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About This Book

Introduction to Engineering Analysis is designed to teach first-year engineering  students 
how to perform engineering analyses using a systematic problem-solving method. 
Written for students embarking on any engineering major, the book introduces 
the fundamental principles of a variety of engineering subjects and then applies 
the  problem-solving method to those subjects. Following introductory chapters on 
 analysis, design, and dimensions and units, the book outlines and illustrates the 
 problem-solving method in detail. The problem-solving method is then used through-
out the rest of the book. Chapters include topics traditionally introduced in the first 
or second year of an engineering curriculum: engineering mechanics, electrical cir-
cuits, thermodynamics, and fluid mechanics. The last three chapters cover fundamen-
tal principles of renewable energy followed by chapters on graphing and statistics. 
 Approximately 40 percent of the end-of-chapter problems in the fifth edition are 
 revised or new. Studied conscientiously, this book will help students get a good start in 
their engineering coursework.
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1.1 INTRODUCTION
What is analysis? A dictionary definition of analysis might read something like this:

the separation of a whole into its component parts, or an examination of a 
complex system, its elements, and their relationships.

Based on this general definition, analysis may refer to everything from the study 
of a person’s mental state (psychoanalysis) to the determination of the amount of 
certain elements in an unknown metal alloy (elemental analysis). Engineering analysis, 
however, has a specific meaning. A concise working definition is:

analytical solution of an engineering problem, using mathematics and prin-
ciples of science.

Engineering analysis relies heavily on basic mathematics such as algebra, geom-
etry, trigonometry, calculus, and statistics. Higher level mathematics such as linear al-
gebra, differential equations, and complex variables may also be used. Principles and 
laws from the physical sciences, particularly physics and chemistry, are key ingredients 
of engineering analysis.

Engineering analysis involves more than searching for an equation that fits a prob-
lem, plugging numbers into the equation, and “turning the crank” to generate an 

After reading this chapter, you 
will have learned
• What engineering  

analysis is
• That analysis is a major 

component of the  
engineering curriculum

• How analysis is used in  
engineering design

• How analysis helps  
engineers prevent and  
diagnose failures

Objectives

The Role of 
Analysis in 
Engineering1

C H A P T E R
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2 Chapter 1 The Role of Analysis in Engineering

answer. It is not a simple “plug and chug” procedure. Engineering analysis requires 
logical and systematic thinking about the engineering problem. The engineer must 
first be able to state the problem clearly, logically, and concisely. The engineer must 
understand the physical behavior of the system being analyzed and know which 
scientific principles to apply. He or she must recognize which mathematical tools to 
use and how to implement them by hand or on a computer. The engineer must be 
able to generate a solution that is consistent with the stated problem and any simpli-
fying assumptions. The engineer must then ascertain that the solution is reasonable 
and contains no errors.

Engineering analysis may be regarded as a type of modeling or simulation. For 
example, suppose that a civil engineer wants to know the tensile stress in a cable of 
a suspension bridge that is being designed. The bridge exists only on paper, so a 
direct stress measurement cannot be made. A scale model of the bridge could be 
constructed, and a stress measurement taken on the model, but models are expen-
sive and very time-consuming to develop. A better approach is to create an analyti-
cal model of the bridge or a portion of the bridge containing the cable. From this 
model, the tensile stress can be calculated.

Engineering courses that focus on analysis, such as statics, dynamics, mechanics 
of materials, thermodynamics, and electrical circuits, are considered core courses 
in the engineering curriculum. Because you will be taking many of these courses, 
it is vital that you gain a fundamental understanding of what analysis is and, more 
importantly, how to do analysis properly. As the bridge example illustrates, analysis 
is an integral part of engineering design. Analysis is also a key part of the study of 
engineering failures.

Engineers who perform engineering analyses on a regular basis are referred 
to as engineering analysts or analytic engineers. These functional titles are used to 
differentiate analysis from the other engineering functions such as research and 
development (R&D), design, testing, production, sales, and marketing. In some 
engineering companies, clear distinctions are made between the various engineer-
ing functions and the people who work in them. Depending on the organizational 
structure and the type of products involved, large companies may dedicate a sep-
arate department or group of engineers to be analysts. Engineers whose work is 
dedicated to analysis are considered specialists. In this capacity, the engineering 
analyst usually works in a support role for design engineering. It is not uncommon, 
however, for design and analysis functions to be combined in a single department 
because design and analysis are so closely related. In small firms that employ only a 
few engineers, the engineers often bear the responsibility of many technical func-
tions, including analysis.

PROFESSIONAL SUCCESS—CHOOSING  
AN ENGINEERING MAJOR

Perhaps the biggest question facing the new engineering student (besides 
“How much money will I make after I graduate?”) is “In which field of engi-
neering should I major?” Engineering is a broad area, so the beginning stu-
dent has numerous options. The new engineering student should be aware 
of a few facts. First, all engineering majors have the potential for preparing 
the student for a satisfying and rewarding engineering career. As a profes-
sion, engineering has historically enjoyed a fairly stable and well-paid market. 

M01_HAGE4428_05_SE_C01.indd   2 12/11/20   2:16 PM



1.1 Introduction 3

There have been fluctuations in the engineering market in recent decades, 
but the demand for engineers in all the major disciplines is high, and the 
future looks bright for engineers. Second, all engineering majors are aca-
demically challenging, but some engineering majors may be more challeng-
ing than others. Study the differences between the various engineering pro-
grams. Compare the course requirements of each program by examining the 
course listings in your college or university catalog. Ask department chairs or 
advisors to discuss the similarities and differences between their engineer-
ing programs and the programs in other departments. (Just keep in mind 
that professors may be eager to tell you that their engineering discipline is 
the best.) Talk with people who are practicing engineers in the various disci-
plines and ask them about their educational experiences. Learn all you can 
from as many sources as you can about the various engineering disciplines. 
Third, and this is the most important point, try to answer the following ques-
tion: “What kind of engineering will be the most gratifying for me?” It makes 
little sense to devote four or more years of intense study of X engineering 
just because it happens to be the highest paid discipline, because your uncle 
Vinny is an X engineer, because X engineering is the easiest program at your 
school, or because someone tells you that they are an X engineer, so you 
should be one too.

Engineering disciplines may be broadly categorized as either mainstream 
or narrowly focused. Mainstream disciplines are the broad-based, traditional 
disciplines that have been in existence for decades (or even centuries) and 
in which degrees are offered by most of the larger colleges and universities. 
Many colleges and universities do not offer engineering degrees in some of 
the narrowly focused disciplines. Chemical, civil, computer, electrical, and 
mechanical engineering are considered the core mainstream disciplines. 
These mainstream disciplines are broad in subject content and represent the 
majority of practicing engineers. Narrowly focused disciplines concentrate on 
a particular engineering subject by combining specific components from the 
mainstream disciplines. For example, biomedical engineering may combine 
portions of electrical and mechanical engineering plus components from bi-
ology. Construction engineering may combine elements from civil engineer-
ing and business or construction trades. Other narrowly focused disciplines 
include materials, aeronautical and aerospace, environmental, nuclear, ce-
ramic, geological, manufacturing, automotive, metallurgical, corrosion, 
ocean, and cost and safety engineering.

Should you major in a mainstream area or a narrowly focused area? The 
safest thing to do, especially if you are uncertain about which discipline to 
study, is to major in one of the mainstream disciplines. By majoring in a main-
stream area, you will graduate with a general engineering education that will 
make you marketable in a broad engineering industry. On the other hand, 
majoring in a narrowly focused discipline may lead you into an extremely sat-
isfying career, particularly if your area of expertise, narrow as it may be, is in 
high demand. Perhaps your decision will be largely governed by geographical 
issues. The narrowly focused majors may not be offered at the school you wish 
to attend. These are important issues to consider when selecting an engineer-
ing major.
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4 Chapter 1 The Role of Analysis in Engineering

1.2 ANALYSIS AND ENGINEERING DESIGN
Design is the heart of engineering. In ancient times, people recognized a need 
for protection against the natural elements, for collecting and utilizing water, for 
finding and growing food, for transportation, and for defending themselves against 
other people with unfriendly intentions. Today, even though our world is much 
more advanced and complex than that of our ancestors, our basic needs are essen-
tially the same. Throughout history, engineers have designed various devices and 
systems that met the changing needs of society. The following is a concise definition 
of engineering design:

a process of devising a component, system, or operation that meets a spe-
cific need.

The key word in this definition is process. The design process is like a road map 
that guides the designer from need recognition to problem solution. Design engi-
neers make decisions based on a thorough understanding of engineering funda-
mentals, design constraints, cost, reliability, manufacturability, and human factors. 
A knowledge of design principles can be learned in school from professors and 
books, but in order to become a good design engineer, you must practice design. 
Design engineers are like artists and architects who harness their creative powers 
and skills to produce sculptures and buildings. The end products made by design 
engineers may be more functional than artistic, but their creation still requires 
knowledge, imagination, and creativity.

Engineering design is a process by which engineers meet the needs of society. 
This process may be described in a variety of ways, but it typically consists of the 
systematic sequence of steps shown in Figure 1.1.

Design has always been a key element of engineering programs in colleges 
and universities. Traditionally, engineering students take a “senior design” or a 
“capstone design project” course in their senior year. Recognizing that design is 
indeed the heart of engineering and that students need an earlier introduction 
to the subject, many schools integrate design experiences earlier in the curricu-
lum, perhaps as early as the introductory course. By introducing design at the 
level that introductory mathematics and science courses are taught, engineering 
programs provide students a meaningful context within which mathematics and 
science are applied.

What is the relationship between engineering analysis and engineering de-
sign? As we defined it earlier, engineering analysis is the analytical solution of an 
engineering problem, using mathematics and principles of science. The false notion 
that engineering is merely mathematics and applied science is widely held by 
many beginning engineering students. This may lead a student to believe that 
engineering design is the equivalent of a “story problem” found in high school 
algebra books. However, unlike math problems, design problems are “open 
ended.” This means, among other things, that such problems do not have a sin-
gle “correct” solution. Design problems have many possible solutions, depend-
ing on the decisions made by the design engineer. The main goal of engineering 
design is to obtain the best or optimum solution within the specifications and 
constraints of the problem.

So, how does analysis fit in? One of the steps in the design process is to obtain a 
preliminary concept of the design. (Note that the word design here refers to the actual 
component, system, or operation that is being created.) At this point, the engineer be-
gins to investigate design alternatives. Alternatives are different approaches, or options, 
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1.2 Analysis and Engineering Design 5

Define objectives

Choose a design
strategy

Gather information

Make a first attempt
at the design

Build a prototype

Revise

Document

Test

Does the prototype
meet specifications?

Test the finished
product

Does finished product
meet specifications?

Market

Yes

No

Yes

No

Figure 1.1
The engineering design 
process.

that the design engineer considers to be viable at the conceptual stage of the design. 
For example, some of these concepts may be used to design a better mousetrap:

• use a mechanical or an electronic sensor;
• insert cheese or peanut butter as bait;
• construct a wood, plastic, or metal cage;
• install an audible or a visible alarm;
• kill or catch and release the mouse.

Analysis is a decision-making tool for evaluating a set of design alternatives. By 
performing analysis, the design engineer zeroes in on the alternatives that yield 
the optimum solution, while eliminating alternatives that either violate design con-
straints or yield inferior solutions. In the mousetrap design, a dynamics analysis 
may show that a mechanical sensor is too slow, resulting in delaying the closing of 
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6 Chapter 1 The Role of Analysis in Engineering

a trap door and therefore freeing the mouse. Thus, an electronic sensor is chosen 
because it yields a superior solution.

The application that follows illustrates how analysis is used to design a machine 
component.

P

D

L
Figure 1.2
A machine  
component.

DESIGNING A MACHINE COMPONENT
One of the major roles for mechanical engineers is the design of machines. Machines 
can be very complex systems consisting of numerous moving components. In order 
for a machine to work properly, each component must be designed so that it per-
forms a specific function in unison with the other components. The components 
must be designed to withstand specified forces, vibrations, temperatures, corrosion, 
and other mechanical and environmental factors. An important aspect of machine 
design is determining the dimensions of the mechanical components.

Consider a machine component consisting of a 20-cm-long circular rod, as 
shown in Figure 1.2. As the machine operates, the rod is subjected to a 100-kN 
tensile force. (The unit “kN” stands for “kilo newton,” which denotes 1000 new-
ton. A newton is a unit of force). One of the design constraints is that the axial 
deformation (change in length) of the rod cannot exceed 0.5 mm if the rod is to 
interface properly with a mating component. Taking the rod length and the ap-
plied tensile force as given, what is the minimum diameter required for the rod?

A
PP

LIC
AT

IO
N

To solve this problem, we use an equation from mechanics of materials,

δ =
PL
AE

where

δ =   axial deformation (m)

=P    axial tensile force (N)
=L   original length of rod (m)
= =A D /  π 4  cross-sectional area of rod (m )2 2

=E modulus of elasticity (N/m ).2

The use of this equation assumes that the material behaves elastically (i.e., it 
does not undergo permanent deformation when subjected to a force). Upon sub-
stituting the formula for the rod’s cross-sectional area into the equation and solving 
for the rod diameter D, we obtain

πδ
=

4
.D

PL
E
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1.3 Analysis and Engineering Failure 7

As the application example illustrates, analysis is used to ascertain what design 
features are required to make the component or system functional. Analysis is used 
to size the cable of a suspension bridge, to select a cooling fan for a computer, to 
size the heating elements for curing a plastic part in a manufacturing plant, and to 
design the solar panels that convert solar energy to electrical energy for a spacecraft. 
Analysis is a crucial part of virtually every design task because it guides the design en-
gineer through a sequence of decisions that ultimately lead to the optimum design. 
It is important to point out that in design work, it is not enough to produce a drawing 
or CAD (computer-aided design) model of the component or system. A drawing by 
itself, while revealing the visual and dimensional characteristics of the design, may 
say little, or nothing, about the functionality of the design. Analysis must be included 
in the design process if the engineer is to know whether the design will actually 
work when it is placed into service. Also, once a working prototype of the design is 
constructed, testing is performed to validate analysis and to aid in the refinement of 
the design.

1.3 ANALYSIS AND ENGINEERING FAILURE
With the possible exception of farmers, engineers are probably the most taken-for-
granted people in the world. Virtually all the man-made products and devices that 
people use in their personal and professional lives were designed by engineers. Think 
for a moment. What is the first thing you did when you arose from bed this morning? 
Did you hit the snooze button on your alarm clock? Your alarm clock was designed 

We know the tensile force P, the original rod length L, and the maximum axial 
deformation δ . But to find the diameter D, we must also know the modulus of 
elasticity E. The modulus of elasticity is a material property, a constant defined by 
the ratio of stress to strain. Suppose we choose 7075-T6 aluminum for the rod. This 
material has a modulus of elasticity of =E 72 GPa. (Note: a unit of stress, which 
is force divided by area, is the pascal (Pa). =1 Pa 1 N/m2  and =1 GPa 10  Pa9 .) 
Substituting values into the equation gives the following diameter:

π
=

×
×

= =

D
4(100 10  N)(0.20 m)

(0.0005 m)(72 10  N/m )

0.0266 m 26.6 mm.

3

9 2

As part of the design process, we wish to consider other materials for the rod. Let’s 
find the diameter for a rod made of structural steel =E( 200 GPa). For structural 
steel, the rod diameter is

π
=

×
×

= =

D
4(100 10  N)(0.20 m)

(0.0005 m)(200 10  N/m )

0.0160 m 16.0 mm.

3

9 2

Our analysis shows that the minimum diameter for the rod depends on the material 
we choose. Either 7075-T6 aluminum or structural steel will work as far as the axial 
deformation is concerned, but other design issues such as weight, strength, wear, 
corrosion, and cost should be considered. The important point to be learned here 
is that analysis is a fundamental step in machine design.
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8 Chapter 1 The Role of Analysis in Engineering

by engineers. What did you do next, go into the bathroom, perhaps? The bathroom 
fixtures — the sink, bathtub, shower, and toilet — were designed by engineers. Did 
you use an electrical appliance to fix breakfast? Your toaster, waffle maker, microwave 
oven, refrigerator, and other kitchen appliances were designed by engineers. Even if 
you ate cold cereal for breakfast, you still took advantage of engineering because en-
gineers designed the processes by which the cereal and milk were produced, and they 
even designed the machinery for making the cereal box and milk container! What 
did you do after breakfast? If you brushed your teeth, you can thank engineers for 
designing the toothpaste tube and toothbrush and even formulating the toothpaste. 
Before leaving for school, you got dressed; engineers designed the machines that 
manufactured your clothes. Did you drive a car to school or ride a bicycle? In either 
case, engineers designed both transportation devices. What did you do when you ar-
rived at school? You sat down in your favorite chair in a classroom, removed a pen or 
pencil and a note pad from your backpack, and began another day of learning. The 
chair you sat in, the writing instrument you used to take notes, the notepad you wrote 
on, and the bulging backpack you use to carry books, binders, paper, pens, and pen-
cils, plus numerous other devices were designed by engineers.

We take engineers for granted, but we expect a lot from them. We expect every-
thing they design, including alarm clocks, plumbing, toasters, automobiles, chairs, and 
pencils, to work and to work all the time. Unfortunately, they don’t. We experience 
a relatively minor inconvenience when the heating coil in our toaster burns out, but 
when a bridge collapses, a commercial airliner crashes, or a space shuttle explodes, and 
people are injured or die, the story makes headline news, and engineers are suddenly 
thrust into the spotlight of public scrutiny. Are engineers to blame for every failure that 
occurs? Some failures occur because people misuse the products. For example, if you 
persist in using a screwdriver to pry lids off cans, to dig weeds from the garden, and to 
chisel masonry, it may soon stop functioning as a screwdriver. Although engineers try 
to design products that are “people proof,” the types of failures that engineers take 
primary responsibility for are those caused by various types of errors during the design 
phase. After all, engineering is a human enterprise, and humans make mistakes.

Whether we like it or not, failure is part of engineering. It is part of the design pro-
cess. When engineers design a new product, it seldom works exactly as expected the first 
time. Mechanical components may not fit properly, electrical components may be con-
nected incorrectly, software glitches may occur, or materials may be incompatible. The 
list of potential causes of failure is long, and the cause of a specific failure in a design is 
probably unexpected because otherwise the design engineer would have accounted for 
it. Failure will always be part of engineering, because engineers cannot anticipate every 
mechanism by which failures can occur. Engineers should make a concerted effort to 
design systems that do not fail. If failures do arise, ideally they are revealed during the 
design phase and can be corrected before the product goes into service. One of the 
hallmarks of a good design engineer is one who turns failure into success.

The role of analysis in engineering failure is twofold. First, as discussed  
earlier, analysis is a crucial part of engineering design. It is one of the main decision- 
making tools the design engineer uses to explore alternatives. Analysis helps estab-
lish the functionality of the design. Analysis may therefore be regarded as a failure 
prevention tool. People expect kitchen appliances, automobiles, airplanes, televi-
sions, and other systems to work as they are supposed to work, so engineers make 
every reasonable attempt to design products that are reliable. As part of the design 
phase, engineers use analysis to ascertain what the physical characteristics of the 
system must be in order to prevent system failure within a specified period of time. 
Do engineers ever design products to fail on purpose? Surprisingly, the answer is 
yes. Some devices rely on failure for their proper operation. For example, a fuse 
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1.3 Analysis and Engineering Failure 9

“fails” when the electrical current flowing through it exceeds a specified amperage. 
When this amperage is exceeded, a metallic element in the fuse melts, breaking the 
circuit, thereby protecting personnel or a piece of electrical equipment. Shear pins 
in transmission systems protect shafts, gears, and other components when the shear 
force exceeds a certain value. Some utility poles and highway signs are designed to 
safely break away when struck by an automobile.

The second role of failure analysis in engineering pertains to situations where 
design flaws escaped detection during the design phase, only to reveal themselves 
after the product was placed into service. In this role, analysis is utilized to address the 
questions “Why did the failure occur?” and “How can it be avoided in the future?” 
This type of detective work in engineering is sometimes referred to as forensic engineer-
ing. In failure investigations, analysis is used as a diagnostic tool of reevaluation and 
reconstruction. Following the explosion of the Space Shuttle Challenger in 1986, engi-
neers at Thiokol used analysis (and testing) to reevaluate the joint design of the solid 
rocket boosters. Their analyses and tests showed that, under the unusually cold con-
ditions on the day of launch, the rubber O-rings responsible for maintaining a seal 
between the segments of one of the solid rocket boosters lost resiliency and therefore 
the ability to contain the high-pressure gases inside the booster. Hot gases leaking 
past the O-rings developed into an impinging jet directed against the external (liquid 
hydrogen) tank and a lower strut attaching the booster to the external tank. Within 
seconds, the entire aft dome of the tank fell away, releasing massive amounts of liquid 
hydrogen. Challenger was immediately enveloped in the explosive burn, destroying 
the vehicle and killing all seven astronauts. In the aftermath of the Challenger disaster, 
engineers used analysis extensively to redesign the solid rocket booster joint.

FAILURE OF THE TACOMA NARROWS BRIDGE
The collapse of the Tacoma Narrows Bridge was one of the most sensational failures in 
the history of engineering. This suspension bridge was the first of its kind spanning the 
Puget Sound, connecting Washington State with the Olympic Peninsula. Compared 
with existing suspension bridges, the Tacoma Narrows Bridge had an unconventional 
design. It had a narrow two-lane deck, and the stiffened-girder road structure was 
not very deep. This unusual design gave the bridge a slender, graceful appearance. 
Although the bridge was visually appealing, it had a problem: it oscillated in the wind. 
During the four months following its opening to traffic on July 1, 1940, the bridge 
earned the nickname “Galloping Gertie” from motorists who felt as though they were 
riding a giant roller coaster as they crossed the 2800-ft center span. (See Figure 1.3.) 
The design engineers failed to recognize that their bridge might behave more like the 
wing of an airplane subjected to severe turbulence than an earth-bound structure sub-
jected to a steady load. The engineers’ failure to consider the aerodynamic aspects of 
the design led to the destruction of the bridge on November 7, 1940, during a 42-mile-
per-hour wind storm. (See Figure 1.4.) Fortunately, no people were injured or killed. 
A newspaper editor, who lost control of his car between the towers due to the violent 
undulations, managed to stumble and crawl his way to safety, only to look back to see 
the road rip away from the suspension cables and plunge, along with his car and pre-
sumably his dog, which he could not save, into the Narrows below.

Even as the bridge was being torn apart by the windstorm, engineers were testing 
a scale model of the bridge at the University of Washington in an attempt to under-
stand the problem. Within a few days following the bridge’s demise, Theodore von 
Karman, a world renowned fluid dynamicist, who worked at the California Institute of 

A
PP

LIC
AT

IO
N

M01_HAGE4428_05_SE_C01.indd   9 12/11/20   2:16 PM



10 Chapter 1 The Role of Analysis in Engineering

Figure 1.3
The Tacoma Narrows Bridge twisting in the wind. (AP Images)

Figure 1.4
The center span of the Tacoma Narrows Bridge plunges into Puget Sound. (AP Images)
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1.3 Analysis and Engineering Failure 11

Technology, submitted a letter to Engineering News-Record outlining an aerodynamic 
analysis of the bridge. In the analysis, he used a differential equation for an idealized 
bridge deck twisting like an airplane wing as the lift forces of the wind tend to twist the 
deck one way, while the steel in the bridge tends to twist it in another way. His analysis 
showed that the Tacoma Narrows Bridge should indeed have exhibited an aerody-
namic instability more pronounced than any existing suspension bridge. Remarkably, 
von Karman’s “back of the envelope” calculations predicted dangerous levels of vibra-
tion for a wind speed less than 10 miles per hour over the wind speed measured on 
the morning of November 7, 1940. The dramatic failure of Galloping Gertie forever es-
tablished the importance of aerodynamic analysis in the design of suspension bridges.

The bridge was eventually redesigned with a deeper and stiffer open-truss struc-
ture that allowed the wind to pass through. The new and safer Tacoma Narrows 
Bridge was opened on October 14, 1950.

PROFESSIONAL SUCCESS—LEARN  
FROM FAILURE

The Tacoma Narrows Bridge and countless other engineering failures teach 
engineers a valuable lesson:

Learn from your own failures and the failures of other engineers.

Unfortunately, the designers of the Tacoma Narrows Bridge did not learn 
from the failures of others. Had they studied the history of suspension bridges 
dating back to the early nineteenth century, they would have discovered that 
10 suspension bridges suffered severe damage or destruction by winds.

NASA and Thiokol learned that the pressure-seal design in the solid rocket-
booster joint of the Space Shuttle Challenger was overly sensitive to a variety of 
factors such as temperature, physical dimensions, reusability, and joint loading. 
Not only did they learn some hard-core technical lessons, they also learned some 
lessons in engineering judgment. They learned that the decision-making pro-
cess culminating in the launch of Challenger was flawed. To correct both types of 
errors, during the two-year period following the Challenger catastrophe, the joint 
was redesigned, additional safety-related measures were implemented, and the 
decision-making process leading to shuttle launches was improved.

In another catastrophic failure, NASA determined that fragments of in-
sulation that broke away from the external fuel tank during the launch of 
the Space Shuttle Columbia impacted the left wing of the vehicle, severely 
damaging the wing’s leading edge. The damage caused a breach in the wing’s 
surface which, upon reentry of Columbia, precipitated a gradual burn-through 
of the wing, resulting in a loss of vehicle control. Columbia broke apart over 
the southwestern part of the United States, killing all seven astronauts aboard.

If we are to learn from engineering failures, the history of engineering 
becomes as relevant to our education as design, analysis, science, mathemat-
ics, and the liberal arts. Lessons learned not only from our own experiences, 
but also from those who have gone before us, contribute enormously to the 
improvement of our technology and the advancement of engineering as a 
profession. Errors in judgment made by Roman and Egyptian engineers are 
still relevent in modern times, notwithstanding a greatly improved chest of 
scientific and mathematical tools. Engineers have and will continue to make 
mistakes. We should learn from these mistakes.
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Analysis and engineering design

 1.1 The following basic devices are commonly found in a typical home or office. 
Discuss how analysis might be used to design these items.

a. tape dispenser
b. scissors
c. fork
d. mechanical pencil
e. door hinge
f. refrigerator
g. toilet
h. incandescent light bulb
i. microwave oven
j. waste basket
k. three-ring binder
l. light switch
m. doorknob

n. stapler
o. can opener
p. flashlight
q. kitchen sink
r. electrical outlet
s. soft drink can
t. toaster
u. screwdriver
v. chair
w. table
x. mailbox
y. drawer slide
z. padlock

PROBLEMS
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Figure P1.2

 1.2 A 1-m-long cantilevered beam of rectangular cross section carries a uniform 
load of =w 15 kN/m. The design specification calls for a 5-mm maximum 
deflection of the end of the beam. The beam is to be constructed of fir 

=( 13 GPa).E  By analysis, determine at least five combinations of beam 
height h and beam width b that meet the specification. Use the equation

=
8

max

4
y

wL
EI

where

= deflection of end of beam (m)maxy

= uniform loading (N/m)w

= beam length (m)L

= modulus of elasticity of beam (Pa)E

= =I bh /12 moment of inertia of beam cross section (m ).3 4

Note: = =1 Pa 1 N/m ,  1 kN 10  N2 3 , and =1 GPa 10  Pa.9

What design conclusions can you draw about the influence of beam height 
and width on the maximum deflection? Is the deflection more sensitive to 
h or b? If the beam were constructed of a different material, how would the 
deflection change? See Figure P1.2 for an illustration of the beam.

Analysis and engineering failure

 1.3 Identify a device from your own experience that has failed. Discuss how it 
failed and how analysis might be used to redesign it.

 1.4 Research the following notable engineering failures. Discuss how analysis 
was used or could have been used to investigate the failure.

a. Dee bridge, England, 1847
b. Boiler explosions, North America, 1870–1910
c. Titanic, North Atlantic, 1912
d. Hindenburg airship, New Jersey, 1937
e. Apollo I capsule fire, Cape Canaveral, Florida, 1967
f. Apollo 13, 1970
g. Ford Pinto gas tanks, 1970s
h. Teton dam, Idaho, 1976
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14 Chapter 1 The Role of Analysis in Engineering

i. Hartford Civic Center, Connecticut, 1978
j. Skylab, 1979
k. Three Mile Island nuclear power plant, Pennsylvania, 1979
l. American Airlines DC-10, Chicago, 1979
m. Hyatt Hotel, Kansas City, 1981
n. Union Carbide plant, India, 1984
o. Space shuttle Challenger, 1986
p. Chernobyl nuclear power plant, Soviet Union, 1986
q. Highway I-880, Loma Prieta, California earthquake, 1989
r. Green Bank radio telescope, West Virginia, 1989
s. Hubble space telescope, 1990
t. ValuJet Airlines DC-9, Miami, 1996
u. Mars Climate Orbiter, 1999
v. Space shuttle Columbia, 2003
w. Levees, New Orleands, Louisiana, 2005
x. BP oil spill, Gulf of Mexico, 2010
y. Nuclear power plant, Okuma, Fukushima, Japan, 2011
z. Florida International University pedestrian bridge collapse, Sweetwater, 

Florida, 2018
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2.1 INTRODUCTION
Suppose for a moment that someone asks you to hurry to the grocery store to buy 
a few items for tonight’s dinner. You get in your car, turn the ignition on, and drive 
down the road. Immediately you notice something strange. There are no numbers or 
divisions on your speedometer! As you accelerate and decelerate, the speedometer in-
dicator changes position, but you do not know your speed because there are no mark-
ings to read. Bewildered, you notice that the speed limit and other road signs between 
your house and the store also lack numerical information. Realizing that you were 
instructed to arrive home with the groceries by 6 pm, you glance at your digital watch 
only to discover that the display is blank. Upon arriving at the store, you check your 
list: 1 pound of lean ground beef, 4 ounces of fresh mushrooms, and a 12-ounce can 
of tomato paste. You go to the meat counter first but the label on each package does 
not indicate the weight of the product. You grab what appears to be a 1-pound pack-
age and proceed to the produce section. Scooping up a bunch of mushrooms, you 
place them on the scale to weigh them, but the scale looks like your speedometer—it 
has no markings either! Once again, you estimate. One item is left: the tomato paste. 
The canned goods aisle contains many cans, but the labels on the cans have no nu-
merical information—no weight, no volume, nothing to let you know the amount of 
tomato paste in the can. You make your purchase, drive home, and deliver the items 
mystified and shaken by the whole experience.

After reading this chapter, you 
will have learned
• How to check equations for 

dimensional consistency
• The physical standards on 

which units are based
• Rules for proper usage of 

SI units

• Rules for proper usage of 
English units

• The difference between 
mass and weight

• How to do unit conversions 
between the SI and English 
unit systems

Objectives

Dimensions 
and Units2

C H A P T E R
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16 Chapter 2 Dimensions and Units

The preceding Twilight Zone-like story is, of course, fictitious, but it dramati-
cally illustrates how strange our world would be without measures of physical 
quantities. Speed is a physical quantity that is measured by the speedometers in 
our automobiles and the radar gun of a traffic officer. Time is a physical quan-
tity that is measured by the watch on our wrist and the clock on the wall. Weight 
is a physical quantity that is measured by the scale in the grocery store or at 
the health spa. The need for measurement was recognized by the ancients, who 
based standards of length on the breadth of the hand or palm, the length of the 
foot, or the distance from the elbow to the tip of the middle finger (referred to 
as a cubit). Such measurement standards were both changeable and perishable 
because they were based on human dimensions. In modern times, definite and 
unchanging standards of measurement have been adopted to help us quantify 
the physical world. These measurement standards are used by engineers and sci-
entists to analyze physical phenomena by applying the laws of nature such as 
conservation of energy, the laws of thermodynamics, and the law of universal 
gravitation. As engineers design new products and processes by utilizing these 
laws, they use dimensions and units to describe the physical quantities involved. 
For instance, the design of a bridge primarily involves the dimensions of length 
and force. The units used to express the magnitudes of these quantities are usu-
ally either the meter and newton or the foot and pound. The thermal design of 
a boiler primarily involves the dimensions of pressure, temperature, and heat 
transfer, which are expressed in units of pascal, degrees Celsius, and watt, respec-
tively. Dimensions and units are as important to engineers as the physical laws 
they describe. It is vitally important that engineering students learn how to work 
with dimensions and units. Without dimensions and units, analyses of engineer-
ing systems have little meaning.

2.2 DIMENSIONS
To most people, the term dimension denotes a measurement of length. Certainly, 
length is one type of dimension, but the term dimension has a broader meaning. A 
dimension is a physical variable that is used to describe or specify the nature of a measurable 
quantity. For example, the mass of a gear in a machine is a dimension of the gear. 
Obviously, the diameter is also a dimension of the gear. The compressive force in 
a concrete column holding up a bridge is a structural dimension of the column. 
The pressure and temperature of a liquid in a hydraulic cylinder are thermody-
namic dimensions of the liquid. The velocity of a space probe orbiting a distant 
planet is also a dimension. Many other examples could be given. Any variable that 
engineers use to specify a physical quantity is, in the general sense, a dimension of 
the physical quantity. Hence, there are as many dimensions as there are physical 
quantities. Engineers always use dimensions in their analytical and experimental 
work. In order to specify a dimension fully, two characteristics must be given. First, 
the numerical value of the dimension is required. Second, the appropriate unit must 
be assigned. A dimension missing either of these two elements is incomplete and 
therefore cannot be fully used by the engineer. If the diameter of a gear is given 
as 3.85, we would ask the question, “3.85 what? Inches? Meters?” Similarly, if the 
compressive force in a concrete column is given as 150,000, we would ask, “150,000 
what? Newtons? Pounds?”

Dimensions are categorized as either base or derived. A base dimension, some-
times referred to as a fundamental dimension, is a dimension that has been in-
ternationally accepted as the most basic dimension of a physical quantity. There 

M02_HAGE4428_05_SE_C02.indd   16 12/11/20   2:18 PM
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are seven base dimensions that have been formally defined for use in science and 
engineering:

1. length L
2. mass M
3. time t
4. temperature T
5. electric current I
6. amount of substance n
7. luminous intensity i.

A derived dimension is obtained by any combination of the base dimensions. For 
example, volume is length cubed, density is mass divided by length cubed, and ve-
locity is length divided by time. Obviously, there are numerous derived dimensions. 
Table 2.1 lists some of the most commonly used derived dimensions in engineering, 
expressed in terms of base dimensions.

The single letters in Table 2.1 are symbols that designate each base dimension. 
These symbols are useful for checking the dimensional consistency of equations. 
Every mathematical relation used in science and engineering must be dimensionally 
consistent, or dimensionally homogeneous. This means that the dimension on the left 
side of the equal sign must be the same as the dimension on the right side of the 

Table 2.1 Derived Dimensions Expressed in Terms of Base Dimensions

Quantity Variable Name Base Dimensions

Area A L2

Volume V L3

Velocity v Lt 1−

Acceleration a Lt 2−

Density ρ ML 3−

Force F MLt 2−

Pressure P ML t1 2− −

Stress σ ML t1 2− −

Energy E ML t2 2−

Work W ML t2 2−

Power P ML t2 3−

Mass flow rate �m Mt 1−

Specific heat c L t T2 2 1− −

Dynamic viscosity µ ML t1 1− −

Molar mass M Mn 1−

Voltage V ML t T2 3 1− −

Resistance R ML t T2 3 2− −
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18 Chapter 2 Dimensions and Units

equal sign. The equality in any equation denotes not only a numerical equivalency 
but also a dimensional equivalency. To use a simple analogy, you cannot say that five 
apples equals four apples, nor can you say that five apples equals five oranges. You 
can only say that five apples equals five apples.

The following examples illustrate the concept of dimensional consistency.

EXAMPLE 2.1
Dynamics is a branch of engineering mechanics that deals with the motion of par-
ticles and rigid bodies. The straight-line motion of a particle, under the influence 
of gravity, may be analyzed by using the equation

1
2

 0 0
2y y t gtυ= + −

where
= height of particle at time y t
= =initial height of particle (at  0)0y t

υ = =initial velocity of particle (at  0)0 t
= timet
= gravitational acceleration.g

Verify that this equation is dimensionally consistent.

Solution
We check the dimensional consistency of the equation by determining the dimen-
sions on both sides of the equal sign. The heights, 0y  and y, are one-dimensional 
coordinates of the particle, so these quantities have a dimension of length L. The 
initial velocity υ0 is a derived dimension consisting of a length L divided by a time t.  
Gravitational acceleration g is also a derived dimension consisting of a length L, 
divided by time squared t .2  Of course, time t is a base dimension. Writing the 
equation in its dimensional form, we have

L L Lt t Lt t .1 2 2= + −− −

Note that the factor, 1
2 , in front of the 2gt  term is a pure number, and therefore 

has no dimension. In the second term on the right side of the equal sign, the di-
mension t cancels, leaving length L. Similarly, in the third term on the right side of 
the equal sign, the dimension 2t  cancels, leaving length L. This equation is dimen-
sionally consistent because all terms have the dimension of length L.

EXAMPLE 2.2
Aerodynamics is the study of forces acting on bodies moving through air. An aero-
dynamics analysis could be used to determine the lift force on an airplane wing 
or the drag force on an automobile. A commonly used equation in aerodynamics 
relates the total drag force acting on a body to the velocity of the air approaching 
it. This equation is

F C A UD D ρ=
1
2

  2
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where

FD = drag force
= drag coefficientCD

= frontal area of bodyA
ρ = air density

= upstream air velocity.U

Determine the dimensions of the drag coefficient, .CD

Solution
The dimension of the drag coefficient CD  may be found by writing the equation 
in dimensional form and simplifying the equation by combining like dimensions. 
Using the information in Table 2.1, we write the dimensional equation as

=− − −MLt L ML L t2 2 3 2 2CD

 MLt .2CD= −

Compare the combination of base dimensions on the left and right sides of the 
equal sign. They are identical. This can only mean that the drag coefficient CD  has 
no dimension. If it did, the equation would not be dimensionally consistent. Thus, 
we say that CD  is dimensionless. In other words, the drag coefficient CD  has a numeri-
cal value, but no dimensional value. This is not as strange as it may sound. In engi-
neering, there are many instances, particularly, in the disciplines of fluid mechanics 
and heat transfer, where a physical quantity is dimensionless. Dimensionless quan-
tities enable engineers to form special ratios that reveal certain physical insights 
into properties and processes. In this instance, the drag coefficient is physically in-
terpreted as a “shear stress” at the surface of the body, which means that there is 
an aerodynamic force acting on the body parallel to its surface that tends to retard 
the body’s motion through the air. If you take a course in fluid mechanics, you will 
learn more about this important concept.

EXAMPLE 2.3
For the following dimensional equation, find the dimensions of the quantity k:

k=−MLt  Lt.2

Solution
To find the dimensions of k, we multiply both sides of the equation by − −L t1 1 to 
eliminate the dimensions on the right side of the equation, leaving k by itself. Thus, 
we obtain

k=− − −MLt L t2 1 1

which, after applying a law of exponents, reduces to

Mt .3 k=−
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20 Chapter 2 Dimensions and Units

A closer examination of the given dimensional equation reveals that it is Newton’s 
second law of motion:

F ma= .

Here F is force, m is mass, and a is acceleration. Referring to Table 2.1, force has 
dimensions of −MLt ,2  which is a mass M multiplied by acceleration −Lt .2

PRACTICE!

1. For the following dimensional equation, find the base dimensions of 
the parameter k:

k=ML  LtM .2 2

Answer : − −LM t .1 1

2. For the following dimensional equation, find the base dimensions of 
the parameter g :

g=− −T tL L .1 2

Answer : −L tT .3 1

3. For the following dimensional equation, find the base dimensions of 
the parameter h:

=−It N.1h

Answer : −NI t.1

4. For the following dimensional equation, find the base dimensions of 
the parameter f :

a f=−MM  cos(  L).3

Answer : −L .1

5. For the following dimensional equation, find the base dimensions of 
the parameter p:

= −T T log(T t  ).2 p

Answer : −T t .2 1

2.3 UNITS
A unit is a standard measure of the magnitude of a dimension. For example, the  
dimension length L may be expressed in units of meter (m), feet (ft), mile (mi), 
millimeter (mm), and many others. The dimension temperature T is expressed 
in units of degrees Celsius (°C), degrees Fahrenheit (°F), degrees Rankine (°R), 
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or kelvin (K). (By convention, the degree symbol (°) is not used for the Kelvin 
temperature scale.) In the United States, there are two unit systems commonly in 
use. The first unit system, and the one that is internationally accepted as the stan-
dard, is the SI (System International d’Unites) unit system, commonly referred to 
as the metric system. The second unit system is the English (or British) unit system, 
sometimes referred to as the United States Customary System (USCS). With the excep-
tion of the United States, most of the industrialized nations of the world use the 
SI system exclusively. The SI system is preferred over the English system, because 
it is an internationally accepted standard and is based on simple powers of 10. To 
a limited extent, a transition to the SI system has been federally mandated in the 
United States. Unfortunately, this transition to total SI usage has been a slow one, 
but many American companies are using the SI system to remain internationally 
competitive. Until the United States makes a complete adaptation to the SI system, 
U.S. engineering students need to be conversant in both unit systems and know 
how to make unit conversions.

The seven base dimensions are expressed in terms of SI units that are based 
on physical standards. These standards are defined such that, the corresponding 
SI units, except the mass unit, can be reproduced in a laboratory anywhere in the 
world. The reproducibility of these standards is important, because everyone with a 
suitably equipped laboratory has access to the same standards. Hence, all physical 
quantities, regardless of where in the world they are measured, are based on identi-
cal standards. This universality of physical standards eliminates the ancient prob-
lem of basing dimensions on the changing physical attributes of kings, rulers, and 
magistrates who reigned for a finite time. Modern standards are based on constants 
of nature and physical attributes of matter and energy.

The seven base dimensions and their associated SI units are summarized in 
Table 2.2. Note the symbol for each unit. These symbols are the accepted conven-
tions for science and engineering. The discussion that follows outlines the physical 
standards by which the base units are defined.

Length 
The unit of length in the SI system is the meter (m). As illustrated in Figure 2.1, the 
meter is defined as the distance traveled by light in a vacuum, during a time inter-
val of 1/299,792,458 s. The definition is based on a physical standard, the speed of 
light in a vacuum. The speed of light in a vacuum is 299,792,458 m/s. Thus, light 
travels one meter during a time interval of the reciprocal of this number. Of course, 
the unit of time, the second (s), is itself a base unit.

Table 2.2 Base Dimensions and Their SI Units

Quantity Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Temperature kelvin K

Electric current ampere A

Amount of substance mole mol

Luminous intensity candela cd
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22 Chapter 2 Dimensions and Units

Mass 
Prior to 2019, mass was the only base dimension that was defined by an artifact, a cylin-
der of platinum-iridium alloy maintained by the International Bureau of Weights and 
Measures in Paris, France. Because an artifact is not as easily reproduced as the other 
laboratory-based standards, the kilogram (kg) has been redefined in terms of the Planck 
constant, one of the fundamental constants in quantum physics. The Planck constant, 
denoted by the symbol h, has been set by the international scientific community as ex-
actly × −6.62607015   10 34 J · s. The Planck constant can be used to define mass because 
the unit joule (J), when broken into its base units, contains the mass unit kilogram.

Time 
The unit of time in the SI system is the second (s). The second is defined as the 
duration of 9,192,631,770 cycles of radiation of the cesium atom. An atomic clock 
incorporating this standard is maintained by NIST. (See Figure 2.2.)

Temperature 
The unit of temperature in the SI system is the kelvin (K). The kelvin is defined 
as the fraction 1/273.16 of the temperature of the triple point of water. The triple 
point of water is the combination of pressure and temperature at which water exists 
as a solid, liquid, and gas at the same time. (See Figure 2.3.) This temperature is 
273.16 K, 0.01°C, or 32.002°F. Absolute zero is the temperature at which all molecu-
lar activity ceases and has a value of 0 K.

Electric Current 
The unit of electric current in the SI system is the ampere (A). As shown in 
Figure 2.4, the ampere is defined as the steady current, which, if maintained in 

0 10 20 30 40 50 60 70 80 90 100

1 meter

t 5                       s
1

299,792,458
Figure 2.1
The physical standard for 
the meter is based on the 
speed of light in a vacuum.

Figure 2.2
The NIST-F2 cesium foun-
tain atomic clock keeps 
time to an accuracy of 
one second in 300 million 
years. (Source: National 
Institute of Standards and 
Technology, Boulder, CO.)
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2.3 Units 23

two straight parallel wires of infinite length and negligible circular cross section 
and placed one meter apart in a vacuum, produces a force of × −2 10 7  newton 
per meter of wire length. Using Ohm’s law, I V R= / ,  one ampere may also be 
denoted as the current that flows when one volt is applied across a 1-ohm resistor.

Amount of Substance 
The unit used to denote the amount of substance is the mole (mol). One mole con-
tains the same number of elements as there are atoms in 0.012 kg of carbon-12. This 
number is called Avogadro’s number and has a value of approximately ×6.022 10 .23  
(See Figure 2.5.)

Luminous Intensity 
The unit for luminous intensity is the candela (cd). As illustrated in Figure 2.6, one 
candela is the luminous intensity of a source emitting light radiation at a frequency 

273.16
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Temperature (K)
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Figure 2.3
A phase diagram for water 
shows the triple point on 
which the kelvin tempera-
ture standard is based.

Wires

1 m

1 m Force 5 2 3 1027 N

1 A

1 A

Figure 2.4
The standard for the 
ampere is based on the 
electrical force produced 
between two parallel wires, 
each carrying 1 A, located 
1 m apart.

Gas molecules

Figure 2.5
A mole of gas molecules 
in a piston-cylinder device 
contains ×6.022 1023  
molecules.
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24 Chapter 2 Dimensions and Units

of ×540 10  Hz,12  that provides a power of 1/683 watt (W) per steradian. A stera-
dian is a solid angle, which, having its vertex in the center of a sphere, subtends 
(cuts off) an area of the sphere equal to that of a square with sides of length equal 
to the radius of the sphere.

The unit for luminous intensity, the candela, utilizes the steradian, a dimen-
sion that may be unfamiliar to most students. The radian and steradian are called 
supplementary dimensions. These quantities, summarized in Table 2.3, refer to plane 
and solid angles, respectively. The radian is frequently used in engineering, and 
it is defined as the plane angle between two radii of a circle that subtends on the 
circumference of an arc equal in length to the radius. From trigonometry, you may 
recall that there are π2  radians in a circle (i.e., π2  radians equals 360°). Thus, one 
radian equals approximately 57.3°. The steradian, defined earlier, is used primarily 
for expressing radiation quantities such as light intensity and other electromagnetic 
parameters. These units appear dimensionless in measurements.

2.4 SI UNITS
Throughout the civilized world there are thousands of engineering companies that 
design and manufacture products for the benefit of society. The international buy-
ing and selling of these products is an integral part of a global network of industrial-
ized countries, and the economic health of these countries, including the United 
States, depends to a large extent on international trade. Industries such as the au-
tomotive and electronics industries are heavily involved in international trade, so 
these industries have readily embraced the SI unit system in order to be economi-
cally competitive. The general adoption of the SI unit system by U.S. companies 
has been slow, but global economic imperatives are driving them to fall into step 
with the other industrialized nations of the world. SI units are now commonplace 
on food and beverage containers, gasoline pumps, and automobile speedometers. 

Table 2.3 Supplementary Dimensions

Quantity Unit Symbol

Plane angle radian rad

Solid angle steradian sr

1 steradian

Sphere

540 3 1012 Hz
Light source

W
1

638

Figure 2.6
The candela standard for 
luminous intensity.
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2.4 SI Units 25

The SI unit system is the internationally accepted standard. In the United States, 
however, the English unit system is still widely used. Perhaps it is only a matter of 
time before all U.S. companies use SI units exclusively. Until that time, the burden 
is upon you, the engineering student, to learn both unit systems. You will gladly 
discover, however, that most engineering textbooks emphasize SI units, but provide 
a list of unit conversions between the SI and English systems.

Table 2.2 summarizes the seven base dimensions and their SI units, and Table 
2.3 summarizes the supplementary dimensions and their units. Derived dimensions 
consist of a combination of base and supplementary dimensions. Sometimes, the 
units of a derived dimension are given a specific name. For example, the derived 
dimension force consists of the SI base units ⋅ ⋅ −kg m s .2  This combination of SI base 
units is called a newton and is abbreviated N. Note that the unit name, in honor of 
Isaac Newton, is not capitalized when spelled out as a unit name. The same rule ap-
plies to other units named after people such as hertz (Hz), kelvin (K), and pascal 
(Pa). Another example is the joule, the SI unit for energy, work, and heat. The joule 
unit is abbreviated J and consists of the SI base units ⋅ ⋅ −kg m s .2 2  A summary of the 
most commonly used SI derived dimensions and the corresponding SI unit names 
is given in Table 2.4.

Most derived dimensions do not have specific SI unit names, but their units 
may contain specific SI unit names. For example, the dimension mass flow rate is 
the mass of a fluid that flows past a point in a given time. The SI units for mass flow 
rate are ⋅ −kg s ,1  which we state as “kilograms per second.” Note that units that 
are located in the denominator, that is, those that have a negative sign on their 
exponent, may also be written using a divisor line. Thus, the units for mass flow 
rate may be written as kg/s. Caution must be exercised, however, when utilizing 
this type of notation for some units. For example, the SI units for thermal conduc-
tivity, a quantity used in heat transfer, are ⋅ ⋅− −W m K .1 1  How do we write these 

Table 2.4 Derived Dimensions and SI Units with Specific Names

Quantity SI Unit Unit Name Base Units

Frequency Hz hertz s 1−

Force N newton kg m s 2⋅ ⋅ −

Pressure Pa pascal kg m s1 2⋅ ⋅− −

Stress Pa pascal kg m s1 2⋅ ⋅− −

Energy J joule kg m s2 2⋅ ⋅ −

Work J joule kg m s2 2⋅ ⋅ −

Heat J joule kg m s2 2⋅ ⋅ −

Power W watt kg m s2 3⋅ ⋅ −

Electric charge C coulomb A s⋅

Electric potential 
(voltage) V volt kg m s A2 3 1⋅ ⋅ ⋅− −

Electric resistance Ω ohm kg m s A2 3 2⋅ ⋅ ⋅− −

Magnetic flux Wb weber kg m s A1 2 1⋅ ⋅ ⋅− − −

Luminous flux lm lumen cd sr⋅
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26 Chapter 2 Dimensions and Units

units with a divisor line? Do we write these units as W/m/K? How about ⋅W/m K ?  
Either choice can cause some confusion. Does a “watt per meter per kelvin” mean 
that the kelvin unit is inverted twice and therefore goes above the divisor line? 
One glance at the units written as ⋅ ⋅− −W m K1 1 tells us that the temperature unit 
belongs “downstairs” because K has a negative exponent. If the kelvin unit were 
placed above the divisor line, and the thermal conductivity were used in an equa-
tion, a dimensional inconsistency would result. The second choice requires agree-
ing that multiplication takes precedence over division. Because the meter and 
kelvin units are located to the right of the divisor line and they are separated by a 
dot, both units are interpreted as being in the denominator. But to avoid all am-
biguity, parentheses are used to group units above or below the divisor line. Units 
for thermal conductivity would then be written as ⋅W/(m K).  In any case, a dot or 
a dash should always be placed between adjacent units to separate them regardless 
of whether the units are above or below the divisor line. Some derived dimensions 
and their SI units are given in Table 2.5.

When a physical quantity has a numerical value that is very large or very small, it 
is cumbersome to write the number in standard decimal form. The general practice 
in engineering is to express numerical values between 0.1 and 1000 in standard dec-
imal form. If a value cannot be expressed within this range, a prefix should be used. 
Because the SI unit system is based on powers of 10, it is more convenient to ex-
press such numbers by using prefixes. A prefix is a letter in front of a number that 
denotes multiples of powers of 10. For example, if the internal force in an I-beam 
is three million seven hundred and fifty thousand newtons, it would be awkward 
to write this number as 3,750,000 N. It is preferred to write the force as 3.75MN, 
which is stated as “3.75 mega newtons.” The prefix “M” denotes a multiple of a mil-
lion. Hence, 3.75 MN equals ×3.75 10  N.6  Electrical current is a good example of 
a quantity represented by a small number. Suppose the current flowing in a wire is 
0.0082 A. This quantity would be expressed as 8.2 mA, which is stated as “8.2 mil-
liamperes.” The prefix “m” denotes a multiple of one-thousandth, or × −1 10 .3

A term we often hear in connection with computers is the storage capacity of 
hard disks. When personal computers first appeared in the early 1980s, most hard 
disks could hold around 10 or 20 MB (megabytes) of information. Nowadays, the 
typical storage capacity of a personal computer’s hard disk is on the order of TB 
(terabytes). The standard prefixes for SI units are given in Table 2.6.

As indicated in Table 2.6, the most widely used SI prefixes for science and en-
gineering quantities come in multiples of one thousand. For example, stress and 
pressure, which are generally large quantities for most structures and pressure ves-
sels, are normally expressed in units of kPa, MPa, or GPa. Frequencies of electro-
magnetic waves such as radio, television, and telecommunications are also large 
numbers. Hence, they are generally expressed in units of kHz, MHz, or GHz. 
Electrical currents, on the other hand, are often small quantities, so they are usu-
ally expressed in units of µA or mA. Because frequencies of most electromagnetic 
waves are large quantities, the wavelengths of these waves are small. For example, 
the wavelength range of the visible light region of the electromagnetic spectrum is 
approximately µ0.4  m to µ0.75  m. It should be noted that the SI mass unit kilogram 
(kg) is the only base unit that has a prefix.

Here are some rules on how to use SI units properly that every beginning engi-
neering student should know:

1. A unit symbol is never written as a plural with an “s.” If a unit is pluralized, the 
“s” may be confused with the unit second (s).
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2.4 SI Units 27

2. A period is never used after a unit symbol, unless the symbol is at the end of a 
sentence.

3. Do not use invented unit symbols. For example, the unit symbol for “second” 
is (s), not (sec), and the unit symbol for “ampere” is (A), not (amp).

4. A unit symbol is always written by using lowercase letters, with two exceptions. 
The first exception applies to units named after people, such as the newton (N),  
joule (J), and watt (W). The second exception applies to units with the prefixes 
M, G, and T. (See Table 2.6.)

5. A quantity consisting of several units must be separated by dots or dashes to avoid 
confusion with prefixes. For example, if a dot is not used to express the units of 
“meter-second” ⋅(m s), the units could be interpreted as “millisecond” (ms).

Table 2.5 Derived Dimensions and SI Units

Quantity SI Units

Acceleration m s 2⋅ −

Angular acceleration rad s 2⋅ −

Angular velocity rad s 1⋅ −

Area m2

Concentration mol m 3⋅ −

Density kg m 3⋅ −

Electric field strength V m 1⋅ −

Energy N m⋅

Entropy J k 1⋅ −

Heat J

Heat transfer W

Magnetic field strength A m 1⋅ −

Mass flow rate kg s 1⋅ −

Moment of force N m⋅

Radiant intensity W sr 1⋅ −

Specific energy J kg 1⋅ −

Surface tension N m 1⋅ −

Thermal conductivity W m K1 1⋅ ⋅− −

Velocity m s 1⋅ −

Viscosity, dynamic Pa s⋅

Viscosity, kinematic m s2 1⋅ −

Volume m3

Volume flow rate m s3 1⋅ −

Wavelength m

Weight N
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28 Chapter 2 Dimensions and Units

6. An exponential power for a unit with a prefix refers to both the prefix and the 
unit; for example, = = ⋅ms (ms) ms ms.2 2

7. Do not use compound prefixes. For example, a “kilo MegaPascal” (kMPa) 
should be written as GPa, because the product of “kilo” ( )103  and “mega” ( )106  
equals “giga” ( )10 .9

8. Put a space between the numerical value and the unit symbol.
9. Do not put a space between a prefix and a unit symbol.

10. Do not use prefixes in the denominator of composite units. For example, the 
units N/mm should be written as kN/m.

  Table 2.7 provides some additional examples of these rules.

Table 2.7 Correct and Incorrect Ways of Using SI Units

Correct Incorrect Rules

47.7 kg 47.7 kgs 1

1056 J 1056 Js 1

140 kPa 140 kPa. 2

1.25 A 1.25 Amps 1, 3

3.2 s 3.2 sec 3

60.0 kg 60.0 Kg 4

75 W 75 w. 2, 4

8.25 kg/m·s 8.25 kg/ms 5

550 GN 550 MkN 7

8 ms 8 kμs 7

430 Pa·s 430Pa·s 8

1.5 MΩ 1.5 M Ω 9

9 MN/m 9 N/μm 10

Table 2.6 Standard Prefixes for SI Units

Multiple Exponential Form Prefix Prefix Symbol

1,000,000,000,000,000 1015 peta P

1,000,000,000,000 1012 tera T

1,000,000,000 109 giga G

1,000,000 106 mega M

1000 103 kilo k

0.01 10 2− centi c

0.001 10 3− milli m

0.000 001 10 6− micro µ

0.000 000 001 10 9− nano n

0.000 000 000 001 10 12− pico p

0.000 000 000 000 001 10 15− femto f
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2.4 SI Units 29

DERIVING FORMULAS FROM UNIT CONSIDERATIONS
To the beginning engineering student, it can seem as if there is an infinite number 
of formulas to learn. Formulas contain physical quantities that have numerical val-
ues plus units. Because formulas are written as equalities, formulas must be numeri-
cally and dimensionally equivalent across the equal sign. Can this feature be used 
to help us derive formulas that we do not know or have forgotten? Suppose that we 
want to know the mass of gasoline in an automobile’s gas tank. The tank has a vol-
ume of 70 L, and a handbook of fluid properties states that the density of gasoline 
is 736 kg/m .3  (Note: = −1 L 10  m3 3). Thus, we write

ρ = = =736 kg/m , 70 L 0.070 m .3 3V

If the tank is completely filled with gasoline, what is the mass of the gasoline? 
Suppose that we have forgotten that density is defined as mass per volume, 

m Vρ = / .  Because our answer will be a mass, the unit of our answer must be kilo-
gram (kg). Looking at the units of the input quantities, we see that if we multiply 
density ρ  by volume V, the volume unit (m )3  divides out, leaving mass (kg). Hence, 
the formula for mass in terms of ρ  and V  is

ρ=m V

so the mass of gasoline is

= =(736 kg/m )(0.070 m ) 51.5 kg.3 3m

A
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PROFESSIONAL SUCCESS–USING SI UNITS IN EVERYDAY LIFE
The SI unit system is used commercially to a limited extent in the United 
States, so the average person does not know the highway speed limit in 
kilometers per hour, his or her weight in newtons, atmospheric pressure in 
kilopascals, or the outdoor air temperature in kelvin or degrees Celsius. It 
is ironic that the leading industrialized nation on earth has yet to embrace 
this international standard. Admittedly, American beverage containers rou-
tinely show the volume of the liquid product in liters (L) or milliliters (mL), 
gasoline pumps often show liters of gasoline delivered, speedometers may 
indicate speed in kilometers per hour (km/h), and automobile tires indicate 
the proper inflation pressure in kilopascals (kPa) on the sidewall. On each of 
these products, and many others like them, a corresponding English unit is 
written along side the SI unit. The beverage container shows pints or quarts, 
the gasoline pump shows gallons, speedometers show miles per hour, and 
tires show pounds per square inch. Dual labeling of SI and English units on 
U.S. products are supposed to help people learn the SI system, “weaning” 
them from the antiquated English system in anticipation of the time when 
a full conversion to SI units occurs. This transition is analogous to the pro-
cess of incrementally quitting smoking. Rather than quitting “cold turkey,” we 
employ nicotine patches, gums, and other substitutes until our habit is bro-
ken. So, you may ask, “Why don’t we make the total conversion now? Is it as 
painful as quitting smoking suddenly?” It probably is. As you might guess, the 
problem is largely an economic one. A complete conversion to SI units may 
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30 Chapter 2 Dimensions and Units

not occur until we are willing to pay the price in actual dollars. People could 
learn the SI unit system fairly quickly if the conversion were done suddenly, 
but an enormous financial commitment would have to be made.

As long as dual product labeling of units is employed in the United States, 
most people will tend to ignore the SI unit and look only at the English unit, 
the unit with which they are most familiar. In U.S. engineering schools, SI 
units are emphasized. Therefore, the engineering student is not the average 
person on the street who does not know, or know how to calculate, his or her 
weight in newtons. So, what can engineering students in the United States do 
to accelerate the conversion process? A good place to start is with yourself. 
Start using SI units in your everyday life. When you make a purchase at the 
grocery store, look only at the SI unit on the label. Learn by inspection how 
many milliliters of liquid product are packaged in your favorite sized contain-
er. Abandon the use of inches, feet, yards, and miles as much as possible. How 
many kilometers lie between your home and school? What is 65 miles per hour 
in kilometers per hour? What is the mass of your automobile in kilograms? 
Determine your height in meters, your mass in kilograms, and your weight 
in newtons. How long is your arm in centimeters? What is your waist size in 
centimeters? What is the current outdoor air temperature in degrees Celsius? 
Most fast-food restaurants offer a “quarter pounder” on their menu. It turns 
out that =1 N 0.2248 lb, almost a quarter pound. On the next visit to your 
favorite fast-food place, order a “newton burger” and fries. (See Figure 2.7.)

I’ll have a newton burger,
large fries and a diet cola.

?

Figure 2.7
An engineering student orders lunch (art by Kathryn Colton).
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PRACTICE!

1. A structural engineer states that an I-beam in a truss has a design stress 
of “five million, six hundred thousand pascals.” Write this stress, using 
the appropriate SI unit prefix.
Answer: 5.6 MPa.

2. The power cord on an electric string trimmer carries a current of 5.2 A. 
How many milliamperes is this? How many microamperes?
Answer: × ×5.2 10  mA, 5.2 10   A.3 6 µ

3. Write the pressure 7.2 GPa in scientific notation.
Answer: ×7.2 10  Pa.9

4. Write the voltage 0.000875 V, using the appropriate SI unit prefix.
Answer: 0.875 mV or 875 μV.

5. In the following list, various quantities are written using SI units incor-
rectly. Write the quantities, using the correct form of SI units.
a. 4.5 mw
b. 8.75 M pa
c. 200 Joules/sec
d. 20 W/m  K2

e. 3 Amps.

Answer:
a. 4.5 mW
b. 8.75 MPa
c. 200 J/s
d. ⋅20 W/m K2

e. 3 A.

2.5 ENGLISH UNITS
The English unit system is known by various names. Sometimes it is referred to 
as the United States Customary System (USCS), the British System or the Foot-
Pound-Second (FPS) system. The English unit system is still used extensively in 
the United States even though the rest of the industrialized world, including Great 
Britain, has adopted the SI unit system. English units have a long and colorful his-
tory. In ancient times, measures of length were based on human dimensions. The 
foot started out as the actual length of a man’s foot. Because not all men were the 
same size, the foot varied in length by as much as three or four inches. Once the 
ancients started using feet and arms for measuring distance, it was only a matter of 
time before they began using hands and fingers. The unit of length that we refer 
to today as the inch was originally the width of a man’s thumb. The inch was also 
once defined as the distance between the tip to the first joint of the forefinger. 
Twelve times that distance made one foot. Three times the length of a foot was the 
distance from the tip of a man’s nose to the end of his outstretched arm. This dis-
tance closely approximates what we refer to today as the yard. Two yards equaled a 
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fathom, which was defined as the distance across a man’s outstretched arms. Half 
a yard was the 18-inch cubit, which was called a span. Half a span was referred to 
as a hand.

The pound, which uses the symbol lb, is named after the ancient Roman unit 
of weight called the libra. The British Empire retained this symbol into modern 
times. Today, there are actually two kinds of pound units, one for mass and one for 
weight and force. The first unit is called pound-mass (lb ),m  and the second is called 
pound-force (lb ).f  Because mass and weight are not the same quantity, the units lbf  
and lbm are different.

As discussed previously, the seven base dimensions are length, mass, time, tem-
perature, electric current, amount of substance, and luminous intensity. These base 
dimensions, along with their corresponding English units, are given in Table 2.8. 
As with SI units, English units are not capitalized. The slug, which has no abbrevi-
ated symbol, is the mass unit in the English system, but the pound-mass (lb )m  is 
frequently used. Electric current is based on SI units of meter and newton, and lu-
minous intensity is based on SI units of watt. Hence, these two base dimensions do 
not have English units per se, and these quantities are rarely used in combination 
with other English units.

Recall that derived dimensions consist of a combination of base and supple-
mentary dimensions. Table 2.9 summarizes some common derived dimensions ex-
pressed in English units. Note that Table 2.9 is the English counterpart of the SI 
version given by Table 2.5. The most notable English unit with a special name is 
the British thermal unit (Btu), a unit of energy. One Btu is defined as the energy 
required to change the temperature of 1 lbm  of water at a temperature of 68°F by 
1°F. One Btu is approximately the energy released by the complete burning of a 
single kitchen match. The magnitudes of the kilojoule and Btu are almost equal 

=(1 Btu 1.055 KJ). Unlike the kelvin (K), the temperature unit in the SI system, the 
rankine (°R) employs a degree symbol as do the Celsius (°C) and Fahrenheit (°F) 
units. The same rules for writing SI units apply for English units with one major 
exception: prefixes are generally not used with English units. Thus, units such as kft 
(kilo foot), Mslug (megaslug), and GBtu (gigaBtu) should not be used. Prefixes 
are reserved for SI units. Two exceptions are the units ksi, which refers to a stress of 
1000 psi (pounds per square inch), and kip, which is a special name for a force of 
1000 lbf  (pound-force).

Table 2.8 Base Dimensions and Their English Units

(1) The unit poind-mass (lbm) is also used. 1 slug = 32.174 lbm.
(2) There are no English units for electrical current and luminous inten-
sity. The SI units are given here for completeness only.

Quantity Unit Symbol

Length foot ft

Mass slug(1) slug

Time second s

Temperature rankine °R

Electric current ampere(2) A

Amount of substance mole mol

Luminous intensity candela(2) cd
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There are some non-SI units that are routinely used in the United States and 
elsewhere. Table 2.10 summarizes some of these units and provides an equivalent 
value in the SI system. The inch is a common length unit, being found on virtually 
every student’s ruler and carpenter’s tape measure in the United States. There are 
exactly 2.54 centimeters per inch. Inches are still used as the primary length unit 
in many engineering companies. The yard is commonly used for measuring cloth, 
carpets, and loads of concrete (cubic yards), as well as ball advancement on the 
American football field. The ton is used in numerous industries, including ship-
ping, construction, and transportation. Time subdivisions on clocks are measured 

Table 2.9 Derived Dimensions and English Units

Quantity English Units

Acceleration ft s 2⋅ −

Angular acceleration rad s 2⋅ −

Angular velocity rad s 1⋅ −

Area ft2

Concentration mol ft 3⋅ −

Density slug ft 3⋅ −

Electric field strength V ft 1⋅ −

Energy Btu

Entropy Btu slug °R1 1⋅ ⋅− −

Force lbf

Heat Btu

Heat transfer Btu s 1⋅ −

Magnetic field strength A ft 1⋅ −

Mass flow rate slug s 1⋅ −

Moment of force lb ftf ⋅

Radiant intensity Btu s sr1 1⋅ ⋅− −

Specific energy Btu slug 1⋅ −

Surface tension lb ftf
1⋅ −

Thermal conductivity Btu s ft R1 1⋅ ⋅ ⋅ °− −

Velocity ft s 1⋅ −

Viscosity, dynamic slug ft s1 1⋅ ⋅− −

Viscosity, kinematic ft s2 1⋅ −

Volume ft3

Volume flow rate ft s3 1⋅ −

Wavelength ft
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34 Chapter 2 Dimensions and Units

in hours, minutes, and seconds. Radians and degrees are the most commonly 
used units for plane angles, whereas minutes and seconds are primarily used in 
navigational applications when referring to latitude and longitude on the earth’s 
surface. The liter has made a lot of headway into the American culture, being 
found on beverage and food containers and many gasoline pumps. Virtually every 
American has seen the liter unit on a product, and many know that there are 
about four liters in a gallon (actually, =1 gal 3.7854 L), but fewer people know 
that =1000 L 1 m .3

2.6 MASS AND WEIGHT
The concepts of mass and weight are fundamental to the proper use of dimensions 
and units in engineering analysis. Mass is one of the seven base dimensions used 
in science and engineering. Mass is a base dimension because it cannot be broken 
down into more fundamental dimensions. Mass is defined as a quantity of matter. 
This simple definition of mass may be expanded by exploring its basic properties. 
All matter possesses mass. The magnitude of a given mass is a measure of its resis-
tance to a change in velocity. This property of matter is called inertia. A large mass 
offers more resistance to a change in velocity than a small mass, so a large mass 
has a greater inertia than a small mass. Mass may be considered in another way. 
Because all matter has mass, all matter exerts a gravitational attraction on other 
matter. Shortly after formulating his three laws of motion, Sir Isaac Newton postu-
lated a law governing the gravitational attraction between two masses. Newton’s law 
of universal gravitation is stated mathematically as

 F G
m m

r
=   1 2

2
 (2.1)

Table 2.10 Non-SI Units Commonly Used in the United States

(1) Exact conversion.

Quantity Unit Name Symbol SI Equivalent

Length inch in 0.0254 m(1)

yard yd 0.9144 m (36 in)

Mass metric ton t 1000 kg

short ton t 907.18kg 2000 lbm( )
Time minute min 60 s

hour h 3600 s

day d 86,400 s

Plane angle degree ° /180 radπ

minute ’ /10,800 radπ

second ” /648,000 radπ

Volume liter L 10  m3 3−

Land area hectare ha 10  m4 2

Energy electron-volt eV 1.602177 10  J19× −
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2.6 Mass and Weight 35

where

F = gravitational force between masses (N)
= = × ⋅−universal gravitational constant 6.673 10 m /kg s11 3 2G
= mass of body 1 (kg)1m
= mass of body 2 (kg)2m
= distance between the centers of the two masses (m).r

According to Equation (2.1), between any two masses there exists an attractive 
gravitational force whose magnitude varies inversely as the square of the distance 
between the masses. Because Newton’s law of universal gravitation applies to any 
two masses, let’s apply Equation (2.1) to a body resting on the surface of the earth. 
Accordingly, we let = ,1m me  the mass of the earth, and = ,2m m  the mass of the 
body. The distance, r, between the body and the earth may be taken as the mean 
radius of the earth, .re  The quantities me  and re  have the approximate values

= × = ×5.979 10  kg 6.378 10  m.24 6m re e

Thus, we have

F G
m m
r
e

e
=  

2

=
× ⋅ ×

×

−(6.673 10  m /kg s )(5.979 10  kg)
(6.378 10  m)

11 3 2 24

6 2
m

= (9.808 m/s )  .2 m

We can see that upon substituting values, the term / 2Gm re e  yields approximately 
9.81 m/s ,2  the standard acceleration of gravity on the earth’s surface. Redefining 
this term as g, and letting F W= , we express the law of universal gravitation in a 
special form as

 =W mg  (2.2)

where

= weight of body (N)W
= mass of body (kg)m
= =standard gravitational acceleration 9.81 m/s .2g

This derivation clearly shows the difference between mass and weight. We may 
therefore state the definition of weight as a gravitational force exerted on a body by the 
earth. Because mass is defined as a quantity of matter, the mass of a body is indepen-
dent of its location in the universe. A body has the same mass whether it is located 
on the earth, the moon, Mars, or in outer space. The weight of the body, however, 
depends on its location. The mass of an 80 kg astronaut is the same whether or not 
he is on earth or in orbit above the earth. The astronaut weighs approximately 785 
N on the earth, but while in orbit he is “weightless.” His weight is zero while he or-
bits the earth, because he is continually “falling” toward earth. A similar weightless 
or “zero-g” condition is experienced by a skydiver as he begins falling.

The greatest source of confusion about mass and weight to the beginning en-
gineering student is not the physical concept, but the units used to express each 
quantity. To see how units of mass and weight relate to each other, we employ a 
well-known scientific principle, Newton’s second law of motion. Newton’s second law 
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36 Chapter 2 Dimensions and Units

of motion states that a body of mass, m, acted upon by an unbalanced force, F, experiences 
an acceleration, a, that has the same direction of the force and a magnitude that is directly 
proportional to the force. Stated mathematically, this law is

 F ma=  (2.3)

where

F N( )= force 

( )= mass  Kgm

acceleration (m/s ).2a =

Note that this relation resembles Equation (2.2). Weight is a particular type of force, 
and acceleration due to gravity is a particular type of acceleration, so Equation (2.2) 
is a special case of Newton’s second law, given by Equation (2.3). In the SI unit sys-
tem, the newton (N) is defined as the force that will accelerate a 1-kg mass at a rate of 
1 m/s .2  Hence, we may write Newton’s second law dimensionally as

1 N 1 Kg m/s .2= ⋅

In the English unit system, the pound-force (lb )f  is defined as the force that will ac-
celerate a 1-slug mass at a rate of 1 ft/s .2  Hence, we may write Newton’s second law 
dimensionally as

1 lb 1 slug ft/s .f
2= ⋅

See Figure 2.8 for an illustration of Newton’s second law. Confusion arises from the 
careless interchange of the English mass unit, pound-mass (lb ),m  with the English 
force unit, pound-force (lb ).f  These units are not the same thing! In accordance 
with our definitions of mass and weight, pound-mass refers to a quantity of matter, 
whereas pound-force refers to a force or weight. In order to write Newton’s second 
law in terms of pound-mass instead of slug, we rewrite Equation (2.3) as

 F
ma
gc

=  (2.4)

where gc  is a constant that is required to make Newton’s second law dimensionally 
consistent when mass, m, is expressed in lb ,m  rather than slug. As stated previously, 

m 5 1 kg

a 5 1 m/s2

F 5 1 N

m 5 1 slug

a 5 1 ft/s2

F 5 1 lbf

Figure 2.8
Definitions of the force units 
newton (N) and pound-
force ( )lb .f
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2.6 Mass and Weight 37

the English unit for force is lb ,f  the English unit for acceleration is ft/s ,2  and, as 
indicated in Table 2.8, =1 slug 32.174 lb .m  Thus, the constant gc  is

g
ma
F

c =

=
(32.174 lb )(ft/s )

lb
m

2

f

32.174
lb ft
lb s

.m

f
2

=
⋅
⋅

This value is usually rounded to

32.2
lb ft
lb s

.m

f
2

gc =
⋅
⋅

Note that gc  has the same numerical value as g, the standard acceleration of grav-
ity on the earth’s surface. Newton’s second law as expressed by Equation (2.4) is 
dimensionally consistent when the English unit of mass, lb ,m  is used.

To verify that Equation (2.4) works, we recall that the pound-force is defined 
as the force that will accelerate a 1-slug mass at a rate of 1 ft/s .2  Recognizing that 

=1 slug 32.2 lb ,m  we have

=f
ma
gc

(32.2 lb )(1 ft/s )

32.2
lb ft
lb s

1 lb .m
2

m

f
2

f= ⋅
⋅

=

Note that in this expression, all the units, except lb ,f  cancel. Hence, the pound-
force (lb )f  is defined as the force that will accelerate a 32.2-lbm  mass at a rate of 
1 ft/s .2  Therefore, we may write Newton’s second law dimensionally as

1 lb 32.2 lb ft/s .f m
2= ⋅

To have dimensional consistency when English units are involved, Equation 
(2.4) must be used when mass, m, is expressed in lb .m  When mass is expressed in 
slug, however, the use of gc  in Newton’s second law is not required for dimensional 
consistency because 1 lbf  is already defined as the force that will accelerate a 1-slug 
mass at a rate of 1 ft/s .2  Furthermore, because 1 N is already defined as the force 
that will accelerate a 1-kg mass at a rate of 1 m/s ,2  the use of gc  is not required for 
dimensional consistency in the SI unit system. Thus, Equation (2.3) suffices for all 
calculations, except for those in which mass is expressed in lb ;m  in that case, Equation (2.4) 
must be used. However, Equation (2.4) may be universally used when recognizing 
that the numerical value and units for gc  can be defined such that any consistent 
unit system will work. For example, substituting F m= =1 N,  1 kg,  and = 1 m/s2a  
into Equation (2.4) and solving for ,gc  we obtain

1 kg m
N s

.
2

gc =
⋅

⋅
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38 Chapter 2 Dimensions and Units

Since the numerical value of gc  is 1, we can successfully use Equation (2.3) as 
long as we recognize that 1 N is the force that will accelerate a 1-kg mass at a rate 
of 1 m/s .2

Sometimes, the units pound-mass (lb )m  and pound-force (lb )f  are casually in-
terchanged because a body with a mass of 1 lbm  has a weight of 1 lbf  (i.e., the mass 
and weight are numerically equivalent). Let’s see how this works: By definition, a body 
with a mass of 32.2 lbm (1 slug) when accelerated at a rate of 1 ft/s2 has a weight 
of 1 lb .f  Therefore, using Newton’s second law in the form, = ,W mg  we can also 
state that a body with a mass of 1 lb ,m  when accelerated at a rate of 32.2 ft/s2 (the 
standard value of g), has a weight of 1 lb .f  Our rationale for making such a state-
ment is that we maintained the same numerical value on the right side of Newton’s 
second law by assigning the mass, m, a value of 1 lbm  and the gravitational accel-
eration, g, the standard value of 32.2 ft/s .2  The numerical values of the mass and 
weight are equal even though a pound-mass and a pound-force are conceptually 
different quantities. It must be emphasized, however, that mass in pound-mass and 
weight in pound-force are numerically equivalent only when the standard value, 

= 32.2 ft/s ,2g  is used. See Figure 2.9 for an illustration. The next example illus-
trates the use of .gc

m 5 1 kg

g 5 9.81 m/s2

W 5 9.81 N

m 5 1 lbm

g 5 32.2 ft/s2

W 5 1 lbf

Figure 2.9
Definitions of weight for the 
standard value of gravita-
tional acceleration.

EXAMPLE 2.4
Find the weight of some objects with the following masses:

a. 50 slug
b. 50 lbm
c. 75 kg.

Solution
To find weight, we use Newton’s second law, where the acceleration a is the stan-
dard acceleration of gravity, = =9.81 m/s 32.2 ft/s .2 2g

a. The mass unit slug is the standard unit for mass in the English unit system. 
The weight is

=W mg

(50 slug)(32.2 ft/s ) 1,610 lb .2
f= =
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2.6 Mass and Weight 39

b. When mass is expressed in terms of lb ,m  we must use Equation (2.4):

 
(50 lb )(32.2 ft / s ))

32.2
lb ft
lb s

50 lb .m
2

m

f
2

fW
mg
gc

= = ⋅
⋅

=

Note that the mass and weight are numerically equivalent. This is true only in 
cases where the standard value of g is used, which means that an object with a mass 
of x lbm will always have a weight of x lbf  on the earth’s surface.

c. The mass unit kg is the standard unit for mass in the SI unit system. The 
weight is

=W mg

= =(75 kg)(9.81 m/s ) 736 N.2

Alternatively, we can find weight by using Equation (2.4):

(75 kg)(9.81 m/s )

1
kg m
N s

736 N.
2

2

W
mg
gc

= = ⋅
⋅

=

Now that we understand the difference between mass and weight and know how to 
use mass and weight units in the SI and English systems, let’s revisit the astronaut we 
discussed earlier. (See Figure 2.10.) The mass of the astronaut is 80 kg, which equals 
about 5.48 slug. His mass does not change, regardless of where he ventures. Prior to 
departing on a trip to the moon, he weighs in at 785 N (176 lb ).f  What is the mass of 
the astronaut in pound-mass? Three days later, his vehicle lands on the moon, and 
he begins constructing a permanent base for future planetary missions. The value 
of the gravitational acceleration on the moon is only 1.62 m/s (5.31 ft/s ).2 2  The as-
tronaut’s mass is still 80 kg, but his weight is only 130 N (29.1 lb )f  due to the smaller 
value of g. Is the mass and weight of the astronaut in pound-mass and pound-force 
numerically equivalent? No, because the standard value of g is not used.

SI

m 5 80 kg

W 5 mg 5 785 N

English

m 5 5.48 slug

W 5 mg 5 176 lbf

SI

m 5 80 kg

W 5 mg 5 130 N

English

m 5 5.48 slug

W 5 mg 5 29.1 lbf

Earth

g 5 9.81 m/s2 g 5 32.2 ft/s2 g 5 1.62 m/s2 g 5 5.31 ft/s2

Moon

Figure 2.10
An astronaut’s mass and 
weight on the earth and 
moon.
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40 Chapter 2 Dimensions and Units

EXAMPLE 2.5
Special hoists are used in automotive repair shops to lift engines. As illustrated in 
Figure 2.11, a 200 kg engine is suspended in a fixed position by a chain attached 
to the cross member of an engine hoist. Neglecting the weight of the chain itself, 
what is the tension in portion AD of the chain?

Solution
This example is a simple problem in engineering statics. Statics is the branch of 
engineering mechanics that deals with forces acting on bodies at rest. The engine 
is held by the chain in a fixed position, so clearly the engine is at rest; that is, it is 
not in motion. This problem can be solved by recognizing that the entire weight 
of the engine is supported by portion AD of the chain. (The tension in portions 
AB and AC could also be calculated, but a thorough equilibrium analysis would be 
required.) Hence, the tension, which is a force that tends to elongate the chain, is 
equivalent to the weight of the engine. Using Equation (2.2), we have

F mg=
= =(200 kg)(9.81 m/s ) 1962 N.2

Therefore, the tension in portion AD of the chain is 1962 N, the weight of the 
engine.

D

A

B C

Figure 2.11
Engine hoist for  
Example 2.5.

PRACTICE!

1. It has been said that you do not fully understand a basic technical con-
cept, unless you can explain it in terms simple enough that a second 
grader can understand it. Write an explanation of the difference be-
tween mass and weight for a second grader.

2. Which is larger, a slug or a pound-mass?
Answer: slug.
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2.7 Unit Conversions 41

2.7 UNIT CONVERSIONS
Although the SI unit system is the international standard, English units are in wide-
spread use in the United States. Americans as a whole are much more familiar with 
English units than SI units. Students of science and engineering in U.S. schools 
primarily use SI units in their course work because most textbooks and the profes-
sors who teach out of them stress SI units. Unfortunately, when students of these 
disciplines go about their day-to-day activities outside of the academic environment, 
they tend to slip back into the English unit mode along with everyone else. It seems 
as if students have a “unit switch” in their brains. When they are in the classroom 
or laboratory, the switch is turned to the “SI position.” When they are at home, in 
the grocery store, or driving their car, the switch is turned to the “English position.” 
Ideally, there should be no unit switch at all, but as long as science and engineering 
programs at colleges and universities stress SI units and American culture stresses 
English units, our cerebral unit switch toggles. In this section, a systematic method 
for converting units between the SI and English systems is given.

A unit conversion enables us to convert from one unit system to the other by 
using conversion factors. A conversion factor is an equivalency ratio that has a unit 
value of 1. Stated another way, a conversion factor simply relates the same physical 
quantity in two different unit systems. For example, 0.0254 m and 1 in are equiva-
lent length quantities because =0.0254 m 1 in. The ratio of these two quantities 
has a unit value of 1 because they are physically the same quantity. Obviously, the 
numerical value of the ratio is not 1, but depends on the numerical value of each 
individual quantity. Thus, when we multiply a given quantity by one or more con-
version factors, we alter only the numerical value of the result and not its dimen-
sion. Table 2.11 summarizes some common conversion factors used in engineering 
analysis. A more extensive listing of unit conversions is given in Appendix B.

A systematic procedure for converting a quantity from one unit system to the 
other is as follows:

2.7.1 Unit Conversion Procedure
1. Write the given quantity in terms of its numerical value and units. Use a 

horizontal line to divide units in the numerator (upstairs) from those in the 
denominator (downstairs).

2. Determine the units to which you want to make the conversion.
3. Multiply the given quantity by one or more conversion factors that, upon can-

cellation of units, leads to the desired units. Use a horizontal line to divide the 
units in the numerator and denominator of each conversion factor.

4. Draw a line through all canceled units.
5. Perform the numerical computations on a calculator, retaining maximum deci-

mal place accuracy until the end of the computations.

3. Consider a professional linebacker who weighs 310 lb .f  What is his 
mass in slugs?
Answer: 9.63 slug.

4. A rock ρ =( 2300 kg/m )3  is suspended by a single rope. Assuming the 
rock to be spherical, with a radius of 20 cm, what is the tension in the 
rope?
Answer: 756 N.
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42 Chapter 2 Dimensions and Units

6. Write the numerical value of the converted quantity by using the desired 
number of significant figures (three significant figures is standard practice 
for engineering) with the desired units.

Examples 2.6, 2.7, and 2.8 illustrate the unit conversion procedure.

Table 2.11 Some Common SI-to-English Unit Conversions

(1) Exact conversion.

Quantity Unit Conversion

Acceleration 1 m/s 3.2808 ft/s2 2=

Area 1m 10.7636 ft 1550 in2 2 2= =

Density 1kg/m 0.06243 lb /ft3
m

3=

Energy, work, heat 1055.06 J 1 Btu 252 cal= =

Force 1N 0.22481 lbf=

Length 1m 3.2808 ft 39.370 in= =

0.0254m 1 in(1)=

Mass 1kg 2.20462 lb 0.06852 slugm= =

Power 1W 3.4121 Btu/h=

745.7 W 1 hp=

Pressure 1kPa 20.8855 lb /ft 0.14504 lb /inf
2

f
2= =

Specific heat ⋅ = ⋅1kj/kg °C 0.2388 Btu/lb °Fm

Temperature = + = = + T(K) T(°C) 273.16 T(°R)/1.8 T(°F) 459.67 /1.8

Velocity 1m/s 2.2369 mi/h=

EXAMPLE 2.6
An engineering student is late for an early morning class, so she runs across campus 
at a speed of 9 mi/h. Determine her speed in units of m/s.

Solution
The given quantity, expressed in English units, is 9 mi/h, but we want our answer 
to be in SI units of m/s. Thus, we need a conversion factor between mi and m and 
a conversion factor between h and s. To better illustrate the unit conversion pro-
cedure, we will use two length conversion factors rather than one. Following the 
procedure outlined, we have

9
mi
h

5280  ft
1  mi

1 m
3.2808  ft

1  h
3600 s

4.02
m
s

.

given quantity conversion factors answer

× × × =

↑ ↑ ↑

i
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The key aspect of the unit conversion process is that the conversion factors must 
be written such that the appropriate units in the conversion factors cancel those 
in the given quantity. If we had inverted the conversion factor between ft and mi, 
writing it instead as 1 mi/5280 ft, the mi unit would not cancel and our unit con-
version exercise would not work, because we would end up with units of mi2 in the 
numerator. Similarly, the conversion factor between m and ft was written such that 
the ft unit canceled the ft unit in the first conversion factor. Also, the conversion 
factor between h and s was written such that the h unit canceled with the h unit in 
the given quantity. Writing conversion factors with the units in the proper locations, 
“upstairs” or “downstairs,” requires some practice, but after doing several conver-
sion problems, the correct placement of units will become second nature to you. 
Note that our answer is expressed in three significant figures.

EXAMPLE 2.7
Lead has one of the highest densities of all the pure metals. The density of lead is 
11,340 kg/m .3  What is the density of lead in units of lb /in ?m

3

Solution
A direct conversion factor from kg/m3 to lb /inm

3  may be available, but to illustrate 
an important aspect of converting units with exponents, we will use a series of conver-
sion factors for each length and mass unit. Thus, we write our unit conversion as

×








 ×









 × =11,340

kg

m

1  m
3.2808  ft

1  ft
12 in

2.20462 lb
1  kg

0.410 lb /in .
3

3 3
m

m
3

We used two length conversion factors, one factor between m and ft and the other  
between ft and in. But the given quantity is a density that has a volume unit. When per-
forming unit conversions involving exponents, both the numerical value and the unit 
must be raised to the exponent. A common error that students make is to raise the 
unit to the exponent, which properly cancels units, but to forget to raise the numerical 
value also. Failure to raise the numerical value to the exponent will lead to the wrong 
numerical answer even though the units in the answer will be correct. Using the direct 
conversion factor obtained from Appendix B, we obtain the same result:

×
×

=
−

11,340  kg /m
3.6127 10  lb /in

1  kg/ m
0.410 lb /in .3 5

m
3

3 m
3

EXAMPLE 2.8
Specific heat is defined as the energy required to raise the temperature of a unit 
mass of a substance by one degree. Pure aluminum has a specific heat of approxi-
mately ⋅900 J/Kg °C.  Convert this value to units of ⋅Btu/lb °F.m
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Solution
By following the unit conversion procedure, we write the given quantity and then 
multiply it by the appropriate conversion factors, which can be found in Appendix B:

⋅
× × × = ⋅

900  J

kg ° C
1 Btu

1055.06  J

1  kg

2.20462 lb
1° C
1.8°F

0.215 Btu/lb °F.
m

m

The temperature unit °C in the original quantity has a unique interpretation. 
Because specific heat is the energy required to raise a unit mass of a substance by 
one degree, the temperature unit in this quantity denotes a temperature change, 
not an absolute temperature value. A temperature change of 1°C is equivalent to a 
temperature change of 1.8°F. Other thermal properties, such as thermal conductiv-
ity, involve the same temperature change interpretation.

This example can also be done by applying a single conversion factor 
⋅ = ⋅1 kJ/Kg °C 0.2388 Btu/lb °F,m  which yields the same result.

PROFESSIONAL SUCCESS—UNIT CONVERSIONS  
AND CALCULATORS

Scientific pocket calculators have evolved from simple electronic versions of 
adding machines to complex portable computers. Today’s high-end scientific 
calculators have numerous capabilities, including programming, graphing, 
numerical methods, and symbolic mathematics. Most scientific calculators 
also have an extensive compilation of conversion factors. Why, then, should 
students learn to do unit conversions by hand when calculators will do the 
work? This question lies at the root of a more fundamental question: why 
should students learn to do any computational task by hand when calculators 
or computers will do the work? Is it because “in the old days” engineers did 
not have the luxury of highly sophisticated computational tools, so professors, 
who perhaps lived in the “old days,” forced their students to do things the old 
fashioned way? Not really.

Students will always need to learn engineering by thinking and reasoning 
their way through a problem, regardless of whether that problem is a unit con-
version or a stress calculation in a machine component. Computers, and the 
software that runs on them, do not replace the thinking process. The calcula-
tor, like the computer, should never become a “black box” to the student. A 
black box is a mysterious device whose inner workings are largely unknown, 
but that, nonetheless, provides output for every input supplied. By the time you 
graduate with an engineering degree, or certainly by the time you have a few 
years of professional engineering practice, you will come to realize that a cal-
culator program or computer software package exists for solving many types of 
engineering problems. This does not mean that you need to learn every one of 
these programs and software packages. It means that you should become pro-
ficient in the use of those computational tools that pertain to your particular 
engineering field after learning the underlying basis for each. By all means, use 
a calculator or a unit conversion application to perform unit conversions, but 
first know how to do them by hand, so you gain confidence in your own com-
putational skills and have a way to verify the results of computer-based tools.

M02_HAGE4428_05_SE_C02.indd   44 12/11/20   2:19 PM



Key Terms 45

KEY TERMS

base dimension
conversion factors
derived dimension
dimension
dimensionally consistent

English unit system
mass
Newton’s second law
physical standards
SI unit system

unit
unit conversion
weight

PRACTICE!

1. A microswitch is an electrical switch that requires only a small force to 
operate it. If a microswitch is activated by a 0.25-oz force, what is the 
force in units of N that will activate it?
Answer: 0.0695 N.

2. At room temperature, water has a density of about 62.4 lb /ft .m
3  

Convert this value to units of slug/in3  and kg/m .3

Answer: × −1.12 10  slug/in ,  999.5 kg/m .3 3 3

3. At launch, the Saturn V rocket that carried astronauts to the moon 
developed five million pounds of thrust. What is the thrust in units 
of MN?
Answer: 22.2 MN.

4. Standard incandescent light bulbs produce more heat than light. 
Assuming that a typical house has twenty 60-W bulbs that are continu-
ously on, how much heat in units of Btu/h is supplied to the house 
from light bulbs if 90 percent of the energy produced by the bulbs is in 
the form of heat?
Answer: 3685 Btu/h.

5. Certain properties of animal (including human) tissue can be approxi-
mated by using those of water. Using the density of water at room tem-
perature, ρ = 62.4 lb /ft ,m

3  calculate the weight of a human male by 
approximating him as a cylinder with a length and diameter of 6 ft and 
10 in, respectively.
Answer: 204 lb .f

6. The standard frequency for electrical power in the United States is 
60 Hz. For an electrical device that operates on this power, how many 
times does the current alternate during a year?
Answer: ×1.89 10 .9
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Dimensions

 2.1 For the following dimensional equations, find the base dimensions of the 
parameter k:

a. − −MLt = ML t1 2k
b. k=− − −MLt L  Lt2 1 3

c. =−L t M T3 2 3k
d. k=−ML t  LT2 3

e. k = −nLL T M L3 2 2

f. k = − −MI nTM L2 3 1

g. −IL t = M t2 2 4 2k
h. k =− − −T M L T t L3 6 3 5 3 6

i. k=− − − − −T L I t T L1/2 1 2 1/2 4 5/2 3

j. k=− − − −MLt MLt  sin( L M )2 2 2 1

k. T k= −T n n ln( nT )2 2 1

 2.2 Is the following dimensional equation dimensionally consistent? Explain.

=ML ML cos(Lt).

 2.3 Is the following dimensional equation dimensionally consistent? Explain.

( )= −t LT tLT log tt .2 1

 2.4 Is the following dimensional equation dimensionally consistent? Explain.

= −TnT TnT exp(MM ).1

Units

 2.5 In the following list, various quantities are written using SI units incorrectly: 
Write the quantities, using the correct form of SI units.

a. 10.6 secs
b. 4.75 amps
c. 120 M hz
d. 2.5 Kw
e. µ0.00846 kg/ s
f. 90 W/m  K2

PROBLEMS
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g. 525 mGN
h. 90 GN
i. 950 Joules
j. 1.5 m/s/s.
k. 60 W/mK
l. 800 N/m/m
m. 40 mhz

 2.6 The dimension moment, sometimes referred to as torque, is defined as a force 
multiplied by a distance and is expressed in SI units of newton-meter ⋅(N m). 
In addition to moment, what other physical quantities are expressed in SI 
units of ⋅N m? What is the special name given to this combination of units?

 2.7 Consider a 60-W light bulb. A watt (W) is defined as a joule per second 
(J/s). Write the quantity 60 W in terms of the units newton (N), meter (m), 
and second (s).

 2.8 A commonly used formula in electrical circuit analysis is P = IV, power (W) 
equals current (A) multiplied by voltage (V). Using Ohm’s law, V = IR, where 
R is resistance (Ω), write a formula for power in terms of current I and resis-
tance R.

 2.9 A particle undergoes an average acceleration of 8 m/s2  as it travels between 
two points during a time interval of 2 s. Using unit considerations, derive a 
formula for the average velocity of a particle in terms of average accelera-
tion and time interval. Calculate the average velocity of the particle for the 
numerical values given.

 2.10 A crane hoists a large pallet of materials from the ground to the top of a build-
ing. In hoisting this load, the crane does 250 kJ of work during a time interval of 
5 s. Using unit considerations, derive the formula for power in terms of work and 
time interval. Calculate the power expended by the crane in lifting the load.

Mass and weight

 2.11 A tank measuring 80 cm × 1.20 m × 1.75 m is half filled with water  
(ρ = 1000 kg/m3). Find the mass and the weight of the water in SI units.

 2.12 A large indoor sports arena is cylindrical in shape. The height and diameter 
of the cylinder are 120 m and 180 m, respectively. Calculate the mass and 
weight of air contained in the sports arena in SI units if the density of air is 
ρ = 1.20 kg/m .3

 2.13 A 90-kg astronaut biologist searches for microbial life on Mars where the 
gravitational acceleration is =g 3.71 m/s .2  What is the weight of the astro-
naut in units of N and lb ?f

 2.14 A 90-kg astronaut biologist places a 4-lbm  rock sample on two types of scales 
on Mars in order to measure the rock’s weight. The first scale is a beam 
balance, which operates by comparing masses. The second scale operates 
by the compression of a spring. Calculate the weight of the rock sample in 
units of lbf  using (a) the beam balance and (b) the spring scale.

 2.15 Fifty spherical ball bearings have a diameter of 1.25 cm and a density of  
ρ = 8900 kg/m3. Find the mass and the weight of the ball bearings in SI units.

 2.16 A circular tube of stainless steel ρ =( 7840 kg/m )3  has an inside radius of 
1.85 cm and an outside radius of 2.20 cm. If the tube is 35 cm long, what is 
the mass and weight of the tube in SI units?
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 2.17 The density of porcelain is ρ = 144 lb /ft .m
3  Approximating a porcelain 

dinner plate as a flat disk with a diameter and thickness of 9 in and 0.2 in, 
respectively, find the mass of the plate in units of slug and lb .m  What is the 
weight of the plate in units of lb ?f

 2.18 In an effort to reduce the mass of a bulkhead for a spacecraft, an engineer 
has an array of holes drilled in the bulkhead. The bulkhead is a circular 
plate with a diameter and thickness of 40 cm and 1.50 cm, respectively. How 
many 5.0-cm holes must be drilled clear through the bulkhead to reduce its 
mass by at least 20 percent?

Unit conversions

 2.19 A world-class female hurdler can run 100 m in a time of 12.5 s, an average 
speed of 8.00 m/s. Convert this speed to units of mi/h.

 2.20 A world-class mile runner can run 1 mi in a time of 4 min. What is the run-
ner’s average speed in units of mi/h and m/s?

 2.21 An office building is heated by a forced-air system that burns fuel oil. If the 
heat output of the system is 3.75 million Btu/h, what is the heat output in 
units of MW?

 2.22 Calculate the temperature at which the Celsius (°C) and Fahrenheit (°F) 
scales are numerically equal.

 2.23 A large shipping container of ball bearings is suspended by a cable in a 
manufacturing plant. The combined mass of the container and ball bear-
ings is 3250 lb .m  Find the tension in the cable in units of N.

 2.24 A typical human adult loses about t⋅65 Btu/h f 2  of heat while engaged in 
brisk walking. Approximating the human adult body as a cylinder with a 
height and diameter of 5.8 ft and 10 in, respectively, find the total amount 
of heat lost in units of J if the brisk walking is maintained for a period of  
1 h. Include the two ends of the cylinder in the surface area calculation.

 2.25 A symmetric I-beam of structural steel ρ =( 7860 kg/m )3  has the cross sec-
tion shown in Figure P2.25. Calculate the weight per unit length of the  
I-beam in units of N/m and lb /ft.f

30 mm

40 mm

30 mm

350 mm

350 mmFigure P2.25

 2.26 A sewer pipe carries waste away from a building at an average mass flow rate 
of 4.0 kg/s. What is this flow rate in units of kg/day, lbm/s, and slug/h?
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 2.27 The rate at which solar radiation is intercepted by a unit area is called solar 
heat flux. Just outside the earth’s atmosphere, the solar heat flux is approxi-
mately 1350 W/m .2  Determine the value of this solar heat flux in units of 

⋅Btu/h ft .2

 2.28 During a typical summer day in the arid southwest regions of the United 
States, the outdoor air temperature may range from 115°F during the late 
afternoon to 50°F several hours after sundown. What is this temperature 
range in units of °C, K, and °R?

 2.29 An old saying is “an ounce of prevention is worth a pound of cure.” Restate 
this maxim in terms of the SI unit newton.

 2.30 How many seconds are there in the month of March? How many seconds 
are there in a year consisting of 365 days?

 2.31 What is your approximate age in hours?

 2.32 A highway sign is supported by two posts as shown in Figure P2.32. The sign 
is constructed of a high-density pressboard material ρ =( 900 kg/m )3  and 
its thickness is 2 cm. Assuming that each post carries half the weight of the 
sign, calculate the compressive force in the posts in units of N and lb .f

2.13 m

1.22 m

Figure P2.32

 2.33 The operating pressure and temperature of the steam in a boiler are 6 MPa 
and 350°C, respectively. What is the pressure and temperature of the steam 
in units of psi and °F, respectively?

 2.34 A pressure gauge designed to measure small pressure differences in air 
ducts has an operating range of 0 to 16 inch H O.2  What is this pressure 
range in units of Pa and psi?

 2.35 Resistors are electrical devices that retard the flow of current. These devices 
are rated by the maximum power they are capable of dissipating as heat to 
the surrounding area. How much heat does a 10-W resistor dissipate in units 
of Btu/h if the resistor operates at maximum capacity? Using the formula 

= ,2P I R  what is the current flow I in the resistor if it has a resistance R of 
Ω100  ?

 2.36 The fission process within a radioactive material generates heat internally 
throughout the material’s volume. Consider a radioactive material that gen-
erates heat at a rate of 80 W/cm3. Convert this quantity to units of Btu/h· ft3.
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 2.37 A crate of axles for newly-manufactured off-road vehicles holds 60 axles. 
Each axle has a length and diameter of 4.5 ft and 0.75 inch, respectively, and 
is made of steel (ρ = 17.2 slug/ft3). Find the total mass and weight of the 
axles in units of slug and lbf, respectively.

 2.38 A copper tube carries hot water to a dishwasher at a volume flow rate of  
3 gal/min. Convert this flow rate to units of m3/s and ft3/h.

 2.39 Thermal conductivity is a property that describes the ability of a material 
to conduct heat. A material with a high thermal conductivity readily trans-
ports heat, whereas a material with a low thermal conductivity tends to re-
tard heat flow. Fiberglass insulation and silver have thermal conductivities 
of ⋅0.046 W/m °C  and ⋅429 W/m °C,  respectively. Convert these values to 
units of ⋅ ⋅Btu/h ft °F.

 2.40 Consider a 40-W LED light bulb with a life of 12,000 h. Find the total amount 
of energy, expressed in units of kJ, that this light bulb produces during its 
lifetime.

 2.41 A steam power plant produces 750 MW of power. How much energy does 
the power plant produce in a year? Express your answer in units of J and 
Btu.

 2.42 It is estimated that about 60 million Americans go on a new diet each year. If 
each of these people cuts 300 cal from their diets each day, how many 100-W 
light bulbs could be powered by this energy?

 2.43 The standard acceleration of gravity at the earth’s surface is = 9.81 m/s .2g  
Convert this acceleration to units of ft/h2  and mi/s .2

 2.44 A type of concrete has a specific weight of 9.40 kN/m3. What is the density 
of this concrete in units of slug/ft3?

 2.45 The yield stress for structural steel is approximately 250 MPa. Convert this 
value to units of psi.

 2.46 A 20-gage tungsten wire carries a current of 6.8 A. The electrical resistance 
of this wire is Ω106   per kilometer of length. Find the power dissipated from 
this wire per meter of length in units of W. (Hint: Use the formula = ,2P I R  
where = = =power, I current,  resistanceP R ). How much energy does 
this wire dissipate in one hour? One year?

 2.47 An open pit copper mine yields ×7 10 kg4  of copper per day. From the same 
ore, the mine also yields ×2 10 kg3  of silver and 30 kg of gold per day. In 
units of lbm, what is the annual production of these metals from the mine 
assuming year round operation?

 2.48 Linear impulse is a quantity in the subject of dynamics that defines a force 
acting on a body over a time interval. For simple cases, linear impulse may 
be expressed as the product of the force and the time interval. Convert the 
linear impulse 300 N·s to units of lbf ·h.

 2.49 Overall heat transfer coefficient, U, sometimes called U-value, is a quan-
tity used in the thermal analysis and design of buildings. This quantity is a 
 measure of the heat transmission through a building member such as a wall, 
roof, or window. Consider a frame wall with a U-value of 0.20 Btu/h·ft2 ·°F.  
Convert this quantity to units of W/m2 · °C. (Hint: The °C unit in this 
 quantity refers to a temperature change. A change of the degree Celsius is 
equivalent to a change of 1.8 degrees Fahrenheit).
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 2.50 Kinetic energy is the energy that a system possesses as a result of its motion 
with respect to a reference frame. The formula for kinetic energy is

 =  1
2

2KE mv

where m is mass and v is velocity. Using this formula, show that the SI unit for 
kinetic energy is the joule (J), which is defined as a newton-meter (N·m).

 2.51 Viscosity may be defined as the property of a fluid that signifies the ease 
with which the fluid flows under specified conditions. There are two kinds 
of viscosity, dynamic and kinematic. The units for dynamic viscosity are the 
pascal-second (Pa·s). (1 Pa = 1 N/m2). Express dynamic viscosity in terms of 
SI fundamental units.

 2.52 Using Newton’s second law, F = ma, show that the quantity pressure, which is 
defined as force divided by area, may be expressed in SI fundamental units 
as kg/m·s2.

 2.53 A 5 kW resistance heating element runs for two hours to raise the tempera-
ture in a water heater to the desired value. In units of kJ, how much energy 
does this heating element use?

 2.54 For a wind turbine that produces electrical power for a utility company, the 
output power per unit area swept out by the turbine blades is 2.8 kW/m2. 
Convert this power to units of hp/ft2.

 2.55 If an automobile has a fuel economy rating of 28 mi/gal for highway condi-
tions, what is the economy rating in units of kilometer/liter (km/L)?
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3.1 INTRODUCTION
One of the most important things an engineering student learns during his or her 
program of study is how to approach an engineering problem in a systematic and logi-
cal fashion. In this respect, the study of engineering is somewhat similar to the study 
of science in that a science student learns how to think like a scientist by employing 
the scientific method. The scientific method is a process by which hypotheses about 
the physical world are stated, theories formulated, data collected and evaluated, and 
mathematical models constructed.

The engineering method may be thought of as a problem-solving process by which 
the needs of society are met through design and manufacturing of devices and sys-
tems. Engineering analysis is a major part of this problem-solving process. Admittedly, 
engineering and science are not the same, because they each play a different role in 
our technical society. Science seeks to explain how nature works through fundamen-
tal investigations of matter and energy. The objective of engineering is more prag-
matic. Engineering, using science and mathematics as tools, seeks to design and build 
products and processes that enhance our standard of living. Generally, the scientific 
principles underlying the function of any engineering device were derived and es-
tablished before the device was designed. For example, Newton’s laws of motion and 
Kepler’s orbital laws were well established scientific principles long before spacecraft 

After reading this chapter, you 
will have learned
• How to make order-of- 

magnitude calculations
• The proper use of signifi-

cant figures
• How to perform an analysis 

systematically

• The proper method of 
analysis presentation

• Advantages and disadvan-
tages of using computers 
for analysis

Objectives

Analysis 
Methodology3

C H A P T E R
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orbited the earth or the other planets. Despite their contrasting objectives, both 
engineering and science employ tried-and-true methodologies that enable people 
working in each field to solve a variety of problems. To do science, the scientist must 
know how to employ the scientific method. To do engineering, the engineer must 
know how to employ the “engineering method.”

Engineering analysis is the solution of an engineering problem by using math-
ematics and principles of science. Because of the close association between analysis 
and design, analysis is one of the key steps in the design process. Analysis also plays 
a major role in the study of engineering failures. The engineering method for con-
ducting an analysis is a logical, systematic procedure characterized by a well-defined 
format. This procedure, when consistently and correctly applied, leads to the suc-
cessful solution of any analytical engineering problem. Practicing engineers have 
been using this analysis procedure successfully for decades, and engineering gradu-
ates are expected to know how to apply it upon entering the technical workforce. 
Therefore, it behooves the engineering student to learn the analysis methodology 
as thoroughly as possible. The best way to do so is to practice solving analytical 
problems. As you advance in your engineering course work, you will have ample op-
portunities to apply the analysis methodology outlined in this chapter.

Courses such as statics, dynamics, mechanics of materials, thermodynam-
ics, fluid mechanics, heat and mass transfer, electrical circuits, biomechanics, 
structural design, process engineering, and engineering economics are analysis  
intensive. These courses, and others like them, focus almost exclusively on solving 
engineering problems that are analytical in nature. That is the character of these  
engineering subjects. The analysis methodology presented here is a general proce-
dure that can be used to solve problems in any analytical subject. Clearly, engineer-
ing analysis heavily involves the use of numerical calculations.

3.2 NUMERICAL CALCULATIONS
As a college student, you are well aware of the rich diversity of academic programs 
and courses offered at institutions of higher learning. Because you are an engineer-
ing major, you are perhaps more familiar with the genre of engineering, science, 
and mathematics courses than with liberal arts courses such as sociology, philoso-
phy, psychology, music, and languages. The tenor of liberal arts is vastly different 
from that of engineering. Suppose for a moment that you are enrolled in a litera-
ture class, studying Herman Melville’s great book Moby Dick. While discussing the 
relationship between the whale and Captain Ahab, your literature professor asks 
the class, “What is your impression of Captain Ahab’s attitude toward the whale?” 
As an engineering major, you may be struck by the apparent looseness or subjectiv-
ity of this question. You are accustomed to answering questions that require a quan-
titative answer, not an “impression.” What would engineering be like if our answers 
were “impressions?” Imagine an engineering professor asking a thermodynamics 
class, “What is your impression of the superheated steam temperature at the inlet 
of the turbine?” A more appropriate question would be, “What is the superheated 
steam temperature at the inlet of the turbine?”

Obviously, literature and the other liberal arts disciplines operate in a com-
pletely different mode from engineering. By its very nature, engineering is based 
on specific quantitative information. An answer of “hot” to the second thermody-
namics question would be quantitative, but not specific and therefore insufficient. 
The temperature of the superheated steam at the inlet of the turbine could be 
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calculated by conducting a thermodynamic analysis of the turbine, thereby provid-
ing a specific value for the temperature, 400°C for example. The analysis by which 
the temperature was obtained may consist of several numerical calculations involv-
ing different thermodynamic quantities. Numerical calculations are mathematical 
operations on numbers that represent physical quantities such as temperature, 
stress, voltage, mass, and flow rate. In this section, you will learn the proper numeri-
cal calculation techniques for engineering analysis.

3.2.1 Approximations
It is often useful, particularly during the early stages of design, to calculate an ap-
proximate answer to a given problem when the given information is uncertain or 
when little information is available. An approximation can be used to establish 
the cursory aspects of a design and to determine whether a more precise calcu-
lation is required. Approximations are usually based on assumptions, which must 
be modified or eliminated during the later stages of the design. Engineering ap-
proximations are sometimes referred to as “guesstimates,” “ballpark calculations,” 
or “back-of-the-envelope calculations.” A more appropriate name for them is order-
of-magnitude calculations. The term order of magnitude means a power of 10. Thus, an 
order-of-magnitude calculation refers to a calculation involving quantities whose 
numerical values are estimated to within a factor of 10. For example, if the estimate 
of a stress in a structure changes from about 1 kPa to about 1 MPa, we say that the 
stress has changed by three orders of magnitude, because 1 MPa is one thousand 
(10 )3  times 1 kPa.

Engineers frequently conduct order-of-magnitude calculations to ascertain 
whether their initial design concepts are feasible. Order-of-magnitude calculations  
are therefore a useful decision-making tool in the design process. Order-of-
magnitude calculations do not require the use of a calculator because all the quan-
tities have simple power-of-10 values, so the arithmetic operations can be done by 
hand with pencil and paper or even in your head. The example that follows illus-
trates an order-of-magnitude calculation.

EXAMPLE 3.1
A warehouse with the approximate dimensions × ×200 ft 150 ft 20 ft  is ventilated 
with 12 large industrial blowers. In order to maintain acceptable air quality in the 
warehouse, the blowers must provide two air changes per hour, meaning that the 
entire volume of air within the warehouse must be replenished with fresh outdoor 
air two times per hour. Using an order-of-magnitude analysis, find the required 
volume flow rate that each blower must deliver, assuming the blowers equally share 
the total flow rate.

Solution
To begin, we estimate the volume of the warehouse. The length, width, and height 
of the warehouse is 200 ft, 150 ft, and 20 ft, respectively. These lengths have order-
of-magnitude values of 10 ,  10 ,2 2  and 10 ,1  respectively. Two air changes per hour are 
required. Thus, the total volume flow rate of air for the warehouse, including the 
factor of two air changes per hour, is:

(10  ft)(10  ft)(10  ft)(2 air changes/h) 10  ft /h.2 2 1 5 3Qt M≈
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(Note that “air changes” is not a unit, so it does not appear in the answer.) The 
number of blowers (12) has an order-of-magnitude value of 10 .1  Based on the as-
sumption that each blower delivers the same flow rate, the flow rate per blower is 
the total volume flow rate divided by the number of blowers:

= =Q Q Nt / (10  ft /h)(10  blowers)5 3 1

= ⋅10  ft /h blower.4 3

Our order-of-magnitude calculation shows that each blower must supply 10  ft /h4 3  
of outdoor air to the warehouse.

How does our order-of-magnitude answer compare with the exact answer? The 
exact answer is:

= = × ⋅Q (200 ft)(150 ft)(20 ft)(2 air changes/h) / (12 blowers) 1 10  ft /h blower.5 3

By dividing the exact answer by the approximate answer, we see that the approxi-
mate answer differs from the exact answer by a factor of 10, which shows that an 
order-of-magnitude analysis provides an acceptable approximate answer.

3.2.2 Significant Figures
After order-of-magnitude calculations have been made, engineers conduct more 
precise calculations to refine their design or to more fully characterize a particu-
lar failure mode. Accurate calculations demand more of the engineer than simply 
keeping track of powers of 10. Final design parameters must be determined with as 
much precision as possible to achieve the optimum design. Engineers must deter-
mine how many digits in their calculations are significant.

A significant figure or significant digit in a number is defined as a digit that is 
considered reliable as a result of a measurement or calculation. The number of significant 
figures in the answer of a calculation indicates the number of digits that can be 
used with confidence, thereby providing a way of telling the engineer how precise 
the answer is. No physical quantity can be specified with infinite precision because 
no physical quantity is known with infinite precision. Even the constants of nature 
such as the speed of light in a vacuum c, and the gravitational constant G, are known 
only to the precision with which they can be measured in a laboratory. Similarly, 
engineering material properties such as density, modulus of elasticity, and specific 
heat are known only to the precision with which these properties can be measured. 
A common mistake is to use more significant figures in an answer than are justified, 
giving the impression that the answer is more accurate than it really is. No answer 
can be more precise than the numbers used to generate that answer.

How do we determine how many significant figures (colloquially referred to as 
“sig figs”) a number has? A set of rules has been established for counting the num-
ber of significant figures in a number. (All significant figures are underlined in the 
examples given for each rule.)

Rules for Significant Figures

1. All digits other than zero are significant. Examples: 8.936, 456, 0.257.
2. All zeroes between significant figures are significant. Examples: 14.06, 5.0072.
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3. For nondecimal numbers greater than one, all zeroes placed after the signifi-
cant figures are not significant. Examples: 2500, 8,640,000. These numbers can 
be written in scientific notation as ×2.5 103  and ×8.64 10 ,6  respectively.

4. If a decimal point is used after  a nondecimal number larger than one, the ze-
roes are significant. The decimal point establishes the precision of the number. 
Examples: 3200., 550,000.

5. Zeroes placed after a decimal point that are not necessary to set the decimal 
point are significant. The additional zeroes establish the precision of the num-
ber. Examples: 359.00, 1000.00.

6. For numbers smaller than one, all zeroes placed before the significant figures 
are not significant. These zeroes only serve to establish the location of the deci-
mal point. Examples: 0.0254, 0.000609.

Do not confuse the number of significant figures with the number of decimal places 
in a number. The number of significant figures in a quantity is established by the 
precision with which a measurement of that quantity can be made. The primary 
exception to this are numbers such as π  and the Naperian base e, which are derived 
from mathematical relations. These numbers are precise to an infinite number of 
significant figures but can be quite adequately approximated by 10-digit decimals.

Let’s see how the rules for significant figures are used in calculations.

EXAMPLE 3.2
We wish to calculate the weight of a 25-kg object. Using Newton’s second law 

= ,W mg  find the weight of the object in units of N. Express the answer, by using 
the appropriate number of significant figures.

Solution
We have = 25 kgm  and = 9.81 m/s .2g  Suppose that our calculator is set to display 
six places to the right of the decimal point. We then multiply the numbers 25 and 
9.81. In the display of the calculator, we see the number 245.250000. How many dig-
its in this answer are we justified in writing? The number in the calculator’s display 
implies that the answer is precise to six decimal places (i.e., to within one-millionth 
of a newton). Obviously, this kind of precision is not justified. The rule for signifi-
cant figures for multiplication and division is that the product or quotient should contain 
the number of significant figures that are contained in the number with the fewest significant 
figures.

Another way to state this rule is to say that the quantity with the fewest number 
of significant figures governs the number of significant figures in the answer. The 
mass m contains two significant figures, and the acceleration of gravity g contains 
three. Therefore, we are only justified in writing the weight by using two significant 
figures, which is the fewest number of significant figures in our given values. Our 
answer can be written in two ways. First, we can write the weight as 250 N. According 
to rule 3, the zero is not significant, so our answer contains two significant figures, 
the “2” and the “5.” Second, we can write the weight by using scientific notation as 

×2.5 10  N.2  In this form, we can immediately see that two significant figures are 
used without referring to the rules. Note that in both cases we rounded the answer 
up to the nearest tens place, because the value of the first digit dropped is 5 or 
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greater. If our answer had been lower than 245 N, we would have rounded down to 
240 N. If our answer had been precisely 245 N, the rules of rounding suggest round-
ing up, so our answer would again be 250 N.

The preceding example shows how significant figures are used for multiplica-
tion or division, but how are significant figures used for addition and subtraction?

EXAMPLE 3.3
Two collinear forces (forces that act in the same direction) of 875.4 N and 9.386 N 
act on a body. Add these two forces, expressing the result in the appropriate num-
ber of significant figures.

Solution
The best way to show how significant figures are used in addition or subtraction is 
to do the problem by hand. We have:

+

875.4 N

9.386 N

884.786  N.

Both forces have four significant figures, but the first force reports one place past 
the decimal point, whereas the second force reports three places past the decimal 
point. The answer is written with six significant figures. Are six significant figures 
justified? Because addition and subtraction are arithmetic operations that require 
decimal point alignment, the rule for significant figures for addition and subtraction 
is different than for multiplication and division. For addition and subtraction, the 
answer should show significant figures only as far to the right as is seen in the least precise 
number in the calculation. The least precise number in the calculation is the 875.4-N 
force, because it reports accuracy to the first decimal place, whereas the second 
force 9.386 N reports precision to the third decimal place. We are not justified in 
writing the answer as 884.786 N. We may only write the answer by using the same 
number of places past the decimal point as seen in the least precise force. Hence, 
our answer, reported to the appropriate number of significant figures, is 884.8 N. 
Once again, we rounded the answer up because the value of the first digit dropped 
is 5 or greater.

In combined operations where multiplication and division are performed in 
the same operation as addition and subtraction, the multiplications and divisions 
should be performed first, establishing the proper number of significant figures in 
the intermediate answers, perform the additions and subtractions, and then round 
the answer to the proper number of significant figures. This procedure, while ap-
plicable to operations performed by hand, should not be used in calculator or com-
puter applications, because intermediate rounding is cumbersome and may lead to 
a serious error in the answer. Perform the entire calculation, letting the calculator 
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or computer software manage the numerical precision, and then express the final 
answer in the desired number of significant figures:

It is standard engineering practice to express final answers in three (or sometimes 
four) significant figures, because the given input values for geometry, loads, mate-
rial properties, and other quantities are typically reported with this precision.

Calculators and computer software such as spreadsheets and equation solvers 
keep track of and can display a large number of digits. How many digits will your 
calculator display? The number of digits displayed by a scientific calculator can be 
set by fixing the decimal point or specifying the numerical format. For example, 
by fixing the number of decimal places to one, the number 28.739 is displayed as 
28.7. Similarly, the number 1.164 is displayed as 1.2. Because the first digit dropped 
is greater than 5, the calculator automatically rounds the answer up. Small and 
large numbers should be expressed in scientific notation. For example, the num-
ber 68,400 should be expressed as ×6.84 10 ,4  and the number 0.0000359 should 
be expressed as × −3.59 10 .5  Scientific calculators also have an engineering notation 
display setting because SI unit prefixes are primarily defined by multiples of one 
thousand (10 ).3  In engineering notation, the number 68,400 may be displayed as 

×68.4 10 ,3  and the number 0.0000359 may be displayed as × −35.9 10 .6  Regardless 
of how numbers are displayed by calculators or computers, the engineering student 
who uses these computational tools must understand that significant figures have a 
physical meaning based on our ability to measure engineering and scientific quanti-
ties. The casual or sloppy handling of significant figures in engineering analysis may 
lead to solutions that are imprecise at best and completely wrong at worst.

A
PP

LIC
AT

IO
N

CALCULATING VISCOSITY BY USING THE FALLING-SPHERE  
METHOD
You know by experience that some fluids are thicker or more “gooey” than others. 
For example, pancake syrup and motor oil are thicker than water and alcohol. The 
technical term we use to describe the magnitude of a fluid’s thickness is viscosity. 
Viscosity is a fluid property that characterizes the fluid’s resistance to flow. Water and 
alcohol flow more readily than pancake syrup and motor oil under the same condi-
tions. Hence, pancake syrup and motor oil are more viscous than water and alcohol. 
Gases have viscosities too, but their viscosities are much smaller than those of liquids.

One of the classical techniques for measuring viscosities of liquids is called the 
falling-sphere method. In the falling-sphere method, the viscosity of a liquid is calcu-
lated by measuring the time it takes for a small sphere to fall a prescribed distance 
in a large container of the liquid, as illustrated in Figure 3.1. As the sphere falls in 
the liquid under the influence of gravity, it accelerates until the downward force 
(the sphere’s weight) is exactly balanced by the buoyancy force and drag force that 
act upward. From this time forward, the sphere falls with a constant velocity, re-
ferred to as terminal velocity. The buoyancy force, which is equal to the weight of 
the liquid allowed for displaced by the sphere, is usually small compared with the 
drag force, which is caused directly by viscosity. The terminal velocity of the sphere 
is inversely proportional to viscosity, since the sphere takes longer to fall a given 
distance in a very viscous liquid, such as motor oil, than in a less viscous liquid, such 
as water. By employing a force balance on the sphere and invoking some simple 
relations from fluid mechanics, we obtain the formula
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D
µ

γ γ
υ

=
−( )
18

s f
2

where
dynamic viscosity of liquid (Pa s)µ = ⋅

γ = specific weight of sphere (N/m )s
3

γ = specific weight of liquid (N/m )f
3

= sphere diameter (m)D
υ = terminal velocity of sphere (m/s).

Note that the quantity specific weight is similar to density, except that it is a weight per 
volume, rather than a mass per volume. The word dynamic is used to avoid confu-
sion with another measure of viscosity known as kinematic viscosity.

Using the falling-sphere method, let’s calculate the viscosity of glycerine, a very 
viscous liquid used to make a variety of chemicals. We set up a large glass cylin-
der and place two marks, spaced s = 200 mm apart, on the outside surface. The 
marks are placed low enough on the cylinder to assure that the sphere will achieve 
terminal velocity before reaching the top mark. For the sphere, we use a steel 
γ =( 76,  800 N/m )s

3  ball bearing with a diameter of 2.381 mm (measured with a 
micrometer). From a previous measurement, the specific weight of the glycerin is 
γ = 12,  400 N/m .f

3  Now, we hold the steel sphere above the surface of the glyc-
erin at the center of the cylinder and release the sphere. As accurately as we can 
determine with our eye, we start a handheld stopwatch when a part of the sphere 
reaches the top mark. Similarly, we stop the watch when the same part of sphere 
reaches the bottom mark. Our stopwatch is capable of displaying hundredths of 
a second, and it reads 11.32 s. Even though the stopwatch is capable of measuring 
time to the second decimal place, our crude visual timing method does not justify 
using a time interval with this precision. Sources of uncertainty such as human reac-
tion time and thumb response do not justify the second decimal place. Thus, our 
time interval is reported as 11.3 s, which has three significant figures. We know that 
terminal velocity is distance divided by time:

υ = = =
t
s 0.200 m

11.3 s
0.0177 m/s.

The distance was measured to the nearest millimeter, so the quantity s has three sig-
nificant figures. Thus, terminal velocity may be written to three significant figures. 

Liquid

Sphere

Container

s

D

v

Figure 3.1
Experimental setup of the 
falling-sphere method for 
measuring viscosity.
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(Remember that the zero, according to rule 6, is not significant.) Values of the 
given quantities for our calculation are summarized as follows:

γ = = ×76,800 N/m 7.68 10  N/ms
3 4 3

γ = = ×12,400 N/m 1.24 10  N/mf
3 4 3

υ = = × −0.0177 m/s 1.77 10  m/s2

= = × −2.381 mm 2.381 10  m.3D

Each quantity, with the exception of D, which has four significant figures, has three 
significant figures. Upon substituting values into the equation for dynamic viscosity, 
we obtain:

( )
18

s f
2D

µ
γ γ

υ
=

−

=
− × −(76,800 12,400) N/m  (2.381 10  m)

18(0.0177 m/s)

3 3 2

= ⋅1.1459 Pa s.

(Where did the pressure unit Pa come from?) According to the rules of significant 
figures for multiplication and division, our answer should contain the same number 
of significant figures as the number with the fewest significant figures. Our answer 
should therefore have three significant figures, so the dynamic viscosity of glycerin, 
expressed in the proper number of significant figures is reported as:

1.15 Pa s.µ = ⋅

Note that because the value of the first digit dropped is 5, we rounded our answer up.

PROFESSIONAL SUCCESS—LEARN HOW TO USE  
YOUR CALCULATOR

As an engineering student, you need a scientific calculator. If you do not 
yet own a quality scientific calculator, purchase one as soon as you can and 
begin learning how to use it. You cannot succeed in school without one. You 
will probably only need one calculator for your entire academic career, so  
purchase one that offers the greatest number of functions and features. Pro-
fessors and fellow students may offer advice on which calculator to buy. Your 
particular engineering department or college may even require that you use 
a particular calculator because they have heavily integrated calculator usage 
in the curriculum, and it would be too cumbersome to accommodate several 
types of calculators. Your college bookstore or local office supply store may 
carry two or three name brands that have served engineering students and 
professionals for many years. Today’s scientific calculators are remarkable 
engineering tools. A high-end scientific calculator has hundreds of built-in 
functions, large storage capacity graphics capabilities, and communication 
links to other calculators or personal computers.

Regardless of which scientific calculator you own or plan to purchase, 
learn how to use it. Begin with the basic arithmetic operations and the stan-
dard mathematical and statistical functions. Learn how to set the number of  
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PRACTICE!

1. Using an order-of-magnitude analysis, estimate the surface area of your 
state or country in units of cm .2

2. Using an order-of-magnitude analysis, estimate the number of hairs on 
your head.

3. Use an order-of-magnitude analysis to estimate the number of cell 
phones in use in the world.

4. Use an order-of-magnitude analysis to estimate the electrical energy in 
kWh used by your city in one month.

5. Underline the significant figures in the following numbers (the first 
number is done for you):
a. 0.000369
b. 42.07
c. 9001
d. 403.50
e. 0.0330
f. 700

Answer : b. 42.07 c. 9001 d. 403.50 e. 0.0330 f. 700.

6. Perform the following calculations, reporting the answers with the cor-
rect number of significant figures:
a. 5.64/1.9
b. 500./0.0025
c. −(45.8 8.1)/1.922
d. π2 /2.50
e. × +(5.25 10 )/(100 10.5)4

f. × −0.0008/(1.2 10 ).5

Answer : a. 3.0 b. ×2.0 105 c. 19.6 d. 2.51 e. 500 f. 7 * 101.

7. A ball bearing is reported to have a radius of 3.256 mm. Using the cor-
rect number of significant figures, what is the weight of this bearing in 
units of N if its density is ρ = 1675 kg/m ?3  Use =g 9.81 m/s .2

Answer : × −2.38 10  N.3

decimal places in the display and how to display numbers in scientific and en-
gineering notation. After you are confident with performing unit conversions 
by hand, learn how to do them with your calculator. Learn how to write simple 
programs on your calculator. This skill will come in handy numerous times 
throughout your course work. Learn how to use the equation-solving func-
tions, matrix operations and calculus routines. By the time you learn most of 
the calculator’s operations, you will probably have devoted many hours. The 
time spent mastering your calculator is perhaps as valuable as the time spent 
attending lectures, conducting experiments in a laboratory, doing homework 
problems, or studying for exams. Knowing your calculator thoroughly will 
help you succeed in your engineering program. Your engineering courses will 
be challenging enough. Do not make them an even bigger challenge by fail-
ing to adequately learn how to use your principal computational asset, your 
calculator.
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3.3 GENERAL ANALYSIS PROCEDURE
Engineers are problem solvers. In order to solve an engineering analysis problem 
thoroughly and accurately, engineers employ a solution method that is system-
atic, logical, and orderly. This method, when consistently and correctly applied, 
leads the engineer to a successful solution of the analytical problem at hand. The 
 problem-solving method is an integral part of a good engineer’s thought process. 
To the engineer, the procedure is second nature. When challenged by a new analy-
sis, a good engineer knows precisely how to approach the problem. The problem 
may be fairly short and simple or extremely long and complex. Regardless of the 
size or complexity of the problem, the same solution method applies. Because of 
the general nature of the procedure, it applies to analytical problems associated with 
any engineering discipline: chemical, civil, electrical, mechanical, or other. 

Practicing engineers in all disciplines have been using the general analysis 
procedure in one form or another for a long time, and the history of engineering 
achievements is a testament to its success. While you are a student, it is vitally im-
portant that you learn the steps of the general analysis procedure. After you have 
learned the steps in the procedure and feel confident that you can use the proce-
dure to solve problems, apply it in your analytical course work. Practice the proce-
dure over and over again until it becomes a habit. Establishing good habits while 
still in school will make it that much easier for you to make a successful transition 
into professional engineering practice.

General Analysis Procedure

The general analysis procedure consists of the following seven steps:

1. Problem Statement The problem statement is a written description of the 
analytical problem to be solved. It should be written clearly, concisely, and logi-
cally. The problem statement summarizes the given information, including all 
input data provided to solve the problem. The problem statement also states 
what is to be determined by performing the analysis.

2. Diagram The diagram is a sketch, drawing, or schematic of the system being 
analyzed. Typically, it is a simplified pictorial representation of the actual sys-
tem, showing only those aspects of the system that are necessary to perform 
the analysis. The diagram should show all given information contained in the 
problem statement such as geometry, applied forces, energy flows, mass flows, 
electrical currents, temperatures, or other physical quantities as required.

3. Assumptions Engineering analysis almost always involves some assump-
tions. Assumptions are special assertions about the physical characteristics 
of the problem that simplify or refine the analysis. A very complex analytical 
problem would be difficult or even impossible to solve without making some 
assumptions.

8. The cylinder of an internal combustion engine is reported to have a 
diameter of 4.000 in. If the stroke (length) of the cylinder is 6.25 in, 
what is the volume of the cylinder in units of in ?3  Write the answer 
using the correct number of significant figures.
Answer : 78.5 in3
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4. Governing Equations All physical systems may be described by mathematical 
relations. Governing equations are those mathematical relations that specifi-
cally pertain to the physical system being analyzed. These equations may rep-
resent physical laws, such as Newton’s laws of motion, conservation of mass, 
conservation of energy, and Ohm’s law; or they may represent fundamental 
engineering definitions such as velocity, stress, moment of force, and heat flux. 
The equations may also be basic mathematical or geometrical formulas involv-
ing angles, lines, areas, and volumes.

5. Calculations In this step, the solution is generated. First, the solution is devel-
oped algebraically as far as possible. Then numerical values of known physical 
quantities are substituted for the corresponding algebraic variables. All neces-
sary calculations are performed, using a calculator or computer to produce a 
numerical result with the correct units and the proper number of significant 
figures.

6. Solution Check This step is crucial. Immediately after obtaining the result, 
examine it carefully. Using established knowledge of similar analytical solutions 
and common sense, try to ascertain whether the result is reasonable. However, 
whether the result seems reasonable or not, double-check every step of the 
analysis. Flush out defective diagrams, bad assumptions, erroneously applied 
equations, incorrect numerical manipulations, and improper use of units.

7. Discussion After the solution has been thoroughly checked and corrected, 
discuss the result. The discussion may include an assessment of the assump-
tions, a summary of the main conclusions, a proposal on how the result may 
be verified experimentally in a laboratory, or a parametric study demonstrating 
the sensitivity of the result to a range of input parameters.

Now that the seven-step procedure has been summarized, further discussion of 
each step is warranted.

1. Problem statement In your engineering textbook, the problem statement will 
generally be supplied to you in the form of a problem or question at the end of 
each chapter. These problem statements are written by the textbook authors, pro-
fessors or practicing engineers, who have expertise in the subject area. The great 
majority of end-of-chapter problems in engineering texts are well organized and 
well written, so you do not have to fret too much about the problem statement. 
Alternatively, your engineering professor may give you problem statements from 
sources outside your textbook or from his or her own engineering experience. In 
either case, the problem statement should be well posed, contain all the necessary 
input information, and clearly state what is to be determined by the analysis. What 
is known and what is unknown in the problem should be clearly identified. If the 
problem statement is flawed in any way, a meaningful analysis is difficult or even 
impossible.

2. Diagram The old saying, “One picture is worth a thousand words,” is certainly 
applicable to engineering analysis. A complete diagram of the system being ana-
lyzed is critical. A good diagram helps the engineer visualize the physical processes 
or characteristics of the system. It also helps the engineer identify reasonable as-
sumptions and the appropriate governing equations. A diagram might even reveal 
flaws in the problem statement or alternative methods of solution. Engineers use a 
variety of diagrams in their analytical work.

One of the most widely used diagrams in engineering is the free-body diagram. 
Free-body diagrams are used to solve engineering mechanics (statics, dynamics, me-
chanics of materials) problems. These diagrams are called “free-body” diagrams 
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because they represent a specific body, isolated from all other bodies that are in 
physical contact with, or that may be in the vicinity of, the body in question. The 
influences of nearby bodies are represented as external forces acting on the body 
being analyzed. Hence, a free-body diagram is a sketch of the body in question, 
showing all external forces applied to the body. A free-body diagram is a pictorial 
representation of a “force balance” on the body. Diagrams are also used in the 
analysis of thermal systems.

Unlike a free-body diagram, which shows forces applied to the body, a diagram 
of a thermal system shows all the various forms of energy entering and leaving the 
system. This type of diagram is a pictorial representation of an “energy balance” 
on the system. Another type of diagram represents a system that transports mass 
at known rates. Common examples include pipe and duct systems, conveyors, and 
storage systems. A diagram for these systems shows all the mass entering and leaving 
the system. This type of diagram is a pictorial representation of a “mass balance”  
on the system. Still another type of diagram is an electrical circuit schematic. 
Electrical schematics show how components are connected and the currents, volt-
ages, and other electrical quantities in the circuit. Some examples of diagrams used 
in analysis are given in Figure 3.2.

3. Assumptions An “atmospheric scientist” who studied various processes that 
occur in the upper atmosphere once gave a lecture and recounted an accomplish-
ment that seemed truly remarkable. After convincing the audience that atmo-
spheric processes are some of the most complex phenomena in physics, he boast-
ed that he had developed, over the space of a few months, an analytical model of 
the upper atmosphere that contained no assumptions. There was only one prob-
lem: his model had no solution either. By including every physical mechanism to 
the minutest detail in the model, his analysis was so mathematically convoluted 
that it could not generate a solution. Had he made some simplifying assumptions, 
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A column When a concentrated force is
applied to the column, stresses
are concentrated near the points
of application, but the stresses
far away from the ends are
nearly uniform.

F

F

To simplify the stress analysis,
the concentrated force is
assumed to be uniformly distributed,
thereby producing a uniform stress
in all regions of the column.

F

FFigure 3.3
A common assumption 
made in the stress analysis 
of a column.

his atmospheric model could have worked even though the results would have 
been approximate.

Engineers and scientists routinely employ assumptions to simplify a problem. 
As this story illustrates, an approximate answer is better than no answer at all. 
Failure to invoke one or more simplifying assumptions in the analysis, particularly 
a complex one, can increase the complexity of the problem by an order of mag-
nitude, leading the engineer down a very long road, only to reach a dead end. 
How do we determine which assumptions to use and whether our assumptions are 
good or bad? To a large extent, the application of good assumptions is an acquired 
skill, a skill that comes with engineering experience. However, you can begin to 
learn this skill in school through repeated application of the general analysis pro-
cedure in your engineering courses. As you apply the procedure to a variety of 
engineering problems, you will gain a basic understanding of how assumptions are 
used in engineering analysis. Then, after you graduate and accept a position with 
an  engineering firm, you can refine this skill as you apply the analysis procedure 
to solve problems that are specific to the company. Sometimes, a problem can be 
overly constrained by assumptions such that the problem is simplified to the point 
where it becomes grossly inaccurate or even meaningless. The engineer must there-
fore be able to apply the proper number as well as the proper type of assumptions in 
a given analysis. A common assumption made in the stress analysis of a column is 
shown in Figure 3.3.

4. Governing equations The governing equations are the “workhorses” of the 
analysis and describe the physical problem at hand. If the wrong governing equa-
tions are used, the analysis may lead to a result that does not reflect the true physical 
nature of the problem, or the analysis will not be possible at all because the gov-
erning equations are not in harmony with the problem statement or assumptions. 
When using a governing equation to solve a problem, the engineer must ascertain 
that the equation being used actually applies to the specific problem at hand. As an 
extreme (and probably absurd) example, imagine an engineer attempting to use 
Newton’s second law =F ma  to calculate the heat loss from a boiler. How about 
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trying to apply Ohm’s law =V IR  to find the stress in a concrete column that sup-
ports a bridge deck?

The problem of matching governing equations to the problem at hand is usu-
ally more subtle than these absurd examples. In thermodynamics, for example, 
the engineer must determine whether the thermal system is “closed” or “open” 
(i.e., whether the system allows mass to cross the system boundary). After the type 
of thermal system has been identified, the thermodynamic equations which apply 
to that type of system are chosen, and the analysis proceeds. Governing equations 
must also be consistent with the assumptions. It is counterproductive to invoke 
simplifying assumptions if the governing equations do not make allowances for 
them. Some governing equations, particularly those that are experimentally de-
rived, have built-in restrictions that limit the use of the equations to specific nu-
merical values of key variables. A common mistake made in the application of a 
governing equation in this situation is failing to recognize the restrictions by forc-
ing the equation to accept numerical values that lie outside the equation’s range 
of applicability.

5. Calculations A common practice, particularly among beginning students, is to 
substitute numerical values of quantities into equations too early in the calculations. 
It seems that some students are more comfortable working with numbers than alge-
braic variables, so their first impulse is to substitute numerical values for all param-
eters at the beginning of the calculation. Avoid this impulse. To the extent that it is 
practical, develop the solution analytically prior to assigning physical quantities to 
their numerical values. Before rushing to “plug” numbers into equations, carefully 
examine the equations to see if they can be mathematically manipulated to yield 
simpler expressions. A variable from one equation can often be substituted into an-
other equation to reduce the total number of variables. Perhaps an expression can 
be simplified by factoring. By developing the solution analytically first, you might 
uncover certain physical characteristics about the system or even make the problem 
easier to solve. The analytical skills you learned in your algebra, trigonometry, and 
calculus courses are meant to be used for performing mathematical operations on 
symbolic quantities, not numbers.

The calculations step demands more of an engineer than the ability to simply 
“crunch numbers” on a calculator or computer. The numbers have to be mean-
ingful, and the equations containing the numbers must be fully understood and 
properly used. All mathematical relations must be dimensionally consistent, and all 
physical quantities must have a numerical value plus the correct units. Here is a tip 
concerning units that will save you time and help you avoid mistakes: if the quanti-
ties given in the problem statement are not expressed in terms of a consistent set of units, 
convert all quantities to a consistent set of units before performing any calculations. If some 
of the input parameters are expressed as a mixture of SI units and English units, 
convert all parameters to either SI units or English units, and then perform the 
calculations. Students tend to make more mistakes when they attempt to perform 
unit conversions within the governing equations. If all unit conversions are done 
prior to substituting numerical values into the equations, unit consistency is assured 
throughout the remainder of the calculations, because a consistent set of units is 
established at the onset. Dimensional consistency should still be verified, however, 
by substituting all quantities along with their units into the governing equations.

6. Solution check This step is perhaps the easiest one to overlook. Even good en-
gineers sometimes neglect to thoroughly check their solution. The solution may 
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“look” good at first glance, but a mere glance is not good enough. Much effort 
has gone into formulating the problem statement, constructing diagrams of the 
system, determining the appropriate number and type of assumptions, invoking 
governing equations, and performing a sequence of calculations. All this work may 
be for naught if the solution is not carefully checked. Checking the solution of an 
engineering analysis is analogous to checking the operation of an automobile im-
mediately following a major repair. It’s always a good idea if the mechanic checks to 
verify that it works before returning the vehicle to its owner.

There are two main aspects of the solution check. First, the result itself should 
be checked. Ask the question, “Is this result reasonable?” There are several ways 
to answer this question. The result must be consistent with the information given 
in the problem statement. For example, suppose you wish to calculate the tem-
perature of a microprocessor chip in a computer. In the problem statement, the 
ambient air temperature is given as 25°C, but your analysis indicates that the chip 
temperature is only 20°C. This result is not consistent with the given information 
because it is physically impossible for a heat-producing component, a micropro-
cessor chip in this case, to have a lower temperature than the surrounding envi-
ronment. If the answer had been 60°C, it is at least consistent with the problem 
statement, but it may still be incorrect. Another way to check the result is to com-
pare it with that of similar analysis performed by you or other engineers. If the 
result of a similar analysis is not available, an alternative analysis that utilizes a 
different solution approach may have to be conducted. In some cases, a labora-
tory test may be needed to verify the solution experimentally. Testing is a normal 
part of engineering design anyway, so a test to verify an analytical result may be 
customary.

The second aspect of the solution check is a thorough inspection and review 
of each step of the analysis. Returning to our microprocessor example, if no math-
ematical or numerical errors are committed, the answer of 60°C may be considered 
correct insofar as the calculations are concerned, but the answer could still be in 
error due to bad assumptions. For example, suppose that the microprocessor chip 
is air cooled by a small fan, so we assert that forced convection is the dominant 
mechanism by which heat is transferred from the chip. Accordingly, we assume 
that conduction and radiation heat transfer are negligible, so we do not include 
these mechanisms in the analysis. A temperature of 60°C seems a little high, so we 
revise our assumptions. A second analysis that includes conduction and radiation 
reveals that the microprocessor chip is much cooler, about 42°C. Knowing whether 
assumptions are good or bad comes through increased knowledge of physical pro-
cesses and practical engineering experience.

7. Discussion This step is valuable from the standpoint of communicating to oth-
ers what the results of the analysis mean. By discussing the analysis, you are in effect 
writing a “mini-technical report.” This report summarizes the major conclusions 
of the analysis. In the microprocessor example given earlier, the main conclusion 
may be that 42°C is below the recommended operating temperature for the chip 
and therefore, the chip will operate reliably in the computer for a minimum of 
10,000 hours before failing. If the chip temperature was actually measured at 45°C 
shortly after performing the analysis, the discussion might include an examination 
of why the predicted and measured temperatures differ and particularly why the 
predicted temperature is lower than the measured temperature. A brief parametric 
study may be included that shows how the chip temperature varies as a function 
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of ambient air temperature. The discussion may even include an entirely separate 
analysis that predicts the chip temperature in the event of a fan failure. In the dis-
cussion step, the engineer is given one last opportunity to gain additional insights 
into the problem.

The seven-step procedure for performing an engineering analysis is a time-
tested method. In order to effectively communicate an analysis to others, the analy-
sis must be presented in a format that can be readily understood and followed. 
Engineers are known for their ability to present analyses and other technical in-
formation with clarity in a thorough, neat, and careful manner. As an engineering 
student, you can begin to develop this ability by consistently applying the analysis 
procedure outlined in this section. Your engineering professors will insist that you 
follow the procedure, or a procedure similar to it, in your engineering courses. 
You will probably be graded not only on how well you perform the analysis itself, 
but how well you present the analysis on paper. This grading practice is meant to 
convince students of the importance of presentation standards in engineering and 
to assist them in developing good presentation skills. An engineering analysis is of 
little value to anyone unless it can be read and understood. A good analysis is one 

PROFESSIONAL SUCCESS—REAL-WORLD  
PROBLEM STATEMENTS

Engineering programs strive to give students a sense of what it is like to actu-
ally practice engineering in the “real world.” But studying engineering in 
school and practicing engineering in the real world are not the same thing. 
One difference is amply illustrated by considering the origins of problem 
statements for analysis. In school, problem statements are typically found at 
the end of each chapter of your engineering texts. (The answers to many of 
these problems are even provided at the back of the book.) Sometimes your 
professors obtain problem statements from other texts or invent new ones 
(especially for exams). In any case, problem statements are supplied to you in 
a nice, neat little package all ready for you to tackle the problem.

If textbooks and professors supply problem statements to students in 
school, who or what supplies problem statements to practicing engineers in 
industry? Real-world engineering problems are not typically found in text-
books (answers are never found in the back of the book either), and your 
engineering professors are not going to follow you around after you gradu-
ate. So, where do the real-world problem statements come from? They are 
formulated by the engineer who is going to perform the analysis. As stated 
before, analysis is an integral part of engineering design. As a design matures, 
quantitative parameters that characterize the design begin to emerge. When 
an analysis is called for, these parameters are woven into a problem statement 
from which an analysis may be conducted. The engineer must be able to for-
mulate a coherent, logical problem statement from the design information 
available. Because engineering design is an intuitive process, the values of 
some or all of the input parameters may be uncertain. The engineer must 
therefore be able to write the problem statement in such a way as to allow for 
these uncertainties. The analysis will have to be repeated several times until 
the parameters are no longer in a state of flux, at which time the design is 
complete.
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Front side Back sideFigure 3.4
Engineer’s computation 
paper is standard issue for 
analysis work.

that can be easily read and understood by others. Apply the presentation guidelines 
given in this section to the point where they become second nature. Then, after you 
graduate and begin practicing engineering, you can hone your presentation skills 
as you gain industrial experience.

The 10 guidelines that follow will help you present an engineering analysis in 
a clear and complete manner. These guidelines are applicable to analysis work in 
school as well as industrial engineering practice. It should be noted that the guide-
lines apply specifically to analyses performed by hand with the use of pencil and 
paper, as opposed to computer-generated analyses.

Analysis Presentation Guidelines

1. A standard practice of engineers who do analysis is to use a special type of 
paper. This paper is usually referred to as “engineer calculation pad” or “en-
gineer’s computation paper.” The paper is light green in color, and should be 
available in your college or university bookstore. The back side of the paper is 
ruled horizontally and vertically with five squares per inch, with only heading 
and margin rulings on the front side. The rulings on the back side are faintly 
visible through the paper to help the engineer maintain the proper position 
and orientation for lettering, diagrams, and graphs. (See Figure 3.4.) All work 
is to be done on the front side of the paper. The back side is not used. The 
paper usually comes pre-punched with a standard three-hole pattern at the left 
edge for placement in a three-ring binder.

2. No more than one problem should be placed on a page. This practice helps 
maintain clarity by keeping different problems separate. Even if a problem oc-
cupies a small fraction of a page, the next problem should be started on a 
separate page.

3. The heading area at the top of the page should indicate your name, date, course 
number, and assignment number. The upper right corner of the heading area 
is usually reserved for page numbers. To alert the reader to the total number of 
pages present, page numbers are often reported, for example, as “1/3,” which 

M03_HAGE4428_05_SE_C03.indd   69 13/11/20   9:54 AM



70 Chapter 3 Analysis Methodology

is read as “page 1 of 3.” Page 1 is the current page, and there are a total of three 
pages. When multiple pages are used, they should be stapled in the upper left 
corner. Each page should nonetheless be identified with your name, in the un-
likely event the pages become separated.

4. The problem statement should be written out completely, not summarized or con-
densed. All figures that accompany the problem statement should be shown. If 
the problem statement originates from a textbook, it should be written verbatim 
so the reader does not have to refer back to the textbook for the full version. 
One way to do this is to photocopy the problem statement, along with any fig-
ures given, and then cut and attach it by using rubber cement or transparent 
tape directly beneath the heading area on the engineer’s computation paper. 
The problem statement could also be electronically scanned and printed di-
rectly onto the paper.

5. Work should be done in pencil, not ink. Everyone makes mistakes. If the analysis 
is written in pencil, mistakes can be easily erased and corrected. If the analysis 
is written in ink, mistakes will have to be crossed out, and the presentation will 
not have a neat appearance. To avoid smudges, use a pencil lead with the ap-
propriate hardness. All markings should be dark enough to reproduce a legible 
copy if photocopies are needed.

6. Lettering should be printed. The lettering style should be consistent throughout.
7. Correct spelling and grammar must be used. Even if the technical aspects of the 

presentation are flawless, the engineer will lose some credibility if the writing 
is poor.

8. There are seven steps in the general analysis procedure. These steps should be 
sufficiently spaced so that the reader can easily follow the analysis from problem 
statement to discussion. A horizontal line drawn across the page is one way of 
providing this separation.

9. Good diagrams are a must. A straight edge, drawing templates, and other man-
ual drafting tools should be used. All pertinent quantitative information such 
as geometry, forces, energy flows, mass flows, electrical currents, and pressures, 
should be shown on the diagrams.

10. Answers should be double underlined or boxed for ready identification. To en-
hance the effect, colored pencils may be used.

These 10 guidelines for analysis presentation are recommended to the engi-
neering student. You may find that your particular engineering department or pro-
fessors may advocate guidelines that are slightly different. By all means, follow the 
guidelines given to you. Your professors may have special reasons for teaching their 
students certain methods of analysis presentation. Methods may vary somewhat 
from course to course and professor to professor, but should still reflect the major 
points contained in the guidelines given in this section.

The next four examples illustrate the general analysis procedure and the rec-
ommended guidelines for analysis presentation. Each example represents a basic 
analysis taken from the subject areas of statics, electrical circuits, thermodynamics, 
and fluid mechanics. You probably have not yet taken courses in these subjects, so 
do not be overly concerned if you do not understand all the technical aspects of 
the examples. Therefore, do not focus on the theoretical and mathematical details. 
Focus instead on how the general analysis procedure is used to solve problems from 
different engineering areas and the systematic manner in which the analyses are 
presented.
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Assumptions
1. Forces in ropes AB, AC, and AD are concurrent at point A.
2. Neglect mass of ropes.

Governing Equations
W 5 mg 
SFx 5 0
SFy 5 0

Calculations
W 5 mg 5 (200 kg)(9.81 m/s2) 5 1962 N
SFx 5 0 5 TB cos(30 ) 2 TC   (1)
SFy 5 0 5 TB sin(30 ) 2 W    (2)
Solving Equation (2) for TB and substituting into Equation (1) to obtain TC gives
TB 5 3924 N 5 3.92 kN, TC 5 3398 N 5 3.40 kN

Solution Check
No errors are found. The tensions can be verified by substituting them back into Eqs. (1) and (2):

3924 cos(30 ) 2 3398 5 0.3 ø 0
3924 sin(30 ) 2 1962 5 0

The negligible nonzero result in Equation (1) is due to roundoff.

Discussion
As � increases, TB and TC decrease. When � 5 90°,
TC 5 0 (rope AC is slack) and TB 5 W 5 1962 N.

Problem Statement

A 200-kg crate is suspended 
by ropes as shown. Rope AC is
horizontal. Find the tension in
ropes AB and AC.

OCT. 12, 2020 EXAMPLE 3.4 BERT DILLON 1/1

C A

D

B

� 5 30

A

TB

TC
x

y

W

Diagram (Free-Body Diagram)

� 5 30

EXAMPLE 3.4 
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JAN. 03, 2021

Problem Statement
Two resistors with resistances of 10 V and 270 V are connected in parallel across a 10 V ba	ery.
Find the current in each resistor.

Diagram (Electrical Schematic)

EXAMPLE 3.5 KATHY LITER 1/2

10 V 10 V 270 V

I1 5       5         5 1.0 A, I2 5       5          5 0.037 A
10 V
10 V

V2

R2

V1

R1

10 V
270 V

Assumptions
1.  Neglect resistance of wires.
2. Ba	ery voltage is a constant 10 V.

Governing Equations (Ohm’s law)

V 5 IR V 5 Voltage (V)
  I 5 Current (A)
 R 5 Resistance (V) 

Calculations

Rearranging Ohm's law:               . 

Define: R1 5 10 V, R2 5 270 V
Because resistors are connected in parallel with ba	ery,
V 5 V1 5 V2 5 10 V.

Solution Check 
The assumptions are reasonable, and there are no errors in the calculations.

I 5
V
R

EXAMPLE 3.5 

JAN. 03, 2021 EXAMPLE 3.5 KATHY LITER 2/2

RT 5 9.643 V

1
R1

1
R2

1

1
1

10
1

270
1

1
RT  5                      5

V
RT

10 V
9.643 V

IT  5         5                    5 1.037 A

5       5              5            < 27.0
R2

R1

I1

I2

1.0 A
0.037 A

270 V
10 V

Discussion
Current flow in a resistor is inversely proportional to the resistance. 
Total current is split according to the ratio of resistances:

Total current:

 IT 5 I1 1 I2
         5 1.0 A 1 0.037 A 5 1.037 A

Total current may also be found by finding total resistance and then using Ohm's law.

Resistors in parallel as follows:
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EXAMPLE 3.6 

MAR. 24, 2021 EXAMPLE 3.6 CY BRAYTON 1/2

50 Students
20 Lights

Q
·

lights

Q
·

heat gain

Q
·

cool

Q
·

students

Problem Statement
A classroom occupied by 50 students is to be air-conditioned with window-mounted air- 
conditioning units with a 4 kW rating. There are 20 fluorescent lights in the room, each rated at 
60 W. While si�ing at their desks, each student dissipates 100 W. If the heat transfer to the 
classroom through the roof, walls, and windows is 5 kW, how many air-conditioning units are 
required to maintain the classroom at a constant temperature of 22ºC?

Diagram (Thermodynamic System)

Assumptions
1. Classroom is a closed system (i.e., no mass flows).
2. All heat flows are steady.
3. No other heat occurs in classroom such as from computers and TVs.

Governing Equations (Conservation of Energy)

E
·

in 2 E
· 

out 5 Esystem

Calculations

E
·
in 5 Q

·
students 1 Q

·
lights 1 Q

·
heat gain

5 (50)(100 W) 1 (20)(60 W) 1 5000 W 5 11,200 W 5 11.2 kW

Esystem 5 0 (Classroom is maintained at constant temperature)

E
·
out 5 Q

·
cool

Thus,

E
·
in 5 Q

·
cool

Number of A.C. units required 5 5 5 2.8

Fractions of A.C. units are impossible, so round up answer to next integer.

Q
·

cool

4 kW
11.2 kW

4 kW

MAR. 24, 2021 EXAMPLE 3.6 CY BRAYTON 2/2

The classroom temperature of 22ºC was not used in the calculation because this temperature, 
as well as the outdoor air temperature, are inferred in the given heat gain by a prior heat 
transfer analysis.

Number of A.C. units required = 3.

Solution check

Discussion

In order to maintain a constant temperature, the net heat transfer into the classroom must be 
equivalent to the heat removed by the air-conditioner. Reviewing the assumptions,
equations, and calculations, no errors are found.
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Suppose that the classroom was a computer lab containing 30 computers each dissipating 
250 W. We eliminate assumption 3 by including heat input by the computers

Q
·

cool 5 Q
·

students 1 Q
·

lights 1 Q
·

heat gain 1 Q
·

computers

         5 11,200 W 1 30(250 W) 5 18,700 W 5 18.7 kW

Number of A.C. units required 5             5                  5 4.7

 
Number of A.C. units required = 5.

This example illustrates the effect that computers have on air-conditioning requirements.

Q
·

cool

4 kW
18.7 kW

4 kW

EXAMPLE 3.7

JULY 12, 2021 EXAMPLE 3.7 MAX POWER 1/2

Diagram (Flow Schematic)

Assumptions
1. Steady, incompressible flow
2. Density of water: r 5 1000 kg/m3

Governing Equations
 
Conservation of mass:  m· in 5 m· out m·  5 mass flow rate (kg/s)
Mass flow rate:  m·  5 rAv r 5 fluid density (kg/m3)
  A 5 flow cross-sectional area (m2)
   v  5 velocity (m/s)

Calculations

m·  5 m· 1 1 m· 2
m· 2 5 m·  2 m· 1 5 3.6 kg/s 2 1.4 kg/s
                         5 2.2 kg/s

m· 2

m· 1 5 1.4 kg/s

m·  5 3.6 kg/s

5 cm ID

1.4 kg/s

3.6 kg/s

Problem Statement
Water enters a pipe junction at a mass flow rate of 3.6 kg/s. If the mass flow rate in the small 
branch is 1.4 kg/s, what is the mass flow rate in the large pipe branch? If the inside diameter of 
the large pipe branch is 5 cm, what is the velocity in the large pipe branch?
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JULY 12, 2021 EXAMPLE 3.7 MAX POWER 2/2

Solution check
     

Discussion
The velocity is an average value because there is a velocity profile across the pipe. The velocity 
profile is caused by viscosity. If the flow condition is laminar, the velocity profile is parabolic, as 
shown in the following sketch.

v2 5            5 
4 (2.2 kg/s)

p(1000 kg/m3)(0.05 m)2
4 m· 2

prD2
2

    5 1.12 m/s

The calculated value for the velocity in the large branch seems reasonable for a typical plumbing 
system. No errors are found in the calculations.

m· 2 5 rA2v2 5 r          v2
pD2

2

4

r

Average velocity v

Maximum velocity vmax

Velocity profile v(r)

Pipe wall

In contrast to Examples 3.4 through 3.7 that illustrated hand calculations, the final 
example incorporates a computer analysis tool, TK Solver. This software is an equa-
tion solver (see Section 3.4.2) that is useful for performing the calculations step of 
the general analysis procedure. The other steps of the procedure are done in the 
usual manner.

EXAMPLE 3.8

JANUARY 2, 2021 EXAMPLE 3.8 FRANK GRIMES 1/3

Problem Statement
A 6-kg block falls 20 cm into a spring with a spring constant of 1750 N/m. When the block 
comes into contact with the spring, it sticks to the spring. If the block falls from rest, what is 
the deformation of the spring when the block momentarily comes to rest?
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20 cm

Diagram

h 5 20 cm

initial (1) final (2)

k 5 1750 N/m

hy

sm

m

Assumptions
1. Linear spring (i.e., follows Hooke's law F = ks)
2. Block sticks to spring (inelastic collision)
3. Spring deforms along its axis (i.e., no bending)

Governing Equations
Conservation of energy: + = +1 1 2 2V T V T
Gravitational potential energy: =V mgh
Spring potential energy: = 1

2
2V ks

Calculations
The rule sheet shows the governing equations, and the variable sheet shows the inputs 
and outputs for all the physical quantities. TK Solver does not require the user to 
perform any algebraic manipulations; the software is capable of solving the gov-
erning equations in their original form. Due to the spring potential energy term, 
the conservation of energy equation becomes a quadratic equation, which has two 
roots. To generate these roots, a “guess” value for the spring deformation s is en-
tered in the input column of the variable sheet. Then, a G (for guess) is entered in 
the status column beside the output variable. The iterative solver is initiated, gen-
erating one of the two roots. The root that is calculated depends on how close the 
guess value is to that root.

Rule sheet
Status Rule

Satisfied V1 T1 V2 T2+ = +
Satisfied V1 m*g*h=

Satisfied V2 m*g*s 0.5*k*s2= − +
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Variable Sheet
Status Input Name Output Unit Comment

V1   11.772 J initial potential energy

0 T1 J initial kinetic energy

V2   11.772 J final potential energy

0 T2 J final kinetic energy

6 m kg mass of block

9.81 g m/s2 gravitational acceleration

.2 h m initial height of block

1750 k N/m spring constant

G s .15440257 m spring deformation

As shown in the variable sheet, the spring deformation is:

= ≈s 0.1544 m 15.4 cm

Solution check
The solution may be checked by substituting values into the conservation of energy 
equation. Rearranging the equation, we have:

+ − + =( ) 01 1 2 2V T V T

+ − − + + =mgh mgs ks0 ( 0) 01
2

2

(( )( ) [ )( )+ − − + +  =(6) 9.81 (0.20) 0 (6 9.81 (0.1544) 1750 0.1544) 0 01
2

2

[ ]− − + =11.7720 9.0880 20.8594 0

− = × ≈−11.7720 11.7714 5.84 10 04

The small nonzero answer is due to round-off, so our answer is verified.

Discussion
The second root is = −0.0871,s  which is obtained by using a guess value of zero or 
less. Because the spring deformation s is defined as a positive quantity in the spring 
potential energy equation, the second root is nonphysical, that is, has no physical 
significance.

It can be easily shown that the location of the origin is arbitrary.

PROFESSIONAL SUCCESS—AVOIDING A “COOKBOOK”  
LEARNING APPROACH TO ENGINEERING ANALYSIS

A good engineer is a person who solves an engineering analysis problem by 
reasoning through it, rather than simply following a prepared “recipe” con-
sisting of step-by-step instructions written by someone else. Similarly, a good 
engineering student is a person who learns engineering analysis by thinking 
conceptually about each problem, rather than simply memorizing a collection 
of disjointed solution sequences and mathematical formulas. This “cookbook” 
learning approach promotes fragmented rather than integrative learning.  
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A student who embraces this type of learning method will soon discover that it 
will be difficult and take a long time to solve new engineering problems, unless 
identical or very similar problems have been previously solved by using an 
established recipe. An analogy may be drawn from the familiar maxim “Give a 
man a fish, and you have fed him for a day. Teach a man to fish, and you have 
fed him for a lifetime.” A recipe enables a student to solve only one specific 
type of problem, whereas a more general conceptual-based learning approach 
enables a student to solve many engineering problems.

PRACTICE!

Use the general analysis procedure to solve the following problems (pres-
ent the analysis by using the guidelines for analysis presentation covered 
in this section):

1. Radioactive waste is to be permanently encased in concrete and 
buried in the ground. The vessel containing the waste measures 

× ×30 cm 30 cm 80 cm. Federal regulations dictate that there must be 
a minimum concrete thickness of 50 cm surrounding the vessel on all 
sides. What is the minimum volume of concrete required to safely en-
case the radioactive waste?
Answer : 2.97 m3.

2. An elevator in an office building has an operating capacity of 15 passen-
gers with a maximum weight of 180 lbf  each. The elevator is suspended 
by a special pulley system with four cables, two of which support 20 per-
cent of the total load and two of which support 80 percent of the total 
load. Find the maximum tension in each elevator cable.
Answer : 270 lb ,  1080 lbf f .

3. A technician measures a voltage drop of 25 V across a 47-Ω  resistor 
by using a digital voltmeter. Ohm’s law states that = .V IR  What is the 
current flow through the resistor? How much power is consumed by 
the resistor? (Hint: = .2P I R )
Answer : 532 mA, 13.3 W.

4. Air flows through a main duct at a mass flow rate of 4 kg/s. The 
main duct enters a junction that splits into two branch ducts, one 
with a cross section of ×20 cm 30 cm and one with a cross section of 

×40 cm 60 cm. If the mass flow rate in the large branch is 2.8 kg/s, 
what is the mass flow rate in the small branch? If the density of air is 
ρ = 1.16 kg/m ,3  what is the velocity in each branch?
Answer : 1.2 kg/s, 10.1 m/s, 17.2 m/s.

3.4 THE COMPUTER AS AN ANALYSIS TOOL
Computers are an integral part of the civilized world. They affect virtually every 
aspect of our everyday lives, including communications, transportation, financial 
transactions, information processing, food production, and health care. The world 
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is a much different place today than it was prior to the advent of computers. Like 
everyone else, engineers use computers in their personal lives in the same ways just 
mentioned, but they also depend heavily on computers in their professional work. 
To the engineer, the computer is an indispensable tool. Without the computer, en-
gineers would not be able to do their work as accurately or efficiently. Engineers use 
computers for computer-aided design (CAD), word processing, communications, 
information access, graphing, process control, simulation, data acquisition, and of 
course, analysis.

The computer is one of the most powerful analysis tools available to the engi-
neer, but the computer does not replace the engineer’s thinking. When faced with 
a new analysis, the engineer must reason through the problem by using sound sci-
entific principles, applied mathematics, and engineering judgement. A computer 
can only carry out the instructions supplied to it, but it does so with remarkable 
speed and efficiency. A computer yields wrong answers just as quickly as it yields 
right ones. The burden is upon the engineer to supply the computer with correct 
input. An often-used engineering acronym is GIGO (Garbage In, Garbage Out), 
which refers to a situation in which erroneous input data is supplied to a computer, 
thereby producing erroneous output. When GIGO is at work, the calculations are 
numerically correct, but the results of those calculations are meaningless, because 
the engineer supplied the computer with bad input. The computer is capable of ac-
curately performing enormous numbers of computations in a very short time, but 
it is incapable of composing a problem statement, constructing a diagram of the 
engineering system, formulating assumptions, selecting the appropriate governing 
equations, checking the reasonableness of the solution, or discussing and evaluat-
ing the results of the analysis. Thus, the only step in the analysis procedure for 
which a computer is perfectly suited is step 5: calculations. This is not to say that a 
computer cannot be used to write problem statements, assumptions, and equations 
as well as draw diagrams. These steps may also be performed by using the computer, 
but as directed by the engineer, whereas calculations are performed automatically 
once the equations and numerical inputs are supplied.

Engineers use analysis primarily as a design tool and as a means of predicting or 
investigating failures. Specifically, how does an engineer use the computer to per-
form an analysis? Steps 1 through 4 and steps 6 and 7 of the analysis procedure are 
largely unchanged, whether a computer is employed or not. So, exactly how are the 
calculations in step 5 carried out on a computer? There are basically five categories 
of computer tools for doing engineering analysis work:

1. Spreadsheets
2. Equation solvers and mathematics software
3. Programming languages
4. Specialty software
5. Finite element software.

3.4.1 Spreadsheets
The term spreadsheet originally referred to a special tabulation of rows and col-
umns for doing financial calculations. The computer-based spreadsheet is a mod-
ern electronic version of the paper spreadsheet and was initially used for business 
and accounting applications. By virtue of their general structure, spreadsheets are 
useful not only for doing financial calculations, but can also be used for perform-
ing a variety of scientific and engineering calculations. Like the original paper ver-
sion, the computer-based spreadsheet consists of any array of rows and columns.  
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The intersection of a row with a column is called a cell. Cells serve as locations 
for input and output data such as text, numbers, or formulas. For example, a cell 
may contain an equation representing Newton’s second law of motion, = .F ma  A 
nearby cell would contain a number for the mass m, while another cell would con-
tain a number for the acceleration a. Immediately after entering these two input 
values in their respective cells, the spreadsheet automatically evaluates the formula, 
inserting the numerical value of the force F in the cell containing the formula for 
Newton’s second law. If the values of the mass or acceleration are changed, the 
spreadsheet automatically updates the value of the force.

The forgoing example is very simple, but spreadsheets are capable of doing 
calculations that involve hundreds or even thousands of variables. Suppose that our 
analysis involves 100 variables and that we want to know how changing only one of 
those variables affects the solution. We simply change the variable of interest and 
the entire spreadsheet automatically updates all calculations to reflect the change. 
The spreadsheet is an excellent analysis tool for rapidly answering “what if” ques-
tions. Numerous design alternatives can be efficiently investigated by performing 
the analysis on a spreadsheet. In addition to numerical functions, spreadsheets also 
have graphics capabilities. Excel1 and Quattro Pro2 are popular spreadsheet prod-
ucts. Figure 3.5 shows a simple example of calculating force using Newton’s second 
law by using Excel.

Figure 3.5
A calculation of Newton’s 
second law using Excel. 
Note the formula for the 
force, +A4*B4,  entered in 
cell C4.

1 Excel is a registered trademark of Microsoft® Corporation.
2 Quattro® Pro is a registered trademark of Corel® Corporation.
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3.4.2 Equation Solvers and Mathematics Software
Equation solvers and mathematics software packages are general-purpose scientific 
and engineering tools for solving equations and performing symbolic mathemati-
cal operations. Equation solvers are primarily designed for solving problems that 
involve numerical inputs and outputs, whereas mathematics packages are primarily 
suited for performing symbolic mathematical operations much as you would do in a 
mathematics course. Equation solvers accept a set of equations that represent the 
mathematical model of the analytical problem. The equations can be linear or non-
linear. The equations may be written in their usual form without prior mathemati-
cal manipulation to isolate the unknown quantities on one side of the equals sign. 
For example, Newton’s second law would be written in its usual form as =F ma  
even if the unknown quantity was the acceleration a. Solving this problem by hand, 
however, we would have to write the equation as =a F m/  because we are solv-
ing for the acceleration. This is not necessary when we use equation solvers. After 
we supply the numerical values for the known quantities, equation solvers solve 
for the remaining unknown values. Equation solvers have a large built-in library of 
functions for use in trigonometry, linear algebra, statistics, and calculus. Equation 
solvers can perform a variety of mathematical operations, including differentiation, 
integration, and matrix operations. In addition to these mathematical features, 
equation solvers also do unit conversions. Equation solvers also have the capabil-
ity of displaying results in graphical form. Programming can also be done within 
equation solvers. Although all equation solvers have some symbolic capabilities, 
some have the capacity for data acquisition, image analysis, and signal processing. 
Popular equation solvers are TK Solver,3 Mathcad,4 and MATLAB.5

The strength of mathematics packages is their ability to perform symbolic 
mathematical operations. A symbolic mathematical operation is one that involves 
the manipulation of symbols (variables), using mathematical operators such as the  
vector product, differentiation, integration, and transforms. These packages are ca-
pable of performing very complex and sophisticated mathematical procedures. They 
also have extensive graphical capabilities. Even though mathematics packages are 
primarily designed for symbolic operations, they can also perform numerical com-
putations. Mathematica6 and Maple7 are popular mathematics software products.

3.4.3 Programming Languages
Spreadsheets, equation solvers, and mathematics software packages may not always 
meet the computational demands of every engineering analysis. In such cases, engi-
neers may choose to write their own computer programs with the use of a program-
ming language. Programming languages refer to sequential instructions supplied to 
a computer for carrying out specific calculations. Computer languages are generally 
categorized according to their level. Machine language is a low-level language, based 
on a binary system of “zeroes” and “ones.” Machine language is the most primitive 
language, because computers are digital devices whose rudimentary logic functions 
are carried out by using solid state switches in the “on” or “off” positions. Assembly 
language is also a low-level language, but its instructions are written in English-like 

3 TK Solver is a registered trademark of Universal Technical Systems, Incorporated.
4 Mathcad® is a registered trademark of MathsoftTM, Incorporated.
5 MATLAB® is a registered trademark of The MathWorks, Incorporated.
6 Mathematica® is a registered trademark of Wolfram Research, Incorporated.
7 MapleTM is a registered trademark of MaplesoftTM, a division of Waterloo Maple, Incorporated.
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statements rather than binary. Assembly language does not have many commands, 
and it must be written specifically for the computer hardware. Computer programs 
written in low-level languages run very fast because these languages are tied closely 
to the hardware, but writing the programs is very tedious.

Due to the tediousness of writing programs in low-level languages, engineers 
usually write programs in high-level languages that consist of straightforward, 
English-like commands. The most commonly used high-level languages by engineers 
are Fortran, C, C++, Pascal, Ada, and BASIC. Fortran is the patriarch of all scien-
tific programming languages. The first version of Fortran (FORmula TRANslation) 
was developed by IBM between 1954 and 1957. Since its inception, Fortran has 
been the workhorse of scientific and engineering programming languages. It has 
undergone several updates and improvements and is still in widespread use today. 
The C language evolved from two languages, BCPL and B, which were developed 
during the late 1960s. In 1972, the first C program was compiled. The C++ language 
grew out of C and was developed during the early 1980s. Both C and C++ are popu-
lar programming languages for engineering applications because they use power-
ful commands and data structures. Pascal was developed during the early 1970s 
and is a popular programming language for beginning computer science students 
who are learning programming for the first time. The U.S. Department of Defense 
prompted the development of Ada during the 1970s in order to have a high-level 
language suitable for embedded computer systems. BASIC (Beginner’s All-purpose 
Symbolic Instruction Code) was developed during the mid-1960s as a simple learn-
ing tool for secondary school students as well as college students.

Writing programs in high-level languages is easier than writing programs in low-
level languages, but the high-level languages utilize a larger number of commands. 
Furthermore, high-level languages must be written with specific grammatical rules, 
referred to as syntax. Rules of syntax govern how punctuation, arithmetic operators, 
parentheses, and other characters are used in writing commands. To illustrate the syn-
tactical differences between programming languages, equation solvers, and mathemat-
ics packages, Table 3.1 shows how a simple equation is written. Note the similarities and 
differences in the equals sign, the constant π, and the operator for exponentiation.

Table 3.1  Comparison of Computer Statements for the Equation, V = 4/3πR ,3   
the Volume of a Sphere

Computer Tool Statement
Mathcad π=V : 4/3* *R3

TK Solver =V 4/3*pi( ) * R3

MATLAB =V 4/3 * pi * R ;3

Python V = 4/3*math.pi*R**3

MATheMATicA =V 4/3* Pi * R3

Maple =V: 4/3 * pi * R ;3

Fortran =V 4/3 * 3.141593 * R **3
C, C++ ( )=V 4/3 * 3.141593 * pow R, 3 ;
Pascal =V: 4/3 * 3.141593 * R * R * R;

Ada =V: 4/3 * 3.141593 * R **3;
BASIC =V 4/3 * 3.141593 * R3
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3.4.4 Specialty Software
Considered as a whole, engineering is a broad field that covers a variety of disci-
plines. Some of the main engineering disciplines are chemical engineering, civil 
engineering, electrical and computer engineering, environmental engineering, 
and mechanical engineering. Given the variety of specific problems that engineers 
who work in these fields encounter, it comes as no surprise that numerous specialty 
software packages are available to help the engineer analyze specific problems relat-
ing to a particular engineering system. For example, specialty software packages 
are available to electrical engineers for analyzing and simulating electrical circuits. 
Mechanical and chemical engineers can take advantage of software packages de-
signed specifically for calculating flow parameters in pipe networks. Special soft-
ware is available to civil and structural engineers for calculating forces and stresses 
in trusses and other structures. Other specialty software packages are available for 
performing analysis of heat exchangers, machinery, pressure vessels, propulsion 
systems, turbines, pneumatic and hydraulic systems, manufacturing processes, me-
chanical fasteners, and many others too numerous to list. After you graduate and 
begin working for a company that produces a specific product or process, you will 
probably become familiar with one or more of these specialty software packages.

3.4.5 Finite Element Software
Some engineering analysis problems are far too complex to solve using any of the 
aforementioned computer tools. Finite element software packages enable the engi-
neer to analyze systems that have irregular configurations, variable material prop-
erties, complex conditions at the boundaries, and nonlinear behavior. The finite 
element method originated in the aerospace industry during the early 1950s when 
it was used for stress analysis of aircraft. Later, as the method matured, it found 
application in other analysis areas such as fluid flow, heat transfer, vibrations, im-
pacts, acoustics, and electromagnetics. The basic concept behind the finite-element 
method is to subdivide a continuous region (i.e., the system to be analyzed is divided 
into a set of simple geometric shapes called “finite elements”). The elements are in-
terconnected at common points called “nodes.” Material properties, conditions at 
the system boundaries, and other pertinent inputs are supplied. With the use of an 
advanced mathematical procedure, the finite element software calculates the value 
of parameters such as stress, temperature, flow rate, or vibration frequency at each 
node in the region. Hence, the engineer is provided with a set of output parameters 
at discrete points that approximates a continuous distribution of those parameters 
for the entire region. The finite element method is an advanced analysis method 
and is normally introduced in colleges and universities at the senior level or the 
first-year graduate level.

PROFESSIONAL SUCCESS—PITFALLS OF USING COMPUTERS
The vital role that computers play in engineering analysis cannot be over-
stated. Given the tremendous advantages of using computers for engineer-
ing analysis, however, it may be difficult to accept the fact that there are also 
pitfalls. A common hazard that entangles some engineers is the tendency 
to treat the computer as a “black box,” a wondrous electronic device whose 
inner workings are largely unknown, but that nonetheless provides output for 
every input supplied. Engineers who treat the computer as a black box are 
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not effectively employing the general analysis procedure and in so doing are 
in danger of losing their ability to systematically reason their way through a 
problem.

The computer is a remarkable computational machine, but it does not 
replace the engineer’s thinking, reasoning, and judgment. Computers, and 
the software that runs on them, produce output that precisely reflects the input 
supplied to them. If the input is good, the output will be good. If the input is 
bad, the output will be bad. Computers are not smart enough to compensate 
for an engineer’s inability to make good assumptions or employ the correct 
governing equations. Engineers must have a thorough understanding of the 
physical aspects of the problem at hand and the underlying mathematical 
principles before implementing the solution on the computer. A good engi-
neer understands what the computer does when it “crunches the numbers” 
in the analysis. A good engineer is confident that the input data will result in 
reasonable output because a lot of sound thinking and reasoning has gone 
into the formulation of that input.

Can the computer be used too much? In a sense, it can. The tendency of 
some engineers is to use the computer to analyze problems that may not re-
quire a computer at all. Upon beginning a new problem, their first impulse is 
to set up the problem on the computer without even checking to see whether 
the problem can be solved by hand. For example, a problem in engineering 
statics may be represented by the quadratic equation, + − =4 12 0.2x x

This problem can be solved analytically by factoring + − =( 6)( 2) 0,x x  
which yields the two roots = −6x  and = 2.x  To use the computer in a situa-
tion like this is to rely on the computer as a “crutch” to compensate for weak 
analytical skills. Continued reliance on the computer to solve problems that 
do not require a computer will gradually dull your ability to solve problems 
with pencil and paper. Do not permit this to happen. Examine the equations 
carefully to see whether a computer solution is justified. If it is, use one of the 
computer tools discussed earlier. If not, solve the problem by hand. Then, if 
you have time and wish to check your solution with the use of the computer, 
by all means do so.

COMPUTERS FOR NUMERICAL ANALYSIS
Most of the equations that you will encounter in school can be solved analytically; 
that is, they can be solved by employing standard algebraic operations to isolate the 
desired variable on one side of the equation. Some equations, however, cannot be 
solved analytically with standard algebraic operations. These equations are referred 
to as transcendental equations because they contain one or more transcendental 
functions such as a logarithm or trigonometric function. Transcendental equa-
tions occur often in engineering analysis work, and techniques for solving them are 
known as numerical methods. For example, consider the transcendental equation:

− =3 0.e xx

This equation looks straightforward enough, but try solving it by hand. If we add 3x 
to both sides and take the natural logarithm of both sides to undo the exponential 
function, we obtain:

 = ln(3 )x x  (a)

A
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which, unfortunately, does not isolate the variable x because we still have the term 
ln(3x) on the right side of the equation. If we add 3x to both sides and then divide 
both sides by 3, we obtain:

 
=

3
.

e
x

x

 (b)

The variable x is still not isolated without leaving a transcendental function in the 
equation. Clearly, this equation cannot be solved analytically, so it must be solved 
numerically. To solve it numerically, we utilize a method called iteration, a process by 
which we repeat the calculation until an answer is obtained.

Before solving this problem by using the computer, we will work it manually 
to illustrate how iteration works. To begin, we rewrite Equation (a) in the iterative 
form:

=+ ln(3 ).1x xi i

The “i” and the “ + 1i ” subscripts refer to “old” and “new” values of x, respec-
tively. The iteration process requires that we begin the calculation by immediately 
substituting a number into the iteration formula. This first number constitutes an 
estimate for the root (or roots) of the variable x, that satisfy the formula. To keep 
track of the iterations, we use an iteration table, illustrated in Table 3.2. To start 
the iterations, we estimate a value of x by letting = 1.1x  We now substitute this 
number into the right side of the formula, yielding a new value of = 1.098612.2x  
We again substitute into the right side of the formula, yielding the next new value, 

= 1.192660.3x  This process is repeated until the value of x stops changing signifi-
cantly. At this point, we say that the calculation has converged to an answer. Table 3.2 
shows the first five iterations and indicates that 41 iterations are required for the cal-
culation to converge to an answer that is accurate to the sixth decimal place. Upon 
substituting = 1.512135x  into the original equation, we see that the equation is 
satisfied. As this example illustrates, numerous iterations may be required to obtain 
an accurate solution. The accuracy of the answer depends on how many iterations 
are taken. Some equations converge to a precise answer in a few iterations but oth-
ers, like this one, require several iterations. It is important to note that 1.512135 is 
not the only root of this equation. The equation has a second root at = 0.619061.x  
If we attempt to find this root by using Equation (a), we discover that our calcula-
tion either converges again to 1.512135 or does not converge at all by leading us to 

Table 3.2  Iteration Table for Finding One Root of the 
Equation 3 0− =e xx

Iteration xi +1xi

1 1 1.098612

2 1.098612 1.192660

3 1.192660 1.274798

4 1.274798 1.341400

5 1.341400 1.392326

.

.

. 1.512134

41 1.512134 1.512135
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an illegal operation, that is, taking the logarithm of a negative number. To find the 
second root, we iterate on Equation (b), writing it in the iterative form:

=+
3

.1x
e

i

xi

With numerical methods, there are often no guarantees that a certain iteration 
formula will converge rapidly or even converge at all. The success of the iteration 
formula may also depend on the initial estimate chosen to start the iterations. If our 
initial estimate for Equation (a) is less than ,1

3  the new value of x immediately goes 
negative, leading to an illegal operation. If our initial estimate for Equation (b) 
is too large, the new value of x grows large very rapidly, leading to an exponential 
overflow. These and other kinds of numerical difficulties can occur whether the 
iterations are performed by hand or by using a computer.

As Table 3.2 suggests, performing iterations by hand can be a long and tedious 
task. The computer is tailor-made for performing repetitive calculations. The roots 
of our transcendental equation can readily be found by using one of the computer 
tools discussed earlier. Figure 3.6 shows a computer program, written in the BASIC 
language for finding the first root = 1.512135.x  In the first line the user inputs 
an initial estimate, which is assigned the variable name XOLD. The program then 
executes what is referred to as a DO loop that performs the iterations. Each time 
through the loop, a new value of x is calculated from the old value and an absolute 
value of the difference between the old and new values is calculated. This value 
is called DIFF. While DIFF is larger than a preselected convergence tolerance of 
0.0000001, the new value of x, XNEW, is reset to the old value XOLD and loop-
ing continues. When DIFF is less than or equal to the convergence tolerance, con-
vergence has been achieved, and looping is halted. The root is then printed. The 
same program, with the third line replaced with ( )=XNEW EXP XOLD /3,  could 
be used to find the second root. There are more sophisticated numerical methods 
for finding roots than the simple iteration technique illustrated here, and you will 
study them in your engineering or mathematics courses.

PRACTICE!

Using one of the computer tools discussed in this section, work the  
following problems:

(Note: These problems are identical to those in Section 3.3.)

1. Radioactive waste is to be permanently encased in concrete and 
buried in the ground. The vessel containing the waste measures 

× ×30 cm 30 cm 80 cm. Federal regulations dictate that there must be 

INPUT "ESTIMATE = ", XOLD
DO
   XNEW = LOG (3*XOLD)
   DIFF = ABS (XNEW - XOLD)
   XOLD = XNEW
LOOP WHILE DIFF > 0.0000001
PRINT XNEW
END

Figure 3.6
BASIC computer program for 
finding one root of the equation 

− =3 0.e xx
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a minimum concrete thickness of 50 cm surrounding the vessel on all 
sides. What is the minimum volume of concrete required to safely en-
case the radioactive waste?
Answer : 2.97 m3.

2. An elevator in an office building has an operating capacity of 15 
passengers with a maximum weight of 180 lb f  each. The elevator is  
suspended by a special pulley system with four cables, two of which sup-
port 20 percent of the total load and two of which support 80 percent 
of the total load. Find the maximum tension in each elevator cable.
Answer : f f270 lb ,  1080 lb .

3. A technician measures a voltage drop of 25 V across a 47-Ω  resistor by 
using a digital voltmeter. Using Ohm’s law, we find that = .V IR  What 
is the current flow through the resistor? How much power is consumed 
by the resistor? (Hint: = .2P I R )
Answer : 532 mA, 13.3 W.

4. Air flows through a main duct at a mass flow rate of 4 kg/s. The 
main duct enters a junction that splits into two branch ducts, one 
with a cross section of ×20 cm 30 cm and one with a cross section of 

×40 cm 60 cm. If the mass flow rate in the large branch is 2.8 kg/s, 
what is the mass flow rate in the small branch? If the density of air is 
ρ = 1.16 kg/m ,3  what is the velocity in each branch?
Answer : 1.2 kg/s, 10.1 m/s, 17.2 m/s.

KEY TERMS

engineering method
equation solver
general analysis  
procedure

mathematics software
order of magnitude
programming language

significant figure
spreadsheet
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Order-of-magnitude analysis

 3.1 Using an order-of-magnitude analysis, estimate the number of basketballs 
that will fit in your school classroom.

 3.2 Using an order-of-magnitude analysis, estimate the number of ×4 ft 8 ft  
plywood sheets required for the floor, roof, and exterior sheathing of a 

−6000 ft2  house.

 3.3 Using an order-of-magnitude analysis, estimate the number of heart beats of 
a person during a typical life time.

 3.4 Using an order-of-magnitude analysis, estimate the number of spam e-mail 
messages received by residents of the United States each year.

 3.5 A virus is approximately −10 m7  across. Using an order-of-magnitude analy-
sis, how many viruses would fit between the goal lines of an American foot-
ball field?

 3.6 Use an order-of-magnitude analysis to estimate the number of tons of hu-
man waste produced worldwide each year.

 3.7 A U.S. dime is about −10  m3  thick. Using an order-of-magnitude analysis, a 
stack of how many dimes would fit between the earth and the moon? The 
moon is about 400,000 km from the earth.

 3.8 The solar radiation flux just outside the earth’s atmosphere is about 
1350 W/m .2  Using an order-of-magnitude analysis, estimate the amount of 
solar energy that is intercepted by the Pacific Ocean each year.

 3.9 Using an order-of-magnitude analysis, estimate the total textbook expendi-
ture incurred by all engineering majors at all U.S. colleges and universities 
per year.

Significant figures

 3.10 Underline the significant figures in the following numbers (the first num-
ber is done for you):

a. 3050
b. 0.175
c. 0.00950
d. 600
e. 8000.
f. 24.30
g. 1066
h. 40.08
i. 0.07090
j. × −6.402 10 4

k. × −5.601 10 3.

 3.11 Perform the following calculations, reporting the answers with the correct 
number of significant figures:

a. (8.14)(260)
b. 456/4.9
c. (6.74)(41.07)/4.13

PROBLEMS
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d. −(10.78 4.5)/300
e. −(10.78 4.50)/300.0
f. −(65.2 13.9)/240.0
g. × × +(1.2 10 )/(4.52 10 769)6 3

h. − ×(1.764 0.0391)/(8.455 10 )4

i. ×1000/(1.003 10 )9

j. × −(8.4 10 )/50003

k. ×(8.40 10 )/5000.03

l. π8 
m. π −(2  5)/10.

 3.12 A 650.0-kg mass hangs by a cable from the ceiling. Using the standard value 
of gravitational acceleration = 9.81 m/s ,2g  what is the tension in the ca-
ble? Express your answer with the correct number of significant figures.

 3.13 A 9-slug mass hangs by a rope from the ceiling. Using the standard value of 
gravitational acceleration = 32.2 ft/s ,2g  what is the tension in the rope? 
Express your answer with the correct number of significant figures. Redo 
the problem, using a mass of 9.00 slug. Is the answer different? Why?

 3.14 A 72.9 mA current flows through a 360-Ω  resistor. Using Ohm’s law = ,V IR  
what is the voltage across the resistor? Express your answer with the correct 
number of significant figures.

 3.15 A rectangular building lot is reported to have the dimensions 200 ft 300 ft.×  
Using the correct number of significant figures, what is the area of this lot in 
units of acre?

General analysis procedure

For problems 16 through 31, use the general analysis procedure of  
(1) problem statement, (2) diagram, (3) assumptions, (4) governing equations,  
(5) calculations, (6) solution check, and (7) discussion.

 3.16 An excavation crew digs a hole in the ground measuring 60 yd 50 yd 8 yd× ×  
to facilitate a basement for an office building. Five dump trucks, each with a 
capacity of 20 yd ,3  are used to haul the material away. How many trips must 
each truck make to remove all the material?

 3.17 As shown in Figure P3.17, a circuit consists of two resistors connected 
across a 24-V battery as shown. Find the current in each resistor. (Hint: See  
Example 3.5.)

 3.18 For easy handling, long sheets of steel for manufacturing automobile body 
panels are tightly rolled up into a cylinder-shaped package. Consider a roll 
of steel with an inside and outside diameter of 45 cm and 1.6 m, respectively, 
that is suspended by a single cable. If the length of the roll is 2.25 m and the 
density of steel is ρ = 7850 kg/m ,3  what is the tension in the cable?

 3.19 In a chemical processing plant, glycerin flows toward a pipe junction at a 
mass flow rate of 30 kg/s as shown in Figure P3.19. If the mass flow rate in 

Figure P3.17

24 V 68 V 1 kV

M03_HAGE4428_05_SE_C03.indd   89 13/11/20   9:55 AM



90 Chapter 3 Analysis Methodology

the small pipe branch is 8 kg/s, find the velocity in both branches. The den-
sity of glycerin is ρ = 1260 kg/m .3

8 cm

8 kg/s

30 kg/s

5 cm

Figure P3.19

 3.20 The source of culinary water for a town is a reservoir with a capacity of 
×5.0 10  gal8 . The town has 26,000 residents, and each resident consumes 

an average of 90 gallons of water per day. If the reservoir was full and then 
the inflow of water to the reservoir from rain and mountain runoff was per-
manently cut off, how long would it take for the reservoir to go dry? Assume 
that none of the water used by the town is treated and reused.

 3.21 A man pushes on a barrel with a force of =P f30 N  as shown. Assuming 
that the barrel does not move, what is the friction force between the barrel 
and the floor? (Hint: The friction force acts parallel to the floor toward the 
man. See Figure P3.21.)

5
P

4

3

Figure P3.21

 3.22 The total resistance for resistors connected in series is the arithmetic sum 
of the resistances. Find the total resistance for the series circuit shown in 
Figure P3.22. Because the resistors are connected in series, the current is 
the same in each resistor. Using Ohm’s law, find this current. Also, find the 
voltage drop across each resistor.

100 V 150 kV

20 kV

250 V

Figure P3.22

M03_HAGE4428_05_SE_C03.indd   90 13/11/20   9:55 AM



Problems 91

 3.23 The pressure exerted by a static liquid on a vertical submerged surface is 
calculated from the relation:

ρ=P gh

where
= pressureP

ρ = density of the liquid
g m= =gravitational acceleration 9.81  /s2

= height of vertical surface that is submerged.h

Consider the dam shown in Figure P3.23. What is the pressure exerted on 
the dam’s surface at depths of 1 m, 5 m, and 25 m? For the density of water, 
use ρ = 1000 kg/m .3

h

Water

Figure P3.23

 3.24 Air density is a function of atmospheric pressure, which decreases with el-
evation. For low elevations, a good approximation for air density in units of 
kg/m3  is given by the relation

ρ = − × −1.225 1.194 10  4 z

where z, expressed in the unit of m, is elevation, or height above sea level. 
Find the air density at an elevation of 1 mile.

 3.25 As shown in Figure P3.25, the axial deformation, δ, of a solid subjected to an 
axial force, P, is given by the relation

δ =
PL
AE

where L is length, A is cross sectional area, and E is the modulus of elasticity 
of the material. If the solid is made of aluminum ( = 70 GPaE ), and the 
cross sectional area is = ×1.5 cm 2.0 cmA , find the axial deformation for 
an axial force of = 30 kNP . Let = 12 cmL .

Figure P3.25

d

unloaded

loaded

L
A

P
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92 Chapter 3 Analysis Methodology

 3.26 As shown in Figure P3.26, the deflection, y, of the free end of a cantilever 
beam subjected to a uniform load is given by the relation

=y
WL

EI8

3

where =W wL , the total load on the beam, L is beam length, E is the modu-
lus of elasticity of the beam material, and I is the area moment of inertia of 
the beam. If the beam is made of structural steel ( = 200 GPaE ), the beam 
length is = 2.5 mL , and the load per unit length is =w 30 kN/m, find the 
deflection of the end of the beam. Let = × −5.0 10  m4 4I .

unloaded

w (N/m)

loaded

L

y

Figure P3.26

L

F

D

gas

Figure P3.27

 3.27 The work done on a fluid due to the movement of the boundary of the 
system that contains the fluid is referred to as boundary work. Consider the 
boundary work done on a gas that is compressed in a piston-cylinder device, 
as shown in Figure P 3.27. If the pressure remains constant during the com-
pression (which is possible if heat is transferred from the gas), the boundary 
work, Wb , is given by the relation

 W P Vb = ∆

where P is pressure and ΔV is volume change of the gas. For a piston dis-
placement, L, and diameter, D, of 16 cm and 10 cm, respectively, find the 
boundary work if the force on the piston is = 800 NF . (Hint: =P F A/ , 
where A is surface area of the face of the piston).
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 3.28 Two springs with spring constants =k 1750 N/m1  and =k 2200 N/m2  hang 
vertically from a ceiling and are attached to a block, as shown in Figure P3.28. 
The displacement of a spring subjected to a force is given by Hooke’s law

=F k s 

where F is force, k is spring constant, and s is displacement. Find the dis-
placement (amount of stretch) of the springs. The block has a mass of  
90 kg. (Hint: The equivalent spring constant of the spring system shown is 
the sum of the spring constants, = +1 2k k k ).

k1 k2

Figure P3.28

I2 = 80 mA

I3 = 120 mAI1 = 160 mA
I4 

Figure P3.29

 3.29 Electrical circuits typically have junctions, or nodes, at which three or more 
components are connected. A fundamental method for analyzing a circuit 
is Kirchoff’s current law, which states that the sum of the electrical currents 
entering a node is zero. Stated mathematically, this law is written as

I∑ =  0in

For the node shown in Figure P3.29, find the current 4I  in units of mA 
(milliamp).

 3.30 A centrifuge is a machine that rapidly rotates a container to apply a centrip-
etal force to the contents, typically to separate fluids of different densities or 
to separate solids from fluids. The centripetal acceleration of the container 
is given by the relation

2
a

r
ν

=

where ν is the tangential velocity of the container and r is the radius of the 
centrifuge. Find the centripetal acceleration if the container’s velocity is 

6.0 m/sν =  and the radius is = 15 cmr . Recalling that gravitational accel-
eration is =g 9.81 m/s2 , how many “g’s” does the container experience? 
See Figure P3.30.
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 3.31 A capacitor is a two-terminal electronic component that stores electrical 
energy in an electric field. As shown in Figure P3.31, a common type of 
capacitor consists of two parallel metal plates separated by a dielectric me-
dium, which is typically air or an insulation material such as paper, plastic or 
ceramic. A formula for capacitance, C, in the unit of the farad, F, is

ε
=C

A
D
o

where εo is the permittivity constant for a vacuum, ε = × −8.854 10  F/mo
12 ,  

A is the surface area of the plates, and d is the separation distance be-
tween the plates. Find the capacitance of a parallel-plate capacitor where 

= ×5.0 cm 7.0 cmA  and = 0.50 mmd . Assume that the dielectric medi-
um is a vacuum. Use the appropriate SI unit prefix in the answer.

r

vFigure P3.30

Figure P3.31 dielectric

d

A

 3.32 Work Problem 3.16, using one of the computer tools discussed in this chapter.

 3.33 Work Problem 3.17, using one of the computer tools discussed in this chapter.

 3.34 Work Problem 3.18, using one of the computer tools discussed in this chapter.

 3.35 Work Problem 3.19, using one of the computer tools discussed in this chapter.

 3.36 Work Problem 3.20, using one of the computer tools discussed in this chapter.

 3.37 Work Problem 3.21, using one of the computer tools discussed in this chapter.

 3.38 Work Problem 3.22, using one of the computer tools discussed in this chapter.

 3.39 Work Problem 3.23, using one of the computer tools discussed in this chapter.
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 3.40 Work Problem 3.24, using one of the computer tools discussed in this chapter.

 3.41 Work Problem 3.25, using one of the computer tools discussed in this chapter.

 3.42 Work Problem 3.26, using one of the computer tools discussed in this chapter.

 3.43 Work Problem 3.27, using one of the computer tools discussed in this chapter.

 3.44 Work Problem 3.28, using one of the computer tools discussed in this chapter.

 3.45 Work Problem 3.29, using one of the computer tools discussed in this chapter.

 3.46 Work Problem 3.30, using one of the computer tools discussed in this chapter.

 3.47 Work Problem 3.31, using one of the computer tools discussed in this chapter.
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4.1 INTRODUCTION
Mechanics is one of the most important fields of study in engineering. Mechanics was 
the first analytical science, and its historical roots can be traced to such great math-
ematicians and scientists as Archimedes (287–212 b.c.), Galileo Galilei (1564–1642), 
and Isaac Newton (1642–1727). Mechanics is the study of the state of rest or motion of 
bodies that are subjected to forces. As a discipline, mechanics is divided into three general 
areas: rigid-body mechanics, deformable-body mechanics, and fluid mechanics. As the term 
implies, rigid-body mechanics deals with the mechanical characteristics of bodies that 
are rigid (i.e., bodies that do not deform under the influence of forces). Rigid-body 
mechanics is subdivided into two main areas: statics and dynamics. Statics deals with 
rigid bodies in equilibrium. Equilibrium is a state in which a body is at rest with re-
spect to its surroundings. When a body is in equilibrium, the forces that act on it are 
balanced, resulting in no motion. A state of equilibrium also exists when a body moves 
with a constant velocity, but this type of equilibrium is a dynamic equilibrium, not a 
static equilibrium. Dynamics deals with rigid bodies that are in motion with respect 
to its surroundings or to other rigid bodies. The body may have a constant velocity, in 

Mechanics

After reading this chapter, you 
will have learned
• The importance of  

mechanics in engineering
• The difference between a 

scalar and a vector
• How to perform basic  

vector operations
• How to add forces 

vectorially

• How to construct free-body 
diagrams

• How to use equilibrium 
principles to find unknown 
forces on a particle

• How to calculate normal  
stress, strain, and 
deformation

• How to apply a factor of 
safety to stress

Objectives

C H A P T E R

4
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4.1 Introduction 97

which case the acceleration is zero, but, generally, the body undergoes an accelera-
tion due to the application of an unbalanced force.

Deformable-body mechanics, often referred to as mechanics of materials or 
strength of materials, deals with solid bodies that deform under the application of 
external forces. In this branch of mechanics, the relationships between externally 
applied forces and the resulting internal forces and deformations are studied. 
Deformable-body mechanics is often subdivided into two specific areas: elasticity 
and plasticity. Elasticity deals with the behavior of solid materials that return to their 
original size and shape after a force is removed, whereas plasticity deals with the 
behavior of solid materials that experience a permanent deformation after a force 
is removed.

Fluid mechanics deals with the behavior of liquids and gases at rest and in mo-
tion. The study of fluids at rest is called fluid statics; the study of fluids in motion is 
called fluid dynamics. Even though fluids are, strictly speaking, deformable  materials, 
deformable-body mechanics is set apart from fluid mechanics because deformable-
body mechanics deals exclusively with solid materials that have the ability, unlike 
fluids, to sustain shear forces. The topical structure of engineering  mechanics is 
shown schematically in Figure 4.1.

Rigid-body
mechanics

Deformable-body
mechanics

Fluid mechanics

Fluid statics Fluid dynamics

Elasticity Plasticity

Statics Dynamics

MECHANICS

(Solids) (Fluids)(Solids)

Figure 4.1
Topical structure of  
engineering mechanics.

In most colleges and universities, the branches of mechanics just outlined are 
generally taught as separate and distinct engineering courses. Hence, a typical  
engineering program consists of individual courses in statics, dynamics, mechan-
ics of materials, and fluid mechanics. Other analytically oriented courses such as 
electrical circuits and thermodynamics are also offered. Mechanics is so essential 
to engineering education that students majoring in “nonmechanical” fields such 
as electrical engineering, environmental engineering, and chemical engineering 
gain a deeper understanding of energy, power, potential, equilibrium, and stability 
by first studying these principles in their mechanical contexts. However, depend-
ing on the specific curricular policies of your school or department, students in all 
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98 Chapter 4 Mechanics

engineering majors may or may not be required to take all of the aforementioned 
mechanics courses. In any case, the main purpose of this chapter is to introduce the 
beginning engineering student to the most fundamental principles of mechanics 
and to show how the general analysis procedure is applied to mechanics problems. 
In order to focus on the basics and to assist the student in the transition to more 
advanced material, our treatment of mechanics in this chapter is limited to a few 
fundamental principles of statics and mechanics of materials. However, dynamics is 
not covered in this book.

Engineers use principles of mechanics to analyze and design a wide variety of 
devices and systems. Look around you. Are you reading this book in a building? 
The structural members in the floor, roof, and walls were designed by structural or 
civil engineers to withstand forces exerted on them by the contents of the building, 
winds, earthquakes, snow, and other structural members. Bridges, dams, canals, 
underground pipelines, and other large, earthbound structures are  designed with 
the use of mechanics. Do you see any mechanical devices nearby? The automo-
bile is an excellent example of a single engineering system that  embodies virtually 
every branch of engineering mechanics, as well as other engineering disciplines. 
The chassis, bumpers, suspension system, power train, brakes, steering  system, en-
gine, air bag, doors, trunk, and even the windshield wipers were designed with the 
use of mechanics. Even the design of simple  mechanisms such as staple removers, 
paper punches, door locks, and pencil sharpeners involves principles of mechan-
ics. Principles of mechanics are used to analyze and design virtually every type 
of engineering system that can be devised. Figures 4.2, 4.3, and 4.4 show some 
 familiar engineering systems that involved the use of  engineering mechanics in 
their design.

Figure 4.2
Principles of engineering 
mechanics were used to 
design and analyze the  
St. Louis Arch. (Chris 
Boswell/123RF)

M04_HAGE4428_05_SE_C04.indd   98 12/11/20   2:02 PM



4.2 Scalars and Vectors 99

4.2 SCALARS AND VECTORS
Every physical quantity used in mechanics, and in all of engineering and science, is 
classified as either a scalar or a vector. A scalar is a quantity having magnitude, but no 
direction. Having magnitude only, a scalar may be positive or negative, but has no di-
rectional characteristics. Common scalar quantities are length, mass, temperature, 

Figure 4.3
Principles of engineering 
mechanics are used to 
design heavy construction 
equipment.

Figure 4.4
Principles of engineering 
mechanics were used to 
design and analyze this 
aircraft turbine engine.  
(ASuruwataRi/Shutterstock)
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100 Chapter 4 Mechanics

energy, volume, and density. A vector is a quantity having both magnitude and direction. 
A vector may be positive or negative and has a specified direction in space. Common 
vector quantities are displacement, force, velocity, acceleration, stress, and momen-
tum. A scalar quantity can be fully defined by a single parameter, its magnitude, 
whereas a vector requires that both its magnitude and direction be specified. For 
example, speed is a scalar but velocity is a vector. A typical speedometer of an auto-
mobile indicates how fast the vehicle is traveling, but does not reveal the direction 
of travel. The temperature of water boiling in an open container at sea level can be 
completely defined by a single number, 100°C. The force exerted on a beam used 
as a floor joist, however, must be defined by specifying a magnitude, 2 kN for exam-
ple, and a direction down. The effect of the force on the beam (i.e., the stress and 
deformation) cannot be determined unless the direction of the force is specified.  
A force directed along the axis of the beam, for example, would produce a com-
pletely different stress and deformation than a normal downward force. Table 4.1 is 
a summary of some scalar and vector quantities.

When writing scalars and vectors, standard nomenclature should be followed. 
Scalars are often printed in italic font such as m for mass, T for temperature, ρ  for 
density. To differentiate vectors from scalars, vectors are written in a special way. For 
handwritten work, a vector is usually written as a letter with a bar −, arrow → , or  
caret � over it such as 

��
A, A , and �A . In books and other printed matter, vectors are 

typically written in boldface type. For example, A is used to denote a vector “A.” The 
magnitude of a vector, which is always a positive quantity, is normally written by hand, 
using “absolute value” notation. Thus, the magnitude of A is written as A . In books 
and other printed matter, the magnitude of A is usually written in italic type as A.

As shown in Figure 4.5, a vector is represented graphically by a straight 
arrow with a specified magnitude and direction. The magnitude is the length of 
the arrow and the direction is defined by the angles between the arrow and 
reference axes. The line of action of the vector is a line that is collinear with the 
vector, locating its direction in space; note this is an additional attribute and a 
vector need not have a specified location. The vector A in Figure 4.5 has a mag-
nitude of 5 units and a direction of 30° with respect to the x-axis, upward and to 
the right. Point O is called the tail of the vector and point P is called the head of 
the vector. The units of the vector depend on what physical quantity the vector 
represents. For example, if the vector is a force, the units would be N or lb .f

Table 4.1 Scalar and Vector Quantities

Scalar Vector
Length Force

Mass Pressure

Time Stress

Temperature Moment of force

Speed Velocity

Density Acceleration

Volume Momentum

Energy Impulse

Work Electric field

Resistance Magnetic field
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4.2.1 Vector Operations
In order to utilize principles of mechanics to carry out an analysis, engineers must 
be able to mathematically manipulate vector quantities. Due to the directional 
character of vectors, the rules for performing algebraic operations with vectors are 
different from those of scalars. The product of a positive scalar k and a vector A, de-
noted by k A, has the effect of changing the length of the vector A, but its direction 
is unaffected. For example, the product 3A increases the magnitude of the vector A 
by a factor of three, but the direction of A is the same. The product 2A−  increases 
the magnitude of A by a factor of two, but reverses the direction of A because the 
scalar is negative. Graphical examples of the product of scalars and a vector are 
illustrated in Figure 4.6. Two vectors A and B are equal if they have the same magni-
tude and direction regardless of the location of their tails and heads. As shown in 
Figure 4.6, =A B.

A

Magnitude

Direction

Tail

O

Head

5 units

Line of action

P

y

x

30

Figure 4.5
A vector has magnitude 
and direction.

B

A 2A

2A

3A

21.5A

Figure 4.6
Scalar multiplication and 
vector equality, .A B=

The addition of two scalars results in a simple algebraic sum, such as = +c a b.  
The addition of two vectors, however, cannot be obtained by simply adding the mag-
nitudes of each vector. Vectors must be added such that their directions as well as 
their magnitudes are accounted for. Consider the vectors A and B in Figure 4.7(a). 
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Vectors A and B may be added by using the parallelogram law. To form this sum,  
A and B are joined at their tails. Parallel lines are drawn from the head of each 
vector, intersecting at a common point, forming adjacent sides of a parallelogram. 
The vector sum of A and B, referred to as the resultant vector or simply resultant, is 
the diagonal of the parallelogram that extends from the vector tails to the intersec-
tion point, as illustrated in Figure 4.7(b). Hence, we may write the vector sum as 

= +R A B,  where R is the resultant. The vector sum may also be obtained by con-
structing a triangle, which is actually half of a parallelogram. In this technique, the  
tail of B is connected to the head of A. The resultant = +R A B  extends from  
the tail of A to the head of B, as shown in Figure 4.7(c).

Alternatively, the triangle may be constructed such that the tail of A is connected 
to the head of B, in which case we have = +R B A, as shown in Figure 4.7(d).  
In both triangles, the same resultant is obtained, so we conclude that vector ad-
dition is commutative (i.e., the vectors can be added in either order). Hence, 

= + = +R A B B A  .  A special case of the parallelogram law is when the two vec-
tors are parallel (such as when they have the same line of action). In that case, the 
parallelogram is degenerate, and the vector sum reduces to a scalar sum = +R A B,  
as indicated in Figure 4.7(e).

4.2.2 Vector Components
A powerful method for finding the resultant of two vectors is to first find the rectan-
gular components of each vector and then add the corresponding components to ob-
tain the resultant. To see how this method works, we draw the two vectors A and B in 
Figure 4.7 on a set of (x, y) coordinate axes, shown in Figure 4.8. For convenience, 
both vectors are drawn with their tails at the origin, and the directions of A and B 
with respect to the positive x-axis are defined by the angles α and β, respectively. 
For the moment, let’s consider each vector separately. Using a modified form of the 
parallelogram law, we draw lines parallel to the x- and y-axes such that the vector A 
becomes the diagonal of a rectangle, which is a special type of parallelogram. The 
sides of the rectangle that lie along the x- and y-axes are called the rectangular com-
ponents of vector A, and are denoted Ax  and A y  respectively. Because vector A is 
the diagonal of the rectangle, A becomes the resultant of vectors Ax  and A y .  Thus, 
we may write the vector as = +A A Ax y .  Similarly, lines parallel to the x- and y-axes 

Parallelogram law

(b)

B

R 5 A 1 B
A

Triangle construction

(d)

B

R 5 A 1 B

A

(a)

B

A

Triangle construction

(c)

B

R 5 A 1 B
A

Collinear vectors

(e)

R 5 A 1 B

A B

Figure 4.7
Vector addition.
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are drawn such that the vector B becomes the diagonal of a rectangle. The sides of 
the rectangle that lie along the x- and y-axes are the rectangular components of vec-
tor B and are denoted xB  and yB , respectively. Hence, we may write the vector as 

= +B B Bx y .  The resultant of A and B may now be written as:

 = + = + + +R A A A B A Bx x y y( ) ( ).  (4.1)

The magnitude of the components of A and B may be written in terms of the 
angles that define the vectors’ directions. From the definitions of the trigonometric 
functions for cosine and sine, the x and y components of A are:

 α=A Ax  cos   (4.2)

and

 α=A Ay  sin   (4.3)

where A is the magnitude of A. Similarly, the x and y components of B are:

 β=B Bx  cos   (4.4)

and

 β=B By  sin   (4.5)

where B is the magnitude of B. Alternatively, we can also see from trigonometry 
that:

 α=A Ay x  tan   (4.6)

and

 β=B By x  tan  .  (4.7)

The magnitudes of A and B form the hypotenuse of their respective right triangles, 
so from the theorem of Pythagoras, we may write:

 = +A A Ax y
2 2  (4.8)

and

 = +B B Bx y .2 2  (4.9)

y

Ay

By B
b

a Ax Bx

A

x

Figure 4.8
Vector components.
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4.2.3 Unit Vectors
The justification for grouping the x components of each vector and the y compo-
nents of each vector in Equation (4.1) is based on the concept of unit vectors. A unit 
vector is a dimensionless vector of unit length used to specify a given direction. Unit vectors 
have no other physical meaning. The most common unit vectors are the rectangular 
or Cartesian unit vectors, denoted i, j, and k. The unit vectors i, j, and k coincide 
with the positive x-, y-, and z-axes respectively, as shown in Figure 4.9. The rectangu-
lar unit vectors form a set of mutually perpendicular vectors and are used to specify 
the direction of a vector in three-dimensional space.

y

z

k

j

i
x

Figure 4.9
Rectangular unit vectors.

If the quantity of interest can be described by a two-dimensional vector, only 
the i and j unit vectors are required. The vectors A and B, shown in Figure 4.8, lie 
in the x–y plane, so they can be represented by the i and j unit vectors. The x com-
ponent of A has a magnitude of Ax , and the y component of A has a magnitude 
of Ay . Note that the quantities Ax  and Ay  are not vectors but scalars, because they 
represent magnitudes only.

The vector components Ax  and A y can be written as products of a scalar and a 
unit vector as =A iAx x  and =A jAy y . Thus, vector A is expressed as:

 = +A i jA Ax y  (4.10)

and vector B is expressed as:

 = +B i jB Bx y .  (4.11)

Rewriting Equation (4.1) in terms of the x and y component groups, the resultant 
of A and B is:

 = + = + + +R A B i jA B A Bx x y y( ) ( ) .  (4.12)

The rectangular components of the resultant vector R are given by:

 = +R A Bx x x  (4.13)

and

 = +R A By y y .  (4.14)

Hence, Equation (4.12) can be written:

 = +R i jR Rx y  (4.15)
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where Rx  and Ry  are the x and y components of R, as shown in Figure 4.10. By 
trigonometry, we may write:

 θ=R Rx  cos   (4.16)

 θ=R Ry  sin   (4.17)

and

 θ=R Ry x  tan  .  (4.18)

The magnitude of R forms the hypotenuse of a right triangle, hence, from the 
theorem of Pythagoras, we have:

 = +R R Rx y .2 2  (4.19)

y

B

R

A

x
u

Rx

Ry

Figure 4.10
Resultant vector.

EXAMPLE 4.1
Two vectors have magnitudes of =A 8 and =B 6 and directions as shown in 
Figure 4.11(a). Find the resultant vector, using (a) the parallelogram law and  
(b) by resolving the vectors into their x and y components.

Solution
(a) Parallelogram law

The parallelogram for vectors A and B is shown in Figure 4.11(b). In order to find 
the magnitude and direction of the resultant vector R, some angles must be deter-
mined. By subtraction, the acute angle between the vectors is 45°. The sum of the 
interior angles of a quadrilateral is 360°, so the adjacent angle is found to be 135°. 
The magnitude of R may be found by using the law of cosines:

R

R ( )

( )( )= + −

= + − −

=

6 8 2 6 8  cos 135°

36 64 96 0.7071

12.96.

2 2
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The direction of R is found by calculating the angle θ. Using the law of sines, we 
have:

θ

θ
θ

=

=
= =−

sin 
6

sin 135°
12.96

sin  0.3274

sin (0.3274) 19.1°.1

(a)

y

x

B 5 6

A 5 8

(b)

y

u f

R

8

6

x

(c)

y

x

B
By

Ay

Ax

A

Bx

15
60

15
60

15

135

45

45

60

5 135
360  2 2(45  )

2

Figure 4.11
Example 4.1.
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Thus, the angle of R with respect to the positive x-axis is:

φ = + =19.1° 15° 34.1°.

The resultant vector R has now been completely defined, because both its direction 
and magnitude have been determined.

(b) Vector components

In Figure 4.11(c), vectors A and B are resolved into their x and y components. The 
magnitudes of these components are:

= = =
= = =

= = =
= = =

A A

A A

B B
B B

x

y

x

y

 cos 15° 8 cos 15° 7.7274

 sin 15° 8 sin 15° 2.0706

 cos 60° 6 cos 60° 3
 sin 60° 6 sin 60° 5.1962.

Vectors A and B may now be written in terms of the unit vectors i and j:

= + = +

= + = +

A i j i j

B i j i j

A A

B B
x y

x y

7.7274 2.0706

3 5.1962 .

The resultant vector R is:

= + = + = + + +

= +

R A B i j i j

i j

R Rx y (7.7274 3) (2.0706 5.1962)

10.7274 7.2668 .

This is the answer, but to compare it with the answer obtained by the parallelogram 
law, we must find the magnitude of R and its direction with respect to the positive 
x-axis. Using the theorem of Pythagoras, we find that the magnitude of R is:

= + =R 10.7274 7.2668 12.96.2 2

The direction is given by:

φ=R Ry x tan  .

Solving for the angle φ, we get:

φ = = =− −R Ry xtan ( / ) tan (7.2668/10.7274) 34.1°.1 1

We have obtained the same result with two different methods of vector addition. 
The second method may appear to involve more work. However, many mechanics 
problems involve more than two vectors, and the problem may be three dimen-
sional. In these cases, resolving the vectors into their rectangular components is 
the preferred approach, since the parallelogram law is too cumbersome. In the 
example, to ensure that both methods yielded the same answers to three significant 
figures, four decimal places were used.
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4.3 FORCES
From our early childhood experiences, we all have a basic understanding of the 
concept of force. We commonly use terms such as push, pull, and lift to describe 
forces that we encounter in our daily lives. Mechanics is the study of the state of rest 
or motion of bodies that are subjected to forces. To the engineer, force is defined as 
an influence that causes a body to deform or accelerate. For example, when you push or 
pull on a lump of clay, the clay deforms into a different shape. When you pull on a 
rubber band, the rubber band increases in length. The forces required to deform 
clay and rubber bands are much smaller than those required to deform engineer-
ing structures such as buildings, bridges, dams, and machines, but these objects 
deform nevertheless.

What happens when you push on the wall with your hand? In accordance with 
Newton’s third law, as you push on the wall, the wall pushes back on your hand with 
the same force. When you push on a book in an attempt to slide it across the table, 
the book will not move unless the frictional force between the table and book is 

EXAMPLE 4.2
For the vectors = − + = + −A i j k B i j k3 6 ,   5 2 ,  and = − + +C i j k2 4 3 ,  find 
the resultant vector and its magnitude.

Solution
These vectors, unlike those in the previous example, are three-dimensional. They 
are already expressed in terms of the Cartesian unit vectors i, j, and k, so it is a 
straightforward matter to add them vectorially. Recall that the i, j, and k unit vectors 
correspond to the positive x, y, and z directions, respectively. To find the resultant, 
we simply add the x components, the y components, and the z components of each 
vector. To help us avoid errors as we perform the addition, it is useful to write the 
vectors with their components aligned in columns:

= − +

= + −
= − + +

A i j k

B i j k

C i j k

3 6 1

5 1 2

2 4 3 .

Performing the additions, the resultant vector is:

= + − + − + + + − +
= − +

R i j k

i j k

(3 5 2) ( 6 1 4) (1 2 3)

6 2 .

The magnitude of the resultant vector is found by extending the theorem of 
Pythagoras to three dimensions:

= + +

= + − + =

R R R Rx y z

6 ( 1) 2 6.40.

2 2 2

2 2 2
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4.3 Forces 109

exceeded by the horizontal pushing force. These types of situations are encoun-
tered in virtually all engineering systems that are in static equilibrium. Forces are 
present, but motion does not occur because the forces cause the body to be in a 
state of balance. When the forces acting on a body are unbalanced, the body under-
goes an acceleration. For example, the propulsive force delivered to the wheels of 
an automobile can exceed the frictional forces that tend to retard the automobile’s 
motion, so the automobile accelerates. Similarly, the thrust and lift forces acting on 
an aircraft can exceed the weight and drag forces, thereby allowing the aircraft to 
accelerate vertically and horizontally.

Forces commonly encountered in the majority of engineering systems may be 
generally categorized as a contact force, gravitational force, cable force, pressure force, or 
fluid dynamic force. These five types of forces are depicted in Figure 4.12. A contact 
force is a force produced by two or more bodies in direct contact. The force pro-
duced by pushing on a wall is a contact force because the hand is in direct contact 
with the wall. When two billiard balls collide, a contact force is produced at the 
region where the balls touch each other. Friction is a type of contact force. A gravi-
tational force, referred to as weight, is exerted on an object on or near the earth’s 
surface. Gravitational forces are directed downward, toward the center of the earth, 
and act through a point in the body called the center of gravity. For a body that is 
uniform in density, the center of gravity lies at the geometric center of the body. 
This point is referred to as the centroid. The force in a cable is actually a special type 
of contact force, since the cable is in contact with a body, but it occurs so frequently 
that it deserves a separate definition. Cables, ropes, and cords are used in pulley 
systems, suspension bridges, and other engineering structures. A cable, due to its 
limp and flexible nature, can support tension forces only. Forces in cables are al-
ways directed along the axis of the cable, regardless of whether the cable is straight 

A gas in a piston-cylinder
device exerts a pressure
force on all surfaces.

The earth exerts a gravitational
force on objects.

A person pulling a load
produces a tension force
in the cable.

A flying aircraft experiences
aerodynamic forces.

Two colliding billiard balls
exert a contact force on
each other.

F F

W

T

Lift

Drag

F

Figure 4.12
Types of forces commonly 
encountered in engineering 
applications.
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110 Chapter 4 Mechanics

or not. Pressure forces are normally associated with static fluids. A gas in a cylinder 
exerts a pressure force on all surfaces of the cylinder. A static liquid, such as the 
water behind a dam, exerts a pressure force on the dam. Pressure forces always act 
in a direction normal to the surface. A fluid dynamic force is produced when a fluid 
flows around a body or through a pipe or conduit. When a fluid flows such as air 
around a body (or when a body moves through a fluid) aerodynamic forces act on 
the body. There are basically two types of aerodynamic forces: pressure forces and 
viscous forces. Pressure forces are caused by pressure distributions around the body 
and are produced by certain fluid-related mechanisms and body geometry. Viscous 
forces, sometimes called friction or shear forces, are caused by fluid viscosity. Any 
object (for example, airplane, missile, ship, submarine, automobile, baseball) that 
moves through a fluid experiences aerodynamic forces. When a fluid flows through 
a pipe, a friction force is produced between the fluid and the inside surface of the 
pipe. This friction force, which is caused by fluid viscosity, has the effect of retarding 
the flow. The five types of forces just mentioned are the most common, but there 
are other kinds of forces that engineers sometimes encounter. These include elec-
tric, magnetic, nuclear, and surface tension forces.

Forces are vectors, so all the mathematical operations and expressions that 
apply to vectors apply to forces. Because a force is a vector, a force has magnitude 
and direction. For example, the weight of a 170-pound person is a vector with a 
magnitude of 170 lbf  and a direction downward. A situation in which more than 
one force acts on a body is referred to as a force system. A system of forces is co-
planar or two dimensional if the lines of action of the forces lie in the same plane. 
Otherwise, the system of forces is three dimensional. Forces are concurrent if their 
lines of action pass through the same point and parallel if their lines of action are 
parallel. Collinear forces have the same line of action. These force concepts are il-
lustrated in Figure 4.13.

y

x

z Collinear forces Three-dimensional forces

F1

F2

F3

F1

F3

F2

x

y

z

y

F1

Coplanar, nonconcurrent forces Coplanar, concurrent forces Coplanar, parallel forces

F2

F3

x

y

F1
F1

F2 F2

F3

F3

x

y

x

Figure 4.13
Force systems.
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EXAMPLE 4.3
Three coplanar forces act as shown in Figure 4.14. Find the resultant force, its mag-
nitude, and its direction with respect to the positive x-axis.

Solution
We have three coplanar forces that act concurrently at the origin. Note that force 
F1 lies along the x-axis. First, we resolve the forces into their x and y components:

F F

F F

F F

F F

F F

F F

x

y

x

y

x

y

= ° = ° =

= ° = ° =

= − ° =− ° =−

= ° = ° =

= − ° =− ° =−

= − ° =− ° =−

cos0 10cos0 10 kN

sin0 10sin0 0 kN

cos60 5 cos60 2.5 kN

sin60 5sin60 4.330 kN

cos 45 8 cos45 5.657 kN

sin45 8 cos45 5.657 kN.

1 1

1 1

2 2

2 2

3 3

3 3

x

y

F2 5 5 kN

F3 5 8 kN

F1 5 10 kN

45

60

Figure 4.14
Concurrent forces for 
Example 4.3.

Notice that F Fx x,   ,2 3  and F y3  are negative quantities to reflect the proper directions 
of the vectors with respect to the positive x- and y-axes. The forces may now be writ-
ten in terms of the unit vectors i and j:

= + = + =

= + = − +

= + = − −

i j i j i

i j i j

i j i j

F F F

F F F

F F F

x y

x y

x y

10 0 10  kN

2.5 4.330  kN

5.657 5.657  kN.

1 1 1

2 2 2

3 3 3

Earlier in this chapter we learned that a resultant is the sum of two or more vec-
tors. Here we define a resultant force as the sum of two or more forces. Therefore, 
the resultant force FR  is the vector sum of the three forces. Adding corresponding 
components, we obtain:

= − − + + −

= −

F i j

i j
R (10 2.5 5.657) (0 4.330 5.657)

1.843 1.327  kN.
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112 Chapter 4 Mechanics

The signs on the x and y components of FR  are significant. A positive sign on the x 
component and a negative sign on the y component means that the resultant force 
lies in the fourth quadrant. The magnitude of FR  is:

= + −

=

FR 1.843 ( 1.327)

2.271 kN.

2 2

The direction of FR  with respect to the positive x-axis is:

φ = − = −−tan ( 1.327/1.843) 35.8°1

where the minus sign on the angle is consistent with the fact that FR  lies in the 
fourth quadrant, as shown in Figure 4.15.

PRACTICE!

1. Find the resultant force for the forces shown by (a) using the parallelo-
gram law and (b) by resolving the forces into their x and y components.
Answer : 178 N, −15.1°.

x

y

F1 5 200 N

F2 5 300 N

25

60

x

y

1.327 kN

1.843 kN

II

III

I

IV

FR 5 2.271 kN

35.8

Figure 4.15
Resultant force for  
Example 4.4.
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x

y

F1 5 150 lbf

F2 5 250 lbf

30

70

x

y

F2 5 30 kN

F1 5 15 kN

4515

2. Find the resultant force for the forces shown by (a) using the parallelo-
gram law and (b) by resolving the forces into their x and y components.
Answer : 166 N, 5.5°.

3. Find the resultant force for the forces shown by (a) using the parallelo-
gram law and (b) by resolving the forces into their x and y components.
Answer : 26.0 kN, 75.0°.

4. Consider the three forces = + = − −F i j F i j5 2  kN,  3 8  kN1 2 , and 
= − +F i j4 7  kN3 . Find the resultant force, its magnitude, and its direc-

tion with respect to the positive x-axis.
Answer : − +i j2  kN, 2.24 kN, 153°.

5. Consider the three forces = + = − −F i j F i j10 9  kN,  8 4  kN1 2 , and 
= +F i j4 5  kN3 . Find the resultant force, its magnitute, and its direc-

tion with respect to the positive x -axis.
Answer : +i j6 10  kN, 11.7 kN, 59.0°.

6. Consider the three forces = + + = − −F i j k F i j k2 8 7  lb ,   3  lb1 f 2 f , 
and = + +F i j k3 2  lb3 f . Find the resultant force and its magnitude.
Answer : + +i j k8( ) lb ,  13.9 lbf f .
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STABILIZING A COMMUNICATIONS TOWER WITH CABLES
Tall slender structures often incorporate cables to stabilize them. The cables, which 
are connected at various points around the structure and along its length, are con-
nected to concrete anchors buried deep in the ground. Shown in Figure 4.16(a) is a 
typical communications tower that is stabilized with several cables. On this particu-
lar tower each ground anchor facilitates two cables that are connected at a common 
point, as shown in Figure 4.16(b). The upper and lower cables exert forces of 15 kN 
and 25 kN, respectively, and their directions are 45° and 32°, respectively, as mea-
sured from the ground (Figure 4.16(c)). What is the resultant force exerted by the 
cables on the ground anchor?

Any two forces in three-dimensional space lie in a single plane, so we may ar-
bitrarily locate our two cable forces in the x–y plane. Thus, we have two coplanar 
forces that act concurrently at the origin. We let =F 15 kN1  and =F 25 kN.2  We 
resolve the forces into their x and y components:

F F

F F

F F

F F

x

y

x

y

= = =

= = =

= = =

= = =

cos 45° 15cos45° 10.607 kN

 sin 45° 15sin45° 10.607 kN

cos 32° 25cos32° 21.201 kN

sin 32° 25sin32° 13.248 kN.

1 1

1 1

2 2

2 2

The forces may now be written in terms of the unit vectors i and j:

= + = +

= + = +

F i j i j

F i j i j

F F

F F
x y

x y

10.607 10.607  kN

21.201 13.248  kN.
1 1 1

2 2 2

The resultant force FR  is the vector sum of the two forces. Adding corresponding 
components, we obtain:

= + + +

= +

F i j

i j
R (10.607 21.201) (10.607 13.248)

31.808 23.855  kN.

The magnitude of FR  is:

F F FR Rx Ry

31.808 23.855

39.76 kN

2 2

2 2

= +

= +

=

and the direction of FR  with respect to the ground is:

φ =
=

−tan (23.855/31.808)
36.9°.

1

What does our answer mean, and how would it be used? The resultant force 
would be used by an engineer (probably a civil engineer) to design the concrete 
anchor. A force of nearly 40 kN directed at an angle of about 37° with respect 
to the ground would have a tendency to pull the anchor out of the ground.  

A
PP

LIC
AT

IO
N
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(c)

x

y

15 kN

25 kN

45 32

(a) (b)

Figure 4.16
A communications tower 
stabilized with cables.

If not designed properly, the anchor could become loose or break under the 
load, thereby causing an unbalanced force on the tower. Look carefully at Figure 
4.16(b). Notice that the two cables connect via turnbuckles at a ring assembly 
connected to a single rod that goes into the concrete anchor, which is not shown. 
The resultant force would also be used to ascertain the structural integrity of the 
ring assembly and rod.
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4.4 FREE-BODY DIAGRAMS
One of the most important steps in the general analysis procedure is to con-
struct a diagram of the system being analyzed. In engineering mechanics, this 
diagram is referred to as a free-body diagram. A free-body diagram is a diagram 
that shows all external forces acting on the body. As the term implies, a free-body 
diagram shows only the body in question, being isolated or “free” from all other 
bodies. The body is conceptually removed from all supports, connections, and 
regions of contact with other bodies. All forces produced by these external in-
fluences are schematically represented on the free-body diagram. In a free-body 
diagram, only the external forces acting on the body in question are considered 
in the analysis. There may be internal forces (i.e., forces originating from inside 
the body that act on other parts of the body), but it can be shown that these 
forces cancel one another and therefore do not contribute to the overall me-
chanical state of the body. The free-body diagram is one of the most critical 
parts of a mechanical analysis. It focuses the engineer’s attention on the body 
being analyzed and helps to identify all the external forces acting on the body. 
The free-body diagram also helps the engineer to write the correct governing 
equations.

Free-body diagrams are used in statics, dynamics, and mechanics of materials, 
but their application to statics and mechanics of materials will be emphasized here. 
Statics is the branch of engineering mechanics that deals with bodies in static equi-
librium. If a body is in static equilibrium, the external forces cause the body to be in 
a state of balance. Even though the body does not move, it experiences stresses and 
deformations that must be determined if its performance as a structural member is 
to be evaluated. In order to determine the forces that act on the body, a free-body 
diagram must be properly constructed.

Procedure for Constructing Free-Body Diagrams
The following procedure should be followed when constructing free-body 

diagrams:

1. Identify the body you wish to isolate and make a simple drawing of it.
2. Draw the appropriate force vectors at all locations of supports, connections, and 

contacts with other bodies.
3. Draw a force vector for the weight of the body, unless the gravitational force is 

to be neglected in the analysis.
4. Label all forces that are known with a numerical value and those that are 

unknown with a letter.
5. Draw a coordinate system on, or near, the free-body to establish directions of the 

forces.
6. Add geometric data such as lengths and angles as required.

Free-body diagrams for some of the most common force configurations are illus-
trated in Figure 4.17.
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Comments

The gravitational force acts
through the center of
gravity G.

The tension force T in a
cable is always directed
along the axis of the cable.

For smooth surfaces, the
contact force N is toward
the body, normal to the
tangent drawn through the
point of contact.

For rough surfaces, there
are two forces, a normal
force N and a friction force,
F.  These two forces are
perpendicular to each other.
The friction force F acts in
the direction opposing
the impeding motion.

Configuration

Gravitational force

m

Cable force

Weight of cable neglected

Weight of cable included

a

b

a

b

Contact force

Smooth surfaces

Rough surfaces

Free-body diagram

m G

W 5 mg

T

T

N

N

F

A roller supports a normal
force but no friction force
because a friction force
would cause the roller to
rotate.

A pin connection can
support a reaction force in
any direction in the plane
normal to the pin’s axis.
This force may be resolved
into its x and y components,
Rx and Ry.

Roller support

Pin connection

Pin

N

Rx

Ry

Figure 4.17
Free-body diagrams for 
some common force con-
figurations.
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PROFESSIONAL SUCCESS—DON’T BEGIN  
IN THE MIDDLE OF A PROBLEM

It’s human nature to want to finish a job in the least amount of time. Some-
times, we take shortcuts without taking enough time to assure that the job 
is done thoroughly. Like everyone else, engineers are only human and may 
sometimes take shortcuts in the solution of a problem. Engineers may take 
shortcuts for a variety of reasons. Perhaps the engineer is simply overloaded 
with work, and the only way to meet deadlines is to spend less time on each 
problem. Perhaps the engineer’s manager has unrealistic expectations and 
does not budget enough time for each project. Time and budget-related rea-
sons, while serious enough to warrant corrective action, are not usually the 
reasons that engineers take shortcuts in their analytical work. They take short-
cuts because they either have become lax in their problem-solving practices 
or have forgotten how to perform a thorough analysis of a problem. Perhaps 
they have forgotten some of the steps in the general analysis procedure, or 
even worse, never learned them at all.

Regardless of the underlying reasons, the practice of taking problem- 
solving shortcuts may provoke an engineer to begin an analysis “in the middle 
of the problem.” How does this happen? In an attempt to solve the problem 
more efficiently, the engineer may want to get right to the equations and cal-
culations. By going directly to the governing equations and calculations steps of 
the analysis procedure, three crucial steps are omitted: problem statement, 
diagram, and assumptions. How can an engineer solve a problem if he or 
she does not even state what the problem is? The engineer may defensively 
exclaim, “But I know what the problem statement is. It’s in my head.” A prob-
lem statement not written is not a problem statement! Others who will re-
view the analysis cannot read minds. A good engineer documents everything 
in writing, including problem statements. The engineer may say, “Everyone 
knows exactly what the component looks like, and the forces acting on it are 
straightforward. A free-body diagram is unnecessary.” Everyone may be inti-
mately familiar with the component’s configuration and loading today, but 18 
months from now, when the analysis is re-evaluated because the component 
failed in its first year of service, everyone, including the engineer who did the 
analysis, may not remember all the details. Once again, written documenta-
tion is essential. The formulation of good assumptions is as much an art as it 
is a science. A hurried engineer may declare, “The assumptions are obvious. 
It’s no big deal,” The assumptions may or may not be obvious, but they are 
critical to the outcome of the problem. Assumptions must be explicitly stated, 
and the governing equations and calculations must be consistent with those 
assumptions. If the component failed in its first year of service, it is perhaps 
because the engineer thought the assumptions were obvious, and they were 
not, resulting in a flawed analysis and a failed component.

While you are in school, develop the habit of conscientiously applying the 
general analysis procedure to all your analytical problem-solving work. Then, 
as you make the transition from student to engineering professional, you will 
not experience the pitfalls of beginning “in the middle of a problem.”
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PRACTICE!

1. A crate hangs by a rope as shown. Construct a free-body diagram of 
the crate.

y

W

T

Answer :

2. Two crates hang by ropes from a ceiling as shown. Construct a free-
body diagram of (a) crate A and (b) crate B.

B

A
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Answer :

y

T2

T1

WA

A

T2

WB

B

3. A wooden block rests on a rough inclined plane as shown. Construct a 
free-body diagram of the block.

25

25F

W N
x

y

30 kN

A B

60

Answer:

4. An obliquely loaded I-beam is supported by a roller at A and a pin at 
B as shown. Construct a free-body diagram of the beam. Include the 
weight of the beam.
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Answer:

N1

N2 N1

F1

APx

y

F1

F2WA WB

B T

20

W N

T

x

y

20

5. A horizontal pulling force P acts on block A as shown. Block B, which 
rests on block A, is tied to a rigid wall by a cable. The force P is not suf-
ficient to cause block A to move. If all surfaces are rough, construct a 
free-body diagram of each block.

Bx

ByWA

x

y 30 kN

60

P A

B

Answer:

6. A box is held in position on the bed of a truck by a cable as shown. The 
surface of the truck bed is smooth. Construct a free-body diagram of 
the box.

Answer:
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4.5 EQUILIBRIUM
Equilibrium is a state of balance between or among opposing forces, and it is one 
of the most important concepts in engineering mechanics. There are two types of 
equilibrium in engineering mechanics: static and dynamic. If a body is in static 
equilibrium, the body does not move, whereas if a body is in dynamic equilibrium, 
the body moves with a constant velocity. In this book, we will restrict our discussion 
to static equilibrium. Furthermore, we will confine our treatment of static equilib-
rium to concurrent force systems. In a concurrent force system, the lines of action of 
all forces pass through a single point, so the forces do not have a tendency to rotate 
the body. Therefore, there are no moments of force to deal with, only the forces them-
selves. Because the forces act concurrently, the body effectively becomes a particle 
(i.e., a dimensionless point in space through which the forces act). The actual body 
may or may not be a particle, but is modeled as such for purposes of the analysis. 
This concept will be demonstrated in some examples later.

A body is in static or dynamic equilibrium if the vector sum of all external forces is 
zero. Consistent with this definition, the condition of equilibrium may be stated 
mathematically as:

 Σ =F 0  (4.20)

where the summation symbol Σ  denotes a sum of all external forces. Note that the 
zero is written as a vector to preserve the vector character of the equation across the 
equal sign. Equation (4.20) is a necessary and sufficient condition for equilibrium 
according to Newton’s second law, which can be written as Σ =F am . If the sum of 
the forces is zero, then =a 0m . The quantity m is a scalar that can be divided out, 
leaving =a 0. Thus, the acceleration is zero, so the body either moves with a con-
stant velocity or remains at rest. Equation (4.20) is a vector equation that may be 
broken into its scalar components. Writing the equation in terms of the unit vectors 
i, j, and k, we obtain:

 Σ + Σ + Σ =i j k 0F F Fx y z  (4.21)

where the three terms on the left side are the total scalar forces in the x, y, and z 
directions, respectively. Equation (4.21) can only be satisfied if the sum of the scalar 
forces in each coordinate direction is zero. Hence, we have three scalar equations:

 Σ = Σ = Σ =F F Fx y z0,   0,   0.  (4.22)

These relations are referred to as the equations of equilibrium for a particle. Each of 
these three scalar equations must be satisfied for the particle to be in equilibrium. If 
any one of these scalar equations is not satisfied, the particle is not in equilibrium. For  
example, if Σ =Fx 0  and Σ =Fy 0,  but Σ ≠Fz 0,  the particle will be in equilibrium 
in the x and y directions, but will accelerate in the z direction. Similarly, if Σ =Fx 0,  
but Σ ≠Fy 0  and Σ ≠Fz 0,  the particle will be in equilibrium in the x direction, 
but will have components of acceleration in the y and z directions.

Equations (4.22) are the governing equations for a particle in equilibrium. 
Using those equations and a free-body diagram of the particle, the unknown exter-
nal forces can be determined. Consider the particle in Figure 4.18(a). A force of  
2 kN acts on the particle in the positive x direction. An unknown force F, whose di-
rection is assumed to act in the positive x direction, also acts on the particle. Applying 
the first equation of equilibrium, we have:

Σ = = + +F Fx 0 2.
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Both forces are positive because they act in the positive x direction. Solving for the 
unknown force F, we obtain:

= −F 2 kN.

Thus, in order for the particle to be in equilibrium, a 2-kN force acting to the left 
must be applied. The negative sign on the answer is consistent with the direction of 
the positive x-axis. In mechanics, the orientation of the coordinate system is arbitrary 
(i.e., does not affect the solution), as long as it is used consistently. Let’s rework the 
example by reversing the direction of the x-axis but keep positive F pointing right 
as before. As shown in Figure 4.18(b), the positive x-axis is now directed to the left, 
but the forces remain unchanged. Writing the equation of equilibrium, we have:

F Fx 0 2.Σ = = − −

Solving yields:

= −F 2 kN

and we obtain the same answer as before. The direction of the x-axis has no influ-
ence on the answer. In both cases, the negative sign indicates that the direction of F 
required to maintain the particle in equilibrium is opposite to the assumed direction.

The examples that follow demonstrate how to find forces acting on a par-
ticle. Each example is worked in detail using the general analysis procedure of  
(1) problem statement, (2) diagram, (3) assumptions, (4) governing equations,  
(5) calculations, (6) solution check, and (7) discussion. For the sake of simplicity, 
the examples are limited to coplanar force systems.

(a)

F 2 kN
1x

(b)

F 2 kN
1x

Figure 4.18
A force of F 2 kN= −  
is required to maintain 
equilibrium, regardless 
of the orientation of the 
coordinate system.

EXAMPLE 4.4
Problem statement
Two blocks hang from cords as shown in Figure 4.19. Find the tension in each cord.

Diagram
In order to find the tension in each cord, a separate free-body diagram is construct-
ed for each block. The most critical part of a free-body diagram is the inclusion 
of every external force acting on the body in question. Two forces act on block A, 
its weight and the tension force in the lower cord. Three forces act on block B, its 
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124 Chapter 4 Mechanics

weight, the tension force in the lower cord, and the tension force in the upper cord. 
All forces are concurrent, so we treat the boxes as particles. The free-body diagrams 
for the blocks are shown in Figure 4.20(a).

40 kg

25 kg

B

A

Figure 4.19
Suspended blocks for 
Example 4.4.

(a)

(b)

A

T1

WA

1y

B

T2

T1

WB

(A 1 B)

T2

WB

WA

Figure 4.20
Free-body diagrams for 
Example 4.4.

Assumptions
1. All forces are concurrent.
2. The weights of the cords are negligible.
3. The cords are sufficiently flexible to hang straight down.
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Governing equations
Because forces act in one direction only, there is only one governing equation: the 
equation of equilibrium for the vertical direction. Thus, for both blocks, we have:

Σ =Fy 0.

Calculations
To solve the problem, the equation of equilibrium must be written for both blocks. 
Noting the direction of the positive y-axis and using the free-body diagrams in  
Figure 4.20(a), we have:
Block A:

Σ = = −

= −

F T W

T

y A0

(25 kg)(9.81 m/s ).

1

1
2

Block B:

Σ = = − −

= − −

F T T W

T T

y B0

(40 kg)(9.81 m/s ).

2 1

2 1
2

Solving the first equation for T ,1  we obtain:

=T 245.25 N.1

Substituting this value of T1 into the second equation and solving for T ,2  we obtain:

=T 637.65 N.2

We commonly express engineering answers in three significant figures, so our an-
swers are reported as:

= =T T245 N,   638 N.1 2

Solution check
No mathematical or calculation-related errors are detected. Do the answers seem 
reasonable? The lower cord supports block A only, so tension T1 is simply the weight 
of block A. Because the upper cord supports both blocks, the tension T2  should be 
the sum of the weights:

+ = +

= +

=

W W m m gA B A B( ) 

(25 kg 40 kg)(9.81 m/s )

637.65 N.

2

Our solution checks out.

Discussion
An alternative method for finding the tension in the upper cord T2  is to construct 
a free-body diagram of both blocks as a single particle. The interesting aspect of this 
approach is that the tension forces produced by the lower cord on both blocks are ig-
nored because they are internal forces, not external forces. The internal forces exerted 
on each block by the lower cord are equal in magnitude, but opposite in direction; 
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hence, they cancel, thereby having no overall mechanical effect on the system. There 
are three external forces acting on the combined blocks, the weights of each block, 
and the tension T .2  Using the free-body diagram in Figure 4.20(b), we have:

Σ = = − −F T W Wy A B0 2

= − +T (25 kg 40 kg)(9.81 m/s )2
2

which yields:

=T 637.65 N.2

EXAMPLE 4.5
Problem statement
A 200 kg engine block hangs from a system of cables as shown in Figure 4.21. Find 
the tension in cables AB and AC. Cable AB is horizontal.

Diagram
C

B A

D

40

Figure 4.21
Suspended engine block 
for Example 4.5.

x

y

40TAB

TAC

W

A

Figure 4.22
Free-body diagram for 
Example 4.5.

We have a coplanar force system in which the force in each cable acts concurrently 
at A, so we construct a free-body diagram for a “particle” at A. (See Figure 4.22.) 
The tension force in cable AB acts to the left along the x-axis, and the tension force 
in cable AC acts along a line 40° with respect to the x-axis. The tension force in cable 
AD, which is equivalent to the engine block’s weight, acts straight down.
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Assumptions
1. All forces are concurrent at A.
2. The weights of the cables are negligible.
3. All cables are taut.

Governing equations
The governing equations are Newton’s second law and the equations of equilibrium 
in the x and y directions:

=

Σ =
Σ =

W mg

F
F

x

y

0
0.

Calculations
Using the free-body diagram in Figure 4.22, the equations of equilibrium are:

Σ = = − +
Σ = = −

F T T
F T W

x

y

0  cos 40°
0  sin 40°

AB AC

AC

where = = =W mg (200 kg)(9.81 m/s ) 1962 N.2  The second equation can be  
immediately solved for T :AC

=T 3052 N.AC

Substituting this value of TAC into the first equation and solving for T ,AB  we get:

=T 2338 N.AB

Solution check
To verify that our answers are correct, we substitute them back into the equilibrium 
equations. If they satisfy the equations, they are correct.

Σ = − + = − ≈

Σ = − = − ≈

F

F
x

y

2338 N (3052 N) cos 40° 0.032 0

(3052 N) sin 40° (200 kg)(9.81 m/s ) 0.212 0.2

Within the numerical precision of the calculations, the sum of the forces in the x 
and y directions is zero. Our answers are therefore correct.

Discussion
Now that we know the tension forces in the cables, what do we do with them? Know-
ing the forces per se does not tell us how the cables perform structurally. The next 
step in the analysis would be to determine the stress in each cable. If the calculated 
stresses are less than an allowable or design stress, the cables will support the en-
gine block without experiencing failure. In this situation, failure most likely means 
cable breakage, but may also mean permanent cable strain. Stress and strain would 
have to be calculated in order to make a full structural assessment of the cables.
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PRACTICE!

For the following practice problems, use the general analysis procedure of 
(1) problem statement, (2) diagram, (3) assumptions, (4) governing equa-
tions, (5) calculations, (6) solution check, and (7) discussion.
1. A 30-cm diameter solid steel sphere hangs from cables as shown. 

Find the tension in cables AB and AC. For the density of steel, use 
ρ = 7270 kg/m .3

Answer : = =T T 712.9 N.AB AC

A

B C45 45

R 5 15 cm

5020

25

45
F3 5 30 N

F1 5 50 N

F2 5 50 N

2. A 250-kg cylinder rests in a long channel as shown. Find the forces act-
ing on the cylinder by the sides of the channel.
Answer : 1999 N, 893 N.

3. Three coplanar forces are applied to a box in an attempt to slide it 
across the floor, as shown. If the box remains at rest, what is the friction 
force between the box and the floor?
Answer : 116.5 N.

4. A 15-kg flowerpot hangs from wires as shown. Find the tension in wires 
AB and AC.
Answer : = =T T88.3 N,   117.7 N.AB AC
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4.6 Stress and Strain 129

4.6 STRESS AND STRAIN
If the vector sum of the external forces acting on a body is zero, the body is in a state 
of equilibrium. There are also internal forces acting on the body. Internal forces 
are caused by external forces, but internal forces do not affect the equilibrium of 
the body. So, if internal forces do not affect equilibrium, how are they important? 
To illustrate the importance of internal forces, let’s use a familiar example from 
the sport of weight lifting. (See Figure 4.23.) As a weight lifter holds a heavy set of 
weights, his body and the weights are momentarily in a state of static equilibrium. 

B C

A

3.2 m

2.8 m
1.6 m

0.4 m

My body is in equilibrium,
but I still feel stressed!

Figure 4.23
A weight lifter is in equi-
librium, but his body is in 
a state of stress. (Art by 
Kathryn Colton).
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The gravitational force of the weights is balanced by the force exerted on the bar 
by the weight lifter’s hands or shoulders, and the gravitational forces of the weights 
plus his body are balanced by the force exerted by the floor on his feet. Are there 
internal forces acting on the weight lifter? Most definitely, yes. If the weight he is 
holding is great, he is painfully aware of those internal forces. The external forces 
of the weights and the reaction at the floor cause internal forces in his arms, torso, 
and legs. The magnitude of these internal forces usually limits the time the weight 
lifter can sustain his position to only a few seconds. Like the weight lifter, engineer-
ing structures such as buildings, bridges, and machines experience internal forces 
when external forces are applied to them. Engineering structures, however, must 
usually sustain internal forces for long periods of time, perhaps years. Principles 
of statics alone, which yield the external forces acting on a body, are insufficient 
to define the mechanical state of the body. In order for an engineer to make a 
complete assessment of the structural integrity of any body, internal forces must be 
considered. From the internal forces and the deformations resulting from them, 
stress and strain can be determined.

4.6.1 Stress
The concept of stress is of prime importance in mechanics of materials. Stress is 
the primary physical quantity that engineers use to ascertain whether a structure 
can withstand the external forces applied to it. By finding stresses, engineers have a 
standard method of comparing the abilities of given materials to withstand external 
forces. There are two types of stress: normal stress and shear stress. In this book, we 
will confine our attention to normal stress. Normal stress is the stress that acts normal 
(perpendicular) to a selected plane or along an axis within a body. Normal stress is often as-
sociated with the stress in the axial direction in long slender members such as rods, 
beams, and columns. Consider the slender bar shown in Figure 4.24. An axial force 
F acts on each end of the bar, maintaining the bar in equilibrium, as indicated in 
Figure 4.24(a). Now, suppose that we pass an imaginary plane through the bar per-
pendicular to its axis, as shown in Figure 4.24(b). Conceptually, we then remove the 
bottom portion of the bar that was “cut away” by the imaginary plane. In removing 

F

(b) (c)

External force

Internal force Cross-sectional
area A

F

F

(a)

P

FF

s 5
P
A

Figure 4.24
Normal stress in a rod.
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4.6 Stress and Strain 131

the bottom portion of the bar, we also removed the force applied at the bottom end 
of the bar that balanced the force applied at the top end. To restore equilibrium, we 
must apply an equivalent force P at the “cut” end. This force, unlike the external 
force applied at the top of the bar, is an internal force because it acts within the bar. 
The internal force P acts perpendicular to the cross-sectional area created by pass-
ing the imaginary plane through the bar, as indicated in Figure 4.24(c). The normal 
stress σ  in the bar is defined as the internal force P divided by the cross-sectional 
area A:

 σ =
P
A

.  (4.23)

This mathematical definition of normal stress is actually an average normal stress, 
because there may be a variation of stress across the cross section of the bar. Stress 
variations are normally present only near points where the external forces are ap-
plied, however, so Equation (4.23) may be used in the majority of stress calculations 
without regard to stress variations. The cross section of the bar in Figure 4.24 is 
circular, but the quantity A represents the cross-sectional area of a member of any 
shape (e.g., circular, rectangular, triangular). Note that the definition of stress is 
very similar to that of pressure. Both quantities are defined as a force divided by an 
area. Accordingly, stress has the same units as pressure. Typical units for stress are 
kPa or MPa in the SI system and psi or ksi in the English system.

In Figure 4.24, the force vectors are directed away from each other, indicating 
that the bar is stretched. The normal stress associated with this force configuration 
is referred to as tensile stress because the forces place the body in tension. Conversely, 
if the force vectors are directed toward each other, the bar is compressed. The 
normal stress associated with this force configuration is referred to as compressive 
stress because the forces place the body in compression. These two force configura-
tions are illustrated in Figure 4.25. One may think that the type of normal stress, 
tensile or compressive, does not matter, since Equation (4.23) says nothing about 
direction. However, some materials can withstand one type of stress more readily 
than the other. For example, concrete is stronger in compression than in tension. 
Consequently, concrete is typically used in applications where the stresses are com-
pressive, such as columns that support bridge decks and highway overpasses. When 
concrete members are designed for applications that involve tensile stresses, rein-
forcing bars are used.

F F Tension

F F Compression

Figure 4.25
External forces for tension 
and compression.

4.6.2 Strain
External forces are responsible for producing stress, and they are also responsi-
ble for producing deformation. Deformation may also be caused by temperature 
changes. Deformation is defined as a change in the size or shape of a body. No mate-
rial is perfectly rigid; hence, when external forces are applied to a body, the body 
changes its size or shape according to the magnitude and direction of the external 
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forces applied to it. We have all stretched a rubber band and noticed that its length 
changes appreciably under a small tensile force. All materials—steel, concrete, 
wood, and other structural materials—deform to some extent under applied forces, 
but the deformations are usually too small to detect visually, so special measuring 
instruments are employed. Consider the bar shown in Figure 4.26. Prior to applying 
an external force, the bar has a length L. Now, the bar is placed in tension, apply-
ing an external force F at each end. The tensile force causes the bar to increase in 
length by an amount δ. The quantity δ  is called the normal deformation or axial de-
formation, since the change in length is normal to the direction of the force, which 
is along the axis of the rod. Depending on the bar’s material and the magnitude 
of the applied force, the normal deformation may be small, perhaps only a few 
thousandths of an inch. In order to normalize the change in size or shape of a body 
with respect to the body’s original geometry, engineers use a quantity called strain. 
There are two types of strain, normal strain and shear strain. In this book, we confine 
our attention to normal strain. Normal strain ε is defined as the normal deformation 
δ divided by the original length L:

 ε
δ

=
L

.  (4.24)

Because strain is a ratio of two lengths, it is a dimensionless quantity. It is cus-
tomary however, to express strain as a ratio of two length units. In the SI unit 
 system, strain is usually expressed in units of m/mµ  because, as mentioned be-
fore, deformations are typically small. In the English unit system, strain is usually 
expressed in units of in/in. Since strain is a dimensionless quantity, it is some-
times expressed as a percentage. The normal strain illustrated in Figure 4.26 is 
for a body in tension, but the definition given by Equation (4.24) also applies to 
bodies in compression.

L

F F

d

e 5 d

L

Figure 4.26
Normal strain in a rod.

4.6.3 Hooke’s Law
About three centuries ago, the English mathematician Robert Hooke (1635–1703) 
discovered that the force required to stretch or compress a spring is proportional 
to the displacement of a point on the spring. The law describing this phenomenon, 
known as Hooke’s law, is expressed mathematically as:

 =F kx  (4.25)

where F is force, x is displacement, and k is a constant of proportionality called the 
spring constant. Equation (4.25) applies only if the spring is not deformed beyond 
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its ability to resume its original length after the force is removed. A more useful 
form of Hooke’s law for engineering materials has the same mathematical form as 
Equation (4.25), but is expressed in terms of stress and strain:

 σ ε= E  .  (4.26)

Hooke’s law, given by Equation (4.26), states that the stress σ  in a material is pro-
portional to the strain ε. The constant of proportionality E is called the modulus 
of elasticity or Young’s modulus, after the English mathematician Thomas Young 
(1773–1829). Like the spring equation, the engineering version of Hooke’s law 
applies only if the material is not deformed beyond its ability to resume its original 
size after the force is removed. A material that obeys Hooke’s law is said to be elastic 
because it returns to its original size after the removal of the force. As strain ε is 
a dimensionless quantity, the modulus of elasticity E has the same units as stress.

Equation (4.26) describes a straight line with E as the slope. The modulus of 
elasticity is an experimentally derived quantity. A sample of the material in ques-
tion is subjected to tensile stresses in a special apparatus that facilitates a sequence 
of stress and strain measurements in the elastic range of the material. The elastic 
range is the distance or extent a material can be deformed and still be capable of re-
turning to its original shape. Stress–strain data points are plotted on a linear scale, 
and a best-fit straight line is drawn through the points. The slope of this line is the 
modulus of elasticity E.

A useful relationship may be obtained by combining Equations (4.23), (4.24), 
and (4.26). The axial deformation δ  may be expressed directly in terms of the 
internal force P and the geometrical and material properties of the member. This 
is done by substituting the definition of strain ε given by Equation (4.24) into 
Equation (4.26), Hooke’s law, and noting that normal stress is the internal force 
divided by the cross-sectional area given in Equation (4.23). Thus, the resulting 
expression is:

 δ =
PL
AE

.  (4.27)

Equation (4.27) is useful because the strain does not have to be calculated first to 
find the deformation of the member. However, this equation is valid only over the 
linear region of the stress-strain curve.

4.6.4 Stress–Strain Diagram
A stress–strain diagram is a graph of stress as a function of strain in a given material. The 
shape of this graph varies somewhat with material, but stress–strain diagrams have 
some common features. A typical stress–strain diagram is illustrated in Figure 4.27. 
The upper stress limit of the linear relationship described by Hooke’s law is called 
the proportional limit, labeled point A. At any stress between point A and the elastic 
limit, labeled point B, stress is not proportional to strain, but the material will still 
return to its original size after the force is removed. For many materials, the propor-
tional and elastic limits are very close together. Point C is called the yield stress or 
yield strength. Any stress above the yield stress will result in plastic deformation of the 
material (i.e., the material will not return to its original size, but will deform per-
manently). As the stress increases beyond the yield stress, the material experiences 
a large increase in strain for a small increase in stress. At about point D, called the 
ultimate stress or ultimate strength, the cross-sectional area of the material begins to 
decrease rapidly until the material experiences fracture at point E.
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In the next example, we use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

Elastic
range

Plastic range

Slope 5 E 5 s/e

Proportional
limit

Elastic
limit

Yield
stress

A
B C

D

EUltimate
stress

Fracture

s

e

R 5 A 1 B

Figure 4.27
A typical stress–strain 
diagram.

C

B A

D

40

Figure 4.28
Suspended engine block 
for Example 4.6.

EXAMPLE 4.6
Problem statement
A 200-kg engine block hangs from a system of cables as shown in Figure 4.28. Find 
the normal stress and axial deformation in cables AB and AC. The cables are 0.7 m 
long and have a diameter of 4 mm. The cables are steel with a modulus of elasticity 
of =E 200 GPa.

Diagram
We will presume that the statics portion of the problem has been solved, so a free-
body diagram of the entire system is unnecessary. Diagrams showing a cross section 
of the cables and the corresponding internal forces are sufficient. (See Figure 4.29.)
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Assumptions
1. Cables are circular in cross section.
2. Cables have the same modulus of elasticity.
3. Stress is uniform in the cables.

Governing equations
Cross-sectional area:

π
=A

D
4

2

Normal stress:

σ =
P
A

Axial deformation:

δ =
PL
AE

.

Calculations
The cross-sectional area of the cables is:

π

π

=

= = × −

A
D
4
(0.004 m)

4
1.2566 10  m .

2

2
5 2

From a prior statics analysis, the tensions in cables AB and AC are 2338 N and 3052 N, 
respectively. Hence, the normal stress in each cable is:

σ

σ

=

=
×

= × =

=

=
×

= × =

−

−

P
A

P
A

AB
AB

AC
AC

2338 N
1.2566 10  m

186.1 10  N/m 186.1 MPa

3052 N
1.2566 10  m

242.9 10  N/m 242.9 MPa.

5 2
6 2

5 2
6 2

TAB

TAC

PAB

PAC

D

D

D 5 4 mm

LAB 5 LAC 5 L 5 0.7 m

Figure 4.29
Cables for Example 4.6.
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The deformation in each cable is

P L
A

P L
AE

AB
AB

AC
AC

δ

δ

=

=
× ×

= × =

=

=
× ×

= × =

−
−

−
−

(2338 N)(0.7 m)
(1.2566 10 m )(200 10 N/m )

6.51 10  m 0.651 mm

(3052 N)(0.7 m)
(1.2566 10 m )(200 10 N/m )

8.50 10  m 0.850 mm.

5 2 9 2
4

5 2 9 2
4

Solution check
One way to check the validity of the results is to compare the relative magnitudes of 
the stress and deformation in each cable. The internal force in cable AC is greater 
than the normal stress in cable AB. Consequently, the normal stress and axial defor-
mation in cable AC must also be greater because the cables are geometrically and 
materially identical. Our calculations show that this is indeed the case.

Discussion
The deformations are small, less than a millimeter in both cables. These deforma-
tions would probably not be significant in an engine hoist application and would 
not be perceptible by the naked eye. Are the stresses excessive? Will they plastically 
deform the cables? To answer these questions, we would have to know something 
about the yield stress of the cable material and the stresses for which the cables were 
designed.

PRACTICE!

In the following practice problems, use the general analysis procedure of 
(1) problem statement, (2) diagram, (3) assumptions, (4) governing equa-
tions, (5) calculations, (6) solution check, and (7) discussion.

1. A solid rod of stainless steel =E( 190 GPa) is 50 cm in length and has 
a ×4 mm 4 mm cross section. The rod is subjected to an axial tensile 
force of 8 kN. Find the normal stress, strain, and axial deformation.
Answer : 500 MPa, 0.00263, 1.32 mm.

2. A 25-cm-long 10-gauge wire of yellow brass =E( 105 GPa) is subjected 
to an axial tensile force of 1.75 kN. Find the normal stress and defor-
mation in the wire. A 10-gauge wire has a diameter of 2.588 mm.
Answer : 333 MPa, 0.792 mm.

3. An 8-m-high granite column sustains an axial compressive load of 500 
kN. If the column shortens 0.12 mm under the load, what is the diam-
eter of the column? For granite, =E 70 GPa.
Answer : 0.779 m.

M04_HAGE4428_05_SE_C04.indd   136 12/11/20   2:04 PM



4.7 Design Stress 137

4.7 DESIGN STRESS
Most engineering structures are not designed to deform permanently or fracture. 
Every member in a structure must maintain a certain degree of dimensional control 
to assure that it does not plastically deform, thereby losing its size or shape, interfer-
ing with surrounding structures or other members in the same structure. Obviously, 
the members must not fracture either, because this would lead to a catastrophic fail-
ure that would result in material and financial loss and perhaps the loss of human 
life. Therefore, members in most structures are designed to sustain a maximum 
stress that is below the yield stress on the stress–strain diagram for the particular 
material used to construct that member. This maximum stress is called the design 
stress or allowable stress. When a properly designed member is subjected to a load, 
the stress in the member will not exceed the design stress. Because the design stress 
is within the elastic range of the material, the member will return to its original 
dimensions after the load is removed. A bridge, for example, sustains stresses in its 
members while traffic passes over it. When there is no traffic, the members in the 
bridge return to their original dimensions. Similarly, while a boiler is operating, the 
pressure vessel sustains stresses that deform it, but when the pressure is reduced to 
atmospheric pressure, the vessel returns to its original dimensions.

If a structural member is designed to carry stresses below the yield stress, how 
does an engineer choose what the allowable stress should be? And why choose a 
stress below the yield stress in the first place? Why not design the member by using 
the yield stress itself, since that would allow the member to carry the maximum 
possible load? Engineering design is not an exact science. If it was, structures could 
be designed with ultimate precision by using the yield stress, or any other stress for 
that matter, as the design stress, and the design stress would never be exceeded 
while the structure was in service. Because design is not an exact science, engineers 
incorporate an allowance in their designs that takes into account the following 
uncertainties:

1. Loadings The design engineer may not anticipate every type of loading or the 
number of loadings that may occur. Vibration, impact, or accidental loadings 
may occur that were not accounted for in the design of the structure.

2. Failure modes Materials can fail by one or more of several different mechanisms. 
The design engineer may not have anticipated every failure mode by which the 
structure can possibly fail.

3. Material properties Physical properties of materials are subject to variations dur-
ing manufacture, and there are experimental uncertainties in their numerical 

4. A solid rod with a length and diameter of 1 m and 5 mm, respectively, 
is subjected to an axial tensile force of 20 kN. If the axial deforma-
tion is measured as δ = 1 cm, what is the modulus of elasticity of the 
material?
Answer : 1018 GPa.

5. A plastic =E( 3 GPa) tube with an outside and inside diameter of  
6 cm and 5.4 cm, respectively, is subjected to an axial compressive force 
of 12 kN. If the tube is 25 cm long, how much does the tube shorten 
under the load?
Answer : 1.86 mm.
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values. Properties may also be altered by heating or by deformation during 
manufacture, handling, and storage.

4. Deterioration Exposure to the elements, poor maintenance, or unexpected nat-
ural phenomena may cause a material to deteriorate, thereby compromising its 
structural integrity. Various types of corrosion are the most common forms of 
material deterioration.

5. Analysis Engineering analysis is a critical part of design, and analysis involves 
making simplifying assumptions. Thus, analytical results are not precise, but 
are approximations.

To account for the uncertainties listed, engineers use a design or allowable 
stress based on a parameter called the factor of safety. The factor of safety (FS) is 
defined as the ratio of the failure stress to the allowable stress:

 σ
σ

=FS .fail

allow
 (4.28)

Because the yield stress is the stress above which a material plastically deforms, the 
yield stress σy  is commonly used as the failure stress σ .fail  The ultimate stress σu may 
also be used. The failure stress is always greater than the allowable stress, so >FS 1. 
The value chosen for the factor of safety depends on the type of engineering struc-
ture, the relative importance of the member compared with other members in the 
structure, the risk to property and life, and the severity of the design uncertainties 
previously listed. For example, to minimize weight, the factor of safety for some 
aircraft and spacecraft structures may be in the range of 1.05 to 1.2. However, the 
factor of safety for ground-based structures such as dams, bridges, and buildings 
may be higher, perhaps 1.5 or 2. High-risk structures that pose a safety hazard to 
people in the event of failure, such as certain nuclear power plant components, 
may have a factor of safety as high as 3. Factors of safety for structural members in 
specific engineering systems have been standardized through many years of test-
ing and industrial evaluation. Factors of safety are often defined by building codes 
or engineering standards established by city, state, or federal agencies and profes-
sional engineering societies.

DESIGNING A TURNBUCKLE
Turnbuckles are special mechanical fasteners that facilitate connections between 
cables, chains, or cords. A basic turnbuckle consists of a slender, cylindrical shaped 
body threaded on each end to accept an eyebolt, a hook, or other type of tying 
component. The tension in the cables that are tied to a turnbuckle is adjusted by 
rotating the body of the turnbuckle. Turnbuckles are designed such that tighten-
ing or loosening may be accomplished without twisting the cables. Like the cables 
that are connected to them, turnbuckles must sustain the tensile stresses to which 
they are subjected. Consider a turnbuckle used to adjust the tension in a cable that 
stabilizes a communications tower. From a prior analysis, the tension in the cable 
is determined to be 25 kN. The loaded turnbuckle is shown in Figure 4.30(a). Let 
us suppose that, as a new engineer, your first job is to select a turnbuckle for this 
application. Turnbuckles are available in a variety of sizes and materials from sev-
eral suppliers. Hardware suppliers specify the maximum recommended load that a 
particular turnbuckle can sustain without failing. It is, therefore, a simple matter for 
you, the end user, to select a turnbuckle with a recommended maximum load that 
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is somewhat greater than the actual load of 25 kN. But how did the engineers who 
designed the turnbuckle obtain this load value? The example that follows shows 
how fundamental concepts of stress and factor of safety may be used to design the 
eyebolt portion of a turnbuckle. The general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion is used.

Problem statement
Determine the minimum-diameter eyebolt in a turnbuckle used to stabilize a com-
munications tower. The tensile force in the cable is 25 kN. The eyebolt is to be 
made of AISI 4130 steel, a high-strength forging steel. (AISI is an abbreviation for 
American Iron and Steel Institute.) To account for potential high wind loads and 
other uncertainties, use a factor of safety of 2.0.

Diagram
The internal and external forces acting on the eyebolt are shown in Figure 4.30(b).

Assumptions

1. Stress is uniform in the eyebolt.
2. Stress in the eyebolt is purely axial.
3. Consider stress in the main body of the eyebolt only, not the threads.

Governing equations
The governing equations for this problem are the cross-sectional area for a circular 
bolt, the definition of normal stress, and the factor of safety.

 
π

=A
D
4

2

 (a)

 σ =
P
A

allow  (b)

 σ
σ

σ
σ

= =FS  .yfail

allow allow
 (c)

(a)

(b)

25 kN

25 kNP 5 25 kN

25 kN

Eyebolt

Body

Figure 4.30
A loaded turnbuckle.
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PRACTICE!

In the practice problems, use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calcu-
lations, (6) solution check, and (7) discussion.

1. A rod of aluminum 6061-T6 has a square cross section measuring 
×0.25 in 0.25 in. Using the yield stress as the failure stress, find the 

maximum tensile load that the rod can sustain for a factor of safety of 
1.5. The yield stress of aluminum 6061-T6 is 240 MPa.
Answer : 6.45 kN.

2. A concrete column with a diameter of 60 cm supports a portion of a 
highway overpass. Using the ultimate stress as the failure stress, what is 

Calculations
In the third governing equation, we have used the yield stress σy  as the failure 
stress. The yield stress of AISI 4130 steel is 760 MPa. The objective of the analy-
sis is to find the diameter D of the eyebolt required to sustain the applied load. 
There are three unknown quantities: σ ,allow  A, and D. Because the three governing 
equations are not dependent, we may combine them algebraically to obtain the 
diameter, D. Upon substituting Equation (a) into Equation (b) and then Equation  
(b) into Equation (c) we obtain:

D
P

yπσ

π

=











=
×

×











= × =−

4   FS

4(25 10  N)(2.0)
(760 10  Pa)

9.15 10  m 9.15 mm.

1/2

3

6

1/2

3

Solution check
No errors were found. The answer seems reasonable based on our knowledge of 
turnbuckles and other mechanical fasteners.

Discussion
The minimum eyebolt diameter that will sustain the applied load with a factor of 
safety of 2.0 is 9.15 mm. In English units, this diameter is:

D = × =9.15 mm
1 in

25.4 mm
0.360 in.

Bolts come in standard diameters, and 0.360 is not a standard size. Bolts are typi-
cally available in standard sizes such as  in,   in, and   in. 1

4
5

16
3
8 A  in5

16  (0.3125 in) 
bolt is too small, so the  in3

8  (0.375 in) should be chosen, even though it is slightly 
larger than required. It should be emphasized that this analysis reflects only a part 
of the analysis that would be required in the total design of a turnbuckle. Stresses in 
the threads of the eyebolt and the turnbuckle body, as well as the main body of the 
turnbuckle itself, would also have to be calculated.
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the maximum compressive load that the column can carry for a factor 
of safety of 1.25? For the ultimate stress of concrete, use σ =u 40 MPa.
Answer : 9.05 MN.

3. A column of rectangular cross section constructed from fir timber is 
subjected to a compressive load of 3.5 MN. If the width of the column 
is 25 cm, find the depth required to sustain the load with a factor of 
safety of 1.6. The ultimate stress of fir is σ =u 50 MPa.
Answer : 44.8 cm.

b

a 5 25 cm

KEY TERMS

allowable stress
Cartesian unit vector
deformation
elastic range
equilibrium
factor of safety
force
force system

free-body diagram
internal force
mechanics
modulus of elasticity
resultant
resultant force
scalar
statics

strain
stress
stress–strain diagram
ultimate stress
vector
yield stress
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Forces

 4.1 Find the resultant force for the forces shown in Figure P4.1 (a) by using 
the parallelogram law and (b) by resolving the forces into their x and y 
components.

PROBLEMS
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y

x

150 N

200 N

50

80

Figure P4.1

 4.2 Find the resultant force for the forces shown in Figure P4.2 (a) by using 
the parallelogram law and (b) by resolving the forces into their x and y 
components.

y

x

12 N
8 N

6530

Figure P4.2

 4.3 For the four forces shown in Figure P4.3, find the resultant force, its magni-
tude, and its direction with respect to the x-axis.

x

y

15 kN11 kN

20 kN

60°

18 kN

60°

Figure P4.3
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 4.4 For the three forces shown in Figure P4.4, find the resultant force, its mag-
nitude, and direction with respect to the x-axis.

y

x

150 lbf 150 lbf

250 lbf

4545

Figure P4.4

 4.5 Consider the three forces = + − = − − −F i j k F i j k2 8  N, 4 5 N,  and1 2
= + −F i j k10 3 3  N.3  Find the resultant force and its magnitude.

Free-body diagrams

 4.6 Cylinders A and B are suspended by a system of cords as shown in Figure 
P4.6. Points C and F are fixed connections, and E is a pulley of negligible 
size and mass. Draw a free-body diagram of (a) cylinder A, (b) cylinder B, 
(c) connection point D, and (d) pulley E.

 4.7 A uniform ladder with a person standing one third of the ladder’s length 
from the bottom rests on a rough floor and against a smooth wall, as shown 
in Figure P4.7. Draw a free-body diagram of the ladder.

Figure P4.6

308D
E

B

F

A

C
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50°

Figure P4.8

x

y

55

35

8 kN

3 kN

P

F

u

Figure P4.11

 4.8 A crate is held in place by a cable on an inclined plane, as shown in Figure 
P4.8. The surface of the inclined plane is rough. Draw a free-body diagram 
of the crate.

Equilibrium

 4.9 A particle is subjected to three coplanar forces: = −F i j4 N,1 a  
= + = − +F i j F i j2  N and  7 3  N2 3b . Find the values of the scalars a and b 

such that the particle is in equilibrium.

 4.10 A particle is subjected to three forces: = − − = −F i j k F i3 a 7  N, 4  1 2  
− +j k2 b  N, and = − +F i j kc 6 4  N.3  Find the values of the scalars a, b, 
and c such that the particle is in equilibrium.

 4.11 Find the magnitude of the force F and its direction θ  in Figure P4.11 so that 
the particle P is in equilibrium.

Figure P4.7

115°L /3
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 4.12 A gusset plate of a truss is subjected to the forces shown in Figure P4.12. 
Find the magnitude of the force, F, and its direction, θ, so that the plate is 
in equilibrium.

A

CB
35

70

Figure P4.13

A

B

C D
E

F

608

Figure P4.14

u

B

C F

DA

1.5 kN

2 kN 3 kN

Figure P4.12

For problems 13 through 29, use the general analysis procedure of (1) prob-
lem statement, (2) diagram, (3) assumptions, (4) governing equations, (5) cal-
culations, (6) solution check, and (7) discussion.

 4.13 A 160-kg crate hangs from ropes as shown in Figure P4.13. Find the tension 
in ropes AB and AC.

 4.14 Two blocks are suspended from a system of cables, as shown in Figure P4.14. 
Block B has a mass of 50 kg. Cable CD is horizontal, cable DE passes over  
pulley F, and the cables are connected at D. Find the tension in cables CD 
and DE and the mass of block A. (Hint: The tension in all parts of a continu-
ous cable passing over a pulley is the same).
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 4.15 A concrete pipe with an inside and outside diameter of 60 cm and 70 cm, 
respectively, hangs from cables as shown in Figure P4.15. The pipe is sup-
ported at two locations, and a spreader bar maintains cable segments AB 
and AC at 45°. Each support carries half the total weight of the pipe. If the 
density of concrete is ρ = 2320 kg/m ,3  find the tension in cable segments 
AB and AC.

C
Spreader bar

B

A

2.5 m

45 45

Figure P4.15

A

C

B10

5

Figure P4.16

 4.16 A construction worker holds a 500-kg crate in the position shown in  
Figure P4.16. What force must the worker exert on the cable?

 4.17 Three forces act on a block that rests on a smooth floor, as shown in Figure 
P4.17. Find the force F such that the block will not slide across the floor. As-
sume that the block is sufficiently heavy that the vertical components of the 
forces do not lift the block.

20 N

12 NF

20° 308

Figure P4.17

 4.18 A 15.3 kg traffic signal is suspended from a symmetrical system of cables as 
shown in Figure P4.18. Find the tension in all cables. Cable BC is horizontal.
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Stress and strain

 4.19 A column of structural steel is subjected to a normal compressive force of 
3.75 MN. The column has a rectangular cross section of 18 cm × 24 cm. Find 
the normal stress in the column. Does this stress exceed the yield stress of 
structural steel? What is the normal strain?

 4.20 A 30-cm long cylindrical rod of red brass =E( 12 GPa) is loaded axially 
causing the rod to elongate 0.580 mm. If the diameter of the rod is 1.75 cm, 
what is the load? What assumption was made in the calculation?

 4.21 The I-beam shaped column is subjected to a 15-kN force as shown in Figure 
P4.21. Find the average normal stress in the column. What assumption was 
made in the calculation?

A

E D
C B

20

40 40

20
Figure P4.18

10 mm

10 mm

10 mm

15 kN

75 mm

70 mm

70 mm

75 mm

Figure P4.21

 4.22 A solid composite shaft is subjected to a 2-MN force as shown in Figure 
P4.22. Section AB is red brass =E( 120 GPa),  and section BC is AISI 1010 
steel =E( 200 GPa). Find the normal stress in each section and the total 
axial deformation of the shaft.
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 4.23 A tapered column of concrete =E( 30 GPa) is subjected to a 200-kN force as 
shown in Figure P4.23. Find the axial deformation of the column. Hint: ex-
press the cross-sectional area A as a function of x and perform the integration:

Pdx
A x E

L

∫δ =
( )

.
0

D 5 18 cm

D 5 12 cm30 cm

40 cm

B

C

A

2 MNFigure P4.22

x

200 kN

D 5 6 cm

D 5 12 cm

15 cm

Figure P4.23

 4.24 A ×12 12 cm square plate of titanium =E( 115 GPa) is subjected to normal 
tensile forces of 15 kN and 20 kN on the top and right edges as shown in 
Figure P4.24. The thickness of the plate is 5 mm, and the left and bottom 
edges of the plate are fixed. Find the normal strain and deformation of the 
plate in the horizontal and vertical directions.
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 4.25 A tensile test is conducted on a steel specimen with a diameter of 8.0 mm 
and a test length of 6.0 cm. The data is shown in the table. Plot the stress–
strain diagram, and find the approximate value of the modulus of elasticity 
for the steel.

Load (kN) Deformation (mm)

2.0 0.0119

5.0 0.0303

10.0 0.0585

15.0 0.0895

20.0 0.122

25.0 0.145

Design stress

 4.26 A 1-cm-diameter, 0.4-m-long steel rod is to be used in an application where 
it will be subjected to an axial tensile force of 15 kN. The factor of safety 
based on yield stress must be at least 1.5, and the axial deformation must 
not exceed 2 cm. Is the steel whose stress–strain diagram is shown in Figure 
P4.26 suitable for this application? Explain.

20 kN

15 kN

12 cm

12 cm

Figure P4.24

0.0
0

0.10 0.20 0.30 0.40

100

200

300

s
(M

Pa
)

e(mm/mm)

400

Figure P4.26
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 4.27 A 3.5-cm-diameter rod of AISI 4130 cold rolled steel is to be subjected to an 
axial tensile force such that the factor of safety based on yield stress is 1.20. 
Find the maximum allowable tensile force. The yield stress of AISI 4130 
cold rolled steel is σy  = 760 MPa.

 4.28 An 18-in-diameter sandstone column is subjected to an axial compres-
sive force of × f2 10  lb .6  Find the factor of safety based on the ultimate 
compressive stress. For the ultimate compressive stress of sandstone, use 
σ =u 85 MPa.

 4.29 A slender cylindrical member in a child’s toy made of polystyrene plastic is 
to be subjected to an axial tensile force of 300N. Find the minimum diam-
eter of this member for a factor of safety of 1.75 based on yield stress. The 
yield stress for polystyrene is σ =y 55 MPa.

 4.30 A specimen of titanium is tested in a tensile testing machine until the  
ultimate stress is reached. If the cross sectional area of the specimen is 
0.40 cm2, what tensile force must be applied to the specimen?

 4.31 Rework Problem 4.30 for specimens of aluminum 6061-T6, AISI 302 stain-
less steel, and Monel 400.
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5.1 INTRODUCTION
Electrical engineering is one of the most diverse and well-established branches of  
engineering. Electrical engineers design systems and devices that harness the power 
of electricity to perform a variety of tasks. Electricity is one of the most useful forms 
of energy, and it impacts our everyday lives in fundamental ways. Without electricity, 
commonplace but important devices such as automobiles, aircraft, computers, house-
hold appliances, telephones, television, radio, and electric lights would not exist. The 
historical roots of electricity can be traced to such notable scientists, engineers, and 
technologists as Alessandro Volta (1745–1827), Andre Ampere (1775–1836), Georg 
Ohm (1787–1854), Michael Faraday (1791–1867), James Joule (1818–1889), Heinrich 
Hertz (1857–1894), and Thomas Edison (1847–1931). These individuals, among oth-
ers, established the fundamental theoretical and practical foundations of electrical 
phenomena.

This chapter deals with a category of electrical engineering referred to as electrical 
circuits. In nearly every electrical engineering curriculum, electrical circuit analysis is one 
of the first courses taken by the engineering student. The principles covered in basic 
electrical circuit theory are so important that even non-electrical engineering majors 

Electrical 
Circuits

After reading this chapter, you 
will have learned
• The relationship between 

charge and current
• The concept of voltage
• The concept of resistance
• How to combine  

resistances in series and 
parallel

• How to use Ohm’s law
• How to analyze simple  

DC circuits
• How to use Kirchhoff’s 

laws of circuit analysis

Objectives

C H A P T E R

5
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152 Chapter 5 Electrical Circuits

are often required to take at least one course in the subject. Nearly all branches of 
electrical engineering are fundamentally based on circuit theory. The only subject 
in electrical engineering that is more fundamental than circuit theory is electro-
magnetic field theory, which deals with the physics of electromagnetic fields and 
waves.

As an electrical engineering subject, electrical circuits may be broken down 
into two general areas: power and signal. Power may be subdivided further into 
three categories: power generation, heating and lighting, and motors and generators. 
Similarly, signal may be divided into three subcategories: communications, comput-
ers, and controls and instrumentation. This structure is schematically illustrated in 
Figure 5.1.

Power deals with systems designed to provide electrical energy to various me-
chanical and electrical devices. Power generation refers to the production and 
transmission of electrical power by power plants. The energy source from which 
these power stations derive electrical power is typically fossil fuels, nuclear materi-
als, or moving water. To a lesser degree, solar or wind power is also used. Electrical 
energy is required to run heating and cooling equipment such as furnaces, electric 
heaters, boilers, and air conditioners. The illumination provided by incandescent 
and fluorescent lights requires electrical power. Motors are found in numerous sys-
tems, including refrigerators, furnaces, fans, CD players, kitchen appliances, and 
printers. In motors, electrical energy is converted to mechanical energy via a rotat-
ing shaft. Unlike a motor, a generator is used to convert mechanical energy to elec-
trical energy. Generators are used in power plants, automobiles, and other power 
systems.

The signal area of electrical circuits deals with systems that transmit and pro-
cess information. The power transmitted is not a primary consideration in signal 
applications. Communications refers to the transmission of information via elec-
trical signals. Telephone, television, radio, and computers are types of communi-
cation systems. The heart of a computer is its digital circuits, circuits that utilize 
logic operations for the rapid processing of information. Computers are such a 
dominant area of engineering that electrical engineering programs in the United 
States are referred to as electrical and computer engineering to give students the 
option of focusing on the hardware (electrical) or the software, firmware, and op-
erating systems (computer) aspects of the field. Controls are special circuits that 
activate or adjust other electrical or mechanical devices. A thermostat that turns a 
furnace or air conditioner on and off is a simple example. Instrumentation circuits 
are used to process electrical signals generated by various types of sensors that con-
trol a device. For example, an automobile has a circuit that processes an electrical 

Power

Heating and
lighting

Power
generation

Motors and
generators ComputersCommunications Controls and

instrumentation

ELECTRICAL
CIRCUITS

Signal

Figure 5.1
Topical structure of  
electrical circuits.
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5.2 Electric Charge and Current 153

signal generated by a temperature sensor in the cooling system. If the temperature 
exceeds a certain value, the circuit activates a visual display that warns the driver of 
an overheating condition.

Now that the basic topical structure of electrical circuits has been defined, what 
is an electrical circuit? An electrical circuit may be defined as two or more electrical 
devices interconnected by conductors. In electrical circuits, there are numerous types of 
electrical devices such as resistors, capacitors, inductors, diodes, transistors, trans-
formers, batteries, lamps, fuses, switches, and motors. The “conductors” that inter-
connect these devices are usually wires or metal pathways integrated on a printed 
circuit board. Electrical circuits can be very simple, such as the circuit in a flash-
light containing two batteries, a lightbulb, and a switch. Most electrical circuits, 
however, are much more complex than a flashlight. A standard television contains, 
among other things, power supplies, amplifiers, speakers, and an LCD screen. The 
microprocessor in a computer may contain the equivalent of millions of transistors  
interconnected in a single chip that is smaller than a fingernail. Electrical engineers 
use principles of the electrical circuit theory to analyze and design a wide variety of 
systems. Look around you. How many devices do you see nearby that utilize elec-
tricity for their operation? You are probably reading this book by the illumination 
of incandescent or fluorescent lights. The room most likely has several electrical 
outlets on the walls that facilitate the operation of various electrical devices such 
as computers, vacuum cleaners, clocks, toasters, and microwave ovens. Electrical 
devices are so pervasive that we take them for granted, but our world would be vastly 
different without them.

To anyone born in an industrialized nation during the latter half of the  
20th century, a world without television, stereo, cellular phones, and CD and 
DVD players would seem foreign and strange. Electrical devices change rapidly, 
being driven by the ever increasing need for higher speed, smaller size, and lower 
cost. This period of time saw room-sized mainframe computers with thousands 
of heat-generating vacuum tubes evolve into desktop and laptop  computers. The 
second half of the 20th century also witnessed sweeping improvements in tele-
communications, automotive, electronics, and automation. The first decade of 
the 21st century is unveiling advances in miniaturization and merging of vari-
ous electronic technologies, particularly in communications, entertainment, and 
Internet related products.

All electrical devices have circuits of one kind or another, and the electrical 
engineer must know how to design these circuits to perform specific electrical func-
tions. Some familiar examples of devices that have electrical circuits are shown in 
Figures 5.2 and 5.3. Students must learn the fundamental principles of electrical 
circuits before proceeding with more advanced study in circuit analysis and other 
electrical engineering courses.

5.2 ELECTRIC CHARGE AND CURRENT
We are familiar with forces caused by bodies in contact with other bodies and  
gravity. Forces exerted on bodies by other bodies are commonly encountered in a 
variety of everyday situations and engineering structures. The gravitational force is 
an attractive force that tends to move objects toward one another, the most com-
mon example being the earth’s gravitational force that attracts objects toward the 
center of the earth. Gravitational forces govern the motions of planets, stars, galax-
ies, and other celestial objects in the universe, and yet it is the weakest of all the 
natural forces.
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154 Chapter 5 Electrical Circuits

Figure 5.2
State-of-the-art navigation, 
communication, entertain-
ment, and warning systems 
in automobiles consist of 
electrical circuits. (Rafał 
Olechowski/123RF)

Figure 5.3
Electrical circuits are an 
integral part of spacecraft 
that orbit the earth and 
explore the solar system. 
(NASA)

A type of force that is much stronger than gravity is electrical in nature. 
Electrical forces are produced by electric charges. An electrical force is established 
between two charged particles when they are in proximity. The force between the 
particles is attractive if the charges are unlike (i.e., if one charge is positive and 
the other is negative). The force is repulsive if the charges are alike, that is, if both 
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5.2 Electric Charge and Current 155

PROFESSIONAL SUCCESS—RETAIN YOUR  
COURSE MATERIALS

Engineering students may sometimes wonder, “How much of my engineering 
course materials should I keep after completing a course or after gradua-
tion? Should I sell my textbooks back to the bookstore? Should I discard my 
lecture notes, exams, and laboratory reports? Will I need these materials after 
I graduate?” The engineering curriculum is a challenging academic road to 
travel. By the time you graduate, you will have made a great commitment in 
time, energy, and money. If you purchased printed versions of your textbooks, 
do not trivialize this commitment by selling your textbooks for a few dollars to 
the bookstore or another student. As you complete each engineering course, 
keep your books and other course materials for reference in future engineer-
ing courses. Engineering courses build on one another, so you will most likely 
need these resources to help you learn new material. Your engineering texts 
are a wellspring of information, the backbone of your engineering course 
work. Will you need your books even after graduation when you have secured 
employment as an engineer? Depending on the nature of your engineering 
position and the company you work for, your college textbooks could be a 
valuable resource, particularly in engineering design and analysis. Because 
you do not know exactly what kinds of engineering activities you will be 
involved in after graduation, keep your textbooks.

At the end of each course, organize your lecture notes, lab reports, home-
work problems, exams, and other materials into a three-ring binder. Label 
the binder with the course name and number. Divide the binder into sections 
with dividers and labeled tabs. You will probably need a section for lecture 
notes, homework problems, exams, quizzes, and laboratory reports. Depend-
ing on the nature of the course, other sections may be required. In addition 
to your engineering courses, you should probably keep materials from tech-
nical support courses such as physics, chemistry, and mathematics. Retaining 
course materials will help you as a student and as a practicing engineer.

charges are either positive or negative. (See Figure 5.4.) This force is referred to as 
an electrostatic force because the charges are static or stationary. The branch of elec-
trical studies that deals with static charges is called electrostatics.

Charges are created by producing an imbalance in the number of charged 
particles in the atom. Atoms consist of a nucleus composed of neutrons (neutral 

F F

F

F

F

(a)

(b)

F

1 2

1 1

2 2

Figure 5.4
(a) Unlike charges attract 
and (b) like charges repel.
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156 Chapter 5 Electrical Circuits

particles) and protons (positively charged particles) surrounded by a cloud of elec-
trons (negatively charged particles). An atom with the same number of protons 
and electrons is electrically neutral (has no charge), because the positive charge 
of the protons precisely balances the negative charge of the electrons. The atom 
may become positively charged by losing electrons or negatively charged by gaining 
electrons from other atoms. For example, rubbing a silk cloth over a glass rod strips 
some electrons from the surface atoms of the glass, adding them to the atoms of 
the cloth, thereby creating a negatively charged rod. A negative charge may also be 
produced on a balloon by rubbing it against our hair.

Electric charges are quantified by means of a physical parameter called the  
coulomb (C). The coulomb, named in honor of the French physicist Charles Coulomb 
is defined as the charge possessed by approximately 6.242 1018×  electrons. Another way to 
define the coulomb is to state that a single electron has a charge of approximately 
1.602 10  C,19× −  the inverse of 6.242 10 .18×  The charge on a single electron is said 
to be quantized, because it is the smallest amount of charge that can exist. Symbols 
typically used for electric charge are Q or q. The symbol Q usually denotes a constant 
charge, such as 2 C,=Q  whereas the symbol q usually denotes a charge that is chang-
ing with time. In the latter case, charge is sometimes written in the functional form q(t).

When electric charges of the same sign move, an electric current is said to exist. 
To define electric current more precisely, consider the charges moving in a wire 
perpendicular to a cross-sectional area A. (See Figure 5.5.) Electric current I is de-
fined as the rate at which charge flows through the area. The average current that flows 
through the area may be written in terms of the amount of charge ∆q  that passes 
through the area in a given time interval ,∆t  as:

 I
q
t

av =
∆
∆

. (5.1)

If the current changes with time, the rate at which charge flows through the area A 
also changes with time, and the current is an instantaneous current expressed as a 
derivative:

 .=i
dq
dt

 (5.2)

It should be noted that the symbol I is usually reserved for DC, whereas the symbol i 
is generally used for AC or other types of currents that change with time.

The SI unit for electric current is the ampere (A). From its definition, given 
by Equations (5.1) and (5.2), 1 A of current is equivalent to 1 C of charge passing 
through the area in 1 s. Hence, 1 A 1 C/s.=  Because the ampere is one of the 
seven base dimensions, electric charge may be alternatively defined as the charge 
transferred in 1 s by a current of 1 A. To give you a physical feel for current, 1 A is 
approximately the current that flows through the filament of a 115-V, 100-watt light-
bulb. Some electrical devices, such as CD players and radios, may draw very small 
currents, on the order of mA or even A.µ  For example, a typical flashlight draws 
about 300 mA. A toaster may draw around 8 A, and an electric kitchen range or 

Wire

1
1

1
1

1
1

1
1

A

I

Figure 5.5
Current is the passage of 
electric charges through a 
cross-sectional area in a 
conductor.
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5.2 Electric Charge and Current 157

electric dryer may draw 15 A or more. Large machines used in heavy industries may 
draw hundreds or even thousands of amperes.

In electric circuit theory, current is generally considered to be the movement 
of p ositive charges. This convention is based on the work of Benjamin Franklin  
(1706–1790), who conjectured that electricity flowed from positive to negative. Today, 
we know that electric current in wires and other conductors is due to the drift of free 
electrons (negatively charged particles) in the atoms of the conductor. When dealing 
with electric  current, we need to distinguish between conventional current (the movement 
of positive charges) and electron current (the movement of free electrons). In a real sense, 
however, it does not matter whether we use conventional current or electron current, 
because positive charges moving to the right is equivalent to negative charges moving to 
the left. The only thing that matters is that we use the same sign convention consistently.  
By adoption, conventional current is generally used in electrical circuit analysis.

There are several types of current in use in various electrical devices, but we 
will study the two major types. Direct current (DC) is a flow of charge in which the 
direction of flow is always the same. Alternating current (AC) is a flow of charge in 
which the charge flows back and forth, alternating in direction, usually following a 
sinusoidal pattern. If the current always flows in the same direction, but the magni-
tude varies somewhat in a periodic fashion, the current is said to be pulsating direct 
current. Power supplies that are poorly filtered generate pulsating direct current. 
Another type of current is a current that flows in the same direction while increas-
ing or decreasing exponentially. Exponentially changing currents are sometimes very 
short lived, such as when electrical devices are turned on or off. Still another type of 
current is one that flows in the same direction, while its magnitude varies according 
to a so-called sawtooth function. Sawtooth currents are useful in equipment such as 
oscilloscopes, which are measurement instruments that display electrical character-
istics on a screen. These current types are illustrated in Figure 5.6.

(a)
t

I

(b)

t

I

(c)
t t

I

(d)

I

(e)
t

I

Figure 5.6
Common types of electric 
currents: (a) direct current 
(DC), (b) alternating current 
(AC), (c) pulsating direct 
current, (d) exponential 
current, and (e) sawtooth 
current.
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158 Chapter 5 Electrical Circuits

Electric current is measured by means of an instrument called an ammeter. 
There are basically two types of ammeters: analog and digital. An analog ammeter 
provides a current reading by means of a needle or pointer that moves across a 
calibrated scale. Digital ammeters provide a current reading by displaying numbers 
in a window. Each type of ammeter has two terminals. In order to use an ammeter, 
the circuit must generally be broken at the location where the current measurement 
is desired and the ammeter must be inserted directly into the current path. Most 
ammeters have function switches that enable both direct and alternating current 
measurements. Most also have manual or automatic range selector functions that 
facilitate current readings in units of A, mA, or A.µ

EXAMPLE 5.1
As an electrical circuit is powered off, the current in a device changes exponentially 
with time according to the function:

5 e  Ai t kt( ) = −

where k is a constant. If 2 s ,1k = −  how many coulombs pass through the device dur-
ing the first second after the power is turned off? What is the current in the device 
at the instant just prior to turning off the power?

Solution
The current decreases exponentially according to the relation:

5 e  A2i t t( ) = −

where t is expressed in seconds. The number of coulombs that pass through the 
device during the first second after the power is turned off may be found by using 
Equation (5.2),

.i
dq
dt

=

Multiplying both sides of this equation by dt and integrating, we obtain:

  5  
0

1

0

1
2

1

2

∫ ∫ ∫( )= = −dq i t dt e dt
q

q
t .

Hence,

5
2

5

2
2 1

2

0

1 2 0

q q
e e et ( )

− =
−

=
−

−

− −

2.16 C.=

Thus, 2.16 C pass through the device during the first second after the power is 
turned off. The current immediately before the power is turned off is the current at 

0 s.t =  Therefore, we have:

0 5 e 5 e2 0 0i ( ) = =( )−

5 A.=
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5.2 Electric Charge and Current 159

TRANSIENT CURRENT AND THE TIME CONSTANT
Upon turning them on or off, some electrical circuits exhibit exponential variations 
of current with time. In many cases, these variations are very short in duration, 
perhaps only a few milliseconds. Such a current variation is referred to as transient, 
because it is short-lived. A typical transient current has the mathematical form:

(1 e )0
/( ) = − τ−i t i t

where 0i  is a constant, t is time, and τ  is the time constant. The value of the time 
constant depends on the specific electrical characteristics of the circuit. For a sim-
ple circuit consisting of a resistor in series with an inductor, the time constant is 

/ ,L Rτ =  where L is inductance and R is resistance. By inspection of the equation, 
the current is zero at 0,t =  the instant the circuit is turned on. The current then 
increases exponentially with time until, after a long period of time, the current at-
tains a steady value of .0i

The time constant τ  is defined as the time it takes for the current’s difference 
from its final value to reduce to 36.8 percent (1/e). To see how this works, let’s exam-
ine the equation more closely. After one time constant(t = τ), the exponential term 
is e−1, or 0.368, and the current has increased to 0.632 times its steady value of i0. 
After two time constants (t  = 2τ), the exponential term is e−2, or 0.135, and the cur-
rent has increased to 0.865 times its steady value. Extending the analysis to five time 
constants (t = 5τ), the exponential term is e−5, or 0.00674, and the current has in-
creased to approximately 0.993 times its steady value. (See Table 5.1 and Figure 5.7.) 

A
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LIC
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Table 5.1

t(s) /e t τ− i (t)(A)

0 1 0

τ 0.368 0.632 0i

2τ 0.135 0.865 0i

3τ 0.050 0.950 0i

4τ 0.0183 0.9817 0i

5τ 0.00674 0.99326 0i

∞ 0
0i

0
0.0i0

t(s)
1t 2t 3t 4t 5t

0.2i0

0.4i0

0.6i0

0.8i0

1.0i0

i(
t)

Figure 5.7
After five time constants, 
the current has practically 
reached a steady value.
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160 Chapter 5 Electrical Circuits

PRACTICE!

1. How many electrons are represented by a charge of 1  C?µ  50 pC?
Answer : 6.242 × 1012, 3.121 × 108.

2. The charge moving through a conductor varies with time according to 
the following equation:

  3 C0
3q t q e tt( )( ) = +−

where 0q  is a constant. Find the current at 0 st =  and 1 s.t =  What is 
the current for very large values of time?

Answer : 0 A, 2.85q0 A, 3q0 A.

3. The current in a device varies with time according to the function:

(1 2 e ) A.5i t t( ) = + −

How many coulombs pass through the device during the time interval 
1 3 s ?t< <  What is the current for large values of time?

Answer : 2.0027 C, 1 A.

4. The current in a device varies sinusoidally with time according to the 
function:

5 sin( 2 t) A.i t π π( ) = +

How many coulombs pass through the device during the time interval 
0 0.5 s?t< <
Answer : −1.59 C.

Theoretically, the current never reaches a steady value; it asymptotically approaches 
a steady value. For practical purposes, however, we may say that the current attains 
a steady value after five time constants because, as shown in Table 5.1, the current 
comes to within one percent of the steady value. Thus, the “rule of thumb” for tran-
sient currents is that it takes five time constants for a steady condition to be achieved.

5.3 VOLTAGE
In the absence of a controlling force, electric charges in a conductor have a ten-
dency to move about in a random manner. If we want the charges to unitedly move 
in a single direction so as to constitute an electric current, we must apply an ex-
ternal force to the charges called an electromotive force (emf). This force, since it 
causes a movement of charges through the conductor, does work on the charges. 
The electromotive force is typically called voltage. We therefore define voltage as 
the work done in moving a charge of one coulomb. The unit of voltage is the volt (V), 
named after the Italian physicist Alessandro Volta, who invented the voltaic battery. 
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5.3 Voltage 161

Because voltage is defined as the work done in moving a unit charge, one volt is 
defined as 1 V 1 J/C .=  Instantaneous voltage v  is expressed as a derivative,

 
dw
dq

υ =  (5.3)

where w  is the work measured in joules (  J). The symbol V may also be used for 
voltage. Do not confuse the roman V, which stands for the unit called volts, with 
italic V, which denotes the variable voltage or potential difference. Voltage is some-
times referred to as potential difference. In its technical context, the word potential 
refers to a source of stored energy that is available for doing work. For example, a 
compressed spring has potential energy, and it performs work when it is allowed 
to return to its original, undeformed state. A stone that is nudged from the brink 
of a cliff converts its potential energy to work as it falls to the ground. The word 
difference denotes that voltage is always taken between two points. To speak of voltage 
“at a point” is meaningless, unless a second point (reference point) is implied. A 
voltage exists across the positive and negative terminals of a battery. If we were to 
place the probes of a voltmeter across the terminals of a standard dry cell, we would 
measure a voltage of about 1.5 volts. In many circuits, a reference voltage referred 
to as ground is established. Ground may be the actual ground of the earth, referred 
to as earth ground or an arbitrary reference voltage on the chassis or case of the 
system, referred to as chassis ground. In either case, voltage is always taken between 
two points in the circuit.

We are all familiar with several electrical devices that supply a specified volt-
age. Batteries supply a voltage by converting chemical energy to electrical energy. 
Flashlights, lanterns, and electronic devices such as radios, CD players, cameras, 
and children’s toys use batteries as a source of electrical energy. A few of the com-
mon types of batteries are illustrated in Figure 5.8. Of all the battery types, the 
1.5-volt dry cell (Figure 5.8(a)) is probably the most popular. The 1.5-volt dry cell 
comes in a variety of sizes, designated by letters such as D, C, A, AA, and AAA. Some 
electronic devices such as radios and digital clocks use 9-volt dry cells (see Figure 
5.8(b)). Automobiles, trucks, and recreational vehicles use large 12-volt or 6-volt 
batteries for starting and other electrical functions (see Figure 5.8(c)). By connect-
ing a closed circuit across the positive and negative terminals of a battery, DC flows 
through the circuit.

What about the voltage supplied by the electrical outlets in our homes? In the 
United States, local power utilities supply residential and commercial customers with 
standard voltages of 110 V and 220 V (see Figure 5.8(d)). Unlike the current supplied 
by batteries, the current supplied by utility companies is AC that has a frequency of  
60 Hz; that is, the current completes 60 cycles each second. Virtually all house-
hold appliances and electronic devices—washing machines, ranges, clothes dryers, 
 microwave ovens, toasters, and televisions—operate on 110 VAC or 220 VAC. The 
 abbreviation VAC means “volts AC,” and the abbreviation VDC means “volts DC.”

Now that voltage has been defined, let’s consider the electrical energy that is 
supplied to, or by, a circuit element. Circuit element is a generic term that refers to 
an electrical device or component, such as a resistor, capacitor, or inductor. As shown 
in Figure 5.9, a steady electric current I flows through a circuit element. In order 
to ascertain whether energy is being supplied to the element, or b y the element to 
the rest of the circuit, we must know the direction of current flow and the polarity of 
the voltage across the element. The direction of current flow in Figure 5.9 is from 
positive to negative, which is consistent with the conventional current standard. 
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162 Chapter 5 Electrical Circuits

Because the current enters the positive terminal of the element, an external elec-
tromotive force must be driving the current into the element, thereby supplying 
energy to the element. Thus, we say that the circuit element absorbs electrical en-
ergy. If, on the other hand, the current enters the negative terminal, the element 
supplies energy to the rest of the circuit. It is important to know the rate at which 
the energy is supplied to, or by the circuit element. Rearranging Equation (5.3), 
and denoting voltage by V, we obtain:

   .dw V dq=  (5.4)

Dividing both sides of Equation (5.4) by a time interval dt we obtain:

 .
dw
dt

V
dq
dt

=  (5.5)

The quantity on the left side of Equation (5.5) is the rate at which work is done to 
move charge through the circuit element. By definition, the rate at which work is 
performed is power P. The quantity dq/dt is defined as electric current I. Hence, the 
power supplied to or by the circuit element is given by the relation:

 .P VI=  (5.6)

The dimensional consistency of Equation (5.6) can be checked by noting that the 
units of VI are (  J/C)(C/s) or J/s, which is defined as the watt (W), the SI unit for 
power.

Voltage is measured by means of an instrument called a voltmeter. Like amme-
ters that measure current, there are basically two types of voltmeters: analog and 
digital. An analog voltmeter provides a voltage reading by means of a needle or 

I
Circuit element

P 5 IV

I

 

V

1 2

Figure 5.9
A circuit element with 
the relationship between 
current I, voltage V, and 
power P.

(a) (b)

(c) (d)

Figure 5.8
Typical voltage sources: 
(a) 1.5-V dry cell, (b) 9-V 
dry cell, (c) 6-V or 12-V 
automotive battery, and 
(d) standard 110-VAC wall 
outlet.
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pointer that moves across a calibrated scale. Digital voltmeters provide a voltage 
reading by displaying numbers in a window. Each type of voltmeter has two termi-
nals. Unlike a current measurement, a voltage measurement does not require that 
the circuit be broken at the location where the measurement is desired. In order 
to use a voltmeter, the terminals of the meter are connected across the device for 
which the potential difference is to be measured. Most voltmeters have function 
switches that enable both DC and AC voltage measurements. Most voltmeters also 
have manual or automatic range-selector functions that facilitate voltage readings 
in units of V, mV, or V.µ

As a final comment on voltage, it may be instructive to invoke a physical anal-
ogy to voltage and its relationship to current. Voltage has been defined as the work 
required to move charge. We also stated that voltage is often referred to as a poten-
tial difference. To understand how voltage relates to current, it may be helpful to 
think of voltage as an electrical “pressure” or, more precisely, a pressure difference. 
Voltage is the “pressure difference” that drives electric current through a circuit 
element. In a pipe that carries water or some other fluid, a pressure difference 
between one end of the pipe and the other is the “potential” that drives the fluid 
through the pipe. Thus, we may consider voltage across a circuit element to be 
analogous to the pressure difference across a length of pipe and the flow of charge 
(current) through the circuit element to be analogous to the flow of fluid in the 
pipe. In a pipe, if there is no pressure difference, there is no fluid flow. In a circuit 
element, if there is no potential difference (voltage), there is no current flow.

PRACTICE!

1. A circuit element absorbs 6 W of power due to the passage of a steady 
current of 250 mA. What is the voltage across the element?
Answer : 24 V.

2. Resistors are devices that absorb electrical energy. If a steady current 
of 500 mA passes through a resistor with a voltage of 6 V across it, how 
much power must the resistor be able to absorb? What happens to this 
absorbed energy? What physical change does the resistor exhibit as it 
absorbs this energy?
Answer : 3 W. The energy is transformed to heat, which causes the tem-
perature of the resistor to increase.

3. A 12-V automobile lamp is rated at 40 W. What is the total charge that 
flows through the filament of the lamp in 1 min? How many electrons 
does this represent?
Answer : 200 C, 1.248 ×1021.

4. A battery-operated radio requires a current of 200 mA at 12 V. Find the 
power required to run the radio and the energy consumed in 2 h of 
operation.
Answer : 2.4 W, 17.3 kJ.

5. Borrow a voltmeter from your instructor or the electrical engineering 
department at your school. Measure the voltage across a 1.5-V and a 
9-V dry cell. What are your voltage readings?
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5.4 RESISTANCE
In addition to current and voltage, resistance is a very important electrical quantity. 
Electrical resistance may be defined as an impedance to current flow through a circuit ele-
ment. All circuit elements, including even the conductors (wires) that connect them, 
impede the flow of current to some extent. When current flows in a conductor, free 
electrons collide with the lattices of the atoms inside the conductor. These colli-
sions tend to retard or impede the organized motion of electrons through the con-
ductor. Resistance in the wires connecting circuit elements is generally undesirable, 
but there are numerous situations where resistance is needed in electrical circuits 
to control other electrical quantities. The circuit element specifically designed for 
providing resistance in circuits is the resistor. Of all the circuit elements used in elec-
trical circuits, the resistor is the most common. When electrical engineers design cir-
cuits, the circuit elements and their connections are drawn as a schematic diagram. 
The schematic symbol for a resistor is a zig-zag line, as shown in Figure 5.10(a).  
A very popular type of resistor uses carbon as the resistive material. A carbon- 
composition resistor consists of carbon particles mixed with a binder and molded 
into a cylindrical shape. A carbon-film resistor consists of carbon powder that is de-
posited on an insulating substrate. The wires connected to the body of the resistor, 
or any type of circuit element for that matter, are called leads. A typical carbon com-
position resistor is illustrated in Figure 5.10(b).

There are other types of resistors in addition to the carbon devices. Some re-
sistors employ a wire wrapped around a central core of ceramic or other insulat-
ing material. These resistors are referred to as wire-wound resistors. Wire-wound 
 resistors are generally larger than carbon resistors and can handle more power. 
Other resistors use a combination of ceramic and metal for their resistive material. 
These resistors are referred to as CERMETS. The resistive material in some resistors 
is a metal or metal oxide. Resistors are manufactured in a variety of package styles, 
sizes, and power capabilities. An assortment of resistors used in various electrical 
circuit applications is shown in Figure 5.11.

The unit for electrical resistance is the ohm Ω ,( )  in honor of Georg Ohm, who is 
credited with formulating the relationship between current, voltage, and resistance, 
based on experiments performed in 1826. A resistor with a very small resistance has 
a low ohm value, whereas a resistor with a very high resistance has a high ohm value. 
Because resistances of various magnitudes are needed in specific circuit applica-
tions, resistors are manufactured in a wide range of ohm values. For example, some 
manufacturers supply carbon-composition resistors in the range 2.2 Ω to 1 MΩ. 
Some precision resistors are available in very small resistances, such as 0.008 Ω. It 
is interesting to note that 0.008 Ω is about the same resistance as a 1.5-m length of  
12-gauge copper wire, the size of wire typically used in the electrical systems of 
homes. The resistance of most resistors is fixed, but some resistors are adjustable by 
means of a sliding or rotating electrical contact. This type of adjustable resistor is 
known as a potentiometer, or rheostat.

(a)

(b)

Figure 5.10
Resistance. (a) Schematic 
symbol and (b) actual 
resistor.
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In circuit analysis, it is often necessary to determine the total or equivalent resis-
tance of two or more resistors connected together. There are two ways in which cir-
cuit elements can be connected to each other. If the circuit elements are connected 
end to end, the elements are said to be connected in series. If the circuit elements 
are connected across each other, the elements are said to be connected in parallel. 
Figure 5.12 shows, in schematic form, three resistors connected in series and three 
resistors connected in parallel. The total resistance Rt  for resistors connected in 
series is simply the arithmetic sum of the resistances for each resistor. Thus,

  (series)1 2 3R R R R Rt N�= + + + +  (5.7)

where N is the total number of resistors connected in series. The total resistance for 
resistors connected in parallel is given by the relation:

 
1 1 1 1 1

 (parallel)
1 2 3R R R R Rt N

�= + + + +  (5.8)

where, as before, N is the total number of resistors. To obtain the total resistance 
,Rt  we simply find the reciprocal of the total resistance by using Equation (5.8) and 

then invert it.
Resistance is measured by means of an instrument called an ohmmeter. Like  

ammeters and voltmeters that measure current and voltage, there are basically two 
types of ohmmeters: analog and digital. An analog ohmmeter provides a resistance 
reading by means of a needle or pointer that moves across a calibrated scale. Digital 
ohmmeters provide a resistance reading by displaying numbers in a window. Each 
type of ohmmeter has two terminals. The terminals are connected across the re-
sistor for which the measurement is desired. Ohmmeters supply a current to the 

Figure 5.11
Assortment of resistors 
for various applications. 
(Resistors for photograph 
provided courtesy of 
Ohmite Manufacturing Co., 
Arlington Heights, IL.)
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166 Chapter 5 Electrical Circuits

resistor, so the resistor must be disconnected from any circuit while the measure-
ment is being made. Ohmmeters have manual or automatic range selector func-
tions that facilitate resistance readings in units of Ω,  kΩ, or MΩ.

(a)

R1 R2 R3

(b)

R1

R2

R3

Figure 5.12
Resistors connected in  
(a) series and (b) parallel.

EXAMPLE 5.2
Find the total resistance for the resistor circuit shown in Figure 5.13.

Solution
The resistor configuration in Figure 5.13 is a series–parallel combination. The 
1-kΩ, 500-Ω,  and 20-kΩ  resistors are connected in parallel, and the 200 -Ω  resistor 
is connected in series with the set of parallel resistors. To find the total resistance, 
we must first find the equivalent resistance for the three resistors that are connected 
in parallel by using Equation (5.8). We then add that equivalent resistance to the 
200 -Ω  resistor by using Equation (5.7). We assign the resistors the variable names:

1 kΩ,   500 Ω,   20 kΩ,  and R 200 Ω1 2 3 4R R R= = = = .

The equivalent resistance RP  of the three resistors in parallel is given by

1 1 1 1

1 2 3R R R Rp
= + +

1
1000 Ω

1
500 Ω

1
20,000 Ω

3.050 10  Ω3 1= + + = × − − .

Thus,

1
3.050 10  Ω

328 Ω.
3 1

Rp =
×

=− −

We now add Rp  to 4R  in series to obtain the total resistance, Rt :

R R R4t p= +

328 Ω 200 Ω 528 Ω.= + =

1 kV

500 V 200 V

20 kV

Figure 5.13
Resistor circuit for  
Example 5.2.
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5.4 Resistance 167

Hence, the series–parallel combination of resistors has a total resistance of 528 Ω. This  
means that the resistor configuration is equivalent to a single resistor with a resistance 
of 528 Ω Note that all resistances were expressed in consistent units of of Ω. Had we 
used kΩ for R1 and Ω for the other resistors, our answer would have been incorrect.

PRACTICE!

1. What is the total resistance of five resistors, each with a resistance of 
 Ω,R  if the resistors are connected in series? In parallel?

Answer : series 5R Ω, parallel R/5 Ω.

2. Consider two resistors connected in parallel. The resistance 1R  of the 
first resistor is very large, and the resistance 2R  of the second resistor is 
very small. What is the approximate total resistance?
Answer : R2.

3. Find the total resistance for the resistor circuit shown in the accompa-
nying figure.
Answer : 74.0 Ω.

4. Find the total resistance for the resistor circuit shown in the accompa-
nying figure.
Answer : 13.3 kΩ.

5. Find the total resistance for the resistor circuit shown in the accompa-
nying figure.
Answer : 19.8 Ω.

100 V

50 V33 V

47 V

10 V
2 kV

100 kV

10 kV

20 kV

5 kV

500 V

100 V

20 V1 kV

M05_HAGE4428_05_SE_C05.indd   167 13/11/20   10:14 AM



168 Chapter 5 Electrical Circuits

5.5 OHM’S LAW
In a series of experiments performed in 1826, the German physicist Georg Ohm 
discovered a relationship between the voltage across a conductor and the current 
flow through it. This relationship, known as Ohm’s law, states that the potential dif-
ference across a conductor is directly proportional to the current. Stated mathematically, 
Ohm’s law is:

 V I∝  (5.9)

where V is potential difference (voltage) and I is current. Equation (5.9) may be 
written as an equality by introducing a constant of proportionality R, denoting 
resistance:

 .V RI=  (5.10)

Ohm’s law, given by Equation (5.10), is one of the simplest but most important laws 
in electrical circuit theory. Because the unit of voltage is volt (V) and the unit of cur-
rent is ampere (A), a resistance of one ohm Ω( ) is defined as 1 Ω 1 V/A.=  Hence, 
a resistor with a resistance of 1 Ω  carrying a current of 1 A will have a voltage across 
it of 1 V. Unlike the law of universal gravitation or Newton’s laws of motion, Ohm’s 
law is not a fundamental law of nature. Ohm’s law is an empirical (experimental) 
relationship that is valid only for certain materials. The electrical properties of most 
materials is such that the ratio of voltage to current is a constant and, according to 
Ohm’s law, that constant is the resistance of the material. Ohm’s law applies to wires 
and other metal conductors and, of course, resistors. A resistor, showing the rela-
tionship between voltage V, current I, and resistance R, is depicted in Figure 5.14.

R
I

V 5 RI
V

Figure 5.14
Ohm’s law.

600 V

500 V

R1

1 kV

100 V

6. For the resistor circuit shown in the accompanying figure, what resis-
tance must 1R  have to give a total resistance of 250 Ω?
Answer : 525 Ω.
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5.5 Ohm’s Law 169

A resistance absorbs electrical energy. As current flows through a resistor, the 
absorbed electrical energy is transformed into thermal energy (heat), which is 
transferred to the surroundings. The rate at which the absorbed electrical energy is 
transformed into heat is referred to as power dissipation. All resistive circuit elements 
dissipate energy in the form of heat. We can calculate the power dissipation by com-
bining Ohm’s law given by Equation (5.10) with the relationship between power P, 
voltage V, and current I:

 .P VI=  (5.11)

Upon substituting Ohm’s law, V RI=  into Equation (5.11), we obtain:

 .2P I R=  (5.12)

A second relationship for power dissipation may be obtained by substituting Ohm’s 
law in the form /=I V R  into Equation (5.11), yielding:

 .
2

P
V
R

=  (5.13)

Equations (5.12) and (5.13) are useful for finding the power dissipation from a 
resistive circuit element when the resistance and either the current or the voltage 
are known.

Figure 5.15
A power resistor.

SIZING A RESISTOR FOR A POWER-SUPPLY CIRCUIT
Resistors are available in a variety of ohm values and power ratings. The power 
rating of a resistor is the maximum number of watts of absorbed electrical power 
that the resistor is capable of dissipating as heat. If a resistor is used in a circuit 
where the actual power exceeds the power rating specified by the resistor sup-
plier, the resistor may overheat. Resistance is a function of temperature, so if a 
resistor overheats, its resistance may vary significantly, thereby altering the elec-
trical characteristics of the circuit. In extreme cases, an overheated resistor may 
even cause a complete failure of the device and perhaps a fire. The physical size 
of a resistor is usually an indication of its power rating. Large resistors have a lot 
of surface area and are therefore able to transfer more heat to the surround-
ings. Some resistors have ridges or fins to increase their surface area, whereas 
others, in order to minimize the resistor’s temperature, have built-in heat sinks 
or provisions for mounting to heat sinks. Large resistors designed for high-power 
applications are called power resistors. A typical chassis-mounted power resistor is 
illustrated in Figure 5.15.

A
PP

LIC
AT

IO
N

Suppose that we are designing a power-supply circuit. Our circuit design calls 
for a resistor that carries a direct current of 800 mA and has a voltage drop of 24 V.  
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170 Chapter 5 Electrical Circuits

What is the resistance of the resistor? What power rating must the resistor have? 
The resistance may be calculated by using Ohm’s law,

 

24 V
0.800 A

30 Ω.

=

= =

R
V
I

The power absorbed by the resistor may be found by using Equations (5.12) or 
(5.13). Let’s calculate the power by using both equations to verify that we obtain the 
same result. Using Equation (5.12), we have:

  (0.800 A) 30 Ω 19.2 W.

2

2 ( )

=

= =

P I R

Using Equation (5.13), we have:

 
(24 V)

30 Ω
19.2 W.

2

2

=

= =

P
V
R

Hence, we need a power resistor with a resistance of 30 Ω and the resistor must 
be capable of dissipating 19.2 W of power. It turns out that 30 Ω is a common resis-
tance value for power resistors supplied by many manufacturers, but can we buy a 
resistor with a 19.2-W power rating? Resistors are available only in certain sizes and 
therefore only in certain power ratings. One supplier has power resistors in power 
ratings of 5, 10, 15, and 25 W. A power rating of 15 W is too low, so we choose a 25-W 
resistor even though it will handle more power than the design value. The addi-
tional 5.8 W may be considered a “factor of safety” for the resistor.

PRACTICE!

1. A 2.2 kΩ carbon-composition resistor has a voltage of 24 V across it. 
What is the current? How much power does the resistor dissipate?
Answer : 10.9 mA, 0.262 W.

2. A circuit design calls for a resistor that will produce a voltage drop of 
15 V where the current is 200 mA. How much power does the resistor 
dissipate? What resistance is required?
Answer : 3.0 W, 75 Ω.

3. A portable, 1320-W forced-air heater runs on standard 110-V residen-
tial voltage. The heating element is a nichrome ribbon that crosses 
in front of a polished metal plate. What is the current drawn by the 
heater? What is the resistance of the nichrome heating element?
Answer : 12.0 A, 9.17 Ω.

4. Two 33 -Ω  resistors connected in parallel dissipate 2.5 W each. What 
is the voltage across the resistors? What is the current in each resistor?
Answer : 9.08 V, 275 mA.
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5.6 Simple DC Circuits 171

5.6 SIMPLE DC CIRCUITS
With any subject, we learn by studying the basic principles first and then progress 
toward more complex concepts. The study of electrical circuits works the same way. 
Beginning engineering students must first acquire a solid grasp of the fundamen-
tals before proceeding to more advanced material. Hence, this section deals with 
some basic circuit concepts. Because the current changes direction in AC circuits, 
the analysis of AC circuits can be quite complex. We therefore focus our attention 
on DC circuits. A simple electrical circuit consists of two or more electrical devices 
interconnected by conductors. In many electrical circuits, there are numerous 
types of electrical devices such as resistors, capacitors, inductors, diodes, transistors, 
transformers, batteries, lamps, fuses, switches, and motors. Because the resistor is 
the most common circuit device and the analysis of resistors is the most straightfor-
ward, our coverage is limited to resistive circuits (i.e., circuits that have resistors as 
the only circuit element other than a source of constant voltage, such as a battery).

Consider the electrical circuit for a common household flashlight. As shown in 
Figure 5.16(a), a basic flashlight contains two 1.5-V dry cells, a lamp, and a switch. 
The conductor that interconnects these devices is normally a metal strip that helps 
hold the batteries in place and serves as a spring member in the switch mechanism. 
When the switch is closed, a direct current flows in a closed loop through the dry 
cells, switch, and lamp filament. Because the dry cells are connected in series, the 
voltages of each dry cell add, providing a total voltage of 3 V. Based on an arbitrarily 
selected standard, the direction for conventional current flow is from the positive 
terminal of the voltage source to the external circuit. The electrical schematic dia-
gram that represents the flashlight circuit is shown in Figure 5.16(b). A schematic 
diagram is a symbolic representation of the devices and interconnections in the circuit.

The schematic diagram may be loosely considered as the electrical equivalent 
of the free-body diagram used in engineering mechanics. A free-body diagram sche-
matically shows a mechanical system with all the external forces acting on it as well 
as the other physical features of the system. To the mechanical and civil engineer, 
the free-body diagram is an indispensable analytical tool. Likewise, the schematic 

(a)

(b)

Switch

Dry cell

Lamp

Conductor

3 V
2

1
Lamp

SwitchI
68 V

Figure 5.16
A common flashlight.  
(a) The actual device.  
(b) The schematic diagram.
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172 Chapter 5 Electrical Circuits

diagram is an indispensable tool to the electrical engineer. A schematic diagram 
shows how all the electrical devices are interconnected and also shows their nu-
merical values. For example, a schematic diagram consisting of a voltage source, 
a resistor, a capacitor, and an inductor would show how these circuit elements are 
interconnected and would indicate the potential difference of the voltage source in 
volts (V), the resistance of the resistor in ohms Ω ,( )  the capacitance of the capaci-
tor in farads (F), and the inductance of the inductor in henrys (H). The schematic 
diagram contains all the pertinent information an engineer needs to evaluate the 
electrical functions of the circuit.

Every electrical device (circuit element) has a unique schematic symbol. 
Illustrated in Figure 5.17 are the schematic symbols for a few common circuit ele-
ments. By examining the schematic symbols in the figure, we note that the schematic 
symbol resembles the electrical or mechanical characteristics of the actual electrical 
device. The schematic symbol for a battery, for example, is a series of short parallel lines 
of alternating lengths. Batteries consist of at least two elements or terminals, a posi-
tive and a negative, separated by a substance that participates in a chemical reaction.  

Circuit
element

Battery

Switch

Capacitor

Inductor

Lamp

Resistor

Schematic
symbol

Actual
device

Figure 5.17
Common circuit elements 
and their schematic 
symbols.
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The schematic symbol for a resistor is a zig-zag line. Resistors retard the flow of cur-
rent through them, so a zig-zag line, indicative of an impeded electrical path, is used. 
A switch is an electrical “gate” that is either open or closed, allowing the current to 
flow or not. Capacitors consist of two plates separated by a dielectric (nonconduct-
ing) material. Inductors are coils of wire wrapped around a core. The major element 
in lamps is a filament in which a portion of the absorbed electrical energy is con-
verted into visible light. Obviously, there are many more electrical devices used in 
electrical circuits than those shown in Figure 5.17. During the course of the electri-
cal engineering program, the engineering student will become familiar with numer-
ous electrical devices and their corresponding schematic symbols.

Circuit elements are broadly classified into two categories: active elements and 
passive elements. An active circuit element is a device that supplies energy to an ex-
ternal circuit. Common examples of active elements are batteries and generators. 
A passive circuit element, therefore, is any device that is not active. Resistors, ca-
pacitors, and inductors are common examples of passive elements. The two most 
important types of active circuit elements are referred to as the independent voltage 
source and the independent current source. An independent voltage source is a two-
terminal circuit element, such as a battery or generator, that maintains a specified 
voltage between its terminals. The voltage is independent of the current through the 
element. Because the voltage is independent of current, the internal resistance of the 
independent voltage source is zero. Actual voltage sources such as batteries do not 
have a zero internal resistance, but the internal resistance can be neglected if the 
resistance of the external circuit is large. Thus, the independent voltage source is an 
idealization that simplifies circuit analysis. The schematic symbol for the indepen-
dent voltage source is illustrated in Figure 5.18(a). An independent current source is 
a two-terminal circuit element through which a specified current flows. The current 
is independent of the voltage across the element. Hence, like the independent volt-
age source, the independent current source is an idealization. The schematic symbol 
for the independent current source is shown in Figure 5.18(b).

In the next two examples, we demonstrate how to analyze simple DC circuits 
by using Ohm’s law and other fundamental electrical relationships. Each example 
is worked in detail, following the general analysis procedure of (1) problem state-
ment, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations,  
(6) solution check, and (7) discussion.

V

(a)

1
2 I

(b)

Figure 5.18
Schematic symbols for  
(a) independent voltage 
source and (b) independent 
current source.

EXAMPLE 5.3
Problem Statement
The DC circuit shown in Figure 5.19 consists of a 10-V independent voltage source 
connected to two resistors in series. Find (a) the current, (b) the voltage across 
each resistor, and (c) the power dissipated by each resistor.

Diagram
The diagram for this problem is the schematic diagram shown in Figure 5.19.
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Assumptions
1. The voltage source is ideal.
2. The resistance of the connecting wires is negligible.
3. The resistances of the resistors are constant.

Governing equations
Three equations are needed to solve this problem. There are two resistors in the 
circuit, so we need a formula for the total resistance. We also need Ohm’s law and a 
relation for the power dissipation. The three equations are:

1 2R R Rt = +
V IR=

.2P I R=

Calculations
(a) All the elements, voltage source, and resistors in this simple DC circuit are con-
nected in series, so the current through each element is the same. The total resis-
tance is found by adding the values of each resistor and then by using Ohm’s law to 
calculate the current. The total resistance is:

1 2R R Rt = +
25 Ω 75 Ω 100 Ω.= + =

We have effectively combined two resistors into one resistor with an equivalent re-
sistance. The voltage across this equivalent resistor is 10 V. The current is found by 
using Ohm’s law:

I
V
Rt

=

10 V
100 Ω

0.1 A 100 mA.= = =

(b) Now that the current is known, the voltage across each resistor can be calcu-
lated. Once again, we use Ohm’s law:

1 1V IR=
(0.1 A) 25 Ω 2.5 V( )= =

2 2V IR=
(0.1 A) 75 Ω 7.5 V.( )= =

R1 5 25 V

R2 5 75 V

10 V

I

1
2

Figure 5.19
DC circuit for  
Example 5.3.
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(c) The power dissipated as heat by each resistor is:

1
2

1P I R=
(0.1 A) 25 Ω 0.25 W2 ( )= =

2
2

2P I R=
(0.1 A) 75 Ω 0.75 W.2 ( )= =

Solution check
After a careful review of our solution, no errors are found.

Discussion
Note that resistors R1 and R2 dissipate the same fractions of the total power as their 
fractions of the total resistance: 25 percent and 75 percent, respectively. Note also 
that the sum of the voltages across the resistors equals the voltage of the indepen-
dent voltage source and that the voltage across each resistor is proportional to the 
resistance of that resistor. This type of resistor circuit is known as a voltage divider, 
because it divides the total voltage into two or more specified voltages.

EXAMPLE 5.4
Problem statement
The DC circuit shown in Figure 5.20 consists of a 200-mA independent current 
source connected to two resistors in parallel. Find the voltage across the resistors 
and the current in each resistor.

R2 5 250 VR1 5 1 kV200 mA

I2I1

IFigure 5.20
DC circuit for  
Example 5.4.

Diagram
The diagram for this problem is the schematic diagram shown in Figure 5.20.

Assumptions
1. The current source is ideal.
2. The resistance of the connecting wires is negligible.
3. The resistances of the resistors are constant.

Governing equations
Two equations are needed to solve this problem. There are two resistors in the cir-
cuit, so we need a formula for the total resistance. We also need Ohm’s law. These 
equations are:

1 1 1

1 2R R Rt
= +

.V IR=
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Calculations
All the elements, current source, and resistors in this simple DC circuit are con-
nected in parallel, so the voltage across each element is the same. We can calculate 
the voltage across the resistors by finding the total resistance. Two resistors con-
nected in parallel add according to the formula:

1 1 1

1 2R R Rt
= +

1
1000 Ω

1
250 Ω

0.005 Ω .1= + = −

Inverting to obtain the total resistance ,Rt  we have:

1
0.005 Ω

200 Ω.
1

Rt = =−

Using Ohm’s law, we find that the voltage across the resistors is:

V IRt=

(0.2 A) 200 Ω 40 V.( )= =

Examine the circuit closely. When the 200-mA current reaches the junction of the 
first resistor 1R , part of the current flows into 1R  and the remainder flows into 2R . 
Hence, the total current I is “split” in some fashion between the two resistors. The 
current in each resistor can be calculated by applying Ohm’s law for each resistor. 
Thus,

1
1

I
V
R

=

40 V
1000 Ω

0.040 A 40 mA= = =

2
2

I
V
R

=

40 V
250 Ω

0.160 A 160 mA.= = =

Solution check
After a careful review of our solution, no errors are found.

Discussion
The total current 200 mA equals the sum of the currents in resistors R1 and R2: 40 
mA and 160 mA, respectively. It is important to note that the currents in R1 and R2 
are inversely proportional to the resistance values. Resistor R1 is larger than R2, so it 
carries a smaller current. Most of the current is in resistor R2, because the current 
“prefers” to take the path of least resistance. The resistance of R2 is one-fourth the 
resistance of R1, so the current in resistor R1 is one-fourth the current in resistor R2, 
This type of resistor circuit is known as a current divider, because it divides the total 
current into two or more specified currents.
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5.7 KIRCHHOFF’S LAWS
Ohm’s law V IR=  is a fundamental and powerful principle for calculating current, 
voltage, and power associated with a single resistor or a simple combination of resis-
tors. However, Ohm’s law alone cannot be used to analyze the majority of simple 
DC circuits. In addition to Ohm’s law, two additional laws stated by the German 
physicist Gustav Kirchhoff (1824–1887) are required. These two laws are known as 
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). Let us first consider 
Kirchhoff’s current law, for which we will hereafter use the abbreviation KCL.

5.7.1 Kirchhoff’s Current Law
Kirchhoff’s current law states that the algebraic sum of the currents entering a node is 
zero. To understand the physical meaning of KCL, we must first understand what a 
node is. An electrical circuit consists of circuit elements (i.e., resistors, capacitors, 
inductors, etc.) interconnected by conductors. A node is defined as a point of con-
nection of two or more circuit elements. The actual node may or may not be a physical 
“point” where the conductors from two or more circuit elements come together, 
but rather a general region in which all points on the conductor are electrically 
equivalent. Consider the circuit shown in Figure 5.21(a). 

Node 1 is not a single point, but a collection of points, indicated by the shaded 
region anywhere along the conductor that connects the independent voltage 

PRACTICE!

1. For the resistor circuit shown, find (a) the current, (b) the voltage 
across each resistor, and (c) the power dissipated by each resistor.
Answer : (a) 250 mA (b) 25 V, 5.0 V, 20 V (c) 6.25 W, 1.25 W, 5.0 W.

100 V

20 V

80 V

50 V 1
2

750 V

200 V

225 V

25 V

50 V

100 mA

2. For the resistor circuit shown, find the current in each resistor and the 
voltage across each resistor.
Answer : 20 mA, 80 mA; 15.0 V, 4.0 V, 1.0 V, 18.0 V, 2.0 V.
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R1

R1

R2 R2V R3 R3

node 1

node 2

node 2

node 3

node 1

V

O P

node 3

(a) (b)

1
2

1
2

Figure 5.21
A circuit with three nodes. 
(a) Standard schematic. 
(b) Schematic redrawn to 
emphasize that there are 
only three nodes.

source to resistor .1R  One may be tempted to define two separate nodes, one node 
at point O and another node at point P, but points O and P are electrically identical, 
since they are joined by conductors, not circuit elements. Hence, the entire shaded 
region surrounding points O and P is node 2. Similarly, node 3 is the entire shaded 
region shown, because all points on the conductors in this region are electrically 
identical. The understanding of the node concept may be facilitated by redrawing 
the schematic in a different form, as shown in Figure 5.21(b). The conductors’ 
lengths have been “shrunk” and the ends of the circuit elements brought together 
into common points, which are the nodes of the circuit.

Having provided a verbal definition of KCL and defined the term node, we are 
now ready to give a mathematical definition of KCL. The mathematical expression 
for KCL is:

 I 0 at a nodein∑ =  (5.14)

where inI  is a single current entering or leaving, a specified node. If the current en-
ters the node, inI  is positive, whereas if the current leaves the node, inI  is negative. 
Consider the node shown in Figure 5.22. Five currents are entering or leaving the 
node. Kirchhoff’s current law for this configuration is written as:

I 0in∑ =

1 2 3 4 5I I I I I= + − + −

where minus signs are used for currents I3 and I5 because these currents are leav-
ing the node. Conservation of charge in a perfect conductor is the physical prin-
ciple on which KCL is based. Suppose that the right side of Equation (5.14) were 

node

I2

I1

I3

I4
I5

Figure 5.22
A node with five currents, 
three entering and two 
leaving.
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replaced by a nonzero constant Δ. A positive value of Δ would imply that the node 
accumulates charges, and a negative value of Δ would imply that the node is a 
source of charges. A node consists of perfect conductors and therefore cannot ac-
cumulate or generate charges. Another way of saying this is that whatever current 
enters the node must exit the node.

5.7.2 Kirchhoff’s Voltage Law
Kirchhoff’s voltage law, hereafter abbreviated as KVL, states that the algebraic sum of 
the voltages around a loop is zero. The mathematical form of KVL law is:

 V 0 around a loop.∑ =  (5.15)

A loop is defined as a closed path in a circuit. Kirchhoff’s voltage law applies for any 
closed loop, regardless of the number of circuit elements contained in the loop. 
Consider the simple series circuit shown in Figure 5.23. A 10-V ideal voltage source 
is connected in series with two resistors, forming a closed loop. Kirchhoff’s voltage 
law for this circuit is written as:

V 0∑ =

10 1 2V V= + − −

where 1V  and 2V  are the voltages across resistors 1R  and ,2R  respectively. The nega-
tive signs on the voltages mean that the voltage drops as we proceed around the loop 
in a clockwise sense, following the direction for conventional current. The voltage 
across the ideal voltage source is 10 V. A portion of this voltage is dropped by re-
sistor ,1R  and the remaining voltage is dropped by resistor ,2R  bringing the total 
voltage drop to 10 V. Stated another way, the voltage rises equal the voltage drops, 
so KVL may also be written as 10.1 2V V+ =  Alternatively, we may proceed around 
the loop in a counterclockwise direction, in which case the signs of all the voltages 
change, and KVL is expressed as:

V 0∑ =
10 .1 2V V= − + +

Regardless of which direction is used, the same result is obtained; that is, the sum 
of the voltages across the resistors equals the voltage of the independent voltage 
source.

In the next example, using KCL and KVL, we demonstrate how to analyze a 
simple DC circuit. The example is worked in detail, with the general analysis proce-
dure of (1) problem statement, (2) diagram, (3) assumptions, (4) governing equa-
tions, (5) calculations, (6) solution check, and (7) discussion.

R1

R2

V1

V2

10 V

I

1
2

Figure 5.23
For this circuit, Kirchhoff’s 
voltage law states that 
ΣV = 0 = 10 − V1 − V2.
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180 Chapter 5 Electrical Circuits

Problem statement
For the DC circuit shown in Figure 5.24, find the voltage across each resistor and 
the current in each resistor.

Diagram
The diagram for this problem is the schematic diagram shown in Figure 5.24.

Assumptions
1. The voltage source is ideal.
2. The resistance of the connecting wires is negligible.
3. The resistances of the resistors are constant.

EXAMPLE 5.5

I1
I1

I2 I3

node 1

loop

R
3 

5
 2

00
 V

R
2 

5
 5

0 
V

R1 5 10 V

24 V 1
2

Figure 5.24
Circuit for Example 5.5.

Governing equations
Three governing equations are needed to solve this problem:

I 0 (KCL)in∑ =

V 0 (KVL)∑ =

V IR=    (Ohm’s law).

Calculations
We designate the current through the ideal voltage source and resistor 1R  as .1I  At 
node 1, the current splits into two currents that flow through resistors 2R  and .3R  
Applying KCL to node 1, we have:

I 0in∑ =

.1 2 3I I I= − −

Invoking Ohm’s law, we can rewrite the relation as:

.1

1

2

2

3

3

V
R

V
R

V
R

= +

Resistors 2R  and 3R  are connected in parallel, so the voltage across them is the 
same. Because ,2 3V V=  we can simplify the KCL relation further as:

 
1 1

.1

1
2

2 3

V
R

V
R R

= +








  (a)

Kirchhoff’s voltage law, written for the loop containing the voltage source as well as 

1R  and ,2R  is:

V 0∑ =

 24 .1 2V V= − −  (b)

M05_HAGE4428_05_SE_C05.indd   180 13/11/20   10:15 AM



5.7 Kirchhoff’s Laws 181

Solving Equation (b) for 1V  and substituting the result into Equation (a), we obtain 
a relation in terms of 2V  only. Thus, we have:

 
24 1 1

.2

1
2

2 3

V
R

V
R R

−
= +









  (c)

After a little algebra, we solve Equation (c) for 2V  and obtain:

19.2 V.2 3V V= =

To find the voltage across resistor ,1R  we substitute the calculated value of 2V  into 
Equation (c), which yields:

241 2V V= −

24 V 19.2  4.8 V.V= − =

Now that all voltages have been calculated, it is a straightforward matter to calculate 
the current in each resistor, using Ohm’s law:

4.8 V
10 Ω

0.48 A 480 mA.1
1

1
I

V
R

= = = =

19.2 V
50 Ω

0.384 A 384 mA.2
2

2
I

V
R

= = = =

19.2 V
200 Ω

0.096 A 96 mA.3
3

3
I

V
R

= = = =

Solution check
After a careful review of our solution, no errors are found. We see that the sum of 
the voltages across the resistors equals the voltage of the constant voltage source.

Discussion
The total current 1I  that flows through the ideal voltage source and resistor 1R  can 
be found by first calculating the total resistance and then using Ohm’s law. Resistors 

2R  and 3R  add in parallel and that resistance adds in series to .1R  Thus, the total 
resistance is:

1
1 1

2 3

1=
+

+R

R R

Rt

1
1

50 Ω
1

200 Ω

10 Ω 50 Ω.=
+

+ =

The total current 1I  is:

1I
V
Rt

=

24 V
50 Ω

0.48 A= =

which is in agreement with our previous result.
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PRACTICE!

1. For the node shown in the accompanying figure, find the current .4I  
Does current 4I  enter or leave the node?
Answer : 13 A, leave.

I1 5 2 A

I2 5 5 A

I3 5 10 A

I4

30 V

25 V 10 V10 V 1
2

100 V

1 kV

50 V

500 V100 mA

2. For the DC circuit shown in the accompanying figure, find the voltage 
across each resistor and the current through each resistor.
Answer : 8.077 V, 1.923 V, 1.923 V; 0.269 A, 0.0769 A, 0.1923 A.

3. For the DC circuit shown in the accompanying figure, find the voltage 
across each resistor and the current through each resistor.
Answer : 100 V, 7.69 V, 3.85 V, 11.55 V; 100 mA, 76.9 mA, 23.1 mA.

KEY TERMS

alternating current (AC)
circuit element
conductor
direct current (DC)
electric charge
electrical current
electric circuit
independent current 

source

independent voltage 
source

Kirchhoff’s current law 
(KCL)

Kirchhoff’s voltage law 
(KVL)

Ohm’s law

parallel
power
resistance
resistor
schematic diagram
series
voltage
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Boylestad, R.L., Introductory Circuit Analysis, 13th ed., Hoboken, NJ: Pearson, 2015.
Nilsson, J.W. and S. Riedel, Electric Circuits, 11th ed., Hoboken, NJ: Pearson, 2018.

REFERENCES

PROBLEMS

Electric charge and current

 5.1 The flow of charge in a conductor varies with time according to the function:

π 1 C.q t e kt( )( ) = − −

  If, k = 0.4 s−1, find the current at t = 1.0 s. What is the current for very large 
values of time?

 5.2 For a period of 1 s immediately after the power is turned on, the current in 
an electrical device varies with time according to the function:

( ) = 3 A.
1
2i t t

  How many coulombs have passed through the device during the first 0.25 s? 
0.75 s? What is the current at the instant the power is turned on?

 5.3 After the power is turned off, the current in an electrical device varies with 
time according to the function:

4 e  A.i t kt( ) = −

  If k = 0.075 s−1, how many coulombs have passed through the device during 
the first 2 s? 5 s? What is the current at the instant the power is turned off? 
What is the current a long time after the power is turned off?

 5.4 The current in a device varies with time according to the function:

10 A2 /i t e t( ) = τ−

where τ is the time constant. How many time constants are required for 
the current to drop to 500 mA? To 25 mA?

Voltage

 5.5 Electrical work varies sinusoidally with charge according to the function:

sin(2 ) J=w k q

  where k = 10 J. What is the voltage for q = 0.5 C?

 5.6 A standard power value for a household incandescent lightbulb is 60 W. 
What is the current through the filament of such a lightbulb if the voltage 
is 110 V? Is the entire 60 W of electrical power converted into visible light? 
Explain.

 5.7 A standard voltage for homes in the United States is 110 V. Each circuit 
in the home is protected by a circuit breaker, a safety device designed to 
break the flow of current in the event of an electrical overload. A particular 
circuit must provide power to a baseboard electric heater, lights, and two 
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184 Chapter 5 Electrical Circuits

 televisions. If the total power required for these devices is 2.5 kW, what is the 
minimum required amperage of the circuit breaker?

 5.8 Using an order-of-magnitude analysis, estimate the amount of electrical  

energy (J) used per person in the United States each year. What is the cor-
responding power (W)?

Resistance

 5.9 A common resistance of carbon resistors is 2.2 kΩ. How many 2.2 kΩ resis-
tors, connected in parallel, are needed to give a total resistance of approxi-
mately 370 Ω?

 5.10 A 100-Ω resistor with a tolerance of ±10 percent is connected in parallel  
with a 22-Ω resistor with a tolerance of ±5 percent. What is the minimum 
and maximum total resistance?

 5.11 A capacitor is a two-terminal electronic component that stores electrical 
energy in an electric field. Capacitance is measured in units of the farad (F), 
but the farad is a large amount of capacitance, so capacitance is typically 
measured in microfarads (μF) or picofarads (pF). The capacitance of two 
or more capacitors add in the opposite manner as resistance, i.e., capacitors 
in series add like resistors in parallel, and capacitors in parallel add like re-
sistors in series. For the capacitor circuit shown in Figure P5.11, what is the 
total capacitance?

C1 5 200 mF

C2 5 150 mF

C3 5 20 mF

C4 5 5 mF

C5 5 2 mF

Figure P5.11

 5.12 For the circuit shown in Figure P5.12, all resistors have a tolerance of ±20 
percent. What is the minimum and maximum total resistance?

Figure P5.12 1 MV 5 MV

2 kV 600 V

200 kV

 5.13 Borrow an ohmmeter and ten 1 kΩ carbon resistors from your instructor 
or engineering department. Make sure that all ten resistors have the same 
resistance tolerance. No tolerance band indicates 20 percent, a silver band 
indicates 10 percent, and a gold band indicates 5 percent. Measure and 
record the resistance of each resistor. Does each resistor fall within the indi-
cated tolerance band? What is the average resistance of the ten resistors?
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 5.14 A variable resistor or rheostat is a three-terminal resistor with a sliding or 
rotating contact that forms an adjustable voltage divider. The circuit shown 
in Figure P5.14 has two fixed resistors and one rheostat. What resistance 
must the rheostat have to provide a current of 300 mA through the 40-volt 
source?

Figure P5.14

+

–
40 V

1 kV

150 V R

 5.15 Find the total resistance for the resistor circuit shown in Figure P5.15.

Figure P5.16 R1 16 V

75 V

180 V

22 V

330 V

50 V 675 V 62 V

650 V

90 V 250 V 75 V 30 V

225 V

47 V

200 V

1.2 kV

Figure P5.15

 5.16 For the resistor circuit shown in Figure P5.16, what resistance must resistor 
R1 have to give a total resistance of 127 Ω?

 5.17 Suppose you have only three resistors available,1 kΩ, 150 Ω, and 330 Ω, and 
you need to achieve a total resistance of 250 Ω by connecting the resistors 
together somehow. How would you connect them to get a total resistance of 
250 Ω within a tolerance of ±5 percent? Do you need to use all three resis-
tors? Could you use only two? Assume that the three resistors have ultimate 
precision individually.

Ohm’s law

 5.18 Precision resistors are resistors whose resistance is known to within a tol-
erance of ±1 percent or less. These resistors are typically used in current-
sensing applications. In this application, a precision resistor with a very low 
resistance is connected in a circuit where a measurement of current is de-
sired. Because the resistance is low, the resistor does not significantly affect 
the electrical attributes of the circuit. Current is measured, not by using 
an ammeter, but by placing a voltmeter across the resistor. By knowing the  
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resistance of the resistor, the current can be readily calculated by using Ohm’s 
law. Furthermore, by a judicious selection of the resistance of the resistor, the 
voltmeter can be made to read the current directly. If the voltmeter is to read 
current directly, what should the resistance of the precision resistor be?

 5.19 A 22-Ω power resistor carries a current of 1.25 A. What is the voltage across 
the resistor? What is the power dissipation? If power resistors are available 
in power ratings of 10 W, 25 W, 50 W, and 100 W, which power rating should 
probably be selected?

 5.20 Borrow an ohmmeter from your instructor or the electrical engineering 
department at your school. Measure the resistance of a 40-W incandescent 
lightbulb. What is the resistance? If this type of lightbulb operates on 110 V, 
what is the current through the filament? Is the resistance of the lightbulb 
the same as your measured value when the filament is hot?

 5.21 A 1-kΩ resistor with a tolerance of ±10 percent carries a current of 150 mA. 
What is the range of voltage drop across the resistor? What is the range of 
power dissipation by the resistor?

 5.22 Electrical resistance for a wire of any size can be calculated using the relation:

R
L
A

ρ
=

  where R = reistance (Ω), ρ = reistivity (Ω-cm), L = wire length (cm), and  
A = wire cross-sectional area (cm2). Nichrome wire has a resistivity of  
ρ = 112 μΩ ⋅ cm.  For a 10-m length of 16-gauge (diameter = 1.291 mm) 
nichrome wire, find the resistance. If a current of 4 A flows in the wire, find 
the voltage drop and power dissipation.

For problems 5.23 through 5.30, use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

Simple DC circuits

 5.23 A simple DC circuit consists of a 100-V independent voltage source and 
three resistors as shown in Figure P5.23. Find (a) the current, (b) the volt-
age drop across each resistor, and (c) the power dissipated by each resistor.

Figure P5.23 330 V

47 V

150 V100 V
1
2

 5.24 Four resistors are connected in parallel across a 200-mA independent cur-
rent source as shown in Figure P5.24. What is the voltage across the resistors 
and the current in each resistor?

80
 V

1 
kV

10
0 

V

60
0 

V

200 mA

Figure P5.24
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 5.25 Two power resistors, a 130 -Ω  constant carbon resistor and a variable wire-
wound resistor, are connected in series with a 100-V independent voltage 
source as shown in Figure P5.25. One terminal of the variable resistor is 
a slider that contacts the wire windings as it moves along the resistor. The 
maximum resistance of the variable resistor is 470 Ω. If 30 percent of the 
resistor’s windings carry current, find (a) the current, (b) the voltage across 
the variable resistor, and (c) the power dissipated by both resistors.

5 V

10 V30 V 50 V1
2 33 V

Figure P5.27

100 V

39 V

Variable resistor

Slider

1
2

Figure P5.25

Kirchhoff’s Laws

 5.26 A 24-V independent voltage source is connected to four resistors in the DC cir-
cuit shown in Figure P5.26. For each resistor, find the voltage drop and current.

 5.27 For the DC circuit shown in Figure P5.27, find the voltage across each resis-
tor and the current in each resistor.

 5.28 For the DC circuit shown in Figure P5.28, find the voltage across each resis-
tor, the current in each resistor and the power dissipated by each resistor.

Figure P5.28

500 V

75 V

20 V

100 V

40 V 1
2

Figure P5.26

2

1

10 V

68 V 33 V24 V

220 V
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188 Chapter 5 Electrical Circuits

 5.29 For the DC circuit shown in Figure P5.29, find the voltage across each resis-
tor and the current in each resistor.

5 V22 V

47 V 16 V

2 V 40 V

150 mA

Figure P5.31

200 mA

7 V

1 V

25 V

5 V

10 V

3 V

40 V

13 V

2 V

Figure P5.32

10 V

5 V

50 V

0.5 A

5 V 25 VFigure P5.30

12 V

3 V

33 V24 V

5 V 2 V

1
2

Figure P5.29

 5.30 For the DC circuit shown in Figure P5.30, find the voltage across each resis-
tor and the current in each resistor.

 5.31 For the DC circuit shown in Figure P5.31, find the voltage across each re-
sistor and the current in each resistor. Find the power dissipations in the 
2-Ω, 5 -Ω,  and 22-Ω  resistors.

 5.32 For the DC circuit shown in Figure P5.32, find the voltage across each resis-
tor and the current in each resistor.
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6.1 INTRODUCTION
One of the most important subjects in the study of engineering is thermodynam-
ics. Because the principles of thermodynamics find applications in virtually every 
engineering system, many colleges and universities require all engineering majors to 
take at least one course in the subject. As a specific engineering discipline, thermo-
dynamics typically falls within the domain of mechanical and chemical engineering, 
because mechanical and chemical engineers have primary responsibility for design-
ing and analyzing energy-based systems. Consistent with this observation, thermody-
namics may be defined as the science of energy transformation and utilization. This is a 
very broad definition, so it is no wonder that thermodynamics spans all engineering 
disciplines.

The word thermodynamics originates from the Greek words therm (heat) and  
dynamics (power). These root words are appropriate, because thermodynamics often 

After reading this chapter, you 
will have learned
• The importance of  

thermodynamics in 
engineering

• The relationships  
between the various  
types of pressures

• The thermodynamic  
meaning of temperature

• The various forms of 
energy

• How to determine various 
forms of work

• The difference between 
heat and temperature

• How to use the first law of 
thermodynamics to analyze 
basic energy systems

• What a heat engine is
• How to analyze a basic 

heat engine using the 
first and second laws of 
thermodynamics

Objectives

C H A P T E R

Thermodynamics
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190 Chapter 6 Thermodynamics

deals with systems that convert heat to power. Thermodynamics is the science that 
describes how energy is converted from one form into another. One of the most 
important physical laws is the first law of thermodynamics, which states that energy 
can be converted from one form to another, but the total energy remains constant. 
A popular statement of the first law of thermodynamics is that energy cannot be 
created or destroyed. For example, a boulder poised on the brink of a cliff has po-
tential energy by virtue of its height above the ground. As the boulder falls toward 
the ground, its speed increases, thereby converting its potential energy to kinetic 
energy, but the total energy at any point is constant. Thermodynamics is also the 
science that reveals whether a given energy conversion is physically possible. This 
concept is revealed by the second law of thermodynamics, which states that energy 
conversions occur in the direction of decreasing quality of energy. For example, 
a hot beverage on a table eventually cools by itself to the temperature of the sur-
roundings, thereby degrading the energy of the high temperature beverage into a 
less useful form.

Interestingly, working steam engines were developed prior to the emergence 
of thermodynamics as a science. Two Englishmen, Thomas Savery and Thomas 
Newcomen, constructed crude steam engines in 1697 and 1712, respectively. 
Practical improvements in these first steam engines were made in the ensuing 
years, but the fundamental thermodynamic principles on which they operated were 
not fully understood until much later. The first and second laws of thermodynam-
ics were not formulated until the 1850s. The laws of thermodynamics and other 
thermodynamic concepts were pioneered by scientists and mathematicians such 
as Gabriel Fahrenheit (1686–1736), Sadi Carnot (1796–1832), Rudolph Clausius 
(1822–1888), William Rankine (1820–1872), and Lord Kelvin (1824–1907).  
These individuals, and many others, laid the theoretical foundations for modern 
thermodynamics.

Because thermodynamics is the science of energy, it would be difficult to find 
any engineering system that does not embody thermodynamic principles in some 
way. Principles of thermodynamics are at work all around us. The illumination by 
which you are reading this page is produced by converting electrical energy to vis-
ible light. Our homes are maintained at comfortable living temperatures by fur-
naces, heat pumps, and air conditioners. These devices utilize the energy contained 
in fossil fuels or electrical energy to heat and cool our homes. Common household 
appliances such as dishwashers, microwave ovens, refrigerators, humidifiers, clothes 
dryers, toasters, water heaters, irons, and pressure cookers rely on principles of 
thermodynamics for their operation. Industrial systems that utilize thermodynam-
ics include internal combustion and diesel engines, turbines, pumps and compres-
sors, heat exchangers, cooling towers, and solar panels to name a few. Shown in 
Figures 6.1, 6.2, and 6.3 are some engineering systems that utilize thermodynamic 
processes.

6.2 PRESSURE AND TEMPERATURE
Systems that use thermodynamic processes for their operation can be described 
by certain physical characteristics. Any such characteristic of a system is called a  
property. In its broadest engineering context, a property can refer to any physical as-
pect of a system such as length, density, velocity, modulus of elasticity, and viscosity. 
In thermodynamics, a property usually refers to a characteristic that relates directly 
to the energy of the system. Two of the most important properties in thermodynam-
ics are pressure and temperature.
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6.2 Pressure and Temperature 191

6.2.1 Pressure
When a fluid (liquid or gas) is confined by a solid boundary, the fluid exerts a 
force on the boundary. The direction of the force is normal (perpendicular) to the 
boundary. From a microscopic point of view, the force is the result of a change in 
momentum experienced by the fluid molecules as they collide with the solid sur-
face. Molecules collide with the surface in many directions, but the overall effect of 

Figure 6.1
Solar panel.  
(Mmaxer/Shutterstock)

Figure 6.2
Wind turbines convert wind 
energy to electrical energy. 
(Anuphadit/Shutterstock)
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192 Chapter 6 Thermodynamics

the collisions is a net force that is normal to the surface. Pressure is defined as the 
normal force exerted by a fluid per unit area. Thus, the formula for pressure is:

 =P
F
A

 (6.1)

where P  is pressure, F  is the normal force, and A is area. For a liquid at rest, pres-
sure increases with depth as a consequence of the weight of the liquid. For ex-
ample, the pressure exerted by sea water at a depth of 200 m is greater than the 
pressure at a depth of 10 m. The pressure in a tank containing a gas is essentially 
constant, however, because the weight of the gas is usually negligible compared 
with the force required to compress the gas. For example, consider a gas enclosed 
in a piston-cylinder device, as illustrated in Figure 6.4. A force F is applied to the 
piston, compressing the gas in the cylinder. A constant pressure, whose magnitude 
is given by Equation (6.1), acts on all interior surfaces of the enclosure. If the force 
F increases, the pressure P increases accordingly.

Figure 6.3
The Vogtle Electric  
Generating Plant,  
located in eastern Georgia,  
converts nuclear energy to 
electrical energy. The plant 
is capable of producing 
over 2000 MW of power. 
(Denton Rumsey/ 
Shutterstock)

Gas molecules

F

F

Detail

A 5 unit area

P 5
F
A

Figure 6.4
An enclosed gas exerts a 
pressure on the walls of its 
container.
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The unit of pressure in the SI system is N/m ,2  which is defined as the pas-
cal (Pa), 1 Pa 1 N/m .2=  The pascal is a very small unit of pressure, so it is cus-
tomary to use the standard SI multiples kPa (kilopascal) and MPa (megapascal), 
which stand for 10  Pa3  and 10  Pa,6  respectively. Pressure is sometimes expressed in 
terms of the bar =(1 bar 10  Pa).5  The most commonly used unit of pressure in the 
English system is pound-force per square inch (lb /in ),f

2  abbreviated psi.
When doing calculations involving pressure, care must be taken to specify the 

reference on which the pressure is based. Pressure referenced to a perfect vacuum 
is called absolute pressure P( ).abs  Atmospheric pressure P( )atm  is the pressure exerted by 
the atmosphere at a specified location. At sea level, standard atmospheric pressure 
is defined as =P 101,325atm  =Pa 14.696 psi. At higher elevations, the atmospheric 
pressure is lower, due to decreasing air density. The pressure that uses atmospheric 
pressure as the reference is called gauge pressure P( ).gauge  Gauge pressure is the dif-
ference between the absolute pressure and the local atmospheric pressure. Most 
pressure-measuring instruments, such as an automobile tire gauge, measure gauge 
pressure. A pressure below atmospheric pressure is called vacuum pressure P( ).vac  
Vacuum pressure is measured by vacuum gauges that indicate the difference between 
the local atmospheric pressure and absolute pressure. Gauge, absolute, and vacuum 
pressures are all positive quantities and are related to one another by the relations:

 = −P P P  (for pressures above P )gauge abs atm atm  (6.2)

 = −  (for pressures below P ).vac atm abs atmP P P  (6.3)

The majority of thermodynamic equations and data tables use absolute pressure. 
Sometimes, the letter “a” is used to specify absolute pressure and the letter “g” 
is used to specify gauge pressure. For example, absolute and gauge pressures are 
sometimes written in English units as psia and psig, respectively.

6.2.2 Temperature
Our physiological sense of temperature tells us how hot or how cold something is, 
but does not provide a quantitative definition of temperature for engineering use. 
A scientific definition, based on microscopic considerations, is that temperature is a 
measure of atomic and molecular kinetic energy of a substance. Thus, at a tempera-
ture of absolute zero, all translational, rotational, and vibrational motions of atoms 
and molecules cease. A practical engineering definition is that temperature, or more 
specifically, a temperature difference, is an indicator of heat transfer. As illustrated in 
Figure 6.5, heat flows from a region of higher temperature to a region of lower tem-
perature. This engineering definition of temperature is consistent with our com-
mon experiences. For example, a hot beverage will gradually cool until it reaches 
the temperature of the surroundings. Conversely, a cold beverage will eventually 
warm until it reaches the temperature of the surroundings. In either case, when 
the beverage attains the temperature of the surroundings, heat transfer stops, and 
the beverage and surroundings are said to be in thermal equilibrium, because their 
temperatures are equal. We can therefore state that when any two bodies have the 
same temperature, the bodies are in thermal equilibrium.

The zeroth law of thermodynamics states that if two bodies are in thermal equilibrium 
with a third body, they are also in thermal equilibrium with each other. This law is analo-
gous to the arithmetic axiom which states that if =A C  and =B C ,  then =A B. 
The zeroth law, as obvious as it sounds, cannot be derived from the first or sec-
ond laws of thermodynamics. The zeroth law of thermodynamics is the underlying 
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physical basis for a key element of thermodynamics: temperature measurement. By 
the zeroth law of thermodynamics, if body A and body B are in thermal equilibrium 
with body C, then body A and body B are in thermal equilibrium with each other. 
By letting body C be a thermometer, the zeroth law of thermodynamics infers that 
bodies A and B are in thermal equilibrium if their temperatures, as measured by the 
thermometer, are equal. The interesting aspect of the zeroth law is that bodies A 
and B do not even have to be in physical contact with each other. They only have to 
have the same temperature to be in thermal equilibrium.

Like length, mass, time, electrical current, luminous intensity, and amount of 
substance, temperature is a base dimension. As a base dimension, temperature is 
predicated on a measurable physical standard. Temperature scales enable engineers 
to make temperature measurements on a common basis. International tempera-
ture scales have been adopted that are based on fixed reproducible thermodynamic 
states of matter. The ice point and boiling point of water at 1 atmosphere pressure 
are defined as 0°C and 100°C, respectively, on the Celsius temperature scale. On the 
Fahrenheit temperature scale, these points have the values 32°F and 212°F, respec-
tively. The Kelvin and Rankine temperature scales are absolute temperature scales 
that have 0 K and 0°R as their lowest possible temperature values. Thus, we say that 
absolute zero temperature refers to either 0 K or 0°R. By convention, the degree sym-
bol ° is used for the Celsius, Fahrenheit, and Rankine temperature scales, but not the 
Kelvin scale. A comparison of these four temperature scales is shown in Figure 6.6.

Because engineers use four different temperature scales in the analysis of ther-
modynamic systems, it is important to know how to convert from one temperature 
scale to another. The Kelvin scale is related to the Celsius scale by the formula:

 = +T T (K)  (°C) 273.15  (6.4)

and the Rankine scale is related to the Fahrenheit scale by the formula:

 = +T T (°R)  (°F) 459.67.  (6.5)

In the majority of practical applications, temperature precision beyond the decimal 
point is not required, so the constants in Equations (6.4) and (6.5) are typically 
rounded to 273 and 460, respectively. The Rankine and Kelvin scales are related by 
the formula:

  (°R) 1.8  (K)=T T  (6.6)

Distance
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m
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A

B

Heat

Figure 6.5
Heat is transferred from a 
high-temperature region to 
a low-temperature region.
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and the Fahrenheit and Celsius scales are related by the formula:

 (°F) 1.8  (°C) 32.= +T T  (6.7)

Equations (6.4) through (6.7) are used to convert one temperature value or mea-
surement to another. Using Figure 6.6, we find that the validity of these relations 
can be readily checked by converting the boiling point and ice point of water from 
one temperature scale to the other three scales.

We mentioned earlier in this section that temperature difference is an indica-
tor of heat transfer. When calculating a temperature difference, it is important to 
note that the size of the temperature divisions for the Kelvin and Celsius scales are 
equal and that the size of the temperature divisions for the Rankine and Fahrenheit 
scales are also equal. In other words, increasing the temperature of a substance 
by 1 K is the same as increasing the temperature by 1°C. Similarly, increasing the 
temperature of a substance by 1°R is the same as increasing the temperature by 1°F. 
Thus, we write the relations for temperature differences as:

 T T∆ = ∆ (K)  (°C) (6.8)

and

 T T∆ = ∆ (°R)  (°F) (6.9)

where the Greek symbol ∆ refers to a difference or change. When doing thermo-
dynamic calculations involving temperature differences in the SI system, it does not 
matter whether K or °C is used. Similarly, when doing thermodynamic calculations 
involving temperature differences in the English system, it does not matter whether 
°R or °F is used. In analysis work, care must be taken to distinguish between a single 
temperature value T and a temperature difference T∆ .  If the thermodynamic rela-
tion is of the form x y T= ∆  ,  it does not matter whether T∆  is expressed in K or 
°C. If the thermodynamic relation is of the form =x yT , however, the temperature 
scale for T must be specified, usually K. The same rules apply for the corresponding 
English temperature units °R and °F.

100.00

0.00

2273.15

K

373.15

273.15

0

212.00

32.00

2459.67

671.67

491.67

0

Boiling point
of water
at 1 atm

Ice point
of water
at 1 atm

Absolute
zero

C F RFigure 6.6
The Celsius, Kelvin, 
Fahrenheit, and Rankine 
temperature scales.
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The atmospheric pressure in Denver, Colorado (elevation 1 mile), is approximately 
83.4 kPa. If we were to inflate the tire of an automobile in Denver to a gauge pres-
sure of 35 psi, what is the absolute pressure in units of kPa?

Solution
In order to work in a consistent set of units, we convert the gauge pressure to units 
of kPa:

35 psi
1 kPa

0.14504 psi
241.3 kPa.× =

Solving for absolute pressure from Equation (6.2), we have:

= +P P Pabs gauge atm

241.3 k 83.4 k= +Pa Pa

= 325 kPa.

EXAMPLE 6.1

EXAMPLE 6.2
Steam in a boiler has a temperature of 300°C. What is this temperature in units of 
K, °R, and °F? If the temperature drops to 225°C, what is the temperature change 
in units of K, °R, and °F?

Solution
Using Equation (6.4), we find that the temperature in K is:

(K) (°C) 273= +T T
= +300 273

= 573 K.

Now that the temperature in K is known, we use Equation (6.6) to find the tempera-
ture in °R:

=(°R) 1.8  (K)T T
= 1.8(573)

= 1031°R.

Using Equation (6.7), we find that the temperature in °F is:

= +(°F) 1.8  (°C) 32T T
( )= +1.8 300 32

= 572°F.

The temperature change is:

T∆ = −300°C 225°C

= =75°C 75 K.
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The Rankine and Kelvin temperature scales are related through Equation (6.6). 
Because these temperature scales are absolute scales, we can write Equation (6.6) in 
terms of temperature differences as:

∆ = ∆(°R) 1.8  (K).T T

Hence,

T∆ = 1.8(75 K)

= =135°R 135°F.

PRACTICE!

1. A pressure gauge on the discharge side of an air compressor reads  
180 kPa. What is the absolute pressure at this point in units of psi if the 
local atmospheric pressure is 95 kPa?
Answer : 39.9 psi.

2. A force of 1.20 kN is applied to the piston of a cylinder, compressing 
the gas within the cylinder. The piston has a radius of 3.25 cm. If the 
local atmospheric pressure is 100 kPa, what is the absolute pressure 
inside the cylinder?
Answer : 462 kPa.

3. A vacuum gauge connected to a tank reads 30.0 kPa. If the local at-
mospheric pressure is 13.5 psi, what is the absolute pressure in units  
of psi?
Answer : 8.42 psi.

4. A boiler at sea level contains superheated steam at 0.575 MPa abso-
lute pressure and 300°C. Find the gauge pressure in the boiler and the 
steam temperature in units of K, °R, and °F.
Answer : 474 kPa, 573 K, 1031°R, 572°F.

5. A hard-boiled egg removed from a pot of boiling water at 96°C is 
placed in a 40°F refrigerator to cool. Find the temperature of the egg 
in units of K, °C, and °R after the egg has attained thermal equilibrium 
with the refrigerator. What is the temperature change of the egg in 
units of °F, °C, and K?
Answer : 164.9°F, 91.6°C, 91.6 K.

6.3 FORMS OF ENERGY
The concept of energy is central to the study of engineering in general and ther-
modynamics in particular. A concise definition of energy is the capacity to do work. 
If a system has the capacity to do work, it possesses at least one form of energy 
that is available for transformation to another form of energy. For example, a com-
pressed spring possesses a type of energy referred to as potential energy. As the 
term implies, potential energy is a type of stored energy that has the potential for 
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producing some useful external effect. Consider a mass attached to a compressed 
spring, as illustrated in Figure 6.7. When the compressed spring is released, the 
stored energy in the spring will begin to resume its original undeformed length, 
imparting a velocity to the mass. As the spring elongates, the potential energy in 
the spring is converted to kinetic energy. Actually, a small portion of the potential 
energy in the spring is converted to thermal energy (heat), because there is friction 
between the mass and the surface, as well as within the spring itself. The important 
thing to realize is that all the potential energy in the compressed spring is con-
verted to other forms of energy (i.e., the total energy of the transformation is con-
stant). In accordance with the first law of thermodynamics, no energy is produced 
or destroyed during the energy transformation.

m

m

y

Figure 6.7
The potential energy in  
a compressed spring is  
converted to kinetic energy.

Energy can exist in many forms. For purposes of thermodynamic analysis, en-
ergy is classified into two broad categories, macroscopic energy and microscopic energy. 
Macroscopic forms of energy are those that a whole system possesses with respect 
to a fixed external reference. In thermodynamics, the macroscopic forms of energy 
are potential energy and kinetic energy. Potential and kinetic energy are based on 
external position and velocity references, respectively. Microscopic forms of energy 
are those that relate to the system on a molecular or atomic level. There are several 
types of microscopic energies, so we conveniently group them together into a single 
category referred to as internal energy. Internal energy is the sum of all the various 
forms of microscopic energies possessed by the molecules and atoms in the system. 
Potential, kinetic, and internal energy warrant further discussion.

6.3.1 Potential Energy
Potential energy is the stored energy of position possessed by an object. In thermo-
dynamics, there are primarily two forms of potential energy, elastic potential energy 
and gravitational potential energy. Elastic potential energy is the energy stored in a 
deformable body such as an elastic solid or a spring. Gravitational potential energy is the 
energy that a system possesses by virtue of its elevation with respect to a reference in a gravita-
tional field. Elastic potential energy is usually of minor importance in most thermo-
dynamics work, so gravitational potential energy is emphasized here. Gravitational 
potential energy, abbreviated PE, is given by the relation:

 =PE mgz  (6.10)

where m is the mass of the system (kg), g is gravitational acceleration (9.81 m/s ),2  
and z is the elevation (m) of the center of mass of the system with respect to a 
selected reference plane. The location of the reference plane is arbitrary, but is 
usually selected on the basis of mathematical convenience. For example, consider 
a boulder poised on the edge of a cliff, as illustrated in Figure 6.8. The center of 
mass of the boulder is 20 m above the ground. A reasonable reference plane is the 
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ground because it is a convenient origin. If the boulder’s mass is 1500 kg, the gravi-
tational potential energy of the boulder is:

=PE mgz

= (1500 kg)(9.81 m/s )(20 m)2

= × ⋅ = × =2.94 10  N m 2.94 10  J 294 kJ.5 5

What happens to the boulder’s potential energy as it falls from the cliff?

6.3.2 Kinetic Energy
Kinetic energy is the energy that a system possesses as a result of its motion with respect to a 
reference frame. Kinetic energy, abbreviated KE, is given by the relation:

 υ=KE 1
2

2m  (6.11)

where m is the mass of the system (kg) and υ is the velocity of the system (m/s). 
When the boulder in Figure 6.8 is pushed off the cliff, it begins to fall toward the 
ground. As the boulder falls, its velocity increases, and its potential energy is con-
verted to kinetic energy. If the velocity of the 1500-kg boulder is 10.0 m/s at a point 
between the cliff and ground, the boulder’s kinetic energy at this point is:

υ=KE 1
2

2m

= (1500 kg)(10.0m/s)1
2

2

= × =7.50 10  J 75.0 kJ.4

Immediately before the boulder impacts the ground, all the boulder’s potential 
energy has been converted to kinetic energy. What happens to the boulder’s kinetic 
energy during the impact with the ground?

6.3.3 Internal Energy
Internal energy is the sum of all the microscopic forms of energy of a system. Unlike poten-
tial energy and kinetic energy, which relate to the energy of a system with respect 
to external references, internal energy relates to the energy within the system itself. 
Internal energy, denoted by the symbol U, is a measure of the kinetic energies as-
sociated with the molecules, atoms, and subatomic particles of the system. Suppose 
the system under consideration is a polyatomic gas. (A polyatomic gas is a gas that 
consists of two or more atoms that form a molecule, such as carbon dioxide (CO ).2  
A monatomic gas consists of only one atom, such as helium (He) or argon (Ar).)

Because gas molecules move about with certain velocities, the molecules possess 
kinetic energy. The movement of the molecules through space is called translation, 

z

20 m

Figure 6.8
A boulder elevated  
above the ground has 
gravitational potential 
energy.
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so we refer to their kinetic energy as translational energy. As the gas molecules trans-
late, they also rotate about their center of mass. The energy associated with this ro-
tation is referred to as rotational energy. In addition to translating and rotating, the 
atoms of polyatomic gas molecules oscillate about their center of mass, giving rise 
to vibrational energy. On a subatomic scale, the electrons of atoms “orbit” the nu-
cleus. Furthermore, electrons spin about their own axis, and the nucleus also pos-
sesses a spin. The sum of the translational, rotational, vibrational, and subatomic 
energies constitutes a fraction of the internal energy of the system called the sensible 
energy. Sensible energy is the energy required to change the temperature of a system. As an 
example of sensible energy, suppose that we wish to boil a pan of water on the stove. 
The water is initially at a temperature of about 20°C. The stove burner imparts en-
ergy to the water, increasing the kinetic energy of the water molecules. The increase 
in kinetic energy of the water molecules is manifested as an increase in temperature 
of the water. As the burner continues to supply energy to the water, the sensible 
energy of the water increases, thereby increasing the temperature, until the boiling 
point is reached.

If sensible energy is only a fraction of the internal energy, what kind of energy 
constitutes the other fraction? To answer this question, we must recognize the vari-
ous forces that exist between molecules, between atoms, and between subatomic 
particles. From basic chemistry, we know that various binding forces exist between 
the molecules of a substance. When these binding forces are broken, the substance 
changes from one phase to another. The three phases of matter are solid, liquid, and 
gas. Binding forces are strongest in solids, weaker in liquids, and weakest in gases. If 
enough energy is supplied to a solid substance, ice for example, the binding forces 
are overcome and the substance changes to the liquid phase. Hence, if enough en-
ergy is supplied to ice (solid water), the ice changes to liquid water. If still more 
energy is supplied to the substance, the substance changes to the gas phase. The 
amount of energy required to produce a phase change is referred to as latent energy. 
In most thermodynamic processes, a phase change involves the breaking of molecu-
lar bonds only. Therefore, the atomic binding forces responsible for maintaining 
the chemical identity of a substance are not usually considered. Furthermore, the 
binding energy associated with the strong nuclear force—the force that binds the 
protons and neutrons in the nucleus—is relevant only in fission reactions.

6.3.4 Total Energy
The total energy of a system is the sum of the potential, kinetic, and internal ener-
gies. Thus, the total energy, E, is expressed as:

 = + +E KE UPE .  (6.12)

As a matter of convenience, it is customary in thermodynamics work to express the 
energy of a system on a per unit mass basis. Dividing Equation (6.12) by mass m, and 
noting the definitions of potential and kinetic energies from Equations (6.10) and 
(6.11), we obtain:

 
υ

= + +e gz u
2

2

 (6.13)

where = /e E m  and = / .u U m  The quantities e and u are called the specific total 
energy and specific internal energy, respectively.

In the analysis of many thermodynamic systems, the potential and kinetic  
energies are zero or are sufficiently small that they can be neglected. For example, a 
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boiler containing high-temperature steam is stationary, so its kinetic energy is zero. 
The boiler has potential energy with respect to an external reference plane (such as 
the floor on which it rests), but the potential energy is irrelevant, since it has noth-
ing to do with the operation of the boiler. If the potential and kinetic energies of 
a system are neglected, internal energy is the only form of energy present. Hence, 
the total energy equals the internal energy, and Equation (6.12) reduces to = .E U

The analysis of thermodynamic systems involves the determination of the change 
of the total energy of the system because this tells us how energy is converted from 
one form to another. It does not matter what the absolute value of the total energy 
is, as we are interested only in the change of the total energy. This is equivalent to 
saying that it does not matter what the energy reference value is because the change 
of energy is the same regardless of what reference value we choose. Returning to 
our falling boulder example, the change of potential energy of the boulder does 
not depend on the location of the reference plane. We could choose the ground 
as the reference plane or some other location, such as the top of the cliff or any 
other elevation for that matter. The change of potential energy of the boulder de-
pends only on the elevation change. Hence, if potential and kinetic energies are ne-
glected, the change of total energy of a system equals the change of internal energy, 
and Equation (6.12) is written as ∆ = ∆ .E U

PROFESSIONAL SUCCESS—DEALING WITH  
ENGINEERING PROFESSORS

As a student, you should realize that most professors are involved in numer-
ous activities outside the classroom that may or may not relate directly to 
teaching. Much of your professor’s time is spent developing and improving 
the engineering curriculum. Depending on the availability of graduate teach-
ing assistants, grading may also occupy a considerable fraction of the profes-
sor’s time. Some colleges and universities, particularly the larger ones, are 
referred to as research institutions. At these schools, engineering professors 
are expected to conduct research and publish the results of their research. 
In addition to publishing research papers, some engineering professors write 
textbooks. Because most engineering professors specialize in a certain aspect 
of their discipline, some professors work part time as consultants to private 
or governmental agencies. Most colleges and universities expect their faculty 
to render service to the institution by serving on various campus committees. 
Some professors, in addition to their research, writing, and service activities, 
serve as department or program advisors to students. Professors may even 
be involved with student recruitment, fund raising, professional engineering 
societies, and a host of other activities.

What does all this mean to you, the engineering student? It means that 
there are right ways and wrong ways of dealing with your professors. Here are 
a few suggestions:

• Be an active member of your professor’s class. Attend class, arrive on time, 
take notes, ask questions, and participate. Being actively engaged in the 
classroom not only helps you learn, but it also helps the professor teach!

• If you need to obtain help from your professor outside of class, schedule 
an appointment during an office hour, and keep the appointment. Un-
less your professor has an “open door” policy, scheduling appointments  
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6.4 WORK AND HEAT
Work, like energy, is a word that is commonly used in our everyday language and 
a word that has many meanings. As a student, you know that studying engineer-
ing is a lot of “work.” When we participate in sports or exercise at the gym, we get 
a “workout.” A person who travels to a place of employment goes to “work,” and 
when a mechanical device stops functioning, we say that it doesn’t “work.” While 
various day-to-day usages of this term are thrown about quite casually, engineering 
defines “work” precisely, with no ambiguity. Work is defined as a form of energy that is 
transferred across the boundary of a system. A system is a quantity of matter or a region 
in space chosen for study, and the boundary of a system is a real or imaginary sur-
face that separates the system from the surroundings. For example, propane in a 
fuel tank is a thermodynamic system, and the boundary of the system is the inside 
surface of the tank wall.

Besides work, there is a second form of energy that can be transferred across 
the boundary of a system. The second form of energy is heat. Heat is a special kind 
of energy transfer that is easily recognizable and differentiated from work. Heat is 
defined as the form of energy that is transferred across the boundary of a system by virtue of 
a temperature difference. A system with both work and heat crossing the boundary is 
illustrated in Figure 6.9. Depending on the nature of the interactions of the system 
with the surroundings, work and heat can be transferred across the boundary in 
either direction. The only requirement for heat transfer is a temperature difference 
between the system and the surroundings. If there is no temperature difference be-
tween the system and the surroundings, heat cannot be transferred, thus, the only 
form of energy transfer is work. Because work and heat are forms of energy, both 

during regular office hours is preferred, because your professor is prob-
ably involved in research or other activities.

• Engineering professors appreciate students who give their best efforts in 
solving a problem before asking for help. Before you go to the professor’s 
office, be prepared to tell your professor how you approached the prob-
lem and where the potential errors are. Do not expect the professor to 
work through the problem for you. Many engineering professors become 
irritated when the first thing a student says is “Look at this problem, and 
tell me what I’m doing wrong” or “I just can’t get the answer in the back of 
the book.” Preparing to ask the right questions before the visit will enable 
your professor to help you more fully.

• Unless instructed to do otherwise, do not contact professors outside of 
regular school hours. If you need assistance with homework, projects, etc., 
contact your professor at school during regular office hours if possible or 
by special appointment. Like students, professors try to have a personal life 
apart from their day-to-day academic work.

• Unless instructed to do otherwise, address professors by their appropriate 
titles. Do not call them by their first names. Most engineering professors 
have a PhD degree, so it is appropriate to address these individuals as “Dr. 
Jones” or “Professor Jones.” If the professor does not have a doctorate, the 
student should address the professor by “Professor Jones,” “Mr. Jones,” or 
“Ms. Jones.”
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quantities have the same units. Work and heat have units of J in the SI system and 
Btu in the English system. The most commonly used symbols for work and heat in 
thermodynamics are W and Q , respectively.

Now that work and heat have been defined in general terms, let us examine 
these forms of energy transfer more closely. In thermodynamics, work is usually 
categorized as mechanical work or nonmechanical work. The nonmechanical forms 
of work include electrical, magnetic, and electrical polarization work. Mechanical 
forms of work are generally the most important, so we will consider these in some 
detail.

6.4.1 Mechanical Work
There are several types of mechanical work. From basic physics, the work W done by 
a force F acting through a displacement s in the same direction of the force is given 
by the relation:

 =W Fs.  (6.14)

Equation (6.14) is valid only if the force is constant. If the force is not constant 
(i.e., if the force is a function of displacement), the work is obtained by integration. 
Thus, Equation (6.14) becomes:

 ∫=
1

2
W Fds  (6.15)

where the limits 1 and 2 denote the initial and final positions of the displacement, 
respectively. Equation (6.15) is a general mathematical definition from which equa-
tions for the various types of mechanical work are derived. Consider, for example, 
a vehicle that climbs a rough hill, as shown in Figure 6.10. As the vehicle climbs the 
hill, it encounters two forces that tend to oppose its motion. Gravity exerts a down-
ward force on the vehicle that retards its upward motion, and friction between the 
wheels and the rough surface retards its motion along the surface. The vehicle does 
work against these two forces, and the magnitude of that work is found by integrat-
ing the total force from position s1 to s ,2  which is graphically interpreted as the area 
under the force-displacement curve. The various types of mechanical work are now 
considered.

Gravitational work
Gravitational work is defined as the work done by or against a gravitational force. In a 
gravitational field, the force acting on a body is the weight of the body, and is given by

 =F mg  (6.16)

System

Boundary
Surroundings

Qout

Qin

Wout

Win

Figure 6.9
Energy in the form of work 
or heat can be transferred 
across the boundary of a 
system.
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where m is mass (kg) and g is the local gravitational acceleration (9.81 m/s ).2  
Consider a vehicle that climbs a hill from elevation z1 to a higher elevation z ,2  as 
shown in Figure 6.11. Substituting Equation (6.16) into Equation (6.15) and inte-
grating, we obtain the gravitational work:

 ∫ ∫ ( )= = = −  .
1

2

1

2

2 1W Fdz mg dz mg z zg  (6.17)

Note that the displacement in Equation (6.17) is in terms of elevation z, because 
work is defined as a force acting through a distance in the same direction of the force. 
Gravity acts in the vertical direction, so Equation (6.17) is written in terms of a verti-
cal distance (elevation) and not a horizontal distance. Note also that gravitational 
work is equivalent to a change in potential energy.

Acceleration work
Acceleration work is the work associated with a change in velocity of a system. Newton’s sec-
ond law states that the force acting on a body equals the product of the body’s mass 

Displacement
s1 s2

W 5 Fds 5 area
2

1

Fo
rc

e

1

Figure 6.10
As a vehicle climbs a hill, 
gravitational and friction 
forces act on it.

Wg 5 mg (z2 2 z1)

Reference (z 5 0)

z1

z2

Figure 6.11
Gravitational work is  
done as a body  
changes elevation.
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and acceleration. But acceleration a is the time derivative of velocity υ, so Newton’s 
second law may be written as:

 
υ

= =F ma m
d
dt

  .  (6.18)

Velocity is the time derivative of displacement,

 υ =
ds
dt

 (6.19)

so the differential displacement ds in Equation (6.15) is υ=ds dt  .  Thus, accelera-
tion work is:

   ( ) 1
2   ( ).

1

2

1

2

1

2

2
2

1
2∫ ∫ ∫

υ
υ υ υ υ υ= =







 = = −W Fds m

d
dt

dt m d ma  (6.20)

Figure 6.12 shows a vehicle traveling along a horizontal road increasing its velocity 
from 10 mi/h to 65 mi/h. In doing so, the vehicle does acceleration work because 
its velocity changes. We note that the acceleration work is equivalent to a change in 
kinetic energy.

Wa 5   m (y2
2 2 y1

2)

y1 5 10 mi/h y2 5 65 mi/h

1
2

Figure 6.12
A force accelerating  
a body does  
acceleration work  
as the velocity changes.

Boundary work
Boundary work is the work associated with the movement of a solid boundary. The most 
common instance of boundary work is the compression or expansion of a gas within 
a piston-cylinder device, as illustrated in Figure 6.13. A force F  is applied to the pis-
ton, compressing the gas within the cylinder. Because the cylinder is a closed vessel, 

Volume
V2 V1

P
re

ss
ur

e

FF

Gas

Wb 5 PdV 5 area
2

1 1

Figure 6.13
Boundary work is  
performed by a piston  
as it compresses a gas.
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206 Chapter 6 Thermodynamics

the pressure increases as the gas volume decreases. As the gas volume decreases 
from V1 to V ,2  the pressure increases along a path that depends on certain physical 
characteristics of the compression process. Pressure is defined as a force divided by 
area, so the force causing the compression is given by the relation:

 =F PA  (6.21)

where A is the surface area of the face of the piston. A differential change in vol-
ume, dV is the product of the piston’s differential displacement ds and the surface 
area of the piston A. Hence, =dV A ds   and the boundary work becomes:

 ∫ ∫ ∫= = = .
1

2

1

2

1

2

W Fds PA
dV
A

PdVb  (6.22)

Because the product P dV appears in the definition, boundary work is sometimes re-
ferred to as “P dV” work. As indicated in Figure 6.13, the magnitude of the boundary 
work is the area under the pressure-volume curve. In order to evaluate the integral 
in Equation (6.22), we would have to know the functional relationship between 
pressure P and volume V. This relationship may be an analytical expression for P as 
a function of V or a graph that shows the variation of P with V.

Shaft work
Shaft work is energy transfer by a rotating shaft. Numerous engineering systems transfer 
energy by means of a rotating shaft. The drive shaft of an automobile for example, 
transfers energy from the transmission to the axle. Energy is transferred from a boat 
motor to the propeller by a shaft. Even the mixing blades of a food blender perform 
shaft work on the food. As a shaft rotates, a constant torque is usually applied to the 
shaft that tends to retard its rotation. As illustrated in Figure 6.14, the torque τ  is 
produced by a force F acting through a moment arm r according to the relation:

 τ = Fr.  (6.23)

The force acts through a distance s equal to the circumference times the number of 
revolutions of the shaft n. Thus,

 π( )=s r n2 .  (6.24)

Upon substituting Equations (6.23) and (6.24) into Equation (6.14), the shaft work 
becomes:
 π τ=W n2 .sh  (6.25)

Spring work
Spring work is the work done in deforming a spring. A force is required to compress or 
stretch a spring, so work is done. From elementary physics, we know that the force 

F

n
r

Wsh 5 2p n tFigure 6.14
Work is produced by a 
rotating shaft.
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6.4 Work and Heat 207

required to deform a linear elastic spring is proportional to the deformation. This 
principle is known as Hooke’s law and is expressed as:

 =F kx  (6.26)

where F is force, x is displacement (change in spring length), and k is the spring  
constant. Substituting Equation (6.26) into Equation (6.15) and noting that 

=ds dx,  the spring work becomes:

 ∫ ∫ ( )( )= = = − .sp
1

2

1

2
1

2 2
2

1
2W Fds kx dx k x x  (6.27)

As indicated in Figure 6.15, the initial and final spring displacements are x1 and x2, 
respectively, as measured from the rest (undeformed) position of the spring.

F1

x1

x2

xRest
position

Wsp 5    k (x2
2 2 x2

1)

F2

1
2

Figure 6.15
Work is done by stretching 
or compressing a spring.

6.4.2 Heat
As we defined it earlier in this chapter, you now know that heat is the transfer of 
energy across the boundary of a system by virtue of a temperature difference. In 
order for heat transfer to occur, there must be a temperature difference between 
the system and the surroundings. The transfer or flow of heat is not the flow of a 
material substance, as in the case of the flow of a fluid such as air or water. Rather, 
there is an exchange of internal energy across the system boundary by atomic or 
molecular motion or by electromagnetic waves. Heat transfer can occur by three 
distinct mechanisms: conduction, convection, and radiation. Conduction is the transfer 
of internal energy in solids and fluids at rest. The actual mechanism of conduction 
involves kinetic energy exchange between molecules in contact or, in the case of 
metals, movement of free electrons. Convection is the mechanism by which inter-
nal energy is transferred to or from a fluid near a solid surface. Convection is basi-
cally conduction at the solid surface with the added complexity of energy transfer 
by moving fluid molecules. Radiation is the mechanism by which energy is trans-
ferred by electromagnetic waves. Unlike conduction and convection, radiation does 
not require a medium. A familiar example of radiation is the thermal energy that 
we receive from the sun across the vacuum of space. Regardless of the heat transfer 
mechanism involved, the direction of heat transfer is always from a high-temperature 
region to a low-temperature region.
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208 Chapter 6 Thermodynamics

Heat transfer occurs all around us. As a familiar example, consider the hot bev-
erage shown in Figure 6.16. Heat is transferred from the beverage to the surround-
ings by all three heat transfer mechanisms. A portion of the energy is transferred 
by convection from the liquid to the solid cup wall where the heat is subsequently 
conducted through the cup wall. That energy is then transferred to the surround-
ings by convection and radiation. The portion of the energy conducted into the 
bottom portion of the cup is transferred directly into the tabletop by conduction. 
The remaining energy is transferred from the surface of the liquid directly to the 
surroundings by convection and radiation.

In the next example, we use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

Conduction

Convection
Radiation

Cup wall

Convection

Conduction

Detail

Radiation

Figure 6.16
A hot beverage resting on 
a table transfers thermal 
energy to the surroundings 
by conduction, convection, 
and radiation.

EXAMPLE 6.3
Problem statement
A 1200-kg automobile accelerates up a hill, increasing its speed from 5 mi/h to  
45 mi/h, along a straight 100-m stretch of road. If the hill makes an angle of 6° with 
respect to the horizontal, find the total work done by the automobile.

Diagram
The diagram for this problem is shown in Figure 6.17.

Assumptions
1. Neglect resistance of road.
2. Neglect aerodynamic friction.
3. Mass of automobile is constant.

100 m5 mi/h
45 mi/h

6

Figure 6.17
Example 6.3.
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6.4 Work and Heat 209

Governing equations
Two forms of work, gravitational and acceleration, are involved as the automobile 
ascends the hill, so we have two governing equations:

( )= −W mg z zg 2 1

υ υ= −  ( ).1
2 2

2
1
2W ma

Calculations
The quantities in the problem statement are given in a mixed set of units, so we first 
convert the units of all quantities to SI units. Converting the velocities, we obtain:

× × × =5
mi
h

5280  ft
1  mi

1 m
3.2808  ft

1  h
3600 s

2.235  /m s

and

× × × =45
mi
h

5280  ft
1  mi

1 m
3.2808  ft

1  h
3600 s

20.12 m/s.

The vertical position z2 of the automobile when it attains a speed of 45 mi/h is:

= =z (100 m) sin 6° 10.45 m.2

Assigning the position of the ground as =z 0 m,1  the gravitational work is:

( )= −W mg z zg   2 1

= −(1200 kg)(9.81 m/s )(10.45m 0m)2

= ×1.231 10  J.5

The acceleration work is:

υ υ= −( )1
2 2

2
1
2W ma

= −(1200 kg)[(20.12m/s) (2.235 m/s) ]1
2

2 2

= ×2.399 10  J.5

The total work is the sum of the gravitational and acceleration work:

= +W W Wt g a

= × + × = × =1.231 10  J 2.399 10  J 3.630 10  J 363 kJ.5 5 5

Solution check
No errors are found.

Discussion
If the car had been accelerating downhill, the gravitational work would be nega-
tive, and the work done by the engine would be smaller, or even negative. In this 
example, the gravitational work is the work done by the car in overcoming gravity.
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210 Chapter 6 Thermodynamics

BOUNDARY WORK DURING A CONSTANT PRESSURE PROCESS
In some thermodynamic systems, boundary work is performed while the pressure 
remains constant. A common example is the heating of a gas contained in a piston- 
cylinder device, as illustrated in Figure 6.18(a). As heat is transferred to the gas 
within the cylinder, the internal energy of the gas increases, as exhibited by an 
increase in the gas temperature, and the piston moves up. If we assume that the 
piston-cylinder device is frictionless, the pressure of the gas remains constant, but, 
since the piston moves, boundary work is still done. Suppose that the frictionless 
piston-cylinder device shown in Figure 6.18(a) contains 2.5 L of nitrogen at 120 kPa. 
Heat is then transferred to the nitrogen until the volume is 4 L. Find the boundary 
work done by the nitrogen during this process.

A
PP

LIC
AT

IO
N

2

1

120 1 2

Volume (m3)

Process path
Wb

0.0025 0.004

P
re

ss
ur

e 
(k

Pa
)

Heat

Nitrogen
P 5 120 kPa

(b)(a)

Figure 6.18
A constant pressure 
process.

Boundary work Wb  is given by the relation:

∫=
1

2

W PdVb

where P is pressure and V is volume. Because the process occurs at constant pres-
sure, P can be brought outside the integral, giving the relation:

∫= .
1

2

W P dVb

The initial and final volumes of the nitrogen are:

= = = =V V2.5 L 0.025 m 4 L 0.004 m .1
3

2
3

Thus, the boundary work is:

∫ ( )= = −
1

2

2 1W P dV P V Vb

= × −(120 10  Pa)(0.004 m 0.025 m )3 3 3

= 180 J.

The boundary work calculated here is the work done by the nitrogen on the piston, 
not the work done on the nitrogen by the piston. Figure 6.18(b) shows the process 
path for the constant pressure process that occurs in the piston-cylinder device. The 
boundary work of 180 J is the shaded area under the process path.
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6.5 The First Law of Thermodynamics 211

6.5 THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics is one of the most important laws in science and 
engineering. The first law of thermodynamics, often referred to as the law of conser-
vation of energy, enables engineers to analyze transformations that occur between the 
various forms of energy. Stated another way, the first law of thermodynamics allows 
engineers to study how one form of energy is converted to other forms. The most 
concise definition of the first law of thermodynamics is, energy is conserved. Another 
way to state this law is, energy cannot be created or destroyed, but can only change forms. 
The first law of thermodynamics, hereafter referred to as simply “the first law,” can-
not be proved mathematically. Like Newton’s laws of motion, the first law is taken as 
an axiom, a sound physical principle based on countless measurements. No energy 
transformation, either natural or man made, is known to have violated the first law.

The first law is a very intuitive concept. Consider the system shown in Figure 
6.19. The system may represent any substance or region in space chosen for ther-
modynamic analysis. The boundary of the system is the surface that separates the 
system from the surroundings. We may construct a mathematical representation of 

PRACTICE!

1. As a 2500-kg truck climbs a hill, it changes speed from 20 mi/h to 50 
mi/h along a straight 1600-ft section of road. If the hill is inclined at an 
angle of 8° with respect to the horizontal, find the total work.
Answer : 2.19 MJ.

2. A 95-slug automobile changes speed from 55 mi/h to 30 mi/h while 
climbing a 3° hill. If the change in speed occurs over a 1355-ft straight 
section of road, find the total work.
Answer : − ⋅270 ft lbf .

3. A shaft rotating at 1200 rpm (revolutions per minute) experiences a 
constant torque of ⋅60 N m. How much work does the shaft perform 
in 1 h?
Answer : 27.1 MJ.

4. The pressure inside a frictionless piston-cylinder device varies accord-
ing to the function = −P a bV ,  where a and b are constants and V 
is volume. The initial and final volumes for the process are 1 m3 and 
0.1 m ,3  respectively. If =a 500 Pa and =b 2000 Pa/m ,3  find the 
boundary work.
Answer : 540 J.

5. A linear elastic spring is compressed 3.5 cm from its at-rest position. 
The spring is then compressed an additional 7.5 cm. If the spring con-
stant is 2600 N/cm, find the work done in compressing the spring.
Answer : 1.41 kJ.

6. A frictionless piston-cylinder device has a diameter of 12 cm. As the 
gas inside the cylinder is heated, the piston moves a distance of 8.0 cm. 
If the gas pressure is maintained at 300 kPa, how much work is done?
Answer : 271 J.
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212 Chapter 6 Thermodynamics

the first law by applying a simple physical argument. If an amount of energy E in  is 
supplied to the system, that energy can leave the system, change the energy of the 
system, or both. The energy that leaves the system is E ,out  and the energy change 
of the system is E∆ . Thus, the energy that enters the system equals the energy that 
leaves the system plus the energy change of the system. The first law may therefore 
be expressed mathematically as:

 E E E= + ∆ .in out  (6.28)

We see that the first law is nothing more than a simple accounting principle that 
maintains the system’s “energy ledger” in balance. In fact, the first law is often re-
ferred to as an energy balance because that is precisely what it is. In most engineering 
thermodynamics texts, Equation (6.28) is typically written in the form:

 E E E− = ∆ .in out  (6.29)

As shown in Figure 6.19, E in  and Eout  are energy quantities that are transferred 
across the system boundary, whereas E∆  is the change in energy of the system itself. 
Because E in  and Eout  are transferred forms of energy, these terms can only repre-
sent energy in the forms of heat, work, and mass flow. Heat is the transport of energy 
across the boundary of a system by virtue of a temperature difference. For heat 
transfer to occur, there must be a temperature difference between the system and 
the surroundings. Work may be mechanical in nature, such as the movement of the 
system boundary or the turning of a shaft inside the system, or electrical in nature, 
such as the transfer of electrical energy by a wire that penetrates the system bound-
ary. When mass crosses a system boundary, energy crosses the boundary as well, 
because mass carries energy with it. Thus, the left side of Equation (6.29) becomes:

 − = − + − + −E E Q Q W W E E( ) ( ) ( )in out in out in out mass, in mass, out  (6.30)

where Q denotes heat, W denotes work, and Emass  denotes energy transfer by mass 
flow. The in and out subscripts refer to energy transferred in and out of the system, 
respectively. These energy quantities should always be clearly indicated on a dia-
gram as arrows pointing into or out of the system. The energy change of the system 

E∆  is the sum of the potential, kinetic, and internal energy changes. Hence, the 
right side of Equation (6.29) is:

 E U∆ = ∆ + ∆ + ∆PE KE  (6.31)

where PE, KE, and U represent the potential, kinetic, and internal energy, re-
spectively. Most thermodynamic systems of practical interest are stationary with 

Boundary
Eout

Ein

Ein 2 Eout 5 DE

System

Surroundings

DE

Figure 6.19
The first law of  
thermodynamics.
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6.5 The First Law of Thermodynamics 213

respect to external reference frames, so ∆ = ∆ =PE KE 0,  leaving E U∆ = ∆ .  
Furthermore, many thermodynamic systems are closed, which means that mass can-
not enter or leave the system. For closed systems, the only forms of energy transfer 
possible are work and heat. The analysis of closed systems is considerably simpler 
than the analysis of systems that permit mass transfer. In this book, we consider 
closed systems only. Thus, the first law of thermodynamics for closed systems is:

 Q Q W W U− + − = ∆( ) ( ) .in out in out  (6.32)

The heat and work transferred across the system boundary causes a change in the 
internal energy of the system. This change alters the thermodynamic state or con-
dition of the system. A change in the thermodynamic state of a system is called 
a process. The internal energy change U∆  is simply the difference between the 
internal energies at the end of the process and the beginning of the process. Thus, 

U U U∆ = − ,2 1  where the subscripts 1 and 2 denote the beginning and end of the 
process, respectively.

The first law may be expressed in rate form by dividing each term in Equation 
(6.29) by a time interval t∆  over which the process occurs. By dividing the energy 
terms by time, the quantities on the left side of the equation become quantities of 
power, and the quantity E∆  becomes a change in energy that occurs during the 
specified time interval. Equation (6.29) is then rewritten as:

 − = ∆ ∆� �E E E t/in out  (6.33)

where �E in  and �Eout  denote the rate at which energy enters and leaves the system, re-
spectively. The units for �E in  and �Eout  are J/s, which is defined as the watt (W). If the 
problem is stated in terms of energy rates rather than absolute energy quantities, 
the use of the first law given by Equation (6.33) is preferred over Equation (6.29).

In the following examples, the first law is used to analyze some basic closed 
thermodynamic systems. We use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

EXAMPLE 6.4
Problem statement
A closed tank contains a warm liquid whose initial internal energy is 1500 kJ. A 
paddle wheel connected to a rotating shaft imparts 250 kJ of work to the liquid, 
while 700 kJ of heat is lost from the liquid to the surroundings. What is the final 
internal energy of the liquid?

Diagram
A diagram representing the system is illustrated in Figure 6.20. The system is the 
liquid in the tank. Energy transferred across the system boundary as work and heat 
is shown.

Liquid

Qout 5 700 kJ Win 5 250 kJU1 5 1500 kJ

Figure 6.20
System for Example 6.4.
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214 Chapter 6 Thermodynamics

Assumptions
1. The system is closed.
2. The tank is stationary, so ∆ = ∆ =PE KE 0.
3. Energy change in the paddle wheel is negligible.

Governing equations
The governing equation for this problem is the first law of thermodynamics for a 
closed system:

Q Q W W U U U− + − = ∆ = −( ) ( ) .in out in out 2 1

Calculations
From the diagram, we see that:

= = =Q W U700 kJ, 250 kJ, 1500 kJout in 1

but there is no heat input and no work output. Thus,

= =Q W0, 0.in out

Substituting known quantities into the first law, we have:

( ) ( )− + − = −U0 700 kJ 250 0 kJ 1500 kJ.2

Solving for U ,2  the final energy of the liquid, we obtain:

=U 1050 kJ.2

Solution check
No errors are found.

Discussion
The final internal energy of the liquid is 1050 kJ, a decrease of 450 kJ. The internal 
energy of the liquid must decrease because more energy (700 kJ) is removed from 
the system than is supplied (250 kJ) to the system.

EXAMPLE 6.5
Problem statement
The air in a small house is maintained at a constant temperature by an electric 
baseboard system that supplies 5.6 kW to the house. There are 10 light fixtures in 
the house and each dissipate 60 W and the major electrical appliances (dishwasher, 
range, clothes dryer, etc.) have a total dissipation of 2560 W. The house is occupied 
by four people who each dissipate 110 W. Find the total heat loss from the house to 
the surroundings.

Diagram
The diagram for this problem is shown in Figure 6.21. The air in the house is the 
system. Power supplied to the house by the baseboard system, shown as an electrical 
resistor, is represented on the diagram by electrical power input, �Win. The rate of 
heat dissipation by lights, people, and appliances is shown on the diagram as �Qin,  
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6.5 The First Law of Thermodynamics 215

and the heat loss from the house to the surroundings is shown as Qout. A careful 
reading of the problem statement indicates that the change in internal energy of 
the system is zero, since the baseboard system maintains the air in the house at a 
constant temperature.

Assumptions
1. The system is closed.
2. Energy change in the contents of the house is zero.
3. All energy transfer rates are constant.

Governing equations
The governing equation for this problem is the first law, in rate form, for a closed 
system. Because the house is maintained at a constant temperature, U∆ = 0.  Thus, 
we have:

� � � �( ) ( )− + − = 0.in out in outQ Q W W

Calculations
There are 10 lights that dissipate 60 W each, 4 people who dissipate 110 W each, 
and appliances that dissipate a total of 2560 W. The total rate of heat transfer into 
the house is:

= + +in lights people appliancesQ Q Q Q� � � �

= + + =10(60 W) 4(110 W) 2560 W 3600 W.

The electrical power supplied to the house by the baseboard system is:

= 5600 WinW�

but there is no work output, so =�W 0.out  Substituting known quantities into the 
first law, we have:

� ( )− + − =(3600 )W 5600 0 W 0.outQ

Solving for the heat loss out,Q�  we obtain:

= 9.2 kW.outQ�

Solution check
All energy rates were expressed in units of W before doing the calculations. No  
errors are found.

DU 5 0

Air

Q
·

in

Q
·

out

W
·

in 5 5.6 kW

Figure 6.21
System for Example 6.5.
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Discussion
The heat loss of 9.2 kW represents the rate of heat transfer from the house to the 
surroundings. Heat is lost from the house through the walls, roof, windows, doors, 
and any other building member that is part of the system boundary. Because the air 
in the house is maintained at a constant temperature, the rate of energy supplied to 
the house equals the rate of energy lost by the house.

PRACTICE!

1. A 700-kg boulder is pushed off a 50-m high cliff. What is the velocity 
of the boulder immediately before it strikes the ground? How does the 
boulder’s mass affect the solution?
Answer : 31.3 m/s, boulder’s mass is irrelevant.

2. Just before striking the ground, the boulder in practice problem 1 
converts all its potential energy to kinetic energy (assuming negligible 
aerodynamic friction). After colliding with the ground, the boulder 
comes to rest, converting its kinetic energy into other energy forms. 
What are these forms?
Answer : Heat, sound, and deformation.

3. The fluid in a closed-pressure vessel receives 500 kJ of heat, while a 
shaft does 250 kJ of work on the fluid. If the final internal energy of the 
fluid is 1100 kJ, what is the initial internal energy of the fluid?
Answer : 350 kJ.

4. The fluid in a closed tank loses 750 Btu of heat to the surroundings, 
while a shaft does 850 Btu of work on the fluid. If the initial internal 
energy of the fluid is 100 Btu, what is the final internal energy of the 
fluid?
Answer : 200 Btu.

5. A small house is to be air-conditioned. The house gains 18,000 Btu/h 
of heat from the surroundings, while lights, appliances, and occupants 
add 6000 Btu/h from within the house. If the house is to be main-
tained at a constant temperature, what is the required rating of the air 
conditioner?
Answer : 24,000 Btu/h.

6. A piston-cylinder device containing water is heated. During the heat-
ing process, 300 J of energy is supplied to the water, while 175 J of heat 
is lost through the walls of the cylinder to the surroundings. As a result 
of the heating, the piston moves, doing 140 J of boundary work. Find 
the change in the internal energy of the water for this process.
Answer : −15 J.
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PROFESSIONAL SUCCESS—KNOWING THE PRACTICAL  
SIDE OF ENGINEERING

Engineering is the business of designing and producing devices and systems 
for the benefit of society. People who practice engineering for a living design 
and manufacture things—practical things that are useful in specific applica-
tions. Given the applied nature of engineering, one would assume that engi-
neering education is likewise applied. While an engineering education does 
indeed prepare students for industrial practice, the nature of that prepara-
tion may not be what you expect. Generally speaking, engineering courses 
are very theoretical and mathematical in nature. If you have already taken 
a few engineering courses, you have no doubt discovered this. Engineering 
courses are usually deep in theory, but shallow in practical aspects. As a result, 
an electrical engineering student may know how to analyze a circuit with the 
use of a schematic diagram, but may not be able to recognize an actual elec-
trical device or system. Similarly, a mechanical engineering student may be 
very comfortable with performing a first law analysis of a boiler, compressor, 
turbine, or heat exchanger, but would not recognize one of these devices if 
he or she saw one.

So, why is the emphasis placed on theory at the expense of the practical 
aspects? One of the main reasons is that many professors who are teaching 
you how to become a practicing engineer have never practiced engineering 
themselves. This may sound bizarre, but many engineering professors took 
a teaching position directly out of graduate school after receiving their PhD 
degree, have been teaching ever since, and therefore have little or no indus-
trial experience. This situation is not likely to change significantly in the near 
future, so it is up to the engineering student to acquire some practical, hands-
on experience. Here are some ways:

• Enroll in a vocational or technical course at the university, the local com-
munity college, or trade school. Technical programs usually offer a wide 
variety of very practical courses such as welding, machining, refrigeration 
repair, auto repair, pipe fitting, electrical wiring, small engine repair, and 
computer servicing. You should take these courses when they will not in-
terfere with your engineering course work, such as during the summer.

• Take additional laboratory courses. Some engineering courses have labora-
tories associated with them. The engineering laboratory is a good place to 
acquire practical engineering skills.

• Read engineering and technical-related magazines and journals. These 
publications contain articles about real engineering systems that will help 
you bridge the gap between engineering theory and engineering practice.

• Participate in engineering projects and competitions sponsored by your 
school and professional engineering societies. The American Society of Me-
chanical Engineers (ASME), the Society of Automotive Engineers (SAE), 
the Institute for Electrical and Electronics Engineers (IEEE), the American 
Institute of Aeronautics and Astronautics (AIAA), and other professional 
societies sponsor various engineering competitions. Local participation in 
National Engineers Week, held annually in February, is an excellent oppor-
tunity for students to bolster their practical engineering skills.

M06_HAGE4428_05_SE_C06.indd   217 13/11/20   10:01 AM



218 Chapter 6 Thermodynamics

6.6 HEAT ENGINES
The first law of thermodynamics states that energy can be converted from one form 
to another, but cannot be created or destroyed. The first law is a conservation law, 
a simple accounting principle that tells us how a system’s “energy ledger” is kept 
in balance. Although the first law tells us what forms of energy are involved in a 
particular energy conversion, it tells us nothing about whether the conversion is 
possible or in which direction the conversion process occurs. For example, consider 
the system in Figure 6.22. A closed tank containing a fluid has a shaft that facilitates 
the transfer of work to the fluid. When the shaft rotates, work is transferred to the 
fluid, increasing its internal energy and thereby transferring heat from the fluid 
to the surroundings, as shown in Figure 6.22(a). During this process, work is con-
verted directly and completely to heat. But when heat is transferred to the fluid, as 
shown in Figure 6.22(b), the shaft does not rotate, and thus no work is performed. 
The first law of thermodynamics does not preclude the conversion of heat to work 
in this system, but we know from experience that such conversion does not occur. 
Based on this argument, we conclude that work can be converted to heat directly 
and completely, but heat cannot always be converted to work. The direct conversion 
from heat to work is impossible without the use of a special device called a heat 
engine.

• Tinker with various mechanical and electrical devices. For example, find 
an old electric hand drill and disassemble it. Figure out how it works. Do 
the same for other devices such as a small kitchen appliance or personal 
computer. You may want to perform service on your own automobile, per-
haps by replacing the brakes or installing a sound system.

Fluid

(a)

Heat

Work No work

Fluid

(b)

Heat

Figure 6.22
Work can always be 
converted to heat (a), but 
heat cannot always be 
converted to work (b).

A heat engine is a device that converts heat to work. Before describing how this 
conversion occurs, we must define an important thermodynamic term: thermal en-
ergy reservoir. A thermal energy reservoir is a body with a very large thermal capac-
ity. The distinctive characteristic of a thermal energy reservoir is that it can supply 
or receive large amounts of thermal energy without experiencing any change in 
temperature. In actual thermodynamic systems, because of their large masses and 
high heat capacities, expansive bodies of water such as oceans, lakes, or rivers are 
considered thermal energy reservoirs. The atmosphere is also considered a thermal 
energy reservoir. Any region or body whose thermal capacity is large compared with 
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the amount of heat it supplies, or receives, may be considered a thermal energy 
reservoir.

There are two types of thermal energy reservoirs: a thermal energy source and 
a thermal energy sink. A thermal energy source supplies heat to a system, whereas 
a thermal energy sink absorbs heat from a system. As illustrated in Figure 6.23, a 
heat engine receives an amount of heat Q( )in  from a high-temperature source and 
converts a portion of that heat to work W( ).out  The heat engines rejects the remain-
ing heat Q( )out  to a low-temperature sink. There are several thermodynamic systems 
that qualify as heat engines, but the system that best fits the definition of a heat 
engine is the steam-power plant. In a steam-power plant, Qin is the heat supplied to 
a boiler from a combustion process or nuclear reaction. The heat Q ,out  rejected to 
a low-temperature sink, is the heat transferred from a heat exchanger to a nearby 
lake, river, or the atmosphere. The work Wout  produced by the power plant is the 
energy generated by a turbine. An electrical generator, which is connected to the 
turbine via a shaft, generates electrical energy.

High-temperature source

Heat engine

Qin

Qout

Wout

Low-temperature sink

Figure 6.23
A heat engine converts  
a portion of the heat it 
receives from a high- 
temperature source to  
work and rejects the 
remaining heat to a  
low-temperature sink.

By inspection of Figure 6.23, the first law of thermodynamics for a heat  
engine is

 = +Q Q W .in out out  (6.34)

The work Wout  is the useful work produced by the heat engine. For a steam-power 
plant, Wout  is actually a net work because some work has to be supplied to a pump in 
order to circulate the steam through the boiler and other power-plant components. 
The heat Q ,out  rejected to a low-temperature sink, is wasted energy. So why don’t 
we just eliminate Q ,out  converting all Qin to work? It turns out that, while this idea 
sounds very attractive, the elimination of Qout violates the second law of thermody-
namics. A nonzero amount of waste heat Qout is necessary if the heat engine is to 
operate at all.

Efficiency is a useful engineering quantity that is used to measure the perfor-
mance of numerous engineering systems. A general definition of efficiency is:

 =efficiency
desired output
required input

.  (6.35)
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For heat engines, the desired output is the work output, and the required input is 
the heat supplied by the high-temperature source. Hence, thermal efficiency of a 
heat engine, denoted η ,th  is given by the relation:

 η =
W
Q

.th
out

in
 (6.36)

In accordance with the first law of thermodynamics, no heat engine (or any other 
device for that matter) can produce more energy than is supplied to it. Therefore, 
the thermal efficiency of a heat engine is always less than 1. This fact is apparent 
from Figure 6.23 because only a portion of the heat supplied to the heat engine is 
converted to work, the remaining heat being rejected to a low-temperature sink.

EXAMPLE 6.6
A heat engine produces 6 MW of power while absorbing 10 MW from a high-  
temperature source. What is the thermal efficiency of this heat engine? What is the 
rate of heat transfer to the low-temperature sink?

Solution
The work output and heat input are given in terms of energy rates, not energy. 
The first law relation for a heat engine [Equation (6.34)] may be expressed in rate 
form by dividing each quantity by time. Similarly, the work and heat quantities in 
Equation (6.36) may be divided by time. Dividing the work and heat quantities 
by time yields power �Wout  and heat transfer rates, �Q  in and �Qout,  where the “dot”  
denotes a rate quantity. Thus, the thermal efficiency of the heat engine is:

η =
�
�

W
Q  

th
out

in

( )= =
(6 MW)
10 MW

0.6  60% .

Applying the first law to the heat engine, the rate of heat transfer to the low- tem-
perature sink is:

= −� � �Q Q Wout in out

= − =10 MW 6 MW 4 MW.

6.7 THE SECOND LAW OF THERMODYNAMICS
The first law of thermodynamics states that energy is conserved (i.e., energy can be 
converted from one form to another, but cannot be created or destroyed). The first 
law tells us what forms of energy are involved in a particular energy conversion, but 
it does not tell us anything about whether the conversion is possible or in which di-
rection the conversion process occurs. Common experience tells us that a boulder 
naturally falls from a cliff to the ground, but never jumps from the ground to the 
top of the cliff by itself. The first law does not preclude the boulder from jumping 
from the ground to the top of the cliff, because energy (potential and kinetic) is 
still conserved in this process. We know by experience that a hot beverage naturally 
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6.7 The Second Law of Thermodynamics 221

cools as heat is transferred from the beverage to the colder surroundings. The en-
ergy lost by the beverage equals the energy gained by the surroundings. The hot 
beverage will not get hotter, however, because heat flows from a high temperature 
to a low temperature. The first law does not preclude the beverage from getting 
hotter in a cool room as long as the energy lost by the room equals the energy 
gained by the beverage. Once again, the first law does not preclude the reverse 
process from occurring; however, the overwhelming experimental evidence tells us 
that the reverse process does not take place.

As a final example, consider the system in Figure 6.24. A closed tank containing 
a fluid has a shaft that facilitates the conversion between work and heat. Suppose 
that we wanted to use the apparatus as a heat engine, a device that converts heat to 
work. If we were to actually build this device and attempt to raise the weight by trans-
ferring heat to the fluid, we would discover that the weight would not be raised. As in 
the previous examples, the first law does not preclude the conversion of heat to work 
in this system, but we know from experience that this conversion does not occur.

FluidHeat

Figure 6.24
Transferring heat to the 
fluid will not cause the 
shaft to rotate; therefore, no 
work will be done to raise 
the weight.

Based on direct observations of physical systems, it is clear that thermodynamic 
processes occur only in certain directions. While the first law places no restrictions 
on the direction in which a thermodynamic process occurs, it does not ensure that 
the process is possible. To answer that question, we need another thermodynamic 
principle or law that tells us something about the natural direction of thermody-
namic processes. That principle is the second law of thermodynamics. In order for 
a process to occur, both the first and second laws of thermodynamics must be satis-
fied. There are various ways of stating the second law of thermodynamics. One of 
the most useful forms of the second law of thermodynamics, hereafter referred 
to as simply “the second law,” is that it is impossible for a heat engine to produce an 
amount of work equal to the amount of heat received from a thermal energy reservoir. In 
other words, the second law states that it is impossible for a heat engine to con-
vert all the heat it receives from a thermal energy reservoir to work. A heat engine 
that violates the second law is illustrated in Figure 6.25. In order to operate, a heat 
engine must reject some of the heat it receives from the high-temperature source 
to a low-temperature sink. A heat engine that violates the second law converts 100 
percent of this heat to work. This is physically impossible.

The second law can also be stated as no heat engine can have a thermal efficiency of 
100 percent. The thermal efficiency of a heat engine, denoted η ,th  is defined as the 
ratio of the work output to the heat input:

 η =
W
Q

.th
out

in

 (6.37)

Clearly, if the thermal efficiency of a heat engine is 100 percent, then =Q W .in out  
If the second law precludes a heat engine from having a thermal efficiency of 100 
percent, what is the maximum possible thermal efficiency of a heat engine? As il-
lustrated in Figure 6.26, a heat engine is a device that converts a portion of the heat 

M06_HAGE4428_05_SE_C06.indd   221 13/11/20   10:01 AM



222 Chapter 6 Thermodynamics

supplied to it from a high-temperature source into work. The remaining heat is 
rejected to a low-temperature sink. The thermal efficiency of a heat engine is given 
by Equation (6.37). Applying the first law to the heat engine, we obtain:

 = +Q Q W .in out out  (6.38)

Solving for Wout  from Equation (6.38) and substituting the result into Equation 
(6.37), we obtain:

 η =
−

= −
Q Q

Q
Q
Q

1 .th
in out

in

out

in
 (6.39)

It can be shown mathematically that, for an ideal heat engine operating between 
source and sink temperatures of TH  and TL , respectively, the ratio of the heat sup-
plied to the heat rejected, equals the ratio of the absolute temperatures of the heat 
source and heat sink. Thus,

 =
Q
Q

T
T

L

H
.out

in
 (6.40)

Qin

Qout

Wout

High-temperature
source at TH

Low-temperature
sink at TL

Heat
engine

Figure 6.26
A heat engine, operating 
between thermal energy 
reservoirs at temperatures 
TH  and TL , converts heat 
to work.

Qin

Wout

Qin 5 Wout

High-temperature
source

Heat
engine

Figure 6.25
This heat engine  
violates the second law  
of thermodynamics.
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The details of the mathematical proof may be found in most thermodynamics 
texts. What does it mean for a heat engine to be ideal? The short answer is that 
a heat engine is considered ideal if the processes within the heat engine itself 
are reversible. A reversible process is a process that can be reversed in direction 
without leaving any trace on the surroundings. A simple example of a reversible 
process is a frictionless pendulum. A frictionless pendulum can swing in either 
direction without dissipating any heat to the surroundings. A more thorough 
discussion of this concept may be found in the references at the end of this 
chapter.

Substituting Equation (6.40) into Equation (6.39), we find that the thermal ef-
ficiency for an ideal heat engine becomes:

 η = −
T
T

L

H
1th, ideal  (6.41)

where TL  and TH  denote the absolute temperatures of the low-temperature sink 
and high-temperature source, respectively. Because TL  and TH  are absolute tem-
peratures, these quantities must be expressed in units of kelvin (K) or rankine (°R). 
The thermal efficiency given by Equation (6.41) is the maximum possible thermal 
efficiency a heat engine can have, and is often referred to as the Carnot efficiency, in 
honor of the French engineer Sadi Carnot. A heat engine whose thermal efficiency 
is given by Equation (6.41) is a theoretical heat engine only, an idealization that 
engineers use to compare with real heat engines. No real heat engine can have 
a thermal efficiency greater than the Carnot efficiency, because no real heat en-
gine is reversible. Hence, the efficiencies of real heat engines, such as steam power 
plants, should not be compared to 100 percent. Instead, they should be compared 
to the Carnot efficiency for a heat engine operating between the same tempera-
ture limits. The Carnot efficiency is the theoretical upper limit for the thermal ef-
ficiency of a heat engine. If a heat engine is purported to have a thermal efficiency 
greater than the Carnot efficiency, the heat engine is in violation of the second law 
of thermodynamics.

The first and second laws of thermodynamics are the quintessential governing 
principles on which all energy processes are based. In summary: The first law says you 
can’t get something for nothing. The second law says you can’t even come close.

Earlier in this section, we mentioned that there are various ways of stating the 
second law of thermodynamics. The primary objective of science is to explain the 
universe in which we live. The second law of thermodynamics, while very useful 
for analyzing and designing engineering systems, is a scientific principle that has 
profound consequences. From a scientific standpoint, the second law is considered 
an “arrow of time,” an immutable principle that assigns a natural direction to all 
physical processes. Stones fall from cliffs, but never the reverse. Heat flows from 
hot objects to cold objects, but never the reverse. Cream mixes with coffee, but 
once mixed, the coffee and cream do not separate back out. Physical processes are 
ordered—they follow the arrow of time. Matter spreads and energy spreads, reduc-
ing the quality of things. According to the second law, things naturally move from 
order to disorder, from a higher quality to a lower quality, from a more useful state 
to a less useful state. In short, the second law says that, left to themselves, things get 
worse. As shown in Figure 6.27, the second law seems to apply to everything, not just 
energy systems.
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EVALUATING A CLAIM FOR A NEW HEAT ENGINE
In a patent application for a new heat engine, an inventor claims that the device 
produces 1 kJ of work for every 1.8 kJ of heat supplied to it. In the application, the 
inventor states that the heat engine absorbs energy from a 350°C source and rejects 
energy to a 25°C sink. Evaluate this claim.

The feasibility of the new heat engine may be checked by ascertaining whether 
the heat engine violates either the first or second laws of thermodynamics. If the 
first law is violated, the heat engine would have to produce an amount of work 
greater than the amount of heat supplied to it. Because < < (1 kJ 1.8 kJ)out inW Q  
for this heat engine, the first law is satisfied. If the second law is violated, the heat 
engine would have to have a thermal efficiency greater than the Carnot efficiency 
for a heat engine operating between the same temperature limits. The actual ther-
mal efficiency of the heat engine is:

η ( )= = =
1 kJ

1.8 kJ
0.556 55.6% .th, actual

out

in

W
Q

Noting that the source and sink temperatures must be expressed in absolute units, 
the Carnot efficiency is:

η = −
T
T

L

H
1th, Carnot

( )
( )

( )= −
+
+

=1
25 273  K
350 273  K

0.522 52.2% .

The actual thermal efficiency of the heat engine is greater than the Carnot effi-
ciency >(0.556 0.522),  so the inventors’s claim is invalid. It is physically impossible 
for this heat engine to produce 1 kJ of work for every 1.8 kJ of heat supplied to it, 
given the source and sink temperatures specified in the patent application.

A
PP

LIC
AT

IO
N

Figure 6.27
The second law of  
thermodynamics has  
taken its toll on this  
structure.
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PRACTICE!

1. A high-temperature source supplies a heat engine with 25 kJ of energy. 
The heat engine rejects 15 kJ of energy to a low-temperature sink. How 
much work does the heat engine produce?
Answer : 10 kJ.

2. A heat engine produces 4 MW of power while absorbing 9 MW of power 
from a high-temperature source. What is the thermal efficiency of this 
heat engine? What is the rate of heat transfer to the low- temperature 
sink?
Answer : 0.444, 5 MW.

3. A heat engine absorbs 20 MW from a 400°C furnace and rejects 12 
MW to the atmosphere at 25°C. Find the actual and Carnot thermal 
efficiencies of this heat engine. How much power does the heat engine 
produce?
Answer : 0.400, 0.557, 8 MW.

4. Joe, a backyard tinkerer who fancies himself an engineer, tells his engi-
neer neighbor Jane that he has developed a heat engine that receives 
heat from boiling water at 1 atm pressure and rejects heat to a freezer 
at −5°C. Joe claims that his heat engine produces 1 Btu of work for 
every 2.5 Btu of heat it receives from the boiling water. After a quick 
calculation, Jane informs Joe that if he intends to design heat engines, 
he needs to pursue an engineering education first. Is Jane justified in 
making this comment? Justify your answer by analysis.
Answer : Yes, because η = 0.400actual  and η = 0.282,Carnot  which is 
impossible.

KEY TERMS

Carnot efficiency
elastic potential energy
energy
first law of  

thermodynamics
gravitational  

potential energy
heat

heat engine
internal energy
kinetic energy
potential energy
pressure
second law of  

thermodynamics
temperature

thermal efficiency
thermodynamics
work
zeroth law of  

thermodynamics
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PROBLEMS

Pressure and temperature

 6.1 What gauge pressure would you need to inflate an automobile tire in San 
Diego, California, to achieve an absolute pressure of 400 kPa?

 6.2 A pressure gauge connected to a tank reads 450 kPa at a location where the 
atmospheric pressure is 96 kPa. Find the absolute pressure in the tank.

 6.3 A vertical, frictionless piston-cylinder device contains a gas. The piston has 
a mass of 3 kg and a radius of 5 cm. A downward force of 75 N is applied to 
the piston. If the atmospheric pressure is 100 kPa, find the pressure inside 
the cylinder. (See Figure P6.3.)

Gas

75 N

Patm 5 100 kPa

3 kg

5 cm

Figure P6.3

 6.4 A vacuum gauge connected to a tank of air reads 12.5 psi at a location where 
the atmospheric pressure is 14.1 psi. Find the absolute pressure in the tank.

 6.5 A comfortable indoor air temperature is 70°F. What is this temperature in 
units of °R, °C, and K ?
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 6.6 The melting points of copper, iron, lead, and tin are 1360 K, 1800 K, 600 K, 
and 500 K, respectively. What are these melting points in °C? °F?

 6.7 Find the temperature at which the Fahrenheit and Celsius scales coincide.

 6.8 Heat exchangers are devices that facilitate the transfer of thermal energy 
from one fluid to another across a solid wall. In a particular heat exchanger, 
glycerine enters the unit at a temperature of 30°C and exits the unit at a 
temperature of 56°C. What is the temperature change of the glycerine in 
units of °F, °R, and K ?

Work and heat

 6.9 As a1700-kg truck travels along a horizontal, 400-m section of road, it chang-
es speed from 10 mi/h to 50 mi/h. If the friction force acting on the truck 
is 325 N, what is the total work in units of the joule?

 6.10 The pressure in a frictionless piston-cylinder device varies according to the 
function = −P CV n , where C and n are constants and V is volume. Derive a 
relationship for the boundary work in terms of the initial and final volumes V1 
and V2 and the constants C and n. What is the restriction on the constant n?

 6.11 A 450-kg pallet of scrap metal is hoisted by a winch. If the pallet moves 
vertically from a height of 1.5 m off the ground to a height of 8.0 m off the 
ground, what is the work done?

 6.12 A shaft connected to a motor does 600 kJ of work in 5 min. If the shaft ro-
tates at 1750 rpm, what is the torque on the shaft?

 6.13 A crate is dragged across a rough floor by a force =F 120 N, as shown in 
Figure P6.13. A friction force of 40 N acts to retard the motion of the crate. 
If the crate is dragged 25 m across the floor, what is the work done by the 
120-N force? By the friction force? What is the net work done?

120 N

30

Figure P6.13

 6.14 Heat transfer by conduction through a plane wall of thickness L and surface 
area A can be calculated using the relation:

=
∆

Q kA
T

L
�

where =k thermal conductivity of wall ⋅(W/m °C) and T∆ = temperature  
difference across wall (°C). For a 1.74-cm thick plywood board 

= ⋅( 0.12W/m °C)k  and a temperature difference of 30°C, what is the heat 
transfer per unit surface area?

 6.15 Heat transfer by convection from a surface of area A to a surrounding fluid 
can be calculated using the relation:

( )= − ∞�Q hA T Ts

where =h heat  transfer coefficient ⋅(W/m °C )2 , =T surfaces  tempera-
ture (°C), and =∞T free stream fluid temperature (°C). If 32°C air flows 
over a 5.5 m2  surface maintained at a temperature of 80°C, find the heat 
transfer for a heat transfer coefficient of ⋅40 W/m °C.2
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 6.16 The human body is a complex thermodynamic system. Is the human body 
an open or closed thermodynamic system? Identify the ways by which the 
body loses and gains energy across its boundary.

For problems 17 through 40, use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

First law of thermodynamics

 6.17 A 3-kg block is dropped from rest onto a linear elastic spring as shown in 
Figure P6.17. The spring is initially undeformed and has a spring constant 
of 1130 N/m. Assuming that the block sticks to the spring upon contact, 
what is the deformation of the spring when the block momentarily stops? 
(Hint: Remember that the block travels 2 m plus a distance equal to the de-
formation of the spring.)

2 m

k 5 1130 N/m

3 kgFigure P6.17

 6.18 An electric heating element imparts 25 kJ of energy to air in a tank while 12 
kJ of heat is lost from the air. If the initial internal energy of the air is 8 kJ, 
what is the final internal energy of the air?

 6.19 A machine shop is maintained at a constant temperature during the sum-
mer by small air-conditioning units with a rating of 8 kW. The rate of heat 
transfer from the surroundings to the machine shop is 24 kW. Five lathes and 
four mills dissipate a total of 4 kW, the lights in the shop dissipate 2.5 kW, 
and nine machinists dissipate a total of 3.5 kW. How many air- conditioning 
units are required?

 6.20 The piston-cylinder device shown in the Figure P6.20 contains a fluid that 
can be stirred by a rotating shaft. The outer surface of the device is covered 
with a thick layer of insulation. The shaft imparts 50 kJ to the fluid during 
a process in which the pressure is held constant at 130 kPa as the piston 
moves outward. If the internal energy of the fluid increases by 20 kJ during 
the process, what is the axial displacement of the piston?

Fluid

Wsh 5 50 kJ

Insulation

d 5 60 cm

P 5 130 kPa

Figure P6.20
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 6.21 A liquid contained in a rigid insulated container is mixed by a stirring de-
vice, as shown in Figure P6.21. Find the change in the internal energy of the 
liquid if 30 kJ of work is done by the stirring device.

liquid

Figure P6.21

 6.22 A small research facility in a remote polar region is maintained at a com-
fortable temperature by heaters that burn propane. The propane storage 
capacity of the facility is 5000 kg. If the rate of heat loss from the facility is 40 
kW and the heat of combustion of propane is 46 MJ/kg, how long can the 
facility be continuously heated before depleting the propane? Assume that 
only 70 percent of the heat of combustion is utilized as useful energy.

 6.23 A spherical hot-air balloon measuring 15 m in diameter flies at a constant 
altitude by periodically firing the burner system, maintaining the air within 
the canopy at a constant temperature. If the rate of heat loss per square 
meter through the canopy is 110 W/m ,2  how much energy must the burner 
supply during a 1-h period? If the burner system utilizes propane as fuel, 
how much propane is consumed during this time if the heat of combustion 
of propane is 46 MJ/kg? Assume that the entire heat of combustion is uti-
lized to heat the air in the canopy.

 6.24 The change in internal energy ∆U  for a closed system undergoing a ther-
modynamic process may be approximated by the relation:

( )∆ = −2 1U mc T T

where m is the mass of the substance within the system (kg), c is the average 
specific heat of the substance ⋅( J/kg °C),  and T1 and T2  are the initial and 
final temperatures of the substance (°C), respectively, for the process. A 
rigid tank contains 8 kg of steam at 320°C. During the next 2 min, the rate 
of heat transfer from the tank is 3 kW. What is the final temperature of the 
steam? For steam, let 1.411 kJ/kg °C.c = ⋅

 6.25 The change in internal energy, U∆ , for a closed system undergoing a ther-
modynamic process may be approximated by the relation:

U mc T T( )∆ = −2 1

where m is the mass of the substance within the system (kg), c is the average 
specific heat of the substance ( J/kg °C),⋅  and T1 and T2  are the initial and 
final temperatures of the substance (°C), respectively, for the process. A 
rigid tank contains 2 kg of air at 300°C. During the next 10 min, the rate of 
heat transfer from the tank is 1.3 kW, while during the same time, a rotating 
shaft does 500 kJ of work on the air. What is the final temperature of the air? 
For air, let 0.718 kJ/kg °C.c = ⋅
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Heat engines

 6.26 A high-temperature source supplies a heat engine with 30 kJ of energy. The heat 
engine rejects 18 kJ of energy to a low-temperature sink. How much work does 
the heat engine produce? What is the thermal efficiency of this heat engine?

 6.27 During a time interval of 1 h, a heat engine absorbs 360 MJ of energy from 
a high-temperature source while rejecting 40 kW to a low-temperature sink. 
How much power does the heat engine produce?

 6.28 A heat engine produces 1.4 MW of power while rejecting 875 kW to a nearby 
lake. What is the rate of heat transfer from the high-temperature source to 
the heat engine? What is the thermal efficiency of this heat engine?

 6.29 A heat engine produces 10 MW of power while absorbing 15 MW of power 
from a high-temperature source. What is the thermal efficiency of this heat 
engine? What is the rate of heat transfer to the low-temperature sink?

 6.30 Two heat engines operate in series, as shown in Figure P6.30. The heat re-
jected by the first heat engine is used as a heat source by the second heat 
engine. Find:

a) the work output of heat engine 1
b) the heat rejected by heat engine 2
c) the thermal efficiency of each heat engine.

Q1 = 500 kJ

Q2 = 325 kJ

Q3

W2 = 65 kJ

W1

high-temperature
source

HE 1

HE 2

low-temperature
sink

Figure P6.30

 6.31 The thermal efficiency of a heat engine is 35 percent. If the heat engine 
extracts 4 MJ of energy from a high-temperature source, how much energy 
is rejected to the low-temperature sink?
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Second law of thermodynamics

 6.32 A heat engine absorbs 25 MW from a 400°C combustion chamber and re-
jects 15 MW to the atmosphere at 30°C. Find the actual and Carnot thermal 
efficiencies of this heat engine. How much power does the heat engine pro-
duce?

 6.33 A 2-GW steam power plant, which uses a nearby river as a low-temperature 
sink, has an actual thermal efficiency of 42 percent. The high-temperature 
source is a 400°C boiler, and the temperature of the river water is 10°C. Find 
the rate of heat transfer to the river and the ideal thermal efficiency of the 
power plant.

 6.34 A heat engine utilizes a 135°C geothermal well as a heat source and the 
20°C atmosphere as a heat sink. What is the maximum thermal efficiency 
that this heat engine can achieve? If the heat engine absorbs 250 kW from 
the geothermal well, what is the maximum possible power output of the 
heat engine?

 6.35 A particular Carnot heat engine absorbs energy from a furnace and rejects 
energy to the atmosphere at 300 K. Graph the efficiency of this heat engine 
as a function of the temperature of the furnace. Use a range for TH of 350 
K to 2000 K. What can be concluded from this graph?

 6.36 An inventor claims that his heat engine produces 15 kJ for every 22 kJ sup-
plied to it. In the patent application, he claims that the heat engine absorbs 
energy from a 230°C source and rejects energy to a 25°C sink. Evaluate this 
invention.

 6.37 A 12-MW Carnot steam power plant operates between the temperature lim-
its of 600°C and 20°C. Find the rates of heat transfer to and from the heat 
engine.

 6.38 A heat engine utilizes solar energy as its energy source. The heat engine 
incorporates a solar panel that intercepts a solar radiation flux of 900 W/m2 
of panel surface. Assuming that the solar panel absorbs 85 percent of the 
incident solar radiation, find the exposed surface area of the solar panel 
required to yield a thermal efficiency of 20 percent and a power output of 
3.6 kW for the heat engine.

 6.39 What is the maximum possible power output of a heat engine operating 
between the temperature limits of 50°C and 800°C if 360 MJ of energy is 
supplied to the heat engine during a time period of 1 h? What is the actual 
power output if the heat engine rejects 216 MJ to the 50°C sink during the 
same time period?

 6.40 A coal-fired steam power plant is to be designed for the purpose of generat-
ing electrical power for a city with a population of 60,000 residents. Based 
on an order-of-magnitude analysis, it is estimated that each resident of the 
city will consume an average energy of 55 MJ per day. The coal-fired boiler 
supplies 70 MW to the steam while thermal energy is rejected to a nearby 
lake whose average temperature is 15°C. What is the minimum required 
temperature of the boiler to meet the power demands of the city?

 6.41 During the initial design stage of a power plant that is to burn natural gas, 
an engineer knows that the flame temperature of natural gas is 1953°C. If 
the power plant is to reject waste heat to a nearby river at 10°C, what is the 
maximum possible thermal efficiency that this power plant can achieve?
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 6.42 An ocean thermal energy conversion (OTEC) power plant utilizes tempera-
ture differences between shallow and deep seawater, thereby operating as a 
heat engine. If an OTEC power plant operates in a region where the tem-
peratures of the surface and deep ocean waters are 30°C and 11°C, respec-
tively, find the maximum possible thermal efficiency of this power plant.

 6.43 Someone claims that by doubling the temperature of the heat source, the 
thermal efficiency of a Carnot heat engine will be doubled. Evaluate this 
claim.

 6.44 Construct a graph of the thermal efficiency of a Carnot heat engine as a 
function of source temperature. (See Equation 6.41). Use a constant sink 
temperature of 300 K (room temperature). For the source temperature, use 
a range of 350 K to 2000 K.

 6.45 If the thermal efficiency of a Carnot heat engine is 0.40 and the sink tem-
perature is 20°C, what must the temperature of the source be?

 6.46 Construct a graph of the thermal efficiency of a Carnot heat engine as a 
function of the ratio of sink temperature to source temperature, TL/TH. 
As the graph shows, Carnot efficiency linearly approaches unity as this ratio 
decreases. In practical terms, how could a very small value of TL/TH be 
achieved? What are the physical constraints of minimizing this ratio?
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7.1 INTRODUCTION
An important field of study in engineering is fluid mechanics. Many of the basic principles 
of fluid mechanics were developed in parallel with those of solid mechanics, and its his-
torical roots can be traced to such great scientists and mathematicians as Archimedes 
(287–212 b.c.), Leonardo da Vinci (1425–1519), Isaac Newton (1642–1727), Evangelista 
Torricelli (1608–1647), Blaise Pascal (1623–1662), Leonhard Euler (1707–1783), 
Osborne Reynolds (1842–1912), and Ernst Mach (1838–1916). Fluid mechanics is the 
study of fluids at rest and in motion. As a subdiscipline of engineering mechanics, fluid 
mechanics is broadly divided into two categories, fluid statics and fluid dynamics. As the 
term implies, f luid statics is the branch of fluid mechanics that deals with the behavior of 
fluids at rest. Fluid dynamics is the branch of fluid mechanics that deals with the behavior 
of fluids in motion. In fluid statics, the fluid is at rest with respect to a frame of reference. 
This means that the fluid does not move with respect to a body or surface with which 
the fluid is in physical contact. In fluid dynamics, the fluid moves with respect to a body 

Fluid 
Mechanics

After reading this chapter, you 
will have learned
• The importance of fluid 

mechanics in engineering
• About density, specific 

weight, and specific gravity 
of fluids

• The concept of 
compressibility

• How viscosity affects shear 
forces in fluids

• To use the pressure–  
elevation relationship to 
find forces on submerged 
surfaces

• How to calculate volume 
flow rates and mass flow 
rates

• How to use the principle 
of continuity to analyze 
simple flow systems

Objectives

C H A P T E R
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234 Chapter 7 Fluid Mechanics

or surface, common examples being the flow of a fluid within a pipe or channel or 
around an immersed object such as a submarine or aircraft.

There are two primary physical states of matter—solid and fluid, the fluid state 
being subdivided into the liquid and gas states. A fourth state, referred to as the 
plasma state, refers to atoms and molecules that are ionized (electrically charged). 
Plasmas are categorized as special types of fluids that respond to electromagnetic 
fields. The analysis of plasmas is complex and will not be considered in this book. 
A fundamental question to be answered is, “What is the difference between a solid 
and a fluid?” Casual observations tell us that solids are “hard” whereas fluids are 
“soft.” Solids have a distinct size and shape and retain their basic dimensions even 
when large forces are applied to them. Fluids, however, do not have a distinct 
shape unless they are confined in some manner by solid boundaries. When placed 
in a container, a fluid takes on the shape of the container. Such phenomena occurs 
to one degree or another for liquids and gases. This behavior may be explained 
by examining the atomic and molecular structure of matter. In solids, the spacing 
of atoms or molecules is small, and there are large cohesive forces between these 
particles that enable solids to maintain their shape and size. In fluids, the atomic 
or molecular spacing is larger, and the cohesive forces are smaller, thereby permit-
ting fluids more freedom of movement. At room temperature and atmospheric 
pressure, the average intermolecular spacing is approximately −10  m10  for liquids 
and −10  m9  for gases. The differences in cohesive forces in solids, liquids, and 
gases account for the rigidity of solids, the ability of liquids to fill containers from 
the bottom up, and the ability of gases to completely fill containers in which they 
are placed.

Although the differences between solids and fluids can be explained in terms 
of atomic or molecular structure, a more useful engineering explanation involves 
the response of solids and fluids to the application of external forces. Specifically, 
a f luid may be defined as a substance that deforms continuously when acted upon by a 
shear stress of any magnitude. Stress is a force that is applied over a specified area. A 
shear stress is produced when a force acts tangentially on a surface. When a solid 
material, such as metal, plastic, or wood, is subjected to a shear stress, the material 
deforms a small amount and maintains a deformed shape while the shear stress is 
applied. If the shear stress is not too great, the material even returns to its original 
shape when the force producing the stress is removed. When a fluid is subjected 
to a shear stress, however, the fluid continues to deform. Unlike a solid, a fluid 
cannot sustain a shear stress, so it continuously deforms (i.e., the fluid flows in 
response to the shear stress). Some substances, such as tar, toothpaste, and putty 
exhibit behavior that lies somewhere between solids and fluids. These types of sub-
stances will flow if the shear stress is high enough, but the analysis of these sub-
stances can be complex. We will therefore restrict our attention to common fluids 
such as water, oil, and air.

In most colleges and universities, one or more courses in fluid mechanics is 
required of mechanical, civil, and chemical engineering majors. Depending on the 
specific curricular policies of your school or department, other majors may also be 
required to take a course in fluid mechanics. Fluid mechanics is typically offered as 
part of a “thermofluid” sequence consisting of thermodynamics, fluid mechanics, 
and heat transfer, since these three disciplines are closely related to one another. 
Courses in statics, strength of materials, electrical circuits, and other analytically 
oriented courses round out the engineering science curriculum.
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Engineers use principles of fluid mechanics to analyze and design a wide va-
riety of devices and systems. Consider the plumbing fixtures in your home. The 
sink, bathtub or shower, toilet, dishwasher, and washing machine are supplied 
water by a system of pipes, pumps, and valves. When you turn on a faucet, the 
rate at which the water flows is determined by principles of fluid mechanics. The 
analysis and design of virtually every type of transportation system involves the use 
of fluid mechanics. Aircraft, surface ships, submarines, rockets, and automobiles 
require the application of fluid mechanics in their design. Mechanical engineers 
use fluid mechanics to design heating and air-conditioning systems, turbines, in-
ternal combustion engines, pumps, and air compressors. Aeronautical engineers 
use fluid mechanics to design aircraft, spacecraft, and missiles. Chemical engi-
neers use fluid mechanics to design chemical processing equipment such as heat  
exchangers and cooling towers. Civil engineers use fluid mechanics to design water 
treatment plants, flood control systems, irrigation channels, and dams. Principles 
of fluid mechanics are even important in the design of ground-based structures. 
The collapse of the Tacoma Narrows Bridge in 1940 could have been prevented, 
had the designers paid attention to the possible effects of wind forces on suspen-
sion bridges. Principles of fluid mechanics are necessary for understanding winds 
and ocean currents. A proper understanding of fluid mechanics is also needed for 
studying blood flow in the human circulatory system. The list of fluid mechanics 
applications is long indeed. Figures 7.1 through 7.3 show engineering systems that 
involved the use of fluid mechanics in their design.

Figure 7.1
Aerial view of the Hoover 
Dam. Engineers used 
principles of fluid statics 
to determine the pressure 
forces acting on the struc-
ture. (US Department of the 
Interior)
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7.2 FLUID PROPERTIES
A property is a physical characteristic or attribute of a substance. Matter in either state, 
solid or fluid, may be characterized in terms of properties. For example, Young’s 
modulus is a property of solids that relates stress to strain. Density is a property of 
solids and fluids that provides a measure of mass contained in a unit volume. In this 
section, we examine some of the more commonly used fluid properties. Specifically, 
we will discuss (1) density, specific weight, and specific gravity, (2) bulk modulus, 
and (3) viscosity.

7.2.1 Density, Specific Weight, and Specific Gravity
A fluid is a continuous medium; that is, a substance that is continuously distributed 
throughout a region in space. Because a fluid is a continuous medium, it would be 
rather awkward to analyze the fluid as a single entity with a total mass m, total weight 
W, or total volume V. It is more convenient to analyze the fluid in terms of the mass 
of fluid contained in a specified volume. Density is defined as mass per unit volume. 

Figure 7.3
Principles of fluid dynam-
ics are used to design and 
analyze complex piping 
systems.

Figure 7.2
Principles of fluid mechan-
ics can be used to analyze 
the motion of a body 
through the air. This image 
shows the flow field around 
a soccer ball that can be 
calculated by a special 
kind of analytical method 
called computational fluid 
dynamics (CFD). (NASA’s 
Ames Research Center) 
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Density is a property that applies to solids as well as fluids. The mathematical defini-
tion for density ρ  is:

 
m
V

ρ = . (7.1)

The most commonly used units for density are kg/m3  in the SI system and 
slug/ft3  in the English system. Values for density can vary widely for different 
fluids. For example, the densities of water and air at 4°C and 1 atm pressure are 
about 1000 kg/m (1.94 slug/ft )3 3  and 1.27 kg/m  (0.00246 slug/ft ),3 3  respectively. 
Densities of liquids are higher than those of gases because the intermolecular 
spacing is smaller. Physical properties vary with temperature and pressure to some 
 extent. For liquids, density does not vary significantly with changes in temperature 
and pressure, but the densities of gases are strongly influenced by changes in tem-
perature and pressure.

A fluid property that is similar to density is specific weight. Specific weight is  
defined as weight per unit volume. The mathematical definition for specific weight γ  is:

 
W
V

γ = . (7.2)

The most commonly used units for specific weight are N/m3  in the SI system and 
lb /ftf

3  in the English system. Note that the unit for specific weight in the English 
system is not lb /ft .m

3  The unit lbm is a unit of mass, not a unit of weight. A quick 
inspection of Equation (7.1) and Equation (7.2) reveals that specific weight is es-
sentially the same property as density with mass replaced by weight. A formula that 
relates density ρ  and specific weight γ  may be obtained by noting that the weight 
of a unit volume of fluid is W mg= , where g is the local gravitational acceleration. 
Substituting the relation for weight W  into Equation (7.2) and combining the re-
sult with Equation (7.1), we obtain the relation:

 gγ ρ= . (7.3)

Using the standard value of gravitational acceleration, 9.81 m/s ,2=g  water at 4°C 
has a specific weight of:

 

(1000 kg/m )(9.81 m/s ) 9810 N/m 9.81 kN/m .3 2 3 3

γ ρ=

= = =

g

Doing the same calculation in English units, noting that the standard value of gravi-
tational acceleration is = 32.2 ft/s ,2g  water at 4°C (39.2°F) has a specific weight of:

 

(1.94 slug/ft )(32.2 ft/s ) 62.4 lb /ft .3 2
f

3

γ ρ=

= =

g

An alternative form of Equation (7.3) is:

 
g

gc
γ

ρ
=  (7.3a)

where gc  is a constant whose magnitude and units depend on the choice of units 
used for γ.  For example, the specific weight of water in SI units may be calculated as:

γ
ρ

=

=
⋅
⋅

=
(1000 kg/m )(9.81 m/s )

1
kg m
N s

9810 N/m .
3 2

2

3

g
gc
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Noting that =1 slug 32.2 lb ,m  the specific weight of water in English units may be 
calculated as:

γ
ρ

=

=
⋅
⋅

=
(62.4 lb /ft )(32.2 ft/s )

32.2
lb ft
lb s

62.4 lb /ft .m
3 2

m

f
2

f
3

g
gc

The density and specific weight of water, or any other substance for that matter, are 
numerically equivalent as long as the standard value of g is used. The rationale for 
finding the density and specific weight of water at 4°C in the foregoing discussion 
is that 4°C is a reference temperature on which specific gravity is based. Specific 
gravity is defined as the ratio of the density of a fluid to the density of water at a reference 
temperature. Typically, the reference temperature is taken as 4°C because the density 
of water is maximum (about 1000 kg/m )3  at this temperature. The mathematical 
definition for specific gravity sg is:

 
ρ

ρ
=sg

H O,4°C
.

2
 (7.4)

Because specific gravity is a ratio of two properties with the same units, it is a dimen-
sionless quantity. Furthermore, the value of sg does not depend on the system of units 
used. For example, the density of mercury at 20°C is 13,550 kg/m (26.29 slug/ft ).3 3  
Using SI units, the specific gravity of mercury is:

ρ
ρ

=

= =

sg
H O,4°C

 

13,550 kg/m
1000 kg/m

13.55.

2

3

3

Using English units, we obtain the same value.

ρ
ρ

=

= =

sg
H O,4°C

26.29 slug/ft
1.94 slug/ft

13.55.

2

3

3

Specific gravity may also be defined as the ratio of the specific weight of a fluid to the 
specific weight of water at a reference temperature. This definition, which is derived by 
combining Equation (7.4) and Equation (7.3), is expressed as:

 
γ

γ
=sg

H O, 4°C
.

2
 (7.5)

It does not matter whether Equation (7.4) or Equation (7.5) is used to find sg be-
cause both relations yield the same value. The definitions given by Equation (7.4) 
and Equation (7.5) apply regardless of the temperature at which the specific gravity 
is being determined. In other words, the reference temperature for water is always 
4°C, but the density and specific weight of the fluid being considered are based on 
the temperature specified in the problem. Table 7.1 summarizes the reference val-
ues used in the definitions of specific gravity.
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7.2.2 Bulk Modulus
An important consideration in the analysis of fluids is the degree to which a given 
mass of fluid changes its volume (and therefore its density) when there is a change in 
pressure. Stated another way, how compressible is the fluid? Compressibility refers to 
the change in volume V of a fluid subjected to a change in pressure P. The property 
used to characterize compressibility is the bulk modulus K defined by the relation:

 
/

=
−∆
∆

K
P

V V
 (7.6)

where ∆P  is the change in pressure, ∆V  is the change in volume, and V is the vol-
ume before the pressure change occurs. The negative sign is used in Equation (7.6) 
because an increase in pressure causes a decrease in volume, thereby assigning a 
negative sign to the quantity .∆V  The negative sign leaves a positive bulk modulus 
K. Because the ratio /∆V V  is dimensionless, the bulk modulus has units of pressure. 
Typical units used for K are MPa and psi in the SI and English systems, respectively. A 
large value of K means that the fluid is relatively incompressible (i.e., it takes a large 
change in pressure to produce a small change in volume). Equation (7.6) applies for 
liquids only. Compared with liquids, gases are considered compressible fluids, and 
the formula for bulk modulus depends on certain thermodynamic considerations. 
Only liquids will be considered here. Liquids are generally considered incompress-
ible fluids because they compress very little when subjected to a large change in 
pressure. Hence, the value of K for liquids is typically large. For example, the bulk 
modulus for water at 20°C is K = 2.24 GPa. For mercury at 20°C, =28.5 GPa.K  A list 
of bulk modulus values for some common liquids is given in Table 7.2.

Table 7.1 Density and Specific Weight of Water at 4° C

ρ γ
SI 1000 kg/m3 9810 N/m3

English 1.94 slug/ft3 62.4 lb /ftf
3

Table 7.2 Bulk Modulus for Common Liquids at 20°C
Liquid K(GPa) K(psi)

Benzene 1.48 2.15 105×

Carbon tetrachloride 1.36 1.97 105×

Castor oil 2.11 3.06 105×

Glycerin 4.59 6.66 105×

Heptane 0.886 1.29 105×

Kerosene 1.43 2.07 105×

Lubricating oil 1.44 2.09 105×

Mercury 28.5 4.13 106×

Octane 0.963 1.40 105×

Seawater 2.42 3.51 105×

Water 2.24 3.25 105×
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Compressibility is an important consideration in the analysis and design of 
 hydraulic systems. Hydraulic systems are used to transmit and amplify forces by 
pressurizing a fluid in a cylinder. A tube or hose connects the fluid in the cylin-
der with a mechanical actuator. The hydraulic fluid completely fills the cylinder, 
connecting line, and actuator so that when a force is applied to the fluid in the 
cylinder, the fluid is pressurized with equal pressure everywhere in the system. A 
relatively low force applied to the fluid in the cylinder can produce a large actuator 
force because the cross-sectional area over which the pressure is applied is much 
larger in the actuator than in the cylinder. Thus, the force applied at the cylinder 
is amplified at the actuator. Hydraulic systems are used in a variety of applications, 
such as heavy construction equipment, manufacturing processes, and transporta-
tion systems. The brake system in your automobile is a hydraulic system. When you 
press the brake pedal, the brake fluid in the system is pressurized, causing the brake 
mechanism in the wheels to transmit friction forces to the wheels, thereby slowing 
the vehicle. Brake fluids must have high bulk modulus values for the brake system 
to function properly. If the value of the bulk modulus of the brake fluid is too low, 
a large change in pressure will produce a large change in volume that will cause 
the brake pedal to bottom out on the floor of the automobile, rather than activat-
ing the brake mechanism in the wheels. This is what happens when air becomes 
trapped inside the brake system. Brake fluid is incompressible, but air is compress-
ible, so the brakes do not function. As an engineering student, you will understand 
the underlying engineering principles on which this hazardous situation is based. 
(See Figure 7.4.)

The bulk modulus of my
brake fluid is too low!

Figure 7.4
An engineering student 
explains a brake system 
failure. (Art by Kathryn 
Colton.)

7.2.3 Viscosity
The fluid properties of density, specific weight, and specific gravity are measures 
of the “heaviness” of a fluid, but these properties do not completely characterize 
a fluid. Two different fluids, water and oil for example, have similar densities, but 
exhibit distinctly different flow behavior. Water flows readily when poured from a 
container whereas oil, which is a “thicker” fluid, flows more slowly. Clearly, an addi-
tional fluid property is required to adequately describe the flow behavior of fluids. 
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Viscosity may be qualitatively defined as the property of a fluid that signifies the ease with 
which the fluid flows under specified conditions.

To investigate viscosity further, consider the hypothetical experiment depicted 
in Figure 7.5. Two parallel plates, one stationary and the other moving with a con-
stant velocity u, enclose a fluid. We observe in this experiment that the fluid in 
contact with both plates “sticks” to the plates. Hence, the fluid in contact with the 
bottom plate has a zero velocity, and the fluid in contact with the top plate has a 
velocity u. The velocity of the fluid changes linearly from zero at the bottom plate 
to u at the top plate, giving rise to a velocity gradient in the fluid. This velocity gra-
dient is expressed as a derivative, du/dy, where y is the coordinate measured from 
the bottom plate. Because a velocity gradient exists in the fluid, adjacent parallel 
“layers” of fluid at slightly different y values have slightly different velocities, which 
means that adjacent layers of fluid slide over each other in the same direction as the 
velocity u. As adjacent layers of fluid slide across each other, they exert a shear stress 
τ  in the fluid. Our experiment reveals that the shear stress τ  is proportional to the 
velocity gradient du/dy, which is the slope of the function u(y). Thus,

 
du
dy

τ ∝ . (7.7)

The result indicates that for common fluids such as water, oil, and air, the propor-
tionality in Equation (7.7) may be replaced by the equality:

 
du
dy

τ µ=  (7.8)

where the constant of proportionality µ  is called the dynamic viscosity. Equation 
(7.8) is known as Newton’s law of viscosity, and fluids that conform to this law are  
referred to as Newtonian f luids. Common liquids such as water, oil, glycerin, and 
gasoline are Newtonian fluids, as are common gases such as air, nitrogen, hydrogen, 
and argon. The value of the dynamic viscosity depends on the fluid. Liquids have 
higher viscosities than gases, and some liquids are more viscous than others. For 
example, oil, glycerin, and other gooey liquids have higher viscosities than water, 
gasoline, and alcohol. The viscosities of gases do not vary significantly from one gas 
to another, however.

Shear stress has the same units as pressure. In the SI system of units, shear stress 
is expressed in N/m ,2  which is defined as a pascal (Pa). In the English system, shear 
stress is usually expressed in lb /ftf

2  or lb /inf
2(psi). Velocity gradient has units of 

−s ,1  so a quick inspection of Equation (7.8) shows that dynamic viscosity µ  has units 
of ⋅Pa s in the SI system. The units of ⋅Pa s may be broken down into their base 
units of kg/m s.⋅  The units for µ  are ⋅lb s/ftf

2  or slug/ft s⋅  in the English system.
Consider once again the configuration illustrated in Figure 7.5. As the fluid 

flows between the plates, shear forces caused by viscosity are resisted by inertia 

Moving plate
u

y

u(y)

Stationary plate

Velocity gradient 5 du/dyFluid

Figure 7.5
A velocity gradient is  
established in a fluid 
between a stationary and a 
moving plate.
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forces in the fluid. Inertia forces are forces that tend to maintain a state of rest or 
motion in all matter, as stated by Newton’s first law. Another parameter that denotes 
the ratio of viscous forces to inertia forces in a fluid is kinematic viscosity. Kinematic 
viscosity ν  is defined as the ratio of dynamic viscosity to the density of the fluid. Thus,

 ν
µ
ρ

= . (7.9)

In the SI system of units, kinematic viscosity is expressed in m /s,2  and in the 
English system it is expressed in ft /s.2  Because the ratio of dynamic viscosity to 
density often appears in the analysis of fluid systems, kinematic viscosity may be the 
preferred viscosity measure.

Viscosity, like all physical properties, is a function of temperature. For liquids, 
dynamic viscosity decreases dramatically with increasing temperature. For gases, 
however, dynamic viscosity increases, but only slightly with increasing temperature. 
The kinematic viscosity of liquids behaves essentially the same as dynamic viscos-
ity because liquid densities change little with temperature. However, because gas 
densities decrease sharply with increasing temperature, the kinematic viscosities of 
gases increase drastically with increasing temperature.

EXAMPLE 7.1
A graduated cylinder containing 100 mL of alcohol has a combined mass of 280 g. 
If the mass of the cylinder is 200 g, what is the density, specific weight, and specific 
gravity of the alcohol?

Solution
The combined mass of the cylinder and alcohol is 280 g. By subtraction, the mass 
of the alcohol is:

m ( )= − =0.280 0.200  kg 0.080 kg.

Converting 100 mL to m ,3  we obtain:

× × = × −100  mL
1  L

1000  mL
1 m

1000  L
1 10  m .

3
4 3

The density of the alcohol is:

0.080 kg
1 10  m
800 kg/m .

4 3

3

ρ =

=
×

=

−

m
V

The weight of the alcohol is:

=

=

=

(0.080 kg)(9.81 m/s )

0.7848 N.

2

W mg
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So the specific weight is:

W
V

γ

( )

=

=
×

=

−
0.7848 N

1 10 m
0.7848 N/m .

4 3

3

The specific gravity of the alcohol is:

sg
H O, 4°C

800 kg/m
1000 kg/m

0.800.

2

3

3

ρ
ρ

=

=

=

EXAMPLE 7.2
Find the change in pressure required to decrease the volume of water at 20°C by  
1 percent.

Solution
From Table 7.2, the bulk modulus of water at 20°C is K = 2.24 GPa. A 1 percent 
decrease in volume denotes that / 0.01.∆ = −V V  Rearranging Equation (7.6) and 
solving for ,∆P  we obtain:

∆ = − ∆( / )P K V V
( )= − × −(2.24 10  Pa) 0.019

= × =22.4 10  Pa 22.4 MPa.6

EXAMPLE 7.3
Two parallel plates spaced 3 mm apart enclose a fluid. One plate is stationary, while 
the other plate moves parallel to the stationary plate with a constant velocity of  
10 m/s. Both plates measure ×60 cm 80 cm.  If a 12-N force is required to sustain 
the velocity of the moving plate, what is the dynamic viscosity of the fluid?

Solution
The velocity varies from zero at the stationary plate to 10 m/s at the moving plate, 
and the spacing between the plates is 0.003 m. The velocity gradient in Newton’s law 
of viscosity may be expressed in terms of differential quantities as:

( )∆ ∆ = = −/ (10 m/ )/ 0.003 m 3333 s .1u y s
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The shear stress is found by dividing the force by the area of the plates. Thus,

F
A

τ =

=
12 N

(0.6 m)(0.8 m)

25 N/m 25 Pa.2= =

Rearranging Equation (7.8) and solving for dynamic viscosity µ  we obtain:

/
µ

τ
=

∆ ∆u y

= −
25 Pa

3333 s 1

= × ⋅−7.50 10  Pa s.3

PRACTICE!

1. A cubical container measuring 18 cm on a side contains 5.25 kg of a 
liquid. If the liquid fills the container, find the density, specific weight, 
and specific gravity of the liquid.
Answer : 900 kg/m ,  8831 N/m ,  0.900.3 3

2. A swimming pool measuring × ×30 ft 18 ft 8 ft  is to be filled by using 
a water truck with a capacity of 5500 gallons. How many trips does the 
water truck have to make to fill the pool? If the density of the water is 
1.93 slug/ft ,3  what is the mass and weight of the water in the pool after 
it has been filled?
Answer : 6, 8381 slug, ×2.70 10  lb .5

f

3. A cylinder containing benzene at 20°C has a piston that compresses 
the fluid from 0 to 30 MPa. Find the percent change in the volume of 
the benzene.
Answer : −2.03%.

4. Hydraulic fluid is compressed by a piston in a cylinder, producing 
a change in pressure of 40 MPa. Before the piston is activated, the 
hydraulic fluid fills a 20-cm length of the cylinder. If the axial dis-
placement of the piston is 6.5 mm, what is the bulk modulus of the 
hydraulic fluid?
Answer : 1.231 GPa.

5. Glycerin at ρ µ= = ⋅20°C ( 1260 kg/m ,   1.48 Pa s)3  occupies a 1.6-mm 
space between two square parallel plates. One plate remains stationary 
while the other plate moves with a constant velocity of 8 m/s. If both 
plates measure 1 m on a side, what force must be exerted on the mov-
ing plate to sustain its motion? What is the kinematic viscosity of the 
glycerin?
Answer : 7400 N, × −1.175 10  m /s.3 2
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7.3 FLUID STATICS
Fluid mechanics is broadly divided into two categories: fluid statics and fluid 
 dynamics. Fluid statics, the subject of this section, is the branch of fluid mechan-
ics that deals with the behavior of fluids at rest. In fluid statics, the fluid is at rest 
with respect to a frame of reference. This means that the fluid does not move with 
respect to a body or surface with which the fluid is in physical contact. Because 
the fluid is at rest, the fluid is in a state of equilibrium where the vector sum of 
the external forces acting on the fluid is zero. As a subject, fluid statics encom-
passes several areas for study, including forces on submerged surfaces, pressure 
measurement and manometry, buoyancy, stability, and fluid masses subjected to 
acceleration. Our treatment of fluid statics will focus on the most fundamental of 
these subjects: forces on submerged surfaces.

7.3.1 Pressure–Elevation Relationship
Common experience tells us that the pressure increases with depth in a fluid. For 
example, a scuba diver experiences higher pressures as he descends below the 
water’s surface. If we are to know how to analyze the effect of forces exerted on 
submerged surfaces, we must first understand how pressure changes with elevation 
(vertical distance) in a static fluid.

To obtain a relationship between pressure and elevation in a static fluid, refer 
to the configuration shown in Figure 7.6. In this figure, we consider a static body of 
fluid with density ρ. Because the entire body of fluid is in equilibrium, every particle 
of fluid must therefore be in equilibrium. Thus, we can isolate an infinitesimally 
small fluid element for analysis. We choose as our fluid element a cylinder of height 
dz whose top and bottom surface area is A. Treating the fluid element as a free 
body in equilibrium, we observe that there are three external forces acting on the 
element in the z direction. Two of the forces are pressure forces acting on the top 
and bottom surfaces of the element. The pressure force acting on the top surface 
is PA, the product of the pressure at a given z coordinate and the surface area. The 
pressure force acting on the bottom surface is P dP A( )+ ,  the product of the pres-
sure at z dz+  and the surface area. The pressure acting on the bottom surface is 

+( ),P dP  because the pressure has increased a differential amount corresponding 
to an  elevation change of dz. Note that both pressure forces are compressive forces. 
(There are also pressure forces acting around the perimeter of the cylinder on its 
curved surface, but these forces cancel one another.) The third force acting on the 
fluid element is the weight of the fluid element W.

Writing a force balance on the fluid element in the z direction, we obtain:

 ( )Σ = = − + −0 .F PA P dP A Wz  (7.10)

A

PA

dz

z

W

(P 1 dP)A

Figure 7.6
Differential fluid  element 
used to derive the 
 pressure–elevation relation 

P h.γ∆ =
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The weight of the fluid element is:

 ρ ρ= = =W mg Vg gAdz  (7.11)

where the volume of the element is = .V Adz  Substituting Equation (7.11) into 
Equation (7.10) and simplifying, we obtain:

 ρ= .dP gdz  (7.12)

Equation (7.12) can now be integrated. Pressure is integrated from P1 to P ,2  and 
elevation is integrated from z1 to z .2  Thus,

 ∫ ∫ρ=
1

2

1

2
dP g dz  (7.13)

which yields

 P P g z zρ ( )− = − .2 1 2 1  (7.14)

In many instances, P1 is taken as the pressure at the origin, z z= = 0.1  The pres-
sure P2 then becomes the pressure at a depth z2 below the free surface of the fluid. 
We are usually not concerned with the force exerted by atmospheric pressure, so 
the pressure P1 at the free surface of the fluid is zero (i.e., the gauge pressure at the 
free surface is zero, and P2 is the gauge pressure at z2). Equation (7.14) may be 
expressed in a simplified form by letting 2 1∆ = −P P P  and h z z= − .2 1  Noting that 

gγ ρ= , Equation (7.14) reduces to:

 γ∆ =P h  (7.15)

where γ  is the specific weight of the fluid and h is the elevation change as ref-
erenced from the free surface. As h increases, pressure increases in accordance 
with our experience. We may draw some general conclusions from the relationship  
between pressure and elevation given by Equation (7.15):

1. Equation (7.15) is valid only for a homogenous static liquid. It does not apply to 
gases, because γ  is not constant for compressible fluids.

2. The change in pressure is directly proportional to the specific weight of the 
liquid.

3. Pressure varies linearly with depth, the specific weight of the liquid being the 
slope of the linear function.

4. Pressure increases with increasing depth and vice versa.
5. Points on the same horizontal plane have the same pressure.

Another important conclusion that may be drawn from Equation (7.15) is that, 
for a given liquid, the pressure change is a function of elevation change h only. 
Pressure is independent of any other geometrical parameter. The containers illus-
trated in Figure 7.7 are filled to a depth h with the same liquid, so the pressure at 
the bottom of these containers is the same. Each container has a different size and 

h

Figure 7.7
For the same liquid, the 
pressures in these contain-
ers at a given depth h are 
equal, being independent 
of the shape or size of the 
container.
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shape, and therefore contains different amounts of liquid, but the pressure is a 
function of depth only.

7.3.2 Forces on Submerged Surfaces
Now that the relationship between pressure and elevation in static liquids has been 
established, let us apply the relationship to the analysis of forces on submerged sur-
faces. We will examine two fundamental cases. The first case involves forces exerted 
by static liquids on horizontal submerged surfaces. The second case involves forces 
exerted by static liquids on partially submerged vertical surfaces. In both cases, we 
will restrict our analysis to plane surfaces.

In the first case, we find that the force exerted by a static liquid on a horizontal 
submerged surface is determined by a direct application of Equation (7.15). Consider 
a container with a plane horizontal surface filled with a liquid to a depth h, as shown 
in Figure 7.8. The pressure at the bottom of the container is given by γ=P h . Because 
the bottom surface is horizontal, the pressure is uniform across the surface. The force 
exerted on the bottom surface is simply the product of the pressure and the surface 
area. Thus, the force exerted on a horizontal submerged surface is:

 =F PA  (7.16)

where P hγ=  and A is the surface area. Equation (7.16) is valid regardless of the 
shape of the horizontal surface. The force exerted on a horizontal submerged sur-
face is equivalent to the weight W of the liquid above the surface. This fact is evident 
by writing Equation (7.16) as γ γ( )= = = .F hA V W

h
Pressure

Figure 7.8
The pressure is uniform on 
a horizontal submerged 
surface.

In the second case, we examine forces exerted on partially submerged vertical 
surfaces. One of the conclusions we gleaned from Equation (7.15) is that pressure 
varies linearly with depth in a static liquid. Consider the partially submerged vertical 
plane surface in Figure 7.9. The pressure (gauge pressure) is zero at the free surface 
of the liquid, and increases linearly with depth. At a depth h, below the free surface 
of the liquid, the gauge pressure is P hγ= . Because the pressure varies linearly from 
0 to P over the range 0 to h, the average pressure Pavg  is simply P/2. Thus,

 
γ

= =
2 2

 .avgP
P h

 (7.17)

The average pressure is a constant pressure that, when applied across the entire 
surface, is equivalent to the actual linearly varying pressure. Like pressure, the force 
exerted by the static liquid on the vertical surface increases linearly with depth. 
For purposes of structural design and analysis, we are generally interested in the 
total force or resultant force that acts on the vertical surface. The resultant force FR  is 
the product of the average pressure Pavg  and the area A of the surface that is sub-
merged. Hence,

 F P A
h A

R
γ

= =
 

2
.avg  (7.18)
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The resultant force is a concentrated force (a force applied at a point) that is 
equivalent to the linear force distribution on the vertical surface. In order to make 
use of the resultant force, the point of application of FR  must be known. From 
principles of statics, it can be shown that for a linearly varying force distribution, 
the point of application of the equivalent resultant force is two-thirds the distance 
from the end with the zero force. Consequently, as shown in Figure 7.9, the resul-
tant force acts at a point 2h/3 from the free surface of the liquid, or h/3 from the 
bottom of the vertical surface. The point at which the resultant force is applied is 
called the center of pressure. The resultant force, applied at the center of pressure, 
has the same structural effect on the surface as the actual linear force distribution. 
The reduction of a distributed force to a concentrated force simplifies the design 
and analysis of submerged surfaces such as dams, ship hulls, and storage tanks.

h

h/3

FR

h/2

Pressure

Pavg

Center of
pressure

Figure 7.9
Pressure variation and  
resultant force on a  
partially submerged  
vertical surface.

EXAMPLE 7.4
A small dam consists of a vertical plane wall with a height and width of 5 m and 30 m,  
respectively. The depth of the water γ =( 9.81 kN/m )3  is 4 m. Find the resultant 
force on the wall and the center of pressure.

Solution
Using Equation (7.18) and noting that only 4 m of the dam wall is submerged, we 
find that the resultant force is:

γ
=

2
F

hA
R

=
×(9810N/m )(4 m)(4 30) m

2

3 2

= × =2.35 10  N 2.35 MN.6

The center of pressure is located two-thirds from the free surface of the water. Thus, 
the center of pressure, which we denote by zcp, is:

z
h

=
2
3

cp

= =
2(4 m)

3
2.67 m (from the free surface).
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PRACTICE!

1. A barrel of motor oil ( 8.61 kN/m )3γ =  is filled to a depth of 90 cm. 
Neglecting atmospheric pressure, what is the pressure on the bottom 
of the barrel? If the radius of the barrel’s bottom is 20 cm, what is the 
force exerted by the motor oil on the bottom?
Answer : 7.749 kPa, 61.7 kN.

2. The bottom portion of the hull of a barge is submerged 12 ft in seawater 
γ =( 64.2 lb /ft ).f

3  The hull is horizontal and measures ×30 ft 70 ft. 
Find the total force exerted by the seawater on the hull.
Answer : ×1.618 10  lb .6

f

3. The gauge pressure at the bottom of a tank containing ethyl alcohol 
( 7.87 kN/m )3γ =  is 11 kPa. What is the depth of the alcohol?
Answer : 1.398 m.

4. A vertical gate in an irrigation canal holds back 2.2 m of water. Find the 
total force on the gate if its width is 3.6 m.
Answer : 85.5 kN.

5. A simple dam is constructed by erecting a vertical concrete wall whose 
base is secured firmly to the ground. The width of the wall is 16 m, and 
5 m of the wall is submerged in water. Find the moment of force about 
the base of the wall. (Hint : The moment of force is the product of the 
resultant force and the perpendicular distance from the center of pres-
sure to the base of the wall.)
Answer : ⋅3.27 MN m.

7.4 FLOW RATES
The concept of flow rate is fundamental to the understanding of elementary fluid 
dynamics. In general terms, flow rate refers to the time it takes a quantity of fluid to 
pass a specified location. Virtually all engineering systems that incorporate moving 
fluids for their operation involve the principle of flow rate. For example, the pipes in 
your home carry water at certain flow rates to various fixtures and appliances such as 
sinks, bathtubs, and washing machines. Heating and air-conditioning systems supply 
air at specified flow rates to the rooms in a building to achieve the desired heating 
or cooling effects. Minimum flow rates are required to produce the lifting forces 
that sustain the flight of aircraft. The design of turbines, pumps, compressors, heat 
exchangers, and other fluid-based devices involves the use of flow rates.

In fluid dynamics, there are primarily two types of flow rates: volume flow rate 
and mass flow rate. Volume f low rate is the rate at which a volume of fluid passes a location 
per unit time. Mass f low rate is the rate at which a mass of fluid passes a location per unit 
time. These are general definitions that apply to all fluid dynamic situations, but our 
application of these definitions will be limited to the flow of fluids in conduits such 
as pipes, ducts, and channels. Volume flow rate V�  is calculated by using the relation:

 V A� υ=  (7.19)

where A is the inside cross-sectional area of the conduit and v is the average veloc-
ity of the fluid. The word “average” is emphasized here because the velocity of the 
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fluid in a conduit is not constant. Effects of viscosity produce a velocity gradient or 
profile in the fluid across the breadth of the conduit. (Be careful not to confuse 
fluid velocity v with volume V  ). Common units for volume flow rate are m /s3  in 
the SI system and ft /s3  in the English system. Other units frequently used for vol-
ume flow rate are L/min and gal/min or L/h and gal/h. Equation (7.19) applies 
to any conduit, regardless of its cross-sectional shape. For example, if the conduit 
is a circular pipe or tube, then A Rπ= ,2  where R is the inside radius, whereas if 
the conduit is a duct with a square cross section, then A L= ,2  where L is the inside 
dimension of the duct. Mass flow rate m is calculated by using the relation:

 m V� �ρ=    (7.20)

where ρ  is the density of the fluid and V�  is the volume flow rate given by Equation 
(7.19). The ‘dot’ over the m denotes a time derivative or a rate quantity. Common 
units for mass flow rate are kg/s in the SI system and slug/s or lb /sm  in the English 
system. Equations (7.19) and (7.20) apply to all liquids and gases.

EXAMPLE 7.5
A pipe with an inside diameter of 5 cm carries water at an average velocity of 3 m/s. 
Find the volume flow rate and mass flow rate.

Solution
The cross-sectional area of the pipe is:

A
Dπ

=
4

2

π
= = × −(0.05 m)

4
1.963 10  m .

2
3 2

The volume flow rate is:

V A� υ=
= × −(1.936 10  m )(3 m/ )3 2 s
= × −5.89 10  m /s.3 3

Taking the density of water to be ρ = 1000 kg/m ,3  the mass flow rate is:

m V� �ρ=
= × −(1000 kg/m )(5.89 10  m /s)3 3 3

= 5.89 kg/s.

PROFESSIONAL SUCCESS — THINGS TO CONSIDER  
AT THE “HUMP”

A traditional engineering bachelor’s degree takes four years to complete. The 
times that mark the conclusion of the freshman, sophomore, junior, and senior 
years of a college career are sometimes facetiously referred to as the bump, 
hump, slump, and dump, respectively. (The fact that you are reading this book 
suggests that you have not bumped yet.) By the time you hump, you should begin 
thinking about what you want to do after graduation. Should you accept an engi-
neering position immediately after graduation or go to graduate school? What 
about going to work as an engineer while working on a graduate degree part 
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time? Should you work for a few years and then go back to school for a  graduate 
degree? Should you obtain your professional engineering license? Should you 
pursue a nontechnical graduate degree to complement your  engineering back-
ground? These are some of the questions that you should be asking yourself 
about midway through your undergraduate engineering program.

A bachelor’s degree in engineering paves the way to a rewarding career 
with a respectable salary, so many four-year engineering graduates do not pur-
sue graduate studies. However, many engineering companies have a need for 
engineers with in-depth expertise in specific technical disciplines, so engineers 
with graduate degrees are in high demand. In general, engineers with graduate 
degrees have higher salaries than their coworkers with only a bachelor’s degree 
and are frequently well positioned for supervisory and managerial roles. If a 
graduate degree is in the future for you, is it better to enter graduate school im-
mediately after you graduate with your four-year degree, or should you accrue 
some engineering experience first and then pursue a graduate degree while 
you are working? That depends on your personal circumstances, the nature of 
the graduate school you wish to attend and the policies of your employer. Many 
people feel that their lives are busy enough with a full-time job, family, and other 
responsibilities without adding graduate school to the list. Some graduate pro-
grams may not look favorably upon part-time graduate students who, because 
of work commitments, cannot focus exclusively on their graduate studies. How-
ever, many schools are quite willing to work with (and even welcome) part-time 
graduate students in their engineering programs. Most engineering companies 
offer educational assistance to their engineers who wish to pursue graduate 
studies. This assistance most often comes in the form of tuition reimbursement 
and flexible working schedules so their employees can take graduate courses 
at a nearby university. As for pursuing a graduate degree in engineering or a 
nontechnical field such as business or management, you should examine your 
personal educational and career goals. Do you want to advance technically in a 
specific discipline, or do you want to climb the management ladder?

Should you become professionally licensed? Regardless of your answer to 
this question, you should seriously consider taking the Fundamentals of Engi-
neering (FE) examination in the junior or senior year of your program. This 
test is a state-sponsored exam offered twice a year and administered in your 
area. The FE exam is a 6-hour exam that covers the fundamental principles of 
engineering taught in a typical undergraduate engineering curriculum. The 
exam is offered in seven engineering disciplines: chemical, civil, electrical 
and computer, environmental, industrial and systems, mechanical, and oth-
er. Some engineering schools require their students to pass the FE exam to 
graduate. After you have passed the FE exam and have worked a few years as 
a practicing engineer, you can take the PE (Professional Engineer) exam that 
is specific to your discipline. If you pass that exam and if you have satisfied the 
other licensing requirements specified by your state, you can write the initials 
PE after your name on official letters, drawings, and other documents. A pro-
fessional engineer is an engineer who is officially recognized by the state as 
having demonstrated proficiencies in a specific engineering discipline. Most 
engineering companies do not require their engineers to be professionally 
licensed, but some firms, particularly state and municipal governments, have 
strict rules about employing engineers who are professionally licensed. Thus, 
your decision to become professionally licensed or not may be largely based 
on the requirements or recommendations of your employer.
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PRACTICE!

1. A steel tube carries gasoline ρ =( 751 kg/m )3  at an average velocity of 
0.85 m/s. If the inside diameter of the tube is 7 mm, find the volume 
flow rate and mass flow rate.
Answer : 3.271 10  m /s, 0.0246 kg/s .5 3× −

2. Water flows through a plastic pipe at a volume flow rate of 160 gal/min.  
What is the inside radius of the pipe if the average velocity of the water 
is 8 ft/s? Express your answer in inches and centimeters.
Answer : 1.43 in, 3.63 cm.

3. A blower forces air γ =( 11.7 N/m )3  through a rectangular duct with a 
×50 cm 80 cm inside cross section. If the average velocity of the air is  

7 m/s, find the volume flow rate and mass flow rate. Express the vol-
ume flow rate in m /s3  and ft /min3  (CFM) and the mass flow rate in 
kg/s and slug/h.
Answer : 2.80 m /s, 5933 ft /min, 3.339 kg/s, 824 slug/h.3 3

4. A pump removes water from a 1200-gallon storage tank at a rate of 
0.05 m /s.3  How long will it take the pump to empty the tank? If a pipe 
with an inside diameter of 6 cm connects the pump to the tank, what is 
the average velocity of the water in the pipe?
Answer : 90.9 s, 17.7 m/s.

5. Air flows through a duct with a rectangular cross section at an average 
velocity of 20 ft/s and a volume flow rate of 2200 ft /min3  (CFM). If 
the inside dimension of one side of the duct measures 18 in, what is 
the dimension of the other side?
Answer : 1.22 ft.

7.5 CONSERVATION OF MASS
Some of the most important fundamental principles used to analyze  engineering 
systems are the conservation laws. A conservation law is an immutable law of  
nature declaring that certain physical quantities are conserved. Defined another 
way, a conservation law states that the total amount of a particular physical quantity 
is constant during a process. A familiar conservation law is the first law of ther-
modynamics, which states that energy is conserved. According to the first law of 
thermodynamics, energy may be converted from one form to another, but the total 
energy is constant. Another conservation law is Kirchhoff’s current law, which states 
that the algebraic sum of the currents entering a circuit node is zero. Kirchhoff’s 
current law is a statement of the law of conservation of electric charge. Other quan-
tities that are conserved are linear and angular momentum.

In this section, we examine the principal conservation law used in fluid  
mechanics, the law of conservation of mass. Like the first law of thermodynamics, 
the law of conservation of mass is an intuitive concept. To introduce the conserva-
tion of mass principle, consider the system shown in Figure 7.10. The system may 
represent any region in space chosen for analysis. The boundary of the system is 
the surface that separates the system from the surroundings. We may construct a 
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mathematical representation of the conservation of mass principle by applying a 
simple physical argument. If an amount of mass min is supplied to the system, that 
mass can either leave the system or accumulate within the system, or both. The mass 
that leaves the system is m ,out  and the change in mass within the system is .∆m  
Thus, the mass that enters the system equals the mass that leaves the system plus the 
change in mass within the system. The conservation of mass principle may there-
fore be expressed mathematically as:

 .in out= + ∆m m m  (7.21)

We see that the conservation of mass law is nothing more than a simple accounting 
principle that maintains the system’s “mass ledger” in balance. In fact, this conser-
vation law is often referred to as a mass balance because that is precisely what it is. 
Equation (7.21) is more useful when expressed as a rate equation. Dividing each 
term by a time interval ,∆t  we obtain:

 = + ∆ ∆/in outm m m t� �  (7.22)

where m� in and m�out  are the inlet and outlet mass flow rates respectively, and /∆ ∆m t  
is the rate of change in mass within the system. The law of conservation of mass is 
called the continuity principle, and Equation (7.22) or a similar relation, is referred 
to as the continuity equation.

We now examine a special case of the configuration given in Figure 7.10. 
Consider the converging pipe shown in Figure 7.11. The dashed line outlines the 
boundary of the flow system defined by the region inside the pipe wall and between 
sections 1 and 2. A fluid flows at a constant rate from section 1 to section 2. Because 

Boundary
mout

min

min 5 mout 1 Dm

System
Surroundings

Dm

Figure 7.10
The law of conservation of 
mass.

Flow

1

2

m· 1 5 m· 2

Figure 7.11
Continuity principle for a 
converging pipe.
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254 Chapter 7 Fluid Mechanics

fluid does not accumulate between sections 1 and 2, / 0,∆ ∆ =m t  and Equation 
(7.22) becomes,

 m m� �=1 2 (7.23)

where the subscripts 1 and 2 denote the input and output, respectively. Thus, the 
mass of fluid flowing past section 1 per unit time is the same as the mass of fluid 
flowing past section 2 per unit time. Because m V� �ρ=  . Equation (7.23) may also be 
expressed as

 V V� �ρ ρ=  1 1 2 2  (7.24)

where ρ  and V�    denote density and volume flow rate, respectively. Equation (7.23), 
and its alternative form, Equation (7.24), are valid for liquids and gases. Hence, 
these relations apply to compressible and incompressible fluids. If the fluid is in-
compressible, the fluid density is constant, so ρ ρ ρ= = .1 2  Dividing Equation 
(7.24) by density ρ, yields:

 V V� �=1 2 (7.25)

which may be written as:

 A Aυ υ=1 1 2 2 (7.26)

where A and v refer to cross-sectional area and average velocity, respectively. 
Equations (7.25) and (7.26) apply strictly to liquids, but these relations may also 
be used for gases with little error if the velocities are below approximately 100 m/s.

The continuity principle can also be used to analyze more complex flow con-
figurations, such as a flow branch. A flow branch is a junction where three or more 
conduits are connected. Consider the pipe branch shown in Figure 7.12. A fluid 
enters a junction from a supply pipe, where it splits into two pipe branches. The 
flow rates in the branching pipes depend on the size of the pipes and other charac-
teristics of the system, but from the continuity principle, it is clear that the mass flow 
rate in the supply pipe must equal the sum of the mass flow rates in the two pipe 
branches. Thus, we have:

 m m m� � �= + .1 2 3  (7.27)

Junctions in flow branches are analogous to nodes in electrical circuits. 
Kirchhoff’s current law, which is a statement of the law of conservation of electric 
charge, states that the algebraic sum of the currents entering a node is zero. For a 
flow branch, the continuity principle states that the algebraic sum of the mass flow rates 
entering a junction is zero. The mathematical expression for this principle is similar to 
Kirchhoff’s current law and is written as:

 Σ = 0.inm�  (7.28)

1

3

2
m· 1

m· 2

m· 3

Figure 7.12
A pipe branch.
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7.5 Conservation of Mass 255

The continuity relation given by Equation (7.27) for the specific case illustrated 
in Figure 7.12 is equivalent to the general form of the relation given by Equation 
(7.28). We have:

 Σ =
= − −

0 in

1 2 3

m
m m m

�
� � �

 (7.29)

where minus signs are used for mass flow rates m�2 and m�3 because the fluid in each 
pipe branch is leaving the junction. The mass flow rate m�1 is positive because the 
fluid in the supply pipe is entering the junction.

In the next example, we analyze a basic flow system by using the general analysis 
procedure of (1) problem statement, (2) diagram, (3) assumptions, (4) governing 
equations, (5) calculations, (6) solution check, and (7) discussion.

EXAMPLE 7.6
Problem Statement
A converging duct carries oxygen ( 1.320�kg/m )3ρ =  at a mass flow rate of 110 kg/s.  
The duct converges from a cross-sectional area of 2 m2 to a cross-sectional area of 
1.25 m .2  Find the volume flow rate and the average velocities in both duct sections.

Diagram
The diagram for this problem is shown in Figure 7.13.

Assumptions
1. The flow is steady.
2. The fluid is incompressible.
3. There are no leaks in the duct.

Oxygen

m·  5 110 kg/s

A1 5 2 m2

A2 5 1.25 m2

Figure 7.13
Converging duct for  
Example 7.6.

Governing equations
Two equations are needed to solve this problem—the relation for mass flow rate 
and the continuity relation:

m V� �ρ=

V A A� υ υ= = .1 1 2 2
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256 Chapter 7 Fluid Mechanics

Calculations
By continuity, the volume flow rate and mass flow rate are equal at sections 1 and 2. 
The volume flow rate is:

V
m� �
ρ

=

=
110 kg/s

1.320 kg/m3

= 83.33 m /s.3

The average velocity in the large section is:

V
A

�
υ =1

1

=
83.33 m /s

2 m

3

2

= 41.7 m/s.

and the average velocity in the small section is:

V
A

�
υ =2

2

=
83.33 m /s

1.25 m

3

2

= 66.7 m/s.

Solution check
After a careful review of our solution, no errors are found.

Discussion
Note that velocity and cross-sectional area are inversely related. The velocity is low 
in the large portion of the duct and high in the small portion of the duct. The maxi-
mum velocity in the duct is below 100 m/s, so the oxygen may be considered an 
incompressible fluid with little error. Our assumption that the fluid is incompress-
ible is therefore valid.

ANALYZING A PIPE BRANCH
Pipe branches are used frequently in piping systems to split a stream into two or 
more flows. Consider a pipe branch similar to the one shown in Figure 7.12. Water 
enters the pipe junction at a volume flow rate of 350 gal/min, and the flow splits 
into two branches. One pipe branch has an inside diameter of 7 cm, and the other 
pipe branch has an inside diameter of 4 cm. If the average velocity of the water 
in the 7-cm branch is 3 m/s, find the mass flow rate and volume flow rate in each 
branch and the average velocity in the 4-cm branch. A flow schematic with the per-
tinent information is shown in Figure 7.14. First, we convert the volume flow rate in 
the supply pipe to m /s :3

× ×= =350 
gal

min
1 m

264.17  gal
1  min

60 s
0.02208 m /s.1

3
3V�

A
PP

LIC
AT

IO
N

M07_HAGE4428_05_SE_C07.indd   256 13/11/20   11:34 AM



7.5 Conservation of Mass 257

The cross-sectional areas of the pipes branches are:

A
Dπ

=
4

2
2

2

π
= = × −(0.07 m)

4
3.848 10  m

2
3 2

A
Dπ

=
4

3
3

2

π
= = × −(0.04 m)

4
1.257 10  m .

2
3 2

The volume flow rate in the 7-cm pipe branch is:

V A� υ=2 2 2

= × −(3.848 10  m )(3 m/s)3 2

= 0.01154 m /s3 .

and the mass flow rate is:

m V� �ρ=2 2

= (1000 kg/m )(0.01154 m /s)3 3

= 11.54 kg/s.

In order to find the flow rates in the other pipe branch, we use the relation:

V V V� � �= + .1 2 3

Solving for V� ,3  we obtain:

V V V� � �= −3 1 2

( )= −0.02208 0.01154  m /s3

= 0.01054 m /s3 .

and the corresponding mass flow rate is:

m V� �ρ=3 3

= (1000 kg/m )(0.01054 m /s)3 3

= 10.54 kg/s.

V·1 5 350 gal/min

D3 5 4 cm

D2 5 7 cm
v2 5 3 m/s

Figure 7.14
Flow schematic for a pipe 
branch.
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258 Chapter 7 Fluid Mechanics

Finally, the average velocity in the 4-cm branch is:

V
A

�
�

υ =3
3

3

=
× −

0.01054 m /s
1.257 10  m

3

3 2

= 8.38 m/s.

The volume flow rate into the junction must equal the sum of the volume flow 
rates out of the junction. Thus,

V V V� � �= +1 2 3

= +0.02208 m /s 0.01154 m /s 0.01054 m /s.3 3 3

The flow rates balance, so our answers are correct. Notice that the flow rates in the 
pipe branches are nearly equal (11.54 kg/s and 10.54 kg/s), but the velocities are 
quite different (3 m/s and 8.38 m/s). This is due to the difference in diameters 
of the pipes. The velocity is nearly three times higher in the 4-cm pipe than in the  
7-cm pipe.

PRACTICE!

1. Oil ( r  =  860 kg/m3) flows through a converging pipe at a mass flow 
rate of 20 kg/s. The inside diameters of the pipe, sections are 6.0 cm 
and 3.5 cm. Find the volume flow rate of oil and the average velocity in 
each pipe section.
Answer : 0.023 m /s, 8.23 m/s,  24.2 m/s.3

2. A fluid flows through a pipe whose diameter decreases by a factor 
of four from section 1 to section 2 in the direction of the flow. If the 
average velocity at section 1 is 8 ft/s, what is the average velocity at 
section 2?
Answer : 128 ft/s.

3. Air enters a junction in a duct at a volume flow rate of 2000 CFM. Two 
square duct branches, one measuring ×12 in 12 in and the other mea-
suring ×16 in 16 in,  carry the air from the junction. If the average ve-
locity in the small branch is 20 ft/s, find the volume flow rates in each 
branch and the average velocity in the large branch.
Answer : 20 ft /s, 13.3 ft /s, 9.98 ft/s.3 3

4. Two water streams, a cold stream and a hot stream, enter a mixing 
chamber where both streams combine and exit through a single tube. 
The mass flow rate of the hot stream is 5 kg/s, and the inside diameter 
of the tube carrying the cold stream is 3 cm. Find the mass flow rate of 
the cold stream required to produce an exit velocity of 8 m/s in a tube 
with an inside diameter of 4.5 cm.
Answer : 7.72 kg/s.
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KEY TERMS

bulk modulus
center of pressure
compressibility
continuity principle
density
dynamic viscosity
fluid

fluid dynamics
fluid mechanics
fluid statics
kinematic viscosity
mass flow rate
Newtonian fluid
shear stress

specific gravity
specific weight
velocity gradient
viscosity
volume flow rate
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Fluid properties

 7.1 Liquid metals are sometimes used as coolants in nuclear energy systems. 
The specific gravities of liquid sodium and liquid potassium are approxi-
mately 0.93 and 0.80, respectively. Find the density and specific weight of 
these liquid metals in SI and English units.

 7.2 A 12-cm diameter cylindrical can is filled to a depth of 10 cm with motor oil 
ρ( = 878 kg/m ).3  Find the mass and weight of the motor oil.

 7.3 The fuel tank of a truck has a capacity of 75 gal. If the tank is full of diesel 
fuel (sg = 0.85), what is the mass and weight of the fuel in SI and English 
units?

 7.4 A room measuring 4 m × 6 m × 9 m contains air with a density of ρ = 1.16 
kg/m3. Find the mass and weight of the air in SI and English units.

 7.5 Find the volume of mercury =(sg 13.55) that weighs the same as 0.04 m3 of 
ethyl alcohol =(sg 0.802).

 7.6 Find the pressure change required to produce a 2.15 percent decrease in 
the volume of glycerin at 20°C.

 7.7 Hydraulic fluid is compressed by a piston in a cylinder producing a change 
in pressure of 120 MPa. Before the piston is activated, the hydraulic fluid 
fills a 16-cm length of the cylinder. If the axial displacement of the piston is 
8 mm, what is the bulk modulus of the hydraulic fluid?

 7.8 The pressure change in a hydraulic cylinder is 180 MPa for an axial displace-
ment of 15 mm of the piston. If the bulk modulus of the hydraulic fluid is 
1.3 GPa, what is the minimum length of cylinder required?

PROBLEMS
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260 Chapter 7 Fluid Mechanics

 7.9 What is the ratio of dynamic viscosity of liquid water to dynamic viscosity of 
the following gases at 20°C?

a. air
b. helium
c. saturated water vapor

 7.10 The velocity gradient u(y) near the surface of a single plate over which a 
fluid flows is given by the function:

= + +u y ay by cy( )  2 3

where y is the distance from the plate’s surface and a, b, and c are constants 
with the values a b= =− − −10.0 s ,   0.02 m s ,1 1 1  and c = − −0.005 m s .2 1  If the 
fluid is water at 20°C ×µ = ⋅−( 1.0 10  Pa s),3  find the shear force at the 
surface of the plate (at y = 0).

For problems 11 through 31, use the general analysis procedure of (1) problem 
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

 7.11 Two square parallel plates enclose engine oil at −15°C µ = ⋅( 2.84 Pa s) as 
illustrated in Figure P7.11. The bottom plate is fixed, and the top plate is 
attached to a hanging mass by a cord that passes over a frictionless pulley. 
What mass m is required to sustain a constant velocity of 2.5 m/s for the top 
plate?

6 mm

50 cm

Engine oil

m

Figure P7.11

Fluid statics

 7.12 The deepest known point in the oceans of the earth is the Mariana Trench, 
east of the Philippines, with a depth of approximately 10.9 km. Taking the 
specific gravity of seawater as =sg 1.030, what is the pressure at the bottom 
of the Mariana Trench? Express your answer in kPa, psi, and atmospheres.

 7.13 The average depth of the world’s oceans is 5000 m, and the oceans cover  
71 percent of the earth’s surface. What is the approximate total force 
 exerted by the oceans on the earth’s surface? The earth is nearly spherical 
with an average diameter of approximately ×12.7 10  m,6  and the specific 
weight of seawater is γ = 10.1 kN/m .3

 7.14 The drinking water requirements of a small town are supplied by a water 
tower consisting of a large tank atop a vertical pipe. If the water level in the 
tank is 45 m above the ground, what is the static water pressure at ground 
level?

 7.15 A container holds three immiscible liquids as shown in Figure P7.15. Find 
the gauge pressure at the bottom of the container.
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 7.16 The side of a barge is submerged 6 m below the surface of the ocean 
γ =( 10.1 kN/m ).3  The length of the barge is 90 m. Treating the side of the 

barge as a plane vertical surface, what is the total force exerted by the ocean 
on the side of the barge?

 7.17 To what depth would a container of engine oil (sg = 0.878) have to be filled 
to yield the same pressure at the bottom of a container with 8.25 in of mer-
cury (sg = 13.55)?

 7.18 Calculate the gauge pressure at the bottom of an open 2-liter container full 
of soft drink.

 7.19 Find the force required to remove a 6.5-cm diameter plug from a bathtub 
drain when the tub is filled with water to a depth of 45.0 cm. Neglect fric-
tion.

Flow rates

 7.20 A glass tube carries mercury at an average velocity of 30 cm/s. If the inside 
diameter of the tube is 4.0 mm, find the volume flow rate and the mass flow 
rate.

 7.21 Air at 1 atm pressure and 20°C flows in the annular space between two con-
centric circular ducts, as shown in Figure P7.21. If the average velocity of the 
air is 5.0 m/s, find the volume flow rate and mass flow rate.

12 cm
sg 5 0.650

sg 5 0.985

sg 5 1.590

20 cm

15 cm

Figure P7.15

12 cm 20 cm

air

Figure P7.21

 7.22 An intravenous device for administering a sucrose solution to a hospital 
patient deposits a drop of solution into the mouth of a delivery tube every  
2 s. The drops are spherical in shape with a diameter of 3.5 mm. If the inside 
diameter of the delivery tube is 2.0 mm, what is the mass flow rate and the 
average velocity of sucrose solution in the tube? If the plastic vessel contain-
ing the sucrose solution holds 500 mL, how long will it take to empty? The 
sucrose solution has a specific weight of γ = 10.8 kN/m .3
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262 Chapter 7 Fluid Mechanics

 7.23 A furnace requires 1250�lb /hm  of cold air for efficient combustion. If the air 
has a specific weight of 0.064 lb /ft ,f

3  find the required volume flow rate.

 7.24 A ventilation duct supplies fresh filtered air to a clean room where semi-
conductor devices are manufactured. The cross section of the filter medi-
um is ×1.30 m 1.1 m. If the volume flow rate of air to the clean room is 
3.75 m /s,3  find the average velocity of the air as it passes through the filter. 
If ρ = 1.194 kg/m3  for the air, find the mass flow rate.

Conservation of mass

 7.25 A venturi is a constriction formed in a pipe or tube for the purpose of mea-
suring the pressure drop of a fluid. From the pressure drop measurement, 
the flow rate can be calculated. Hence, a venturi is sometimes referred to 
as a venturi meter or flow meter. For the venturi shown in Figure P7.25, the 
mass flow rate of water is 1.75 kg/s. Find the volume flow rate and average 
velocity at the entrance and the volume flow rate and average velocity at the 
constriction.

H2O D1 = 4.0 cm D2 = 1.75 cm

Figure P7.25

 7.26 A nozzle is a device that accelerates the flow of a fluid. A circular nozzle that 
converges from an inside diameter of 5 cm to 3.5 cm carries a gas at a vol-
ume flow rate of 0.10 m /s.3  Find the change in average velocity of the gas.

 7.27 A diffuser is a device that decelerates the flow of air in order to recover a 
pressure loss. For the diffuser shown in Figure P7.27, find the mass flow 
rate and the average velocity of the air at the exit of the diffuser. For air, let 
ρ = 1.194 kg/m .3

Air

V· 5 6 m3/s

A1 5 0.95 m2

A2 5 1.4 m2

Figure P7.27

 7.28 A pipe branch is illustrated in schematic form in Figure P7.28. Find the 
mass flow rate m� .4  Does the fluid in branch 4 enter or leave the junction?
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 7.29 The blades of a wind turbine have a diameter of 60 m. If the wind speed is 
20 mi/h, find the mass flow rate of air through the circular area swept out by 
the turbine blades. Express the answer in units of kg/s and slug/s. What is 
the kinetic energy of the air that flows through this area? Express the answer 
in units of J/kg.

 7.30 A duct carrying conditioned air from a refrigeration unit splits into two 
separate ducts that supply cool air to different parts of a building. The sup-
ply duct has a ×1.8 m 2.2 m inside cross section, and the two duct branches 
have inside cross sections of ×0.9 m 1.2 m and ×0.65 m 0.8 m. The average 
velocity of the air in the supply duct is 7 m/s, and the average velocity of the 
air in the smaller duct branch is 18 m/s. Find the volume flow rates, and 
mass flow rates in each branch. For air, use ρ = 1.20 kg/m .3

 7.31 The mixing chamber shown in Figure P7.31 facilitates the blending of three 
liquids. Find the volume flow rate and mass flow rate of the mixture at the 
exit of the chamber.

m·
1 5 10 kg/s

m· 2 5
 18 kg/s m ·

4

m·
3 

5
 6

 k
g/

s

Figure P7.28

v2 5 7 m/s
D2 5 6 cm
sg2 5 0.85

r4 5 925 kg/m3

m· 1 5 40 kg/s

m· 3 5 25 kg/s

Figure P7.31

 7.32 A canal with the symmetric cross section shown in Figure P7.32 carries water 
at an average velocity of 1.7 ft/s. How long would it take for this canal to 
completely fill a 9000 acre-ft reservoir?
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 7.33 A 3.0 m3 rigid tank initially contains air at a density of 1.16 kg/m3. High 
pressure air is then allowed to enter the tank through a valve, which causes 
the density of the air in the tank to increase to 4.75 kg/m3. Find the mass of 
the air that has entered the tank.

 7.34 Water flows through a garden hose at a mass flow rate of 1.25 kg/s. The 
inside diameter of the hose is 2.3 cm. Find the average velocity of the water 
inside the hose. If a nozzle with an exit diameter of 5.4 mm is attached to 
the end of the hose, what is the average velocity of the water at the exit of 
the nozzle assuming the mass flow rate is unchanged?

 7.35 In a cement manufacturing plant, lime powder is transported by a conveyor 
system that moves at a velocity of 1.8 m/s. The cross sectional area of the 
lime on the conveyor is 0.85 m2. If the density of lime powder is 2.21 g/cm3, 
what is the mass flow rate of the lime? At this mass flow rate, how much time 
is required for 750 kg of lime to enter the cement mixture?

 7.36 The Mississippi River transports approximately 17,000 m3/s of water into 
the Gulf of Mexico. If the width and depth of the river at one location are 
430 m and 60 m, respectively, what is the approximate velocity of the water 
at this location?

6 ft

4 ft

6 ft

60°

Figure P7.32
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8.1 INTRODUCTION
Energy has always been crucial to the survival and development of man. Early man used 
the energy of his own body to walk and run, hunt, build shelters, and transport his be-
longings, and he used the energy of fire to keep warm and cook his food. As the earth’s 
population grew and societies developed, the energy of man’s own body was augmented 
by the energy of animals that were tamed for livestock. The transition from a hunting to 
an agricultural society necessitated the use of livestock for planting crops and transport-
ing water and supplies. As cultures became more sophisticated, man learned how to use 
fire to smelt ore for making copper, iron, and other metals. The energy produced by 
wind and naturally flowing water was harnessed to grind grain for food, pump water for 
irrigation, and saw timbers for construction. The steam engine, a development of the 
industrial revolution, produced mechanical energy for a variety of uses, including trans-
portation, water pumping, and manufacturing. In the modern world, energy is used to 
operate electrical devices, power transportation systems, and heat and cool living spaces.

Before we discuss renewable energy, we must define the term energy. A concise 
definition of energy is the capacity to do work. If a device or system has the capacity to 

Renewable 
Energy

After reading this chapter, you 
will have learned
• What renewable energy is
• How to do a basic energy 

analysis of photovoltaic 
solar systems

• How to do a basic energy 
analysis of wind turbines

• How to do a basic energy 
analysis of hydropower 
plants

• How to do a basic energy 
analysis of geothermal 
power plants

• How to do a basic energy 
analysis of marine power 
plants

• How to do a basic energy 
analysis of biomass power 
plants

Objectives

C H A P T E R

8
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266 Chapter 8 Renewable Energy

do work, it possesses at least one form of energy that is available for transforma-
tion to another form of energy. A simple illustration is a stretched spring. When a 
stretched spring is released, its stored (potential) energy is transformed into energy 
of motion (kinetic energy). If, for example, the spring was connected to a compo-
nent in a mechanism, work would be done on that component. Another illustration 
of a system in which an energy transformation occurs is a wind turbine. A wind 
turbine is basically an electrical generator with a set of blades mounted on its shaft. 
Wind causes the generator’s shaft (the armature of the generator) to rotate. As the 
wire windings of the armature cut the magnetic field lines of magnets that surround 
the armature, a voltage is produced. Hence, the kinetic energy of the wind is trans-
formed into electrical energy, which is a form of work. The unit of energy in the SI 
and English unit systems is the joule ( J) and British thermal unit (Btu), respectively.

Renewable energy is energy that comes from sources that are naturally replenished. 
Stated another way, renewable energy comes from sources that are refilled with en-
ergy at rates comparable to the rates of energy extraction. Solar energy is one form 
of renewable energy. The amount of solar energy intercepted by the earth each year 
is approximately ×5.4 1024J. Therefore, the amount of solar energy that is absorbed 
by the earth and re-radiated plus the solar energy that is reflected from the earth 
each year is approximately ×5.4 1024 J. If the energies entering and leaving the 
earth were not equivalent, the temperature of the earth’s surface would increase or 
decrease, depending on the relative amounts of the incoming and outgoing ener-
gies. The average temperature of the earth’s surface is fairly stable at about 14°C 
(57°F). Wind energy is also a form of renewable energy. Winds are caused by pres-
sure differences in the atmosphere induced primarily by uneven heating of the 
earth’s surface by the sun. Hence, wind energy is a form of solar energy.

Fossil fuels—coal, oil, and natural gas—are not renewable energy sources be-
cause these materials take an extremely long time to be replenished in the earth. 
Unlike energy derived from fossil fuels, nuclear energy does not involve the intro-
duction of harmful substances into the atmosphere, but radioactive materials from 
which nuclear energy is derived are not renewable energy sources either because 
these materials are finite in the earth and cannot be replaced.

The sources of renewable energy covered in this chapter are solar, wind, hydro, 
geothermal, marine, and biomass. Brief descriptions of these renewable energy 
sources are now given.

Solar energy emanates from the sun, the yellow star at the center of our solar 
system. Like all stars, the sun generates vast amounts of energy by nuclear fusion 
reactions in its interior. The energy from these reactions is transported to the sun’s 
surface where it radiates into space. The sun has been radiating energy at a reason-
ably steady rate for several billion years and is predicted to continue to do so for bil-
lions of years to come, which is the basis for considering solar energy as a renewable 
source. The sun radiates energy at a rate of ×3.9 1026  W. At the outer edge of the 
earth’s atmosphere, the average solar heat flux (solar power intercepted by a plane 
surface facing directly into the sun) is approximately 1366 W/m2. This quantity is 
referred to as the solar constant. Due to absorption by atmospheric carbon dioxide 
and water vapor and interactions with dust and other pollutants, the power den-
sity represented by the solar constant does not reach the earth’s surface. Thus, the 
power input for all earth-based solar energy systems is less than the solar constant.

Wind is the movement of atmospheric air across the earth’s surface from re-
gions of high pressure to regions of low pressure. The primary cause of winds is 
the uneven heating of the earth’s surface by the sun, which depends on latitude, 
time of day, and the distribution of land and large bodies of water, particularly the  
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oceans. Another cause of winds is fluid friction between the atmosphere and earth’s 
surface, which allows the earth to drag the atmosphere around producing turbu-
lence. Horizontal components of wind velocities are normally much greater than 
the vertical velocity components. The kinetic energy of the wind, and therefore 
the wind’s power generating potential, is proportional to the cube of wind velocity. 
Because winds are primarily caused by uneven heating effects of the sun, wind en-
ergy is considered to be a form of solar energy, and is therefore renewable.

Hydro refers to energy derived from flowing or falling water. The terms hydro-
power and hydroelectric are commonly used in conjunction with this type of renew-
able energy source. The kinetic energy of water flowing in a river or stream can be 
harnessed directly to produce work. More commonly, the flow of water is regulated 
by means of a reservoir or dam, thereby facilitating a conversion of the water’s po-
tential energy to kinetic energy. To a greater extent than wind energy, hydro en-
ergy is geographically dependent, being limited to locations where rivers are found. 
Hydro energy is one of the oldest sources of renewable energy and is a natural 
consequence of the earth’s water cycle, which is driven by the sun.

Geothermal energy originates within the earth. About 80 percent of this internal 
energy is heat generated by the decay of radioactive substances, and the remainder 
is residual heat from earth’s planetary accretion. The energy from these two sources 
is transported to the earth’s surface where it is manifested in hot ground and surface 
waters, rocks, and magma. Even though the heat content of the earth is finite, geo-
thermal energy is considered to be renewable because the rate of heat extraction is 
small compared with the earth’s heat content, which is estimated to be 1031 J.

Marine energy, often referred to as ocean energy, is a broad category that in-
cludes energy derived from oceanic tides as well as oceans at locations away from 
shorelines. Tidal energy is derived from the periodic rise and fall of sea levels, which 
is caused by a combination of gravitational forces exerted by the moon and sun and 
the rotation of the earth. The potential or kinetic energy of the tides is converted 
to mechanical energy in a turbine and then electrical energy in a generator. Ocean 
energy is derived from three sources—ocean surface waves, underwater ocean cur-
rents, and temperature differences in ocean water. For the first two sources, kinetic 
energy of the waves and currents is converted to mechanical energy, which is then 
converted to electrical energy. For the third source, a heat engine utilizes a temper-
ature difference of deep and shallow water to generate mechanical energy in a tur-
bine and then electrical energy in a generator. As long as the earth’s oceans remain 
in the liquid phase, which is equivalent to saying that as long as the sun maintains 
the earth’s surface at suitable temperatures, marine energy will be available. Thus, 
marine energy, like wind and hydro energy, is a form of solar energy.

Lastly, biomass is fuel derived from living, or recently living, organisms, which 
includes plant- and animal-based materials. Plant matter can be burned as a heat 
source for a heat engine to generate electrical energy. Both plant and animal mat-
ter can be converted into biofuels. Biomass is a renewable energy source in that 
plants can be quickly regrown to replace the plants that were consumed. Because 
biological organisms depend on the sun, solar energy is the ultimate source of en-
ergy for biomass.

8.1.1 Environmental Considerations
Through farming, construction, and other activities, man has always changed his 
surroundings. In the decades following the industrial revolution, the consump-
tion of coal steadily increased, resulting in severe pollution of major cities. In the 
twentieth century, coal consumption continued to increase, but due to the use of 
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smokeless fuel and tall smokestacks, pollution in populated areas was significantly 
reduced. However, forests in regions of North America and Europe were dying, and 
marine life in lakes was dying as well. Scientists discovered that coal combustion was 
causing acid rain, a form of precipitation arising from emissions of sulfur dioxides 
and nitrogen oxides that react with water in the atmosphere.

Acid rain is not the only harmful effect of coal combustion. The combustion 
of coal and other fossil fuels releases carbon dioxide into the atmosphere. Carbon 
dioxide, along with water vapor, methane, nitrogen oxides, and ozone, is a green-
house gas. In recent decades the surface temperature of the earth has markedly 
increased. Scientists have proposed that the accelerated use of fossil fuels is at least 
partly, and perhaps primarily, to blame for this temperature rise. If the combustion 
of fossil fuels is responsible for global warming, and if we persist in using fossil fuels 
at current or accelerated rates, the earth’s temperature will continue to rise, lead-
ing to gradual melting of polar ice caps and subsequent rises in sea level that will 
inundate coastal areas. Another likely effect of global warming is the increased fre-
quency of extreme weather phenomena such as droughts and heavy rainfall. Global 
warming could even cause species extinctions due to shifting temperature patterns.

For practical and economic reasons, the consumption of fossil fuels cannot be sus-
pended or even significantly slowed in the coming years. According to the U.S. Energy 
Information Administration (EIA), approximately 77.6 percent of the total energy 
(electrical, transportation, heating, etc.) consumed in the United States in 2017 came 
from fossil fuels, about 9.6 percent came from nuclear sources, and approximately 
12.7 percent came from renewable sources. In an attempt to reduce carbon dioxide 
emissions and become more energy-independent, the United States and other indus-
trialized nations are undergoing a gradual shift from fossil fuels to renewable sources.

In the sections that follow, the fundamental engineering principles of renewable 
energy sources of solar, wind, hydro, geothermal, marine, and biomass are discussed.

8.2 SOLAR
Solar energy is the most vital of all energy sources, for without it no life on earth 
could exist. With the exceptions of geothermal and nuclear energy, the sun is the 
ultimate source of all forms of energy on earth. To begin our discussion of solar 
energy, let’s determine the capacity of the sun to satisfy our energy needs.

Just outside the earth’s atmosphere the average solar power density (solar in-
tensity) is 1353 W/m2. This quantity is known as the solar constant, Isc. Due to 
reflection, absorption, and re-radiation of solar energy from the earth to space, the 
percentage of the solar constant that reaches the earth’s surface is approximately  
47 percent. The average radius, R, of the earth is 6371 km, so the projected area 
(area of a circle), A, of the earth is

π=A R2

π= ×(6371 10 m)3 2

= ×1.275 10 m .14 2

Hence, the solar power, �Q ,solar  at the earth’s surface is

� =Q AI0.47solar sc

= ×(0.47)(1.275 10 m )(1366 W/m )14 2 2

= ×8.19 10  W.16
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The global power consumption in 2013 has been estimated to be ×1.7 10  W13 .  
Dividing this number by the solar power at the earth’s surface, we obtain 0.00021. 
Multiplying this number by 100 to get a percentage, we obtain 0.021 percent. Thus, 
0.021 percent of the solar power at the earth’s surface could theoretically satisfy the 
world’s power demands.

Let’s examine the capacity of solar energy another way. Based on the 2013 
global power consumption, how much of the earth’s surface, covered with solar 
panels, is required to satisfy the world’s power demands? Using the projected area 
of the earth in our first calculation, the surface area required is

= ×A (0.00021)(1.275 10 m )solar panel
14 2

= ×2.7 10 m .10 2

which is approximately 10,000 square miles, an area about the size of Maryland. 
Without taking into account energy conversion efficiency, energy storage, and dis-
tribution variables, these approximate but revealing calculations indicate that solar 
energy alone has the capacity to satisfy global energy demands.

8.2.1 Solar Energy Systems
There are basically two types of solar energy systems—solar thermal systems and 
photovoltaic systems. The first type of solar thermal system is typically designed to 
heat water for domestic hot water use, as shown in Figure 8.1, but could also be 
used to heat air for a living space or provide heat for other purposes. This system 
incorporates a collector that absorbs solar radiation, thereby heating a working fluid 
that is pumped through it. Working fluids in such systems are usually an ethylene-
glycol mixture (antifreeze). The warm working fluid passes through a heat exchanger 
in a storage tank where the fluid’s heat is transferred to the domestic water. The 
cool working fluid returns to the collector to be reheated by solar radiation. This 
type of system is typically found in residential and small commercial applications.

Hot water out

Cold water in

Tank

Heat exchanger

Collector

Warm
working
fluid

Pump

Cool working fluid

Figure 8.1
Solar water heating system.

The second type of solar thermal system, commonly called a concentrating solar 
power plant, is designed to generate electrical power on a large scale. This type of 
system incorporates a concentrator, consisting of a mirror or an array of mirrors, 
that reflects sunlight and focuses it onto a very small area. As shown in Figure 8.2, 
parabolic dish and heliostat systems focus sunlight at a point, whereas a parabolic 
trough system focuses sunlight along a line. In order for these concentrators to 
focus the sunlight properly, the concentrators must be able to track the sun as it 
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moves across the sky. Dish and heliostat concentrators require dual-axis tracking, 
whereas a trough concentrator requires single-axis tracking. Located at the focus 
of the concentrator is a receiver that carries a working fluid, typically a molten salt 
mixture. Because the sunlit area of the receiver is very small, the heat flux (heating 
rate per unit surface area, measured in W/m2) at the receiver is high enough to 
heat the working fluid to temperatures above 500°C. The hot working fluid passes 
through a heat exchanger where the fluid transfers heat to water, turning the water 
into steam. The rest of the system resembles a standard power plant in which steam 
drives a turbine, which in turn drives an electrical generator. Other components in 
the system include a condenser and pump, as shown in Figure 8.3.

Receiver

Receiver

Concentrator

(a) Parabolic dish (b) Heliostats and tower (c) Parabolic trough

Tower

Concentrator

Concentrators (heliostats) Receiver

Figure 8.2
Concentrating 
solar power 
systems.

Hot working fluid

Cool working fluid

Cool liquid water

Pump

Coolant in Coolant out

Condenser

Warm water vapor

Electrical power

Turbine
Generator

Receiver

Heat exchanger
Hot water vapor (steam)

Figure 8.3
Concentrating solar 
power plant.

Unlike a concentrating solar plant, a photovoltaic system converts light directly 
into electricity. The heart of a photovoltaic system is a solar cell constructed of silicon 
or other semiconductor material. The solar cell is arranged to form a p-n (positive-
negative) junction such that when light strikes the cell, free electrons are created 
by the photo-electric effect. Under the influence of the junction’s electric field, the 
electrons move through the cell to the cell’s surface where they are collected by a 
metallic grid. The grid is connected to electrical contacts on both sides of the cell. 
If an external electrical circuit is connected across the contacts, a direct current 
(DC) electrical current flows through the circuit.

A single solar cell produces an output voltage of approximately 0.5 V, which 
is insufficient to power most electrical devices. Hence, solar cells are connected 
in series, forming a module, to increase the output voltage. For example, a typical 
module designed to supply a standard 12 V output may consist of thirty or more 
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cells to ensure reliable operation. To increase the output current, modules are con-
nected in parallel, forming an array or panel. The desired voltage and current out-
puts can therefore be achieved by designing the array with the required number of 
series connections of cells and parallel connections of modules. This photovoltaic 
hierarchy is illustrated in Figure 8.4.

(a) Cell (b) Module (c) Array

Figure 8.4
Photovoltaic hierarchy.

For residential and commercial building applications, photovoltaic systems 
are typically employed to augment electrical power provided by the local utility. 
In this grid-connected or grid-tied system, a solar panel and the power grid func-
tion in tandem to supply electrical power to the building, as shown in Figure 8.5.  
A charge controller prevents storage batteries from being overcharged and 
eliminates reverse current from the battery bank to the solar panel at night. The 
battery bank stores electrical energy generated by the solar panel during the 
day and uses that energy during the day or night, depending on the electrical 
power demands of the building. The inverter changes direct current to alternat-
ing current (AC) to operate lights, appliances, and other electrical devices in 
the building. If the energy stored in the battery bank is insufficient to meet the 
entire electrical needs of the building, the power grid supplies the difference. 
Conversely, if the photovoltaic system generates more electrical energy than the 
building requires, the excess energy can be delivered to the power grid through 

Charge controller

Solar panel

Battery bank
Building

Inverter

Bi-directional
power meter

Power grid

Figure 8.5
Grid-connected  
photovoltaic system.
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the bi-directional power meter, thereby offsetting the electrical power the cus-
tomer must purchase from the utility company at other times. This process is 
known as net metering and is a straightforward and low-cost way for the consumer 
to invest in renewable energy.

Concentrating solar systems are more complex than photovoltaic systems and 
are generally designed for large scale power production rather than residential or 
small commercial installations. Recent advances in solar cell technology and im-
provements in conversion efficiencies have broadened the implementation of pho-
tovoltaic systems. It is anticipated that photovoltaic systems will proliferate in these 
small-scale applications in the future, so the fundamental principles of this type of 
solar energy system are emphasized here. In the next section, the basic engineering 
principles of photovoltaic systems are presented.

8.2.2 Photovoltaic Systems
Unlike the collector of a concentrating solar plant, the solar panel of a photovol-
taic system does not typically track the sun but is fixed in position on a rooftop or 
other suitable location, as shown in Figure 8.6. This means that throughout the 
day, and throughout the year, the angle between the sun’s rays and the solar panel 
continually changes. This means that the amount of solar energy collected by the 
solar panel continually changes also. The total solar energy incident upon a surface 
is called total solar irradiance, Itot, and is expressed in units of W/m2. As illustrated 
in Figure 8.7, this quantity consists of three components—direct solar radiation, ID, 
scattered radiation, also called sky radiation, IS, and reflected radiation, IR. Total 
solar irradiance is the sum of these three components, so

 = + +I I I I .tot D S R  (8.1)

Figure 8.6
Photovoltaic solar panels 
on a rooftop. (Courtesy of 
Weber State University, 
Ogden, UT.)
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Total solar power, expressed in units of W, is obtained by multiplying total solar  
irradiance by surface area.

Total solar irradiance is a function of the sun’s position in the sky with respect 
to a normal (perpendicular) line to the solar panel, atmospheric conditions, and 
reflectivity of the surface in the foreground of the panel. The position of the sun 
with respect to the solar panel depends on the latitude and longitude of the solar 
panel’s location, time of day, day of the year, and orientation of the panel with re-
spect to the earth’s surface and the north-south compass line. The equations that 
incorporate all these variables for calculating Itot using Equation (8.1) may be found 
in most handbooks on solar energy. For the sake of simplicity, total solar irradiance 
is presented in graphical form in Figures 8.8 through 8.12 for selected U.S. cities 
as a function of time of day for two days of the year—January 21 and June 21. In all 
cases the solar panel faces due south, and the reflectivity of the panel’s foreground 
is 0.2, a typical value for the ground or a roof. Results are shown for solar panel tilt 
angles of 0°, 30°, and 60°. Note the symmetry of the graphs around midday and the 
effect of latitude, time of year, and panel tilt angle on Itot. The total solar irradiance 
values represented in these graphs apply to clear atmospheric conditions only; if 
the sky is overcast or cloudy, the values indicated should be reduced accordingly.

For each total solar irradiance curve in Figures 8.8 through 8.12, the insolation, 
H, is given. Insolation, also referred to as solar irradiation or solar radiant exposure, is 
the incident solar energy per unit surface area, found by integrating the total solar 
irradiance over a specified time period. Thus,

 ∫=  tot
1

2

H I dt
t

t

 (8.2)

where the time period is one day. This quantity is useful for calculating the daily 
total energy that can be produced by a solar panel of a given surface area.

Atmospheric gases
and particulates

Direct radiation

Reflected ra
diatio

n

Ground

Scattered radiation

Solar panel

Figure 8.7
Components of solar  
irradiance.
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Total solar irradiance  
for San Antonio, TX  
(a) January 21,  
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Total solar irradiance  
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A photovoltaic solar panel in Boston, MA, measures ×3 m 8 m and has a tilt angle of 
60°. What is the total solar power incident on the panel on January 21 at 10:30 am and 
3:00 pm? What is the total solar energy incident on the panel during this day? The sky 
is clear, the panel faces due south, and the foreground reflectivity is 0.2.

Solution
The times 10:30 am and 3:00 pm, expressed in military time, are 1030 h and  
1500 h, respectively. From Figure 8.12(a), the total solar irradiances for 1030 h and 
1500 h for a panel tilt angle of 60° are approximately 870 W/m2 and 545 W/m2, 
respectively. The total solar power incident on the panel at 10:30 am is

� =Q I Asolar tot panel

= (870 W/m )(24 m )2 2

= × =2.09 10 W 20.9 kW.4

and the total solar power incident on the panel at 3:00 pm is
� =Q I Asolar tot panel

= (545 W/m )(24 m )2 2

= × =1.31 10 W 13.1 kW.4

The total solar energy incident on the panel during this day is the insolation  
multiplied by the surface area of the panel.

=E HAsolar panel

= (21.41 MJ/m )(24 m )2 2

= 513.8 MJ.

EXAMPLE 8.1

Photovoltaic solar cells do not convert all of the incident solar power into elec-
trical power. Some of the incident solar radiation is reflected from the front surface 
of the module or panel. Some of the absorbed radiation does not have the energy 
required to initiate the photoelectric effect in the semiconductor crystal, and some 
of the absorbed radiation has more energy than is required, which results in excess 
energy that is dissipated as heat. Absorption that occurs far from the p-n junctions 
also results in wasted energy in the form of heat. These and other mechanisms of 
energy loss contribute to the total energy loss of the solar cell. The efficiency of a 
solar cell, ηcell, is defined as the ratio of the electrical power produced by the cell to 
the solar power incident on the cell:

 
�η =
P
Q

.cell
elect

solar
 (8.3)

The typical range of ηcell is approximately 0.15 to 0.25 (15 to 25 percent), but 
cell efficiencies of 0.40 and higher have been achieved. Solar cell efficiency can also 
be expressed in terms of a ratio of electrical energy produced by the cell to the solar 
energy incident on the cell during a specified time period:

 η =
E
E

.cell
elect

solar
 (8.4)
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A commercial building in San Antonio, TX, has a roof-mounted photovoltaic solar 
panel that measures ×5 m 12 m . The tilt angle of the panel is 30°, and the reflectiv-
ity of the roof surface is 0.20. If the efficiency of the panel is 0.18, how much electri-
cal energy does the panel produce on January 21?

Solution
As shown in Figure 8.9(a), the insolation for this panel in San Antonio, TX, on 
January 21 is H =23.85 MJ/m2. The solar energy incident on the panel is the insola-
tion multiplied by the surface area of the panel:

=E HAsolar panel

= ×(23.85 MJ/m )(5 m 12 m)2

= 1431 MJ.

Rearranging Equation (8.4), the electrical energy produced by the panel is

E Eη=elect cell solar

( )= 0.18 (1431 MJ)

= 258 MJ.

The commonly used unit for electrical energy is the kilo-watt-hour (kWh). 
Converting our answer to kWh, we obtain

× =258 MJ
1 kWh
3.6 MJ

71.7 kWh.

EXAMPLE 8.2

Solar energy is considered to be one of the most environmentally friendly types 
of renewable energy. During operation, neither solar thermal nor photovoltaic sys-
tems introduce harmful emissions into the atmosphere. Solar thermal systems gen-
erate an insignificant amount of noise, and photovoltaic systems generate none. 
Despite these attractive features, solar energy is not without environmental impacts. 
Because the amount of solar radiation that can be intercepted by a solar collector 
or panel is limited, both types of solar energy systems require a significant amount 
of space. On a commercial scale, a large area of land is required, and on a residen-
tial scale, the space on a rooftop limits the amount of energy that can be gathered. 
Furthermore, a rooftop installation must share space with other things such as vent 
pipes, sky lights, and electrical systems. Photovoltaic solar panels incorporate sili-
con, a semiconductor material that is very energy intensive to manufacture. A sig-
nificant amount of electricity is required to produce silicon, and since the majority 
of electricity is generated by fossil-fuel power plants, the production of silicon intro-
duces harmful substances into the atmosphere. Lastly, the manufacture of silicon 
involves toxic chemicals, such as cadmium, which must be prevented from entering 
the natural environment.
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8.3 WIND
Wind is one of the oldest renewable energy sources. Sail boats have been propelled 
by the wind for thousands of years, and windmills were traditionally used for grind-
ing grain and spices, sawing wood, making paper materials and paints and dyes. 
Along with solar and other renewable energy sources, wind energy has been widely 
developed in recent years. The first wind turbine for generating electrical power 
was developed in the late 19th century. Wind energy technologies developed gradu-
ally during the early to mid 20th century, but during the oil crisis of the 1970s, wind 
energy research and development expanded rapidly. By the end of the 20th century, 
wind energy played an integral role in renewable energy development. Wind en-
ergy has several advantages such as no pollution, short implementation time and 
relatively low capital cost. In 2017, wind power accounted for almost 4 percent of 
the world’s electrical energy generation. It is anticipated that wind could generate 
about 20 percent of the world’s electrical energy by 2030.

Wind is the movement of atmospheric air from regions of high pressure to re-
gions of low pressure. The main cause of winds is the uneven heating of the earth’s 
surface by the sun, which depends on latitude, time of day, and the distribution of 
land and large bodies of water, particularly the oceans. Another cause of winds is 
fluid friction between the atmosphere and earth’s surface, which allows the earth 
to drag the atmosphere around producing turbulence. Horizontal components of 
wind velocities are normally much greater than the vertical velocity components, 
which is why we normally think of wind as the horizontal movement of air.

Over the earth’s land masses, winds generate approximately ×6.1 1021 J of 
energy annually. Dividing this energy by the number of seconds in a year, we ob-
tain 1.9 1014×  W, the global power generated by winds. We noted earlier that the 
global power consumption in 2013 has been estimated to be 1.7 1013×  W. We also 
noted that the solar power at the earth’s surface is ×8.1 1016 W, approximately two 
orders of magnitude higher than the energy generated by winds. This compari-
son is somewhat misleading, however, because the quantity given for wind energy  

PRACTICE!

1. Find the solar power intercepted by a ×3m 5m  sun-facing surface just 
outside the earth’s atmosphere.
Answer: 20.3 kW.

2. A horizontal photovoltaic solar panel in Miami, FL, measures ×2m 6m.  
What is the total solar power incident on the panel on January 21 at 
12:00 noon and 4:00 pm? What is the total solar energy incident on the 
panel during this day? The sky is clear, and the foreground reflectivity 
is 0.2.
Answer: 8.94 kW, 4.26 kW, 211 MJ.

3. A home in San Francisco, CA, has a south-facing roof-mounted photo-
voltaic solar panel that measures ×2m 3.5m. The tilt angle of the panel 
is 60°, and the reflectivity of the roof surface is 0.20. If the efficiency of 
the panel is 0.16, how much electrical energy does the panel produce 
on June 21?
Answer: 6.00 kWh.

M08_HAGE4428_05_SE_C08.indd   281 12/11/20   2:34 PM



282 Chapter 8 Renewable Energy

generation applies to land masses only, and about 75 percent of the earth’s surface 
is covered by oceans. Nevertheless, we can see that wind, like solar, has the capacity 
to supply the world’s energy demands.

Machines that convert the kinetic energy of the wind to electrical energy are 
referred to as wind turbines. As illustrated in Figure 8.13, there are two types of 
wind turbines, each being characterized by the orientation of the axis (shaft) of 
the turbine. A typical horizontal axis wind turbine (HAWT) consists of three blades 
mounted to a horizontal shaft. The power generating capacity of horizontal axis 
wind turbines varies widely. Large commercial turbines generate as much as 5 MW 
of power, whereas turbines used to generate power for a single home or small busi-
ness generate 100 kW or less. Blade diameter varies widely also, ranging from a 
few meters to over 100 m. The nacelle of a HAWT is an enclosure that houses the 
generator, gearbox, drive train, brake system, and other mechanical components. 
The role of the tower is to support the turbine at a height well above the ground to 
intercept stronger winds and therefore harness more wind energy.

(b) Vertical axis wind turbine (VAWT)(a) Horizontal axis wind turbine (HAWT)

Ground

Tower

Blades

Nacelle

Upper hub

Blades

Lower hub

Support structure

Figure 8.13
Types of wind turbines

A vertical axis wind turbine (VAWT), which resembles an “eggbeater,” typically 
has three blades mounted to a vertical shaft. Historically, the first wind mills were 
based on the vertical-axis configuration. Vertical axis wind turbines are less com-
mon than horizontal axis wind turbines and are primarily used in small-scale appli-
cations. This type of wind turbine is normally mounted on a short mast close to the 
ground or the roof of a building.

Even though HAWT systems are more prevalent than VAWT systems, both con-
figurations have advantages and disadvantages. Advantages of HAWT systems in-
clude higher efficiency, lower cost-to-power ratio, and the ability of the blades to 
self-start the turbine. A disadvantage of HAWT systems is that the generator and 
gearbox are located at the top of a high tower, thereby restricting maintenance and 
service. Another disadvantage of a HAWT system is its complexity. A HAWT must 
be designed with a yaw control system so that the turbine blades always face into 
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the wind. Advantages of VAWT systems include easy maintenance of the generator 
and gearbox, since they are usually located close to the ground or roof. No yaw 
control system is needed for a VAWT since the blades will rotate under any wind 
direction, and a VAWT is less costly to fabricate due to the relative simplicity of its 
blade design. Disadvantages of VAWT systems include lower efficiency and difficulty 
in controlling blade over-speed. And, unlike a HAWT, a VAWT is not self-starting, so 
the generator must run in motor mode to start the blades rotating.

A simplified version of the main components of a HAWT is shown in Figure 8.14.  
The blades are mounted to a hub that is connected to the main shaft of the gear 
box. The function of the gear box is to increase the spin rate of the shaft con-
nected to the electrical generator so that the power produced by the generator is 
maximized. Depending on the size and complexity of the HAWT, various types of 
braking systems are employed to keep the turbine speed within its allowed limits in 
high winds and to hold the turbine at rest during maintenance. For large turbines 
that have blades with controllable pitch (angle of attack), aerodynamic braking is 
typically used. Braking of small wind turbines can be done by dumping the energy 
from the generator into a resistor bank, converting the kinetic energy of the shaft 
into heat. The function of a mechanical brake is to hold the turbine at rest while 
maintenance is performed. Because the tower produces turbulence behind it, the 
turbine is positioned upwind of the tower. The anemometer and wind vane mea-
sure wind speed and direction, respectively, sending this data to the controller. The 
controller directs the yaw system, keeping the turbine pointed into the wind, and 
controls blade pitch and the braking system.

Gear box Brake
Hub

Blades

Main shaft

Tower

Yaw system

Nacelle Generator

High speed shaft

Anemometer Wind vane

Controller

Figure 8.14
Main components of a 
HAWT.

A single horizontal axis wind turbine is suitable for residential and small com-
mercial applications. For large-scale power generation applications, however,  
horizontal axis wind turbines are found in a group called a wind farm or wind park. 
A wind farm consists of a cluster of wind turbines covering an extended area, as 
shown in Figure 8.15. Wind farms require open spaces with unobstructed access to 
the wind, making wind farms ideal for agricultural areas, grazing lands, and coast-
lines. A small wind farm may consist of fewer than twenty turbines covering a few 
acres, whereas a large wind farm may consist of hundreds of turbines covering hun-
dreds of square miles. Most wind farms are located on land, but wind farms can also 
be located offshore.
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Figure 8.15
A wind farm. (Stephen 
Bures/Shutterstock)

In a well designed wind farm, the spacing of wind turbines is carefully consid-
ered. If the turbines are too close to one another, the power output of downwind 
turbines will be diminished due to interference of upwind turbines. If the turbines 
are spaced too far apart, the wind farm site space is underutilized. The optimum 
spacing between towers in the direction of the wind is between five and nine rotor 
diameters, and the optimum side-to-side spacing between towers is between three 
and five rotor diameters. This optimum spacing configuration is illustrated in 
Figure 8.16.

Wind

5D–9D

3D–5D

D

Figure 8.16
Optimum tower spacing  
in a wind farm.

The generation of electrical power by wind turbines does not release harmful 
substances into the environment, but wind power impacts the environment in other 
ways. Wind turbines generate a low to moderate amount of aerodynamic and me-
chanical noise. Aerodynamic noise comes from the blades moving through the air, 
and mechanical noise comes from the gear box, generator, and other mechanical 
components. If wind turbines with metal in their blades are located directly be-
tween radio, television, or microwave transmitters and receivers, the blades can dis-
tort the received signals. Rotating turbine blades are a threat to birds, particularly 
in migration corridors. Perhaps the greatest environmental impact of wind turbines 
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is visual. Some people object to having tall structures with rotating blades near their 
homes or businesses, claiming that the machines detract from the surroundings 
and are visually distracting. All these environmental impacts can be mitigated by 
careful site selection and good engineering design.

In the next section, a basic engineering analysis of a horizontal axis wind tur-
bine is given.

8.3.1 Basic Energy Analysis of a Horizontal Axis Wind 
Turbine
A wind turbine converts the kinetic energy of moving air to electrical energy. Of 
primary importance to engineers is the maximum amount of energy that a wind 
turbine can produce for a given wind speed. Consider a HAWT exposed to a wind 
of velocity, v, whose blades sweep out an area, A, as illustrated in Figure 8.17. From 
basic physics, kinetic energy is found using the formula

 υ=KE
1
2

2m  (8.5)

where m is mass and v is velocity. Dividing both sides of Equation (8.5) by mass, m, 
we obtain

 υ=ke
1
2

2  (8.6)

where ke is kinetic energy per unit mass, expressed in units of J/kg. The mass flow 
rate, �m, of air flowing through the swept area of the turbine blades is expressed as

 � ρ υ=m A  (8.7)

where ρ  is the density of air, expressed in units of kg/m3, and �m  is expressed in 
units of kg/s. We see that by multiplying both sides of Equation (8.6) by mass flow 
rate, the left side of the equation now has units of J/s, which is defined as a watt 
(W), a unit of power. Hence, we have derived a relation for the available power in 
the wind,

 ρ υ=
1
2

.wind
3P A  (8.8)

Swept area, A

Wind

Blades

Wind velocity, v

air density, r

Figure 8.17
Wind turbine diagram for 
calculating available wind 
power.
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The available power in the wind, found using Equation (8.8), is not the maxi-
mum power that the wind turbine can produce. A wind turbine that produces this 
amount of power implies that all the kinetic energy of the wind is converted to 
mechanical energy of a rotating shaft, yielding a wind velocity of zero downstream 
of the turbine blades. The maximum available power is found using the relation

 wind, max p wind=P C P  (8.9)

where C p is the power coefficient, which has a maximum value of 16/27 (0.593). 
This value is known as the Betz limit. Modern wind turbines have power coefficients 
in the range of about 0.45 to 0.50. Furthermore, there are energy losses in the gear 
box, generator, and bearings that further reduce the output power of the turbine. 
When these losses are also taken into account, only 10 to 30 percent of the power in 
the wind is converted to electrical power. Thus, the electrical output power of the 
turbine may be expressed as

 η=P Pelect wind, max  (8.10)

where η  is the combined efficiency of the gear box, generator, and bearings.

EXAMPLE 8.3
A wind farm consists of 60 horizontal axis wind turbines with a blade diameter of 45 
m. The power coefficient of the turbines is 0.48, and the combined efficiency of the 
gear box, generator, and bearings is 0.36. Assuming that the wind blows steadily at 
5 m/s, what is the electrical output power of the wind farm? For the density of air, 
use 1.16 kg/m3.

Solution
The area swept out by the turbine blades is

π
=A

D
4

2

π
= =

(45 m)
4

1590.4 m .
2

2

Using Equation (8.8), the available power in the wind is

ρ υ=
1
2

wind
3P A

=
1
2

 (1.16 kg/m )(1590.4 m )(5 m/s)3 2 3

= ×1.153 10 W.5

Combining Equations (8.9) and (8.10), the electrical output power of one turbine is

η=P C P elect p wind

( )( )= ×0.48 0.36 (1.153 10 W)5

= ×1.992 10 W.4
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There are 60 turbines in the wind farm, so the total electrical output power of the 
wind farm is

( )= ×P 60 (1.992 10 W)elect, farm
4

= × =1.195 10 W 1.195 MW.6

PROFESSIONAL SUCCESS—BEIN’ GREEN
Kermit the Frog, a muppet character created by Jim Henson, sang the song, 
“It’s Not Easy Bein’ Green.” Putting aside Kermit’s struggle to cope with 
blending in with the natural surroundings, this song’s title is a legitimate 
statement to consider in the context of renewable energy. A dictionary defi-
nition of green is “tending to preserve environmental quality, as by being recy-
clable, biodegradable, or nonpolluting.” The renewable energy resources 
discussed in this chapter certainly qualify as green because they tend to 
preserve environmental quality and are, relative to fossil fuels, nonpollut-
ing. But, being green means more than deriving our energy from renew-
able resources. Being green means turning down the heat in your home by 
installing a programmable thermostat, unplugging electronic devices that 
consume “vampire power” while not in use, using mass transit instead of 
your car, using cold water to wash your clothes, replacing incandescent lights 
with compact fluorescent lights, using native plants that require fewer pesti-
cides, and, of course, recycling.

Is it easy being green? Ralph Waldo Emerson said, “That which we persist 
in doing becomes easier to do, not that the nature of the thing has changed, 
but that our power to do has increased.” If it is not easy now, perhaps our per-
sistence to be green will make it easier to be green in the future.

PRACTICE!

1. A house located at the mouth of a windy canyon utilizes a horizontal axis 
wind turbine to augment electrical power from the grid. The turbine has 
a blade diameter of 2.7 m. The power coefficient of the turbine is 0.40, 
and the combined efficiency of the gear box, generator, and bearings is 
0.33. If the wind blows steadily at 14 m/s, what is the electrical output 
power of the turbine? Use 1.16 kg/m3 for the density of air.
Answer: 1203 W.

2. A wind farm operated by a large utility company consists of 125 identical, 
horizontal axis wind turbines with a blade diameter of 40 m. The power 
coefficient and combined efficiency of the gear box, generator and bear-
ings are 0.41 and 0.38, respectively. On a given day, the wind blows at an 
average speed of 4.5 m/s for 5 h. How much electrical energy does the 
wind farm generate that day? For the density of air, use 1.16 kg/m3.
Answer: 6.47 MWh.
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8.4 HYDRO
Of all the renewable energy sources, hydro is the oldest. The use of waterpower 
dates back to ancient Egypt and Mesopotamia where water wheels powered mills for 
grinding grain and saws for cutting wood and stone. During the Middle Ages water 
wheels were used for pumping water from mines and to power machines for forg-
ing metals. Other uses for waterpower were textile manufacturing, husking rice, 
papermaking, and pulping of sugar cane. Even though steam became the major 
source of energy during the industrial revolution, the use of waterpower continued 
well into the 19th century.

Today, the power of water is harnessed to generate electricity. The terms  
hydropower and hydroelectric are typically used to describe the generation of electrical 
power from falling or flowing water. The kinetic energy of water flowing in a river 
or stream can be harnessed directly to produce work. More commonly, the flow of 
water is regulated by means of a reservoir or dam, thereby facilitating a conversion 
of the water’s potential energy to kinetic energy. Accounting for over 16 percent  
of global electrical power generation in 2016, hydropower is the most widely used 
source of renewable energy. In 2016, hydropower accounted for 71 percent of 
the global renewable energy capacity. While the share of other renewable energy 
sources, particularly solar and wind, are expected to increase in the future, hydro is 
projected to remain the largest renewable energy source for many years. Reaching 
over 1.06 GW of installed capacity in 2016, hydro generated 16.4 percent of the 
world’s electrical energy from all sources.

There are three basic types of hydropower systems. The first and the most com-
mon type is a conventional hydropower system that converts the potential energy of 
water stored in a reservoir or dam to electrical energy. The second type, referred to as 
a run-of-river system, incorporates little or no water storage. A run-of-river system con-
verts the kinetic energy of flowing water in a river to electrical energy. The third type, 
called a pumped-storage system, incorporates two reservoirs. During times of low power 
demand, water is pumped from the lower reservoir to the higher reservoir, where water 
can be released during times of high power demand. This type of system is not strictly 
a renewable energy system since electrical power is required to run the pump. Because 
the conventional hydropower system is the most common, this type will be emphasized 
here. The largest hydropower plant in the world is shown in Figure 8.18.

Figure 8.18
The Three Gorges Dam, 
spanning the Yangtze River 
in China, is the world’s 
largest hydropower plant 
with a power generation 
capacity of 22.5 GW. 
(PRILL/Shutterstock)

M08_HAGE4428_05_SE_C08.indd   288 12/11/20   2:34 PM



8.4 Hydro 289

A conventional hydropower plant converts the potential energy of stored water 
to electrical energy. The potential energy of the water is proportional to the depth 
of the water in the reservoir. As illustrated in Figure 8.19, water enters a downward 
sloping channel called a penstock. A control gate at the entrance of the penstock 
is used to control the flow rate of water or close the penstock during periods of 
maintenance. A screen system at the intake prevents fish and debris from entering 
the penstock and potentially damaging the turbine. The turbine at the bottom of 
the penstock is basically a water wheel that converts the kinetic energy of the flow-
ing water to mechanical energy of a rotating shaft. The shaft of the turbine rotates 
the armature of the electrical generator thereby producing electrical power, which 
is delivered to the power grid over transmission lines. Water exiting the turbine is 
carried by a draft tube to the tail water, which is typically a river.

Dam

Power house

Electrical generator

Turbine

Tail water

Draft tube
Bedrock

Penstock

Intake

Control
gate

Reservoir

Figure 8.19
Conventional hydropower 
plant.

Like other renewable energy systems, hydropower has advantages and disad-
vantages. Hydropower plants do not burn fossil fuels, so they are unaffected by 
price fluctuations of coal, natural gas, and oil. Hydropower plants do not release 
greenhouse gases into the environment by burning fossil fuels, but greenhouse 
gases are generated over time by the breakdown of plants that are covered with 
water when the reservoir is filled. The cost of electricity generated by large hydro-
power plants, after the building costs have been paid, ranges from about one to 
four cents per kilowatt-hour, less than any other source of electricity. However, hy-
dropower plants are more costly to build than fossil fuel power plants. Hydropower 
is a well proven and reliable technology, but a hydropower plant can be built 
only where a river is located, and the flow of that river depends on precipitation. 
Reservoirs for hydropower plants may provide recreational uses, but the inundation 
of land may have displaced people from their homes and disrupted the biological 
ecosystem. Finally, sediment tends to precipitate onto the reservoir floor, reducing 
the amount of sediment in the river downstream of the reservoir. This reduction 
can cause river bank erosion and the disruption of ecostructures that rely on the  
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sediment. Clearly, environmental and cost issues must be carefully considered in 
the planning of a hydropower plant.

Hydropower systems can be developed on a wide range of scales. The term small 
hydro refers to hydroelectric systems that power a small community or industrial  
facility. Small hydro systems, which have generating capacities of 10 MW or less, can 
be connected to the power grid but are sometimes located in isolated regions and 
therefore power a limited area. Subclassifications of small hydro are referred to as 
mini, micro, and pico hydro, which have generating capacity limits of 1000 kW, 100 kW,  
and 5 kW, respectively. Typically, a mini hydro system can power a few homes, a 
micro hydro system can power a single home, and a pico hydro system can power 
some lights and a few small appliances in a home. Small hydro systems are usu-
ally of the run-of-river type that use pipes to divert some of the water to a turbine 
before returning it to the river or stream. Because small hydro systems involve no 
reservoirs and minimal construction, they have relatively low environmental impact 
compared to large hydropower systems.

8.4.1 Basic Energy Analysis of a Hydropower Plant
A hydropower plant converts the potential energy of stored water to electrical  
energy. As with wind turbines, engineers are particularly interested in knowing the 
maximum amount of energy that a hydropower plant can produce. From basic 
physics, the potential energy per unit mass of a static liquid (water in the reservoir) 
is given by the relation

 = ghpe  (8.11)

where g is the acceleration of gravity, and h is the depth of the water. The units of pe 
are J/kg. The mass flow rate, expressed in units of kg/s, of water flowing through 
the turbine is

 � �ρ=m V    (8.12)

where ρ  is the density of water expressed in units of kg/m3, and �V    is volume flow 
rate expressed in units of m3/s. We see that by multiplying both sides of Equation 
(8.11) by mass flow rate, the left side of the equation now has units of J/s, which 
is defined as a watt (W), a unit of power. Thus, the power potential of the water is

 �ρ=P Vgh.water  (8.13)

The term h, referred to as the head, is the elevation difference between the surface 
of the reservoir and the surface of the tail water. The power potential given by 
Equation (8.13) is not the maximum power that the hydropower plant can pro-
duce. There are energy losses in the turbine and generator that reduce the output 
power below this value. Accounting for these losses, the electrical output power of 
the hydropower plant is given by

 elect waterη=P P  (8.14)

where η  is the combined efficiency of the turbine and generator. Typical values of 
η  range from 0.8 to 0.9.
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The head of a hydropower plant is 25 m, and the combined efficiency of the turbine 
and generator is 0.85. If the volume flow rate of the river downstream of the power 
plant is 6000 m3/s, what is the electrical output power of the plant? For the density 
of water, use 1000 kg/m3.

Solution
Combining Equations (8.13) and (8.14), the electrical output power of the hydro-
power plant is

�η ηρ= =P P Vghelect water

s( )= 0.85 (1000 kg/m )(6000 m / )(9.81 m/s )(25 m)3 3 2

= × =1.251 10 W 1.251 GW.9

Hydropower plants with generating capacities ranging from a few hundred mega-
watts to more than 10 GW are considered “large” power plants.

EXAMPLE 8.4

8.5 GEOTHERMAL
Geothermal energy is generated and stored within the earth. Approximately  
80 percent of this internal energy is heat generated by radioactive decay, and the 
remainder is residual heat from the formation of the planet. Heat from these two 
sources is transported to the earth’s surface where it is manifested in hot ground 
and surface waters, rock, and magma. Even though the heat content of the earth 
is finite, geothermal energy is considered to be renewable because the rate of heat 
extraction from the earth is small compared with its heat content.

Like hydro energy, geothermal energy has been utilized by man for centuries. 
Hot springs from geothermal energy were used for bathing in the Paleolithic pe-
riod and for space heating in ancient Rome. In modern times, geothermal energy 

PRACTICE!

1. In a pico hydro system, a stream is utilized to generate electrical power 
by diverting the water into a pipe with an inside diameter of 15.4 cm. If 
the velocity of the water in the pipe is 4.6 m/s, find the available power 
in the water. For the density of water, use 1000 kg/m3. Hint: Adapt 
Equation (8.8), the equation for available power in the wind, for water 
flow in a pipe.
Answer : 907 W.

2. The electrical power demand of a community near a future hydro-
power plant site is 750 MW, and the volume flow rate of the river 
downstream of the reservoir is estimated to be 4500 m3/s. Assuming 
a combined efficiency for the turbine and generator of 0.80, what is 
the minimum reservoir head required? For the density of water, use 
1000 kg/m3.
Answer : 21.2 m.
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is still used for heating water and living spaces but is also used for electrical power 
generation. At the end of 2015, geothermal accounted for 13.2 GW of global elec-
trical power production. One projection suggests that geothermal could provide 
over 3 percent of global electrical power generation by 2050.

There are three primary geothermal resources. The first, and most readily im-
plemented of the three, is hot underground water that either can be tapped by 
drilling boreholes or is naturally transported to the surface under pressure. The 
second is rock that is locally heated by natural formations in the earth’s crust. This 
resource is impractical to exploit because rock must be drilled. The third resource 
is magma, which exists at very high temperatures and pressures, making the exploi-
tation of this resource very challenging.

Heat from a geothermal resource can be converted to useful energy in three prin-
cipal ways. First, underground hot water can be piped directly to heat living spaces of 
homes and businesses. A heat exchanger is used to transfer heat from the hot water 
to air that passes through the living space. This is called direct geothermal. The second 
way utilizes a heat pump. Heat pumps take advantage of the year-round constancy of 
the earth’s temperature a few meters below ground. Like a refrigerator, a heat pump 
incorporates a compressor and two heat exchangers. An underground heat exchanger 
transfers heat between the refrigerant and the ground, and a heat exchanger in the 
living space transfers heat between the refrigerant and indoor air. During the heating 
season, the earth is used as a heat source, whereas during the cooling season, the earth 
is used as a heat sink. This dual heating/air-conditioning function is accomplished by 
reversing the direction of the refrigerant. In the third way, steam or a mixture of steam 
and hot liquid water is used to generate electricity in a geothermal power plant.

There are three types of geothermal power plants. The first type is called direct-
steam or dry-steam. If the geothermal resource naturally produces underground dry 
steam (steam with no liquid water), that steam can be piped directly into a turbine. 
In this application, the geothermal resource replaces the boiler in a standard fossil-
fuel power plant. Geothermal regions do not typically produce dry steam but a mix-
ture of dry steam and hot liquid water. The second type of geothermal power plant, 
referred to as a flash steam plant, converts the hot liquid water into steam, which, 
when combined with the steam from the borehole, is piped into the turbine. The 
third type of power plant utilizes relatively low-temperature geothermal water to va-
porize a secondary low-boiling point fluid that passes through the turbine in a sepa-
rate closed loop. Hence, the water from the geothermal resource never comes in 
contact with the turbine or pump. This type of geothermal power plant, illustrated 
in Figure 8.20, is called a binary plant. Because binary plants can generate electri-
cal power from relatively low-temperature geothermal resources, this type of power 
plant can exploit more geothermal sites than direct-steam or flash-steam plants. For 
this reason, the binary plant is the fastest growing type of geothermal power plant.

In a binary plant, hot water from a production well flows through a heat ex-
changer where the hot water heats a low-boiling point working fluid such as iso-
butane. The cooled geothermal water is returned to the earth via an injection well, 
which is located a suitable distance away from the production well so that cooled 
geothermal water does not affect the temperature of the water at the production 
well. The hot working fluid is a vapor as it enters the turbine. Energy from the 
vapor is converted to mechanical energy of a rotating shaft, which is converted to 
electrical energy by the generator. The working fluid passes through a second heat 
exchanger, called a condenser, where the vapor condenses to a liquid, exchanging 
heat with cooling water from a cooling tower. The cooling tower transfers waste 
heat to the atmosphere by evaporation.
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In Figure 8.20, the components enclosed by the dashed line are nearly the 
same as those in a conventional fossil-fuel power plant. The turbine, generator, con-
denser, pumps, and cooling tower are found in conventional power plants. The 
exception is that the heat exchanger in a binary plant is replaced by a boiler in 
a conventional plant. A boiler is a large vessel where the working fluid (water) is 
heated by a burning fuel (coal, oil or natural gas). The temperatures of the water 
in conventional plants are much higher than those of the low-boiling point fluid in 
binary plants, giving conventional plants a higher output power.

8.5.1 Basic Energy Analysis of a Binary Plant
A specific energy analysis of a binary power plant requires a knowledge of engineer-
ing topics that is beyond the scope of this book. Hence, a simplified general energy 
analysis is presented that pertains not only to a geothermal binary plant but a con-
ventional plant as well.

A heat engine is a device that converts heat to work, and this is precisely what a 
power plant does. A power plant converts heat to shaft work of a turbine, which is 
converted to electrical energy. As illustrated in Figure 8.21, a heat engine receives 
an amount of heat, Q  in, from a high-temperature source and converts a portion 
of that heat to work, Wout. The heat engine rejects the remaining heat, Q  out, to a 
low-temperature sink. In a conventional power plant, Q  in is the heat supplied to the 
boiler from a burning fuel, whereas in a binary power plant, Q  in is the heat sup-
plied to the working fluid from the geothermal resource. In both types of plants, 
Q  out is the heat rejected to the atmosphere by a cooling tower or other means. The 
quantity Wout is the shaft work (energy) generated by the turbine.

The first law of thermodynamics states that energy is conserved. Thus, for a 
heat engine, the heat supplied must equal the output work plus the rejected heat. 
Expressed mathematically, the first law for the heat engine is written as

 = +Q Q Win out out  (8.15)

Turbine

Working fluid
Condenser

Heat exchanger
Pump

Hot water

Production well Geothermal resource

Pump

Cooled water

Injection well

Make-up water

Air

Cooling tower

Air

Cooling water

Air and water vapor

Electrical power
Generator

Figure 8.20
Geothermal binary 
power plant.
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where each quantity is expressed in units of J. Stated in terms of power, these quan-
tities can also be expressed in units of W. Thermal efficiency of a heat engine, denoted 
η th, is defined as the shaft work of the turbine divided by the heat input,

 η =
W
Q

.th
out

in
 (8.16)

The second law of thermodynamics states that is impossible for a heat engine 
to convert all the heat it receives from a high-temperature source to work. Hence, 
the value of η th is limited to values less than 1. A well known theorem from ther-
modynamics states that for an ideal heat engine operating between source and sink 
temperatures of TH and TL, respectively, the maximum thermal efficiency is given 
by the relation

 1th, ideal
L

H
η = −

T
T  (8.17)

where TH and TL are expressed in absolute temperature units of kelvin (K) or ran-
kine (R). The thermal efficiency given by Equation (8.17) is the maximum possible 
thermal efficiency a heat engine can have, and is referred to as the Carnot efficiency, 
in honor of the French engineer Sadi Carnot.

Turbine shaft work is converted to electrical energy by the generator, which 
means that the generator also has an efficiency. Generator efficiency is defined as 
electrical energy divided by shaft work,

 η =
W
W

.gen
elect

out
 (8.18)

Generator efficiencies are typically over 0.90. The quantities on the right-hand side 
of Equation (8.18) can also be expressed in power units of W. The product of the 
thermal and generator efficiencies given by Equations (8.16) and (8.18) defines the 
overall efficiency, ηoverall,

  overall th gen
out

in

elect

out

elect

in
η η η= = =

W
Q

W
W

W
Q

 (8.19)

where, once again, the quantities can be expressed in power units of W.
The following example illustrates the use of Equations (8.15) through (8.19) 

for a geothermal binary power plant.

(inside dashed line, Figure 8.20)

High-temperature source

Qin

Qout

Wout

Low-temperature sink (atmosphere)

(geothermal resource)

Heat engine

Figure 8.21
A power plant is a type of 
heat engine, a device that 
converts heat to work.
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EXAMPLE 8.5
In a binary power plant, 60°C water from the production well supplies 500 kW to 
an iso-butane working fluid in the heat exchanger. The output power of the turbine 
shaft is 40 kW, and the efficiency of the generator is 0.93. Find the thermal effi-
ciency, overall efficiency, electrical output power, and rate of heat rejection to the at-
mosphere. If the temperature of the atmosphere is 22°C, find the Carnot efficiency.

Solution
From Equation (8.18), thermal efficiency is

�
�η =

W
Q

th
out

in

=
40 kW
500 kW

= 0.080.

From Equation (8.19), overall efficiency is

overall th genη η η=

( )( )= 0.080 0.93

= 0.0744.

From Equation (8.19), the electrical output power is

 elect overall in�η=P Q

( )= 0.0744 (500 kW)

= 37.2 kW.

Using Equation (8.15), the first law of thermodynamics for a heat engine, the rate 
of heat rejection to the atmosphere is

� � �= −Q Q Wout in out

= −500 kW 40 kW

= 460 kW.

Converting the geothermal water and atmosphere temperatures to units of kelvin, 
the Carnot efficiency is

1th, ideal
L

H
η = −

T
T

= −
+
+

1
(22 273)K
(60 273)K

= 0.114.

Thermal efficiencies of binary plants are typically low, so our calculated value of 
0.080 is not surprising. Note that the actual thermal efficiency is lower than the 
Carnot efficiency, which is required by the second law of thermodynamics.
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Before leaving geothermal energy, a few remarks about its environmental im-
pacts deserve mentioning. As water is carried from the earth, some dissolved gases 
are carried with it, notably carbon dioxide (CO2), methane (CH4), hydrogen sulfide 
(H2S), and ammonia (NH3). When introduced into the atmosphere, these gases 
contribute to global warming and acid rain, and, with the exception of CO2, emit 
unpleasant odors. As a fraction of generated electrical power, geothermal power 
plants produce much less of these pollutants than fossil-fuel plants. Geothermal 
water can also contain trace amounts of toxic elements such as mercury and arse-
nic. The release of harmful substances into the environment is mitigated by inject-
ing the geothermal fluids back into the earth via the injection well. Continuous 
operation of a geothermal power plant may result in lowering the local water table, 
but re-injection of the water mitigates this problem as well. Re-injection can cause a 
local cooling of the reservoir, but this effect can be minimized by mapping the local 
reservoir flows and re-injecting the cooled water a suitable distance away from the 
production well.

Ground subsidence (settling) and seismic activity have been attributed to the 
long-term operation of geothermal power plants. The magnitude of ground subsid-
ence is typically less than a centimeter, and the link to earthquakes is questionable 
because geothermal sites are generally prone to earthquakes anyway.

The environmental impact of the construction of geothermal power plants is 
comparable to that of conventional plants. Unlike conventional plants, however, 
geothermal plants involve the drilling of wells, which requires great quantities of 
water from the surroundings. But geothermal drilling is safer than oil or gas drilling 
because there is no risk of fire, and the potential environmental impact of a drilling 
accident is relatively minor. Lastly, geothermal power plants require small areas of 
land, taking up only a few acres per 100 MW of power generation.

PRACTICE!

1. Find the maximum thermal efficiency of a geothermal power plant 
operating between a ground temperature of 45°C and an ambient air 
temperature of 18°C.
Answer : 0.0849.

8.6 MARINE
Marine energy is a comprehensive term used to describe energy derived from oceans. 
There are two main types of marine energy. The first type is tidal energy, which is 
generated by the periodic rise and fall of sea levels. Tides are primarily caused by 
gravitational forces exerted by the moon and sun but are also caused by the earth’s 
rotation. The second type, called ocean energy, consists of three subtypes that exploit 
different physical phenomena: ocean currents, ocean waves, and ocean thermal energy. 
In the first two, energy in ocean currents and waves is converted to mechanical 
energy, which is subsequently converted to electrical energy. In the third, a heat en-
gine utilizes temperature differences between deep and shallow water to generate 
mechanical energy in a turbine and then electrical energy in a generator. This type 
of system is called ocean thermal energy conversion (OTEC).
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8.6.1 Tidal
Tidal energy is the only renewable energy source that is derived from the earth-
moon-sun orbital system. Solar, wind, and hydro energy are directly or indirectly 
derived from the sun, and geothermal energy is derived from the earth.

There are two principal systems for generating electrical power from tides. The 
first system is called a tidal stream generator (TSG). In a tidal stream generator, ki-
netic energy of moving water is converted to mechanical energy in a turbine which 
drives a generator to produce electricity. In principle, this technology is the same 
as wind power, but the fluid is water instead of air. Tidal stream generators can be 
secured to the ocean floor by dedicated structures or integrated into existing struc-
tures such as bridges.

The second system is called a tidal barrage. A tidal barrage, illustrated in Figure 8.22,  
exploits the potential energy in the water’s height difference (elevation head) be-
tween high and low tides. As the ocean level rises toward its highest point at high 
tide, the sluice gates are open to allow the basin to fill. When the ocean reaches 
high tide, the gates are closed entrapping the water inside the basin, which is typi-
cally part of a river estuary. The basin will continue to fill as it is fed by the inland 
river. When the ocean reaches low tide, the elevation head is maximum, and the 
gates are opened allowing the stored water to rapidly flow through the turbines 
back to the ocean. Mechanical energy generated by the turbines is converted to 
electrical energy in a generator. The turbines continue to operate until the water 
levels in the basin and ocean are equal, at which point the elevation head is zero. 
The gates are then closed, and the cycle starts again. A road may be incorporated 
into the barrage, as depicted in Figure 8.22.

Sluice gates

Road

BarrageElevation head

Ocean

Ocean floor Turbine tunnel

Turbine
Ebb flow

Tidal basin

Inland

Figure 8.22
Tidal barrage.

The system just described is a one-way scheme that generates power during ebb 
tide (when water flows from the basin to the ocean). A tidal barrage may be de-
signed to operate during flood tide (when water flows from the ocean to the basin), 
but this scheme is less efficient because the flow rate in the turbine is lower due to 
a slowly filling basin. The barrage may be bi-directional, generating power during 
the entire tidal cycle. Bi-directional systems are less efficient than one-way systems 
because the elevation heads are smaller and turbines that are designed to operate 
in both directions are less efficient than uni-directional units.

Tidal barrages present some environmental challenges. The construction of a 
barrage across a river alters the sedimentation process, salinity level, and extent of 
mud flats in the estuary thereby affecting marine and fowl life. Furthermore, fish 
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may pass through the sluice gates and even through the turbines, causing injury or 
death. Construction of a barrage across an estuary impedes shipping, but the bar-
rage design typically includes ship locks.

8.6.2 Ocean
8.6.2.1 Ocean Currents 
Ocean currents are underwater flows caused by tidal motion, temperature gra-
dients, and salinity gradients. The power potential of the earth’s ocean currents is 
estimated to be between ×2 1012 W and ×5 1012  W. The technology for converting 
kinetic energy of ocean currents to electrical energy is fundamentally the same as 
that for wind. However, for a given velocity and temperature, ocean currents generate 
more power than winds because the density of seawater is over 800 times the density 
of air. In Section 8.3 we saw that the available power in the wind is directly propor-
tional to density, as expressed by Equation (8.8). Thus, the power available in ocean 
currents is

 ρ υ=
1
2

ocean current
3P A  (8.20)

where A is the cross sectional area through which the seawater flows, and υ is ve-
locity. The quantity ρ  is density, which for seawater is approximately 1025 kg/m3. 
The density of air at standard atmospheric conditions is about 1.2 kg/m3. As with 
wind power generation systems, ocean current systems employ either horizontal 
axis or vertical axis turbines.

EXAMPLE 8.6
A horizontal axis turbine is located where the ocean current has a steady velocity of 
0.8 m/s. Find the power available in the ocean current for a cross sectional area of  
1 m2. Compare your result with the power available in the wind for the same velocity 
and cross sectional area. For the density of seawater and air, use 1025 kg/m3 and 
1.18 kg/m3, respectively.

Solution
Using Equation (8.20), the power available in the ocean current is

ρ υ=
1
2

ocean current
3P A

=
1
2

 (1025 kg/m )(1 m )(0.8 m/s)3 2 3

= 262 W.

The power available in the wind is

ρ υ=
1
2

wind
3P A

=
1
2

 (1.18 kg/m )(1 m )(0.8 m/s)3 2 3

= 0.30 W.
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8.6.2.2 Ocean Waves 
Ocean waves are caused by winds across the surface of the water. As discussed in 
Section 8.3, winds are primarily caused by solar heating of the earth, so this form 
of ocean energy is an indirect form of solar energy. In order to design a system for 
generating electrical power, engineers need to know the available power in ocean 
waves. Ocean waves are a complex phenomenon, but a simplified analysis that treats 
an ocean wave as sinusoidal, as illustrated in Figure 8.23, yields a useful approxima-
tion for the available power.

Wave crest unit length

v

H

l

Figure 8.23
Sinusoidal ocean wave.

The quantities H and λ represent the wave peak-to-peak amplitude (height) 
and wavelength, respectively. The velocity, υ, at which the wave moves across the 
ocean surface can be expressed in terms of wavelength as

 υ
λ

=
T

 (8.21)

where T is the period of the wave, defined as the time it takes for successive peaks 
or troughs to pass a fixed point. Wave period, T, is the reciprocal of wave frequency, 
f, so T f=1/ . The power of ocean waves is expressed in terms of energy flux, defined 
as the average power per unit length of wave crest, expressed in units of W/m. This 
important quantity is the average energy per second that passes under one meter 
of wave crest from the ocean surface to the seabed. Energy flux decreases exponen-
tially with depth such that nearly all of the energy is found near the surface.

For deep ocean waves, it can be shown that the energy flux, J, is given by the 
expression

 ρ
π

=J
g

TH
32

 
2

2  (8.22)

where ρ  is seawater density and g is gravitational acceleration. For the mathematical 
steps leading to Equation (8.22), consult the references at the end of this chapter.

EXAMPLE 8.7
Far off shore, the wave period and height of an ocean wave are 7.5 s and 3.0 m, 
respectively. Find the energy flux and the total available power of five waves with a 
wave crest length of 100 m. Use 1025 kg/m3 for the density of seawater.

Solution
Using Equation (8.22), the energy flux (power per unit length of wave crest) is
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ρ
π

=J
g

TH
32

 
2

2

(1025 kg/m )(9.81 m/s ) (7.5 s)(3.0 m)
32

3 2 2 2

π
=

6.62 10  W/m 66.2 kW/m.4= × =

The total available power is the product of the energy flux and wave crest length of 
five waves,

waves waves=P JL

(66.2 kW/m) 5 100 m( )( )=

= × =3.31 10  kW 33.1 MW.4

A variety of techniques are employed to convert wave power to electrical power. 
Referred to as wave energy converters, these can be broadly classified into three 
groups: wave activated devices, overtopping devices, and oscillating water columns. In a 
wave activated device, wave motion is directly transferred to mechanical motion 
of some kind. An overtopping device incorporates a ramp or tapered channel that 
forces water of incoming waves to spill into a reservoir. In a manner similar to hy-
dropower plants, stored water is directed back to the ocean through a turbine. In 
an oscillating water column, waves cause the water surface in a partially submerged 
pipe to oscillate thereby pumping air in the pipe through a turbine. These systems 
are illustrated in Figure 8.24.

Mechanical
device

(a) (b) (c)

Ramp Reservoir Pipe

AirFigure 8.24
Types of wave energy  
converters: (a) wave  
activated device,  
(b) overtopping device,  
(c) oscillating column.

The environmental impacts of wave energy systems are relatively benign. 
Pollution from lubricants would occur if the systems are not well sealed. Floating 
systems, if located in shipping lanes, present a danger to ships. Marine life is not 
affected, and noise generation is minimal.

8.6.2.3 Ocean Thermal Energy
Ocean thermal energy conversion (OTEC) utilizes temperature differences be-
tween shallow and deep seawater. The ocean surface absorbs solar radiation that 
warms shallow water, but solar radiation cannot reach deep water, so a temperature 
gradient is established. In deep oceans, the temperature difference between shal-
low and deep water can be as high as 20°C. This temperature difference can be 
exploited to run a heat engine. A floating OTEC plant is illustrated in Figure 8.25.

Basic heat engines and their application to geothermal power generation were 
presented in Section 8.5.1. In principle, a heat engine employed in OTEC and 
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geothermal applications is the same. However, the temperature difference in OTEC 
systems is relatively small, resulting in very low thermal efficiencies, as pointed out 
in the following example.

Cool water

Mooring

Ocean floor

Cold water

Transmission cable

Warm water

Figure 8.25
Floating ocean thermal 
energy conversion plant.

EXAMPLE 8.8
An OTEC system operates in a region where the temperatures of the surface and 
deep ocean waters are 30°C and 10°C, respectively. Find the maximum possible 
thermal efficiency of a heat engine that is employed in this system.

Solution
Using Equation (8.17), the Carnot efficiency of an OTEC system in which the tem-
peratures of the deep and shallow water, respectively, are 10°C (283 K) and 30°C 
(303 K), is

1th, ideal
L

H
η = −

T
T

= −1
283 K
303 K

= 0.066(6.6 percent).

Accounting for energy losses, the actual efficiency of a heat engine employed in an 
OTEC power plant ranges from 2 to 3 percent.

The primary environmental impact of an ocean thermal energy conversion sys-
tem is the return of cool water to the upper regions of the ocean, which could affect 
marine life. If released into the ocean, lubricants and the working fluid that is pumped 
through heat exchangers could likewise disrupt the local marine environment.
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8.7 BIOMASS
Biomass is the earth’s living, or recently living, matter found within the biosphere, 
the thin surface layer near the earth’s surface. Energy stored in biomass is naturally 
recycled through a series of chemical and physical conversion processes in the soil 
and surrounding atmosphere, which is the reason that energy from biomass is con-
sidered renewable. A part of this energy can be captured by intervening at the right 
time when biomass is available as fuel. If the rate of consumption does not exceed 
the rate at which biomass is recycled, the combustion of biomass does not generate 
more heat or carbon dioxide than does natural processes. Biomass can be directly 
converted to energy by combusting it to heat a living space or to heat water to run 
a turbine for generating electricity. Alternatively, biomass can first be converted to 
a secondary substance that is subsequently combusted or combined with other sub-
stances prior to combustion.

Man has utilized biomass for heating and cooking for centuries, but the use of 
biomass for electrical power generation is a relatively new development. Because elec-
trical power generation is the focus of the other renewable energy resources discussed 
in this chapter, electrical power generation from biomass will be emphasized here.

For power generation, there are two primary types of biomass: wastes and crops. 
Wastes include various types of human-generated refuse, agricultural and livestock 
waste, and wood processing waste. Over the long term, wastes alone will not be able 
to supply enough biomass to meet power demands. Energy crops grown on dedi-
cated plantations will be required to sustain the biomass power generation industry.

The most common technology for converting thermal energy of burning bio-
mass to electrical energy is a direct-fired power plant, illustrated in Figure 8.26. This 
type of power plant is similar to a conventional fossil-fuel power plant in which coal, 
oil, or gas is burned. Burning biomass transfers heat to a boiler, and a pump circu-
lates water in a closed loop through the boiler, turbine, and condenser. Thermal en-
ergy of high-pressure, high-temperature steam is converted to mechanical energy in 
the turbine, which is subsequently converted to electrical energy in the generator.

Overall efficiencies of biomass power plants are typically below 25 percent, ap-
proximately half that of coal-fired plants, due to the lower combustion temperatures 

PRACTICE!

1. An ocean current power generation plant consists of 12 turbines with a 
blade diameter of 8.0 m. The turbines are positioned at a depth where 
the ocean current velocity is 1.7 m/s. Find the available power in the 
ocean current for all turbines if the density of seawater is 1025 kg/m3.
Answer : 1.52 MW.

2. An ocean wave has a frequency of 0.20 Hz. If the height of the wave 
is 2.8 m, find the wave’s energy flux. For the density of seawater, use  
1025 kg/m3.
Answer : 38.5 kW/m.

3. If an OTEC power plant has a Carnot efficiency of 3.0 percent and the 
temperature of the shallow water is 28°C, what is the temperature of 
the deep water?
Answer : 19°C.
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of biomass. Efficiencies are higher in a co-fired power plant in which a small percent-
age (less than 2 percent) of biomass is mixed with coal. This mixture can be imple-
mented without making modifications to the coal-fired plant. Another approach to 
biomass power generation, called biomass gasification, involves the partial combus-
tion of biomass to produce the combustible organic compounds carbon monoxide 
and hydrogen. The heat content of this gas is about half that of natural gas and can 
be burned in a gas turbine.

Like the burning of fossil fuels, burning of biomass will produce emissions, par-
ticularly carbon dioxide. So, why is biomass more desirable than fossil fuels? The rea-
son is that when biomass is burned, the carbon dioxide released is later absorbed by 
replacement crops during photosynthesis. Hence, over a complete cycle of growth 
and combustion, no net carbon dioxide is released into the environment. This is not 
so with coal, oil, and natural gas. When these substances are burned, the carbon diox-
ide that was once locked in the earth is released into the atmosphere. Like fossil-fuel 
power plants, biomass power plants emit other harmful gases such as carbon monox-
ide, so measures have to be taken to remove these substances from the fuel gas.

Because a direct-fired biomass power plant is fundamentally a heat engine, a 
basic energy analysis parallels that of a conventional power plant or a binary geo-
thermal power plant discussed in Section 8.5.1.

Boiler
Hot water vapor (steam)

Turbine
Generator

Electrical power

Warm water vapor

Condenser

Coolant outCoolant in

Biomass

Pump

Cool liquid water

Heat

Figure 8.26
Direct-fired biomass power 
plant.
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PROBLEMS

For the following problems, use the general analysis procedure of (1) problem  
statement, (2) diagram, (3) assumptions, (4) governing equations, (5) calculations, 
(6) solution check, and (7) discussion.

Solar

 8.1 A spacecraft in orbit around the earth has a 2.5 m × 6.0 m solar panel that 
faces directly into the sun for 4 h. Find the solar energy incident on the 
panel during this time period. If the efficiency of the panel’s solar cells is 
0.20, how much electrical power is produced?

 8.2 A residential solar thermal system for providing domestic hot water uses a 
75 cm × 2.0 m solar collector. Assuming an average solar power density of 
440 W/m2 for 3 h during the day, how much energy is delivered to the water 
if the overall efficiency of the system is 0.35?

 8.3 A home owner in Miami, FL, wishes to power some lights and appliances 
using a photovoltaic solar panel mounted directly to the roof. The roof has 
a slope of 30° with respect to the ground, and the daily electrical energy 
requirement is 8 kWh. Based on the total solar irradiance for January 21, 
what is the required surface area of the solar panel if its efficiency is 0.16? 
Assume that the panel faces due south, the sky is clear, and the foreground 
reflectivity is 0.2.

 8.4 Compare the electrical power generation of photovoltaic systems in San 
Francisco, CA, San Antonio, TX, Minneapolis, MN, and Boston, MA. The 
solar panel in each location faces due south, has a surface area of 40 m2, and 
a tilt angle of 60°. If each panel has an efficiency of 0.15, find the electrical 
energy generated on June 21. Assume a foreground reflectivity of 0.2 and a 
clear sky.

 8.5 Consider two identical photovoltaic solar panels, one in Miami, FL, and the 
other in Boston, MA. The tilt angles of both panels are zero. For 12:00 noon 
on January 21, what are the total solar irradiances for these two locations? 
Explain why the total solar irradiance in Miami is much greater than that in 
Boston.

 8.6 A photovoltaic solar panel in Boston, MA, has a tilt angle of 60° and a sur-
face area of 22 m2. The cost of electricity in Boston is $0.149/kWh. Find the 
electrical power cost savings for the month of January if the efficiency of  
the solar panel is 0.19. Assume clear sky solar conditions of January 21 for 
the entire month (31 days) and a foreground reflectivity of of 0.2.

 8.7 On January 21 in San Francisco, CA, the sky is clear from sunrise until  
2 pm, but the sky is completely overcast for the rest of the day due to an  
approaching storm. For a 6 m × 8 m photovoltaic solar panel with a tilt 
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angle of 60°, estimate the electrical output energy for the day if the panel’s 
efficiency is 0.18. The foreground reflectivity is 0.2, and the solar panel faces 
due south.

 8.8 Compare the performance on June 21 of two photovoltaic solar panels, one 
in San Antonio, TX, and the other in Minneapolis, MN. The San Antonio 
panel has a tilt angle of 60° and a surface area of 25 m2. The Minneapolis 
solar panel is horizontal. If the electrical output power of the Minneapolis 
solar panel is to be the same as that of the San Antonio solar panel, what is 
the required surface area of the Minneapolis solar panel? Both solar panels 
have the same efficiency. Assume a foreground reflectivity of 0.2 and a clear 
sky. The San Antonio panel faces the south.

Wind

 8.9 A wind farm consists of 30 horizontal axis wind turbines with a blade diame-
ter of 32 m. The power coefficient of the turbines is 0.46, and the combined 
efficiency of the gear box, generator, and bearings is 0.33. If the wind blows 
steadily at 5 m/s, what is the electrical output power of the wind farm? For 
the density of air, use 1.16 kg/m3.

 8.10 A wind farm consists of 50 horizontal axis wind turbines with a blade diam-
eter of 70 m. For a steady wind speed of 12 mi/h, find the available power 
in the wind for the farm if the air density is 1.16 kg/m3. Express the answer 
in units of MW.

 8.11 The desired electrical output power of a horizontal axis wind turbine is  
2.75 kW. A site has been selected where the average wind speed is 3.2 m/s. 
The power coefficient and combined efficiency of the turbine are 0.49 and 
0.25, respectively. Using 1.16 kg/m3 as the density of air, find the required 
blade diameter of the turbine.

 8.12 A power utility company is considering building a wind farm at a site where 
the wind speed varies from 1.9 m/s to 4.3 m/s. A preliminary design calcula-
tion shows that the horizontal axis wind turbines, which have a blade diam-
eter of 40 m, will have a power coefficient of 0.50 and a combined efficiency 
of 0.31. Find the range for the electrical output power for this wind farm if 
75 turbines are to be installed. Assume that the winds are constant, and use 
1.16 kg/m3 for air density.

 8.13 A home owner has a single horizontal axis wind turbine that augments elec-
trical power from the local power utility. The wind speed varies throughout 
the day according to the schedule shown in Table P8.13.

Table P8.13

Time period Wind speed (m/s)
12 am–7 am 2.1

7 am–9 am 5.5

9 am–1 pm 4.0

1 pm–3 pm 3.2

3 pm–6 pm 3.8

6 pm–9 pm 4.7

9 pm–12 am 3.4
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The wind turbine has a blade diameter of 5.0 m, a power coefficient of 
0.45, and a combined efficiency of 0.22. Assuming that this daily schedule 
is repeated throughout a 30-day month, how much electrical energy does 
the home owner’s wind turbine generate per month? For the density of air, 
use 1.16 kg/m3.

 8.14 An inventor proposes to retrofit utility poles with vertical axis wind turbines, 
providing some electrical power for street and parking lot lights. The pro-
posed wind turbine design is illustrated in Figure P8.14. The turbine has 
three blades positioned 120° apart on a rotor that spins around the util-
ity pole. Assuming a constant wind speed of 3.0 m/s and an air density of 
1.16 kg/m3, find the available power in the wind for this turbine. For the 
area swept out by the turbine blades, use the height times diameter, the 
“presented area” of the cylinder-shaped turbine. If this turbine can convert 
20 percent of the available wind power to electrical power, how much elec-
trical energy can this turbine generate per day? Is this proposal viable?

1.0 m

Blades

Wind

Generator

Utility pole

1.5 m

Figure P 8.14

 8.15 Compare the electrical output power of two hypothetical renewable energy 
systems in San Antonio, TX: a photovoltaic solar system and a wind farm. 
The horizontal photovoltaic solar panels cover 90 percent of a 5-acre square 
parcel of land (some space between panels is needed for maintenance), and 
a square array of horizontal axis wind turbines occupies the entire 5-acre 
parcel. The efficiency of the solar panels is 0.18. The turbines have a blade 
diameter of 6.1 m, and the power coefficient and combined efficiency of 
the turbines are 0.48 and 0.16, respectively. Assume a constant wind speed 
of 6.0 m/s, a clear sky, a foreground reflectivity of 0.2 and an air density of 
1.16 kg/m3. Using a wind turbine tower spacing of five blade diameters in 
the direction of the wind and three blade diameters in the cross wind direc-
tion, how many wind turbines can be installed? On January 21, how much 
electrical energy is generated by each of these systems?

Hydro

 8.16 The combined efficiency of a hydropower plant is 0.78, and the head is  
26 m. If the volume flow rate of the river downstream of the power plant is 
5300 m3/s, what is the electrical output power of the plant? For the density 
of water, use 1000 kg/m3.

 8.17 The electrical power demand of a town near a future hydropower plant 
site is 1.75 GW, and the volume flow rate of the river downstream of the 
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reservoir is estimated to be 5000 m3/s. Assuming a combined efficiency for 
the turbine and generator of 0.88, what is the minimum reservoir head re-
quired? Use 1000 kg/m3 for the density of water.

 8.18 In a micro hydro system, a river is exploited to generate electrical power 
by diverting the water into a pipe with an inside diameter of 30.3 cm. If the 
velocity of the water in the pipe is 8.2 m/s, find the available power in the 
water. For the density of water, use 1000 kg/m3.

 8.19 A hydroelectric power plant has a gate at the spillway of the reservoir to 
regulate the flow of water downstream. The required range of electrical out-
put power of the plant is 100 to 175 MW. If the head of the reservoir is held 
constant at 35 m, what is the range of flow rates that the gate must maintain? 
Assume 1000 kg/m3 for the density of water and a combined efficiency of 
0.83 for the turbine and generator.

Geothermal

 8.20 A geothermal power plant extracts thermal energy from underground 
water at 60°C and rejects thermal energy to a 10°C atmosphere. Find the 
maximum thermal efficiency of this power plant. If the underground water 
was steam at the standard boiling point of water, what would the maximum 
thermal efficiency be?

 8.21 In a binary power plant, 55°C water from the production well supplies  
400 kW to an iso-butane working fluid in the heat exchanger. The output 
power of the turbine shaft is 35 kW, and the efficiency of the generator is 
0.91. Find the thermal efficiency, overall efficiency, electrical output pow-
er, and rate of heat rejection to the atmosphere. If the temperature of the  
atmosphere is 20°C, find the Carnot efficiency.

 8.22 A person proposes a power plant that utilizes hot rock as the thermal energy 
source and the atmosphere as the thermal energy sink. The temperature 
of the source and sink are 60°C and 18°C, respectively. The person states 
that the geothermal power plant extracts 120 kW from the rock and rejects  
95 kW to the atmosphere. Evaluate this proposal.

 8.23 Consider the design of a geothermal power plant that extracts thermal en-
ergy from 750°C magma and rejects thermal energy to 15°C seawater. If the 
rate of heat extraction from the magma is 1.2 MW, what is the maximum 
possible electrical output power?

 8.24 A geothermal power plant rejects its waste heat to a 5°C atmosphere. The 
rate at which mechanical work is done by the turbine is 27 kW, and the rate 
of heat extraction from underground water is 140 kW. Find the minimum 
required temperature of the underground water.

Marine

 8.25 Twelve horizontal axis turbines are installed across an ocean inlet where the 
average velocity of the current is 0.75 m/s. If the diameter of the turbine 
blades is 8.0 m, find the available power in the current. Use 1025 kg/m3 for 
the density of seawater.

 8.26 For the system described in Problem 8.25, find the electrical output power 
for an overall efficiency of 0.65.

 8.27 In deep ocean water, the wave period and height of a wave are 5.5 s and 2.8 m,  
respectively. Find the energy flux and the total available power of one 
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wave with a wave crest length of 250 m. Use 1025 kg/m3 for the density of  
seawater.

 8.28 An OTEC power plant extracts thermal energy from 30°C shallow water 
and rejects thermal energy to 9°C deep water. If the rate of energy extrac-
tion from the shallow water is 15 kW, what is the maximum possible output 
power of the turbine shaft? If the efficiency of the electrical generator is 
0.75, what is the maximum possible electrical output power?

Biomass

 8.29 The combustion temperature of wood chips is approximately 350°C. If a 
biomass power plant uses wood chips as fuel, and the plant rejects its waste 
heat to a 15°C lake, what is the maximum possible thermal efficiency of the 
power plant?

 8.30 In a biomass power plant that burns agricultural residues, water passing 
through the boiler absorbs 750 MW of power. Find the output power of this 
plant if the overall efficiency is 18 percent.

 8.31 The overall efficiency of a biomass power plant is the product of three sepa-
rate efficiencies–combustion efficiency, thermal efficiency, and generator 
efficiency. For the power plant in Problem 8.30, the thermal efficiency and 
generator efficiency are 0.28 and 0.90, respectively. Find the combustion 
efficiency.

M08_HAGE4428_05_SE_C08.indd   308 12/11/20   2:34 PM



9.1 INTRODUCTION
Engineering is a shared discipline and it is important to be able to present one’s work 
to others effectively. The old maxim “one picture is worth a thousand words” certainly 
holds true. A 1000-word essay cannot fully capture the essence of the place shown in 
Figure 9.1.

Describing technical data without graphs is somewhat like describing national 
parks without photographs. Only a certain amount of information can be effectively 
conveyed verbally or by using the written word; pictures must be used to communicate 
the whole message. A graph is a special visual representation of the relationship between two 
or more physical quantities. For example, Figure 9.2 is a graph of national SAT scores 
from 1967 through 2019. Two quantities–verbal score and mathematics score–are 
plotted as a function of the quantity time, measured in years. The graph readily shows 
a drop in both verbal and mathematics scores from 1967 through 1981, followed by a 
general rise in both scores, and a crossover in 1991, when the mathematics score rose 
above the verbal score. Average mathematics scores increased from 492 in 1981 to 
520 in 2005 (a 5.7 percent increase), which may be attributed to the emphasis placed 
on mathematics and science education in the United States during this time period. 
Due to a redesign of the SAT in 2016, both verbal and mathematics scores increased 
sharply for the years 2017 through 2019.

Data Analysis: 
Graphing

After reading this chapter, you 
will have learned
• How to collect and record 

experimental data
• How to properly construct 

graphs

• How to fit data to common 
mathematical functions

• How to do interpolation 
and extrapolation

Objectives

C H A P T E R

9
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310 Chapter 9 Data Analysis: Graphing

Another example of a graph is shown in Figure 9.3. In this graph, the axial stress 
in a specimen of mild steel is plotted as a function of axial strain. Note that the data 
points nearly lie in a straight line, so they have been fitted with a “best-fit” straight 
line in order to demonstrate a linear relationship between the two quantities stress 
and strain. A linear relationship between stress and strain indicates that, for a limited 
range of stresses, the steel behaves elastically, which means that the specimen returns 
to its original length after the force that causes the axial stress has been removed. This 
kind of graph is useful for investigating certain structural properties of materials.

Engineers are designers, analysts, researchers, consultants, and managers. 
Regardless of the engineering role they assume, engineers are communicators, and 
graphs are effective ways to communicate technical information. Engineers work 

Figure 9.1
Delicate Arch in Arches 
National Park, Moab, Utah. 
(Darren J. Bradley/ 
Shutterstock)
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in a world of technical data, which generally consist of measurements of various 
physical quantities such as voltage, stress, temperature, velocity, flow rate, viscosity, 
and frequency.

There are five main functions for which engineering measurements are made:

1. Performance evaluation involves making measurements to ascertain that a 
system is functioning properly. For example, a pressure sensor can indicate 
whether the pressure in a boiler is sufficient to deliver enough steam to a build-
ing’s heating system.

2. Process control involves a feedback operation in which measurements are used 
to maintain processes within specified operating conditions. By continually 
monitoring indoor air temperature, for example, the thermostats in our homes 
signal heating and cooling equipments to cycle on and off, thereby maintain-
ing comfortable living conditions.

3. Accounting involves keeping a record of the use or flow of a specific quantity, 
such as water flow from a reservoir.

4. Research involves investigating fundamental scientific phenomena. In engi-
neering research, experiments are developed and measurements taken to sup-
port or confirm theoretical notions. For example, miniature flow sensors may 
be used to measure the flow of blood in arteries to enable biomedical engi-
neers to develop flow models for the human heart.

5. Design involves testing new products and processes in order to verify their 
functionality. For example, if a materials engineer designs a new type of insula-
tion for controlling noise in a commercial aircraft, he or she would conduct 
some acoustics tests to ascertain that the new material functions properly for 
the intended application.

Testing is almost always the “last word” in the world of engineering design. 
Rarely do engineers design a product or process without testing it prior to manu-
facturing and marketing. Analytical and theoretical considerations alone are almost 
never sufficient to establish the viability of a new design. Carefully performed tests 
validate analyses and theories, but poorly conducted tests validate neither. In this 
chapter, we present the fundamentals of data analysis, which include the gathering 
and graphing of data from measurements.
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9.2 COLLECTING AND RECORDING DATA
Measurements form the backbone of science and engineering, because descriptions 
of the physical world are impossible without them. Imagine attempting to character-
ize the operation of a hard disk in a computer without measurements of data retrieval 
rate, voltage and current, and rotational velocity. Before we can construct a graph of 
data, we must take measurements of the quantities we wish to investigate. Engineering 
measurement is the act of using instruments to determine the numerical value of a physical 
quantity. For example, we use a scale (the instrument) to determine the weight (the 
quantity) of a person, which may be 160 lbf  (the numerical value). A thermometer 
(the instrument) is used to determine the temperature (the quantity) of the air in a 
building, which may be 70°F (the numerical value). An ohmmeter (the instrument) 
is used to determine the electrical resistance (the quantity) of a resistor, which may be 
10 kΩ (the numerical value). Many other examples could be cited.

An extensive discussion of engineering measurement is beyond the scope of this 
book, but a few fundamental concepts are worth covering. An engineer must be able 
to identify the kinds of data desired and how to associate various quantities. He or she 
must also understand that no measurement can be taken with ultimate accuracy or 
precision and that dealing with error is an integral part of engineering measurement.

9.2.1 Data Identification and Association
To help us understand how to properly identify and associate data, let’s use a simple 
and familiar example. Suppose that we wanted to measure the performance of a 
long-distance runner. First, we have to decide what kinds of data are required. To 
characterize the performance of the runner, we obviously want to know how fast 
he runs. We are not directly concerned with his body temperature, the electrical 
resistance of his limbs, the viscosity of his sweat, or his blood pressure. We want to 
know his speed, defined as distance divided by time. Thus, we have identified the 
data to be measured (distance and time) and associated these two quantities via the 
quantity (speed). Distance can be determined with a measuring tape or some other 
instrument, and time can be measured by using a stop watch or other suitable tim-
ing device. A graph of distance as a function of time, shown in Figure 9.4, reveals a 
meaningful relationship between these two quantities, and the quotient of distance 

20

20 30 40 50 60 70

15

10

10

5

0
0

Average speed 5 270 m/min

Average speed 5 292 m/min

Average speed 5 317 m/min

Average speed 5 350 m/min

Average speed 5 354 m/min

Time t (min)

Long-Distance Runner Test

D
is

ta
nc

e 
x 

(k
m

)

Figure 9.4
A graph of the quantities 
distance and time reveals a 
meaningful relationship for 
a long-distance runner.

M09_HAGE4428_05_SE_C09.indd   312 13/11/20   12:13 PM



9.2 Collecting and Recording Data 313

and time gives the runner’s average speed at various times throughout the race. 
Furthermore, the graph shows that the runner’s speed decreases with time, indicat-
ing that he may lack the physical conditioning for a long-distance race or that he 
did not pace himself properly.

In the example just given, the data were properly identified and associated, 
which resulted in a meaningful graph. Now consider a situation in which the data 
are neither properly identified nor associated. In Figure 9.5, the electrical resis-
tance of geometrically identical wire specimens made of different metal alloys is 
plotted as a function of melting point of the alloys. Because the data points are 
scattered randomly on the graph, there does not seem to be any meaningful rela-
tionship between electrical resistance and melting point of wires. Clearly, electrical 
resistance does not depend on melting point. Stated another way, melting point does 
not affect electrical resistance, so a graph of these two quantities is not useful. This 
does not mean, however, that a graph of seemingly unrelated data should never be 
constructed. In some engineering work, particularly research, we may not know in 
advance whether certain data are related or not. By graphing such data, physical 
relationships between the quantities may be manifested that otherwise would have 
gone unnoticed had a graph not been done.

9.2.2 Accuracy, Precision, and Error
At one time or another, virtually all engineers take measurements. The nature of 
engineering measurements encountered by engineers depend to a large extent on 
the type of product or process being developed or investigated. For example, a  
mechanical engineer who deals with thermal management of electronics would want 
to ascertain that the microprocessor in a computer is not going to fail thermally dur-
ing operation. What does “fail thermally” mean? It means that the microprocessor 
will not function properly because its temperature falls outside the temperature lim-
its specified by the manufacturer of that device. Thus, the engineer identifies tem-
perature as the quantity to be measured. In order to measure the temperature of the 
microprocessor, the engineer must decide what type of instrument to use. Obviously, 
an instrument for measuring temperature must be used, but there are numerous 
types of thermometers available, such as liquid in glass, bimetal, thermocouple, and  
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thermistor. The engineer must also decide where and how to attach the thermome-
ter to the microprocessor, as well as how many thermometers to use at a given time. 
Is one thermometer sufficient, or are five needed to simultaneously measure the 
temperature at various locations on the microprocessor? In order to obtain mean-
ingful measurements, the engineer must address these kinds of questions and many 
others. This is part of what makes taking measurements so challenging.

Issues common to all types of measurements are accuracy, precision, and error. 
Accuracy refers to how close a measured value is to the true or correct value. Precision 
refers to the repeatability of a measurement (i.e., how close successive measurements 
are to each other). Error is the deviation of a measured value from the true or correct 
value. From these definitions, it is clear that accuracy and error are closely related. 
Because error is the deviation of a measured value from the true or correct value, 
the magnitude of that deviation is indicative of the accuracy of the measurement. 
The difference between accuracy and precision is illustrated in Figure 9.6. Suppose 
that four shooters fire bullets at different, but identical targets. Shooter A is accu-
rate because all his bullets are close to the bull’s-eye, and he is precise because his 
bullets are clustered closely together. Shooter B is accurate because her bullets are 
evenly distributed around the bull’s-eye, but she is not precise because the bullets 
are scattered widely. Shooter C is precise because her bullets are clustered closely 
together, but she is not accurate because the cluster is far away from the bull’s-eye. 
Shooter D is not accurate because the spread of bullets is not evenly distributed 
around the bull’s-eye, and he is not precise because the bullets are not clustered 
closely together. Specific reasons for poor accuracy and precision may be the shoot-
er’s breathing, body position, vision, and other factors. Furthermore, the gun sights 
may need adjustment, the inside of the barrel may be dirty, or the wind may be blow-
ing steadily or gusting randomly. The list of possible causes for the bullet spreads of 
shooters B, C, and D may be long, which leads us into a discussion of error.

No measurement is without error, so it is important that engineers recognize 
potential sources of errors and how to minimize them. Errors may be generally 
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An illustration of accuracy 
and precision.
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categorized as gross, systematic, and random. Gross errors are errors that virtually 
invalidate the measurement. These errors are caused by misuse of instruments, use 
of inappropriate or unsuitable instruments, incorrect recording of data, and fail-
ure to follow proper measurement procedures. For example, in Section 9.2.2, we 
discussed a mechanical engineer who wanted to ascertain that the microprocessor 
in a computer would not fail thermally during operation. A gross error on the en-
gineer’s part would be his or her failure to wait for the microprocessor to achieve a 
steady thermal condition before recording the data. Electronic devices require time 
to heat up to their operating temperatures, so if measurements of temperature are 
recorded too early after the device is powered on, the data will be useless. Gross er-
rors should be eliminated from engineering.

Systematic errors are errors that exhibit regular or orderly behavior. Systematic er-
rors may be caused by the measuring instrument, the environment, or the observer 
conducting the measurement. For example, consider viscosity measurements of a 
lubricating oil with the use of a simple falling-sphere viscometer instrument. Over 
the course of the measurements, we notice that the time for the spheres to fall a 
given distance in the oil gradually decreases. The tests started in the early morning 
and concluded around noon. We discover that our measurements of time reflect 
a systematic error caused by a gradual rise in the temperature of the sample of oil 
caused by uneven heating of the building and the morning sun shining through a 
nearby laboratory window. This particular systematic error, like all systematic errors, 
can be corrected. Here, the error could be identified by simultaneously monitoring 
the temperature of the sample of oil so that the fall-time data reflect the tempera-
ture of the sample and therefore, its viscosity. A different way to correct the error 
would be to regulate the temperature of the sample.

Another example of a systematic error is parallax. Parallax is an observational 
error that can occur when reading a dial gauge. To demonstrate how parallax works, 
hold the tip of your pencil about 1 cm above the second a in the word parallax in 
this sentence. Holding the pencil steady, move your head from side to side while 
observing the letter directly behind the pencil tip with one eye. If you move your 
head far enough to the right, the letter r lines up with the pencil tip, whereas if you 
move your head far enough to the left, the letter l lines up with the pencil tip. In 
this simple demonstration, the pencil tip represents a needle or dial, and the letters 
on the page represent a numerical scale. An observer who reads a dial gauge from 
one side or the other will introduce a systematic error in the data.

A type of systematic error caused by the instrument is called hysteresis. An in-
strument exhibits hysteresis when there is a difference in readings depending on 
whether the value of the measured quantity is approached from above or below. 
Hysteresis may be caused by mechanical friction, magnetic fields, elastic deforma-
tion, or thermal effects within the instrument.

Random errors are errors that are caused by chance-related phenomena. Let’s 
consider the previously discussed scenario of the four shooters, where wind gust 
is a an example of a random error. Wind gusts occur at unpredictable times and 
have unpredictable speeds, which can randomly divert the path of a bullet from the 
bull’s-eye. Yet another example of a random error is dirt or other foreign matter in 
the gun barrel. Some barrels may be cleaner than others, and the amount of con-
taminants in a gun barrel is basically a random variable.

All the different types of systematic and random errors are too numerous to 
cover in this book. Shown in Figure 9.7 are the primary sources of gross, systematic, 
and random errors, categorized in an organized fashion. Note that some causes 
of error, such as friction and vibration, may be systematic or random. For more 
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9.2 Collecting and Recording Data 317

in-depth coverage of error sources, the references at the end of this chapter should 
be consulted.

9.2.3 Recording Data
While measurements are being taken, it is important to record the data in a sys-
tematic and organized manner when preparing for graphing. For the data to be 
meaningful, thorough recording procedures must be followed. Standard engineer-
ing practice dictates the use of laboratory notebooks with data sheets, similar to 
the one shown in Figure 9.8, for recording data and documenting all aspects of the 

Engineering Laboratory, General Engineering Corporation

Title of test Page
Test conducted by
Date Time Location
Equipment List

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9.8
Laboratory notebook 
data sheet.
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measurements. Recording data on loose papers is strongly discouraged, because 
loose pages can easily be lost, damaged, or improperly sorted with the other pages. 
The following information should be recorded in a bound notebook:

• Title of test
• Name of person(s) conducting the test
• Date, time of day, and location of test
• Page numbers
• List of instruments and equipment used
• Sketches of test setup
• Data

• Neatly written
• Arranged in a tabular format
• Clearly identified and labeled with units
• Recorded with the correct number of significant figures

• Short explanatory notes of data, as needed

The information contained in a laboratory notebook is regarded as the “raw 
data” for a test and constitutes the foundation of all subsequent graphs, analyses, 
and evaluations of the test. For this reason, the information recorded in the labo-
ratory notebook is not to be tampered with in any way. Under no circumstances 
should the data be discarded, erased, or altered. To do so constitutes a breach of 
professional engineering ethics. If all or part of the data turns out to be bad for 
some reason, corrective steps should be taken to flush out problems that may exist 
with the instruments or the experimental procedure, and the test should be con-
ducted again. Generating meaningful experimental data can be very time consum-
ing, but the value of that data makes the effort worth it.

While laboratory notebooks are used for recording data manually, data may 
also be collected and processed electronically using a data acquisition system. These 
systems convert analog electrical signals from sensors and convert them to a digital 
form that can be stored and processed by a computer.

PRACTICE!

1. An environmental engineer wants to evaluate the supply of water for 
a town located at the base of a mountain range. The water supply for 
the town is based solely on runoff from the snowpack that accumulates 
in the nearby mountains during the winter. Describe the kinds of data 
that the engineer should collect and how graphs of the data could be 
used to assess the town’s water supply.

2. In a plant that manufactures plasterboard, an industrial engineer 
wants to optimize the production of plasterboard sheets by investigat-
ing the effects of heating rates for curing the gypsum as the boards 
travel along a conveyor. Describe the kinds of data that the engineer 
should collect and how graphs of the data could be used to optimize 
the production of plasterboard.

3. In a drilling operation, a petroleum engineer wants to determine, 
based on oil production at various depths, when drilling at a particular 
site should be terminated. Describe the kinds of data that the engineer 

M09_HAGE4428_05_SE_C09.indd   318 13/11/20   12:13 PM



9.3 General Graphing Procedure 319

should collect and how graphs of the data could be used by the engi-
neer to make the decision to terminate drilling.

4. Classify the following errors as gross (G), systematic (S), or random 
(R) (in some cases, more than one classification may apply):

Error Classification (G, S, or R)

a. Not using a micrometer properly ______   

b. Dust and grease in a mass-balance linkage ______   

c. Reading a pressure gauge dial at a 60° angle ______   

d. Voltmeter incorrectly zeroed ______   

e. Ventilation drafts in a laboratory ______   

Answer: a. G b. R c. S d. S e. R.

9.3 GENERAL GRAPHING PROCEDURE
In this section, a general procedure for graphing engineering data is presented. 
The procedure applies to all engineering disciplines and functions and, when  
applied consistently and correctly, leads to meaningful graphs that enable engi-
neers to assess the performance of engineered systems, control processes, keep an 
accounting of physical quantities, conduct engineering research, and design prod-
ucts and processes. Practicing engineers in all disciplines have been using this gen-
eral graphing procedure in one form or another for a long time with great success. 
It is vitally important that students learn proper graphing procedures and apply 
them in their course work.

After data has been collected and recorded, graphs of these data can be con-
structed. As shown in Figure 9.9, there are numerous types of graphs that may be 
used to show relationships between various kinds of data. The most widely used 
graphs for engineering applications are the scatter graph and line graph. A scat-
ter graph is a graph consisting of data points only, without lines drawn through 
them. (See Figures 9.4 and 9.5.) A line graph is a graph consisting of one or more 
lines without data points. Line graphs are typically used to show relationships be-
tween continuous quantities generated by mathematical equations. Graphs with 
lines drawn through data points are also used. The other types of graphs shown 
in Figure 9.9 are used less frequently for engineering work. A bar graph is typically 
used to show distributions of quantities for purposes of statistical analysis. A pie 
graph is commonly used to show percentages or fractions of a whole in financial 
and business applications. A polar graph is used to show how quantities vary with 
angle. A contour graph shows how a quantity varies on a two-dimensional surface. 
A 3D surface graph shows how a quantity varies in three-dimensional space. Since the 
scatter graph is predominantly used in engineering work, we will devote our entire  
attention to this type of graph.

The general procedure for constructing a graph of experimental data can be 
outlined in a step-by-step fashion. Each step in the procedure will be explained 
and illustrated in the sections that follow. The procedure applies to the manual 
construction of a graph, as well as to the construction of a graph with the use 
of a computer software package. It is recommended that the student learn the 
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9.3 General Graphing Procedure 321

graphing procedure by applying it manually before attempting to construct graphs 
via computer software. Once the techniques of graphing have been mastered with 
pencil and paper, the student will find that, after learning how to use the software, 
computer-aided graphing is straightforward.

General Graphing Procedure

The general graphing procedure is as follows:

1. Determine what data are to be graphed (i.e., the dependent variable and the 
independent variable). These data are obtained from the laboratory notebook.

2. Determine the range for the dependent and independent variables.
3. Select the graph paper based on the type of scale desired: linear, semilog, or full 

log. If semilog or full log is chosen, determine how many cycles (powers of 10) 
are required.

4. Based on the ranges of the variables, choose the location on the graph paper for 
the horizontal and vertical axes.

5. Calibrate and graduate the axes.
6. Label the axes.
7. Plot the data points by using appropriate symbols.
8. If a curve fit is desired, draw a curve or curves through the data points.
9. Identify multiple curves with a legend, and add a title to the graph.

In the sections that follow, each of these steps is discussed in detail.

9.3.1 Dependent and Independent Variables
Perhaps the most crucial step in graphing is the proper identification of the  
dependent and independent variables. These variables were identified and associ-
ated when they were measured in the laboratory, so they should be recorded in the 
laboratory notebook or, if a data acquisition system is used, they should be stored 
electronically. A dependent variable is a quantity that depends on another quantity. Stated 
another way, a dependent variable is a quantity that changes in response to changes 
of another variable. The dependent variable depends on the independent variable, 
which is autonomous as far as the measurements are concerned. The independent 
variable is the variable that can be controlled by the experimenter. There is a cause–effect 
relationship between the dependent and independent variables. The independent 
variable (the cause) influences in some way the dependent variable (the effect).  
In mathematical terms, we say that the dependent variable is a function of the in-
dependent variable. For example, a biomedical engineer may want to investigate 
the factors that influence the length of a person’s stride so that a prosthetic may be 
designed. Stride length depends on variables such as leg length, hip strength, and 
knee flexibility. Hence, stride length is the dependent variable, and leg length, hip 
strength, and knee flexibility are the independent variables (i.e., stride length is a 
function of these three variables).

A common mistake that beginning students make is to confuse the dependent 
and independent variables. They can usually be distinguished by asking which vari-
able depends on the other. Let’s suppose that we wanted to study the relationship 
between altitude and air density by constructing a graph. Which of these quanti-
ties is the dependent variable and which is the independent variable? Does density 
depend on altitude or does altitude depend on density? We know that as we as-
cend a mountain for example, the air gets “thinner,” which means that the density 
of the air decreases as altitude increases. This would suggest that density depends 
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on altitude, but can we say that altitude depends on density? Air density can be 
changed in a variety of ways, such as filling a flat tire with air. The pressure and, 
therefore, the density of the air in the tire increases as we put more air into it. But 
the altitude of the air in the tire obviously does not change. Altitude can be con-
trolled by the experimenter, but it does not depend on density. Thus, air density is 
the dependent variable and altitude is the independent variable.

9.3.2 Variable Ranges
After the dependent and independent variables have been identified, the range for 
both variables should be determined. Range refers to the extent of numerical values 
over which the variable is to be graphed. For example, a civil engineer may wish to 
graph the flow rate of water in a natural irrigation system as a function of the time 
of year. She may have recorded flow rates of water from 2 to 30 m3/s in a notebook, 
but she is only interested in graphing flow rates from 5 to 20 m3/s. Thus, the range 
of flow rates is 5 to 20 m3/s. In order to properly graph the data, there must be 
some flow rate data between the low value of 5 m3/s and the high value of 20 m3/s. 
Of course, for each flow rate over this range there is a corresponding value of time.

9.3.3 Graph Paper
Graph paper is commercially available in most college bookstores and office sup-
ply stores and may be downloaded and printed from various websites. Graph paper 
has preprinted horizontal and vertical grid lines with special spacing. The type of 
graph paper to be used for a particular graph depends on the nature of the data 
being graphed and the relationship between the dependent and independent vari-
ables. In general, graph paper comes in three types, each type being distinguished 
by the grid spacing or scale : linear, semilog, and full log. The most common size 
for graph paper is the standard letter size ×(8 11 inch),1

2  but other sizes, such as 
×8 14 inch1

2  and 11 17 inch,×  may also be available.
On linear graph paper, the horizontal and vertical grid lines are equally spaced, 

as shown in Figure 9.10(a). The spacing is typically 5, 10, or 20 divisions per inch, 
but other spacings are available. The grid spacing in Figure 9.10(a) is 10 divisions 
per inch.

On semilog graph paper, the grid lines in one direction are equally spaced, but 
the grid lines in the other direction follow a logarithmic relationship. Typically, as 
shown in Figure 9.10(b), the grid spacing in the vertical direction is logarithmic 
and the grid spacing in the horizontal direction is linear. The vertical scale shown 
in Figure 9.10(b) has one cycle, which means that the maximum data range is one 
power of 10. That range can be 1 through 10, 10 through 100, 100 through 1000, 0.01 
through 0.1, 0.1 through 1, or any other similar range, as long as it spans one power 
of 10. The grid on a semilog graph paper with two cycles spans a maximum range of 
two powers of 10, such as 0.1 through 10, 10 through 1000, or 105 through 10 .7

On full-log paper, the grid lines in both directions follow a logarithmic rela-
tionship, as illustrated in Figures 9.10(c) and 9.10(d). The graph paper shown in 
Figure 9.10(c) is designated as 1×1 cycles, because the maximum data range in 
both directions is one power of 10. The maximum data ranges do not have to be 
identical, however. For example, the ranges in one direction could be 10 through 
100, while the range in the other direction could be 0.1 through 1. The graph 
paper in Figure 9.10(d) is designated as 2×2 cycles, because the maximum data 
range in both directions is two powers of 10. Once again the maximum data ranges 
do not have to be identical.
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(a) Linear (b) Semi log
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(c) Full log (1 3 1 cycles)
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(d) Full log (2 3 2 cycles)

1
1 10 100

10

100

Figure 9.10
Types of graph paper.

9.3.4 Location of Axes
The axes of a graph consist of two intersecting straight lines, usually at or near the 
lower left corner of the graph paper. The horizontal axis is the abscissa (the x-axis), 
and the vertical axis is the ordinate (the y-axis). The point of intersection of the two 
axes is the origin of the graph. Note that:

It is standard graphing practice to associate the independent variable with the ab-
scissa and the dependent variable with the ordinate.

This standard is illustrated in Figure 9.11. Although most graphs of engineer-
ing data follow the standard, there can be some exceptions.

In most engineering applications, the dependent and independent variables 
are limited to positive values, so the origin of the graph is located near the lower 
left corner of the graph paper. If the variables contain both positive and negative 
values, the axes (and therefore the origin) of the graph must be shifted in order to 
accommodate the negative values, resulting in a graph consisting of four quadrants, 
as shown in Figure 9.12.

Regardless of where the axes of a graph are located, care should be taken to use 
as much of the graph paper as possible to make the graph more readable. This is 
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324 Chapter 9 Data Analysis: Graphing

made possible by properly marking out the calibrations, which is explained in the 
next section.

9.3.5 Graduation and Calibration of Axes
Prior to plotting any data points, the axes must be graduated and calibrated. Graduations 
are a series of marks on the axis that define the type of scale used. As discussed in 
Section 9.3.3, the three common types of scales on graph paper are linear, semilog, and 
full log. On a linear scale, the marks are equally spaced, whereas on a logarithmic scale, 

Ordinate (dependent variable)

Grid

Abscissa (independent variable)

Origin

Figure 9.11
Parts of a graph, including 
the abscissa (x-axis) and 
the ordinate (y-axis).

2X

1Y

2Y

1X

II

III

I

IV

Origin

Figure 9.12
Axis locations for positive 
and negative variables.
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9.3 General Graphing Procedure 325

the marks are not equally spaced, but follow a logarithmic function. Calibrations are the 
numerical values assigned to the graduations. After defining the locations for the axes, 
the next step is to calibrate both axes based on the variable ranges defined in step 2 of 
the graphing procedure. The axes should be calibrated by using as much of the graph 
paper as possible. As an example, suppose our variable ranges are:

independent variable: 0 to 300

dependent variable: 0 to 40.

Assuming we are using graph paper with a linear scale, it is preferable to cali-
brate the axes as illustrated in Figure 9.13(a), which uses most of the available space 

40

40

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0
0 50

0 50 100 150 200 250 300

100 150 200 250 300

(a)

(b)

Figure 9.13
Calibration of axes  
done (a) correctly and  
(b) incorrectly.
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on the graph paper. It is not advisable to calibrate the axes in the manner shown 
in Figure 9.13(b), because the actual graph area is too small, making it difficult to 
read the graph’s detailed features. If the graph is constructed with the use of com-
puter software, the software will probably do the calibration automatically, based on 
the variable ranges supplied by the user. Alternatively, the calibration can be done 
manually. Whether a graph is constructed manually or with the use of computer 
software, the graph should fill as much of the page as possible to enhance readabil-
ity. As shown in Figure 9.13, if the graph paper does not have much space between 
the borders of the graph and the edge of the paper, the axes should be drawn 
slightly inside the borders of the graph, thus providing space for the axis calibra-
tions and axis labels, which are discussed in the next section.

Graduations, sometimes called ticks or tick marks, are referred to as either 
major or minor. As shown in Figure 9.14, major graduations are usually calibrated 
and are drawn slightly longer than minor graduations. Because graph paper typi-
cally consists of horizontal and vertical grid lines that extend the entire width and 
height of the graph, major graduations should be preselected to coincide with 
the major divisions of the graph paper. Major graduations can be emphasized by 
drawing tick marks. [See Figure 9.13(a).] As illustrated in Figure 9.15, the tick 
marks may be drawn inward (away from the calibrations), outward (toward the 
calibrations), or both.

Minor graduations

Linear Logarithmic

Calibrations

Major graduations

0 10 1 10

Figure 9.14
Major and minor  
graduations.

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

(a)

(b)

(c)

Figure 9.15
Graduations may be drawn 
(a) inward, (b) outward, or 
(c) both.

Minor graduations are located between major graduations, and should fol-
low the 1, 2, 5 rule, as illustrated in Figure 9.16. This rule states that the small-
est division for the minor graduations is 1, 2, or 5. The 1, 2, 5 rule readily enables 
interpolation of data by subdividing the interval between major graduations, 
using commonly used integers. Graduations that do not follow the 1, 2, 5 rule are 
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undesirable, producing non-integer subdivisions that render point plotting awk-
ward. Exceptions to the 1, 2, 5 rule are graduations that represent units of time, 
such as years, months, or days.

Although the number of graduations to use should follow the 1, 2, 5 rule, 
the number of calibrations to use is discretionary. The most common mistake is 
the overuse of calibrations. Too many calibrations makes the axis look crowded, 
so only the minimum number of calibrations required to read the graph should 
be used. The axis shown in Figure 9.17(a) is easy to read, but the axis shown in 
Figure 9.17(b), even though it follows the 1, 2, 5 rule, has too many calibrations.

0

1

10 0

2

10

0

1.67

100

2.5

100

3.33

10

0

5

10

(a)

(b)

Figure 9.16
(a) Proper calibrations  
follow the 1, 2, 5 rule.  
(b) Poor calibrations  
do not.

0 5 10 15 20 3025

0 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24 26 27 28 295 10 15 20 3025

(a)

(b)

Figure 9.17
(a) Calibrations that  
are easy to read.  
(b) Calibrations that  
are too crowded.

9.3.6 Axis Labels
Graduations and calibrations are meaningless unless the axes are labeled. An axis 
label is a designated name of the variable and its corresponding unit. Referring 
back to Figure 9.3, the designated name for the independent variable is “Normal 
strain, ε,” and the corresponding unit (enclosed in parentheses) is “mm/mm.” The 
designated name for the dependent variable is “Normal stress, σ ” and the corre-
sponding unit is “MPa,” enclosed in parentheses. Note that the designated name 
of both variables in Figure 9.3 consists of a word name plus an algebraic symbol 
separated by a comma. An alternative label might be the word name without the al-
gebraic symbol, so the label for the independent variable would be “Normal strain 
(mm/mm);” the label for the dependent variable would be “Normal stress (MPa).” 
Unsuitable labels for the independent and dependent variables, respectively, are  
“ε (mm/mm)” and “σ (MPa)” because the reader may not know the physical mean-
ings of “ ”ε  and σ“ ” without referencing another document or the supporting text 
for the graph. The axis labels must be specific enough for the graph to stand on its 
own merits without forcing the reader to reference other sources.

Axes should never be labeled simply as x and y just because you did it that way in 
math courses or because the abscissa is the “x-axis” and the ordinate is the “y-axis.” 
These generic labels fail to tell the reader the true identity of the independent and 
dependent variables. Tell the reader of the graph precisely what the variables are by 
using specific labels.
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0.0 0.1 0.2

105 J

0.3 0.4 0.5

0 1 2 3 4 6 7 8 95 10

Energy, E (MJ)

Pressure, p (kPa)

1000 Pa

100 2 3 4 6 7 8 95 101

Current, I (mA)

0.001 A

Figure 9.18
Examples of axis labels, 
using prefixes of SI units.

Engineering data sometimes consist of very small or very large numbers. If a 
quantity is expressed in SI units, prefixes should be used to simplify the calibrations, 
as illustrated in Figure 9.18. Note carefully the correct reading of the graduations 
shown in Figure 9.18. The energy unit used in the first example is MJ (megajoule), 
which means 10  J.6  The linear scale is calibrated in tenths of MJ, so the interval be-
tween two adjacent major graduations is 0.1 10  J 10  J.6 5× =  The pressure unit used 
in the second example is kPa (kilopascal), which means 10  Pa.3  The linear scale 
is calibrated in whole numbers of kPa, so the interval between two adjacent major 
graduations is 1 10  Pa 1000 Pa.3× =  The current unit used in the third example 
is mA (milliampere), which means 10  A.3−  The logarithmic scale is calibrated in 
whole numbers of mA, so the interval between two adjacent major graduations is 
1 10  A 0.001 A.3× =−

If English units are used in the axis label, it is customary to use powers of 10 
instead of prefixes, since most English units do not have prefixes. One exception is 
the unit ksi, defined as 103 lbf/in2.

9.3.7 Data Point Plotting
Recall that the laboratory notebook contains a tabular record of data that repre-
sents independent and dependent variables. Plotting a data point means to place 
on the graph a mark that represents a data pair of corresponding independent and  
dependent variables. Consider the graph shown in Figure 9.19, which was con-
structed from the data in Table 9.1. The independent variable is current and the 
dependent variable is voltage. The data comes from current and voltage measure-
ments for a resistor in a power circuit. There are six data pairs in the table, so there 
are six data points on the graph, one for each data pair.

The marks representing experimental data points on the graph are made with 
symbols. The most commonly used symbols are the circle, square, triangle, and 
diamond and, as shown in Figure 9.20, they may be filled or unfilled. The sym-
bols shown in Figure 9.19 are filled circles. When plotting data points with these  
symbols, there are some basic guidelines to follow. First, the centers of the sym-
bols should coincide with the numerical values of the data points. Second, the 
symbols should be large enough to be easily identified, but they should not be 
so large that they run into each other on the graph. Third, if two or more sets 
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of data are plotted on the same graph, as illustrated in Figure 9.2, different 
symbols must be used for each data set in order to distinguish them. By using 
the symbols shown in Figure 9.20, up to eight different data sets may be plotted 
on the same graph, which is sufficient for the majority of graphs. If more than 
eight data sets are plotted, additional unique symbols are required. If the graph 
is constructed manually, drawing templates may be used to create the symbols. If 
the graph is constructed via computer software, the software should have a ready-
to-use list of symbols, including the ones shown in Figure 9.20.

Table 9.1  Current and Voltage Data for Constructing  
the Graph Shown in Figure 9.19

Current, I (A) Voltage, V (V)

0.2  2.1

1.0 10.1

2.0 19.8

3.0 30.3

4.0 40.5

5.0 49.5

60.0

50.0

40.0

30.0

20.0

10.0

0.0
0.0 1.0 2.0 3.0 4.0 6.0

V
ol

ta
ge

, V
 (

V
)

5.0
Current, I (A)

Figure 9.19
Symbols represent data 
pairs of the independent 
and dependent variables. 
(Refer to Table 9.1.)

Figure 9.20
Common data-point 
symbols.

9.3.8 Curves
A curve is a line drawn through data points on a graph. The manner in which the 
curve is drawn depends on the type of data shown. Data points on a graph are 
generally categorized as observed, empirical, or theoretical. Observed data are pre-
sented on a scatter graph without attempting to correlate the data or fit the data to 
a mathematical function. Graphs of observed data are shown in Figures 9.2 and 9.4. 
Empirical data are presented with a smooth curve drawn through the symbols for  
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the purpose of showing a physical correlation or interpretation. The curve may 
be straight or not, and the symbols may not necessarily lie on the curve. A graph 
of empirical data is shown in Figure 9.3. Theoretical data are generated by math-
ematical functions and are represented by continuous smooth curves without 
symbols. Graphs of theoretical data do not show symbols because the curve is not 
derived from measurements of discrete physical quantities. Every “point” on the 
curve is a calculated, not a measured value. A graph of theoretical data is shown  
in Figure 9.21.

As with data point symbols, there are some standard line types that are com-
monly used for drawing curves, as illustrated in Figure 9.22. These line types can be 
drawn by using manual drafting tools. (Computer software typically allows the user 
to select from a ready-to-use list of line types, including those shown here.) It is rec-
ommended that lines not be drawn through unfilled symbols because the symbols 
may be mistakenly interpreted as filled symbols.

5
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0
0 1 2 3 4

y

5 6 7 8 9 10
x

Figure 9.21
A graph of the equation 
y = 2 + ln(x).
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Long dash

Short dash

Dash dot

Dash dot dot

Dot
(a)
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No

Yes

Figure 9.22
(a) Common line types. 
(b) Proper use of lines with 
symbols.
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9.3.9 Legends and Titles
The last step in the general graphing procedure is to place a legend and a title on 
the graph. A legend is a key that differentiates two or more data sets on the same 
graph by labeling the symbols or line types, or both. The graph shown in Figure 9.2  
has a legend that differentiates the verbal SAT score (filled circles) from the math-
ematics SAT score (unfilled circles). The best location for the legend is inside the 
boundaries of the graph, but if space is limited, the legend may be placed just out-
side the boundaries of the graph. However, in order to help the reader to locate the 
legend, it should be enclosed in a border.

A title is a caption that concisely describes the graph. The titles for the graphs 
shown in Figures 9.2, 9.3, and 9.4 are “National SAT Scores,” “Stress–Strain Diagram 
for Mild Steel,” and “Long-Distance Runner Test,” respectively. In printed matter, 
such as books and journals, the title of a graph is typically the figure caption and is 
usually located below the graph. For a graph prepared manually, the title may be 
placed below, above, or even inside the graph to suit one’s personal preference. For 
a graph prepared with the use of computer software, the location of the title may be  
fixed by the software, or the user may have control over where to place the title.

9.3.10 Graphing with Computer Software
To the engineer, the computer is an indispensable tool. Engineers use computers to 
write technical reports, prepare drawings, conduct analyses, collect data, and of course, 
construct graphs. The primary advantages of using a computer for graphing are speed 
and appearance. Assuming the engineer is familiar with the mechanics of the graphing 
software, he or she can probably construct a graph faster by using a computer software 
package than by using a pencil and graph paper. Moreover, a graph prepared with 
the use of a computer will have a more professional appearance than a graph that was 
prepared manually. Moreover, a graph constructed via computer software can also be 
electronically imported into technical documents (e.g., memos and reports).

Several software packages for graphing are commercially available. Perhaps the 
most commonly used software for graphing is the spreadsheet. Spreadsheets are widely 
available and relatively inexpensive software packages that were initially developed 
for business and accounting applications, but have also been extensively used for sci-
entific and engineering work. Spreadsheets consist of an array of rows and columns, 
making them ideally suited for tables of data from which graphs can be made. When 
a spreadsheet for graphing is used, the procedure to follow is fundamentally the same 
as that outlined in the previous sections. However, spreadsheets do not have ultimate 
graphing capability and flexibility. For example, spreadsheets may restrict the type 
and number of symbols and curves or may not allow the user to define the length of 
the major and minor tick marks. Because these restrictions and limitations are usually 
minor, spreadsheets are still a popular software tool for graphing in most engineering 
applications. The graph shown in Figure 9.23(a) was built by using Microsoft® Excel.

Furthermore, if the engineer desires more powerful graphing features and capa-
bilities, he or she may utilize a software that is designed specifically for graphing. These 
high-end graphing packages are more sophisticated than spreadsheets, allowing the 
engineer to investigate data by using more advanced types of graphs and to fully ma-
nipulate all the features of the graph. Furthermore, specialized graphing packages 
typically include advanced mathematical and statistical routines that spreadsheets may 
not have. Figure 9.23(b) shows a graph that was prepared by using SigmaPlot, which 
is a specialized graphing package. Note that for the simple application illustrated in 
Figure 9.23, both software packages are capable of producing nearly identical graphs.
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Figure 9.23
Graph of position as a  
function of time by using  
(a) EXCEL and (b) SigmaPlot. 
EXCEL is a registered  
trademark of Microsoft 
Corp., and SigmaPlot is 
a registered trademark of 
Systat Software, Inc.

GRAPHING WIND DATA TO SELECT A SITE FOR A WIND TURBINE
In order to determine a suitable site for a wind turbine near the mouth of a canyon 
in the Rocky Mountains, an engineer takes some wind-speed measurements. At 
this particular mountain location, the wind blows in a westerly direction through 
the canyon toward a wide valley. To measure wind speed, the engineer uses the 
cup anemometers typically used by meteorologists. He places one instrument at 
the mouth of the canyon and a second instrument one mile directly downstream 
from the mouth of the canyon where it opens into the valley. Both anemometers 
are mounted on 30-ft-high towers. Data-acquisition equipment is set to take the 
measurements at 10-second intervals and to calculate and record hourly wind-
speed averages. The data shown in Table 9.2 are the recorded average hourly wind 
speeds for a 24-hour period on January 30, 2013. The time of day is indicated in 
military time to facilitate easy graphing, and the wind speed is measured in miles 
per hour.
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A scatter graph of the data in Table 9.2 is shown in Figure 9.24. Both data sets 
are plotted on the same graph to compare wind speeds at both locations. The graph 
clearly shows that wind speed achieves a maximum value at 8:00 a.m. at both locations, 
and that for a given time of day, the average wind speed is always higher at the mouth 
of the canyon than at the location 1 mile directly downstream from the mouth of the 
canyon. This phenomenon is consistent with a meteorological version of the conser-
vation of mass principle in fluid mechanics. One would expect a higher wind speed at 
the mouth of the canyon than 1 mile downstream, because as the air exits the canyon 
into the valley, the air is allowed to spread over a cross-sectional area that is much 
larger than the canyon mouth itself, thereby undergoing a reduction in velocity.

For this particular wind turbine application, the maximum wind speed must 
not exceed 17 mi/h for an appreciable length of time to minimize the potential for 
rotor damage. At the mouth of the canyon, the average wind speed exceeds 17 mi/h 
from about 6:00 a.m. to about 2:00 p.m., a time interval of nearly 8 hours, whereas at 
1 mile downstream from the mouth of the canyon, the average wind speed exceeds 
17 mi/h for about 3 hours. Using the graph as a decision-making tool, we conclude 

Table 9.2 Average Hourly Wind Speed for Mountain Canyon

Wind Speed (mi/h)

Time (h) Mouth
1 mi Downstream 

from Mouth

0100 7.8  6.7

0200 7.5  6.4

0300 8.5  8.0

0400 8.4  6.5

0500 11.1  6.9

0600 14.5 11.5

0700 22.6 15.6

0800 34.9 20.0

0900 30.0 18.5

1000 29.5 18.0

1100 21.3 14.5

1200 20.5 13.4

1300 18.4 13.0

1400 15.6  8.9

1500 14.0  8.5

1600 13.9  8.8

1700 13.0  7.4

1800 11.8  6.3

1900 12.4  6.8

2000 13.4  5.4

2100 5.6  4.7

2200 6.7  3.6

2300 4.2  3.2

2400 5.9  3.8
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that the wind turbine should not be located at the mouth of the canyon, but at a 
more suitable location downstream, where the wind speeds are more moderate. Of 
course, the graph shown in Figure 9.24 applies only for one winter day, but a similar 
graphing process could be used to ascertain a suitable location for the wind turbine 
by accounting for wind-speed measurements during an entire month or year.
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Figure 9.24
A graph of wind speed that could be used to determine a suitable site for a wind turbine 
near the mouth of a mountain canyon.

PRACTICE!

In order to characterize the fuel economy of three different automobiles, 
consider the following set of data:

Fuel Economy (mi/gal)

Speed (mi/h) Vehicle A Vehicle B Vehicle C

 5.0 29.4 26.7 24.6

10.0 30.3 27.5 26.5

20.0 31.0 28.3 27.0

30.0 32.4 30.7 28.9

40.0 34.5 31.2 28.1

50.0 33.8 31.9 27.4

60.0 32.6 29.5 26.2

70.0 28.1 26.8 25.0

Using the general graphing procedure outlined in this section, construct 
a suitable graph of the data. Based on the graph, what conclusions can be 
drawn about the fuel economy of each vehicle?
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9.4 CURVE FITTING
Frequently, the data on a graph indicates a specific physical interpretation. For  
example, the graph shown in Figure 9.19 suggests a linear relationship between the 
electrical current in a resistor and the voltage across it. This relationship is experi-
mental evidence for a physical law known as Ohm’s law, which states that the voltage 
V is directly proportional to the current I:

 ∝ .V I  (9.1)

By introducing a constant of proportionality R, Equation (9.1) may be written as an 
equality:

 =V RI  (9.2)

where R is resistance. A simple rearrangement of Equation (9.2) shows that resis-
tance R is voltage divided by current. If a best-fit straight line is drawn through the 
data points, as illustrated in Figure 9.25, the value of R may be obtained. The slope 
(rise over run) of the line is the resistance R . A quick inspection of the graph indi-
cates that the resistance is approximately 10 Ω.

The line drawn through the data points in Figure 9.25 is an example of curve 
fitting. Curve fitting means to draw a smooth line through the data points for the purpose 
of approximating a mathematical relationship or function. In the example just cited, the 
mathematical relationship is Ohm’s law, and the line is straight. In general, a line 
can be straight or curved, and the line does not have to pass directly through all the 
data points. In fact, the line rarely passes through all the data points, because errors 
produce some scatter about the expected trend, yielding roughly equal numbers of 
data points on both sides of the line.

Before covering specific curve-fitting methods, a brief discussion of some com-
mon mathematical functions is in order.

PROFESSIONAL SUCCESS—WORKING IN GROUPS

Engineering students can maximize their academic success by working in 
groups to augment their individual studies. Learning can be greatly enhanced 
by conducting the following activities on a group basis:

• studying for examinations
• working homework problems
• performing laboratory experiments
• working on design projects
• conducting research.

By working in groups, students gain the advantage of learning from each 
other. As students collaborate on a specific task, they teach one another, and 
there is no better way to learn something than to teach it. Group work helps 
students stay motivated, interested, and fresh. Discussion, brainstorming, and 
teamwork are powerful components of group dynamics. These elements are 
totally absent when an individual is working alone. Members of a group tend 
to push one another, compelling them onward to accomplish a common ob-
jective. By working in groups while in school, students prepare themselves 
more effectively for professional engineering practice, because engineers 
never work in isolation, but instead work in teams.
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9.4.1 Common Mathematical Functions
The physical world exhibits remarkable order, which enables scientists and engi-
neers to utilize mathematics as a modeling tool. Many physical systems and processes 
follow simple mathematical relationships. We just saw that voltage and current in 
a resistor have a linear relationship: .=V RI  From fundamental physics, we know 
that the distance an object falls (neglecting air friction) varies quadratically with 
time according to the relation =y gt  ,1

2
2  where y is distance, g is gravitational ac-

celeration, and t is time. Radioactive decay follows the exponential relationship 
,0= λ−N N e t  where N is the number of nuclei present at time t, 0N  is the number 

of nuclei present at 0,=t  and λ is the decay constant.
The foregoing three examples typify the kinds of physical phenomena that can 

be described by using common mathematical functions. These functions are de-
noted as linear, power, and exponential. A linear function is expressed in the famil-
iar form ,= +y mx b  where m is the slope of the line and b is the y-intercept. Ohm’s 
law is a specific version of the linear function with 0.=b  A power function has the 
form ,=y bxm  where b and m are constants. An exponential function has the form 

e ,=y b mx  where again, b and m are constants.
A linear function = +y mx b  when plotted on a linear graph will appear as a 

straight line. However, the power and exponential functions do not represent lin-
ear relationships between the x and y variables, so something must be done in order 
to curve-fit data that are described by these functions. The power and exponential 
functions can be transformed into linear functions by doing a little algebra. For the 
power function, the steps are as follows:
power function

=y bxm

log( ) log( )=y bxm

log( ) log( ) log( )= +y x bm

log( )  log( ) log( ).= +y m x b (9.3)

Compare Equation (9.3) with the standard linear function .= +y mx b  Equation 
(9.3) is a linear function in log(y) and log(x), where m is the slope of the line and 
log(b) is the y-intercept. Note that the natural logarithm ln could also be used.  
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Figure 9.25
Resistance is the slope  
of a best-fit straight line 
drawn through current– 
voltage data.
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Data that follow a power function appear as a straight line when y is plotted as a function 
of x on a full log graph. Equivalently, data that follow a power function appear as a 
straight line when log(y) is plotted as a function of log(x) on a linear graph. The 
linearization of the exponential function is similar to that of the power function, 
but it is more expedient to use the natural logarithm:
exponential function

e=y b mx

ln( ) ln( e )=y b mx

ln( ) ln(e ) ln( )= +y bmx

ln( ) ln( ).= +y mx b  (9.4)

Equation (9.4) is a linear function in ln(y) and x, where m is the slope of the line, 
and ln(b) is the y-intercept. Data that follow an exponential function appear as a straight 
line when y is plotted as a function of x on a semilog graph (where the x-axis scale is linear 
and the y-axis scale is logarithmic). Moreover, data that follow an exponential function 
appear as a straight line when ln(y) is plotted as a function of x on a linear graph.

In summary, curve fitting for our purposes means to draw a smooth line 
through data points on a graph for the intent of approximating the data with a 
linear, power, or exponential function. If the function is a power or exponential 
function, the data must be linearized before implementing the two curve-fitting 
methods discussed here: (1) the method of selected points and (2) least squares 
linear regression.

9.4.2 Method of Selected Points
The method of selected points is based on a visual best fit of a straight line to the data 
on a graph. In the following procedure, y refers to the dependent variable, and x 
refers to the independent variable.

Procedure: Method of Selected Points

A procedure for the method of selected points is as follows:

1. Plot y as a function of x on a graph with a linear scale. If the data points suggest 
a straight line, we have a linear function. Proceed to step 4.

2. Plot y as a function of x on a graph with a full log scale. If the data points suggest 
a straight line, we have a power function. Proceed to step 4.

3. Plot y as a function of x on a graph with a semilog scale. If the data points suggest 
a straight line, we have an exponential function. Proceed to step 4.

4. Using a transparent straightedge, draw a line through the data points such that 
the line is as close as possible to all the data points, with roughly the same num-
ber of data points on each side of the line. (A transparent straightedge makes 
this task a little easier because all the symbols can be seen at once.)

5. Select two points on the line that are widely separated. (These two points should 
not be data points.) Record the values of these two points on a separate paper, 
and label them points A and B.

6. If the function is linear, substitute the values of points A and B into the two 
equations:

= +A mA by x

.= +B mB by x

Solve these equations simultaneously for the slope m and the y-intercept b.  
A linear function y = mx + b that fits the data has now been determined.
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7. If the function is a power function, substitute the values of points A and B into 
the two equations:

( )= +A m A by xlog( )  log( ) log

( )= +B m B by xlog( )  log( ) log .

Solve these equations simultaneously for the slope m and the y-intercept b.  
A power function y = bxm that fits the data has now been determined.

8. If the function is an exponential function, substitute the values of points A and B 
into the two equations:

= +A mA by xln( ) ln( )

( )= +B mB by xln( ) ln .

Solve these equations simultaneously for the slope m and the y-intercept b. An 
exponential function y = bemx that fits the data has now been determined.

The method of selected points is illustrated for the linear, power, and exponen-
tial functions in the examples that follow.

The position of a linear actuator in a machine is measured at specified times, as 
shown in the table that follows. Using the method of selected points, determine a 
mathematical function that fits the data.

Time, t (s) Position, s (cm)

0.0 0.40

1.0 2.49

2.0 4.37

3.0 5.66

4.0 7.92

5.0 8.47

6.0 11.8

7.0 12.4

Solution
After plotting the data on a graph with a linear scale, we see that, as shown in Figure 
9.26, the data suggest a linear function. Using a transparent straightedge, we draw 
a best-fit straight line through the data. Note that there are equal numbers of data 
points on each side of the line. We then select two points on the line that are widely 
separated. For the two points, we arbitrarily choose 0.5 and 6.5 as the x-coordinates 
(time coordinates), which yields 1.5 and 11.9, respectively, for the y-coordinates 
(position coordinates). Thus,

0.5 1.5x y= =A A

6.5 11.9x y= =B B .

EXAMPLE 9.1
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Points A and B and the other illustrative elements in Figure 9.26 are shown on the graph for 
instructional purposes only and should not be shown on the actual graph. Following step 6, 
we set up two simultaneous equations,

1.5 0.5( )= +m b

11.9 6.5 .( )= +m b

Solving for the slope m and the y-intercept b, we obtain:

1.73 cm/s 0.63 cm.= =m b

Hence, the equation for the position of the linear actuator as a function of time is:

= +1.73  0.63 (cm).s t

Now that we have an equation that fits the data, we can determine the position of 
the linear actuator for other time values. As a check of our solution, we substitute 

4.0 =t s  into the equation,

s ( )= +  (1.73 cm/s) 4.0 s 0.63 cm

7.55 cm=

which agrees with the coordinates of point C on the graph.
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Figure 9.26
Method of selected points 
for Example 9.1.

As the accompanying table shows, the power dissipated by a large transformer with 
a resistance of 5 Ω is measured for several values of current that pass through the 
transformer’s windings. Using the method of selected points, determine a math-
ematical function that fits the data.

EXAMPLE 9.2
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Current, I(A) Power, P(W)

1.05 5.63

1.25 7.58

1.75 16.9

2.50 32.1

3.0 48.0

4.0 78.2

5.0 126.0

6.0 188.0

8.0 315.1

10.0 490.3

Solution
After plotting the data on a graph with a linear scale, shown in Figure 9.27, we 
see that the data do not suggest a linear function. Plotting the data on a full log 
scale, shown in Figure 9.28, we see that the data points suggest a straight line, which 
means that we have a power function. Using a transparent straightedge, we draw a 
best-fit straight line through the data. For the two points, we arbitrarily choose 1.0 
and 9.0 as the x-coordinates (current coordinates), which yields 5.3 and 410, respec-
tively, for the y coordinates (power coordinates). Thus,

1.0 5.3x y= =A A

9.0 410.x y= =B B

Once again, points A and B and the other illustrative elements on the graph 
are shown for instructional purposes only and should not be shown on the actual 
graph. Following step 7, we set up two simultaneous equations:

log 5.3  log 1.0 log( ) ( ) ( )= +m b

log 410  log 9.0 log .( ) ( ) ( )= +m b
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Figure 9.27
Graph of power  
dissipation for  
Example 9.2. The data 
points do not suggest a 
linear function.
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Because of our selection for point A, a simultaneous solution is not necessary to 
solve for b, because log 1.0 0,( ) =  yielding a value of 5.30 Ω=b  directly from the 
first equation. Solving for the slope, we obtain 1.98.=m  The quantity m is an expo-
nent and has no units. Hence, the equation for the power dissipated by the trans-
former as a function of current is:

5.30  (W)1.98=P I

where I is expressed in A. The result is consistent with the fundamental equation 
from electrical circuit theory,

2=P I R

where R is resistance. Note the similarity between this equation and the equation 
resulting from the curve fit. The value of b is approximately equal to the resistance 
of the transformer, 5 Ω, and the exponent on current I is 1.98, which is very close to 
the theoretical value of 2.
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Figure 9.28
Method of selected  
points for Example 9.2.

Density of atmospheric air is measured for various altitudes, as indicated in the table 
that follows. Using the method of selected points, determine a mathematical func-
tion that fits the data.

Altitude, z (m) Density, ρ (kg/m3) 

0 1.225

400 1.179

1,000 1.112

2,000 1.007

3,000 0.909

EXAMPLE 9.3
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Altitude, z (m) Density, ρ (kg/m3) 

4,000 0.819

5,000 0.736

7,000 0.590

10,000 0.413

14,000 0.227

18,000 0.121

20,000 0.088

25,000 0.0395

30,000 0.018

Solution
After plotting the data on a graph with a linear scale and a full log scale, we see that 
the data do not suggest a linear or power function, as shown in Figures 9.29 and 
9.30, respectively. Plotting the data on a semilog scale, shown in Figure 9.31, we 
see that the data points suggest a straight line, which means that we have an expo-
nential function. Using a transparent straightedge, we draw a best-fit straight line 
through the data. For the two points, we arbitrarily choose 2,500 and 29,000 as the 
x-coordinates (altitude coordinates), which yields 1.00 and 0.024, respectively, for 
the y-coordinates (density coordinates). Hence,

= =A A2,500   1.00x y

29,000   0.024.x y= =B B

Once again, points A and B and the other illustrative elements on the graph are 
shown for instructional purposes only and should not be shown on the actual 
graph. Following step 8, we set up two simultaneous equations:

ln 1.00 2,500 ln( ) ( ) ( )= +m b

ln 0.024 29,000 ln .( ) ( ) ( )= +m b
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Figure 9.29
Graph of air density for 
Example 9.3. The data 
points do not suggest a 
linear function.
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Solving for the slope m and the y-intercept b we obtain:

1.41 10  m 1.42 kg/m .4 1 3= − × =− −m b

The exponential function for density can be simplified by expressing the altitude in 
units of km instead of m, which has the effect of changing the value of the slope to:

0.141 km (  in km).1= − −m z

Hence, the equation for the density of atmospheric air as a function of altitude is:

1.42  kg/m .0.141 z 3ρ ( )= −e

The accuracy of this function can be verified by substituting various values of altitude 
z in units of km and comparing the calculated values of density with those obtained 
visually from the graph.
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9.4.3 Least Squares Linear Regression
The main drawback of the method of selected points is that it relies on the judg-
ment of the person doing the curve fitting. This is particularly troublesome if the 
data shows considerable scatter. If 10 different people were to use the method of 
selected points to fit widely scattered data to a straight line, we would probably 
obtain 10 different slopes and 10 different y-intercepts. Least squares linear regres-
sion is superior to the method of selected points because it employs a precise math-
ematical technique for finding the best-fit straight line for the data. The basic idea 
underlying least squares linear regression is to find a straight line such that the difference 
between a data point and the corresponding point predicted by the line is minimized for all 
data points on the graph. Referring to Figure 9.32, the objective is to minimize the dif-
ferences or residuals ,di  which results in a straight line that is as close as possible to 
all the data points. The residual di  is defined as the difference between a data point 
and the corresponding point on the line:

 ( )= − −d y mx bi i i   (9.5)

where the subscript i is an index that refers to the data point number 1, 2, 3,. . . As 
shown in Figure 9.32, the residuals have both positive and negative values, depend-
ing on whether the data point is above or below the line. The best-fit straight line is 
obtained by minimizing the sum S of the squares of all residuals, which is written as:

 [ ]( )= ∑ = + + + = ∑ − +S d d d d y mx bi n i i
2

1
2

2
2 2 2�   (9.6)

where the symbol ∑  denotes a sum and n is the number of data points. The mini-
mization of Equation (9.6) involves calculus of partial derivatives, which is beyond 
the scope of this book. After performing the minimization and solving for the slope 
m and the y-intercept b, we obtain:

 

( )
( ) ( )( )

( )
=

∑ − ∑ ∑

∑ − ∑
m

n x y x y

n x x
i i i i

i i
2 2

  (9.7)

 
( )

=
∑ − ∑

b
y m x

n
i i .  (9.8)
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Least squares linear  
regression is based on 
minimizing the  
residuals, di.
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Upon finding the slope and y-intercept by using least squares linear regression, the  
question still remaining is “how well does the line fit the data?” Clearly, if all  
the data points fall precisely on the line described by the equation ,= +y mx b  then 
the fit would be “perfect.” This rarely, if ever happens, however, so the degree to 
which the line “correlates” with the data is an important consideration in curve 
fitting. A statistical parameter called the coefficient of determination 2( )r  is used to 
ascertain the “goodness of fit” of a straight line to the data. The coefficient of deter-
mination is given by the equation:

 

( ) ( )
( ) ( )

( )

( )

( )
=

∑ − ∑ ∑

∑ − ∑ ∑ − ∑



















r
n x y x y

n x x n y y

i i i i

i i i i

.2
2 2 2 2

2

 (9.9)

The range of values for 2r  is 0 to 1. Within this range, high values of 2r  indicate a 
good fit, whereas low values of 2r  indicate a poor fit. Note that many of the terms 
appearing in Equation (9.9) also appear in Equations (9.7) and (9.8).

Using least squares linear regression, rework Example 9.1. Also, find the coefficient 
of determination .2r

Solution
The table containing time and position data for the linear actuator is repeated here:

Time t (s) Position s (cm)

0.0 0.40

1.0 2.49

2.0 4.37

3.0 5.66

4.0 7.92

5.0 8.47

6.0 11.8

7.0 12.4

In order to use least squares linear regression, it is beneficial to construct a special 
table that enables us to readily calculate the terms in Equations (9.7), (9.8), and 
(9.9). (See Table 9.3.) From Equation (9.7), the slope of the line is:

( )
( ) ( )( )

( )
( ) ( )

( )
( )

( )
=

∑ − ∑ ∑

∑ − ∑
=

−
−

m
n x y x y

n x x s
i i i i

i i

8 259.84 28.0 53.51
8 140.00 28.02 2 2

= 1.728 cm/s

and from Equation (9.8), the y-intercept is:

( ) ( )
=

∑ − ∑
=

−
b

y m x
n

i i 53.51 1.728 28.0
8

0.641 cm.=

EXAMPLE 9.4
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Table 9.3 Data for Example 9.4

Data Point i Time t (s) xi Position s (cm) yi xi yi xi2 yi2

1 0.0 0.40   0.00   0.00   0.16

2 1.0 2.49   2.49   1.00   6.20

3 2.0 4.37   8.74   4.00 19.10

4 3.0 5.66 16.98   9.00 32.04

5 4.0 7.92 31.68 16.00 62.73

6 5.0 8.47 42.35 25.00 71.74

7 6.0 11.8 70.80 36.00 139.24

8 7.0 12.4 86.80 49.00 153.76

n = 8 ∑ xi = 28.0 ∑ yi = 53.51 ∑ xi yi = 259.84 ∑ xi
2

 = 140.00 ∑ yi
2
 = 484.97

Thus, the equation for the position of the actuator as a function of time is:

= +s t1.728  0.641 (cm).

Using the method of selected points, we found that the values of m and b were 
1.73 and 0.63, respectively, indicating that for this problem at least, the method of 
selected points yielded an excellent curve fit to the data. From Equation (9.9), the 
coefficient of determination is:

( ) ( )
( ) ( )

( )

( )

( )
=

∑ − ∑ ∑

∑ − ∑ ∑ − ∑



















r
n x y x y

n x x n y y

i i i i

i i i i

2
2 2 2 2

2

( )

( )

( )

( )
=

−

− −

















8(259.84) 28.0 53.51

8(140.00) 28.0   8(484.97) 53.512 2

2

0.9866=

which indicates an excellent fit.

Using least squares linear regression, rework Example 9.2. Also, find the coefficient 
of determination.

Solution
Recall that the data in this example follows a power function. This means that, in 
order to use least squares linear regression, the data must be manipulated before 
we can use Equations (9.7), (9.8), and (9.9). As suggested by Equation (9.3), in 
place of the independent variable ,xi  we use log( ),xi  in place of the dependent 
variable ,yi  we use log( ),yi  and in place of the y-intercept b, we use log(b). Again, 
we construct a special table that enables us to calculate the terms in the equations. 
(See Table 9.4.)

EXAMPLE 9.5
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From Equation (9.7), the slope of the line is:

(log  )(log  ) log  log 

log  log 2 2
( )( )

( ) ( )
=

∑ − ∑ ∑

∑ − ∑
m

n x y x y

n x x
i i i i

i i

10(11.1255) 5.2185 17.5025

10(3.7270) 5.2185 2
( )( )

( )
=

−

−

1.984=

and from Equation (9.8), we have:

log
log  log  17.5025 1.984 5.2185

10
( ) ( )

( ) =
∑ − ∑

=
−

b
y m x

n
i i

0.715.=

Table 9.4 Data for Example 9.5

Data Point i
Current I (A) 

(log xi) 
Power P (W) 

(log yi) (log xi)(log yi) (log xi)2 (log yi)2

 1 0.0212 0.7505 0.0159 4.49 × 10−4 0.5633

 2 0.0969 0.8797 0.0852 9.39 × 10−3 0.7739

 3 0.2430 1.2279 0.2984 0.0590 1.5077

 4 0.3979 1.5065 0.5995 0.1583 2.2695

 5 0.4771 1.6812 0.8022 0.2276 2.8264

 6 0.6021 1.8932 1.1398 0.3625 3.5842

 7 0.6990 2.1004 1.4681 0.4886 4.4117

 8 0.7782 2.2742 1.7696 0.6056 5.1720

 9 0.9031 2.4984 2.2563 0.8156 6.2420

10 1.0000 2.6905 2.6905 1.0000 7.2388

n = 10 ∑ log xi = 
5.2185

∑ log yi = 
17.5025

∑ (log xi) (log yi) = 
11.1255

∑ (log xi)2 = 
3.7270

∑ (log yi)2 = 
34.5895

Current I (A) Power P (W)

1.05 5.63

1.25 7.58

1.75 16.9

2.50 32.1

3.0 48.0

4.0 78.2

5.0 126.0

6.0 188.0

8.0 315.1

10.0 490.3
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Hence, the y-intercept is:

10 5.19.0.715= =b

Therefore, the equation for the power dissipated by the transformer as a function 
of current is:

5.19  (W)1.984=P I

where I is expressed in A. Using the method of selected points, we found that the 
values of m and b were 1.98 and 5.30 respectively, in good agreement with the values 
calculated here by using least squares linear regression. From Equation (9.9), the 
coefficient of determination is:

(log  )(log  ) log  log 

(log  ) log    (log  ) log 

2

2 2 2 2

2

( )( )

( ) ( )
=

∑ − ∑ ∑

∑ − ∑ ∑ − ∑



















r
n x y x y

n x x n y y

i i i i

i i i i

10 11.1255 5.2185 17.5025

10 3.7270 5.2185 10 34.5895 17.50252 2

2

( )

( ) ( )

( ) ( )

( ) ( )
=

−

− −



















0.9993=

which indicates an excellent fit.
Least squares linear regression can be manually applied by using Equations (9.7), 

(9.8), and (9.9), but this can be tedious when dealing with a large number of data 
points. The most efficient way to apply the method is to use a software package that 
has a built-in least squares linear regression routine. Virtually all graphing and spread-
sheet packages consist of a least squares linear regression routine that readily calculates 
the slope and y-intercept of the best-fit line, as well as the coefficient of determination. 
Some packages, particularly graphing packages, have more advanced curve-fitting 
routines that also enable the user to fit data to various nonlinear functions.

PRACTICE!

Using least squares linear regression, rework Example 9.3. Also, find the 
coefficient of determination.

9.5 INTERPOLATION AND EXTRAPOLATION
Sometime during the data analysis process, it may be necessary to determine 
data points that are not part of the original data set used to construct the graph. 
Interpolation is a process used to find data points between known data points, whereas 
extrapolation is a process used to find data points beyond known data points. Consider 
the graph shown in Figure 9.33. The y value of the extrapolated data point at 8=x  
is estimated based on the shape of the curve and its slope at 5,=x  the last known 
data point. Extrapolation can be a risky process, because the behavior of the data 
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beyond the last measured data point may be unpredictable, so extrapolation is gen-
erally not recommended. If reliable data beyond the current data set are desired, 
additional measurements should be taken. Interpolation on the other hand is gen-
erally reliable, because the known data points on both sides of the unknown data 
point serve as lower and upper limits, thereby bracketing the value of the unknown 
data point within a known range.

Referring again to Figure 9.33, suppose that we wanted to calculate the corre-
sponding y value for 2,=x  which is not in the original data set and therefore not 
plotted on the graph. In the absence of an equation for the smooth curve drawn 
through the data points, we cannot calculate this value (although we can estimate it 
graphically). To calculate the y value for 2,=x  we approximate the curve between 
the adjacent known data points as a straight line, which is known as linear interpola-
tion. To illustrate how linear interpolation works, let’s examine the lower left por-
tion of the graph, which is shown in Figure 9.34. In this figure, 1x  and 1y  are the 
coordinates of the known data point on the left of the interpolated point, and 2x  
and 2y  are the coordinates of the known data point on the right of the interpolated 
point. The coordinates of the interpolated point are x and y. A straightforward way 
to derive a formula for the y value of the unknown data point is to use a familiar 
concept from geometry: similar triangles. We have two similar triangles having a 
common angle ,θ  with the straight line approximation serving as the hypotenuse. 
For similar triangles, the ratio of the opposite side adjacent sides. Noting the coor-
dinates of the corners of the triangles, the equality is written as:

 .2 1

2 1

1

1

−
−

=
−
−

y y
x x

y y
x x

  (9.10)

Solving for the unknown y, we obtain:

   .1
2 1

2 1
1( )= +

−
−

−y y
y y
x x

x x   (9.11)

Using linear interpolation, Equation (9.11) is a general formula for the y value of 
a data point.
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5 1.609

Figure 9.33
Interpolation and  
Extrapolation.
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Applying Equation (9.11) to the given data, we get:

  0
1.099 0

3 1
  2 1 0.550.1

2 1

2 1
1 ( )( )= +

−
−

− = +
−

−
− =y y

y y
x x

x x

Hence, using linear interpolation, the coordinates of the interpolated data point 
are 2,   0.550.= =x y  The data points in Figure 9.33 were deliberately selected to fit 
the function =y xln  . The actual y value for 2=x  is ln 2 0.693.( )= =y  For the first 
two data points, linear interpolation does a rather poor job of approximating the y 
value for 2.=x  However, as shown in Figure 9.33, the function =y xln   begins to 
resemble a straight line with increasing values of x, so linear interpolation should 
be more accurate for the other data points. Let’s use linear interpolation to calcu-
late the y value for =x 4.5:

  1.386
1.609 1.386

5 4
  4.5 4 1.498.1

2 1

2 1
1 ( )( )= +

−
−

− = +
−
−

− =y y
y y
x x

x x

The actual y value for 4.5=x  is ln 4.5 1.504,( )= =y  a marked improvement 
compared with the previous interpolation. Obviously, linear interpolation is most  
accurate if the data points describe a linear relationship. If the data points describe 
a nonlinear relationship, as illustrated in Figure 9.34, linear interpolation yields an 
approximate value whose accuracy depends on the type of function described by 
the data points, the region of the data where the interpolation is made, and how 
close the two known data points are to each other.

Linear interpolation can be performed on tabulated data without regard to a 
graph. Consider the values of saturation temperatures and pressures of water in 
Table 9.5. A fundamental concept from thermodynamics is that saturation tempera-
ture and saturation pressure are dependent properties (i.e., for every value of satu-
ration temperature, there is a unique value of saturation pressure). Suppose that we 
want to determine the saturation pressure of water at a saturation temperature of 
77.0°C. This temperature is not listed in Table 9.5, so we cannot simply read from 
the table a corresponding value of pressure. We can, however, estimate a satura-
tion pressure by using linear interpolation. A saturation temperature of 77.0°C lies 
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Linear interpolation.
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Table 9.5 Saturation Temperature and Pressure of Water

Temperature, T (°C) Pressure, P (kPa)

65.0 25.03

70.0 31.19

75.0 38.58

80.0 47.39

85.0 57.83

between two known temperatures, 75.0°C and 80.0°C. The corresponding satura-
tion pressures for 75.0°C and 80.0°C are 38.58 kPa and 47.39 kPa, respectively.

Focusing on the portion of Table 9.5 that is of interest, we construct an interpo-
lation table. (See Table 9.6.) Denoting saturation temperatures as the x values and 
saturation pressures as the y values, we want to calculate the corresponding y value 
for 77.0.=x  Using linear interpolation, Equation (9.11) is the general formula for 
the y value of a data point. Hence, we have:

  38.58
47.39 38.58
80.0 75.0

  77.0 75.01
2 1

2 1
1 ( )( )= +

−
−

− = +
−
−

−y y
y y
x x

x x

42.10.=

Thus, the corresponding saturation pressure for a saturation temperature of 77.0°C 
is 42.10 kPa.

It is readily apparent that linear interpolation may be performed by recogniz-
ing that y must lie at the same fraction of the interval ,  1 2( )y y  as x  relies in the in-
terval ,   .1 2( )x x  Using Table 9.6 as an example, we find that a temperature of 77.0°C 
lies at 0.4 of (75, 80)°C so y lies at 0.4 of (38.58, 47.39) kPa. The mathematical 
version of this statement is Equation (9.10), which was derived from geometrical 
considerations.

As you progress through your engineering coursework, you will undoubtedly 
encounter numerous situations where linear interpolation of tabulated data is re-
quired. Equation (9.11) may be used for any tabulated data regardless of whether 
the x and y numerical values are ascending or descending. In addition, to help you 
in your calculations, you might want to write a simple linear interpolation program 
on your scientific calculator. Over time, however, you will probably become so profi-
cient in using linear interpolation that you’ll be able to do the calculations without 
referring to Equation (9.11).

Table 9.6 Interpolation Table for Data in Table 9.5

Temperature, T (°C) Pressure, P (kPa)

x1 y1

75.0 38.58

x 77.0 y

80.0 47.39

x2 y2
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PRACTICE!

1. For the data in Table 9.5, use linear interpolation to find the pressure 
for a temperature of 66.5°C.
Answer : 26.88 kPa.

2. For the data in Table 9.5, use linear interpolation to find the tempera-
ture for a pressure of 50.0 kPa.
Answer : 81.3°C.

3. For the data in Table 9.5, use extrapolation to estimate the pressure for 
a temperature of 90.0°C.
Answer : 69 kPa.

KEY TERMS

1, 2, 5 rule
accuracy
coefficient of  
 determination
curve fitting
dependent variable
error
exponential function

extrapolation
graph
graph paper
independent variable
interpolation
least squares linear  
 regression
linear function

measurement
method of selected  
 points
power function
precision
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PROBLEMS

Collecting and recording data

 9.1 A chemical engineer wants to analyze the effects of sodium chloride in a new 
medicine being developed. On a mass basis, the medicine consists of 85 per-
cent water, a maximum of 10 percent of other chemicals, and a maximum of  
5 percent sodium chloride. Describe the kinds of data that the engineer should 
collect and how graphs of the data could be used to evaluate the new medicine.
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 9.2 In a production facility where pistons are machined on numerically controlled 
lathes, a manufacturing engineer wants to study the effect of feed rate on the 
production and surface finish of the parts. To maximize the production rate, a 
large feed rate is desired, but if the feed rate is too high, a poor surface finish 
results. Describe the kinds of data that the engineer should collect and how 
graphs of the data could be used to determine the appropriate feed rate.

 9.3 An electrical engineer wants to assess the effects of temperature, humidity, 
and barometric pressure on the electrical resistance of a large wire-wound 
ceramic resistor. The expected ranges of these environmental variables are:

temperature: 10°C to 80°C

humidity: 20 percent to 90 percent relative humidity

barometric pressure: 0.8 atm to 1.1 atm.

Estimate how many unique measurements should be taken to adequately 
characterize the resistor. Which of these variables do you think would have 
the most pronounced effect on resistance? How could the engineer use 
graphs of the data to evaluate the effects of these variables on the resistance?

 9.4 Classify the following errors as gross (G), systematic (S), or random (R) (in 
some cases, more than one classification may apply):

Error Classification (G, S, or R)

a. Dropping a micrometer on the floor ____________________    
b. Air-conditioning running from 3 pm to 7 pm in the lab ____________________    
c. Mass balance not zeroed ____________________    
d. Surface plate not leveled ____________________    
e. Ohmmeter set to wrong scale ____________________    
f. Flow meter calibrated 5 years ago ____________________    
g.  Sensitive electromagnetic tests conducted near a radio  

transmitter
____________________    

h.  Using a carpenter’s tape to measure distances to  
a ± 0.02 inch accuracy

____________________    

General graphing procedure

 9.5 The graph shown in Figure P9.5 is incorrectly drawn. Referring to the  
general graphing procedure, identify the problems.
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 9.6 The graph shown in Figure P9.6 is incorrectly drawn. Referring to the  
general graphing procedure, identify the problems.
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W

)

Thermal conductivity

Figure P9.7

 9.7 The graph shown in Figure P9.7 is incorrectly drawn, and the method of 
selected points is used to fit the data to a straight line. Identify the problems.

 9.8 Table P9.8 lists the annual salary of an engineer from 1976 through 2020, 
the year that he retired. Using the general graphing procedure, construct a 
graph of the data.
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 9.9 The solar intensity, measured in W/m2 for a horizontal surface, as shown 
in Table P9.9, is measured at one-hour intervals during a partly cloudy day. 
Using the general graphing procedure, construct a graph of the data.

Table P9.9

Time, t (h) Solar intensity, I(W/m2)

0500 8.2
0600 32.6
0700 45.0
0800 219
0900 344
1000 521
1100 608
1200 737
1300 689
1400 606
1500 462
1600 171
1700 38.3
1800 11.9
1900 2.4

Table P9.8

Year Salary, $ Year Salary, $
1976 15,450 1999 59,850

1977 16,120 2000 62,100
1978 17,840 2001 64,740
1979 18,900 2002 67,250
1980 20,680 2003 70,865
1981 21,975 2004 73,981
1982 23,050 2005 77,050
1983 24,800 2006 80,130
1984 26,100 2007 84,350
1985 27,960 2008 86,880
1986 29,200 2009 88,900
1987 32,450 2010 90,770
1988 34,250 2011 92,290
1989 36,300 2012 94,580
1990 38,100 2013 96,728
1991 40,560 2014 97,011
1992 42,850 2015 99,843
1993 44,995 2016 102,157
1994 47,540 2017 104,804
1995 50,125 2018 106,077
1996 52,980 2019 107,933
1997 55,050 2020 110,762
1998 57,160
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Curve fitting

 9.10 Listed in Table P9.10 are measured rotational speeds in rpm of a pump and 
the corresponding pump output in gallons per minute.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the pump output for speeds 

of 150, 300, and 475 rpm.

Table P9.10

Pump Rotational Speed, S (rpm) Pump Output, V (gal/min)

0 0

100 0.52

230 1.45

325 2.80

400 4.30

500 6.10

Table P9.12

Resistance, R (kΩ) Current, I (mA)

 2.0 5.59

 3.0 3.37

 4.0 2.48

 5.0 2.01

 6.0 1.59

 8.0 1.18

10.0 0.989

 9.11 Using least squares linear regression, work Problem 10 and find the coef-
ficient of determination.

 9.12 A 10-V independent voltage source is connected across a variable resistor 
whose resistance is varied from 2 kΩ  to 10 kΩ. An ammeter is used to mea-
sure the current. Table P9.12 lists the values of resistance and current.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the current for resistance 

values of 2.8, 5.2, and 8.9 kΩ.

 9.13 Using least squares linear regression, work Problem 12 and find the coef-
ficient of determination.

 9.14 Given in Table P9.14 is the air velocity and drag-force data for a wind-tunnel 
test of a new airfoil.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the drag force for velocities 

of 8, 32, and 70 m/s.
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 9.15 Using least squares linear regression, work Problem 14 and find the coef-
ficient of determination.

 9.16 The measured-temperature history of a small metal forging after removal 
from a heat-treating oven is shown in Table P9.16.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the temperature for times of 

3.5, 12 and 17 s.

Table P9.14

Velocity, v (m/s) Drag Force, F (N)

2 3.5

5 22

15 176

20 330

30 728

50 1970

75 4560

Table P9.16

Time, t(s) Temperature, T(ºC)

0 196

1 184

2 166

3 148

4 132

5 122

10 67

15 41

20 25

 9.17 Using least squares linear regression, work Problem 16 and find the coef-
ficient of determination.

 9.18 The voltage, measured in mV, produced by a type-K thermocouple for vari-
ous junction temperatures is shown in Table P9.18.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the voltage for temperatures 

of 150, 575, and 850°C.
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 9.19 Using least squares linear regression, work Problem 18 and find the coef-
ficient of determination.

 9.20 The variation with temperature of the solubility, measured in kg, of calcium 
bicarbonate Ca(HCO )3 2 in 100 kg of water is shown in Table P9.20.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the solubility for tempera-

tures of 277, 309, and 330 K.

Table P9.18

Temperature, T(ºC) Voltage, V(mV)

50 1.98

100 4.35

200 7.76

300 12.51

400 16.70

500 19.62

700 29.43

1000 42.02

Table P9.20

Temperature, T (K) Solubility, S (kg)

273 16.15

280 16.30

290 16.53

300 16.75

310 16.98

320 17.20

350 17.88

373 18.40

 9.21 Using least squares linear regression, work Problem 20 and find the coef-
ficient of determination.

 9.22 In a drilling operation, the material removal rate (MRR) is measured for a 
range of drill diameters, as shown in Table P9.22.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the material removal rate 

for drill diameters of 0.875 and 1.25 in.
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 9.23 Using least squares linear regression, work Problem 22 and find the coef-
ficient of determination.

 9.24 The power required for an automobile to overcome aerodynamic drag at 
various speeds is shown in Table P9.24.

a. Identify the independent and dependent variables.
b. Use the method of selected points to obtain an equation for the curve.
c. Using the equation found in part (b), find the power for speeds of 35 

and 55 mi/h.

Table P9.22

Diameter, d (in) MRR, M (in3/min)

0.375 1.41

0.500 2.36

0.625 4.06

0.750 5.43

1.000 10.8

1.500 21.3

Table P9.24

Speed, s (mi/h) Power, P (hp)

10 0.060

20 0.459

30 1.61

40 3.98

50 7.47

60 13.3

Table P9.26

Temperature, T (°C) Specific Heat, c (kJ/kg ⋅ ºC) 

0 4.217

10 4.193

20 4.182

30 4.179

50 4.181

100 4.216

150 4.310

200 4.497

 9.25 Using least squares linear regression, work Problem 24 and find the coef-
ficient of determination.

Interpolation and extrapolation

 9.26 Table P9.26 shows the variation of the specific heat of liquid water with tem-
perature. Using linear interpolation, calculate specific heat for tempera-
tures of 27, 125, and 192°C.
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 9.27 Table P9.27 shows the variation of the viscosity of water with temperature. 
Using linear interpolation, calculate viscosity for temperatures of 21, 62, 
and 88°C.

Table P9.27

Temperature, T (°C) Viscosity, μ (Pa ⋅ s) 

0 1.75 × 10−3

20 1.75 × 10−3

40 6.51 × 10−4

60 4.60 × 10−4

80 3.50 × 10−4

100 2.82 × 10−4

Table P9.28

Angular Velocity, ω(rad/s) Radial Stress, σr (Mpa) 

  100   0.112

  500   2.80

1000 11.19

2000 44.77

5000 279.8

Table P9.29

Wire Gauge Number Resistance (Ω) 

20 33.31

22 52.96

24 84.21

26 133.9

28 212.9

30 338.6

 9.28 Table P9.28 shows the radial stress in a rotating solid disk as a function of 
angular velocity. Using linear interpolation, calculate the radial stress for 
angular velocities of 750, 1200, and 2750 rad/s.

 9.29 Table P9.29 shows the variation of electrical resistance of a 1000-m length 
of copper wire with a range of wire gauge numbers. Using extrapolation, 
estimate the resistance of a 1000-m length of copper wire for a wire gauge 
number of 34.
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Table P9.30

Borehole 
Diameter (in)

Amount of 
Ammonium Nitrate (lbm/ft)

 2  1.02

 3  2.30

 5  6.39

 7 12.54

10 25.61

Table P9.31

Year World Population

1700    600 million

1800    990 million

1900 1.65 billion

1928  2.0 billion

1960  3.0 billion

1975  4.0 billion

1987  5.0 billion

1999  6.0 billion

2011  7.0 billion

2019  7.7 billion

 9.30 Table P9.30 shows the amount of ammonium nitrate per foot of borehole 
depth as a function of borehole diameter needed to blast rock. Using  
extrapolation, estimate the amount of ammonium nitrate required for a 
12-in borehole.

 9.31 Table P9.31 shows world population from 1700 to 2019. Using extrapola-
tion, estimate the world population in 2030 and 2050.

 9.32 Write a 2-page essay on the pitfalls of extrapolation. Address specific reasons 
why extrapolation is unreliable, and cite at least two examples.
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10.1 INTRODUCTION
Statistics is a branch of applied mathematics dealing with the collection, presentation, analysis, 
and interpretation of data. Statistics is used to study phenomena in which randomness 
or uncertainty play a role. For example, the simple act of flipping a coin is a random 
process that can be described with the tools of statistics. Results of political elections 
can be projected, weather conditions can be forecast, and the outcomes of sporting 
events can be predicted by using statistical methods. Because randomness and un-
certainty are integral parts of these and other phenomena, statistics can only provide 
information that is imperfect and incomplete. The information is imperfect due to 
unavoidable random variation in the measurements, and it is incomplete because we 
seldom know or can measure all the influential variables that affect the phenomena. 
Hence, statistics does not provide the absolute “truth,” but an approximation of it. 
Statistics, properly used, helps us move toward the truth; however, it cannot guarantee 
that we will reach it, nor can it tell us whether we have done so. Statistics enables us 
to make scientifically honest assessments about the likelihood of certain phenomena.

When misused or misinterpreted, statistics leads to conclusions that are, at best, 
misleading and, at worst, completely wrong. A social statistic quoted in a doctoral dis-
sertation stated, “Every year since 1950, the number of American children gunned 
down has doubled.” Let’s examine this statement. Assuming there was only one child 

Data Analysis: 
Statistics
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gunned down in 1950, there would have been two children gunned down in 1951, 
four in 1952, eight in 1953, and so on. By 1995, the year of publication, there would 
have been about ×2 1013 children gunned down—about 1000 times the world’s 
population. Where did this erroneous statistic come from? The author obtained 
it from the Children’s Defense Fund, whose 1994 yearbook states, “The number of 
American children killed by guns has doubled since 1950.” Note the difference in 
wording. The original claim was that the number of children killed by guns doubled 
over the time period from 1950 through 1995; however, the doctoral student mis-
interpreted the statistic to claim that the number of children gunned down from 
1950 to 1995 doubled each year, resulting in a completely different meaning. The 
notion that we need to beware of bad statistics is not new. You have no doubt heard 
the adage, “You can prove anything with statistics.” The famous aphorism by the 
British statesman Benjamin Disraeli (1804–1881) is, “There are three kinds of lies: 
lies, damned lies, and statistics.”

While there is a certain amount of substance to these tongue-in-cheek max-
ims, we must not diminish the importance of statistics in everyday life and in 
engineering. Statistics is an indispensable decision-making and design tool. For 
example, transportation engineers use statistics to determine the anticipated life-
time of roads, highways, and bridges. Chemical engineers and medical research-
ers use statistics to identify effective drugs and medicines. Manufacturing and 
industrial engineers use statistics to assure the quality of products and processes. 
Nuclear engineers use statistics to evaluate the reliability of safety systems in nu-
clear power plants. Materials engineers and scientists use statistics to optimize 
the properties of new metal alloys and composites for aerospace and medical 
applications. Electrical engineers use statistics to reduce noise from transmitted 
signals in communications systems. These are but a few engineering applications 
of statistics.

Traditionally, engineers have been taught to approach an analytical problem in 
terms of a deterministic model without regard for variability of the quantities. A deter-
ministic model is strictly and accurately described by a governing equation derived 
from a conservation law or some other fundamental physical principle. A typical 
example is Ohm’s law, which states that voltage V equals the product of current I 
and resistance R:

 V IR= .  (10.1)

According to Ohm’s law, if the current and resistance are known, then voltage is 
exactly determined. But if we set up a simple laboratory experiment where 25 stu-
dents measure the voltage across the same resistor through which the same current 
flowed, we would obtain 25 different voltages. This does not mean that Ohm’s law 
is invalid. All 25 voltage measurements would be close to the value obtained using 
Equation (10.1), and the small differences would be due to inherent measure-
ment deviations. A statistical model of Ohm’s law accounts for deviations from the 
values obtained from the deterministic model given by Equation (10.1), and would  
be expressed as:

 = +V IR e   (10.2)

where e  represents deviations from the expected voltage. In a similar manner, sta-
tistical models of other deterministic models in science and engineering could be 
written.

Statistics may be generally categorized as either descriptive or inferential. The aim 
of descriptive statistics is to describe the principal characteristics of a set of data with-
out inferring conclusions that go beyond the data. The aim of statistical inference  
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is to make general predictions based on a limited set of data. To illustrate the differ-
ence between these two categories, suppose that we wish to determine the average 
height of the residents in Anytown, USA, whose total citizenry is 5000. In statistics, 
population is defined as the total number of observable objects. In this example, the 
population is 5000. Because it is impractical to measure the height of every resident, 
we randomly select every 50th resident, making a total of 100 measurements. The 
total 100 is a representative subset of the population and is defined as a sample. If the 
average height for the sample is 5.43 ft, we could simply state that 5.43 ft describes 
the average height of 100 randomly selected residents of Anytown, without attempt-
ing to draw any general conclusions about the average height of all 5000 residents. 
Alternatively, we could infer that a height of 5.43 ft for the sample should relate in 
a specific way to the average height for the population. Basic techniques for relating 
the characteristics of a sample to the population are discussed in this chapter.

10.2 DATA CLASSIFICATION AND FREQUENCY 
DISTRIBUTION
Unprocessed data recorded in a laboratory notebook are referred to as raw data. A 
complete statistical analysis requires that the raw data be processed in some mean-
ingful way. One way of processing the raw data is to sort it into a list of ascending 
or descending values. After the data has been sorted, it can be grouped into classes. 
To illustrate how this works, let’s return to our hypothetical height study of the resi-
dents of Anytown, USA. Once again, we refer to the subset (100) representative of 
the total population, and we record them in a table. (See Table 10.1.) Because our 
measurements are taken for 100 residents selected at random, the numbers in the 
table are not ordered in any particular way. The values are listed in the order that 
the measurements are taken.

Data Classification Guidelines

The height data in Table 10.1 can be classified by following some simple guidelines:

1. Select classes (ranges) for the data. A rule of thumb is to subdivide the data 
into n  classes, where n is the number of data points. No fewer than six classes 
should be used.

2. Select classes that encompass the entire data range.
3. Select classes such that no data point falls into more than one class.
4. Make the class intervals of equal size.

There are 100 data points, so we subdivide the data into 10 classes. An inspection 
of the data in Table 10.1 reveals that the minimum and maximum heights are 4.23 
ft and 6.31 ft, respectively. If we define the data range as 4.00 ft to 6.50 ft, we obtain 
10 classes with a size of 0.25 ft each. The classification of the height data is given in 
Table 10.2. Frequency denotes the number of data points that falls into each class. 
The sum of the frequencies equals the total number of data points, which is 100 for 
this example. The data in Table 10.2 can be conveniently displayed as a bar graph in 
which frequency is plotted as a function of height, as shown in Figure 10.1. This type 
of graph is called a histogram. Each bar in the histogram represents a data class (i.e., 
a range of heights). The calibrations along the horizontal axis denote the limits on 
the range of heights for each class listed in Table 10.2. The first bar represents heights 
from 4.00 ft to 4.25 ft and has a frequency of 1. The second bar represents heights 
from 4.26 ft to 4.50 ft and has a frequency of 2. The third bar represents heights from 
4.51 ft to 4.75 ft and has a frequency of 4, and so on.
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Table 10.1 Heights of 100 Residents of Anytown, USA (ft)

4.98 5.23 5.46 4.36 4.94
5.01 5.92 5.98 4.23 4.79
5.42 4.76 5.38 5.85 5.10
4.75 5.02 5.88 5.65 5.43
6.05 5.67 5.32 4.97 5.55
5.87 6.12 5.68 5.39 5.99
4.93 5.27 5.59 6.20 4.96
5.03 5.26 5.29 5.40 6.31
4.65 5.19 5.38 5.78 5.99
4.82 6.22 5.45 5.21 5.87
5.07 5.68 5.34 5.34 5.06
5.33 5.89 5.01 6.10 6.29
4.67 5.20 5.31 5.78 5.92
4.81 6.19 5.47 5.01 5.87
5.09 5.69 5.37 5.56 5.93
5.05 5.63 5.35 4.43 5.59
5.84 6.10 5.77 5.33 5.01
4.91 6.02 5.56 6.25 4.99
4.56 5.60 5.23 5.25 5.89
5.24 5.87 5.43 5.98 6.03

Table 10.2 Classification of Height Data in Table 10.1

Class Height Range (ft) Tally Frequency

1 4.00–4.25 |   1

2 4.26–4.50 ||   2

3 4.51–4.75 ||||   4

4 4.76–5.00 |||| ||||   |  11

5 5.01–5.25 |||| |||| |||| |||  18

6 5.26–5.50 ||||   ||||   ||||   ||||   |  21

7 5.51–5.75 ||||   ||||   ||  12

8 5.76–6.00 ||||   ||||   ||||   ||||  19

9 6.01–6.25 ||||   ||||  10

10 6.26–6.50 ||   2

Total 100

Histograms are valuable statistical tools for showing the frequency distribution 
of data. From the frequency distribution, we can usually draw certain conclusions 
about the data. The information about location, spread, and shape that is portrayed 
on the histogram can provide clues concerning the function of a physical process 
that generated the data. It can also suggest the nature of and potential improve-
ments for the physical mechanisms at work in the process. For example, consider 
the diameters of machined metal rods purchased from a supplier. The customer 
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specifications require that the diameter of the rods is ±5.000 0.002 cm, which 
means that the desirable diameter is 5.000 in, but the acceptable range of diameters 
is 4.998 to 5.002 cm. Let’s assume that 100 rods are measured. If the rod diameters 
follow a normal or bell-shaped frequency distribution, the histogram would look like 
Figure 10.2(a), suggesting that the majority of the rods have diameters very close to 
5.000 cm and that the number of rods with lower and higher diameters symmetri-
cally “tails off” on both sides of the “hump.” If the rod diameters are skewed toward 
4.998 cm or 5.002 cm, the histogram would look like Figures 10.2(b) and 10.2(c),  
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Figure 10.1
Histogram for  
Anytown, USA.

(a) Normal distribution

(c) Left-skewed distribution
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(b) Right-skewed distribution

(d) Truncated distribution

(f) Uniform distribution

Figure 10.2
Frequency distributions.
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respectively. Note that the terms right skew and left skew refer to the location of the 
tail of the frequency distribution, and not the hump. A skewed frequency distribu-
tion may indicate a systematic error of some kind in the machining equipment. 
If the histogram resembles either the left or right half of a normal histogram, 
the frequency distribution is called truncated. A truncated distribution, shown in 
Figure 10.2(d), may suggest that the machine operator deliberately produced parts 
with diameters of less than 5.000 cm or greater than 5.000 cm, or that an inspection 
resulted in a removal of rods with high or low diameters. If two humps appear in 
the histogram, as shown in Figure 10.2(e), the frequency distribution is called bi-
modal. A bimodal distribution suggests that the machining was performed on more 
than one machine, or by more than one operator, or at more than one time. A 
uniform frequency distribution, as shown in Figure 10.2(f), indicates that there is 
no variation in the data. For our sample, a uniform distribution suggests that the 
number of rods with a diameter of 5.000 cm is equal to the number of rods with any 
other diameter.

PRACTICE!

1. A manufacturer of toy cars orders a supply of plastic wheels from 
an injection-molding supplier. The wheels are to have a diameter of 

±0.750 0.010 in. A quality engineer randomly selects 30 wheels as a 
sample and measures the following diameters:

0.741 0.750 0.759 0.755 0.754

0.750 0.747 0.743 0.746 0.752

0.751 0.745 0.748 0.757 0.755

0.748 0.752 0.749 0.753 0.752

0.750 0.747 0.758 0.754 0.751

0.749 0.750 0.754 0.752 0.749

Using the data classification guidelines, subdivide the data into classes 
and construct a histogram. What kind of frequency distribution is 
suggested by the histogram?

10.3 MEASURES OF CENTRAL TENDENCY
In engineering and science, it is often desirable to characterize data by a single 
representative number referred to as a descriptive measure. These measures are nu-
merical values that quantify the entire data set in a meaningful way and are easy to 
communicate to others. One of these measures is called measure of central tendency. 
As the name implies, a measure of central tendency is a number that represents 
the center of a data set. We will consider three measures of central tendency: mean, 
median, and mode.

10.3.1 Mean
You are familiar with the term average because this word is frequently used in our 
everyday language. You might hear someone say, “He has above average intelli-
gence,” or, “The temperature today is well below the seasonal average.” In statistics, 
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generally, we do not use the term average. Instead, we use the term mean or arithmetic 
mean. For a set of n numbers, mean is defined as the sum of the numbers divided by n. For 
example, suppose that we want to find the mean grade point average (GPA) of five 
students sitting in the front row of an engineering class. Their GPAs are 2.98, 3.50, 
3.25, 3.74, and 3.18. The mean is:

x x x x x
n

=
+ + + +

=
+ + + +

=mean
2.98 3.50 3.25 3.74 3.18

5
3.33.1 2 3 4 5

A more convenient mathematical shorthand notation for the sum of the numbers is:

∑ = + + + +
=

�
1

1 2 3x x x x x
i

n

i n

where the symbol ∑  denotes a sum, n is the number of data points, and i is a sum-
mation index that refers to the data point number 1, 2, 3,...n. The sum is defined 
for all numbers in the data set, so the summation index i begins at 1 and ends at n, 
the number of data points.

The mathematical notation used for the mean depends on whether the data set 
represents the population or a sample of the population. For a population, the nota-
tion used for mean is the Greek letter μ (pronounced mew). Thus,

 
∑

µ = == size of population.1

x

N
N

i
i

N

 (10.3)

For a sample, the notation used for the mean is x with an overbar (x ). Therefore,

 
∑

= ==x

x

n
ni

n

i

size of sample.1  (10.4)

In Equation (10.3) the summation is over all numbers in the population, whereas 
in Equation (10.4) the summation is over only the numbers in the sample.

A mechanical analogy may be used to portray the mean. Imagine that the num-
bers of a data set are arranged in order and appropriately spaced along a massless 
beam supported by a fulcrum. This mechanical system is portrayed in Figure 10.3, 
where we plot the GPA data we discussed earlier in Section 10.3. Now assume that 
the numbers represent equal “masses.” For the beam to be in a state of balance, the 
fulcrum must be placed at precisely the mean of the data set. The mean may there-
fore be considered the “center of gravity” of the data.

The mean is a useful and popular measure of central tendency because it is 
easy to calculate, takes into account every number in the data set and can be used 
in other statistical calculations. Despite its advantages, the mean has a disadvantage 
of being susceptible to gross errors in the data set. For example, suppose that the 
fifth GPA in the previous example was mistakenly recorded as 3.81 instead of 3.18. 
The mean would be:

x
x

n
i∑= =

+ + + +
=

2.98 3.50 3.25 3.74 3.81
5

3.46

instead of the correct value of 3.33. Such errors can be minimized by using a differ-
ent measure of central tendency, the median.
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10.3.2 Median
The median is the value of the number in the center of a data set arranged in ascend-
ing or descending order. Arranging the numbers in our GPA example in ascending 
order, we have 2.98, 3.18, 3.25, 3.50, and 3.74. Thus, the median for this data set is 
3.25, because it lies at the center of the data set. For data sets with an odd number 
of items, such as our GPA data set, the median is always the center number. For 
data sets with an even number of items, the median is defined as the mean of the 
two center numbers. For example, the median for the data set 2, 3, 6, 7, 12, 15 is 
( )+ =6 7 /2 6.5.  Note that although all the numbers in the data set are integers, 
the median is a decimal number.

Both mean and median describe the center of a data set, but they do so in 
different ways. The mean is the center of gravity of the data, and the median  
divides the data set into two halves. For a given data set, the mean and median 
may or may not be close to each other in value, and rarely do the mean and  
median coincide.

10.3.3 Mode
The mode is one or more sets of numbers that occurs with the greatest frequency in a data set. 
Unlike mean and median, which always exist, mode may not exist, since some data 
sets do not have a set of numbers that occur more often than the other numbers in 
the data set. To illustrate how to find mode, consider the following three data sets:

Data set 1  2, 2, 5, 7, 9, 9, 9, 10, 10, 11, 12, 18
Data set 2  2, 3, 4, 4, 4, 5, 5, 7, 7, 7, 9
Data set 3  3, 5, 8, 10, 12, 14, 17, 19, 22, 26.

Data set 1 has a mode of 9 because the number 9 occurs with the greatest frequency 
in the data set. A data set with one mode is called unimodal. Data set 2 has two 
modes, 4 and 7, because both of these numbers occur with the greatest frequency in 
the data set. When two modes occur in a data set, it is called bimodal. Data set 3 has 
no mode because no number in the data set occurs with any greater frequency than 
any other number.

Modes are graphically exhibited in frequency distributions on histograms. 
The histograms in Figure 10.2(a), (b), and (c) show unimodal distributions, and 
the histogram in Figure 10.2(e) shows a bimodal distribution. The histograms in 
Figure 10.2(d) and (f) have no modes.

3.0 3.2 3.4 3.6 3.8

2.98 3.18 3.25 3.50 3.74

x 5 3.33Figure 10.3
Mean is the “center of  
gravity” of the data.
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370 Chapter 10 Data Analysis: Statistics

Professor Gauss has 125 students in his electrical engineering class. After grading 
the final examination for this class, he randomly selects the following 30 scores for 
statistical analysis:

EXAMPLE 10.1

Table 10.3  Classification of Examination Scores for 
Example 10.1

Class Score Range Frequency
1 41–50 3

2 51–60 4

3 61–70 6

4 71–80 9

5 81–90 5

6 91–100 3

Note that we have an even number of scores. The two scores in the center of the 
data are 73 and 76, the 15th and 16th scores. Thus, the median is:

=
+

=median
(73 76)

2
74.5.

84 92 76 84 86 65

44 59 68 95 72 80

78 49 67 79 63 54

97 61 79 53 87 84

77 66 48 60 76 73

Using Professor Gauss’s data, construct a histogram and find the mean, median, 
and mode.

Solution
First, we sort the data into classes. We use the minimum recommended number of 
classes (six) and construct a table of the frequencies from which a histogram can be 
constructed. (See Table 10.3.) The histogram is shown in Figure 10.4. The calibra-
tions below each bar denote the upper bound for each class.

The data set of 30 scores is a sample taken from the population of 125 students, 
so the mean is obtained from Equation (10.4):

∑
= = ==x

x

n

i
i

n

2156
30

71.9.1

To find the median, we arrange the test scores in ascending order:

44, 48, 49, 53, 54, 59, 60, 61, 63, 65, 66, 67, 68, 72, 73,
76, 76, 77, 78, 79, 79, 80, 84, 84, 84, 86, 87, 92, 95, 97.
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10.3 Measures of Central Tendency 371

The mode is the number with the highest frequency in the data set. The score of 84 
occurs three times—more than any other score—and is therefore the mode. The 
distribution is unimodal and somewhat resembles a normal distribution similar to 
that shown in Figure 10.2(a). Another name for normal distribution is Gaussian 
distribution.

PROFESSIONAL SUCCESS—DECISION MAKING

Successful engineers are usually easy to spot. They are good communicators, 
good analysts, good designers, and good experimentalists. Another charac-
teristic that makes a good engineer is the ability to make sound decisions. 
Decision making is a critical skill, particularly for engineering managers. Not 
all engineers are managers, but all engineers must be able to make decisions. 
A decision is a choice between alternatives and may be made by using ana-
lytical or non-analytical techniques. Analytical techniques make up the main 
segment of engineering academics, emphasizing such topics as circuit analy-
sis, structural analysis, energy analysis, and statistical analysis. Non-analytical 
techniques are used to make choices in one’s academic major, career, place of 
residence, spouse, and other matters.

While nonanalytical techniques are typically based on either judgement 
or intuition, analytical techniques are based on a more systematic approach, 
which may be broken down into the following steps:

• Recognize and define the decision issue
• Identify alternatives
• Evaluate and select alternative(s)
• Implement the selected alternative(s)
• Evaluate decision results
• Continue improvement.

10

8

6

4

2

0
50

Fr
eq

ue
nc

y

Final exam score
60 70 80 90 100

Figure 10.4
Histogram for  
Example 10.1.

M10_HAGE4428_05_SE_C10.indd   371 12/11/20   2:41 PM



372 Chapter 10 Data Analysis: Statistics

10.4 MEASURES OF VARIATION
In the last section, we considered measures of central tendency. Another type of 
descriptive measure that is used to quantify a data set is referred to as a measure of 
variation or measure of dispersion. As the name implies, a measure of variation is a 
number that indicates the extent to which data are spread out or bunched together around the 
mean. To help us understand measure of variation, consider the following two data 
sets of grade point averages:

Data set 1  2.99 3.21 3.33 3.31 3.38 3.29 3.25 3.08
Data set 2  3.01 2.89 3.45 3.89 2.76 3.34 3.01 3.49.

The mean of both data sets is 3.23, but the spread in the two data sets is clearly not 
the same. In the first data set, the GPAs are more tightly bunched around the mean 
than in the second data set. This can be shown in a simple way by subtracting the 
mean from the largest number in the data set:

x x
x x

− = − =
− = − =

Data set 1 3.38 3.23 0.15
Data set 2 3.89 3.23 0.66.

max

max

We reach the same conclusion by subtracting the mean from the smallest number 
in the data set.

In order to characterize the variation of the entire data set, a formal mathe-
matical definition must take all the data into account. We could expand our simple 
demonstration above by subtracting the mean from every number in the data set, 
add the results, and divide by the number of data points, n. For data set 1, this  
approach yields:

( ) ( )

( )

( ) ( )

( ) ( ) ( )∑ −
=

− + − + − + −

+ − + − + − + −
=

x x
n

( )

2.99 3.23 3.21 3.23 3.33 3.23 3.31 3.23

3.38 3.23 3.29 3.23 3.25 3.23 3.08 3.23

8
0

which is not a useful result. We would also obtain a value of zero for data set 2. 
The sum of the deviations from the mean is always zero. To avoid this cancellation, 
we square each deviation, sum the squares, divide the sum by the number of data 
points, and take the square root. The result is called the standard deviation. For a 
population, the standard deviation ∑  is given by the formula:

 

x

N
i

N

i∑
σ

µ( )
=

−
























=1

2
1/2

  (10.5)

where the Greek letter σ  (sigma) denotes standard deviation for a population. Note 
that the mean for a population µ( ) is used in Equation (10.5) and this is not known 

These steps are somewhat reminiscent of the general analysis procedure 
of problem statement, diagram, assumptions, governing equations, calcula-
tions, solution check, and discussion. In the broadest sense, engineering may 
be considered a decision-making process. Engineering sciences, physical sci-
ences, and applied mathematics, including statistics, help engineers to make 
the best decisions possible.
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10.4 Measures of Variation 373

without measuring the entire population. To compute the standard deviation of a 
sample, we use the sample mean x  in place of µ. However, statisticians have discov-
ered that this underestimates the standard deviation, and that if n is replaced with 
n − 1, the result is more accurate. Thus, the sample standard deviation is defined as:

 s
x x
n

i( )
=

∑ −
−











1

.
2 1/2

  (10.6)

A second measure of variation is called variance. Variance is simply the square of 
the expressions in Equations (10.5) and (10.7). Thus, the variance for a population, 
large sample, and small sample are, respectively,

 

x

N
i

N

i∑
σ

µ( )
=

−
= (population)2 1

2

  (10.7)

 s

x x

n
i

n

i∑( )
=

−

−
=

1
(sample).2 1

2

  (10.8)

The data sets discussed in Section 10.4 represent GPA samples from two different 
engineering classes. Find the standard deviation and variance for each class. The 
GPAs are repeated here:

Class 1  2.99  3.21  3.33  3.31  3.38  3.29  3.25  3.08
Class 2  3.01  2.89  3.45  3.89  2.76  3.34  3.01  3.49.

Solution
Recalling that x = 3.23  for both classes, the standard deviations are:

s
x x
n

i( )
=

∑ −
−













=
−













=Class  1
1

0.1234
8 1

0.133
2 1/2 1/2

and

s
x x
n

i( )
=

∑ −
−













=
−













=Class  2
1

0.9970
8 1

0.377.
2 1/2 1/2

Based on our earlier observations, these results are expected. In the first class, GPAs 
are tightly bunched around the mean, whereas GPAs in the second class have a 
large spread. Consequently, we have a smaller standard deviation in class 1 than in 
class 2. The variance is the square of the standard deviation,

s

s

=
−

=

=
−

=

Class 1
0.1234
8 1

0.0176 

Class 2
0.9970
8 1

0.142.

2

2

The widely used measures of central tendency and measures of variation are 
standard functions on scientific calculators, spreadsheets, and other computer-
based tools. You are encouraged to become familiar with these tools and to learn 
how to use them in your engineering courses.

EXAMPLE 10.2
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374 Chapter 10 Data Analysis: Statistics

10.5 NORMAL DISTRIBUTION
Earlier we examined the height distribution for a sample of residents in a hypo-
thetical town. We began the study by sorting the height data into classes. From 
the sorted data, we constructed a histogram, a special type of graph that shows 
the frequency distribution of a measured quantity. To illustrate our next topic, let’s 
consider the height distribution for a sample of residents in a somewhat larger town 
called Anyville, USA. After sorting the height data into classes, we construct the his-
togram shown in Figure 10.5. The calibrations on the horizontal axis represent the 
bounds for each data class. The histogram was constructed by dividing the data into 
13 classes of 0.2 ft, each from a sample size of 102.

Like all histograms, the histogram in Figure 10.5 is a graph of discrete quan-
tities, since each bar represents the frequency for a range of distinct individual 
heights. The area of each bar represents the probability that the height of a person 
in Anyville will fall into a specific range. (Because the width of all bars is equal, we 
can say that the vertical length of each bar likewise represents these probabilities.) 
For example, the probability that a person will have a height between 5.0 ft and  
5.2 ft is 16 out of 102, or 0.157. The probability that a person will have a height be-
tween 5.8 ft and 6.0 ft is 8 out of 102, or 0.0784, and so on. Histograms are not like 
graphs of continuous quantities such as length, flow rate, stress, or voltage. However, 
the discrete values on a histogram may be approximated as a continuous quantity 
by drawing a best-fit curve through the tops of the bars, as illustrated in Figure 10.6. 
In this manner, a continuous frequency distribution is derived from a discrete fre-
quency distribution. A continuous frequency distribution can also be explained by 
visualizing an idealized situation in which the number of residents in our Anyville 
sample approaches infinity, thereby yielding infinitesimally narrow bars in the his-
togram. Because each bar would essentially be reduced to a vertical line, a smooth 
curve drawn through the points at the top of each line would produce the desired 
continuous distribution. Using the continuous distribution, we find that the prob-
ability that a resident of Anyville will have a height in a given range is the area under 
the portion of the curve corresponding to that range, as illustrated in Figure 10.7. 
The probability that a person will have any height is the area under the entire curve 
and has a value of unity.
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Figure 10.5
Histogram of heights for 
Anyville, USA.
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The area under a portion 
of a continuous frequency 
distribution represents a 
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Figure 10.6
A continuous distribution 
approximates a discrete set 
of values.

As one can see from the histogram in Figure 10.5 and the corresponding con-
tinuous distribution in Figure 10.7, the distribution of heights for the residents of 
Anyville is nearly symmetrical about the central peak. To perform a statistical analy-
sis of data that approximates a symmetrical distribution, we use a special theoreti-
cal distribution called a normal distribution or Gaussian distribution, named after the 
German mathematician Carl Gauss (1777–1855). A normal distribution is a curve 
with a characteristic bell shape that is symmetrical about the mean and extends indefinitely 
in both directions, as illustrated in Figure 10.8. The bell-shaped curve asymptotically 
approaches the horizontal axis on both sides and is symmetrical about the mean. 
The location and shape of the normal distribution is specified by two quantities, the 
mean µ, which locates the center of the distribution, and the standard deviation σ, 
which describes the dispersion or spread of the data around the mean. The normal 
distribution is given by the mathematical function:

 
σ π

( ) = µ σ( )− −f x e x1
2

    /1
2

2 2
  (10.9)
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376 Chapter 10 Data Analysis: Statistics

where x represents the continuous quantity being studied, which was height in our 
previous example. This equation can be used to find the probability that the quan-
tity being studied will fall into a particular range of values. As we saw before, such a 
probability is represented by the area under the portion of the curve corresponding 
to that range. From calculus, the area under a curve is found by integrating over 
the interval of interest. Thus, the area (probability) for a specific range of x values 
is given by the relation:

 area f x dx
x

x

∫ ( )=
1

2

  (10.10)

where x1 and x2 are the lower and upper bounds for the range of interest, as shown 
in Figure 10.8, and the function f(x) is given by Equation (10.9). This integration 
is cumbersome, so a special table has been developed that eliminates the need for 
performing the integration every time a new problem arises. The use of the table 
will be discussed later.

Equation (10.10) yields an area that depends on specific values of the mean µ  
and the standard deviation σ.  This means that a separate table would have to be 
prepared for every different value of µ  and σ, which would be extremely inconve-
nient. To avoid this difficulty, a transformation is applied to the normal distribution 
function given by Equation (10.11) such that a single table can be used. Applying 
the transformation:

 z
x µ

σ
=

−
  (10.11)

normalizes the distribution to a standard normal distribution that has µ = 0 and 
σ = 1. Hence, f (x)dx becomes z dzφ( )    with:

 φ
π

( ) = −z e z1
2

  . 1
2

2
  (10.12)

In order to find areas under the standard normal curve, we convert x values into  
z values by using Equation (10.11). The transformation results in a change of scale 

f (x)

x
x1 x2m

Area 5 2    f (x)dx
x2

x1

Figure 10.8
Normal distribution.

M10_HAGE4428_05_SE_C10.indd   376 12/11/20   2:41 PM
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for the normal distribution shown in Figure 10.8. The x scale has a mean of µ  and 
is graduated in terms of positive and negative values of σ  from the mean, while 
the z scale has a mean of 0 and is graduated in terms of positive and negative num-
bers from the mean. For example, a data value that is 2 standard deviations from 
the mean ( σ2  from µ) has a z value of z x µ σ σ σ( ) ( )= − = − =/ 2 0 / 2.  The stan-
dard normal distribution showing the x and z scales is illustrated in Figure 10.9. 
Consequently, the area under a specified portion of the standard normal distribu-
tion curve is given by the relation:

 ∫ ∫φ
π

( )= = −z dz e
z

z

z

z
zarea  

1
2

1

2

1

2
1
2

2
  (10.13)

where z is the transformed variable given by Equation (10.11) and z1 and z2 are the 
lower and upper bounds respectively, for the interval of interest.

Earlier, we mentioned that the integration of the normal distribution function 
is cumbersome, necessitating the use of a special table. The transformation leading 
to Equation (10.13) does not make the integration any easier, but the transforma-
tion permits us to develop a single table that can be used for all values of µ  and σ.  As 
shown in Figure 10.9, the standard normal distribution is symmetrical about z = 0, 
so we need only to evaluate the integral in Equation (10.13) from z = 0 to z z= 2  
to find any area of interest. The integration in Equation (10.13) has been evaluated 
over intervals from 0 to z, where z assumes a range of values from 0 to about 4. The 
results are presented in Table 10.4.

Before using Table 10.4 to work some examples, let’s explain how to read the 
table. The first column in the table contains z values from 0 to 3.9 in increments 
of 0.1. The numbers in the top row are used if the value of z has a nonzero hun-
dredths digit. For example, the area under the curve from z = 0 to z = 1.50 is  
0.4332. The area under the curve from z = 0 to z = 1.57 is 0.4418. Because the 
distribution is symmetrical about z = 0, we can deal with negative z values as well. 
For example, the area under the curve from z = −1.46 to z = 0 is 0.4279. The area 
under the curve from z = −2.33 to z = 1.78 is ( )+ =0.4901 0.4625 0.9526. Note 
that the area from z = 0 to z = 3.9 is 0.5000, half the area under the entire curve. 

x scale
z scale

m23s m22s m2s m m1s m12s m13s
23 22 21 0 1 2 3

0.399

f(z)Figure 10.9
Standard normal  
distribution, showing the 
transformed scale.
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Table 10.4 Areas Under the Standard Normal Curve from 0 to z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998

(continued)

0

f(z)

z
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10.5 Normal Distribution 379

For z values greater than 3.9, the normal curve is so close to the horizontal axis 
that no significant additional area is obtained.

We should not lose sight of the physical significance of these “areas.” Remember, 
the area under a specified region of a frequency distribution curve represents the 
probability that a data value will fall into that region or interval. For example,  
assuming that our data follows a normal distribution, the probability that a data 
value will fall into the interval z = −1.32 to z = 0.87  is ( )+ =0.4066 0.3078 0.7144, 
or 71.44 percent. In many engineering applications, we consider data intervals cen-
tered on the mean at z = 0 that have spreads with integer values of the standard  
deviation σ.  From Table 10.4, the probability that a value will lie within one stan-
dard deviation of the mean (i.e., within σ±1  of µ) is:

∫π
( )= =

−

+
−e dzz1

2
2 0.3413 0.6826

1

1
1
2

2

which means that σ±1  about the mean encompasses 68.26 percent of the data. The 
probability that a value will lie within two standard deviations of the mean (i.e., 
within σ±2  of µ) is:

∫π
( )= =

−

+
−e dzz1

2
2 0.4772 0.9544

2

2
1
2

2

which means that σ±2  about the mean encompasses 95.44 percent of the data. The 
probability that a value will lie within three standard deviations of the mean (i.e., 
within σ±3  of µ) is:

∫π
( )= =

−

+
−e dzz1

2
2 0.4987 0.9974

3

3
1
2

2

which means that σ±3  about the mean encompasses 99.74 percent of the data. 
These probabilities are illustrated in Figure 10.10. If we integrate from minus infin-
ity to plus infinity, we obtain a probability of unity, or 100 percent.

In most statistical analyses of engineering data, we do not know the population 
parameters µ  and σ, but we know the mean and standard deviation for a sample 
taken from a population. As long as the sample size is larger than about 30, we 
can substitute the sample parameters for the population parameters in the normal 
distribution.

Table 10.4 Areas Under the Standard Normal Curve from 0 to z (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.7 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.9 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000
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99.74 percent

95.44 percent

68.26 percent

23 22 21 0 1 2 3

Figure 10.10
Intervals of σ σ± ±1 ,   2 , 
and σ±3  centered on  
the mean.

In a production run of carbon-composition resistors, the mean resistance is 
µ = 100 Ω and the standard deviation is σ = 4.7 Ω. Assuming a normal distribution 
of resistances, what is the probability that a resistor will have a resistance R that lies 
in the range R< <95 Ω 109 Ω?

Solution
In order to use the standard normal curve tabulated in Table 10.4, we must make a 
transformation to the z variable. We define our lower and upper limits as:

x x= =95,   109.1 2

Noting that µ = 100 and σ = 4.7, we obtain:

z
x µ

σ
=

−
=

−
= −

95 100
4.7

1.061
1

and

z
x µ

σ
=

−
=

−
=

109 100
4.7

1.91.2
2

The probability that a resistor will have a resistance in the interval R< <95 Ω   100 Ω 
is the probability that z will lie in the interval z< <0 1.06. Using Table 10.4, we find 
that this probability is 0.3554. Similarly, the probability that a resistor will have a 
resistance in the interval R< <100 Ω 109 Ω is the probability that z will lie in the 
interval z< <0 1.91.

EXAMPLE 10.3
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10.5 Normal Distribution 381

Area 5 0.3554
Area 5 0.4719

23 22 21 0 1 2 3

z1 5 21.06 z2 5 1.91

Figure 10.11
Probabilities for  
Example 10.3.

Using Table 10.4, we find that this probability is 0.4719. These two probabili-
ties are represented as areas under the normal curve in Figure 10.11. The prob-
ability that a resistor will have a resistance in the range R< <95 Ω 109 Ω is 

+ =0.3554 0.4719 0.8273. Hence, 83 percent of the resistors will have a resistance 
within this range. The remaining 17 percent of the resistors will have resistances 
that are lower than 95 Ω or higher than 109 Ω.

USING THE NORMAL DISTRIBUTION TO EVALUATE LAMP LIFETIMES
One of the most widely used applications of statistics is the evaluation of manu-
factured products. Lamp lifetime is a crucial parameter in the lighting industry, 
because this number is typically printed on the product package for consumers to 
see. In conjunction with laboratory testing, lighting manufacturers use statistics to 
evaluate lifetimes of lamps.

A relatively new lighting product on the market is the compact fluorescent 
lamp (CFL), which consumes less electrical power, produces more light for a given 
amount of electrical power supplied to it, and lasts about 10 times longer than stan-
dard incandescent lamps. The typical lifetime of a standard incandescent lamp is 
1000 hours, whereas the typical lifetime of a compact fluorescent lamp is 10,000 
hours. Compact fluorescent lamps cost more than standard incandescent lamps, 
but their long life is an attractive feature to many consumers because of the conve-
nience afforded by a very long replacement schedule.

Based on customer complaints, the sales department for a major manufacturer 
of compact fluorescent lamps claims that 11 percent of lamps sold are “burning 
out” after only 8700 hours of use. To address this claim, a quality engineer at the 
manufacturing facility pulls a sample of 100 lamps from the production line for 
testing. Based on the tests, the engineer determines that the mean lifetime for the 
sample is 10,800 hours with a standard deviation of 1150 hours. Assuming that lamp 
lifetime follows a normal distribution, we have:

µ
σ

=
−

=
−

= −z
x 8700 10,800

1150
1.83.1

1

A
PP

LIC
AT

IO
N
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23 22 21 0 1 2 3

Area 5 0.0336

z1 5 21.83

Figure 10.12
A statistical analysis shows that about 3.4 percent of lamps will fail after 
8700 hours of use.

Using Table 10.4, we find that the area corresponding to this z value is 0.4664, which 
means that the probability that a lamp will fail after only 8700 hours of use is:

( )− + =1. 0.4664 0.5000 0.0336 (3.36 percent).

This probability is depicted in Figure 10.12.

The claim made by the sales department that 11 percent of the lamps are failing 
after 8700 hours of use does not agree with the statistical analysis, which asserts that 
the percentage is much lower, about 3.4 percent. The discrepancy might be due to 
inaccurate data gathering by the sales department. However, the 11 percent failure 
rate could indicate a certain production lot with a manufacturing defect. The prob-
lem could be investigated further by doing a second statistical analysis on another 
sample or by recalling some of the defective lamps for testing.

KEY TERMS

frequency distribution
histogram
mean
measure of variation

median
mode
normal distribution
population

sample
standard deviation
statistics
variance
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PROBLEMS

Data classification and frequency distribution

 10.1 The grade point averages (GPAs) in a freshman level engineering class are 
given in Table P10.1. Subdivide the GPAs into at least six classes and con-
struct a histogram.

Table P10.1

2.34 3.37 3.02 3.17 2.59 2.23 2.84 2.76

3.68 3.20 2.84 1.80 2.95 2.70 3.40 2.70

2.85 1.56 2.70 3.22 2.30 2.10 2.74 2.45

1.90 3.33 2.95 3.22 2.40 3.21 2.85 3.45

3.15 2.95 2.40 2.20 2.70 2.95 3.19 2.11

2.60 2.72 2.85 3.05 2.60 2.98 3.22 2.84

 10.2 The weights (in oz) of filled soup cans as they come off the production line 
are given in Table P10.2. Subdivide the weights into at least six classes and 
construct a histogram.

Table P10.2

15.73 16.25 16.10 16.69 16.05 15.92 16.10 16.30

15.30 15.02 15.85 16.23 16.80 16.40 15.91 15.42

15.70 16.10 16.23 16.33 16.66 15.70 15.85 16.20

16.41 16.54 16.37 15.80 16.19 16.33 15.81 16.18

Measures of central tendency

 10.3 For the data in Problem 1, find the mean, median, and mode.

 10.4 For the data in Problem 2, find the mean, median, and mode.

Measures of variation

 10.5 For the data in Problem 1, find the standard deviation.

 10.6 For the data in Problem 2, find the standard deviation.

Devore, J.L., Probability and Statistics for Engineering and the Sciences, 9th ed., Pacific 
Grove, CA: Brooks Cole, 2015.

Montgomery, D.C., Applied Statistics and Probability for Engineers, 6th ed., New York, 
NY: John Wiley & Sons, 2016.

Navidi, W., Statistics for Engineers and Scientists, 4th ed., New York, NY: McGraw-Hill, 2014.
Vining, G.G. and S. Kowalski, Statistical Methods for Engineers, 3rd ed., Boston, MA: 

Cengage, 2010.
Walpole, R.E., R.H. Myers, S.L. Myers and K.E. Ye, Probability and Statistics for 

Engineers and Scientists, 9th ed., Hoboken, NJ: Pearson, 2016.
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384 Chapter 10 Data Analysis: Statistics

Normal distribution

 10.7 Using Table 10.4, find the area under the normal curve in each of the cases 
(a) through (g) in Figure P10.7.

(c)

20.46 2.29 0.72 1.94

(d)

20.61

(e) (f)

21.38

21.52 2.43

(g)

z 5 0 z 5 1.60

(a)

20.74

(b)

Figure P10.7

 10.8 In a facility that manufactures electrical resistors, a sample of 35 1-kΩ   
resistors are randomly pulled from the production line, and their resis-
tances are measured and recorded, as shown in Table P10.8. The desired 
resistance tolerance for the resistors is ±10 percent, meaning that the  
acceptable range of resistance is 900 Ω to 1100 Ω.

a. Subdivide the resistances into at least six classes and construct a 
histogram.

b. Find the mean and standard deviation.
c. Assuming a normal distribution, how many standard deviations on  

either side of the mean does the ±10 percent tolerance represent?
d. Which resistors in the sample fall outside the σ±1  range? Which resis-

tors fall outside the σ±2  range?
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Table P10.8

1005 1036 1082 940 972 1002 995

1060 900 1015 985 1055 1040 1010

955 1045 1090 1008 980 930 972

993 1020 1072 1045 928 1012 1032

1061 1018 978 952 1016 977 1019

 10.9 A sample of 40 microprocessor chips are randomly taken from a produc-
tion run and tested to determine their processing speeds, as listed in Table 
P10.9. Chips that have speeds lower than a σ−2  value are outside the speci-
fications and are to be scrapped.

a. Subdivide the speeds into at least six classes and construct a histogram.
b. Find the mean and standard deviation.
c. Which chips in the sample are to be scrapped?

Table P10.9

3.05 3.30 2.80 3.90 2.26 3.20 2.85 3.65

3.02 3.15 3.45 2.52 3.60 3.33 2.70 3.40

2.78 3.55 3.35 2.70 2.72 3.12 3.19 3.28

2.79 2.27 3.02 3.08 3.54 2.92 2.80 3.03

3.31 3.45 3.10 3.36 2.82 3.21 3.05 3.37

 10.10 A quality engineer in a fastener-manufacturing plant extracts a random 
sample of 45 hex-head bolts from an assembly line to determine whether 
the bolts meet specifications which state that the length of the bolts must 
fall within σ±2  of a mean length of 2.000 in or be scrapped. Using the data 
in Table P10.10, do the following:

a. Subdivide the bolt lengths into at least six classes and construct a 
 histogram.

b. Find the mean and standard deviation.
c. Assuming a normal distribution, how many bolts are scrapped daily if 

40,000 bolts are manufactured each day?
d. What length tolerance, measured in inches, does σ±2  represent?

Table P10.10

2.003 1.999 1.998 2.007 1.996 1.992 2.002 1.991 2.011

2.005 2.000 1.988 1.995 1.993 2.000 2.007 2.003 2.000

1.996 1.998 2.007 2.004 1.995 2.003 2.000 1.997 2.012

2.000 2.004 1.994 1.991 2.004 2.001 1.995 2.000 2.003

2.007 1.995 2.003 2.000 1.994 2.000 2.003 1.995 1.999

 10.11 Oxygen-free, high-conductivity (OFHC) copper has a minimum purity level 
of 99.99 percent copper. This type of copper is used in electrical and other 
applications where high-purity copper is required. In a materials-testing 
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386 Chapter 10 Data Analysis: Statistics

laboratory, elemental analyses of OFHC copper samples are performed to 
ascertain whether they have the minimum purity level. In a sample of 50, 
the mean purity level is 99.995 percent, and the standard deviation is 0.0045 
percent. Assuming a normal distribution,

a. How many standard deviations from the mean is 99.99 percent purity?
b. If 10,000 parts are made from this OFHC copper daily, how many parts 

per day would not qualify as being made from OFHC copper?

 10.12 The mean inside diameter of a sample of 200 washers manufactured by a 
machine is 0.502 in, and the standard deviation is 0.005 in. The application 
for the washers permits a tolerance in the diameter of 0.496 in to 0.508 in. 
If the diameter is outside this tolerance, the washers are deemed defective 
and are sold as scrap. Assuming a normal distribution of washer diameters,

a. What percentage of washers are discarded?
b. If 20,000 washers are manufactured each day, how many washers are 

discarded daily?
c. Twenty-five washers have a combined mass of 1 lb .m  If the scrap dealer 

pays $0.85/lb ,m  how much money is recovered per day from the sale of 
scrap washers?

 10.13 The mean annual precipitation for Dilbertville is 44 in with a standard  
deviation of 6.5 in. Assuming the precipitation follows a normal distribution,

a. Find the probability that the precipitation in any given year is greater 
than 55 in.

b. Find the probability that the precipitation in any given year is less than 
35 in.

 10.14 The mean lifetime for an incandescent light bulb is 1500 h with a standard 
deviation of 300 h. Assuming the lifetime follows a normal distribution,

a. Find the probability that the lifetime is greater than 2000 h.
b. Find the probability that the lifetime is less than 1000 h.

 10.15 The mean tensile yield strength of a large sample of structural steel speci-
mens is 250 MPa. Fifteen percent of the specimens are observed to fail in a 
tension test that exerts a tensile stress of 225 MPa in the specimens. Assum-
ing a normal distribution of yield strengths, find the number of standard 
deviations that corresponds to this failure rate.

 10.16 The daily production of lime for cement manufacturing is known to follow 
a normal distribution with a mean of 60 tons per day with a standard devia-
tion of 5 tons per day. Find the probability that today’s lime production will 
yield between 52 tons and 70 tons.

 10.17 To evaluate the performance of a certain brand of alkaline battery, research-
ers at a consumer testing laboratory measure the lifetime of 160 1.5-volt 
batteries. Battery lifetime for this study is defined as the time it takes the 
voltage to drop to 1.0 V under a standard electrical load. The researchers 
determine that the mean lifetime is 48.3 hours with a standard deviation of 
15.7 hours. Assuming a normal distribution of battery lifetimes,

a. Find the probability that a battery’s voltage will drop below 1.0 V after 
20 hours of use.
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b. Find the probability that a battery’s voltage will drop below 1.0 V after 
70 hours of use.

c. If the daily production rate of 1.5-V batteries is 25,000, how many batter-
ies per day will have lifetimes of 20 hours or less and 70 hours or more?

 10.18 Journal bearings are ground to a mean diameter of 2.0002 in with a  
standard deviation of 0.0004 in. Assuming the diameters follow a normal 
distribution, what fraction of the bearings are within specifications if the 
allowable diameter is ±2.0000 0.0005 in ?

 10.19 A company manufactures aluminum rivets for use in the aircraft industry. 
From a sample of 1000 rivets, it is determined that the mean rivet diameter 
is 25.5 mm and the standard deviation is 0.8 mm. The company rejects rivets 
that do not meet the diameter specification of ±25.2 1.0 mm. If the cost of 
labor and materials is $1.05/rivet, find the financial loss incurred per 1000 
rivets manufactured by assuming a normal distribution on rivet diameter. 
What would the financial loss be if the specification was ±25.2 0.5 mm?

 10.20 At cruising altitude, a commercial jet engine consumes an average of 850 
gallons of fuel per hour with a standard deviation of 48 gallons per hour. As-
suming that the fuel consumption follows a normal distribution at cruising 
altitude, find the probability that the hourly fuel consumption is:

a. Between 700 and 950 gallons.
b. Less than 750 gallons.
c. More than 1000 gallons.

 10.21 The cost of fuel for the commercial jet engine in Problem 20 is $0.75/gallon. 
If the commercial aircraft cruises 225 hours per month, find the probability 
that the monthly cost of fuel exceeds $150,000.

 10.22 Big Brother Electronics, Inc., manufactures CD players. Their research and 
development (R&D) department determined that the mean life of the laser 
beam in their CD players is 4500 hours with a standard deviation of 400 
hours. Big Brother Electronics wants to place a guarantee on the players so 
that no more than 5 percent fail during the guarantee period. Because the 
laser pickup is the part most likely to fail first, the guarantee period will be 
based on the laser beam device. Assuming a normal distribution, how many 
playing hours should the guarantee cover?
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A.1 ALGEBRA
A.1.1 Quadratic equation
The quadratic equation:

( )+ + = ≠0 02ax bx c a

has the solution:

=
− ± −

x
b b ac

a
4

2
.

2

The two roots of the quadratic equation are either (a) both real or (b) complex 
conjugates.

A.1.2 Laws of exponents
=
=
=

= ≠
= ≠

= =
=

= ≠

+

−

−

x x x
x x
xy x y
x/ y n x /y y
x /x x x

x /x m n
x
x /x x

( )
( )
( ) ( 0)
( ) ( 0)

1 if
1

1 ( 0).

m n m n

m n mn

n n n

n n

m n m n

m n

n n

0

Mathematical 
Formulas

A P P E N D I X

A
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A.2 Geometry 389

A.1.3 Logarithms
In the relations that follow, the parameter a is called the base. These relations hold 
when > 0a  and ≠ 1.a  Typically, = 10a  (the common logarithm), or =a e (the 
natural logarithm). The common logarithm is usually written as log (x), and the 
natural logarithm is usually written as ln(x):

log  u if a uaυ = =υ

= logx aa
x

log ( ) log   log  = +xy x ya a a

log ( / ) log   log  = −x y x ya a a

=log 1 0a

log ( )   log  =x c xa
c

a
=aalog   1.

A.1.4 Exponential Function
The same relations that apply to the laws of exponents apply to the exponential 
function exp :x ex( ) =

=
=

=

= =

=
=

+

−

−

e e e
e e

e e e

e e m n

e
e e

m n m n

m n mn

m n m n

m n

n n

( )

( / )

/ 1 if 

1
1/ .

0

The exponential function exp(x) and the natural logarithm ln(x) are inverse func-
tions. Thus,

ln(exp(x)) = x

= xexp(ln(x)) .

A.2 GEOMETRY
A.2.1 Areas
Rectangle  

a

b

Parallelogram

h

b

Trapezoid

b

a

h

A ab=

A bh=

1
2A h a b( )= +
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Triangle

b

h

Circle

R

D

Circular sector θ=A R1
2

2
 
(θ  in radians)

R
u

Circular segment θ θ= −A R ( sin  )1
2

2
 

(θ  in radians)

R
u

Regular polygon =A nr n tan(180°/ )2

   sin(360°/ )1
2

2= nR n
=n number of sides

R
r

u

A.2.2 Solids

= Surface areaA
= VolumeV

Parallelpiped ( )= + +A ab ac bc2

=V abc

a

b

c

Cylinder π π= =A RL DL2  (ends excluded)

( )π= +A R L R2 (total)

π=V R L2

R

L

=A bh 1
2

π π= =A R D2 1
4

2
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Sphere π π= =A R D4 2 2

=
π π

=V
R D4

3 6

3 3

R

Cone
π= +A R R h  ( ) (base excluded)2 2 1 2

[ ( ) ] (total)2 2 1 2π= + +A R R R h
π

=V
R h

3

2

R

h

Torus π=A Rr4 2

π=V Rr2 2 2 R r

A.3 TRIGONOMETRY
A.3.1 Trigonometric Functions

u

c

a

b

A.3.2 Identities and Relationships

sin sinθ θ( ) ( )− = −

cos cosθ θ( ) ( )− =
tan tanθ θ( ) ( )− = −

θ θ+ =sin   cos   12 2

θ θ+ =1 tan   sec  2 2

sin 
opposite side
hypotenuse

θ = =
b
c

cos 
adjacent side
hypotenuse

θ = =
a
c

tan 
sin 
cos 

opposite side
adjacent side

θ
θ
θ

= = =
b
a

cot 
1

tan 
θ

θ
= =

a
b

sec 
1

cos 
θ

θ
= =

c
a

csc 
1

sin 
θ

θ
= =

c
b
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θ θ+ =1 cot   csc  2 2

θ θ θ( ) ( )= − = −sin  cos 90° sin 180°
θ θ θ( ) ( )= − = − −cos  sin 90° cos 180°
θ θ θ( ) ( )= − = − −tan  cot 90° tan 180°
θ α θ α θ α( )± = ±sin    cos  cos   sin sin

∓θ α θ α θ α( )± =cos    cos  sin   sin cos

∓
θ α

θ α
θ α

( )± =
±

tan
tan   tan 

1  tan   tan 

θ θ θ=sin 2 2 sin   cos 

θ θ θ θ θ= − = − = −cos 2 cos   sin   2 cos   1 1 2 sin  2 2 2 2

θ
θ

θ
=

−
tan 2

2 tan 
1 tan  2

sin( /2)
1 cos 

2
θ

θ
= ±

−

cos( /2)
1 cos 

2
θ

θ
= ±

+

tan( /2 )
sin 

1 cos 
1 cos 

sin 
θ

θ
θ

θ
θ

=
+

=
−

A.3.3 Laws of Sines and Cosines
Law of sines

Law of cosines 2  cos 2 2 2= + −a b c bc A

2  cos 2 2 2= + −b a c ac B

2  cos 2 2 2= + −c a b ab C

A.4 CALCULUS
In the following formulas, u and υυrepresent functions of x, while a and n repre-
sent constants:

A.4.1 Derivatives

=
d a
dx
( )

0

( )
= 1

d x
dx

( )
=

d au
dx

a
du
dx

( )ν ν
ν= +

d u
dx

u
d
dx

du
dx

sin  sin  sin 
= =

A

a

B

b

C

c

c

a

bC

A

B
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( ) 1= −d u
dx

nu
du
dx

n
n

(ln  ) 1
 =

d u
dx u

du
dx

( )
=

d e
dx

e
du
dx

u
u

(sin  )
 (cos  )=

d u
dx

du
dx

u

(cos  )
 (sin  )= −

d u
dx

du
dx

u

A.4.2 Integrals

 

  ( )  ( ) 

 
1

(   1)

 

 

ln( )   ln( )

1

∫
∫ ∫

∫

∫
∫
∫

=

=

=
+

≠ −

=

=

= −

+

a dx ax

a f x dx a f x dx

x dx
x
n

n

e dx e

e dx
e
a

x dx x x x

n
n

x x

ax
ax
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Acceleration

Area

Density

Energy, work, heat

Unit 
Conversions

A P P E N D I X

B
1 m/s2 3.2808 ft/s2=

39.370 in/s2=
4.252 10  ft/h7 2= ×
8053 mi/h2=

1 m2 10  cm 10  mm4 2 6 2= =
10.7636 ft2=
1550 in2=

1 acre 43,560 ft2=
1 kg/m3 1000 g/m 0.001 g/cm3 3= =

0.06243 lb /ftm
3=

3.6127 10  lb /in5
m

3= × −

0.001940 slug/ft3=
1055.06 J 1 Btu=
1.35582 J 1 ft bf= ⋅
4.1868 J 1 cal=
252 cal 1 Btu=
1 kWh 3412 Btu= 3600 kJ=
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Force 1 N

Heat transfer, power 1 W

745.7 W

Length 1 m

Mass 1 kg

1 slug

1 short ton

1 long ton

Mass flow rate 1 kg/s

Pressure

101.325 kPa

760 mm=  Hg at 0°C

1 bar

10  dyne5=
0.22481 lbf=

1 lbf = ⋅32.174 lb ft/sm
2

= 1 J/s
= 3.6 kJ/h

= 3.4121 Btu/h

1 hp=
= ⋅550 lb ft/sf

= 2544.4 Btu/h

1.3558 W = ⋅1 lb ft/sf

100 cm= 1000 mm=
3.2808 ft=

39.370 in=
1.0936 yd=

2.54 cm 1 in=
1 ft 12 in=
5280 ft 1 mi=

1 km 0.6214 mi=

0.5400 nautical mi=
1000 g=

2.20462 lbm=
0.06852 slug=

32.174 lbm=
2000 lbm=
2240 lbm=

= 2.20462 lb /sm

= 7937 lb /hm

= 0.06852 slug/s
= 246.68 slug/h

1 kN/m2 1 kPa=
= 20.8855 lb /ftf

2

= =0.14504 lb /in 0.14504 psif
2

0.2953 in Hg=
4.0146 in H O2=

1 atm=
= =14.6959 lb /in 14.6959 psif

2

10  Pa5=
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396 Appendix B Unit Conversions

Specific heat

Stress, modulus

Temperature T(K)

T(°F)

Temperature 
difference

Velocity 1 m/s

Viscosity (dynamic)

Viscosity (kinematic)

Volume

⋅1 kJ/kg °C = ⋅ = ⋅1 kJ/kg K 1 J/g °C

= ⋅0.2388 Btu/lb °Fm

= ⋅0.2388 Btu/lb °Rm

1 kN/m2 1 kPa=
= =0.14504 lb /in 0.14504 psif

2

1 MN/m2 1 MPa=
1000 kPa=

= =145.04 lb /in 145.04 psif
2

1 GN/m2 1 GPa=
1000 MPa=

= ×1.4504 10  lb /in5
f

2

1.4504 10  psi5= ×
145 ksi=

= 11,811 ft/h
= 2.2369 mi/h

= 3.6000 km/h

0.5400 knot=
⋅1 kg/m s 1 Pa s 10 poise= ⋅ =

= ⋅0.6720 lb /ft sm

= ⋅2419 lb /ft hm

1 m /s2 10,000 stoke=

= 10.7639 ft /s2

= 38,750 ft /h2

1 m3 1000 L=
35.3134 ft3=

61,022 in3=
264.17 gal=

T °C 273.15( )= +

( )= T °R /1.8

[T °F 459.67] 1.8( )= +
1.8 T °C 32( )= +

T K( )∆ T °C( )= ∆

( )= ∆T °F /1.8
( )= ∆T °R /1.8

= 3.2808 ft/s
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Table C.1 Physical Properties of Solids at 20°C

Property Definitions: 

densityρ =

c specific=p  heat at constant pressure
modulus=E  of elasticity
yieldσ =y  stress, tension
ultimateσ =u  stress, tensiona

Material )((kkgg//mm3ρ ( /kg °C)⋅c Jp E (GPa) σy (MPa) σu (MPa)

Metals

Aluminum (99.6% Al) 2710 921 70 100 110

Aluminum 2014-T6 2800 875 75 400 455

Aluminum 6061-T6 2710 963 70 240 260

Aluminum 7075-T6 2800 963 72 500 570

Copper

Oxygen-free (99.9% Cu) 8940 385 120 70 220

Red brass, cold rolled 8710 385 120 435 585

Yellow brass, cold rolled 8470 377 105 410 510

Physical 
Properties of 
Materials

A P P E N D I X

C
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398 Appendix C Physical Properties of Materials

Material )((kkgg//mm3ρ ( /kg °C)⋅c Jp E (GPa) σy (MPa) σu (MPa)

Iron alloys

Structural steel 7860 420 200 250 400

Cast iron, gray 7270 420 69 655a

AISI 1010 steel,  
cold rolled

7270 434 200 300 365

AISI 4130 steel,  
cold rolled

7840 460 200 760 850

AISI 302 stainless,  
cold rolled

8055 480 190 520 860

Magnesium (AZ31) 1770 1026 45 200 255

Monel 400 (67% Ni,  
32% Cu) cold worked

8830 419 180 585 675

Titanium (6% Al, 4% V) 4420 610 115 830 900

Nonmetals

Concrete, high strength 2320 900 30 40a

Glass 2190 750 65 50a

Plastic

Acrylic 1180 1466 2.8 52

Nylon 6/6 1140 1680 2.8 45 75

Polypropylene 905 1880 1.3 34

Polystyrene 1030 1360 3.1 55 90

Polyvinylchloride (PVC) 1440 1170 3.1 45 70

Rock

Granite 2770 775 70 240a

Sandstone 2300 745 40 85a

Wood

Fir 470 13 50a

Oak 660 12 47a

Pine 415 9 36a

aUltimate stress in compression.

Table C.2 Physical Properties of Fluids at 20°C

Property Definitions: 

densityρ =

specific=cp  heat at constant pressure
dynamicµ =  viscosity
kinematicυ =  viscosity

Fluid )((kkgg//mm3ρ ( /kg °C)⋅C Jp (kg/m s)µ ⋅ v(m /s)2

Liquids

Ammonia 600 4825 1.31 10 4× − 2.18 10 7× −

Engine oil (SAE10W-30) 878 1800 0.191 2.17 10 4× −

Ethyl alcohol 802 2457 1.05 10 3× − 1.31 10 6× −
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Appendix C Physical Properties of Materials 399

Fluid )((kkgg//mm3ρ ( /kg °C)⋅C Jp (kg/m s)µ ⋅ v(m /s)2

Gasoline 751 2060 5.29 10 4× − 7.04 10 7× −

Glycerin 1260 2350 1.48 1.18 10 3× −

Mercury 13,550 140 1.56 10 3× − 1.15 10 7× −

Water 998 4182 1.00 10 3× − 1.00 10 6× −

Water/ethylene glycol 
(50/50 mixture)

1073 3281 3.94 10 3× − 3.67 10 6× −

Gases (at 1 atm pressure)

Air 1.194 1006 1.81 10 5× − 1.52 10 5× −

Carbon dioxide CO2( ) 1.818 844 1.46 10 5× − 8.03 10 6× −

Carbon monoxide (CO) 1.152 1043 1.72 10 5× − 1.49 10 5× −

Helium (He) 0.165 5193 1.95 10 5× − 1.18 10 4× −

Hydrogen (H) 0.0830 14,275 8.81 10 6× − 1.06 10 4× −

Nitrogen N2( ) 1.155 1041 1.75 10 5× − 1.52 10 5× −

Oxygen O2( ) 1.320 919 2.03 10 5× − 1.54 10 5× −

Water vapor, saturated H O2( ) 0.0173 1874 8.85 10 6× − 5.12 10 4× −
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2549

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

Areas Under the 
Standard Normal 
Curve from 0 to z

A P P E N D I X

D
0

f(z)

z
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Appendix D Areas Under the Standard Normal Curve from 0 to z 401

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.7 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.9 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000
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Name of 
Letter

Uppercase 
Symbol

Lowercase 
Symbol

Name of 
Letter

Uppercase 
Symbol

Lowercase 
Symbol

Alpha A α Nu Ν ν

Beta B β Xi Ξ ξ

Gamma Γ γ Omicron O ο

Delta ∆ δ Pi Π π

Epsilon E ε Rho P ρ

Zeta Z ζ Sigma Σ σ

Eta H η Tau T τ

Theta Θ θ Upsilon ϒ υ

Iota I ι Phi Φ ϕ

Kappa K κ Chi X χ

Lambda Λ λ Psi Ψ ψ

Mu M µ Omega Ω ω

Greek Alphabet

A P P E N D I X

E
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CHAPTER 1

1.2

Answers to 
Selected 
Problems

A P P E N D I X

F
ymax (mm) h (mm) b (mm)

2.16 200 100

2.70 200  80

4.04 175  80

1.11 250 100

3.94 125 225

1.85 175 175

3.42 150 150

CHAPTER 2

 2.2 No, this equation is not dimensionally consistent because the argument of the 
cosine function, Lt, is not dimensionless.

 2.4 Yes, this equation is dimensionally consistent because the argument of the ex-
ponential function is dimensionless, and the dimensions on the left side of the 
equation are the same as the dimensions in front of the exponential function.

 2.6 ⋅1 NM = 1 J (joule); work, energy, heat

 2.8 2=P I R
 2.10 50 kW
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404 Appendix F Answers to Selected Problems

 2.12 36.0 MN

 2.14 (a) 4.00 lbf; (b) 1.51 lbf

 2.16 1.22 kg, 12.0 N

 2.18 13 holes

 2.20 15.0 mi/h, 6.71 m/s

 2.22 −40°

 2.24 1.12 MJ

 2.26 ×3.46 10  kg/day, 8.82 lb /s, 987 slug/h5
m

 2.28 36.1°C, 36.1 K, 65°R

 2.30 2.68 10  s, 3.15 10  s6 7× ×
 2.32 229 N, 51.6 lbf

 2.34 3986 Pa, 0.578 psi

 2.36 × ⋅7.73 10  Btu/h  ft6 3

 2.38 × −1.89 10  m /s, 24.1 ft /h4 3 3

 2.40 2.59 10  kJ6×

 2.42 8.72 10  light bulbs6×

 2.44 1.859 slug/ft3

 2.46 17.6 kJ, 155 MJ

 2.48 0.0187 lbf. h

 2.50 kg. =m /s J2 2

 2.52 kg. =m/s /m kg/m2 2 ∙s2

 2.54 0.349 hp/ft2

CHAPTER 3

 3.2 102 sheets

 3.4 1011 messages/y

 3.6 109 ton

 3.8 1024 J/y

 3.10 a. 3050 b. 0.175 c. 0.00950 d. 600 e. 8000. f. 24.30 g. 1066 h. 40.08  
i. 0.07090 j. 6.402 10  k. 5.601 104 3× ×− −

 3.12 6.38 kN

 3.14 26 V

 3.16 240 trips

 3.18 0.32 MN

 3.20 213.7 days

 3.22 170 kΩ, 0.587 mA 

20 kΩ: 11.7=V  V; 150 kΩ: 88.1=V  V; 250 Ω: 0.147=V  V

 3.24 1.0328 kg/m3

 3.26 1.46 mm

 3.28 22.4 cm

 3.30 24.5
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CHAPTER 4

 4.2 − +7.011 13.25  Ni j

 4.4 θ= − = = − °F0 37.9  lb ,   37.9 lb ,   90R f R fF i j

 4.10 a 8,  b 3,  c 1= − = =

 4.12 θ= = °F 1.80 kN,   56.31

 4.14 = = =T T m490.5 N, 245.25 N,   43.3 kgDE CD A

 4.16 443 N

 4.18 117 N,   219 NAB AC BC BD CE= = = = =T T T T T

 4.20 55.8 kN

 4.22 σ σ δ= = =177 MPa,   78.6 MPa,   0.599 mmAB BC

 4.24 horizontal: ε δ= × =−2.90 10 ,   0.03484  mm

vertical: ε δ= × =−2.18 10 ,   0.02614  mm

 4.26 No. The factor of safety is acceptable at FS 1.57= , but the deformation is 
δ = 3.82  cm, which exceeds the allowable deformation.

 4.28 1.57

 4.30 36.0 kN

CHAPTER 5

 5.2 = =t q0.25 s: 0.25 C
= =t q0.72 s: 1.30 C

= =t i0 s: 0 A

 5.4 =i 500  mA: 0.999 time constants

=i 25  mA: 1.997 time constants

 5.6 546 mA. No, a large fraction of the electrical power is converted to heat.

 5.8 1140 W

 5.10 17.0 Ωtot, min =R
19.1 Ωtot, max =R

 5.12 157 kΩtot, max =R
235 kΩtot, max =R

 5.14 42.8 Ω

 5.16 20 Ω

 5.18 1 Ω

 5.22 8.56 Ω, 34.2 V, 137 W

 5.24 7.95 V

=I80 Ω: 99.3 mA

=I1 kΩ: 7.95 mA

=I100 Ω: 79.5 mA
=I600 Ω: 13.3 mA

 5.26 = =V I10 Ω: 0.952 V,   95.2 mA

= =V I68 Ω: 2.108 V,   31.0 mA

= =V I33 Ω: 2.108 V,   64.2 mA

= =V I220 Ω: 20.94 V,   95.2 mA
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406 Appendix F Answers to Selected Problems

 5.28 V I P20 Ω: 9.23 V,   0.5 A, 4.26 W= = =
V I P75 Ω: 30.8 V,   0.410 A, 12.6 W= = =
V I P100 Ω: 5.12 V,   51.2 mA, 0.263 W= = =
V I P500 Ω: 25.6 V,   51.2 mA, 1.31 W= = =

 5.30 = =V I5 Ω: 2.50 V,   0.5 A

= =V I10 Ω: 1.67 V,   0.167 A

= =V I50 Ω: 8.33 V,   0.167 A
= =V I25 Ω: 8.33 V,   0.333 A

= =V I5 Ω: 1.67 V,   0.333 A

 5.32 = =V I7 Ω: 1.40 V,   0.200 A
= =V I1 Ω: 0.200 V,   0.200 A

= =V I25 Ω: 1.15 V,   46.1 mA

= =V I5 Ω: 0.231 V,   46.1 mA

= =V I10 Ω: 0.461 V,   46.1 mA

= =V I3 Ω: 0.107 V,   35.7 mA

= =V I40 Ω: 1.43 V,   35.7 mA
= =V I2 Ω: 0.308 V,   0.154 A

= =V I13 Ω: 1.54 V,   0.118 A

CHAPTER 6

 6.2 546 kPa

 6.4 1.6 psi

 6.6 copper: 1086.9°C, 1988.3°F

iron: 1526.9°C, 2780.3°F

lead: 326.9°C, 620.3°F

tin: 226.9°C, 440.3°F

 6.8 46.8°F, 46.8°R, 26 K

 6.10 ( )
=

−

−
≠

− −
W C

V V

n
nb

n n

1
, 12

1
1
1

 6.12 10.9 N m

 6.14 207 W/m2

 6.18 21 kJ

 6.20 0.816 m

 6.22 46.6 days

 6.24 288°C

 6.26 12 kJ

 6.28 2.275 MW, 0.615

 6.30 a) 175 kJ b) 260 kJ c) 0.350, 0.200

 6.32 10 MW, 0.40, 0.550

 6.34 0.282, 70.5 kW

 6.36 This heat engine is impossible because the thermal efficiency is greater 
than the Carnot efficiency.

 6.38 23.5 m2
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 6.40 361°C

 6.42 0.066

CHAPTER 7

 7.2 0.993 kg, 9.74 N

 7.4 25.75 slug, 828.9 lbm

 3687 N, 828.9 lbf

 7.6 98.7 MPa

 7.8 0.108 m

 7.10 0.01 Pa

 7.12 110 10  kPa, 1.09 10  atm3 3× ×
 7.14 441 kPa

 7.16 16.4 MN

 7.18 2.49 kPa

 7.20 × −3.77 10  m /s, 0.0511 kg/s6 3

 7.22 × ×− −1.24 10  kg/s, 3.57 10  m/s, 12.4 h5 3

 7.24 2.62 m/s, 4.48 kg/s

 7.26 53.0 m/s

 7.28 2 kg/s (enters the junction)

 7.30 small branch: 9.36 m3/s, 11.2 kg/s

large branch: 18.4 m3/s, 22.0 kg/s

 7.32 33.0 days

 7.34 3.01 m/s, 54.7 m/s

CHAPTER 8

 8.2 2.495 MJ

 8.4 San Francisco: 32.2 kWh

San Antonio: 27.0 kWh

Minneapolis: 36.1 kWh

Boston: 34.7 kWh

 8.6 $114.81

 8.8 13.5 m2

 8.10 17.2 MW

 8.12 58.1 kW, 674 kW

 8.14 0.113 kWh

 8.16 1.054 GW

 8.18 19.9 kW

 8.20 0.1502, 0.2413

 8.22 0.208, 0.126. The proposed geothermal power plant is impossible because 
the thermal efficiency is greater than Carnot efficiency.

 8.24 71°C

 8.26 84.5 kW
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 8.28 1.04 kW, 0.780 kW

 8.30 135 MW

CHAPTER 9

 9.4 a. G  b. S,R  c. S  d. S  e. G  f. S  g. S,R  h. G

 9.6 Incomplete label on y-axis, missing label on x-axis, no legend, no minor 
graduations.

 9.10 a) independent variable: pump speed S

dependent variable: pump output V�

b) 3.95  10  gal/min4 1.54= × −V S�

c) 150 rpm,   0.887 gal/min= =S V�

300 rpm,   2.58 gal/min= =S V�

475 rpm,   5.23 gal/min= =S V�

 9.12 a) independent variable: resistance R

dependent variable: current I

b) 11.3   mA1.08= −I R
c) 2.8 kΩ,   3.72 mA= =R I

5.2 kΩ,   1.90 mA= =R I

8.9 kΩ,   1.07 mA= =R I

 9.14 a) independent variable: velocity v

dependent variable: drag force F

b) 0.89   N1.97=F v
c) 8 m/s,   53.5 N= =v F

32 m/s,   821 N= =v F

70 m/s, 3839 N= =v F

 9.16 a) independent variable: time t

dependent variable: temperature T

b) 202 e   C0.105= °−T t

c) 3.5 s,   140 C= = °T

12 s,   57.3 C= = °t T

17 s,   33.9 C= = °t T

 9.18 a) independent variable: temperature T

dependent variable: voltage V

b) 0.28 0.042   mV= − +V T

c) 150 C,    6.02 mV= ° =T V

575 C,    23.9 mV= ° =T V

850 C,    35.4 mV= ° =T V

 9.20 a) independent variable: temperature T

dependent variable: solubility S

b) 10.0 0.023   kg= +S T

c)  277 K,   16.37 kg= =T S

300 K,   17.11 kg= =T S

330 K,   17.59 kg= =T S
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 9.22 a) independent variable: drill diameter d

dependent variable: material removal rate M

b) 9.95   in /min2.00 3=M d
c) = =d M0.875 in,   7.62 in /min3

 1.25 in,   15.5 in /min3= =d M
 9.24 a) independent variable: speed s

dependent variable: power P

b)  6.00 10  hp5 3.02= × −P s

c) 35 mi/h, 2.76 hp= =s P  
55 mi/h, 10.8 hp= =s P

 9.26 = ° = °T c27 C,   4.180 kJ/kg.  C  
= ° = °T c125 C,   4.263 kJ/kg.  C

= ° = °T c192 C,   4.467 kJ/kg.  C

 9.28 ω σ750 rad/s,  7.00 MPar= =  

 ω σ= =1200 rad /s, 17.91 MPar

 ω σ= =2750 rad/s, 103.5 MPar

 9.30 36.9 lbm/ft

CHAPTER 10

 10.4 = = =mean 16.08 oz,  median 16.14 oz,  mode 16.10 oz

 10.6  0.398 oz

 10.8 b) 1005.7 Ω, 45.5 Ω

c) left side: −2.32, right side: 2.07

d) ±1 σ: 940 Ω, 900 Ω, 955 Ω, 930 Ω, 928 Ω, 952 Ω;

1082 Ω, 1060 Ω, 1055 Ω, 1090 Ω, 1072 Ω, 1061 Ω

±2 σ: 900 Ω

 10.10 b) 2.000 in, 0.00529 in

c) 1824

d) ±0.0106 in

 10.12 a) 4.56 percent

b) 912

c) $31.01

 10.14 a) 4.78 percent

b) 4.78 percent

 10.16 92.24 percent

 10.18 73.3 percent

 10.20 a) 98.1 percent

b) 1.86 percent

c) 0.09 percent

 10.22 4550 h
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Curve Fitting Fitting a smooth line through data points 
for the purpose of approximating a mathematical relation-
ship or function.

Deformation Change in the size or shape of a body.

Density Mass per unit volume of a material.

Dependent Variable In graphing, a variable that depends 
on another variable.

Derived Dimension A dimension that can be derived from 
two or more base dimensions.

Dimension Physical variable that is used to describe or 
specify the nature of a physical quantity.

Dimensionally Consistent Equivalency of dimensions on 
both sides of the equal sign.

Direct Current Flow of charge in which charge flows in 
one direction.

Elastic Potential Energy Energy stored in a deformable 
body such as an elastic solid or a spring.

Elastic Range Range of stresses over which a body behaves 
elastically, i.e., returns to its original size or shape after a 
load is released.

Electric Charge Property of matter that causes it to experi-
ence a force when placed in an electromagnetic field.

Electric Current Movement of electric charges of the same 
sign.

Electrical Circuit Electrical system in which two or more 
circuit elements are connected to one another with 
conductors.

Efficiency As applied to a solar cell, the ratio of electrical 
power produced by the cell to the solar power incident on 
the cell.

Energy The capacity to do work.

Engineering Analysis Analytical solution of an engineering 
problem, using mathematics and principles of science.

Engineering Design Process of devising a component, sys-
tem or operation that meets a specific need.

Accuracy How close a measured value is to the true or cor-
rect value.

Allowable Stress A stress, that is below the yield stress, used 
in structural design.

Alternating Current Flow of charge in which charge flows 
back and forth between negative and positive values, usu-
ally in a sinusoidal pattern.

Analysis Separation of a whole into its component parts, 
or an examination of a complex system, its elements, and 
their relationships.

Base Dimension A dimension that has been internation-
ally accepted as the most basic dimension of a physical 
quantity.

Basic Mathematics Algebra, geometry, trigonometry, cal-
culus, and statistics.

Biomass Fuel derived from living, or recently living, 
organisms.

Bulk Modulus Property of a fluid used to characterize its 
compressibility.

Carnot Efficiency The maximum possible thermal effi-
ciency that a heat engine can have.

Cartesian Unit Vector Vector with a magnitude of unity 
that lies along a rectangular coordinate axis.

Center of Pressure As applied to fluid statics, a point in the 
fluid at which the resultant pressure force acts.

Circuit Element Generic term referring to an electrical de-
vice or component.

Coefficient of Determination Statistical parameter used to 
ascertain the goodness of fit of a straight line to the data.

Compressibility Amount of change of volume of a fluid 
subjected to a change in pressure.

Conductor Wire that connects circuit elements.

Continuity Principle The law of conservation of mass for 
a fluid.

Conversion Factors Equivalency ratios that allow the con-
version of a quantity from one unit system to another.

Glossary
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Glossary 411

Graph Paper Paper with preprinted horizontal and verti-
cal lines to facilitate making a graph.

Gravitational Potential Energy Energy that a system pos-
sesses by virtue of its elevation with respect to a reference 
in a gravitational field.

Heat Energy transferred across the boundary of a system 
by virtue of a temperature difference.

Heat Engine A device that converts heat to work.

Higher Level Mathematics Linear algebra, ordinary dif-
ferential equations, partial differential equations, and 
 complex variables.

Histogram Bar graph that shows a frequency distribution 
of data.

Hyrdo Refers to energy derived from flowing or falling water.

Independent Current Source Two-terminal circuit element 
in which a constant current is supplied.

Independent Variable In graphing, a variable that can be 
controlled by the experimenter.

Independent Voltage Source Two-terminal circuit element 
that maintains a constant voltage across its terminals.

Internal Energy Sum of all the microscopic forms of en-
ergy of a system.

Internal Force Force that originates inside a body that acts 
on other parts of the body.

Interpolation Process used to find data points between 
known data points.

Kinetic Energy Energy that a system possesses as a result of 
its motion with respect to a reference frame.

Kirchhoff’s Current Law The algebraic sum of currents en-
tering a node is zero.

Kirchhoff’s Voltage Law The algebraic sum of the voltages 
around a loop is zero.

Least Squares Linear Regression Method for finding a 
straight line through data points such that the difference 
between a data point and the corresponding point pre-
dicted by the line is minimized for all data points.

Linear Function A function of the form y = mx + b, where 
m is the slope and b is the y-intercept.

Marine Refers to energy derived from oceans.

Mass A quantity or amount of matter.

Mathematics Software Software tool for symbolically solv-
ing mathematics problems.

Mean Measure of central tendency defined by the sum of 
a set of numbers in a population or sample divided by the 
size of the population or sample.

Engineering Method A method, similar to the scientific 
method, used by engineers for solving problems.

English Unit System A system of unit measurements origi-
nating in England.

Equation Solver Software tool for solving equations.

Equilibrium State of balance between or among opposing 
forces acting on a body.

Error Deviation of a measured value from the true or cor-
rect value.

Exponential Function A function of the form y = bemx, 
where b and m are constants.

Extrapolation Process used to find data points beyond 
known data points.

Factor of Safety Ratio of failure stress to allowable stress.

Failure Cessation of the functioning of an engineered 
system caused by the use of that system outside its design 
parameters.

First Law of Thermodynamics Energy is conserved.

Flow Rate, Mass Rate at which a mass of fluid passes a  
location per unit time.

Flow Rate, Volume Rate at which a volume of fluid passes a 
location per unit time.

Fluid Substance that deforms continuously when acted 
upon by a shear stress.

Fluid Dynamics Branch of fluid mechanics dealing with 
fluids in motion.

Fluid Mechanics Study of fluids at rest and in motion.

Fluid Statics Study of fluids at rest.

Force An influence that causes a body to deform or 
accelerate.

Force System A system in which two or more forces act on 
a body.

Fossil Fuels Fuels that are derived from the remains of liv-
ing organisms.

Free-Body Diagram Diagram that shows all external forces 
acting on a body.

Frequency Distribution Distribution of ranges or classes of 
data, typically shown as a histogram.

General Analysis Procedure A seven-step methodology for 
conducting engineering analysis.

Geothermal Refers to energy that originates from radioac-
tive decay plus heat from the earth’s planetary accretion.

Graph A special visual representation of the relationship 
between two or more physical quantities.
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Measure of Variation A number that indicates the extent 
to which data are spread out around the mean.

Measurement Act of using instruments to determine the 
numerical value of a physical quantity.

Mechanics Study of the state of rest or motion of bodies 
that are subjected to forces.

Median Value of the number in the center of a data set 
arranged in ascending or descending order.

Method of Selected Points In graphing, a method of visual 
best fit of a straight line to the data.

Mode One or more sets of numbers that occurs with the 
greatest frequency in a data set.

Modeling Physical or analytical simulation of a system or 
component.

Modulus of Elasticity Mechanical property of a material 
that defines its stress divided by strain in the elastic range.

Newton’s Second Law A body of mass, m, acted upon by an 
unbalanced force, F, experiences an acceleration, a, that 
has the same direction of the force and a magnitude that is 
directly proportional to the force.

Newtonian Fluid Fluid that obeys Newton’s law of viscosity.

Normal Distribution A curve with a characteristic bell 
shape that is symmetrical about the mean and extends in-
definitely in both directions.

Ohm’s Law The potential difference across a conductor is 
directly proportional to the current.

Order of Magnitude A power of ten.

Parallel As applied to circuits, when two or more circuit 
elements are connected across one another.

Photovoltaic Energy system that converts sunlight directly 
into electricity.

Physical Sciences Primarily, physics, chemistry, and geology.

Physical Standards Reproducible quantities of the seven 
base dimensions, expressed in SI units, that are based on 
physical constants or phenomena.

Population In statistics, the total number of observable 
objects.

Potential Energy Stored energy of position possessed by an 
object.

Power As applied to circuits, the rate at which energy is 
absorbed by a circuit element.

Power Function A function of the form y = bxm, where b 
and m are constants.

Precision Repeatability of a measurement.

Pressure Normal force exerted by a fluid per unit area.

Programming Languages Sequential instructions suppled 
to a computer for carrying out specific calculations.

Renewable Energy Energy that comes from sources that 
are naturally replenished.

Resistance Impedance of current flow through a circuit 
element.

Resistor A circuit element that provides resistance.

Resultant Sum of two or more vectors.

Resultant Force Sum of two or more forces.

Sample In statistics, a subset of the population.

Scalar Quantity with magnitude only.

Schematic Diagram Symbolic representation of the devices 
and interconnections in a circuit.

Second Law of Thermodynamics Energy conversions occur 
in the direction of decreasing quality of energy.

Series As applied to circuits, when two or more circuit ele-
ments are connected end-to-end.

Shear Stress Stress produced when a force acts tangen-
tially to a surface.

SI Unit System The (System International d’Unites) unit 
system that is internationally accepted as the standard unit 
system.

Significant Figure A digit in a number that is considered 
reliable as a result of a measurement or calculation.

Solar Refers to energy from the sun.

Solar Thermal A system in which solar energy is collected 
and transferred to a working fluid.

Specific Gravity Ratio of the density of a fluid to the den-
sity of water at a reference temperature.

Specific Weight Weight per unit volume of a material.

Spreadsheet Software tool for performing calculations for 
engineering, scientific, and business applications.

Standard Deviation In statistics, a measure of variation.

Statics Branch of engineering mechanics that deals with 
bodies at rest.

Statistics Branch of applied mathematics dealing with the 
collection, presentation, analysis, and interpretation of 
data.

Strain (normal) A ratio of normal deformation to original 
length.

Stress (normal) Normal internal force divided by cross sec-
tional area.
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Velocity Gradient Change in velocity of a fluid with respect 
to distance normal to the direction of flow.

Viscosity, Dynamic A measure of the resistance to flow for 
a fluid, measured in units of Pa.s.

Viscosity, Kinematic Dynamic viscosity divided by density.

Voltage Work done in moving a charge of one Coulomb.

Weight Gravitational force exerted on a body by the earth.

Wind Refers to energy derived from wind.

Work A form of energy, other than heat, that is trans-
ferred across the boundary of a system.

Yield Stress Stress above which results in permanent de-
formation of a solid.

Zeroth Law of Thermodynamics If two bodies are in ther-
mal equilibrium with a third body, they are also in thermal 
equilibrium with each other.

1, 2, 5 Rule In graphing, the smallest divisions for minor 
graduations.

Stress-Strain Diagram Graph of stress as a function of 
strain in a material.

Temperature An indicator of heat transfer, i.e., heat is 
transferred from a region of high temperature to a region 
of low temperature.

Thermal Efficiency For a heat engine, work output divided 
by heat input.

Thermodynamics Science of energy transformation and 
utilization.

Ultimate Stress Maximum stress at which cross sectional 
area begins to decrease rapidly, resulting in fracture.

Unit Standard measure of the magnitude of a dimension.

Unit Conversion A calculation using one or more conver-
sion factors to convert a quantity from one unit system to 
another.

Variance The square of the standard deviation for a popu-
lation or a sample.

Vector Quantity with both magnitude and direction.
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A
Abscissa, 328
Absolute pressure, 193
Absolute zero, 22, 194
AC circuits, 171
Acceleration, 17

English unit, 21
SI unit, 25
unit conversion, 41, 394

Acceleration work, 204, 205
Accuracy, defined, 314
Active circuit element, 173
Ada, 82
Aerodynamics, 18, 19
Algebra:

exponential function, 336, 389
laws of exponents, 388
logarithms, 389
mathematical formulas, 388, 389
quadratic equation, 388

Algebraic variables, 66
Allowable stress, See Design stress
Alternating current (AC), 157
American Institute of Aeronautics and Astronautics 

(AIAA), 217
American Society of Mechanical Engineers (ASME), 217
Ammeters, 158

function switches, 158
range selector functions, 158

Ampere (A), 22, 156
Ampere, Andre, 141
Analog ammeters, 158
Analog ohmmeters, 165
Analog voltmeters, 162
Analysis, 138

beginning in the middle of  
a problem, 118

as decision-making tool, 5–6
defined, 1
and design process, 7
and engineering design, 5–5
and engineering failure, 7–11
general procedure, 62–78
and mechanics, 98

requirements of, 1–2
role in engineering, 1–14

Analysis methodology, 52–87
Analysis presentation guidelines:

diagrams, 70
double-underlined/boxed answers, 70
engineer’s computation paper, 69–70
examples, 71–77
general analysis procedure steps, 70
heading area, 69
lettering, 70
problem statement, 70
spelling/grammar, 70
working in pencil, 70

Analytic engineers, 2
Angular acceleration:

English unit, 33
SI unit, 27

Angular velocity:
English unit, 33
SI unit, 27

Approximations, 54
Archimedes, 96, 233
Area, 17

English unit, 32
SI unit, 27
unit conversion, 42, 394

Arithmetic mean, See Mean
Artifact, defined, 22
Assembly language, 81
Assumptions, as general analysis  procedure, 62–63, 64, 65
Atmospheric pressure, 193
Atomic binding forces, 200
Atoms, 155, 156
Avogadro’s number, 23
Axes, 323, 324

graduation and calibration of, 324, 327
Axis labels, 327, 328

B
B language, 82
Base dimensions, 21

defined, 16
SI units, 21

Index
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Index 415

BASIC (Beginner’s All-Purpose Symbolic Instruction 
Code), 82

Basic mathematics, 1
Batteries, 161, 162

schematic symbols, 173
BCPL, 82
Bell-shaped frequency distribution, 366
Bimodal data set, 369
Bimodal frequency distribution, 365
Binary plant, 292, See also Geothermal energy

engineering analysis, 293, 296
example, 295

Binding forces, between molecules of a substance, 200
Biofuels, 266
Biomass energy, 302, 303

biomass gasification, 303
coal-fired power plant, 302
direct-fired power plant, 302

Biomedical engineering, 3
Boundary work, 205, 206

during a constant pressure process (application), 210
Brake fluids, bulk modulus/compressibility, 240
British thermal unit (Btu), 32, 33, 266
Bulk modulus, 239, 240

C
C language, 82
C++ language, 82
CAD (computer-aided design) model, 7
Calculations, as general analysis  procedure, 63, 66
Calculators:

learning how to use, 60, 61
and unit conversions, 44

Calculus:
derivatives, 392, 393
integrals, 393
mathematical formulas, 392, 393

Calibration of axes, 324, 327
Candela (cd), 23
Capacitors, schematic symbols, 172
Carbon-composition resistors, 164
Carbon-film resistors, 164
Carnot efficiency, 223, 294
Carnot, Sadi, 190, 223
Cartesian unit vectors, 104
Cells, spreadsheets, 80
Celsius (¡C), 20, 32
Celsius temperature scale, 194
Center of pressure, 248
Central tendency, measures of, 367, 372

example, 370, 371
mean, 367–369
median, 369
mode, 369

CERMETS, 164
Chassis ground, 161

Chemical engineering, 3
Chemical engineers, 83

and fluid mechanics, 234
and statistics, 363

Chemistry, 1
Circle, 390
Circuit elements, 161

categorization of, 173
Circular sector, 390
Circular segment, 390
Civil engineering, 3
Civil engineers, and fluid mechanics, 234
Classes, 364
Clausius, Rudolph, 190
Coefficient of determination, 345
Common mathematical functions, 336–337
Communications, 152, 143
Communications tower with cables,  stabilizing, 114, 115
Commutative, use of term, 102
Compressibility, 239, 240
Computer engineering, 3
Computer languages, 81, 82
Computer software, graphing with, 331
Computers, 151, 152

as analysis tool, 78, 87
as “black box,” 83
equation solvers, 81
finite element software, 83
mathematics software, 81
microprocessor, 153
for numerical analysis, 84, 86
pitfalls of using, 83, 84
programming languages, 81, 82
specialty software, 83
spreadsheets, 79, 80

Concentrating solar power, 269
Concentration:

English unit, 33
SI unit, 27

Conductors, 164
Cone, 391
Conservation of energy, law of, See First law of 

thermodynamics
Conservation of mass, 252, 258

defined, 252
example, 255, 256
pipe branch, analyzing (application), 256, 258

Construction engineering, 3
Continuity equation, 253
Continuity principle, 253

and analysis of a flow branch, 254, 255
Controls, 152
Controls and instrumentation, 152
Conventional current, 157
Conversion factors, 41
Coulomb, Charles, 156
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416 Index

Course materials, retaining, 155
Current:

defined, 156
exponentially changing, 157
measurement of, 157
sawtooth, 157
transient, 159, 160

Curve fitting, 335, 348
common mathematical functions, 336, 337
defined, 335
examples, 338–340
least squares linear regression, 344, 348
selected points, method of, 337, 338

Curves, graphing, 329, 330
Cycle, vertical scale, 322
Cylinder, 390

D
Data acquisition systems, 318
Data classification, 364, 367

guidelines, 364, 367
Data identification and association, 312–313
Data point plotting, 328, 329
Data point symbols, 330
Day (d), 34
DC circuits, 171, 177

examples, 179, 177
Decision making, 371
Degree (°), 20, 32
Density, 17, 59, 236, 237

English unit, 33
SI unit, 27
unit conversion, 42, 394

Derivatives, 392, 393
Derived dimensions, 17
Descriptive measure, 367
Design:

engineering, 4–7
obtaining a preliminary concept of, 4–5
stress, 137–140

Deterioration, 138
Digital ammeters, 158
Digital ohmmeters, 165
Digital voltmeters, 163
Dimensional consistency, 17, 66
Dimensionally consistent, defined, 17
Dimensionally homogeneous, defined, 17
Dimensionless quantities, 19
Dimensions, 15, 20

base, 16
categorization of, 16
defined, 16
derived, 16, 17
numerical value of, 16

Direct current (DC), 157
Direction, 100

Direct steam/dry steam, 292, See also Geothermal energy
Discussion, as general analysis  procedure, 63, 67
Disraeli, Benjamin, 363
Dry-cell batteries, 161
Dynamic equilibrium, 122
Dynamic viscosity, 241, 242

English unit, 33
SI unit, 26
unit conversion, 396

Dynamics, 96
defined, 18

E
Edison, Thomas, 151
Elastic limit, 133
Elastic potential energy, 197
Elastic range, 133
Elasticity, 97
Elasticity, modulus of, 133
Electric charges, 153, 160

SI unit, 25
Electric current, 22

defined, 156
in electric circuit theory, 157
exponentially changing currents, 157
measurement of, 157
pulsating direct current, 157
sawtooth current, 157
SI unit, 156

Electric field strength:
English unit, 33
SI unit, 27

Electric potential (voltage), SI unit, 25
Electric resistance, SI unit, 25
Electrical circuit analysis, defined, 151, 152
Electrical circuits, 151–188

complex, 153
defined, 151
example, 158, 159
simple, 153
topical structure of, 153

Electrical devices, 161
circuits in, 153
pervasiveness of, 153

Electrical energy, 152, See also Energy
Electrical engineering, 3
Electrical engineers, and statistics, 363
Electrical resistance, See Resistance:
Electromotive force (emf), 160
Electron current, 157
Electron-volt (eV), 34
Electrostatics, 155
Empirical data, 329–330
Energy, 17

conservation of, 220
defined, 197
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Index 417

English unit, 33
forms of, 197–201
internal, 199–200
kinetic, 199, 200
latent, 200
macroscopic, 198
microscopic, 198
potential, 198
renewable, definition, 266
rotational, 200
sensible, 200SI unit, 25, 27
total, 200
translational, 200
vibrational, 200

Energy balance, 64, 212
Energy/work/heat, unit conversion, 42, 394
Engineer calculation pad, 69
Engineering analysis, 52, 53

analysis presentation guidelines, 69, 78
defined, 1, 4
general procedure, 62, 78
and mechanics, 97, 98
as modeling/simulation, 4
requirements of, 1–2

Engineering analysts, 2
Engineering, as shared discipline, 309
Engineering design:

and analysis, 4–4
defined, 5
process (flow chart), 5
relationship between engineering  

 design and, 4
Engineering disciplines, categorization of, 3
Engineering failure, role of analysis in, 7–11
Engineering history, 11
Engineering major, choosing, 2–3
Engineering measurements:

defined, 312
functions of, 311

accounting, 311
design, 311
performance evaluation, 311
process control, 311
research, 311

Engineering mechanics, topical structure of, 97
Engineering method, 52
Engineering notation display, scientific  

calculators, 58
Engineering, practical side of, 217, 218
Engineering professors, dealing with, 201, 202
Engineer’s computation paper, 69
English (British) unit system, 21, 31–32

and basic dimensions, 31
derived dimensions and, 31–32
prefixes, 31
use of, 30

Entropy:
English unit, 33
SI unit, 25

Equation solvers, 81
Equations of equilibrium for a particle, 122
Equilibrium, 96, 122, 129

defined, 122
equations of equilibrium for a particle, 122
examples, 123, 127

Error:
defined, 314
gross errors, 315

categorization of, 316
hysteresis, 315
parallax, 315
random errors, 315

categorization of, 316
systematic errors, 315

categorization of, 316
Euler, Leonhard, 233
Excel (Microsoft), 80, 331–332
Exponential function, 336, 338, 389
Exponentially changing currents, 157
Extrapolation, 348, 351

defined, 348

F
Factor of safety (FS), 138, 139
Fahrenheit (°F), 20, 32
Fahrenheit, Gabriel, 190
Fahrenheit temperature scale, 194
Failure analysis, 9

learning from failure, 11, 12
Failure modes, 137
Failure stress, 138
Falling-sphere method, calculating  viscosity by using, 58, 60
Faraday, Michael, 151
FE exam, See Fundamentals of Engineering (FE) 

examination
Finite element software, 83
First law of thermodynamics, 190, 211, 218

examples, 213, 215, 216
Flash steam plant, 292, See also Geothermal energy
Flow branch, analysis of, 254
Flow rates, 249–250

example, 250
Fluid dynamics, 97, 233, 245
Fluid mechanics, 233–263

and analysis of devices/systems, 234
defined, 233
flow rates, 249, 250
fluid properties, 236, 244
fluid statics, 97, 233, 245, 249

Fluid properties, 236, 244
bulk modulus, 239, 240
compressibility, 239–240
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Fluid properties (Continued)
density, 236–237
examples, 242–244
specific gravity, 238
specific weight, 237–238
viscosity, 240–242

Fluid statics, 97, 233, 245–249
defined, 245
example, 248
pressure elevation relationship, 245–246
submerged surfaces, forces on, 246, 248

Fluids:
compared to solids, 233, 235
defined, 233
physical properties of, 398, 399

Force, 17
English unit, 33
SI unit, 25
unit conversion, 42, 394

Forces, 108, 116
Forensic engineering, 9
Fortran, 82
Franklin, Benjamin, 157
Free-body diagrams, 64, 116–121, 171

constructing, procedure for, 116
defined, 116
for force configurations, 116

Frequency distributions, 366, 367
Frequency, SI unit, 25
Full-log graph paper, 322, 323
Fundamental dimensions, 16
Fundamentals of Engineering (FE) examination, 251

G
Galileo Galilei, 96
Gauge pressure, 193
Gauss, Carl, 375
Gaussian distribution, See Normal distribution
General analysis procedure, 62, 78

assumptions, 62, 63, 64–65
calculations, 63, 66
diagram, 63–64
discussion, 63, 67
examples, 71, 78
governing equations, 63, 65–66
problem statement, 63
solution check, 63, 66, 67
steps in, 63, 69

Generators, 152
Geometry:

areas, 389, 390
circle, 390
circular sector, 390
circular segment, 390
cone, 391
cylinder, 390

mathematical formulas, 390, 391
parallelpiped, 390
parallogram, 389
rectangle, 389
regular polygon, 390
solids, 390–391
sphere, 391
torus, 391
trapezoid, 389
triangle, 390

Geothermal energy, 291–296
conversion, 292
example, 295
resources, 292
types, 292
uses, 292

GigaBtu (GBtu), 32
GIGO (Garbage In, Garbage Out), 77
Governing equations, as general analysis procedure,  

63, 65, 66
Graduations of axes, 324, 327

major graduations, 326
minor graduations, 326
and 1, 2, 5 rule, 326, 327

Graph, defined, 309
Graph paper, 322, 323
Graphing, 309, 361

accuracy/precision/errors, 313, 317
axes, location of, 323, 324
bar graph, 319
collecting/recording data, 312, 319
with computer software, 331, 332
contour graph, 319
curve fitting, 335, 348
curves, 329, 330
data identification and association, 312, 313
data point plotting, 328, 329
dependent variables, 321
extrapolation, 348, 351
general procedure, 319, 332
graph paper, 322, 323
independent variables, 321
interpolation, 348, 351
legends, 331
line graph, 319
origin of a graph, 323
pie graph, 319
polar graph, 319
recording data, 317–318
scatter graph, 319
3D surface graph, 319
titles, 331
types of graphs, 319, 320
variable ranges, 321
wind turbine, graphing wind data to select a site for 

(application), 332, 334
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Gravitational forces, 153
Gravitational potential energy, 198
Gravitational work, 203, 204
Greek alphabet, 402
Gross errors, 315

categorization of, 316
Ground, 161
Groups, working in, 335

H
HAWT, See Horizontal axis wind turbine (HAWT)
Head of a vector, 100
Heat, 202, 207–208, 212

conduction, 207
convection, 207
defined, 202
English unit, 33
example, 208, 209
radiation, 207
SI unit, 25, 27

Heat engines, 218–220, 293
defined, 218
thermal efficiency, 220

Heat exchanger, 269
Heat transfer, 207, 208

English unit, 33
SI unit, 27

Heat transfer, power, unit conversion, 395
Hectare (ha), 34
Hertz, Heinrich, 151
Higher level mathematics, 1
Histograms, 364–366, 374, 375
Hooke, Robert, 132
Hooke’s law, 132, 133
Hoover Dam, and principles of fluid   

statics, 235
Horizontal axis wind turbine (HAWT), 282

engineering analysis, 285
Hour (h), 34
Hydro energy, 288–291

engineering analysis, 290
penstock, 289

Hysteresis, 315

I
Inch (in), 32
Independent current source, 173
Independent voltage source, 173
Inductors, schematic symbols, 173
Industrial engineers, and statistics, 363
Inertia, 34
Insolation, See Solar irradiation
Instantaneous voltage, 161
Integrals, 393
Internal energy, 199, 200
Internal forces, 116, 129

Interpolation, 348, 351
defined, 348
linear, 349, 350

Iterations, 85, 86

J
Joule, 25
Joule, James, 151

K
Kelvin (K), 21–22, 32
Kelvin, Lord, 190
Kepler’s orbital laws, 52
Kilo foot (kft), 32
Kilogram (kg), 21
Kilometers per hour (km/h), 29
Kilopascals (kPa), 29
Kinematic viscosity, 59, 242

SI unit, 27
unit conversion, 396

Kinetic energy, 199, 200
Kinetic viscosity, English unit, 33
Kip, 32
Kirchoff’s current law (KCL), 177, 178, 252, 254

example, 179, 181
Kirchoff’s voltage law (KVL), 177, 178, 179

example, 179, 181
Ksi, 32

L
Labels, axes, 327, 328
Laboratory notebook data sheet, 317
Lamps, schematic symbols, 172, 173
Latent energy, 200
Laws of exponents, 388
Leads, 164
Least squares linear regression, 344, 348

coefficient of determination, 345
defined, 344
examples, 345–348

Left-skewed distribution, 366
Legends, graphs, 331
Length, 21

unit conversion, 41, 394
Line of action, 100
Linear function, 336
Linear graph paper, 322, 323
Linear interpolation, 349, 351
Liters (L), 29, 34
Loadings, 137
Logarithms, 389
Luminous intensity, 23–25

M
Mach, Ernst, 233
Machine component, designing, 6, 7
Machine language, 81
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Macroscopic energy, 198
Magnetic field strength:

English unit, 33
SI unit, 27

Magnetic flux, SI unit, 25
Magnitude, 100
Major graduations, 326
Manufacturing engineers, and statistics, 363
Maple (Maplesoft/Waterloo Maple, Inc.), 81
Marine energy, 296, 301

ocean, 298, 301
tidal, 296, 298
types, 296

Mass, 22, 34, 39
defined, 34
examples, 38, 39, 40
unit conversion, 41, 395

Mass balance, 253
Mass flow rate, 17, 25, 212, 249

English unit, 33
SI unit, 27
unit conversion, 395

Material properties, 137, 138
Materials engineers, and statistics, 363
Mathcad (Mathsoft), 81
Mathematica (Wolrfram Research, Inc.), 81
Mathematical formulas, 388, 393

algebra, 388, 389
calculus, 392–393
geometry, 389–391
trigonometry, 391–392

Mathematics software, 81
syntactical differences between  programming 

 languages,  equation solvers and, 82
MATLAB (MathWorks), 81
Mean, 367, 369

advantages/disadvantage of, 368
Measures of central tendency, 367, 372
Measures of variation, 372, 373
Mechanical engineering, 3
Mechanical engineers, 83
Mechanical work, 203, 207

acceleration work, 204, 205
boundary work, 205, 206
gravitational work, 203, 204
shaft work, 206
spring work, 206, 207

Mechanics, 96–150
defined, 96
deformable-body, 96–97
and engineering analysis, 97–98
and engineering education, 97
fluid, 96
forces, 108–115
rigid-body, 96

Median, 368

Megaslug (Mslug), 32
Meter (m), 21–22
Method of selected points, 337–343
Metric system, 21
Metric ton (t), 34
Microscopic energy, 198
Middle of a problem, beginning analysis in, 118
Milliliters (mLs), 29
Minor graduations, 326
Minute (’), 34
Minute (min), 34
Mode, 369
Modeling, 2
Modulus of elasticity, 133
Modulus stress, unit conversion, 396
Molar mass, 17
Mole (mol), 23
Moment, 47
Moment of force:

English unit, 33
SI unit, 27

Moments of force, 122
Monatomic gas, 199

N
National Engineers Week, 217
National Institute of Standards and Technology  

(NIST), 22
New heat engine, evaluating a claim for (application), 224
Newcomen, Thomas, 190
Newton, Isaac, 34, 96
Newtonian fluids, 241
Newton’s law of universal gravitation, 34
Newton’s law of viscosity, 241
Newton’s laws of motion, 52, 63, 211
Newton’s second law, 36–37, 80, 122

written dimensionally, 36
written in terms of pound-mass, 36–37

Normal distribution, 366, 371, 374–382
defined, 375
example, 380–381
standard, 376–377
using to evaluate lamp lifetimes  (application), 381–382

Nuclear engineers, and statistics, 363
Numerical calculations, 53–62

approximations, 54
significant figures, 55–60

Numerical methods, 84

O
Observed data, 329
Ocean energy, 296, 298–301, See also Marine energy

ocean currents, 298
ocean thermal energy, 300–301
ocean waves, 299–300

Ocean thermal energy conversion (OTEC), 296, 300
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Index 421

Ohm, George, 166
Ohm, 164
Ohmmeters, 165, 312
Ohm’s law, 23, 63, 168–169, 173, 335, 363

statistical model of, 363
1, 2, 5 rule, 326–327
Order-of-magnitude calculations, 54
Ordinate, 323
OTEC, See Ocean thermal energy  conversion (OTEC)

P
Paper, for analysis work, 69–70
Parallax, 315
Parallelogram law, 101–102
Parallelpiped, 390
Parallelogram, 389
Pascal, 82
Pascal, Blaise, 233
Passive circuit element, 173
PE (Professional Engineer) exam, 251
Pencils, writing analyses in, 70
Penstock, 289
Photovoltaic systems, 269, 272–280

example, 279, 280
Physical properties of materials, 397–399

fluids, 398–399
solids, 397–398

Physical sciences, 1
Physical standards, 21–22
Physics, 1
Pipe branch, analyzing (application), 291–292
Plasmas, 234
Plastic deformation, 133
Plasticity, 97
Plotting a data point, 328–329
Populations, 364

mathematical notation, 366
Potential difference, See Voltage
Potential energy, 198–199
Pound-force, 32
Pound (lb), 32
Pound-mass, 32
Power, 17, 152, 158

SI unit, 25
unit conversion, 42

Power dissipation, 169
Power function, 336
Power resistors, 169
Power-supply circuit, sizing a resistor for (application), 

169–170
Precision, 313–317

defined, 314
Pressure, 17, 191–193

absolute, 193
atmospheric, 193
gauge, 193

SI unit, 25
unit conversion, 42, 395
units of, 193
vacuum, 193

Problem statement, 62, 118
as general analysis procedure, 62–63
real-world, 68

Process, 213
Professional engineering societies, 217
Programming languages, 81–82
Properties, 190, 236
Proportional limit, 133
Pulsating direct current, 157

Q
Quadratic equation, 388
Quattro Pro (Corel), 80

R
Radians, 23–24, 34
Radiant intensity:

English unit, 33
SI unit, 27

Random errors, 315
categorization of, 316

Range, 322
Range-selector functions:

ammeters, 158
ohmmeters, 165
voltmeters, 162

Rankine (¡R), 20, 32
Rankine temperature scale, 194
Rankine, William, 190
Raw data, 318
Real-world problem statements, 68
Recording data, 317–318
Rectangle, 389
Rectangular components, vectors, 102
Rectangular unit vectors, 104
Renewable energy, 265–303, See also  individual  

energy
biomass, 267, 302–303
defined, 266
environmental considerations, 267–267
fossil fuels, 266
geothermal, 267, 291–296
hydro, 267, 288–291
marine, 267, 296–301
solar, 266, 268–280
wind, 266–267, 281–287

Resistance, 17, 164–168, 313
defined, 164
example, 166–167
measurement of, 165
ohmmeter, 165
unit for, 166
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Resistors, 161
connected in parallel, use of term, 165
connected in series, use of term, 165
power-supply circuit, sizing a resistor for (application), 

169–170
schematic symbols, 171–172

Resultant force, 247–248
Resultant (resultant vector), 102
Reynolds, Osborne, 233
Right-skewed distribution, 366
Rotational energy, 200

S
Samples, 364

mathematical notation, 368
Savery, Thomas, 190
Sawtooth currents, 157–158
Scalar quantities, 100
Scalars, 99–100

addition of, 101–102
Scale, 312

graph paper, 322
Schematic diagrams, 171–172
Schematic symbols, 172–173
Scientific calculators:

engineering notation display, 58
and unit conversions, 44

Second (”), 34
Second law of thermodynamics, 190, 219–224

Carnot efficiency, 223
new heat engine, evaluating a claim for  

(application), 224
Second (s), 21
Semilog graph paper, 322
Sensible energy, 200
Shaft work, 206
Shear stress, 234, 241
Short ton (t), 34
SI (System International d’Unites) unit system, 21
SI units, 24–31

conversion to English units, 42
correct/incorrect ways of using, 28
derived dimensions and, 25–26
standard prefixes for, 28
use of, 24
use of, in everyday life, 29

SigmaPlot, 331–332
Signals, 152
Significant figures (significant digits), 55–60

casual or sloppy handling of, 58
examples, 56–58
rules for, 55–56

Simulation, 2
Sines/cosines, laws, 392
Skewed frequency distribution, 367
Society of Automotive Engineers (SAE), 217

Solar energy, 268–280
systems, 269–272

array, 271
collector, 269
concentrator, 269
grid tied, 271
heat exchanger, 269

net metering, 272
receiver, 270
solar cell, 270

Solar irradiation, 273
Solar thermal systems, 269
Solids, 390–391

compared to fluids, 233–234
defined, 234
physical properties of, 397–398

Solution check, as general analysis  procedure, 
 63, 66–67

Space Shuttle Challenger explosion, 9, 11
Space Shuttle Columbia disaster, 11
Specialty software, 83
Specific energy:

English unit, 33
SI unit, 27

Specific gravity, 238
Specific heat, 17

defined, 44–45
unit conversion, 42, 396

Specific internal energy, 200
Specific total energy, 200
Specific weight, 59, 236–237
Sphere, 391
Spreadsheets, 79–80, 331
Spring work, 206–207
Standard deviation, 372–373

example, 373
Standard normal curve, areas under (from 0 to z),  

378–379, 400–401
Standard normal distribution, 376–377
Static equilibrium, 122, 129
Statics, 96
Statistical model, of Ohm’s law, 363
Statistics, 362–387

data classification, 364–367
defined, 362
frequency distributions, 366–367
histograms, 364–367
populations, 363
samples, 364

Steradian, 24–25
Strain, 131–132
Stress, 17, 130–131

allowable, 137
design, 137–140
example, 134–136
SI unit, 25
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Index 423

ultimate, 133
yield, 133

Stress–strain diagram, 132–133
Submerged surfaces, forces on, 247–248
Supplementary dimensions, 24–25
Surface tension:

English unit, 33
SI unit, 27

Switches, schematic symbols, 171–172
Symbolic mathematical operations, 81
Syntax, 82
Systematic errors, 315

categorization of, 316

T
Tacoma Narrows Bridge, failure of, 9–11, 235
Tail of a vector, 100
Temperature, 22–23, 193–197

Celsius temperature scale, 194–195
difference, 193, 193
examples, 196–197
Fahrenheit temperature scale, 194
Rankine temperature scale, 194–195
thermal equilibrium, 193
unit conversion, 42, 396
and viscosity, 242
zeroth law of thermodynamics, 193–194

Terminals, ammeters, 156–158
Theoretical data, 330
Thermal conductivity, English unit, 33
Thermal efficiency, 220, 294
Thermal equilibrium, 193
Thermodynamics, 189–232

defined, 189
first law of, 190, 211–218
heat, 202, 207–208
heat engines, 218–220
pressure, 191–193
properties, 190
second law of, 190, 221–223
temperature, 193–197
uses of, 190
work, 202–207
zeroth law of, 193–194

Thermometer, 312–313
Thermostat, 152
Tick marks, 326
Ticks, 326
Tidal barrage, 297
Tidal energy, 296, See also Marine energy
Tidal steam generator (TSG), 297, See also Tidal energy
Time, 22
Time constant, and transient current, 159–160
Titles, graphs, 331
TK Solver (Universal Technical Systems), 81
Torque, 47

Torricelli, Evangelista, 233
Torus, 391
Total energy, 200
Total force, 247
Transcendental equations, 84
Transient current, and the time constant, 159–160
Translational energy, 200
Trapezoid, 389
Triangle, 390
Trigonometry:

functions, 391
identities/relationships, 391–392
mathematical formulas, 391–392
sines/cosines, laws of, 392

Triple point of water, 22
Truncated frequency distributions, 366–367
TSG, See Tidal steam generator (TSG)
Turnbuckles:

defined, 138
designing (example), 138–140

U
Ultimate stress (ultimate strength), 133, 138
Uniform frequency distributions, 366–367
Unimodal data set, 369
Unit conversions, 41–45, 394

acceleration, 394
area, 394
and calculators, 44
conversion factors, 41–42
defined, 41
density, 394
dynamic viscosity, 396
energy/work/heat, 394
examples, 42–44
force, 395
heat transfer, power, 396
kinematic viscosity, 396
length, 395
mass, 395
mass flow rate, 395
pressure, 395
procedure, 41–42
SI-to-English, 42
specific heat, 396
stress, modulus, 396
temperature, 396
velocity, 396
volume, 396

Unit vectors, 104–105
United States Customary System (USCS), 21, See also 

English (British) unit system
Units, 20–45

amount of substance, 23
defined, 20
deriving formulas from unit  considerations, 29
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Units (Continued )
electric current, 22
English, 31–34
length, 21
luminous intensity, 23–24
mass, 22
SI, 24–31
temperature, 22
time, 22
of a vector, 100

V
VAC, 161–162
Vacuum pressure, 193
Variables, algebraic, 66
Variance, 373
Variation, measures of, 373–374

defined, 373
standard deviation, 373–374
variance, 374

VAWT (Vertical axis wind turbine), 282
Vector quantities, 100
Vectors, 99–100

addition of, 100
components, 102–103
examples, 105–108
operations, 101–102
unit, 104–105

Velocity, 17
English unit, 33
SI unit, 27
unit conversion, 42, 396

Velocity gradient, 241
Vertical axis wind turbine (VAWT), See VAWT (Vertical 

axis wind turbine), 282
Vibrational energy, 200
Viscosity, 240–242

defined, 240
dynamic, 241
as a function of temperature, 242
kinematic, 224
velocity gradient, 241

Vogtle Electric Generating Plant (Georgia), 192
Volta, Alessandro, 151, 160
Voltage, 17, 160–163

batteries, 161
defined, 160, 162
electromotive force (emf), 160
instantaneous, 161
SI unit, 25

Voltmeters, 162
Volts (V), 160
Volume, 17

English unit, 33
SI unit, 27
unit conversion, 396

Volume flow rate, 249
English unit, 33
SI unit, 27

Von Karman, Theodore, 11

W
Wavelength:

English unit, 33
SI unit, 27

Weight, 34
SI unit, 27

Wind energy, 281–287
engineering analysis, 285–286
HAWT (Horizontal axis wind turbine), 282–285
VAWT (Vertical axis wind turbine), 282

Wind farm, 283
Wind turbine, graphing wind data to select a site for 

 (application), 332–334
Wire-wound resistors, 164
Work, 17, 202–207, 212

defined, 202
mechanical, 203–207
nonmechanical, 203
SI unit, 24

Y
Yard (yd), 33
Yield strength, 133
Yield stress, 133, 137
Young, Thomas, 133
Young’s modulus, 133

Z
Zeroth law of thermodynamics, 193–194
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