vertices are of degree 3 or 4.
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Now, for a vertex vi of degree 4, we may repeat the above arguments with
moving only one segment instead of two to obtain the tree T ′. A contradiction
follows except for the cases when vi = v1 or vi = vk−1; in those cases where
vi = v1 or vi = vk−1, the described operation would move a single segment
to the end of the backbone and change the segment sequence. Thus, the only
branching vertices that could possibly have degree 4 are v1 and vk−1.

Lastly, we consider the scenario when both v1 and vk−1 are of degree 4.
Let S = T11 and S′ = Tk−1,1 be two segments attached to v1 and vk−1,

respectively, and let R be obtained from T by removing these two segments
(Figure 2.13). We may assume, without loss of generality, that

∑

v∈V (R)

d(vk, v) ≤
∑

v∈V (R)

d(v0, v).

v0 v1

S

vkvk−1

S′

R

FIGURE 2.13
The segments S and S′ and the rest of the tree (denoted R).

Construct T ′ from T by removing both S and S′ and reattaching them to
v0. Again, it is easy to check that the segment sequence stays the same from T
to T ′. The change in the value of the Wiener index from T to T ′ is discussed
through the distances between various pairs of vertices as before:

• the total distance between any two vertices in S, any two vertices in S′, or
any two vertices in R does not change;

• the total distance between vertices in S and vertices in S′ decreases by
d(v1, vk−1)|S||S′|;

• the total distance between vertices in S and P (v0, v1) does not change,
while the total distance between vertices in S and the rest of R increases by
d(v0, v1)(|R| − d(v0, v1)− 1)|S|;

• if S′ is moved to vk, the total distance between vertices in S′ and R increases
by d(vk−1, vk)(|R| − d(vk−1, vk)− 1)|S′| as before;
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• moving S′ further to v0 changes the total distance further by

|S′|
( ∑

v∈V (R)

d(v0, v)−
∑

v∈V (R)

d(vk, v)
)
.

Recall that the backbone is the longest path that contains all the branching
vertices, which implies |S| ≤ d(v0, v1) and |S′| ≤ d(vk−1, vk).

It is also easy to see that

|R| > d(v0, vk) + 1 = d(v0, v1) + d(v1, vk−1) + d(vk−1, vk) + 1.

Consequently, through direct computation, we have that

W (T ′)−W (T ) = |S′|
( ∑

v∈V (R)

d(v0, v)−
∑

v∈V (R)

d(vk+1, v)
)

+ d(vk−1, vk)
(
|R| − d(vk−1, vk)− 1

)
|S′|

+ d(v0, v1)
(
|R| − d(v0, v1)− 1

)
|S| − d(v1, vk−1)|S||S′|

> d(vk−1, vk)
(
d(v0, v1) + d(v1, vk−1)

)
|S′|

+ d(v0, v1)
(
d(v1, vk−1) + d(vk−1, vk)

)
|S| − d(v1, vk−1)|S||S′|

> d(v1, vk−1)
(
|S′|2 + |S|2 − |S||S′|

)

> 0.

This is a contradiction. Hence, there can be at most one vertex of degree 4.
Should such a vertex exist, the number of segments must be even and this
vertex has to be either v1 or vk−1. �

Now that we have established that all branching vertices are of small (as
small as possible, in fact) degrees, we go on to partially characterize the ar-
rangement of segments along the backbone in an extremal quasi-caterpillar.
The following is, in some sense, similar to the ∨-property that we established
for the extremal caterpillars with a given degree sequence.

Theorem 2.5.4 Let T be a quasi-caterpillar that maximizes the Wiener index
among trees with segment sequence (l1, l2, . . . , lm). In T , the lengths of the
segments on the backbone, listed from one end to the other, form a unimodal
sequence r1, r2, . . . , rk, i.e.,

r1 ≤ r2 ≤ · · · ≤ rj ≥ · · · ≥ rk

for some j ∈ {1, 2, . . . , k}.

Proof:

Following the same notations, consider now the segments

P (v0, v1), P (v1, v2), . . . , P (vk−1, vk)
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on the backbone of T . For convenience let r1, r2, . . . , rk be the lengths of these
segments, and letM be the maximum length of a backbone segment. If all ri’s
are equal, there is nothing to prove. Assume that is not the case and further
let j be the smallest index such that

rj = d(vj−1, vj) =M > rj+1 = d(vj , vj+1).

Note that such an index always exists (if necessary, after reversing the back-
bone and all labels).

Using similar notations as before, we let T≤j−1, Tj and T≥j+1 denote the
components containing vj−1, vj and vj+1, respectively, in T−E(P (vj−1, vj+1))
(Figure 2.14).

vjvj−1T≤j−1
vj+1 T≥j+1

Tj

FIGURE 2.14
The subtrees T≤j−1, Tj and T≥j+1.

If |T≤j−1| < |T≥j+1|, let T ′ be obtained from T by “interchanging” T≤j−1

and T≥j+1. Then,

W (T ′)−W (T ) = (|Tj| − 1)(rj − rj+1)
(
|T≥j+1| − |T≤j−1|

)
> 0,

a contradiction.
Thus, we must have

|T≤j−1| ≥ |T≥j+1|
and consequently,

|T≤i−1| > |T≤j−1| ≥ |T≥j+1| > |T≥i+1|

for all i > j. This, in turn, implies that ri ≥ ri+1 through the same argument.
Thus, we have

rj ≥ rj+1 ≥ · · · .
The proof for r1 ≤ · · · ≤ rj is similar. �

We now show one more property of the extremal quasi-caterpillars with
a given segment sequence, this time on the pendant segments, similar to the
∨-property of extremal caterpillars with a given degree sequence.

Theorem 2.5.5 Let T be a quasi-caterpillar that maximizes the Wiener index
among trees with segment sequence (l1, l2, . . . , lm). In T , the lengths of the
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pendant segments, starting from one end of the backbone towards the other,
form a sequence of values s1, s2, . . . , sk′ such that

s1 ≥ s2 ≥ · · · ≥ sj′ ≤ · · · ≤ sk′

for some j′ ∈ {1, 2, . . . , k′}.

Proof:

We will assume, without loss of generality, that the number of segments in T
is odd. The even case can be argued in exactly the same way.

Then, by Theorem 2.5.3, all branching vertices are of degree 3. Let Si

denote the pendant segment at vi for all 1 ≤ i ≤ k′ = k − 1 and let si denote
its length. Further, let µ be the minimum length of all pendant segments.

Similar to the proof of Theorem 2.5.4, we will assume that not all of these
segments are of the same length. Then there exists (possibly after reversing
the order) a smallest j′ such that

sj′ = µ < sj′+1.

Also let T≤j′ and T≥j′+1 denote the components containing vj′ and vj′+1,
respectively, in T − E(P (vj′ , vj′ + 1)).

Now “interchanging” Sj′ and Sj′+1 in T results in a tree T ′ where

W (T ′)−W (T ) = d(vj′ , vj′+1)(sj′+1 − sj′)
(
|T≥j′+1 − Sj′+1| − |T≤j′ − Sj′ |

)
,

implying that we must have

|T≤j′ − Sj′ | ≥ |T≥j′+1 − Sj′+1|.

Thus,

|T≤i−Si| ≥ |T≤j′ | > |T≤j′ −Sj′ | ≥ |T≥j′+1−Sj′+1| ≥ |T≥i+1| > |T≥i+1−Si+1|

for any i > j′, which implies that si+1 ≥ si by the same argument. It follows
that sj′ ≤ sj′+1 ≤ · · · .

Similarly, we also have s1 ≥ · · · ≥ sj′ . �

2.5.4 Trees with a given number of segments

Also in [70], the tree with minimal Wiener index among all trees with a given
number of segments is characterized. For trees with n vertices andm segments,
the extremal tree that minimizes the Wiener index must be a starlike tree
(as established earlier in this section) and consequently must have exactly
m leaves. The question is then turned into minimizing the Wiener index with
given numbers of vertices and leaves, resulting in a starlike tree onm segments
such that the difference between the lengths of any pair of segments is at most
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1 (i.e., evenly distributed). Such extremal structures are special cases of more
general results that we will discuss later.

In the current section, once again we are interested in the analogous ques-
tion for the maximum Wiener index (among trees with a given number of
segments), conjectured in [70] and shown in [5].

First, we need to introduce the corresponding extremal structures. For
given n and m, we define trees O(n,m) (for odd m) and E(n,m) (for even
m), respectively.

• The graph O(n,m) is obtained from a path v0, v1 . . . , vℓ of length ℓ = n −
m+1
2 by attaching a total of m−1

2 leaves to vertices v1, v2, . . . , v⌊(m−1)/4⌋
and vℓ−1, vℓ−2, . . . , vℓ−⌈(m−1)/4⌉, see Figure 2.15 (left) for the case n = 11,
m = 7. Note that O(n,m) has exactly m segments.

• Likewise, E(n,m) is a tree with n vertices and m segments obtained from a
path v0, v1 . . . , vℓ of length ℓ = n− m

2 − 1 by attaching a total of m
2 leaves

to vertices v1, v2, . . . , v⌊(m−2)/4⌋ and vℓ−1, vℓ−2, . . . , vℓ−⌈(m−2)/4⌉, where two
leaves are attached to vertex v1 (so that it becomes the only vertex of degree
4), see Figure 2.15 (right) for the case n = 11, m = 8.

FIGURE 2.15
The trees O(11, 7) and E(11, 8).

With Theorems 2.5.3, 2.5.4, and 2.5.5 established in the previous section,
it is now easy to show that O(n,m) (if m is odd) and E(n,m) (if m is even)
always maximize the Wiener index among all trees of order n withm segments.
The following proof was given in [5].

Theorem 2.5.6 Among all trees of order n with m segments, O(n,m)
(E(n,m)) maximizes the Wiener index if m is odd (even).

Proof:

We will only consider the case of oddm and leave the other case as an exercise.
Let T be the extremal tree, with the given numbers of vertices and seg-

ments, that maximizes the Wiener index. Then, by Theorems 2.5.2 and 2.5.3,
T has to be a quasi-caterpillar, and every branching vertex has degree 3.

As before, let the path P (v0, vk) be the backbone of the quasi-caterpillar
with branching vertices v1, v2, . . . , vk−1. Note that the total number of seg-
ments is m = 2k − 1.

Moreover, let a and b be the lengths of P (v0, v1) and the other pendant
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segment ending at v1. We let T ′ be the tree obtained from removing those two
segments (including v1) from T .

Suppose that min{a, b} > 1. It is an easy exercise to show that replacing
the two segments by segments of lengths 1 and a + b − 1 will increase the
Wiener index by (a− 1)(b− 1)|T ′|, and hence a contradiction to the choice of
T .

Thus, the pendant segment at v1 has to have length 1. Similarly, the pen-
dant segment at vk−1 also has to be of length 1. By Theorem 2.5.5, all pendant
segments must have length 1. This implies that T is a caterpillar.

From the ∨-property of the extremal caterpillar that we established in the
previous section, we can conclude that the degrees of the internal vertices
along the backbone have to be decreasing at first, then increasing, i.e., the
sequence of degrees has to be of the form

3, 3, . . . , 3, 2, 2, . . . , 2, 2, 3, 3, . . . , 3.

To finish our proof, it only remains to show that the number of vertices of
degree 3 on the two sides differ by at most 1. For this purpose, we will relabel
the vertices on the backbone as

u0 = v0, u1, u2, . . . , un−k = vk.

Note that this includes all vertices instead of just the branching ver-
tices. Assume now that there is a leaf attached to u1, u2, . . . , ux and
un−k−1, un−k−2, . . . , un−k−y, where x+ y = k − 1.

If k − 1 = n − k − 1 (equivalently, n = 2k = m + 1), then all vertices on
the backbone have to have degree 3 and we are done.

Otherwise, assume that |x−y| > 1 and, without loss of generality, x > y+1.
Considering the tree T ′ obtained from moving one leaf from ux to un−k−y−1,
it is again an easy exercise to show that

W (T ′)−W (T ) = 2(x− y − 1)(n− 2k) > 0,

and we reach yet another contradiction. Thus, |x− y| ≤ 1, implying that T is
isomorphic to O(n,m). �

2.6 General approaches

So far we have repeatedly mentioned more general extremal results regarding
distance-based indices. This section is devoted to such discussions. We start
with defining a topological index of the form

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))
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for some function f . With different choices of f ,Wf (·) defines various distance-
based indices such as the Wiener index and its generalization

Wα(G) =
∑

{v,w}⊆V (G)

d(v, w)α,

the hyper-Wiener index [64]

WW (G) =
∑

{v,w}⊆V (G)

(
d(v, w) + 1

2

)
,

the Harary index [88]

H(T ) =
∑

{u,v}⊆V (T )

1

d(u, v)
,

and many more.
We will first establish the extremality of the greedy trees and caterpillars

among trees with a given degree sequence, with respect to Wf (·) for functions
f under specific restrictions. Then, we will compare extremal trees of differ-
ent degree sequences. Such comparisons lead to immediate consequences in
which extremal structures with respect to various distance-based indices are
identified in different classes of trees.

2.6.1 Caterpillars

We start with the problem of maximizing the Wiener index and its gener-
alizations among trees of a given degree sequence. Similar to Section 2.5.2,
although it is not possible to fully characterize the solution, the problem can
be reduced to the study of caterpillars. Here, as well as in the rest of this
section, we follow the proofs introduced in [94].

Proposition 2.6.1 Let f(x) be a strictly increasing and convex function (i.e.,
the increments f(x+ 1)− f(x) are non-decreasing). If T is a tree that maxi-
mizes

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

among all trees with degree sequence (d1, . . . , dn), then T must be a caterpillar.

Proof:

Let P be a longest path of this extremal tree T , let the vertices on P be denoted
x1, x2, . . . , xℓ, and suppose (for contradiction) that T is not a caterpillar. Then,
we must have ℓ ≥ 4 and there exists an xk, 2 < k < ℓ− 1, such that xk has a
non-leaf neighbor y that is not on P . Let

N(y) = {xk, z1, . . . , zs},
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for some s ≥ 1, be the neighbors of y. We also use T1, T2 and T3 to denote
the components containing xk, xk+1 and y, respectively, in T − xkxk+1 − xky
(Figure 2.16). Without loss of generality, we can further assume that |V (T1)| ≥
|V (T2)| ≥ 2.

x1 x2 x3 xk xk+1 xℓ

y

z1 zs· · ·

T1
T2

T3

FIGURE 2.16
T1, T2 and T3 in an extremal tree T that is not a caterpillar.

Let T ′ be obtained from T by replacing each edge yzi of T by the new
edge xℓzi, for i = 1, . . . , s. It is easy to see that T ′ and T have the same degree
sequence.

Consider the distance between two vertices u and v in T and T ′. Note that
dT ′(u, v) 6= dT (u, v) only when u ∈ V (T3) \ {y} and v ∈ V (T1) ∪ V (T2) ∪ {y}
(or vice versa). Since the contributions of y and xℓ to Wf (·) cancel, it suffices
to consider v ∈ V (T1) and v ∈ V (T2) \ {xℓ}.

Consequently we have

Wf (T
′)−Wf (T )

=
∑

u∈V (T3)\{y}

[ ∑

v∈V (T1)

(
f(dT ′(u, v))− f(dT (u, v))

)

+
∑

v∈V (T2)\{xℓ}

(
f(dT ′(u, v))− f(dT (u, v))

)]

=
∑

u∈V (T3)\{y}

[ ∑

v∈V (T1)

(
f(dT (u, y) + dT (xk, xℓ) + dT (xk, v))

− f(dT (u, y) + dT (xk, v) + 1)
)
+

∑

v∈V (T2)\{xℓ}

(
f(dT (u, y) + dT (xℓ, v))

− f(dT (u, y) + dT (xk, v) + 1)
)]
.
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Since P is a longest path in T , we have

dT (xk, v) ≤ dT (xk, xℓ)

for all v ∈ V (T2)\{xℓ} and dT (xk, xℓ) ≥ 2. We also point out the simple facts
that

dT (xℓ, xℓ−1) = 1 and dT (xℓ, v) ≥ 2

for all v ∈ V (T2) \ {xℓ, xℓ−1}.
The contribution from each u ∈ V (T3) \ {y} to Wf (T

′)−Wf (T ) is

∑

v∈V (T1)

[
f(dT (u, y) + dT (xk, xℓ) + dT (xk, v))

− f(dT (u, y) + dT (xk, v) + 1)
]

+
∑

v∈V (T2)\{xℓ−1,xℓ}

[
f(dT (u, y) + d(xℓ, v))− f(dT (u, y) + dT (xk, v) + 1)

]

+ f(dT (u, y) + 1)− f(dT (u, y) + dT (xk, xℓ)).

In view of the convexity of f and the aforementioned inequalities, this is at
least

∑

v∈V (T1)\{xk}

[
f(dT (u, y) + dT (xk, xℓ) + 1)− f(dT (u, y) + 2)

]

+ f(dT (u, y) + dT (xk, xℓ))− f(dT (u, y) + 1)

+
∑

v∈V (T2)\{xℓ−1,xℓ}

[
f(dT (u, y) + 2)− f(dT (u, y) + dT (xk, xℓ) + 1)

]

+ f(dT (u, y) + 1)− f(dT (u, y) + dT (xk, xℓ))

=
[
f(dT (u, y) + dT (xk, xℓ) + 1)− f(dT (u, y) + 2)

]

·
(
|V (T1)| − 1− |V (T2)|+ 2

)

≥ f(dT (u, y) + dT (xk, xℓ) + 1)− f(dT (u, y) + 2) > 0.

Consequently, we have Wf (T
′) > Wf (T ), a contradiction. �

Note that we do need the function f to be strictly increasing to claim
that the extremal tree must be a caterpillar. In the case that f is only non-
decreasing, we obtain the following weaker result. We leave the proof as an
exercise.

Proposition 2.6.2 Let f(x) be a non-decreasing and convex function (i.e.,
the increments f(x + 1) − f(x) are non-decreasing). Among all trees with
degree sequence (d1, . . . , dn) there always exists a caterpillar that achieves the
maximum value of

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v)).
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Remark 2.6.1 Proposition 2.6.1 is wrong if f is not convex. Consider, for
instance, f(x) =

√
x and the degree sequence

(20, 20, 20, 3, 1, 1, . . . , 1).

There are only two non-isomorphic caterpillars in this case, and the value of
Wf (·) for these two caterpillars is

858 + 573
√
2 + 760

√
3 + 38

√
5 ≈ 3069.67

and
858 + 573

√
2 + 437

√
3 + 361

√
5 ≈ 3232.47,

respectively. However, it turns out that a tree with a center of degree 3 whose
neighbors all have degree 20 (with all the other vertices being leaves) is optimal
in this case: for this tree, Wf attains a value of

2226 + 573
√
2 + 114

√
3 ≈ 3233.8.

In the case of the Wiener index (f(x) = x), hyper-Wiener index (f(x) =(
x+1
2

)
), and the generalized Wiener index (f(x) = xα) with α > 1, the corre-

sponding functions f are indeed strictly increasing and convex. Thus, Propo-
sition 2.6.1 holds.

Remark 2.6.2 It is also interesting to point out that, even with the same
degree sequence, the extremal tree/caterpillar differs for different functions f .
For example, let

(d1, . . . , d7) = (80, 76, 60, 30, 11, 6, 2)

be the degree sequence of the internal vertices. Then, the unique extremal cater-
pillar with respect to the Wiener index is the caterpillar T1 with backbone
vertex degrees in the order

(d1,1, . . . , d1,7) = (d1, d4, d5, d6, d7, d3, d2),

whereas the unique extremal caterpillar with respect to the hyper-Wiener index
is the caterpillar T2 with backbone vertex degrees in the order

(d2,1, . . . , d2,7) = (d1, d4, d5, d7, d6, d3, d2).

Here di,j is the degree of the j-th vertex on the backbone of Ti, 1 ≤ j ≤ 7,
i = 1, 2.

Similar to the Wiener index of caterpillars, Wf (T ) can also be directly
computed from its degree sequence. We leave the technical details as an exer-
cise to interested readers.
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Lemma 2.6.1 Let T be a caterpillar on n vertices and v1, . . ., vk the vertices
on the backbone of T in this order. Then,

Wf (T ) =
1

2

k∑

i=1

k∑

j=1

f(|j − i|+ 2)(di − 2)(dj − 2)

+

k∑

i=1

k+1∑

j=0

f(|j − i|+ 1)(di − 2) (2.8)

+

k∑

i=0

k+1∑

j=i+1

f(j − i)− 1

2
f(2)(n− k − 2)

for any function f(x) with dℓ = deg(vℓ).

Making use of the expression (2.8), one can also establish the ∨-property
for the extremal caterpillars, of a given degree sequence, with respect toWf (·).

Theorem 2.6.1 Let x1 ≥ x2 ≥ · · · ≥ xk ≥ 0 be integers with k ≥ 3 and let
f(x) be a strictly increasing and convex function. Further, let Sk be the set of
all permutations of {1, . . . , k} and suppose that (y1, . . . , yk) is a permutation
of (x1, . . . , xk) with y1 ≥ yk and

1

2

k∑

i=1

k∑

j=1

f(|j − i|+ 2)yiyj +
k∑

i=1

k+1∑

j=0

f(|j − i|+ 1)yi

= max
π∈Sk

(
1

2

k∑

i=1

k∑

j=1

f(|j − i|+ 2)xπ(i)xπ(j) +

k∑

i=1

k+1∑

j=0

f(|j − i|+ 1)xπ(i)

)
.

Then there exists a t ∈ {2, 3, . . . , k − 1} such that

y1 ≥ y2 ≥ · · · ≥ yt−1 ≥ yt ≤ yt+1 ≤ · · · ≤ yk.

Moreover, if k ≥ 5, then t 6= k − 1.

Proof:

First, consider the permutation

(z1, . . . , zk) = (y1, . . . , yℓ−1, yℓ+1, yℓ, yℓ+2, . . . , yk)

of (x1, . . . , xk).
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As (y1, . . . , yk) achieves the maximum value, we must have

0 ≤ 1

2

k∑

i=1

k∑

j=1

f(|j − i|+ 2)(yiyj − zizj) +

k∑

i=1

k+1∑

j=0

f(|j − i|+ 1)(yi − zi)

= (yℓ+1 − yℓ)

(ℓ−1∑

i=1

(f(ℓ − i+ 3)− f(ℓ− i+ 2))yi (2.9)

−
k∑

i=ℓ+2

(f(i− ℓ+ 2)− f(i− ℓ+ 1))yi + f(ℓ+ 2)− f(k − ℓ+ 2)

)
.

Letting

g(ℓ) :=

ℓ−1∑

i=1

(f(ℓ − i+ 3)− f(ℓ− i+ 2))yi −
k∑

i=ℓ+2

(f(i− ℓ+ 2)− f(i− ℓ+ 1))yi

+ f(ℓ+ 2)− f(k − ℓ+ 2)

for 1 ≤ ℓ ≤ k − 1, it is easy to see that

g(1) < 0, g(k − 1) > 0, and g(ℓ) < g(ℓ+ 1).

Consequently, there exists a t′ ∈ {2, 3, . . . , k − 2} such that

g(t′ − 1) < 0, g(t′ + 1) > 0.

Together with (2.9) we obtain

yℓ+1 − yℓ ≤ 0 for 1 ≤ ℓ ≤ t′ − 1,

yℓ+1 − yℓ ≥ 0 for t′ + 1 ≤ ℓ ≤ k − 1,

implying

y1 ≥ y2 ≥ · · · ≥ yt′−1 ≥ yt′ and yt′+1 ≤ yt′+2 ≤ · · · ≤ yk.

The conclusion follows from the following two cases:

• If yt′ ≤ yt′+1, then t = t′.

• If yt′ ≥ yt′+1, then t = t′ + 1. Since g(k − 2) > 0 for y1 ≥ yk and k ≥ 5, we
obtain that t′ 6= k − 2 in this case. Therefore, 2 ≤ t ≤ k − 2.

�

Before concluding our discussion here, we point out that analogous state-
ments can be easily established, through the same arguments, for decreasing
and concave functions. We list two such statements here.
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Proposition 2.6.3 Let f(x) be a strictly decreasing and concave function
(i.e., the decrements f(x) − f(x + 1) are non-decreasing). If T is a tree that
minimizes

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

among all trees with degree sequence (d1, . . . , dn), then T must be a caterpillar.

Proposition 2.6.4 Let f(x) be a non-increasing and concave function (i.e.,
the decrements f(x) − f(x + 1) are non-decreasing). Among all trees with
degree sequence (d1, . . . , dn) there always exists a caterpillar that achieves the
minimum value of

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v)).

2.6.2 Greedy trees

We now move on to the greedy trees. The main theorem relies on the inter-
esting statement below, established in [94], showing that the greedy tree is
indeed greedy with respect to the distances in the following sense.

Theorem 2.6.2 Let d1 ≥ d2 ≥ · · · ≥ dn be positive integers such that
∑

i di =
2(n− 1), and let k be another arbitrary positive integer. Among all trees with
degree sequence (d1, d2, . . . , dn), the greedy tree has the largest number pk(T )
of pairs (u, v) of vertices such that d(u, v) ≤ k.

Before considering the proof of Theorem 2.6.2, let us first introduce the
following important consequence that is our main statement of this section.

Corollary 2.6.1 Let f(x) be any non-negative, non-decreasing function of x.
Then, the index

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is minimized by the greedy tree among all trees with a given degree sequence.

Proof:

First, note that

Wf (T ) =
∑

k≥0

(f(k + 1)− f(k)) |{{u, v} ⊆ V (T ) : d(u, v) > k}| .

Since f(k + 1) − f(k) is non-negative for all k (we set f(0) = 0) as f is
non-decreasing, the conclusion follows from Theorem 2.6.2 by the definition
of pk(T ). �
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Just as in the previous section, the above corollary includes the classical
Wiener index, the hyper-Wiener index, and the generalized Wiener index with
α > 0.

Remark 2.6.3 Another interesting fact to note is that Corollary 2.6.1 is, as
a matter of fact, equivalent to Theorem 2.6.2. To see this, let

fk(x) =

{
0 x ≤ k,

1 x > k,

so that

Wfk(T ) =

(
n

2

)
− pk(T )

for any tree T of order n. Hence pk is maximized if Wfk(T ) is minimized and
vice versa.

Now, in order to establish the extremality of the greedy trees, we should
try to understand the structural properties that define a greedy tree. From
Definition 2.1.1, it is probably obvious that the following is true in a greedy
tree:

Proposition 2.6.5 The vertex degrees along any maximal path (of a greedy
tree) are increasing from one end to the middle and then decreasing. Further-
more, vertices closer to the middle (regardless of which side they are on) have
larger degrees. That is:

• for any path P = up, up−1, . . . , u1, v1, . . . , vp of odd length (2p− 1), we must
have (possibly after reversing the order of the vertices)

deg(u1) ≥ deg(v1) ≥ deg(u2) ≥ deg(v2) ≥ · · · > deg(up) = deg(vp) = 1;

• for any path P = up+1, up, . . . , u1, v1, . . . , vp of even length (2p), we must
have (possibly after reversing the order of the vertices)

deg(u1) ≥ deg(v1) ≥ deg(u2) ≥ deg(v2) ≥ · · · > deg(vp) = deg(up+1) = 1.

To see this, one simply recalls that in a greedy tree with its designated
root, any maximal path has its middle point at the smallest height (among
vertices on this path) and the vertex degrees decrease from this middle point
to both ends of the path. We skip the details. It was shown in [110] that this
rather obvious necessary condition is also sufficient for a tree, with a given
degree sequence, to be greedy.

Next, we will introduce and prove a sufficient and necessary condition for
a tree (with a given degree sequence) to be greedy in terms of the level-greedy
trees. There are a number of different proofs in the literature. We briefly
introduce the idea of the most elementary one.
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Theorem 2.6.3 Every greedy tree with a given degree sequence is also level-
greedy with any choice of root or edge-root.

On the other hand, if a tree T with a given degree sequence is level-greedy
with respect to any possible choice of root or edge-root, then T is a greedy tree.

Proof:

The first part is obvious from the definitions of greedy and level-greedy trees.
We leave the proof as an exercise.

To see the other direction, let us start with a tree T with a given degree
sequence that is level-greedy with respect to any root or edge-root. Following
the definition of a greedy tree, we first choose the root r to be:

• one of the vertices with the largest degree;

• among the vertices with the largest degree, one with the largest sum of
degrees of its neighbors;

• among the vertices with the largest degree and largest sum of neighboring
degrees, one with the largest sum of degrees of vertices at distance 2;

• etc.

Note that T is level-greedy with root r, so to show that T is greedy with
respect to root r we only need to establish the fact that vertices of smaller
height have greater degrees. Suppose, for contradiction, that this is not the
case. Then we have two vertices u and v where u is of smaller height and
deg(u) < deg(v). Without loss of generality we may assume the following:

1. v has height exactly 1 more than u;

2. u has the smallest degree among vertices of the same height and v
has the largest degree among vertices of the same height;

3. for all vertices of smaller height than u and v we have the fact that
“vertices of smaller height have greater degrees”.

From our assumption, the path P (u, v) is of odd length. Let e = st be the
edge in the middle of P (u, v). We now consider T ′, the same tree as T but
edge-rooted at e. Further, assume that, in T ′, u is a descendant of s and v is
a descendant of t. Also note that u and v are of the same height in T ′. By
assumption (3) above we know deg(s) ≥ deg(t). Consider two cases:

• If deg(s) > deg(t), then since T ′ is level-greedy, and u (as a descendant
of s) and v (as a descendant of t) are of the same height, we must have
deg(u) ≥ deg(v), a contradiction;

• If deg(s) = deg(t), consider now the sum of degrees of descendants of s and
t, respectively, of each height. Again by assumption (3) above we know the
sum on the “s side” is always at least as large as that on the “t side”:
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– if strict inequality holds for descendants of any height, then the same
reasoning as in the previous case yields a contradiction;

– otherwise, we have the same number of descendants of s and t, of each
height, and they are all of the same degree. Now for descendants of the
same height as u and v, since deg(u) < deg(v) and T ′ is level-greedy,
we must have degree sums of vertices of any given height in T ′, that
are larger on the “t side” than on the “s side” with at least one strict
inequality. Note that s is closer to r than t is in T , so this contradicts
our choice of r in the first place.

�

With Theorem 2.6.3, we can now prove Theorem 2.6.2 by establishing that
the extremal trees (with a given degree sequence, that maximize pk) must be
level-greedy. This was first done in [94].

Lemma 2.6.2 Among all rooted trees whose outdegrees at each level i are
given by a multiset {ai1, ai2, . . . , aiℓi} as in Definition 2.1.2, the level-greedy
tree maximizes the value of pk(T ).

First, we prove a technical lemma that was also introduced in [94].

Lemma 2.6.3 Suppose that the sequences (x1, x2, . . . , xm), (y1, y2, . . . , ym),
(x′1, x

′
2, . . . , x

′
m) and (y′1, y

′
2, . . . , y

′
m) of non-negative real numbers satisfy

h∑

j=1

xj ≥
h∑

j=1

x′σ(j) and

h∑

j=1

yj ≥
h∑

j=1

y′σ(j) (2.10)

for all 1 ≤ h ≤ m and all permutations σ of {1, 2, . . . ,m}. Then

x1y1 + x2y2 + · · ·+ xmym ≥ x′1y
′
1 + x′2y

′
2 + · · ·+ x′my

′
m. (2.11)

Proof:

Suppose that x′1, x
′
2, . . . , x

′
m and y′1, y

′
2, . . . , y

′
m are such that the sum

x′1y
′
1 + x′2y

′
2 + · · ·+ x′my

′
m (2.12)

attains its maximum under the stated restrictions. We can assume, without
loss of generality, that

x′1 ≥ x′2 ≥ . . . ≥ x′m and y′1 ≥ y′2 ≥ . . . ≥ y′m

by the rearrangement inequality, which states that the maximum of (2.12)
under permutations of the x′i and y

′
j is attained when both are ordered in the

same way (e.g., both increasing or both decreasing).
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If (x1, . . . , xm) 6= (x′1, . . . , x
′
m), let h be the smallest index such that

x1 + x2 + . . .+ xh > x′1 + x′2 + . . .+ x′h,

and let ǫ > 0 be the difference between the two sides of the inequality. Re-
placing x′h by x′h + ǫ and x′h+1 by x′h+1 − ǫ, we obtain a new (2m)-tuple of
numbers, still satisfying the requirements, while the sum

x′1y
′
1 + x′2y

′
2 + · · ·+ x′my

′
m

changes by ǫ(y′h − y′h+1) ≥ 0. This process can be repeated until we have

x1 = x′1, x2 = x′2, . . . , xm = x′m, y1 = y′1, y2 = y′2, . . . , ym = ym.

�

We are now ready to prove Lemma 2.6.2.

Proof of Lemma 2.6.2:

We proceed by considering the number of paths between vertices at different
levels i and j that are of length at most k.

Given i and j, if i + j ≤ k, then d(u, v) ≤ k for any u at level i and v at
level j.

Otherwise, a vertex u at level i and a vertex v at level j satisfy d(u, v) ≤ k
if and only if they have the same ancestor at level ⌈(i + j − k)/2⌉. We will
count the number of such pairs of vertices below.

For this purpose, let w1, w2, . . . , wm be the vertices at level r, and denote
by x1, x2, . . . , xm and y1, y2, . . . , ym the number of their respective successors
at level i and level j. Then, the number of pairs we have to count is

x1y1 + x2y2 + · · ·+ xmym

if i 6= j, and otherwise

(
x1
2

)
+

(
x2
2

)
+ · · ·+

(
xm
2

)
.

However, in the latter case, as the sum x1+x2+ · · ·+xm is constant under
reshuffling (i.e., the process of changing the tree while keeping the same root
and level-degree sequence), maximizing this sum is equivalent to maximizing

x21 + x22 + · · ·+ x2m = x1y1 + x2y2 + · · ·+ xmym,

so the case i = j can be treated in the same way as the i 6= j case.
Under all possible “reshuffled” trees, it is clear that the level-greedy tree

maximizes x1 + x2 + · · · + xh and y1 + y2 + · · · + yh for all 1 ≤ h ≤ m.
Hence, the result will follow as a consequence of Lemma 2.6.3. As it is easy to
see that (2.10) is satisfied and hence (2.11) implies that the level-greedy tree
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indeed maximizes the number of pairs of vertices at levels i and j that have a
common ancestor at level r = ⌈(i+ j − k)/2⌉, for every i and j.

That is, pk is maximized by the level-greedy tree. �

The very same arguments will justify the following similar statements for
edge-rooted level-greedy trees. We leave the details as an exercise.

Lemma 2.6.4 Among all edge-rooted trees whose outdegrees at each level are
given by a multiset {ai1, ai2, . . . , aiℓi} as in Definition 2.1.2, the greedy tree
maximizes the value of pk(T ).

We conclude this section by noting that Theorem 2.6.2 is a direct conse-
quence of Lemma 2.6.2, Lemma 2.6.4, and Theorem 2.6.3. Of course, com-
pletely analogous results hold for extremal trees of a given degree sequence
that maximize Wf (·) for a non-increasing function f , such as in the case of
the Harary index. The proof is left as an exercise.

Theorem 2.6.4 Let f(x) be any non-negative, non-increasing function of x.
Then, the index

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized by the greedy tree among all trees with a given degree sequence.

2.6.3 Comparing greedy trees of different degree sequences
and applications

So far the introduction of Wf (·) is probably the most general concept we have
seen in terms of extremal problems with respect to distance-based topologi-
cal indices. Another direction of general approaches is to obtain generalized
characterization of extremal structures under various constraints. This is done
through comparing the greedy trees of different degree sequences.

Recall the partial ordering between degree sequences (on the same num-
ber of vertices) introduced as majorization. In the rest of this section, we
will see that they also define a partial ordering on the extremal values of
distance-based indices among trees of different degree sequences and this par-
tial ordering can be used to identify many other extremal structures.

We start with a comparison between greedy trees of different degree se-
quences, with respect to pk(T ).

Theorem 2.6.5 Given two different degree sequences π and π′ with π ⊳ π′,
we have

pk(T
∗
π ) ≤ pk(T

∗
π′)

where T ∗
π and T ∗

π′ are the greedy trees with degree sequences π and π′, respec-
tively.



58 Introduction to Chemical Graph Theory

Proof:

By Lemma 1.4.1, it is sufficient to show the statement for two degree sequences

π = (d0, . . . dn−1) ⊳ (d
′
0, . . . , d

′
n−1) = π′

such that they differ only at the j-th and k-th entries with d′j = dj + 1,
d′k = dk − 1 for some j < k.

Let Tπ′ be the tree obtained from T ∗
π by removing the edge vw and adding

an edge uw, where u and v are the vertices corresponding to dj and dk,
respectively, and w is a child of v (Figure 2.17).

v

w

u

w

T ∗
π Tπ′

FIGURE 2.17
The trees T ∗

π and Tπ′ with π = (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, . . . , 1) and π′ =
(4, 4, 4, 4, 3, 2, 2, 2, 2, 1, . . . , 1).

Note that Tπ′ has degree sequence π′, but it is not necessarily a greedy
tree.

Let T ′ be the tree obtained from T ∗
π after removing w and its descendants.

Then, it is an easy exercise, based on the structure of the greedy tree T ∗
π , to

check that
pk(T

′, u) ≥ pk(T
′, v) for all k ≥ 1,

where pk(T, x) is the number of vertices in T at distance ≤ k from x. Conse-
quently, we have

pk(Tπ′) ≥ pk(T
∗
π )

following straightforward computation. Intuitively, this is because Tπ′ places
w and its descendants closer to more vertices at shorter distance than T ∗

π does,
and consequently generates more short paths.

On the other hand, by the extremality of the greedy tree T ∗
π′ with respect

to pk(·) we now have

pk(T
∗
π′) ≥ pk(Tπ′) ≥ pk(T

∗
π ).

�

As a first example of the applications of this powerful result, consider
all possible degree sequences of trees of order n and maximum degree ∆.
It is easy to see that the degree sequence (∆,∆, . . . , ∆,m, 1, . . . , 1) (m ∈
{1, 2, . . . , ∆ − 1} chosen to be congruent to n − 1 modulo ∆ − 1) majorizes
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all other degree sequences. Hence, Theorem 2.6.6 immediately implies the
following.

Corollary 2.6.2 The “complete ∆-ary tree” maximizes pk(T ) among trees
with maximum degree ∆.

Here the complete ∆-ary tree with a given maximum degree ∆ (also called
the good tree or Volkmann tree) is defined in a similar way as the greedy tree,
except that the vertices v, v1, . . . take the maximum degree ∆ until there are
not enough vertices (Figure 2.18). As a result, the complete ∆-ary tree has
degree sequence (∆,∆, . . . , ∆,m, 1, . . . , 1) for some m ∈ {1, 2, . . . , ∆− 1}.

FIGURE 2.18
A complete 4-ary tree.

Similar to the previous section, the extremal statements with respect to
pk(·) immediately transform into statements for distance-based indices.

Corollary 2.6.3 Let f(x) be any non-negative, non-increasing (non-
decreasing) function of x. Then the graph invariant

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized (minimized) by the complete ∆-ary tree among all trees with
given order and maximum degree ∆.

Similar to the above discussion, we may immediately transform Theo-
rem 2.6.5 into the following version in terms of Wf (·).

Theorem 2.6.6 Given two different degree sequences π and π′ with π ⊳ π′,
then:

• for a non-negative and non-increasing function f(x) we have

Wf (T
∗
π ) ≤Wf (T

∗
π′);

and
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• for a non-negative and non-decreasing function f(x) we have

Wf (T
∗
π ) ≥Wf (T

∗
π′).

Here, T ∗
π and T ∗

π′ are the greedy trees with degree sequences π and π′, respec-
tively.

It is easy to see from Corollary 2.6.2 that among different classes of trees, to
apply Theorem 2.6.6 one only needs to identify the extremal degree sequence,
under the given constraints, that majorizes all other degree sequences. We
show a few more well-known applications along this line. A very brief justifi-
cation is provided for completeness.

Corollary 2.6.4 Let f(x) be any non-negative and non-increasing (non-
decreasing) function of x. Then,

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized (minimized) by the star K1,n−1 among all trees of a given order.

Proof:

For every tree of order n, its degree sequence π is majorized by π′ = (n −
1, 1, . . . , 1) with “equality” if and only if the tree is the star K1,n−1. �

It has been of interest to study extremal problems among structures with
a given number of leaves, a given independence number, or a given matching

number. For this purpose we let T (1)
n,s be the set of all trees of order n with

s leaves, T (2)
n,α be the set of all trees of order n with independence number α

and T (3)
n,β be the set of all trees of order n with matching number β.

Similar to Corollary 2.6.4, useful consequences follow from Theorem 2.6.6.

Corollary 2.6.5 Let f(x) be any non-negative, non-increasing (non-
decreasing) function of x. Then,

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized (minimized) by the tree T ∗
s in T (1)

n,s , where T ∗
s is the starlike tree

obtained from t paths of order q+2 and s−t paths of order q+1 by identifying
one end of each of the s paths. Here n− 1 = sq + t, 0 ≤ t < s.

Proof:

Let T be any tree in T (1)
n,s with degree sequence π1 = (d0, . . . , dn−1). Thus,

dn−s−1 > 1 and dn−s = · · · = dn−1 = 1.
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Let T ∗
π be a greedy tree with degree sequence π = (s, 2, . . . , 2, 1, . . . , 1), where

the number of 1s in π is s. It is easy to see that π1 ⊳ π. The conclusion then
follows from Theorem 2.6.6. �

Corollary 2.6.6 Let f(x) be any non-negative, non-increasing (non-
decreasing) function of x. Then

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized (minimized) by the tree T ∗
α in T (2)

n,α, where T ∗
α is T ∗

π with degree
sequence π = (α, 2, . . . , 2, 1, . . . , 1) with numbers n−α− 1 of 2′s and α of 1′s,
i.e., T ∗

π is obtained from the star K1,α by adding n − α − 1 pendant edges to
n− α− 1 leaves of K1,α.

Proof:

For any tree T of order n with independence number α, let I be an independent
set of T with size α and τ = (d0, . . . , dn−1) be the degree sequence of T . If there
exists a leaf u with u /∈ I, then there exists a vertex v ∈ I with (u, v) ∈ E(T ).
Hence I ∪ {u} \ {v} is an independent set of T with size α. Repeating this
argument, one can always construct an independent set of T with size α that
contains all leaves of T . Hence, there are at most α leaves. The conclusion
then follows from similar arguments as that of Corollary 2.6.5. �

Corollary 2.6.7 Let f(x) be any non-negative, non-increasing (non-
decreasing) function of x. Then

Wf (T ) =
∑

{u,v}⊆V (T )

f(d(u, v))

is maximized (minimized) by the tree T ∗
β in T (3)

n,β , where T
∗
β is the greedy tree

T ∗
π with degree sequence π = (n− β, 2, . . . , 2, 1, . . . , 1). Here, the number of 1s

in π is n− β. That is, T ∗
π is obtained from the star K1,n−β by adding β − 1

pendant edges to β − 1 leaves of K1,n−β.

Proof:

For any tree T of order n with matching number β, let τ = (d0, . . . , dn−1)
be the degree sequence of T . Let M be a matching of T with size β. Since T
is connected, there are at least β vertices in T such that their degrees are at
least 2, as each matching edge of M has to contain at least one such vertex.
Hence, dβ−1 ≥ 2 and τ ⊳ π. The conclusion follows from Theorem 2.6.6. �

Let us remark that the previous two corollaries are in fact equivalent: for
a tree T with n vertices, the independence number α(T ) and the matching
number β(T ) satisfy (see Exercise 4 in Chapter 1)

α(T ) + β(T ) = n,



62 Introduction to Chemical Graph Theory

hence T
(2)
n,α and T

(3)
n,n−α coincide.

Theorem 2.6.6 and the general approach discussed above can be employed
to deal with extremal questions in many other classes of trees, some of which
we list below. It is a good exercise to identify the degree sequence under the
different constraints and their corresponding extremal structures.

• Among trees with a given number of branching vertices;

• Among trees with all vertex degrees odd;

• Among trees with a given number of vertices with even degrees;

• Among trees with a given minimum degree for internal vertices;

• Among trees with a given number of segments.

2.7 The inverse problem

There are many other problems in chemical graph theory, in addition to the
extremal problems that we have discussed so far, that are worth exploring.
One of them is the so-called inverse Wiener index problem [46]:

Given a positive integer n, can we find a structure (graph) with Wiener index
n?

One of the first related observations states that except for 49 of them, all
positive integers can be represented as the Wiener index of some tree. The 49
integers that are not Wiener index of any tree are

2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34,
37, 38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91,
99, 101, 106, 113, 147, 159.

This was independently proved in [103] and [115] through completely differ-
ent approaches. Based on those studies, it was pointed out that the molecular
graphs of most practical interest have natural restrictions on their degrees
(i.e., trees with limited maximal degree) or have hexagonal or pentagonal
cycles. Mathematically, this inspired the study of the inverse Wiener index
problem for two types of structures in [107]: trees with vertex degrees ≤ 3
(Figure 2.19), and a type of graphs involving hexagonal chains (the interested
reader is referred to [107] for details of the latter).

In this section, we show a solution to the inverse problem by introducing
a specific type of trees, representing their Wiener index mathematically, and
eventually showing that the resulting formula represents almost all positive
integers.
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v1 v2 v3 vx1
vx2

vx3
vxk vn

ux1
ux2

ux3
uxk

FIGURE 2.19
Caterpillar tree with degree ≤ 3.

Consider the family of trees T = T (n, x1, x2, . . . , xk), where

V = {v1, . . . , vn} ∪ {ux1
, . . . , uxk

},

E = {vivi+1, 1 ≤ i ≤ n− 1} ∪ {vxiuxi , 1 ≤ i ≤ k},
where n and xi, 1 ≤ i ≤ k, are integers such that 1 < x1 < . . . < xk < n
(Figure 2.19).

The following theorem was established in [107]. We will briefly discuss the
ideas of the arguments in this section.

Theorem 2.7.1 Every sufficiently large integer n is the Wiener index of a
caterpillar tree with degree ≤ 3.

First, we explicitly represent the Wiener index of these trees: for T =
T (n, x1, x2, . . . , xk), we have

W (T ) =
∑

1≤i≤j≤n

d(vi, vj) +
n∑

i=1

k∑

j=1

d(vi, uxj) +
∑

1≤i≤j≤k

d(uxi , uxj)

=
n3 − n

6
+

n∑

i=1

k∑

j=1

(1 + |xj − i|) +
∑

1≤i<j≤k

(2 + xj − xi),

which simplifies to

n3

6
+
kn2

4
+

(6k − 1)n

6
− k3 − 12k2 + 14k

12
+

k∑

j=1

(
xj + j−1− k + n

2

)2
. (2.13)

By taking k = 8 and n = 2s in (2.13) and setting yj := xj + j − 5− s, we
have

W (T (n, x1, . . . , x8)) =
4s3

3
+ 8s2 +

47s

3
+ 12 +

8∑

j=1

y2j (2.14)

under the conditions that

−3− s ≤ y1 < y2 < . . . < y8 ≤ 3 + s

and without any two consecutive yj (since no two xj ’s may be the same).
We now introduce the following modification of Lagrange’s famous four-

square theorem, shown in [107]. We skip the number-theoretical proof here.
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Lemma 2.7.1 Let N > 103 and 4 ∤ N . Then N can be written as a21 + a22 +
a23 + a24 with non-negative integers a1 < a2 < a3 < a4 and a2 ≥ 2.

By setting z1 = −a3, z2 = −a1, z3 = a2 and z4 = a4 with a1, a2, a3, a4
satisfying the conditions in the above lemma, we immediately have the fol-
lowing.

Corollary 2.7.1 If 4 ∤ N , N > 103, one can always find integers z1, z2, z3, z4
such that N = z21+ . . .+z

2
4, z1 < . . . < z4 and no two of the zi are consecutive.

With these preparations, one can show that
∑8

j=1 y
2
j can represent all

numbers in infinitely many intervals of positive integers.

Proposition 2.7.1 Let K ≥ 15. Then every integer N in the interval

[4K2 − 8K + 112, 5K2 − 16K + 21]

can be written as y21 + . . . y28, where the yi are integers satisfying

−K ≤ y1 < y2 < . . . < y8 ≤ K

and no two of them are consecutive.

Proof:

Take y1 = −K, y7 = K − 2, y8 = K and either y2 = −K +2 or y2 = −K +3.
By Corollary 2.7.1 and the additional observation that z4 ≤ ⌊

√
N⌋ and |z1| ≤

⌊
√
N⌋− 1, one finds that every integer M ∈ [104, (K− 3)2 − 1], 4 ∤M , can be

written as y23 + . . .+ y26 , where

−K = y1 < y2 < −K + 4 < y3 < y4 < y5 < y6 < K − 3 < y7 < y8 = K

(no two of them being consecutive). Now

(−K)2 + (−K + 2)2 + (K − 2)2 +K2 = 4K2 − 8K + 8 ≡ 0 mod 4

and

(−K)2 + (−K + 3)2 + (K − 2)2 +K2 = 4K2 − 10K + 13 ≡ 2K + 1 mod 4.

So all integers 6≡ 0 mod 4 in the interval [4K2−8K+112, 5K2−14K+16] and
all integers 6≡ 2K+1 mod 4 in the interval [4K2−10K+117, 5K2−16K+21]
can be written in the required way. Since 0 6≡ 2K+1 mod 4, this means that
in fact all integers in the interval [4K2 − 8K + 112, 5K2 − 16K + 21] can be
written in the required way, which proves the claim. �

For any large enough integer, we may show that it has to fall into one of
the above intervals, consequently leading to the following.

Theorem 2.7.2 All integers ≥ 3856 are Wiener indices of trees of the form
T (n, x1, . . . , x8) (x1 < x2 < . . . < x8) and thus Wiener indices of chemical
trees.
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Proof:

By the preceding proposition, any integer in the interval [4K2 − 8K +
112, 5K2 − 16K + 21] can be written as y21 + . . . + y28 , where the yi satisfy
our requirements and −K ≤ y1 < . . . < y8 ≤ K. If we take the union of these
intervals over 21 ≤ K ≤ s+ 3, we see that in fact any integer in the interval
[1708, 5s2 + 14s + 18] can be written as y21 + . . . y28 , where the yi satisfy our
requirements and −3−s ≤ y1 < . . . < y8 ≤ s+3. Short computer calculations
show that, for s ≥ 7, even any integer in the interval [224, 5s2 +14s+18] can
always be written that way. But this means that for any s ≥ 7, all integers in
the interval

[4s3
3

+ 8s2 +
47s

3
+ 236,

4s3

3
+ 13s2 +

89s

3
+ 30

]

are Wiener indices of trees of the form T (n, x1, . . . , x8). Taking the union
over all these intervals, we see that all integers ≥ 12567 are contained in an
interval of that type. By an additional computer search (n ≤ 40 will do) in
the remaining interval, one can get this number down to 3856. �

Remark 2.7.1 By checking k = 4, 5, 6, 7 and finally all n ≤ 17, one obtains
a list of 250 integers (the largest being 927) that are not Wiener indices of
trees of the form T (n, x1, . . . , xk) with maximal degree ≤ 3. Further computer
search gives a list of 127 integers that are not Wiener indices of trees with
maximal degree ≤ 3 – these are 16, 25, 28, 36, 40, 42, 44, 49, 54, 57, 58, 59,
62, 63, 64, 66, 80, 81, 82, 86, 88, 93, 95, 97, 103, 105, 107, 109, 111, 112, 115,
116, 118, 119, 126, 132, 139, 140, 144, 148, 152, 155, 157, 161, 163, 167, 169,
171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 199, 227, 239, 251, 255,
257, 259, 263, 267, 269, 271, 273, 275, 279, 281, 283, 287, 289, 291, 405 and
the 49 values that cannot be represented as the Wiener index of any tree. This
list reduces to the following values if one considers also trees with maximal
degree = 4: 25, 36, 40, 49, 54, 57, 59, 80, 81, 93, 95, 97, 103, 105, 107, 109,
132, 155, 157, 161, 163, 167, 169, 171, 173, 177, 239, 251, 255 and 257.

Exercises

1. Prove that
W (G) ≥ n(n− 1)−m

holds for every connected graph G with n vertices and m edges.

2. Show that W (T1) > W (T2) and Γ (T1) < Γ (T2) for T1 and T2 in
Figure 2.6.

3. Prove (2.1) for two k-ary trees T and T ′.
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4. Compute the sum of eccentricities of a path on n vertices.

5. Prove: the Wiener index of a tree with an odd number of vertices
is always even.

6. Let L(T ) be the line graph of a tree T , whose vertices are the edges
of T , with an edge between two vertices of L(T ) if and only if the
corresponding edges are adjacent in T . Prove that the following
formula holds for every tree with n vertices:

W (L(T )) = W (T )−
(
n

2

)
.

7. Prove the following identity for the hyper-Wiener index of a tree
T : for two vertices u and v, let N(u, v) be the number of vertices
(including u itself) for which the unique path to v passes through
u. We have

WW (T ) =
1

2

∑

{u,v}⊆V (T )

(
d(u, v) + d(u, v)2

)

=
∑

{u,v}⊆V (T )

N(u, v)N(v, u).

8. Prove (2.3) in Section 2.4.

9. Following the discussion at the end of Section 2.4, characterize the
chemical tree, with a given degree sequence, that maximizes the
Wiener index.

10. Finish the proofs for r1 ≤ · · · ≤ rj in Theorem 2.5.4 and s1 ≥ · · · ≥
sj′ in Theorem 2.5.5.

11. Prove Proposition 2.6.2.

12. Prove Lemma 2.6.1.

13. Prove Proposition 2.6.3.

14. Prove Proposition 2.6.4.

15. Prove Propostion 2.6.5.

16. Prove Lemma 2.6.4.

17. Prove Theorem 2.6.4.

18. Among degree sequences of each of the following classes of trees of
given order, find the degree sequence that majorizes all others:

•Among trees with a given number of branching vertices;

•Among trees with all vertex degrees odd;

•Among trees with a given number of vertices with even degrees;

•Among trees with a given minimum degree for internal vertices;

•Among trees with a given number of segments.
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Vertex degrees and the Randić index

3.1 Introduction

The best known degree-based index is probably the Randić index

R(G) =
∑

uv∈E(G)

(deg(u) deg(v))−
1
2 ,

introduced by Randić in 1975 [90]. Its more general version, known earlier
as the branching index or connectivity index, is now called the generalized
Randić index

Rα(G) =
∑

uv∈E(G)

(degG(u) degG(v))
α,

where α 6= 0 can assume values other than − 1
2 .

With different values of α the concept Rα(·) has appeared in various differ-
ent instances. For instance, R1(G) is also known as the second Zagreb index .
(The first Zagreb index is just the sum of degree squares; more general ver-
sions of it allow any exponent instead of 2.) For a tree T , R1(T ) has also been
known as the weight of a tree.

The Randić index gained further popularity following the work of Bollobás
and Erdős [8,9]. It was shown that among graphs on n vertices with minimum
degree at least 1, the star minimizes R−1/2. As a generalization, in [67] the
problem of minimizing R−1/2 among graphs on n vertices with minimum
degree at least k was discussed but not completely solved.

One of the reasons that the extremal problems with respect to the Randić
index tend to be difficult may be the fact that, unlike what we have seen in
many other chemical indices in this book, adding an edge to a graph does
not necessarily increase nor decrease the Randić index. This “property” also
leads to the disproofs of quite a number of published conjectures. Of course,
in the general case of Rα(·) with α ≥ 0, adding an edge does indeed increase
the value of Rα(·). This can be seen by noting that the addition of an edge
can only increase the degrees of vertices which increase the value of some
terms in the summation, and more edges means more (positive) terms in the
summation. As an immediate consequence, the following is true. We leave the
proof as an exercise.

67
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Proposition 3.1.1 For any α > 0, among connected graphs on n vertices
Rα(·) is maximized by the complete graph and minimized by a tree.

The cases with negative α are much more complicated for the obvious
reason. As is the case for distance-based indices, there seem to be significantly
more results on trees than on general graphs. Taking the weight R1(·) as an
example, paths and star continue to be extremal among general trees of a
given order.

Proposition 3.1.2 Among trees on n vertices:

• the path minimizes R1(·);

• the star maximizes R1(·).

Proof:

• For the first part, suppose for contradiction that T is a tree on n vertices
that minimizes the weight and that T is not a path.

Then, similar to the proof of Proposition 2.3.3, let P (u, v) be a longest
path in T with leaves u and v, and let the vertices on this path be u =
v0, v1, v2, . . . , vk, vk+1 = v. Since T is not a path, there exists a vertex on
P (u, v), say vi with the smallest subscript i such that vi is of degree at least
3. It is obvious that i is at least 1 and at most k.

Let w be a neighbor of vi that is not on P (u, v) and consider the tree
T ′ = T − viw + uw (Figure 3.1).

vi vvku

w

FIGURE 3.1
The path P (u, v), vi, and w.

From T to T ′ we only need to consider the edges xy whose corresponding
term deg(x) deg(y) changed. These are all the edges incident with the ver-
tices u and vi as the degree of u changed from 1 to 2 and the degree of vi
decreased by 1. Then, if i > 1, we have

R1(T
′)−R1(T )

= degT (v1) + degT (w)(2 − degT (vi))−
∑

x∈NT (vi)\{w}
degT (x) < 0

as degT (vi) ≥ 3 and degT (v1) = 2 from our constructions. This is a contra-
diction. The case for i = 1 is similar and we leave it as an exercise.
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• For the second part, suppose for contradiction that T maximizes R1(·) and
T is not a star.

Hence, T has at least two internal vertices. Consider now an internal vertex
u of T , all but one of whose neighbors are leaves. Let the unique non-leaf
neighbor of u be v and consider the tree T ′ obtained from T by removing
all pendant edges at u and reattaching them at v (Figure 3.2).

u

v

FIGURE 3.2
The tree T with internal vertices u and v.

Again, from T to T ′ we only need to consider the contribution to R1(·) from
edges incident with at least one of u and v. Then, by examining these edges
and the corresponding product of adjacent degrees (the details are left as
exercises), we have

R1(T
′)−R1(T ) = (degT (v)− 1)(degT (u)− 1) + (degT (v) + degT (u)− 1)

− degT (v) degT (u) + (degT (u)− 1)
∑

x∈NT (v)\{u}
degT (x)

= (degT (u)− 1)
∑

x∈NT (v)\{u}
degT (x) > 0

as degT (u), degT (v) ≥ 2. This is a contradiction.

�

As one would expect, to prove similar conclusions for the original Randić
index, R−1/2(·), or the general version, Rα(·), will involve more complicated
analysis and computation. Nevertheless, Proposition 3.1.2 and its proof pro-
vide a perfect example of the type of arguments in extremal problems with
respect to distance-based indices.

Among trees of given order, it is known that the path maximizes R−1/2 [12,
125]. The survey [67] further discusses extremal results for R−1/2(T ) among
different classes of trees:

(a) trees with given number of vertices and leaves;

(b) trees with given diameter and number of vertices;

(c) chemical trees with given number of vertices;
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(d) chemical trees with given number of vertices and leaves.

As an example of other related work on this subject, the three largest pos-
sible and the three smallest possible values of R−1/2(T ), where T is a chemical
tree with given number of vertices, are presented in [40]. The extremal trees
achieving these extremal values are also characterized.

Many extremal results on R−1/2(·) can be extended to the generalized
Randić index Rα(·). It was first shown in [54] that among trees of order n ≥ 5,
Rα(·) is minimized by

• the path for positive α;

• the star for negative α.

The essence of the proof of these results is in fact very similar to that of Propo-
sition 3.1.2 and we encourage the reader to attempt them before checking the
reference.

Maximizing the generalized Randić index turns out to be a lot more com-
plicated. For trees, this is studied in several individual cases. In particular, in
the aforementioned survey [67] this problem was considered for various classes
of trees and chemical trees.

Starting from the next section, we will see many other degree-based indices,
which are just examples of numerous such concepts. As an example of how
complicated such indices can be, the higher order Randić index was proposed
in [63] as

iR(G) =
∑

v0v1...vi

1√
degG(v0) degG(v1) · · ·degG(vi)

,

where the sum is taken over paths v0, v1, . . . , vi of length i in the graph G.
It was shown in [122] that among trees on n vertices, the star maximizes the
second order Randić index, and among trees on n vertices with maximum
degree 3, the path is the unique tree that minimizes the second order Randić
index.

3.2 Degree-based indices in trees with a given degree

sequence

As in the case of distance-based indices, trees with a given degree sequence
and even more general versions of degree-based indices are of interest. We will
replace (degG(u) degG(v))

α by a symmetric function f(degG(u), degG(v)) (so
that the Randić index, along with many other degree-based indices, occurs
as a special case) and examine the extremal problems for trees with a given
degree sequence.
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First, in addition to the Randić index and its generalized version, we list
some of the best known indices defined on vertex degrees.

A natural variation of R(T ) was named the sum-connectivity index , where
instead of the product we take the sum of adjacent vertex degrees,

χ(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))−
1
2 ,

and the general sum-connectivity index , where the power − 1
2 is replaced with

α as in the case of the Randić index,

χα(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))α.

Another variant of R(T ) is the harmonic index

H(T ) =
∑

uv∈E(T )

2

deg(u) + deg(v)
,

which takes the sum of the reciprocal of the arithmetic mean (as opposed to
the geometric mean in the case of R(T )) of adjacent vertex degrees.

Another special case of the general sum-connectivity index, with α = 2, is
the third Zagreb index . It is defined as

∑

uv∈E(T )

(deg(u) + deg(v))2.

A slight variant of the third Zagreb index is the reformulated Zagreb index ,
defined as ∑

uv∈E(T )

(deg(u) + deg(v) − 2)2.

Last but certainly not least, the Atom-Bond connectivity index [28], de-
fined as

∑

uv∈E(T )

√
deg(u) + deg(v) − 2

deg(u) deg(v)
,

is a rather complicated example of such graph invariants that has recently
received much attention.

These indices, the Randić index, and their generalizations, share the com-
mon feature that they are defined on adjacent vertex degrees in graphs/trees.
In order to deal with such indices through a unified approach, we first intro-
duce a symmetric bivariate function f(x, y) (defined on N× N) such that

f(x, a) + f(y, b) ≥ f(y, a) + f(x, b) for any x ≥ y and a ≥ b. (3.1)
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Furthermore, strict inequality is implied if both conditions are strict. For a
tree T , let the connectivity function associated with f be

Rf (T ) =
∑

uv∈E(T )

f(deg(u), deg(v)). (3.2)

Noting that (3.1) is essentially a discrete version of

∂2

∂x∂y
f(x, y) ≥ 0,

it is not difficult to see that with different f , Rf (T ) describes H(T ), wα(T ) for
any α, and χα(T ) for α > 1 or α < 0. We will show that, among trees of given
degree sequence, Rf (T ) is maximized by the greedy trees (see the previous
chapter) and minimized by the so-called alternating greedy trees , defined as
follows.

Definition 3.2.1 (Alternating greedy trees) Given the non-increasing
degree sequence (d1, d2, . . . , dm) of internal vertices, an alternating greedy tree
is constructed through the following recursive algorithm:

(i) If m− 1 ≤ dm, then the alternating greedy tree is simply obtained by a
tree rooted at r with dm children, dm −m+1 of which are leaves and the rest
with degrees d1, . . . , dm−1;

(ii) Otherwise, m− 1 ≥ dm + 1. We produce a subtree T1 rooted at r with
dm − 1 children with degrees d1, . . . , ddm−1

;
(iii) Consider the alternating greedy tree S with degree sequence

(ddm , . . . , dm−1), let v be a leaf with the smallest neighbor degree. Identify
the root of T1 with v.

As an example (Figures 3.3, 3.4, and 3.5), for the given degree sequence

(8, 7, 6, 6, 5, 5, 3, 3, 3, 2),

• T1 is constructed with degrees {8, 2} (as in (ii)), leaving the degree sequence
(7, 6, 6, 5, 5, 3, 3, 3) (as in (iii)) with the corresponding alternating greedy
tree S1;

• To construct S1, T2 is formed with degrees {7, 6, 3}, leaving the degree se-
quence (6, 5, 5, 3, 3) with the corresponding alternating greedy tree S2;

• To construct S2, T3 is formed with degrees {6, 5, 3}, leaving the degree se-
quence (5, 3) to provide us the trivial S3 (as in (i));

• Attaching T3 to S3 (i.e., identifying the root of T3 with a leaf of S3 whose
neighbor has the smallest degree in S3, as in (iii)) yields S2;

• Then attaching T2 to S2 (i.e., identifying the root of T2 with a leaf of S2

whose neighbor has the smallest degree in S2) yields S1;
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• In the final step, it is obvious that the two choices (two leaves of S1 with the
same neighbor degree) for attaching T1 to S1 yield two different alternating
greedy trees. Consequently, unlike the greedy trees, alternating greedy trees
are not necessarily unique.

T1 T2 T3 S3

FIGURE 3.3
Construction of T1, T2, T3 and S3.

FIGURE 3.4
The alternating greedy tree S1 from T2, T3 and S3.

FIGURE 3.5
The alternating greedy trees T or T ′ from T1 and S1.

Theorem 3.2.1 For any function f satisfying (3.1) and Rf (T ) defined as in
(3.2), Rf (T ) is maximized by the greedy tree and minimized by an alternating
greedy tree among trees with a given degree sequence.

3.2.1 Greedy trees

In this section we prove a fundamental property of the extremal trees with a
given degree sequence which maximize Rf (T ). This property, together with
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the previously established necessary and sufficient conditions of greedy trees,
provide the proof for the extremality of the greedy tree with respect to general
Rf (T ).

For this purpose, we consider a maximal path (i.e., a path that cannot
be extended, not necessarily of maximum length) P (v0, vt+1) in the extremal
tree T , with vertices labeled v0, v1, . . . , vt, vt+1, with v0 and vt+1 being leaves.
Let Ti (i = 1, . . . , t) denote the connected components containing vi in T −
E(P (v0, vt+1)). As we have already seen in some elementary proofs, we only
need to focus on the contribution from each edge to the value of Rf (T ). Note
that the order of T ′

i s does not affect this contribution of any edge not on
P (v0, vt+1).

Lemma 3.2.1 Among the extremal trees with a given degree sequence that
maximize Rf (T ) and have a maximal path P (v0, vt+1) of length t + 1 (as
defined above), there is one that satisfies (with appropriate labeling), for any
given s ≤ (t+ 1)/2,

deg(vs) ≤ deg(vt+1−s) ≤ deg(vℓ) (3.3)

for every ℓ such that s ≤ ℓ ≤ t+ 1− s.

Proof:

Let vk be the vertex with the largest degree on this path. Without loss of
generality, one can assume that

deg(vk−1) ≤ deg(vk+1) ≤ deg(vk).

To prove (3.3), first note that it is sufficient to establish

deg(vk−i) ≤ deg(vk+i)

and
deg(vk+i) ≥ deg(vk+i+1)

for all i. Furthermore, this will automatically place vk as the middle vertex of
the path P (v0, vt+1).

Supposing (for contradiction) that (3.3) does not hold, we consider cases
where each of the above statements fails:

• Let i be the smallest value such that

deg(vk−i) ≤ deg(vk+i)

does not hold. Then, we have

deg(vk−i) > deg(vk+i) and deg(vk−i+1) ≤ deg(vk+i−1).
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Consider the tree

T ′ = T − vk−ivk−i+1 − vk+ivk+i−1 + vk+ivk−i+1 + vk−ivk+i−1

obtained from T by “switching” the two “tails” as in Figure 3.6. From
T to T ′, the values of f(·, ·) stay the same for all pairs of adjacent ver-
tex degrees except for the pairs {vk−i, vk−i+1}, {vk+i, vk+i−1} in T and
{vk+i, vk−i+1}, {vk−i, vk+i−1} in T ′. By the condition on f(·, ·), we have

f(deg(vk−i+1), deg(vk+i)) + f(deg(vk+i−1), deg(vk−i))

≥ f(deg(vk−i+1), deg(vk−i)) + f(deg(vk+i−1), deg(vk+i))

and, consequently,
Rf (T

′) ≥ Rf (T ).

vk vk+ivk−i

FIGURE 3.6
Illustration of Case (1).

• Similarly, let i be the smallest value such that

deg(vk+i) ≥ deg(vk+i+1)

does not hold. Note that i ≥ 1. We establish our arguments in two steps:

– If deg(vk+i+2) < deg(vk+i+1), consider the tree

T ′ = T − vk+ivk+i−1 − vk+i+2vk+i+1 + vk+ivk+i+2 + vk+i−1vk+i+1

obtained from T by “switching” Tk+i and Tk+i+1 as in Figure 3.7. The
same argument as in Case (1) shows that

Rf (T
′) > Rf (T ),

a contradiction.

– More generally, if deg(vk+i+2) ≥ deg(vk+i+1), let j be the largest value
such that deg(vk+i+j) ≥ deg(vk+i+j−1) (note that, since vt+1 is a leaf,
we must have deg(vt+1) < deg(vt)). Then, consider the tree

T ′ = T − vk+ivk+i−1 − vk+i+jvk+i+j+1 + vk+ivk+i+j+1 + vk+i−1vk+i+j

obtained from T by “reversing” the branches from Tk+i to Tk+i+j as
in Figure 3.8 and we have

Rf (T
′) ≥ Rf (T ).
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vk vk+i vk+i+1

FIGURE 3.7
Illustration of Case (2-a).

vk vk+i vk+i+j. . .

FIGURE 3.8
Illustration of Case (2-b).

�

Remark 3.2.1 We did not need the strictness of inequalities in the above
proof as we only intend to show the extremality (but not unique extremality)
of the greedy trees.

Another way to look at this is that we may continue to “switch” or “re-
verse” different parts of the tree without ever decreasing the value of Rf (·). It
is an interesting exercise to show that by repeating the above operations when-
ever applicable, the number of “contradicting cases” (pairs of degrees that fail
our desired property) strictly decreases. Consequently, the entire process ter-
minates after finitely many steps.

For a tree with a given degree sequence where (3.3) holds for every maximal
path, it can be shown, through similar arguments as that of Theorem 2.6.3,
that it has to be a greedy tree. We leave the details as an exercise. Hence
Lemma 3.2.1 implies the extremality of the greedy tree, with respect to Rf (·),
among trees with given degree sequence.

3.2.2 Alternating greedy trees

To see that the alternating greedy trees minimize Rf (T ) among trees with
given degree sequence, we establish characteristics of an extremal tree that
minimizes Rf (T ), similar to those of Lemma 3.2.1. Again, we start with a
maximal path P (v0, vt+1) with vertices v0, v1, . . . , vt, vt+1 in such a tree and
claim the following.
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Lemma 3.2.2 Among the extremal trees with a given degree sequence that
minimize Rf (T ) and have a maximal path P (v0, vt+1) of length t+1, there is
one that satisfies (with appropriate labeling), for any given i ≤ (t+ 1)/2,

deg(vi) ≤ deg(vt+1−i) ≤ deg(vk) for all i ≤ k ≤ t+ 1− i

if i is even; and

deg(vi) ≥ deg(vt+1−i) ≥ deg(vk) for all i ≤ k ≤ t+ 1− i

if i is odd.

The proof follows the same lines as that of Lemma 3.2.1. It is also not
difficult to see that Lemma 3.2.2 implies the extremality of alternating greedy
trees (not necessarily unique). We leave the details of these arguments as
exercises.

3.3 Comparison between greedy trees and applications

As in the last section, to facilitate further discussion of these extremal results,
we call a symmetric bivariate function f(x, y), defined on N×N, escalating if
(3.1)

f(a, b) + f(c, d) ≥ f(c, b) + f(a, d) for all a ≥ c and b ≥ d,

essentially a discrete version of

∂2

∂x∂y
f(x, y) ≥ 0,

is satisfied.
Similarly, a bivariate function f(x, y) defined on N× N is de-escalating if

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for all a ≥ c and b ≥ d. (3.4)

From our proofs in the previous section, the following are immediate con-
sequences.

Theorem 3.3.1 For any escalating function f and Rf (T ) defined as in (3.2),
Rf (T ) is maximized by the greedy tree among trees with given degree sequence.

Theorem 3.3.2 For any de-escalating function f and Rf (T ) defined as in
(3.2), Rf (T ) is minimized by the greedy tree among trees with given degree
sequence.



78 Introduction to Chemical Graph Theory

3.3.1 Between greedy trees

As in the case of the distance-based indices (see in particular Theorem 2.6.5),
comparing greedy trees of different degree sequences yields many interesting
consequences. With some additional properties one can claim the following
for escalating functions. The majority of the related proofs and applications
here were introduced in [130].

Theorem 3.3.3 Given two degree sequences π and π′ with π ⊳ π′, let T ∗
π and

T ∗
π′ be the greedy trees with degree sequences π and π′, respectively. For an

escalating function f with
∂f

∂x
≥ 0 (3.5)

and
∂2f

(∂x)2
≥ 0, (3.6)

we have
Rf (T

∗
π ) ≤ Rf (T

∗
π′).

Proof:

Given the conditions (3.1), (3.5) and (3.6), we want to show

Rf (T
∗
π ) ≤ Rf (T

∗
π′)

for
(d0, . . . , dn−1) = π ⊳ π′ = (d′0, . . . , d

′
n−1).

By Lemma 1.4.1, we may assume the degree sequences π and π′ differ at
only two entries, say dj0 (d′j0) and dk0

(d′k0
) with d′j0 = dj0 + 1, d′k0

= dk0
− 1

for some j0 < k0.
Let T ∗

π contain the vertices u1 and u2 with degrees A := dj0 and C := dk0
,

respectively. Note that from our setup we have A ≥ C. For convenience, we
also introduce the following notations:

• let the parent of u1 have degree B;

• let the children of u1 have degrees B1, B2, . . . , BA−1;

• let the parent of u2 have degree D;

• let the children of u2 have degrees D1, D2, . . . , DC−1.

Note that in greedy trees, the vertex degrees are ordered (from largest to
smallest) from top to bottom and from one side to another at each level. Thus,
we have

D ≤ B and Di ≤ Bj

for any i ∈ {1, 2, . . . , C − 1} and j ∈ {1, 2, . . . , A− 1}.
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Pick a child u3 of u2, and consider the tree

Tπ′ = T ∗
π − u2u3 + u1u3

as in Figure 3.9. It is easy to see that Tπ′ has degree sequence π′, but it is not
necessarily a greedy tree.

u2

u3

u1

u3

T ∗
π Tπ′

FIGURE 3.9
The trees T ∗

π and Tπ′ with π = (4, 4, 4, 3, 3, 3, 2, 2, 2, 1, . . . , 1) and π′ =
(4, 4, 4, 4, 3, 2, 2, 2, 2, 1, . . . , 1).

As before, we only need to focus on the edges whose contribution to Rf (·)
changes from T ∗

π to Tπ′ . These are the edges associated with the vertices u1,
u2 and u3. Note that the degrees of u1 and u2 have changed to A + 1 and
C − 1, respectively.

Considering the edge between u1 and its parent, we have the change in
contribution

f(A+ 1, B)− f(A,B).

Similarly, we have
f(C,D)− f(C − 1, D)

for the edge between u2 and its parent. From the edges u2u3 and u1u3, we
have a change in the function value of

f(A+ 1, D1)− f(C,D1).

The change in the contributions to the function value from the edges between
u1 and its children can be represented by the sum

A−1∑

i=1

(f(A+ 1, Bi)− f(A,Bi)).

Similarly, the change in the contributions to the function value between u2
and its children can be represented by the sum

C−1∑

j=2

(f(C,Dj)− f(C − 1, Dj)).
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Now, we have Rf (Tπ′)−Rf (T
∗
π ) as

(f(A+ 1, D1)− f(C,D1)) (3.7)

+ ((f(A+ 1, B)− f(A,B)) − (f(C,D)− f(C − 1, D))) (3.8)

+




A−1∑

i=1

(f(A+ 1, Bi)− f(A,Bi))−
C−1∑

j=2

(f(C,Dj)− f(C − 1, Dj))


 . (3.9)

We now analyze each of the three terms (3.7), (3.8), and (3.9).

• First, we have
f(A+ 1, D1)− f(C,D1) ≥ 0

as
∂f

∂x
≥ 0 and A ≥ C.

• Next, note that

f(A+ 1, B)− f(A,B) =
∂f

∂x
(A′, B)

and

f(C,B)− f(C − 1, B) =
∂f

∂x
(C′, B),

where A ≤ A′ ≤ A+ 1 and C − 1 ≤ C′ ≤ C.

Since A ≥ C, we have A′ ≥ C′. Then, our assumption
∂2f

(∂x)2
≥ 0 implies

that
∂f

∂x
(A′, B) ≥ ∂f

∂x
(C′, B)

and hence

f(A+ 1, B)− f(A,B) ≥ f(C,B) − f(C − 1, B).

Together with

(f(C,B) − f(C − 1, B)) ≥ (f(C,D)− f(C − 1, D))

(as f is escalating and C ≥ C − 1, B ≥ D), we have

(f(A+ 1, B)− f(A,B)) − (f(C,D)− f(C − 1, D)) ≥ 0.

• Similarly, we have

(f(A+ 1, Bi)− f(A,Bi))− (f(C,Dj)− f(C − 1, Dj)) ≥ 0

for any i and j. Hence, every term of

A−1∑

i=1

(f(A+ 1, Bi)− f(A,Bi))
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is larger than every term of

C−1∑

j=2

(f(C,Dj)− f(C − 1, Dj).

Furthermore, note that there are more terms in the first sum than the second
since A− 1 > C − 2, and that

f(A+ 1, Bi)− f(A,Bi) ≥ 0, f(C,Dj)− f(C − 1, Dj) ≥ 0

for any i, j since
∂f

∂x
≥ 0.

Consequently, we have

A−1∑

i=1

(f(A+ 1, Bi)− f(A,Bi))−
C−1∑

j=2

(f(C,Dj)− f(C − 1, Dj)) ≥ 0.

Thus, all three terms (3.7), (3.8) and (3.9) are non-negative. Hence,

Rf (Tπ′)−Rf (T
∗
π ) ≥ 0.

Note that Rf (T
∗
π′) ≥ Rf (Tπ′) as T ∗

π′ is greedy. Therefore,

Rf (T
∗
π ) ≤ Rf (Tπ′) ≤ Rf (T

∗
π′).

�

Remark 3.3.1 Note that, as in condition (3.1), the discrete version (which
is weaker than the continuous version) of the conditions (3.5) and (3.6) would
be sufficient for the above argument. Theorem 3.3.3, however, is stated with
∂f

∂x
and

∂2f

(∂x)2
in order to facilitate the presentation, as well as to simplify

the application of the result.

It is not difficult to see that the analogous statement holds for de-escalating
functions with the corresponding additional conditions. The proof is left as an
exercise.

Theorem 3.3.4 Given two degree sequences π and π′ with π ⊳ π′, let T ∗
π and

T ∗
π′ be the greedy trees with degree sequences π and π′, respectively. For a

de-escalating function f with
∂f

∂x
≤ 0 (3.10)

and
∂2f

(∂x)2
≤ 0, (3.11)

we have
Rf (T

∗
π ) ≥ Rf (T

∗
π′).
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3.3.2 Applications to extremal trees

Assume, for convenience, that the function f is escalating, increasing, and
convex. The following statements can be proved in exactly the same way as
those for distance-based indices. Of course, it is easy to see the analogous
statements for de-escalating functions. We leave the details as exercises.

Corollary 3.3.1 Among all trees of order n, the star maximizes Rf (.).

Corollary 3.3.2 Among all trees of order n with given maximum degree ∆,
the greedy tree with degree sequence (∆,∆, . . . , ∆,m, 1, . . . , 1) (where 1 ≤ m ≤
∆− 1) maximizes Rf (.).

As mentioned in Section 2.6.3, this extremal tree is sometimes called a
“complete ∆-ary tree” or “good ∆-ary tree”. We also have similar results for
trees with a given number of leaves, given independence number or matching
number.

Corollary 3.3.3 Among all trees of order n with s leaves, the greedy tree with
degree sequence (s, 2, . . . , 2, 1) (s 1s) maximizes Rf (.). This tree is a starlike
tree (see Section 1.3).

Corollary 3.3.4 Among all trees of order n with independence number α,
the greedy tree with degree sequence (α, 2, . . . , 2, 1, . . . , 1) maximizes Rf (.).

Corollary 3.3.5 Among all trees of order n with matching number β, the
greedy tree with degree sequence (n− β, 2, . . . , 2, 1, . . . , 1) maximizes Rf (.).

3.3.3 Application to specific indices

Before ending this section, we verify the conditions for Theorems 3.3.1, 3.3.2,
and 3.3.3 for various degree-based indices. Many individual extremal questions
are answered as corollaries.

Connectivity index

When f(x, y) = xαyα, recall that

Rf (T ) =
∑

uv∈E(T )

(deg(u) deg(v))α

is the generalized Randić index. Considering the case α > 0, we have

f(a, b) + f(c, d)− f(c, b)− f(a, d) = aαbα + cαdα − cαbα − aαdα

= (aα − cα)(bα − dα)

≥ 0
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for any a ≥ c and b ≥ d. Thus, f(x, y) is escalating and Theorem 3.3.1 holds.
Similarly, f(x, y) is de-escalating for α < 0. Consequently, we immediately

have the following.

Theorem 3.3.5 Among trees with given degree sequence, the connectivity in-
dex is maximized (minimized) by the greedy tree for α > 0 (α < 0).

Remark 3.3.2 Furthermore, if α > 1, it is easy to verify (3.5) and (3.6).
Consequently, Theorem 3.3.3 and the corresponding corollaries hold.

Not much can be done if α < 1, which probably partially explains the
complexity of the extremal problems with respect to the Randić index and its
generalization.

General sum-connectivity index and the third Zagreb index

When f(x, y) = (x+ y)α, recall that

Rf (T ) = χα(T ) =
∑

uv∈E(T )

(deg(u) + deg(v))α

is the general sum-connectivity index. It is simply the sum-connectivity index
when α = 1.

First, we show that χα(T ) is escalating for α ≥ 1 and de-escalating for
0 < α < 1.

Consider α ≥ 1 and let a ≥ c and b ≥ d. To show that f(x, y) is escalating,
it suffices to show that

(a+ b)α − (c+ b)α ≥ (a+ d)α − (c+ d)α,

which is equivalent to

∫ a+b

c+b

αtα−1dt ≥
∫ a+d

c+d

αtα−1dt

through simple calculus. This can be rewritten as

∫ a

c

α(t+ b)α−1dt ≥
∫ a

c

α(t+ d)α−1dt,

Since α ≥ 1, we have

α(t+ b)α−1 ≥ α(t + d)α−1

for b ≥ d, so the desired inequality holds. Similarly, if 0 < α < 1, f(x, y) is
de-escalating.

Consequently, we have the following as a corollary to Theorem 3.3.1.
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Theorem 3.3.6 Among trees with given degree sequence, the general sum-
connectivity index is maximized (minimized) by the greedy tree for α ≥ 1
(0 < α < 1).

Remark 3.3.3 Furthermore, if α ≥ 0, it is easy to verify (3.5) and (3.6)
for f(x, y) = (x + y)α. Therefore, Theorem 3.3.3 (when α ≥ 1 and f(x, y) is
escalating) and the corresponding corollaries apply.

Remark 3.3.4 Also note that the third Zagreb index as well as the sum-
connectivity index itself are both special cases of the general sum-connectivity
index. It is easy to check that Theorems 3.3.1 and 3.3.3 and their consequences
hold.

Reformulated Zagreb index

Although the reformulated Zagreb index, defined as
∑

uv∈E(T )

(deg(u) + deg(v) − 2)2,

is not a special case of the general sum-connectivity index, it is rather obvious
that it can be analyzed in very similar ways.

Letting a ≥ c and b ≥ d,

(a+ b − 2)2 + (c+ d− 2)2 ≥ (c+ b− 2)2 + (a+ d− 2)2

is equivalent to
2(a− c)(b − d) ≥ 0,

which holds by our conditions.
Thus f(x, y) is escalating and Theorem 3.3.1 holds.

Theorem 3.3.7 Among trees with given degree sequence, the reformulated
Zagreb index is maximized by the greedy tree.

Remark 3.3.5 Furthermore, it is easy to verify (3.5) and (3.6) for f(x, y) =
(x+ y − 2)2 . Hence, Theorem 3.3.3 and its consequences apply.

Atom-Bond connectivity index

When f(x, y) =

√
x+ y − 2

xy
, the Atom-Bond connectivity (ABC) index

∑

uv∈E(T )

√
deg(u) + deg(v)− 2

deg(u) deg(v)

is perhaps one of the most complicated graph invariants defined on adjacent

vertex degrees. In what follows, to prove that f(x, y) =

√
x+ y − 2

xy
is de-

escalating, we first introduce some related facts.
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Lemma 3.3.1 For all positive integers c and d,

f(c+ 1, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ 1, d). (3.12)

Proof:

First note that
(

1

c+ 1
+

1

d
− 2

(c+ 1)d

)(
1

c
+

1

d+ 1
− 2

c(d+ 1)

)

−
(
1

c
+

1

d
− 2

cd

)(
1

c+ 1
+

1

d+ 1
− 2

(c+ 1)(d+ 1)

)

=

(
1

c
− 1

c+ 1

)(
1

d
− 1

d+ 1

)

> 0,

so

(f(c, d+ 1) + f(c+ 1, d))2 − (f(c+ 1, d+ 1) + f(c, d))2

= 2

√(
1

c+ 1
+

1

d
− 2

(c+ 1)d

)(
1

c
+

1

d+ 1
− 2

c(d+ 1)

)

−2

√(
1

c
+

1

d
− 2

cd

)(
1

c+ 1
+

1

d+ 1
− 2

(c+ 1)(d+ 1)

)

+
2

cd(c+ 1)(d+ 1)

> 0.

Thus, (3.12) follows.
�

Lemma 3.3.2 For any non-negative integer k and positive integers c, d,

f(c+ k, d+ 1) + f(c, d) ≤ f(c, d+ 1) + f(c+ k, d). (3.13)

Proof:

Through repeated applications of (3.12), we have

f(c+ k, d+ 1)− f(c+ k, d) ≤ f(c+ k − 1, d+ 1)− f(c+ k − 1, d)

≤ f(c+ k − 2, d+ 1)− f(c+ k − 2, d)

≤ . . .

≤ f(c, d+ 1)− f(c, d).

�

We can now show that the corresponding function is indeed de-escalating.
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Proposition 3.3.1 f(x, y) =

√
x+ y − 2

xy
de-escalating on N× N.

Proof:

By definition, we want to show

f(a, b) + f(c, d) ≤ f(c, b) + f(a, d)

for any a ≥ c and b ≥ d.
Let a = c + k and b = d + r with non-negative integers k, r. Through

repeated applications of (3.13), we have

f(a, b)− f(c, b) = f(c+ k, d+ r) − f(c, d+ r)

≤ f(c+ k, d+ r − 1)− f(c, d+ r − 1)

≤ f(c+ k, d+ r − 2) + f(c, d+ r − 2)

≤ . . .

≤ f(c+ k, d)− f(c, d)

= f(a, d)− f(c, d).

�

Hence, by Proposition 3.3.1 and Theorem 3.3.1, we have the following
theorem.

Theorem 3.3.8 Among trees with given degree sequence, the Atom-Bond
connectivity (ABC) index is minimized by the greedy tree.

Remark 3.3.6 Although the greedy tree is indeed extremal, unfortunately,
(3.10) and (3.11) do not both hold in order to apply Theorem 3.3.4. This may
also explain the lack of “simple” extremal results with respect to the ABC
index, which we will further explore later in this chapter.

3.4 The Zagreb indices

Besides the Randić index and other degree-based indices defined on adjacent
vertex degrees, the sum of the squares of degrees was probably one of the first
graph indices defined on degrees. Given a tree T (or a general graph),

M1(T ) =
∑

v∈V (T )

(degT (v))
2
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is called the first Zagreb index [44]. Also, recall that a special case of Rα (when
α = 1) is the second Zagreb index [44]

M2(T ) =
∑

uv∈E(T )

(degT (u) · degT (v)) .

We have already examined the extremal problems related to M2(·) as a
special case of Rα. Among general graphs on n vertices, it is easy to see that
adding an edge will increase the degrees of corresponding vertices and hence
the value of M1(·). Hence, we have the following.

Proposition 3.4.1 Among connected graphs of order n, the first Zagreb index
is maximized by the complete graph Kn and minimized by some tree.

Among trees of a given degree sequence, it is easy to see that M1(·) is
a constant. Between different degree sequences simple algebra shows the fol-
lowing (much simpler) analogue of Theorem 3.3.3. We leave the proof as an
exercise.

Proposition 3.4.2 Given two degree sequences π and π′ with π ⊳ π′. Let T
and T ′ be two trees with degree sequences π and π′, respectively. Then,

M1(T
′) > M1(T ).

As a consequence, by finding the degree sequence that majorizes, or is
majorized by, all other degree sequences of trees on n vertices, and the unique
trees with the extremal degree sequences, we have the following.

Proposition 3.4.3 If T is a tree on n vertices, then

4n− 6 ≤M1(T ) ≤ n(n− 1)

with left equality if and only if T is the path Pn and right equality if and only
if T is the star K1,n−1.

In addition to the numerous common problems in chemical graph theory
(as we have already seen in the previous sections), it is also natural to examine
how different or similarM1 andM2 can be among graphs and especially trees.
This was examined in detail in [116], on which the majority of this section is
based.

3.4.1 Graphs with M1 =M2

There are many graphs for which M1(G) = M2(G). For example, one can
easily verify that

M1(Cn) =M2(Cn)

in a cycle Cn.
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FIGURE 3.10
Trees with M1(T ) =M2(T ).

Among trees, it may be less obvious to find such examples. Figure 3.10
shows a few small trees where M1(T ) and M2(T ) share the same value.

A natural question that follows is whether there are infinitely many trees
where the Zagreb indices share the same value. The following observation
provides a positive answer to this question.

Proposition 3.4.4 Let T be a tree with two adjacent vertices u, v, each of
degree 2, and let T ′ be obtained from T through subdividing the edge uv (i.e.,
adding a new vertex w that is adjacent to both u and v, and removing the edge
uv, see Figure 3.11). Then

M2(T
′)−M1(T

′) =M2(T )−M1(T ). (3.14)

u v u w v

FIGURE 3.11
Subdividing T (on the left) to obtain T ′ (on the right).

Proof:

Note that the degrees of u and v stay as 2 from T to T ′, so we have

M1(T
′)−M1(T ) = (deg(w))

2
= 4

and

M2(T
′)−M2(T )

= degT ′(w) degT ′(u) + degT ′(w) degT ′(v)− degT (v) degT (u)

= 4.

�
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Remark 3.4.1 The above statement presents an operation that maintains the
difference between the Zagreb indices while generating a new tree of larger or-
der. Therefore, starting from one of the examples in Figure 3.10 and repeating
this operation will result in infinitely many non-isomorphic trees on which the
Zagreb indices share the same value.

Although this is only stated and illustrated for trees, it is not difficult to
see that the same holds for general graphs. The proof is exactly the same, and
we leave it as an exercise.

Along the same line, there are also many other conditions that result in
(3.14) for two different trees T and T ′ of the same order. The following is a
special case that will be useful in other related studies.

Proposition 3.4.5 Let T be a tree with vertices u, v, w such that v is the
only non-leaf neighbor of u and w, respectively, and let T ′ be obtained from T
through detaching any number of pendant edges from w and reattaching them
to u (Figure 3.12). Then

M2(T
′)−M1(T

′) =M2(T )−M1(T ).

. . . . . .

v

wu

FIGURE 3.12
“Moving” pendant edges from w to u in T to obtain T ′.

Proof:

It suffices to consider the case of “moving” one pendant edge from w to u as
in Figure 3.12. For convenience let

degT (v) = d1, degT (u) = d2 and degT (w) = d3,

then
degT ′(u) = d2 + 1 and degT ′(w) = d3 − 1.

Noting that, from T to T ′, u and w are the only vertices whose degree
changed, we immediately have

M1(T
′)−M1(T ) = (d2 + 1)2 + (d3 − 1)2 − d22 − d23 = 2d2 − 2d3 + 2.
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Dealing with M2, only the edges incident with u and w need to be consid-
ered. Direct calculation yields

M2(T
′)−M2(T )

= d1(d2 + 1) + d1(d3 − 1) + d2(d2 + 1) + (d3 − 2)(d3 − 1)

− d1d2 − d1d3 − d2(d2 − 1)− d3(d3 − 1)

= 2d2 − 2d3 + 2.

�

3.4.2 Maximum M2(·)−M1(·) in trees

Next, we will examine the difference between M2(·) and M1(·), starting with
M2(·)−M1(·).

Let us first consider trees with a given degree sequence (d1, d2, . . .) and
hence some given order n. SinceM1(·) is simply a constant (the sum of squares
of fixed values) andM2 is maximized by the greedy tree with the given degree
sequence, we only need to consider greedy trees (of different degree sequences)
in order to maximize M2(·)−M1(·).

We first show that to find the maximumM2(·)−M1(·) among trees of given
order n, we only need to consider trees of small diameter and “centered” at
the vertex with the largest degree.

Lemma 3.4.1 For every fixed number of vertices n, there exists an extremal
tree that maximizes M2(·) −M1(·) with diameter at most 4 and all leaves at
most distance 2 away from the vertex v of the largest degree.

Proof:

Without loss of generality, we may assume such an extremal tree to be a
greedy tree T rooted at v = v1 with degree sequence

(d1, d2, . . . , dd1+1, . . .)

where d2 ≥ d3 ≥ . . . ≥ dd1+1 are the degrees of the children of v, labeled as
v2, v3, . . . , vd1+1.

Suppose that at least one of v2, v3, . . . , vd1+1 has a non-leaf child, let this
vertex be v2 (without loss of generality, since the tree is greedy) with a non-
leaf child v2,1. Further assume that v2 has children v2,1, v2,2, . . . , v2,d2−1 with
degrees e1 ≥ e2 ≥ . . . ≥ ed2−1, respectively. See Figure 3.13.

Let us consider two cases depending on the degree of v2,1:

• If e1 ≥ 3, define
T ′ = T − v2v2,1 + v1v2,1

as in Figure 3.14. That is, T ′ is obtained from T by “moving” the subtree
induced by v2,1 and its descendants from v2 to v1.
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. . . . . .

v1

vd1+1v2 v3 v4

v2,1

FIGURE 3.13
The greedy tree rooted at v.

. . . . . .

v1

vd1+1v2 v3 v4v2,1

FIGURE 3.14
The tree T ′ = T − v2v2,1 + v1v2,1.

Since v1 and v2 are the only vertices with degree changes from T to T ′, we
have

M1(T
′)−M1(T ) = (d1 + 1)2 + (d2 − 1)2 − d21 − d22 = 2d1 − 2d2 + 2.

Considering all the edges incident with v1 or v2, we have

M2(T
′)−M2(T )

= (d2 − 1)(d1 + 1) + (d2 − 1)

d2−1∑

i=2

ei + (d1 + 1)

(
e1 +

d1+1∑

i=3

di

)

− d1d2 − d2

d2−1∑

i=1

ei − d1

d1+1∑

i=3

di

= −(d1 − d2 + 1) + (d1 − d2 + 1)e1 +

d1+1∑

i=3

di −
d2−1∑

i=2

ei

> (d1 − d2 + 1)(e1 − 1)

≥ 2(d1 − d2 + 1)

=M1(T
′)−M1(T )

where the first inequality follows from the fact that in this greedy tree we
have

d1 ≥ d2 ≥ d3 ≥ . . . ≥ dd1+1 ≥ e1 ≥ e2 ≥ . . . ≥ ed2−1.
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• Now, suppose e1 ≤ 2. Since we already assumed that v2,1 is not a leaf, we
must have e1 = 2. Let the only child of v2,1 be u with degree 1 ≤ e ≤
ed2−1 ≤ 2 = e1. Consider the tree

T ′′ = T − v2,1u+ v2u

as in Figure 3.15, where we simply “detached” the subtree induced by u and
its descendants from v2,1 and reattached it at v2.

. . . . . .

v1

vd1+1v2 v3 v4

v2,1

u

. . . . . .

v1

vd1+1v2 v3 v4

v2,1

u

FIGURE 3.15
The greedy tree rooted at v with deg(v2,1) = 2 (top) and the tree T ′′ (bottom).

Similar arguments as before yield

M1(T
′′)−M1(T ) = (d2 + 1)2 + 12 − d22 − 22 = 2d2 − 2

and

M2(T
′′)−M2(T ) = (d2 + 1)d1 + (d2 + 1) + (d2 + 1)e+ (d2 + 1)

d2−1∑

i=2

ei

− d2d1 − 2d2 − 2e− d2

d2−1∑

i=2

ei

= d1 − d2 + 1 + (d2 − 1)e+

d2−1∑

i=2

ei

≥ d1 + d2 − 2 ≥ 2d2 − 2

=M1(T
′′)−M1(T )
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where the first inequality follows from the facts that e ≥ 1 and ei ≥ 1 for
2 ≤ i ≤ d2 − 1.

Note that in either case, the new tree T ′ or T ′′ has at least as large a
value of M2(·) −M1(·) as T and yields a new degree sequence that strictly
“majorizes” the original (recall Definition 1.4.1). Hence we can continue this
operation (whenever v2,1 in the current tree is not a leaf), rearranging the
tree to be greedy (which can only increase the value of M2(·)−M1(·)) at each
step, and the process will terminate. This results in an extremal tree with
maximum M2(·) −M1(·) where all leaves are at most distance 2 away from
the vertex of the largest degree. �

Remark 3.4.2 In fact, a stronger statement holds than that of Lemma 3.4.1,
namely that any extremal tree with the maximum M2(·) −M1(·) cannot have
diameter more than 4. This can be seen by considering the second case of the
above proof, when e1 = 2,

M2(T
′′)−M2(T ) =M1(T

′′)−M1(T )

only if e = ei = 1 for any 2 ≤ i ≤ d2 − 1 and d1 = d2. In this case,
degT ′′(v2) > degT ′′(v1), so rearranging T ′′ to be a greedy tree and continuing
the described operations will strictly increase M2(·) − M1(·). We skip these
details (which we leave as an exercise) as Lemma 3.4.1 is sufficient for our
purpose.

Analogous to Lemma 3.4.1 and Proposition 3.4.5, we will show that one
may decrease the diameter to 3 without decreasing the value ofM2(·)−M1(·).
Thus, we have the following.

Theorem 3.4.1 There exists an extremal tree that maximizes M2(·)−M1(·)
with diameter at most 3.

Proof:

Suppose, without loss of generality, that a tree is the result of Lemma 3.4.1
with root v and children v2, v3, . . . (each of which has only leaf children).
By Proposition 3.4.5, we may “move” any pendant edge from other internal
vertices (except v) to v2 (without changing the value of M2(·) −M1(·)). Re-
peatedly doing so yields a tree with only two internal vertices v and v2. We
leave the details as exercises. �

Next, let us examine this maximum value. According to the above dis-
cussion, let v1, v2 be the only internal vertices in the tree T with maximum
M2(·) −M1(·) with degrees d1 and d2, respectively. Assume, without loss of
generality, that d1 ≥ d2.

If d1 > d2 + 1, consider a new tree T ′ obtained from T by detaching one
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pendant edge from v1 and attaching it to v2. From T to T ′, through similar
computation as before, we have

M1(T
′)−M1(T ) = (d2 + 1)2 + (d1 − 1)2 − d22 − d21 = 2d2 − 2d1 + 2

and

M2(T
′)−M2(T ) = (d2 + 1)(d1 − 1) + (d1 − 1)(d1 − 2) + (d2 + 1)d2

− d1d2 − d1(d1 − 1)− d2(d2 − 1)

= d2 − d1 + 1

> 2d2 − 2d1 + 2

=M1(T
′)−M1(T ),

where the inequality follows from d1 > d2 + 1. Hence, we have

M2(T
′)−M1(T

′) > M2(T )−M1(T ),

a contradiction to the extremality of T .
Now, we may assume that the maximum M2(·) −M1(·) is only achieved

when |d1 − d2| ≤ 1. For such a tree T of order n, we have:

• for even n,

M1(T ) = 2
(n
2

)2
+ n− 2 =

n2

2
+ n− 2

and

M2(T ) =
(n
2

)2
+
n

2
· 2
(n
2
− 1
)
=

3n2

4
− n.

• for odd n,

M1(T ) =

(
n− 1

2

)2

+

(
n+ 1

2

)2

+ n− 2 =
n2 + 1

2
+ n− 2

and

M2(T ) =
n− 1

2
· n+ 1

2
+
n+ 1

2
· n− 1

2
+
n− 1

2
· n− 3

2
=

3n2 + 1

4
− n.

Consequently, we have the following.

Theorem 3.4.2 For any tree T of order n and diameter at least 3,

M2(T )−M1(T ) ≤
⌊
n2

4

⌋
− 2n+ 2.

Remark 3.4.3 It is easy to see from the proofs of the above statements that
lead to Theorem 3.4.2 that the upper bound is sharp and there is more than
one tree that achieves this upper bound.
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We now consider the trees with diameter 2, i.e., when T is a star. It is easy
to compute the value of M2(·) −M1(·) as the following. We leave the details
as exercises.

Proposition 3.4.6 For a star K1,n−1 on n ≥ 3 vertices, we have

M2(K1,n−1)−M1(K1,n−1) = (n− 1)(n− 1)−
(
(n− 1)2 + n− 1

)

= −(n− 1).

From Theorems 3.4.1 and 3.4.2 and Proposition 3.4.6 we may extend the
statement of Theorem 3.4.2 to all trees of a given order.

Corollary 3.4.1 For all trees T of order n,

M2(T )−M1(T ) ≤
⌊
n2

4

⌋
− 2n+ 2.

Proof:

Note that when n ≥ 4,
⌊
n2

4

⌋
− n+ 1 >

n2

4
− 1− n+ 1 =

(n
2
− 1
)2

− 1 ≥ 0,

implying that ⌊
n2

4

⌋
− 2n+ 2 ≥ −(n− 1). (3.15)

It is easy to verify (3.15) for n = 2, 3. �

3.4.3 Maximum M1(·)−M2(·) in trees

Now, to explore the other extremal end, Proposition 3.4.6 implies that

M1(K1,n−1)−M2(K1,n−1) = n− 1 ≥ 2

for stars of order n ≥ 3.
On the other hand, for a tree that is not a star (or, equivalently, a tree

with diameter at least 3), the following theorem states the interesting fact that
M1(·) can never be too much larger than M2(·). Perhaps even more counter-
intuitively, the second largest possible value ofM1−M2 is achieved by a path
as shown below.

Theorem 3.4.3 Among all trees with diameter at least 3, the path achieves
the maximum value 2 of M1(·)−M2(·).

Remark 3.4.4 It is rather unexpected that the maximum value of M2(·) −
M1(·) and M1(·)−M2(·) are both achieved by trees with small diameters while
the second largest M1(·)−M2(·) is achieved by the path, commonly considered
as the “opposite” structure of a star.
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Proof:

It is easy to compute, for a path Pn of order n, that

M1(Pn) = 4n− 6 and M2(Pn) = 4n− 8,

so M1(Pn)−M2(Pn) = 2.
Now consider an extremal tree T that maximizesM1(·)−M2(·) among trees

with n vertices whose diameter is greater than 2. Suppose (for contradiction)
that

M1(T )−M2(T ) > 2,

thus in particular that T is not a path. Let v0, v1, v2, . . . , vk−1, vk, vk+1 with
k ≥ 2 be a longest path of T . Some internal vertex of the longest path has
neighbors not on this path. Without loss of generality, we may also assume
that v0 is closer than vk+1 to such a vertex and let vi be the closest such
vertex to v0. We can also assume that i is minimal among all extremal trees.

In other words, all vertices

v1, v2, . . . , vi−1 and vk−i+2, . . . , vk

have degree 2 and vi has degree at least 3 (i.e., vi has a neighbor not on
the path v0, v1, v2, . . . , vk−1, vk, vk+1). For convenience, let di = deg(vi) for
1 ≤ i ≤ k. We now consider two cases.

• If i ≥ 2 (i.e., the neighbor of v0 is of degree 2), then by our assumption
we also have i ≤ k − 1. Let T ′ be the tree obtained from T by “shifting”
the pendant branch at vi to vi−1 (Figure 3.16). This can also be formally
understood as “reversing” the edge vi−1vi and the corresponding branches
in T , yielding

T ′ = T − vi−2vi−1 − vivi+1 + vi−2vi + vi+1vi−1

with the switch of labeling of vi−1 and vi.

v0 vi−1 vi vk vk+1 v0 vi−1 vi vk−1 vk vk+1

FIGURE 3.16
The trees T (on the left) and T ′ (on the right).

It is easy to see that the degree sequence of T ′ is exactly the same as that
of T , hence M1(·) stays the same from T to T ′. For M2(·), the only edges
we need to consider (i.e., those incident to vertices whose degrees changed)
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are vi−2vi−1, vi−1vi and vivi+1. Therefore, we have

M2(T
′)−M2(T ) = di(di−2 + di−1) + di−1di+1 − di(di−1 + di+1)− di−2di−1

= didi−2 + di−1di+1 − didi+1 − di−2di−1

= (di − di−1)(di−2 − di+1)

≤ 0

=M1(T
′)−M1(T ),

where the inequality follows from the facts that di−2 ≤ di−1 = 2, di+1 ≥ 2
and di ≥ 3. Consequently,

M1(T
′)−M2(T

′) ≥M1(T )−M2(T ),

with equality if and only if di−2 = di+1 = 2. If strict inequality holds, we
obtain an immediate contradiction. Otherwise, T ′ is another extremal tree,
which contradicts the minimality of i in our choice of T . In either case, we
are done.

• We now assume that i = 1. Since v0, . . . , vk+1 is a longest path, all but one
neighbor of v1 are leaves. Let T

′′ be the tree obtained from T by detaching all
pendant edges at v1 except v0v1 and reattaching them at v0. See Figure 3.17.

. . .

v0 v1 v2 vk−1 vk vk+1

. . .

v0 v1 v2 vk−1 vk vk+1

FIGURE 3.17
The trees T (on the left) and T ′′ (on the right).

Similar to the arguments before, the only vertices with degree changes from
T to T ′′ are v0 and v1. Consequently, we have

M1(T
′′)−M1(T ) = (d1 − 1)2 + 22 − d21 − 1 = −2(d1 − 2)

and

M2(T
′′)−M2(T ) = 2(d1 − 1) + (d1 − 1)(d1 − 2) + 2d2

− d1 − d1(d1 − 2)− d1d2

= −(d1 − 2)d2

≤ −2(d1 − 2)

=M1(T
′′)−M1(T )

where the inequality follows from d2 ≥ 2 and d1 ≥ 3.
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Here, for a tree T that is not a path, the argument in the first case shows
that we must have d1 ≥ 3. Then, applying the second case yields a new tree
with larger diameter. This process terminates when a path is achieved, while at
every step the value of M1(·)−M2(·) can only increase. Hence, the maximum
of M1(·)−M2(·) is 2 and it is independent of the order of the tree. �

Remark 3.4.5 It is obvious that the extremal trees in the above case are not
unique, and it is also not difficult to construct (based on the arguments in
the proof) other trees that achieve M1(·)−M2(·) = 2. Such trees include (but
are not limited to) well-known structures such as the comet or dumbbell. See
Figure 3.18. It is a good exercise to verify M1(·)−M2(·) = 2 for these trees.

. . . . . . . . .

FIGURE 3.18
Some trees T with M1(T )−M2(T ) = 2.

3.4.4 Further analysis of the behavior of M1(·)−M2(·)
With a good understanding of the difference between the Zagreb indices, it is
a natural question to ask which values this difference can take on and which
it cannot. First of all, there are indeed trees T such thatM1(T )−M2(T ) = 1.
For instance, a tree obtained from attaching a pendant edge to any internal
vertex (but not the ones adjacent to the ends) of a path (Figure 3.19).

FIGURE 3.19
A tree T with M1(T )−M2(T ) = 1.

From Theorem 3.4.3 and information from previous sections, we may state
the following in regard to an “inverse” question, as in the case of the Wiener
index.

Corollary 3.4.2 There exists a tree with M1 −M2 = x for any non-negative
integer x.

Another observation is that there seem to be fewer trees with positive
M1(·)−M2(·) than those with negativeM1(·)−M2(·). To formally verify this,
we first consider a sufficient condition for M1(·)−M2(·) < 0 for a tree T .
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Theorem 3.4.4 If there is an edge uv with deg(u) ≥ 3 and deg(v) ≥ 3 in a
tree T , and if neither u nor v is adjacent to any leaf, then we must have

M1(T )−M2(T ) < 0.

Proof:

Let T be such a tree and suppose M1(T ) − M2(T ) is maximum among
all such trees. For convenience let d1 = deg(u) and d2 = deg(v), and let
u1, u2, . . . , ud1−1 be the neighbors of u other than v and v1, v2, . . . , vd2−1 be
the neighbors of v other than u. Lastly, let Tui and Tvj denote the connected
components containing ui and vj , respectively, in T −{u, v}, for 1 ≤ i ≤ d1−1
and 1 ≤ j ≤ d2 − 1 (Figure 3.20).

. . . . . .. . . . . .

vu

vd2−1ud1−1 u1 v1 v2u2

FIGURE 3.20
The tree T with u, v and their neighbors.

We claim that each Tui or Tvj can be replaced by a path without decreasing
the value of M1(T ) − M2(T ). This can be seen by taking the longest path
from u (v) to a leaf in Tui (Tvj ) and applying exactly the same arguments
of Theorem 3.4.3. Such a path can be extended (if Tui or Tvj is not a path)
without decreasing M1(·) − M2(·) until Tui (Tvj ) is a path. We leave the
detailed arguments as exercises.

Further, note that each of these paths Tui or Tvj is of length at least 2 as
u and v are not adjacent to leaves.

The structure of T is specifically presented in Figure 3.21. It is easy to
compute the values of the Zagreb indices directly as

M1(T ) = d21 + d22 + (d1 + d2 − 2) + 4(n− d1 − d2)

and

M2(T ) = d1d2+2d1(d1−1)+2d2(d2−1)+2(d1+d2−2)+4(n−2d1−2d2+2).

Consequently, we have

M2(T )−M1(T ) = d21 + d22 + d1d2 − 5d1 − 5d2 + 6

= d1(d1 − 3) + d2(d2 − 3) + (d1 − 2)(d2 − 2) + 2

> 0
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. . . . . .. . . . . .

vu

FIGURE 3.21
An extremal tree with maximum M1 −M2.

as d1, d2 ≥ 3. �

Recall the classic fact that the probability of a random tree of order n con-
taining any given rooted subtree approaches 1 as n→ ∞ [95]. Theorem 3.4.4
implies the following interesting observation.

Corollary 3.4.3 For large n almost all trees of order n have negative value
for M1(·)−M2(·).

3.5 More on the ABC index

Among the degree-based graph indices that have been listed so far, the ABC
index is the most complicated. For this reason and for its applications in
various molecular graphs, the investigation of the ABC index has been of
particular interest. In addition to those on trees that have already been pre-
sented, in this section we consider the extremal problems with respect to the
ABC index in general graphs. The majority of the content of this section was
established in [129].

Throughout this section, a graph that minimizes the ABC index (among
a certain category of graphs) is called “optimal” for convenience.

Similar to the case of trees with a given degree sequence, letting Γ (π) de-
note the family of connected graphs with degree sequence π, we first derive
structural properties of optimal graphs in Γ (π). These characteristics of the
optimal graph are then used to construct a unique special graph, shown to be
optimal under certain conditions (Theorem 3.5.1). We will then apply this re-
sult to unicyclic and bicyclic graphs, where the corresponding optimal graphs
are characterized.
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3.5.1 Defining the optimal graph

In order to introduce the structure of the optimal graph and the corresponding
theorem, we need to first go over some technical terminologies.

For a graph G = (V,E) with a root v0, the distance d(v, v0) is called the
height h(v) of a vertex v, and h(G) = max{h(v)|v ∈ V } is the height of G. A
breadth-first search (BFS) ordering of such a rooted graph was probably first
defined in [126] as the following.

Definition 3.5.1 Let G = (V,E) be a connected rooted graph with a root v0.
A well-ordering ≺ of the vertices is called breadth-first search ordering with
non-increasing degrees (BFS-ordering for short) if the following conditions
hold for all vertices u, v ∈ V :

• u ≺ v implies h(u) ≤ h(v);

• u ≺ v implies d(u) ≥ d(v);

• Let uv, xy ∈ E and uy, xv /∈ E with h(u) = h(x) = h(v) − 1 = h(y) − 1. If
u ≺ x , then v ≺ y.

A graph with a BFS-ordering of its vertices is called a BFS-graph. If a
BFS-graph is a tree, then it is isomorphic to the greedy tree, and also called
a BFS-tree (see [128]).

It is a good exercise for the interested reader to verify the following useful
properties related to the BFS-ordering or BFS-graphs:

• Every graph has an ordering of its vertices which satisfies the conditions (1)
and (3) by using breadth-first search. But not all connected graphs have an
ordering that satisfy the condition (2). Hence, not all connected graphs are
BFS-graphs.

• For a given graphical degree sequence π, there always exists a BFS-graph G
in Γ (π).

We are now ready to construct the optimal graph G∗(π) in Γ (π) for a
graphical degree sequence π = (d1, . . . , dn) with

n∑

i=1

di = 2(n+ c− 1), c ≥ 0,

and d1 ≥ d2 ≥ c+ 1.

• Select the vertex v1 with degree d1 as the root vertex;

• Select the vertices v2, v3, v4, . . . , vd1+1 with degrees d2, . . . , dd1+1 such that

N(v1) = {v2, v3, v4, . . . , vd1+1};
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• Append d2 − c− 1 new vertices to v2, d3 − 2 new vertices to v3, . . . , dc+2 − 2
new vertices to vc+2 such that

– N(v2) = {v1, v3, . . . , vc+2, vd1+2, vd1+3, . . . , vd1+d2−c},
– N(v3) = {v1, v2, vd1+d2−c+1, . . . , vd1+d2+d3−c−2},
– · · · ,
– N(vc+2) = {v1, v2, v(∑c+1

i=1
di)−3c+3, . . . , v(

∑c+2

i=1
di)−3c}.

• Append dc+3 − 1 new vertices to vc+3 such that

N(vc+3) = {v1, v(∑c+2

i=1
di)−3c+1, . . . , v(

∑c+3

i=1
di)−3c−1}, etc.

It is easy to see that v1v2v3, . . ., v1v2vc+2 form c triangles (cycles) in G∗(π),
and that G∗(π) is a BFS-graph.

We will show that this graph G∗(π) is optimal in Γ (π) when the degree
sequence π satisfies certain conditions. We will call such a graphical degree
sequence π = (d1, d2, . . . , dn) obliging if:

• ∑n
i=1 di = 2(n+ c− 1) with non-negative integer c;

• d1 ≥ d2 ≥ c+ 1;

• d4 = d5 = · · · = dc+2 for c ≥ 1;

• dn = 1.

The following statement identifies the optimal graph with a given obliging
sequence. Its proof will be presented in the rest of this section.

Theorem 3.5.1 If π = (d1, d2, . . . , dn) is an obliging sequence, then G∗(π)
is optimal (achieving the minimum ABC index) in Γ (π). In other words,

ABC(G∗(π)) ≤ ABC(G)

for any graph G ∈ Γ (π).

3.5.2 Structural properties of the optimal graphs

First, we note the following observation. The proof is through simple calculus
and we leave it as an exercise.

Lemma 3.5.1 Let f(x, y) =
√

x+y−2
xy where x, y are positive integers. The

following statements hold:

• f(x, 1) is strictly increasing with respect to x;

• f(x, 2) =
√
2
2 ;
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• f(x, y) is strictly decreasing with respect to x if y ≥ 3.

With Lemma 3.5.1, direct computation shows the following.

Lemma 3.5.2 ([71]) Given G ∈ Γ (π) with uv, xy ∈ E(G) and uy, xv /∈
E(G), let

G1 = G− uv − xy + uy + xv.

If deg(u) ≥ deg(x) and deg(y) ≥ deg(v), then

ABC(G1) ≤ ABC(G)

with the equality if and only if deg(u) = deg(x) or deg(v) = deg(y).

We now establish a series of observations, in the form of technical lemmas,
regarding the characteristics of the optimal graph in Γ (π). Essentially, each
lemma builds upon the previous one and more specifically characterizes the
optimal graph.

Lemma 3.5.3 Let G ∈ Γ (π) be a connected graph with three vertices u, v, w
in G such that

• uv ∈ E(G), uw /∈ E(G),

• deg(u) ≥ deg(w) > deg(v), and

• deg(u) > deg(x) for all x ∈ N(w).

Then, G is not optimal.

Proof:

We only need to find a graph G1 ∈ Γ (π) such that ABC(G1) < ABC(G).
Two cases are considered, depending on whether v and w have any common
neighbor:

• N(v) ∩N(w) 6= ∅ or wv ∈ E(G).

Since deg(w) > deg(v), there exists a vertex y ∈ N(w) such that y /∈ N(v).
Consider

G1 = G+ uw + vy − uv − wy,

a connected graph in Γ (π). Since deg(u) > deg(y) and deg(w) > deg(v), by
Lemma 3.5.2 we have ABC(G1) < ABC(G).

• N(v)∩N(w) = ∅ and wv /∈ E(G). Since G is connected, there exists a path
P = u, . . . , s, w from u to w.

– If uv /∈ E(P ), let

G1 = G+ uw + vs− uv − ws.

Then, G1 is connected and G1 ∈ Γ (π). We have ABC(G1) < ABC(G)
by Lemma 3.5.2, as deg(u) > deg(s) and deg(w) > deg(v).
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– If uv ∈ E(P ), then there exists a vertex y ∈ N(w) such that y 6= s
(since deg(w) > deg(v) ≥ 1). Note that vy /∈ E(G), since v and w do
not have common neighbors. Let

G1 = G+ uw + vy − uv − wy.

Then, G1 is connected and G1 ∈ Γ (π). We have ABC(G1) < ABC(G)
by Lemma 3.5.2, since deg(u) > deg(y) and deg(w) > deg(v).

�

Lemma 3.5.4 For a given graphical degree sequence π = (d1, . . . , dn) with
n ≥ 3, there exists an optimal graph G ∈ Γ (π) with deg(vi) = di for i =
1, . . . , n such that {v2, v3} ⊆ N(v1).

Proof:

First, we show that the optimal graph can be labeled such that v1v2 ∈ E(G).
Otherwise, no two adjacent vertices have the largest degrees. Let G be an
optimal graph with deg(vi) = di for i = 1, . . . , n such that v1v2 /∈ E(G),
deg(v1) ≥ deg(v2) > deg(v) for any v ∈ N(v1), and deg(v1) > deg(x) for any
x ∈ N(v2). Then, Lemma 3.5.3 indicates that G is not optimal, a contradic-
tion.

Now, we may continue with an optimal graph G with deg(vi) = di for
i = 1, . . . , n such that v1v2 ∈ E(G). Suppose (for contradiction) that v1v3 /∈
E(G). Similar to before, we may assume that deg(v3) > deg(v) for every
v ∈ N(v1) \ {v2}. Furthermore, we claim that there exists a vertex u ∈ N(v3)
such that deg(u) = deg(v1) = d1. Otherwise, we have deg(v1) > deg(x) for
every x ∈ N(v3), and, by Lemma 3.5.3, we may conclude that G is not optimal.

• If u = v2, then deg(v2) = deg(v1) = d1 and v2v3, v2v1 ∈ E(G). The conclu-
sion follows from interchanging the labels of v1 and v2.

• If u 6= v2, then d1 = deg(u) ≤ deg(v3) ≤ d2 ≤ d1, implying that deg(u) =
deg(v1) = deg(v2) = deg(v3) = d1. Now that all these four vertices share
the common largest degree, through relabeling vertices we may assume that
the shortest path P = v1, x, . . . , v3 from v1 to v3 (since G is connected) does
not contain v2. Since v1 ∈ N(x)\N(v3) and deg(v3) > deg(x), there must
exist a vertex y ∈ N(v3)\N(x) that is not on P . Then

G′ = G+ v1v3 + xy − v1x− v3y ∈ Γ (π)

and ABC(G′) ≤ ABC(G) by Lemma 3.5.2. Hence, G′ is an optimal graph
with v1v2, v1v3 ∈ E(G′).

�

Next, one can show that in an optimal graph of Γ (π) (when π is obliging),
three of the vertices of the largest degrees must induce a triangle.
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Lemma 3.5.5 Let π = (d1, d2, . . . , dn) be an obliging graphical degree se-
quence with c > 0. Then there exists an optimal graph G ∈ Γ (π) with
deg(vi) = di for i = 1, . . . , n such that v1, v2, v3 form a triangle.

Proof:

As the first step, the following claims that v1, a vertex of the largest degree,
belongs to a cycle.

Claim 1. There exists an optimal graph G ∈ Γ (π) such that {v2, v3} ⊆ N(v1)
and there exists a cycle Ct1 in G such that v1 ∈ V (Ct1) .

Proof of Claim 1:

Otherwise, Claim 1 does not hold for any optimal graph G ∈ Γ (π).
Recall that Lemma 3.5.4 states that there exists an optimal graph G ∈

Γ (π) such that {v2, v3} ⊆ N(v1). Then, v1 is simply not on any cycle of G.
Since d1 ≥ c + 1, there exists a shortest path P = v, . . . , v1, . . . , x, y from a
vertex v in a cycle Ct1 to a pendant vertex y through v1. Let u and w be two
adjacent vertices (that are different from v) in V (Ct1). We consider two cases:

• If deg(w) ≤ deg(x), let

G1 = G+ ux+ wy − wu − xy.

By Lemma 3.5.2, ABC(G1) ≤ ABC(G). Now, G1 ∈ Γ (π) is also optimal
and v1 is in some cycle of G1, a contradiction.

• If deg(u) ≤ deg(x), let

G2 = G+ uy + wx− wu − xy.

Through similar discussion as above, we see that G2 ∈ Γ (π) is also optimal
and v1 is in some cycle of G2, a contradiction.

Consequently, we must have min{deg(u), deg(w)} > deg(x). Let z be the
neighbor of x on P other than y, and consider the graphs

G′
1 = G+ uz + wx − wu − xz,

and
G′

2 = G+ ux+ wz − wu − xz.

Exactly the same reasoning shows that min{deg(u), deg(w)} > deg(z). This
process can be repeated to show that min{deg(u), deg(w)} > deg(v1), which
is a contradiction. �

Next we show that some vertex of second largest degree is also on the same
cycle.

Claim 2. There exists an optimal graph G ∈ Γ (π) such that there is a cycle
Ct1 containing v1v2 ∈ E(Ct1) and v3 ∈ N(v1).
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Proof of Claim 2:

Otherwise, Claim 2 does not hold for any optimal graph G ∈ Γ (π). Since
Claim 1 guarantees the existence of an optimal graph G ∈ Γ (π) such that
v1 ∈ V (Ct1) and {v2, v3} ⊆ N(v1), it must be the case that v2 /∈ V (Ct1).
Consider two further cases:

Case 1: v2 is contained in a path from v1 to a leaf z, say P =
v1, v2, x, y, . . . , z. Further, assume that this is the shortest such path. Choose
{u, v} ⊆ V (Ct1) such that uv ∈ E(Ct1 ) and suppose max{deg(u), deg(v)} =
deg(u).

Following the same reasoning as before, if deg(u) ≥ deg(x) and

G1 = G+ uv2 + vx− uv − v2x,

Lemma 3.5.2 implies ABC(G1) ≤ ABC(G). Then, G1 ∈ Γ (π) is optimal with
v1v2 on a cycle, a contradiction.

Thus, max{deg(u), deg(v)} < deg(x). The same argument applies to y,
etc. In the end we have max{deg(u), deg(v)} < deg(z) = 1, a contradiction.

Case 2: v2 is not contained in any path from v1 to a leaf. Then, G− v1v2
has two components and any leaf must be in the same component as v1 (for
otherwise the path from v1 to this leaf will have to contain v2).

Then, the component containing v2 must be cyclic, implying that c ≥ 2.
We may consider a cycle Ct2 in this component, together with a shortest path
P ′ = v2, v1, x

′, y′, . . . , z from v2 to a leaf z that contains v1. We may now
repeat the same argument as that in Case 1 to get a contradiction. �

As expected, next we show that v3, the vertex with the third largest degree,
is also on the same cycle.

Claim 3. There is an optimal graph G ∈ Γ (π) such that {v1v2, v1v3} ⊆
E(Ct1).

Proof of Claim 3:

We already know from Claim 2 that there is an optimal graph G ∈ Γ (π) such
that v1v2 ∈ E(Ct1 ) and v3 ∈ N(v1). If v3 /∈ V (Ct1), then v2v3 /∈ E(G) (for
otherwise v1, v2, v3 forms the obvious triangle).

Now, let u be a neighbor of v2 on Ct1 other than v1, and let v be a neighbor
of v3 other than v1. Then, uv /∈ E(G), deg(v2) ≥ deg(v), and deg(v3) ≥
deg(u). Let

G1 = G+ v2v3 + uv − vv3 − uv2,

Lemma 3.5.2 implies that G1 ∈ Γ (π) is optimal with v1v2 and v1v3 lying on
a cycle. �

Lastly, one can claim that this common cycle of v1, v2, v3 is indeed a tri-
angle.

Claim 4. There is an optimal graph G ∈ Γ (π) such that v1, v2, v3 form a
triangle.
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Proof of Claim 4:

Let us only consider the non-trivial case that d2 ≥ 3.
From Claim 3, we have an optimal graph G ∈ Γ (π) such that

{v1v2, v1v3} ⊆ E(Ct1). For contradiction, assume that v2v3 /∈ E(G).
Similar to the previous proof, let u be a neighbor of v2 not on Ct1 and v

a neighbor of v3 on Ct1 other than v1. Now let

G1 = G+ v2v3 + uv − vv3 − uv2.

Then Lemma 3.5.2 applies as before and G1 ∈ Γ (π) is optimal with the
triangle v1v2v3. �

Since Claim 4 is exactly the statement of the lemma, this concludes our
proof. �

Now that we have established the existence of one triangle (formed by the
vertices of the largest degrees) in the optimal graph, following exactly the
same arguments, one can show that there is an edge between v1 and vi, the
vertex of the next largest degree that is not on any cycle yet, etc. Eventually
one concludes that there are exactly c triangles, as stated in the following. We
leave the technical details as exercises.

Lemma 3.5.6 Let π be an obliging graphical sequence. There exists an opti-
mal graph G ∈ Γ (π) such that v1v2v3, . . . , v1v2vc+2 form c triangles.

3.5.3 Proof of Theorem 3.5.1

From the previous section, we have c triangles v1v2v3, . . . , v1v2vc+2 in an op-
timal graph G ∈ Γ (π). We now create an ordering ≺ of V (G) following the
breadth-first search:

• Let v1 ≺ v2 ≺ · · · ≺ vc+2;

• Add all neighbors uc+3, . . . , ud1+1 of N(v1)\{v2, . . . , vc+2} to the ordered
list such that u ≺ v whenever deg(u) > deg(v) (the ordering between some
vertices can be arbitrary);

• Add all neighbors ud1+2, ud1+3, . . . , ud1+d2−c of N(v2)\{v1, v3, . . . , vc+2} to
the ordered list such that u ≺ v whenever deg(u) > deg(v) (the ordering
between some vertices can be arbitrary); Similarly, we can add the vertices
of N(v3)\{v1, v2}, . . . , N(vc+2)\{v1, v2} to the ordered list;

• Add the vertices in N(x)\{v1} to the ordered list, where deg(x) =
max{deg(y) : y ∈ N(v1)\{v2, v3, . . . , vc+2}};

• Repeat the last step until all vertices are added to the list.
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To prove Theorem 3.5.1, it is now sufficient to verify the conditions in
Definition 3.5.1 for such an ordering v1 ≺ v2 ≺ · · · ≺ vn.

First, note that conditions (1) and (3) are obvious.
From our construction, u ≺ v implies h(u) ≤ h(v). Let Vi(G) denote the

set of vertices of height i in G, with V0(G) = {v1}. For v ∈ Vi(G), i > 0, we
call the unique vertex u ∈ N(v)∩Vi−1(G) the parent of v. Hence u ≺ v if u is
the parent of v. Moreover, because the vertices are appended to the ordered
list recursively, if there are two edges uu1 ∈ E(G) and vv1 ∈ E(G) such that
u ≺ v , h(u) = h(u1) + 1 and h(v) = h(v1) + 1, then u1 ≺ v1.

Lastly, we will show that deg(u) ≥ deg(v) holds for any u, v ∈ V (G) with
u ≺ v. Suppose otherwise, let vi be the first vertex where this fails. That
is, vi ≺ u in the ordering and deg(vi) < deg(u) for some u ∈ V (G). From
the construction, we know that vi /∈ {v1, v2, v3, . . . , vc+2}, and if v ≺ vi then
deg(v) ≥ deg(u) holds for each u with v ≺ u.

Consider, now, the vertex of the largest degree in the remaining vertices
and let vj be the first such vertex in the ordering. In other words, j is the
smallest integer such that vi ≺ vj and deg(vj) = max{deg(vt) : i+1 ≤ t ≤ n}.

Recall that vi ≺ vj and deg(vi) < deg(vj) by our assumption. Let wi and
wj be the parents of vi and vj , respectively. Since deg(vi) < deg(vj), we must
have wi 6= wj and wi ≺ wj . Note that wivj /∈ E(G). Otherwise, there is a
cycle in G containing wi, wj and vj in addition to the c triangles.

• If wivi is on the shortest path that connects wj and v1, then

wi ≺ vi ≺ wj ≺ vj

and
deg(wi) ≥ deg(vj) > deg(wj)

by our choices of vi and vj .

We claim that there exists some y ∈ N(vj)\{wj} such that deg(wi) =
deg(vj) = deg(y) and viy /∈ E(G). The proof is rather similar to the ar-
guments that have been repeated so far and we leave it as an exercise.

Now let
G1 = G+ wivj + viy − wivi − vjy,

Lemma 3.5.2 implies that G1 is optimal.

• If wivi is not on the shortest path that connects wj and v1, then similar to
before we must have wjvi /∈ E(G).

Let
G1 = G+ wivj + wjvi − wivi − wjvj ∈ Γ (π),

again Lemma 3.5.2 applies to show that ABC(G1) ≤ ABC(G).

In both cases a new graph G1 (with the same c triangles) was obtained
such that G1 ∈ Γ (π) and ABC(G1) ≤ ABC(G). Consequently, we will replace
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vi with vj in the ordering, then add the remaining vertices according to the
same rule.

It is easy to see that this process terminates after at most n− c− 2 steps
(every time a new ordering is introduced with a new graph with the same c
triangles and at most as large ABC(·)), resulting in an optimal graph Gt ∈
Γ (π) such that deg(u) ≥ deg(v) holds for every two vertices u, v ∈ V (G) and
u ≺ v. This concludes the proof of Theorem 3.5.1.

3.5.4 Acyclic, unicyclic, and bicyclic optimal graphs

When Theorem 3.5.1 is applied to acyclic, unicyclic, and bicyclic graphs, corre-
sponding optimal graphs with a given degree sequence can be easily identified.

For this purpose, we let

U(π) = {G | G is a unicylic graph with degree sequence π}

and
B(π) = { G | G is a bicyclic graph with degree sequence π}.

In particular, we denote the graph G∗(π) by U∗(π) if c = 1 and B∗(π) if c = 2.
In the case that π is the degree sequence of a tree, applying Theorem 3.5.1

yields the same extremal results that have been discussed earlier. For unicyclic
graphs, we have the following. We leave the simple proof as an exercise.

Theorem 3.5.2 Among all unicyclic graphs with degree sequence π and dn =
1, U∗(π) achieves the minimum ABC index.

The situation for bicyclic graphs is much more complicated. We start with
some more definitions:

• Given p+q−1 = n, denote by B(p, q) the bicyclic graph of order n obtained
from two vertex-disjoint cycles Cp and Cq by identifying vertices u of Cp and
v of Cq.

• Given p + q + r − 1 = n, denote by B(p, r, q) the bicyclic graph of order n
obtained from two vertex-disjoint cycles Cp and Cq by joining vertices u of
Cp and v of Cq by a new path u, u1, u2, . . . , ur−1, v of length r ≥ 1.

• Given k + l + m − 1 = n, denote by B(Pk, Pl, Pm) (1 ≤ m ≤ min{k, l})
a bicyclic graph of order n obtained from three pairwise internal disjoint
paths Pk = x, v1, v2, . . . , vk−1, y, Pl = x, u1, u2, . . . , ul−1, y, and Pm =
x,w1, w2, . . . , wm−1, y.

• Given p+ q+p1+ · · ·+ps−1 = n, denote by B(p, q; p1, p2, . . . , ps) a bicyclic
graph of order n obtained from B(p, q) by appending s paths on the common
vertex of the two cycles. Here, s is the number of leaves and p1, p2, . . . , ps
denote the lengths of the s paths, respectively.
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Theorem 3.5.3 For bicyclic graphs of degree sequence π = (d1, d2, . . . , dn)
with s leaves, the following holds:

• If dn = 2 and d2 ≥ 3, then for every G ∈ B(π),

ABC(G) ≥
√
2

2
n+

2

3

with equality if and only if G is B(p, 1, q) or B(Pk, Pl, P1) with p + q =
k + l = n.

• If dn = 2 and d2 = 2, then every graph in B(π) is isomorphic to some

B(p, q) with p+ q = n, and ABC(G) =
√
2
2 (n+ 1).

• If dn = 1, d2 = 2 and s ≤ n−5
2 , then for every G ∈ B(π),

ABC(G) ≥
√
2

2
(n+ 1)

with equality if and only if G is isomorphic to some B(p, q; p1, p2, . . . , ps)
with pi ≥ 2 for 1 ≤ i ≤ s.

• If dn = 1 and d2 = 2 and s > n−5
2 , then for every G ∈ B(π),

ABC(G) ≥ (n− s− 5)
√
2 + (2s− n+ 5)

√
s+ 3

s+ 4

with equality if and only if G is isomorphic to B(3, 3; 2, . . . , 2, 1, . . . , 1) with

p1 = · · · = pn−s−5 = 2 and pn−s−4 = · · · = ps = 1.

• If dn = 1 and d2 ≥ 3, then B∗(π) is an optimal graph in the set B(π).

Proof:

The extremality immediately follows from Theorem 3.5.1. We briefly discuss
the bounds for each case and leave the details as exercises.
(1) If dn = 2 and d2 ≥ 3, then the only possible degree sequence is π =
(3, 3, 2(n−2)) and G is B(p, r, q) or B(Pk, Pl, Pm). It is easy to see that

ABC(B(p, 1, q)) = ABC(B(Pk, Pl, P1)) =

√
2

2
n+

2

3

< ABC(B(p, r, q)) = ABC(B(Pk , Pl, Pm)) =
n+ 1

2

√
2

for r,m > 1.
(2) If dn = 2 and d2 = 2, then G is B(p, q) with p + q − 1 = n. It is easy to
see that

ABC(B(p, q)) =
n+ 1

2

√
2.
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(3) If π = (d1, 2
(n−s−1), 1(s)) and s ≤ n−5

2 , then all possible graphs are of the
form B(p, q; p1, p2, . . . , ps). All possible pairs of degrees of adjacent vertices
that occur are (d1, 1), (d1, 2), (2, 2), (d1, 2), and (2, 1). Using Lemma 3.5.1, it
is easy to see that the minimum ABC index of n+1

2

√
2 is obtained whenever

pi ≥ 2 for 1 ≤ i ≤ s.
(4) If π = (d1, 2

(n−s−1), 1(s)) and s > n−5
2 , one can still argue as in the

previous case. By Lemma 3.5.1, the unique optimal graph of this case is
B(3, 3; 2, . . . , 2, 1, . . . , 1) with ABC index

(2s+ 5− n)

√
s+ 3

s+ 4
+ (n− s− 2)

√
2.

(5) Directly from Theorem 3.5.1. �

3.6 Graphs with a given matching number

Before ending this chapter, we utilize Lemma 1.7.1 from the introduction and
show its application in extremal problems with respect to a number of degree-
based indices in graphs with a given matching number. Most of the results
here were introduced in [15] and the references thereof.

Similar analysis can be done on some distance-based indices following sim-
ilar logic. We leave those to interested readers.

Through this discussion, we hope to shed some light on general approaches
to deal with degree-based (as well as distance-based and other) indices in
graphs with given parameters using previously established facts from theoret-
ical studies of graphs.

3.6.1 Generalized Randić index

First, note that for α > 0 the generalized Randić index

Rα(G) =
∑

uv⊆E(G)

(deg(u) deg(v))α

satisfies the conditions of Lemma 1.7.1. Applying this lemma, together with
further discussion, leads to the following.

Theorem 3.6.1 Among connected graphs of order n and matching number
β, Rα(·) (for some α > 1) is maximized by

Ĝ = Ks + (K2β−2s+1 ∪Kn+s−2β−1)

for some s.
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Proof:

Let Ĝ be the extremal graph under consideration. Lemma 1.7.1 implies that

Ĝ = Ks + (Kn1
∪Kn2

∪ · · · ∪Knt)

for some integer s and odd integers n1, n2, . . . , nt. Then, direct computation
yields

Rα(Ĝ) =

t∑

i=1

ni(ni − 1)(ni + s− 1)2α

2

+
t∑

i=1

sni[(n− 1)(ni + s− 1)]α

+
(s2 − s)(n− 1)2α

2
.

Now, it suffices to show that the above expression attains its maximum if
and only if we have

n1 = n2 = · · · = nt−1 = 1 and nt = 2β − 2s+ 1,

or some permutation thereof.
Supposing, without loss of generality, that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt, and

for contradiction that 3 ≤ ni ≤ nj, consider

G′ = Ks + (Kn1
∪ · · · ∪Kni−2 ∪ · · · ∪Knj+2 ∪ · · · ∪Knt).

Then,

Rα(G
′)−Rα(Ĝ)

=
(ni − 2)(ni − 3)(ni + s− 3)2α

2
+ s(ni − 2)[(n− 1)(ni + s− 3)]α

+
(nj + 2)(nj + 1)(nj + s+ 1)2α

2
+ s(nj + 2)[(n− 1)(nj + s+ 1)]α

− ni(ni − 1)(ni + s− 1)2α

2
− sni[(n− 1)(ni + s− 1)]α

− nj(nj − 1)(nj + s− 1)2α

2
− snj [(n− 1)(nj + s− 1)]α

=
n2
j − nj

2
[(nj + s+ 1)α + (nj + s− 1)α][(nj + s+ 1)α − (nj + s− 1)α]

− n2
i − ni

2
[(ni + s− 3)α + (ni + s− 1)α][(ni + s− 1)α − (ni + s− 3)α]

+ snj(n− 1)α[(nj + s+ 1)α − (nj + s− 1)α]

− sni(n− 1)α[(ni + s− 1)α − (ni + s− 3)α]

+ (2nj + 1)(nj + s+ 1)2α − (2ni − 3)(ni + s− 3)2α

+ 2s(n− 1)α(nj + s+ 1)α − 2s(n− 1)α(ni + s− 3)α

> 0
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since (nj + s+ 1)α − (nj + s− 1)α > (ni + s− 1)α − (ni + s− 3)α for α > 1,

contradicting the extremality of Ĝ.
�

3.6.2 Zagreb indices based on edge degrees

First, recall the definitions of the first and second Zagreb indices as

M1(G) =
∑

u∈V (G)

deg2(u) and M2(G) =
∑

uv∈E(G)

deg(u) deg(v).

Miličević, Nikolić and Trinajstić reformulated the Zagreb indices by using
edge-degrees instead of vertex-degrees, as

EM1(G) =
∑

e∈E(G)

deg2(e) and EM2(G) =
∑

e∼f

deg(e) deg(f),

where deg(e) denotes the degree of the edge e in G, defined as deg(e) =
deg(u) + deg(v) − 2 with e = uv; and e ∼ f the adjacency of e and f (i.e.,
they share a common vertex in G). The first and second reformulated variable
Zagreb indices EMα

1 (G) and EM
α
2 (G) are defined as

EMα
1 (G) =

∑

e∈E(G)

deg2α(e) and EMα
2 (G) =

∑

e∼f

(deg(e) deg(f))α

for some α 6= 0. When α = 1, they are the first and second reformulated
Zagreb indices. In this section, we consider the first reformulated variable
Zagreb index EMα

1 (G).
Recall that M2(·) is simply a special case of Rα(·), and it is not hard to

notice the similarity between the reformulated variable Zagreb indices and
Rα(·). Then, it is natural to expect similar results on such edge-degree-based
indices.

First, we introduce the following simple observation, which is very similar
to that of other indices. The proof is left as an exercise.

Proposition 3.6.1 Let G be a connected graph with at least three vertices
and not complete. Then

EMα
1 (G) < EMα

1 (G+ e)

for any e /∈ E(G) and α > 0.

In the case of α > 0, applying Lemma 1.7.1 leads to the following. The
idea is very similar to the above proof for Rα(·) and we leave some technical
computations as exercises.
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Theorem 3.6.2 Among connected graphs of order n and matching number
β, EMα

1 (G) (for some α > 0) is maximized by

Ĝ = Ks + (K2β−2s+1 ∪Kn+s−2β−1)

for some s.

Proof:

For such an extremal graph Ĝ, Lemma 1.7.1 implies that

Ĝ = Ks + (Kn1
∪Kn2

∪ · · · ∪Knt).

Then,

EMα
1 (Ĝ) =

t∑

i=1

ni(ni − 1)[2(ni + s− 2)]2α

2

+
t∑

i=1

sni(ni + n+ s− 4)2α

+
(s2 − s)(2n− 4)2α

2
.

Similar analysis of the above formula as before shows that it attains its
maximum if and only if n1 = n2 = · · · = nt−1 = 1 and nt = 2β − 2s+ 1 (and
hence the conclusion). �

Depending on the specific value of the matching number β (compared with
n), explicit formulas for the above upper bounds can be obtained through
rather tedious algebra. We list the statement here without a proof.

Theorem 3.6.3 Let G be a connected graph with n ≥ 4 vertices and matching
number β, 5 ≤ β ≤ ⌊n

2 ⌋. Further, let r be the largest root of the cubic equation

33x3 + (n− 77)x2 + (17n+ 32− 3n2)x− n3 + 5n2 − 12n = 0.

Then, we have

• if β = ⌊n
2 ⌋, then

EM1(G) ≤
n(n− 1)

2

with equality if and only if G ∼= Kn;

• if r < β ≤ ⌊n
2 ⌋ − 1, then

EM1(G) ≤ 32β4 − 104β3 + (108 + 8n)β2 − (40 + 12n)β + n3 − 5n2 + 12n

with equality if and only if

G ∼= K1 + (K2β−1 ∪Kn−2β);
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• if 5 ≤ β < r, then

EM1(G) ≤ −β4 + (6− n)β3 + (3n2 − 8n− 1)β2 + (n3 − 8 + 17n− 8n2)β

with equality if and only if

G ∼= Kβ +Kn−β;

• if β = r, then

EM1(G) ≤ 32r4 − 104r3 + (108 + 8n)r2 − (40 + 12n)r + n3 − 5n2 + 12n

= −r4 + (6− n)r3 + (3n2 − 8n− 1)r2 + (n3 − 8 + 17n− 8n2)r

with equality if and only if

G ∼= K1 + (K2β−1 ∪Kn−2β) or G ∼= Kβ +Kn−β.

3.6.3 The Atom-bond connectivity index

Recall that adding an edge to a non-complete graph strictly increases its ABC
index [21]. We now have the following immediate consequence.

Theorem 3.6.4 The maximum ABC index among all connected graphs of
order n and matching number β is achieved by a graph of the form

Ĝ = Ks + (Kn1
∪Kn2

∪ · · · ∪Knt)

for some s and t with s+ n1 + . . .+ nt = n.

Exercises

1. Prove Proposition 3.1.1.

2. Complete the first part of the proof of Proposition 3.1.2 by showing
the case for i = 1.

3. Complete the second part of the proof of Proposition 3.1.2 by veri-
fying the expression of R1(T

′)−R1(T ).

4. Prove that among trees of a given order, Rα(·) is minimized by the
path for positive α and minimized by the star for negative α.

5. Prove the following identity for all graphs G:

∑

uv∈E(G)

(deg(u) + deg(v)) =M1(G) =
∑

v∈V (G)

deg(v)2.
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6. Prove the following inequality for the first Zagreb index of a graph
G with n vertices and m edges:

M1(G) ≥
(2m)2

n
.

7. Prove that the process of “switching” or “reversing” described in
Remark 3.2.1 will terminate after finitely many steps.

8. Prove that, with a given degree sequence, if condition (3.3) is sat-
isfied by every path of a tree T , then T is a greedy tree.

9. Prove Lemma 3.2.2.

10. Prove that a tree (of a given degree sequence) satisfying
Lemma 3.2.2 is an alternating greedy tree.

11. Prove Theorem 3.3.2.

12. Prove Theorem 3.3.4.

13. First, prove Corollaries 3.3.1 to 3.3.5. Then, state and prove the
analogous statements for de-escalating functions.

14. First, prove Proposition 3.4.2. Then, use it to prove Proposi-
tion 3.4.3.

15. Prove a stronger version of Lemma 3.4.1, that any extremal tree
that maximizes M2(·)−M1(·) cannot have diameter more than 4.

16. Fill in the details of the proof of Theorem 3.4.1.

17. Prove Proposition 3.4.6.

18. Prove Lemma 3.5.1. Then, use it to show Lemma 3.5.2.

19. Prove Lemma 3.5.6.

20. Prove Theorem 3.5.2.

21. Fill in the details of the proof of Theorem 3.6.2.



4

Independent sets: Merrifield-Simmons
index and Hosoya index

4.1 History and terminologies

This chapter is devoted to two topological indices of a very similar nature:
the Merrifield-Simmons index and the Hosoya index. They are two important
graph invariants based on counting subsets: in the case of the Merrifield-
Simmons index, independent subsets of vertices; in the case of the Hosoya
index, independent subsets of edges (matchings).

Definition 4.1.1 The Merrifield-Simmons index of a graph G, henceforth
denoted by σ(G), is the total number of independent sets of vertices of G. The
Hosoya index of a graph G, henceforth denoted by Z(G), is the total number
of matchings of G.

Let us consider an example to illustrate the definition. The graph G in
Figure 4.1 has six independent sets: the empty set, four single-vertex sets, and
one independent set of two vertices. Hence σ(G) = 6. Likewise, it has eight
matchings: the empty set, five single-edge sets, and two matchings consisting
of two edges. Hence Z(G) = 8.

The quantity Z(G) associated with a graph was introduced to the chemical
literature in 1971 by the Japanese chemist Haruo Hosoya [49]. This was also
the first time that the term topological index was used. Originally, it only
referred to what is now known as the Hosoya index, but the expression is
now widely used for other graph invariants in the context of mathematical

FIGURE 4.1
Example graph for the Merrifield-Simmons index and the Hosoya index.
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chemistry. It was found that the quantity Z(G) of the molecular graph of
a saturated hydrocarbon correlated well with a variety of physico-chemical
properties, such as boiling points, see [50,51]. It also plays a role in the theory
of conjugated π-electron systems, as does the graph energy, which we will
consider in the following chapter, and which is closely related to the Hosoya
index.

The Merrifield-Simmons index was introduced by chemists Merrifield and
Simmons in a series of papers [78–81] and a book [77] as part of an elaborate
theory involving finite-set topology. The number of independent sets occurred
in this framework as the number of open sets of a certain finite topology, and
of all the aspects of their theory, it probably received the most attention. It is
interesting to see that the mathematical study of the number of independent
sets of a graph was initiated around the same time in [89], where the name
Fibonacci number of a graph was coined for the quantity σ(G). After some
early results had been obtained in the 1980s, there was a bit of a break in
the mathematical study of Merrifield-Simmons index and Hosoya index until
they saw a sudden rise in popularity in the 2000s, when a lot of articles
were published on properties of these two invariants, with a focus mostly on
extremal problems. A selection of important results will be presented in this
chapter. The interested reader is referred to the surveys [106] and [105] for a
more in-detail account of the literature on the Merrifield-Simmons index and
the Hosoya index.

4.2 Merrifield-Simmons index and Hosoya index: ele-

mentary properties

Both the Merrifield-Simmons index and the Hosoya index satisfy basic mono-
tonicity properties, as stated in the following lemma (cf. Section 1.7):

Lemma 4.2.1 If edges are removed from a graph, then the Merrifield-
Simmons index increases, while the Hosoya index decreases.

If vertices are removed from a graph, then the Merrifield-Simmons index
decreases. The Hosoya index does not increase, and decreases strictly if at
least one of the vertices that are removed is not an isolated vertex.

Proof:

We only consider the situation that edges are removed, the other statement
follows analogously. It is clear that all independent sets stay independent, and
at least one new independent set (consisting of the two endvertices) is added
for every edge that is removed. Hence the Merrifield-Simmons index increases.
On the other hand, matchings in the graph resulting from the removal of
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edges are also matchings in the original graph, and removing an edge also
always means that at least one matching (consisting only of the single edge)
is removed. Thus the Hosoya index must decrease. �

The following properties are very useful in computing the Merrifield-
Simmons index and the Hosoya index, and they will also be used frequently
in proofs throughout this chapter.

Lemma 4.2.2 • If G1, G2, . . . , Gk are the connected components of a graph
G, then we have

σ(G) =

k∏

j=1

σ(Gj).

• For every vertex v of G, we have

σ(G) = σ(G − v) + σ(G−N [v]).

• For every edge e of G whose ends are v and w, we have

σ(G) = σ(G− e)− σ(G − (N [v] ∪N [w])).

Proof:

For the first statement, we simply note that every independent set of G induces
independent sets in all components, and conversely, the union of independent
sets in all components is always an independent set of G. The second formula
follows from the fact that the set of independent vertex sets of G can be de-
composed into two parts: those that do not contain v (all independent subsets
of G− v), and those that do (obtained by adding v to an arbitrary indepen-
dent subset of G−N [v] – note that none of v’s neighbors can be contained).
Finally, the third statement follows from a similar argument: all independent
vertex subsets of G are also independent sets in G− e, and vice versa, except
for those that contain both ends of e. These sets are obtained by adding v
and w to an arbitrary independent set of G− (N [v] ∪N [w]). �

Lemma 4.2.3 • If G1, G2, . . . , Gk are the connected components of a graph
G, then we have

Z(G) =
k∏

j=1

Z(Gj).

• For every vertex v of G, we have

Z(G) = Z(G− v) +
∑

w∈N(v)

Z(G− {v, w}).

• For every edge e of G whose ends are v and w, we have

Z(G) = Z(G− e) + Z(G− {v, w}).



120 Introduction to Chemical Graph Theory

Proof:

The proof of the first formula is analogous to Lemma 4.2.2. To obtain the
second statement, we have to distinguish two cases again: a matching either
does not contain any edge incident with v, or exactly one of them. In the former
case, a matching of G− v remains. In the latter case, the matching consists of
an edge vw (for some neighbor w of v) and an arbitrary matching ofG−{v, w}.
Lastly, for every edge e = vw, we can distinguish between matchings that do
not contain e (which are matchings of G − e) and matchings that contain it
(obtained by adding e to an arbitrary matching of G− {v, w}). �

The important special case of a pendant vertex (a vertex of degree 1) is
specifically considered in the following corollary:

Corollary 4.2.1 If v is a pendant vertex in a graph G and w its unique
neighbor, then we have

σ(G) = σ(G− v) + σ(G − {v, w})

and
Z(G) = σ(G − v) + Z(G− {v, w}).

The Merrifield-Simmons index and the Hosoya index do not only have very
similar definitions, there is also a direct connection between the two: recall that
the vertices of the line graph L(G) of a graph G are the edges of G, and two
vertices in L(G) are connected by an edge if and only if the corresponding
edges in G have a common vertex. It is easy to see that matchings in G
correspond precisely to independent sets in L(G). Therefore, the following is
immediate:

Proposition 4.2.1 For every graph G, we have Z(G) = σ(L(G)).

4.3 Extremal problems in general graphs and trees

The monotonicity properties of Lemma 4.2.1 immediately yield the following
basic theorem (cf. Proposition 1.7.1):

Theorem 4.3.1 • For every graph G with n vertices, we have

n+ 1 = σ(Kn) ≤ σ(G) ≤ σ(En) = 2n,

where Kn and En are the complete and edgeless graph, respectively. Equality
in the first inequality only holds if G is complete, and equality in the second
inequality only holds if G is edgeless.
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• For every graph G with n vertices, we have

1 = Z(En) ≤ Z(G) ≤ Z(Kn) =
∑

0≤k≤n/2

n!

2kk!(n− 2k)!
,

again with equality only if G is edgeless (complete, respectively).

Proof:

The inequalities follow immediately from the fact that removing edges in-
creases σ(G) while it decreases Z(G), as stated in Lemma 4.2.1. The formulas
for the complete and empty graph are relatively straightforward: we have
σ(En) = 2n since all vertex subsets are independent in the edgeless graph,
and Z(En) = 1 since there is only one edge subset (the empty set), thus also
only one matching.

The identity σ(Kn) = n+1 is also easy: note that there are no independent
sets of two or more vertices, thus only n single-vertex independent sets and
the empty set, for a total of n + 1. The most interesting formula is that for
Z(Kn): let k be the number of edges in a matching. There are

(
n
2k

)
possibilities

to choose the 2k vertices involved in the matching. Thereafter, there are

(2k − 1)!! = 1 · 3 · 5 · (2k − 1)

possible matchings: we number the vertices from 1 to 2k. Now there are 2k−1
choices for the edge that covers vertex 1. Next, there are 2k − 3 choices for
the edge that covers the next-smallest vertex, and so forth. Finally, we notice
that (

n

2k

)
(2k − 1)!! =

n!

2kk!(n− 2k)!
,

and the formula for Z(Kn) follows. �

Things get somewhat more interesting if one considers only connected
graphs. The edge removal argument of the previous proof shows immediately
that the maximum of the Merrifield-Simmons index and the minimum of the
Hosoya index can only be attained by trees (see again Proposition 1.7.1), so it
will suffice to study trees. We will also consider the dual problems for trees, i.e.,
minimizing the Merrifield-Simmons index and maximizing the Hosoya index.
As in many other instances throughout this book, the star and the path are
extremal.

In the following, Fibonacci numbers play an important role. We use the
notation Fn for the Fibonacci numbers, with F0 = 0, F1 = 1 and Fn =
Fn−1 + Fn−2 for n ≥ 2. Consider the path Pn with n vertices: it is easy to
see that σ(P1) = 2 = F3 and σ(P2) = 3 = F4 as well as Z(P1) = 1 = F2 and
Z(P2) = 2 = F3. Moreover, Corollary 4.2.1, applied to one of the ends of Pn,
shows that

σ(Pn) = σ(Pn−1) + σ(Pn−2) and Z(Pn) = Z(Pn−1) + Z(Pn−2).
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It follows immediately that

σ(Pn) = Fn+2 and Z(Pn) = Fn+1. (4.1)

The Lucas numbers Ln are closely related to the Fibonacci numbers: they
satisfy the same recursion (i.e., Ln = Ln−1 +Ln−2), but with different initial
values: L0 = 2 and L1 = 1. It is easily verified by induction that

Ln = Fn+1 + Fn−1

for all positive integers n. The Merrifield-Simmons index and Hosoya index of
the cycle graph Cn are equal to Lucas numbers: to see why this is so, apply
the second item of Lemma 4.2.2 to one of the vertices of the cycle to obtain

σ(Cn) = σ(Pn−1) + σ(Pn−3) = Fn+1 + Fn−1 = Ln.

Since the line graph of the cycle is again a cycle with the same number of
vertices, we also have (by Proposition 4.2.1)

Z(Cn) = σ(L(Cn)) = σ(Cn) = Ln.

The fact that σ(Pn) is always a Fibonacci number is also the reason why
the number of independent sets was called “Fibonacci number of a graph” by
Prodinger and Tichy in their first paper on the subject in [89]. The following
results on trees can already be found in their paper as well:

Theorem 4.3.2 For every tree T with n vertices, we have

σ(T ) ≤ σ(Sn) = 2n−1 + 1,

with equality if and only if T is a star. Moreover, we have

σ(T ) ≥ σ(Pn) = Fn+2,

with equality if and only if T is a path.

Proof:

We prove both inequalities by induction on n, starting with the upper bound.
For n ≤ 2, there is nothing to prove since there is only one possibly tree (up
to isomorphism). Now let T be a tree with n vertices, where n > 2. Pick any
leaf v of T , and let w be its neighbor. By Corollary 4.2.1, we have

σ(T ) = σ(T − v) + σ(T − {v, w}).

The induction hypothesis yields σ(T −v) ≤ 2n−2+1, with equality if and only
if T − v is a star. Moreover, by Theorem 4.3.1 we have σ(T −{v, w}) ≤ 2n−2,
with equality if and only if T − {v, w} is an edgeless graph. Combining the
two inequalities, we get

σ(T ) = σ(T − v) + σ(T − {v, w}) ≤ 2n−2 + 1 + 2n−2 = 2n−1 + 1,



Independent sets: Merrifield-Simmons index and Hosoya index 123

and equality can only hold if T − v is a star and T − {v, w} is edgeless. It is
easy to see that this is only possible if T is a star.

Now we consider the lower bound. Again, the small cases are trivial, and
we can continue by induction. Let T be a tree with n vertices, n > 2, and let
v be one of its leaves and w its neighbor as before. The induction hypothesis
gives us σ(T−v) ≥ Fn+1, with equality if and only if T−v is a path. The graph
T −{v, w} is not necessarily a tree, since it might not be connected. However,
it is a forest (i.e., acyclic) and can thus be obtained by removing edges from a
tree. So we can combine Lemma 4.2.1 with the induction hypothesis to obtain
σ(T − {v, w}) ≥ Fn, again with equality if and only if T − {v, w} is a path.
Putting the two inequalities together, we find that

σ(T ) = σ(T − v) + σ(T − {v, w}) ≥ Fn+1 + Fn = Fn+2,

and T −v and T −{v, w} both need to be paths for equality to hold. It is easy
to see that this is the case if and only if T is a path. �

The analogous theorem for the Hosoya index is very similar, as is its proof:

Theorem 4.3.3 For every tree T with n vertices, we have

Z(T ) ≤ Z(Pn) = Fn+1,

with equality if and only if T is a path. Moreover, we have

Z(T ) ≥ Z(Sn) = n,

with equality if and only if T is a star.

Proof:

For the first statement, we can copy the proof of the previous theorem: again,
there is nothing to prove for n ≤ 2. For the induction step, we consider a tree
T with n vertices, where n > 2. Pick a leaf v, let w be the neighbor, and note
that we have Z(T − v) ≤ Fn by the induction hypothesis, as well as Z(T −
{v, w}) ≤ Fn−1 by the induction hypothesis, combined with Lemma 4.2.1.
Now the desired inequality follows from Corollary 4.2.1, and the argument
that the path is the only tree for which equality holds is identical to the
previous theorem.

The proof of the lower bound is even simpler. A tree with n vertices has
n−1 edges and therefore at least n matchings: the empty set and n−1 single-
edge matchings. The only trees without further matchings containing two or
more edges are stars, since any two edges have a common vertex. In fact, stars
and the complete graph K3 are easily seen to be the only graphs with this
property. �

Every connected graph contains a spanning tree as a subgraph. Thus, in
view of Lemma 4.2.1, the inequalities

σ(G) ≤ σ(Sn) and Z(G) ≥ Z(Sn)
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hold for arbitrary connected graphs G, not only for trees—again, we refer to
the general statement of Proposition 1.7.1.

As in Theorem 4.3.1, we observe that the graphs that yield the maximum
of the Merrifield-Simmons index are those that yield the minimum of the
Hosoya index, and vice versa. This is a very typical situation that we will
observe repeatedly throughout this chapter.

4.4 Graph transformations

In previous chapters, various transformations of graphs were a common el-
ement in our proofs. There are a number of standard transformations that
occur very frequently in the literature on the Merrifield-Simmons index and
the Hosoya index, and the aim of this section is to discuss some of them
with selected applications. One common transformation is the replacement of
a subgraph, in particular when it comes to trees and tree-like graphs. Since
the star and the path are the extremal trees with respect to the Merrifield-
Simmons index and the Hosoya index, the following result might not come as
a surprise:

Lemma 4.4.1 Suppose that a graph G can be decomposed into a connected
graph H and a tree T that only share a cutvertex v. Let G1 be the graph
obtained by replacing T by a path with v as one of its endpoints, and let G2

be the graph obtained by replacing T by a star with v at the center. We have

σ(G1) ≤ σ(G) ≤ σ(G2),

and equality only holds if G is isomorphic to G1 or G2, respectively. Likewise,

Z(G2) ≤ Z(G) ≤ Z(G1),

and again equality only holds if G is isomorphic to G1 or G2, respectively.

Proof:

We apply Lemma 4.2.2 to vertex v to obtain

σ(G) = σ(H − v)σ(T − v) + σ(H −N [v])σ(T −N [v])

= σ(H −N [v])σ(T ) +
(
σ(H − v)− σ(H −N [v])

)
σ(T − v).

Now note that σ(H−N [v]) and σ(H−v)−σ(H−N [v]) are both non-negative;
they are even strictly positive unless H only consists of a single vertex.

The value of σ(T ) attains its maximum (among all possible choices of a
tree T ) when T is a star, and the value of σ(T −v) attains its maximum when
T is a star and v its center (so that T − v is edgeless). Thus the inequality
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σ(G) ≤ σ(G2) follows. If H has more than one vertex, the inequality is strict
unless T is a star with v at its center, so that G is isomorphic to G2. If H only
has a single vertex, then T just has to be a star for equality to hold, which
also means that G is isomorphic to G2.

Likewise, the value of σ(T ) attains its minimum when T is a path, and
the value of σ(T − v) attains its minimum when T is a path with v at one
of its ends (so that T − v is also a path). Now the inequality σ(G1) ≤ σ(G)
follows. Again, the inequality is strict if H has more than one vertex unless T
is a path with v at one of its ends. In this case, G is isomorphic to G1, and
the same is true if H only has a single vertex, so that T only has to be a path
for equality to hold.

The proof of the inequalities for the Hosoya index is analogous and left as
an exercise. �

H TvG

H vG1

H vG2

FIGURE 4.2
The transformations of Lemma 4.4.1.

For our next result, we need properties of the Fibonacci numbers. Let

φ = 1+
√
5

2 be the golden ratio, and let φ = − 1
φ = 1−

√
5

2 . It is well known that

the Fibonacci numbers satisfy the explicit formula (known as Binet’s formula)

Fn =
1√
5

(
φn − φ

n)
.

The Lucas numbers Ln satisfy a very similar formula:

Ln = φn + φ
n
.

These formulas can also be used to define Fn and Ln for negative integers n:
we have F−n = (−1)n−1Fn and L−n = (−1)nLn.

Lemma 4.4.2 For every positive integer n, we have

FkFn−k > FℓFn−ℓ
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for all odd values of k and even values of ℓ with 0 ≤ k, ℓ ≤ n/2. Moreover,
FkFn−k is decreasing in k for odd k ≤ n/2, and FℓFn−ℓ is increasing in ℓ for
even ℓ ≤ n/2. In other words,

F1Fn−1 > F3Fn−3 > F5Fn−5 > · · · > F⌊n/2⌋F⌈n/2⌉ > · · · > F2Fn−2 > F0Fn.

Proof:

Direct calculation shows that

FkFn−k =
1

5

(
φn − φ

k
φn−k − φ

n−k
φk + φ

n)

=
1

5

(
φn + φ

n)− 1

5
(−1)k

(
φn−2k + φ

n−2k)

=
1

5

(
Ln + (−1)k+1Ln−2k

)
.

Since Ln−2k is decreasing as a function of k for k ≤ n/2 and (−1)k+1Ln−2k

is positive for odd k and negative for even k, the chain of inequalities follows
immediately. �

Lemma 4.4.3 Let G be a fixed connected graph with more than one vertex,
and let v be one of its vertices. The graph P (n, k,G, v) is obtained by identi-
fying the k-th vertex of an n-vertex path with v, see Figure 4.3. Writing n as
n = 4m+ i, where i ∈ {1, 2, 3, 4}, we have the following chains of inequalities,
where l = ⌊ i−1

2 ⌋:

σ(P (n, 2, G, u)) > σ(P (n, 4, G, u)) > · · · > σ(P (n, 2m+ 2l, G, u)) >

σ(P (n, 2m+ 1, G, u)) > · · · > σ(P (n, 3, G, u)) > σ(P (n, 1, G, u)),

and

Z(P (n, 2, G, u)) < Z(P (n, 4, G, u)) < · · · < Z(P (n, 2m+ 2l, G, u)) <

Z(P (n, 2m+ 1, G, u)) < · · · < Z(P (n, 3, G, u)) < Z(P (n, 1, G, u)).

w1 wk = v wn

G

FIGURE 4.3
Illustration of the graph in Lemma 4.4.3.
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Proof:

We apply the second part of Lemma 4.2.2 to the vertex v. Note that
P (n, k,G, v) − v decomposes into three components: G − v and two paths
of k− 1 and n− k vertices, respectively. Likewise, P (n, k,G, v)−N [v] decom-
poses into G−N [v] and two paths of k− 2 and n− k− 1 vertices. Therefore,

σ(P (n, k,G, v))

= σ(Pk−1)σ(Pn−k)σ(G − v) + σ(Pk−2)σ(Pn−k−1)σ(G −N [v])

= σ(Pn)σ(G−N [v]) + σ(Pk−1)σ(Pn−k)
(
σ(G− v)− σ(G−N [v])

)

= Fn+2σ(G −N [v]) + Fk+1Fn−k+2

(
σ(G− v)− σ(G −N [v])

)
.

Since G has more than one vertex and is connected, G − N [v] is a proper
subgraph of G− v, hence we have σ(G− v)− σ(G−N [v]) > 0. Therefore, the
first set of inequalities follows directly from Lemma 4.4.2.

The proof for the Hosoya index follows the same lines. First we find an
expression for Z(P (n, k,G, v)). Applying the third part of Lemma 4.2.3 to the
edges of the path that are incident to v, we find that

Z(P (n, k,G, v)) = Z(Pk−1)Z(Pn−k)Z(G) + Z(Pk−2)Z(Pn−k)Z(G− v)

+ Z(Pk−1)Z(Pn−k−1)Z(G− v).

In the special case where G is a single vertex, we obtain

Z(Pn) = Z(Pk−1)Z(Pn−k) + Z(Pk−2)Z(Pn−k) + Z(Pk−1)Z(Pn−k−1),

so

Z(P (n, k,G, v)) = Z(Pn)Z(G− v) + Z(Pk−1)Z(Pn−k)
(
Z(G)− Z(G− v)

)

= Fn+1Z(G− v) + FkFn−k+1

(
Z(G)− Z(G− v)

)
.

The second set of inequalities now follows in the same way as before from
Lemma 4.4.2. �

As a first application of these transformations, we determine the trees
with second-smallest and second largest Merrifield-Simmons index and Hosoya
index, respectively.

Theorem 4.4.1 For every positive integer n ≥ 6, the unique tree with the
second-smallest Merrifield-Simmons index among n-vertex trees is the tree
resulting from attaching a path of length 2 to the third vertex of a path of
n− 2 vertices (see Figure 4.4). The same tree is also the unique tree with the
second-largest Hosoya index among n-vertex trees.
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FIGURE 4.4
The tree with second-smallest Merrifield-Simmons index and second-largest
Hosoya index for n = 8.

Proof:

Since the arguments are completely identical for the two statements, we com-
bine the two proofs. Let n ≥ 6 be fixed, and suppose that T is a tree with n
vertices and either the property that its Merrifield-Simmons index is second-
smallest among n-vertex trees (thus smallest among n-vertex trees that are not
paths) or the property that its Hosoya index is second-largest among n-vertex
trees (largest among n-vertex trees that are not paths).

Suppose first that there is a vertex v of degree greater than 3. If we take
the tree induced by v and two of v’s branches and replace it by a path, then
the Merrifield-Simmons index decreases and the Hosoya index increases, both
by Lemma 4.4.1. Since v still has degree at least 3 in the resulting tree, we do
not obtain a path. This contradicts the choice of T .

Also, if there is a vertex v of degree 3 for which (at least) one of the
branches of v is not a path, then we replace this branch by a path. The
resulting tree is not a path, and the Merrifield-Simmons index decreases while
the Hosoya index increases. Again, we get a contradiction.

Since every tree that is not a path contains a vertex of degree at least 3,
the only remaining possibility is that there is a vertex of degree 3 for which
all three branches are paths. Now assume that there are at least two branches
whose length is not 2. Let the lengths of these branches be a and b. If we
replace them by paths of lengths 2 and a+b−2, then we get another tree that
is not a path. Here we may assume that a and b are not both 1: if they are,
the third branch has length n− 3, which is greater than 2, so we can take this
branch instead of one of the short branches for the transformation. As before,
the Merrifield-Simmons index decreases and the Hosoya index increases, this
time by Lemma 4.4.3. Since this contradicts the choice of T again, we conclude
that T must have two branches of length 2 (and one branch of length n− 5),
i.e., T is the tree described in the statement of the theorem. This completes
our proof. �

The dual result follows a similar line of reasoning:

Theorem 4.4.2 For every positive integer n ≥ 4, the unique tree with the
second-smallest Merrifield-Simmons index among n-vertex trees is the tree
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resulting from a star with n− 1 vertices by subdividing one of its edges (thus
turning it into two edges), see Figure 4.5. The same tree is also the unique
tree with the second-smallest Hosoya index among n-vertex trees.

FIGURE 4.5
The tree with second-largest Merrifield-Simmons index and second-smallest
Hosoya index for n = 6.

Proof:

Again, the proofs for Merrifield-Simmons index and Hosoya index are largely
identical. Let n ≥ 4 be fixed, and suppose that T is a tree with n vertices
and either the property that its Merrifield-Simmons index is second-largest
among n-vertex trees (thus largest among n-vertex trees that are not stars)
or the property that its Hosoya index is second-smallest among n-vertex trees
(smallest among n-vertex trees that are not stars).

Suppose first that there is a non-leaf vertex v with the property that at
least two of its branches are not single leaves. Pick any of these branches
and replace the subtree induced by v and this branch by a star, centered at
v. The resulting tree is not a star, and by Lemma 4.4.1 the Hosoya index
decreases while the Merrifield-Simmons index increases. As in the proof of
Theorem 4.4.1, this contradicts the choice of T .

Since we are assuming that T is not a star, there are at least two non-leaf
vertices v and w. We now know that each of them can only have one non-leaf
branch (which contains the other vertex). The path from v to w cannot contain
any further vertices, since any such vertex would have two non-leaf branches
(one containing v, the other w). Thus v and w are neighbors, and we find that
T must be a double star (a tree with precisely two non-leaf vertices that are
adjacent to each other). Suppose that v and w have a and b leaf neighbors,
respectively. Clearly, a + b = n − 2. We can easily determine the Merrifield-
Simmons index and the Hosoya index of T by means of Lemmas 4.2.2 and 4.2.3:

σ(T ) = 2a+b + 2a + 2b = 2n−2 + 2a + 2b

and
Z(T ) = ab+ a+ b+ 2 = ab+ n.

Now simply note that 2a + 2b, subject to the conditions a + b = n − 2 and
a, b ≥ 1, attains its maximum if and only if either a = 1 or b = 1, while ab
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attains its minimum under the same conditions if and only if either a = 1 or
b = 1. In both cases, we can conclude that T must indeed be the tree described
in the statement of the theorem. �

While Lemma 4.4.1 deals with replacing tree parts of a graph, the following
lemma considers the operation of moving branches, which will be useful in our
study of different families of trees and tree-like graphs.

Lemma 4.4.4 Let v and w be two distinct vertices of a graph H, and let J1
and J2 be two connected graphs with at least two vertices each. Let u1 and u2
be distinguished vertices of J1 and J2, respectively. Let G be the graph obtained
by merging v with u1 and w with u2, let Gv be the graph obtained by merging
v with u1 and u2, and let Gw be the graph obtained by merging w with u1 and
u2. At least one of the following two inequalities holds:

σ(Gv) > σ(G) or σ(Gw) > σ(G).

Moreover, at least one of the following two inequalities holds:

Z(Gv) < Z(G) or Z(Gw) < Z(G).

See Figure 4.6 for an illustration of this lemma.

J1 J2v = u1 w = v2

G

wv = u1 = u2

Gv

J2

J1

w = u1 = u2v

Gw

J1

J2

FIGURE 4.6
The graphs G, Gv and Gw in Lemma 4.4.4.
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Proof:

We first determine formulas for σ(G), σ(Gv) and σ(Gw). The independent
sets of G can be divided into four classes, depending on whether the vertices
v and w are contained or not (this amounts to applying Lemma 4.2.2 twice).
For simplicity of notation, let us denote the number of independent sets of H
that contain both v and w by a, bv is the number of independent sets that
contain v, but not w, bw the number of independent sets that contain w, but
not v, and finally c the number of independent sets of H that contain neither
v nor w. Now we look at the graphs G, Gv and Gw:

• The number of independent sets of G that contain both v and w is

aσ(J1 −N [u1])σ(J2 −N [u2]),

and the same applies to Gv and Gw as well.

• The number of independent sets of G that contain neither v nor w is

cσ(J1 − u1)σ(J2 − u2),

and again this is also true for Gv and Gw.

• The number of independent sets of G that contain v, but not w, is

bvσ(J1 −N [u1])σ(J2 − u2),

while it is
bvσ(J1 −N [u1])σ(J2 −N [u2])

for Gv and
bvσ(J1 − u1)σ(J2 − u2)

for Gw.

• Likewise, the number of independent sets of G that contain w, but not v, is

bwσ(J1 − u1)σ(J2 −N [u2]),

while it is
bwσ(J1 − u1)σ(J2 − u2)

for Gv and
bwσ(J1 −N [u1])σ(J2 −N [u2])

for Gw.

We see that the difference between σ(G), σ(Gv) and σ(Gw) comes from the
last two cases. Combining all the formulas, we find that

σ(Gv)−σ(G) =
(
bwσ(J1−u1)−bvσ(J1−N [u1])

)(
σ(J2−u2)−σ(J2−N [u2])

)
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and

σ(Gw)−σ(G) =
(
bvσ(J2−u2)−bwσ(J2−N [u2])

)(
σ(J1−u1)−σ(J1−N [u1])

)
.

Since J1 and J2 were assumed to be connected and to have at least two vertices
each, we have σ(J1 − u1) > σ(J1 − N [u1]) and σ(J2 − u2) > σ(J2 − N [u2]).
Thus at least one of the two factors bwσ(J1−u1)−bvσ(J1−N [u1]) (positive if
bw ≥ bv) and bvσ(J2 − u2)− bwσ(J2 −N [u2]) (positive if bv ≥ bw) is positive,
and the other factors σ(J1−u1)−σ(J1−N [u1]) and σ(J2−u2)−σ(J2−N [u2])
are always positive. It follows that at least one of the two inequalities σ(Gv) >
σ(G) and σ(Gw) > σ(G) must hold (note that it is in fact possible that both
hold).

Now we prove the analogous statement for the Hosoya index. In analogy
to the first part of the proof, let A be the number of matchings of H that
cover both v and w, Bv the number of matchings that cover v, but not w, Bw

the number of matchings that cover w, but not v, and finally C the number
of matchings that cover neither v nor w. Now we count matchings in G, Gv

and Gw:

• The number of matchings of G that cover both v and w within H is

AZ(J1 − u1)Z(J2 − u2),

and the same applies to Gv and Gw as well.

• The number of matchings of G that cover neither v nor w within H is

CZ(J1)Z(J2),

but in contrast to the first half of this proof, this is not the case for Gv and
Gw. Indeed, the number for these two graphs is

C
(
Z(J1)Z(J2 − u2) + Z(J1 − u1)Z(J2)− Z(J1 − u1)Z(J2 − u2)

)
.

To see why, note that J1 and J2 have a vertex in common (u1 and u2 are
merged) in both Gv and Gw. Thus a matching either does not cover u2 in
J2 (giving the term Z(J1)Z(J2 − u2)) or does not cover u1 in J1 (giving
the term Z(J1 − u1)Z(J2)), but matchings for which neither is the case are
counted twice, hence we subtract Z(J1 − u1)Z(J2 − u2) to make up for the
overcount.

• The number of matchings of G that cover v, but not w, within H is

BvZ(J1 − u1)Z(J2),

while it is
BvZ(J1 − u1)Z(J2 − u2)

for Gv and

Bv

(
Z(J1)Z(J2 − u2) + Z(J1 − u1)Z(J2)− Z(J1 − u1)Z(J2 − u2)

)

for Gw.
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• Likewise, the number of matchings of G that cover w, but not v, within H
is

BwZ(J1)Z(J2 − u2),

while it is

Bw

(
Z(J1)Z(J2 − u2) + Z(J1 − u1)Z(J2)− Z(J1 − u1)Z(J2 − u2)

)

for Gv and
BwZ(J1 − u1)Z(J2 − u2)

for Gw.

Again, we consider the differences:

Z(G)− Z(Gv)

=
(
C(Z(J1)− Z(J1 − u1)) + (Bv − Bw)Z(J1 − u1)

)(
Z(J2)− Z(J2 − u2)

)

and analogously

Z(G)− Z(Gw)

=
(
C(Z(J2)− Z(J2 − u2)) + (Bw −Bv)Z(J2 − u2)

)(
Z(J1)− Z(J1 − u1)

)
.

Since J1 and J2 were assumed to be connected and to have at least two vertices
each, we have Z(J1) > Z(J1 − u1) and Z(J2) > Z(J2 − u2). It follows that
Z(G) > Z(Gv) if Bv ≥ Bw and Z(G) > Z(Gw) if Bw ≥ Bv, so again at least
one of the two desired inequalities must hold. �

The following lemma is similar in nature, and it will play the same role for
problems involving minimizing σ and maximizing Z that Lemma 4.4.4 plays
for maximizing σ and minimizing Z.

Lemma 4.4.5 Let v and w be two distinct vertices of a connected graph H
with more than two vertices, and consider the following three graphs, where
k, h, r are positive integers:

• G is obtained from H by adding a path of length r between v and w, a path
of length k starting at v and a path of length h starting at w (the latter two
end in a leaf),

• Gv is obtained from H by adding a path of length r between v and w and a
path of length k + h starting at v,

• Gw is obtained from H by adding a path of length r between v and w and a
path of length k + h starting at w.

See Figure 4.7 for an illustration. The following two statements hold:

• either σ(G) > σ(Gv) or σ(G) > σ(Gw),

• either Z(G) < Z(Gv) or Z(G) < Z(Gw).
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v w

H

G

length k length r length h

v w

H

Gv

length k + h length r

wv

H

Gw

length k + hlength r

FIGURE 4.7
The graphs G, Gv and Gw in Lemma 4.4.5.

Proof:

• Let us start with the Merrifield-Simmons index. We use the same notation
as before: the number of independent sets of H that contain both v and w
is denoted by a, bv is the number of independent sets that contain v, but
not w, bw the number of independent sets that contain w, but not v, and
finally c the number of independent sets of H that contain neither v nor
w. Applying Lemma 4.2.2 to v and w and the formula for the number of
independent sets of a path from (4.1), we get

σ(G) = aσ(Pk−1)σ(Ph−1)σ(Pr−3) + bvσ(Pk−1)σ(Ph)σ(Pr−2)

+ bwσ(Pk)σ(Ph−1)σ(Pr−2) + cσ(Pk)σ(Ph)σ(Pr−1)

as well as

σ(Gv) = aσ(Pk+h−1)σ(Pr−3) + bvσ(Pk+h−1)σ(Pr−2)

+ bwσ(Pk+h)σ(Pr−2) + cσ(Pk+h)σ(Pr−1)

and

σ(Gw) = aσ(Pk+h−1)σ(Pr−3) + bvσ(Pk+h)σ(Pr−2)

+ bwσ(Pk+h−1)σ(Pr−2) + cσ(Pk+h)σ(Pr−1).
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We take the differences, recall that σ(Pn) = Fn+2 and apply the identities
Fk+1Fh+1 + FkFh = Fk+h+1 and Fk+2Fh+2 − FkFh = Fk+h+2 that follow
readily from Binet’s formula (cf. Lemma 4.4.2) or combinatorially (Exer-
cise 5). This gives us

σ(G)− σ(Gv) = −aFkFhFr−1 + bvFk−1FhFr − bwFk+1FhFr + cFkFhFr+1

and analogously

σ(G) − σ(Gw) = −aFkFhFr−1 − bvFkFh+1Fr + bwFkFh−1Fr + cFkFhFr+1.

We remark that these equations even remain correct (as one can check easily)
when r is so small that expressions such as σ(Pr−3) are not well defined
(Exercise 6). This also applies later to the proof for the Hosoya index. Using
the recursion Fk+1 = Fk + Fk−1 (and likewise Fh+1 = Fh + Fh−1), we can
rewrite these as

σ(G)− σ(Gv) = (cFr+1 − bwFr − aFr−1)FkFh + (bv − bw)Fk−1FhFr

and

σ(G) − σ(Gw) = (cFr+1 − bvFr − aFr−1)FkFh + (bw − bv)FkFh−1Fr.

Now note that c > bv, c > bw and c > a: for every independent set that
contains v, but not w, we can simply remove v to obtain an independent set
that contains neither v nor w. This is an injective relation, so c ≥ bv. More-
over, the inequality must be strict: there are independent sets containing
neither v nor w that cannot be obtained in this way (all those that contain
neighbors of v), since H is connected and has at least three vertices by our
assumptions. Thus c > bv, and the inequalities c > bw and c > a follow
analogously. It follows that

cFr+1 − bvFr − aFr−1 > cFr+1 − cFr − cFr−1 = 0,

which means that σ(G) > σ(Gv) if bv ≥ bw, and σ(G) > σ(Gw) if bw ≥ bv.
Clearly, one of these two inequalities must hold.

• The proof of the second statement is very similar. We let A be the number
of matchings of H that cover both v and w, Bv the number of matchings
that cover v, but not w, Bw the number of matchings that cover w, but not
v, and finally C the number of matchings that cover neither v nor w. Now
we count matchings in G, Gv and Gw again, in the same way as in the proof
of Lemma 4.4.4.

– The number of matchings of G that cover both v and w within H is

AZ(Pk)Z(Ph)Z(Pr−1) = AFk+1Fh+1Fr ,

while the corresponding number for Gv and Gw is

AZ(Pk+h)Z(Pr−1) = AFk+h+1Fr.
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– The number of matchings of G that cover neither v nor w within H is

CZ(Pk+h+r+1) = CFk+h+r+2,

and the number remains the same for Gv and Gw.

– The number of matchings of G that cover v, but not w, within H is

BvZ(Pk)Z(Ph+r) = BvFk+1Fh+r+1,

while it is
BvZ(Pk+h)Z(Pr) = BvFk+h+1Fr+1

for Gv and
BvZ(Pk+h+r) = BvFk+h+r+1

for Gw.

– Likewise, the number of matchings of G that cover w, but not v, within
H is

BwZ(Ph)Z(Pk+r) = BwFh+1Fk+r+1,

while it is
BwZ(Pk+h+r) = BwFk+h+r+1

for Gv and
BwZ(Pk+h)Z(Pr) = BwFk+h+1Fr+1

for Gw.

In calculating the differences, we use the identity Fk+1Fh+1+FkFh = Fk+h+1

that we also used in the first part, as well as the more general version
Fk+h+1Fr+1−Fk+1Fh+r+1 = (−1)rFhFk−r (r = 0 gives the aforementioned
identity as a special case). These give us

Z(Gv)− Z(G) = AFr(Fk+h+1 − Fk+1Fh+1) +Bv(Fk+h+1Fr+1

− Fk+1Fh+r+1) +Bw(Fk+h+r+1 − Fh+1Fk+r+1)

= AFrFkFh + (−1)rBvFhFk−r +BwFhFk+r

= Fh

(
AFrFk + (−1)rBvFk−r +BwFk+r)

and analogously

Z(Gw)− Z(G) = Fk

(
AFrFh + (−1)rBwFh−r +BvFh+r).

Since we are assuming that k, h, r are positive integers, we have Fk, Fh > 0.
Moreover, as in the proof of Lemma 4.4.4 we have Bv, Bw > 0 by our
assumptions on H . Finally, |(−1)rFk−r | = F|k−r| < Fk+r since |k − r| ≤
k + r − 2. Thus we can conclude that

Z(Gv)− Z(G) ≥ Fh(−BvF|k−r| +BwFk+r) > (Bw −Bv)FhFk+r

and by the same reasoning

Z(Gw)− Z(G) ≥ Fk(BvFh+r −BwF|h−r|) > (Bv −Bw)FkFh+r.
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Clearly, it follows that at least one of the two differences is positive, which is
what we wanted to prove. �

Our next lemma also deals with a similar situation, but allows for more
invasive transformations. In order to formulate it, we need two invariants
associated with rooted graphs that are derived from the Merrifield-Simmons
index and the Hosoya index.

Let G be a rooted graph (i.e., a graph with a distinguished vertex, called
the root), and let v be its root. We set

ρ(G) =
σ(G− v)

σ(G)
and τ(G) =

Z(G− v)

Z(G)
.

In words, ρ(G) is the proportion of independent sets of G that do not contain
the root v, and τ(G) is the proportion of matchings of G that do not cover
the root. In the following, it will be useful to extend the definition of σ, Z, ρ
and τ to the empty graph ∅ without vertices and edges by setting σ(∅) = 1,
Z(∅) = 1, ρ(∅) = 1 and τ(∅) = 0. These choices will be motivated later.

Lemma 4.4.6 Let v and w be two distinct vertices of a graph H, and let
J1, J2, . . . , J2r be rooted graphs with roots u1, u2, . . . , u2r, respectively; these
graphs may also be empty (in which case there is no root). For a partition of
{1, 2, . . . , 2r} into two disjoint sets V and W such that V ∪W = {1, 2, . . . , 2r},
construct the graph GV,W as follows: take the union of H and J1, J2, . . . , J2r.
Then connect v by an edge to the roots ui of all non-empty graphs Ji with
i ∈ V , and connect w by an edge to the roots ui of all non-empty graphs Ji
with i ∈W (see Figure 4.8). The following statements hold:

• Among all possible partitions of {1, 2, . . . , 2r} into disjoint sets V and W
with |V | = |W | = r, the maximum of σ(GV,W ) can only be attained if one
of the following holds:

min
i∈V

ρ(Ji) ≥ max
i∈W

ρ(Ji)

or
max
i∈V

ρ(Ji) ≤ min
i∈W

ρ(Ji).

In words: the graphs Ji with the r largest values of ρ(Ji) or the graphs Ji
with the r smallest values of ρ(Ji) are attached to v, the rest to w.

• Among all possible partitions of {1, 2, . . . , 2r} into disjoint sets V and W
with |V | = |W | = r, the minimum of Z(GV,W ) can only be attained if one
of the following holds:

min
i∈V

τ(Ji) ≥ max
i∈W

τ(Ji)

or
max
i∈V

τ(Ji) ≤ min
i∈W

τ(Ji).

In words: the graphs Ji with the r largest values of τ(Ji) or the graphs Ji
with the r smallest values of τ(Ji) are attached to v, the rest to w.
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Hv w

Ji1

Ji2

Jir

Jj1

Jj2

Jjr

FIGURE 4.8
Illustration of the graph in Lemma 4.4.6.

Proof:

Let us first consider the proof for the Merrifield-Simmons index. We start by
determining a general formula for σ(GV,W ). We use the same notation as in the
proof of Lemma 4.4.4, where four types of independent sets are distinguished,
depending on whether or not v and w are contained. Let us denote the number
of independent sets of H that contain both v and w by a, bv is the number
of independent sets that contain v, but not w, bw the number of independent
sets that contain w, but not v, and finally c the number of independent sets
of H that contain neither v nor w. We find that

σ(GV,W ) = a
∏

i∈V

σ(Ji − vi)
∏

i∈W

σ(Ji − vi) + bv
∏

i∈V

σ(Ji − vi)
∏

i∈W

σ(Ji)

+ bw
∏

i∈V

σ(Ji)
∏

i∈W

σ(Ji − vi) + c
∏

i∈V

σ(Ji)
∏

i∈W

σ(Ji).

The first term and the last term are independent of our choice of V and W :
they are always equal to

a

2r∏

i=1

σ(Ji − vi) + c

2r∏

i=1

σ(Ji).

So in order to maximize the value of σ(GV,W ), we have to maximize

bv
∏

i∈V

σ(Ji − vi)
∏

i∈W

σ(Ji) + bw
∏

i∈V

σ(Ji)
∏

i∈W

σ(Ji − vi)

=

2r∏

i=1

σ(Ji)
(
bv
∏

i∈V

ρ(Ji) + bw
∏

i∈W

ρ(Ji)
)
.

We remark that this is even correct if some of the Ji are empty, since factors
of σ(∅) = 1 and ρ(∅) = 1 do not affect the respective products. The products
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S =
∏2r

i=1 σ(Ji) and R =
∏2r

i=1 ρ(Ji) are both independent of the choice of V
and W . Setting x =

∏
i∈V ρ(Ji), we have to maximize

S
(
bvx+ bw

R

x

)
.

This is a convex function of x (since its second derivative is 2bwRS
x3 > 0), so

its maximum is attained when x either reaches its maximum or its minimum
value. The former is clearly the case if and only if

min
i∈V

ρ(Ji) ≥ max
i∈W

ρ(Ji),

while the latter happens if and only if

max
i∈V

ρ(Ji) ≤ min
i∈W

ρ(Ji).

This settles the lemma for the Merrifield-Simmons index. For the Hosoya
index, we proceed similarly. Let A be the total number of matchings of H , Bv

the number of matchings that do not cover v (but may or may not cover w),
Bw the number of matchings that do not cover w (but may or may not cover
v), and finally C the number of matchings of H that cover neither v nor w.
We have

Z(GV,W )

= A
∏

i∈V

Z(Ji)
∏

i∈W

Z(Ji) +Bv

∏

i∈W

Z(Ji)
(∑

i∈V

Z(Ji − vi)
∏

j∈V \{i}
Z(Jj)

)

+Bw

∏

i∈V

Z(Ji)
(∑

i∈W

Z(Ji − vi)
∏

j∈W\{i}
Z(Jj)

)

+ C
(∑

i∈V

Z(Ji − vi)
∏

j∈V \{i}
Z(Jj)

)(∑

i∈W

Z(Ji − vi)
∏

j∈W\{i}
Z(Jj)

)
.

Again, the first term does not depend on the choice of V andW , so it remains
to minimize

Bv

∏

i∈W

Z(Ji)
(∑

i∈V

Z(Ji − vi)
∏

j∈V \{i}
Z(Jj)

)

+Bw

∏

i∈V

Z(Ji)
(∑

i∈W

Z(Ji − vi)
∏

j∈W\{i}
Z(Jj)

)

+ C
(∑

i∈V

Z(Ji − vi)
∏

j∈V \{i}
Z(Jj)

)(∑

i∈W

Z(Ji − vi)
∏

j∈W\{i}
Z(Jj)

)

=
2r∏

i=1

Z(Ji)
(
Bv

∑

i∈V

τ(Ji) +Bw

∑

i∈W

τ(Ji) +
(∑

i∈V

τ(Ji)
)(∑

i∈W

τ(Ji)
))
.
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Again, this remains correct if some of the Ji are empty, since factors of Z(∅) =
1 and summands of τ(∅) = 0 do not affect the expression. The product P =∏2r

i=1 Z(Ji) is independent of the choice of V and W , as is the sum T =∑2r
i=1 τ(Ji). Setting x =

∑
i∈V τ(Ji), we have to minimize

P (Bvx+Bw(T − x) + Cx(T − x)).

This is a concave function of x (since its second derivative is −2PC < 0), so
it attains its minimum either when x reaches its maximum or when x reaches
its minimum. The assertion of the lemma follows as before in the case of the
Merrifield-Simmons index. �

4.5 Trees with fixed parameters

In this section, we will be concerned with trees that satisfy some additional
conditions, e.g., on the diameter or the number of leaves. The proofs of the
results in this section also illustrate the use of the transformations discussed
in the previous section.

Theorem 4.5.1 ([69, 121]) For every tree T with n vertices and diameter
D, we have

σ(T ) ≤ 2n−DFD+1 + FD

and
Z(T ) ≤ (n−D)FD + FD+1.

In both inequalities, equality holds if and only if T is the tree obtained by
attaching a path of length D−1 to the center of a star with n−D+1 vertices.

Proof:

Both statements can be proved by the same approach. Let T be a tree with n
vertices and diameterD for which either the Merrifield-Simmons index attains
its maximum, or the Hosoya index attains its minimum. Next consider a dia-
metrical path v0, v1, . . . , vD, i.e., a path whose length is the diameter. Clearly,
v0 and vD have to be leaves. When the edges of this path are removed, con-
nected components T1, T2, . . . , TD−1 containing the vertices v1, v2, . . . , vD−1

remain. If any of the Ti is not a star rooted at vi, then by Lemma 4.4.1 we
can replace it by such a star in T , increasing the Merrifield-Simmons index
and decreasing the Hosoya index. Note that this does not affect the diameter:
the diametrical path remains, and no longer paths can be created by the re-
placement. Since this yields a contradiction to the choice of T , we can assume
that each Ti is a star rooted at vi. Next observe that at most one of the Ti
can be non-trivial (contain more vertices than just vi): if Ti and Tj are both
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non-trivial, then by Lemma 4.4.4 we can transfer leaves from vi to vj or from
vj to vi, increasing the Merrifield-Simmons index and decreasing the Hosoya
index. Again, we obtain a contradiction.

It only remains to determine the right choice of i for which Ti is a
non-trivial star (with n − D − 1 vertices). However, this is again easy: by
Lemma 4.4.3, the maximum of the Merrifield-Simmons index and the mini-
mum of the Hosoya index are both attained when i = 1 or i = D− 1. The two
choices are equivalent since they both yield the tree described in the state-
ment of the theorem. The formulas for the Merrifield-Simmons index and the
Hosoya index are obtained by means of Lemma 4.2.2 and Lemma 4.2.3. �

The tree that occurred in Theorem 4.5.1 (a “comet”, see Section 1.3)
also maximizes the Merrifield-Simmons index and minimizes the Hosoya index
when the number of leaves is fixed. This is stated in our next theorem.

Theorem 4.5.2 ([86, 124]) For every tree T with n vertices and ℓ leaves,
we have

σ(T ) ≤ 2ℓ−1Fn−ℓ+2 + Fn−ℓ+1

and
Z(T ) ≥ (ℓ− 1)Fn−ℓ+1 + Fn−ℓ+2.

In both inequalities, equality holds if and only if T is the tree obtained by
attaching a path of length n− ℓ to the center of a star with ℓ vertices.

Proof:

This proof is similar to the previous one. Again, consider a tree T that is ex-
tremal (this time among trees with n vertices and ℓ leaves). Suppose there are
two vertices v and w in this tree that are either adjacent to two or more leaves,
or to one leaf and more than one other vertex. By Lemma 4.4.4, we can either
move a leaf from v to w, or from w to v to increase the Merrifield-Simmons
index and decrease the Hosoya index. This does not change the number of
leaves (since v and w do not become leaves through this transformation by
our assumptions, the leaf set stays the same), so we obtain a contradiction to
the choice of T . This means that there is at most one vertex that is adjacent
to more than one leaf or to one leaf and more than one other vertex.

Now we use induction on the difference n − ℓ to complete the proof. If
n − ℓ = 1, then there is only one possible tree, namely the star. Thus the
statement holds trivially in this case, and we can proceed with the induction
step. If n− ℓ > 1, then it is impossible that all leaves have the same neighbor.
So an extremal tree T must have at least two vertices that have one or more
leaf neighbors. By the observation above, we can further assume that at least
one of them has only two neighbors. In the case that n − ℓ = 2, this already
characterizes the tree uniquely (as a comet), so we assume that n− ℓ > 2. Let
us denote this vertex by v, and let u be its leaf neighbor. Note that T −u has
n − 1 vertices and ℓ leaves, while T − {u, v} has n − 2 vertices and ℓ − 1 or
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ℓ leaves (depending on whether v’s other neighbor becomes a leaf or not). In
either case, we can apply the induction hypothesis: we have

σ(T − u) ≤ 2ℓ−1Fn−ℓ+1 + Fn−ℓ,

with equality if and only if T −u is the comet with n−1 vertices and ℓ leaves.
Moreover, we obtain

σ(T − {u, v}) ≤ 2ℓ−1Fn−ℓ + Fn−ℓ−1

if T − {u, v} has ℓ leaves, and

σ(T − {u, v}) ≤ 2ℓ−2Fn−ℓ+1 + Fn−ℓ

if it has ℓ− 1 leaves. Since

(
2ℓ−1Fn−ℓ + Fn−ℓ−1

)
−
(
2ℓ−2Fn−ℓ+1 + Fn−ℓ

)
= (2ℓ−2 − 1)Fn−ℓ−2 ≥ 0

with equality only for ℓ = 2 (in which case T − {u, v} cannot actually have
ℓ− 1 leaves), we can conclude that

σ(T − {u, v}) ≤ 2ℓ−1Fn−ℓ + Fn−ℓ−1,

with equality if and only if T − {u, v} is the comet with n− 2 vertices and ℓ
leaves. Now we apply Corollary 4.2.1 to combine the two:

σ(T ) = σ(T − u) + σ(T − {u, v})
≤
(
2ℓ−1Fn−ℓ+1 + Fn−ℓ

)
+
(
2ℓ−1Fn−ℓ + Fn−ℓ−1

)

= 2ℓ−1Fn−ℓ+2 + Fn−ℓ+1,

with equality if and only if T −u and T −{u, v} are both comets with ℓ leaves.
It is easy to see that this is only possible if T itself is a comet with ℓ leaves.
The calculations for the Hosoya index are left as an exercise. �

Next, we consider trees where, in addition to the number of vertices, the
maximum degree is fixed. For these trees, minimizing the Merrifield-Simmons
index and maximizing the Hosoya index turns out to be easier.

Theorem 4.5.3 ([104]) Let T be a tree with n vertices and maximum degree
∆. If ∆ ≥ n−1

2 , then the following two inequalities hold:

σ(T ) ≥ 3n−∆−122∆−n+1 + 2n−∆−1

and
Z(T ) ≤ 2n−∆−2(3∆− n+ 3).

Equality holds in both inequalities if and only if T is an extended star obtained
by attaching n −∆ − 1 paths of length 2 and 2∆− n + 1 pendant edges to a
common center.
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If ∆ < n−1
2 , then the inequalities

σ(T ) ≥ 3∆−1Fn−2∆+3 + 2∆−1Fn−2∆+2

and
Z(T ) ≤ 2∆−2

(
(∆+ 1)Fn−2∆+2 + 2Fn−2∆+1

)

hold, with equality in both inequalities if and only if T is an extended star
obtained by attaching ∆ − 1 paths of length 2 and a single path of length
n− 2∆+ 1 to a common center.

Proof:

Let T be a tree with n vertices and maximum degree ∆ for which σ(T ) attains
its minimum or Z(T ) attains its maximum, let v be a vertex whose degree is
∆, and let T1, T2, . . . , T∆ be the branches of v (the connected components that
result when v is removed). By Lemma 4.4.1, we know that each of the branches
Ti has to be a path, for otherwise we could decrease the Merrifield-Simmons
index and increase the Hosoya index by replacing it by a path, contradicting
the choice of T . It remains to determine the lengths of the branches. If there
are more than two branches with a length other than 1 or 2 (let us denote
these lengths by k and ℓ, where k, ℓ > 2), then we reach another contradiction,
this time with Lemma 4.4.3: if we replace the two paths by a path of length
2 and another path of length k + ℓ − 2, then the Merrifield-Simmons index
decreases while the Hosoya index increases by Lemma 4.4.3 (applied to the
graph G consisting of v and all other branches). Thus this is also impossible,
which means that there is at most one branch whose length is greater than 2.
The same argument also shows that there cannot be a branch of length 1 and
another branch of length greater than 2.

This leaves us with two possibilities.

• All branches have length 1 or 2: in this case, we let r be the number of
branches of length 1 and s the number of branches of length 2. The following
equations must be satisfied:

r + s = ∆ and r + 2s = n− 1,

since the degree of v was assumed to be ∆, and since the total number of
edges is n − 1. The solution to this system of equations is given by r =
2∆− n+ 1 and s = n− 1−∆. However, since r must be non-negative, this
only makes sense if ∆ ≥ n−1

2 .

• There is a branch of length greater than 2: in this case, there is exactly one
such branch (whose length we denote by r), while all other branches have
length 2. The number of these branches will be denoted by s. As in the first
case, we get a system of equations, namely

1 + s = ∆ and r + 2s = n− 1.
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This gives us r = n−2∆+1 and s = ∆−1, which can only apply if ∆ < n−1
2

(since r > 2 by assumption).

In either case, we find that T must be exactly the tree described in the state-
ment of the theorem. The formulas in terms of n and ∆ are easily obtained
by means of Lemmas 4.2.2 and 4.2.3. �

The analogous problem of maximizing the Merrifield-Simmons index and
minimizing the Hosoya index of trees with a given number of vertices and
given maximum degree leads to more complicated structures. The solution
can be obtained as a special case of Theorem 4.5.4 later in this section, which
deals with trees whose degree sequence is given. We will briefly discuss this
theorem and its consequences in the remainder of this section. The following
lemma, which is a rather direct consequence of Lemma 4.4.6, is key to this
result.

Lemma 4.5.1 Suppose that T is a tree that maximizes the Merrifield-
Simmons index among all trees with the same degree sequence. For every
possible way of decomposing T as in Figure 4.9, one of the following two
statements holds:

• k ≤ ℓ and
min
i
ρ(Ai) ≥ max

j
ρ(Bj),

or

• k ≥ ℓ and
max

i
ρ(Ai) ≤ min

j
ρ(Bj).

Likewise, suppose that T is a tree that minimizes the Hosoya index among all
trees with the same degree sequence. For every possible way of decomposing T
as in Figure 4.9, one of the following two statements holds:

• k ≥ ℓ and
min
i
τ(Ai) ≥ max

j
τ(Bj),

or

• k ≤ ℓ and
max

i
τ(Ai) ≤ min

j
τ(Bj).

Here, ρ and τ are defined as in Lemma 4.4.6.
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B1
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Bℓ

FIGURE 4.9
The decomposition of Lemma 4.5.1.

Proof:

We consider the proof for the Merrifield-Simmons index. Observe that we
are exactly in the situation of Lemma 4.4.6 if we set r = max{k, ℓ} and let
J1, J2, . . . , J2r be the branches A1, A2, . . . , Ak and B1, B2, . . . , Bℓ, plus |k− ℓ|
copies of the empty graph. Observe that

1 = ρ(∅) > ρ(G) =
σ(G− v)

σ(G)
(4.2)

holds for every non-empty graph G. We know from Lemma 4.4.6 that the max-
imum of the Merrifield-Simmons index among all possible ways of distributing
the branches is attained when the r branches with the greatest values of ρ are
attached to one of the two vertices v, w, and the other r branches are attached
to the other. In view of (4.2), the |k−ℓ| empty branches have the greatest value
of ρ. Therefore, we know that they belong to one part of an optimal partition,
together with the min{k, ℓ} remaining branches whose ρ-value is greatest. The
other max{k, ℓ} branches belong to the other part of the partition. Since we
are assuming that T is a tree that maximizes the Merrifield-Simmons index,
the branches must actually form such an optimal partition.

The artificial empty branches are necessarily attached to the vertex whose
degree is smaller, together with the large ρ-values. Thus we either have k ≤ ℓ
and

min
i
ρ(Ai) ≥ max

j
ρ(Bj),

or k ≥ ℓ and
max

i
ρ(Ai) ≤ min

j
ρ(Bj),

which is exactly what we wanted to prove. The proof for the Hosoya index is
analogous, the only difference being that τ(∅) = 0 is clearly the least possible
value of τ , so the artificial empty branches have to be attached to the same
vertex as those min{k, ℓ} other branches with the smallest τ -values. �
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A tree that satisfies the condition given in Lemma 4.5.1 either for the
Merrifield-Simmons index or for the Hosoya index is called exchange-extremal .
Andriantiana [3] showed that exchange-extremality is actually sufficient to
characterize a tree completely. The result he obtained parallels Theorem 2.1.2,
but with another special type of tree taking the place of the greedy tree. Since
its proof is rather long and technical, it is skipped here, but let us describe
his construction.

Definition 4.5.1 Let (d1, d2, . . . , dk, 1, 1, . . . , 1) be a degree sequence of
a tree, where dk ≥ 2, in non-increasing order. We define a tree
M(d1, d2, . . . , dk, 1, 1, . . . , 1) associated with the degree sequence by the fol-
lowing recursive procedure: if dk ≥ k − 1, then M(d1, d2, . . . , dk, 1, 1, . . . , 1)
is obtained from the stars Sd1

, Sd2
, . . . , Sdk−1

by connecting their centers to a
common vertex labeled v1 and attaching dk − k + 1 leaves to v1 (so that its
degree becomes dk). Moreover, labels v2, . . . , vk are assigned to the non-leaf
neighbors of v1 in increasing order of degree (i.e., the vertex labeled vi has
degree dk+1−i).

If dk < k − 1, then we define M(d1, d2, . . . , dk, 1, 1, . . . , 1) as fol-
lows: let ℓ be the greatest integer such that vℓ occurs as a label in the
tree M(ddk

, . . . , dk−1, 1, 1, . . . , 1), and let s be the least integer such that
there is a vertex vs adjacent to a leaf in that tree. Now we obtain
M(d1, d2, . . . , dk, 1, 1, . . . , 1) from M(ddk

, . . . , dk−1, 1, 1, . . . , 1) by connecting
one of the leaf neighbors of vs by an edge to the centers of dk − 1 dis-
joint stars Sd1

, Sd2
, . . . , Sddk−1

. The centers of these stars receive the labels
vℓ+1, . . . , vℓ+dk−1, in increasing order of degree.

Figure 4.10 illustrates the construction of Definition 4.5.1. The con-
struction is very similar to that of alternating trees (see Definition 3.2.1),
but yields a unique tree for every degree sequence. Note that large and
small degrees alternate in the tree. In the following, we will write M(π)
for the tree defined in Definition 4.5.1 associated with a degree sequence
π = (d1, d2, . . . , dk, 1, 1, . . . , 1), and call it an M-tree for short.

Theorem 4.5.4 Every exchange-extremal tree as described in Lemma 4.5.1
is an M-tree. In particular, for every possible degree sequence π (sequence
that can be the degree sequence of a tree, cf. Section 1.4) there is a unique
tree with that degree sequence that maximizes the Merrifield-Simmons index,
namely the M-tree M(π) described in Definition 4.5.1. Likewise, for every
possible degree sequence π there is a unique tree with that degree sequence that
minimizes the Hosoya index, namely the M-tree M(π).

There is also a majorization result, paralleling Theorem 2.6.5, that can be
used to derive a number of corollaries from Theorem 4.5.4.
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v5v6v7

FIGURE 4.10
Construction of the tree M(6, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, . . . , 1).

Theorem 4.5.5 Let π and π′ be two degree sequences of trees of the same
length such that π′ majorizes π. If M(π) and M(π′) are the M-trees associ-
ated with π and π′, then we have

σ(M(π′)) > σ(M(π))

and
Z(M(π′)) < Z(M(π)).

Proof:

This result is also based on Lemma 4.4.6. We focus on the statement for the
Merrifield-Simmons index, the proof for the Hosoya index is analogous. In
view of Lemma 1.4.1, it suffices to prove the statement in the case where π
and π′ only differ in two positions, which are equal to k, ℓ (with k ≥ ℓ ≥ 2)
in π and k + 1, ℓ − 1 in π′. In the M-tree M(π), we find two vertices v and
w whose degrees are k and ℓ, respectively. Now we decompose the tree M(π)
into the k − 1 branches of v consisting of those vertices for which the unique
path to w passes through v, the ℓ−1 branches of w consisting of those vertices
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for which the unique path to v passes through w, and the remaining tree H .
This gives us a decomposition as in Lemma 4.4.6, where we set r = k and add
one artificial empty branch to v and k − ℓ+ 1 empty branches to w.

Lemma 4.4.6, combined with the observation that the empty branches
always have the greatest ρ-values (see (4.2)), shows that we can obtain a new
tree T with greater Merrifield-Simmons index by permuting the branches,
and the result of this permutation will be a tree where all empty branches are
attached to the same vertex (either v or w). Thus v and w will have degrees
k + 1 and ℓ − 1 (in some order), while all other degrees are the same as in
M(π). Thus the new tree T has degree sequence π′ (it may or may not be the
M-tree associated with π′), and we find that

σ(M(π′)) ≥ σ(T ) > σ(M(π)),

which completes the proof. �

It is easy to see that among all degree sequences of trees whose length
is n and that contain ℓ ones (corresponding to leaves), the sequence
(ℓ, 2, 2, . . . , 2, 1, 1, . . . , 1) majorizes every other sequence (cf. the analogous dis-
cussion in Section 2.6.3). The M-tree with this degree sequence is the comet.
So, Theorem 4.5.2 actually follows as a corollary of Theorem 4.5.4 and The-
orem 4.5.5. Likewise, Theorems 4.5.4 and 4.5.5 also immediately yield the
tree with n vertices and maximum degree ∆ that maximizes the Merrifield-
Simmons index and the Hosoya index, thus providing the dual to Theo-
rem 4.5.3: the degree sequence πn,∆ = (∆,∆, . . . , ∆, k, 1, 1, . . . , 1) majorizes
all other possible degree sequences whose maximum is ∆, so the extremal tree
is M(πn,∆). Here, the multiplicity of ∆ is ⌊ n−2

∆−1⌋, and k ∈ {1, 2, . . . , ∆− 1} is
chosen to satisfy k ≡ n− 1 mod (∆− 1). We leave it as an exercise to derive
Theorem 4.5.1 from Theorems 4.5.4 and 4.5.5 in a similar way.

4.6 Tree-like graphs

Many of the techniques developed in the previous sections also apply to graphs
that are not trees, but are similar to trees. The first step in this regard is
usually to consider unicyclic graphs, i.e., graphs with a single cycle (cyclomatic
number 1, cf. Section 1.4). Merrifield-Simmons index and Hosoya index of
unicyclic graphs have been studied in a number of papers [23, 83, 84, 87, 109,
114, 123]. For every connected unicyclic graph, the number of edges is equal
to the number of vertices. The transformation ideas of Section 4.4 will turn
out to be particularly valuable again. We first consider unicyclic graphs where
the unique cycle has a given length ℓ:
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Theorem 4.6.1 • Among all connected unicyclic graphs with n vertices for
which the cycle has length ℓ, the unique graph that attains the maximum of
the Merrifield-Simmons index is obtained by picking a vertex of the cycle of
length ℓ and attaching n − ℓ pendant vertices to it. The same graph is also
the unique unicyclic graph with n vertices and cycle length ℓ that minimizes
the Hosoya index.

• Among all connected unicyclic graphs with n vertices for which the cycle
has length ℓ, the unique graph that attains the minimum of the Merrifield-
Simmons index is obtained by picking a vertex of the cycle of length ℓ and
attaching a path of length n − ℓ (at one of its ends) to it. The same graph
is also the unique unicyclic graph with n vertices and cycle length ℓ that
maximizes the Hosoya index.

Proof:

• We can combine the proofs of both assertions in the first part in one argu-
ment. Let G be a unicyclic graph with cycle length ℓ for which either the
Merrifield-Simmons index reaches its maximum or the Hosoya index reaches
its minimum. For a vertex v on the cycle, consider the subgraph Hv induced
by all vertices that lie in the same component as v when the edges of the
cycle are removed. We know from Lemma 4.4.1 that the Merrifield-Simmons
index increases and the Hosoya index decreases if Hv is replaced by a star
with v at its center. Thus by our choice of G, we can assume that Hv is a
star, and this applies to all vertices on the cycle. Moreover, if there are two
non-trivial stars (i.e., more than one vertex) Hv and Hw for distinct vertices
v, w on the cycle, then by Lemma 4.4.4, we can either move Hv to w or Hw

to v to increase the Merrifield-Simmons index/decrease the Hosoya index.
Since this also contradicts the choice of G, there is only one non-trivial star,
which means that G is indeed the graph described in the statement of the
theorem.

• For the second part, the argument is very similar, but we are now using
Lemma 4.4.5 instead of Lemma 4.4.4. We let G be a unicyclic graph with
cycle length ℓ for which either the Merrifield-Simmons index reaches its
minimum or the Hosoya index reaches its maximum. For every vertex v,
we can assume that the subgraph Hv (defined in the same way as in the
first part) is a path with v at one of its ends. Now assume that there are
two such subgraphs that are non-trivial paths (more than one vertex), and
let Hv and Hw be two such paths chosen in such a way that the distance
between v and w is the smallest possible. Then all vertices on a shortest path
between v and w have degree 2. Let r be the length of this path, and let k
and h be the lengths of Hv and Hw, respectively. Then we find ourselves in
the situation of Lemma 4.4.5. But as this lemma shows, there must now be
another unicyclic graph with the same cycle length, but smaller Merrifield-
Simmons index and larger Hosoya index. This contradicts our choice of G.
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Thus there is only (at most) one vertex v on the cycle for which Hv consists
of more than one vertex. This means that G does indeed have the form
described in the statement of the theorem.

�

In order to determine the maximum and minimum of Merrifield-Simmons
index and Hosoya index among all connected unicyclic graphs, all that remains
now is to compare different values of ℓ. This is done in the following theorem:

Theorem 4.6.2 Let Xn be the graph obtained from the star Sn by adding an
edge between two leaves, or equivalently by attaching n − 3 pendant vertices
to one of the vertices of the triangle graph C3. For every connected unicyclic
graph G with n ≥ 3, we have

σ(G) ≤ σ(Xn) = 3 · 2n−3 + 1,

with equality only if G is isomorphic to Xn (or to the cycle C4 if n = 4), and

Z(G) ≥ Z(Xn) = 2n− 2,

again with equality only if G is isomorphic to Xn.

Proof:

Let ℓ be the length of the unique cycle. By Theorem 4.6.1, we can assume
that G is the graph consisting of a cycle of length ℓ and n− ℓ pendant vertices
attached to one of its vertices. It is not difficult to obtain σ(G) and Z(G) in
this case by means of Lemmas 4.2.2 and 4.2.3:

σ(G) = 2n−ℓFℓ+1 + Fℓ−1 and Z(G) = (n− ℓ+ 1)Fℓ + 2Fℓ−1.

We notice that the first expression is decreasing in ℓ:

(
2n−ℓFℓ+1 + Fℓ−1

)
−
(
2n−ℓ−1Fℓ+2 + Fℓ

)

= 2n−ℓ−1(2Fℓ+1 − Fℓ+2) + (Fℓ−1 − Fℓ)

= 2n−ℓ−1Fℓ−1 − Fℓ−2 ≥ Fℓ−1 − Fℓ−2

= Fℓ−3 ≥ 0

for 3 ≤ ℓ ≤ n− 1, with equality only if ℓ = 3 and n = 4. Thus the maximum
is obtained for ℓ = 3, and it follows that

σ(G) ≤ σ(Xn) = 3 · 2n−3 + 1,

as claimed.
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For the Hosoya index, the reasoning is similar. The expression (n − ℓ +
1)Fℓ + 2Fℓ−1 is increasing in ℓ:

(
(n− ℓ)Fℓ+1 + 2Fℓ

)
−
(
(n− ℓ+ 1)Fℓ + 2Fℓ−1

)

= (n− ℓ)(Fℓ+1 − Fℓ) + (Fℓ − 2Fℓ−1)

= (n− ℓ)Fℓ−1 − Fℓ−3 ≥ Fℓ−1 − Fℓ−3

= Fℓ−2 > 0

for 3 ≤ ℓ ≤ n− 1. Thus the minimum is obtained for ℓ = 3 again, and we end
up with

Z(G) ≥ Z(Xn) = 2n− 2,

completing the proof. �

The dual statement, which is given in the following theorem, can be proven
along the same lines, but we will use a more direct approach paralleling the
proofs of Theorem 4.3.2 and Theorem 4.3.3.

Theorem 4.6.3 Let Yn be the graph obtained from the triangle graph C3 by
attaching a path of length n − 3 to one of its vertices. For every connected
unicyclic graph G with n ≥ 3, we have

σ(G) ≥ σ(Cn) = σ(Yn) = Ln,

with equality if and only if G is isomorphic to Yn or to the cycle Cn, and

Z(G) ≤ Z(Cn) = Ln,

with equality if and only if G is isomorphic to Cn.

Proof:

We can prove both statements by induction. Both inequalities are trivial for
n = 3 and n = 4: there is only one unicyclic graph with three vertices (namely
the cycle C3), and there are only two unicyclic graphs with four vertices, the
cycle C4 and the graph Y4. The values σ(C3) = Z(C3) = 4 = L3, σ(C4) =
σ(Y4) = Z(C4) = 7 = L4 and Z(Y4) = 6 are easily determined.

For the induction step, we can distinguish two cases: if G is a cycle, then
there is nothing to prove. Otherwise, G has at least one pendant vertex. Pick
one such vertex v, and let w be its unique neighbor. We can apply the recur-
sions of Lemma 4.2.2 and Lemma 4.2.3 to obtain

σ(G) = σ(G−v)+σ(G−{v, w}) and Z(G) = Z(G−v)+Z(G−{v, w}).

We can apply the induction hypothesis to G − v, which is still unicyclic and
connected:

σ(G− v) ≥ Ln−1 and Z(G− v) ≤ Ln−1.
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The graph G− {v, w} might not be unicyclic, and it might not even be con-
nected. However, it can clearly not contain more than one cycle, so it is pos-
sible to add edges (potentially none) to G−{v, w} to turn it into a connected
unicyclic graph G′ with equally many vertices. This procedure will always
increase the Hosoya index and decrease the Merrifield-Simmons index (by
Lemma 4.2.1), so we also have

σ(G− {v, w}) ≥ σ(G′) ≥ Ln−2 and Z(G− {v, w}) ≤ Z(G′) ≤ Ln−2.

In conclusion, we have

σ(G) ≥ Ln−1 + Ln−2 = Ln

and
Z(G) ≤ Ln−1 + Ln−2 = Ln,

as required. For the Hosoya index, equality can only hold if both G − v and
G−{v, w} are cycles, which is clearly impossible. For the Merrifield-Simmons
index, G − v can be either isomorphic to Cn−1 or to Yn−1 for equality, and
G − {v, w} can be isomorphic to either Cn−2 or to Yn−2. If G − v is a cycle,
then G − {v, w} must be a path, and we cannot have equality. If G − v is
isomorphic to Yn−1, then G−{v, w} will only be connected and unicyclic if w
is the unique pendant vertex, in which case G − {v, w} is indeed isomorphic
to Yn−2. But then G has to be isomorphic to Yn, which completes the proof.
�

Similar results to those obtained for unicyclic graphs in this section are also
known for bicyclic and tricyclic graphs (including various versions with addi-
tional restrictions), see the survey [105] and the references therein. However,
more general results for connected graphs with a given number of vertices and
edges are only partially available. The problems of maximizing the Merrifield-
Simmons index and minimizing the Hosoya index are somewhat simpler in this
regard. The following general theorems can be found in [85,98,131]. Note that
they incorporate parts of Theorems 4.3.2 and 4.3.3 as well as Theorem 4.6.2.

Theorem 4.6.4 For every connected graph G with n vertices and m edges,
where n− 1 ≤ m ≤ 2n− 3, we have the inequality

Z(G) ≥ mn− n2 + 4n− 2m− 2,

and equality holds if G is (isomorphic to) the graph Sn,m that is constructed
as follows: let the vertices be x, y, and u1, u2, . . . , un−2. Now add an edge
between x and y, connect u1, u2, . . . , un−2 to y by an edge, and connect
u1, u2, . . . , um−n+1 to x by an edge (see Figure 4.11 for an example). If
m 6= n + 2, this is the only graph (up to isomorphism) for which equality
holds. For m = n + 2, equality holds for exactly one more graph, obtained by
attaching n− 4 pendant vertices to a complete graph K4.
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FIGURE 4.11
The graph Sn,m in Theorem 4.6.4 and Theorem 4.6.5 (for n = 10 andm = 12).

Theorem 4.6.5 For every connected graph G with n vertices and m edges,
where n− 1 ≤ m ≤ 2n− 3, we have the inequality

σ(G) ≤ 2n−2 + 22n−m−3 + 1, (4.3)

and equality holds if G is the graph Sn,m described in Theorem 4.6.4. If m 6=
2n−4, this is the only graph (up to isomorphism) for which equality holds. For
m = 2n − 4, equality holds for exactly one more graph, namely the complete
bipartite graph K2,n−2 (two vertices v, w are connected to all other n − 2
vertices by an edge, and no further edges).

In order to prove Theorem 4.6.4, we will need the following lemma:

Lemma 4.6.1 Let G be a connected graph that is not a star, with the property
that all its cut edges are pendant edges incident to a single vertex w. Then
there exists an edge uv such that both G−uv and G−{u, v} are still connected.

Proof:

Let T be a spanning tree of G. If there are two leaves in T that are connected
by an edge in G, then we can choose these two leaves as u and v: G − uv
and G− {u, v} are still connected, since T and T − {u, v} are spanning trees
for these two graphs. Thus we can assume that this is not the case. If T is a
star, then it follows that there are no edges in G that are not already edges
in T , which means that G is itself a star. Since this is also not the case by
our assumptions, T cannot be a star. Now choose u to be a leaf in T whose
distance to w is maximal (thus in particular greater than 1, since T is not a
star), and let v be its unique neighbor in T . We claim that these two vertices
satisfy the desired conditions. First note that uv is not a cut edge, since all
those are assumed to be incident with w. Hence G − uv is connected. Next
note that all but one of the neighbors of v in T are leaves (the exception being
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the neighbor that lies on the path from w to v). If there was another non-leaf
neighbor u′, then we could extend the path from w to u′ further to reach a
leaf whose distance from w is greater than u’s distance from w, which would
contradict our choice of u. The leaf neighbors of v are not pendant vertices
in G (since all pendant vertices are adjacent to w), and no two of them are
adjacent (since we are assuming that no two leaves of T are adjacent). Hence
each of them must have at least one neighbor in G−{u, v}, which means that
we can extend T − {u, v} to a spanning tree of G − {u, v}. This implies in
particular that G− {u, v} is connected, which completes our proof. �

Proof of Theorem 4.6.4:

For m = n − 1, the graph is a tree, and the statement reduces to the upper
bound in Theorem 4.3.3 (note also that the graph Sn,n−1 is indeed a star,
where y is the center). Now we continue by induction on m. Let G be a graph
with n vertices and m edges (n ≤ m ≤ 2n − 3) for which the Hosoya index
attains its minimum. Suppose first that there is a cut edge vw that is not a
pendant edge. Let A1 and A2 be the two components of G− vw containing v
and w, respectively. By Lemma 4.4.4, we can either move A1 to w or A2 to
v (which actually amounts to the same) to decrease the Hosoya index, while
the number of vertices and edges remains unchanged. This contradicts our
choice of G, so all cut edges (if there are any) must be pendant edges. Now
assume that there are two vertices v and w that are not pendant vertices, but
adjacent to pendant vertices. We can use Lemma 4.4.4 again to show that
moving pendant edges from v to w or from w to v decreases the Hosoya index,
which is another contradiction to our choice of G. Thus all cut edges (if there
are any) are pendant edges adjacent to a single vertex w. Moreover, since
m ≥ n, G is not a star, so Lemma 4.6.1 applies to G.

Thus we can pick an edge uv of G such that G − uv and G − {u, v} are
connected. We can apply the induction hypothesis to G−uv (which has m−1
edges) to give us

Z(G− uv) ≤ (m− 1)n− n2 + 4n− 2(m− 1)− 2 = mn− n2 + 3n− 2m.

The graph G− {u, v} is connected and has n− 2 vertices, so we have Z(G−
{u, v}) ≥ Z(Sn−2) = n − 2. Combining the two bounds with Lemma 4.2.3
yields

Z(G) = Z(G− uv) + Z(G− {u, v}) ≥ (mn− n2 + 3n− 2m) + (n− 2)

= mn− n2 + 4n− 2m− 2,

which completes our induction.
It remains to discuss the cases of equality: for equality to hold, G − uv

needs to be isomorphic to Sn,m−1 (except when m = n + 3, in which case
there is one more possibility), and G − {u, v} needs to be a star. Conversely,
we need to add an edge uv between two vertices u and v of Sn,m−1 chosen in
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such a way that removing u and v from Sn,m−1 yields a star. It is not difficult
to verify that the only possibility to do this is to add an edge between x and
one of the pendant vertices of Sn,m−1, yielding a graph isomorphic to Sn,m,
except when m = n + 2: in this case, another possibility is to add an edge
between u1 and u2. However, it is not possible to extend the resulting graph
(consisting of a complete graph K4 and n− 4 pendant edges, as described) by
another edge that satisfies the condition, so m = n+2 is indeed the only case
where there is more than one graph for which equality holds. �

For the proof of Theorem 4.6.5, we follow the arguments given in [102],
which are rather different from the proof of Theorem 4.6.4 even though the
statements are analogous.

Proof of Theorem 4.6.5:

We gradually rule out certain substructures. First, suppose that the graph G
contains a path of length 5 as a (not necessarily induced) subgraph. This is
only possible if n ≥ 6. We can extend this path to a spanning tree T whose
diameter must be at least 5. By Theorem 4.5.1, we have σ(T ) ≤ 2n−2 +
5. Moreover, for each edge that needs to be added to T to obtain G, the
Merrifield-Simmons index decreases at least by 1. Thus σ(G) ≤ σ(T )− (m−
n + 1) ≤ 2n−2 − (m − n − 4). We can use the well-known inequality 2k > k,
which is valid for all integers k, and the fact that n ≥ 6, to obtain

σ(G) ≤ 2n−2 − (m− n− 4) = 2n−2 + (n−m+ 3) + 1

< 2n−2 + 2n−m+3 + 1 ≤ 2n−2 + 22n−m−3 + 1,

which means that (4.3) even holds with strict inequality.
So in the following, we can assume that there are no paths of length 5 in

G, thus also no cycles of length 6 or more (since such a cycle would contain a
path of length 5). Next, suppose that a cycle of length 5 occurs as a subgraph
of G. If there is at least one more vertex adjacent to a vertex of this cycle,
then there is a path of length 5, which is impossible. Since G is connected,
it follows that the cycle vertices are the only vertices of G, so n = 5. Since
σ(C5) = L5 = 11, the same argument as before gives us

σ(G) ≤ σ(C5)− (m− 5) = 16−m.

It is easily verified that we have 16−m < 2n−2 +22n−m−3 +1 = 9+ 27−m in
all possible cases, so again (4.3) holds with strict inequality.

Thus all cycles in G have either length 3 or 4. Assume that there is no
cycle of length 4. If there are two disjoint cycles of length 3, then there must
be a path connecting the two. This path, together with two edges from each of
the cycles, yields a path of length 5, which has already been ruled out. So any
two cycles share at least one vertex. If there are two cycles that even share an
edge, then they form a cycle of length 4, which contradicts our assumption. So
the only possibility remaining is that any two cycles share exactly one vertex.
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Let u1u2w and v1v2w be two such cycles. If there is another vertex x adjacent
to u1, then we have a path of length 5, namely xu1u2wv1v2. Since this has
been ruled out, there is no such vertex x, and analogously also no further
vertex adjacent to u2, v1 or v2. Next suppose that there are two vertices x, y /∈
{u1, u2, v1, v2, w} that are adjacent to each other. The subgraph formed by the
two cycles has Merrifield-Simmons index 10, the subgraph formed by x and
y has Merrifield-Simmons index 3. Thus if we remove all edges except for the
two cycles and the edge xy, we get a subgraph G′ of G with σ(G′) = 30 ·2n−7,
and it follows that

σ(G) ≤ σ(G′) = 30 · 2n−7 < 2n−2 < 2n−2 + 22n−m−3 + 1.

Once again, strict inequality holds. The only remaining possibility is that G
consists of the two cycles u1u2w and v1v2w and a number of pendant vertices
attached to w. This graph has m = n+1 edges, and we can apply the second
item of Lemma 4.2.2 to w to find

σ(G) = 9 · 2n−5 + 1 < 10 · 2n−5 + 1 = 2n−2 + 22n−m−3 + 1,

and we are done again.
Now we are left with three cases: there is no cycle at all, only one cycle

of length 3 (and no other cycle), or at least one cycle of length 4. The former
two cases are covered by Theorem 4.3.2 and Theorem 4.6.2, respectively. So
let u1u2u3u4 be a cycle of length 4. If there are two distinct vertices v and
w that do not lie on the cycle and are adjacent to u1 and u2, respectively,
then there is a path of length 5 (namely vu1u4u3u2w), which has been ruled
out. The same argument applies to other pairs of vertices that are adjacent
on the cycle. Two vertices v and w outside of the cycle cannot be adjacent to
each other either: there must be a path connecting them to the cycle, and the
combination of the edge vw, the connecting path and three cycle edges would
give us a path of length 5 or more. So vertices that do not lie on the cycle
can only be adjacent to vertices on the cycle, and there are at most two cycle
vertices adjacent to other vertices, which cannot be adjacent on the cycle.
Without loss of generality, let these two be u1 and u3. If there are pendant
vertices adjacent to both u1 and u3, then we can either move pendant vertices
from u1 to u3 or from u3 to u1 to increase the Merrifield-Simmons index (by
Lemma 4.4.4). Thus it suffices to consider the case where all pendant vertices
are adjacent to u1. All other vertices that do not lie on the cycle are adjacent
to both u1 and u3. If there is an edge between u2 and u4, then there cannot be
any vertex outside of the cycle that is adjacent to u1 and u3: if v was such a
vertex, then vu1u2u4u3v would be a cycle of length 5. So we are left with the
following scenarios (based on the distinction whether or not the edges u1u3
and u2u4 are present in the graph):

• Both u1u3 and u2u4 are edges in G. Then all other vertices must be pendant
vertices adjacent to v1. We have m = n+ 2, and we easily calculate

σ(G) = 2n−2 + 1 < 2n−2 + 2n−5 + 1 = 2n−2 + 22n−m−3 + 1.
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• u1u3 is not an edge in G, but u2u4 is. Again, all other vertices must be
pendant vertices adjacent to v1. Now m = n+ 1, and we obtain

σ(G) = 2n−2 + 2 ≤ 2n−2 + 2n−4 + 1 = 2n−2 + 22n−m−3 + 1,

with equality only if n = 4 (in which case the graph G is indeed isomorphic
to S4,5).

• u2u4 is not an edge in G, but u1u3 is. In this case, we find that G is exactly
the graph Sn,m, and we can use Lemma 4.2.2 to calculate σ(G):

σ(G) = σ(Sn,m) = 2n−2 + 22n−m−3 + 1.

• u1u3 and u2u4 are not edges in G. In this case, the number of edges is at
most 4 + 2(n − 4) = 2n − 4. Again, we use Lemma 4.2.2 to calculate the
Merrifield-Simmons index directly:

σ(G) = 2n−2 + 22n−m−4 + 2 ≤ 2n−2 + 22n−m−3 + 1,

and equality holds only if m = 2n − 4, in which case G is the complete
bipartite graph K2,n−2.

�

4.7 Independence polynomial and matching polynomial

There are many different polynomials that can be associated with a graph.
The independence polynomial and the matching polynomial are two prominent
examples, and further examples will follow in the next chapter.

Let i(G, k) be the number of independent sets of G consisting of exactly
k vertices (this includes the case k = 0, where i(G, 0) = 1 for all graphs since
the empty set is always independent). The independence polynomial I(G;x)
of G is defined as

I(G;x) =
∑

k≥0

i(G, k)xk.

An alternative way of expressing this definition is as follows: if I(G) denotes
the set of all independent sets of G, then

I(G;x) =
∑

A∈I(G)

x|A|.

It is clear that there are i(G, k) terms equal to xk in this sum, so the two
definitions are indeed equivalent. The connection to the Merrifield-Simmons
index is immediate: we have

σ(G) = I(G; 1).
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The definition of the matching polynomial is slightly different, but similar. Let
m(G, k) be the number of matchings of G consisting of k edges (note again
that m(G, 0) = 1 for all graphs G), and set

M(G;x) =
∑

k≥0

(−1)km(G, k)xn−2k,

where n is the number of vertices of G. The exponent n − 2k is always non-
negative, since 2k is the number of vertices covered by a matching of cardinal-
ity k, which cannot exceed n. This definition might seem unintuitive at first,
but we will see some reasons for it later in this section and in particular in
the next chapter. The somewhat more natural-looking matching generating
polynomial

µ(G;x) =
∑

k≥0

m(G, k)xk

is connected to the Hosoya index in the same way the independence polynomial
is connected to the Merrifield-Simmons index, namely by µ(G; 1) = Z(G).
Note thatM(G;x) and µ(G;x), although slightly different, are closely related:
we have

M(G;x) = xnµ(G;−x−2). (4.4)

As before, there is an alternative way to express the definitions: let M(G) be
the set of all matchings of G. Then we have

M(G;x) =
∑

B∈M(G)

(−1)|B|xn−2|B|

and
µ(G;x) =

∑

B∈M(G)

x|B|.

Let us go back to the example of Figure 4.1, which we used to illustrate the
Merrifield-Simmons index and the Hosoya index. This graph has six indepen-
dent sets: the empty set, four single-vertex sets, and one independent set of
two vertices. Thus

I(G;x) = x2 + 4x+ 1.

Its eight matchings are: the empty set, five single-edge sets, and two matchings
consisting of two edges. So we have

M(G;x) = x4 − 5x2 + 2 and µ(G;x) = 2x2 + 5x+ 1.

Now we briefly discuss some of the properties of the independence polyno-
mial and the matching polynomial (and matching generating polynomial). Re-
call from Proposition 4.2.1 that the Hosoya index and the Merrifield-Simmons
index can be connected via the concept of a line graph. This extends to the
respective polynomials, and the proof is equally straightforward:
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Proposition 4.7.1 For every graph G, we have µ(G;x) = I(L(G);x).

The simple recursive relations of Lemma 4.2.2 and Lemma 4.2.3 proved
useful throughout this chapter. Analogues of these relations also hold for the
independence polynomial and the matching polynomial, and they are stated
in the following:

Lemma 4.7.1 • If G1, G2, . . . , Gk are the connected components of a graph
G, then we have

I(G;x) =

k∏

j=1

I(Gj ;x).

• For every vertex v of G, we have

I(G;x) = I(G− v;x) + xI(G−N [v];x).

• For every edge e of G whose ends are v and w, we have

I(G;x) = I(G− e;x)− x2I(G− (N [v] ∪N [w]);x).

Note that all these formulas reduce to Lemma 4.2.2 if we plug in x = 1.

Proof:

• We can make use of the fact that I(G) = I(G1) × I(G2) × · · · × I(Gk):
every independent set of G induces independent sets in all components, and
conversely, the union of independent sets in all components is an independent
set in G. Thus

I(G;x) =
∑

A∈I(G)

x|A| =
∑

A1∈I(G1)

∑

A2∈I(G2)

· · ·
∑

Ak∈I(Gk)

x|A1|+|A2|+···+|Ak|

=
∑

A1∈I(G1)

x|A1|
∑

A2∈I(G2)

x|A2| · · ·
∑

Ak∈I(Gk)

x|Ak|

= I(G1;x)I(G2;x) · · · I(Gk;x).

• As in the proof of Lemma 4.2.2, we make the observation that an indepen-
dent set of G either does not contain v, or it contains v but none of v’s
neighbors. Thus

I(G;x) =
∑

A∈I(G)

x|A| =
∑

A∈I(G)
v/∈A

x|A| +
∑

A∈I(G)
v∈A

x|A|

=
∑

A∈I(G−v)

x|A| +
∑

A∈I(G−N [v])

x|A∪{v}|

= I(G− v;x) + xI(G−N [v];x).
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• For the final identity, we note that independent sets of G − e are either
independent sets of G or contain both v and w (but none of their neighbors).
Consequently, we have

I(G;x) =
∑

A∈I(G)

x|A| =
∑

A∈I(G−e)

x|A| −
∑

A∈I(G−e)
v,w∈A

x|A|

=
∑

A∈I(G−e)

x|A| −
∑

A∈I(G−(N [v]∪N [w]))

x|A∪{v,w}|

= I(G− e;x)− x2I(G− (N [v] ∪N [w]);x).

This completes the proof.

�

In the same vein, we have the following lemma on the matching polynomial:

Lemma 4.7.2 • If G1, G2, . . . , Gk are the connected components of a graph
G, then we have

M(G;x) =

k∏

j=1

M(Gj ;x) and µ(G;x) =

k∏

j=1

µ(Gj ;x).

• For every vertex v of G, we have

M(G;x) = xM(G− v;x)−
∑

w∈N(v)

M(G− {v, w};x)

and
µ(G;x) = µ(G− v;x) + x

∑

w∈N(v)

µ(G− {v, w};x).

• For every edge e of G whose ends are v and w, we have

M(G;x) =M(G− e;x)−M(G− {v, w};x)

and
µ(G;x) = µ(G− e;x) + xµ(G− {v, w};x).

Proof:

It suffices to prove all statements for µ(G;x), the corresponding formulas for
M(G;x) follow directly from (4.4). The proof of the first formula is completely
analogous to the first part of Lemma 4.7.1, so we focus on the second and third
formula:
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• As in the proof of Lemma 4.2.3, we observe that a matching of G either
does not cover v at all, or it contains exactly one of the edges vw where
w ∈ N(v). Thus we have

µ(G;x) =
∑

A∈M(G)

x|A|

=
∑

A∈M(G−v)

x|A| +
∑

w∈N(v)

∑

A∈M(G)
vw∈A

x|A|

=
∑

A∈M(G−v)

x|A| +
∑

w∈N(v)

∑

A∈M(G−{v,w})
x|A∪{vw}|

= µ(G− v;x) + xµ(G − {v, w};x).

• Similarly, we can partition the set of matchings of G into those that contain
e = vw and those that do not:

µ(G;x) =
∑

A∈M(G)

x|A| =
∑

A∈M(G)
e/∈A

x|A| +
∑

A∈M(G)
e∈A

x|A|

=
∑

A∈M(G−e)

x|A| +
∑

A∈M(G−{v,w})
x|A∪{e}|

= µ(G− e;x) + xµ(G− {v, w};x),
and the proof is complete.

�

A famous result due to Heilmann and Lieb [48], who studied the matching
polynomial in the context of the monomer-dimer model in statistical physics,
states that the zeros of the matching polynomial of a graph are always real.
In fact, an even stronger statement holds, which is known as the interlacing
property. We will obtain this result by first proving a slightly more general
version that also involves edge weights. Suppose that each edge e = vw of a
graph is assigned a weight ωvw. We define the weight ω(B) of a matching B
to be the product of the weights of all edges occurring in it. The matching
polynomial associated with a weighted graph G is defined as

M(G;x) =
∑

B∈M(G)

(−1)|B|ω(B)xn−2|B|.

Observe that the unweighted version is obtained simply by setting all weights
equal to 1. It will be important for us that the second formula of Lemma 4.7.2
still holds with a small modification to account for the weights:

M(G;x) = xM(G− v;x) −
∑

w∈N(v)

ωvwM(G− {v, w};x). (4.5)

The proof is analogous to the unweighted version.
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Theorem 4.7.1 Let G be a graph with n vertices, and let G1 be an induced
subgraph with n − 1 vertices, i.e., a graph obtained by removing exactly one
vertex from G. All the zeros of M(G;x) and M(G1;x) are real. Moreover, if
we let α1 ≤ α2 ≤ · · · ≤ αn be the zeros of M(G;x) in non-decreasing order,
and let β1 ≤ β2 ≤ · · · ≤ βn−1 be the zeros of M(G1;x) in non-decreasing
order, then we have

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ βn−2 ≤ αn−1 ≤ βn−1 ≤ αn.

Proof:

We will first prove a version of the theorem for weighted complete graphs by
induction on the number of vertices. The desired statement will then follow by
a limiting argument. Let K be a weighted complete graph with n vertices and
positive edge weights (i.e., for every pair v, w of vertices, we have ωvw > 0).
Then the following hold:

• The matching polynomial of K has distinct real zeros α1 < α2 < · · · < αn.

• If K ′ is obtained from K by removing one of the vertices, then the zeros
β1, β2, . . . , βn−1 of the matching polynomial of K interlace with the zeros of
K, i.e.,

α1 < β1 < α2 < β2 < · · · < βn−2 < αn−1 < βn−1 < αn.

For n = 2, the statement is easy to verify: let v and w be the two vertices and
ωvw the only edge weight. The matching polynomial of K is

x2 − ωvw,

which has the real zeros ±√
ωvw. The matching polynomial of K ′ (which only

has one vertex, but no edges) is x, whose only zero is 0. Clearly, the interlacing
property is satisfied. For the induction step, we use the recursive formula (4.5):
let v be one of the vertices of K, and let K ′ be obtained by removing v from
K. Then we have

M(K;x) = xM(K ′;x)−
∑

w 6=v

ωvwM(K − {v, w};x).

Note that K − {v, w} can be obtained from K ′ by removing the vertex w, so
we can apply the induction hypothesis to K ′ and K − {v, w} for every w. In
particular, we know that the zeros of K ′ are all real and distinct, so that we
can arrange them in increasing order: β1 < β2 < · · · < βn−1.

Now consider one of the graphs K − {v, w}: let the zeros of its matching
polynomial be γ1, γ2, . . . , γn−2, so that

β1 < γ1 < β2 < γ2 < · · · < γn−3 < βn−2 < γn−2 < βn−1

by the induction hypothesis.
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Since the zeros of the polynomial P (x) =M(K−{v, w};x) are all distinct,
the sign of the polynomial changes at each of the zeros. Moreover, by definition
of the matching polynomial, the leading term of P (x) is xn−2. This implies
that P (x) > 0 for x > γn−2, and the signs alternate on intervals of the form
(γi−1, γi): we have (−1)n+i−1P (x) > 0 for x ∈ (γi−1, γi) and (−1)nP (x) > 0
for x < γ1. In particular, we must have (−1)n+i−1P (βi) = (−1)n+i−1M(K −
{v, w};βi) > 0. Since this holds for all vertices w and the weights ωvw were
assumed to be positive, it follows that

(−1)n+iM(K;βi) = (−1)n+i
(
xM(K ′;βi)−

∑

w 6=v

ωvwM(K − {v, w};βi)
)

= (−1)n+i−1
∑

w 6=v

ωvwM(K − {v, w};βi)

> 0.

Therefore, the signs of the values of M(K;x) at the zeros of M(K ′;x) al-
ternate: M(K;βi−1) and M(K;βi) have different signs. By the intermediate
value theorem, there must be a zero of M(K;x) in the interval (βi−1, βi).
This gives us n − 2 distinct roots of M(K;x) that interlace with the roots
of M(K;x). The remaining two roots are found by a similar argument: we
have M(K;βn−1) < 0, but since the leading term of M(K;x) is xn, we have
limx→∞M(K;x) = +∞. Thus there must also be a zero of M(K;x) that is
greater than βn−1, and a similar argument shows that there is also a zero of
M(K;x) less than β1. The desired statement follows.

Now we want to generalize to the situation that the graph is no longer
complete: we can interpret a given graph G as a weighted complete graph
with weights given by ωvw = 1 if vw is an edge in G and ωvw = 0 otherwise:
it is clear that a matching of the complete graph is assigned weight 1 if it is a
matching in G, and 0 otherwise. However, the weights are not strictly positive
in this setting. So instead, we define weights by ωvw = 1 if vw is an edge and
ωvw = ǫ > 0 otherwise. The coefficients of the matching polynomial of the
resulting graph are continuous functions of ǫ. Moreover, it is well known that
the zeros of a monic polynomial are continuous functions of the coefficients.
Therefore, the zeros of the matching polynomial of the weighted complete
graph defined by these weights converge to the zeros ofM(G;x) as ǫ→ 0. Thus
Theorem 4.7.1 follows from the statement on complete graphs with positive
weights (note that strict inequalities may become non-strict in the limit). �

Corollary 4.7.1 For every graph G, the zeros of the matching generating
polynomial µ(G;x) are real and negative.

Proof:

Recall that
M(G;x) = xnµ(G;−x−2),
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so the zeros of µ(G;x) are of the form −α−2, where α is a zero of M(G;x).
Clearly, all these zeros are real and negative. Note that 0 is not a zero of
µ(G;x), since µ(G;x) = m(G, 0) = 1 for every graph G. �

Let us remark that Theorem 4.7.1 holds for weighted graphs as well, pro-
vided that all weights are non-negative (by an analogous argument). Notably,
the zeros of the independence polynomial of a graph are not always real. As a
counterexample, consider the star with four vertices. It has one independent
set of three vertices (consisting of the three leaves), three independent sets
of two vertices (any two leaves), four single-vertex independent sets, and of
course the empty set as another independent set. Thus

I(S4;x) = x3 + 3x2 + 4x+ 1,

and this polynomial has only one real zero (and two complex conjugate zeros).
It is known, however, that the zeros are real if the graph is claw-free (no
induced subgraph is isomorphic to the claw, i.e., the four-vertex star); this
was proven by Chudnovsky and Seymour [16].

It was mentioned earlier in this section that the Merrifield-Simmons index
and the Hosoya index are closely related to the independence polynomial and
the matching generating polynomial via the identities

σ(G) = I(G; 1) and Z(G) = µ(G; 1).

Very frequently, graphs that have the maximum or minimum total number
of independent sets or matchings in a certain class of graphs (thus giving the
maximum or minimum value of I(G; 1) or µ(G; 1)) are even coefficientwise
optimal in that they maximize or minimize every coefficient of the respective
polynomial.

The idea of introducing an order structure on graphs based on the coeffi-
cients of the independence polynomial or matching polynomial goes back to
the papers [34, 35] by Gutman. Let us define the quasi-order �i in the fol-
lowing way: for graphs G and H (usually with the same number of vertices),
we write G �i H if i(G, k) ≤ i(H, k) holds for all k. If at least one of these
inequalities holds with strict inequality, then we write G ≺i H . The relations
�m and ≺m are defined in an analogous way, with i(·, k) replaced by m(·, k).

It is clear that G �i H implies σ(G) ≤ σ(H), and G ≺i H implies σ(G) <
σ(H). Likewise, G �m H implies Z(G) ≤ Z(H), and G ≺m H implies Z(G) <
Z(H). The following theorem, which extends Theorem 4.3.1, is essentially
trivial (it follows from the same monotonicity argument):

Theorem 4.7.2 For every graph G with n vertices, we have

Kn �i G and G �i En,

where Kn and En are the complete and edgeless graph, respectively. Similarly,

En �m G and G �m Kn.
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For trees, we also have the following extensions of Theorem 4.3.2 and
Theorem 4.3.3, which can in fact be proved along the same lines. This theorem
will become particularly useful in the following chapter in our discussion of
the graph energy.

Theorem 4.7.3 For every tree T with n vertices, the following statements
hold:

• T �i Sn, and T ≺i Sn unless T is the star. Likewise, T �i Pn, and T ≻i Pn

unless T is the path.

• T �m Sn, and T ≻m Sn unless T is the star. Likewise, T �m Pn, and
T ≺m Pn unless T is the path.

Proof:

• We start with independent sets, our goal being to show that

i(Pn, k) ≤ i(T, k) ≤ i(Sn, k), (4.6)

and that equality in the lower bound for all k is only possible if T is the
path, while equality in the upper bound for all k is only possible if T is the
star. The argument that gave us the second item of Lemma 4.2.2 also shows
that

i(G, k) = i(G− v, k) + i(G−N [v], k − 1)

for every graph G and every vertex v of G. We will apply this recursive
formula to prove both statements by induction. Note first that both are
trivial for n = 1 and n = 2 (as there is only one tree in these cases). For the
induction step, let v be a leaf of T , and let w be its unique neighbor. By the
induction hypothesis, we have

i(Pn−1, k) ≤ i(T − v, k) ≤ i(Sn−1, k),

as well as

i(Pn−2, k − 1) ≤ i(T − {v, w}, k − 1) ≤ i(En−2, k − 1),

the latter by Theorem 4.7.2. Adding the two inequalities, we arrive at (4.6).
If equality holds for all k in the lower bound, then we must in particular have
σ(Pn) = σ(T ), so Theorem 4.3.2 shows that T must be a path. Likewise,
if equality holds for all k in the upper bound, then σ(Sn) = σ(T ), which
implies that T is a star.

• The proof for matchings is completely analogous (Exercise 16). For the state-
ment that T �m Sn, we can also argue as in the proof of Theorem 4.3.3: we
have m(T, 0) = m(Sn, 0) = 1 and m(T, 1) = m(Sn, 1) = n− 1 for all trees T
with n vertices, and m(Sn, k) = 0 for all k > 1. Moreover, m(T, 2) > 0 for
every tree that is not a star, so that we even have T ≻m Sn in this case.

�
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Exercises

1. A ladder Hn consists of two n-vertex paths v1, v2, . . . , vn and
w1, w2, . . . , wn and additional edges v1w1, v2w2, . . . , vnwn. Deter-
mine formulas for σ(Hn) and Z(Hn).

2. A wheel Wn consists of a cycle with vertices v1, v2, . . . , vn and an
additional vertex w that is connected to all vertices of the cycle by
an edge. Determine formulas for σ(Wn) and Z(Wn).

3. Let a tripod be a tree with precisely one vertex of degree 3 and no
further vertices of degree 3 or more. Prove that σ(T )+Z(T ) = Fn+3

holds for every tripod T with n vertices.

4. Prove Lemma 4.4.1 for the Hosoya index.

5. Prove the identities Fk+1Fh+1 + FkFh = Fk+h+1 and Fk+2Fh+2 −
FkFh = Fk+h+2 by applying Lemma 4.2.2 to a path.

6. Verify that the expressions for σ(G)− σ(Gv) and σ(G)− σ(Gw) in
the proof of Lemma 4.4.5 remain correct for r ≤ 3, when σ(Pr−3)
and other expressions are not well defined.

7. Determine the n-vertex tree with third-smallest/third-largest
Merrifield-Simmons index/Hosoya index.

8. Complete the proof of Theorem 4.5.2 for the Hosoya index.

9. Show that Theorem 4.5.1 can be derived from Theorems 4.5.4
and 4.5.5.

10. Verify that the M-tree M(ℓ, 2, 2, . . . , 2, 1, 1, . . . , 1) is indeed a
comet, as claimed at the end of Section 4.5.

11. Deduce Theorem 4.6.3 from Theorem 4.6.1.

12. A graph G is called a quasi-tree if it can be turned into a tree by
removing a single vertex. Prove that the minimum of the Merrifield-
Simmons index and the maximum of the Hosoya index among quasi-
trees with n vertices are attained by the fan, which is the graph
obtained from an (n − 1)-vertex path by adding a vertex and con-
necting it to all vertices of the path by an edge.

13. Find an interpretation for the two expressions

d

dx
ln I(G;x)

∣∣∣
x=1

and
d

dx
lnµ(G;x)

∣∣∣
x=1

.

14. Find two non-isomorphic graphs with the same matching polyno-
mial, and two non-isomorphic graphs with the same independence
polynomial.
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15. Find an example of two graphs G and H with the same number
of vertices for which neither G �i H nor H �i G holds. Find an
analogous example for �m.

16. Prove the second part of Theorem 4.7.3 by means of a similar in-
duction argument as in the first part.
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5

Graph spectra and the graph energy

5.1 Matrices associated with graphs

There are several natural matrices that can be associated with a graph. The
best-known instance is probably the adjacency matrix A(G) of a graph G.
Fix an order of the vertices of G as v1, v2, . . . , vn. The entries aij of A(G) are
defined as follows:

aij =

{
1 if vi and vj are adjacent,

0 otherwise.

For the example in Figure 5.1 (the same example we used at the beginning
of Section 4.1), the adjacency matrix looks as follows:

A(G) =




0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


 .

We observe that the adjacency matrix of a (simple, undirected) graph is
a symmetric 0-1-matrix, and all diagonal entries are 0s. It is also important
to notice that the adjacency matrix is not unique: it depends on the order of
vertices chosen. However, this dependence will actually prove immaterial in
the following.

v1 v2

v3v4

e1

e2e3

e4

e5

FIGURE 5.1
Example graph to illustrate the definition of adjacency matrix, incidence ma-
trix, and (signless) Laplacian matrix.

169
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The incidence matrixB(G) associated with a graph is defined in a very sim-
ilar way. In order to define it, we also fix an order for the edges: e1, e2, . . . , em.
The entries bij of B(G) are defined as follows:

bij =

{
1 if vi is one of the ends of ej ,

0 otherwise.

Looking again at the example in Figure 5.1, the incidence matrix is

B(G) =




1 0 1 0 0
1 1 0 0 1
0 1 0 1 0
0 0 1 1 1


 .

The adjacency and incidence matrix are related by several interesting iden-
tities such as the following:

Proposition 5.1.1 The incidence matrix of G and the adjacency matrix of
the line graph (with respect to the same ordering) are related by

A(L(G)) = B(G)TB(G)− 2I,

where I denotes the identity matrix.

Proof:

The entry in the i-th row, j-th column of B(G)TB(G) is the inner product
of the i-th column and the j-th column of B(G). Both columns only have
two non-zero entries that are equal to 1. If i 6= j, then the two columns have
either no common entry (if the corresponding edges do not share a vertex),
or exactly one (if the corresponding edges share a vertex). In the former case,
the inner product is 0, in the latter it is 1. In both cases, it agrees with the
corresponding entry in A(L(G)). If i = j, the two columns are identical and
the inner product is 2. The final term 2I in the formula removes these entries
so that they agree with the diagonal entries of A(L(G)). This completes the
proof. �

If the incidence matrix and its transpose are multiplied in a different order,
we obtain another important matrix associated with a graph, namely the
signless Laplacian. The signless Laplacian S(G) has entries sij defined as
follows:

sij =





deg(vi) if i = j,

1 if i 6= j and vi and vj are adjacent,

0 otherwise.

If we let D(G) (the degree matrix) be the diagonal matrix whose entries
are the degrees deg(vi) of the vertices, then we can express S(G) as

S(G) = D(G) +A(G).
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We have the following identity that we alluded to earlier:

Proposition 5.1.2 The incidence matrix and the signless Laplacian of G
(with respect to the same vertex ordering) are related by

S(G) = B(G)B(G)T .

Proof:

In analogy to the proof of Proposition 5.1.1, we note that the entry in the i-th
row, j-th column of B(G)B(G)T is the inner product of the i-th row and the
j-th row of B(G). Since both are 0-1-vectors, the inner product is equal to
the number of positions where both have an entry 1. If i = j, then the rows
are identical and contain deg(vi) 1s (one for each edge incident with vi), so
the inner product is deg(vi). Otherwise, the two rows only have a common
entry 1 in a column corresponding to an edge of which both are ends. Thus
the inner product is 1 if vi and vj are adjacent, and 0 otherwise. We conclude
that the entries of B(G)B(G)T agree with those of S(G). �

The matrix
L(G) = D(G)−A(G)

is called the Laplacian of G (more precisely, the combinatorial Laplacian, to
distinguish it from its probabilistic counterpart). Except for the sign, its en-
tries are exactly the same as those of S(G). An analogous formula to Propo-
sition 5.1.2 holds, where B(G) needs to be replaced by a signed incidence
matrix: fix an orientation of G by picking (arbitrarily) a head h(e) and a tail
t(e) for each edge e. Then define the oriented incidence matrix C(G) by its
entries cij :

cij =





1 if vi is the head of ej ,

−1 if vi is the tail of ej ,

0 otherwise.

Proposition 5.1.3 The oriented incidence matrix C(G) as defined above and
the Laplacian of G are related by

L(G) = C(G)C(G)T .

Proof:

Analogous to Proposition 5.1.2. �

To illustrate the concept of the Laplacian and the signless Laplacian, we
refer to Figure 5.1 once again. For the graph in this figure, the matrices L(G)
and S(G) are given by

L(G) =




2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3


 and S(G) =




2 1 0 1
1 3 1 1
0 1 2 1
1 1 1 3


 .
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Before we consider spectral properties of the matrices defined in this sec-
tion, let us discuss a relation between the adjacency matrix and walks in
graphs: by a walk of length r, we mean a sequence u0, u1, u2, . . . , ur of (not
necessarily distinct) vertices such that ui and ui+1 are adjacent for all i. The
adjacency matrix can be used to count these walks:

Proposition 5.1.4 For two vertices vi and vj of a graph G, let w
(r)
ij be the

number of walks of length r whose first vertex is vi and whose last vertex is

vj. Then w
(r)
ij is equal to the entry in the i-th row, j-th column of A(G)r.

Proof:

We prove the statement by induction on r. For r = 0, it is trivial: every walk
of length 0 has the same first and last vertex, and there is precisely one for
each vertex. Thus

w
(0)
ij =

{
1 i = j,

0 i 6= j,

which agrees with the entries of the identity matrix I = A(G)0. For the
induction step, assume that the assertion holds for walks of length r−1. Note
that every walk W of length r consists of a walk W ′ of length r − 1 and a
vertex that is adjacent to the last vertex of W ′. Thus we have

w
(r)
ij =

∑

k:vk∈N(vj)

w
(r−1)
ik =

∑

k

w
(r−1)
ik akj ,

where akj is the entry in the k-th row, j-th column of A(G). By the induc-

tion hypothesis, w
(r−1)
ik is exactly the entry in the i-th row, k-th column of

A(G)r−1. Thus the desired statement now follows from the definition of matrix
multiplication. �

5.2 Graph spectra and characteristic polynomials

The adjacency matrix, Laplacian matrix and signless Laplacian matrix are all
square matrices, so it makes sense to consider their eigenvalues. The study
of the spectra of these and other matrices associated with a graph is a rich
area of graph theory, with many interesting applications not only in chemistry.
There are also several books focusing on this subject, such as [10, 19, 99].

As a first observation, note that the spectrum of the adjacency matrix
A(G) is independent of the order of vertices imposed in the definition of A(G).
If A′(G) is a second adjacency matrix of G that differs only in the order of
vertices, then there exists a permutation matrix P such that

A′(G) = P−1A(G)P.
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Thus A(G) and A′(G) are similar matrices, which in particular implies that
they have the same spectrum. Thus it makes sense to speak of the spectrum
of a graph (i.e., the spectrum of its adjacency matrix). Likewise, the spectrum
of the Laplacian matrix L(G) (also called the Laplacian spectrum of G) does
not depend on the order of vertices, and the same applies to the spectrum of
S(G) (the signless Laplacian spectrum of G).

Since A(G), L(G) and S(G) are all symmetric, we can also immediately
state the following property:

Proposition 5.2.1 The spectrum of the adjacency matrix A(G), the Lapla-
cian matrix L(G) and the signless Laplacian S(G) consist entirely of real
numbers. Moreover, for each of them there exists an orthogonal basis of eigen-
vectors with real entries.

In view of this proposition, all eigenvalues and eigenvectors considered in
the following will be real.

For example, the graph in Figure 5.1 has the adjacency matrix

A(G) =




0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0




with eigenvalues α1 = 1
2 (1 +

√
17), α2 = 1

2 (1 −
√
17), α3 = 0 and α4 = −1.

The Laplacian matrix is

L(G) =




2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3




and has eigenvalues λ1 = λ2 = 4, λ3 = 2 and λ4 = 0. Finally, the signless
Laplacian

S(G) =




2 1 0 1
1 3 1 1
0 1 2 1
1 1 1 3




has eigenvalues σ1 = 3 +
√
5, σ2 = σ3 = 2 and σ4 = 3−

√
5.

Let us also consider the spectra associated with important families of
graphs. The simplest example is the edgeless graph En with n vertices. In
this case, A(En), L(En) and S(En) are all equal to the zero matrix, which
has 0 as its only eigenvalue (with multiplicity n).

The complete graph Kn is already somewhat more complicated. Its adja-
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cency matrix has the form

A(Kn) =




0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0



.

Note that A(Kn) + I is the matrix whose entries are all 1s. Its rank is 1,
which implies that there are n − 1 linearly independent eigenvectors for the
eigenvalue −1. Thus −1 is an eigenvalue of multiplicity n− 1, and it remains
to determine the last eigenvalue. Since the trace of a matrix is the sum of
its eigenvalues, and the trace is 0 in this case, the final eigenvalue must be
n − 1 (indeed, it is easy to identify the vector whose entries are all 1s as an
eigenvector).

For the Laplacian, the situation is similar: it has the general form

L(Kn) =




n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1



,

and the same argument as before shows that n is an eigenvalue of multiplicity
n− 1, with 0 being the final eigenvalue. For the signless Laplacian, which has
the form

S(Kn) =




n− 1 1 1 · · · 1
1 n− 1 1 · · · 1
1 1 n− 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · n− 1



,

the eigenvalues are n − 2 (with multiplicity n − 1) and 2n − 2. Let us state
this as a formal proposition:

Proposition 5.2.2 The eigenvalues of A(Kn) are −1 with multiplicity n− 1
and n− 1, the eigenvalues of L(Kn) are n with multiplicity n− 1 and 0, and
the eigenvalues of S(Kn) are n− 2 with multiplicity n− 1 and 2n− 2.

The eigenvalues of the matrices associated with the complete bipartite
graph Ka,b (see Section 1.2) can be obtained in a similar way. We have the
following result:

Proposition 5.2.3 The eigenvalues of A(Ka,b) are 0 with multiplicity n− 2

(where n = a + b is the number of vertices) and ±
√
ab. The eigenvalues of

L(Ka,b) and S(Ka,b) are a with multiplicity b− 1, b with multiplicity a− 1, 0
and a+ b.
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Proof:

We observe that there are only two different types of rows in A(Ka,b), cor-
responding to the two partite sets. This means that the rank of A(Ka,b) is
2, while the dimension of the nullspace is n − 2. So there are n − 2 linearly
independent eigenvectors for the eigenvalue 0, and it only remains to identify
the two remaining eigenvalues. Consider a vector for which the entries associ-
ated with the vertices in the first partite set (of cardinality a) are all equal to
x, while the remaining entries are all equal to y. For such a vector to be an
eigenvector corresponding to eigenvalue α, we need to have

by = αx and ax = αy.

We eliminate x and y by multiplying the two equations, which gives us ab =
α2, i.e., α = ±

√
ab. Possible values for x and y that yield suitable eigenvectors

are x =
√
b and y = ±√

a.
For the Laplacian eigenvalues, the argument is very similar. We note first

that L(Ka,b)− aI has b identical rows, thus a must be an eigenvalue of mul-
tiplicity b− 1. Likewise, b is an eigenvalue of multiplicity a− 1. This leaves us
with two missing eigenvalues. The same approach as before now gives us the
following two equations for the eigenvector entries x and y and the eigenvalue
λ:

bx− by = λx and ay − ax = λy.

One solution is λ = 0 (and x = y), the other λ = a+ b = n (and, e.g., x = b,
y = −a). �

Let us now have a look at the spectra of sparse graphs, specifically trees.
We will see later that the path and the star will play a major role as in previous
chapters. It is thus important to know their spectra. The star is a special case
of a complete bipartite graph (it can be regarded as K1,n−1), so the following
is immediate:

Corollary 5.2.1 The eigenvalues of A(Sn) are 0 with multiplicity n− 2 and
±
√
n− 1.

For the path and the cycle, we need a little background on Chebyshev
polynomials. The Chebyshev polynomials of the first kind, denoted by Tn(x),
are defined by the following recursion:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x) − Tn−2(x) for n ≥ 2,

while the Chebyshev polynomials of the second kind satisfy the same recursion
with slightly different initial values:

U0(x) = 1, U1(x) = 2x, Un(x) = 2xUn−1(x) − Un−2(x) for n ≥ 2.
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Let us list the first few Chebyshev polynomials:

T0(x) = 1, U0(x) = 1,

T1(x) = x, U1(x) = 2x,

T2(x) = 2x2 − 1, U2(x) = 4x2 − 1,

T3(x) = 4x3 − 3x, U3(x) = 8x3 − 4x,

T4(x) = 8x4 − 8x2 + 1, U4(x) = 16x4 − 12x2 + 1.

The Chebyshev polynomials have many remarkable properties and play a
role in various areas of mathematics. We will in particular use the following
connection to trigonometric functions:

Lemma 5.2.1 For every non-negative integer n, we have

Tn(cos t) = cos(nt) and Un(cos t) =
sin((n+ 1)t)

sin t
.

Proof:

Both identities can be proved by induction on n. Both formulas hold for n = 0:

T0(cos t) = U0(cos t) = 1 = cos(0t) =
sin t

sin t
,

as well as for n = 1:

T1(cos t) = cos t, U1(cos t) = 2 cos t =
sin(2t)

sin t
.

The induction step is based on elementary trigonometric identities: the induc-
tion hypothesis gives us

Tn+1(cos t) = 2 cos t · Tn(cos t)− Tn−1(cos t)

= 2 cos t cos(nt)− cos((n− 1)t)

= 2 cos t cos(nt)− (cos t cos(nt) + sin t sin(nt))

= cos t cos(nt)− sin t sin(nt) = cos((n+ 1)t)

and

Un+1(cos t) = 2 cos t · Un(cos t)− Un−1(cos t)

= 2 cos t · sin((n+ 1)t)

sin t
− sin(nt)

sin t

=
2 cos t sin((n+ 1)t)− (cos t sin((n+ 1)t)− sin t cos((n+ 1)t))

sin t

=
cos t sin((n+ 1)t) + sin t cos((n+ 1)t)

sin t
=

sin((n+ 2)t)

sin t
.

�

The following lemma relates the Chebyshev polynomials to the adjacency
matrices of the path and the cycle.
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Lemma 5.2.2 For every positive integer n, the characteristic polynomial of
the adjacency matrix of the path Pn is

ΦPn(x) = Un(x/2),

and for every integer n ≥ 3, the characteristic polynomial of the adjacency
matrix of the cycle Cn is

ΦCn(x) = 2Tn(x/2)− 2.

Proof:

We start with the characteristic polynomial of A(Pn), which is given by the
n× n determinant

ΦPn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0 0
−1 x −1 · · · 0 0 0
0 −1 x · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · x −1 0
0 0 0 · · · −1 x −1
0 0 0 · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We apply row expansion with respect to the last row, which gives us the
following:

x

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0
−1 x −1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x −1
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0
−1 x −1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 0
0 0 0 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here both determinants are of size (n− 1)× (n− 1). Note in particular that
the first determinant is precisely the characteristic polynomial of A(Pn−1). If
we further expand the second determinant with respect to the last column,
we obtain

ΦPn(x) = xΦPn−1
(x)− ΦPn−2

(x).

Thus ΦPn(x) satisfies the same recursion as Un(x/2), and the initial values
also agree: ΦP1

(x) = x = U1(x/2) and ΦP2
(x) = x2 − 1 = U2(x/2). The first

identity follows.
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The characteristic polynomial of A(Cn) is given by a very similar deter-
minant, namely

ΦCn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0 −1
−1 x −1 · · · 0 0 0
0 −1 x · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · x −1 0
0 0 0 · · · −1 x −1
−1 0 0 · · · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We use the same approach as for the path: expansion with respect to the last
row gives

x

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 0
−1 x −1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x −1
0 0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0 −1
−1 x −1 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x 0
0 0 0 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0 0 −1
x −1 · · · 0 0 0
−1 x · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · x −1 0
0 0 · · · −1 x −1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The first determinant is the characteristic polynomial of A(Pn−1). The second
and third determinant are expanded again with respect to the last column.
In each case, one of the resulting determinants is precisely the characteristic
polynomial ofA(Pn−2) again, while the other is the determinant of a triangular
matrix that is easily determined. We find that

ΦCn(x) = xΦPn−1
(x) − 2ΦPn−2

(x)− 2.

The polynomials xΦPn−1
(x) − 2ΦPn−2

(x) satisfy the same recursion as
2Tn(x/2) (since both ΦPn−1

(x) and ΦPn−2
(x) do; this follows from our dis-

cussion of the path Pn above). Moreover, the initial values also agree:

xΦP2
(x) − 2ΦP1

(x) = x(x2 − 1)− 2x = x3 − 3x = 2T3(x/2)

and

xΦP3
(x) − 2ΦP2

(x) = x(x3 − 2x)− 2(x2 − 1) = x4 − 4x2 + 2 = 2T4(x/2).

Thus the second identity follows as well. �
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Now that we know the characteristic polynomials of Pn and Cn, their
respective spectra are easily determined:

Proposition 5.2.4 For every positive integer n, the spectrum of the path Pn

consists of the values 2 cos kπ
n+1 , k ∈ {1, 2, . . . , n}. For every integer n ≥ 3, the

spectrum of the cycle Cn consists of the values 2 cos 2kπ
n , k ∈ {0, 1, . . . , n− 1}.

Proof:

Combining the previous lemma with Lemma 5.2.1, we find that

ΦPn(2 cos t) =
sin((n+ 1)t)

sin t
,

which is zero whenever (n + 1)t is multiple of π, except when t is itself a
multiple of π. Thus the characteristic polynomial of Pn has zeros at all values
of the form x = 2 cos t corresponding to t = kπ

n+1 , where k ∈ {1, 2, . . . , n}.
Similarly,

ΦCn(2 cos t) = 2 cos(nt)− 2.

This is zero when nt is a multiple of 2π, so we find that the zeros are 2 cos 2kπ
n ,

k ∈ {0, 1, . . . , n− 1}. �

It is worth pointing out that the path Pn has n distinct eigenvalues, while
the cycle has eigenvalues of multiplicity 2, since

2 cos
2kπ

n
= 2 cos

2(n− k)π

n
.

Indeed, one can easily verify that the derivative of ΦCn at 2 cos 2kπ
n is zero

(indicating a double zero) unless k ∈ {0, n/2}, since the chain rule gives

Φ′
Cn

(2 cos t) =
n sin(nt)

sin t
.

The disjoint union of graphs is perhaps the simplest possible graph op-
eration. Later in this chapter, we will need information about the spectrum
of a disjoint union of graphs. As it turns out, the spectrum of the union of
two graphs is simply the union of the two spectra (taking multiplicities into
account):

Proposition 5.2.5 Let G1 and G2 be two (disjoint) graphs, and let H be
their union. The spectrum of A(H) is the union of the spectra of A(G1) and
A(G2), with multiplicities added up. The same holds for the Laplacian and
signless Laplacian matrices.



180 Introduction to Chemical Graph Theory

Proof:

Simply note that the adjacency matrix of H has the block-diagonal shape

A(H) =

[
A(G1) 0

0 A(G2)

]

with respect to a suitable vertex ordering. Thus the spectrum of A(H) is
obtained as the union of the spectra of A(G1) and A(G2) as stated. The same
also applies to the Laplacian and signless Laplacian. �

The adjacency matrix of a graph is an important example of a non-negative
matrix, so the Perron-Frobenius theorem applies to it. Let us state this theo-
rem for later use:

Theorem 5.2.1 LetM be a square matrix with real non-negative entries, and
let ρ be its spectral radius, i.e., the greatest absolute value of an eigenvalue.
The following statements hold:

• The spectral radius ρ is itself an eigenvalue.

• If x is a non-zero vector with non-negative entries, and the inequality

M · x ≥ λx

holds componentwise, then λ ≤ ρ. If λ = ρ, then x must be an eigenvector,
i.e., equality holds componentwise.

• Let the entries of M be mij (1 ≤ i, j ≤ n), and define an oriented graph
with vertices v1, v2, . . . , vn as follows: there is an oriented edge from vi to vj
if and only if mij > 0. If this graph is strongly connected (i.e., there exists
an oriented path from every vertex to every other vertex), then we call M
irreducible. In this case, ρ is an eigenvalue of multiplicity 1, and there is
an eigenvector associated with ρ whose entries are exclusively positive real
numbers.

The adjacency matrix A(G) is an irreducible non-negative matrix if and
only if G is connected. In this case, we can conclude that the spectral radius
of A(G) is part of the spectrum, and that there is an eigenvector with strictly
positive entries associated to it. A brief introduction to the theory of the
spectral radius will be provided in Section 5.8.1.

The spectra of bipartite graphs have some interesting properties that will
be stated in the following two theorems. They generalize some of the patterns
we observed in our examples (complete bipartite graph, star, path).

Theorem 5.2.2 For every bipartite graph G, the spectrum of A(G) is sym-
metric, i.e., α is an eigenvalue if and only if −α is. Moreover, the multiplicities
of α and −α are the same.
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Proof:

Without loss of generality, we can assume that the vertices are ordered in
such a way that the first n1 vertices form one partite set, while the remaining
n2 vertices form the other partite set. Thus the adjacency matrix has the
following block form:

A(G) =

[
0 M
MT 0

]

for a matrix M that captures the edges between the two partite sets. Now let
x be an eigenvector for the eigenvalue α, and split it accordingly:

x =

[
x1

x2

]
.

Then we must have

M · x2 = αx1 and MT · x1 = αx2.

Equivalently,

M · (−x2) = −αx1 and MT · x1 = −α(−x2),

which means that

x =

[
x1

−x2

]

is an eigenvector for the eigenvalue −α. It is easy to conclude that α is an
eigenvalue if and only if −α is one, and that the respective eigenspaces have
the same dimension. The desired statement follows. �

It turns out that the converse of Theorem 5.2.2 holds as well: if the spec-
trum is symmetric, then the graph is bipartite. In fact, we can prove a stronger
result:

Theorem 5.2.3 Let G be a connected graph, and let ρ be the spectral radius
of A(G). If −ρ is an eigenvalue of A(G), then G must be bipartite.

Proof:

Let x be an eigenvector associated with −ρ, and let |x| be the vector obtained
by taking the absolute values of all entries of x. By the triangle inequality, we
have

ρ|x| = |−ρx| = |A(G)x| ≤ A(G)|x|
componentwise. By the second item in Theorem 5.2.1, |x| has to be an eigen-
vector for ρ, and equality needs to hold. Thus there cannot be any cancellations
in the matrix product A(G)x. Let us divide the vertex set into the set A of
vertices for which the associated entry in x is positive, and the set B of ver-
tices for which the associated entry is negative (this covers all vertices, since
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there cannot be any zero entries in view of the third part of Theorem 5.2.1).
The only way that no cancellations occur in the product A(G)x = −ρx is
that vertices in A are only adjacent to vertices in B, and vice versa. But this
means that G is bipartite. �

Corollary 5.2.2 If the spectrum of a graph G is symmetric, i.e., whenever α
is an eigenvalue of A(G), then so is −α, and the multiplicities coincide, then
G is bipartite.

Proof:

By induction on the number of connected components. If the graph is con-
nected, we are done by the previous theorem. Otherwise, we know that the
spectrum of G is the union of the spectra of its components. Consider all com-
ponents for which the spectral radius ρ of A(G) is an eigenvalue. Since −ρ is
also part of the spectrum of G, it must be in the spectrum of one of these com-
ponents. It follows from the previous theorem that the component is bipartite.
Now simply remove the component and invoke the induction hypothesis. �

Theorem 5.2.4 For every bipartite graph G, the spectra of the Laplacian
L(G) and the signless Laplacian S(G) coincide.

Proof:

The proof is very similar to that of Theorem 5.2.2. We can again assume
without loss of generality that L(G) and S(G) have the following block forms:

L(G) =

[
D1 −M

−MT D2

]
and S(G) =

[
D1 M
MT D2

]
.

Here, D1 and D2 are diagonal matrices containing the vertex degrees, and M
is as in the proof of Theorem 5.2.2.

Now let λ be an eigenvalue of L(G), and let

x =

[
x1

x2

]

be the associated eigenvector. Then we have

D1 · x1 −M · x2 = λx1,

−MT · x1 +D2 · x2 = λx2.

This is equivalent to

x =

[
x1

−x2

]

being an eigenvector for the eigenvalue λ of S(G). As in the proof of The-
orem 5.2.2, it follows that λ is an eigenvalue of L(G) if and only if it is an
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eigenvalue of S(G), and the dimensions of the eigenspaces coincide. This com-
pletes the proof. �

Again, a converse holds as well, and in fact we can prove a stronger state-
ment:

Theorem 5.2.5 Let G be a connected graph. If the spectral radius of L(G)
equals the spectral radius of S(G), then G is bipartite.

Proof:

Suppose that L(G) and S(G) have the same spectral radius ρ, and let x be
an eigenvector of L(G) for the eigenvalue ρ. Note that S(G) has the same
entries as L(G), except that all signs are positive. Taking |x| to be the vector
whose entries are the absolute values of the entries of x (as in the proof of
Theorem 5.2.3), the triangle inequality gives us

ρ|x| = |ρx| = |L(G)x| ≤ S(G)|x|,

so by the second item in Theorem 5.2.1, |x| has to be an eigenvector of S(G)
for the eigenvalue ρ, and equality needs to hold. Thus there cannot be any
cancellations in the matrix product L(G)x. As in the proof of Theorem 5.2.3,
we can divide the vertices of G into the set A of those vertices for which the
associated entries of x are positive and the set B of those vertices for which
the entries are negative. The only way that no cancellations occur is that
vertices in A are only adjacent to vertices in B, and vice versa, so G has to
be bipartite. �

Using the same inductive approach that gave us Corollary 5.2.2, we also
obtain the following:

Corollary 5.2.3 If the spectra of L(G) and S(G) coincide, then G is bipar-
tite.

Regular graphs, where all vertices have the same degree, are another impor-
tant class in the context of spectral graph theory. We have already discussed
some special cases, specifically the complete graph and the cycle. For regular
graphs, the spectra of A(G), L(G) and S(G) are very closely related, as stated
in the following theorem:

Theorem 5.2.6 Let G be a regular graph, where all vertices have degree d. If
α1, α2, . . . , αn are the eigenvalues of G, then the eigenvalues of the Laplacian
are d − α1, d − α2, . . . , d − αn, and the eigenvalues of the signless Laplacian
are d+ α1, d+ α2, . . . , d+ αn.
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Proof:

All we need to note is that the degree matrix D(G) equals d times the identity
matrix I. Thus we have

L(G) = dI −A(G) and S(G) = dI +A(G).

The statement of the theorem follows at once. �

Recall from Proposition 5.1.4 that the number of walks of a given length
in a graph is related to the powers of the adjacency matrix. This also provides
a connection to the spectrum of the adjacency matrix that is made precise in
the following theorem. By a closed walk, we mean a walk whose first and last
vertex are the same.

Theorem 5.2.7 Let α1, α2, . . . , αn be the eigenvalues of the adjacency matrix
of a graph G. The number of closed walks of length r in G is equal to

tr(A(G)r) =

n∑

k=1

αr
k.

Proof:

By definition, the number of closed walks of length r in G is equal to

n∑

k=1

w
(r)
kk = tr(A(G)r).

To obtain the formula in terms of the eigenvalues of A(G), we simply combine
the well-known fact that the trace of a matrix is equal to the sum of its
eigenvalues with the fact that the eigenvalues of M r are the r-th powers of
the eigenvalues of M for every matrix M . �

Corollary 5.2.4 Let α1, α2, . . . , αn be the eigenvalues of the adjacency ma-
trix of a graph G with n vertices and m edges. We have

n∑

i=1

αi = tr(A(G)) = 0

and
n∑

i=1

α2
i = tr(A(G)2) = 2m.

Proof:

The first identity is clear from the definition of the adjacency matrix, whose
diagonal entries are all 0s. For the second identity, observe that walks of length
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2 have the form v, w, v, where vw is an edge. Since each edge gives rise to two
walks of length 2 in this way, the second identity follows. �

By definition of the Laplacian matrix L(G), all its row sums are 0: the
number of (−1)s in each row is exactly the number of neighbors of the cor-
responding vertex, which is the vertex degree, i.e., the diagonal entry. Thus
the (−1)s cancel with the diagonal entry. It follows that the vector whose
entries are all 1s is an eigenvector for the eigenvalue 0. We have the following
theorem:

Theorem 5.2.8 The Laplacian matrix of a graph has only non-negative
eigenvalues, and 0 is always an eigenvalue. If G is connected, then the multi-
plicity of 0 as an eigenvalue of L(G) is 1. Generally, the multiplicity of 0 as
an eigenvalue of L(G) is equal to the number of connected components of G.

Proof:

As mentioned before, it is easy to see that the vector consisting only of 1s is
an eigenvector for the eigenvalue 0. Now let x be an eigenvector of L(G) for
some eigenvalue λ. Without loss of generality, we may assume that at least
one of its entries is positive (otherwise, consider −x). Let xi (corresponding
to vertex vi) be its largest entry. By definition of L(G), we must have

λxi = deg(vi)xi −
∑

j: vj∈N(vi)

xj ≥ deg(vi)xi −
∑

j: vj∈N(vi)

xi = 0.

Since xi > 0 by our choice, it follows that λ ≥ 0. If λ = 0, then it follows that
xj = xi for all vertices vj that are adjacent to vi. If G is connected, then we
know that for every vertex vk there exists a path vi = vi1 , vi2 , . . . , vir = vk
from vi to vk. We must have xi = xi1 = xi2 , and repeating the argument
with vi2 instead of vi shows that xi = xi3 holds as well. Continuing in this
way, we find that in fact xk = xi for all k, i.e., all entries of x are the same.
Thus there is only one eigenvector for the eigenvalue 0 if G is connected (up
to multiplication by constant factors), which means that the multiplicity of 0
as an eigenvalue cannot be greater than 1. Hence it is equal to 1.

For the final statement, we can (iteratively) apply Proposition 5.2.5: each
of the connected components contributes 1 to the multiplicity of 0 as an eigen-
value, so the multiplicity must generally be equal to the number of compo-
nents. �

Let us now turn our attention to the characteristic polynomial: recall that
we have

det(xI −M) =

n∏

j=1

(x− µi),

where µ1, µ2, . . . , µn are the eigenvalues of matrix M . This simple relation
explains the importance of the characteristic polynomial for the analysis of
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the spectrum of a matrix. As it turns out, the coefficients of the characteristic
polynomial of the adjacency matrix and the Laplacian matrix of a graph can
be expressed combinatorially. To this end, we need some standard results from
linear algebra, such as the famous Leibniz formula for the determinant:

Lemma 5.2.3 If M is an n× n matrix with entries mij , then we have

detM =
∑

π∈Sn

sgnπ
n∏

i=1

miπ(i),

where the sum is over the elements of the group Sn of all permutations of
{1, 2, . . . , n} and sgnπ is the sign of the permutation π.

Let us now consider the characteristic polynomial of the adjacency matrix:
the following theorem is due to Sachs [93].

Theorem 5.2.9 Let a Sachs graph be defined as a graph whose only connected
components are single edges and cycles. For a graph G with n vertices, we let
U(G) denote the set of all its Sachs subgraphs, which are all (not necessar-
ily induced) subgraphs of G that are Sachs graphs, including the empty graph
without vertices or edges. Moreover, let w(H) denote the number of compo-
nents of such a graph H, and let c(H) denote the number of components that
are cycles. We have

ΦG(x) = det(xI −A(G)) =
∑

H∈U(G)

(−1)w(H)2c(H)xn−|H|. (5.1)

Consequently, the coefficient of xk in ΦG(x) is

∑

H∈U(G)
|H|=n−k

(−1)w(H)2c(H).

Proof:

We apply the formula given in Lemma 5.2.3 to the matrix M = xI − A(G).
Every element π of the symmetric group Sn has a unique decomposition into
cycles. Let us now consider the contribution of such a cycle i1i2 . . . ir to the
product

∏n
i=1miπ(i), where the entries mij are now given by

mij =





x i = j,

−1 vi and vj are adjacent,

0 otherwise.

If r = 1, i.e., the cycle is a singleton, then the contribution is simply a factor
x. If r > 1, then the product over the cycle is 0 if there are some consecutive
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elements ik, ik+1 in the cycle such that the corresponding vertices vik , vik+1

are not adjacent (so that one of the factors is 0). Otherwise (i.e., if the cycle
in the permutation corresponds to a cycle in the graph G or a single edge,
which can be interpreted as a cycle of length 2) it is (−1)r, since each of the
factors is −1.

So we see that the product
∏n

i=1miπ(i) is zero unless its non-singleton
cycles correspond to the components of a Sachs subgraph. Conversely, every
Sachs subgraph H corresponds to 2c(H) different permutations in Sn, since
each of the cycles (of length greater than 2) can be oriented in two different
ways. Let r1, r2, . . . , rs (where s = w(H)) be the component sizes of H , and
let π be one of the permutations corresponding to H . Note first that

|H | =
s∑

j=1

rj .

Since the sign of a permutation is 1 if the number of even-length cycles is
even and −1 otherwise, we have

sgnπ =

s∏

j=1

(−1)rj+1 = (−1)|H|+s = (−1)|H|+w(H).

Moreover,
n∏

i=1

miπ(i) = xn−|H|
s∏

j=1

(−1)rj = (−1)|H|.

It follows that

sgnπ

n∏

i=1

miπ(i) = (−1)w(H)xn−|H|

for every permutation π that corresponds to H . Formula (5.1) follows imme-
diately. �

An important corollary concerns the special case that the graph is acyclic:
in this case, we find that the characteristic polynomial of (the adjacency matrix
of) the graph coincides with its matching polynomial, as defined in Section 4.7.
In fact, this relation is one of the reasons why the matching polynomial is
defined the way it is, with alternating signs and reversed order of coefficients
compared to the matching generating polynomial.

Corollary 5.2.5 Let G be an acyclic graph (i.e., a forest). Then we have,
with m(G, k) denoting the number of matchings of G consisting of k edges,

ΦG(x) = det(xI −A(G)) =
∑

k≥0

(−1)km(G, k)xn−2k. (5.2)
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Proof:

For an acyclic graph, Sachs subgraphs cannot contain any cycles by definition.
Thus all their components are single edges, which means that every Sachs
subgraph is a matching. For a Sachs subgraph H corresponding to a matching
with k edges, we have w(H) = k and c(H) = 0 in (5.1). The statement thus
follows immediately from the formula in Theorem 5.2.9. �

Corollary 5.2.6 Let G be an acyclic graph with n vertices, and let µ(G) be
its matching number, i.e., the maximum cardinality of a matching. Then the
multiplicity of 0 as an eigenvalue of the adjacency matrix is n − 2µ(G). In
particular, 0 is not an eigenvalue if and only if G has a perfect matching.

Proof:

Simply note that the lowest exponent occurring in (5.2) with a non-zero co-
efficient is xn−2µ(G). �

The formula in Theorem 5.2.9 also simplifies significantly if T is an arbi-
trary bipartite graph. In this case, there are no cycles of odd length, so each
component of a Sachs subgraph must have even size. So we have the following
result, which is a direct consequence of Theorem 5.2.9:

Corollary 5.2.7 Let G be a bipartite graph with n vertices. If k 6≡ n mod 2,
then the coefficient of xk in the characteristic polynomial det(xI − A(G)) is
0.

We remark that this is consistent with the statement of Theorem 5.2.2,
which states that the spectrum of A(G) is symmetric with respect to 0 if G
is bipartite.

Recall from Theorem 4.7.1 that the roots of the matching polynomial sat-
isfy the interlacing property. In view of Corollary 5.2.5, it follows immediately
that the eigenvalues of acyclic graphs satisfy it as well. As it turns out, the
interlacing property holds for all graphs. This is a consequence of the following
more general statement, known as the Cauchy interlacing theorem:

Theorem 5.2.10 Let M be a symmetric matrix, and let N be obtained from
M by removing a row and the associated column. If µ1, µ2, . . . , µn are the
eigenvalues of M and ν1, ν2, . . . , νn−1 are the eigenvalues of N (both arranged
in non-decreasing order), then

µ1 ≤ ν1 ≤ µ2 ≤ ν2 ≤ · · · ≤ µn−1 ≤ νn−1 ≤ µn.

Corollary 5.2.8 Let α1, α2, . . . , αn be the eigenvalues of a graph G, and let
β1, β2, . . . , βn−1 be the eigenvalues of G− v for some vertex v (both arranged
in non-decreasing order). We have

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αn−1 ≤ βn−1 ≤ αn.
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Let us now consider the Laplacian matrix. In order to describe the coeffi-
cients of its characteristic polynomial, we need the notion of rooted spanning
forests: a spanning forest of a graph G is a subgraph with the same vertex
set that is also a forest. A rooted spanning forest is a spanning forest where
each connected component has a distinguished vertex, called the root. The
following theorem, first given by Kelmans [62], relates rooted spanning forests
to the Laplacian matrix:

Theorem 5.2.11 Let rk(G) be the number of rooted spanning forests of G
with exactly k components. We have

ΨG(x) = det(xI − L(G)) =

n∑

k=1

(−1)n−krk(G)x
k.

In order to prove this result, we need two important (but well-known)
ingredients from linear algebra that are stated in the following lemmas:

Lemma 5.2.4 For every n×n matrix M , the coefficient of xn−k in the char-
acteristic polynomial det(xI−M) is equal to (−1)k times the sum of all k×k
minor determinants of M . In other words, (−1)k times the sum of all deter-
minants of k × k matrices obtained by removing a set of n − k rows and the
corresponding n− k columns from M .

We remark that this generalizes the well-known facts that the sum of all
eigenvalues is equal to the trace (which can be interpreted as the sum of all
1× 1 minor determinants) and that the product of all eigenvalues is equal to
the determinant of a matrix.

The following result is known as the Cauchy-Binet formula; it generalizes
the formula for the determinant of a product of two square matrices.

Lemma 5.2.5 Let A be an n × m matrix, and B an m × n matrix. For a
subset S of {1, 2, . . . ,m}, let AS be the matrix formed by the columns of A
corresponding to the set S, and let BS be the matrix formed by the rows of B
corresponding to the set S. We have

det(AB) =
∑

S⊆{1,2,...,m}
|S|=n

det(AS) det(B
S).

The final ingredient that we need is the following lemma:

Lemma 5.2.6 Let C(T ) be an oriented incidence matrix of a tree T , and
let M be a matrix obtained from C(T ) by removing one of its rows. Then
detM = ±1.
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Proof:

We prove the statement by induction on the number of vertices of T . If T
has two vertices, then M is a 1 × 1 matrix whose only entry is ±1, so the
statement holds in this case. For the induction step, pick a leaf v of T that
does not correspond to the row that has been removed (this is possible since
there must be at least two leaves in a tree with more than one vertex). The
row that corresponds to this leaf has only one non-zero entry, in the column
that corresponds to the only edge incident with v. Now perform row expansion
of the determinant with respect to this row to obtain

detM = ± detM ′,

where M ′ is an oriented incidence matrix of M − v with one row removed.
The statement now follows immediately from the induction hypothesis, and
we are done. �

Theorem 5.2.11 will be an immediate consequence of the following:

Proposition 5.2.6 For every set U of vertices, the determinant of the matrix
L(G;U) obtained by removing all rows and columns corresponding to U from
the Laplacian matrix L(G) is equal to the number of rooted spanning forests
with |U | components such that each of the components has a vertex in U as a
root.

Proof:

Let C(G) be an oriented incidence matrix as in Proposition 5.1.3, and let M
be the matrix obtained by removing all rows corresponding to vertices in U .
Let n be the number of vertices in V (G)\U , and note that the matrix L(G;U)
is equal to MMT by the same argument that gave us Proposition 5.1.3. Now
Lemma 5.2.5 gives us

detL(G;U) =
∑

S⊆{1,2,...,m}
|S|=n

det(MS) det((M
T )S).

Since (MT )S = (MS)
T , this simplifies to

detL(G;U) =
∑

S⊆{1,2,...,m}
|S|=n

det(MS)
2. (5.3)

Now we prove that det(MS) = ±1 if the edges corresponding to S form
a spanning forest with precisely one element of U in each component, and
det(MS) = 0 otherwise. To this end, we consider the following cases:

• Assume that the edges corresponding to S contain a cycle, and let
e1, e2, . . . , ek be the edges of that cycle. Moreover, let x1,x2, . . . ,xk be the
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respective columns ofMS . Fix a direction for the cycle, and set ci = 1 (where
i ∈ {1, 2, . . . , k}) if the orientation of the cycle is equal to the orientation of
the edge (tail to head), and ci = −1 otherwise. We have

k∑

i=1

cixi = 0, (5.4)

since the entries cancel in each row: if the row corresponds to a vertex v that
is not part of the cycle formed by e1, e2, . . . , ek, then all entries are zero. For
a vertex v that is part of the cycle, there are precisely two indices i for
which the relevant entry in cixi is non-zero (those corresponding to the two
cycle edges that are incident to v), and by the choice of the coefficients ci
one of them is 1 while the other is −1. Equation (5.4) follows, which means
that there is a non-trivial linear combination of columns that yields the zero
vector. Thus det(MS) = 0 in this case, which is what we wanted to prove.

• If the first case does not apply, then the edges corresponding to S form an
acyclic graph, i.e., a forest. Now suppose that one of the components of this
forest contains two distinct elements of U , say v and w. There must be a path
between v and w in this component, formed by some edges e1, e2, . . . , ek. For
i ∈ {1, 2, . . . , k}, set ci = 1 if the orientation of the edge ei is from v to w
(i.e., the head of ei is closer to w than the tail), and ci = −1 otherwise. By
the same argument as in the previous case, we have the identity (5.4): the
entries in a row are either all equal to 0 (for vertices that are not part of
the path) or cancel (for vertices on the path other than v and w). The rows
corresponding to v and w would be exceptions, but they have been removed
in the matrix MS . Hence we have det(MS) = 0 again in this case.

• It remains to consider the possibility that the edges corresponding to S
form a forest, and each component contains at most one element of U . If
r is the number of components of the forest, then r = |V (G)| − |S| =
|V (G)|−n = |U |, thus there is exactly one element of U in each component.
Every component is a tree, so its number of vertices is equal to the number
of edges plus 1. However, if we only consider vertices in V (G)\U , then each
component contains equally many vertices and edges (as there is exactly
one element of U in each component). Thus we can rearrange the rows and
columns of MS in such a way that it has block diagonal form:

MS =




M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mr


 ,

where each block Mi is a square matrix corresponding to one of the com-
ponents, the rows correspond to vertices of the component (excluding the
one vertex that lies in U) and the columns to edges. Some of the blocks
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might be empty (if the respective components are just isolated vertices), in
which case we can just ignore them. Note that each of the Mi is an oriented
incidence matrix of a tree with one row removed. Now we have

det(MS) =

r∏

i=1

det(Mi),

and by Lemma 5.2.6 we have det(Mi) = ±1 for all i. It follows that
det(MS) = ±1 as well.

We see now that all terms in (5.4) that correspond to spanning forests with
one element of U in each component are equal to (±1)2 = 1, while the other
terms are all 0. The proposition follows immediately. �

Now we have all the ingredients needed to prove the main result on the
characteristic polynomial of the Laplacian:

Proof of Theorem 5.2.11:

The formula for the coefficients of the characteristic polynomial of L(G) fol-
lows immediately by combining Lemma 5.2.4 with Proposition 5.2.6, summed
over all sets U . �

The special case of Proposition 5.2.6 where U consists of a single ver-
tex gives us the following famous result, which is known as the matrix-tree
theorem:

Theorem 5.2.12 The determinant of a matrix obtained by removing a row
and the corresponding column from L(G) is equal to the number of spanning
trees of G.

Proof:

Simply note that a spanning forest with only one component is a spanning
tree. �

The special case k = 1 in Theorem 5.2.11 also yields the following formula
for the total number of spanning trees:

Corollary 5.2.9 Let G be a connected graph with n vertices, and let
λ1, λ2, . . . , λn be its Laplacian eigenvalues, ordered in such a way that λn = 0
(while all other eigenvalues are positive). The number of spanning trees t(G)
of G is given by

1

n

n−1∏

i=1

λi.



Graph spectra and the graph energy 193

Proof:

The characteristic polynomial of the Laplacian can be factorized as

ΨG(x) =
n∏

i=1

(x− λi) = x
n−1∏

i=1

(x− λi),

so the coefficient of x in ΨG(x) is (−1)n−1
∏n−1

i=1 λi, and by Theorem 5.2.11

this is equal to (−1)n−1r1(G). This means that
∏n−1

i=1 λi is equal to r1(G), the
number of rooted spanning forests with one component, i.e. spanning trees
with a root. Since every spanning tree can be turned into a rooted spanning
tree by picking any of the n vertices as a root, we have r1(G) = nt(G). The
statement of the corollary follows immediately. �

For example, we know from Proposition 5.2.2 that the Laplacian eigen-
values of the complete graph Kn are n with multiplicity n− 1 and 0. Hence
Corollary 5.2.9 gives us Cayley’s formula: the number of spanning trees of Kn

is nn−2. Likewise, we find from Proposition 5.2.3 that the complete bipartite
graph Ka,b has ab−1ba−1 spanning trees.

As another remarkable corollary of Theorem 5.2.11, we obtain a connection
between the Wiener index that was discussed at length in Chapter 2 and the
eigenvalues of the Laplacian:

Theorem 5.2.13 Let T be a tree with n vertices, and let λ1, λ2, . . . , λn be its
Laplacian eigenvalues, ordered in such a way that λn = 0. The Wiener index
of T can be expressed as

W (T ) =
1

n

n−1∑

i=1

1

λi
.

Proof:

Note that T only has one spanning tree, since it is a tree itself. Thus by
Corollary 5.2.9, we have

n−1∏

i=1

λi = n.
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So by Theorem 5.2.11, we have

n−1∏

i=1

(
1− x

λi

)
=

1
∏n−1

i=1 λi

n−1∏

i=1

(λi − x)

=
n

x
(−1)n−1

n∏

i=1

(x − λi) =
n

x
(−1)n−1ΨG(x)

=
n

x
(−1)n−1

n∑

k=1

(−1)n−krk(T )x
k

= n

n∑

k=1

(−1)k−1rk(T )x
k−1.

Let us compare the coefficients of x on both sides of the equation: on the right
side, it is simply −nr2(T ). On the left side, it is

−
n−1∑

i=1

1

λi
.

Comparing the two, we see that

1

n

n−1∑

i=1

1

λi
= r2(T ).

It only remains to show that r2(T ) equals the Wiener index of T . To this
end, note that every spanning forest of T with two components is obtained
by removing an edge e from T . For every edge e = uv, the number of ways of
turning T − e into a rooted spanning forest is equal to nuv(v) · nuv(u), where
nuv(v) and nuv(u) denote the number of vertices in T closer to v and closer
to u, respectively, cf. Proposition 2.2.1. This is because there are nuv(v) ways
to pick the root of the component containing v and nuv(u) ways to pick the
root of the component containing u. So by Proposition 2.2.1, we have

W (T ) =
∑

uv∈E(T )

nuv(v) · nuv(u) = r2(T ) =
1

n

n−1∑

i=1

1

λi
.

�

Theorem 5.2.13 can be found in various sources from the early 1990s. The
two sides of the equation are not equal if T is an arbitrary connected graph
rather than a tree. In this case, the right side of the equation, which was
dubbed the quasi-Wiener index [39, 82], is equal to what is nowadays known
as the Kirchhoff index [65] (the two were shown to be equal in [43]). This
index is defined in an analogous way to the Wiener index by

Kf(G) =
∑

{v,w}⊆V (G)

rG(v, w),
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G S(G)

FIGURE 5.2
A graph and its subdivision graph.

where rG(v, w) denotes the resistance distance: it is the effective resistance
between v and w in an electrical network on the graph G where each edge
represents a resistor of 1 ohm. It can be shown that rG(v, w) ≤ dG(v, w) for
all vertices v and w, so generally we have

Kf(G) =
1

n

n−1∑

i=1

1

λi
=

∑

{v,w}⊆V (G)

rG(v, w) ≤
∑

{v,w}⊆V (G)

dG(v, w) =W (G).

For the signless Laplacian, the coefficients do not have an equally simple
combinatorial interpretation. However, the following elegant theorem, due to
Zhou and Gutman [132], relates the characteristic polynomial of the signless
Laplacian to the characteristic polynomial of the adjacency matrix of the so-
called subdivision graph. For a given graph G, we let the subdivision graph
S(G) be the graph obtained by adding a vertex on each edge, thus subdividing
the edge into two edges, see Figure 5.2.

Theorem 5.2.14 Let G be a graph with n vertices and m edges, and let
YG(x) = det(xI −S(G)) be the characteristic polynomial of its signless Lapla-
cian. Moreover, let ΦS(G)(x) = det(xI −A(S(G))) be the characteristic poly-
nomial of the adjacency matrix of the subdivision graph S(G). The two poly-
nomials are connected by the relation

ΦS(G)(x) = xm−nYG(x
2).

Proof:

The subdivision graph S(G) is a bipartite graph, where the two partite sets
are the old vertices that already belong to G and the new vertices correspond
to the edges of G. An old and a new vertex are adjacent in S(G) if and only if
the corresponding vertex and edge in G are incident. Pick an order for vertices
and edges of G, and let B(G) be the associated incidence matrix. If we order
the vertices of S(G) in such a way that the old vertices come first, followed
by the new vertices, while keeping the same relative order as in B(G), then
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we obtain an adjacency matrix of the form

A(S(G)) =
[

0 B(G)
B(G)T 0

]
.

Now we evaluate the determinant det(xI −A(S(G))) using a special case of a
technique known as Schur complement: multiplying the matrix xI −A(S(G))
from the left by [

I x−1B(G)
0 I

]
,

a matrix whose determinant is 1, we obtain
[
I x−1B(G)
0 I

]
·
[

xI −B(G)
−B(G)T xI

]
=

[
xI − x−1B(G)B(G)T 0

−B(G)T xI

]
.

Thus

det
(
xI −A(S(G))

)
= det

[
xI − x−1B(G)B(G)T 0

−B(G)T xI

]

= det
(
xI − x−1B(G)B(G)T

)
· xm

= xm−n det
(
x2I −B(G)B(G)T

)
.

Now it only remains to recall thatB(G)B(G)T = S(G) by Proposition 5.1.2, so
the second factor is det(x2I −S(G)), which is exactly YG(x

2). This completes
the proof. �

5.3 The graph energy: elementary properties

The graph energy is one of the most important graph invariants in chemical
graph theory. It was originally inspired (see [33] for the first reference) by
the Hückel molecular orbital approximation, where it relates to the π-electron
energy Eπ . If the eigenvalues α1, α2, . . . , αn of a graph G are in non-increasing
order, this quantity is given by

Eπ(G) =

{
2
∑n/2

i=1 αi if n is even,

2
∑(n−1)/2

i=1 αi + α(n+1)/2 if n is odd.

If G is bipartite, then the spectrum is symmetric by Theorem 5.2.2, so one
can express this also as

Eπ(G) =

n∑

k=1

|αk|.

This identity also holds for many non-bipartite graphs, and the difference is
generally insignificant for graphs of chemical interest, which is why the right
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side of the equation became known as the graph energy: the energy En(G) is
defined as the sum of the absolute values of all eigenvalues of (the adjacency
matrix of) a graph:

En(G) =
n∑

k=1

|αk|.

The notation E(G) is commonly used as well, but we will rather denote the
energy by En(G) to distinguish it from the edge set. From a mathematical
point of view, En(G) is easier to handle than Eπ(G), and so it quickly became
a topic of purely mathematical interest. A lot of research on the graph energy
and its variants (some of which will be discussed in later sections) has been
done over the decades. There is also a book devoted exclusively to the graph
energy [68], and a recent monograph on its variants [38].

Let us start with an example to illustrate the concept. Consider the graph
in Figure 5.1 again, which has adjacency matrix

A(G) =




0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0




and eigenvalues α1 = 1
2 (1 +

√
17), α2 = 1

2 (1 −
√
17), α3 = 0 and α4 = −1.

Hence the energy of this graph is

En(G) =
∣∣∣1
2
(1 +

√
17)
∣∣∣+
∣∣∣1
2
(1−

√
17)
∣∣∣+ |0|+ | − 1|

=
1

2
(1 +

√
17) +

1

2
(−1 +

√
17) + 0 + 1 =

√
17 + 1.

The formulas for the spectra of special graphs determined in Section 5.2
(specifically, Proposition 5.2.2 and Proposition 5.2.3) can be used to derive
the following (simply by plugging into the definition):

Proposition 5.3.1 The energy of the complete graph Kn is 2n− 2, and the
energy of the complete bipartite graph Ka,b is 2

√
ab (in particular, the energy

of the star Sn is 2
√
n− 1).

For the path and the cycle, we also know the spectra explicitly, and as it
turns out, the resulting sums simplify greatly.

Proposition 5.3.2 The energy of the n-vertex path is

En(Pn) =




−2 + 2 csc

(
π

2n+2

)
n even,

−2 + 2 cot
(

π
2n+2

)
n odd,
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and the energy of the n-vertex cycle is

En(Cn) =





4 cot π
n n ≡ 0 mod 4,

4 csc π
n n ≡ 2 mod 4,

2 csc π
2n n odd.

Proof:

Recall from Proposition 5.2.4 that the eigenvalues of the path Pn are 2 cos kπ
n+1 ,

k ∈ {1, 2, . . . , n}. These are positive for k < (n + 1)/2 and negative for k >
(n+ 1)/2 (if k = (n+ 1)/2, we get 0). Thus the energy of the path is

En(Pn) =

n∑

k=1

∣∣∣2 cos kπ

n+ 1

∣∣∣ = 4
∑

1≤k<(n+1)/2

cos
kπ

n+ 1
,

where the latter identity follows by symmetry. Now we write cos t as (eit +
e−it)/2 and apply the geometric series to obtain, first for even n,

En(Pn) = 2

n/2∑

k=1

(
eiπk/(n+1) + e−iπk/(n+1)

)

= 2
(eiπ/(n+1)(eiπn/(2n+2) − 1)

eiπ/(n+1) − 1
+
e−iπ/(n+1)(e−iπn/(2n+2) − 1)

e−iπ/(n+1) − 1

)

= 2
(eiπ(n+2)/(2n+2) − eiπ/(n+1)

eiπ/(n+1) − 1
+

1− e−iπn/(2n+2)

eiπ/(n+1) − 1

)

= 2
(
− 1 +

eiπ(n+2)/(2n+2) − e−iπn/(2n+2)

eiπ/(n+1) − 1

)

= 2
(
− 1 +

eiπ/2 − e−iπ/2

eiπ/(2n+2) − e−iπ/(2n+2)

)

= 2
(
− 1 +

2i

eiπ/(2n+2) − e−iπ/(2n+2)

)

= 2
(
− 1 +

1

sin(π/(2n+ 2))

)
,

and then analogously for odd n

En(Pn) = 2

(n−1)/2∑

k=1

(
eiπk/(n+1) + e−iπk/(n+1)

)

= 2
(
− 1 +

cos(π/(2n+ 2))

sin(π/(2n+ 2))

)
.

For the cycle Cn, the eigenvalues are 2 cos 2kπ
n , k ∈ {0, 1, . . . , n − 1}. They

are positive for k < n/4 and k > 3n/4, and negative for n/4 < k < 3n/4. A
similar calculation as for the path gives us the stated formulas. �
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FIGURE 5.3
Counterexample to the monotonicity of the graph energy.

We remark that the following asymptotic formulas hold (obtained from
the Taylor expansions of the trigonometric functions at 0):

En(Pn) =
4n

π
+O(1) and En(Cn) =

4n

π
+O(1) (5.5)

as n→ ∞.

The graph energy has the (desirable) property that it is additive over
connected components, as stated in the following lemma. This is in analogy
to, e.g., the fact that the Hosoya index and the Merrifield-Simmons index are
multiplicative over connected components, see Lemmas 4.2.2 and 4.2.3.

Lemma 5.3.1 Let G1, G2, . . . , Gr be the connected components of a graph G.
The energy of G is given by

En(G) = En(G1) + En(G2) + · · ·+ En(Gr).

Proof:

This follows from the definition of the energy and Proposition 5.2.5. �

It is noteworthy, however, that another typical property of graph invariants
is not satisfied: the analogue of Lemma 4.2.1 fails, i.e., the graph energy is not
monotone with respect to insertion/deletion of edges. For example, consider
the two graphs in Figure 5.3.

The six-vertex cycle, shown on the left, has spectrum −2,−1,−1, 1, 1, 2
(see Proposition 5.3.2) and thus an energy of 8. If we add an edge between
two vertices whose distance is 3, we obtain the graph shown in the figure on
the right. Its spectrum consists of ±1 and ±1 ±

√
2, giving us an energy of

2+4
√
2 < 8. Thus it is not generally true that En(G−e) < En(G) for an edge

e of G (of course, there are many instances where it is true: for example, the
energy of the edgeless graph is 0, the energy of a single-edge graph is 2). This
complicates in particular the search for the n-vertex graph with maximum
energy. This question will be discussed later.
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A remarkable property of the energy is the fact that it can be computed by
means of a certain integral involving the characteristic polynomial (so-called
Coulson integral formula, see [18]). There are several versions of this formula,
see Theorem 5.3.1 and its corollaries below. This can not only be used to
compute the energy of a given graph, but is also an extremely valuable tool
in proving properties of the graph energy (and its variants, see Section 5.7).
We start with a simple technical lemma.

Lemma 5.3.2 For every real number a, we have
∫ ∞

0

1

x2
ln(1 + a2x2) dx = π|a|.

Proof:

The substitution |a|x = u yields

∫ ∞

0

1

x2
ln(1 + a2x2) dx =

∫ ∞

0

a2

u2
ln(1 + u2)

du

|a|

= |a| ·
∫ ∞

0

ln(1 + u2)

u2
du

= |a|
(
2 arctanu− ln(1 + u2)

u

)∣∣∣
∞

0

= π|a|,

as claimed. �

Theorem 5.3.1 Let ΦG(x) = det(xI−A(G)) be the characteristic polynomial
of the adjacency matrix of a graph G with n vertices. The energy En(G) is
given by the following integral:

En(G) =
1

π

∫ ∞

0

1

x2
ln
(
x2nΦG(i/x)ΦG(−i/x)

)
dx

=
2

π

∫ ∞

0

1

x2
(n lnx+ ln

∣∣ΦG(i/x)
∣∣
)
dx.

Proof:

We can write the characteristic polynomial as

ΦG(x) =

n∏

j=1

(x− αj),

where α1, α2, . . . , αn are the eigenvalues. Now note that

ΦG(i/x)ΦG(−i/x) =
n∏

j=1

(i/x− αj)(−i/x− αj) =

n∏

j=1

(1/x2 + α2
j),
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so

x2nΦG(i/x)ΦG(−i/x) =
n∏

j=1

(1 + α2
jx

2)

and consequently
∫ ∞

0

1

x2
ln
(
x2nΦG(i/x)ΦG(−i/x)

)
dx =

n∑

j=1

∫ ∞

0

1

x2
ln(1 + α2

jx
2) dx.

By Lemma 5.3.2, it follows that
∫ ∞

0

1

x2
ln
(
x2nΦG(i/x)ΦG(−i/x)

)
dx =

n∑

j=1

π|αj | = π En(G),

and the first identity follows. Since ΦG(x) is a polynomial with real coefficients,
we have ΦG(i/x) = ΦG(i/x) = ΦG(−i/x) for real values of x. Thus

ΦG(i/x)ΦG(−i/x) = |ΦG(i/x)|2,
and we obtain

En(G) =
1

π

∫ ∞

0

1

x2
ln
(
x2n|ΦG(i/x)|2

)
dx

=
2

π

∫ ∞

0

1

x2
(n lnx+ ln

∣∣ΦG(i/x)
∣∣
)
dx.

�

The formula in Theorem 5.3.1 can be rewritten in many different ways.
For instance, we have the following:

Corollary 5.3.1 Let ΦG(x) = det(xI − A(G)) be the characteristic polyno-
mial of the adjacency matrix of a graph G with n vertices. The energy En(G)
is given by the following integral:

En(G) =
1

π

∫ ∞

−∞

(
n− ixΦ′

G(ix)

ΦG(ix)

)
dx.

Proof:

We apply the substitution 1/x = u to the integral in Theorem 5.3.1 to obtain

En(G) =
1

π

∫ ∞

0

ln
(
u−2nΦG(iu)ΦG(−iu)

)
du.

Integration by parts gives us

En(G) =
1

π

(
u ln

(
u−2nΦG(iu)ΦG(−iu)

)∣∣∣
∞

0

−
∫ ∞

0

u
(
− 2n

u
+
iΦ′

G(iu)

ΦG(iu)
− iΦ′

G(−iu)
ΦG(−iu)

)
du

)
. (5.6)
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Since ΦG is a polynomial, we have ln
(
u−2nΦG(iu)ΦG(−iu)

)
= O(| ln u|) as

u → 0, so the first term vanishes as u → 0. Moreover, as u → ∞, we know
that ΦG(iu) = (iu)n+O(un−2): the coefficient of xn−1 in ΦG(x) is 0 since the
sum of the eigenvalues is tr(A(G)) = 0. Hence,

u−2nΦG(iu)ΦG(−iu) = 1 +O(u−2)

and consequently

u ln
(
u−2nΦG(iu)ΦG(−iu)

)
= O(u−1),

which means that the first term in (5.6) also vanishes at infinity. Thus we have

En(G) =
1

π

∫ ∞

0

(
2n− iuΦ′

G(iu)

ΦG(iu)
+
iΦ′

G(−iu)
ΦG(−iu)

)
du

=
1

π

∫ ∞

0

(
n− iuΦ′

G(iu)

ΦG(iu)

)
du+

1

π

∫ ∞

0

(
n+

iuΦ′
G(−iu)

ΦG(−iu)
)
du.

We substitute u = −v in the second integral and obtain

En(G) =
1

π

∫ ∞

0

(
n− iuΦ′

G(iu)

ΦG(iu)

)
du+

1

π

∫ 0

−∞

(
n− ivΦ′

G(iv)

ΦG(iv)

)
dv

=
1

π

∫ ∞

−∞

(
n− iuΦ′

G(iu)

ΦG(iu)

)
du.

This completes the proof. �

Another important variant of the Coulson integral formula is concerned
with the comparison of two graphs.

Corollary 5.3.2 Let ΦG1
(x) = det(xI − A(G1)) and ΦG2

(x) = det(xI −
A(G2)) be the characteristic polynomials of two graphs G1 and G2 with n
vertices. The difference of their energies can be expressed as follows:

En(G1)− En(G2) =
2

π

∫ ∞

0

ln
|ΦG1

(ix)|
|ΦG2

(ix)| dx

=
1

π

∫ ∞

−∞
ln

|ΦG1
(ix)|

|ΦG2
(ix)| dx.

Proof:

We apply Theorem 5.3.1 to G1 and G2 and take the difference of the resulting
integrals. The term n lnx cancels by the assumption that the two graphs have
the same number of vertices. Thus we get

En(G1)− En(G2) =
2

π

∫ ∞

0

1

x2
(ln
∣∣ΦG1

(i/x)
∣∣− ln

∣∣ΦG2
(i/x)

∣∣
)
dx,
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and the first formula follows upon the substitution x = 1/u. The second
formula is based on symmetry: |ΦG(ix)| = |ΦG(−ix)| holds for every graph
G and every real x, since the coefficients of the characteristic polynomial are
real. �

Let us now rewrite the formula of Theorem 5.3.1 one more time in terms
of the coefficients of the characteristic polynomial. The result is particularly
simple in the case that the graph is bipartite.

Theorem 5.3.2 Let the characteristic polynomial of a graph G be

ΦG(x) = det(xI −A(G)) =
n∑

k=0

akx
n−k.

The energy of G can be expressed as

En(G) =
1

π

∫ ∞

0

1

x2
ln

(( ∑

j≤n/2

(−1)ja2jx
2j
)2

+
( ∑

j≤(n−1)/2

(−1)ja2j+1x
2j+1

)2
)
dx. (5.7)

In particular, if G is a bipartite graph, then we have

En(G) =
2

π

∫ ∞

0

1

x2
ln
( ∑

j≤n/2

(−1)ja2jx
2j
)
dx. (5.8)

Proof:

We note that

xnΦG(i/x) =

n∑

k=0

aki
n−kxk

= in
( ∑

j≤n/2

(−1)ja2jx
2j − i

∑

j≤(n−1)/2

(−1)ja2j+1x
2j+1

)

and analogously

xnΦG(−i/x) =
n∑

k=0

ak(−i)n−kxk

= i−n
( ∑

j≤n/2

(−1)ja2jx
2j + i

∑

j≤(n−1)/2

(−1)ja2j+1x
2j+1

)
.

It follows that

x2nΦG(i/x)ΦG(−i/x) =
( ∑

j≤n/2

(−1)ja2jx
2j
)2

+
( ∑

j≤(n−1)/2

(−1)ja2j+1x
2j+1

)2
,
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so (5.7) is a direct consequence of Theorem 5.3.1. In particular, if G is bipar-
tite, then we know from Corollary 5.2.7 that a2j+1 = 0 for all j, and (5.8)
follows. �

If G is a forest, then we can simplify even further by virtue of Corol-
lary 5.2.5. This result will become crucial later in our analysis of trees:

Corollary 5.3.3 If G is an acyclic graph, then we have

En(G) =
2

π

∫ ∞

0

1

x2
ln
( ∑

j≤n/2

m(G, j)x2j
)
dx, (5.9)

where m(G, j) is the number of matchings of cardinality j in G.

Proof:

Simply note that a2j = (−1)jm(G, j) in (5.8) by Corollary 5.2.5. �

5.4 Bounds for the graph energy

In this section, we will prove various bounds for the energy of a graph in terms
of its number of vertices and edges as well as other parameters. For our first
result, we recall from Corollary 5.2.4 that we have the identities

n∑

i=1

αi = tr(A(G)) = 0

and
n∑

i=1

α2
i = tr(A(G)2) = 2m

for the eigenvalues α1, α2, . . . , αn of a graph G with n vertices and m edges.
These two identities suffice to prove a simple upper bound on the energy

in terms of the number of vertices and edges that is known as the McClelland
bound [76]:

Theorem 5.4.1 For every graph G with n vertices and m edges, we have

En(G) ≤
√
2mn. (5.10)

Proof:

We can apply the inequality between the arithmetic and the quadratic mean
to obtain

En(G)2 =
( n∑

i=1

|αi|
)2

≤ n
( n∑

i=1

|αi|2
)
= 2mn.



Graph spectra and the graph energy 205

The stated inequality follows immediately. �

We remark that equality holds in the bound (5.10) for the edgeless graph
(with energy 0) and a graph whose connected components all have two vertices
(connected by an edge). In the latter case, the energy is n. In fact, it can be
shown that these are the only cases of equality.

It is also possible to estimate the energy of a graph only in terms of the
number of edges, which is done in the following theorem:

Theorem 5.4.2 ([11]) For every graph G with m edges, we have

2
√
m ≤ En(G) ≤ 2m.

Proof:

We start with the lower bound: by some elementary manipulations, we get

0 =
( n∑

i=1

αi

)2
=

n∑

i=1

α2
i + 2

∑

1≤i<j≤n

αiαj = 2m+ 2
∑

1≤i<j≤n

αiαj ,

thus ∑

1≤i<j≤n

αiαj = −m.

It follows that

En(G)2 =
( n∑

i=1

|αi|
)2

=
n∑

i=1

α2
i + 2

∑

1≤i<j≤n

|αiαj |

≥ 2m+ 2
∣∣∣
∑

1≤i<j≤n

αiαj

∣∣∣ = 4m.

The lower bound En(G) ≥ 2
√
m follows.

For the upper bound, assume first that G has no isolated vertices. Then
there can be at most 2m vertices (two for each edge). Combining this with
the inequality in Theorem 5.4.1, we get

En(G) ≤
√
2mn ≤

√
(2m)2 = 2m.

By Theorem 5.3.1 and the fact that the energy of the graph with only one
vertex is 0, adding isolated vertices does not affect the energy. Hence the bound
remains true if the graph has isolated vertices. This completes the proof. �

We remark that both the upper and lower bounds are in fact sharp: for
example, Proposition 5.2.3 shows that En(G) =

√
2m for every complete bi-

partite graph G = Ka,b with ab = m (in particular, for the star with m edges),
and En(G) = 2m holds for every graph whose components all have either one
or two vertices.
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For a further refinement, we separate the greatest eigenvalue α1 (the so-
called spectral radius, which will be studied in more detail in Section 5.8.1)
from the rest. In Theorem 5.8.1, we will show the following inequality for every
graph with n vertices and m edges:

α1 ≥ 2m

n
.

This can be used to obtain the following bound for the energy in terms of the
number of vertices and the number of edges:

Theorem 5.4.3 ([66]) For every graph G with n vertices and m edges, where
2m ≥ n, we have

En(G) ≤ 2m

n
+

√
(n− 1)

(
2m−

(2m
n

)2)
.

Proof:

Let α1, α2, . . . , αn be the eigenvalues of G, where α1 is the greatest eigenvalue.
Applying the inequality between the arithmetic and the quadratic mean in the
same way as in the proof of Theorem 5.4.1, we get

En(G) = α1 +
n∑

i=2

|αi| ≤ α1 +
√
(n− 1)

(
2m− α2

1

)
.

Now consider the derivative of the expression on the right with respect to α1:

d

dx

(
x+

√
(n− 1)

(
2m− x2

))
= 1− x

√
n− 1√

2m− x2
,

which is positive for 0 < x <
√

2m
n and negative for

√
2m
n < x <

√
2m. Since

α1 ≥ 2m
n ≥

√
2m
n by our assumptions, the spectral radius lies in the interval

for which the bound on En(G) is decreasing. Thus

En(G) ≤ α1 +
√
(n− 1)

(
2m− α2

1

)
≤ 2m

n
+

√
(n− 1)

(
2m−

(2m
n

)2)
,

which completes the proof. �

Now we are ready to prove the following important result on the graph
energy, known as the Koolen-Moulton bound [66]:

Theorem 5.4.4 For every graph G with n vertices, we have

En(G) ≤ n

2
(1 +

√
n).
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Proof:

If 2m ≤ n, then we are done immediately by Theorem 5.4.1, since

En(G) ≤
√
2mn ≤ n ≤ n

2
(1 +

√
n).

Otherwise, we can make use of the inequality in Theorem 5.4.3. Consider the
bound as a function of m:

f(m) =
2m

n
+

√
(n− 1)

(
2m−

(2m
n

)2)
.

Differentiating gives us

f ′(m) =
2

n
−

√
n− 1(4m− n2)

n
√
2m(n2 − 2m)

.

It is not hard to verify that the derivative is positive for m < n2+n3/2

4 and

negative for m > n2+n3/2

4 . Thus we have

En(G) ≤ f(m) ≤ f
(n2 + n3/2

4

)
=
n

2
(1 +

√
n).

�

The complete graph K4 is one of the graphs that attain the upper bound
of Theorem 5.4.4. However, it is the only complete graph with this property
(we already know that En(Kn) = 2n− 2, so this is an easy exercise). Unlike
most other graph invariants (in this book and elsewhere), the complete graph
is generally not extremal for the energy.

The actual cases of equality are rather more complicated: looking back
over the proof, we need to have equality in all intermediate steps for equality

to hold in Theorem 5.4.4. Thus α1 = 2m
n , m = n2+n3/2

4 , and for equality to
hold in the application of the arithmetic-quadratic mean inequality, we must
have |α2| = |α3| = · · · = |αn|.

The first of these conditions implies that the graph G must be regular (see
Theorem 5.8.1), the second shows in particular that the number of vertices

has to be a perfect square n = k2, so that the number of edges is k4+k3

4 and

thus the degree of each vertex k2+k
2 . The last condition is more complicated: it

can be shown that it is satisfied if and only if G is a so-called strongly regular

graph with parameters (k2, k
2+k
2 , k

2+2k
4 , k

2+2k
4 ), i.e., each of the k2 vertices

has k2+k
2 neighbors, any two adjacent vertices have k2+2k

4 common neighbors,

and any two non-adjacent vertices also have k2+2k
4 common neighbors. There

are infinitely many such graphs, see [66] for details.
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5.5 Extremal problems in trees

Version (5.9) of the Coulson integral formula, valid for all acyclic graphs G,
shows that En(G) is monotone in each of the coefficients m(G, j), which count
matchings of size j. It is therefore perhaps not surprising that the trees that
are extremal with respect to the Hosoya index, which is the total number of
matchings, are also typically extremal with respect to the energy. As a first
instance, we have the following theorem, due to Gutman [32]:

Theorem 5.5.1 For every tree T with n vertices, we have

En(Sn) ≤ En(T ) ≤ En(Pn).

Equality holds in the first inequality if and only if T is a star, and in the
second inequality if and only if T is a path.

Proof:

Recall from the discussion in Section 4.7 that Sn and Pn are extremal with
respect to the partial order �m, defined by

G �m H ⇐⇒ m(G, k) ≤ m(H, k) for all k,

in the sense that Sn �m T and T �m Pn for every tree T with n vertices. In
both cases, there is at least one value of k such that strict inequality holds.
Now simply combine this fact with the version of the Coulson integral formula
given in (5.9). �

The analogy between the Hosoya index and the energy does not only apply
to the class of all trees, but also to many special families of trees. An important
instance is the class of all trees with a prescribed degree sequence, as treated
in Sections 2.4, 3.2 and 4.5. Here, we will not be able to work with the partial
order �m any longer, but the approach that we used to find the trees that
maximize the Merrifield-Simmons index and minimize the Hosoya index can
be used once again.

First, one observes that the proof of Lemma 4.4.6 still works when
µ(GV,W ;x) for some fixed x > 0 is considered instead of Z(GV,W ) =
µ(GV,W , 1) (the definition of τ needs to be adapted accordingly). An ana-
logue of Lemma 4.5.1 holds, and as shown by Andriantiana [3], an analogue
of Theorem 4.5.4 follows as well:

Theorem 5.5.2 For every possible degree sequence π and every fixed positive
real number x, the unique tree with degree sequence π for which µ(T ;x) attains
its minimum is the M-tree M(π).
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Now recall from Corollary 5.3.3 that the energy of a tree T can be expressed
as

En(T ) =
2

π

∫ ∞

0

1

x2
ln
(
µ(T ;x2)

)
dx.

Therefore, the following theorem follows:

Theorem 5.5.3 For every possible degree sequence π, the unique tree with
degree sequence π for which the energy attains its minimum is the M-tree
M(π).

As in Sections 2.6.3 and 4.5, we are able to deduce a number of corollaries
from Theorem 5.5.3 by means of the following majorization theorem, whose
proof is analogous to that of Theorem 4.5.5:

Theorem 5.5.4 Let π and π′ be two degree sequences of trees of the same
length such that π′ majorizes π. If M(π) and M(π′) are the M-trees associ-
ated with π and π′, then we have

En(M(π′)) < En(M(π)).

This majorization theorem yields the following corollaries, as shown in [3]:

Corollary 5.5.1 Among all trees with n vertices and ℓ leaves, the comet ob-
tained by attaching a path of length n− ℓ to the center of a star with ℓ vertices
is the unique tree that minimizes the energy.

Corollary 5.5.2 Among all trees with n vertices and diameter D, the comet
obtained by attaching a path of length D−1 to the center of a star with n−D+1
vertices is the unique tree that minimizes the energy.

Corollary 5.5.3 Among all trees with n vertices and maximum degree ∆,
the unique tree that attains the minimum energy is the M-tree M(πn,∆) cor-
responding to the degree sequence πn,∆ = (∆,∆, . . . , ∆, k, 1, 1, . . . , 1), where
the multiplicity of ∆ is ⌊ n−2

∆−1⌋, and k ∈ {1, 2, . . . , ∆ − 1} is chosen to satisfy
k ≡ n− 1 mod (∆− 1).

5.6 Extremal problems in tree-like graphs

Once questions on the graph energy have been settled for trees, it makes sense
to go one step further and consider graphs with a single cycle. A new issue
that arises is the fact that the characteristic polynomial no longer coincides
with the matching polynomial. However, Sachs’ Theorem 5.2.9 still makes the
case of unicyclic graphs manageable.
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The unicyclic graph of order n whose energy is smallest coincides, perhaps
unsurprisingly, with the extremal graph for the Hosoya index (at least for
n ≥ 6), cf. Theorem 4.6.2. This was shown by Hou [52].

Theorem 5.6.1 For all integers n ≥ 6, the unique unicyclic graph of order
n with minimum energy is the graph obtained from the star Sn by adding an
edge between two leaves.

Let us remark that for n ≤ 5, the graphs that attain the minimum are
easily determined by a direct calculation: the cycles C3 and C4 and the graph
obtained by attaching a pendant edge to a vertex of the cycle C4.

To prove Theorem 5.6.1, we need the Coulson integral formula in the ver-
sion of Theorem 5.3.2: if the characteristic polynomial of G is

ΦG(x) = det(xI −A(G)) =

n∑

k=0

akx
n−k, (5.11)

then the energy of G is given by

En(G) =
1

π

∫ ∞

0

1

x2
ln

(( ∑

j≤n/2

(−1)ja2jx
2j
)2

+
( ∑

j≤(n−1)/2

(−1)ja2j+1x
2j+1

)2
)
dx. (5.12)

As a first step, we show that the coefficients (−1)ja2j all have the same
sign in unicyclic graphs, as do the coefficients (−1)ja2j+1.

Lemma 5.6.1 Let G be a unicyclic graph, and let ℓ be the length of its only
cycle. If ℓ is even, then (−1)ja2j ≥ 0 for all j, and a2j+1 = 0 for all j. If
ℓ ≡ 1 mod 4, then (−1)ja2j ≥ 0 for all j, and (−1)ja2j+1 ≤ 0 for all j. If
ℓ ≡ 3 mod 4, then (−1)ja2j ≥ 0 for all j, and (−1)ja2j+1 ≥ 0 for all j.

Proof:

If ℓ is even, then G is bipartite, which means that the spectrum is symmetric
by Theorem 5.2.2. It follows that

n∑

k=0

ak(ix)
k = (ix)nΦG

( 1

ix

)
=
∏

α>0

(1 + α2x2),

the product being over all positive eigenvalues. Since the coefficients of the
polynomial obtained by multiplying out are clearly 0 for odd exponents and
non-negative otherwise, the statement of the lemma follows in this case.
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Now suppose that ℓ is odd. We apply Theorem 5.2.9, which tells us that
ak is equal to ∑

H∈U(G)
|H|=k

(−1)w(H)2c(H),

the sum being over all Sachs subgraphs with k vertices (w(H) is the number of
components of H , and c(H) the number of components that are cycles). There
are two types of Sachs subgraphs in a unicyclic graph: those that contain the
only cycle as a component, and those that do not. The former consist of the
cycle and a matching of the remaining graph, the latter are simply matchings,
as in the proof of Corollary 5.2.5. It follows immediately that

a2j = (−1)jm(G, j)

for all j, and

a2j+1 = 2(−1)j−(ℓ−3)/2m
(
G− C, j − ℓ− 1

2

)
,

where C is the unique cycle of G. The statement of the lemma follows. �

Let us write bk(G) for the absolute value of the coefficient of xn−k in the
characteristic polynomial of the adjacency matrix of a graphG with n vertices,
so that bk(G) = |ak| in (5.12). By Lemma 5.6.1, we have

En(G) =
1

π

∫ ∞

0

1

x2
ln

(( ∑

j≤n/2

b2j(G)x
2j
)2

+
( ∑

j≤(n−1)/2

b2j+1(G)x
2j+1

)2
)
dx. (5.13)

Clearly, the expression on the right is monotone in all the coefficients bk(G).
We consider fixed cycle length ℓ and show that the graph Sℓ

n obtained by
attaching n− ℓ pendant vertices to one of the vertices of the cycle Cℓ simul-
taneously minimizes all these coefficients. Before we can prove this fact, we
need one more auxiliary result.

Lemma 5.6.2 Let G be a unicyclic graph, and let v be a pendant vertex of
G. If u is v’s unique neighbor in G, then we have

bk(G) = bk(G− v) + bk−2(G− {u, v})

for all k.
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Proof:

Recall that
bk(G) =

∣∣∣
∑

H∈U(G)
|H|=k

(−1)w(H)2c(H)
∣∣∣.

A Sachs subgraph H of G that contains the vertex v has to consist of the edge
uv as a component and a Sachs subgraph H ′ of G − {u, v}. Since w(H) =
w(H ′) + 1 and c(H) = c(H ′) in this case, we find that

∑

H∈U(G)
|H|=k

(−1)w(H)2c(H) =
∑

H∈U(G−v)
|H|=k

(−1)w(H)2c(H)−
∑

H∈U(G−{u,v})
|H′|=k−2

(−1)w(H′)2c(H
′).

As shown in Lemma 5.6.1, the two sums (which are the coefficients of xn−k−1

and xn−k in the characteristic polynomials of G − v and G − {u, v}, respec-
tively) have opposite signs (or one or both of them are equal to 0), so

bk(G) =
∣∣∣

∑

H∈U(G−v)
|H|=k

(−1)w(H)2c(H)
∣∣∣+
∣∣∣

∑

H∈U(G−{u,v})
|H′|=k−2

(−1)w(H′)2c(H
′)
∣∣∣

= bk(G− v) + bk−2(G− {u, v}).

�

Lemma 5.6.3 Let G be a unicyclic graph with n vertices whose only cycle
has length ℓ (n ≥ ℓ ≥ 3). We have

bk(G) ≥ bk(S
ℓ
n)

for all k ≥ 0, and equality holds for all k only if G is isomorphic to Sℓ
n.

Consequently, En(G) > En(Sℓ
n) unless G is isomorphic to Sℓ

n.

Proof:

We prove the lemma by induction on n. For n = ℓ, there is nothing to prove,
since Sℓ

n (isomorphic to the cycle) is the only unicyclic graph with n vertices
and cycle length ℓ. For the induction step, suppose that n > ℓ and that G is
not isomorphic to Sℓ

n. We apply Lemma 5.6.2 to a pendant vertex v of G and
its neighbor:

bk(G) = bk(G− v) + bk−2(G− {u, v}).
Likewise, we have

bk(S
ℓ
n) = bk(S

ℓ
n−1) + bk−2(Pℓ−1).

By the induction hypothesis, we have bk(S
ℓ
n−1) ≥ bk(G− v). Note also that

bk−2(Pℓ−1) = m
(
Pℓ−1,

k − 2

2

)
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if k is even and k ≤ ℓ + 1, and bk−2(Pℓ−1) = 0 otherwise. In the latter case,
the desired inequality follows immediately. If k ≤ ℓ + 1, then k − 2 < ℓ, so a
Sachs subgraph of G− {u, v} with k − 2 vertices cannot contain the cycle as
a component (if G− {u, v} still contains the cycle). Thus

bk−2(G− {u, v}) = m
(
G− {u, v}, k − 2

2

)
.

Since G−{u, v} contains Pℓ−1 as a subgraph, it follows that bk−2(G−{u, v}) ≥
bk−2(Pℓ−1). Thus

bk(G) ≥ bk(S
ℓ
n),

completing the induction. Moreover, if G is not the graph Sℓ
n, then Pℓ−1 is a

proper subgraph of G− {u, v}, and we have

b2(G− {u, v}) = |E(G− {u, v})| > |E(Pℓ−1)| = b2(Pℓ−1),

so b4(G) > b4(S
ℓ
n). The inequality En(G) > En(Sℓ

n) follows from (5.13). This
completes the proof. �

It remains to compare the energy of Sℓ
n for different values of ℓ.

Lemma 5.6.4 If n ≥ ℓ ≥ 5, then

bk(S
ℓ
n) ≥ bk(S

4
n)

for all k, with strict inequality for k = 4. Consequently, En(Sℓ
n) > En(S4

n).

Proof:

Note first that b0(G) = 1 for all graphs, and b2(G) = |E(G)| = n for all
unicyclic graphs with n vertices, since the only Sachs subgraphs with two
vertices are single edges. Hence the inequality holds for these two values of k.
The only other value of k for which bk(S

4
n) is not zero is k = 4, since there

are no Sachs subgraphs of S4
n with 1, 3 or more than 4 vertices. We easily find

that
b4(S

4
n) = 2n− 8,

since there are only two types of Sachs subgraphs: pairs of non-adjacent edges
and the 4-vertex cycle. Likewise, we find that

b4(S
ℓ
n) = m(Sℓ

n, 2) = (ℓ− 2)n− ℓ2 − ℓ

2
.

This is increasing in ℓ for ℓ ≤ n, so its minimum is attained for ℓ = 5, in which
case we have

b4(S
5
n) = 3n− 10 > 2n− 8

since n ≥ 5. The inequality is trivial whenever k > 4 (since bk(S
4
n) = 0 in
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these cases), so this completes the proof. The statement on the energy follows
from (5.13) again. �

In view of Lemma 5.6.3 and Lemma 5.6.4, the only two remaining can-
didates for the unicyclic graph with n vertices (n ≥ 5) that minimizes the
energy are S3

n and S4
n. In order to complete the proof of Theorem 5.6.1, it

suffices to prove the following lemma:

Lemma 5.6.5 For n ≥ 6, we have En(S4
n) > En(S3

n).

Proof:

It is not difficult to determine the characteristic polynomials of S3
n and S4

n,
which are

xn − nxn−2 − 2xn−3 + (n− 3)xn−4

and
xn − nxn−2 + (2n− 8)xn−4

respectively. Applying the Coulson integral formula (5.13), we obtain

En(S3
n) =

1

π

∫ ∞

0

1

x2
ln
((

1 + nx2 + (n− 3)x4
)2

+
(
2x3
)2)

dx (5.14)

and

En(S4
n) =

1

π

∫ ∞

0

1

x2
ln
(
1 + nx2 + (2n− 8)x4

)2
dx. (5.15)

Now observe that

(
1 + nx2 + (2n− 8)x4

)2 −
(
1 + nx2 + (n− 3)x4

)2 −
(
2x3
)2

= (2n− 10)x4 + (2n2 − 10n− 4)x6 + (3n2 − 26n+ 55)x8.

For n ≥ 6, each of the coefficients is positive, so the integrand in (5.15) is
always greater than the integrand in (5.14). The stated inequality follows. �

This also concludes the proof of Theorem 5.6.1. For the maximum of the
energy, the situation is somewhat more intricate, in particular the final com-
parison of potential candidates turns out to be rather technical. The matter
was eventually resolved independently in [56] and [4], building on a number
of partial results [2, 53, 55, 57]. We only state the final result.

Theorem 5.6.2 For all n ≥ 7 other than 9, 10, 11, 13 and 15, the unique
unicyclic graph of order n with maximum energy is the graph obtained by
attaching a path of length n − 6 to a vertex of the 6-vertex cycle. For n ∈
{9, 10, 11, 13, 15}, the unique unicyclic graph of order n with maximum energy
is the cycle Cn.

We finally remark that many more results on unicyclic graphs and similar
tree-like classes of graphs (for instance bicyclic graphs) can be found in the
literature. We refer to the book by Li, Shi and Gutman [68] for a more detailed
account.
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5.7 Energy-like invariants

5.7.1 Matching energy

In this section, we study several other invariants inspired by the notion of
graph energy, without going into much depth. The first of this kind is the
matching energy: recall from Corollary 5.3.3 that we have

En(G) =
2

π

∫ ∞

0

1

x2
ln
( ∑

j≤n/2

m(G, j)x2j
)
dx

if G is acyclic. However, the expression on the right is meaningful even if G is
not acyclic. Generally, we call this quantity the matching energy and denote
it by ME(G). Then Corollary 5.3.3 can also be expressed as

En(G) = ME(G)

if G is acyclic. Note also that the matching energy is nothing but the sum of
the absolute values of the zeros of the matching polynomialM(G;x), which we
know to be real by Theorem 4.7.1. To see why this holds, simply observe that
we can follow the steps that gave us Corollary 5.3.3 with the characteristic
polynomial replaced by the matching polynomial (of course, these coincide for
acyclic graphs). To illustrate the definition, consider the graph in Figure 5.1,
whose matching polynomial was earlier (in Section 4.7) determined as

M(G;x) = x4 − 5x2 + 2.

The roots of this polynomial are ±
√

1
2 (5±

√
17), so we have

ME(G) = 2

√
1

2
(5 +

√
17) + 2

√
1

2
(5−

√
17) = 2

√
5 +

√
8.

Indeed, it can be verified that this agrees with the integral

2

π

∫ ∞

0

1

x2
ln(1 + 5x2 + 2x4) dx.

The notion of the matching energy was first introduced in [45], but its
history actually goes further back: just like the ordinary graph energy, its
roots lie in the Hückel molecular orbital approximation and the so-called π-
electron energy. In some sense, the matching energy is a version of the energy
that does not take cycles into account: the only Sachs subgraphs (as described
in Theorem 5.2.9) that do not contain cycles are matchings, and therefore
matchings represent the acyclic contribution to the characteristic polynomial.
This also provides an interpretation of the fact that energy and matching
energy coincide for acyclic graphs.
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The difference between energy and matching energy is called the topolog-
ical resonance energy, see [1, 41, 42, 45]:

TRE(G) = En(G)−ME(G).

The matching energy shares many properties with the energy. For example,
we have the following analogue of Lemma 5.3.1:

Lemma 5.7.1 Let G1, G2, . . . , Gr be the connected components of a graph G.
The matching energy of G is given by

ME(G) = ME(G1) +ME(G2) + · · ·+ME(Gr).

Proof:

We know from Lemma 4.7.2 that

M(G;x) =

r∏

j=1

M(Gj ;x),

so the zeros of M(G;x) can be obtained as the union of the zeros of
M(G1;x),M(G2;x), . . . ,M(Gr;x). Thus the formula follows in the same way
as Lemma 5.3.1. �

Unlike the energy En, the matching energy ME has the useful property
that it is monotone with respect to addition/subtraction of edges and vertices:
to see why this is the case, note that the expression

ME(G) =
2

π

∫ ∞

0

1

x2
ln
( ∑

j≤n/2

m(G, j)x2j
)
dx

is monotone in each of the coefficients m(G, j). Clearly, none of these coeffi-
cients can increase when an edge is removed, and at least one of them (namely
m(G, 1), which is simply the number of edges) will decrease. The coefficients
also cannot increase when a vertex is removed, and if the vertex is not isolated,
then at least one edge is lost, so that m(G, 1) decreases. Thus we can state
the following analogue of Lemma 4.2.1:

Lemma 5.7.2 If edges are removed from a graph, then the matching energy
decreases. If vertices are removed from a graph, then the matching energy does
not increase, and decreases if at least one of the vertices that are removed is
not an isolated vertex.

This also means that the question for the maximum of ME(G) when G is
a graph with n vertices is much simpler than its counterpart for En(G). We
can immediately state the following, in analogy, e.g., to Theorem 4.3.1 (cf.
Proposition 1.7.1):
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Theorem 5.7.1 For every graph G with n vertices, we have

0 = ME(En) ≤ ME(G) ≤ ME(Kn).

The value of ME(Kn), which represents the maximum, is not given by
a simple formula. It is possible, however, to provide an asymptotic formula,
which we will state here without proof:

ME(Kn) =
8n3/2

3π
+O(n),

see [45] for details.
For trees, it is clear that the extremal graphs are still the path and the star,

since En(T ) = ME(T ) for all trees, so Theorem 5.5.1 carries over verbatim.
Unicyclic and bicyclic graphs have been studied as well, see for instance [45,60].

We finish this brief discussion of the matching energy with inequalities
that parallel Theorems 5.4.1 and 5.4.2.

Theorem 5.7.2 • For every graph G with n vertices and m edges, we have
ME(G) ≤

√
2mn.

• For every graph G with m edges, we have 2
√
m ≤ ME(G) ≤ 2m.

Proof:

Let µ1, µ2, . . . , µn be the zeros of the matching polynomial of G, so that

n∏

i=1

(x− µi) =
∑

k≥0

(−1)km(G, k)xn−2k.

We compare the coefficients of xn−1 and xn−2 to obtain

n∑

i=1

µi = 0

and
∑

1≤i<j≤n

µiµj =
1

2

( n∑

i=1

µi

)2
− 1

2

n∑

i=1

µ2
i = −m(G, 1),

so
n∑

i=1

µ2
i = 2m(G, 1) = 2m.

Now we apply the inequality between the arithmetic and the quadratic mean
as in the proof of Theorem 5.4.1 to obtain the bound

n∑

i=1

|µi| ≤
√
2mn.

The second part follows along the same lines as Theorem 5.4.2. �
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5.7.2 Laplacian energy

In view of the rich theory of the graph energy, it is not unnatural to define
analogous invariants corresponding to other matrices of a graph. However, the
definition is not always straightforward: for the Laplacian matrix of a graph,
all eigenvalues are non-negative (see Theorem 5.2.8), so taking the absolute
values would not make a difference, and the sum of the Laplacian eigenvalues
λ1, λ2, . . . , λn of a graph G is simply

n∑

i=1

λi = tr(L(G)) =
∑

v∈V (G)

deg(G) = 2m,

where m is the number of edges.
In view of this, the Laplacian energy needs to be defined in a way that

differs slightly from the definition of the graph energy to become meaningful.
To this end, note that the sum of the eigenvalues of the adjacency matrix is
always tr(A(G)) = 0, so the average of all eigenvalues is 0. Likewise, by the
aforementioned relation, the average of all Laplacian eigenvalues is 2m

n , where
n is the number of vertices and m the number of edges. This motivates the
following definition for the Laplacian energy [47]:

LE(G) =

n∑

i=1

∣∣∣λi −
2m

n

∣∣∣.

Thus it measures the sum of the absolute differences from the mean, in the
same way as En(G) is the sum of the absolute differences from the mean 0.
Note that 2m

n also represents the average degree of the graph. If G is regular,
then all degrees are equal to 2m

n , and we can apply Theorem 5.2.6 to obtain
the following:

Proposition 5.7.1 If G is a regular graph, then LE(G) = En(G).

Proof:

Let d be the common degree of all vertices, and recall from Theorem 5.2.6 that
the Laplacian eigenvalues are d−α1, d−α2, . . . , d− αn, where α1, α2, . . . , αn

are the eigenvalues of the adjacency matrix. Thus we have

LE(G) =

n∑

i=1

∣∣∣λi −
2m

n

∣∣∣ =
n∑

i=1

∣∣∣λi − d
∣∣∣

=

n∑

i=1

|αi| = En(G).

�

Unlike the energy, the Laplacian energy is not generally additive in the
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sense of Lemma 5.3.1, the reason being that the “centralizing” term 2m
n may

differ between components. For a simple example, consider the disjoint union
of K1 and K2. Its Laplacian eigenvalues are 0, 0, 2, so the Laplacian energy is
2
3+

2
3+

4
3 = 8

3 . On the other hand, the Laplacian energies of the two components
are 0 and 2, respectively, so their sum is 2 6= 8

3 . However, additivity holds in
a special case:

Proposition 5.7.2 Let G1, G2, . . . , Gr be the connected components of a
graph G, and suppose that they all have the same average degree. Then the
Laplacian energy of G is

LE(G) = LE(G1) + LE(G2) + · · ·+ LE(Gr).

Proof:

If all components have the same average degree, then the term 2m
n in the defi-

nition of the Laplacian energy is the same for all components, so the statement
follows directly from Proposition 5.2.5. �

Various upper and lower bounds on the Laplacian energy, similar to those
presented for the energy, have been determined in the literature. In the fol-
lowing, we present some basic examples.

Lemma 5.7.3 Let λ1, λ2, . . . , λn be the Laplacian eigenvalues of a graph G
with n vertices and m edges. We have

λ21 + λ22 + · · ·+ λ2n = tr(L(G)2) =M1(G) + 2m,

where M1(G) is the first Zagreb index, i.e., the sum of the squared degrees,
see Section 3.4.

Proof:

We only need the diagonal entries of L(G)2. The i-th diagonal entry is simply
the inner product of the i-th row of L(G) with itself, which is the sum of its
squared entries. Since one of the entries is the degree deg(vi) of the i-th vertex
and there are deg(vi) entries equal to −1 while all other entries are 0, we find
that the i-th diagonal entry of L(G)2 is deg(vi)

2 + deg(vi). Hence

tr(L(G)2) =

n∑

i=1

deg(vi)
2 +

n∑

i=1

deg(vi) =M1(G) + 2m.

�

Corollary 5.7.1 Let λ1, λ2, . . . , λn be the Laplacian eigenvalues of a graph
G with n vertices and m edges. We have

n∑

i=1

(
λi −

2m

n

)2
=M1(G) + 2m− 4m2

n
.
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Proof:

By Lemma 5.7.3, we have

n∑

i=1

(
λi −

2m

n

)2
=

n∑

i=1

λ2i −
4m

n

n∑

i=1

λi + n
(2m
n

)2

=M1(G) + 2m− 8m2

n
+

4m2

n

=M1(G) + 2m− 4m2

n
.

�

The following two inequalities, due to Gutman and Zhou [47], are essen-
tially analogues of Theorem 5.4.1 and Theorem 5.4.2 and are therefore left as
exercises.

Theorem 5.7.3 For every graph G with n vertices and m edges, we have

LE(G) ≤
√
nM1(G) + 2mn− 4m2.

Theorem 5.7.4 For every graph G with n vertices and m edges, we have

2
√
M ≤ LE(G) ≤ 2M,

where

M =M1(G) + 2m− 4m2

n
.

As pointed out by Robbiano and Jiménez [92], a general theorem due to
Ky Fan [29] can be used to obtain inequalities for the Laplacian energy. Ky
Fan’s theorem can be stated as follows: for a square matrix M , let E(M) be
the sum of its singular values (for symmetric matrices, this is precisely the
sum of the absolute values of the eigenvalues). The following inequality holds
for all square matrices A,B of the same size:

E(A +B) ≤ E(A) + E(B). (5.16)

Among other things, this can be used to obtain a bound on the Laplacian
energy in terms of the number of vertices and the number of edges only:

Theorem 5.7.5 For every graph G with n vertices and m edges, we have

LE(G) ≤ 4m
(
1− 1

n

)
.



Graph spectra and the graph energy 221

Proof:

Let λ1, λ2, . . . , λn be the Laplacian eigenvalues of G, and note that λ1 −
2m
n , λ2 − 2m

n , . . . , λn − 2m
n are the eigenvalues of L(G) − 2m

n I. Therefore, we
have

LE(G) = E
(
L(G)− 2m

n
I
)
.

We write the matrix L(G) − 2m
n I as a sum of smaller matrices, one for each

edge of G. Suppose that the ends of an edge e are the vertices vk and vℓ. We
define the matrix Le by its entries ℓij(e) as follows:

ℓij(e) =





1 i = j = k or i = j = ℓ,

−1 i = k and j = ℓ or i = ℓ and j = k,

0 otherwise.

Note that

L(G)− 2m

n
I =

∑

e∈E(G)

(
Le −

2

n
I
)
,

so Ky Fan’s inequality (5.16) (iterated to apply to multiple summands) yields

LE(G) ≤
∑

e∈E(G)

E
(
Le −

2

n
I
)
.

It is easy to see that the eigenvalues of Le are 2 and 0 (with multiplicity n−1)
for every edge e. Hence we have

E
(
Le −

2

n
I
)
= 2− 2

n
+ (n− 1) · 2

n
= 4− 4

n
.

The desired inequality follows immediately. �

We conclude this section on the Laplacian energy with a proof of the fact
that the maximum Laplacian energy among trees is attained by the star.
While this might not seem surprising at this point, it is worth mentioning
that the analogous problem for the minimum is still unsolved. As one would
expect, the path is conjectured to yield the minimum. The proof is based on
the following result due to Fritscher, Hoppen, Rocha and Trevisan [31], whose
rather involved proof we skip.

Theorem 5.7.6 For every tree T with n vertices, and every k ∈ {1, 2, . . . , n},
the sum of the k largest Laplacian eigenvalues of T is less than or equal to

n+ 2k − 2− 2k − 2

n
.

Equality holds if and only if k = 1 and T is a star.

The following is now a direct consequence:
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Theorem 5.7.7 For every tree T with n vertices, we have

LE(T ) ≤ 2n− 4 +
4

n
,

with equality if and only if T is a star.

Proof:

Let the Laplacian eigenvalues of T be λ1, λ2, . . . , λn, sorted in non-increasing
order. Let k be the largest index for which λk ≥ 2m

n (where m = n− 1 is the
number of edges). We have

LE(T ) =

n∑

i=1

∣∣∣λi −
2m

n

∣∣∣

=
k∑

i=1

(
λi −

2m

n

)
+

n∑

i=k+1

(2m
n

− λi

)

=

k∑

i=1

λi −
2km

n
+

2(n− k)m

n
−

n∑

i=1

λi +

k∑

i=1

λi

= 2

k∑

i=1

λi +
2(n− 2k)m

n
− 2m

= 2

k∑

i=1

λi −
4km

n
.

Now apply Theorem 5.7.6 and plug in m = n− 1 to obtain

LE(T ) ≤ 2
(
n+ 2k − 2− 2k − 2

n

)
− 4k(n− 1)

n
= 2n− 4 +

4

n
,

completing the proof of the inequality. By Theorem 5.7.6, equality can only
hold for the star, and it is easy to verify that the star Sn does indeed have
Laplacian energy 2n− 4 + 4

n . �

5.7.3 Incidence energy and Laplacian-energy-like invariant

The sum of the absolute values of the eigenvalues is in principle a well-defined
quantity for every square matrix. However, for non-square matrices it does not
make sense. A way to generalize to arbitrary matrices is to use the singular
values instead of the eigenvalues. Recall here that the singular values of a (real-
valued) matrixM are the square roots of the eigenvalues of the matrixMTM .
Since MTM is always symmetric and positive semidefinite, its eigenvalues are
non-negative, so the singular values are non-negative real numbers. Moreover,
it is worth pointing out the well-known result that MTM and MMT always
have the same eigenvalues, except for some additional zeros in the spectrum
of the larger matrix.
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Definition 5.7.1 The energy of a (not necessarily square) matrix is the sum
of its singular values.

If M is already a symmetric matrix, then the eigenvalues ofMTM are the
squares of the eigenvalues ofM , so the singular values are simply the absolute
values ofM ’s eigenvalues. Thus the energy of A(G) as given in Definition 5.7.1
coincides with the definition of the graph energy. Having a definition of energy
at our disposal for arbitrary matrices, it makes sense now to define the inci-
dence energy IE(G) as the energy associated with the incidence matrix B(G).
The first paper on this version of the energy is due to Jooyandeh, Kiani and
Mirzakhah [61].

Now recall from Proposition 5.1.2 that B(G)B(G)T = S(G), so the non-
zero singular values of B(G) are just the non-zero eigenvalues of the signless
Laplacian, and we can say the following:

Proposition 5.7.3 The incidence energy of a graph is equal to the sum of
the square roots of the eigenvalues of its signless Laplacian.

Recall also from Proposition 5.2.4 that the spectrum of the Laplacian is
equal to the spectrum of the signless Laplacian if the graph is bipartite. Hence
the following is immediate:

Proposition 5.7.4 If G is a bipartite graph, then IE(G) is equal to the sum
of the square roots of its Laplacian eigenvalues.

For example, if we consider the graph in Figure 5.1, whose incidence matrix
is

B(G) =




1 0 1 0 0
1 1 0 0 1
0 1 0 1 0
0 0 1 1 1


 ,

we find that the singular values are (recall the eigenvalues of the signless Lapla-

cian that were determined earlier)
√
3 +

√
5 = 1+

√
5√

2
,
√
2 with multiplicity 2

and
√
3−

√
5 = −1+

√
5√

2
. Consequently, the incidence energy in this example

is IE(G) =
√
10 +

√
8.

The quantity that occurs in Proposition 5.7.4 is known as the Laplacian-
energy-like invariant (LEL for short): if λ1, λ2, . . . , λn are the Laplacian eigen-
values of G, then we set

LEL(G) =

n∑

i=1

√
λi.

This was first proposed by Liu and Liu [72]. In some sense, the Laplacian-
energy-like invariant is mathematically better behaved than the Laplacian
energy. For example, it satisfies the additivity property of Lemma 5.3.1 that
the Laplacian energy does not. This is also true for the incidence energy.
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Lemma 5.7.4 Let G1, G2, . . . , Gr be the connected components of a graph G.
The incidence energy and the Laplacian-energy-like invariant of G satisfy the
identities

IE(G) = IE(G1) + IE(G2) + · · ·+ IE(Gr)

and
LEL(G) = LEL(G1) + LEL(G2) + · · ·+ LEL(Gr).

Proof:

This follows from Proposition 5.2.5 in the same way that Lemma 5.3.1 was
obtained. �

At the end of Section 5.2, we proved a connection between the signless
Laplacian and the adjacency matrix of the subdivision graph. We can use
this connection now to prove a relation between the incidence energy and the
“ordinary” energy:

Theorem 5.7.8 For every graph G, the energy of the subdivision graph S(G)
equals twice the incidence energy of G:

En(S(G)) = 2 IE(G).

Proof:

We know from Theorem 5.2.14 that the characteristic polynomial of the adja-
cency matrix of S(G) and the characteristic polynomial of the signless Lapla-
cian S(G) are connected by the relation

det(xI −A(S(G))) = ΦS(G)(x) = xm−nYG(x
2) = xm−n det(x2I − S(G)).

So if σ1, σ2, . . . , σn are the eigenvalues of S(G), then the eigenvalues of
A(S(G)) are precisely ±√

σ1,±
√
σ2, . . . ,±

√
σn, except for a number of zeros.

Since the zeros do not contribute to either En(S(G)) or IE(G), the identity
follows. �

For both the incidence energy and the Laplacian-energy-like invariant, we
also have an integral representation of the same form as in Theorem 5.3.1 for
the ordinary graph energy.

Theorem 5.7.9 Let ΨG(x) = det(xI − L(G)) and YG(x) = det(xI − S(G))
be the characteristic polynomials of the Laplacian and signless Laplacian of a
graph G with n vertices. The invariants LEL(G) and IE(G) are given by the
following integrals:

LEL(G) =
1

π

∫ ∞

0

1

x2
ln
(
x2n|ΨG(−1/x2)|

)
dx

=
1

2π

∫ ∞

0

1√
u
ln
(
u−n|ΨG(−u)|

)
du
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and

IE(G) =
1

π

∫ ∞

0

1

x2
ln
(
x2n|YG(−1/x2)|

)
dx

=
1

2π

∫ ∞

0

1√
u
ln
(
u−n|YG(−u)|

)
du.

Proof:

We only consider the formulas for LEL(G), the proof of the second part is
completely analogous. Let λ1, λ2, . . . , λn be the eigenvalues of L(G), and note
that the zeros of ΨG(x

2) are precisely ±
√
λ1,±

√
λ2, . . . ,±

√
λn. So the sum

of the absolute values of the zeros of ΨG(x
2) is precisely equal to 2 LEL(G).

Thus we obtain a formula for LEL(G) by replacing ΦG(x) by ΨG(x
2) and n

by 2n in the formula given in Theorem 5.3.1, and finally dividing by 2. The
first formula follows immediately, and the second is obtained by means of the
substitution x−2 = u. �

Recall from Theorem 5.2.11 that the characteristic polynomial of the
Laplacian is given by

ΨG(x) = det(xI − L(G)) =
n∑

k=1

(−1)n−krk(G)x
k,

where rk(G) is the number of rooted spanning forests of G with exactly k
components. Plugging this into the formula given in Theorem 5.7.9, we obtain

LEL(G) =
1

2π

∫ ∞

0

1√
u
ln
( n∑

k=1

rk(G)u
k−n

)
du. (5.17)

The integral is clearly an increasing function in each of the coefficients rk(G).
Since adding an edge cannot decrease the number of rooted spanning forests
with any given number of components and also increases the total number of
rooted spanning forests (there are always spanning forests including the new
edge), the following monotonicity property is immediate:

Lemma 5.7.5 If edges are added to a graph, then the LEL increases. If edges
are removed from a graph, then the LEL decreases.

The following theorem is now an immediate consequence:

Theorem 5.7.10 For every graph G with n vertices, we have

0 = LEL(En) ≤ LEL(G) ≤ LEL(Kn) = (n− 1)
√
n.

Equality in the first inequality only holds if G is edgeless, and equality in the
second inequality only holds if G is complete.
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Proof:

The Laplacian spectrum of the edgeless graph only consists of zeros, while the
Laplacian spectrum of Kn consists of n (with multiplicity n − 1) and 0, see
Proposition 5.2.2. Thus we have LEL(En) = 0 and LEL(Kn) = (n−1)

√
n. The

inequalities are immediate from the monotonicity property in Lemma 5.7.5,
so the theorem follows. �

For the incidence energy, we cannot argue in the same way as for the LEL,
since the coefficients of the characteristic polynomial of the signless Laplacian
do not have an equally simple combinatorial interpretation. Instead, we follow
a different approach that also establishes a nice connection to the line graph
(see for instance [37]).

Lemma 5.7.6 Let e be an arbitrary edge of a graph G. We have

IE(G− e) < IE(G).

Proof:

The proof is based on the fact mentioned at the beginning of this section
that MTM and MMT always have the same eigenvalues, except for some
additional zeros in the spectrum of the larger matrix. We apply this to the
incidence matrix B(G) of the graph G: since S(G) = B(G)B(G)T by Proposi-
tion 5.1.2 and B(G)TB(G) = A(L(G))+2I by Proposition 5.1.1, the eigenval-
ues of the signless Laplacian S(G) are, up to additional zeros, the eigenvalues
of A(L(G)) + 2I. Thus if α1, α2, . . . , αm are the eigenvalues of A(L(G)), then
the eigenvalues of S(G) are α1 + 2, α2 + 2, . . . , αm + 2 (up to the number of
zeros), and it follows that

IE(G) =

m∑

i=1

√
αi + 2.

Now note that L(G − e) is obtained from L(G) by removing a vertex (the
vertex corresponding to e). So by the interlacing property of Corollary 5.2.8,
the eigenvalues β1, β2, . . . , βm−1 of A(L(G − e)) satisfy

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αm−1 ≤ βm−1 ≤ αm.

It follows that

IE(G− e) =

m−1∑

i=1

√
βi + 2 ≤

m∑

i=2

√
αi + 2 ≤

m∑

i=1

√
αi + 2 = IE(G). (5.18)
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For equality to hold, we would have to have α1 + 2 = 0 and αi = βi−1 for all
i > 1. However, since

m∑

i=1

(αi + 2) = tr(A(L(G)) + 2I) = 2m

> 2(m− 1) = tr(A(L(G − e)) + 2I) =
m∑

i=2

(βi−1 + 2),

this is impossible. Thus we have strict inequality in (5.18). �

Again, bounds for IE(G) follow in the same way as Theorem 5.7.10:

Theorem 5.7.11 For every graph G with n vertices, we have

0 = IE(En) ≤ IE(G) ≤ IE(Kn) = (n− 1)
√
n− 2 +

√
2n− 2.

Equality in the first inequality only holds if G is edgeless, and equality in the
second inequality only holds if G is complete.

It was mentioned earlier that IE(G) and LEL(G) coincide for bipartite
graphs. This is not the case for arbitrary graphs (the first simple counterex-
ample being the complete graph K3), but we will prove that IE(G) ≥ LEL(G)
for all graphs G. To this end, we need the following result on the coefficients
of the respective characteristic polynomials:

Lemma 5.7.7 Let G be a graph with n vertices, and let the characteristic
polynomials of the Laplacian and signless Laplacian be

ΨG(x) = det(xI − L(G)) =

n∑

k=0

(−1)n−kakx
k

and

YG(x) = det(xI − S(G)) =

n∑

k=0

(−1)n−kbkx
k,

respectively. For all k ∈ {0, 1, . . . , n}, we have ak ≤ bk.

Proof:

Recall from the proof of Theorem 5.2.11 that the coefficient ak is equal to the
sum

∑
|U|=k detL(G;U) of all determinants of matrices of the form L(G;U),

obtained by removing all rows and columns corresponding to the vertex set
U from the Laplacian L(G). Moreover, if we fix U , then the Cauchy-Binet
formula gives us

detL(G;U) =
∑

S⊆{1,2,...,m}
|S|=n

det(MS)
2, (5.19)
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where M is obtained from the oriented incidence matrix C(G) by removing
all rows corresponding to U , m is the number of edges and n the number of
vertices in V (G) \ U . We can use the same reasoning to find that bk is equal
to the sum

∑
|U|=k detS(G;U), where S(G;U) is constructed from S(G) in

the same way that L(G;U) is constructed from L(G). Moreover, we also have

detS(G;U) =
∑

S⊆{1,2,...,m}
|S|=n

det(NS)
2, (5.20)

where N is obtained from the incidence matrix B(G) in the same way that
M is obtained from C(G).

In the proof of Theorem 5.2.11, we showed that det(MS) ∈ {−1, 0, 1} for
all S, so that det(MS)

2 is either 0 or 1. Since NS has only integer entries,
its determinant is always an integer, and det(NS)

2 is always a non-negative
integer. If we can show that detMS = 0 whenever detNS = 0, then it follows
that det(NS)

2 ≥ det(MS)
2 for all S, thus

detL(G;U) ≤ detS(G;U)

by (5.19) and (5.20). The inequality ak ≤ bk then follows by summing over all
vertex sets U .

To show that detNS = 0 implies detMS = 0, we use a parity argument:
the entries of MS only differ from the entries of NS in some signs. Now apply
the Leibniz formula (Lemma 5.2.3) to MS and to NS. The terms in the two
resulting sums are the same except for the signs, and each of them is an
integer. Therefore, the difference between detMS and detNS has to be an
even integer. Since detMS can only be 0 or ±1, we have detMS = 0 whenever
detNS is an even integer, in particular whenever detNS = 0. This completes
the proof. �

Now the aforementioned inequality between incidence energy and LEL
follows:

Theorem 5.7.12 For every graph G, we have

IE(G) ≥ LEL(G),

and equality holds if and only if G is bipartite.

Proof:

Writing

ΨG(x) = det(xI − L(G)) =

n∑

k=0

(−1)n−kakx
k

and

YG(x) = det(xI − S(G)) =
n∑

k=0

(−1)n−kbkx
k
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as in Lemma 5.7.7, we can express IE(G) and LEL(G) as

LEL(G) =
1

2π

∫ ∞

0

1√
u
ln
( n∑

k=0

aku
k−n

)
du

and

IE(G) =
1

2π

∫ ∞

0

1√
u
ln
( n∑

k=0

bku
k−n

)
du,

see Theorem 5.7.9 and the discussion thereafter. Now the inequality follows
from Lemma 5.7.7. For equality to hold, the characteristic polynomials must
be identical. But then L(G) and S(G) have the same spectrum, which happens
(by Corollary 5.2.3) if and only if G is bipartite. �

We conclude this section with some extremal results and bounds. For trees,
incidence energy and LEL coincide, so it suffices to consider one of the two. We
can use the combinatorial interpretation of the coefficients of the characteristic
polynomial of the Laplacian and the Coulson-type formula (5.17) to prove that
the star and the path are extremal once again:

Theorem 5.7.13 For every tree T with n vertices, we have

n+
√
n− 2 = LEL(Sn) = IE(Sn) ≤ LEL(T ) = IE(T )

and
LEL(T ) = IE(T ) ≤ LEL(Pn) = IE(Pn) = −1 + cot

( π
4n

)
.

Equality holds in the first inequality if and only if T is the star, and equality
holds in the second inequality if and only if T is the path.

Proof:

We already know that LEL(T ) and IE(T ) are always equal, since L(T ) and
S(T ) have the same eigenvalues. The upper bound now follows easily by means
of Theorem 5.7.8, which tells us that

LEL(T ) = IE(T ) =
1

2
En(S(T )).

Since S(T ) is again a tree, and only a path if T is, Theorem 5.5.1 gives us

LEL(T ) = IE(T ) =
1

2
En(S(T )) ≤ 1

2
En(P2n−1)

=
1

2
En(S(Pn)) = LEL(Pn) = IE(Pn),

with equality if and only if T is the path.
For the lower bound, we prove that Sn simultaneously minimizes all coeffi-

cients of the Laplacian characteristic polynomial (recall that these coefficients
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count rooted spanning forests), and that it is the only tree to do so. The state-
ment then follows from the integral representation (5.17). So we need to show
that

rk(T ) ≥ rk(Sn)

for all k, and that the only tree T for which equality holds for all k is the star
Sn. We prove this by a direct counting argument. A rooted spanning forest of
T with k components is obtained by removing k− 1 edges and picking a root
for each of the resulting components. The number of choices for the edges to
be removed is independent of the tree: it is always equal to

(
n−1
k−1

)
. For the

star, removing k − 1 edges always yields k − 1 single leaves and a star with
n− k + 1 vertices, so there are n− k + 1 choices of roots. Thus

rk(Sn) =

(
n− 1

k − 1

)
(n− k + 1).

Now we consider an arbitrary tree T and remove k − 1 edges. If the result-
ing component sizes are a1, a2, . . . , ak, then the number of root choices is
a1a2 · · · ak. We also have a1 + a2 + · · · + ak = n. It is a standard exercise to
show that the minimum of a1a2 · · · ak under this condition is n− k + 1, with
equality if and only if all but one of the aj are 1. Therefore, we have

rk(T ) ≥
(
n− 1

k − 1

)
(n− k + 1) = rk(Sn)

for all k. It remains to show that equality can only hold for all k if T is the
star. It suffices to prove this when k = 2: in this case, we know from the proof
of Theorem 5.2.13 that r2(T ) is equal to the Wiener index W (T ). Finally, we
know from Proposition 2.3.2 that the star is the unique tree that minimizes
the Wiener index. Hence

r2(T ) = W (T ) > W (Sn) = r2(Sn)

if T is not the star, completing the proof. �

We remark that the lower bound remains valid for arbitrary connected
graphs in view of the monotonicity properties (Lemmas 5.7.5 and 5.7.6): for
every connected graph G, the inequalities LEL(Sn) ≤ LEL(G) and IE(Sn) ≤
IE(G) hold.

We can also provide bounds for incidence energy and Laplacian-energy-like
invariant in terms of the number of vertices and/or edges and other parame-
ters, in a similar way as for the graph energy. Let us just provide some basic
examples.

Theorem 5.7.14 For every graph G with n vertices and m edges, we have

LEL(G) ≤
√

2m(n− 1).
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Proof:

Let λ1, λ2, . . . , λn be the Laplacian eigenvalues, where λn = 0 without loss of
generality. We apply the inequality between the arithmetic and the quadratic
mean to obtain

LEL(G) =
n−1∑

i=1

√
λi ≤

√√√√(n− 1)
n−1∑

i=1

(√
λi
)2
.

Now observe that

n−1∑

i=1

(√
λi
)2

=

n−1∑

i=1

λi =

n∑

i=1

λi = tr(L(G)) = 2m

to complete the proof. �

Theorem 5.7.15 For every graph G with n vertices and m edges, we have

LEL(G) ≥
√
2m.

Proof:

Simply note that

LEL(G)2 =
( n∑

i=1

√
λi

)2
≥

n∑

i=1

(√
λi
)2

=

n∑

i=1

λi = tr(L(G)) = 2m.

�

We conclude this section with the remark that there are also further vari-
ants of the energy (such as skew energy, Randić energy, etc.) that are not
covered here. We refer to [38] as a general reference.

5.8 Other invariants based on graph spectra

Among the many other important graph invariants that are based on graph
spectra, we consider two more examples in this section: the spectral radius
and the Estrada index.

5.8.1 Spectral radius of a graph

The spectral radius of any matrix is the greatest absolute value of an eigen-
value. The spectral radius of a graph G is simply the spectral radius of its
adjacency matrix A(G). We know that all eigenvalues of A(G) are real, and
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the Perron-Frobenius Theorem on non-negative matrices (see Theorem 5.2.1)
even guarantees that the spectral radius of A(G) is an eigenvalue. The spectral
radius, in the following denoted by r(G), is certainly one of the most impor-
tant quantities that have been studied in spectral graph theory. We refer to
a recent book [100] devoted entirely to the topic for more information and
results.

In Section 5.2, we related the spectrum of a graph to walks in the graph.
The spectral radius occurs as a specific limit, which will be presented in the
following proposition.

Proposition 5.8.1 Let Wr(G) denote the number of closed walks of length r
in a graph G. If G is connected and not bipartite, then we have

r(G) = lim
r→∞

(
Wr(G)

)1/r
.

If G is bipartite, then we have

r(G) = lim
r→∞

(
W2r(G)

)1/(2r)
.

Proof:

Recall from Theorem 5.2.7 that

Wr(G) =

n∑

k=1

αr
k,

where α1, α2, . . . , αn are the eigenvalues of G. Without loss of generality, let
r(G) = α1. If G is connected and not bipartite, then Theorem 5.2.3 guaran-
tees that −r(G) is not one of the eigenvalues. Thus the second factor in the
expression

Wr(G) = αr
1

(
1 +

n∑

k=2

(αk

α1

)r)

goes to 1, since each of the fractions αk

α1
for k > 1 has absolute value less than

1. The statement of the proposition follows immediately. If G is bipartite, then
Wr(G) = 0 for all odd r, so we restrict ourselves to even lengths and apply
the same argument:

W2r(G) = α2r
1

(
1 +

n∑

k=2

(αk

α1

)2r)
,

and the second factor clearly lies between 1 and n. Again, the statement of
the proposition follows. �

An important tool to analyze the spectral radius of graphs (and of sym-
metric matrices in general) is the Rayleigh quotient: for a symmetric matrix
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M and a non-zero vector x, set

R(M,x) =
xTMx

xTx
.

If M is symmetric, then there exists an orthonormal basis of eigenvectors
v1,v2, . . . ,vn associated with the eigenvectors µ1, µ2, . . . , µn. We can write x
as a linear combination of these eigenvectors:

x = c1v1 + c2v2 + · · ·+ cnvn,

which gives us

xTMx =
( n∑

i=1

civ
T
i

)
·M ·

( n∑

j=1

cjv
T
j

)

=

n∑

i=1

n∑

j=1

cicjv
T
i Mvj

=
n∑

i=1

n∑

j=1

cicjµjv
T
i vj .

Since we are assuming that v1,v2, . . . ,vn form an orthonormal basis, we have
vT
i vj = 0 if i 6= j, and vT

i vj = 1 if i = j. Thus

xTMx =
n∑

i=1

c2iµi.

By a similar calculation, we have

xTx =

n∑

i=1

c2i .

Now it follows that

R(M,x) =

∑n
i=1 c

2
iµi∑n

i=1 c
2
i

≤ max
i
µi,

with equality if and only if ci = 0 for all indices i except for those for which µi

is extremal (i.e., if x is an eigenvector for the largest eigenvalue). This gives
us the following important characterization of the largest eigenvalue:

max
i
µi = max

x 6=0

R(M,x).

In particular, every Rayleigh quotient R(M,x) provides a lower bound on
the maximum eigenvalue and thus the spectral radius. This is very useful to
derive bounds on the spectral radius. As a first application, we show that it
is monotone with respect to adding/removing vertices and edges:
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Proposition 5.8.2 If H is obtained from G by removing a vertex or an edge,
then we have

r(H) ≤ r(G).

If G is connected, then the inequality is strict.

Proof:

Consider first the case that H is obtained by removing a vertex. Let x be an
eigenvector corresponding to r(H) with non-negative entries, as guaranteed
by the Perron-Frobenius Theorem (Theorem 5.2.1). We define a new vector
x′ whose entries are the same as those of x, with an additional zero entry
corresponding to the vertex that is part of G, but not H . It is easy to see that

R(A(G),x′) = R(A(H),x),

hence
r(G) ≥ R(A(G),x′) = R(A(H),x) = r(H).

Now consider the case that H is obtained by removing an edge. Take x as
before, and observe that

r(G) ≥ R(A(G),x) ≥ R(A(H),x) = r(H),

since the entries of A(G) are greater than or equal to those of A(H). This
completes the proof of the inequality. In the first case (vertex removal), equal-
ity can only hold if x′ and x are both eigenvectors for G and H , respectively.
If G is connected, this is impossible since the entries of x′ would all have to be
positive by the Perron-Frobenius Theorem. In the second case (edge removal),
x has to be an eigenvector for both G and H (with respect to the eigenvalue
r(G) = r(H)) for equality to hold. If G is connected, x has to have positive
entries, so A(G)x 6= A(H)x. This gives another contradiction, so equality
cannot hold in this case either. �

We remark that the statement of Proposition 5.8.2 regarding the removal
of vertices also follows from Corollary 5.2.8 (interlacing property). Next, we
prove some elementary bounds on the spectral radius in terms of degrees.

Theorem 5.8.1 Let G be a graph with n vertices and m edges. Let d̄ = 2m
n

denote its average degree, and ∆ its maximum degree. The spectral radius r(G)
satisfies

d̄ ≤ r(G) ≤ ∆.

The lower bound holds with equality if and only if G is regular, the upper
bound holds with equality if and only if at least one connected component of
G is ∆-regular.
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Proof:

For the lower bound, we consider the Rayleigh quotient of the vector 1 whose
entries are all 1s. It follows from the definition of the adjacency matrix that
the entries of A(G) · 1 are precisely the degrees of the vertices. Thus

1TA(G)1 =
∑

v∈V (G)

deg(v) = 2m,

and since 1T1 = n, it follows that

r(G) ≥ R(A(G),1) =
2m

n
= d̄.

For equality to hold, 1 has to be an eigenvector corresponding to r(G). This
happens if and only if all entries of A(G) · 1 are equal, i.e., all vertex degrees
are the same (if 1 is an eigenvector, it has to be the eigenvector associated
with the spectral radius by the Perron-Frobenius Theorem).

For the upper bound, let x be an eigenvector with positive entries corre-
sponding to the spectral radius r(G). Let x1, x2, . . . , xn be the entries of this
eigenvector, corresponding to vertices v1, v2, . . . , vn, and choose i in such a
way that xi is maximal. The eigenvalue equation r(G)x = A(G)x gives us

r(G)xi =
∑

j:vj∈N(vi)

xj ≤ deg(vi)xi ≤ ∆xi, (5.21)

thus r(G) ≤ ∆. Let us now analyze the cases of equality: the only way that
equality can hold in (5.21) is that deg(vi) = ∆ and xj = xi for all vertices vj
that are adjacent to vi. Iterating this argument, we find that the degrees of all
vertices in the same connected component have to be equal to ∆. Conversely,
if a connected component is ∆, then the all-ones vector is an eigenvector for
that component, corresponding to the eigenvalue ∆. This completes the proof
of the theorem. �

In view of Proposition 5.8.2, we expect that the edgeless graph and the
complete graph are extremal, which is the statement of the following corollary:

Corollary 5.8.1 For every graph G with n vertices, we have

0 ≤ r(G) ≤ n− 1.

Equality holds for the lower bound if and only if G is edgeless, and equality
holds for the upper bound if and only if G is the complete graph.

Proof:

This follows easily from the previous theorem, noting that

0 ≤ d̄ ≤ ∆ ≤ n− 1.



236 Introduction to Chemical Graph Theory

Moreover, the only 0-regular graph with n vertices is the edgeless graph, and
the only graph with n vertices and an (n− 1)-regular component is the com-
plete graph. �

It is natural to expect that the star and the path are extremal among trees,
and this is indeed the case. We first prove this for the star.

Theorem 5.8.2 For every tree T with n vertices, we have

r(T ) ≤ r(Sn) =
√
n− 1,

with equality if and only if T is a star.

Proof:

Let the eigenvalues of T be α1, α2, . . . , αn. Since trees are bipartite, we know
that r(T ) and −r(T ) are both eigenvalues by Theorem 5.2.2, say α1 = r(T )
and α2 = −r(T ). Moreover, Corollary 5.2.4 yields

n∑

i=1

α2
i = 2(n− 1),

so

2r(T )2 = α2
1 + α2

2 ≤
n∑

i=1

α2
i = 2(n− 1),

which implies that r(T ) ≤
√
n− 1. Equality holds if and only if the spectrum

consists of ±
√
n− 1 and 0 (with multiplicity n− 2). Equivalently, the charac-

teristic polynomial has to be xn − (n − 1)xn−2. This is the case for the star,
and it is the only such tree: in view of Corollary 5.2.5, m(T, 2) needs to be
0 to yield this characteristic polynomial, and the star is clearly the only tree
without matchings of cardinality 2. �

The analogous statement for the minimum is somewhat more complicated.
We use an approach due to Lovász and Pelikán [74] that is based on the
following lemmas:

Lemma 5.8.1 Let F be a forest, and let G be obtained from F by remov-
ing one or more edges. For every x ≥ r(F ), the following inequality for the
characteristic polynomials holds:

ΦF (x) ≤ ΦG(x).

Strict inequality always holds for x > r(F ).
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Proof:

It suffices to prove the statement for the case where G is obtained by removing
a single edge e; the general statement follows by induction. Recall that the
characteristic polynomials of F and G coincide with their matching polyno-
mials by Corollary 5.2.5. Hence, we can use the recursions of Lemma 4.7.2.
Specifically, if v and w are the ends of edge e, we have

ΦF (x) =M(F ;x) =M(F − e;x)−M(F −{v, w};x) = ΦG(x)−ΦF−{v,w}(x).

By Proposition 5.8.2, we know that the spectral radius of F − {v, w} is less
than or equal to the spectral radius of F , so x ≥ r(F ) ≥ r(F − {v, w}).
But this means that ΦF−{v,w}(x) ≥ 0, since x is greater than or equal to all
the zeros of the polynomial ΦF−{v,w}(x), and the leading coefficient of this
polynomial is positive. For x > r(F ), we even have ΦF−{v,w}(x) > 0 by the
same argument. �

The following lemma is somewhat similar to (a special case of)
Lemma 4.4.3.

Lemma 5.8.2 Let v be a vertex of a tree T with more than one vertex. Let
T1 be obtained from T by appending paths of length k and ℓ (k, ℓ ≥ 1) to v,
and let T2 be obtained from T by appending a single path of length k+ ℓ to v.
Then we have

r(T1) > r(T2).

Proof:

We will prove the stronger statement that

ΦT2
(x) > ΦT1

(x) ≥ 0

for x ≥ r(T1). This implies that there is no zero of ΦT2
greater than or equal

to r(T1), which proves the lemma. The inequality ΦT1
(x) ≥ 0 is clear, since

r(T1) is the largest zero and the leading coefficient of ΦT1
is positive. For the

inequality ΦT2
(x) > ΦT1

(x), we make use of the fact that ΦT1
and ΦT2

are
equal to the matching polynomials of T1 and T2, respectively, as in the proof
of the previous lemma. Let w be a neighbor of v on the path of length k in
T , and let e be the edge between v and w. In T2, we let e′ be an edge on the
path of length k + ℓ whose removal divides the path into a part of length ℓ
(with v at one of its ends) and a path of length k − 1. Let v′ and w′ be the
ends of e′ (v′ being the vertex that is closer to v). Note that T1−e and T2−e′
are isomorphic: both consist of T with a path of length ℓ attached to v, and
a path of length k − 1. The recursions of Lemma 4.7.2 yield

ΦT1
(x) =M(T1;x) =M(T1 − e;x)−M(T1 − {v, w};x)

and
ΦT2

(x) =M(T2;x) =M(T2 − e′;x)−M(T2 − {v′, w′};x),
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so since M(T1 − e;x) =M(T2 − e′;x), we have to prove that

M(T1 − {v, w};x) = ΦT1−{v,w}(x)

> ΦT2−{v′,w′}(x) =M(T2 − {v′, w′};x) (5.22)

for all x ≥ r(T1). Now note that a graph isomorphic to T1 − {v, w} (which
consists of paths of length k − 2 and ℓ − 1 and T − v) can be obtained by
removing edges from T2 − {v′, w′} (which consists of a path of length ℓ − 1
and T with a path of length k − 2 attached to v). Moreover, x ≥ r(T1) >
r(T2 − {v′, w′}) by Proposition 5.8.2 (since T2 − {v′, w′} is isomorphic to a
subgraph of T1), so (5.22) holds by Lemma 5.8.1. This completes the proof. �

Theorem 5.8.3 For every tree T with n vertices, we have

r(T ) ≥ r(Pn) = 2 cos
π

n+ 1
,

with equality if and only if T is a path.

Proof:

The formula for the spectral radius of the path follows from Proposition 5.2.4.
Now suppose that T is a tree with n vertices for which the spectral radius
attains its minimum. If T is not a path, then it contains vertices of degree 3
or higher. Consider the smallest subtree S of T that contains all these vertices
(possibly S is just a single vertex), and let v be a leaf of S. This vertex has
to have degree 3 or more in T , since it would otherwise not be contained in
S. Moreover, since v is a leaf of S, at most one of the branches at v contains
other vertices of degree 3 or more. Thus there are at least two branches that
are paths (with one end at v). Pick two such paths, and suppose that their
lengths are k and ℓ, respectively. If we replace them by a single path of length
k+ℓ, then the spectral radius decreases by Lemma 5.8.2. Since this contradicts
our choice of T , the path must be the only tree for which the spectral radius
attains its minimum. �

It is clear that r(G) ≤ En(G) for all graphs G, since the energy is the sum
of the absolute values of all eigenvalues, which includes r(G). This immediately
gives us bounds like the following:

Corollary 5.8.2 For every graph G with n vertices and m edges, we have

r(G) ≤
√
2mn.

Proof:

This follows from the aforementioned inequality r(G) ≤ En(G), combined
with Theorem 5.4.1. �

Since the inequality r(G) ≤ En(G) is clearly not optimal, the bound in
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terms of the number of vertices and edges can be improved considerably. This
is done in the following theorem:

Theorem 5.8.4 For every graph G with n vertices and m edges, we have

r(G) ≤
√

2m(n− 1)

n
.

Proof:

Let α1 = r(G), α2, . . . , αn be the eigenvalues. The proof is based on the two
identities of Corollary 5.2.4:

n∑

i=1

αi = 0

and
n∑

i=1

α2
i = 2m.

We clearly have

α1 = −
n∑

i=2

αi ≤
n∑

i=2

|αi|.

The inequality between the arithmetic and the quadratic mean gives us

1

n− 1

n∑

i=2

|αi| ≤

√√√√ 1

n− 1

n∑

i=2

α2
i =

√
2m− α2

1

n− 1
,

so

α1

n− 1
≤
√

2m− α2
1

n− 1
.

Elementary manipulations now yield

r(G) = α1 ≤
√

2m(n− 1)

n
.

�

We conclude this section with a surprising relation between the chromatic
number of a graph (the smallest number of colors needed to color each vertex
in such a way that adjacent vertices are not assigned the same color).

Theorem 5.8.5 Let χ(G) be the chromatic number of a graph G. We have

χ(G) ≤ r(G) + 1.
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Proof:

Write k for the chromatic number of G, and let H be an induced subgraph of
G with the smallest number of vertices such that χ(H) = χ(G) = k. Consider
an arbitrary vertex v of H . Since H − v has smaller chromatic number than
H by our choice of v, it can be colored with k − 1 colors in such a way that
no two adjacent vertices are assigned the same color. If the degree of v in
H is less than k − 1, then there are at most k − 2 distinct colors among the
neighbors of v in H , so v can be colored with one of the k − 1 colors used to
color H − v to obtain a feasible coloring of H with k− 1 colors, contradicting
the assumption that χ(H) = k. Thus the degree of v is at least k − 1. Since
this holds for every vertex of H , the average degree of H is also at least k− 1.
Now Theorem 5.8.1 implies that

χ(G)− 1 = k − 1 ≤ r(H),

and since r(H) ≤ r(G) in view of Proposition 5.8.2, the statement of the
theorem follows. �

5.8.2 Estrada index

The Estrada index was put forward by Estrada [27]. Similar to the graph
energy, it is defined as a sum over all eigenvalues. Specifically, it is given by

EE(G) =

n∑

i=1

eαi ,

where α1, α2, . . . , αn are the eigenvalues (of the adjacency matrix) of G. An
alternative expression makes use of the connection between walks and the
spectrum of the adjacency matrix:

Proposition 5.8.3 Let Wr(G) denote the number of closed walks of length r
in G. The Estrada index of G can be expressed as

EE(G) =

∞∑

r=0

Wr(G)

r!
.

Proof:

By Theorem 5.2.7, the total number Wr(G) of closed walks of length r in G
is equal to the trace of A(G)r :

Wr(G) = tr(A(G)r) =

n∑

i=1

αr
i .

Combining this with the series expansion of the exponential function, we ob-
tain

EE(G) =
n∑

i=1

eαi =
n∑

i=1

∞∑

r=0

αr
i

r!
=

∞∑

r=0

Wr(G)

r!
,
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which is exactly the identity we wanted to prove. �

The representation in terms of the number of closed walks immediately
shows that the Estrada index is monotone with respect to vertex and edge
addition/removal:

Proposition 5.8.4 If H is obtained from G by removing a vertex or an edge,
then we have

EE(H) < EE(G).

Proof:

Clearly, every closed walk of H is also a closed walk of G, and there are some
closed walks in G that are not in H (using the additional vertex or edge).
Hence we have Wr(H) ≤Wr(G) for all r, and the inequality is strict for some
r. The desired inequality now follows from Proposition 5.8.3. �

The following corollary is immediate:

Corollary 5.8.3 For every graph G with n vertices, we have

n = EE(En) ≤ EE(G),

with equality if and only if G is the edgeless graph, and

en−1 + (n− 1)e−1 = EE(Kn) ≥ EE(G),

with equality if and only if G is the complete graph.

Once again, the star and the path are extremal among trees (and in view
of Proposition 5.8.4, the path even attains the minimum Estrada index among
all connected graphs). This will be shown in the following, based on the work
of Deng [22]. Graph transformations similar to those applied, e.g., in the anal-
ysis of Merrifield-Simmons index, Hosoya index and spectral radius will be
important tools, and the expression for the Estrada index in terms of closed
walks will play a major role again.

Lemma 5.8.3 Let v be the center of a star with n vertices, and u a leaf. The
number of closed walks of length r starting and ending at v is (n − 1)r/2 for
even r and 0 otherwise. The number of closed walks of length r starting and
ending at u is 1 for r = 0, (n− 1)r/2−1 for even r > 0, and 0 otherwise.

Proof:

A closed walk starting at v begins with a move to one of the n− 1 leaves, and
a return to v. This is repeated r/2 times for even r, so there are (n − 1)r/2

possibilities. Since all walks alternate between the center and the leaves, there
are no closed walks of odd length. The proof for walks starting and ending at
u is analogous, except for the fact that there is no choice for the first and last
step. �
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Lemma 5.8.4 Let w be an arbitrary vertex of a tree T . Let T1 be obtained
from T by merging w with the center of an n-vertex star (n ≥ 3), and let T2
be obtained by merging w with a leaf of an n-vertex star. For every r ≥ 0, we
have

Wr(T1) ≥Wr(T2),

and the inequality is strict for all even r ≥ 4.

Proof:

Let v and u be center and leaf of the star that are merged with w, as in
the previous lemma. Closed walks of T1 and T2 can be divided into three
categories: those that stay within T , those that stay within the star, and
those that use edges of both. Clearly, there are equally many walks of the first
two types in T1 and T2, so we focus on the third type. We define an injection
Ξ from walks of the third type in T2 to walks of the third type in T1.

By the previous lemma, there is an injection ξ from the set of closed paths
of a given length starting at v to the set of closed paths of the same length
starting at u, and this injection is not surjective for closed walks of even length
greater than or equal to 2. Every closed walk in T2 that uses edges of both
T and the star can be decomposed by splitting it at all those times when w
is reached. The parts of this decomposition are the maximal subwalks that
either only use edges of T or only use edges of the star, and they are all closed
walks starting and ending at w, except possibly for the first and last part (if
the walk does not start at w), which however also form a walk starting and
ending at w when they are joined.

We define the injection Ξ in the following simple way: all parts that use
only edges of T are kept as they are, while parts that use edges of the star
are replaced by their images under the injection ξ. Clearly, this is again an
injection, and it is not surjective for walks of even length greater than or equal
to 4: to see why this is the case, consider any of the closed walks of length 2
in the star starting and ending at the center v that does not have a preimage
under ξ. Append this walk to an arbitrary closed walk of length r − 2 in T
that starts and ends at w to obtain a closed walk in T1 that does not have a
preimage under Ξ. This proves the inequality

Wr(T1) ≥Wr(T2),

with strict inequality if r is even and r ≥ 4. �

Theorem 5.8.6 For every tree T with n vertices, we have

EE(T ) ≤ EE(Sn) = e
√
n−1 + e−

√
n−1 + n− 2,

and equality holds if and only if T is a star.
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Proof:

Let T be a tree with n vertices that attains the maximum Estrada index.
If T is not a star, consider any diametrical path (path of greatest length)
v0, v1, . . . , vk. Then all but one of the neighbors of vk−1 (namely vk−2) are
leaves, since otherwise there would be a way to extend the path for at least
two edges beyond vk−1, giving a longer path. Hence the tree induced by vk−1

and its neighbors is a star, and vk−2 is one of its leaves. Thus we are in the
situation of Lemma 5.8.4 (vk−2 taking the role of w), and we are able to find
another tree that has at least as many closed walks of every even length as
T , and strictly more for all even lengths greater than or equal to 4. In view of
Proposition 5.8.3, this tree would have greater Estrada index than T , which is
a contradiction. Hence T has to be a star. The formula for the Estrada index
of Sn is immediate from Corollary 5.2.1. �

Lemma 5.8.5 Let u be a leaf of a path with n vertices, and let v be a non-leaf
of the same path. There is an injective function from the set of closed walks of
length r starting and ending at u to the set of closed walks of length r starting
and ending at v. If r is even and greater than or equal to 2, then this function
is not surjective.

Proof:

Let the vertices of the path be w1, w2, . . . , wn in this order, with u = w1 and
v = wk for some k ∈ {2, 3, . . . , n− 1}. Let ψ be the “mirror” map on the set
{w1, w2, . . . , wk}, defined by ψ(wr) = wk+1−r. This map also induces a bijec-
tion between the set of closed walks in the path induced by {w1, w2, . . . , wk}
that start and end at u = w1 and those that start and end at v = wk. Now
we define an injection Ψ that maps closed walks starting and ending at u to
those that start and end at v. There are two possible cases for a closed path
W that starts and ends at u:

• If the walk does not reach v, then it lies entirely inside of the subpath
induced by {w1, w2, . . . , wk}. In this case, we simply apply the mirror map
ψ to obtain the image of W under Ψ , which is a closed walk starting and
ending at v.

• Otherwise, we decompose the walk into two pieces: the piece W1 up to the
first time v is reached, and the rest, which we denote byW2. The image Ψ(W )
is obtained as follows: start with W2, and append the image of W1 under ψ,
but with directions reversed (so that first and last vertex are interchanged).
Given Ψ(W ), the decomposition is unique:W2 corresponds to the part up to
the last time that the walk reaches u. Note here that since W1 only contains
v as its final vertex, its image under ψ only contains u as its final vertex, so
the reversed image only contains it as its initial vertex.

In both cases, the preimage of Ψ is unique, and since the images in the first
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case never reach the vertex u while they do in the second case, we cannot get
identical images under Ψ from the two cases either. Thus Ψ is an injection. To
see why it is not a surjection except for the trivial cases where the length is 0
or odd, consider any closed walk starting and ending at v that does not reach
u, and does not lie entirely inside of the subpath induced by {w1, w2, . . . , wk}.
Such a path does not have a preimage under Ψ . �

Lemma 5.8.6 Let w be an arbitrary vertex of a tree T . Let T1 be obtained
from T by appending paths of length k and ℓ (k, ℓ ≥ 1) to w, and let T2 be
obtained from T by appending a single path of length k + ℓ to w. For every
r ≥ 0, we have

Wr(T1) ≥Wr(T2),

and the inequality is strict for all even r ≥ 4.

Proof:

Analogous to the proof of Lemma 5.8.4, using Lemma 5.8.5 instead of
Lemma 5.8.3. �

Theorem 5.8.7 For every tree T with n vertices, we have

EE(T ) ≥ EE(Pn),

and equality holds if and only if T is a path.

Proof:

This theorem follows in the same way as Theorem 5.8.3, using Lemma 5.8.6
instead of Lemma 5.8.2. �

Exercises

1. Let M be a symmetric n × n matrix. Prove that the k-th largest
eigenvalue of M is given by

max
dim(V )=k

min
x∈V \{0}

R(M,x),

where the first maximum is over all k-dimensional subspaces of Rn.
Likewise, prove that the k-th smallest eigenvalue of M is given by

min
dim(V )=k

max
x∈V \{0}

R(M,x).

Deduce the Cauchy interlacing theorem (Theorem 5.2.10) from
these formulas.
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2. Prove that a tree T has a perfect matching (a matching that covers
all vertices) if and only if 0 is not an eigenvalue of T .

3. Let α1, α2, . . . , αn be the eigenvalues of a tree T . Prove the following
formula for the Hosoya index of T :

Z(T ) =

n∏

i=1

√
1 + α2

i .

4. Applying Theorem 5.2.14 to a tree T with n vertices, we see that
the number of rooted spanning forests with k components in T is
equal to the number of matchings of the subdivision graph S(T )
with n− k edges. Find a bijective proof for this fact.

5. Prove the asymptotic formulas in (5.5).

6. Prove Theorem 5.7.3 and Theorem 5.7.4.

7. Let G be a graph with n vertices, m edges and p connected compo-
nents. Prove that

LEL(G) ≤
√
2m(n− p).

8. Prove the following statement from the proof of Theorem 5.7.13:
the minimum of the product a1a2 · · ·ak for positive integers
a1, a2, . . . , ak satisfying a1 + a2 + · · ·+ ak = n is n− k + 1.

9. Prove the following inequalities for the incidence energy:
√
2m ≤ IE(G) ≤

√
2mn

for all graphs G with n vertices and m edges.

10. Let vi and vj be vertices of a non-bipartite connected graph G, and

let w
(r)
ij denote the number of walks of length r from vi to vj . Prove

that
lim
r→∞

(
w

(r)
ij

)1/r
= r(G).

11. Prove the following inequality for the spectral radius: if ∆ is the
maximum degree of a graph G, then

r(G) ≥
√
∆.

12. Deduce the inequalities

r(Pn) ≤ r(T ) ≤ r(Sn)

for all trees T with n vertices from Lemma 5.8.4 and Lemma 5.8.6.

13. Prove that

lim
n→∞

1

n
EE(Pn) =

1

π

∫ π

0

e2 cos t dt.
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257



258 Index

good tree, 59
graph, 1
graphical sequence, 6
greedy tree, 16, 52

Hückel molecular orbital
approximation, 196

handshake lemma, 6
Harary index, 18, 46
harmonic index, 71
height, 3
higher order Randić index, 70
Hosoya index, 10, 117
hyper-Wiener index, 18, 46

incidence energy, 223
incidence matrix, 170
incident, 1
independence number, 9
independence polynomial, 157
independent set, 9
interlacing property, 161
internal vertex, 1

Kirchhoff index, 194
Koolen-Moulton bound, 206
Ky Fan’s theorem, 220

ladder, 166
Laplacian, 171
Laplacian energy, 218
Laplacian-energy-like invariant, 223
leaf, 1
Leibniz formula, 186
level, 8
level-degree sequence, 8, 16
level-greedy tree, 16, 53
line graph, 120
Lucas number, 122

majorization, 7, 19, 146, 209
matching, 9
matching energy, 215
matching generating polynomial, 158
matching number, 9
matching polynomial, 157

matrix-tree theorem, 192
McClelland bound, 204
Merrifield-Simmons index, 10, 117
molecular graph, 2
monotonicity, 10

neighborhood, 1

obliging, 102
odd component, 9
order, 1
oriented incidence matrix, 171

parent, 3
partite set, 2
path, 1, 3
pendant vertex, 1
permutation, 186
Perron-Frobenius theorem, 180

quasi-caterpillar, 4, 35
quasi-order, 164
quasi-tree, 166
quasi-Wiener index, 194

radius, 8
Randić index, 10, 67
Rayleigh quotient, 232
reformulated Zagreb index, 71
root, 3
rooted spanning forest, 189
rooted tree, 3

Sachs graph, 186
second Zagreb index, 67
segment, 8
segment sequence, 9, 34
signless Laplacian, 170
singular value, 222
size, 1
spectral radius, 180, 231
spectrum, 172
spinal index, 27
star, 3
starlike tree, 4, 26
subdivision graph, 195
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sum-connectivity index, 71

terminal Wiener index, 19
third Zagreb index, 71
topological resonance energy, 216
total eccentricity, 30
tree, 1, 3
tree degree sequence, 7
tripod, 166
Tutte-Berge formula, 9

unicyclic graph, 7, 109

valence, 16
Volkmann tree, 59

walk, 172
weight, 67
wheel, 166
Wiener index, 15, 193
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