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Experimental Violation of a Cluster State Bell Inequality
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Cluster states are a new type of multiqubit entangled states with entanglement properties exceptionally
well suited for quantum computation. In the present work, we experimentally demonstrate that correla-
tions in a four-qubit linear cluster state cannot be described by local realism. This exploration is based on a
recently derived Bell-type inequality [V. Scarani et al., Phys. Rev. A 71, 042325 (2005)] which is tailored,
by using a combination of three- and four-particle correlations, to be maximally violated by cluster states
but not violated at all by GHZ states. We observe a cluster-state Bell parameter of 2:59� 0:08, which is
more than 7� larger than the threshold of 2 imposed by local realism.
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Multiparticle entanglement is a complex and relatively
unexplored landscape. For two qubits, there exists only one
class of entanglement [1], for three qubits there are two
classes of genuine three-particle entangled states [2,3], and
for four qubits at least nine different classes of entangle-
ment have been identified [4]. Recently, a great deal of
attention has been devoted to a class of multiparticle en-
tangled states called cluster states. This attention is largely
due to the application of cluster states in Raussendorf and
Briegel’s ‘‘one-way’’ model for universal quantum com-
putation [5]. In that model, one can drive a quantum
computation entirely through single-qubit measurements
and feed forward instead of unitary evolution. In addition
to being a practical alternative to the standard model for
quantum computing, it has also called into question the
requirements for quantum computing and the relationship
between measurement and dynamics [6]. One-way quan-
tum computation based on cluster states demonstrating
one-qubit gates, two-qubit gates, and a quantum search
algorithm was recently realized experimentally [7].

Aside from their fascinating use for quantum computing,
cluster states are a novel kind of multiparticle entangled
states with fundamentally new and different properties.
They share some properties with multiparticle exten-
sions of both Greenberger-Horne-Zeilinger (GHZ) states
jGHZi � 1=

���

2
p

�j000i123 � j111i123� [8–10] and W states
jWi � 1=

���

3
p

�j100i123 � j010i123 � j001i123� [2,11,12].
Each single-qubit constituent of a cluster state is com-
pletely mixed, characteristic of GHZ states. Also, any
two of the four cluster qubits can be projected into a Bell
state by choosing an appropriate basis, similar to a GHZ
state, but cluster states also share their persistency of
entanglement [13] with the W states. Recent theoretical
investigations of the ‘‘nonlocality’’ of these cluster states
have constructed new types of Bell inequalities and even
GHZ-type arguments to refute local realism with the spe-
cific correlations of cluster states in mind [14,15].

Bell’s inequalities are specifically designed to put quan-
tum physics to the test against local realistic models. For
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two-qubit entangled states, the CHSH-Bell inequality
[16,17] is perhaps the best-known example. The inequality
is constructed from two-qubit spin or, in our case, polar-
ization correlation functions. Similarly, the Mermin in-
equality [18], testing local realism in three-qubit
entangled states, is made entirely of three-qubit correla-
tions. Its generalization is based entirely on N-qubit corre-
lations [19]. In general, the choice of these correlations
determines the optimality of a Bell inequality, i.e., whether
entanglement is detected by a maximal violation of the
inequality. For example, for the specific case of three
qubits the inclusion of lower-order correlations can lead
to an optimal Bell inequality for a W state, which could not
detect GHZ entanglement [20]. This ambiguity and selec-
tivity of which type of entangled state produces a maximal
Bell violation makes the connection between entanglement
and Bell’s inequality tenuous especially in multiparticle
states [21]. Nevertheless, it nicely highlights the funda-
mentally different ways in which the GHZ and W states
manifest violations of local realism. Since the number of
distinct classes of entanglement grows rapidly with the
number of qubits, one might expect to find other Bell
inequalities optimal for different states. Specifically, for a
Bell inequality optimal for cluster states, lower-order cor-
relations will be of importance, since cluster states can be
generated by nearest-neighbor Ising interaction [5].

A recent theoretical work has found a GHZ-type
argument for cluster states [14]. As in the original GHZ
article [8], the new work showed that there exists a com-
bination of observables whose expectation values cannot
be consistent with a set of local realistic properties.
However, in contrast to GHZ states, cluster states can
even fulfill a GHZ argument using combinations of three-
and four-qubit correlations [22]. This leads to the develop-
ment of a Bell inequality that can be maximally violated by
cluster states but cannot be violated at all by GHZ states. In
this experimental work, we use four-qubit cluster states
encoded into the polarization state of photons to test that
Bell inequality.
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A linear cluster state arises when a line of qubits, each in
the j�i state, where j�i � 1

��

2
p �j0i � j1i�, experience

nearest-neighbor CPhase operations, i.e., jjijki !
�
1�jkjjijki, j; k 2 f0; 1g [5]. Linear cluster states of two
and three qubits are equivalent under local unitary trans-
formations, or ‘‘locally equivalent,’’ to Bell states and GHZ
states, respectively [5]. In contrast, the four-qubit cluster is
not locally equivalent to either the four-qubit GHZ or W
states. In the present work, we use photon polarization to
encode qubits with horizontal (vertical) polarization cor-
responding to j0i (j1i). Our target cluster state is of the
form,

j�4i �
1

2
�jHHHHi1234 � jHHVVi1234

� jVVHHi1234 
 jVVVVi1234�; (1)

where the subscripts 1, 2, 3, and 4 label different photons in
separated spatial modes. This state is locally equivalent,
under a Hadamard transformation H � 1

��

2
p ��X � �Z� on

the first and last qubit, to the four-qubit linear cluster state

j�0
4i �

1

2
�j0� 0�i1234 � j0
 1
i1234

� j1
 0�i1234 � j1� 1
i1234�; (2)

where j�i � 1
��

2
p �j0i � j1i� represents the complementary

linear polarization. The linear cluster state, j�0
4i, has a set

of 15 nontrivial stabilizer operators, S0i, each made up of
products of four Pauli operators such that S0ij�

0
4i � �j�0

4i
[14]. Since each of the Pauli operators, �X, �Y , �Z, and �0,
has eigenvalues of �1 (�0 is the identity), each such
stabilizer operators represents a property of the state that
is fulfilled with certainty, i.e., an element of physical
reality [23]. Following the reasoning of GHZ one can
then find sets of 4 of these stabilizers, e.g., �Z�Y�Y�Z,
�Z�Y�X�Y , �0�Z�X�Z, �0�Z�Y�Y with expectation
values �1, 
1, �1, and �1, which are inconsistent with
local realism. In addition, these stabilizers can be used to
construct a Bell inequality. Since j�0

4i and j�4i are equiva-
lent only up to local transformations, the stabilizer opera-
tors required for the GHZ argument need to be
interconverted. Obviously, the GHZ argument and Bell
inequality remain intact. Making use of the relations
H�X � �ZH, H�Z � �XH, H�Y � 
�YH, and H�0 �
�0H, we can convert the four operators, S0i, to a new set, Si,
to �X�Y�Y�X, �X�Y�X�Y , �0�Z�X�X, and �0�Z�Y�Y ,
where the expectation values for j�4i are �1, �1, �1, and

1, respectively. These stabilizers can now be used to
construct the Bell inequality optimized for our cluster state
j�4i. The Bell parameter, SC, is given by

SC � j�X�Y�Y�X � �X�Y�X�Yj

� j�0�Z�X�X 
 �0�Z�Y�Y j: (3)

The assumptions of locality and realism put a limit on the
strength of the correlations such that SC � 2. However,
02040
since the four terms in the Bell inequality are stabilizers of
the cluster state, with the last term having opposite sign,
the cluster state can violate this bound up to the algebraic
limit of this expression, i.e., SC � 4. It is a curious fact that
the GHZ state, which is often said to be a maximally
entangled multiparticle state, cannot violate this inequality.
Notice that the four properties for the cluster state include
not only four-particle correlations as in the original GHZ
argument, but also three-particle correlations. Those terms
involving a measurement of �0 of photon 1 completely
ignore the state of polarization of that photon. Recall that
in a GHZ state this tracing out of one of the qubits leaves
the remaining state completely mixed with only classical
correlations between qubits. This is not the case in the
cluster state as its persistency of entanglement allows for
some particles to be ignored before all entanglement is lost.
Thus different classes of multiparticle entanglement can
exhibit stronger violations of local realism depending on
the nature of the correlations in the Bell inequality.

To create the cluster state, we use a method first dem-
onstrated in Ref. [7]. For the experiment, we generate
polarization-entangled photon pairs using type-II paramet-
ric down-conversion [24]. A UV-laser pulse with a central
wavelength of 395 nm and a pulse duration of 200 fs makes
two passes through a �-barium borate (BBO) crystal which
emits entangled photons into the forward pair of modes a
and b and into the backward pair of modes c and d (Fig. 1).
Transversal and longitudinal walk-off effects are erased by
compensating crystals, which exist of a half wave plate
(HWP) implementing a 90� rotation and an additional
BBO crystal. These compensators are placed in each of
the four modes. Final HWPs, one in mode a and another in
mode c, and the tilt of the compensation crystals allow the
generation of any of the four Bell states. The forward pair
of modes a and b are coherently superimposed with the
backward pair of modes c and d at the two polarizing beam
splitters (PBS) by adjusting the position of the delay mirror
for the UV pump. The preparation of the cluster state relies
on all of the lowest-order processes which result in the
simultaneous emission of four photons.

Recall that the PBS is a device which transmits horizon-
tally polarized light and reflects vertically polarized light.
If two photons enter a PBS from opposite input ports, they
will only emerge separately if their polarizations are the
same in the H=V basis. If two photons enter a PBS from the
same input port, they only emerge separately if they are
oppositely polarized in the H=V basis. In the present case,
the source was aligned to produce the Bell state j�
i into
modes a and b and j��i into modes c and d. If one pair of
photons is emitted into modes a and b and another into c
and d, then, after the two PBSs, the four-photon state
jHHHHi1234 
 jVVVVi1234 is left, provided the photons
emerge into four different output modes. Emission of two
pairs of photons in a single direction occurs with approxi-
mately equal probability, and contributes two more terms
to the final state 
jHHVVi1234 coming from the first pass
and jVVHHi1234 from the second. Provided that all of
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FIG. 2 (color online). Experimentally extracted polarization
correlations. The cluster-state Bell inequality requires four dif-
ferent polarization correlations. These are extracted from a
complete set of 48 fourfold coincidence measurements. The
four-photon correlations, �X�Y�X�Y and �X�Y�Y�X, are com-
binations of 16 coincidence rates, whereas the three-photon
correlations, �0�Z�X�X and �0�Z�Y�Y , are combinations of
8 coincidence rates. Each measurement run was recorded for
600 s. A quarter-wave plate and linear polarizer were used for
each polarization projection. The polarizer could be completely
removed for those cases where �0 was measured. The values for
the correlations �X�Y�X�Y , �X�Y�Y�X, �0�Z�X�X, and
�0�Z�Y�Y are ��0:61� 0:05�, ��0:59� 0:04�, ��0:71�
0:04�, and �
0:69� 0:04�, respectively. Substituting these into
the Bell inequality in Eq. (3) yields a Bell parameter, SC �
2:59� 0:08, which violates the local realism threshold by more
than 7�.
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FIG. 1. Experimental setup for the generation of four-photon
cluster states. An ultraviolet laser pulse passes twice through a
nonlinear crystal which is aligned to produce polarization-
entangled photon pairs on both the first and second pass.
Compensators (Comp) are placed in the modes a, b, c, and d
to compensate birefringent effects and half wave plates (HWP)
in mode a, c to manipulate the emitted entangled pairs. In each
output mode quarter-wave plates (QWP) and polarizers (Pol) are
placed to project onto any desired state. Including the possibility
of double-pair emission and the action of the polarizing beam
splitters (PBS), the four components of the cluster state are
prepared. The incorrect phase on the HHVV amplitude can
easily be changed by using the HWP in mode a. Using these
processes and multiphoton coincidence postselection, the four-
photon cluster state j�4i is generated in modes 1– 4.
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these processes are indistinguishable and their relative
phases are fixed, the final state is a coherent superposition
of all four terms. The requisite �-phase shift on the

jHHVVi1234 term to �jHHVVi1234 was implemented
using the HWP in mode a. A HWP rotation by an angle,
�, modifies the amplitude of this term according to the
relation 
 cos2�jHHVVi1234; thus a rotation of larger than
45� adds the required phase shift. Note that this rotation
also changes the amplitudes of the jHHHHi1234 and
jVVVVi1234 terms by a factor of cos�. Single-mode fibre-
coupled photon counters were used in modes 1–4 to detect
the photons. Controlling the coincidence counting rates
from the forward and backward pairs give the extra degrees
of freedom to balance the four amplitudes in the state.

The required expectation values, comprising products of
Pauli operators, were reconstructed from sets of multipar-
ticle polarization correlation measurements. Each of the 48
measurements was performed for 600 s using combina-
02040
tions of quarter-wave plates (QWPs) and linear polarizers
in each of the 4 output modes (1–4). The Pauli operators
�X;Y;Z were measured by projective polarization measure-
ments, jH=Vi for the �Z operator, j � =
i � 1

��

2
p �jHi �

jVi� for the �X operator, and jR=Li � 1
��

2
p �jHi � ijVi� for

the �Y operator. For the linear polarization measurements
the QWP was set parallel to the orientation of the polarizer,
whereas for the circular polarization measurements, the
QWP was fixed to �45� while the polarizer was horizon-
tally or vertically oriented. In order to extract the expecta-
tion value, 16 (four-particle correlations) or 8 (three-
particle correlations) measurements are required.

Experimental imperfections, including partial distin-
guishability in the four relevant four-photon emission pro-
cesses and phase instabilities, lead to imperfect corre-
lations which give some coincidence counts even when
theory predicts none. For the three-particle correlations, we
removed the polarizer from mode 1. However, since the
state preparation method was reliant upon postselection,
fourfold coincidences were still collected. Those measure-
ments made without the polarizer show an increase in the
coincidence rate as well as an imbalance most likely due to
changes in the sensitive single-mode spatial filtering.

The four extracted correlations are shown in Fig. 2.
We obtained positive expectation values of 0:61� 0:05,
3-3
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0:59� 0:04, and 0:71� 0:04 for the measurements
�X�Y�X�Y , �X�Y�Y�X, and �0�Z�X�X, respectively,
and the negative value 
0:69� 0:04 for �0�Z�Y�Y .
Adding these four correlations together according to the
Bell inequality from Eq. (3) results in SC � 2:59� 0:08,
where the uncertainty is due to Poisson counting sta-
tistics. The threshold for a local realistic modeling of these
correlations is SC � 2, which our experiment violates
by 7�.

The remarkable entanglement properties of cluster states
can be readily used for the alternative ‘‘one-way’’ model of
quantum computing [5], as was recently demonstrated
experimentally [7]. Different from the two well-known
classes of multiparticle entanglement, GHZ and W type,
the properties of cluster states, such as their robustness
against decoherence and their persistency of entanglement,
make them practical for experimental study and interesting
for quantum foundations. In this experiment, we have
addressed a question of more fundamental rather than
practical interest, namely, how the novel family of cluster
states can be used to demonstrate the nonlocal facets of
quantum physics. We investigated a new kind of Bell
inequality based on a GHZ argument for cluster states.
The inequality detects cluster-state entanglement opti-
mally, while GHZ states would not violate the inequality.
Our experimentally produced cluster violates the inequal-
ity by more than 7�. Our result demonstrates how specifi-
cally tailored Bell inequalities (e.g., by using specific
correlations of the state) can become a useful tool to tackle
the interesting questions between multiparticle entangle-
ment and quantum nonlocality.
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