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Realizable higher-dimensional two-particle entanglements via multiport beam splitters
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Multiport beam splitters are shown to be applicable in feasible optical realizations of higher-dimensional
EPR correlations, and of tests of local realism involving measurements of nondichotomic variables. These
multiports permit optical realizations of any unitary operator in Hilbert spaces of arbitrary finite dimension.
Thus it is shown that one is by no means constrained to entangled spin systems, and to Stern-Gerlach appa-
ratuses. In the analysis the concept of generalized Bell numbers is employed, which is more suitable than the
standard set of spin eigenvalues. The results presented here move the discussion on entangled higher-than-1

2

spin systems from the realm of gedanken experiments to real experiments.@S1050-2947~97!07802-5#

PACS number~s!: 03.65.Bz, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

Two problems connected with the notion of quantum e
tanglement~Schrödinger, 1935@1#! and its consequences i
the form of the Bell theorem are studied here. These are~a!
a search for additional tests against local realism, and~b!
attempts to extend the Bell theorem to nonstandard phen
ena and to find forms for it. Both aspects are intertwined
a theoretical analysis of the consequences of these othe
periments often requires different versions of Bell’s inequa
ties.

So far, no one can claim empirical falsification of th
most general premises of local realism. The widespr
opinion that the delayed-choice polarization-correlation
periments of Aspect, Dalibard, and Roger@2# constitute a
once-and-for-all falsification of the local realistic position a
sumes that the experiments were closer to ideal than
actually the case. These experiments, as well as the multi
of other ones, from the first one by Freedman and Clau
~1972! @3# to the most recent ones~e.g., Tapster, Rarity, and
Owens @4#!, only refute various classes of local-realist
theories which additionally incorporate a version of the f
sampling assumption. They constitute a strong support
anyone also expecting violations of Bell’s inequalities in~fu-
ture! high collection efficiency experiments. Yet, even if o
expects quantum mechanics to be finally definitively co
firmed, as the present authors do, one has to admit that
realistic explanations of existing experiments are still n
completely ruled out@5#. The evidence is not fully compel
ling, and, as physics is an experimental science, there i
obvious need for actually performing further experiments

The new experiments could be reruns of the old ones w
much better equipment~especially detectors! and more reli-
able sources. However, widening the palette of phenom
and ranges of parameters, configurations, etc. available
an experimenter deciding to seek the most efficient way
close some, if not all, loopholes seems to be an impor
task~see, e.g., the reviews by Clauser and Shimony@6#, Bal-
lentine@7#, Greenbergeret al. @8#, Home and Selleri@9#, Be-
linskii and Klyshko@10#, and Peres@11#!.

It is important to show that experimentally accessib
551050-2947/97/55~4!/2564~16!/$10.00
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Einstein-Podolsky-Rosen~EPR! Bell phenomena are no
limited solely to spin or polarization correlations@12#. Cur-
rently we are witnessing the emergence of interesting m
ods of producing entangled states. Cascade sources@2,3#
have already been replaced be parametric down-conver
@13,14#. Atomic interferometry and micromaser techniqu
have also been proposed for production of Greenber
Horne-Zeilinger~GHZ! three-particle entanglement@15,16#.
Exciting applications have been found for EPR phenome
The most spectacular of these seem to be quantum cryp
raphy @17#, quantum teleportation@18#, and ‘‘four-way’’
coding on a single photon@19#. The techniques developed i
the process can be applied for the study of other phenom
like ‘‘superluminal’’ tunneling@20# or nonclassical behavio
of light @21#. A branch of EPR phenomena involving inde
pendent sources of particles is emerging@22,23#.

The present work is devoted to some nonstandard m
ods of obtaining entangled photons. The possibility of p
forming a Bell-type experiment for nondichotomic obser
ables is discussed. Such experiments differ from
conventional ones in many respects. First of all a Hilb
space of three or more dimensions describes the pos
states of each of the subsystems~here a photon!. Thus the
theorem of Gleason@24#, and the later ones of Bell@25# and
Kochen and Specker@26# on noncontextual hidden variabl
theories, can be applied. Any realistic theory that would
tribute a definitive result for each individual member of t
ensemble described by a quantum-mechanical state,
would reproduce the quantum predictions, must be inevita
contextual. That is, the result of a single act of measurem
of a certain observable must be dependent on its context~that
is, whether we measure the observable alone or together
a different one, etc.!. The original Bell theorem is formulated
for two ~entangled! two-dimensional subsystems, for each
which such problems do not arise. For an individual su
system described in two-dimensional Hilbert space, one
always construct a noncontextual ‘‘cryptodeterministic
model. The contradiction with local reality emerges on
when one considers correlations between two or more
ticles. In short, for higher dimensional cases, realistic
scriptions already face conceptual problems at the level
single subsystem.
2564 © 1997 The American Physical Society
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55 2565REALIZABLE HIGHER-DIMENSIONAL TWO-PARTICLE . . .
This has an interesting consequence in the form of the a
ment of Heywood and Redhead@27#. By exploiting the per-
fect EPR correlations, which are characteristic of the sing
~entangled! state of two spins 1, they showed that evenlocal
and locally contextualdeterministic hidden variable theorie
of such a system are incompatible with quantum mechan
Their condition of local contextuality was introduced
avoid the Kochen-Specker contradiction for a single sp
But the EPR correlations in effect introduceelements of re-
ality, and noncontextuality again arises. Thus the Koch
Specker reasoning is applicable again.

Despite these interesting features of higher-dimensio
systems, they are not in the mainstream of the researc
the foundations of quantum physics. Most probably this
due to the complete lack of experimental results. The th
retical research on ‘‘higher spin EPR-Bell correlations;’’ se
e.g.,@11# and@28#, focuses on the spin-correlated subsyste
extending the spin to arbitrarily high values. This is main
motivated by the intention of verifying the very commo
belief that classical properties emerge in the limit of lar
quantum numbers~the actual results of the investigation
suggest a far more ambiguous situation!. However, so far no
experiment, even for unit spins, has been performed, to
knowledge. This is due mainly to the lack of easily contr
lable sources emitting pairs of spin-1~or higher! entangled
objects@29#.

This situation can be changed in two ways. First of a
optical experiments of the EPR-Bell type involving corre
tions of nondichotomic variables can indeed be perform
the phenomenon of spontaneous parametric do
conversion can be used to obtain an optical analog of
singlet state for two correlated spins~of arbitrary magnitude!
@30#, this two-photon state can be fed into certain aggrega
of optical devices~which we shall call multiport beam split
ters!. As a result, higher-dimensional EPR-Bell correlatio
should be observed@30#. A version of the Bell theorem can
be formulated for the predicted two-photon interference p
nomena.

One can design exact optical analogs of the Stern-Ger
apparata. However, the imagination should not be restric
to finding some photonic equivalents of such devices on
One can, e.g., try to generalize the optical nonpolariza
test of the Bell inequalities to the case of nondichotom
local measurements. In this context, here we discuss op
devices@30# which we shall call symmetric Bell multiports
These multiport beam splitters enable one to obtain an a
tional class of possible EPR-Bell experiments~involving cor-
relations of systems effectively described by Hilbert spa
of dimension higher than two!.

Surprisingly, due to some historical peculiarity of the ev
lution of the theoretical research in the field almost the en
effort was so far limited to spin-correlated systems. As,
our case, we no longer deal with spins, it clear that a n
standard method of value assignment can be introduced~by
what we mean representation of a given result, i.e., a ‘‘clic
at certain detector, by a number!. It is argued that the use o
suitably chosen complex numbers of unit modulus~roots of
unity! is more convenient than the standard sets of spin
genvalues. This is one more departure from the stand
treatments.

The experiments with multiport beam splitters presen
u-
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here seem to be the first feasible proposal for nondichoto
Bell tests. Six-port and eight-port beam splitters have alre
been constructed and tested in the laboratory@30#. Some sta-
tistical quantum effects that can be predicted for multip
beam splitters were tested. To this end a six-port and,
separate experiment, an eight-port beam splitter were
with the two-photon radiation of a parametric dow
converter. Highly nonclassical counting statistics were o
served. EPR-Bell experiments involving six-port beam sp
ters are underway@32#.

Multiport beam splitters

Certain aggregates of simpler optical devices can
treated as multiport beam splitters@30#. The idea of a multi-
port beam splitter was discussed in Ref.@33# for the specific
case of homodyne detection schemes. The application
multiport beam splitters in the context of Bell’s theorem w
suggested by Klyshko@34#. He briefly discussed the specifi
case of a six-port device, as a potential method of genera
ing earlier experiments, without giving any predictions of t
EPR correlations, or other phenomena to be expected
such systems.

As it was shown in@35#, multiport devices can reproduc
all finite-dimensional unitary transformations~for single-
photon states!. Such devices can be constructed using sol
the standard~two-input–two-output! beam splitters, mirrors
and phase shifters. This opens the way to build optical a
logs of various measuring apparata~e.g., the Stern-Gerlach
ones, to be discussed below!.

We are interested in reversible unitary processes. T
here we shall study only lossless multiports ofN input ports
andN output ports~some ports can work both as input an
output ports, viz. the Michelson interferometer!; see Fig. 1.
The operation of such a device is described by a unit
matrix UN which gives the probability amplitudes for
single particle~photon! entering via inputi to leave the de-
vice by outputj ~the subscript denotes the dimension of t
matrix!. If we assume monochromatic radiation in each
the beams, then we can represent the input beams by si
kets u i & and the output ones byu j &, and the elements ofUN
are given by

UNji5^ j uUNu i &. ~1!

Within such a description the multiport device is treated a
passive linear mode coupler. The assumption of strict mo
chromaticity enables us to skip all considerations concern
the lengths of various optical paths within the studied d
vices. However, it will be evident~see the figures! that for
the multiports presented here this aspect essentially pose
problems.

FIG. 1. A general U(N) beam splitter: an optical device capab
of reproducing allN-dimensional unitary transformations.
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2566 55ŻUKOWSKI, ZEILINGER, AND HORNE
The specific construction used by Recket al. @34# is based
on an earlier proposal@30# to use a pyramidlike network o
standard beam splitters~i.e., of two input and two outpu
ports!, mirrors and phase shifters~for details, see Fig. 2!.
Here we shall try to present a straightforwardphysicalrea-
soning which may replace the mathematical proof of@34#.
Imagine~Fig. 3! a single photon entering, via the input po
which we callN, a sequence ofN21 standard 232 beam
splitters. The sequence is built in such a way that one ou
beam of thekth beam splitter~for k,N21) is fed into the
input port of the next beam splitter. It is obvious that one c
always select the values of reflectivities and transmittivit
for each beam splitter in such a way that all the probabilit
p( i ), i51, . . . ,N for the photon to leave by the exit porti
can be made arbitrary~except for the obvious constraint o
adding up to 1). Further, one is always free to put a ph
shifter behind every exit port, 1 toN21 ~theNth phase is
irrelevant—only relative phases are observable!. If we de-
note the phase shifts asf( i ), then the quantum-mechanic
amplitude for the photon to leave by thei -th exit port must
be Ap( i )eif( i ). Of course, one can always select the pro
abilities and phases in such a way that

^NuUNu i &5Ap~ i !eif~ i !. ~2!

Note that in the above reasoning we have tacitly assum
that action of all the 232 beam splitters upon the state of th
photon is described by a unitary matrix of real coefficien
e.g., of the type

F sinu cosu

cosu 2sinuG . ~3!

Now imagine a single photon prepared in the state, wh
can be represented as

FIG. 2. A specific pyramidlike construction of a U(N) beam
splitter.

FIG. 3. A row of beam splitters which can produce any on
photon pure state~of theN-dimensional Hilbert space!. The photon
enters the system via the inputN. The moduli of the amplitudes o
the output state are determined by the reflectivities of the be
splitters. Suitable phase shifts behind the exits define the com
phase of the amplitude.
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S Ap~1!e2 if~1!

.

.

Ap~ i !e2 if~ i !

.

.

Ap~N!e2 if~N!

D , ~4!

and then enters the beam-splitter sequence via the p
which were previously the output ports, but now work as t
input ones. The unitary transformation, denoted asT(N21) ,
performed now by the multiport, will, of course, result in th
photon leaving by the~now! output portN with probability
1. That is, the device operating in the reverse mode tra
forms the initial state represented by Eq.~4! into

~0,0, . . . ,0,1!T. ~5!

Thus theNth row @Eq. ~2!# of the unitary matrixUN can be
transformed into Eq.~5!. In other words, one has

T~N21!UN5U ~N21! ^ I N , ~6!

whereU (N21) is a unitary matrix acting in theN21 dimen-
sional subspace of the full Hilbert space~describing the, now
output, modes 1 toN21), and I N is the identity operator
acting in the last dimension~i.e., theNth propagation mode!.

Thus the problem of reproducing the matrixUN by the
devices described by Eq.~1! has been therefore reduced b
one dimension. AfterN21 steps like Eq.~6! we reduce the
matrix to

^
i51

N

I i . ~7!

Thus, in this way, we constructed a pyramidlike devi
which imparts on the photon the unitary transformati
UN

21 . This ends our proof. For further details concerning t
construction please consult@35#.

II. SYMMETRIC MULTIPORT BEAM SPLITTERS
IN EPR-BELL-TYPE EXPERIMENTS

All experimental work concerning the EPR-Bell correl
tions thus far was restricted to two-particle, mostly tw
photon, entangled states, for which each subsystem coul
effectively described by a two-dimensional Hilbert spa
~the first exception from this rule is the experiment, based
the ideas of the present paper, reported in@31#!. The en-
tangled spin-12 states were introduced by Bohm@36#. In the
pioneering experiment by Freedman and Clauser@3#, photon
polarization entanglement was employed. While all wo
with the exception of the original EPR paper, was restric
to entanglement of internal variables, in 1985 it was@12#
proposed to use entanglement of external variables. Eac
the photons could now be in one of the two distincti
beams; thus again one subsystem was effectively descr
by a two-dimensional Hilbert space. Bell-type local yes-
dichotomic measurements@37# could be now performed. The
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55 2567REALIZABLE HIGHER-DIMENSIONAL TWO-PARTICLE . . .
local measuring apparata were proposed to consist of a 5
beam splitter, a phase shifter in front of it, and two photo
tectors behind it~exactly such an experiment was perform
by Rarity and Tapster@38# in 1990!.

A natural extension of the scheme presented in@12# is to
have two particles in an entangled state, with three or m
generallyN possible beams for each particle. Having th
one can apply locally phase shifts inN21 beams, and, far
ther downstream, feed these beams into a localN-input–
N-output generalized beam splitter~to be called a 2N multi-
port here!, and observe coincidences behind two spatia
separated devices of this kind.

We shall consider here onlysymmetricmultiport devices
@29#, which are defined such that the squared moduli of
their input-port–output-port transition amplitudes are eq
to 1/N. Such a system will perform a local unitary transfo
mation on each of the entangled photons, which would
nally end up in one of theN detectors behind an output por
The 50-50 beam splitter is the simplest member of the fa
ily. All such objects have the following physical property:
one photon enters into any single input port its chances
exit are equally split between all output ports.

We treat the multiport beam splitters as devices wh
perform a specified unitary transformation. Thus if w
change any element of their construction in such a way
we obtain as a result a different transformation matrix
will treat this as a different device. However, if one exclud
from the set of possible modifications~i! the trivial opera-
tions of supplying external phase shifters in front of the inp
ports and behind the output ones, and also~ii ! mere relabel-
ling of the output ports, one immediately obtains equivalen
classes of multiports which can be transformed into e
other with these external operations. From now on, in t
section, we shall limit our study to only representative me
bers of such classes. In all applications it is enough jus
know the nontrivial properties of one member of such
class.

If one has aN3N unitary matrix representing a symme
ric multiport beam splitter, it is always possible to abso
any phase factors of the first row into phases of the in
beams, and to absorb the phase factors of the first col
into phases of the output beams. After such manipulati
the matrix representing the multiport, if one extracts t
common modulusA1/N, contains only 1’s in both the firs
column and the first row. Such a matrix is called real b
dered @39#. Multiports endowed with such transformatio
matrices will be taken as the representatives of the equ
lence classes defined earlier. Only such devices will be
cussed in this section.

A. Standard beam splitter

The simplest symmetric multiport is a 50-50 beam sp
ter. It is very easy to show that all such devices form o
equivalence class represented by the beam splitter of the
lowing transformation matrix:

A1/2S 1 1

1 21D . ~8!

Thus if it operates in a two-dimensional Hilbert space, all
elements of the matrix are powers of215exp(i2p/2).
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B. Tritter

The tritter @30# is a generalization of the 50-50 bea
splitter to systems described in three-dimensional Hilb
spaces. Unitarity, the requirement that all its elements ar
the same modulus, and finally the real-bordered form of
limit the tritter transition matrix to the following:

A1/3S 1 1 1

1 c c*

1 c* c
D , ~9!

with c5exp(6i2p/3). Having at our disposal the possibilit
of relabelling the output ports, which is equivalent to perm
tation of the rows one can rewrite the tritter matrix as:

A1/3S 1 1 1

1 a1 a2

1 a2 a4
D , ~10!

where

a5exp~ i2p/3!. ~11!

That is, all matrix elements are powers ofa, and are given
by

Ui j
35a~ i1 j22!5exp@~ i2p/3!~ i21!~ j21!#. ~12!

Again we notice that all elements of a tritter are powers
the same root of unity exp(i2p/3). Further, just like in the
case of the 50-50 beam splitter, there is only one tritter~i.e.,
one class of equivalence!. This will not be so for devices of
still higher dimensions. A specific optical design of a tritt
is given in Fig. 4.

One can easily check that the device of Fig. 4 has
required properties. Assume that action of the 232 beam
splitters of the configuration is described by the product:

FIG. 4. Tritter. The lowermost beam splitter has a reflectiv
R5

1
3; for the other twoR5

1
2, and at the top we have a mirror, i.e

an R51 device. If suitable internal phase shifts are applied,
probabilities for a single photon entering via any input port to e
via any output are equal.
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S 1

A2
i
1

A2
0

i
1

A2
1

A2
0

0 0 1

D SA2

3
0 i

1

A3
0 1 0

i
1

A3
0 A2

3

D
3S 1 0 0

0
1

A2
i
1

A2

0 i
1

A2
1

A2

D . ~13!

The three matrices upon multiplication give

1

A3 S 1 i i

ei2p/3 e2 ip/6 i

ei5p/6 ei2p/3 1
D , ~14!

i.e., the device is indeed a tritter. Please note that this spe
construction does not require internal phase shifts.

C. Symmetric eight-port beam splitters

Turning to higher-multiport devices, one of the most i
teresting results is the existence of distinct equivale
classes. That is, the~real-bordered! transition matrices of
symmetric eight-port beam splitters are given by@32#

221S 1 1 1 1

1 eif 21 2eif

1 21 1 21

1 2eif 21 eif
D . ~15!

Thus we have infinitely many nonequivalent eight-port d
vices, one for each choice off . The equivalence classes a
~continuously! parametrized by the phasef of the range be-
tween 0 andp. This phase is very transparent in the spec
construction, tested in@30#, of a symmetric eight-port device
given in Fig. 5. However, different realizations are also p
sible; see Fig. 2. Please note that, if one setsf5p/2, the
resulting multiport beam splitter has matrix elements wh
are again powers of a root of unity, this tim
i5exp(i2p/4).

FIG. 5. Symmetric eight-port beam splitter. The phasef of Eq.
~12! can be fixed by a single-phase shifter PS inserted into on
the internal paths within the device. Each value of the phase de
equivalence class of symmetric eight-port beam splitters.
fic

e

-

c

-

h

The device of Fig. 5 does not have a pyramidlike stru
ture. This construction requires fewer optical elements.
check that the device of Fig. 5 has the required propert
assume that action of the 232 beam splitters and the phas
shifter of the configuration is described by the product

1
1

A2
0

1

A2
0

2
1

A2
0

1

A2
0

0
1

A2
0

1

A2

0 2
1

A2
0

1

A2

2 S eif 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D

31
1

A2
1

A2
0 0

2
1

A2
1

A2
0 0

0 0
1

A2
1

A2

0 0 2
1

A2
1

A2

2 . ~16!

The resulting unitary transformation reads

1

2 S eif eif 1 1

2eif 2eif 1 1

21 1 21 1

1 21 21 1

D , ~17!

i.e. the device is indeed a quarter.

D. Higher symmetric multiport beam splitters:
Bell multiports

Higher-dimensional multiport beam splitters can be co
structed using the procedure shown in Fig. 2. Here we s
discuss only the case of the higher symmetric multiports
certain specific properties. One can always build an 2N port
with the distinguishing trait that the elements of its transiti
matrix,UN, are builtsolelyout of powers of theNth root of
unity

gN5exp~ i2p/N!, ~18!

namely,

Uj i
N5^ j 8uUNu i &5

1

AN
gN

~ j21!~ i21! . ~19!

Unitarity of UN can be checked with the use of the followin
property of the roots of unity:

of
es
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55 2569REALIZABLE HIGHER-DIMENSIONAL TWO-PARTICLE . . .
(
l51

N

gN
~m21!~ l21!gN

2~k21!~ l21!5Ndmk . ~20!

Of course, forN52, 3, and 4, exactly such devices we
discussed above. We propose to call devices endowed
the property~19! as Bell multiportsbeam splitters. As we
shall see below such devices possess very interesting p
erties which lead to straightforward generalizations of Be
EPR experiments to the realm of nondichotomic observab

An extensive study of the properties of such devices
be found in @40#. The symmetric multiport devices are a
operational realization of the concept ofmutually unbiased
bases; see, e.g.,@41#. Such bases are ‘‘as different as po
sible’’ @11#. A photon which is in the basis stateu i & has equal
chances to leave the symmetric multiport by any exit port
is also worth noting that the matricesUj i

N perform a discrete
Fourier transform on sequences ofN complex numbers.

III. EPR-BELL CORRELATIONS
WITH MULTIPORT BEAM SPLITTERS

A. Preparation of the initial states

After having now introduced multiport beam splitters
physical devices which can perform a unitary transformati
we now turn to the question of the appropriate source
would enable us to feed two multiport devices with a cert
entangled state leading to EPR-Bell correlations. We s
show below that such a source exists: it is the spontane
parametric down-conversion process~PDC!. We shall
present the appropriate source for a two-tritter experim
@30#, and later give its generalization to higher dimension

One can find in the literature very detailed theoretical
scriptions of the PDC process~see, e.g.,@42,43#!. Thus, we
shall only give its essential traits~Fig. 6!. If one shines a
strong monochromatic laser beam on a suitably cut and
ented crystal endowed with a quadratic nonlinearity, so
pump photons spontaneously fission into pairs of photon
lower frequency~for historical reasons called signal an
idler!. The crystal acts as an elastic scatterer, and thus
energy of the photon field is conserved in the process. Th
fore, the frequencies of pump photonvp , signalvs , and
idler v i , satisfy

vp5vs1v i . ~21!

FIG. 6. The type-I spontaneous parametric down convers
process~PDC!. Very strong monochromatic laser light shines up
a crystal endowed with a quadratic nonlinearity. Some pump p
tons spontaneously decay into pairs of lower-energy photons.
emissions are strongly correlated in direction. The pinhole arran
ment presented here is suitable for a two-tritter Bell-type exp
ment ~see next figures!.
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There is no other restriction on the frequency of the PD
photons. The emission is extremely broadband. However,
geometry of the process leads to constructive interferenc
the spontaneous emissions into the so calledphase-matched
directions only. The photonic wave vectors satisfy~within
the crystal!

kp'ks1k i . ~22!

The emissions are therefore strongly correlated directiona
The sharpness of Eq.~22! grows with the size of the crystal
and of the laser beam waist. If the crystal is cut in such a w
that the so called type-I phase-matching condition is sa
fied, both PDC photons are of the same polarization~note
that crystals with quadratic nonlinearities are always nonc
trosymmetric, and thus birefringent!. Due to the phase
matching condition~22! ~single! photons of the same fre
quency are emitted into cones centered at the pump be
By picking photons from a specially chosen cone one c
have PDC radiation with both photons of equal frequen
1
2vp . The selection can be done by a suitable pinhole
rangement in a diaphragm behind the crystal~such an ar-
rangement is shown in Fig. 6!. N pairs of pinholes can be
pierced at points on a circle, drawn on the diaphragm,
centered about the pump beam. The pinholes of each
should be bored at points symmetric with respect to the c
ter of the circle. If the down-conversion photon pass
through one of the pinholes, then the other photon will p
through the diametrically opposite pinhole. Since there
N pairs of diametrically opposite pinholes, the state of t
photon pair will be a superposition of passage through
N pairs of pinholes@13#.

Such a source arrangement for the caseN53 is shown in
Fig. 6. The state describing the coherent superposition for
pair of photons to leave the aperture system with equal pr
ability by either the pinholes 1A and 1B or 2A and 2B or
finally 3A and 3B can be written down as

uc~3!&5A1/3(
m51

3

um,A&um,B&, ~23!

where, e.g.,um,A& describes a particle going through th
pinholemA . This state is formally equivalent to the one
two spin-1 particles in a singlet state~which, theoretically,
will produce interesting three way correlations in two Ste
Gerlach apparatuses!.

Generalizing this method to arbitraryN, one can produce
entangled states of the form

uc~N!&5A1/N(
m51

N

um,A&um,B&. ~24!

The scheme for realization of such a state is a straight
ward development of the idea shown in Fig. 6~more pin-
holes at phase-matched directions!.

B. Two-tritter EPR-Bell experiment

Let us now imagine two spatially separated experimen
who perform the following measurements. Each of th
measuring apparata consist of a set of three phase sh
just in front of a tritter, and three photon detectors~perfect,

n
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in the gedanken situation described here! which register pho-
tons in the output ports of the tritter~Fig. 7!. The phase
shifters serve the role of the devices which set the free m
roscopic, classical parameters which can be controlled by
experimenters~just like the orientations of the Stern-Gerlac
apparata,aW and bW , for the original Bell’s gedanken exper
ment!. Please note that only two phase shifters on each
suffice ~the phase is relative!. Nevertheless, we shall retai
three phase shifts for a while, as in this case the formu
have a very symmetric form, and their generalization
higher-dimensional case becomes obvious. The initial sta
transformed by the phase shifters into

uc~3!8&5A1/3(
m51

3

exp@ i ~fA
m1fB

m!#um,A&um,B&, ~25!

wherefA
m andfB

m describe the action of the phase shifte
The quantum prediction for the joint probabilityPQM(k,n)
to detect a photon at thekth output of tritterA and another
one at thenth output ofB is given by:

PQM~k,n!5
1

3U (m51

3

exp@ i ~fA
m1fB

m!#Umk
3 Umn

3 U2

5~1/3!3U (
m51

3

exp@ i ~fA
m1fB

m!#a~m21!~k1n!U2,
~26!

with, again, a5expi2p/3. If one introduces Fkn[
2
3p(k1n22), this can be put into the following form:

PQM~k,n!5~1/3!3$312@cos~fA
11fB

12fA
22fB

22Fkn!

1cos~fA
21fB

22fA
32fB

32Fkn!

1cos~fA
31fB

32fA
11fB

12Fkn!#%. ~27!

Please note that

PQM~1,1!5PQM~2,3!5PQM~3,2!,

PQM~1,2!5PQM~2,1!5PQM~3,3!, ~28!

PQM~1,3!5PQM~2,2!5PQM~3,1!.

C. Two-tritter perfect EPR correlations

The perfect EPR correlations occur in the two tritter e
periment when one of the probabilities has the value

FIG. 7. A two-tritter Bell-type experiment. The two down
converted photons are fed into two~identical! spatially separated
tritters. The phase shifters are placed close to the input ports o
tritters.
c-
he
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PQM~1,l !5 1
3 . ~29!

This implies thatPQM(1,n)50, for all nÞ l . That is, all
other joint probabilities vanish, except for the counts whi
satisfyk1n511 l ~modulo 3). Thus when the phase shif
are set to the right values, a certain detector count at
spatially separated detector station implies with probabilit
firing of a specific detector on the other side. Thus we hav
typical situation for which the Einstein-Podolsky-Rosen id
of elements of reality may be introduced. In the studied s
tem such correlations arise for

fA
11fB

15fA
21fB

25fA
31fB

3 ~30!

@k1 l52 ~modulo 3! correlation# detection of a photon in
1A8 implies that another one will be detected in 1B8 ; detection
at 2A8 implies a similar event at 3B8 ; and, finally, photon
registration at 3A8 has to be accompanied by another one
2B8 . Similar situations occur for phase settings

fA
11fB

15fA
21fB

212p/35fA
31fB

314p/3 ~31!

(k1 l53 perfect correlations of 1A8 and 2B8 , 2A8 and 1B8 , 3A
and 3B8 ), and finally also for

fA
11fB

15fA
21fB

214p/35fA
31fB

312p/3 ~32!

(k1 l51 correlation: 1A8 with 3B8 , 2A8 with 2B8 , 3A8 with
1B8 ). Thus, while it is maximally uncertain which detecto
will register either of the particles, it is possible to pred
with certainty which detector will register the second partic
once the first particle is observed, as long as the phases
set according to one of the above three conditions. Figur
shows the three types of perfect correlations that arise f
Eqs. ~30!, ~31!, and ~32!. @Note that there are actually si
possible one-to-one combinations between three detector
each side. The types of perfect correlations shown in Fig
arise when we use the same tritter on each side. If we u
pair of tritters which differ by interchanging two outputs~in
one of them!, EPR correlations occur shown in Fig. 9, wit
the original three now being excluded.#

he

FIG. 8. EPR correlations for the two-tritter experiment. The fi
graph shows that for the specific settings of the local phases@Eq.
~30!# firing of the uppermost detector behind the tritterA implies
that the uppermost detector fires behind tritterB. When the midde-
tector of A fires, one can predict with certainty the lowermo
counter ofB to fire, etc. The other two graphs are valid for settin
~31! and~32!, respectively. The value assignment procedure, wh
associates with each detector on one side a power
a5exp(i2p/3), gives unique values for the products of such valu
for EPR-correlated detectors~as listed across the bottom!.
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D. EPR correlations with two Bell multiport beam splitters

Here we shall discuss only the case of the EPR corr
tions in higher Bell multiport devices. The two spatial
separated sets of phase shifters~one phase shifter in eac
beam! transform the initial state into

uc~N!8&5A1/N(
m51

N

exp@ i ~fA
m1fB

m!#um,A&um,B&,

~33!

wherefA
m andfB

m , as before, denote the local phase shif
Each set of local phase shifts constitutes the interferom

ric realizations of the ‘‘knobs’’ at the disposal of the o
server controlling the local measuring apparatus which inc
porates also the Bell multiport device andN detectors. The
quantum prediction for the joint probabilityP(k,l ) to detect a
photon at thekth output of the multiportA and another one
at thel th output of the multiportB is given by

PQM
~k,l !5~1/N!U (

m51

N

exp@ i ~fA
m1fB

m!#Umk
N Uml

N U2

5~1/N3!U (
m51

N

exp@ i ~fA
m1fB

m!#gN
~m21!~k1 l22!U2,

~34!

with gN given by Eq.~18!. One can expand the square of t
modulus, and this leads to

PQM
~k,l !5S 1

N3D SN12(
m.n

N

cos~Fkl
m2Fkl

n !D , ~35!

whereFkl
m[fA

m1fB
m1@m(k1 l22)#(2p/N). The counts at

a single detector, of course, do not depend upon the l
phase settings,

PQM
~k! 5PQM

~ l ! 5
1

N
. ~36!

The most important features of the quantum prediction
already visible in Eq.~34!. The probabilityPQM(k,l ) is de-
pendent solely on the sumk1 l ~moduloN, of course!. The
perfect correlations occur only when for certainl one has
PQM(1,l )51/N @again this implies thatPQM(1,l 8)50 for all
l 8 different from l #. Thus there areN classes of different
perfect correlations. In each class correlated counts are
pected only for outputsk ~sideA) and l ~sideB) for which
k1 l has a specified fixed value~moduloN), no other events

FIG. 9. The types of perfect correlations shown in Fig. 8 ar
when we use the same tritter on each side. If we use a pair of tri
which differ by interchanging two outputs~in one of them!, EPR
correlations occur as shown above, with the original three n
being excluded.
a-

.
t-

r-

al

e
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are allowed. Each detector on one side is allowed to fire o
provided its unique partner fires on the other side. It is int
esting to note that theN classes of allowed perfect correla
tions form a small subset of all theN! members of the full
set of one-to-one relations linking the detectors of sideA
with those of sideB.

To illustrate further these features of the two Bell mul
port device correlations, we present the full set of possi
perfect EPR-correlations for an experiment with two eig
port beam splitters~Fig. 10!. A four-member subset of al
possible 4! graphs is realizable with a given pair of identi
eight-port devices. One can trivially move to another set
graphs by a relabeling of the output ports.

IV. CORRELATION FUNCTIONS. NONCONVENTIONAL
VALUE ASSIGNMENT: BELL NUMBERS

In his pioneering work, Bell@37# discussed the results o
local measurements of dichotomic observables. The stu
observables were the projections of spin-1

2 on certain direc-
tions~specified by the vector describing the orientation of t
Stern-Gerlach apparatus!. Motivated by simplicity, he renor-
malized the eigenvalues of the spin-1

2 operators to11 and
21. The two numbers of Bell have the following propertie
their sum is equal to 0, and they are the two square root
unity. The correlation function of Bell@37# is defined as the
average of the product of the two~local! dichotomic observ-
ables, and~for the singlet state! is given by

E~aW ,bW !52aW •bW , ~37!

where the unit vectors specify the orientations of the t
apparata. The perfect EPR correlations for the system c
sidered by Bell occur for the parameter settings for wh
this correlation function is either equal 1 or21. Thus the

e
rs

w

FIG. 10. EPR correlations for the experiment with two eigh
port beam splitters. Compare the caption of the previous figure.
top row shows EPR correlations for two eight-port beam splitte
both with the internal phase setting atf50 ~thus they are not Bell
multiports!, whereas the bottom row is for phase settingsf5p/2
~that is, for two identical Bell quarters!. It is interesting that for the
upper case the value assignment procedure, which associates
each detector on one side a power ofi5exp(i2p/4), cannevergive
unique values for the products of such values for EPR-correla
detectors. However, forf5p/2, the perfect EPR correlation
shown in the bottom row have the property that the products of
values are unique, as listed across the bottom.
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two numbers,61, naturally signify the two types of perfec
correlations which are possible for the two spin-1

2 case. For a
given perfect EPR correlation the product of the measu
values of the two dichotomic variables always has the sa
value (61). We shall show below that for the two-Bel
multiport device experiment one can find a set of numb
with similar properties. One can associate them with pho
registration acts at specified detectors. Surprisingly, these
not the numbers which form the usual set of eigenvalue
higher than12 spin projection operators.

Let us first discuss the two-tritter case. One might
tempted to assign the values11, 0, and21 to the three
possible outcomes on each side. However, such a proce
has some disadvantages, because when calculating the
uct of the values~the way Bell did it!, the appearance of
‘‘0’’ result on any side always leads to a 0 value for the
product, independent of which type of correlation occurs a
thus information is lost. Therefore, here we propose a dif
ent procedure which aims at curing this problem. We ass
the numbersa, a2, anda351 to the three possible outcome
on either side. It then follows that the product of the tw
local values for the three cases of perfect EPR correlat
are equal to powers ofa ~see Fig. 8!. Our nonstandard
choice can be expressed in the simplest way as the as
ment of a valueak21 to a detection event at thekth detector
on a side. The usual features of the third complex roots
unity

(
k51

3

ak50,

~38!

uaku51

are evident generalizations of the properties of the orig
Bell numbers.

The correlation function of Bell for our experiment d
fined with the use of these numbers reads

E~fA
1 ,fA

2 ,fA
3 ;fB

1 ,fB
2 ,fB

3 ! ~39!

5 (
k51, l51

3

a~k21!a~ l21!P~k,l !~fA
1 ,fA

2 ,fA
3 ;fB

1 ,fB
2 ,fB

3 !,

~40!

whereP(k,l ) is the probability of the firing of detectorsk and
l . For the perfect EPR correlations it acquires the value eq
to one of the Bell numbers~that this is indeed so will be
shown later!.

Let us move to the general case of two 2N multiport
devices. For the case of correlations between two parti
fed into two spatially separated multiports, it is quite natu
to try to generalize the procedure just given. However,
should point out, forN.3 this procedure, including the un
conventional Bell values assignment of theNth roots of
unity to the detectors, seems to fail unless the multiport
vices are Bell multiport devices@30# ~see the caption of Fig
9!.

For the two-Bell-multiport device experiment~the one de-
scribed in Sec. III! a good choice is to assign the valu
gN
k21 to a detection event at outputk ~the same assignmen

for both sides!. The features ofNth complex roots of unity
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(
k51

N

gN
k 50,

~41!
ugN

~k21!u51

are generalizations of the properties discussed earlier.
The generalized Bell correlation function should give t

average value of the product of pairs results; thus in our c
it reads

E~fA
1 , . . . ,fA

N ;fB
1 , . . . ,fB

N!5 (
k51

N

(
l51

N

gN
k21gN

l21P~k,l !.

~42!

The quantum-mechanical prediction for this correlation fun
tion can be easily calculated in the following way. First w
observe that

(
k1 l5m11

gN
k21gN

l21PQM
~k,l !5NgN

m21PQM
~1,m! , ~43!

and thus with the use of the explicit formula for the pro
abilities the overall expression for the correlation functi
becomes

1

N2(
l51

N

gN
l21U (

m51

N

gN
~m21!~ l21!exp@ i ~fA

m1fB
m!#U2. ~44!

Now one can write the squared modulus as a product o
sum and its complex conjugate, and with the use of iden
~20!, one obtains

E~fA
1 , . . . ,fA

N ;fB
1 , . . . ,fB

N!

5
1

N(
m51

N

exp@ i ~fA
m1fB

m2fA
m112fB

m11!#,

~45!

where the numerical values of the indices are to be und
stood moduloN. ForN52, it is easy to see that the functio
reduces to

cos@~fA
12fA

2 !1~fB
12fB

2 !#, ~46!

i.e., it acquires its standard form.

V. BELL THEOREM FOR THE MULTIPORT
EXPERIMENTS

The quantum prediction for the joint probabilityPQM
(k,l ) to

detect a photon at thekth output of multiportA and another
one at thel th output ofB is given by Eq.~35! ~we assume
perfect detection and perfect interferometers!, whereas the
counts at a single detector, of course, do not depend upon
local phase settings~36!. The predicted results of the exper
ments described above cannot be reproduced by any l
realistic theory. We shall show below that this claim can
substantiated by the application of the Clauser-Horne B
inequalities~see, e.g.,@6#!.

Despite the fact that these inequalities were derived
the case of an experiment involving dichotomic variabl
they are also useful for the two-Bell-multiport experiment,
we shall see. The Clauser-Horne~CH! inequalities impose
constraints on coincident counts and singles counts at a
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tain pair of detectors. There is nothing in their original de
vation which specifies what kind of quantum process is be
monitored by the detector pair. Thus they are applicable
the counts at any pair of~spatially separated! detectors be-
hind our multiport devices. Using our earlier notation, th
can be put into the following form:

21<PLR
~k,l !~a,b!1PLR

~k,l !~a,b8!1PLR
~k,l !~a8,b!

2PLR
~k,l !~a8,b8!2PLR

~k!~a!2PLR
~ l ! ~a!<0, ~47!

where the letters LR indicate that the inequality is satisfi
by theories that comply with the premises oflocal realism.
The symbolsa, a8 andb, b8 denote the settings of the loca
operational parameters, in our case the phase shiftsfA

m ,
fA8

m and fB
m , fB8

m (m51, . . . ,N), i.e., a5$fm;m
51, . . . ,N%, etc. The hidden variable version of a local re
istic theory of the family of experiments introduced abo
requires that the probabilities of coincident counts can
expressed in the form

PLR
~k,l !~a,b!5E dl r~l!PA

~k!~l,a!PB
~ l !~l,b!, ~48!

wherer(l) is the distribution of the hidden variables, an
PA
(k)(l,a) is the probability of a detection of the photon

the kth detector behind the multiportA ~see Fig. 7!, if the
local macroscopic parameters settings are ata, and the hid-
den variable describing the system isl @6#. The probability
PB
( l )(l,b) is analogously defined for a detection event beh

the multiportB. The locality assumption reveals itself by th
absence of the parameterb in PA

(k)(l,a), i.e., this probability
is independent of the settings of the remote apparatusB, and
analogouslyPB

(k)(l,b) is independent ofa. One immediately
can derive the inequality~47! by recalling that that for any
x, y, x8 andy8, which are between 0 and 1, one must ha
@45#

21<xy1xy81x8y2x8y82x2y<0, ~49!

puttingx5PA
(k)(l,a), y5PB

(k)(l,b), etc., and finally averag
ing the resulting expression over the distributionr(l).

We shall now demonstrate that the Clauser-Horne
equalities are violated for any two Bell-multiport expe
ments. To make our reasoning as simple as possible le
restrict the range of the macroscopic parameters to those
isfying Fkl

m50 for allmÞ1 ~i.e., we let only one local phas
to be varied; the other ones are fixed at zero!; then one ob-
tains

PQM
~1,1!~fA

1 ,fB
1 !5

1

N3 „~N21!21112~N21!cos~fA
11fB

1 !….

~50!

Putting this into the CH inequality we obtain~for the optimal
settings! the contradiction

N21

N3 ~4A224!<0. ~51!

Thus no local realistic description of the experiment is p
sible.
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Let us now discuss the impact of some imperfections
the experiment on the above result. The visibility of the p
terns followed by the probabilities in the actual experime
may be lower than the one predicted for the perfect case.
shall describe the expected form of the experimental res
in the following way:

Pexpt
~1,1!~fA

11fB
1 !5~12r !

1

N2 1
r

N3

3„~N21!21112~N21!cos~fA
11fB

1 !…,

~52!

where 0<r<1. The parameterr has been introduced to de
scribe the reduction of the visibility of the underlying perfe
quantum-interference pattern~50!, due to various possible
disturbances. The first term in Eq.~52! represents the
‘‘noise’’ introduced by these imperfections.

The threshold value for parameterr ~above which we
have a violation of CH inequality! is given by

r tr~N!5
N

N1~2A222!
. ~53!

For the lowestN’s one hasr tr(2)5A1/2'0.707 ~a well-
known result!, r tr(3)'0.784, r tr(4)'0.826, and r tr(5)
'0.858. This means, that the requirement on the perfec
of the interferometric setup grows withN.

It is interesting to notice that the actual visibility of th
modulation of the probabilityPexpt

(1,1) for the thresholdr is
given by

Vtr~N!5
2~N21!~A211!

21~A211!„~N21!211…
. ~54!

One now has Vtr(2)5A1/2'70.7%, and surprisingly
Vtr(3)'68.6%, Vtr(4)'55.4%, andVtr(5)'44.9%. This
stems from the fact that forN.2 the visibility of theperfect
quantum fringes, as predicted by Eq.~50! for N.2, is less
than 100%, namely, 2(N21)/@(N21)211#.

Various imperfections of the experiment, like the appro
mate nature of the phase-matching condition~22!, which
may cause only one of the two entangled photons to pass
pinholes, losses at optical elements, and finally less than
fect quantum efficiency of the detectors, change the rela
weight of the observed coincident counts to that of t
singles. One can introduce acollection efficiency paramete
h (0,h,1) to describe the effect of all those imperfectio
~we tacitly assume a symmetric situation!. The rate of counts
at a single detector will be lowered by the factorh, i.e.,

Pimperf
~n! 5hPQM

~n! , ~55!

wheren5k or l , whereas for the coincidences one will ha

Pimperf
~k,l ! 5h2PQM

~k,l ! . ~56!

Even for no visibility reduction, the threshold value ofh
allowing for a violation of the Bell inequality~47! is quite
demanding, and reads
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h tr~N!5
N2

N212~A221!~N21!
, ~57!

i.e., one has h tr(2)'0.828, h tr(3)'0.844, and
h tr(4)'0.865.

If one allows all local phase settings to be varied
PQM
(k,l ) @given by Eq.~35!#, then one obtains a stronger viola

tion of the Clauser-Horne inequality. For example, for t
two tritter case, the search of the maximum of the mid
expression of the CH inequality gives2271.748.0 ~a
MATHEMATICA calculation!. This is slightly more than the
value of the left-hand side of the expression~51! for N53.
Also the experimentally relevant parametersr tr(3) and
h tr(3) decrease their values to 0.774 and 0.837, respectiv
The second value is only slightly larger than the us
threshold forN52.

We conjecture that future investigations will lead to d
ferent Bell inequalities, further lowering those limits. In th
Appendix we present a version of the Bell theorem involvi
the correlation functions for which the critical value ofr
decreases to34.

VI. OPTICAL ANALOGS OF SPIN-1 STERN-GERLACH
DEVICES AND THE KOCHEN-SPECKER

CONTRADICTION

As was already mentioned earlier, thus far most of
theoretical studies of higher dimensional entanglement w

confined to higher thans5 1
2 correlated spins. There is a ric

literature of the subject@45,28#. However, to our knowledge
no experiment has been done.

We would like to present here an optical analog of t
spin-1 EPR-Bell gedanken experiments. We are intere
specifically in reproducing the experiment extensively d
cussed by Mermin and Schwarz, and other authors@40#,
which involved two spin-1 particles in a singlet state fed in
two spatially separated Stern-Gerlach apparata.

A. Initial state

The beam entanglement shown in Fig. 6, clearly, can
produce the properties of the singlet state of a two spi
system:

uc~3!&5A1/3 (
m521

1

~21!mum,A&u2m,B&, ~58!

where we have changed the numeration of the beam
make it correspond to the set of eigenvalues of spin-1. I
evident that the exact production of this state will be poss
with appropriate tuning of all six phase shifts. However,
order to obtain state~58!, up to a trivial external phase facto
it is enough to tune only two of them, say at side A~this is
one of the striking properties of the entanglement!.

B. Optical analog of a spin-1 Stern-Gerlach device

As the next step we construct a local measuring appar
that would mimic the Stern-Gerlach device@47#. First of all,
if the situation described by Eq.~58! is to be treated as
equivalent to the spin case, then, due to the fact that the
e

ly.
l
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ed
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-
1

to
is
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te

of our photons represents an entanglement of thedirections
of propagation of the particles, measurement of thesz com-
ponent of the ‘‘spin’’ can be defined simply by placing,
each side of the experiment, three detectors~one for each
beam!. Thus if, say, the detector at sideA in beamm clicks,
such an event will be treated as equivalent to obtaining
valuem in the case of a measurement ofsz performed upon
a real spin-1 object.

However, we must be also able to construct a dev
which is equivalent to measurement of anarbitrary compo-
nent of spin-1. To this end, we need a multiport beam spli
which imparts on the local subsystem a unitary transform
tion which is identical to the one which transforms the eige
vectors of thez component of the spin,sz , into the eigen-
states of an arbitrary componentn•s. If the unit vectorn is
represented by

n5~sinu cosf,sinu sinf,cosu!, ~59!

such a transformation can be represented~in the original ba-
sis! by the following product of unitary~rotation! matrices:

R~n!5Ry~u!Rz~f!

5F 1
2 ~11cosu! 2A1

2 sinu
1
2 ~12cosu!

A 1
2 sinu cosu 2A1

2 sinu

1
2 ~12cosu! A1

2 sinu
1
2 ~11cosu!

G
3F e2 if 0 0

0 1 0

0 0 eif
G . ~60!

Of course, the diagonal matrix represents just two conjug
phase shifts performed upon the beams 1 and21. The op-
erational realization of the other matrix is more involved.

According to Recket al. @35#, any unitary operator can b
split into a sequence of U~2! beam-splitter operators acting i

FIG. 11. The optical analog of a Stern-Gerlach device~simula-
tion of a spin-1 particle!. Only the devices needed to obtain th
second, third, and fourth unitary transfomation of Eq.~61! are
shown. The box represents a Mach-Zehnder~MZ! interferometer
with a tunable internal phaseu, and the external phase correctio
@compare Eq.~62!#. The other two beam splitters are 50-50 one
and the top object is a mirror. The unitary transformation~61!,
performed by the full device, acts upon a single-photon state, an
exactly equal~in the mathemacital sense! to the unitary transforma-
tion linking the spin-1 eigenstates ofs–z, wherez5(0,0,1), with
those ofs–n, where in turnn5(sinu,sinu,cosu).
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two-dimensional subspaces~this method includes also th
possibility of relabelling of the output and input ports, a
introducing phase shifts!. Please note that one can deco
pose the matrixRy(u) in the following way:

F 0 1 0

1 0 0

0 0 1
GF 1 0 0

0 A1

2
A1

2

0 A1

2
2A1

2

G F sinu 0 cosu

0 1 0

cosu 0 2sinu
G

3F 2A1

2
A1

2
0

A1

2
A1

2
0

0 0 1
G F 0 0 1

1 0 0

0 1 0
G . ~61!

This decomposition defines the structure of the multiport
vice performing the transformationRy(u). The first and the
last matrix represent trivial relabelings of the input and
output ports. The middle ones represent action of three s
dard 232 beam splitters, mixing, respectively, the amp
tudes of first the beam 1 and 0, then 1 and21, and finally 0
and21. Thus, once one chooses a specific basis to repre
the measurement of the spin componentsz , one can indeed
construct a multiport of the properties specified by mat
~60!. In this way one can select superpositions of the origi
photon basis states which are exact analogs of the eigens
of the operatorn•s. In other words, a photon leaves the mu
tiport via output portm with probability 1, only if its initial
state was a coherent superposition of the original directi
of propagation with coefficients exactly equal to the comp
conjugate of themth row of the matrixR(n).

It is an interesting feature of the actual constructi
shown above that the anglesf andu, which define the di-
rection of the ‘‘spin component,’’ translate here in a simp
way into the two opposite phase shifts@represented by
Rz(f)#, and the reflection and transmission amplitudes
only one beam splitter. If one wants the device to be tuna
so that, depending on the settings of the parameters, it w
be able to performany transformationR(n), these ampli-
tudes cannot be fixed. They must be variable. To this e
one can replace the middle beam splitter with an equiva
Mach-Zehnder interferometer~as shown in Fig. 11!. One can
build the Mach-Zehnder with the use of two symmetric be
splitters and two phase shifters. The unitary transformati
representing these devices, when multiplied, should re
duce the matrix of the tunable beam splitter. For simplic
we shall describe this property within the two-dimension
subspace of the degrees of freedom upon which the inte
ometer operates. An exemplary realization reads

exp„i ~u2p/2!…
1

A2
F1 i

i 1GFe
i2u 0

0 1G 1A2 F1 i

i 1G
5F sinu cosu

cosu 2sinuG . ~62!
-

-
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The overall phase shift, exp„i (u2p/2)…, is applied to com-
pensate the relative phase otherwise introduced by su
device with respect to the third degree of freedom.

If one places three detectors behind the 333 multiport
beam splitter performing the unitary transformationR(n),
one obtains an exact analog of a Stern-Gerlach device m
suring the componentn•s of the spin. With two such multi-
port devices, the state~58!, and six detectors, one has all th
is needed to perform the optical analog of the~usual! gedan-
ken EPR-Bell experiments involving correlations of spin
particles.

Construction of devices like the ones described abov
within the reach of any good quantum optical laboratory
involves only standard optical elements. Thus the multipo
open the possibility of actually performing the Bell-typ
~gedanken! experiments discussed in the literature. Since
the bibliography of the problem one can find the appropri
Bell inequalities for the experiment~e.g. @45#!, we shall not
discuss them here.

C. Optical analogs of the observables
of the Kochen-Specker paradox

In this section we will present the construction of th
optical analogs of the operators used in the reasoning
Kochen and Specker@26#. The paradoxical contradiction
between realistic theories and quantum mechanics are in
case state independent. The properties of the operator alg
play the essential role. However, the postulates concern
realistic theories are of a different kind than those leading
Bell inequalities.

The argument assumes that for a realistic theory the~pre-
determined! results of measurements are independent of th
context. That is, the result of the act of measurement of
operator, say (s•nz)

2 ~wherenz is again a unit vector defin
ing thez direction of acertain triad of orthogonal unit vec-
tors!, depends solely on the properties of the system to
measured. It should not depend on whether we mea
(s•nz)

2 alone or togetherwith any other commuting~i.e.,
commeasurable! observable. Kochen and Specker focused
operators like (s•nz)

2 because it has a degenerate spectru
With such an operator one cannot unambiguously associa
complete set of commuting observables. There are many
tually noncommuting operators which still commute wi
(s•nz)

2. If an operator is degenerate, there are different ba
in which it is diagonal. Such bases correspond, of course
inequivalent operational situations.

An operator is calledmaximalif it possesses a nondegen
erate spectrum. Thus its diagonalization is unambiguous
refers to solely one operational procedure. For the spi
object one can easily find an example of a nontrivial ma
mal operator commuting with (s•nz)

2, namely

G~nx ,ny ,nz!5a~s•nx!
21b~s•ny!

21c~s•nz!
2 ~63!

~we do not denote this operator by its usual symbol,H @26#,
since it is a bit confusing, as this usually reserved in
literature for the Hamiltonian!. The numbersa, b, andc are
arbitrary distinct real numbers. Thanks to this fact the sp
trum ofG, which consists ofa1b, b1c, andc1a, is non-
degenerate.
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2576 55ŻUKOWSKI, ZEILINGER, AND HORNE
One more crucial assumption of the Kochen-Specker
cussion links the values of the outcomes of the meas
ments of commuting observables. Let the functional relat
between the two observables, sayA and B, be given by
B5 f (A), where f is a certain function. A realistic theor
would assign to each individual system, denoted here by
index k, of an ensemble described by the quantum s
uc& a set of numerical values for each observable (Ak for
A, Bk for B). These values must belong to the spectrum
the observables concerned. Thus one must haveBk5 f (Ak).

One has for any three orthogonal spatial directionsnx ,
ny , andnz,

~s•nx!
21~s•ny!

21~s•nz!
25s~s11!52. ~64!

Therefore, as the spectrum of each square of a compone
the spin-1 operator consists solely of 0 and 1, one of
values„(s•nx)

2
…k , „(s•ny)

2
…k , and„(s•nz)

2
…k must be 0, and

the other two 1.
The Kochen-Specker theorem shows that all that was

above is self-contradictory. A set of directions is given f
which there is no possibility whatsoever to assign 1’s and
in a way which is consistent with the constraint imposed
Eq. ~64!. For the detailed geometric argument leading to
above see@26,11,47#.

The results of Sec. V enable us to propose optical ana
of the operational situations leading to the contradiction.
can already build a device reproducing anys•nz operator.
Obviously, the same device can be used to meas
(s•nz)

2. We simply ignore the sign of the nonzero eige
value ofs•nz . This sign may be even made totally inacce
sible for us by superposing the beams11 and21 on a
standard 50-50 beam splitter. Surprisingly, via this sim
trick we create the operational procedure to meas
G(nx ,ny ,nz). It is easy to show thatG has the following set
of eigenvectors:

ub1c&5A1

2
~ u21&nz2u11&nz)5u0&nx ,

ua1c&5A1

2
~ u21&nz1u11&nz)5u0&ny , ~65!

ua1b&5u0&nz,

where, e.g.,u0&nz denotes the eigenket ofs•nz associated
with the eigenvalue 0. The beam splitter needed to perfo
this transformation is described by the matrix

F 2A1

2
0 A1

2

0 1 0

A1

2
0 A1

2
G . ~66!

Further, as the argument rests upon different operatio
procedures which may pertain to the measurement of
same degenerate operator, we should be able to b
G(nx8 ,ny8 ,nz). This operator is similar in its nature t
s-
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G(nx ,ny ,nz); however, a different triad of orthogonal direc
tions is used. Thez direction is still the same~this is required
for the commeasurability of ourG with s•nz), while the two
other vectors have been rotated, say, by the angleb. It is
obvious that the eigenstates ofG(n8x ,n8y ,nz) are given by:

ub1c&85A1

2
~eibu21&nz2e2 ibu11&nz)5u0&n8x,

~67!

ua1c&85A1

2
~eibu21&nz1e2 ibu11&nz)5u0&n8y,

ua1b&5u0&nz. ~68!

This can be achieved by introducing two opposite ph
shifts behind the optical Stern-Gerlach device~a slightly
modified version of this arrangement is presented in Fig. 1!.
The full transformation now reads

F 2A1

2
0 A1

2

0 1 0

A1

2
0 A1

2
G F e2 ib 0 0

0 1 0

0 0 eib
G . ~69!

With the construction of this device we now have a meth
enabling us to build an optical equivalent of any of the o
erators involved in the Kochen-Specker reasoning.

The clear representation of the operational procedures
volved in the Kochen-Specker argument enables one to
derstand more intuitively the physical reason for the con
diction. Let us imagine the following situation. We prepare
photon in an arbitrary state. It is important to make th
preparation in an event-ready scheme@22#. This means that
we use an operational procedure which enables us to k
that we indeed have a single photon in the apparatus e
before the actual detection~for details, see@22#!. In this way
we have a preparation of the system which fully agrees w

FIG. 12. The optical equivalent of the maximal observableG
~for details see text!. The device must discriminate between thr
eigenstates given by Eq.~68!. This can be done by introducing
phase shift in the21 beam of the value 2b. The beam splitter BS
has a transformation matrix given by Eq.~66!. The resulting output
states differ from those of Eq.~68! only by overall phase factors
The system composed of the phase shifter and detector st
$Dx8,Dy8% can be, in principle separated by an arbitraly long d
tance form the detectorDz ~this enables one to invoke Einstein
locality in our argument!.
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the quantum-mechanical interpretation of the state~i.e., as
describing an ensemble of identically prepared systems!. We
pass the photon through the machine measu
G(nx8 ,ny8 ,nz), in order to measure (s•nz)

2. Now, if we reg-
ister a click at the detectorDz in the path 0, than we can sa
that the measured result is 0. No click in the path 0 me
that the result is 1. Now, please note that the beam spli
and the two conjugate phase shifters which define the o
two directions involved, namely,n8x ,n8y , can be placed ar
bitrarily far away from the aforementioned detector. Th
Einstein’s locality would demand that click or no click
Dz should not depend upon the setting of the remote ph
b. This is a clear argument for noncontextuality in this ca

So where must the contextuality enter? The Kochen-a
Specker-type arguments~@25,26,11,46#! proceed by consid-
ering a whole series of orthogonal triads. If we want to bu
a tunable device which would provide optical analogs
maximal operators which are commeasurable with, s
(s•nx)

2, we can do it in the following way. First, we con
struct an optical Stern-Gerlach device for (s•nx). Second, we
build theG(ny8 ,nz8 ,nx) device. The cyclic permutation of th
indicesx, y, andz has been done deliberately. Our constru
tion of the operator defines first the unprimed vector, a
behind this device we put the setup~69!, which enables us to
perform the rotation to the primed directions. The contex
ality is transparent when one notices that the devi
G(ny ,nz ,nx) and G(nx ,ny ,nz) are, from an operationa
point of view, different constructions. One cannot contin
ously modify the phaseb to transform the first device into
the second one. The two devices are interferometers
completely different construction. Please note here the d
analogy with the version of the proof of the impossibility
noncontextual realistic models of quantum mechanics gi
by Bell @25#.

The present authors view these facts as a direct man
tation of the validity of the operational ideas of Bohr, whic
are the main pillar of the Copenhagen interpretation.

VII. FINAL REMARKS

The present paper presents,in statu nascendi, the theory
of some applications of the idea of optical multiport devic
to areas of research connected with fundamental questio
quantum mechanics. One can expect experimental resul
be presented soon~@32#!. Also we expect new theoretica
results, not necessarily of our authorship.
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APPENDIX: BELL THEOREM FOR THE TRITTER
CORRELATION FUNCTION

The correlation functions described in the main text ca
not be reproduced by any local realistic theory. We sh
explicitly prove this claim here only for the two-tritter ex
periment~the generalization for higher Bell multiport bea
splitters is possible!.

Let us first write down the expected structure of a loc
hidden variable prediction for the two-tritter experimen
Motivated by simplicity, here we shall represent the loc
realistic theories by their version employing determinis
hidden variables. It is well known that, once the Bell the
rem is established for this case, one can easily presen
more refined versions@8#.

We denote the set of hidden variables describing the
dividual system byl, and the distribution of these for th
ensemble of pairs of particles involved in the experiment
r(l). The result of the measurement at sideA(B), predeter-
mined by l, is given by functionsVA(fA

1 ,fA
2 ,fA

3 ;l)
„VB(fB

1fB
2fB

3 ;l)…. The functionsVA andVB depend solely
on thelocal settings of the phase shifters. The values of th
functions are, of course, limited to the set of Bell numbe
for the experiment, herea, a2, and a351. We shall not
assume any specific form of these functions. Following B
@37#, the local hidden variable prediction for the correlatio
function has the following structure:

EHV~fA
1 ,fA

2 ,fA
3 ;fB

1 ,fB
2 ,fB

3 !

5E dlr~l!VA~fA
1 ,fA

2 ,fA
3 ;l!VB~fA

1 ,fA
2 ,fA

3 ;l!.

~A1!

Our aim is to show that the quantum prediction for t
two-tritter experiment, namely@compare Eq.~45!#

EQM~fA
1 ,fA

2 ,fA
3 ;fB

1 ,fB
2 ,fB

3 !

5 1
3 (
m51

3

exp@ i ~fA
m1fB

m2fA
m112fB

m11!#, ~A2!

where all indices are modulo 3, cannot be reproduced
~A1!.

We shall present now a derivation of a simple Bell i
equality for the two-tritter experiment@46#, which will in-
volve four local macroscopic parameter settings at each
tially separated location.

Thus we shall enable the experimenter at each side
choose between four possible settings of the system of l
phase shifters. This is equivalent to testing the quantum
relation functionEQM at 434516 points of its domain. Let
us denote the four possible settings of the system of ph
shifters in front of the tritterA by the indexa51, . . . ,4 ~a
similar index for the settings of the parameters atB will be
calledb). The phase shifts of theath setting will be denoted
by fA

1(a) , fA
2(a) , and fA

3(a) ~similarly we have fB
1(b) ,

fB
2(b) , andfB

3(b) on sideB). As it was mentioned earlier, on
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can always choose the third phase to be 0~this will be used
below, and thus we skip this parameter from all expressio!.

Let us first formulate a certain lemma. The matrix

N5F 1 a2 0 a

a2 1 a 0

0 a 1 a2

a 0 a2 1

G ~A3!

has the following property:

maxU(
a51

4

(
b51

4

ana1mbNabU56, ~A4!

where the maximum is taken over all possible pairs of q
druples$n1,n2, n3, n4% and $m1, m2, m3, m4% of arbitrary
natural numbers. Thus, the equality~A4! is a specific prop-
erty of the Bell numbera and the matrixNab. It is very easy
to write a computer program to find the maximum.

Let us now apply this auxiliary lemma to our problem
The possible values ofVA andVB are limited to the powers
of a. Thus the upper bound of the expression

maxlU(
a,b

VA~fA
1~a! ,fA

2~a! ;l!VB~fB
1~b! ,fB

2~b! ;l!NabU
~A5!

is 6. Please note, that this fact is independent of the ac
phases definingVA andVB .

The hidden variable correlation function has the struct
~A1!. The modulus of an average of a variable cannot
greater than the maximum modulus of its value. Thus, a
averaging the expression~A5! overr(l), we finally obtain a
Bell inequality for the problem in the form of upper boun
for the sum of the products of the values of the hidden v
able correlation function. The explicit form of the inequali
reads

U(
a,b

EHV~fA
1~a! ,fA

2~a! ;fB
1~b! ,fB

2~b!!NabU<6, ~A6!

The quantum predictions can violate this inequality. If, f
the phases on sideA, one chooses the settings

$fA
1~1! ,fA

1~2! ,fA
1~3! ,fA

1~4!%5$p/3,4p/3,4p/3,p/3%,
~A7!

$fA
2~1! ,fA

2~2! ,fA
2~3! ,fA

2~4!%5$p/3,p/3,4p/3,4p/3%,
~A8!
e

-

al

e
e
r

i-

and, for sideB,

$fB
1~1! ,fB

1~2! ,fB
1~3! ,fB

1~4!%5$0,p,p,0%, ~A9!

$fB
2~1! ,fB

2~2! ,fB
2~3! ,fB

2~4!%5$0,0,p,p%, ~A10!

then for the chosen phases the quantum prediction satis

EQM
ab [EQM~fA

1~a! ,fA
2~a! ;fB

1~b! ,fB
2~b!!5

2

3
Nab* ,

~A11!

where * denotes complex conjugation.
It is very easy to check that at the specific settin

namely, Eqs.~A7!–~A10!, the quantum predictions, whe
inserted to inequality~A6! instead ofEHV , violate this in-
equality, as evidently

(
a,b

EQM
ab Nab5 2

3(
a,b

Nab*Nab58, ~A12!

thus we have a violation of the Bell inequality Eq.~A6! by
3313%.

In the actual experiment one cannot expect that the pr
abilities will follow the pattern given by Eq.~27!, but rather
the data would be close to the following:

PQM
expt~k,n!5~1/3!3$31r @2cos~fA

11fB
12fA

22fB
22Fkn!

1cos~fA
21fB

22fA
32fB

32Fkn!

1cos~fA
31fB

32fA
11fB

12Fkn!#%, ~A13!

i.e., we expect to observe, due to various reasons, lower
ibility ~given byr ) than 1. Due to the above, the experime
tal correlation function,Eexpt, would also have its variations
degraded by the same factor:

Eexpt~fA
1~a! ,fA

2~a! ;fB
1~b! ,fB

2~b!!

5rEQM~fA
1~a! ,fA

2~a! ;fB
1~b! ,fB

2~b!!. ~A14!

We can insertEexpt into Eq.~A6!, instead ofEHV , and fix its
settings to the phases defining Eq.~A11!, thus obtaining

(
a,b

Eexpt
ab Nab58r . ~A15!

It is clear that the inequality~A6! is violated only forr. 3
4.

This is a considerable improvement over the Clauser-Ho
inequalities studied in the main text.
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1993!; A. Zeilinger, M. Żukowski, M. A. Horne, H. J. Bern-
stein, and D. M. Greenberger, inQuantum Interferometry, ed-
ited by F. DeMartini and A. Zeilinger~World Scientific, Sin-
gapore, 1994!.

@31# C. Mattle, M. Michler, H. Weinfurter, A. Zeilinger, and M
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