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PREFACE

Analyzing time-oriented data and forecasting future values of a time series
are among the most important problems that analysts face in many fields,
ranging from finance and economics to managing production operations,
to the analysis of political and social policy sessions, to investigating the
impact of humans and the policy decisions that they make on the environ-
ment. Consequently, there is a large group of people in a variety of fields,
including finance, economics, science, engineering, statistics, and public
policy who need to understand some basic concepts of time series analysis
and forecasting. Unfortunately, most basic statistics and operations man-
agement books give little if any attention to time-oriented data and little
guidance on forecasting. There are some very good high level books on
time series analysis. These books are mostly written for technical special-
ists who are taking a doctoral-level course or doing research in the field.
They tend to be very theoretical and often focus on a few specific topics
or techniques. We have written this book to fill the gap between these two
extremes.

We have made a number of changes in this revision of the book. New
material has been added on data preparation for forecasting, including
dealing with outliers and missing values, use of the variogram and sections
on the spectrum, and an introduction to Bayesian methods in forecasting.
We have added many new exercises and examples, including new data sets
in Appendix B, and edited many sections of the text to improve the clarity
of the presentation.

xi



xii PREFACE

Like the first edition, this book is intended for practitioners who make
real-world forecasts. We have attempted to keep the mathematical level
modest to encourage a variety of users for the book. Our focus is on short-
to medium-term forecasting where statistical methods are useful. Since
many organizations can improve their effectiveness and business results
by making better short- to medium-term forecasts, this book should be
useful to a wide variety of professionals. The book can also be used as a
textbook for an applied forecasting and time series analysis course at the
advanced undergraduate or first-year graduate level. Students in this course
could come from engineering, business, statistics, operations research,
mathematics, computer science, and any area of application where making
forecasts is important. Readers need a background in basic statistics (pre-
vious exposure to linear regression would be helpful, but not essential),
and some knowledge of matrix algebra, although matrices appear mostly
in the chapter on regression, and if one is interested mainly in the results,
the details involving matrix manipulation can be skipped. Integrals and
derivatives appear in a few places in the book, but no detailed working
knowledge of calculus is required.

Successful time series analysis and forecasting requires that the ana-
lyst interact with computer software. The techniques and algorithms are
just not suitable to manual calculations. We have chosen to demonstrate
the techniques presented using three packages: Minitab®, JMP®, and R,
and occasionally SAS®. We have selected these packages because they
are widely used in practice and because they have generally good capabil-
ity for analyzing time series data and generating forecasts. Because R is
increasingly popular in statistics courses, we have included a section in each
chapter showing the R code necessary for working some of the examples in
the chapter. We have also added a brief appendix on the use of R. The basic
principles that underlie most of our presentation are not specific to any
particular software package. Readers can use any software that they like or
have available that has basic statistical forecasting capability. While the text
examples do utilize these particular software packages and illustrate some
of their features and capability, these features or similar ones are found
in many other software packages.

There are three basic approaches to generating forecasts: regression-
based methods, heuristic smoothing methods, and general time series
models. Because all three of these basic approaches are useful, we give
an introduction to all of them. Chapter 1 introduces the basic forecasting
problem, defines terminology, and illustrates many of the common fea-
tures of time series data. Chapter 2 contains many of the basic statistical
tools used in analyzing time series data. Topics include plots, numerical
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summaries of time series data including the autocovariance and autocor-
relation functions, transformations, differencing, and decomposing a time
series into trend and seasonal components. We also introduce metrics for
evaluating forecast errors and methods for evaluating and tracking forecast-
ing performance over time. Chapter 3 discusses regression analysis and its
use in forecasting. We discuss both crosssection and time series regression
data, least squares and maximum likelihood model fitting, model adequacy
checking, prediction intervals, and weighted and generalized least squares.
The first part of this chapter covers many of the topics typically seen in an
introductory treatment of regression, either in a stand-alone course or as
part of another applied statistics course. It should be a reasonable review
for many readers. Chapter 4 presents exponential smoothing techniques,
both for time series with polynomial components and for seasonal data.
We discuss and illustrate methods for selecting the smoothing constant(s),
forecasting, and constructing prediction intervals. The explicit time series
modeling approach to forecasting that we have chosen to emphasize is
the autoregressive integrated moving average (ARIMA) model approach.
Chapter 5 introduces ARIMA models and illustrates how to identify and
fit these models for both nonseasonal and seasonal time series. Forecast-
ing and prediction interval construction are also discussed and illustrated.
Chapter 6 extends this discussion into transfer function models and inter-
vention modeling and analysis. Chapter 7 surveys several other useful top-
ics from time series analysis and forecasting, including multivariate time
series problems, ARCH and GARCH models, and combinations of fore-
casts. We also give some practical advice for using statistical approaches
to forecasting and provide some information about realistic expectations.
The last two chapters of the book are somewhat higher in level than the
first five.

Each chapter has a set of exercises. Some of these exercises involve
analyzing the data sets given in Appendix B. These data sets represent an
interesting cross section of real time series data, typical of those encoun-
tered in practical forecasting problems. Most of these data sets are used
in exercises in two or more chapters, an indication that there are usually
several approaches to analyzing, modeling, and forecasting a time series.
There are other good sources of data for practicing the techniques given in
this book. Some of the ones that we have found very interesting and useful
include the U.S. Department of Labor—Bureau of Labor Statistics (http://
www.bls.gov/data/home.htm), the U.S. Department of Agriculture—
National Agricultural Statistics Service, Quick Stats Agricultural Statistics
Data (http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index.
asp), the U.S. Census Bureau (http://www.census.gov), and the U.S.

http://www.bls.gov/data/home.htm
http://www.bls.gov/data/home.htm
http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index.asp
http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index.asp
http://www.census.gov
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Department of the Treasury (http://www.treas.gov/offices/domestic-
finance/debt-management/interest-rate/). The time series data library
created by Rob Hyndman at Monash University (http://www-personal.
buseco.monash.edu.au/∼hyndman/TSDL/index.htm) and the time series
data library at the Mathematics Department of the University of York
(http://www.york.ac.uk/depts/maths/data/ts/) also contain many excellent
data sets. Some of these sources provide links to other data. Data sets and
other materials related to this book can be found at ftp://ftp.wiley.com/
public/scitechmed/ timeseries.

We would like to thank the many individuals who provided feedback
and suggestions for improvement to the first edition. We found these sug-
gestions most helpful. We are indebted to Clifford Long who generously
provided the R codes he used with his students when he taught from the
book. We found his codes very helpful in putting the end-of-chapter R code
sections together. We also have placed a premium in the book on bridging
the gap between theory and practice. We have not emphasized proofs or
technical details and have tried to give intuitive explanations of the mate-
rial whenever possible. The result is a book that can be used with a wide
variety of audiences, with different interests and technical backgrounds,
whose common interests are understanding how to analyze time-oriented
data and constructing good short-term statistically based forecasts.

We express our appreciation to the individuals and organizations who
have given their permission to use copyrighted material. These materials
are noted in the text. Portions of the output contained in this book are
printed with permission of Minitab Inc. All material remains the exclusive
property and copyright of Minitab Inc. All rights reserved.

Douglas C. Montgomery
Cheryl L. Jennings

Murat Kulahci

http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/
http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/
http://www.treas.gov/offices/domestic-finance/debt-management/interest-rate/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/index.htm
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/index.htm
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ftp://ftp.wiley.com/public/scitechmed/timeseries
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CHAPTER 1

INTRODUCTION TO FORECASTING

It is difficult to make predictions, especially about the future
NEILS BOHR, Danish physicist

1.1 THE NATURE AND USES OF FORECASTS

A forecast is a prediction of some future event or events. As suggested by
Neils Bohr, making good predictions is not always easy. Famously “bad”
forecasts include the following from the book Bad Predictions:

� “The population is constant in size and will remain so right up to the
end of mankind.” L’Encyclopedie, 1756.

� “1930 will be a splendid employment year.” U.S. Department of
Labor, New Year’s Forecast in 1929, just before the market crash on
October 29.

� “Computers are multiplying at a rapid rate. By the turn of the century
there will be 220,000 in the U.S.” Wall Street Journal, 1966.

Introduction to Time Series Analysis and Forecasting, Second Edition.
Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 INTRODUCTION TO FORECASTING

Forecasting is an important problem that spans many fields including
business and industry, government, economics, environmental sciences,
medicine, social science, politics, and finance. Forecasting problems are
often classified as short-term, medium-term, and long-term. Short-term
forecasting problems involve predicting events only a few time periods
(days, weeks, and months) into the future. Medium-term forecasts extend
from 1 to 2 years into the future, and long-term forecasting problems
can extend beyond that by many years. Short- and medium-term forecasts
are required for activities that range from operations management to bud-
geting and selecting new research and development projects. Long-term
forecasts impact issues such as strategic planning. Short- and medium-term
forecasting is typically based on identifying, modeling, and extrapolating
the patterns found in historical data. Because these historical data usu-
ally exhibit inertia and do not change dramatically very quickly, statistical
methods are very useful for short- and medium-term forecasting. This book
is about the use of these statistical methods.

Most forecasting problems involve the use of time series data. A time
series is a time-oriented or chronological sequence of observations on a
variable of interest. For example, Figure 1.1 shows the market yield on US
Treasury Securities at 10-year constant maturity from April 1953 through
December 2006 (data in Appendix B, Table B.1). This graph is called a time
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FIGURE 1.1 Time series plot of the market yield on US Treasury Securities at
10-year constant maturity. Source: US Treasury.
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series plot. The rate variable is collected at equally spaced time periods, as
is typical in most time series and forecasting applications. Many business
applications of forecasting utilize daily, weekly, monthly, quarterly, or
annual data, but any reporting interval may be used. Furthermore, the data
may be instantaneous, such as the viscosity of a chemical product at the
point in time where it is measured; it may be cumulative, such as the total
sales of a product during the month; or it may be a statistic that in some
way reflects the activity of the variable during the time period, such as the
daily closing price of a specific stock on the New York Stock Exchange.

The reason that forecasting is so important is that prediction of future
events is a critical input into many types of planning and decision-making
processes, with application to areas such as the following:

1. Operations Management. Business organizations routinely use fore-
casts of product sales or demand for services in order to schedule
production, control inventories, manage the supply chain, determine
staffing requirements, and plan capacity. Forecasts may also be used
to determine the mix of products or services to be offered and the
locations at which products are to be produced.

2. Marketing. Forecasting is important in many marketing decisions.
Forecasts of sales response to advertising expenditures, new promo-
tions, or changes in pricing polices enable businesses to evaluate
their effectiveness, determine whether goals are being met, and make
adjustments.

3. Finance and Risk Management. Investors in financial assets are inter-
ested in forecasting the returns from their investments. These assets
include but are not limited to stocks, bonds, and commodities; other
investment decisions can be made relative to forecasts of interest
rates, options, and currency exchange rates. Financial risk man-
agement requires forecasts of the volatility of asset returns so that
the risks associated with investment portfolios can be evaluated and
insured, and so that financial derivatives can be properly priced.

4. Economics. Governments, financial institutions, and policy organi-
zations require forecasts of major economic variables, such as gross
domestic product, population growth, unemployment, interest rates,
inflation, job growth, production, and consumption. These forecasts
are an integral part of the guidance behind monetary and fiscal pol-
icy, and budgeting plans and decisions made by governments. They
are also instrumental in the strategic planning decisions made by
business organizations and financial institutions.
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5. Industrial Process Control. Forecasts of the future values of criti-
cal quality characteristics of a production process can help deter-
mine when important controllable variables in the process should be
changed, or if the process should be shut down and overhauled. Feed-
back and feedforward control schemes are widely used in monitoring
and adjustment of industrial processes, and predictions of the process
output are an integral part of these schemes.

6. Demography. Forecasts of population by country and regions are
made routinely, often stratified by variables such as gender, age,
and race. Demographers also forecast births, deaths, and migration
patterns of populations. Governments use these forecasts for planning
policy and social service actions, such as spending on health care,
retirement programs, and antipoverty programs. Many businesses
use forecasts of populations by age groups to make strategic plans
regarding developing new product lines or the types of services that
will be offered.

These are only a few of the many different situations where forecasts
are required in order to make good decisions. Despite the wide range of
problem situations that require forecasts, there are only two broad types of
forecasting techniques—qualitative methods and quantitative methods.

Qualitative forecasting techniques are often subjective in nature and
require judgment on the part of experts. Qualitative forecasts are often
used in situations where there is little or no historical data on which to base
the forecast. An example would be the introduction of a new product, for
which there is no relevant history. In this situation, the company might use
the expert opinion of sales and marketing personnel to subjectively estimate
product sales during the new product introduction phase of its life cycle.
Sometimes qualitative forecasting methods make use of marketing tests,
surveys of potential customers, and experience with the sales performance
of other products (both their own and those of competitors). However,
although some data analysis may be performed, the basis of the forecast is
subjective judgment.

Perhaps the most formal and widely known qualitative forecasting tech-
nique is the Delphi Method. This technique was developed by the RAND
Corporation (see Dalkey [1967]). It employs a panel of experts who are
assumed to be knowledgeable about the problem. The panel members are
physically separated to avoid their deliberations being impacted either by
social pressures or by a single dominant individual. Each panel member
responds to a questionnaire containing a series of questions and returns the
information to a coordinator. Following the first questionnaire, subsequent
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questions are submitted to the panelists along with information about the
opinions of the panel as a group. This allows panelists to review their pre-
dictions relative to the opinions of the entire group. After several rounds,
it is hoped that the opinions of the panelists converge to a consensus,
although achieving a consensus is not required and justified differences of
opinion can be included in the outcome. Qualitative forecasting methods
are not emphasized in this book.

Quantitative forecasting techniques make formal use of historical data
and a forecasting model. The model formally summarizes patterns in the
data and expresses a statistical relationship between previous and current
values of the variable. Then the model is used to project the patterns in
the data into the future. In other words, the forecasting model is used to
extrapolate past and current behavior into the future. There are several
types of forecasting models in general use. The three most widely used
are regression models, smoothing models, and general time series mod-
els. Regression models make use of relationships between the variable of
interest and one or more related predictor variables. Sometimes regression
models are called causal forecasting models, because the predictor vari-
ables are assumed to describe the forces that cause or drive the observed
values of the variable of interest. An example would be using data on house
purchases as a predictor variable to forecast furniture sales. The method
of least squares is the formal basis of most regression models. Smoothing
models typically employ a simple function of previous observations to
provide a forecast of the variable of interest. These methods may have a
formal statistical basis, but they are often used and justified heuristically
on the basis that they are easy to use and produce satisfactory results. Gen-
eral time series models employ the statistical properties of the historical
data to specify a formal model and then estimate the unknown parameters
of this model (usually) by least squares. In subsequent chapters, we will
discuss all three types of quantitative forecasting models.

The form of the forecast can be important. We typically think of a fore-
cast as a single number that represents our best estimate of the future value
of the variable of interest. Statisticians would call this a point estimate or
point forecast. Now these forecasts are almost always wrong; that is, we
experience forecast error. Consequently, it is usually a good practice to
accompany a forecast with an estimate of how large a forecast error might
be experienced. One way to do this is to provide a prediction interval (PI)
to accompany the point forecast. The PI is a range of values for the future
observation, and it is likely to prove far more useful in decision-making
than a single number. We will show how to obtain PIs for most of the
forecasting methods discussed in the book.
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Other important features of the forecasting problem are the forecast
horizon and the forecast interval. The forecast horizon is the number
of future periods for which forecasts must be produced. The horizon is
often dictated by the nature of the problem. For example, in production
planning, forecasts of product demand may be made on a monthly basis.
Because of the time required to change or modify a production schedule,
ensure that sufficient raw material and component parts are available from
the supply chain, and plan the delivery of completed goods to customers
or inventory facilities, it would be necessary to forecast up to 3 months
ahead. The forecast horizon is also often called the forecast lead time.
The forecast interval is the frequency with which new forecasts are pre-
pared. For example, in production planning, we might forecast demand on
a monthly basis, for up to 3 months in the future (the lead time or hori-
zon), and prepare a new forecast each month. Thus the forecast interval is
1 month, the same as the basic period of time for which each forecast is
made. If the forecast lead time is always the same length, say, T periods, and
the forecast is revised each time period, then we are employing a rolling or
moving horizon forecasting approach. This system updates or revises the
forecasts for T−1 of the periods in the horizon and computes a forecast for
the newest period T. This rolling horizon approach to forecasting is widely
used when the lead time is several periods long.

1.2 SOME EXAMPLES OF TIME SERIES

Time series plots can reveal patterns such as random, trends, level shifts,
periods or cycles, unusual observations, or a combination of patterns. Pat-
terns commonly found in time series data are discussed next with examples
of situations that drive the patterns.

The sales of a mature pharmaceutical product may remain relatively
flat in the absence of unchanged marketing or manufacturing strategies.
Weekly sales of a generic pharmaceutical product shown in Figure 1.2
appear to be constant over time, at about 10,400 × 103 units, in a random
sequence with no obvious patterns (data in Appendix B, Table B.2).

To assure conformance with customer requirements and product specifi-
cations, the production of chemicals is monitored by many characteristics.
These may be input variables such as temperature and flow rate, and output
properties such as viscosity and purity.

Due to the continuous nature of chemical manufacturing processes,
output properties often are positively autocorrelated; that is, a value
above the long-run average tends to be followed by other values above the
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FIGURE 1.2 Pharmaceutical product sales.

average, while a value below the average tends to be followed by other
values below the average.

The viscosity readings plotted in Figure 1.3 exhibit autocorrelated
behavior, tending to a long-run average of about 85 centipoises (cP), but
with a structured, not completely random, appearance (data in Appendix B,
Table B.3). Some methods for describing and analyzing autocorrelated data
will be described in Chapter 2.
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FIGURE 1.3 Chemical process viscosity readings.
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The USDA National Agricultural Statistics Service publishes agricul-
tural statistics for many commodities, including the annual production of
dairy products such as butter, cheese, ice cream, milk, yogurt, and whey.
These statistics are used for market analysis and intelligence, economic
indicators, and identification of emerging issues.

Blue and gorgonzola cheese is one of 32 categories of cheese for which
data are published. The annual US production of blue and gorgonzola
cheeses (in 103 lb) is shown in Figure 1.4 (data in Appendix B, Table
B.4). Production quadrupled from 1950 to 1997, and the linear trend has
a constant positive slope with random, year-to-year variation.

The US Census Bureau publishes historic statistics on manufacturers’
shipments, inventories, and orders. The statistics are based on North Amer-
ican Industry Classification System (NAICS) code and are utilized for pur-
poses such as measuring productivity and analyzing relationships between
employment and manufacturing output.

The manufacture of beverage and tobacco products is reported as part of
the nondurable subsector. The plot of monthly beverage product shipments
(Figure 1.5) reveals an overall increasing trend, with a distinct cyclic
pattern that is repeated within each year. January shipments appear to be
the lowest, with highs in May and June (data in Appendix B, Table B.5).
This monthly, or seasonal, variation may be attributable to some cause
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FIGURE 1.4 The US annual production of blue and gorgonzola cheeses. Source:
USDA–NASS.
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FIGURE 1.5 The US beverage manufacturer monthly product shipments, unad-
justed. Source: US Census Bureau.

such as the impact of weather on the demand for beverages. Techniques
for making seasonal adjustments to data in order to better understand
general trends will be discussed in Chapter 2.

To determine whether the Earth is warming or cooling, scientists look at
annual mean temperatures. At a single station, the warmest and the coolest
temperatures in a day are averaged. Averages are then calculated at stations
all over the Earth, over an entire year. The change in global annual mean
surface air temperature is calculated from a base established from 1951 to
1980, and the result is reported as an “anomaly.”

The plot of the annual mean anomaly in global surface air temperature
(Figure 1.6) shows an increasing trend since 1880; however, the slope, or
rate of change, varies with time periods (data in Appendix B, Table B.6).
While the slope in earlier time periods appears to be constant, slightly
increasing, or slightly decreasing, the slope from about 1975 to the present
appears much steeper than the rest of the plot.

Business data such as stock prices and interest rates often exhibit non-
stationary behavior; that is, the time series has no natural mean. The daily
closing price adjusted for stock splits of Whole Foods Market (WFMI)
stock in 2001 (Figure 1.7) exhibits a combination of patterns for both
mean level and slope (data in Appendix B, Table B.7).

While the price is constant in some short time periods, there is no
consistent mean level over time. In other time periods, the price changes
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FIGURE 1.6 Global mean surface air temperature annual anomaly. Source:
NASA-GISS.

at different rates, including occasional abrupt shifts in level. This is an
example of nonstationary behavior, which will be discussed in Chapter 2.

The Current Population Survey (CPS) or “household survey” prepared
by the US Department of Labor, Bureau of Labor Statistics, contains
national data on employment, unemployment, earnings, and other labor
market topics by demographic characteristics. The data are used to report
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FIGURE 1.7 Whole foods market stock price, daily closing adjusted for splits.
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FIGURE 1.8 Monthly unemployment rate—full-time labor force, unadjusted.
Source: US Department of Labor-BLS.

on the employment situation, for projections with impact on hiring and
training, and for a multitude of other business planning activities. The data
are reported unadjusted and with seasonal adjustment to remove the effect
of regular patterns that occur each year.

The plot of monthly unadjusted unemployment rates (Figure 1.8)
exhibits a mixture of patterns, similar to Figure 1.5 (data in Appendix B,
Table B.8). There is a distinct cyclic pattern within a year; January, Febru-
ary, and March generally have the highest unemployment rates. The overall
level is also changing, from a gradual decrease, to a steep increase, fol-
lowed by a gradual decrease. The use of seasonal adjustments as described
in Chapter 2 makes it easier to observe the nonseasonal movements in time
series data.

Solar activity has long been recognized as a significant source of noise
impacting consumer and military communications, including satellites, cell
phone towers, and electric power grids. The ability to accurately forecast
solar activity is critical to a variety of fields. The International Sunspot
Number R is the oldest solar activity index. The number incorporates both
the number of observed sunspots and the number of observed sunspot
groups. In Figure 1.9, the plot of annual sunspot numbers reveals cyclic
patterns of varying magnitudes (data in Appendix B, Table B.9).

In addition to assisting in the identification of steady-state patterns, time
series plots may also draw attention to the occurrence of atypical events.
Weekly sales of a generic pharmaceutical product dropped due to limited
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FIGURE 1.9 The international sunspot number. Source: SIDC.

availability resulting from a fire at one of the four production facilities.
The 5-week reduction is apparent in the time series plot of weekly sales
shown in Figure 1.10.

Another type of unusual event may be the failure of the data mea-
surement or collection system. After recording a vastly different viscosity
reading at time period 70 (Figure 1.11), the measurement system was
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FIGURE 1.10 Pharmaceutical product sales.
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FIGURE 1.11 Chemical process viscosity readings, with sensor malfunction.

checked with a standard and determined to be out of calibration. The cause
was determined to be a malfunctioning sensor.

1.3 THE FORECASTING PROCESS

A process is a series of connected activities that transform one or more
inputs into one or more outputs. All work activities are performed in
processes, and forecasting is no exception. The activities in the forecasting
process are:

1. Problem definition
2. Data collection
3. Data analysis
4. Model selection and fitting
5. Model validation
6. Forecasting model deployment
7. Monitoring forecasting model performance

These activities are shown in Figure 1.12.
Problem definition involves developing understanding of how the fore-

cast will be used along with the expectations of the “customer” (the user of
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FIGURE 1.12 The forecasting process.

the forecast). Questions that must be addressed during this phase include
the desired form of the forecast (e.g., are monthly forecasts required), the
forecast horizon or lead time, how often the forecasts need to be revised
(the forecast interval), and what level of forecast accuracy is required in
order to make good business decisions. This is also an opportunity to intro-
duce the decision makers to the use of prediction intervals as a measure of
the risk associated with forecasts, if they are unfamiliar with this approach.
Often it is necessary to go deeply into many aspects of the business system
that requires the forecast to properly define the forecasting component of
the entire problem. For example, in designing a forecasting system for
inventory control, information may be required on issues such as product
shelf life or other aging considerations, the time required to manufacture
or otherwise obtain the products (production lead time), and the economic
consequences of having too many or too few units of product available
to meet customer demand. When multiple products are involved, the level
of aggregation of the forecast (e.g., do we forecast individual products or
families consisting of several similar products) can be an important consid-
eration. Much of the ultimate success of the forecasting model in meeting
the customer expectations is determined in the problem definition phase.

Data collection consists of obtaining the relevant history for the vari-
able(s) that are to be forecast, including historical information on potential
predictor variables.

The key here is “relevant”; often information collection and storage
methods and systems change over time and not all historical data are
useful for the current problem. Often it is necessary to deal with missing
values of some variables, potential outliers, or other data-related problems
that have occurred in the past. During this phase, it is also useful to begin
planning how the data collection and storage issues in the future will be
handled so that the reliability and integrity of the data will be preserved.

Data analysis is an important preliminary step to the selection of the
forecasting model to be used. Time series plots of the data should be con-
structed and visually inspected for recognizable patterns, such as trends
and seasonal or other cyclical components. A trend is evolutionary move-
ment, either upward or downward, in the value of the variable. Trends may
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be long-term or more dynamic and of relatively short duration. Seasonality
is the component of time series behavior that repeats on a regular basis,
such as each year. Sometimes we will smooth the data to make identifi-
cation of the patterns more obvious (data smoothing will be discussed in
Chapter 2). Numerical summaries of the data, such as the sample mean,
standard deviation, percentiles, and autocorrelations, should also be com-
puted and evaluated. Chapter 2 will provide the necessary background to
do this. If potential predictor variables are available, scatter plots of each
pair of variables should be examined. Unusual data points or potential
outliers should be identified and flagged for possible further study. The
purpose of this preliminary data analysis is to obtain some “feel” for the
data, and a sense of how strong the underlying patterns such as trend and
seasonality are. This information will usually suggest the initial types of
quantitative forecasting methods and models to explore.

Model selection and fitting consists of choosing one or more forecast-
ing models and fitting the model to the data. By fitting, we mean estimating
the unknown model parameters, usually by the method of least squares. In
subsequent chapters, we will present several types of time series models
and discuss the procedures of model fitting. We will also discuss meth-
ods for evaluating the quality of the model fit, and determining if any
of the underlying assumptions have been violated. This will be useful in
discriminating between different candidate models.

Model validation consists of an evaluation of the forecasting model
to determine how it is likely to perform in the intended application. This
must go beyond just evaluating the “fit” of the model to the historical data
and must examine what magnitude of forecast errors will be experienced
when the model is used to forecast “fresh” or new data. The fitting errors
will always be smaller than the forecast errors, and this is an important
concept that we will emphasize in this book. A widely used method for
validating a forecasting model before it is turned over to the customer is
to employ some form of data splitting, where the data are divided into
two segments—a fitting segment and a forecasting segment. The model is
fit to only the fitting data segment, and then forecasts from that model are
simulated for the observations in the forecasting segment. This can provide
useful guidance on how the forecasting model will perform when exposed
to new data and can be a valuable approach for discriminating between
competing forecasting models.

Forecasting model deployment involves getting the model and the
resulting forecasts in use by the customer. It is important to ensure that the
customer understands how to use the model and that generating timely fore-
casts from the model becomes as routine as possible. Model maintenance,
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including making sure that data sources and other required information
will continue to be available to the customer is also an important issue that
impacts the timeliness and ultimate usefulness of forecasts.

Monitoring forecasting model performance should be an ongoing
activity after the model has been deployed to ensure that it is still per-
forming satisfactorily. It is the nature of forecasting that conditions change
over time, and a model that performed well in the past may deteriorate
in performance. Usually performance deterioration will result in larger or
more systematic forecast errors. Therefore monitoring of forecast errors
is an essential part of good forecasting system design. Control charts
of forecast errors are a simple but effective way to routinely monitor the
performance of a forecasting model. We will illustrate approaches to mon-
itoring forecast errors in subsequent chapters.

1.4 DATA FOR FORECASTING

1.4.1 The Data Warehouse

Developing time series models and using them for forecasting requires
data on the variables of interest to decision-makers. The data are the raw
materials for the modeling and forecasting process. The terms data and
information are often used interchangeably, but we prefer to use the term
data as that seems to reflect a more raw or original form, whereas we think
of information as something that is extracted or synthesized from data. The
output of a forecasting system could be thought of as information, and that
output uses data as an input.

In most modern organizations data regarding sales, transactions, com-
pany financial and business performance, supplier performance, and cus-
tomer activity and relations are stored in a repository known as a data
warehouse. Sometimes this is a single data storage system; but as the
volume of data handled by modern organizations grows rapidly, the data
warehouse has become an integrated system comprised of components
that are physically and often geographically distributed, such as cloud data
storage. The data warehouse must be able to organize, manipulate, and
integrate data from multiple sources and different organizational informa-
tion systems. The basic functionality required includes data extraction,
data transformation, and data loading. Data extraction refers to obtaining
data from internal sources and from external sources such as third party
vendors or government entities and financial service organizations. Once
the data are extracted, the transformation stage involves applying rules to
prevent duplication of records and dealing with problems such as missing
information. Sometimes we refer to the transformation activities as data



DATA FOR FORECASTING 17

cleaning. We will discuss some of the important data cleaning operations
subsequently. Finally, the data are loaded into the data warehouse where
they are available for modeling and analysis.

Data quality has several dimensions. Five important ones that have been
described in the literature are accuracy, timeliness, completeness, repre-
sentativeness, and consistency. Accuracy is probably the oldest dimension
of data quality and refers to how close that data conform to its “real”
values. Real values are alternative sources that can be used for verifica-
tion purposes. For example, do sales records match payments to accounts
receivable records (although the financial records may occur in later time
periods because of payment terms and conditions, discounts, etc.)? Time-
liness means that the data are as current as possible. Infrequent updating
of data can seriously impact developing a time series model that is going
to be used for relatively short-term forecasting. In many time series model
applications the time between the occurrence of the real-world event and
its entry into the data warehouse must be as short as possible to facilitate
model development and use. Completeness means that the data content is
complete, with no missing data and no outliers. As an example of represen-
tativeness, suppose that the end use of the time series model is to forecast
customer demand for a product or service, but the organization only records
booked orders and the date of fulfillment. This may not accurately reflect
demand, because the orders can be booked before the desired delivery
period and the date of fulfillment can take place in a different period than
the one required by the customer. Furthermore, orders that are lost because
of product unavailability or unsatisfactory delivery performance are not
recorded. In these situations demand can differ dramatically from sales.
Data cleaning methods can often be used to deal with some problems of
completeness. Consistency refers to how closely data records agree over
time in format, content, meaning, and structure. In many organizations
how data are collected and stored evolves over time; definitions change
and even the types of data that are collected change. For example, consider
monthly data. Some organizations define “months” that coincide with the
traditional calendar definition. But because months have different numbers
of days that can induce patterns in monthly data, some organizations prefer
to define a year as consisting of 13 “months” each consisting of 4 weeks.

It has been suggested that the output data that reside in the data ware-
house are similar to the output of a manufacturing process, where the raw
data are the input. Just as in manufacturing and other service processes, the
data production process can benefit by the application of quality manage-
ment and control tools. Jones-Farmer et al. (2014) describe how statistical
quality control methods, specifically control charts, can be used to enhance
data quality in the data production process.
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1.4.2 Data Cleaning

Data cleaning is the process of examining data to detect potential errors,
missing data, outliers or unusual values, or other inconsistencies and then
correcting the errors or problems that are found. Sometimes errors are
the result of recording or transmission problems, and can be corrected by
working with the original data source to correct the problem. Effective data
cleaning can greatly improve the forecasting process.

Before data are used to develop a time series model, it should be sub-
jected to several different kinds of checks, including but not necessarily
limited to the following:

1. Is there missing data?
2. Does the data fall within an expected range?
3. Are there potential outliers or other unusual values?

These types of checks can be automated fairly easily. If this aspect
of data cleaning is automated, the rules employed should be periodically
evaluated to ensure that they are still appropriate and that changes in the
data have not made some of the procedures less effective. However, it
is also extremely useful to use graphical displays to assist in identifying
unusual data. Techniques such as time series plots, histograms, and scatter
diagrams are extremely useful. These and other graphical methods will be
described in Chapter 2.

1.4.3 Imputation

Data imputation is the process of correcting missing data or replacing out-
liers with an estimation process. Imputation replaces missing or erroneous
values with a “likely” value based on other available information. This
enables the analysis to work with statistical techniques which are designed
to handle the complete data sets.

Mean value imputation consists of replacing a missing value with
the sample average calculated from the nonmissing observations. The big
advantage of this method is that it is easy, and if the data does not have any
specific trend or seasonal pattern, it leaves the sample mean of the complete
data set unchanged. However, one must be careful if there are trends or
seasonal patterns, because the sample mean of all of the data may not reflect
these patterns. A variation of this is stochastic mean value imputation, in
which a random variable is added to the mean value to capture some of the
noise or variability in the data. The random variable could be assumed to
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follow a normal distribution with mean zero and standard deviation equal
to the standard deviation of the actual observed data. A variation of mean
value imputation is to use a subset of the available historical data that
reflects any trend or seasonal patterns in the data. For example, consider
the time series y1, y2,… , yT and suppose that one observation yj is missing.
We can impute the missing value as

y∗j = 1
2k

(
j−1∑

t=j−k

yt +
j+k∑

t−j+1

yt

)
,

where k would be based on the seasonal variability in the data. It is usually
chosen as some multiple of the smallest seasonal cycle in the data. So, if
the data are monthly and exhibit a monthly cycle, k would be a multiple of
12. Regression imputation is a variation of mean value imputation where
the imputed value is computed from a model used to predict the missing
value. The prediction model does not have to be a linear regression model.
For example, it could be a time series model.

Hot deck imputation is an old technique that is also known as the last
value carried forward method. The term “hot deck” comes from the use
of computer punch cards. The deck of cards was “hot” because it was
currently in use. Cold deck imputation uses information from a deck of
cards not currently in use. In hot deck imputation, the missing values are
imputed by using values from similar complete observations. If there are
several variables, sort the data by the variables that are most related to
the missing observation and then, starting at the top, replace the missing
values with the value of the immediately preceding variable. There are
many variants of this procedure.

1.5 RESOURCES FOR FORECASTING

There are a variety of good resources that can be helpful to technical
professionals involved in developing forecasting models and preparing
forecasts. There are three professional journals devoted to forecasting:

� Journal of Forecasting
� International Journal of Forecasting
� Journal of Business Forecasting Methods and Systems

These journals publish a mixture of new methodology, studies devoted
to the evaluation of current methods for forecasting, and case studies and
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applications. In addition to these specialized forecasting journals, there are
several other mainstream statistics and operations research/management
science journals that publish papers on forecasting, including:

� Journal of Business and Economic Statistics
� Management Science
� Naval Research Logistics
� Operations Research
� International Journal of Production Research
� Journal of Applied Statistics

This is by no means a comprehensive list. Research on forecasting tends
to be published in a variety of outlets.

There are several books that are good complements to this one.
We recommend Box, Jenkins, and Reinsel (1994); Chatfield (1996);
Fuller (1995); Abraham and Ledolter (1983); Montgomery, Johnson, and
Gardiner (1990); Wei (2006); and Brockwell and Davis (1991, 2002). Some
of these books are more specialized than this one, in that they focus on
a specific type of forecasting model such as the autoregressive integrated
moving average [ARIMA] model, and some also require more background
in statistics and mathematics.

Many statistics software packages have very good capability for fitting
a variety of forecasting models. Minitab® Statistical Software, JMP®, the
Statistical Analysis System (SAS) and R are the packages that we utilize
and illustrate in this book. At the end of most chapters we provide R code
for working some of the examples in the chapter. Matlab and S-Plus are
also two packages that have excellent capability for solving forecasting
problems.

EXERCISES

1.1 Why is forecasting an essential part of the operation of any organi-
zation or business?

1.2 What is a time series? Explain the meaning of trend effects, seasonal
variations, and random error.

1.3 Explain the difference between a point forecast and an interval
forecast.

1.4 What do we mean by a causal forecasting technique?
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1.5 Everyone makes forecasts in their daily lives. Identify and discuss
a situation where you employ forecasts.
a. What decisions are impacted by your forecasts?
b. How do you evaluate the quality of your forecasts?
c. What is the value to you of a good forecast?
d. What is the harm or penalty associated with a bad forecast?

1.6 What is meant by a rolling horizon forecast?

1.7 Explain the difference between forecast horizon and forecast inter-
val.

1.8 Suppose that you are in charge of capacity planning for a large
electric utility. A major part of your job is ensuring that the utility has
sufficient generating capacity to meet current and future customer
needs. If you do not have enough capacity, you run the risks of
brownouts and service interruption. If you have too much capacity,
it may cost more to generate electricity.
a. What forecasts do you need to do your job effectively?
b. Are these short-range or long-range forecasts?
c. What data do you need to be able to generate these forecasts?

1.9 Your company designs and manufactures apparel for the North
American market. Clothing and apparel is a style good, with a
relatively limited life. Items not sold at the end of the season are
usually sold through off-season outlet and discount retailers. Items
not sold through discounting and off-season merchants are often
given to charity or sold abroad.
a. What forecasts do you need in this business to be successful?
b. Are these short-range or long-range forecasts?
c. What data do you need to be able to generate these forecasts?
d. What are the implications of forecast errors?

1.10 Suppose that you are in charge of production scheduling at a semi-
conductor manufacturing plant. The plant manufactures about 20
different types of devices, all on 8-inch silicon wafers. Demand for
these products varies randomly. When a lot or batch of wafers is
started into production, it can take from 4 to 6 weeks before the
batch is finished, depending on the type of product. The routing of
each batch of wafers through the production tools can be different
depending on the type of product.
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a. What forecasts do you need in this business to be successful?
b. Are these short-range or long-range forecasts?
c. What data do you need to be able to generate these forecasts?
d. Discuss the impact that forecast errors can potentially have on

the efficiency with which your factory operates, including work-
in-process inventory, meeting customer delivery schedules, and
the cycle time to manufacture product.

1.11 You are the administrator of a large metropolitan hospital that oper-
ates the only 24-hour emergency room in the area. You must sched-
ule attending physicians, resident physicians, nurses, laboratory, and
support personnel to operate this facility effectively.
a. What measures of effectiveness do you think patients use to

evaluate the services that you provide?
b. How are forecasts useful to you in planning services that will

maximize these measures of effectiveness?
c. What planning horizon do you need to use? Does this lead to

short-range or long-range forecasts?

1.12 Consider an airline that operates a network of flights that serves 200
cities in the continental United States. What long-range forecasts do
the operators of the airline need to be successful? What forecasting
problems does this business face on a daily basis? What are the
consequences of forecast errors for the airline?

1.13 Discuss the potential difficulties of forecasting the daily closing
price of a specific stock on the New York Stock Exchange. Would
the problem be different (harder, easier) if you were asked to forecast
the closing price of a group of stocks, all in the same industry (say,
the pharmaceutical industry)?

1.14 Explain how large forecast errors can lead to high inventory levels
at a retailer; at a manufacturing plant.

1.15 Your company manufactures and distributes soft drink beverages,
sold in bottles and cans at retail outlets such as grocery stores,
restaurants and other eating/drinking establishments, and vending
machines in offices, schools, stores, and other outlets. Your product
line includes about 25 different products, and many of these are
produced in different package sizes.
a. What forecasts do you need in this business to be successful?
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b. Is the demand for your product likely to be seasonal? Explain
why or why not?

c. Does the shelf life of your product impact the forecasting prob-
lem?

d. What data do you think that you would need to be able to produce
successful forecasts?





CHAPTER 2

STATISTICS BACKGROUND
FOR FORECASTING

The future ain’t what it used to be.
YOGI BERRA, New York Yankees catcher

2.1 INTRODUCTION

This chapter presents some basic statistical methods essential to modeling,
analyzing, and forecasting time series data. Both graphical displays and
numerical summaries of the properties of time series data are presented.
We also discuss the use of data transformations and adjustments in fore-
casting and some widely used methods for characterizing and monitoring
the performance of a forecasting model. Some aspects of how these per-
formance measures can be used to select between competing forecasting
techniques are also presented.

Forecasts are based on data or observations on the variable of interest.
These data are usually in the form of a time series. Suppose that there are
T periods of data available, with period T being the most recent. We will
let the observation on this variable at time period t be denoted by yt, t = 1,
2,… , T . This variable can represent a cumulative quantity, such as the

Introduction to Time Series Analysis and Forecasting, Second Edition.
Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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total demand for a product during period t, or an instantaneous quantity,
such as the daily closing price of a specific stock on the New York Stock
Exchange.

Generally, we will need to distinguish between a forecast or predicted
value of yt that was made at some previous time period, say, t − 𝜏, and a
fitted value of yt that has resulted from estimating the parameters in a time
series model to historical data. Note that 𝜏 is the forecast lead time. The
forecast made at time period t − 𝜏 is denoted by ŷt(t − 𝜏). There is a lot of
interest in the lead − 1 forecast, which is the forecast of the observation
in period t, yt, made one period prior, ŷt(t − 1). We will denote the fitted
value of yt by ŷt.

We will also be interested in analyzing forecast errors. The forecast
error that results from a forecast of yt that was made at time period t − 𝜏 is
the lead − 𝝉 forecast error

et(𝜏) = yt − ŷt(t − 𝜏). (2.1)

For example, the lead − 1 forecast error is

et(1) = yt − ŷt(t − 1).

The difference between the observation yt and the value obtained by fitting
a time series model to the data, or a fitted value ŷt defined earlier, is called
a residual, and is denoted by

et = yt − ŷt. (2.2)

The reason for this careful distinction between forecast errors and residuals
is that models usually fit historical data better than they forecast. That is,
the residuals from a model-fitting process will almost always be smaller
than the forecast errors that are experienced when that model is used to
forecast future observations.

2.2 GRAPHICAL DISPLAYS

2.2.1 Time Series Plots

Developing a forecasting model should always begin with graphical display
and analysis of the available data. Many of the broad general features of a
time series can be seen visually. This is not to say that analytical tools are
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not useful, because they are, but the human eye can be a very sophisticated
data analysis tool. To paraphrase the great New York Yankees catcher Yogi
Berra, “You can observe a lot just by watching.”

The basic graphical display for time series data is the time series plot,
illustrated in Chapter 1. This is just a graph of yt versus the time period,
t, for t = 1, 2,… , T . Features such as trend and seasonality are usually
easy to see from the time series plot. It is interesting to observe that some
of the classical tools of descriptive statistics, such as the histogram and
the stem-and-leaf display, are not particularly useful for time series data
because they do not take time order into account.

Example 2.1 Figures 2.1 and 2.2 show time series plots for viscosity
readings and beverage production shipments (originally shown in Fig-
ures 1.3 and 1.5, respectively). At the right-hand side of each time series
plot is a histogram of the data. Note that while the two time series display
very different characteristics, the histograms are remarkably similar. Essen-
tially, the histogram summarizes the data across the time dimension, and
in so doing, the key time-dependent features of the data are lost. Stem-and-
leaf plots and boxplots would have the same issues, losing time-dependent
features.
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FIGURE 2.2 Time series plot and histogram of beverage production shipments.

When there are two or more variables of interest, scatter plots can be
useful in displaying the relationship between the variables. For example,
Figure 2.3 is a scatter plot of the annual global mean surface air temperature
anomaly first shown in Figure 1.6 versus atmospheric CO2 concentrations.
The scatter plot clearly reveals a relationship between the two variables:
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FIGURE 2.3 Scatter plot of temperature anomaly versus CO2 concentrations.
Sources: NASA–GISS (anomaly), DOE–DIAC (CO2).
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low concentrations of CO2 are usually accompanied by negative anomalies,
and higher concentrations of CO2 tend to be accompanied by positive
anomalies. Note that this does not imply that higher concentrations of
CO2 actually cause higher temperatures. The scatter plot cannot establish
a causal relationship between two variables (neither can naive statistical
modeling techniques, such as regression), but it is useful in displaying how
the variables have varied together in the historical data set.

There are many variations of the time series plot and other graphical
displays that can be constructed to show specific features of a time series.
For example, Figure 2.4 displays daily price information for Whole Foods
Market stock during the first quarter of 2001 (the trading days from January
2, 2001 through March 30, 2001). This chart, created in Excel®, shows the
opening, closing, highest, and lowest prices experienced within a trading
day for the first quarter. If the opening price was higher than the closing
price, the box is filled, whereas if the closing price was higher than the
opening price, the box is open. This type of plot is potentially more useful
than a time series plot of just the closing (or opening) prices, because it
shows the volatility of the stock within a trading day. The volatility of an
asset is often of interest to investors because it is a measure of the inherent
risk associated with the asset.
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FIGURE 2.4 Open-high/close-low chart of Whole Foods Market stock price.
Source: finance.yahoo.com.
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2.2.2 Plotting Smoothed Data

Sometimes it is useful to overlay a smoothed version of the original data
on the original time series plot to help reveal patterns in the original data.
There are several types of data smoothers that can be employed. One of the
simplest and most widely used is the ordinary or simple moving average.
A simple moving average of span N assigns weights 1/N to the most
recent N observations yT , yT−1,… , yT−N+1, and weight zero to all other
observations. If we let MT be the moving average, then the N-span moving
average at time period T is

MT =
yT + yT−1 +⋯ + yT−N+1

N
= 1

N

T∑
t=T−N+1

yt (2.3)

Clearly, as each new observation becomes available it is added into the sum
from which the moving average is computed and the oldest observation
is discarded. The moving average has less variability than the original
observations; in fact, if the variance of an individual observation yt is 𝜎2,
then assuming that the observations are uncorrelated the variance of the
moving average is

Var(MT ) = Var

(
1
N

N∑
t=T−N+1

yt

)
= 1

N2

N∑
t=T−N+1

Var(yt) =
𝜎

2

N

Sometimes a “centered” version of the moving average is used, such as in

Mt =
1

S + 1

S∑
i=−S

yt−i (2.4)

where the span of the centered moving average is N = 2S + 1.

Example 2.2 Figure 2.5 plots the annual global mean surface air tem-
perature anomaly data along with a five-period (a period is 1 year) moving
average of the same data. Note that the moving average exhibits less vari-
ability than found in the original series. It also makes some features of the
data easier to see; for example, it is now more obvious that the global air
temperature decreased from about 1940 until about 1975.

Plots of moving averages are also used by analysts to evaluate stock
price trends; common MA periods are 5, 10, 20, 50, 100, and 200 days. A
time series plot of Whole Foods Market stock price with a 50-day moving
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FIGURE 2.5 Time series plot of global mean surface air temperature anomaly,
with five-period moving average. Source: NASA–GISS.
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FIGURE 2.6 Time series plot of Whole Foods Market stock price, with 50-day
moving average. Source: finance.yahoo.com.

average is shown in Figure 2.6. The moving average plot smoothes the
day-to-day noise and shows a generally increasing trend.

The simple moving average is a linear data smoother, or a linear
filter, because it replaces each observation yt with a linear combination of
the other data points that are near to it in time. The weights in the linear
combination are equal, so the linear combination here is an average. Of



32 STATISTICS BACKGROUND FOR FORECASTING

course, unequal weights could be used. For example, the Hanning filter
is a weighted, centered moving average

MH
t = 0.25yt+1 + 0.5yt + 0.25yt−1

Julius von Hann, a nineteenth century Austrian meteorologist, used this
filter to smooth weather data.

An obvious disadvantage of a linear filter such as a moving average
is that an unusual or erroneous data point or an outlier will dominate the
moving averages that contain that observation, contaminating the moving
averages for a length of time equal to the span of the filter. For example,
consider the sequence of observations

15, 18, 13, 12, 16, 14, 16, 17, 18, 15, 18, 200, 19, 14, 21, 24, 19, 25

which increases reasonably steadily from 15 to 25, except for the unusual
value 200. Any reasonable smoothed version of the data should also
increase steadily from 15 to 25 and not emphasize the value 200. Now
even if the value 200 is a legitimate observation, and not the result of a data
recording or reporting error (perhaps it should be 20!), it is so unusual that
it deserves special attention and should likely not be analyzed along with
the rest of the data.

Odd-span moving medians (also called running medians) are an alter-
native to moving averages that are effective data smoothers when the time
series may be contaminated with unusual values or outliers. The moving
median of span N is defined as

m[N]
t = med(yt−u,… , yt,… , yt+u), (2.5)

where N = 2u + 1. The median is the middle observation in rank order
(or order of value). The moving median of span 3 is a very popular and
effective data smoother, where

m[3]
t = med(yt−1, yt, yt+1).

This smoother would process the data three values at a time, and replace
the three original observations by their median. If we apply this smoother
to the data above, we obtain

, 15, 13, 13, 14, 16, 17, 17, 18, 18, 19, 19, 19, 21, 21, 24, .
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This smoothed data are a reasonable representation of the original data,
but they conveniently ignore the value 200. The end values are lost when
using the moving median, and they are represented by “ ”.

In general, a moving median will pass monotone sequences of data
unchanged. It will follow a step function in the data, but it will eliminate
a spike or more persistent upset in the data that has duration of at most
u consecutive observations. Moving medians can be applied more than
once if desired to obtain an even smoother series of observations. For
example, applying the moving median of span 3 to the smoothed data above
results in

, , 13, 13, 14, 16, 17, 17, 18, 18, 19, 19, 19, 21, 21, , .

These data are now as smooth as it can get; that is, repeated application of
the moving median will not change the data, apart from the end values.

If there are a lot of observations, the information loss from the missing
end values is not serious. However, if it is necessary or desirable to keep
the lengths of the original and smoothed data sets the same, a simple way
to do this is to “copy on” or add back the end values from the original data.
This would result in the smoothed data:

15, 18, 13, 13, 14, 16, 17, 17, 18, 18, 19, 19, 19, 21, 21, 19, 25

There are also methods for smoothing the end values. Tukey (1979) is a
basic reference on this subject and contains many other clever and useful
techniques for data analysis.

Example 2.3 The chemical process viscosity readings shown in
Figure 1.11 are an example of a time series that benefits from smooth-
ing to evaluate patterns. The selection of a moving median over a moving
average, as shown in Figure 2.7, minimizes the impact of the invalid mea-
surements, such as the one at time period 70.

2.3 NUMERICAL DESCRIPTION OF TIME SERIES DATA

2.3.1 Stationary Time Series

A very important type of time series is a stationary time series. A time
series is said to be strictly stationary if its properties are not affected
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FIGURE 2.7 Viscosity readings with (a) moving average and (b) moving
median.

by a change in the time origin. That is, if the joint probability distribu-
tion of the observations yt, yt+1,… , yt+n is exactly the same as the joint
probability distribution of the observations yt+k, yt+k+1,… , yt+k+n then the
time series is strictly stationary. When n = 0 the stationarity assumption
means that the probability distribution of yt is the same for all time periods
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FIGURE 2.8 Pharmaceutical product sales.

and can be written as f (y). The pharmaceutical product sales and chemical
viscosity readings time series data originally shown in Figures 1.2 and 1.3,
respectively, are examples of stationary time series. The time series plots
are repeated in Figures 2.8 and 2.9 for convenience. Note that both time
series seem to vary around a fixed level. Based on the earlier definition, this
is a characteristic of stationary time series. On the other hand, the Whole
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FIGURE 2.9 Chemical process viscosity readings.



36 STATISTICS BACKGROUND FOR FORECASTING

Foods Market stock price data in Figure 1.7 tends to wander around or drift,
with no obvious fixed level. This is behavior typical of a nonstationary
time series.

Stationary implies a type of statistical equilibrium or stability in the
data. Consequently, the time series has a constant mean defined in the usual
way as

𝜇y = E(y) = ∫
∞

−∞
yf (y)dy (2.6)

and constant variance defined as

𝜎
2
y = Var(y) = ∫

∞

−∞
(y − 𝜇y)

2f (y)dy. (2.7)

The sample mean and sample variance are used to estimate these parame-
ters. If the observations in the time series are y1, y2,… , yT , then the sample
mean is

ȳ = �̂�y =
1
T

T∑
t=1

yt (2.8)

and the sample variance is

s2 = �̂�
2
y = 1

T

T∑
t=1

(yt − ȳ)2
. (2.9)

Note that the divisor in Eq. (2.9) is T rather than the more familiar T − 1.
This is the common convention in many time series applications, and
because T is usually not small, there will be little difference between using
T instead of T − 1.

2.3.2 Autocovariance and Autocorrelation Functions

If a time series is stationary this means that the joint probability distri-
bution of any two observations, say, yt and yt+k, is the same for any two
time periods t and t + k that are separated by the same interval k. Useful
information about this joint distribution, and hence about the nature of the
time series, can be obtained by plotting a scatter diagram of all of the data
pairs yt, yt+k that are separated by the same interval k. The interval k is
called the lag.
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FIGURE 2.10 Scatter diagram of pharmaceutical product sales at lag k = 1.

Example 2.4 Figure 2.10 is a scatter diagram for the pharmaceutical
product sales for lag k = 1 and Figure 2.11 is a scatter diagram for the
chemical viscosity readings for lag k = 1. Both scatter diagrams were
constructed by plotting yt+1 versus yt. Figure 2.10 exhibits little structure;
the plotted pairs of adjacent observations yt, yt+1 seem to be uncorrelated.
That is, the value of y in the current period does not provide any useful
information about the value of y that will be observed in the next period.
A different story is revealed in Figure 2.11, where we observe that the
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FIGURE 2.11 Scatter diagram of chemical viscosity readings at lag k = 1.
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pairs of adjacent observations yt+1, yt are positively correlated. That is, a
small value of y tends to be followed in the next time period by another
small value of y, and a large value of y tends to be followed immediately by
another large value of y. Note from inspection of Figures 2.10 and 2.11 that
the behavior inferred from inspection of the scatter diagrams is reflected
in the observed time series.

The covariance between yt and its value at another time period, say, yt+k
is called the autocovariance at lag k, defined by

𝛾k = Cov(yt, yt+k) = E[(yt − 𝜇)(yt+k − 𝜇)]. (2.10)

The collection of the values of 𝛾k, k = 0, 1, 2,… is called the autocovari-
ance function. Note that the autocovariance at lag k = 0 is just the vari-
ance of the time series; that is, 𝛾0 = 𝜎

2
y ,which is constant for a stationary

time series. The autocorrelation coefficient at lag k for a stationary time
series is

𝜌k =
E[(yt − 𝜇)(yt+k − 𝜇)]√

E[(yt − 𝜇)2]E[(yt+k − 𝜇)2]
=

Cov(yt, yt+k)

Var(yt)
=

𝛾k

𝛾0
. (2.11)

The collection of the values of 𝜌k, k = 0, 1, 2,… is called the autocorrela-
tion function (ACF). Note that by definition 𝜌0 = 1. Also, the ACF is inde-
pendent of the scale of measurement of the time series, so it is a dimension-
less quantity. Furthermore, 𝜌k = 𝜌−k; that is, the ACF is symmetric around
zero, so it is only necessary to compute the positive (or negative) half.

If a time series has a finite mean and autocovariance function it is
said to be second-order stationary (or weakly stationary of order 2). If, in
addition, the joint probability distribution of the observations at all times is
multivariate normal, then that would be sufficient to result in a time series
that is strictly stationary.

It is necessary to estimate the autocovariance and ACFs from a time
series of finite length, say, y1, y2,… , yT . The usual estimate of the autoco-
variance function is

ck = �̂�k =
1
T

T−k∑
t=1

(yt − ȳ)(yt+k − ȳ), k = 0, 1, 2,… , K (2.12)

and the ACF is estimated by the sample autocorrelation function (or
sample ACF)

rk = �̂�k =
ck

c0
, k = 0, 1,… , K (2.13)
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A good general rule of thumb is that at least 50 observations are required
to give a reliable estimate of the ACF, and the individual sample autocor-
relations should be calculated up to lag K, where K is about T/4.

Often we will need to determine if the autocorrelation coefficient at a
particular lag is zero. This can be done by comparing the sample auto-
correlation coefficient at lag k, rk, to its standard error. If we make the
assumption that the observations are uncorrelated, that is, 𝜌k = 0 for all k,
then the variance of the sample autocorrelation coefficient is

Var(rk) ≅ 1
T

(2.14)

and the standard error is

se(rk) ≅ 1√
T

(2.15)

Example 2.5 Consider the chemical process viscosity readings plotted
in Figure 2.9; the values are listed in Table 2.1.

The sample ACF at lag k = 1 is calculated as

c0 =
1

100

100−0∑
t=1

(yt − ȳ)(yt+0 − ȳ)

= 1
100

[(86.7418 − 84.9153)(86.7418 − 84.9153) +⋯

+ (85.0572 − 84.9153)(85.0572 − 84.9153)]

= 280.9332

c1 =
1

100

100−1∑
t=1

(yt − ȳ)(yt+1 − ȳ)

= 1
100

[(86.7418 − 84.9153)(85.3195 − 84.9153) +⋯

+ (87.0048 − 84.9153)(85.0572 − 84.9153)]

= 220.3137

r1 =
c1

c0
= 220.3137

280.9332
= 0.7842

A plot and listing of the sample ACFs generated by Minitab for the first
25 lags are displayed in Figures 2.12 and 2.13, respectively.
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TABLE 2.1 Chemical Process Viscosity Readings

Time Time Time Time
Period Reading Period Reading Period Reading Period Reading

1 86.7418 26 87.2397 51 85.5722 76 84.7052
2 85.3195 27 87.5219 52 83.7935 77 83.8168
3 84.7355 28 86.4992 53 84.3706 78 82.4171
4 85.1113 29 85.6050 54 83.3762 79 83.0420
5 85.1487 30 86.8293 55 84.9975 80 83.6993
6 84.4775 31 84.5004 56 84.3495 81 82.2033
7 84.6827 32 84.1844 57 85.3395 82 82.1413
8 84.6757 33 85.4563 58 86.0503 83 81.7961
9 86.3169 34 86.1511 59 84.8839 84 82.3241

10 88.0006 35 86.4142 60 85.4176 85 81.5316
11 86.2597 36 86.0498 61 84.2309 86 81.7280
12 85.8286 37 86.6642 62 83.5761 87 82.5375
13 83.7500 38 84.7289 63 84.1343 88 82.3877
14 84.4628 39 85.9523 64 82.6974 89 82.4159
15 84.6476 40 86.8473 65 83.5454 90 82.2102
16 84.5751 41 88.4250 66 86.4714 91 82.7673
17 82.2473 42 89.6481 67 86.2143 92 83.1234
18 83.3774 43 87.8566 68 87.0215 93 83.2203
19 83.5385 44 88.4997 69 86.6504 94 84.4510
20 85.1620 45 87.0622 70 85.7082 95 84.9145
21 83.7881 46 85.1973 71 86.1504 96 85.7609
22 84.0421 47 85.0767 72 85.8032 97 85.2302
23 84.1023 48 84.4362 73 85.6197 98 86.7312
24 84.8495 49 84.2112 74 84.2339 99 87.0048
25 87.6416 50 85.9952 75 83.5737 100 85.0572
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FIGURE 2.12 Sample autocorrelation function for chemical viscosity readings,
with 5% significance limits.
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Autocorrelation function: reading

Lag ACF T LBQ
7.84
4.21
2.83
1.94
1.57
1.05
0.82
0.72
0.51
0.33
0.02

−0.38
−0.25
0.10
0.36
0.35
0.01

−0.28
−0.60
−0.88
−0.78
−0.70
−0.42
−0.06
0.30

63.36
104.42
129.83
143.82
153.78
158.52
161.48
163.80
165.01
165.51
165.51
166.20
166.52
166.57
167.21
167.81
167.81
168.22
170.13
174.29
177.70
180.48
181.50
181.51
182.06

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

9
0.144789
0.103625
0.066559
0.003949

−0.077226
−0.051953
0.020525
0.072784
0.070753
0.001334

−0.057435
−0.123122
−0.180546
−0.162466
−0.145979
−0.087420
−0.011579
0.063170

0.784221
0.628050
0.491587
0.362880
0.304554
0.208979
0.164320

FIGURE 2.13 Listing of sample autocorrelation functions for first 25 lags of
chemical viscosity readings, Minitab session window output (the definition of T
and LBQ will be given later).

Note the rate of decrease or decay in ACF values in Figure 2.12 from 0.78
to 0, followed by a sinusoidal pattern about 0. This ACF pattern is typical
of stationary time series. The importance of ACF estimates exceeding the
5% significance limits will be discussed in Chapter 5. In contrast, the plot
of sample ACFs for a time series of random values with constant mean
has a much different appearance. The sample ACFs for pharmaceutical
product sales plotted in Figure 2.14 appear randomly positive or negative,
with values near zero.

While the ACF is strictly speaking defined only for a stationary time
series, the sample ACF can be computed for any time series, so a logical
question is: What does the sample ACF of a nonstationary time series look
like? Consider the daily closing price for Whole Foods Market stock in
Figure 1.7. The sample ACF of this time series is shown in Figure 2.15.
Note that this sample ACF plot behaves quite differently than the ACF
plots in Figures 2.12 and 2.14. Instead of cutting off or tailing off near
zero after a few lags, this sample ACF is very persistent; that is, it decays
very slowly and exhibits sample autocorrelations that are still rather large
even at long lags. This behavior is characteristic of a nonstationary time
series. Generally, if the sample ACF does not dampen out within about 15
to 20 lags, the time series is nonstationary.
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FIGURE 2.14 Autocorrelation function for pharmaceutical product sales, with
5% significance limits.

2.3.3 The Variogram

We have discussed two techniques for determining if a time series is
nonstationary, plotting a reasonable long series of the data to see if it drifts
or wanders away from its mean for long periods of time, and computing
the sample ACF. However, often in practice there is no clear demarcation
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FIGURE 2.15 Autocorrelation function for Whole Foods Market stock price,
with 5% significance limits.
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between a stationary and a nonstationary process for many real-world time
series. An additional diagnostic tool that is very useful is the variogram.

Suppose that the time series observations are represented by yt. The
variogram Gk measures variances of the differences between observations
that are k lags apart, relative to the variance of the differences that are one
time unit apart (or at lag 1). The variogram is defined mathematically as

Gk =
Var (yt+k − yt)

Var (yt+1 − yt)
k = 1, 2,… (2.16)

and the values of Gk are plotted as a function of the lag k. If the time series
is stationary, it turns out that

Gk =
1 − 𝜌k

1 − 𝜌1
,

but for a stationary time series 𝜌k → 0 as k increases, so when the variogram
is plotted against lag k, Gk will reach an asymptote 1∕(1 − 𝜌1). However,
if the time series is nonstationary, Gk will increase monotonically.

Estimating the variogram is accomplished by simply applying the usual
sample variance to the differences, taking care to account for the changing
sample sizes when the differences are taken (see Haslett (1997)). Let

dk
t = yt+k − yt

d̄k = 1
T − k

∑
dk

t .

Then an estimate of Var (yt+k − yt) is

s2
k =

T−k∑
t=1

(
dk

t − d̄k
)2

T − k − 1
.

Therefore the sample variogram is given by

Ĝk =
s2

k

s2
1

k = 1, 2, ... (2.17)

To illustrate the use of the variogram, consider the chemical process vis-
cosity data plotted in Figure 2.9. Both the data plot and the sample ACF in
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FIGURE 2.16 JMP output for the sample variogram of the chemical process
viscosity data from Figure 2.19.

Figures 2.12 and 2.13 suggest that the time series is stationary. Figure 2.16
is the variogram. Many software packages do not offer the variogram as
a standard pull-down menu selection, but the JMP package does. Without
software, it is still fairly easy to compute.

Start by computing the successive differences of the time series for a
number of lags and then find their sample variances. The ratios of these
sample variances to the sample variance of the first differences will produce
the sample variogram. The JMP calculations of the sample variogram are
shown in Figure 2.16 and a plot is given in Figure 2.17. Notice that the
sample variogram generally converges to a stable level and then fluctuates
around it. This is consistent with a stationary time series, and it provides
additional evidence that the chemical process viscosity data are stationary.

Now let us see what the sample variogram looks like for a nonstationary
time series. The Whole Foods Market stock price data from Appendix
Table B.7 originally shown in Figure 1.7 are apparently nonstationary, as it
wanders about with no obvious fixed level. The sample ACF in Figure 2.15
decays very slowly and as noted previously, gives the impression that the
time series is nonstationary. The calculations for the variogram from JMP
are shown in Figure 2.18 and the variogram is plotted in Figure 2.19.
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FIGURE 2.17 JMP sample variogram of the chemical process viscosity data
from Figure 2.9.
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FIGURE 2.18 JMP output for the sample variogram of the Whole Foods Market
stock price data from Figure 1.7 and Appendix Table B.7.
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FIGURE 2.19 Sample variogram of the Whole Foods Market stock price data
from Figure 1.7 and Appendix Table B.7.

Notice that the sample variogram in Figure 2.19 increases monoton-
ically for all 25 lags. This is a strong indication that the time series is
nonstationary.

2.4 USE OF DATA TRANSFORMATIONS AND ADJUSTMENTS

2.4.1 Transformations

Data transformations are useful in many aspects of statistical work, often
for stabilizing the variance of the data. Nonconstant variance is quite com-
mon in time series data. For example, the International Sunspot Numbers
plotted in Figure 2.20a show cyclic patterns of varying magnitudes. The
variability from about 1800 to 1830 is smaller than that from about 1830
to 1880; other small periods of constant, but different, variances can also
be identified.

A very popular type of data transformation to deal with nonconstant
variance is the power family of transformations, given by

y(𝜆) =
⎧⎪⎨⎪⎩

y𝜆 − 1

𝜆ẏ𝜆−1
, 𝜆 ≠ 0

ẏ ln y, 𝜆 = 0
, (2.18)
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FIGURE 2.20 Yearly International Sunspot Number, (a) untransformed and (b)
natural logarithm transformation. Source: SIDC.

where ẏ = exp[(1∕T)
∑T

t=1 ln yt] is the geometric mean of the observations.
If 𝜆 = 1, there is no transformation. Typical values of 𝜆 used with time
series data are 𝜆 = 0.5 (a square root transformation), 𝜆 = 0 (the log trans-
formation), 𝜆 = −0.5 (reciprocal square root transformation), and 𝜆 = −1
(inverse transformation). The divisor ẏ𝜆−1 is simply a scale factor that
ensures that when different models are fit to investigate the utility of dif-
ferent transformations (values of 𝜆), the residual sum of squares for these
models can be meaningfully compared. The reason that 𝜆 = 0 implies a log
transformation is that (y𝜆 − 1)∕𝜆 approaches the log of y as 𝜆 approaches
zero. Often an appropriate value of 𝜆 is chosen empirically by fitting a
model to y(𝜆) for various values of 𝜆 and then selecting the transformation
that produces the minimum residual sum of squares.

The log transformation is used frequently in situations where the vari-
ability in the original time series increases with the average level of the
series. When the standard deviation of the original series increases lin-
early with the mean, the log transformation is in fact an optimal variance-
stabilizing transformation. The log transformation also has a very nice
physical interpretation as percentage change. To illustrate this, let the time
series be y1, y2, … , yT and suppose that we are interested in the percentage
change in yt, say,

xt =
100(yt − yt−1)

yt−1
,
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The approximate percentage change in yt can be calculated from the
differences of the log-transformed time series xt ≅ 100[ln(yt) − ln(yt−1)]
because

100[ln(yt) − ln(yt−1)] = 100 ln
(

yt

yt−1

)
= 100 ln

(
yt−1 + (yt − yt−1)

yt−1

)

= 100 ln
(

1 +
xt

100

)
≅ xt

since ln(1 + z) ≅ z when z is small.
The application of a natural logarithm transformation to the International

Sunspot Number, as shown in Figure 2.20b, tends to stabilize the variance
and leaves just a few unusual values.

2.4.2 Trend and Seasonal Adjustments

In addition to transformations, there are also several types of adjustments
that are useful in time series modeling and forecasting. Two of the most
widely used are trend adjustments and seasonal adjustments. Sometimes
these procedures are called trend and seasonal decomposition.

A time series that exhibits a trend is a nonstationary time series. Mod-
eling and forecasting of such a time series is greatly simplified if we
can eliminate the trend. One way to do this is to fit a regression model
describing the trend component to the data and then subtracting it out of
the original observations, leaving a set of residuals that are free of trend.
The trend models that are usually considered are the linear trend, in which
the mean of yt is expected to change linearly with time as in

E(yt) = 𝛽0 + 𝛽1t (2.19)

or as a quadratic function of time

E(yt) = 𝛽0 + 𝛽1t + 𝛽2t2 (2.20)

or even possibly as an exponential function of time such as

E(yt) = 𝛽0e𝛽1t
. (2.21)

The models in Eqs. (2.19)–(2.21) are usually fit to the data by using ordinary
least squares.

Example 2.6 We will show how least squares can be used to fit regression
models in Chapter 3. However, it would be useful at this point to illustrate
how trend adjustment works. Minitab can be used to perform trend adjust-
ment. Consider the annual US production of blue and gorgonzola cheeses
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FIGURE 2.21 Blue and gorgonzola cheese production, with fitted regression
line. Source: USDA–NASS.

shown in Figure 1.4. There is clearly a positive, nearly linear trend. The
trend analysis plot in Figure 2.21 shows the original time series with the
fitted line.

Plots of the residuals from this model indicate that, in addition to an
underlying trend, there is additional structure. The normal probability plot
(Figure 2.22a) and histogram (Figure 2.22c) indicate the residuals are
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FIGURE 2.22 Residual plots for simple linear regression model of blue and
gorgonzola cheese production.
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approximately normally distributed. However, the plots of residuals versus
fitted values (Figure 2.22b) and versus observation order (Figure 2.22d)
indicate nonconstant variance in the last half of the time series. Analysis
of model residuals is discussed more fully in Chapter 3.

Another approach to removing trend is by differencing the data; that is,
applying the difference operator to the original time series to obtain a new
time series, say,

xt = yt − yt−1 = ∇yt, (2.22)

where ∇ is the (backward) difference operator. Another way to write the
differencing operation is in terms of a backshift operator B, defined as
Byt = yt−1, so

xt = (1 − B)yt = ∇yt = yt − yt−1 (2.23)

with∇ = (1 − B). Differencing can be performed successively if necessary
until the trend is removed; for example, the second difference is

xt = ∇2yt = ∇(∇yt) = (1 − B)2yt = (1 − 2B + B2) = yt − 2yt−1 + yt−2

(2.24)

In general, powers of the backshift operator and the backward difference
operator are defined as

Bdyt = yt−d

∇d = (1 − B)d
(2.25)

Differencing has two advantages relative to fitting a trend model to the
data. First, it does not require estimation of any parameters, so it is a more
parsimonious (i.e., simpler) approach; and second, model fitting assumes
that the trend is fixed throughout the time series history and will remain
so in the (at least immediate) future. In other words, the trend component,
once estimated, is assumed to be deterministic. Differencing can allow
the trend component to change through time. The first difference accounts
for a trend that impacts the change in the mean of the time series, the
second difference accounts for changes in the slope of the time series, and
so forth. Usually, one or two differences are all that is required in practice
to remove an underlying trend in the data.
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Example 2.7 Reconsider the blue and gorgonzola cheese production
data. A difference of one applied to this time series removes the increasing
trend (Figure 2.23) and also improves the appearance of the residuals
plotted versus fitted value and observation order when a linear model
is fitted to the detrended time series (Figure 2.24). This illustrates that
differencing may be a very good alternative to detrending a time series by
using a regression model.
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FIGURE 2.23 Blue and gorgonzola cheese production, with one difference.
Source: USDA–NASS.
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Seasonal, or both trend and seasonal, components are present in many
time series. Differencing can also be used to eliminate seasonality. Define
a lag—d seasonal difference operator as

∇dyt = (1 − Bd) = yt − yt−d. (2.26)

For example, if we had monthly data with an annual season (a very common
situation), we would likely use d = 12, so the seasonally differenced data
would be

∇12yt = (1 − B12)yt = yt − yt−12.

When both trend and seasonal components are simultaneously present, we
can sequentially difference to eliminate these effects. That is, first season-
ally difference to remove the seasonal component and then difference one
or more times using the regular difference operator to remove the trend.

Example 2.8 The beverage shipment data shown in Figure 2.2 appear
to have a strong monthly pattern—January consistently has the lowest
shipments in a year while the peak shipments are in May and June. There
is also an overall increasing trend from year to year that appears to be the
same regardless of month.

A seasonal difference of twelve followed by a trend difference of
one was applied to the beverage shipments, and the results are shown
in Figure 2.25. The seasonal differencing removes the monthly pattern
(Figure 2.25a), and the second difference of one removes the overall
increasing trend (Figure 2.25b). The fitted linear trend line in Figure 2.25b
has a slope of virtually zero. Examination of the residual plots in Figure
2.26 does not reveal any problems with the linear trend model fit to the
differenced data.

Regression models can also be used to eliminate seasonal (or trend
and seasonal components) from time series data. A simple but useful
model is

E(yt) = 𝛽0 + 𝛽1 sin
2𝜋
d

t + 𝛽2 cos
2𝜋
d

t, (2.27)

where d is the period (or length) of the season and 2𝜋∕d is expressed in
radians. For example, if we had monthly data and an annual season, then
d = 12. This model describes a simple, symmetric seasonal pattern that
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FIGURE 2.25 Time series plots of seasonal- and trend-differenced beverage
data.

repeats every 12 periods. The model is actually a sine wave. To see this,
recall that a sine wave with amplitude 𝛽, phase angle or origin 𝜃, and period
or cycle length 𝜔 can be written as

E(yt) = 𝛽 sin𝜔(t + 𝜃). (2.28)
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FIGURE 2.26 Residual plots for linear trend model of differenced beverage
shipments.

Equation (2.27) was obtained by writing Eq. (2.28) as a sine–cosine pair
using the trigonometric identity sin(u + v) = cos u sin v + sin u cos v and
adding an intercept term 𝛽0:

E(yt) = 𝛽 sin𝜔(t + 𝜃)

= 𝛽 cos𝜔𝜃 sin𝜔t + 𝛽 sin𝜔𝜃 cos𝜔t

= 𝛽1 sin𝜔t + 𝛽2 cos𝜔t

where 𝛽1 = 𝛽 cos𝜔𝜃 and 𝛽2 = 𝛽 sin𝜔𝜃. Setting𝜔 = 2𝜋∕12 and adding the
intercept term 𝛽0 produces Eq. (2.27). This model is very flexible; for
example, if we set 𝜔 = 2𝜋∕52 we can model a yearly seasonal pattern that
is observed weekly, if we set 𝜔 = 2𝜋∕4 we can model a yearly seasonal
pattern observed quarterly, and if we set 𝜔 = 2𝜋∕13 we can model an
annual seasonal pattern observed in 13 four-week periods instead of the
usual months.

Equation (2.27) incorporates a single sine wave at the fundamental
frequency 𝜔 = 2𝜋∕12. In general, we could add harmonics of the fun-
damental frequency to the model in order to model more complex sea-
sonal patterns. For example, a very general model for monthly data and
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an annual season that uses the fundamental frequency and the first three
harmonics is

E(yt) = 𝛽0 +
4∑

j=1

(
𝛽j sin

2𝜋j

12
t + 𝛽4+j cos

2𝜋j

12
t

)
. (2.29)

If the data are observed in 13 four-week periods, the model would be

E(yt) = 𝛽0 +
4∑

j=1

(
𝛽j sin

2𝜋j

13
t + 𝛽4+j cos

2𝜋j

13
t

)
. (2.30)

There is also a “classical” approach to decomposition of a time series
into trend and seasonal components (actually, there are a lot of differ-
ent decomposition algorithms; here we explain a very simple but useful
approach). The general mathematical model for this decomposition is

yt = f (St, Tt, 𝜀t),

where St is the seasonal component, Tt is the trend effect (sometimes called
the trend-cycle effect), and 𝜀t is the random error component. There are
usually two forms for the function f ; an additive model

yt = St + Tt + 𝜀t

and a multiplicative model

yt = StTt𝜀t.

The additive model is appropriate if the magnitude (amplitude) of the
seasonal variation does not vary with the level of the series, while the
multiplicative version is more appropriate if the amplitude of the seasonal
fluctuations increases or decreases with the average level of the time series.

Decomposition is useful for breaking a time series down into these
component parts. For the additive model, it is relatively easy. First, we
would model and remove the trend. A simple linear model could be used
to do this, say, Tt = 𝛽0 + 𝛽1t. Other methods could also be used. Moving
averages can be used to isolate a trend and remove it from the original data,
as could more sophisticated regression methods. These techniques might
be appropriate when the trend is not a straight line over the history of the
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time series. Differencing could also be used, although it is not typically in
the classical decomposition approach.

Once the trend or trend-cycle component is estimated, the series is
detrended:

yt − Tt = St + 𝜀t.

Now a seasonal factor can be calculated for each period in the season. For
example, if the data are monthly and an annual season is anticipated, we
would calculate a season effect for each month in the data set. Then the
seasonal indices are computed by taking the average of all of the seasonal
factors for each period in the season. In this example, all of the January
seasonal factors are averaged to produce a January season index; all of
the February seasonal factors are averaged to produce a February season
index; and so on. Sometimes medians are used instead of averages. In
multiplicative decomposition, ratios are used, so that the data are detrended
by

yt

Tt
= St𝜀t.

The seasonal indices are estimated by taking the averages over all of the
detrended values for each period in the season.

Example 2.9 The decomposition approach can be applied to the bev-
erage shipment data. Examining the time series plot in Figure 2.2, there
is both a strong positive trend as well as month-to-month variation, so
the model should include both a trend and a seasonal component. It also
appears that the magnitude of the seasonal variation does not vary with the
level of the series, so an additive model is appropriate.

Results of a time series decomposition analysis from Minitab of the
beverage shipments are in Figure 2.27, showing the original data (labeled
“Actual”); along with the fitted trend line (“Trend”) and the predicted
values (“Fits”) from the additive model with both the trend and seasonal
components.

Details of the seasonal analysis are shown in Figure 2.28. Estimates of
the monthly variation from the trend line for each season (seasonal indices)
are in Figure 2.28a with boxplots of the actual differences in Figure 2.28b.
The percent of variation by seasonal period is in Figure 2.28c, and model
residuals by seasonal period are in Figure 2.28d.
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FIGURE 2.27 Time series plot of decomposition model for beverage shipments.

Additional details of the component analysis are shown in Figure 2.29.
Figure 2.29a is the original time series, Figure 2.29b is a plot of the time
series with the trend removed, Figure 2.29c is a plot of the time series
with the seasonality removed, and Figure 2.29d is essentially a residual
plot of the detrended and seasonally adjusted data. The wave-like pattern
in Figure 2.29d suggests a potential issue with the assumption of constant
variance over time.
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Looking at the normal probability plot and histogram of residuals
(Figure 2.30a,c), there does not appear to be an issue with the normal-
ity assumption. Figure 2.30d is the same plot as Figure 2.29d. However,
variance does seem to increase as the predicted value increases; there is a
funnel shape to the residuals plotted in Figure 2.30b. A natural logarithm
transformation of the data may stabilize the variance and allow a useful
decomposition model to be fit.

Results from the decomposition analysis of the natural log-transformed
beverage shipment data are plotted in Figure 2.31, with the transformed
data, fitted trend line, and predicted values. Figure 2.32a shows the trans-
formed data, Figure 2.32b the transformed data with the trend removed,
Figure 2.32c the transformed data with seasonality removed, and Fig-
ure 2.32d the residuals plot of the detrended and seasonally adjusted trans-
formed data. The residual plots in Figure 2.33 indicate that the variance
over the range of the predicted values is now stable (Figure 2.33b), and
there are no issues with the normality assumption (Figures 2.33a,c). How-
ever, there is still a wave-like pattern in the plot of residuals versus time,
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FIGURE 2.30 Residual plots for additive model of beverage shipments.

both Figures 2.32d and 2.33d, indicating that some other structure in the
transformed data over time is not captured by the decomposition model.
This was not an issue with the model based on seasonal and trend differ-
encing (Figures 2.25 and 2.26), which may be a more appropriate model
for monthly beverage shipments.
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Another technique for seasonal adjustment that is widely used in mod-
eling and analyzing economic data is the X-11 method. Much of the devel-
opment work on this method was done by Julian Shiskin and others at the
US Bureau of the Census beginning in the mid-1950s and culminating into
the X-11 Variant of the Census Method II Seasonal Adjustment Program.
References for this work during this period include Shiskin (1958), and
Marris (1961). Authoritative documentation for the X-11 procedure is in
Shiskin, Young, and Musgrave (1967). The X-11 method uses symmet-
ric moving averages in an iterative approach to estimating the trend and
seasonal components. At the end of the series, however, these symmetric
weights cannot be applied. Asymmetric weights have to be used.

JMP (V12 and higher) provides the X-11 technique. Figure 2.34 shows
the JMP X-11 output for the beverage shipment data from Figure 2.2. The
upper part of the output contains a plot of the original time series, followed
by the sample ACF and PACF. Then Display D10 in the figure shows the
final estimates of the seasonal factors by month followed in Display D13
by the irregular or deseasonalized series. The final display is a plot of the
original and adjusted time series.

While different variants of the X-11 technique have been proposed, the
most important method to date has been the X-11-ARIMA method devel-
oped at Statistics Canada. This method uses Box–Jenkins autoregressive
integrated moving average models (which are discussed in Chapter 5) to
extend the series. The use of ARIMA models will result in differences in
the final component estimates. Details of this method are in Dagum (1980,
1983, 1988).

2.5 GENERAL APPROACH TO TIME SERIES MODELING
AND FORECASTING

The techniques that we have been describing form the basis of a general
approach to modeling and forecasting time series data. We now give a broad
overview of the approach. This should give readers a general understanding
of the connections between the ideas we have presented in this chapter and
guidance in understanding how the topics in subsequent chapters form a
collection of useful techniques for modeling and forecasting time series.

The basic steps in modeling and forecasting a time series are as follows:

1. Plot the time series and determine its basic features, such as whether
trends or seasonal behavior or both are present. Look for possible
outliers or any indication that the time series has changed with respect
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FIGURE 2.34 JMP output for the X-11 procedure.

to its basic features (such as trends or seasonality) over the time period
history.

2. Eliminate any trend or seasonal components, either by differencing or
by fitting an appropriate model to the data. Also consider using data
transformations, particularly if the variability in the time series seems
to be proportional to the average level of the series. The objective of
these operations is to produce a set of stationary residuals.
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3. Develop a forecasting model for the residuals. It is not unusual to find
that there are several plausible models, and additional analysis will
have to be performed to determine the best one to deploy. Sometimes
potential models can be eliminated on the basis of their fit to the
historical data. It is unlikely that a model that fits poorly will produce
good forecasts.
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4. Validate the performance of the model (or models) from the previous
step. This will probably involve some type of split-sample or cross-
validation procedure. The objective of this step is to select a model
to use in forecasting. We will discuss this more in the next section
and illustrate these techniques throughout the book.

5. Also of interest are the differences between the original time series
yt and the values that would be forecast by the model on the original
scale. To forecast values on the scale of the original time series yt,
reverse the transformations and any differencing adjustments made
to remove trends or seasonal effects.

6. For forecasts of future values in period T + 𝜏 on the original scale,
if a transformation was used, say, xt = ln yt, then the forecast made
at the end of period T for T + 𝜏 would be obtained by reversing the
transformation. For the natural log this would be

ŷT+𝜏(T) = exp[x̂T+𝜏(T)].

7. If prediction intervals are desired for the forecast (and we recom-
mend doing this), construct prediction intervals for the residuals and
then reverse the transformations made to produce the residuals as
described earlier. We will discuss methods for finding prediction
intervals for most of the forecasting methods presented in this book.

8. Develop and implement a procedure for monitoring the forecast to
ensure that deterioration in performance will be detected reasonably
quickly. Forecast monitoring is usually done by evaluating the stream
of forecast errors that are experienced. We will present methods for
monitoring forecast errors with the objective of detecting changes in
performance of the forecasting model.

2.6 EVALUATING AND MONITORING FORECASTING
MODEL PERFORMANCE

2.6.1 Forecasting Model Evaluation

We now consider how to evaluate the performance of a forecasting tech-
nique for a particular time series or application. It is important to carefully
define the meaning of performance. It is tempting to evaluate performance
on the basis of the fit of the forecasting or time series model to histor-
ical data. There are many statistical measures that describe how well a
model fits a given sample of data, and several of these will be described in
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subsequent chapters. This goodness-of-fit approach often uses the residu-
als and does not really reflect the capability of the forecasting technique to
successfully predict future observations. The user of the forecasts is very
concerned about the accuracy of future forecasts, not model goodness of
fit, so it is important to evaluate this aspect of any recommended technique.
Sometimes forecast accuracy is called “out-of-sample” forecast error, to
distinguish it from the residuals that arise from a model-fitting process.

Measure of forecast accuracy should always be evaluated as part of a
model validation effort (see step 4 in the general approach to forecasting
in the previous section). When more than one forecasting technique seems
reasonable for a particular application, these forecast accuracy measures
can also be used to discriminate between competing models. We will
discuss this more in Section 2.6.2.

It is customary to evaluate forecasting model performance using the
one-step-ahead forecast errors

et(1) = yt − ŷt(t − 1), (2.31)

where ŷt(t − 1) is the forecast of yt that was made one period prior. Fore-
cast errors at other lags, or at several different lags, could be used if interest
focused on those particular forecasts. Suppose that there are n observations
for which forecasts have been made and n one-step-ahead forecast errors,
et(1), t = 1, 2, … , n. Standard measures of forecast accuracy are the aver-
age error or mean error

ME = 1
n

n∑
t=1

et(1), (2.32)

the mean absolute deviation (or mean absolute error)

MAD = 1
n

n∑
t=1

|et(1)|, (2.33)

and the mean squared error

MSE = 1
n

n∑
t=1

[et(1)]2
. (2.34)

The mean forecast error in Eq. (2.32) is an estimate of the expected value
of forecast error, which we would hope to be zero; that is, the forecasting
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technique produces unbiased forecasts. If the mean forecast error differs
appreciably from zero, bias in the forecast is indicated. If the mean forecast
error drifts away from zero when the forecasting technique is in use, this
can be an indication that the underlying time series has changed in some
fashion, the forecasting technique has not tracked this change, and now
biased forecasts are being generated.

Both the mean absolute deviation (MAD) in Eq. (2.33) and the mean
squared error (MSE) in Eq. (2.34) measure the variability in forecast
errors. Obviously, we want the variability in forecast errors to be small.
The MSE is a direct estimator of the variance of the one-step-ahead forecast
errors:

�̂�
2
e(1) = MSE = 1

n

n∑
t=1

[et(1)]2
. (2.35)

If the forecast errors are normally distributed (this is usually not a bad
assumption, and one that is easily checked), the MAD is related to the
standard deviation of forecast errors by

�̂�e(1) =
√

𝜋

2
MAD ≅ 1.25 MAD (2.36)

The one-step-ahead forecast error and its summary measures, the ME,
MAD, and MSE, are all scale-dependent measures of forecast accuracy;
that is, their values are expressed in terms of the original units of mea-
surement (or in the case of MSE, the square of the original units). So, for
example, if we were forecasting demand for electricity in Phoenix during
the summer, the units would be megawatts (MW). If the MAD for the fore-
cast error during summer months was 5 MW, we might not know whether
this was a large forecast error or a relatively small one. Furthermore, accu-
racy measures that are scale dependent do not facilitate comparisons of a
single forecasting technique across different time series, or comparisons
across different time periods. To accomplish this, we need a measure of
relative forecast error.

Define the relative forecast error (in percent) as

ret(1) =
(

yt − ŷt(t − 1)

yt

)
100 =

(
et(1)

yt

)
100. (2.37)
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This is customarily called the percent forecast error. The mean percent
forecast error (MPE) is

MPE = 1
n

n∑
t=1

ret(1) (2.38)

and the mean absolute percent forecast error (MAPE) is

MAPE = 1
n

n∑
t=1

|ret(1)|. (2.39)

Knowing that the relative or percent forecast error or the MAPE is 3%
(say) can be much more meaningful than knowing that the MAD is 5 MW.
Note that the relative or percent forecast error only makes sense if the time
series yt does not contain zero values.

Example 2.10 Table 2.2 illustrates the calculation of the one-step-ahead
forecast error, the absolute errors, the squared errors, the relative (percent)
error, and the absolute percent error from a forecasting model for 20 time
periods. The last row of columns (3) through (7) display the sums required
to calculate the ME, MAD, MSE, MPE, and MAPE.

From Eq. (2.32), the mean (or average) forecast error is

ME = 1
n

n∑
t=1

et(1) = 1
20

(−11.6) = −0.58,

the MAD is computed from Eq. (2.33) as

MAD = 1
n

n∑
t=1

|et(1)| = 1
20

(86.6) = 4.33,

and the MSE is computed from Eq. (2.34) as

MSE = 1
n

n∑
t=1

[et(1)]2 = 1
20

(471.8) = 23.59.
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Because the MSE estimates the variance of the one-step-ahead forecast
errors, we have

�̂�
2
e(1) = MSE = 23.59

and an estimate of the standard deviation of forecast errors is the square

root of this quantity, or �̂�e(1) =
√

MSE = 4.86. We can also obtain an
estimate of the standard deviation of forecasts errors from the MAD using
Eq. (2.36)

�̂�e(1) ≅ 1.25 MAD = 1.25(4.33) = 5.41.

These two estimates are reasonably similar. The mean percent forecast
error, MPE, is computed from Eq. (2.38) as

MPE = 1
n

n∑
t=1

ret(1) = 1
20

(−35.1588) = −1.76%

and the mean absolute percent error is computed from Eq. (2.39) as

MAPE = 1
n

n∑
t=1

|ret(1)| = 1
20

(177.3) = 8.87%.

There is much empirical evidence (and even some theoretical justifi-
cation) that the distribution of forecast errors can be well approximated
by a normal distribution. This can easily be checked by constructing a
normal probability plot of the forecast errors in Table 2.2, as shown in
Figure 2.35. The forecast errors deviate somewhat from the straight line,
indicating that the normal distribution is not a perfect model for the dis-
tribution of forecast errors, but it is not unreasonable. Minitab calculates
the Anderson–Darling statistic, a widely used test statistic for normality.
The P-value is 0.088, so the hypothesis of normality of the forecast errors
would not be rejected at the 0.05 level. This test assumes that the observa-
tions (in this case the forecast errors) are uncorrelated. Minitab also reports
the standard deviation of the forecast errors to be 4.947, a slightly larger
value than we computed from the MSE, because Minitab uses the standard
method for calculating sample standard deviations.

Note that Eq. (2.31) could have been written as

Error = Observation − Forecast.



70 STATISTICS BACKGROUND FOR FORECASTING

Forecast error

P
er

ce
n

t

1050−5−10−15

99

95

90

80
70
60
50
40
30
20

10

5

1

Mean

0.088

–0.58
StDev 4.947
N 20
AD 0.627
P-Value

Probability plot of forecast error
Normal

FIGURE 2.35 Normal probability plot of forecast errors from Table 2.2.

Hopefully, the forecasts do a good job of describing the structure in the
observations. In an ideal situation, the forecasts would adequately model
all of the structure in the data, and the sequence of forecast errors would
be structureless. If they are, the sample ACF of the forecast error should
look like the ACF of random data; that is, there should not be any large
“spikes” on the sample ACF at low lag. Any systematic or nonrandom
pattern in the forecast errors will tend to show up as significant spikes on
the sample ACF. If the sample ACF suggests that the forecast errors are
not random, then this is evidence that the forecasts can be improved by
refining the forecasting model. Essentially, this would consist of taking
the structure out of the forecast errors and putting it into the forecasts,
resulting in forecasts that are better prediction of the data.

Example 2.11 Table 2.3 presents a set of 50 one-step-ahead errors from
a forecasting model, and Table 2.4 shows the sample ACF of these forecast
errors. The sample ACF is plotted in Figure 2.36. This sample ACF was
obtained from Minitab. Note that sample autocorrelations for the first 13
lags are computed. This is consistent with our guideline indicating that for
T observations only the first T/4 autocorrelations should be computed. The
sample ACF does not provide any strong evidence to support a claim that
there is a pattern in the forecast errors.
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TABLE 2.3 One-Step-Ahead Forecast Errors

Period, t et(1) Period, t et(1) Period, t et(1) Period, t et(1) Period, t et(1)

1 −0.62 11 −0.49 21 2.90 31 −1.88 41 −3.98
2 −2.99 12 4.13 22 0.86 32 −4.46 42 −4.28
3 0.65 13 −3.39 23 5.80 33 −1.93 43 1.06
4 0.81 14 2.81 24 4.66 34 −2.86 44 0.18
5 −2.25 15 −1.59 25 3.99 35 0.23 45 3.56
6 −2.63 16 −2.69 26 −1.76 36 −1.82 46 −0.24
7 3.57 17 3.41 27 2.31 37 0.64 47 −2.98
8 0.11 18 4.35 28 −2.24 38 −1.55 48 2.47
9 0.59 19 −4.37 29 2.95 39 0.78 49 0.66

10 −0.63 20 2.79 30 6.30 40 2.84 50 0.32

TABLE 2.4 Sample ACF of the One-Step-Ahead Forecast Errors in
Table 2.3

Lag Sample ACF, rk Z-Statistic Ljung–Box Statistic, QLB

1 0.004656 0.03292 0.0012
2 −0.102647 −0.72581 0.5719
3 0.136810 0.95734 1.6073
4 −0.033988 −0.23359 1.6726
5 0.118876 0.81611 2.4891
6 0.181508 1.22982 4.4358
7 −0.039223 −0.25807 4.5288
8 −0.118989 −0.78185 5.4053
9 0.003400 0.02207 5.4061

10 0.034631 0.22482 5.4840
11 −0.151935 −0.98533 7.0230
12 −0.207710 −1.32163 9.9749
13 0.089387 0.54987 10.5363

If a time series consists of uncorrelated observations and has constant
variance, we say that it is white noise. If, in addition, the observations
in this time series are normally distributed, the time series is Gaussian
white noise. Ideally, forecast errors are Gaussian white noise. The normal
probability plot of the one-step-ahead forecast errors from Table 2.3 are
shown in Figure 2.37. This plot does not indicate any serious problem, with
the normality assumption, so the forecast errors in Table 2.3 are Gaussian
white noise.
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If a time series is white noise, the distribution of the sample autocorre-
lation coefficient at lag k in large samples is approximately normal with
mean zero and variance 1/T; that is,

rk ∼ N
(

0,
1
T

)
.
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FIGURE 2.37 Normal probability plot of forecast errors from Table 2.3.
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Therefore we could test the hypothesis H0 : 𝜌k = 0 using the test statistic

Z0 =
rk√

1
T

= rk

√
T. (2.40)

Minitab calculates this Z-statistic (calling it a t-statistic), and it is reported
in Table 2.4 for the one-step-ahead forecast errors of Table 2.3 (this is the
t-statistic reported in Figure 2.13 for the ACF of the chemical viscosity
readings). Large values of this statistic (say, |Z0| > Z

𝛼∕2, where Z
𝛼∕2 is the

upper 𝛼∕2 percentage point of the standard normal distribution) would
indicate that the corresponding autocorrelation coefficient does not equal
zero. Alternatively, we could calculate a P-value for this test statistic.
Since none of the absolute values of the Z-statistics in Table 2.4 exceeds
Z
𝛼∕2 = Z0.025 = 1.96, we cannot conclude at significance level 𝛼 = 0.05

that any individual autocorrelation coefficient differs from zero.
This procedure is a one-at-a-time test; that is, the significance level

applies to the autocorrelations considered individually. We are often inter-
ested in evaluating a set of autocorrelations jointly to determine if they
indicate that the time series is white noise. Box and Pierce (1970) have
suggested such a procedure. Consider the square of the test statistic Z0 in
Eq. (2.40). The distribution of Z2

0 = r2
k T is approximately chi-square with

one degree of freedom. The Box–Pierce statistic

QBP = T
K∑

k=1

r2
k (2.41)

is distributed approximately as chi-square with Kdegrees of freedom under
the null hypothesis that the time series is white noise. Therefore, if QBP >

𝜒
2
𝛼,K we would reject the null hypothesis and conclude that the time series

is not white noise because some of the autocorrelations are not zero. A
P-value approach could also be used. When this test statistic is applied
to a set of residual autocorrelations the statistic QBP ∼ 𝜒

2
𝛼,K−p, where

p is the number of parameters in the model, so the number of degrees
of freedom in the chi-square distribution becomes K − p. Box and Pierce
call this procedure a “Portmanteau” or general goodness-of-fit statistic (it
is testing the goodness of fit of the ACF to the ACF of white noise). A
modification of this test that works better for small samples was devised
by Ljung and Box (1978). The Ljung–Box goodness-of-fit statistic is

QLB = T(T + 2)
K∑

k=1

( 1
T − k

)
r2

k . (2.42)
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Note that the Ljung–Box goodness-of-fit statistic is very similar to the
original Box–Pierce statistic, the difference being that the squared sample
autocorrelation at lag k is weighted by (T + 2)∕(T − k). For large values
of T, these weights will be approximately unity, and so the QLB and QBP
statistics will be very similar.

Minitab calculates the Ljung–Box goodness-of-fit statistic QLB, and
the values for the first 13 sample autocorrelations of the one-step-ahead
forecast errors of Table 2.3 are shown in the last column of Table 2.4. At
lag 13, the value QLB = 10.5363, and since 𝜒

2
0.05,13

= 22.36, there is no
strong evidence to indicate that the first 13 autocorrelations of the forecast
errors considered jointly differ from zero. If we calculate the P-value for
this test statistic, we find that P = 0.65. This is a good indication that the
forecast errors are white noise. Note that Figure 2.13 also gave values for
the Ljung–Box statistic.

2.6.2 Choosing Between Competing Models

There are often several competing models that can be used for forecasting
a particular time series. For example, there are several ways to model and
forecast trends. Consequently, selecting an appropriate forecasting model
is of considerable practical importance. In this section we discuss some
general principles of model selection. In subsequent chapters, we will
illustrate how these principles are applied in specific situations.

Selecting the model that provides the best fit to historical data generally
does not result in a forecasting method that produces the best forecasts
of new data. Concentrating too much on the model that produces the best
historical fit often results in overfitting, or including too many param-
eters or terms in the model just because these additional terms improve
the model fit. In general, the best approach is to select the model that
results in the smallest standard deviation (or mean squared error) of the
one-step-ahead forecast errors when the model is applied to data that
were not used in the fitting process. Some authors refer to this as an out-
of-sample forecast error standard deviation (or mean squared error). A
standard way to measure this out-of-sample performance is by utilizing
some form of data splitting; that is, divide the time series data into two
segments—one for model fitting and the other for performance testing.
Sometimes data splitting is called cross-validation. It is somewhat arbi-
trary as to how the data splitting is accomplished. However, a good rule of
thumb is to have at least 20 or 25 observations in the performance testing
data set.
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When evaluating the fit of the model to historical data, there are several
criteria that may be of value. The mean squared error of the residuals is

s2 =

T∑
t=1

e2
t

T − p
(2.43)

where T periods of data have been used to fit a model with p parameters
and et is the residual from the model-fitting process in period t. The mean
squared error s2 is just the sample variance of the residuals and it is an
estimator of the variance of the model errors.

Another criterion is the R-squared statistic

R2 = 1 −

T∑
t=1

e2
t

T∑
t=1

(yt − ȳ)2

. (2.44)

The denominator of Eq. (2.44) is just the total sum of squares of the
observations, which is constant (not model dependent), and the numerator
is just the residual sum of squares. Therefore, selecting the model that
maximizes R2 is equivalent to selecting the model that minimizes the
sum of the squared residuals. Large values of R2 suggest a good fit to
the historical data. Because the residual sum of squares always decreases
when parameters are added to a model, relying on R2 to select a forecasting
model encourages overfitting or putting in more parameters than are really
necessary to obtain good forecasts. A large value of R2 does not ensure
that the out-of-sample one-step-ahead forecast errors will be small.

A better criterion is the “adjusted” R2 statistic, defined as

R2
Adj = 1 −

T∑
t=1

e2
t ∕(T − p)

T∑
t=1

(yt − ȳ)2∕(T − 1)

= 1 − s2

T∑
t=1

(yt − ȳ)2∕(T − 1)

. (2.45)

The adjustment is a “size” adjustment—that is, adjust for the number of
parameters in the model. Note that a model that maximizes the adjusted
R2 statistic is also the model that minimizes the residual mean square.
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Two other important criteria are the Akaike Information Criterion
(AIC) (see Akaike (1974)) and the Schwarz Bayesian Information
Criterion (abbreviated as BIC or SIC by various authors) (see Schwarz
(1978)):

AIC = ln

⎛⎜⎜⎜⎜⎝

T∑
t=1

e2
t

T

⎞⎟⎟⎟⎟⎠
+

2p

T
(2.46)

and

BIC = ln

⎛⎜⎜⎜⎜⎝

T∑
t=1

e2
t

T

⎞⎟⎟⎟⎟⎠
+

p ln(T)
T

. (2.47)

These two criteria penalize the sum of squared residuals for including
additional parameters in the model. Models that have small values of the
AIC or BIC are considered good models.

One way to evaluate model selection criteria is in terms of consistency.
A model selection criterion is consistent if it selects the true model when the
true model is among those considered with probability approaching unity
as the sample size becomes large, and if the true model is not among those
considered, it selects the best approximation with probability approaching
unity as the sample size becomes large. It turns out that s2, the adjusted R2,
and the AIC are all inconsistent, because they do not penalize for adding
parameters heavily enough. Relying on these criteria tends to result in
overfitting. The BIC, which caries a heavier “size adjustment” penalty, is
consistent.

Consistency, however, does not tell the complete story. It may turn
out that the true model and any reasonable approximation to it are very
complex. An asymptotically efficient model selection criterion chooses
a sequence of models as T(the amount of data available) gets large for
which the one-step-ahead forecast error variances approach the one-step-
ahead forecast error variance for the true model at least as fast as any other
criterion. The AIC is asymptotically efficient but the BIC is not.

There are a number of variations and extensions of these criteria.
The AIC is a biased estimator of the discrepancy between all candidate
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models and the true model. This has led to developing a “corrected” version
of AIC:

AICc = ln

⎛⎜⎜⎜⎜⎝

T∑
t=1

e2
t

T

⎞⎟⎟⎟⎟⎠
+

2T(p + 1)
T − p − 2

. (2.48)

Sometimes we see the first term in the AIC, AICc, or BIC written as
−2 lnL(𝜷, 𝜎2), where L(𝜷,𝜎2) is the likelihood function for the fitted
model evaluated at the maximum likelihood estimates of the unknown
parameters 𝜷 and 𝜎

2. In this context, AIC, AICc, and SIC are called penal-
ized likelihood criteria.

Many software packages evaluate and print model selection criteria,
such as those discussed here. When both AIC and SIC are available, we
prefer using SIC. It generally results in smaller, and hence simpler, models,
and so its use is consistent with the time-honored model-building principle
of parsimony (all other things being equal, simple models are preferred to
complex ones). We will discuss and illustrate model selection criteria again
in subsequent chapters. However, remember that the best way to evaluate a
candidate model’s potential predictive performance is to use data splitting.
This will provide a direct estimate of the one-step-ahead forecast error
variance, and this method should always be used, if possible, along with
the other criteria that we have discussed here.

2.6.3 Monitoring a Forecasting Model

Developing and implementing procedures to monitor the performance of
the forecasting model is an essential component of good forecasting system
design. No matter how much effort has been expended in developing the
forecasting model, and regardless of how well the model works initially,
over time it is likely that its performance will deteriorate. The underlying
pattern of the time series may change, either because the internal inertial
forces that drive the process may evolve through time, or because of exter-
nal events such as new customers entering the market. For example, a level
change or a slope change could occur in the variable that is being fore-
casted. It is also possible for the inherent variability in the data to increase.
Consequently, performance monitoring is important.

The one-step-ahead forecast errors et(1) are typically used for forecast
monitoring. The reason for this is that changes in the underlying time series
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will also typically be reflected in the forecast errors. For example, if a level
change occurs in the time series, the sequence of forecast errors will no
longer fluctuate around zero; that is, a positive or negative bias will be
introduced.

There are several ways to monitor forecasting model performance. The
simplest way is to apply Shewhart control charts to the forecast errors. A
Shewhart control chart is a plot of the forecast errors versus time containing
a center line that represents the average (or the target value) of the forecast
errors and a set of control limits that are designed to provide an indication
that the forecasting model performance has changed. The center line is
usually taken as either zero (which is the anticipated forecast error for
an unbiased forecast) or the average forecast error (ME from Eq. (2.32)),
and the control limits are typically placed at three standard deviations
of the forecast errors above and below the center line. If the forecast
errors plot within the control limits, we assume that the forecasting model
performance is satisfactory (or in control), but if one or more forecast errors
exceed the control limits, that is a signal that something has happened and
the forecast errors are no longer fluctuating around zero. In control chart
terminology, we would say that the forecasting process is out of control
and some analysis is required to determine what has happened.

The most familiar Shewhart control charts are those applied to data
that have been collected in subgroups or samples. The one-step-ahead
forecast errors et(1) are individual observations. Therefore the Shewhart
control chart for individuals would be used for forecast monitoring. On this
control chart it is fairly standard practice to estimate the standard deviation
of the individual observations using a moving range method. The moving
range is defined as the absolute value of the difference between any two
successive one-step-ahead forecast errors, say, |et(1) − et−1(1)|, and the
moving range based on n observations is

MR =
n∑

t=2

|et(1) − et−1(1)|. (2.49)

The estimate of the standard deviation of the one-step-ahead forecast
errors is based on the average of the moving ranges

�̂�e(1) =
0.8865MR

n − 1
=

0.8865
n∑

t=2
|et(1) − et−1(1)|
n − 1

= 0.8865MR, (2.50)

where MR is the average of the moving ranges. This estimate of the standard
deviation would be used to construct the control limits on the control chart
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for forecast errors. For more details on constructing and interpreting control
charts, see Montgomery (2013).

Example 2.12 Minitab can be used to construct Shewhart control charts
for individuals. Figure 2.38 shows the Minitab control charts for the one-
step-ahead forecast errors in Table 2.3. Note that both an individuals control
chart of the one-step-ahead forecast errors and a control chart of the moving
ranges of these forecast errors are provided. On the individuals control
chart the center line is taken to be the average of the forecast errors ME
defined in Eq. (2.30) (denoted X in Figure 2.38) and the upper and lower
three-sigma control limits are abbreviated as UCL and LCL, respectively.
The center line on the moving average control chart is at the average of
the moving ranges MR = MR∕(n − 1), the three-sigma upper control limit
UCL is at 3.267MR∕(n − 1), and the lower control limit is at zero (for
details on how the control limits are derived, see Montgomery (2013)). All
of the one-step-ahead forecast errors plot within the control limits (and the
moving range also plot within their control limits). Thus there is no reason
to suspect that the forecasting model is performing inadequately, at least
from the statistical stability viewpoint. Forecast errors that plot outside the
control limits would indicate model inadequacy, or possibly the presence of
unusual observations such as outliers in the data. An investigation would be
required to determine why these forecast errors exceed the control limits.
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FIGURE 2.38 Individuals and moving range control charts of the one-step-
ahead forecast errors in Table 2.3.
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Because the control charts in Figure 2.38 exhibit statistical control, we
would conclude that there is no strong evidence of statistical inadequacy
in the forecasting model. Therefore, these control limits would be retained
and used to judge the performance of future forecasts (in other words, we
do not recalculate the control limits with each new forecast). However,
the stable control chart does not imply that the forecasting performance
is satisfactory in the sense that the model results in small forecast errors.
In the quality control literature, these two aspects of process performance
are referred to as control and capability, respectively. It is possible for the
forecasting process to be stable or in statistical control but not capable—
that is, produce forecast errors that are unacceptably large.

Two other types of control charts, the cumulative sum (or CUSUM)
control chart and the exponentially weighted moving average (or EWMA)
control chart, can also be useful for monitoring the performance of a
forecasting model. These charts are more effective at detecting smaller
changes or disturbances in the forecasting model performance than the
individuals control chart. The CUSUM is very effective in detecting level
changes in the monitored variable. It works by accumulating deviations of
the forecast errors that are above the desired target value T0 (usually either
zero or the average forecast error) with one statistic C+ and deviations that
are below the target with another statistic C−. The statistics C+ and C− are
called the upper and lower CUSUMs, respectively. They are computed as
follows:

C+
t = max[0, et(1) − (T0 + K) + C+

t−1]

C−
t = min[0, et(1) − (T0 − K) + C−

t−1]
, (2.51)

where the constant K, usually called the reference value, is usually chosen
as K = 0.5𝜎e(1) and 𝜎e(1) is the standard deviation of the one-step-ahead
forecast errors. The logic is that if the forecast errors begin to systematically
fall on one side of the target value (or zero), one of the CUSUMs in
Eq. (2.51) will increase in magnitude. When this increase becomes large
enough, an out-of-control signal is generated. The decision rule is to signal
if the statistic C+ exceeds a decision interval H = 5𝜎e(1) or if C− exceeds
−H. The signal indicates that the forecasting model is not performing
satisfactorily (Montgomery (2013) discusses the choice of H and K in
detail).

Example 2.13 The CUSUM control chart for the forecast errors shown
in Table 2.3 is shown in Figure 2.39. This CUSUM chart was constructed
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FIGURE 2.39 CUSUM control chart of the one-step-ahead forecast errors in
Table 2.3.

using Minitab with a target value of T = 0 and 𝜎e(1) was estimated using
the moving range method described previously, resulting in H = 5�̂�e(1) =
5(0.8865)MR∕(T − 1) = 5(0.8865)3.24 = 14.36. Minitab labels H and−H
as UCL and LCL, respectively. The CUSUM control chart reveals no
obvious forecasting model inadequacies.

A control chart based on the EWMA is also useful for monitoring
forecast errors. The EWMA applied to the one-step-ahead forecast errors
is

ēt(1) = 𝜆et(1) + (1 − 𝜆)ēt−1(1), (2.52)

where 0 < 𝜆 < 1 is a constant (usually called the smoothing constant)
and the starting value of the EWMA (required at the first observation) is
either ē0(1) = 0 or the average of the forecast errors. Typical values of the
smoothing constant for an EWMA control chart are 0.05 < 𝜆 < 0.2.

The EWMA is a weighted average of all current and previous forecast
errors, and the weights decrease geometrically with the “age” of the forecast
error. To see this, simply substitute recursively for ēt−1(1), then ēt−2(1), then
ēt−j(1)j for j = 3, 4,…, until we obtain

ēn(1) = 𝜆

n−1∑
j=0

(1 − 𝜆)jeT−j(1) + (1 − 𝜆)nē0(1)
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and note that the weights sum to unity because

𝜆

n−1∑
j=0

(1 − 𝜆)j = 1 − (1 − 𝜆)n
.

The standard deviation of the EWMA is

𝜎ēt(1) = 𝜎e(1)

√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2t].

So an EWMA control chart for the one-step-ahead forecast errors with a
center line of T (the target for the forecast errors) is defined as follows:

UCL = T + 3𝜎e(1)

√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2t]

Center line = T

LCL = T − 3𝜎e(1)

√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2t]

(2.53)

Example 2.14 Minitab can be used to construct EWMA control charts.
Figure 2.40 is the EWMA control chart of the forecast errors in Table 2.3.
This chart uses the mean forecast error as the center line,𝜎e(1) was estimated
using the moving range method, and we chose𝜆 = 0.1. None of the forecast
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FIGURE 2.40 EWMA control chart of the one-step-ahead forecast errors in
Table 2.3.
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errors exceeds the control limits so there is no indication of a problem with
the forecasting model.

Note from Eq. (2.51) and Figure 2.40 that the control limits on the
EWMA control chart increase in width for the first few observations
and then stabilize at a constant value because the term [1 − (1 − 𝜆)2t]
approaches unity as t increases. Therefore steady-state limits for the
EWMA control chart are

UCL = T0 + 3𝜎e(1)

√
𝜆

2 − 𝜆

Center line = T

LCL = T0 − 3𝜎e(1)

√
𝜆

2 − 𝜆
.

(2.54)

In addition to control charts, other statistics have been suggested for
monitoring the performance of a forecasting model. The most common of
these are tracking signals. The cumulative error tracking signal (CETS) is
based on the cumulative sum of all current and previous forecast errors, say,

Y(n) =
n∑

t=1

et(1) = Y(n − 1) + en(1).

If the forecasts are unbiased, we would expect Y(n) to fluctuate around
zero. If it differs from zero by very much, it could be an indication that
the forecasts are biased. The standard deviation of Y(n), say, 𝜎Y(n), will
provide a measure of how far Y(n) can deviate from zero due entirely
to random variation. Therefore, we would conclude that the forecast
is biased if |Y(n)| exceeds some multiple of its standard deviation. To
operationalize this, suppose that we have an estimate �̂�Y(n) of 𝜎Y(n) and
form the cumulative error tracking signal

CETS =
|||||
Y(n)
�̂�Y(n)

||||| . (2.55)

If the CETS exceeds a constant, say, K1, we would conclude that the
forecasts are biased and that the forecasting model may be inadequate.

It is also possible to devise a smoothed error tracking signal based
on the smoothed one-step-ahead forecast errors in Eq. (2.52). This would
lead to a ratio

SETS =
|||||
ēn(1)

�̂�ēn(1)

||||| . (2.56)
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If the SETS exceeds a constant, say, K2, this is an indication that the fore-
casts are biased and that there are potentially problems with the forecasting
model.

Note that the CETS is very similar to the CUSUM control chart and
that the SETS is essentially equivalent to the EWMA control chart. Fur-
thermore, the CUSUM and EWMA are available in standard statistics
software (such as Minitab) and the tracking signal procedures are not.
So, while tracking signals have been discussed extensively and recom-
mended by some authors, we are not going to encourage their use. Plotting
and periodically visually examining a control chart of forecast errors is
also very informative, something that is not typically done with tracking
signals.

2.7 R COMMANDS FOR CHAPTER 2

Example 2.15 The data are in the second column of the array called
gms.data in which the first column is the year. For moving averages, we
use functions from package “zoo.”

plot(gms.data,type="l",xlab='Year',ylab='Average Amount of
Anomaly, ◦C')
points(gms.data,pch=16,cex=.5)
lines(gms.data[5:125,1],rollmean(gms.data[,2],5),col="red")
points(gms.data[5:125,1],rollmean(gms.data[,2],5),col="red",pch=15,
cex=.5)
legend(1980,-.3,c("Actual","Fits"), pch=c(16,15),lwd=c(.5,.5),
cex=.55,col=c("black","red"))
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Example 2.16 The data are in the second column of the array called
vis.data in which the first column is the time period (or index).

# Moving Average
plot(vis.data,type="l",xlab='Time Period',ylab='Viscosity, cP')
points(vis.data,pch=16,cex=.5)
lines(vis.data[5:100,1], rollmean(vis.data[,2],5),col="red")
points(vis.data[5:100,1], rollmean(vis.data[,2],5),col="red",
pch=15,cex=.5)
legend(1,61,c("Actual","Fits"), pch=c(16,15),lwd=c(.5,.5),cex=.55,
col=c("black","red"))
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# Moving Median
plot(vis.data,type="l",xlab='Time Period',ylab='Viscosity, cP')
points(vis.data,pch=16,cex=.5)
lines(vis.data[5:100,1], rollmedian(vis.data[,2],5),col="red")
points(vis.data[5:100,1], rollmedian(vis.data[,2],5),col="red",
pch=15,cex=.5)
legend(1,61,c("Actual","Fits"), pch=c(16,15),lwd=c(.5,.5),cex=.55,
col=c("black","red"))
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Example 2.17 The pharmaceutical sales data are in the second column
of the array called pharma.data in which the first column is the week.

The viscosity data are in the second column of the array called vis.data
in which the first column is the year (Note that the 70th observation is
corrected).

nrp<-dim(pharma.data)[1]

nrv<-dim(vis.data)[1]

plot(pharma.data[1:(nrp-1),2], pharma.data[2:nrp,2],type="p",
xlab='Sales, Week t',ylab=' Sales, Week t+1',pch=20,cex=1)

plot(vis.data[1:(nrv-1),2], vis.data[2:nrv,2],type="p", xlab=
'Reading, Time Period t',ylab=' Reading, Time Period t+1',pch=20,
cex=1)
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Example 2.18 The viscosity data are in the second column of the array
called vis.data in which the first column is the year (Note that the 70th
observation is corrected).

acf(vis.data[,2], lag.max=25,type="correlation",main="ACF of
viscosity readings")
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Example 2.19 The cheese production data are in the second column of
the array called cheese.data in which the first column is the year.

fit.cheese<-lm(cheese.data[,2]~cheese.data[,1])
plot(cheese.data,type="l",xlab='Year',ylab='Production, 10000lb')
points(cheese.data,pch=16,cex=.5)
lines(cheese.data[,1], fit.cheese$fit,col="red",lty=2)
legend(1990,12000,c("Actual","Fits"),
pch=c(16,NA),lwd=c(.5,.5),lty=c(1,2),cex=.55,col=c("black","red"))

1950 1960 1970 1980 1990

10
,0

00
30

,0
00

Year

P
ro

du
ct

io
n,

 1
0,

00
0 

lb

Actual
Fits



88 STATISTICS BACKGROUND FOR FORECASTING

par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(fit.cheese$res,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(fit.cheese$res,datax=TRUE)
plot(fit.cheese$fit,fit.cheese$res,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(fit.cheese$res,col="gray",xlab='Residual',main='')
plot(fit.cheese$res,type="l",xlab='Observation Order',
ylab='Residual')
points(fit.cheese$res,pch=16,cex=.5)
abline(h=0)
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Example 2.20 The cheese production data are in the second column of
the array called cheese.data in which the first column is the year.

nrc<-dim(cheese.data)[1]
dcheese.data<-cbind(cheese.data[2:nrc,1],diff(cheese.data[,2]))
fit.dcheese<-lm(dcheese.data[,2]~dcheese.data[,1])
plot(dcheese.data,type="l",xlab='',ylab='Production, d=1')
points(dcheese.data,pch=16,cex=.5)
lines(dcheese.data[,1], fit.dcheese$fit,col="red",lty=2)
legend(1952,-2200,c("Actual","Fits"),
pch=c(16,NA),lwd=c(.5,.5),lty=c(1,2),
cex=.75,col=c("black","red"))
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par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(fit.dcheese$res,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(fit.dcheese$res,datax=TRUE)
plot(fit.dcheese$fit,fit.dcheese$res,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(fit.dcheese$res,col="gray",xlab='Residual',main='')
plot(fit.dcheese$res,type="l",xlab='Observation Order',
ylab='Residual')
points(fit.dcheese$res,pch=16,cex=.5)
abline(h=0)
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Example 2.21 The beverage sales data are in the second column of the
array called bev.data in which the first column is the month of the year.

nrb<-dim(bev.data)[1]
tt<-1:nrb
dsbev.data<-bev.data
dsbev.data[,2]<- c(array(NA,dim=c(12,1)),diff(bev.data[,2],12))

plot(tt,dsbev.data[,2],type="l",xlab='',ylab='Seasonal d=12',
xaxt='n')axis(1,seq(1,nrb,24),labels=dsbev.data[seq(1,nrb,24),1])
points(tt,dsbev.data[,2],pch=16,cex=.5)
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dstbev.data<-dsbev.data
dstbev.data[,2]<- c(NA,diff(dstbev.data[,2],1))
fit.dstbev<-lm(dstbev.data[,2]~tt)
plot(tt,dstbev.data[,2],type="l",xlab='',ylab='Seasonal d=12 with
Trend d=1',xaxt='n')
axis(1,seq(1,nrb,24),labels=dsbev.data[seq(1,nrb,24),1])
points(tt,dstbev.data[,2],pch=16,cex=.5)
lines(c(array(NA,dim=c(12,1)),fit.dstbev$fit),col="red",lty=2)
legend(2,-300,c("Actual","Fits"),
pch=c(16,NA),lwd=c(.5,.5),lty=c(1,2),cex=.75,col=c("black","red"))
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par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(fit.dstbev$res,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(fit.dstbev$res,datax=TRUE)
plot(fit.dstbev$fit,fit.dstbev$res,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(fit.dstbev$res,col="gray",xlab='Residual',main='')
plot(fit.dstbev$res,type="l",xlab='Observation Order',
ylab='Residual')
points(fit.dstbev$res,pch=16,cex=.5)
abline(h=0)
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Example 2.22 The beverage sales data are in the second column of the
array called bev.data in which the first column is the month of the year.

Software packages use different methods for decomposing a time series.
Below we provide the code of doing it in R without using these functions.
Note that we use the additive model.

nrb<-dim(bev.data)[1]

# De-trend the data
tt<-1:nrb
fit.tbev<-lm(bev.data[,2]~tt)
bev.data.dt<-fit.tbev$res

# Obtain seasonal medians for each month, seasonal period is sp=12
sp<-12
smed<-apply(matrix(bev.data.dt,nrow=sp),1,median)

# Adjust the medians so that their sum is zero
smed<-smed-mean(smed)

# Data without the trend and seasonal components
bev.data.dts<-bev.data.dt-rep(smed,nrb/sp)

# Note that we can also reverse the order, i.e. first take the
seasonality out
smed2<-apply(matrix(bev.data[,2],nrow=sp),1,median)
smed2<-smed2-mean(smed2)
bev.data.ds<-bev.data[,2]-rep(smed2,nrb/sp)

# To reproduce Figure 2.25

par(mfrow=c(2,2),oma=c(0,0,0,0))
plot(tt,bev.data[,2],type="l",xlab='(a) Original Data',ylab=
'Data',xaxt='n')
axis(1,seq(1,nrb,24),labels=bev.data[seq(1,nrb,24),1])
points(tt,bev.data[,2],pch=16,cex=.75)

plot(tt, bev.data.dt,type="l",xlab='(b) Detrended Data',ylab='Detr.
Data',xaxt='n')
axis(1,seq(1,nrb,24),labels=bev.data[seq(1,nrb,24),1])

points(tt, bev.data.dt,pch=16,cex=.75)
plot(tt, bev.data.ds,type="l",xlab='(c) Seasonally Adjusted Data',
ylab='Seas.
Adj. Data',xaxt='n')
axis(1,seq(1,nrb,24),labels=bev.data[seq(1,nrb,24),1])

points(tt, bev.data.ds,pch=16,cex=.75)
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plot(tt, bev.data.dts,type="l",xlab='(c) Seasonally Adj. and
Detrended Data',ylab='Seas. Adj. and Detr. Data',xaxt='n')
axis(1,seq(1,nrb,24),labels=bev.data[seq(1,nrb,24),1]) points(tt,
bev.data.dts, pch=16,cex=.75)
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Example 2.23 Functions used to fit a time series model often also
provide summary statistics. However, in this example we provide some
calculations for a given set of forecast errors as provided in the text.

# original data and forecast errors
yt<-c(47,46,51,44,54,47,52,45,50,51,49,41,48,50,51,55,52,53,48,52)
fe<-c(-4.1,-6.9,2.2,-4.1,4.3,-.5,.8,-8.1,-4.4,-.2,-4.3,-5.5,-5.1,
-2.1,4.2,7.3,6.6,5.9,-3.8,6.2)

ME<-mean(fe)
MAD<-mean(abs(fe))
MSE<-mean(feˆ2)
ret1<-(fe/yt)*100
MPE<-mean(ret1)
MAPE<-mean(abs(ret1))

> ME
[1] -0.58
> MAD
[1] 4.33
> MSE
[1] 23.59
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> MPE
[1] -1.757938
> MAPE
[1] 8.865001

Example 2.24 The forecast error data are in the second column of the
array called fe2.data in which the first column is the period.

acf.fe2<-acf(fe2.data[,2],main='ACF of Forecast Error (Ex 2.11)')
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# To get the QLB statistic, we first define the lag K

K<-13
T<-dim(fe2.data)[1]
QLB<-T*(T+2)*sum((1/(T-1:K))*(acf.fe2$acf[2:(K+1)]ˆ2))

# Upper 5% of 𝜒
2 distribution with K degrees of freedom

qchisq(.95,K)

Example 2.25 The forecast error data are in the second column of the
array called fe2.data in which the first column is the period.

# The following function can be found in qcc package
# Generating the chart for individuals
qcc(fe2.data[,2],type="xbar.one",title="Individuals Chart for the
Forecast Error")
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Individuals chart for the forecast error
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Example 2.26 The forecast error data are in the second column of the
array called fe2.data in which the first column is the period.

# The following function can be found in qcc package
# Generating the cusum chart

cusum(fe2.data[,2], title='Cusum Chart for the Forecast
Error', sizes=1)
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Example 2.27 The forecast error data are in the second column of the
array called fe2.data in which the first column is the period.

# The following function can be found in qcc package
# Generating the EWMA chart
ewma(fe2.data[,2], title='EWMA Chart for the Forecast Error',
lambda=.1,sizes=1)
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Group

G
ro

up
 s

um
m

ar
y 

st
at

is
tic

s

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48

–4
–2

0
2

4
6

LCL

UCL

Number of groups = 50
Center = 0.282
StdDev = 2.875597

Smoothing parameter = 0.1
Control limits at 3*sigma
No. of points beyond limits = 0

EXERCISES

2.1 Consider the US Treasury Securities rate data in Table B.1
(Appendix B). Find the sample autocorrelation function and
the variogram for these data. Is the time series stationary or
nonstationary?

2.2 Consider the data on US production of blue and gorgonzola cheeses
in Table B.4.
a. Find the sample autocorrelation function and the variogram for

these data. Is the time series stationary or nonstationary?
b. Take the first difference of the time series, then find the sample

autocorrelation function and the variogram. What conclusions
can you draw about the structure and behavior of the time series?
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2.3 Table B.5 contains the US beverage product shipments data. Find the
sample autocorrelation function and the variogram for these data. Is
the time series stationary or nonstationary?

2.4 Table B.6 contains two time series: the global mean surface air
temperature anomaly and the global CO2 concentration. Find the
sample autocorrelation function and the variogram for both of these
time series. Is either one of the time series stationary?

2.5 Reconsider the global mean surface air temperature anomaly and the
global CO2 concentration time series from Exercise 2.4. Take the
first difference of both time series. Find the sample autocorrelation
function and variogram of these new time series. Is either one of
these differenced time series stationary?

2.6 Find the closing stock price for a stock that interests you for the last
200 trading days. Find the sample autocorrelation function and the
variogram for this time series. Is the time series stationary?

2.7 Reconsider the Whole Foods Market stock price data from Exercise
2.6. Take the first difference of the data. Find the sample autocor-
relation function and the variogram of this new time series. Is this
differenced time series stationary?

2.8 Consider the unemployment rate data in Table B.8. Find the sample
autocorrelation function and the variogram for this time series. Is
the time series stationary or nonstationary? What conclusions can
you draw about the structure and behavior of the time series?

2.9 Table B.9 contains the annual International Sunspot Numbers. Find
the sample autocorrelation function and the variogram for this time
series. Is the time series stationary or nonstationary?

2.10 Table B.10 contains data on the number of airline miles flown in the
United Kingdom. This is strongly seasonal data. Find the sample
autocorrelation function for this time series.
a. Is the seasonality apparent in the sample autocorrelation func-

tion?
b. Is the time series stationary or nonstationary?

2.11 Reconsider the data on the number of airline miles flown in the
United Kingdom from Exercise 2.10. Take the natural logarithm of
the data and plot this new time series.
a. What impact has the log transformation had on the time series?



98 STATISTICS BACKGROUND FOR FORECASTING

b. Find the autocorrelation function for this time series.
c. Interpret the sample autocorrelation function.

2.12 Reconsider the data on the number of airline miles flown in the
United Kingdom from Exercises 2.10 and 2.11. Take the first dif-
ference of the natural logarithm of the data and plot this new time
series.
a. What impact has the log transformation had on the time series?
b. Find the autocorrelation function for this time series.
c. Interpret the sample autocorrelation function.

2.13 The data on the number of airline miles flown in the United Kingdom
in Table B.10 are seasonal. Difference the data at a season lag of
12 months and also apply a first difference to the data. Plot the
differenced series. What effect has the differencing had on the time
series? Find the sample autocorrelation function and the variogram.
What does the sample autocorrelation function tell you about the
behavior of the differenced series?

2.14 Table B.11 contains data on the monthly champagne sales in France.
This is strongly seasonal data. Find the sample autocorrelation func-
tion and variogram for this time series.
a. Is the seasonality apparent in the sample autocorrelation func-

tion?
b. Is the time series stationary or nonstationary?

2.15 Reconsider the champagne sales data from Exercise 2.14. Take the
natural logarithm of the data and plot this new time series.
a. What impact has the log transformation had on the time series?
b. Find the autocorrelation function and variogram for this time

series.
c. Interpret the sample autocorrelation function and variogram.

2.16 Table B.13 contains data on ice cream and frozen yogurt production.
Plot the data and calculate both the sample autocorrelation function
and variogram. Is there an indication of nonstationary behavior in
the time series? Now plot the first difference of the time series
and compute the sample autocorrelation function and variogram of
the first differences. What impact has differencing had on the time
series?

2.17 Table B.14 presents data on CO2 readings from the Mauna Loa
Observatory. Plot the data, then calculate the sample autocorrelation
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function and variogram. Is there an indication of nonstationary
behavior in the time series? Now plot the first difference of the
time series and compute the sample autocorrelation function and
the variogram of the first differences. What impact has differencing
had on the time series?

2.18 Data on violent crime rates are given in Table B.15. Plot the data
and calculate the sample autocorrelation function and variogram. Is
there an indication of nonstationary behavior in the time series? Now
plot the first difference of the time series and compute the sample
autocorrelation function and variogram of the first differences. What
impact has differencing had on the time series?

2.19 Table B.16 presents data on the US Gross Domestic Product (GDP).
Plot the GDP data and calculate the sample autocorrelation function
and variogram. Is there an indication of nonstationary behavior in
the time series? Now plot the first difference of the GDP time series
and compute the sample autocorrelation function and variogram of
the first differences. What impact has differencing had on the time
series?

2.20 Table B.17 contains information on total annual energy consump-
tion. Plot the energy consumption data and calculate the sample
autocorrelation function and variogram. Is there an indication of
nonstationary behavior in the time series? Now plot the first dif-
ference of the time series and compute the sample autocorrelation
function and variogram of the first differences. What impact has
differencing had on the time series?

2.21 Data on US coal production are given in Table B.18. Plot the coal
production data and calculate the sample autocorrelation function
and variogram. Is there an indication of nonstationary behavior in
the time series? Now plot the first difference of the time series
and compute the sample autocorrelation function and variogram of
the first differences. What impact has differencing had on the time
series?

2.22 Consider the CO2 readings from Mauna Loa in Table B.14. Use a six-
period moving average to smooth the data. Plot both the smoothed
data and the original CO2 readings on the same axes. What has
the moving average done? Repeat the procedure with a three-period
moving average. What is the effect of changing the span of the
moving average?
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2.23 Consider the violent crime rate data in Table B.15. Use a ten-period
moving average to smooth the data. Plot both the smoothed data
and the original CO2 readings on the same axes. What has the
moving average done? Repeat the procedure with a four-period
moving average. What is the effect of changing the span of
the moving average?

2.24 Table B.21 contains data from the US Energy Information Admin-
istration on monthly average price of electricity for the residential
sector in Arizona. Plot the data and comment on any features that
you observe from the graph. Calculate and plot the sample ACF and
variogram. Interpret these graphs.

2.25 Reconsider the residential electricity price data from Exercise 2.24.
a. Plot the first difference of the data and comment on any features

that you observe from the graph. Calculate and plot the sam-
ple ACF and variogram for the differenced data. Interpret these
graphs. What impact did differencing have?

b. Now difference the data again at a seasonal lag of 12. Plot the
differenced data and comment on any features that you observe
from the graph. Calculate and plot the sample ACF and variogram
for the differenced data. Interpret these graphs. What impact did
regular differencing combined with seasonal differencing have?

2.26 Table B.22 contains data from the Danish Energy Agency on Danish
crude oil production. Plot the data and comment on any features that
you observe from the graph. Calculate and plot the sample ACF and
variogram. Interpret these graphs.

2.27 Reconsider the Danish crude oil production data from Exercise 2.26.
Plot the first difference of the data and comment on any features that
you observe from the graph. Calculate and plot the sample ACF
and variogram for the differenced data. Interpret these graphs. What
impact did differencing have?

2.28 Use a six-period moving average to smooth the first difference of
the Danish crude oil production data that you computed in Exercise
2.27. Plot both the smoothed data and the original data on the same
axes. What has the moving average done? Does the moving average
look like a reasonable forecasting technique for the differenced data?

2.29 Weekly data on positive laboratory test results for influenza are
shown in Table B.23. Notice that these data have a number of missing
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values. Construct a time series plot of the data and comment on any
relevant features that you observe.
a. What is the impact of the missing observations on your ability to

model and analyze these data?
b. Develop and implement a scheme to estimate the missing values

2.30 Climate data collected from Remote Automated Weather Stations
(RAWS) are used to monitor the weather and to assist land man-
agement agencies with projects such as monitoring air quality,
rating fire danger, and other research purposes. Data from the
Western Regional Climate Center for the mean daily solar radia-
tion (in Langleys) at the Zion Canyon, Utah, station are shown in
Table B.24.
a. Plot the data and comment on any features that you observe.
b. Calculate and plot the sample ACF and variogram. Comment on

the plots.
c. Apply seasonal differencing to the data, plot the data, and con-

struct the sample ACF and variogram. What was the impact of
seasonal differencing?

2.31 Table B.2 contains annual US motor vehicle traffic fatalities along
with other information. Plot the data and comment on any features
that you observe from the graph. Calculate and plot the sample ACF
and variogram. Interpret these graphs.

2.32 Reconsider the motor vehicle fatality data from Exercise 2.31.
a. Plot the first difference of the data and comment on any features

that you observe from the graph. Calculate and plot the sam-
ple ACF and variogram for the differenced data. Interpret these
graphs. What impact did differencing have?

b. Compute a six-period moving average for the differenced data.
Plot the moving average and the original data on the same axes.
Does it seem that the six-period moving average would be a good
forecasting technique for the differenced data?

2.33 Apply the X-11 seasonal decomposition method (or any other sea-
sonal adjustment technique for which you have software) to the
mean daily solar radiation in Table B.24.

2.34 Consider the N-span moving average applied to data that are uncor-
related with mean 𝜇 and variance 𝜎2.
a. Show that the variance of the moving average is Var (Mt) = 𝜎

2∕N.



102 STATISTICS BACKGROUND FOR FORECASTING

b. Show that Cov(Mt, Mt+k) = 𝜎
2 ∑N−k

j=1 (1∕N)2, for k < N.
c. Show that the autocorrelation function is

𝜌k =

{
1 − |k|

N
, k = 1, 2, … , N − 1

0, k ≥ N

2.35 Consider an N-span moving average where each observation is
weighted by a constant, say, aj ≥ 0. Therefore the weighted moving
average at the end of period T is

Mw
T =

T∑
t=T−N+1

aT+1−tyt.

a. Why would you consider using a weighted moving average?
b. Show that the variance of the weighted moving average is Var

(Mw
T ) = 𝜎

2 ∑N
j=i a2

j .

c. Show that Cov(Mw
T , Mw

T+k) = 𝜎
2 ∑N−k

j=1 ajaj+k, |k| < N.

d. Show that the autocorrelation function is

𝜌k =
⎧⎪⎨⎪⎩

(
N−k∑
j=1

ajaj+k

)/(
N∑

j=1
a2

j

)
, k = 1, 2,… , N − 1

0, k ≥ N

2.36 Consider the Hanning filter. This is a weighted moving average.
a. Find the variance of the weighted moving average for the Hanning

filter. Is this variance smaller than the variance of a simple span-3
moving average with equal weights?

b. Find the autocorrelation function for the Hanning filter. Compare
this with the autocorrelation function for a simple span-3 moving
average with equal weights.

2.37 Suppose that a simple moving average of span N is used to forecast
a time series that varies randomly around a constant, that is, yt =
𝜇 + 𝜀t, where the variance of the error term is 𝜎2. The forecast error
at lead one is eT+1(1) = yT+1 − MT . What is the variance of this
lead-one forecast error?

2.38 Suppose that a simple moving average of span N is used to fore-
cast a time series that varies randomly around a constant, that is,
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yt = 𝜇 + 𝜀t, where the variance of the error term is 𝜎2. You are inter-
ested in forecasting the cumulative value of y over a lead time of L
periods, say, yT+1 + yT+2 +⋯ + yT+L.
a. The forecast of this cumulative demand is LMT . Why?
b. What is the variance of the cumulative forecast error?

2.39 Suppose that a simple moving average of span N is used to forecast
a time series that varies randomly around a constant mean, that is,
yt = 𝜇 + 𝜀t. At the start of period t1 the process shifts to a new
mean level, say, 𝜇 + 𝛿. Show that the expected value of the moving
average is

E(MT ) =
⎧⎪⎨⎪⎩
𝜇, T ≤ t1 − 1

𝜇 +
T − t1 + 1

N
𝛿, t1 ≤ T ≤ t1 + N − 2

𝜇 + 𝛿, T ≥ t1 + N − 1

.

2.40 Suppose that a simple moving average of span N is used to forecast
a time series that varies randomly around a constant mean, that
is, yt = 𝜇 + 𝜀t. At the start of period t1 the process experiences a
transient; that is, it shifts to a new mean level, say, 𝜇 + 𝛿, but it
reverts to its original level 𝜇 at the start of period t1 + 1. Show that
the expected value of the moving average is

E(MT ) =
⎧⎪⎨⎪⎩
𝜇, T ≤ t1 − 1

𝜇 + 𝛿

N
, t1 ≤ T ≤ t1 + N − 1

𝜇, T ≥ t1 + N

.

2.41 If a simple N−span moving average is applied to a time series
that has a linear trend, say, yt = 𝛽0 + 𝛽1t + 𝜀t, the moving average
will lag behind the observations. Assume that the observations are
uncorrelated and have constant variance. Show that at time T the
expected value of the moving average is

E(MT) = 𝛽0 + 𝛽1T − N − 1
2

𝛽1.

2.42 Use a three-period moving average to smooth the champagne sales
data in Table B.11. Plot the moving average on the same axes as the
original data. What impact has this smoothing procedure had on the
data?
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TABLE E2.1 One-Step-Ahead Forecast Errors for Exercise 2.44

Period, t et(1) Period, t et(1) Period, t et(1) Period, t et(1)

1 1.83 11 −2.30 21 3.30 31 −0.07
2 −1.80 12 0.65 22 1.036 32 0.57
3 0.09 13 −0.01 23 2.042 33 2.92
4 −1.53 14 −1.11 24 1.04 34 1.99
5 −0.58 15 0.13 25 −0.87 35 1.74
6 0.21 16 −1.07 26 −0.39 36 −0.76
7 1.25 17 0.80 27 −0.29 37 2.35
8 −1.22 18 −1.98 28 2.08 38 −1.91
9 1.32 19 0.02 29 3.36 39 2.22

10 3.63 20 0.25 30 −0.53 40 2.57

2.43 Use a 12-period moving average to smooth the champagne sales
data in Table B.11. Plot the moving average on the same axes as the
original data. What impact has this smoothing procedure had on the
data?

2.44 Table E2.1 contains 40 one-step-ahead forecast errors from a fore-
casting model.
a. Find the sample ACF of the forecast errors. Interpret the results.
b. Construct a normal probability plot of the forecast errors. Is there

evidence to support a claim that the forecast errors are normally
distributed?

c. Find the mean error, the mean squared error, and the mean abso-
lute deviation. Is it likely that the forecasting technique produces
unbiased forecasts?

2.45 Table E2.2 contains 40 one-step-ahead forecast errors from a fore-
casting model.
a. Find the sample ACF of the forecast errors. Interpret the results.
b. Construct a normal probability plot of the forecast errors. Is there

evidence to support a claim that the forecast errors are normally
distributed?

c. Find the mean error, the mean squared error, and the mean abso-
lute deviation. Is it likely that the forecasting method produces
unbiased forecasts?

2.46 Exercises 2.44 and 2.45 present information on forecast errors. Sup-
pose that these two sets of forecast errors come from two different
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TABLE E2.2 One-Step-Ahead Forecast Errors for Exercise 2.45

Period, t et(1) Period, t et(1) Period, t et(1) Period, t et(1)

1 −4.26 11 3.62 21 −6.24 31 −6.42
2 −3.12 12 −5.08 22 −0.25 32 −8.94
3 −1.87 13 −1.35 23 −3.64 33 −1.76
4 0.98 14 3.46 24 5.49 34 −0.57
5 −5.17 15 −0.19 25 −2.01 35 −10.32
6 0.13 16 −7.48 26 −4.24 36 −5.64
7 1.85 17 −3.61 27 −4.61 37 −1.45
8 −2.83 18 −4.21 28 3.24 38 −5.67
9 0.95 19 −6.49 29 −8.66 39 −4.45

10 7.56 20 4.03 30 −1.32 40 −10.23

forecasting methods applied to the same time series. Which of these
two forecasting methods would you recommend for use? Why?

2.47 Consider the forecast errors in Exercise 2.44. Construct individuals
and moving range control charts for these forecast errors. Does the
forecasting system exhibit stability over this time period?

2.48 Consider the forecast errors in Exercise 2.44. Construct a cumulative
sum control chart for these forecast errors. Does the forecasting
system exhibit stability over this time period?

2.49 Consider the forecast errors in Exercise 2.45. Construct individuals
and moving range control charts for these forecast errors. Does the
forecasting system exhibit stability over this time period?

2.50 Consider the forecast errors in Exercise 2.45. Construct a cumulative
sum control chart for these forecast errors. Does the forecasting
system exhibit stability over this time period?

2.51 Ten additional forecast errors for the forecasting model in Exer-
cise 2.44 are as follows: 5.5358, –2.6183, 0.0130, 1.3543, 12.6980,
2.9007, 0.8985, 2.9240, 2.6663, and –1.6710. Plot these additional
10 forecast errors on the individuals and moving range control charts
constructed in Exercise 2.47. Is the forecasting system still working
satisfactorily?

2.52 Plot the additional 10 forecast errors from Exercise 2.51 on the
cumulative sum control chart constructed in Exercise 2.38. Is the
forecasting system still working satisfactorily?





CHAPTER 3

REGRESSION ANALYSIS
AND FORECASTING

Weather forecast for tonight: dark
GEORGE CARLIN, American comedian

3.1 INTRODUCTION

Regression analysis is a statistical technique for modeling and investigating
the relationships between an outcome or response variable and one or
more predictor or regressor variables. The end result of a regression
analysis study is often to generate a model that can be used to forecast or
predict future values of the response variable, given specified values of the
predictor variables.

The simple linear regression model involves a single predictor variable
and is written as

y = 𝛽0 + 𝛽1x + 𝜀, (3.1)

where y is the response, x is the predictor variable, 𝛽0 and 𝛽1 are unknown
parameters, and 𝜀 is an error term. The model parameters or regression
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coefficients 𝛽0 and 𝛽1 have a physical interpretation as the intercept and
slope of a straight line, respectively. The slope 𝛽1 measures the change
in the mean of the response variable y for a unit change in the predictor
variable x. These parameters are typically unknown and must be estimated
from a sample of data. The error term 𝜀 accounts for deviations of the
actual data from the straight line specified by the model equation. We
usually think of 𝜀 as a statistical error, so we define it as a random variable
and will make some assumptions about its distribution. For example, we
typically assume that 𝜀 is normally distributed with mean zero and variance
𝜎

2, abbreviated N(0, 𝜎2). Note that the variance is assumed constant; that
is, it does not depend on the value of the predictor variable (or any other
variable).

Regression models often include more than one predictor or regressor
variable. If there are k predictors, the multiple linear regression model is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk + 𝜀. (3.2)

The parameters 𝛽0, 𝛽1,… , 𝛽k in this model are often called partial regres-
sion coefficients because they convey information about the effect on y of
the predictor that they multiply, given that all of the other predictors in the
model do not change.

The regression models in Eqs. (3.1) and (3.2) are linear regression
models because they are linear in the unknown parameters (the 𝛽’s), and
not because they necessarily describe linear relationships between the
response and the regressors. For example, the model

y = 𝛽0 + 𝛽1x + 𝛽2x2 + 𝜀

is a linear regression model because it is linear in the unknown parameters
𝛽0, 𝛽1, and 𝛽2, although it describes a quadratic relationship between y and
x. As another example, consider the regression model

yt = 𝛽0 + 𝛽1 sin
2𝜋
d

t + 𝛽2 cos
2𝜋
d

t + 𝜀t, (3.3)

which describes the relationship between a response variable y that varies
cyclically with time (hence the subscript t) and the nature of this cyclic
variation can be described as a simple sine wave. Regression models such
as Eq. (3.3) can be used to remove seasonal effects from time series data
(refer to Section 2.4.2 where models like this were introduced). If the
period d of the cycle is specified (such as d = 12 for monthly data with
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an annual cycle), then sin (2𝜋/d)t and cos (2𝜋/d)t are just numbers for
each observation on the response variable and Eq. (3.3) is a standard linear
regression model.

We will discuss the use of regression models for forecasting or making
predictions in two different situations. The first of these is the situation
where all of the data are collected on y and the regressors in a single time
period (or put another way, the data are not time oriented). For exam-
ple, suppose that we wanted to develop a regression model to predict the
proportion of consumers who will redeem a coupon for purchase of a par-
ticular brand of milk (y) as a function of the amount of the discount or face
value of the coupon (x). These data are collected over some specified study
period (such as a month) and the data do not explicitly vary with time. This
type of regression data is called cross-section data. The regression model
for cross-section data is written as

yi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 +⋯ + 𝛽kxik + 𝜀i, i = 1, 2,… , n, (3.4)

where the subscript i is used to denote each individual observation (or case)
in the data set and n represents the number of observations. In the other
situation the response and the regressors are time series, so the regression
model involves time series data. For example, the response variable might
be hourly CO2 emissions from a chemical plant and the regressor variables
might be the hourly production rate, hourly changes in the concentration
of an input raw material, and ambient temperature measured each hour. All
of these are time-oriented or time series data.

The regression model for time series data is written as

yt = 𝛽0 + 𝛽1xt1 + 𝛽2xt2 +⋯ + 𝛽kxtk + 𝜀t, t = 1, 2,… , T (3.5)

In comparing Eq. (3.5) to Eq. (3.4), note that we have changed the obser-
vation or case subscript from i to t to emphasize that the response and
the predictor variables are time series. Also, we have used T instead of
n to denote the number of observations in keeping with our convention
that, when a time series is used to build a forecasting model, T represents
the most recent or last available observation. Equation (3.3) is a specific
example of a time series regression model.

The unknown parameters 𝛽0, 𝛽1,… , 𝛽k in a linear regression model are
typically estimated using the method of least squares. We illustrated least
squares model fitting in Chapter 2 for removing trend and seasonal effects
from time series data. This is an important application of regression models
in forecasting, but not the only one. Section 3.1 gives a formal description



110 REGRESSION ANALYSIS AND FORECASTING

of the least squares estimation procedure. Subsequent sections deal with
statistical inference about the model and its parameters, and with model
adequacy checking. We will also describe and illustrate several ways in
which regression models are used in forecasting.

3.2 LEAST SQUARES ESTIMATION IN LINEAR
REGRESSION MODELS

We begin with the situation where the regression model is used with cross-
section data. The model is given in Eq. (3.4). There are n > k observations
on the response variable available, say, y1, y2,… , yn. Along with each
observed response yi, we will have an observation on each regressor or
predictor variable and xij denotes the ith observation or level of variable xj.
The data will appear as in Table 3.1. We assume that the error term 𝜀 in
the model has expected value E(𝜀) = 0 and variance Var (𝜀) = 𝜎

2, and that
the errors 𝜀i, i = 1, 2,… , n are uncorrelated random variables.

The method of least squares chooses the model parameters (the 𝛽’s) in
Eq. (3.4) so that the sum of the squares of the errors, 𝜀i, is minimized. The
least squares function is

L =
n∑

i=1

𝜀
2
i =

n∑
i=1

(yi − 𝛽0 − 𝛽1xi1 − 𝛽2xi2 −⋯ − 𝛽kxik)2

=
n∑

i=1

(
yi − 𝛽0 −

k∑
j=1

𝛽jxij

)2

.

(3.6)

This function is to be minimized with respect to 𝛽0, 𝛽1,… , 𝛽k. Therefore
the least squares estimators, say, 𝛽0, 𝛽1,… , 𝛽k, must satisfy

𝜕L
𝜕𝛽0

||||𝛽0,𝛽1,…,𝛽k

= −2
n∑

i=1

(
yi − 𝛽0 −

k∑
j=1

𝛽 jxij

)
= 0 (3.7)

TABLE 3.1 Cross-Section Data for Multiple Linear Regression

Observation Response, y x1 x2 … xk

1 y1 x11 x12 … x1k
2 y2 x21 x22 … x2k
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
n yn xn1 xn2 … xnk
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and

𝜕L
𝜕𝛽j

|||||𝛽0,𝛽1,…,𝛽k

= −2
n∑

i=1

(
yi − 𝛽0 −

k∑
j=1

𝛽 jxij

)
xij = 0, j = 1, 2,… , k

(3.8)

Simplifying Eqs. (3.7) and (3.8), we obtain

n𝛽0 + 𝛽1

n∑
i=1

xi1+𝛽2

n∑
i=1

xi2+⋯ + 𝛽k

n∑
i=1

xik =
n∑

i=1

yi (3.9)

𝛽0

n∑
i=1

xi1+𝛽1

n∑
i=1

x2
i1+𝛽2

n∑
i=1

xi2xi1+⋯ + 𝛽k

n∑
i=1

xikxi1 =
n∑

i=1

yixi1

⋮ (3.10)

𝛽0

n∑
i=1

xik+𝛽1

n∑
i=1

xi1xik + 𝛽2

n∑
i=1

xi2xik+⋯ + 𝛽k

n∑
i=1

x2
ik =

n∑
i=1

yixik

These equations are called the least squares normal equations. Note
that there are p = k + 1 normal equations, one for each of the unknown
regression coefficients. The solutions to the normal equations will be the
least squares estimators of the model regression coefficients.

It is simpler to solve the normal equations if they are expressed in matrix
notation. We now give a matrix development of the normal equations that
parallels the development of Eq. (3.10). The multiple linear regression
model may be written in matrix notation as

y = X𝜷 + 𝜺, (3.11)

where

y =
⎡⎢⎢⎢⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎣
1 x11 x12 ⋯ x1k
1 x21 x22 ⋯ x2k
⋮ ⋮ ⋮ ⋮
1 xn1 xn2 ⋯ xnk

⎤⎥⎥⎥⎦
, 𝜷 =

⎡⎢⎢⎢⎣
𝛽0
𝛽1
⋮
𝛽k

⎤⎥⎥⎥⎦
, and 𝜺 =

⎡⎢⎢⎢⎣
𝜀1
𝜀2
⋮
𝜀n

⎤⎥⎥⎥⎦
In general, y is an (n × 1) vector of the observations, X is an (n × p) matrix
of the levels of the regressor variables,𝜷 is a ( p × 1) vector of the regression
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coefficients, and 𝜺 is an (n × 1) vector of random errors. X is usually called
the model matrix, because it is the original data table for the problem
expanded to the form of the regression model that you desire to fit.

The vector of least squares estimators minimizes

L =
n∑

i=1

𝜀
2
i = 𝜺′𝜺 = (y − X𝜷)′(y − X𝜷)

We can expand the right-hand side of L and obtain

L = y′y − 𝜷′X′y − y′X𝜷 + 𝜷 ′X′X𝜷 = y′y − 2𝜷′X′y + 𝜷 ′X′X𝜷,

because 𝜷′X′y is a (1×1) matrix, or a scalar, and its transpose (𝜷′X′y)′ =
y′X𝜷 is the same scalar. The least squares estimators must satisfy

𝜕L
𝜕𝜷

||||�̂� = −2X′y + 2(X′X)�̂� = 0,

which simplifies to

(X′X)�̂� = X′y (3.12)

In Eq. (3.12) X′X is a (p × p) symmetric matrix and X′y is a (p ×
1) column vector. Equation (3.12) is just the matrix form of the least
squares normal equations. It is identical to Eq. (3.10). To solve the normal
equations, multiply both sides of Eq. (3.12) by the inverse of X′X (we
assume that this inverse exists). Thus the least squares estimator of �̂� is

�̂� = (X′X)−1X′y (3.13)

The fitted values of the response variable from the regression model are
computed from

ŷ = X�̂� (3.14)

or in scalar notation,

ŷi = 𝛽0 + 𝛽1xi1 + 𝛽2xi2 +⋯ + 𝛽kxik, i = 1, 2,… , n (3.15)
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The difference between the actual observation yi and the corresponding
fitted value is the residual ei = yi − ŷi, i = 1, 2,… , n. The n residuals can
be written as an (n × 1) vector denoted by

e = y − ŷ = y − X�̂� (3.16)

In addition to estimating the regression coefficients 𝛽0, 𝛽1,… , 𝛽k, it
is also necessary to estimate the variance of the model errors, 𝜎2. The
estimator of this parameter involves the sum of squares of the residuals

SSE = (y − X�̂�)′(y − X�̂�)

We can show that E(SSE) = (n − p)𝜎2, so the estimator of 𝜎2 is the residual
or mean square error

�̂�
2 =

SSE

n − p
(3.17)

The method of least squares is not the only way to estimate the param-
eters in a linear regression model, but it is widely used, and it results in
estimates of the model parameters that have nice properties. If the model is
correct (it has the right form and includes all of the relevant predictors), the
least squares estimator �̂� is an unbiased estimator of the model parameters
𝜷; that is,

E(�̂�) = 𝜷.

The variances and covariances of the estimators �̂� are contained in a (p × p)
covariance matrix

Var (�̂�) = 𝜎
2(X′X)−1 (3.18)

The variances of the regression coefficients are on the main diagonal of
this matrix and the covariances are on the off-diagonals.

Example 3.1 A hospital is implementing a program to improve quality
and productivity. As part of this program, the hospital is attempting to
measure and evaluate patient satisfaction. Table 3.2 contains some of the
data that have been collected for a random sample of 25 recently discharged
patients. The “severity” variable is an index that measures the severity of
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TABLE 3.2 Patient Satisfaction Survey Data

Observation Age (x1) Severity (x2) Satisfaction (y)

1 55 50 68
2 46 24 77
3 30 46 96
4 35 48 80
5 59 58 43
6 61 60 44
7 74 65 26
8 38 42 88
9 27 42 75

10 51 50 57
11 53 38 56
12 41 30 88
13 37 31 88
14 24 34 102
15 42 30 88
16 50 48 70
17 58 61 52
18 60 71 43
19 62 62 46
20 68 38 56
21 70 41 59
22 79 66 26
23 63 31 52
24 39 42 83
25 49 40 75

the patient’s illness, measured on an increasing scale (i.e., more severe
illnesses have higher values of the index), and the response satisfaction is
also measured on an increasing scale, with larger values indicating greater
satisfaction.

We will fit a multiple linear regression model to the patient satisfaction
data. The model is

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝜀,

where y = patient satisfaction, x1 = patient age, and x2 = illness severity.
To solve the least squares normal equations, we will need to set up the X′X
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matrix and the X′y vector. The model matrix X and observation vector y
are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 55 50
1 46 24
1 30 46
1 35 48
1 59 58
1 61 60
1 74 65
1 38 42
1 27 42
1 51 50
1 53 38
1 41 30
1 37 31
1 24 34
1 42 30
1 50 48
1 58 61
1 60 71
1 62 62
1 68 38
1 70 41
1 79 66
1 63 31
1 39 42
1 49 40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

68
77
96
80
43
44
26
88
75
57
56
88
88

102
88
70
52
43
46
56
59
26
52
83
75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The X′X matrix and the X′y vector are

X′X =
⎡⎢⎢⎣

1 1 ⋯ 1
55 46 ⋯ 49
50 24 ⋯ 40

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1 55 50
1 46 24
⋮ ⋮ ⋮
1 49 40

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣

25 1271 1148
1271 69881 60814
1148 60814 56790

⎤⎥⎥⎦
and

X′y =
⎡⎢⎢⎣

1 1 ⋯ 1
55 46 ⋯ 49
50 24 ⋯ 40

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

68
77
⋮
75

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣

1638
76487
70426

⎤⎥⎥⎦
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Using Eq. (3.13), we can find the least squares estimates of the parameters
in the regression model as

�̂� = (X′X)−1X′y

=
⎡⎢⎢⎣
25 1271 1148
1271 69881 60814
1148 60814 56790

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

1638

76487

70426

⎤⎥⎥⎦
=
⎡⎢⎢⎣

0.699946097 −0.006128086 −0.007586982

−0.006128086 0.00026383 −0.000158646

−0.007586982 −0.000158646 0.000340866

⎤⎥⎥⎦
⎡⎢⎢⎣

1638

76487

70426

⎤⎥⎥⎦
=
⎡⎢⎢⎣

143.4720118

−1.031053414

−0.55603781

⎤⎥⎥⎦
Therefore the regression model is

ŷ = 143.472 − 1.031x1 − 0.556x2,

where x1 = patient age and x2 = severity of illness, and we have reported
the regression coefficients to three decimal places.

Table 3.3 shows the output from the JMP regression routine for the
patient satisfaction data. At the top of the table JMP displays a plot of the
actual satisfaction data points versus the fitted values from the regression.
If the fit is “perfect” then the actual-predicted and the plotted points would
lie on a straight 45◦ line. The points do seem to scatter closely along the
45◦ line, suggesting that the model is a reasonably good fit to the data.
Note that, in addition to the fitted regression model, JMP provides a list of
the residuals computed from Eq. (3.16) along with other output that will
provide information about the quality of the regression model. This output
will be explained in subsequent sections, and we will frequently refer back
to Table 3.3.

Example 3.2 Trend Adjustment One way to forecast time series data
that contain a linear trend is with a trend adjustment procedure. This
involves fitting a model with a linear trend term in time, subtracting the
fitted values from the original observations to obtain a set of residuals that
are trend-free, then forecast the residuals, and compute the forecast by
adding the forecast of the residual value(s) to the estimate of trend. We
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TABLE 3.3 JMP Output for the Patient Satisfaction Data in Table 3.2

Actual by Predicted Plot

110

100

90

80

70

S
at

is
fa

ct
io

n 
ac

tu
al

60

50

40

30

20
20 30 40 50 60

Satisfaction predicted

P < .0001 RSq = 0.90 RMSE = 7.1177

70 80 90 100 100

Summary of Fit
RSquare 0.896593
RSquare Adj 0.887192
Root mean square error 7.117667
Mean of response 65.52
Observations (or Sum Wgts) 25

Analysis of Variance

Source DF
Sum of
Squares Mean Square F Ratio

Model 2 9663.694 4831.85 95.3757
Error 22 1114.546 50.66 Prob > F
C. Total 24 10778.240 <.0001∗

Parameter Estimates

Term Estimate Std Error t Ratio Prob> |t|
Intercept 143.47201 5.954838 24.09 <.0001∗

Age −1.031053 0.115611 −8.92 <.0001∗

Severity −0.556038 0.13141 −4.23 0.0003∗

(continued)
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TABLE 3.3 (Continued)

Observation Age Severity Satisfaction Residual

1 55 50 68 9.03781647
2 46 24 77 −5.6986473
3 30 46 96 9.03732988
4 35 48 80 −0.6953274
5 59 58 43 −7.3896674
6 61 60 44 −3.2154849
7 74 65 26 −5.0316015
8 38 42 88 7.06160595
9 27 42 75 −17.279982

10 51 50 57 −6.0863972
11 53 38 56 −11.696744
12 41 30 88 3.48231247
13 37 31 88 −0.0858634
14 24 34 102 2.17855567
15 42 30 88 4.51336588
16 50 48 70 4.77047378
17 58 61 52 2.24739262
18 60 71 43 0.86987755
19 62 62 46 0.92764409
20 68 38 56 3.76905713
21 70 41 59 10.4992774
22 79 66 26 0.67970337
23 63 31 52 −9.2784746
24 39 42 83 3.09265936
25 49 40 75 4.29111788

described and illustrated trend adjustment in Section 2.4.2, and the basic
trend adjustment model introduced there was

yt = 𝛽0 + 𝛽1t + 𝜀, t = 1, 2,… , T .

The least squares normal equations for this model are

T𝛽0 + 𝛽1
T(T + 1)

2
=

T∑
t=1

yt

𝛽0
T(T + 1)

2
+ 𝛽1

T(T + 1)(2T + 1)
6

=
T∑

t=1

tyt
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Because there are only two parameters, it is easy to solve the normal
equations directly, resulting in the least squares estimators

𝛽0 = 2(2T + 1)
T(T − 1)

T∑
t=1

yt −
6

T(T − 1)

T∑
t=1

tyt

𝛽1 = 12
T(T2 − 1)

T∑
t=1

tyt −
6

T(T − 1)

T∑
t=1

yt

Minitab computes these parameter estimates in its trend adjustment
procedure, which we illustrated in Example 2.6. The least squares estimates
obtained from this trend adjustment model depend on the point in time at
which they were computed, that is, T. Sometimes it may be convenient
to keep track of the period of computation and denote the estimates as
functions of time, say, 𝛽0(T) and 𝛽1(T). The model can be used to predict
the next observation by predicting the point on the trend line in period
T + 1, which is 𝛽0(T) + 𝛽1(T)(T + 1), and adding to the trend a forecast
of the next residual, say, êT+1(1). If the residuals are structureless and have
average value zero, the forecast of the next residual would be zero. Then
the forecast of the next observation would be

ŷT+1(T) = 𝛽0(T) + 𝛽1(T)(T + 1)

When a new observation becomes available, the parameter estimates
𝛽0(T) and 𝛽1(T) could be updated to reflect the new information. This
could be done by solving the normal equations again. In some situations
it is possible to devise simple updating equations so that new estimates
𝛽0(T + 1) and 𝛽1(T + 1) can be computed directly from the previous ones
𝛽0(T) and 𝛽1(T) without having to directly solve the normal equations. We
will show how to do this later.

3.3 STATISTICAL INFERENCE IN LINEAR REGRESSION

In linear regression problems, certain tests of hypotheses about the model
parameters and confidence interval estimates of these parameters are help-
ful in measuring the usefulness of the model. In this section, we describe
several important hypothesis-testing procedures and a confidence inter-
val estimation procedure. These procedures require that the errors 𝜀i in
the model are normally and independently distributed with mean zero
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and variance 𝜎
2, abbreviated NID(0, 𝜎2). As a result of this assumption,

the observations yi are normally and independently distributed with mean
𝛽0 +

∑k
j=1 𝛽jxij and variance 𝜎

2.

3.3.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether there
is a linear relationship between the response variable y and a subset of the
predictor or regressor variables x1, x2,… , xk. The appropriate hypotheses
are

H0 : 𝛽1 = 𝛽2 = ⋯ = 𝛽k = 0
H1 : at least one 𝛽j ≠ 0 (3.19)

Rejection of the null hypothesis H0 in Eq. (3.19) implies that at least one of
the predictor variables x1, x2,… , xk contributes significantly to the model.
The test procedure involves an analysis of variance partitioning of the total
sum of squares

SST =
n∑

i=1

(yi − ȳ)2 (3.20)

into a sum of squares due to the model (or to regression) and a sum of
squares due to residual (or error), say,

SST = SSR + SSE (3.21)

Now if the null hypothesis in Eq. (3.19) is true and the model errors are
normally and independently distributed with constant variance as assumed,
then the test statistic for significance of regression is

F0 =
SSR∕k

SSE∕(n − p)
(3.22)

and one rejects H0 if the test statistic F0 exceeds the upper tail point of the
F distribution with k numerator degrees of freedom and n − p denominator
degrees of freedom, F

𝛼,k,n−p. Table A.4 in Appendix A contains these upper
tail percentage points of the F distribution.

Alternatively, we could use the P-value approach to hypothesis testing
and thus reject the null hypothesis if the P-value for the statistic F0 is
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TABLE 3.4 Analysis of Variance for Testing Significance of Regression

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square Test Statistic, F0

Regression SSR k
SSR

k
F0 =

SSR∕k

SSE∕(n − p)

Residual
(error)

SSE n − p
SSE

n − p

Total SST n−1

less than 𝛼. The quantities in the numerator and denominator of the test
statistic F0 are called mean squares. Recall that the mean square for error
or residual estimates 𝜎2.

The test for significance of regression is usually summarized in an
analysis of variance (ANOVA) table such as Table 3.4. Computational
formulas for the sums of squares in the ANOVA are

SST =
n∑

i=1
(yi − ȳ)2 = y′y − nȳ2

SSR = �̂�
′
X′y − nȳ2

SSE = y′y − �̂�
′
X′y

(3.23)

Regression model ANOVA computations are almost always performed
using a computer software package. The JMP output in Table 3.3 shows
the ANOVA test for significance of regression for the regression model for
the patient satisfaction data. The hypotheses in this problem are

H0 : 𝛽1 = 𝛽2 = 0

H1 : at least one 𝛽j ≠ 0

The reported value of the F-statistic from Eq. (3.22) is

F0 =
9663.694∕2

1114.546∕22
= 4831.85

50.66
= 95.38.

and the P-value is reported as<0.0001. The actual P-value is approximately
1.44 × 10−11, a very small value, so there is strong evidence to reject the
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null hypothesis and we conclude that either patient age or severity are
useful predictors for patient satisfaction.

Table 3.3 also reports the coefficient of multiple determination R2, first
introduced in Section 2.6.2 in the context of choosing between competing
forecasting models. Recall that

R2 =
SSR

SST
= 1 −

SSE

SST
(3.24)

For the regression model for the patient satisfaction data, we have

R2 =
SSR

SST
= 9663.694

10778.24
= 0.8966

So this model explains about 89.7% of the variability in the data.
The statistic R2 is a measure of the amount of reduction in the variability

of y obtained by using the predictor variables x1, x2,… , xk in the model. It is
a measure of how well the regression model fits the data sample. However,
as noted in Section 2.6.2, a large value of R2 does not necessarily imply
that the regression model is a good one. Adding a variable to the model
will never cause a decrease in R2, even in situations where the additional
variable is not statistically significant. In almost all cases, when a variable
is added to the regression model R2 increases. As a result, over reliance
on R2 as a measure of model adequacy often results in overfitting; that is,
putting too many predictors in the model. In Section 2.6.2 we introduced
the adjusted R2 statistic

R2
Adj = 1 −

SSE∕(n − p)

SST∕(n − 1)
(3.25)

In general, the adjusted R2 statistic will not always increase as variables
are added to the model. In fact, if unnecessary regressors are added, the
value of the adjusted R2 statistic will often decrease. Consequently, models
with a large value of the adjusted R2 statistic are usually considered good
regression models. Furthermore, the regression model that maximizes the
adjusted R2 statistic is also the model that minimizes the residual mean
square.
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JMP reports both R2 and R2
Adj in Table 3.4. The value of R2 = 0.897 (or

89.7%), and the adjusted R2 statistic is

R2
Adj = 1 −

SSE∕(n − p)

SST∕(n − 1)

= 1 −
1114.546∕(25 − 3)

10778.24∕(25 − 1)

= 0.887.

Both R2 and R2
Adj are very similar, usually a good sign that the regres-

sion model does not contain unnecessary predictor variables. It seems
reasonable to conclude that the regression model involving patient age and
severity accounts for between about 88% and 90% of the variability in the
patient satisfaction data.

3.3.2 Tests on Individual Regression Coefficients and
Groups of Coefficients

Tests on Individual Regression Coefficients We are frequently
interested in testing hypotheses on the individual regression coefficients.
These tests would be useful in determining the value or contribution of each
predictor variable in the regression model. For example, the model might
be more effective with the inclusion of additional variables or perhaps with
the deletion of one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of
squares for regression to increase and the error sum of squares to decrease.
We must decide whether the increase in the regression sum of squares is
sufficient to warrant using the additional variable in the model. Further-
more, adding an unimportant variable to the model can actually increase
the mean squared error, thereby decreasing the usefulness of the model.

The hypotheses for testing the significance of any individual regression
coefficient, say, 𝛽 j, are

H0 : 𝛽j = 0
H1 : 𝛽j ≠ 0

(3.26)

If the null hypothesis H0 : 𝛽j = 0 is not rejected, then this indicates that the
predictor variable xj can be deleted from the model.
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The test statistic for this hypothesis is

t0 =
𝛽 j√
�̂�2Cjj

, (3.27)

where Cjj is the diagonal element of the (X′X)−1matrix corresponding

to the regression coefficient 𝛽 j (in numbering the elements of the matrix
C = (X′X)−1, it is necessary to number the first row and column as zero so
that the first diagonal element C00 will correspond to the subscript number
on the intercept). The null hypothesis H0 : 𝛽j = 0 is rejected if the absolute
value of the test statistic |t0| > t

𝛼∕2,n−p, where t
𝛼∕2,n−p is the upper 𝛼/2

percentage point of the t distribution with n − p degrees of freedom. Table
A.3 in Appendix A contains these upper tail points of the t distribution.
A P-value approach could also be used. This t-test is really a partial or
marginal test because the regression coefficient 𝛽 j depends on all the other
regressor variables xi (i ≠ j) that are in the model.

The denominator of Eq. (3.27),
√

�̂�2Cjj, is usually called the standard

error of the regression coefficient. That is,

se(𝛽 j) =
√

�̂�2Cjj. (3.28)

Therefore an equivalent way to write the t-test statistic in Eq. (3.27) is

t0 =
𝛽 j

se(𝛽 j)
. (3.29)

Most regression computer programs provide the t-test for each model
parameter. For example, consider Table 3.3, which contains the JMP out-
put for Example 3.1. The upper portion of this table gives the least squares
estimate of each parameter, the standard error, the t statistic, and the corre-
sponding P-value. To illustrate how these quantities are computed, suppose
that we wish to test the hypothesis that x1 = patient age contributes signif-
icantly to the model, given that x2 = severity is included in the regression
equation. Stated formally, the hypotheses are

H0 : 𝛽1 = 0
H1 : 𝛽1 ≠ 0
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The regression coefficient for x1 = patient age is 𝛽1 = −1.0311. The stan-
dard error of this estimated regression coefficient is

se(𝛽1) =
√

�̂�2C11 =
√

(50.66)(0.00026383) = 0.1156.

which when rounded agrees with the JMP output. (Often manual calcu-
lations will differ slightly from those reported by the computer, because
the computer carries more decimal places. For instance, in this exam-
ple if the mean squared error is computed to four decimal places as
MSE = SSE∕(n − p) = 1114.546∕(25 − 3) = 50.6612 instead of the two
places reported in the JMP output, and this value of the MSE is used
as the estimate �̂�2 in calculating the standard error, then the standard error
of 𝛽1 will match the JMP output.) The test statistic is computed from Eq.
(3.29) as

t0 =
𝛽1

se(𝛽1)
= −1.031053

0.115611
= −8.92

This is agrees with the results reported by JMP. Because the P-value
reported is small, we would conclude that patient age is statistically sig-
nificant; that is, it is an important predictor variable, given that severity is
also in the model. Similarly, because the t-test statistic for x2 = severity is
large, we would conclude that severity is a significant predictor, given that
patient age is in the model.

Tests on Groups of Coefficients We may also directly examine the
contribution to the regression sum of squares for a particular predictor,
say, xj, or a group of predictors, given that other predictors xi (i ≠ j) are
included in the model. The procedure for doing this is the general regression
significance test or, as it is more often called, the extra sum of squares
method. This procedure can also be used to investigate the contribution
of a subset involving several regressor or predictor variables to the model.
Consider the regression model with k regressor variables

y = X𝜷 + 𝜺, (3.30)

where y is (n × 1), X is (n × p), 𝜷 is ( p × 1), 𝜺 is (n × 1), and p = k + 1. We
would like to determine if a subset of the predictor variables x1, x2,… , xr
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(r < k) contributes significantly to the regression model. Let the vector of
regression coefficients be partitioned as follows:

𝜷 =
[
𝜷1

𝜷2

]
,

where 𝛽1 is (r × 1) and 𝛽2 is [(p − r) × 1]. We wish to test the hypotheses

H0 : 𝜷1 = 0
H1 : 𝜷1 ≠ 0

(3.31)

The model may be written as

y = X𝜷 + 𝜺 = X1𝜷1 + X2𝜷2 + 𝜺, (3.32)

where X1 represents the columns of X (or the predictor variables) associ-
ated with 𝜷1 and X2 represents the columns of X (predictors) associated
with 𝜷2.

For the full model (including both 𝜷1 and 𝜷2), we know that �̂� =
(X′X)−1X′y. Also, the regression sum of squares for all predictor variables
including the intercept is

SSR(𝜷) = ̂𝜷′X′y (p degrees of freedom) (3.33)

and the estimate of 𝜎2 based on this full model is

�̂�
2 =

y′y − �̂�
′
X′y

n − p
(3.34)

SSR(𝜷) is called the regression sum of squares due to 𝜷. To find the contri-
bution of the terms in 𝜷1 to the regression, we fit the model assuming that
the null hypothesis H0: 𝜷1 = 0 is true. The reduced model is found from
Eq. (3.32) with 𝜷1 = 0:

y = X2𝜷2 + 𝜺 (3.35)

The least squares estimator of𝜷2 is �̂�2 = (X′
2X2)−1X′

2y and the regression
sum of squares for the reduced model is

SSR(𝜷2) = ̂𝜷 ′
2X′

2y (p − r degrees of freedom) (3.36)
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The regression sum of squares due to 𝜷1, given that 𝜷2 is already in the
model is

SSR(𝜷1|𝜷2) = SSR(𝜷) − SSR(𝜷2) = ̂𝜷 ′X′y − ̂𝜷 ′
2X′

2y (3.37)

This sum of squares has r degrees of freedom. It is the “extra sum of
squares” due to 𝜷1. Note that SSR(𝜷1| 𝜷2) is the increase in the regression
sum of squares due to including the predictor variables x1, x2,… , xr in the
model. Now SSR(𝜷1| 𝜷2) is independent of the estimate of 𝜎2 based on
the full model from Eq. (3.34), so the null hypothesis H0: 𝜷1 = 0 may be
tested by the statistic

F0 =
SSR(𝜷1|𝜷2)∕r

�̂�2
, (3.38)

where �̂�
2 is computed from Eq. (3.34). If F0 > F

𝛼,r,n−p we reject H0,
concluding that at least one of the parameters in 𝜷1 is not zero, and,
consequently, at least one of the predictor variables x1, x2,… , xr in X1
contributes significantly to the regression model. A P-value approach could
also be used in testing this hypothesis. Some authors call the test in Eq.
(3.38) a partial F test.

The partial F test is very useful. We can use it to evaluate the contribution
of an individual predictor or regressor xj as if it were the last variable added
to the model by computing

SSR(𝛽j|𝜷 i; i ≠ j)

This is the increase in the regression sum of squares due to adding xj to
a model that already includes x1,… , xj−1, xj+1,… , xk. The partial F test
on a single variable xj is equivalent to the t-test in Equation (3.27). The
computed value of F0 will be exactly equal to the square of the t-test
statistic t0. However, the partial F test is a more general procedure in that
we can evaluate simultaneously the contribution of more than one predictor
variable to the model.

Example 3.3 To illustrate this procedure, consider again the patient
satisfaction data from Table 3.2. Suppose that we wish to consider fitting a
more elaborate model to this data; specifically, consider the second-order
polynomial

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝜀
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TABLE 3.5 JMP Output for the Second-Order Model for the Patient
Satisfaction Data

Summary of Fit
RSquare 0.900772
RSquare Adj 0.874659
Root mean square error 7.502639
Mean of response 65.52
Observations (or Sum Wgts) 25

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Ratio

Model 5 9708.738 1941.75 34.4957
Error 19 1069.502 56.29 Prob > F
C. Total 24 10,778.240 <.0001∗

Parameter Estimates
Term Estimate Std Error t Ratio Prob> |t|
Intercept 143.74009 6.774622 21.22 <0.0001∗

Age −0.986524 0.135366 −7.29 <0.0001∗

Severity −0.571637 0.158928 −3.60 0.0019∗

(Severity-45.92)∗(Age-50.84) 0.0064566 0.016546 0.39 0.7007
(Age-50.84)∗(Age-50.84) −0.00283 0.008588 −0.33 0.7453
(Severity-45.92)∗

(Severity-45.92)
−0.011368 0.013533 −0.84 0.4113

where x1 = patient age and x2 = severity. To fit the model, the model matrix
would need to be expanded to include columns for the second-order terms
x1x2, x2

1, and x2
2. The results of fitting this model using JMP are shown in

Table 3.5.
Suppose that we want to test the significance of the additional second-

order terms. That is, the hypotheses are

H0 : 𝛽12 = 𝛽11 = 𝛽22 = 0
H1 : at least one of the parameters 𝛽12, 𝛽11, or 𝛽22 ≠ 0

In the notation used in this section, these second-order terms are the param-
eters in the vector 𝜷1. Since the quadratic model is the full model, we can
find SSR(𝜷) directly from the JMP output in Table 3.5 as

SSR(𝜷) = 9708.738
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with 5 degrees of freedom (because there are five predictors in this model).
The reduced model is the model with all of the predictors in the vector 𝜷1
equal to zero. This reduced model is the original regression model that we
fit to the data in Table 3.3. From Table 3.3, we can find the regression sum
of squares for the reduced model as

SSR(𝜷2) = 9663.694

and this sum of squares has 2 degrees of freedom (the model has two
predictors).

Therefore the extra sum of squares for testing the significance of the
quadratic terms is just the difference between the regression sums of
squares for the full and reduced models, or

SSR(𝜷1|𝜷2) = SSR(𝜷) − SSR(𝜷2)

= 9708.738 − 9663.694

= 45.044

with 5 − 2 = 3 degrees of freedom. These three degrees of freedom cor-
respond to the three additional terms in the second-order model. The test
statistic from Eq. (3.38) is

F0 =
SSR(𝜷1|𝜷2)∕r

�̂�2

=
45.044∕3

56.29
= 0.267.

This F-statistic is very small, so there is no evidence against the null
hypothesis.

Furthermore, from Table 3.5, we observe that the individual t-statistics
for the second-order terms are very small and have large P-values, so there
is no reason to believe that the model would be improved by adding any of
the second-order terms.

It is also interesting to compare the R2 and R2
Adj statistics for the two

models. From Table 3.3, we find that R2 = 0.897 and R2
Adj = 0.887 for the

original two-variable model, and from Table 3.5, we find that R2 = 0.901
and R2

Adj = 0.875 for the quadratic model. Adding the quadratic terms

caused the ordinary R2 to increase slightly (it will never decrease when
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additional predictors are inserted into the model), but the adjusted R2

statistic decreased. This decrease in the adjusted R2 is an indication that
the additional variables did not contribute to the explanatory power of the
model.

3.3.3 Confidence Intervals on Individual
Regression Coefficients

It is often necessary to construct confidence interval (CI) estimates for the
parameters in a linear regression and for other quantities of interest from the
regression model. The procedure for obtaining these confidence intervals
requires that we assume that the model errors are normally and indepen-
dently distributed with mean zero and variance 𝜎

2, the same assumption
made in the two previous sections on hypothesis testing.

Because the least squares estimator �̂� is a linear combination of the
observations, it follows that �̂� is normally distributed with mean vector 𝜷
and covariance matrix V(�̂�) = 𝜎

2(X′X)−1
.Then each of the statistics

𝛽 j − 𝛽j√
�̂�2Cjj

, j = 0, 1,… , k (3.39)

is distributed as t with n − p degrees of freedom, where Cjj is the (jj)th
element of the (X′X)−1matrix, and �̂�

2 is the estimate of the error vari-
ance, obtained from Eq. (3.34). Therefore a 100(1 − 𝛼) percent confidence
interval for an individual regression coefficient 𝛽j, j = 0, 1,… , k, is

𝛽 j − t
𝛼∕2,n−p

√
�̂�2Cjj ≤ 𝛽j ≤ 𝛽 j + t

𝛼∕2,n−p

√
�̂�2Cjj. (3.40)

This CI could also be written as

𝛽 j − t
𝛼∕2,n−pse(𝛽 j) ≤ 𝛽j ≤ 𝛽 j + t

𝛼∕2,n−pse(𝛽 j)

because se(𝛽 j) =
√

�̂�2Cjj.

Example 3.4 We will find a 95% CI on the regression for patient age
in the patient satisfaction data regression model. From the JMP output in
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Table 3.3, we find that 𝛽1 = −1.0311 and se(𝛽1) = 0.1156. Therefore the
95% CI is

𝛽 j − t
𝛼∕2,n−pse(𝛽 j) ≤ 𝛽j ≤ 𝛽 j + t

𝛼∕2,n−pse(𝛽 j)

−1.0311 − (2.074)(0.1156) ≤ 𝛽1 ≤ −1.0311 + (2.074)(0.1156)

−1.2709 ≤ 𝛽1 ≤ −0.7913.

This confidence interval does not include zero; this is equivalent to rejecting
(at the 0.05 level of significance) the null hypothesis that the regression
coefficient 𝛽1 = 0.

3.3.4 Confidence Intervals on the Mean Response

We may also obtain a confidence interval on the mean response at a partic-
ular combination of the predictor or regressor variables, say, x01, x02,… ,
x0k. We first define a vector that represents this point expanded to model
form. Since the standard multiple linear regression model contains the k
predictors and an intercept term, this vector is

x0 =
⎡⎢⎢⎢⎣

1
x01
⋮

x0k

⎤⎥⎥⎥⎦
The mean response at this point is

E[y(x0)] = 𝜇y|x0
= x′

0𝜷.

The estimator of the mean response at this point is found by substituting
�̂� for 𝜷

ŷ(x0) = �̂�y|x0
= x′

0�̂� (3.41)

This estimator is normally distributed because �̂� is normally distributed and
it is also unbiased because �̂� is an unbiased estimator of 𝜷. The variance
of ŷ(x0) is

Var [ŷ(x0)] = 𝜎
2x′

0(X′X)−1x0. (3.42)
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Therefore, a 100(1 − 𝛼) percent CI on the mean response at the point x01,
x02,… , x0k is

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0 ≤ 𝜇y|x0

≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0,

(3.43)

where �̂�
2 is the estimate of the error variance, obtained from Eq. (3.34).

Note that the length of this confidence interval will depend on the location
of the point x0 through the term x′

0(X′X)−1x0 in the confidence interval
formula. Generally, the length of the CI will increase as the point x0 moves
further from the center of the predictor variable data.

The quantity √
Var [ŷ(x0)] =

√
�̂�2x′

0(X′X)−1x0

used in the confidence interval calculations in Eq. (3.43) is sometimes
called the standard error of the fitted response. JMP will calculate and
display these standard errors for each individual observation in the sample
used to fit the model and for other non-sample points of interest. The
next-to-last column of Table 3.6 displays the standard error of the fitted
response for the patient satisfaction data. These standard errors can be used
to compute the CI in Eq. (3.43).

Example 3.5 Suppose that we want to find a confidence interval on
mean patient satisfaction for the point where x1 = patient age = 55 and
x2 = severity = 50. This is the first observation in the sample, so refer to
Table 3.6, the JMP output for the patient satisfaction regression model.
For this observation, JMP reports that the “SE Fit” is 1.51 rounded to
two decimal places, or in our notation,

√
Var [ŷ(x0)] = 1.51. Therefore, if

we want to find a 95% CI on the mean patient satisfaction for the case
where x1 = patient age = 55 and x2 = severity = 50, we would proceed as
follows:

ŷ(x0) − t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0 ≤ 𝜇y|x0

≤ ŷ(x0) + t𝛼∕2,n−p

√
�̂�2x′0(X′X)−1x0

58.96 − 2.074(1.51) ≤ 𝜇y|x0
≤ 58.96 + 2.074(1.51)

55.83 ≤ 𝜇y|x0
≤ 62.09.

From inspection of Table 3.6, note that the standard errors for each
observation are different. This reflects the fact that the length of the CI on
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the mean response depends on the location of the observation. Generally,
the standard error increases as the distance of the point from the center
of the predictor variable data increases.

In the case where the point of interest x0 is not one of the observations
in the sample, it is necessary to calculate the standard error for that point√

Var [ŷ(x0)] =
√

�̂�2x′
0(X′X)−1x0, which involves finding x′

0(X′X)−1x0

for the observation x0. This is not too difficult (you can do it in Excel), but
it is not necessary, because JMP will provide the CI at any point that you
specify. For example, if you want to find a 95% CI on the mean patient
satisfaction for the point where x1 = patient age = 60 and x2 = severity =
60 (this is not a sample observation), then in the last row of Table 3.6 JMP
reports that the estimate of the mean patient satisfaction at the point x1 =
patient age = 60 and x2 = severity = 60 as ŷ(x0) = 48.25, and the standard

error of the fitted response as
√

Var [ŷ(x0)] =
√

�̂�2x′0(X′X)−1x0 = 2.12.
Consequently, the 95% CI on the mean patient satisfaction at that point is

43.85 ≤ 𝜇y|x0
≤ 52.65.

3.4 PREDICTION OF NEW OBSERVATIONS

A regression model can be used to predict future observations on the
response y corresponding to a particular set of values of the predictor
or regressor variables, say, x01, x02,… , x0k. Let x0 represent this point,
expanded to model form. That is, if the regression model is the standard
multiple regression model, then x0 contains the coordinates of the point
of interest and unity to account for the intercept term, so x′

0 = [1, x01,
x02,… , x0k]. A point estimate of the future observation y(x0) at the point
x01, x02,… , x0k is computed from

ŷ(x0) = x′0�̂� (3.44)

The prediction error in using ŷ(x0) to estimate y(x0) is y(x0) − ŷ(x0).
Because ŷ(x0) and y(x0) are independent, the variance of this prediction
error is

Var [y(x0) − ŷ(x0)] = Var [y(x0)] + Var [ŷ(x0)] = 𝜎
2 + 𝜎

2x′
0(X′X)−1x0

= 𝜎
2
[
1 + x′

0(X′X)−1x0

]
. (3.45)
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If we use �̂�
2 from Eq. (3.34) to estimate the error variance 𝜎

2, then the
ratio

y(x0) − ŷ(x0)√
�̂�2
[
1 + x′

0(X′X)−1x0

]
has a t distribution with n − p degrees of freedom. Consequently, we can
write the following probability statement:

P

⎛⎜⎜⎜⎝
−t

𝛼∕2,n−p ≤ y(x0) − ŷ(x0)√
�̂�2
[
1 + x′

0(X′X)−1x0

] ≤ t
𝛼∕2,n−p

⎞⎟⎟⎟⎠
= 1 − 𝛼

This probability statement can be rearranged as follows:

P
⎛⎜⎜⎝

ŷ(x0) − t
𝛼∕2,n−p

√
�̂�2
[
1 + x′

0(X′X)−1x0

] ≤ y(x0)

≤ ŷ(x0) + t
𝛼∕2,n−p

√
�̂�2
[
1 + x′

0(X′X)−1x0

]
⎞⎟⎟⎠ = 1 − 𝛼.

Therefore, the probability is 1 − 𝛼 that the future observation falls in the
interval

ŷ(x0) − t
𝛼∕2,n−p

√
�̂�2
[
1 + x′

0(X′X)−1x0

] ≤ y(x0)

≤ ŷ(x0) + t
𝛼∕2,n−p

√
�̂�2
[
1 + x′

0(X′X)−1x0

]
(3.46)

This statement is called a 100(1 – 𝛼) percent prediction interval (PI) for
the future observation y(x0) at the point x01, x02,… , x0k. The expression
in the square tool in Eq. (3.46) is often called the standard error of the
predicted response.

The PI formula in Eq. (3.46) looks very similar to the formula for the
CI on the mean, Eq. (3.43). The difference is the “1” in the variance of
the prediction error under the square root. This will make PI longer than
the corresponding CI at the same point. It is reasonable that the PI should
be longer, as the CI is an interval estimate on the mean of the response
distribution at a specific point, while the PI is an interval estimate on
a single future observation from the response distribution at that point.
There should be more variability associated with an individual observation
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than with an estimate of the mean, and this is reflected in the additional
length of the PI.

Example 3.6 JMP will compute the standard errors of the predicted
response so it is easy to construct the prediction interval in Eq. (3.46). To
illustrate, suppose that we want a 95% PI on a future observation of patient
satisfaction for a patient whose age is 75 and with severity of illness 60. In
the next to last row of Table 3.6 JMP predicted value of satisfaction at this
new observation as ŷ(x0) = 32.78, and the standard error of the predicted
response is 7.65. Then from Eq. (3.46) the prediction interval is

16.93 ≤ y(x0) ≤ 48.64.

This example provides us with an opportunity to compare prediction
and confidence intervals. First, note that from Table 3.6 the standard error
of the fit at this point is smaller than the standard error of the prediction.
Therefore, the PI is longer than the corresponding CI. Now compare the
length of the CI and the PI for this point with the length of the CI and the
PI for the point x1 = patient age = 60 and x2 = severity = 60 from Example
3.4. The intervals are longer for the point in this example because this point
with x1 = patient age = 75 and x2 = severity = 60 is further from the center
of the predictor variable data than the point in Example 3.4, where x1 =
patient age = 60 and x2 = severity = 60.

3.5 MODEL ADEQUACY CHECKING

3.5.1 Residual Plots

An important part of any data analysis and model-building procedure is
checking the adequacy of the model. We know that all models are wrong,
but a model that is a reasonable fit to the data used to build it and that
does not seriously ignore or violate any of the underlying model-building
assumptions can be quite useful. Model adequacy checking is particu-
larly important in building regression models for purposes of forecasting,
because forecasting will almost always involve some extrapolation or pro-
jection of the model into the future, and unless the model is reasonable the
forecasting process is almost certainly doomed to failure.

Regression model residuals, originally defined in Eq. (2.2), are very
useful in model adequacy checking and to get some sense of how well the
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regression model assumptions of normally and independently distributed
model errors with constant variance are satisfied. Recall that if yi is the
observed value of the response variable and if the corresponding fitted
value from the model is ŷi, then the residuals are

ei = yi − ŷi, i = 1, 2,… , n.

Residual plots are the primary approach to model adequacy checking.
The simplest way to check the adequacy of the normality assumption on
the model errors is to construct a normal probability plot of the residuals.
In Section 2.6.1 we introduced and used the normal probability plot of
forecast errors to check for the normality of forecast errors. The use of the
normal probability plot for regression residuals follows the same approach.
To check the assumption of constant variance, plot the residuals versus
the fitted values from the model. If the constant variance assumption is
satisfied, this plot should exhibit a random scatter of residuals around zero.
Problems with the equal variance assumption usually show up as a pattern
on this plot. The most common pattern is an outward-opening funnel
or megaphone pattern, indicating that the variance of the observations
is increasing as the mean increases. Data transformations (see Section
2.4.1) are useful in stabilizing the variance. The log transformation is
frequently useful in forecasting applications. It can also be helpful to plot
the residuals against each of the predictor or regressor variables in the
model. Any deviation from random scatter on these plots can indicate how
well the model fits a particular predictor.

When the data are a time series, it is also important to plot the residuals
versus time order. As usual, the anticipated pattern on this plot is random
scatter. Trends, cycles, or other patterns in the plot of residuals versus time
indicate model inadequacies, possibly due to missing terms or some other
model specification issue. A funnel-shaped pattern that increases in width
with time is an indication that the variance of the time series is increasing
with time. This happens frequently in economic time series data, and in
data that span a long period of time. Log transformations are often useful
in stabilizing the variance of these types of time series.

Example 3.7 Table 3.3 presents the residuals for the regression model
for the patient satisfaction data from Example 3.1. Figure 3.1 presents plots
of these residuals. The plot in the upper left-hand portion of the display
is a normal probability plot of the residuals. The residuals lie generally
along a straight line, so there is no obvious reason to be concerned with
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FIGURE 3.1 Plots of residuals for the patient satisfaction model.

the normality assumption. There is a very mild indication that one of the
residuals (in the lower tail) may be slightly larger than expected, so this
could be an indication of an outlier (a very mild one). The lower left
plot is a histogram of the residuals. Histograms are more useful for large
samples of data than small ones, so since there are only 25 residuals, this
display is probably not as reliable as the normal probability plot. However,
the histogram does not give any serious indication of nonnormality. The
upper right is a plot of residuals versus the fitted values. This plot indicates
essentially random scatter in the residuals, the ideal pattern. If this plot had
exhibited a funnel shape, it could indicate problems with the equality of
variance assumption. The lower right is a plot of the observations in the
order of the data. If this was the order in which the data were collected, or
if the data were a time series, this plot could reveal information about how
the data may be changing over time. For example, a funnel shape on this
plot might indicate that the variability of the observations was changing
with time.

In addition to residual plots, other model diagnostics are frequently
useful in regression. The following sections introduce and briefly illus-
trate some of these procedures. For more complete presentations, see
Montgomery, Peck, and Vining (2012) and Myers (1990).
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3.5.2 Scaled Residuals and PRESS

Standardized Residuals Many regression model builders prefer to
work with scaled residuals in contrast to the ordinary least squares (OLS)
residuals. These scaled residuals frequently convey more information than
do the ordinary residuals. One type of scaled residual is the standardized
residual,

di =
ei

�̂�
, (3.47)

where we generally use �̂� =
√

MSE in the computation. The standardized
residuals have mean zero and approximately unit variance; consequently,
they are useful in looking for outliers. Most of the standardized residuals
should lie in the interval −3 ≤ di ≤ +3, and any observation with a stan-
dardized residual outside this interval is potentially unusual with respect to
its observed response. These outliers should be carefully examined because
they may represent something as simple as a data-recording error or some-
thing of more serious concern, such as a region of the predictor or regressor
variable space where the fitted model is a poor approximation to the true
response.

Studentized Residuals The standardizing process in Eq. (3.47) scales
the residuals by dividing them by their approximate average standard devi-
ation. In some data sets, residuals may have standard deviations that differ
greatly. We now present a scaling that takes this into account. The vector
of fitted values ŷi that corresponds to the observed values yi is

ŷ = X�̂� = X(X′X)
−1

X′y = Hy. (3.48)

The n × n matrix H = X(X′X)−1X′ is usually called the “hat” matrix
because it maps the vector of observed values into a vector of fitted values.
The hat matrix and its properties play a central role in regression analysis.

The residuals from the fitted model may be conveniently written in
matrix notation as

e = y − ŷ = y − Hy = (I − H)y (3.49)

and the covariance matrix of the residuals is

Cov(e) = V [(I − H)y] = 𝜎
2(I − H).
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The matrix I − H is in general not diagonal, so the residuals from a linear
regression model have different variances and are correlated. The variance
of the ith residual is

V(ei) = 𝜎
2(1 − hii), (3.50)

where hii is the ith diagonal element of the hat matrix H. Because 0 ≤
hii ≤ 1 using the mean squared error MSE to estimate the variance of the
residuals actually overestimates the true variance. Furthermore, it turns
out that hii is a measure of the location of the ith point in the predictor
variable or x-space; the variance of the residual ei depends on where the
point xi lies. As hii increases, the observation xi lies further from the center
of the region containing the data. Therefore residuals near the center of the
x-space have larger variance than do residuals at more remote locations.
Violations of model assumptions are more likely at remote points, so these
violations may be hard to detect from inspection of the ordinary residuals
ei (or the standardized residuals di) because their residuals will usually be
smaller.

We recommend taking this inequality of variance into account when
scaling the residuals. We suggest plotting the studentized residuals as:

ri =
ei√

�̂�2(1 − hii)
, (3.51)

with �̂�
2 = MSE instead of the ordinary residuals or the standardized residu-

als. The studentized residuals have unit variance (i.e., V(ri) = 1) regardless
of the location of the observation xi when the form of the regression model
is correct. In many situations the variance of the residuals stabilizes, par-
ticularly for large data sets. In these cases, there may be little difference
between the standardized and studentized residuals. Thus standardized
and studentized residuals often convey equivalent information. However,
because any point with a large residual and a large hat diagonal hii is
potentially highly influential on the least squares fit, examination of the
studentized residuals is generally recommended.

Table 3.7 displays the residuals, the studentized residuals, hat diagonals
hii, and several other diagnostics for the regression model for the patient
satisfaction data in Example 3.1. These quantities were computer generated
using JMP. To illustrate the calculations, consider the first observation.



MODEL ADEQUACY CHECKING 141

TABLE 3.7 Residuals and Other Diagnostics for the Regression Model for
the Patient Satisfaction Data in Example 3.1

Studentized Cook’s
Observation Residuals Residuals R-Student hii Distance

1 9.0378 1.29925 1.32107 0.044855 0.026424
2 −5.6986 −0.88216 −0.87754 0.176299 0.055521
3 9.0373 1.38135 1.41222 0.155114 0.116772
4 −0.6953 −0.10403 −0.10166 0.118125 0.000483
5 −7.3897 −1.08009 −1.08440 0.076032 0.031999
6 −3.2155 −0.47342 −0.46491 0.089420 0.007337
7 −5.0316 −0.77380 −0.76651 0.165396 0.039553
8 7.0616 1.03032 1.03183 0.072764 0.027768
9 −17.2800 −2.65767 −3.15124 0.165533 0.467041

10 −6.0864 −0.87524 −0.87041 0.045474 0.012165
11 −11.6967 −1.70227 −1.78483 0.068040 0.070519
12 3.4823 0.51635 0.50757 0.102232 0.010120
13 −0.0859 −0.01272 −0.01243 0.100896 0.000006
14 2.1786 0.33738 0.33048 0.176979 0.008159
15 4.5134 0.66928 0.66066 0.102355 0.017026
16 4.7705 0.68484 0.67634 0.042215 0.006891
17 2.2474 0.33223 0.32541 0.096782 0.003942
18 0.8699 0.13695 0.13386 0.203651 0.001599
19 0.9276 0.13769 0.13458 0.104056 0.000734
20 3.7691 0.58556 0.57661 0.182192 0.025462
21 10.4993 1.62405 1.69133 0.175015 0.186511
22 0.6797 0.10725 0.10481 0.207239 0.001002
23 −9.2785 −1.46893 −1.51118 0.212456 0.194033
24 3.0927 0.44996 0.44165 0.067497 0.004885
25 4.2911 0.61834 0.60945 0.049383 0.006621

The studentized residual is calculated as follows:

r1 =
e1√

�̂�2(1 − h11)

=
e1

�̂�
√

(1 − h11)

= 9.0378

7.11767
√

1 − 0.044855

= 1.2992
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which agrees approximately with the value reported by JMP in Table 3.7.
Large values of the studentized residuals are usually an indication of poten-
tial unusual values or outliers in the data. Absolute values of the studentized
residuals that are larger than three or four indicate potentially problematic
observations. Note that none of the studentized residuals in Table 3.7 is this
large. The largest studentized residual, −2.65767, is associated with obser-
vation 9. This observation does show up on the normal probability plot of
residuals in Figure 3.1 as a very mild outlier, but there is no indication of
a significant problem with this observation.

PRESS Another very useful residual scaling can be based on the pre-
diction error sum of squares or PRESS. To calculate PRESS, we select an
observation—for example, i. We fit the regression model to the remaining
n − 1 observations and use this equation to predict the withheld observation
yi. Denoting this predicted value by ŷ(i), we may now find the prediction
error for the ith observation as

e(i) = yi − ŷ(i) (3.52)

The prediction error is often called the ith PRESS residual. Note that the
prediction error for the ith observation differs from the ith residual because
observation i was not used in calculating the ith prediction value ŷ(i). This
procedure is repeated for each observation i = 1, 2,… , n, producing a set
of n PRESS residuals e(1), e(2),… , e(n). Then the PRESS statistic is defined
as the sum of squares of the n PRESS residuals or

PRESS =
n∑

i=1

e2
(i) =

n∑
i=1

[yi − ŷ(i)]
2 (3.53)

Thus PRESS is a form of data splitting (discussed in Chapter 2), since
it uses each possible subset of n − 1 observations as an estimation data
set, and every observation in turn is used to form a prediction data set.
Generally, small values of PRESS imply that the regression model will be
useful in predicting new observations. To get an idea about how well the
model will predict new data, we can calculate an R2-like statistic called the
R2 for prediction

R2
Prediction = 1 − PRESS

SST
(3.54)
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Now PRESS will always be larger than the residual sum of squares and,
because the ordinary R2 = 1 − (SSE∕SST), if the value of the R2

Prediction is
not much smaller than the ordinary R2, this is a good indication about
potential model predictive performance.

It would initially seem that calculating PRESS requires fitting n different
regressions. However, it is possible to calculate PRESS from the results
of a single least squares fit to all n observations. It turns out that the ith
PRESS residual is

e(i) =
ei

1 − hii
, (3.55)

where ei is the OLS residual. The hat matrix diagonals are directly cal-
culated as a routine part of solving the least squares normal equations.
Therefore PRESS is easily calculated as

PRESS =
n∑

i=1

e2
i

1 − hii
(3.56)

JMP will calculate the PRESS statistic for a regression model and the
R2 for prediction based on PRESS from Eq. (3.54). The value of PRESS
is PRESS = 1484.93 and the R2 for prediction is

R2
Prediction = 1 − PRESS

SST

= 1 − 1484.93
10778.2

= 0.8622.

That is, this model would be expected to account for about 86.22% of the
variability in new data.

R-Student The studentized residual ri discussed earlier is often consid-
ered an outlier diagnostic. It is customary to use the mean squared error
MSE as an estimate of 𝜎2 in computing ri. This is referred to as internal
scaling of the residual because MSE is an internally generated estimate of
𝜎

2 obtained from fitting the model to all n observations. Another approach
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would be to use an estimate of 𝜎2 based on a data set with the ith obser-
vation removed. We denote the estimate of 𝜎2 so obtained by S2

(i). We can
show that

S2
(i) =

(n − p)MSE − e2
i ∕(1 − hii)

n − p − 1
(3.57)

The estimate of 𝜎
2 in Eq. (3.57) is used instead of MSE to produce an

externally studentized residual, usually called R-student, given by

ti =
ei√

S2
(i)(1 − hii)

(3.58)

In many situations, ti will differ little from the studentized residual ri.
However, if the ith observation is influential, then S2

(i) can differ significantly
from MSE, and consequently the R-student residual will be more sensitive
to this observation. Furthermore, under the standard assumptions, the R-
student residual ti has a t-distribution with n – p – 1 degrees of freedom.
Thus R-student offers a more formal procedure for investigating potential
outliers by comparing the absolute magnitude of the residual ti to an
appropriate percentage point of tn−p−1.

JMP will compute the R-student residuals. They are shown in Table 3.7
for the regression model for the patient satisfaction data. The largest value
of R-student is for observation 9, t9 = −3.15124. This is another indication
that observation 9 is a very mild outlier.

3.5.3 Measures of Leverage and Influence

In building regression models, we occasionally find that a small subset
of the data exerts a disproportionate influence on the fitted model. That
is, estimates of the model parameters or predictions may depend more on
the influential subset than on the majority of the data. We would like to
locate these influential points and assess their impact on the model. If these
influential points really are “bad” values, they should be eliminated. On
the other hand, there may be nothing wrong with these points, but if they
control key model properties, we would like to know it because it could
affect the use of the model. In this section we describe and illustrate some
useful measures of influence.

The disposition of points in the predictor variable space is important in
determining many properties of the regression model. In particular, remote
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observations potentially have disproportionate leverage on the parameter
estimates, predicted values, and the usual summary statistics.

The hat matrix H = X(X′X)−1X′ is very useful in identifying influential
observations. As noted earlier, H determines the variances and covariances
of the predicted response and the residuals because

Var (ŷ) = 𝜎
2H and Var (e) = 𝜎

2(I − H)

The elements hij of the hat matrix H may be interpreted as the amount
of leverage exerted by the observation yj on the predicted value ŷi. Thus
inspection of the elements of H can reveal points that are potentially
influential by virtue of their location in x-space.

Attention is usually focused on the diagonal elements of the hat matrix
hii. It can be shown that

∑n
i=1 hii = rank(H) = rank(X) = p, so the average

size of the diagonal elements of the H matrix is p/n. A widely used rough
guideline is to compare the diagonal elements hiito twice their average
value 2p/n, and if any hat diagonal exceeds this value to consider that
observation as a high-leverage point.

JMP will calculate and save the values of the hat diagonals. Table
3.7 displays the hat diagonals for the regression model for the patient
satisfaction data in Example 3.1. Since there are p = 3 parameters in the
model and n = 25 observations, twice the average size of a hat diagonal
for this problem is

2p∕n = 2(3)∕25 = 0.24.

The largest hat diagonal, 0.212456, is associated with observation 23. This
does not exceed twice the average size of a hat diagonal, so there are no
high-leverage observations in these data.

The hat diagonals will identify points that are potentially influential due
to their location in x-space. It is desirable to consider both the location of
the point and the response variable in measuring influence. Cook (1977,
1979) has suggested using a measure of the squared distance between the
least squares estimate based on all n points �̂� and the estimate obtained by
deleting the ith point, say, 𝛽(i). This distance measure can be expressed as

Di =
(�̂� − �̂�(i))

′X′X(�̂� − �̂� (i))

pMSE
, i = 1, 2,… , n (3.59)
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A reasonable cutoff for Di is unity. That is, we usually consider observations
for which Di > 1 to be influential. Cook’s distance statistic Di is actually
calculated from

Di =
r2

i

p

V[ŷ(xi)]

V(ei)
=

r2
i

p

hii

1 − hii
(3.60)

Note that, apart from the constant p, Di is the product of the square of the
ith studentized residual and the ratio hii∕(1 − hii). This ratio can be shown
to be the distance from the vector xi to the centroid of the remaining data.
Thus Di is made up of a component that reflects how well the regression
model fits the ith observation yi and a component that measures how far
that point is from the rest of the data. Either component (or both) may
contribute to a large value of Di.

JMP will calculate and save the values of Cook’s distance statistic Di.
Table 3.7 displays the values of Cook’s distance statistic for the regression
model for the patient satisfaction data in Example 3.1. The largest value,
0.467041, is associated with observation 9. This value was calculated from
Eq. (3.60) as follows:

Di =
r2

i

p

hii

1 − hii

= (−2.65767)2

3
0.165533

1 − 0.165533
= 0.467041.

This does not exceed twice the cutoff of unity, so there are no influential
observations in these data.

3.6 VARIABLE SELECTION METHODS IN REGRESSION

In our treatment of regression we have concentrated on fitting the full
regression model. Actually, in most applications of regression the analyst
will have a very good idea about the general form of the model he/she
wishes to fit, but there may be uncertainty about the exact structure of the
model. For example, we may not know if all of the predictor variables
are really necessary. These applications of regression frequently involve a
moderately large or large set of candidate predictors, and the objective
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of the analyst here is to fit a regression model to the “best subset” of these
candidates. This can be a complex problem, as these data sets frequently
have outliers, strong correlations between subsets of the variables, and
other complicating features.

There are several techniques that have been developed for selecting the
best subset regression model. Generally, these methods are either stepwise-
type variable selection methods or all possible regressions. Stepwise-type
methods build a regression model by either adding or removing a predictor
variable to the basic model at each step. The forward selection version
of the procedure begins with a model containing none of the candidate
predictor variables and sequentially inserts variables into the model one-
at-a-time until a final equation is produced. The criterion for entering
a variable into the equation is that the t-statistic for that variable must be
significant. The process is continued until there are no remaining candidate
predictors that qualify for entry into the equation. In backward elimination,
the procedure begins with all of the candidate predictor variables in the
equation, and then variables are removed one-at-a-time to produce a final
equation. The criterion for removing a variable is usually based on the
t-statistic, with the variable having the smallest t-statistic considered for
removal first. Variables are removed until all of the predictors remaining in
the model have significant t-statistics. Stepwise regression usually consists
of a combination of forward and backward stepping. There are many
variations of the basic procedures.

In all possible regressions with K candidate predictor variables, the
analyst examines all 2K possible regression equations to identify the ones
with potential to be a useful model. Obviously, as K becomes even mod-
erately large, the number of possible regression models quickly becomes
formidably large. Efficient algorithms have been developed that implicitly
rather than explicitly examine all of these equations. Typically, only the
equations that are found to be “best” according to some criterion (such
as minimum MSE or AICc) at each subset size are displayed. For more
discussion of variable selection methods, see textbooks on regression such
as Montgomery, Peck, and Vining (2012) or Myers (1990).

Example 3.8 Table 3.8 contains an expanded set of data for the hospital
patient satisfaction data introduced in Example 3.1. In addition to the
patient age and illness severity data, there are two additional regressors, an
indicator of whether the patent is a surgical patient (1) or a medical patient
(0), and an index indicating the patient’s anxiety level. We will use these
data to illustrate how variable selection methods in regression can be used
to help the analyst build a regression model.
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TABLE 3.8 Expanded Patient Satisfaction Data

Observation Age Severity Surgical–Medical Anxiety Satisfaction

1 55 50 0 2.1 68
2 46 24 1 2.8 77
3 30 46 1 3.3 96
4 35 48 1 4.5 80
5 59 58 0 2.0 43
6 61 60 0 5.1 44
7 74 65 1 5.5 26
8 38 42 1 3.2 88
9 27 42 0 3.1 75

10 51 50 1 2.4 57
11 53 38 1 2.2 56
12 41 30 0 2.1 88
13 37 31 0 1.9 88
14 24 34 0 3.1 102
15 42 30 0 3.0 88
16 50 48 1 4.2 70
17 58 61 1 4.6 52
18 60 71 1 5.3 43
19 62 62 0 7.2 46
20 68 38 0 7.8 56
21 70 41 1 7.0 59
22 79 66 1 6.2 26
23 63 31 1 4.1 52
24 39 42 0 3.5 83
25 49 40 1 2.1 75

We will illustrate the forward selection procedure first. The JMP out-
put that results from applying forward selection to these data is shown in
Table 3.9. We used the AICc criterion for selecting the best model. The
forward selection algorithm inserted the predictor patient age first, then
severity, then anxiety, and finally surg-med was inserted into the equa-
tion. The best model based on the minimum value of AICc contained age
and severity.

Table 3.10 presents the results of applying the JMP backward elim-
ination procedure to the patient satisfaction data. Once again the AICc
criterion was chosen to select the final model. The procedure begins with
all four predictors in the model, then the surgical–medical indicator vari-
able was removed, followed by the anxiety predictor, followed by severity.
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TABLE 3.9 JMP Forward Selection for the Patient Satisfaction Data in
Table 3.8

However, removing severity causes an increase in AICc so it is added back
to the model. The algorithm concluded with both patient age and severity
in the model. Note that in this example, the forward selection procedure
produced the same model as the backward elimination procedure. This
does not always happen, so it is usually a good idea to investigate different
model-building techniques for a problem.

Table 3.11 is the JMP stepwise regression algorithm applied to the
patient satisfaction data, JMP calls the stepwise option “mixed” variable
selection. The default significance levels of 0.25 to enter or remove vari-
ables from the model were used. At the first step, patient age is entered
in the model. Then severity is entered as the second variable. This is fol-
lowed by anxiety as the third variable. At that point, none of the remaining
predictors met the 0.25 significance level criterion to enter the model, so
stepwise regression terminated with age, severity and anxiety as the model
predictors. This is not the same model found by backwards elimination
and forward selection.
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TABLE 3.10 JMP Backward Elimination for the Patient Satisfaction Data
in Table 3.8

Table 3.12 shows the results of applying the JMP all possible regressions
algorithm to the patient satisfaction data. Since there are k = 4 predictors,
there are 16 possible regression equations. JMP shows the best four of each
subset size, along with the full (four-variable) model. For each model, JMP
presents the value of R2, the square root of the mean squared error (RMSE),
and the AICc and BIC statistics.

The model with the smallest value of AICc and BIC is the two-variable
model with age and severity. The model with the smallest value of the
mean squared error (or its square root, RMSE) is the three-variable model
with age, severity, and anxiety. Both of these models were found using
the stepwise-type algorithms. Either one of these models is likely to be a
good regression model describing the effects of the predictor variables on
patient satisfaction.
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TABLE 3.12 JMP All Possible Models Regression for the Patient
Satisfaction Data in Table 3.8

3.7 GENERALIZED AND WEIGHTED LEAST SQUARES

In Section 3.4 we discussed methods for checking the adequacy of a linear
regression model. Analysis of the model residuals is the basic methodology.
A common defect that shows up in fitting regression models is noncon-
stant variance. That is, the variance of the observations is not constant but
changes in some systematic way with each observation. This problem is
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often identified from a plot of residuals versus the fitted values. Transfor-
mation of the response variable is a widely used method for handling the
inequality of variance problem.

Another technique for dealing with nonconstant error variance is to fit
the model using the method of weighted least squares (WLS). In this
method of estimation the deviation between the observed and expected
values of yi is multiplied by a weight wi that is inversely proportional
to the variance of yi. For the case of simple linear regression, the WLS
function is

L =
n∑

i=1

wi(yi − 𝛽0 − 𝛽1xi)
2, (3.61)

where wi = 1∕𝜎2
i and 𝜎

2
i is the variance of the ith observation yi. The

resulting least squares normal equations are

𝛽0

n∑
i=1

wi + 𝛽1

n∑
i=1

wixi =
n∑

i=1

wiyi

𝛽0

n∑
i=1

wixi+𝛽1

n∑
i=1

wix
2
i =

n∑
i=1

wixiyi

(3.62)

Solving Eq. (3.62) will produce WLS estimates of the model parameters
𝛽0 and 𝛽1.

In this section we give a development of WLS for the multiple regres-
sion model. We begin by considering a slightly more general situation
concerning the structure of the model errors.

3.7.1 Generalized Least Squares

The assumptions that we have made concerning the linear regression model
y = X𝜷 + 𝜺 are that E(𝜺) = 0 and Var (𝜺) = 𝜎

2I; that is, the errors have
expected value zero and constant variance, and they are uncorrelated. For
testing hypotheses and constructing confidence and prediction intervals we
also assume that the errors are normally distributed, in which case they are
also independent. As we have observed, there are situations where these
assumptions are unreasonable. We will now consider the modifications
that are necessary to the OLS procedure when E(𝜺) = 0 and Var (𝜺) = 𝜎

2V,
where V is a known n × n matrix. This situation has a simple interpretation;
if V is diagonal but with unequal diagonal elements, then the observations
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y are uncorrelated but have unequal variances, while if some of the off-
diagonal elements of V are nonzero, then the observations are correlated.
When the model is

y = X𝜷 + 𝜺

E(𝜺) = 0 and Var(𝜺) = 𝜎
2I

(3.63)

the OLS estimator �̂� = (X′X)−1X′y is no longer appropriate. The OLS
estimator is unbiased because

E(�̂�) = E[(X′X)−1X′y] = (X′X)−1X′E(y) = (X′X)−1X′𝜷 = 𝜷

but the covariance matrix of �̂� is not 𝜎2(X′X)−1. Instead, the covariance
matrix is

Var (�̂�) = Var [(X′X)−1X′y]

= (X′X)−1X′V(y)X(X′X)−1

= 𝜎
2(X′X)−1X′X(X′X)−1

Practically, this implies that the variances of the regression coefficients are
larger than we expect them to be.

This problem can be avoided if we estimate the model parameters with a
technique that takes the correct variance structure in the errors into account.
We will develop this technique by transforming the model to a new set of
observations that satisfy the standard least squares assumptions. Then we
will use OLS on the transformed observations.

Because 𝜎
2V is the covariance matrix of the errors, V must be nonsin-

gular and positive definite, so there exists an n × n nonsingular symmetric
matrix K defined such that

K′K = KK = V

The matrix K is often called the square root of V. Typically, the error
variance𝜎2 is unknown, in which case V represents the known (or assumed)
structure of the variances and covariances among the random errors apart
from the constant 𝜎2.

Define the new variables

z = K−1y, B = K−1X, and 𝜹 = K−1𝜺 (3.64)
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so that the regression model y = X𝜷 + 𝜺 becomes, upon multiplication
by K−1,

K−1y = K−1X𝜷 + K−1𝜺

or

z = B𝜷 + 𝜹 (3.65)

The errors in the transformed model Eq. (3.65) have zero expecta-
tion because E(𝜹) = E(K−1𝜺) = K−1E(𝜺) = 0. Furthermore, the covariance
matrix of 𝜹 is

Var (𝜹) = V(K−1𝜺)

= K−1V(𝜺)K−1

= 𝜎
2K−1VK−1

= 𝜎
2K−1KKK−1

= 𝜎
2I

Thus the elements of the vector of errors 𝜹 have mean zero and constant
variance and are uncorrelated. Since the errors 𝜹 in the model in Eq. (3.65)
satisfy the usual assumptions, we may use OLS to estimate the parameters.
The least squares function is

L = 𝜹′𝜹

= (K−1𝜺)′K−1𝜺

= 𝜺′K−1K−1𝜺

= 𝜺′V−1
𝜺

= (y − X𝜷)′V−1(y − X𝜷)

The corresponding normal equations are

(X′V−1X)�̂�GLS = X′V−1y (3.66)

In Equation (3.66) �̂�GLS is the generalized least squares (GLS) esti-
mator of the model parameters 𝜷. The solution to the GLS normal
equations is

�̂�GLS = (X′V−1X)−1X′V−1y (3.67)
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The GLS estimator is an unbiased estimator for the model parameters 𝜷,
and the covariance matrix of �̂�GLS is

Var (�̂�GLS) = 𝜎
2(X′V−1X)−1 (3.68)

The GLS estimator is a best linear unbiased estimator of the model param-
eters 𝜷, where “best” means minimum variance.

3.7.2 Weighted Least Squares

Weighted least squares or WLS is a special case of GLS where the n
response observations yi do not have the same variances but are uncorre-
lated. Therefore the matrix V is

V =

⎡⎢⎢⎢⎢⎣

𝜎
2
1 0 ⋯ 0

0 𝜎
2
2 0 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎
2
n

⎤⎥⎥⎥⎥⎦
,

where 𝜎
2
i is the variance of the ith observation yi, i =1, 2,… , n. Because

the weight for each observation should be the reciprocal of the variance
of that observation, it is convenient to define a diagonal matrix of weights
W = V−1. Clearly, the weights are the main diagonals of the matrix W.
Therefore the WLS criterion is

L = (y − X𝜷)′W(y − X𝜷) (3.69)

and the WLS normal equations are

(X′WX)�̂�WLS = X′Wy. (3.70)

The WLS estimator is

�̂�WLS = (X′WX)−1X′Wy. (3.71)

The WLS estimator is an unbiased estimator for the model parameters 𝜷,
and the covariance matrix of �̂�WLS is

Var (�̂�WLS) = (X′WX)−1
. (3.72)
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To use WLS, the weights wi must be known. Sometimes prior knowl-
edge or experience or information from an underlying theoretical model
can be used to determine the weights. For example, suppose that a signif-
icant source of error is measurement error and different observations are
measured by different instruments of unequal but known or well-estimated
accuracy. Then the weights could be chosen inversely proportional to the
variances of measurement error.

In most practical situations, however, the analyst learns about the
inequality of variance problem from the residual analysis for the original
model that was fit using OLS. For example, the plot of the OLS residuals
ei versus the fitted values ŷi may exhibit an outward-opening funnel shape,
suggesting that the variance of the observations is increasing with the mean
of the response variable y. Plots of the OLS residuals versus the predictor
variables may indicate that the variance of the observations is a function
of one of the predictors. In these situations we can often use estimates of
the weights. There are several approaches that could be used to estimate
the weights. We describe two of the most widely used methods.

Estimation of a Variance Equation In the first method, suppose that
analysis of the OLS residuals indicates that the variance of the ith observa-
tion is a function of one or more predictors or the mean of y. The squared
OLS residual e2

i is an estimator of the variance of the ith observation 𝜎
2
i if

the form of the regression model is correct. Furthermore, the absolute value
of the residual |ei| is an estimator of the standard deviation 𝜎i (because

𝜎i = |√𝜎2
i |). Consequently, we can find a variance equation or a regres-

sion model relating 𝜎
2
i to appropriate predictor variables by the following

process:

1. Fit the model relating y to the predictor variables using OLS and find
the OLS residuals.

2. Use residual analysis to determine potential relationships between 𝜎
2
i

and either the mean of y or some of the predictor variables.
3. Regress the squared OLS residuals on the appropriate predictors to

obtain an equation for predicting the variance of each observation,
say, ŝ2

i = f (x) or ŝ2
i = f (y).

4. Use the fitted values from the estimated variance function to obtain
estimates of the weights, wi = 1∕ŝ2

i , i = 1, 2,… , n.
5. Use the estimated weights as the diagonal elements of the matrix W

in the WLS procedure.
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As an alternative to estimating a variance equation in step 3 above,
we could use the absolute value of the OLS residual and fit an equation
that relates the standard deviation of each observation to the appropriate
regressors. This is the preferred approach if there are potential outliers in
the data, because the absolute value of the residuals is less affected by
outliers than the squared residuals.

When using the five-step procedure outlined above, it is a good idea to
compare the estimates of the model parameters obtained from the WLS fit
to those obtained from the original OLS fit. Because both methods produce
unbiased estimators, we would expect to find that the point estimates of the
parameters from both analyses are very similar. If the WLS estimates differ
significantly from their OLS counterparts, it is usually a good idea to use
the new WLS residuals and reestimate the variance equation to produce
a new set of weights and a revised set of WLS estimates using these new
weights. This procedure is called iteratively reweighted least squares
(IRLS). Usually one or two iterations are all that is required to produce
stable estimates of the model parameters.

Using Replicates or Nearest Neighbors The second approach to
estimating the weights makes use of replicate observations or nearest
neighbors. Exact replicates are sample observations that have exactly the
same values of the predictor variables. Suppose that there are replicate
observations at each of the combination of levels of the predictor vari-
ables. The weights wi can be estimated directly as the reciprocal of the
sample variances at each combination of these levels. Each observation
in a replicate group would receive the same weight. This method works
best when there are a moderately large number of observations in each
replicate group, because small samples do not produce reliable estimates
of the variance.

Unfortunately, it is fairly unusual to find groups of replicate observations
in most regression-modeling situations. It is especially unusual to find them
in time series data. An alternative is to look for observations with similar
x-levels, which can be thought of as a nearest-neighbor group of obser-
vations. The observations in a nearest-neighbor group can be considered
as pseudoreplicates and the sample variance for all of the observations in
each nearest-neighbor group can be computed. The reciprocal of a sample
variance would be used as the weight for all observations in the nearest-
neighbor group.

Sometimes these nearest-neighbor groups can be identified visually by
inspecting the scatter plots of y versus the predictor variables or from plots
of the predictor variables versus each other. Analytical methods can also be
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used to find these nearest-neighbor groups. One nearest-neighbor algorithm
is described in Montgomery, Peck, and Vining (2012). These authors also
present a complete example showing how the nearest-neighbor approach
can be used to estimate the weights for a WLS analysis.

Statistical Inference in WLS In WLS the variances 𝜎
2
i are almost

always unknown and must be estimated. Since statistical inference on the
model parameters as well as confidence intervals and prediction intervals
on the response are usually necessary, we should consider the effect of
using estimated weights on these procedures. Recall that the covariance
matrix of the model parameters in WLS was given in Eq. (3.72). This
covariance matrix plays a central role in statistical inference. Obviously,
when estimates of the weights are substituted into Eq. (3.72) an estimated
covariance matrix is obtained. Generally, the impact of using estimated
weights is modest, provided that the sample size is not very small. In these
situations, statistical tests, confidence intervals, and prediction intervals
should be considered as approximate rather than exact.

Example 3.9 Table 3.13 contains 28 observations on the strength of a
connector and the age in weeks of the glue used to bond the components of
the connector together. A scatter plot of the strength versus age, shown in
Figure 3.2, suggests that there may be a linear relationship between strength
and age, but there may also be a problem with nonconstant variance in the
data. The regression model that was fit to these data is

ŷ = 25.936 + 0.3759x,

where x = weeks.
The residuals from this model are shown in Table 3.13. Figure 3.3 is

a plot of the residuals versus weeks. The pronounced outward-opening
funnel shape on this plot confirms the inequality of variance problem.
Figure 3.4 is a plot of the absolute value of the residuals from this model
versus week. There is an indication that a linear relationship may exist
between the absolute value of the residuals and weeks, although there is
evidence of one outlier in the data. Therefore it seems reasonable to fit
a model relating the absolute value of the residuals to weeks. Since the
absolute value of a residual is the residual standard deviation, the predicted
values from this equation could be used to determine weights for the
regression model relating strength to weeks. This regression model is

ŝi = −5.854 + 0.29852x.
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TABLE 3.13 Connector Strength Data

Observation Weeks Strength Residual Absolute Residual Weights

1 20 34 0.5454 0.5454 73.9274
2 21 35 1.1695 1.1695 5.8114
3 23 33 −1.5824 1.5824 0.9767
4 24 36 1.0417 1.0417 0.5824
5 25 35 −0.3342 0.3342 0.3863
6 28 34 −2.4620 2.4620 0.1594
7 29 37 0.1621 0.1621 0.1273
8 30 34 −3.2139 3.2139 0.1040
9 32 42 4.0343 4.0343 0.0731

10 33 35 −3.3416 3.3416 0.0626
11 35 33 −6.0935 6.0935 0.0474
12 37 46 6.1546 6.1546 0.0371
13 38 43 2.7787 2.7787 0.0332
14 40 32 −8.9731 8.9731 0.0270
15 41 37 −4.3491 4.3491 0.0245
16 43 50 7.8991 7.8991 0.0205
17 44 34 −8.4769 8.4769 0.0189
18 45 54 11.1472 11.1472 0.0174
19 46 49 5.7713 5.7713 0.0161
20 48 55 11.0194 11.0194 0.0139
21 50 40 −4.7324 4.7324 0.0122
22 51 33 −12.1084 12.1084 0.0114
23 52 56 10.5157 10.5157 0.0107
24 55 58 11.3879 11.3879 0.0090
25 56 45 −1.9880 1.9880 0.0085
26 57 33 −14.3639 14.3639 0.0080
27 59 60 11.8842 11.8842 0.0072
28 60 35 −13.4917 13.4917 0.0069

The weights would be equal to the inverse of the square of the fitted
value for each si. These weights are shown in Table 3.13. Using these
weights to fit a new regression model to strength using WLS results in

ŷ = 27.545 + 0.32383x

Note that the weighted least squares model does not differ very much
from the OLS model. Because the parameter estimates did not change very
much, this is an indication that it is not necessary to iteratively reestimate
the standard deviation model and obtain new weights.
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FIGURE 3.2 Scatter diagram of connector strength versus age from Table 3.12.

3.7.3 Discounted Least Squares

Weighted least squares is typically used in situations where the variance
of the observations is not constant. We now consider a different situation
where a WLS-type procedure is also appropriate. Suppose that the pre-
dictor variables in the regression model are only functions of time. As
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FIGURE 3.3 Plot of residuals versus weeks.
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FIGURE 3.4 Scatter plot of absolute residuals versus weeks.

an illustration, consider the linear regression model with a linear trend
in time:

yt = 𝛽0 + 𝛽1t + 𝜀, t = 1, 2,… , T (3.73)

This model was introduced to illustrate trend adjustment in a time series in
Section 2.4.2 and Example 3.2. As another example, the regression model

yt = 𝛽0 + 𝛽1 sin
2𝜋
d

t + 𝛽2 cos
2𝜋
d

t + 𝜀 (3.74)

describes the relationship between a response variable y that varies cycli-
cally or periodically with time where the cyclic variation is modeled as a
simple sine wave. A very general model for these types of situations could
be written as

yt = 𝛽0 + 𝛽1x1(t) +⋯ + 𝛽kxk(t) + 𝜀t, t = 1, 2,… , T , (3.75)

where the predictors x1(t), x2(t),… , xk(t) are mathematical functions of
time, t. In these types of models it is often logical to believe that older
observations are of less value in predicting the future observations at peri-
ods T + 1, T + 2,… , than are the observations that are close to the current
time period, T . In other words, if you want to predict the value of y at time
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T + 1 given that you are at the end of time period T (or ŷT+1(T)), it is logi-
cal to assume that the more recent observations such as yT , yT−1, and yT−2
carry much more useful information than do older observations such as
yT−20. Therefore it seems reasonable to weight the observations in the
regression model so that recent observations are weighted more heavily
than older observations. A very useful variation of WLS, called discounted
least squares, can be used to do this. Discounted least squares also lead
to a relatively simple way to update the estimates of the model parameters
after each new observation in the time series.

Suppose that the model for observation yt is given by Eq. (3.75):

yt = 𝛽1x1(t) +⋯ + 𝛽pxp(t) + 𝜀t

= x(t)′𝜷, t = 1, 2,… , T ,

where x(t)′ = [x1(t), x2(t),… , xp(t)] and 𝜷 ′ = [𝛽1, 𝛽2,… , 𝛽p]. This model
could have an intercept term, in which case x1(t) = 1 and the final
model term could be written as 𝛽kxk(t) as in Eq. (3.75). In matrix form,
Eq. (3.75) is

y = X(T)𝜷 + 𝜺, (3.76)

where y is a T × 1 vector of the observations, 𝜷 is a p × 1 vector of the
model parameters, 𝜺 is a T × 1 vector of the errors, and X(T) is the T × p
matrix

X(T) =

⎡⎢⎢⎢⎢⎢⎣

x1(1) x2(1) ⋯ xp(1)

x1(2) x2(2) ⋯ xp(2)

⋮ ⋮ ⋮ ⋮

x1(T) x2(T) ⋯ xp(T)

⎤⎥⎥⎥⎥⎥⎦
Note that the tth row of X(T) contains the values of the predictor variables
that correspond to the tth observation of the response, yt.

We will estimate the parameters in Eq. (3.76) using WLS. However, we
are going to choose the weights so that they decrease in magnitude with
time. Specifically, let the weight for observation yT−j be 𝜃j, where 0 < 𝜃 <

1. We are also going to shift the origin of time with each new observation
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so that T is the current time period. Therefore the WLS criterion is

L =
T−1∑
j=0

wj

[
yT−j − (𝛽1(T)x1(−j) +⋯ + 𝛽p(T)xk(−j))

]2

=
T−1∑
j=0

wj

[
yT−j − x(−j)𝜷(T)

]2
,

(3.77)

where 𝜷(T) indicates that the vector of regression coefficients is estimated
at the end of time period T, and x(−j) indicates that the predictor variables,
which are just mathematical functions of time, are evaluated at −j. This is
just WLS with a T × T diagonal weight matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜃
T−1 0 0 ⋯ 0

0 𝜃
T−2 0 ⋯ 0

⋮ ⋱ ⋮ ⋮

0 ⋯ 𝜃 0

0 0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
By analogy with Eq. (3.70), the WLS normal equations are

X(T)′WX(T)�̂�(T) = X(T)′Wy

or

G(T)�̂�(T) = g(T), (3.78)

where

G(T) = X(T)′WX(T)

g(T) = X(T)′Wy
(3.79)

The solution to the WLS normal equations is

�̂�(T) = G(T)−1g(T), (3.80)

�̂�(T) is called the discounted least squares estimator of 𝜷.
In many important applications, the discounted least squares estimator

can be simplified considerably. Assume that the predictor variables xi(t) in
the model are functions of time that have been chosen so that their values
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at time period t + 1 are linear combinations of their values at the previous
time period. That is,

xi(t + 1) = Li1x1(t) + Li2x2(t) +⋯ + Lipxp(t), i = 1, 2,… , p (3.81)

In matrix form,

x(t + 1) = Lx(t), (3.82)

where L is the p × p matrix of the constants Lij in Eq. (3.81). The transition
property in Eq. (3.81) holds for polynomial, trigonometric, and certain
exponential functions of time. This transition relationship implies that

x(t) = Ltx(0) (3.83)

Consider the matrix G(T) in the normal equations (3.78). We can write

G(T) =
T−1∑
j=0

𝜃
jx(−j)x(−j)′

= G(T − 1) + 𝜃
T−1x(−(T − 1))x(−(T − 1))′

If the predictor variables xi(t) in the model are polynomial, trigonometric,
or certain exponential functions of time, the matrix G(T) approaches a
steady-state limiting value G,where

G =
∞∑

j=0

𝜃
jx(−j)x(−j)′ (3.84)

Consequently, the inverse of G would only need to be computed once. The
right-hand side of the normal equations can also be simplified. We can
write

g(T) =
T−1∑
j=0

𝜃
jyT−jx(−j)

= yTx(0) +
T−1∑
j=1

𝜃
jyT−jx(−j)

= yTx(0) + 𝜃

T−1∑
j=1

𝜃
j−1yT−jL

−1x(−j + 1)

= yTx(0) + 𝜃L−1
T−2∑
k=0

𝜃
kyT−1−kx(−k)

= yTx(0) + 𝜃L−1g(T − 1)
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So the discounted least squares estimator can be written as

�̂�(T) = G−1g(T)

This can also be simplified. Note that

�̂�(T) = G−1g(T)

= G−1[yTx(0) + 𝜃L−1g(T − 1)]

= G−1[yTx(0) + 𝜃L−1G�̂�(T − 1)]

= yTG−1x(0) + 𝜃G−1L−1G�̂�(T − 1)

or

�̂�(T) = hyT + Z�̂�(T − 1) (3.85)

where

h = G−1x(0) (3.86)

and

Z = 𝜃G−1L−1G (3.87)

The right-hand side of Eq. (3.85) can still be simplified because

L−1G = L−1G(L′)−1L′

=
∞∑

j=0

𝜃
jL−1x(−j)x(−j)′(L′)−1L′

=
∞∑

j=0

𝜃
j[L−1x(−j)][L−1x(−j)]′L′

=
∞∑

j=0

𝜃
jx(−j − 1)x(−j − 1)′L′

and letting k = j + 1,

L−1G = 𝜃
−1

∞∑
k=1

𝜃
kx(−k)x(−k)′L′

= 𝜃
−1[G − x(0)x(0)′]L′
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Substituting for L−1G on the right-hand side of Eq. (3.87) results in

Z = 𝜃G−1
𝜃
−1[G − x(0)x(0)′]L′

= [I − G−1x(0)x(0)′]L′

= L′ − hx(0)L′

= L′ − h[Lx(0)]′

= L′ − hx(1)′

Now the vector of discounted least squares parameter estimates at the
end of time period T in Eq. (3.85) is

�̂�(T) = hyT + Z�̂�(T − 1)

= hyT + [L′ − hx(1)′]�̂�(T − 1)

= L′�̂�(T − 1) + h[yT − x(1)′𝛽(T − 1)].

But x(1)′𝜷(T − 1) = ŷT(T − 1) is the forecast of yT computed at the end of
the previous time period, T – 1, so the discounted least squares vector of
parameter estimates computed at the end of time period t is

�̂�(T) = L′�̂�(T − 1) + h[yT − ŷT (T − 1)]

= L′�̂�(T − 1) + het(1).
(3.88)

The last line in Eq. (3.88) is an extremely important result; it states that
in discounted least squares the vector of parameter estimates computed at
the end of time period T can be computed as a simple linear combination
of the estimates made at the end of the previous time period T − 1 and
the one-step-ahead forecast error for the observation in period T. Note that
there are really two things going on in estimating 𝜷 by discounted least
squares: the origin of time is being shifted to the end of the current period,
and the estimates of the model parameters are being modified to reflect the
forecast error in the current time period. The first and second terms on the
right-hand side of Eq. (3.88) accomplish these objectives, respectively.

When discounted least squares estimation is started up, an initial esti-
mate of the parameters is required at time period zero, say, �̂�(0). This could
be found by a standard least squares (or WLS) analysis of historical data.

Because the origin of time is shifted to the end of the current time
period, forecasting is easy with discounted least squares. The forecast of
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the observation at a future time period T + 𝜏, made at the end of time
period T, is

ŷT+𝜏(T) = �̂�(T)′x(𝜏)

=
p∑

j=1

𝛽 j(T)xj(𝜏).
(3.89)

Example 3.10 Discounted Least Squares and the Linear Trend Model
To illustrate the discounted least squares procedure, let us consider the
linear trend model:

yt = 𝛽0 + 𝛽1t + 𝜀t, t = 1, 2,… , T

To write the parameter estimation equations in Eq. (3.88), we need the
transition matrix L. For the linear trend model, this matrix is

L =
[

1 0

1 1

]

Therefore the parameter estimation equations are

�̂�(T) = L′�̂�(T − 1) + heT(1)[
𝛽0(T)

𝛽1(T)

]
=
[

1 1

0 1

][
𝛽0(T − 1)

𝛽1(T − 1)

]
+
[

h1

h2

]
eT (1)

or

𝛽0(T) = 𝛽0(T − 1) + 𝛽1(T − 1) + h1e1(T)

𝛽1(T) = 𝛽1(T − 1) + h2eT(1)
(3.90)

The elements of the vector h are found from Eq. (3.86):

h = G−1x(0)

= G−1

[
1

0

]
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The steady-state matrix G is found as follows:

G(T) =
T−1∑
j=0

𝜃
jx(−j)x(−j)′

=
T−1∑
j=0

𝜃
j

[
1

−j

] [
1 −j

]

=
T−1∑
j=0

𝜃
j

[
1 −j

−j +j2

]

=

⎡⎢⎢⎢⎢⎢⎣

T−1∑
j=0

𝜃
j −

T−1∑
j=0

j𝜃j

−
T−1∑
j=0

j𝜃j
T−1∑
j=0

j2
𝜃

j

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

1 − 𝜃
T

1 − 𝜃
−𝜃(1 − 𝜃

T)
1 − 𝜃

−𝜃(1 − 𝜃
T )

1 − 𝜃

𝜃(1 + 𝜃)(1 − 𝜃
T)

(1 − 𝜃)3

⎤⎥⎥⎥⎦
The steady-state value of G(T) is found by taking the limit as T → ∞,
which results in

G = lim
T→∞

G(T)

=
⎡⎢⎢⎢⎣

1
1 − 𝜃

− 𝜃

1 − 𝜃

− 𝜃

1 − 𝜃

𝜃(1 + 𝜃)
(1 − 𝜃)3

⎤⎥⎥⎥⎦
The inverse of G is

G−1 =
⎡⎢⎢⎣

1 − 𝜃
2 (1 − 𝜃)2

(1 − 𝜃)2 (1 − 𝜃)2

𝜃

⎤⎥⎥⎦ .
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Therefore, the vector h is

h = G−1x(0)

= G−1

[
1

0

]

=
⎡⎢⎢⎣

1 − 𝜃
2 (1 − 𝜃)2

(1 − 𝜃)2 (1 − 𝜃)2

𝜃

⎤⎥⎥⎦
[

1

0

]

=
[

1 − 𝜃
2

(1 − 𝜃)2

]
.

Substituting the elements of the vector h into Eq. (3.90) we obtain the
parameter estimating equations for the linear trend model as

𝛽0(T) = 𝛽0(T − 1) + 𝛽1(T − 1) + (1 − 𝜃
2)eT (1)

𝛽1(T) = 𝛽1(T − 1) + (1 − 𝜃)2eT(1)

Inspection of these equations illustrates the twin aspects of discounted least
squares; shifting the origin of time, and updating the parameter estimates.
In the first equation, the updated intercept at time T consists of the old
intercept plus the old slope (this shifts the origin of time to the end of the
current period T), plus a fraction of the current forecast error (this revises
or updates the estimate of the intercept). The second equation revises the
slope estimate by adding a fraction of the current period forecast error to
the previous estimate of the slope.

To illustrate the computations, suppose that we are forecasting a time
series with a linear trend and we have initial estimates of the slope and
intercept at time t = 0 as

𝛽0(0) = 50 and 𝛽1(0) = 1.5

These estimates could have been obtained by regression analysis of histor-
ical data.

Assume that 𝜃 = 0.9, so that 1 − 𝜃
2 = 1 − (0.9)2 = 0.19 and (1 −

𝜃)2 = (1 − 0.9)2 = 0.01. The forecast for time period t = 1, made at the
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end of time period t = 0, is computed from Eq. (3.89):

ŷ1(0) = �̂�(0)′x(1)

= 𝛽0(0) + 𝛽1(0)

= 50 + 1.5

= 51.5

Suppose that the actual observation in time period 1 is y1 = 52. The forecast
error in time period 1 is

e1(1) = y1 − ŷ1(0)

= 52 − 51.5

= 0.5.

The updated estimates of the model parameter computed at the end of time
period 1 are now

𝛽0(1) = 𝛽0(0) + 𝛽1(0) + 0.19e1(0)

= 50 + 1.5 + 0.19(0.5)

= 51.60

and

𝛽1(1) = 𝛽1(0) + 0.01e1(0)

= 1.5 + 0.01(0.5)

= 1.55

The origin of time is now T = 1. Therefore the forecast for time period 2
made at the end of period 1 is

ŷ2(1) = 𝛽0(1) + 𝛽1(1)

= 51.6 + 1.55

= 53.15.

If the observation in period 2 is y2 = 55, we would update the parameter
estimates exactly as we did at the end of time period 1. First, calculate the
forecast error:

e2(1) = y2 − ŷ2(1)

= 55 − 53.15

= 1.85
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Second, revise the estimates of the model parameters:

𝛽0(2) = 𝛽0(1) + 𝛽1(1) + 0.19e2(1)

= 51.6 + 1.55 + 0.19(1.85)

= 53.50

and

𝛽1(2) = 𝛽1(1) + 0.01e2(1)

= 1.55 + 0.01(1.85)

= 1.57

The forecast for period 3, made at the end of period 2, is

ŷ3(2) = 𝛽0(2) + 𝛽1(2)

= 53.50 + 1.57

= 55.07.

Suppose that a forecast at a longer lead time than one period is required.
If a forecast for time period 5 is required at the end of time period 2, then
because the forecast lead time is 𝜏 = 5 − 2 = 3, the desired forecast is

ŷ5(2) = 𝛽0(2) + 𝛽1(2)3

= 53.50 + 1.57(3)

= 58.21.

In general, the forecast for any lead time 𝜏, computed at the current
origin of time (the end of time period 2), is

ŷ5(2) = 𝛽0(2) + 𝛽1(2)𝜏

= 53.50 + 1.57𝜏.

When the discounted least squares procedure is applied to a linear trend
model as in Example 3.9, the resulting forecasts are equivalent to the
forecasts produced by a method called double exponential smoothing.
Exponential smoothing is a popular and very useful forecasting technique
and will be discussed in detail in Chapter 4.

Discounted least squares can be applied to more complex models. For
example, suppose that the model is a polynomial of degree k. The transition
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matrix for this model is a square (k + 1) × (k + 1) matrix in which the
diagonal elements are unity, the elements immediately to the left of the
diagonal are also unity, and all other elements are zero. In this polynomial,
the term of degree r is written as

𝛽r

(
t

r

)
= 𝛽r

t!
(t − r)!r!

In the next example we illustrate discounted least squares for a simple
seasonal model.

Example 3.11 A Simple Seasonal Model Suppose that a time series
can be modeled as a linear trend with a superimposed sine wave to represent
a seasonal pattern that is observed monthly. The model is a variation of the
one shown in Eq. (3.3):

yt = 𝛽0 + 𝛽1t + 𝛽2 sin
2𝜋
d

t + 𝛽3 cos
2𝜋
d

t + 𝜀 (3.91)

Since this model represents monthly data, d = 12, Eq. (3.91) becomes

yt = 𝛽0 + 𝛽1t + 𝛽2 sin
2𝜋
12

t + 𝛽3 cos
2𝜋
12

t + 𝜀 (3.92)

The transition matrix L for this model, which contains a mixture of poly-
nomial and trigonometric terms, is

L =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 0 cos 2𝜋
12

sin 2𝜋
12

0 0 − sin 2𝜋
12

cos 2𝜋
12

⎤⎥⎥⎥⎥⎥⎥⎦
.

Note that L has a block diagonal structure, with the first block containing
the elements for the polynomial portion of the model and the second block
containing the elements for the trigonometric terms, and the remaining
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elements of the matrix are zero. The parameter estimation equations for
this model are

�̂�(T) = L′�̂�(T − 1) + heT(1)

⎡⎢⎢⎢⎢⎣

𝛽0(T)

𝛽1(T)

𝛽2(T)

𝛽3(T)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 0 cos 2𝜋
12

sin 2𝜋
12

0 0 − sin 2𝜋
12

cos 2𝜋
12

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝛽0(T − 1)

𝛽1(T − 1)

𝛽2(T − 1)

𝛽3(T − 1)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

h1

h2

h3

h4

⎤⎥⎥⎥⎥⎦
eT(1)

or

𝛽0(T) = 𝛽0(T − 1) + 𝛽1(T − 1) + h1eT (1)

𝛽1(T) = 𝛽1(T − 1) + h2eT (1)

𝛽2(T) = cos 2𝜋
12

𝛽2(T − 1) − sin 2𝜋
12

𝛽3(T − 1) + h3eT(1)

𝛽3(T) = sin 2𝜋
12

𝛽2(T − 1) + cos 2𝜋
12

𝛽3(T − 1) + h4eT(1)

and since 2𝜋∕12 = 30◦, these equations become

𝛽0(T) = 𝛽0(T − 1) + 𝛽1(T − 1) + h1eT (1)

𝛽1(T) = 𝛽1(T − 1) + h2eT(1)

𝛽2(T) = 0.866𝛽2(T − 1) − 0.5𝛽3(T − 1) + h3eT(1)

𝛽3(T) = 0.5𝛽2(T − 1) + 0.866𝛽3(T − 1) + h4eT(1)

The steady-state G matrix for this model is

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
k=0

𝜃
k −

∞∑
k=0

k𝜃k −
∞∑

k=0

𝜃
k sin𝜔k

∞∑
k=0

𝜃
k cos𝜔k

∞∑
k=0

k2
𝜃

k
∞∑

k=0

k𝜃k sin𝜔k −
∞∑

k=0

k𝜃k cos𝜔k

∞∑
k=0

𝜃
k sin𝜔k sin𝜔k −

∞∑
k=0

𝜃
k sin𝜔k cos𝜔k

∞∑
k=0

𝜃
k cos𝜔k cos𝜔k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where we have let 𝜔 = 2𝜋∕12. Because G is symmetric, we only need to
show the upper half of the matrix. It turns out that there are closed-form
expressions for all of the entries in G. We will evaluate these expressions
for 𝜃 = 0.9. This gives the following:

∞∑
k=0

𝜃
k = 1

1 − 𝜃
= 1

1 − 0.9
= 10

∞∑
k=0

k𝜃k = 𝜃

(1 − 𝜃)2
= 0.9

(1 − 0.9)2
= 90

∞∑
k=0

k2
𝜃

k = 𝜃(1 + 𝜃)
(1 − 𝜃)3

= 0.9(1 + 0.9)
(1 − 0.9)3

= 1710

for the polynomial terms and

∞∑
k=0

𝜃
k sin𝜔k = 𝜃 sin𝜔

1 − 2𝜃 cos𝜔 + 𝜃2
= (0.9)0.5

1 − 2(0.9)0.866 + (0.9)2
= 1.79

∞∑
k=0

𝜃
k cos𝜔k = 1 − 𝜃 cos𝜔

1 − 2𝜃 cos𝜔 + 𝜃2
= 1 − (0.9)0.866

1 − 2(0.9)0.866 + (0.9)2
= 0.8824

∞∑
k=0

k𝜃k sin𝜔k = 𝜃(1 − 𝜃
2) sin𝜔

(1 − 2𝜃 cos𝜔 + 𝜃2)2
= 0.9[1 − (0.9)2]0.5

[1 − 2(0.9)0.866 + (0.9)2]2

= 1.368

∞∑
k=0

k𝜃k cos𝜔k = 2𝜃2 − 𝜃(1 + 𝜃
2) cos𝜔

(1 − 2𝜃 cos𝜔 + 𝜃2)2
= 2(0.9)2 − 0.9[1 + (0.9)2]0.866

[1 − 2(0.9)0.866 + (0.9)2]2

= 3.3486

∞∑
k=0

𝜃
k sin𝜔k sin𝜔k = −1

2

[
1 − 𝜃 cos(2𝜔)

1 − 2𝜃 cos(2𝜔) + 𝜃2
− 1 − 𝜃 cos(0)

1 − 2𝜃 cos(0) + 𝜃2

]

−1
2

[
1 − 0.9(0.5)

1 − 2(0.9)0.5 + (0.9)2
− 1 − 0.9(1)

1 − 2(0.9)(1) + (0.9)2

]
= 4.7528
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∞∑
k=0

𝜃
k sin𝜔k cos𝜔k = 1

2

[
𝜃 sin(2𝜔)

1 − 2𝜃 cos(2𝜔) + 𝜃2
− 𝜃 sin(0)

1 − 2𝜃 cos(0) + 𝜃2

]

= 1
2

[
0.9(0.866)

1 − 2(0.9)0.5 + (0.9)2
+ 0.9(0)

1 − 2(0.9)1 + (0.9)2

]
= 0.4284

∞∑
k=0

𝜃
k cos𝜔k cos𝜔k = 1

2

[
1 − 𝜃 cos(2𝜔)

1 − 2𝜃 cos(2𝜔) + 𝜃2
+ 1 − 𝜃 cos(0)

1 − 2𝜃 cos(0) + 𝜃2

]

= 1
2

[
1 − 0.9(0.5)

1 − 2(0.9)0.5 + (0.9)2
+ 1 − 0.9(1)

1 − 2(0.9)(1) + (0.9)2

]
= 5.3022

for the trignometric terms. Therefore the G matrix is

G =

⎡⎢⎢⎢⎢⎣

10 −90 −1.79 0.8824

1740 1.368 −3.3486

4.7528 −0.4284

5.3022

⎤⎥⎥⎥⎥⎦
and G−1 is

G−1 =

⎡⎢⎢⎢⎢⎣

0.214401 0.01987 0.075545 −0.02264

0.01987 0.001138 0.003737 −0.00081

0.075545 0.003737 0.238595 0.009066

−0.02264 −0.00081 0.009066 0.192591

⎤⎥⎥⎥⎥⎦
where we have shown the entire matrix. The h vector is

h = G−1x(0)

=

⎡⎢⎢⎢⎢⎣

0.214401 0.01987 0.075545 −0.02264

0.01987 0.001138 0.003737 −0.00081

0.075545 0.003737 0.238595 0.009066

−0.02264 −0.00081 0.009066 0.192591

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1

0

0

1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

0.191762

0.010179

0.084611

0.169953

⎤⎥⎥⎥⎥⎦



REGRESSION MODELS FOR GENERAL TIME SERIES DATA 177

Therefore the discounted least squares parameter estimation equations
are

𝛽0(T) = 𝛽0(T − 1) + 𝛽1(T − 1) + 0.191762eT(1)

𝛽1(T) = 𝛽1(T − 1) + 0.010179eT(1)

𝛽2(T) = cos 2𝜋
12

𝛽2(T − 1) − sin 2𝜋
12

𝛽3(T − 1) + 0.084611eT(1)

𝛽3(T) = sin 2𝜋
12

𝛽2(T − 1) + cos 2𝜋
12

𝛽3(T − 1) + 0.169953eT(1)

3.8 REGRESSION MODELS FOR GENERAL
TIME SERIES DATA

Many applications of regression in forecasting involve both predictor and
response variables that are time series. Regression models using time series
data occur relatively often in economics, business, and many fields of
engineering. The assumption of uncorrelated or independent errors that is
typically made for cross-section regression data is often not appropriate for
time series data. Usually the errors in time series data exhibit some type
of autocorrelated structure. You might find it useful at this point to review
the discussion of autocorrelation in time series data from Chapter 2.

There are several sources of autocorrelation in time series regression
data. In many cases, the cause of autocorrelation is the failure of the analyst
to include one or more important predictor variables in the model. For
example, suppose that we wish to regress the annual sales of a product in a
particular region of the country against the annual advertising expenditures
for that product. Now the growth in the population in that region over the
period of time used in the study will also influence the product sales. If
population size is not included in the model, this may cause the errors in
the model to be positively autocorrelated, because if the per capita demand
for the product is either constant or increasing with time, population size
is positively correlated with product sales.

The presence of autocorrelation in the errors has several effects on the
OLS regression procedure. These are summarized as follows:

1. The OLS regression coefficients are still unbiased, but they are no
longer minimum-variance estimates. We know this from our study of
GLS in Section 3.7.

2. When the errors are positively autocorrelated, the residual
mean square may seriously underestimate the error variance 𝜎

2.
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Consequently, the standard errors of the regression coefficients may
be too small. As a result, confidence and prediction intervals are
shorter than they really should be, and tests of hypotheses on indi-
vidual regression coefficients may be misleading, in that they may
indicate that one or more predictor variables contribute significantly
to the model when they really do not. Generally, underestimating the
error variance 𝜎

2 gives the analyst a false impression of precision of
estimation and potential forecast accuracy.

3. The confidence intervals, prediction intervals, and tests of hypotheses
based on the t and Fdistributions are, strictly speaking, no longer
exact procedures.

There are three approaches to dealing with the problem of autocorre-
lation. If autocorrelation is present because of one or more omitted pre-
dictors and if those predictor variable(s) can be identified and included in
the model, the observed autocorrelation should disappear. Alternatively,
the WLS or GLS methods discussed in Section 3.7 could be used if there
were sufficient knowledge of the autocorrelation structure. Finally, if these
approaches cannot be used, the analyst must turn to a model that specifically
incorporates the autocorrelation structure. These models usually require
special parameter estimation techniques. We will provide an introduction
to these procedures in Section 3.8.2.

3.8.1 Detecting Autocorrelation: The Durbin–Watson Test

Residual plots can be useful for the detection of autocorrelation. The
most useful display is the plot of residuals versus time. If there is positive
autocorrelation, residuals of identical sign occur in clusters: that is, there
are not enough changes of sign in the pattern of residuals. On the other
hand, if there is negative autocorrelation, the residuals will alternate signs
too rapidly.

Various statistical tests can be used to detect the presence of autocor-
relation. The test developed by Durbin and Watson (1950, 1951, 1971) is a
very widely used procedure. This test is based on the assumption that the
errors in the regression model are generated by a first-order autoregres-
sive process observed at equally spaced time periods; that is,

𝜀t = 𝜙𝜀t−1 + at, (3.93)

where 𝜀t is the error term in the model at time period t, at is an NID(0, 𝜎2
a)

random variable, and 𝜙 is a parameter that defines the relationship between



REGRESSION MODELS FOR GENERAL TIME SERIES DATA 179

successive values of the model errors 𝜀t and 𝜀t−1. We will require that|𝜙| < 1, so that the model error term in time period t is equal to a fraction of
the error experienced in the immediately preceding period plus a normally
and independently distributed random shock or disturbance that is unique
to the current period. In time series regression models 𝜙 is sometimes
called the autocorrelation parameter. Thus a simple linear regression
model with first-order autoregressive errors would be

yt = 𝛽0 + 𝛽1xt + 𝜀t, 𝜀t = 𝜙𝜀t−1 + at, (3.94)

where yt and xt are the observations on the response and predictor variables
at time period t.

When the regression model errors are generated by the first-order autore-
gressive process in Eq. (3.93), there are several interesting properties of
these errors. By successively substituting for 𝜀t, 𝜀t−1,… on the right-hand
side of Eq. (3.93) we obtain

𝜀t =
∞∑

j=0

𝜙
jat−j

In other words, the error term in the regression model for period t is just
a linear combination of all of the current and previous realizations of the
NID(0,𝜎2) random variables at. Furthermore, we can show that

E(𝜀t) = 0

Var (𝜀t) = 𝜎
2 = 𝜎

2
a

(
1

1 − 𝜙2

)
(3.95)

Cov (𝜀t, 𝜀t±j) = 𝜙
j
𝜎

2
a

(
1

1 − 𝜙2

)

That is, the errors have zero mean and constant variance but have a nonzero
covariance structure unless 𝜙 = 0.

The autocorrelation between two errors that are one period apart, or
the lag one autocorrelation, is

𝜌1 =
Cov(𝜀t, 𝜀t+1)√

Var (𝜀t)
√

Var (𝜀t)



180 REGRESSION ANALYSIS AND FORECASTING

=
𝜙𝜎

2
a

(
1

1−𝜙2

)
√

𝜎2
a

(
1

1−𝜙2

)√
𝜎2

a

(
1

1−𝜙2

)
= 𝜙

The autocorrelation between two errors that are k periods apart is

𝜌k = 𝜙
k, i = 1, 2,…

This is called the autocorrelation function (refer to Section 2.3.2). Recall
that we have required that |𝜙| < 1. When 𝜙 is positive, all error terms are
positively correlated, but the magnitude of the correlation decreases as the
errors grow further apart. Only if 𝜙 = 0 are the model errors uncorrelated.

Most time series regression problems involve data with positive auto-
correlation. The Durbin–Watson test is a statistical test for the presence
of positive autocorrelation in regression model errors. Specifically, the
hypotheses considered in the Durbin–Watson test are

H0 : 𝜙 = 0

H1 : 𝜙 > 0
(3.96)

The Durbin–Watson test statistic is

d =

T∑
t=2

(et − et−1)2

T∑
t=1

e2
t

=

T∑
t=2

e2
t +

T∑
t=2

e2
t−1 − 2

T∑
t=2

etet−1

T∑
t=1

e2
t

≈ 2(1 − r1), (3.97)

where the et, t = 1, 2,… , T are the residuals from an OLS regression of
yt on xt. In Eq. (3.97) r1 is the lag one autocorrelation between the resid-
uals, so for uncorrelated errors the value of the Durbin–Watson statistic
should be approximately 2. Statistical testing is necessary to determine
just how far away from 2 the statistic must fall in order for us to conclude
that the assumption of uncorrelated errors is violated. Unfortunately, the
distribution of the Durbin–Watson test statistic d depends on the X matrix,
and this makes critical values for a statistical test difficult to obtain. How-
ever, Durbin and Watson (1951) show that d lies between lower and upper
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bounds, say, dL and dU , such that if d is outside these limits, a conclu-
sion regarding the hypotheses in Eq. (3.96) can be reached. The decision
procedure is as follows:

If d < dL reject H0 : 𝜙 = 0

If d > dU do not reject H0 : 𝜙 = 0

If dL ≤ d ≤ dU the test is inconclusive

Table A.5 in Appendix A gives the bounds dL and dU for a range of sample
sizes, various numbers of predictors, and three type I error rates (𝛼 = 0.05,
𝛼 = 0.025, and 𝛼 = 0.01). It is clear that small values of the test statistic d
imply that H0 : 𝜙 = 0 should be rejected because positive autocorrelation
indicates that successive error terms are of similar magnitude, and the
differences in the residuals et − et−1 will be small. Durbin and Watson
suggest several procedures for resolving inconclusive results. A reasonable
approach in many of these inconclusive situations is to analyze the data as
if there were positive autocorrelation present to see if any major changes
in the results occur.

Situations where negative autocorrelation occurs are not often encoun-
tered. However, if a test for negative autocorrelation is desired, one can use
the statistic 4 −d, where d is defined in Eq. (3.97). Then the decision rules
for testing the hypotheses H0 : 𝜙 = 0 versus H1 : 𝜙 < 0 are the same as
those used in testing for positive autocorrelation. It is also possible to test a
two-sided alternative hypothesis (H0 : 𝜙 = 0 versus H1 : 𝜙 ≠ 0 ) by using
both of the one-sided tests simultaneously. If this is done, the two-sided
procedure has type I error 2𝛼, where 𝛼 is the type I error used for each
individual one-sided test.

Example 3.12 Montgomery, Peck, and Vining (2012) present an exam-
ple of a regression model used to relate annual regional advertising
expenses to annual regional concentrate sales for a soft drink company.
Table 3.14 presents the 20 years of these data used by Montgomery, Peck,
and Vining (2012). The authors assumed that a straight-line relationship
was appropriate and fit a simple linear regression model by OLS. The
Minitab output for this model is shown in Table 3.15 and the residuals are
shown in the last column of Table 3.14. Because these are time series data,
there is a possibility that autocorrelation may be present. The plot of resid-
uals versus time, shown in Figure 3.5, has a pattern indicative of potential
autocorrelation; there is a definite upward trend in the plot, followed by a
downward trend.
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TABLE 3.14 Soft Drink Concentrate Sales Data

Expenditures
Year Sales (Units) (103 Dollars) Residuals

1 3083 75 −32.3298
2 3149 78 −26.6027
3 3218 80 2.2154
4 3239 82 −16.9665
5 3295 84 −1.1484
6 3374 88 −2.5123
7 3475 93 −1.9671
8 3569 97 11.6691
9 3597 99 −0.5128

10 3725 104 27.0324
11 3794 109 −4.4224
12 3959 115 40.0318
13 4043 120 23.5770
14 4194 127 33.9403
15 4318 135 −2.7874
16 4493 144 −8.6060
17 4683 153 0.5753
18 4850 161 6.8476
19 5005 170 −18.9710
20 5236 182 −29.0625

We will use the Durbin–Watson test for

H0 : 𝜙 = 0
H1 : 𝜙 > 0

The test statistic is calculated as follows:

d =

20∑
t=2

(et − et−1)2

20∑
t=1

e2
t

= [−26.6027 − (−32.3298)]2 + [2.2154 − (−26.6027)]2 +⋯ + [−29.0625 − (−18.9710)]2

(−32.3298)2 + (−26.6027)2 +⋯ + (−29.0625)2

= 1.08

Minitab will also calculate and display the Durbin–Watson statistic.
Refer to the Minitab output in Table 3.15. If we use a significance level
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TABLE 3.15 Minitab Output for the Soft Drink Concentrate Sales Data

Regression Analysis: Sales Versus Expenditures

The regression equation is
Sales = 1609 + 20.1 Expenditures

Predictor Coef SE Coef T P
Constant 1608.51 17.02 94.49 0.000
Expenditures 20.0910 0.1428 140.71 0.000

S = 20.5316 R-Sq = 99.9% R-Sq(adj) = 99.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 8346283 8346283 19799.11 0.000
Residual Error 18 7588 422
Total 19 8353871

Unusual Observations

Obs Expenditures Sales Fit SE Fit Residual St Resid
12 115 3959.00 3918.97 4.59 40.03 2.00R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.08005
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FIGURE 3.5 Plot of residuals versus time for the soft drink concentrate sales
model.
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of 0.05, Table A.5 in Appendix A gives the critical values corresponding
to one predictor variable and 20 observations as dL = 1.20 and dU = 1.41.
Since the calculated value of the Durbin–Watson statistic d = 1.08 is less
than dL = 1.20, we reject the null hypothesis and conclude that the errors
in the regression model are positively autocorrelated.

3.8.2 Estimating the Parameters in Time Series
Regression Models

A significant value of the Durbin–Watson statistic or a suspicious resid-
ual plot indicates a potential problem with auto correlated model errors.
This could be the result of an actual time dependence in the errors or
an “artificial” time dependence caused by the omission of one or more
important predictor variables. If the apparent autocorrelation results from
missing predictors and if these missing predictors can be identified and
incorporated into the model, the apparent autocorrelation problem may be
eliminated. This is illustrated in the following example.

Example 3.13 Table 3.16 presents an expanded set of data for the soft
drink concentrate sales problem introduced in Example 3.12. Because it is
reasonably likely that regional population affects soft drink sales, Mont-
gomery, Peck, and Vining (2012) provided data on regional population for
each of the study years. Table 3.17 is the Minitab output for a regression
model that includes as the predictor variables advertising expenditures and
population. Both of these predictor variables are highly significant. The
last column of Table 3.16 shows the residuals from this model. Minitab
calculates the Durbin–Watson statistic for this model as d = 3.05932, and
the 5% critical values are dL = 1.10 and dU = 1.54, and since d is greater
than dU, we conclude that there is no evidence to reject the null hypothesis.
That is, there is no indication of autocorrelation in the errors.

Figure 3.6 is a plot of the residuals from this regression model in time
order. This plot shows considerable improvement when compared to the
plot of residuals from the model using only advertising expenditures as the
predictor. Therefore, we conclude that adding the new predictor popula-
tion size to the original model has eliminated an apparent problem with
autocorrelation in the errors.

The Cochrane–Orcutt Method When the observed autocorrelation
in the model errors cannot be removed by adding one or more new pre-
dictor variables to the model, it is necessary to take explicit account of
the autocorrelative structure in the model and use an appropriate parameter
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TABLE 3.16 Expanded Soft Drink Concentrate Sales Data for
Example 3.13

Expenditures
Year Sales (Units) (103 Dollars) Population Residuals

1 3083 75 825,000 −4.8290
2 3149 78 830,445 −3.2721
3 3218 80 838,750 14.9179
4 3239 82 842,940 −7.9842
5 3295 84 846,315 5.4817
6 3374 88 852,240 0.7986
7 3475 93 860,760 −4.6749
8 3569 97 865,925 6.9178
9 3597 99 871,640 −11.5443

10 3725 104 877,745 14.0362
11 3794 109 886,520 −23.8654
12 3959 115 894,500 17.1334
13 4043 120 900,400 −0.9420
14 4194 127 904,005 14.9669
15 4318 135 908,525 −16.0945
16 4493 144 912,160 −13.1044
17 4683 153 917,630 1.8053
18 4850 161 922,220 13.6264
19 5005 170 925,910 −3.4759
20 5236 182 929,610 0.1025

estimation method. A very good and widely used approach is the procedure
devised by Cochrane and Orcutt (1949).

We will describe the Cochrane–Orcutt method for the simple linear
regression model with first-order autocorrelated errors given in Eq. (3.94).
The procedure is based on transforming the response variable so that
y′t = yt − 𝜙yt−1. Substituting for yt and yt−1, the model becomes

y′t = yt − 𝜙yt−1

= 𝛽0 + 𝛽1xt + 𝜀t − 𝜙(𝛽0 + 𝛽1xt−1 + 𝜀t−1)
= 𝛽0(1 − 𝜙) + 𝛽1(xt − 𝜙xt−1) + 𝜀t − 𝜙𝜀t−1

= 𝛽
′
0 + 𝛽1x′t + at,

(3.98)

where 𝛽
′
0 = 𝛽0(1 − 𝜙) and x′t = xt − 𝜙xt−1. Note that the error terms at in

the transformed or reparameterized model are independent random vari-
ables. Unfortunately, this new reparameterized model contains an unknown
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TABLE 3.17 Minitab Output for the Soft Drink Concentrate Data in
Example 3.13

Regression Analysis: Sales Versus Expenditures, Population

The regression equation is
Sales = 320 + 18.4 Expenditures + 0.00168 Population

Predictor Coef SE Coef T P
Constant 320.3 217.3 1.47 0.159
Expenditures 18.4342 0.2915 63.23 0.000
Population 0.0016787 0.0002829 5.93 0.000

S = 12.0557 R-Sq = 100.0% R-Sq(adj) = 100.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 8351400 4175700 28730.40 0.000
Residual Error 17 2471 145
Total 19 8353871

Source DF Seq SS
Expenditures 1 8346283
Population 1 5117

Unusual Observations

Obs Expenditures Sales Fit SE Fit Residual St Resid
11 109 3794.00 3817.87 4.27 -23.87 -2.12R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 3.05932

parameter 𝜙 and it is also no longer linear in the unknown parameters
because it involves products of 𝜙, 𝛽0, and 𝛽1. However, the first-order
autoregressive process 𝜀t = 𝜙𝜀t−1 + at can be viewed as a simple linear
regression through the origin and the parameter 𝜙 can be estimated by
obtaining the residuals of an OLS regression of yt on xt and then regressing
et on et−1. The OLS regression of et on et−1 results in

�̂� =

T∑
t=2

etet−1

T∑
y=1

e2
t

(3.99)
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FIGURE 3.6 Plot of residuals versus time for the soft drink concentrate sales
model in Example 3.13.

Using �̂� as an estimate of 𝜙, we can calculate the transformed response
and predictor variables as

y′t = yt − �̂�yt−1

x′t = xt − �̂�xt−1

Now apply OLS to the transformed data. This will result in estimates
of the transformed slope 𝛽

′
0, the intercept 𝛽1, and a new set of residuals.

The Durbin–Watson test can be applied to these new residuals from the
reparameterized model. If this test indicates that the new residuals are
uncorrelated, then no additional analysis is required. However, if posi-
tive autocorrelation is still indicated, then another iteration is necessary.
In the second iteration 𝜙 is estimated with new residuals that are obtained
by using the regression coefficients from the reparameterized model with
the original regressor and response variables. This iterative procedure may
be continued as necessary until the residuals indicate that the error terms
in the reparameterized model are uncorrelated. Usually only one or two
iterations are sufficient to produce uncorrelated errors.

Example 3.14 Montgomery, Peck, and Vining (2012) give data on
the market share of a particular brand of toothpaste for 30 time periods
and the corresponding selling price per pound. These data are shown in
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TABLE 3.18 Toothpaste Market Share Data

Time Market Share Price Residuals y′t x′t Residuals

1 3.63 0.97 0.281193
2 4.20 0.95 0.365398 2.715 0.553 −0.189435
3 3.33 0.99 0.466989 1.612 0.601 0.392201
4 4.54 0.91 −0.266193 3.178 0.505 −0.420108
5 2.89 0.98 −0.215909 1.033 0.608 −0.013381
6 4.87 0.90 −0.179091 3.688 0.499 −0.058753
7 4.90 0.89 −0.391989 2.908 0.522 −0.268949
8 5.29 0.86 −0.730682 3.286 0.496 −0.535075
9 6.18 0.85 −0.083580 4.016 0.498 0.244473

10 7.20 0.82 0.207727 4.672 0.472 0.256348
11 7.25 0.79 −0.470966 4.305 0.455 −0.531811
12 6.09 0.83 −0.659375 3.125 0.507 −0.423560
13 6.80 0.81 −0.435170 4.309 0.471 −0.131426
14 8.65 0.77 0.443239 5.869 0.439 0.635804
15 8.43 0.76 −0.019659 4.892 0.445 −0.192552
16 8.29 0.80 0.811932 4.842 0.489 0.847507
17 7.18 0.83 0.430625 3.789 0.503 0.141344
18 7.90 0.79 0.179034 4.963 0.451 0.027093
19 8.45 0.76 0.000341 5.219 0.437 −0.063744
20 8.23 0.78 0.266136 4.774 0.469 0.284026

Table 3.18. A simple linear regression model is fit to these data, and the
resulting Minitab output is in Table 3.19. The residuals are shown in Table
3.18. The Durbin–Watson statistic for the residuals from this model is
d = 1.13582 (see the Minitab output), and the 5% critical values are dL =
1.20 and dU = 1.41, so there is evidence to support the conclusion that the
residuals are positively autocorrelated.

We will use the Cochrane–Orcutt method to estimate the model param-
eters. The autocorrelation coefficient can be estimated using the residuals
in Table 3.18 and Eq. (3.99) as follows:

�̂� =

T∑
t=2

etet−1

T∑
y=1

e2
t

= 1.3547
3.3083

= 0.409
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TABLE 3.19 Minitab Regression Results for the Toothpaste
Market Share Data

Regression Analysis: Market Share Versus Price

The regression equation is
Market Share = 26.9 - 24.3 Price

Predictor Coef SE Coef T P
Constant 26.910 1.110 24.25 0.000
Price -24.290 1.298 -18.72 0.000

S = 0.428710 R-Sq = 95.1% R-Sq(adj) = 94.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 64.380 64.380 350.29 0.000
Residual Error 18 3.308 0.184
Total 19 67.688

Durbin-Watson statistic = 1.13582

The transformed variables are computed according to

y′t = yt − 0.409yt−1

x′t = xt − 0.409xt−1

for t = 2, 3,… , 20. These transformed variables are also shown in Table
3.18. The Minitab results for fitting a regression model to the transformed
data are summarized in Table 3.20. The residuals from the transformed
model are shown in the last column of Table 3.18. The Durbin–Watson
statistic for the transformed model is d = 2.15671, and the 5% critical
values from Table A.5 in Appendix A are dL = 1.18 and dU = 1.40, so
we conclude that there is no problem with autocorrelated errors in the
transformed model. The Cochrane–Orcutt method has been effective in
removing the autocorrelation.

The slope in the transformed model 𝛽′1 is equal to the slope in the original
model, 𝛽1. A comparison of the slopes in the two models in Tables 3.19 and
3.20 shows that the two estimates are very similar. However, if the standard
errors are compared, the Cochrane–Orcutt method produces an estimate
of the slope that has a larger standard error than the standard error of the
OLS estimate. This reflects the fact that if the errors are autocorrelated and
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TABLE 3.20 Minitab Regression Results for Fitting the Transformed
Model to the Toothpaste Sales Data

Regression Analysis: y′ Versus x′

The regression equation is
y-prime = 16.1 - 24.8 x-prime

Predictor Coef SE Coef T P
Constant 16.1090 0.9610 16.76 0.000
x-prime -24.774 1.934 -12.81 0.000

S = 0.390963 R-Sq = 90.6% R-Sq(adj) = 90.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 25.080 25.080 164.08 0.000
Residual Error 17 2.598 0.153
Total 18 27.679

Unusual Observations

Obs x-prime y-prime Fit SE Fit Residual St Resid
2 0.601 1.6120 1.2198 0.2242 0.3922 1.22 X
4 0.608 1.0330 1.0464 0.2367 -0.0134 -0.04 X

15 0.489 4.8420 3.9945 0.0904 0.8475 2.23R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 2.15671

OLS is used, the standard errors of the model coefficients are likely to be
underestimated.

The Maximum Likelihood Approach There are other alternatives to
the Cochrane–Orcutt method. A popular approach is to use the method of
maximum likelihood to estimate the parameters in a time series regression
model. We will concentrate on the simple linear regression model with
first-order autoregressive errors

yt = 𝛽0 + 𝛽1xt + 𝜀t, 𝜀t = 𝜙𝜀t−1 + at (3.100)
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One reason that the method of maximum likelihood is so attractive is that,
unlike the Cochrane–Orcutt method, it can be used in situations where the
autocorrelative structure of the errors is more complicated than first-order
autoregressive.

For readers unfamiliar with maximum likelihood estimation, we will
present a simple example. Consider the time series model

yt = 𝜇 + at, (3.101)

where at is N(0, 𝜎2) and 𝜇 is unknown. This is a time series model for a
process that varies randomly around a fixed level (𝜇) and for which there
is no autocorrelation. We will estimate the unknown parameter 𝜇 using the
method of maximum likelihood.

Suppose that there are T observations available, y1, y2,… , yT . The
probability distribution of any observation is normal, that is,

f (yt) =
1

𝜎

√
2𝜋

e−[(yt−𝜇)∕𝜎]2∕2

= 1

𝜎

√
2𝜋

e−(at∕𝜎)2∕2

The likelihood function is just the joint probability density function of
the sample. Because the observations y1, y2,… , yT are independent, the
likelihood function is just the product of the individual density functions,
or

l(yt,𝜇) =
T∏

t=1

f (yt)

=
T∏

t=1

1

𝜎

√
2𝜋

e−(at∕𝜎)2∕2 (3.102)

=

(
1

𝜎

√
2𝜋

)T

exp

(
− 1

2𝜎2

T∑
t=1

a2
t

)

The maximum likelihood estimator of 𝜇 is the value of the parameter
that maximizes the likelihood function. It is often easier to work with the
log-likelihood, and this causes no problems because the value of 𝜇 that
maximizes the likelihood function also maximizes the log-likelihood.
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The log-likelihood is

ln l(yt𝜇) = −T
2
ln(2𝜋) − T ln 𝜎 − 1

2𝜎2

T∑
t=1

a2
t

Suppose that 𝜎2 is known. Then to maximize the log-likelihood we would
choose the estimate of 𝜇 that minimizes

T∑
t=1

a2
t =

T∑
t=1

(yt − 𝜇)2

Note that this is just the error sum of squares from the model in Eq. (3.101).
So, in the case of normally distributed errors, the maximum likelihood
estimator of 𝜇 is identical to the least squares estimator of 𝜇. It is easy to
show that this estimator is just the sample average; that is,

�̂� = ȳ

Suppose that the mean of the model in Eq. (3.101) is a linear regression
function of time, say,

𝜇 = 𝛽0 + 𝛽1t

so that the model is

yt = 𝜇 + at = 𝛽0 + 𝛽1t + at

with independent and normally distributed errors. The likelihood function
for this model is identical to Eq. (3.102), and, once again, the maximum
likelihood estimators of the model parameters 𝛽0 and 𝛽1 are found by min-
imizing the error sum of squares from the model. Thus when the errors are
normally and independently distributed, the maximum likelihood estima-
tors of the model parameters 𝛽0 and 𝛽1 in the linear regression model are
identical to the least squares estimators.

Now let us consider the simple linear regression model with first-order
autoregressive errors, first introduced in Eq. (3.94), and repeated for con-
venience below:

yt = 𝛽0 + 𝛽1xt + 𝜀t, 𝜀t = 𝜙𝜀t−1 + at
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Recall that the a’s are normally and independently distributed with mean
zero and variance 𝜎

2
a and 𝜙 is the autocorrelation parameter. Write this

equation for yt−1 and subtract 𝜙yt−1 from yt. This results in

yt − 𝜙yt−1 = (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1) + at

or

yt = 𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1) + at

= 𝜇(zt,𝜽) + at,
(3.103)

where z′t = [yt−1, xt] and 𝜽′ = [𝜙, 𝛽0, 𝛽1]. We can think of zt as a vector
of predictor variables and 𝜽 as the vector of regression model parameters.
Since yt−1 appears on the right-hand side of the model in Eq. (3.103), the
index of time must run from 2, 3,… , T . At time period t = 2, we treat y1
as an observed predictor.

Because the a’s are normally and independently distributed, the joint
probability density of the a’s is

f (a2, a3,… , aT ) =
T∏

t=2

1

𝜎a

√
2𝜋

e−(at∕𝜎a)2∕2

=

(
1

𝜎a

√
2𝜋

)T−1

exp

(
− 1

2𝜎2
a

T∑
t=1

a2
t

)

and the likelihood function is obtained from this joint distribution by
substituting for the a’s:

l(yt,𝜙, 𝛽0, 𝛽1) =

(
1

𝜎a

√
2𝜋

)T−1

exp

(
− 1

2𝜎2
a

T∑
t=2

{yt − [𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1)]}2

)

The log-likelihood is

ln l(yt,𝜙, 𝛽0, 𝛽1) = − T − 1
2

ln(2𝜋) − (T − 1) ln 𝜎a

− 1
2𝜎2

a

T∑
t=2

{yt − [𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1)]}2
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This log-likelihood is maximized with respect to the parameters
𝜙, 𝛽0, and 𝛽1 by minimizing the quantity

SSE =
T∑

t=2

{yt − [𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1)]}2, (3.104)

which is the error sum of squares for the model. Therefore the maximum
likelihood estimators of 𝜙, 𝛽0, and 𝛽1 are also least squares estimators.

There are two important points about the maximum likelihood (or least
squares) estimators. First, the sum of squares in Eq. (3.104) is conditional
on the initial value of the time series, y1. Therefore the maximum likelihood
(or least squares) estimators found by minimizing this conditional sum of
squares are conditional maximum likelihood (or conditional least squares)
estimators. Second, because the model involves products of the parameters
𝜙 and 𝛽0, the model is no longer linear in the unknown parameters. That
is, it is not a linear regression model and consequently we cannot give an
explicit closed-form solution for the parameter estimators. Iterative meth-
ods for fitting nonlinear regression models must be used. These procedures
work by linearizing the model about a set of initial guesses for the parame-
ters, solving the linearized model to obtain improved parameter estimates,
then using the improved estimates to define a new linearized model, which
leads to new parameter estimates and so on. The details of fitting nonlinear
models by least squares are discussed in Montgomery, Peck, and Vining
(2012).

Suppose that we have obtained a set of parameter estimates, say, ̂𝜽′ =
[�̂�, 𝛽0, 𝛽1]. The maximum likelihood estimate of 𝜎2

a is computed as

�̂�
2
a =

SSE(�̂�)

n − 1
, (3.105)

where SSE(�̂�) is the error sum of squares in Eq. (3.104) evaluated at the
conditional maximum likelihood (or conditional least squares) parameter
estimates ̂𝜽′ = [�̂�, 𝛽0, 𝛽1]. Some authors (and computer programs) use an
adjusted number of degrees of freedom in the denominator to account for
the number of parameters that have been estimated. If there are k predictors,
then the number of estimated parameters will be p = k + 3, and the formula
for estimating 𝜎

2
a is

�̂�
2
a =

SSE(�̂�)

n − p − 1
=

SSE(�̂�)

n − k − 4
(3.106)
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In order to test hypotheses about the model parameters and to find
confidence intervals, standard errors of the model parameters are needed.
The standard errors are usually found by expanding the nonlinear model
in a first-order Taylor series around the final estimates of the parameters
̂𝜽′ = [�̂�, 𝛽0, 𝛽1]. This results in

yt ≈ 𝜇(zt, �̂�) + (𝜽 − �̂�)′
𝜕𝜇(zt,𝜽)

𝜕𝜽

||||𝜽=�̂� + at

The column vector of derivatives, 𝜕𝜇(zt,𝜽)∕𝜕𝜽, is found by differentiating
the model with respect to each parameter in the vector 𝜽′ = [𝜙, 𝛽0, 𝛽1].
This vector of derivatives is

𝜕𝜇(zt,𝜽)

𝜕𝜽
=
⎡⎢⎢⎣

1 − 𝜙

xt − 𝜙xt−1
yt−1 − 𝛽0 − 𝛽1xt−1

⎤⎥⎥⎦
This vector is evaluated for each observation at the set of conditional
maximum likelihood parameter estimates ̂𝜽′ = [�̂�, 𝛽0, 𝛽1] and assembled
into an X matrix. Then the covariance matrix of the parameter estimates is
found from

Cov(�̂�) = 𝜎
2
a(X′X)−1

When 𝜎
2
a is replaced by the estimate �̂�2

a from Eq. (3.106) an estimate of the
covariance matrix results, and the standard errors of the model parameters
are the main diagonals of the covariance matrix.

Example 3.15 We will fit the regression model with time series errors
in Eq. (3.104) to the toothpaste market share data originally analyzed in
Example 3.14. We will use a widely available software package, SAS
(the Statistical Analysis System). The SAS procedure for fitting regression
models with time series errors is SAS PROC AUTOREG. Table 3.21 con-
tains the output from this software program for the toothpaste market share
data. Note that the autocorrelation parameter (or the lag one autocorrela-
tion) is estimated to be 0.4094, which is very similar to the value obtained
by the Cochrane–Orcutt method. The overall R2 for this model is 0.9601,
and we can show that the residuals exhibit no autocorrelative structure, so
this is likely a reasonable model for the data.

There is, of course, some possibility that a more complex autocorrela-
tion structure than first-order may exist. SAS PROC AUTOREG can fit
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TABLE 3.21 SAS PROC AUTOREG Output for the Toothpaste Market
Share Data, Assuming First-Order Autoregressive Errors

The SAS System

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 3.30825739 DFE 18

MSE 0.18379 Root MSE 0.42871

SBC 26.762792 AIC 24.7713275

Regress R-Square 0.9511 Total R-Square 0.9511

Durbin-Watson 1.1358 Pr < DW 0.0098

Pr > DW 0.9902

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is

the p-value for testing negative autocorrelation.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.9099 1.1099 24.25 <.0001

x 1 -24.2898 1.2978 -18.72 <.0001 x

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.1654 1.000000 | |********************|

1 0.0677 0.409437 | |******** |

Preliminary MSE 0.1377

Estimates of Autoregressive Parameters

Standard

Lag Coefficient Error t Value

1 -0.409437 0.221275 -1.85

Algorithm converged.

more complex patterns. Since there is obviously first-order autocorrela-
tion present, an obvious possibility is that the autocorrelation might be
second-order autoregressive, as in

𝜀t = 𝜙1𝜀t−1 + 𝜙2𝜀t−2 + at,

where the parameters 𝜙1 and 𝜙2 are autocorrelations at lags one and two,
respectively. The output from SAS PROC AUTOREG for this model is in
Table 3.22. The t-statistic for the lag two autocorrelation is not significant
so there is no reason to believe that this more complex autocorrelative
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TABLE 3.21 (Continued)

The SAS System

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 2.69864377 DFE 17

MSE 0.15874 Root MSE 0.39843

SBC 25.8919447 AIC 22.9047479

Regress R-Square 0.9170 Total R-Square 0.9601

Durbin-Watson 1.8924 Pr < DW 0.3472

Pr > DW 0.6528

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is

the p-value for testing negative autocorrelation.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.3322 1.4777 17.82 <.0001

x 1 -23.5903 1.7222 -13.70 <.0001 x

AR1 1 -0.4323 0.2203 -1.96 0.0663

Autoregressive parameters assumed given.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.3322 1.4776 17.82 <.0001

x 1 -23.5903 1.7218 -13.70 <.0001 x

structure is necessary to adequately model the data. The model with first-
order autoregressive errors is satisfactory.

Forecasting and Prediction Intervals We now consider how to
obtain forecasts at any lead time using a time series model. It is very
tempting to ignore the autocorrelation in the data when forecasting, and
simply substitute the conditional maximum likelihood estimates into the
regression equation:

ŷt = 𝛽0 + 𝛽1xt

Now suppose that we are at the end of the current time period, T, and we
wish to obtain a forecast for period T + 1. Using the above equation, this
results in

ŷT+1(T) = 𝛽0 + 𝛽1xT+1,

assuming that the value of the predictor variable in the next time period
xT+1 is known.
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TABLE 3.22 SAS PROC AUTOREG Output for the Toothpaste Market
Share Data, Assuming Second-Order Autoregressive Errors

The SAS System

The AUTOREG Procedure

Dependent Variable y

y

Ordinary Least Squares Estimates

SSE 3.30825739 DFE 18

MSE 0.18379 Root MSE 0.42871

SBC 26.762792 AIC 24.7713275

Regress R-Square 0.9511 Total R-Square 0.9511

Durbin-Watson 1.1358 Pr < DW 0.0098

Pr > DW 0.9902

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is

the p-value for testing negative autocorrelation.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.9099 1.1099 24.25 <.0001

x 1 -24.2898 1.2978 -18.72 <.0001 x

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.1654 1.000000 | |********************|

1 0.0677 0.409437 | |******** |

2 0.0223 0.134686 | |*** |

Preliminary MSE 0.1375

Estimates of Autoregressive Parameters

Standard

Lag Coefficient Error t Value

1 -0.425646 0.249804 -1.70

2 0.039590 0.249804 0.16

Algorithm converged.
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TABLE 3.22 (Continued)

The SAS System

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 2.69583958 DFE 16

MSE 0.16849 Root MSE 0.41048

SBC 28.8691217 AIC 24.8861926

Regress R-Square 0.9191 Total R-Square 0.9602

Durbin-Watson 1.9168 Pr < DW 0.3732

Pr > DW 0.6268

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is

the p-value for testing negative autocorrelation.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.3406 1.5493 17.00 <.0001

x 1 -23.6025 1.8047 -13.08 <.0001 x

AR1 1 -0.4456 0.2562 -1.74 0.1012

AR2 1 0.0297 0.2617 0.11 0.9110

Autoregressive parameters assumed given.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 26.3406 1.5016 17.54 <.0001

x 1 -23.6025 1.7502 -13.49 <.0001 x

Unfortunately, this naive approach is not correct. From Eq. (3.103), we
know that the observation at time period t is

yt = 𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1) + at (3.107)

So at the end of the current time period T the next observation is

yT+1 = 𝜙yT + (1 − 𝜙)𝛽0 + 𝛽1(xT+1 − 𝜙xT) + aT+1

Assume that the future value of the regressor variable xT+1 is known.
Obviously, at the end of the current time period, both yT and xT are known.
The random error at time T+1, aT+1, has not been observed yet, and
because we have assumed that the expected value of the errors is zero,
the best estimate we can make of aT+1 is aT+1 = 0. This suggests that a
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reasonable forecast of the observation in time period T+1 that we can make
at the end of the current time period T is

ŷT+1(T) = �̂�yT + (1 − �̂�)𝛽0 + 𝛽1(xT+1 − �̂�xT) (3.108)

Note that this forecast is likely to be very different from the naive forecast
obtained by ignoring the autocorrelation.

To find a prediction interval on the forecast, we need to find the variance
of the prediction error. The one-step-ahead forecast error is

yT+1 − ŷT+1(T) = aT+1,

assuming that all of the parameters in the forecasting model are known.
The variance of the one-step-ahead forecast error is

Var (aT+1) = 𝜎
2
a

Using the variance of the one-step-ahead forecast error, we can construct
a 100(1 − 𝛼) percent prediction interval for the lead-one forecast from
Eq. (3.107). The PI is

ŷT+1(T) ± z
𝛼∕2𝜎a,

where z
𝛼∕2 is the upper 𝛼/2 percentage point of the standard normal distri-

bution. To actually compute an interval, we must replace 𝜎a by an estimate,
resulting in

ŷT+1(T) ± z
𝛼∕2�̂�a (3.109)

as the PI. Because 𝜎a and the model parameters in the forecasting equation
have been replaced by estimates, the probability level on the PI in Eq.
(3.109) is only approximate.

Now suppose that we want to forecast two periods ahead assuming that
we are at the end of the current time period, T. Using Eq. (3.107), we can
write the observation at time period T + 2 as

yT+2 = 𝜙yT+1 + (1 − 𝜙)𝛽0 + 𝛽1(xT+2 − 𝜙xT+1) + aT+2

= 𝜙[𝜙yT + (1 − 𝜙)𝛽0 + 𝛽1(xT+1 − 𝜙xT) + aT+1] + (1 − 𝜙)𝛽0

+𝛽1(xT+2 − 𝜙xT+1) + aT+2
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Assume that the future value of the regressor variables xT+1 and xT+2 are
known. At the end of the current time period, both yT and xT are known.
The random errors at time T + 1 and T + 2 have not been observed yet,
and because we have assumed that the expected value of the errors is zero,
the best estimate we can make of both aT+1 and aT+2 is zero. This suggests
that the forecast of the observation in time period T + 2 made at the end of
the current time period T is

ŷT+2(T) = �̂�ŷT+1(T) + (1 − �̂�)𝛽0 + 𝛽1(xT+2 − �̂�xT+1)

= �̂�[�̂�yT + (1 − �̂�)𝛽0 + 𝛽1(xT+1 − �̂�xT)]

+(1 − �̂�)𝛽0 + 𝛽1(xT+2 − �̂�xT+1)

(3.110)

The two-step-ahead forecast error is

yT+2 − ŷT+2(T) = aT+2 + 𝜙aT+1,

assuming that all estimated parameters are actually known. The variance
of the two-step-ahead forecast error is

Var (aT+2 + 𝜙aT+1) = 𝜎
2
a + 𝜙

2
𝜎

2
a

= (1 + 𝜙
2)𝜎2

a

Using the variance of the two-step-ahead forecast error, we can construct
a 100(1 − 𝛼) percent PI for the lead-one forecast from Eq. (3.107):

ŷT+2(T) ± z
𝛼∕2(1 + 𝜙

2)1∕2
𝜎a

To actually compute the PI, both 𝜎a and 𝜙 must be replaced by estimates,
resulting in

ŷT+2(T) ± z
𝛼∕2(1 + �̂�

2)1∕2
�̂�a (3.111)

as the PI. Because𝜎a and𝜙 have been replaced by estimates, the probability
level on the PI in Eq. (3.111) is only approximate.

In general, if we want to forecast 𝜏 periods ahead, the forecasting equa-
tion is

ŷT+𝜏(T) = �̂�ŷT+𝜏−1(T) + (1 − �̂�)𝛽0 + 𝛽1(xT+𝜏 − �̂�xT+𝜏−1) (3.112)



202 REGRESSION ANALYSIS AND FORECASTING

The 𝜏-step-ahead forecast error is (assuming that the estimated model
parameters are known)

yT+𝜏 − ŷT+𝜏(T) = aT+𝜏 + 𝜙aT+𝜏−1 +⋯ + 𝜙
𝜏−1aT+1

and the variance of the 𝜏-step-ahead forecast error is

V(aT+𝜏 + 𝜙aT+𝜏−1 +⋯ + 𝜙
𝜏−1aT+1) = (1 + 𝜙

2 +⋯ + 𝜙
2(𝜏−1))𝜎2

a

= 1 − 𝜙
2𝜏

1 + 𝜙2
𝜎

2
a

A 100(1 − 𝛼) percent PI for the lead-𝜏 forecast from Eq. (3.112) is

ŷT+𝜏 (T) ± z
𝛼∕2

(
1 − 𝜙

2𝜏

1 + 𝜙2

)1∕2

𝜎a

Replacing 𝜎a and 𝜙 by estimates, the approximate 100(1 − 𝛼) percent PI
is actually computed from

ŷT+𝜏 (T) ± z
𝛼∕2

(
1 − �̂�

2𝜏

1 + �̂�2

)1∕2

�̂�a (3.113)

The Case Where the Predictor Variable Must Also Be Forecast
In the preceding discussion, we assumed that in order to make forecasts,
any necessary values of the predictor variable in future time periods T + 𝜏

are known. This is often (probably usually) an unrealistic assumption. For
example, if you are trying to forecast how many new vehicles will be
registered in the state of Arizona in some future year T + 𝜏 as a function of
the state population in year T + 𝜏, it is pretty unlikely that you will know
the state population in that future year.

A straightforward solution to this problem is to replace the required
future values of the predictor variable in future time periods T + 𝜏 by
forecasts of these values. For example, suppose that we are forecasting one
period ahead. From Eq. (3.108) we know that the forecast for yT+1 is

ŷT+1(T) = �̂�yT + (1 − �̂�)𝛽0 + 𝛽1(xT+1 − �̂�xT)
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But the future value of xT+1 is not known. Let x̂T+1(T) be an unbiased
forecast of xT+1, made at the end of the current time period T. Now the
forecast for yT+1 is

ŷT+1(T) = �̂�yT + (1 − �̂�)𝛽0 + 𝛽1[x̂T+1(T) − �̂�xT] (3.114)

If we assume that the model parameters are known, the one-step-ahead
forecast error is

yT+1 − ŷT+1(T) = aT+1 + 𝛽1[xT+1 − x̂T+1(T)]

and the variance of this forecast error is

Var (aT+1) = 𝜎
2
a + 𝛽

2
1𝜎

2
x (1), (3.115)

where 𝜎
2
x (1) is the variance of the one-step-ahead forecast error for the

predictor variable x and we have assumed that the random error aT+1 in
period T+1 is independent of the error in forecasting the predictor variable.
Using the variance of the one-step-ahead forecast error from Eq. (3.115),
we can construct a 100(1 − 𝛼) percent prediction interval for the lead-one
forecast from Eq. (3.114). The PI is

ŷT+1(T) ± z
𝛼∕2

[
𝜎

2
a + 𝛽

2
1𝜎

2
x (1)

]1∕2
,

where z
𝛼∕2 is the upper 𝛼/2 percentage point of the standard normal distri-

bution. To actually compute an interval, we must replace the parameters
𝛽1, 𝜎2

a , and 𝜎
2
x (1) by estimates, resulting in

ŷT+1(T) ± z
𝛼∕2

[
�̂�

2
a + 𝛽

2
1�̂�

2
x (1)

]1∕2
(3.116)

as the PI. Because the parameters have been replaced by estimates, the
probability level on the PI in Eq. (3.116) is only approximate.

In general, if we want to forecast 𝜏 periods ahead, the forecasting equa-
tion is

ŷT+𝜏(T) = �̂�ŷT+𝜏−1(T) + (1 − �̂�)𝛽0 + 𝛽1[x̂T+𝜏 (T) − �̂�x̂T+𝜏−1(T)] (3.117)

The 𝜏-step-ahead forecast error is, assuming that the model parameters are
known,

yT+𝜏 − ŷT+𝜏(T) = aT+𝜏 + 𝜙aT+𝜏−1 +⋯ + 𝜙
𝜏−1aT+1 + 𝛽1[xT+𝜏 − x̂T+𝜏(T)]
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and the variance of the 𝜏-step-ahead forecast error is

Var (aT+𝜏 + 𝜙aT+𝜏−1 +⋯ + 𝜙
𝜏−1aT+1 + 𝛽1[xT+𝜏 − x̂T+𝜏(t)])

= (1 + 𝜙
2 +⋯ + 𝜙

2(𝜏−1))𝜎2
a + 𝛽

2
1𝜎

2
x (𝜏)

= 1 − 𝜙
2𝜏

1 + 𝜙2
𝜎

2
a + 𝛽

2
1𝜎

2
x (𝜏),

where 𝜎
2
x (𝜏) is the variance of the 𝜏-step-ahead forecast error for the

predictor variable x. A 100(1 − 𝛼) percent PI for the lead-𝜏 forecast from
Eq. (3.117) is

ŷT+𝜏(T) ± z
𝛼∕2

(
1 − 𝜙

2𝜏

1 + 𝜙2
𝜎

2
a + 𝛽

2
1𝜎

2
x (𝜏)

)1∕2

Replacing all of the unknown parameters by estimates, the approximate
100(1 − 𝛼) percent PI is actually computed from

ŷT+𝜏(T) ± z
𝛼∕2

(
1 − �̂�

2𝜏

1 + �̂�2
�̂�

2
a + 𝛽

2
1�̂�

2
x (𝜏)

)1∕2

(3.118)

Alternate Forms of the Model The regression model with autocorre-
lated errors

yt = 𝜙yt−1 + (1 − 𝜙)𝛽0 + 𝛽1(xt − 𝜙xt−1) + at

is a very useful model for forecasting time series regression data. However,
when using this model there are two alternatives that should be considered.
The first of these is

yt = 𝜙yt−1 + 𝛽0 + 𝛽1xt + 𝛽2xt−1 + at (3.119)

This model removes the requirement that the regression coefficient for
the lagged predictor variable xt−1 be equal to −𝛽1𝜙. An advantage of this
model is that it can be fit by OLS. Another alternative model to consider is
to simply drop the lagged value of the predictor variable from Eq. (3.119),
resulting in

yt = 𝜙yt−1 + 𝛽0 + 𝛽1xt + at (3.120)
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Often just including the lagged value of the response variable is sufficient
and Eq. (3.120) will be satisfactory.

The choice between models should always be a data-driven decision.
The different models can be fit to the available data, and model selection
can be based on the criteria that we have discussed previously, such as
model adequacy checking and residual analysis, and (if enough data are
available to do some data splitting) forecasting performance over a test or
trial period of data.

Example 3.16 Reconsider the toothpaste market share data originally
presented in Example 3.14 and modeled with a time series regression
model with first-order autoregressive errors in Example 3.15. First we will
try fitting the model in Eq. (3.119). This model simply relaxes the restriction
that the regression coefficient for the lagged predictor variable xt−1 (price
in this example) be equal to −𝛽1𝜙. Since this is just a linear regression
model, we can fit it using Minitab. Table 3.23 contains the Minitab results.

This model is a good fit to the data. The Durbin–Watson statistic is d =
2.04203, which indicates no problems with autocorrelation in the residuals.
However, note that the t-statistic for the lagged predictor variable (price) is
not significant (P = 0.217), indicating that this variable could be removed
from the model. If xt−1 is removed, the model becomes the one in Eq.
(3.120). The Minitab output for this model is in Table 3.24.

This model is also a good fit to the data. Both predictors, the lagged
variable yt−1 and xt, are significant. The Durbin–Watson statistic does not
indicate any significant problems with autocorrelation. It seems that either
of these models would be reasonable for the toothpaste market share data.
The advantage of these models relative to the time series regression model
with autocorrelated errors is that they can be fit by OLS. In this example,
including a lagged response variable and a lagged predictor variable has
essentially eliminated any problems with autocorrelated errors.

3.9 ECONOMETRIC MODELS

The field of econometrics involves the unified study of economics, eco-
nomic data, mathematics, and statistical models. The term econometrics
is generally credited to the Norwegian economist Ragnar Frisch (1895–
1973) who was one of the founders of the Econometric Society and the
founding editor of the important journal Econometrica in 1933. Frisch was
a co-winner of the first Nobel Prize in Economic Sciences in 1969. For
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TABLE 3.23 Minitab Results for Fitting Model (3.119) to the
Toothpaste Market Share Data

Regression Analysis: y Versus yt−1, x, xt−1

The regression equation is
y = 16.1 + 0.425 y(t-1) - 22.2 x + 7.56 x(t-1)

Predictor Coef SE Coef T P
Constant 16.100 6.095 2.64 0.019
y(t-1) 0.4253 0.2239 1.90 0.077
x -22.250 2.488 -8.94 0.000
x(t-1) 7.562 5.872 1.29 0.217

S = 0.402205 R-Sq = 96.0% R-Sq(adj) = 95.2%

Analysis of Variance

Source DF SS MS F P
Regression 3 58.225 19.408 119.97 0.000
Residual Error 15 2.427 0.162
Total 18 60.651

Source DF Seq SS
y(t-1) 1 44.768
x 1 13.188
x(t-1) 1 0.268

Durbin-Watson statistic = 2.04203

introductory books on econometrics, see Greene (2011) and Woodridge
(2011).

Econometric models assume that the quantities being studied are ran-
dom variables and regression modeling techniques are widely used in the
field to describe the relationships between these quantities. Typically, an
analyst may want to quantify the impact of one set of variables on another
variable. For example, one may want to investigate the effect of educa-
tion on income; that is, what is the change in earnings that result from
increasing a worker’s education, while holding other variables such as age
and gender constant. Large-scale, comprehensive econometric models of
macroeconomic relationships are used by government agencies and central
banks to evaluate economic activity and to provide guidance on economic
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TABLE 3.24 Minitab Results for Fitting Model (3.120) to the
Toothpaste Market Share Data

Regression Analysis: y Versus yt−1, x

The regression equation is
y = 23.3 + 0.162 y(t-1) - 21.2 x

Predictor Coef SE Coef T P
Constant 23.279 2.515 9.26 0.000
y(t-1) 0.16172 0.09238 1.75 0.099
x -21.181 2.394 -8.85 0.000

S = 0.410394 R-Sq = 95.6% R-Sq(adj) = 95.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 57.956 28.978 172.06 0.000
Residual Error 16 2.695 0.168
Total 18 60.651

Source DF Seq SS
y(t-1) 1 44.768
x 1 13.188

Durbin-Watson statistic = 1.61416

policies. For example, the United States Federal Reserve Bank has main-
tained macroeconometric models for forecasting and quantitative policy
and macroeconomic analysis for over 40 years. The Fed focuses on both
the US economy and the global economy.

There are several types of data used in econometric modeling. Time-
series data are used in many applications. Typical examples include aggre-
gates of economic quantities, such as GDP, asset or commodity prices, and
interest rates. As we have discussed earlier in this chapter, time series such
as these are characterized by serial correlation. A lot of aggregate eco-
nomic data are only available at a relatively low sampling frequency, such
as monthly, quarterly, or in some cases annually. One exception is financial
data, which may be available at very high frequency, such as hourly, daily,
or even by individual transaction. Cross-sectional data consist of obser-
vations taken at the same point in time. In econometric work, surveys are a
typical source of cross-sectional data. In typical applications, the surveys
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are conducted on individuals, households, business organizations, or other
economic entities. The early part of this chapter described regression mod-
eling of cross-section data. Panel data typically contain both cross-section
and time-series data. These data sets consist of a collection of individuals,
households, or corporations that are surveyed repeatedly over time. As an
example of a simple econometric model involving time series data, sup-
pose that we wish to develop a model for forecasting monthly consumer
spending. A plausible model might be

yt = 𝛽0 + 𝛽1xt−1 + 𝛽2yt−1 + 𝜀t,

where yt is consumer spending in month t, xt−1 is income in month t – 1,
yt−1 is consumer spending in month t – 1, and 𝜀t is the random error term.
This is a lagged-variable regression model of the type discussed earlier in
this chapter.

The consumer spending example above is an example of a very simple
single-equation econometric model. Many econometric models involve
several equations and the predictor variables in these models can be
involved in complex interrelationships with each other and with the depen-
dent variables. For example, consider the following econometric model:

Sales = f1(GNP, price, number of competitors, advertising expenditures)

However, price is likely to be a function of other variables, say

Price = f2(production costs, distribution costs, overhead costs,
material cost, packaging costs)

and

Production costs = f3(production volume, labor costs,
material costs, inventory costs)

Advertising expenditures = f4(sales, number of competitors)

Notice the interrelationships between these variables. Advertising
expenditures certainly influence sales, but the level of sales and the number
of competitors will influence the money spent on advertising. Furthermore,
different levels of sales will have an impact on production costs.

Constructing and maintaining these models is a complex task. One could
(theoretically at least) write a very large number of interrelated equations,
but data availability and model estimation issues are practical restrictions.
The SAS© software package has good capability for this type of simulta-
neous equation modeling and is widely used in econometrics. However,
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forecast accuracy does not necessarily increase with the complexity of the
models. Often, a relatively simple time series model will outperform a
complex econometric model from a pure forecast accuracy point of view.
Econometric models are most useful for providing understanding about the
way an economic system works, and for evaluating in a broad sense how
different economic policies will perform, and the effect that will have on
the economy. This is why their use is largely confined to government enti-
ties and some large corporations. There are commercial services that offer
econometric models that could be useful to smaller organizations, and
free alternatives are available from central banks and other government
organizations.

3.10 R COMMANDS FOR CHAPTER 3

Example 3.1 The patient satisfaction data are in the sixth column of the
array called patsat.data in which the second and third columns are the age
and the severity. Note that we can use the “lm” function to fit the linear
model. But as in the example, we will show how to obtain the regression
coefficients using the matrix notation.

nrow<-dim(patsat.data)[1]
X<-cbind(matrix(1,nrow,1),patsat.data[,2:3])
y<-patsat.data[,6]
beta<-solve(t(X)%*%X)%*%t(X)%*%y
beta

[,1]
143.4720118

Age -1.0310534
Severity -0.5560378

Example 3.3 For this example we will use the “lm” function.

satisfaction2.fit<-lm(Satisfaction~Age+Severity+Age:Severity+I(Ageˆ2)+
I(Severityˆ2), data=patsat)
summary(satisfaction2.fit)
Call:
lm(formula = Satisfaction ~ Age+Severity+Age:Severity+I(Ageˆ2)+

I(Severityˆ2), data = patsat)

Residuals:
Min 1Q Median 3Q Max

-16.915 -3.642 2.015 4.000 9.677
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Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 127.527542 27.912923 4.569 0.00021 ***
Age -0.995233 0.702072 -1.418 0.17251
Severity 0.144126 0.922666 0.156 0.87752
I(Ageˆ2) -0.002830 0.008588 -0.330 0.74534
I(Severityˆ2) -0.011368 0.013533 -0.840 0.41134
Age:Severity 0.006457 0.016546 0.390 0.70071
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.503 on 19 degrees of freedom
Multiple R-squared: 0.9008, Adjusted R-squared: 0.8747
F-statistic: 34.5 on 5 and 19 DF, p-value: 6.76e-09

anova(satisfaction2.fit)

Analysis of Variance Table

Response: Satisfaction
Df Sum Sq Mean Sq F value Pr(> F)

Age 1 8756.7 8756.7 155.5644 1.346e-10 ***
Severity 1 907.0 907.0 16.1138 0.0007417 ***
I(Ageˆ2) 1 1.4 1.4 0.0252 0.8756052
I(Severityˆ2) 1 35.1 35.1 0.6228 0.4397609
Age:Severity 1 8.6 8.6 0.1523 0.7007070
Residuals 19 1069.5 56.3
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example 3.4 We use the “lm” function again and obtain the linear
model. Then we use “confint” function to obtain the confidence intervals
of the model parameters. Note that the default confidence level is 95%.

satisfaction1.fit<-lm(Satisfaction Age+Severity, data=patsat)
confint(satisfaction1.fit,level=.95)

2.5 % 97.5 %
(Intercept) 131.122434 155.8215898
Age -1.270816 -0.7912905
Severity -0.828566 -0.2835096

Example 3.5 This example refers to the linear model (Satisfaction1.fit).
We obtain the confidence and prediction intervals for a new data point for
which age = 60 and severity = 60.
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new <- data.frame(Age = 60, Severity=60)
pred.sat1.clim<-predict(Satisfaction1.fit, newdata=new, se.fit =
TRUE, interval = ”confidence”)
pred.sat1.plim<-predict(Satisfaction1.fit, newdata=new, se.fit =
TRUE, interval = ”prediction”)
pred.sat1.clim$fit

fit lwr upr
1 48.24654 43.84806 52.64501
pred.sat1.plim$fit

fit lwr upr
1 48.24654 32.84401 63.64906

Example 3.6 We simply repeat Example 3.5 for age = 75 and severity =
60.

new <- data.frame(Age = 75, Severity=60)
pred.sat1.clim<-predict(Satisfaction1.fit, newdata=new, se.fit =
TRUE, interval = ”confidence”)
pred.sat1.plim<-predict(Satisfaction1.fit, newdata=new, se.fit =
TRUE, interval = ”prediction”)
pred.sat1.clim$fit

fit lwr upr
1 32.78074 26.99482 38.56666
pred.sat1.plim$fit

fit lwr upr
1 32.78074 16.92615 48.63533

Example 3.7 The residual plots for Satisfaction1.fit can be obtained
using the following commands:

par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(Satisfaction1.fit$res,datax=TRUE,pch=16,xlab=
’Residual’,main=”)
qqline(Satisfaction1.fit$res,datax=TRUE)
plot(Satisfaction1.fit$fit, Satisfaction1.fit$res,pch=16,
xlab=’Fitted Value’,ylab=’Residual’)
abline(h=0)
hist(Satisfaction1.fit$res,col=”gray”,xlab=’Residual’,main=’’)
plot(Satisfaction1.fit$res,type=”l”,xlab=’Observation
Order’,ylab=’Residual’)
points(Satisfaction1.fit$res,pch=16,cex=.5)
abline(h=0)
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Example 3.8 In R, one can do stepwise regression using step function
which allows for stepwise selection of variables in forward, backward, or
both directions. Note that step needs to be applied to a model with 4 input
variables as indicated in the example. Therefore we first fit that model and
apply the step function. Also note that the variable selection is done based
on AIC and therefore we get in the forward selection slightly different
results than the one provided in the textbook.

satisfaction3.fit<-lm(Satisfaction~Age+Severity+Surg.Med+Anxiety,
data=patsat)

step.for<-step(satisfaction3.fit,direction=’forward’)

Start: AIC=103.18
Satisfaction~Age + Severity + Surg.Med + Anxiety

step.back<-step(satisfaction3.fit,direction=’backward’)

Start: AIC=103.18
Satisfaction~Age + Severity + Surg.Med + Anxiety

Df Sum of Sq RSS AIC
- Surg.Med 1 1.0 1039.9 101.20
- Anxiety 1 75.4 1114.4 102.93
<none> 1038.9 103.18
- Severity 1 971.5 2010.4 117.68
- Age 1 3387.7 4426.6 137.41

Step: AIC=101.2
Satisfaction~Age + Severity + Anxiety
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Df Sum of Sq RSS AIC
- Anxiety 1 74.6 1114.5 100.93
<none> 1039.9 101.20
- Severity 1 971.8 2011.8 115.70
- Age 1 3492.7 4532.6 136.00

Step: AIC=100.93
Satisfaction~Age + Severity

Df Sum of Sq RSS AIC
<none> 1114.5 100.93
- Severity 1 907.0 2021.6 113.82
- Age 1 4029.4 5143.9 137.17

step.both<-step(satisfaction3.fit,direction=’both’)

Start: AIC=103.18
Satisfaction~Age + Severity + Surg.Med + Anxiety

Df Sum of Sq RSS AIC
- Surg.Med 1 1.0 1039.9 101.20
- Anxiety 1 75.4 1114.4 102.93
<none> 1038.9 103.18
- Severity 1 971.5 2010.4 117.68
- Age 1 3387.7 4426.6 137.41

Step: AIC=101.2
Satisfaction~Age + Severity + Anxiety

Df Sum of Sq RSS AIC
- Anxiety 1 74.6 1114.5 100.93
<none> 1039.9 101.20
+ Surg.Med 1 1.0 1038.9 103.18
- Severity 1 971.8 2011.8 115.70
- Age 1 3492.7 4532.6 136.00

Step: AIC=100.93
Satisfaction~Age + Severity

Df Sum of Sq RSS AIC
<none> 1114.5 100.93
+ Anxiety 1 74.6 1039.9 101.20
+ Surg.Med 1 0.2 1114.4 102.93
- Severity 1 907.0 2021.6 113.82
- Age 1 4029.4 5143.9 137.17

In R, one can do best subset regression using leaps function from leaps
package. We first upload the leaps package.

library(leaps)
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step.best<-regsubsets(Satisfaction~Age+Severity+Surg.Med+Anxiety,
data=patsat)

summary(step.best)

Subset selection object
Call: regsubsets.formula(Satisfaction~Age+Severity+Surg.Med+

Anxiety, data = patsat)
4 Variables (and intercept)

Forced in Forced out
Age FALSE FALSE
Severity FALSE FALSE
Surg.Med FALSE FALSE
Anxiety FALSE FALSE
1 subsets of each size up to 4
Selection Algorithm: exhaustive

Age Severity Surg.Med Anxiety
1 ( 1 ) ”*” ” ” ” ” ” ”
2 ( 1 ) ”*” ”*” ” ” ” ”
3 ( 1 ) ”*” ”*” ” ” ”*”
4 ( 1 ) ”*” ”*” ”*” ”*”

Example 3.9 The connector strength data are in the second column of
the array called strength.data in which the first column is the Weeks. We
start with fitting the linear model and plot the residuals vs. Weeks.

strength1.fit<-lm(Strength~Weeks, data=strength.data)
summary(strength1.fit)
Call:
lm(formula = Strength~Weeks, data = strength.data)
Residuals:

Min 1Q Median 3Q Max
-14.3639 -4.4449 -0.0861 5.8671 11.8842

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 25.9360 5.1116 5.074 2.76e-05 ***
Weeks 0.3759 0.1221 3.078 0.00486 **
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.814 on 26 degrees of freedom
Multiple R-squared: 0.2671, Adjusted R-squared: 0.2389
F-statistic: 9.476 on 1 and 26 DF, p-value: 0.004863

plot(strength.data[,1],strength1.fit$res, pch=16,cex=.5,
xlab=’Weeks’,ylab=’Residual’)
abline(h=0)
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We then fit a linear model to the absolute value of the residuals and obtain
the weights as the inverse of the square of the fitted values.

res.fit<-lm(abs(strength1.fit$res)~Weeks, data=strength.data)
weights.strength<-1/(res.fit$fittedˆ2)

We then fit a linear model to the absolute value of the residuals and obtain
the weights as the inverse of the square of the fitted values.

strength2.fit<-lm(Strength~Weeks, data=strength.data,
weights=weights.strength)
summary(strength2.fit)

Call:
lm(formula = Strength~Weeks, data = strength.data, weights =
weights.strength)

Weighted Residuals:
Min 1Q Median 3Q Max

-1.9695 -1.0450 -0.1231 1.1507 1.5785

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 27.54467 1.38051 19.953 < 2e-16 ***
Weeks 0.32383 0.06769 4.784 5.94e-05 ***
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.119 on 26 degrees of freedom
Multiple R-squared: 0.4682, Adjusted R-squared: 0.4477
F-statistic: 22.89 on 1 and 26 DF, p-value: 5.942e-05
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Example 3.12 Different packages such as car, lmtest, and bstats offer
functions for Durbin–Watson test. We will use function “dwt” in package
car. Note that dwt function allows for two-sided or one-sided tests. As in
the example we will test for positive autocorrelation. The data are given
in softsales.data where the columns are Year, Sales, Expenditures and
Population (to be used in the next example).

library(car)
soft1.fit<-lm(Sales~Expenditures, data=softsales.data)
dwt(soft1.fit, alternative=”positive”)

lag Autocorrelation D-W Statistic p-value
1 0.3354445 1.08005 0.007

Alternative hypothesis: rho > 0

Since the p-value is too small the null hypothesis is rejected concluding
that the errors are positively correlated.

Example 3.13 We repeat Example 3.12 with the model expanded to
include Population as well.

soft2.fit<-lm(Sales~Expenditures+Population, data=softsales.data)
dwt(soft2.fit, alternative=”positive”)

lag Autocorrelation D-W Statistic p-value
1 -0.534382 3.059322 0.974

Alternative hypothesis: rho > 0

As concluded in the example, adding the input variable Population seems
to resolve the autocorrelation issue resulting in large p-value for the test
for autocorrelation.

Example 3.14 The Cochrane–Orcutt method can be found in package
orcutt. The function to be used is “cochran.orcutt”. The data are given in
toothsales.data where the columns are Share and Price.

library(orcutt)
tooth1.fit<-lm(Share~Price, data=toothsales.data)
dwt(tooth1.fit, alternative=”positive”)

lag Autocorrelation D-W Statistic p-value
1 0.4094368 1.135816 0.005

Alternative hypothesis: rho > 0
tooth2.fit<-cochrane.orcutt(tooth1.fit)
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tooth2.fit
$Cochrane.Orcutt

Call:
lm(formula = YB~XB - 1)

Residuals:
Min 1Q Median 3Q Max

-0.55508 -0.25069 -0.05506 0.25007 0.83017

Coefficients:
Estimate Std. Error t value Pr(> |t|)

XB(Intercept) 26.722 1.633 16.36 7.71e-12 ***
XBPrice -24.084 1.938 -12.42 5.90e-10 ***
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3955 on 17 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.9899
F-statistic: 932.7 on 2 and 17 DF, p-value: < 2.2e-16

$rho
[1] 0.4252321
$number.interaction
[1] 8

The results are not exactly the same as the ones given in the example. This
should be due to the difference in the approaches. Where the book uses a
two-step procedure, the function Cochrane.Orcutt “estimates both autocor-
relation and beta coefficients recursively until we reach the convergence
(8th decimal)”.

Example 3.15 For this example we will use “gls” function in package
nlme. From Example 3.14 we know that there is autocorrelation in the
residuals of the linear model. We first assume that the first-order model
will be sufficient to model the autocorrelation as shown in the book.

tooth3.fit <- gls(Share~Price, data = toothsales.data,
correlation=corARMA(p=1), method=”ML”)
summary(tooth3.fit)
Generalized least squares fit by maximum likelihood

Model: Share~Price
Data: toothsales.data

AIC BIC logLik
24.90475 28.88767 -8.452373

Correlation Structure: AR(1)
Formula: ~ 1
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Parameter estimate(s):
Phi

0.4325871

Coefficients:
Value Std.Error t-value p-value

(Intercept) 26.33218 1.436305 18.33328 0
Price -23.59030 1.673740 -14.09436 0
Correlation:

(Intr)
Price -0.995

Standardized residuals:
Min Q1 Med Q3 Max

-1.85194806 -0.85848738 0.08945623 0.69587678 2.03734437

Residual standard error: 0.4074217
Degrees of freedom: 20 total; 18 residual

intervals(tooth3.fit)

Approximate 95% confidence intervals

Coefficients:
lower est. upper

(Intercept) 23.31462 26.33218 29.34974
Price -27.10670 -23.59030 -20.07390
attr(,”label”)

[1] ”Coefficients:”

Correlation structure:
lower est. upper

Phi -0.04226294 0.4325871 0.7480172
attr(,”label”)

[1] ”Correlation structure:”

Residual standard error:
lower est. upper

0.2805616 0.4074217 0.5916436

predict(tooth3.fit)

The second-order autoregressive model for the errors can be fitted using,

tooth4.fit <- gls(Share~Price, data = toothsales.data,
correlation=corARMA(p=2), method=”ML”)

Example 3.16 To create the lagged version of the variables and also
adjust for the number of observations, we use the following commands:
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T<-length(toothsales.data$Share)
yt<-toothsales.data$Share[2:T]
yt.lag1<- toothsales.data$Share[1:(T-1)]
xt<-toothsales.data$Price[2:T]
xt.lag1<- toothsales.data$Price[1:(T-1)]
tooth5.fit<-lm(yt~yt.lag1+xt+xt.lag1)
summary(tooth5.fit)
Call:
lm(formula = yt~yt.lag1 + xt + xt.lag1)
Residuals:

Min 1Q Median 3Q Max
-0.59958 -0.23973 -0.02918 0.26351 0.66532

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 16.0675 6.0904 2.638 0.0186 *
yt.lag1 0.4266 0.2237 1.907 0.0759 .
xt -22.2532 2.4870 -8.948 2.11e-07 ***
xt.lag1 7.5941 5.8697 1.294 0.2153
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.402 on 15 degrees of freedom
Multiple R-squared: 0.96, Adjusted R-squared: 0.952
F-statistic: 120.1 on 3 and 15 DF, p-value: 1.037e-10

EXERCISES

3.1 An article in the journal Air and Waste (Update on Ozone Trends in
California’s South Coast Air Basin, Vol. 43, 1993) investigated the
ozone levels in the South Coast Air Basin of California for the years
1976–1991. The author believes that the number of days the ozone
levels exceeded 0.20 ppm (the response) depends on the seasonal
meteorological index, which is the seasonal average 850-millibar
Temperature (the predictor). Table E3.1 gives the data.
a. Construct a scatter diagram of the data.
b. Estimate the prediction equation.
c. Test for significance of regression.
d. Calculate the 95% CI and PI on for a seasonal meteorological

index value of 17. Interpret these quantities.
e. Analyze the residuals. Is there evidence of model inadequacy?
f. Is there any evidence of autocorrelation in the residuals?
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TABLE E3.1 Days that Ozone Levels Exceed 20 ppm and
Seasonal Meteorological Index

Year Days Index

1976 91 16.7
1977 105 17.1
1978 106 18.2
1979 108 18.1
1980 88 17.2
1981 91 18.2
1982 58 16.0
1983 82 17.2
1984 81 18.0
1985 65 17.2
1986 61 16.9
1987 48 17.1
1988 61 18.2
1989 43 17.3
1990 33 17.5
1991 36 16.6

3.2 Montgomery, Peck, and Vining (2012) present data on the number
of pounds of steam used per month at a plant. Steam usage is thought
to be related to the average monthly ambient temperature. The past
year’s usages and temperatures are shown in Table E3.2.

TABLE E3.2 Monthly Steam Usage and Average Ambient Temperature

Month
Temperature

(◦F) Usage/1000 Month
Temperature

(◦F) Usage/1000

January 21 185.79 July 68 621.55
February 24 214.47 August 74 675.06
March 32 288.03 September 62 562.03
April 47 424.84 October 50 452.93
May 50 454.68 November 41 369.95
June 59 539.03 December 30 273.98

a. Fit a simple linear regression model to the data.
b. Test for significance of regression.
c. Analyze the residuals from this model.
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d. Plant management believes that an increase in average ambient
temperature of one degree will increase average monthly steam
consumption by 10,000 lb. Do the data support this statement?

e. Construct a 99% prediction interval on steam usage in a month
with average ambient temperature of 58◦F.

3.3 On March 1, 1984, the Wall Street Journal published a survey of
television advertisements conducted by Video Board Tests, Inc., a
New York ad-testing company that interviewed 4000 adults. These
people were regular product users who were asked to cite a commer-
cial they had seen for that product category in the past week. In this
case, the response is the number of millions of retained impressions
per week. The predictor variable is the amount of money spent by
the firm on advertising. The data are in Table E3.3.

TABLE E3.3 Number of Retained Impressions and
Advertising Expenditures

Amount Spent Retained Impressions
Firm (Millions) per Week (Millions)

Miller Lite 50.1 32.1
Pepsi 74.1 99.6
Stroh’s 19.3 11.7
Federal Express 22.9 21.9
Burger King 82.4 60.8
Coca-Cola 40.1 78.6
McDonald’s 185.9 92.4
MCI 26.9 50.7
Diet Cola 20.4 21.4
Ford 166.2 40.1
Levi’s 27 40.8
Bud Lite 45.6 10.4
ATT Bell 154.9 88.9
Calvin Klein 5 12
Wendy’s 49.7 29.2
Polaroid 26.9 38
Shasta 5.7 10
Meow Mix 7.6 12.3
Oscar Meyer 9.2 23.4
Crest 32.4 71.1
Kibbles N Bits 6.1 4.4
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a. Fit the simple linear regression model to these data.
b. Is there a significant relationship between the amount that a com-

pany spends on advertising and retained impressions? Justify
your answer statistically.

c. Analyze the residuals from this model.
d. Construct the 95% confidence intervals on the regression coeffi-

cients.
e. Give the 95% confidence and prediction intervals for the number

of retained impressions for MCI.

3.4 Suppose that we have fit the straight-line regression model ŷ =
𝛽0 + 𝛽1x1, but the response is affected by a second variable x2 such
that the true regression function is

E(y) = 𝛽0 + 𝛽1x1 + 𝛽2x2

a. Is the least squares estimator of the slope in the original simple
linear regression model unbiased?

b. Show the bias in 𝛽1.

3.5 Suppose that we are fitting a straight line and wish to make the
standard error of the slope as small as possible. Suppose that the
“region of interest” for x is −1 ≤ x ≤ 1. Where should the obser-
vations x1, x2,… , xn be taken? Discuss the practical aspects of this
data collection plan.

3.6 Consider the simple linear regression model

y = 𝛽0 + 𝛽1x + 𝜀,

where the intercept 𝛽0 is known.
a. Find the least squares estimator of 𝛽1 for this model. Does this

answer seem reasonable?
b. What is the variance of the slope (𝛽1) for the least squares esti-

mator found in part a?
c. Find a 100(1 − 𝛼) percent CI for 𝛽1. Is this interval narrower

than the estimator for the case where both slope and intercept are
unknown?

3.7 The quality of Pinot Noir wine is thought to be related to the proper-
ties of clarity, aroma, body, flavor, and oakiness. Data for 38 wines
are given in Table E3.4.
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TABLE E3.4 Wine Quality Dataa (Found in Minitab)

Clarity, Aroma, Body, Flavor, Oakiness, Quality,
x1 x2 x3 x4 x5 y Region

1 3.3 2.8 3.1 4.1 9.8 1
1 4.4 4.9 3.5 3.9 12.6 1
1 3.9 5.3 4.8 4.7 11.9 1
1 3.9 2.6 3.1 3.6 11.1 1
1 5.6 5.1 5.5 5.1 13.3 1
1 4.6 4.7 5 4.1 12.8 1
1 4.8 4.8 4.8 3.3 12.8 1
1 5.3 4.5 4.3 5.2 12 1
1 4.3 4.3 3.9 2.9 13.6 3
1 4.3 3.9 4.7 3.9 13.9 1
1 5.1 4.3 4.5 3.6 14.4 3
0.5 3.3 5.4 4.3 3.6 12.3 2
0.8 5.9 5.7 7 4.1 16.1 3
0.7 7.7 6.6 6.7 3.7 16.1 3
1 7.1 4.4 5.8 4.1 15.5 3
0.9 5.5 5.6 5.6 4.4 15.5 3
1 6.3 5.4 4.8 4.6 13.8 3
1 5 5.5 5.5 4.1 13.8 3
1 4.6 4.1 4.3 3.1 11.3 1
0.9 3.4 5 3.4 3.4 7.9 2
0.9 6.4 5.4 6.6 4.8 15.1 3
1 5.5 5.3 5.3 3.8 13.5 3
0.7 4.7 4.1 5 3.7 10.8 2
0.7 4.1 4 4.1 4 9.5 2
1 6 5.4 5.7 4.7 12.7 3
1 4.3 4.6 4.7 4.9 11.6 2
1 3.9 4 5.1 5.1 11.7 1
1 5.1 4.9 5 5.1 11.9 2
1 3.9 4.4 5 4.4 10.8 2
1 4.5 3.7 2.9 3.9 8.5 2
1 5.2 4.3 5 6 10.7 2
0.8 4.2 3.8 3 4.7 9.1 1
1 3.3 3.5 4.3 4.5 12.1 1
1 6.8 5 6 5.2 14.9 3
0.8 5 5.7 5.5 4.8 13.5 1
0.8 3.5 4.7 4.2 3.3 12.2 1
0.8 4.3 5.5 3.5 5.8 10.3 1
0.8 5.2 4.8 5.7 3.5 13.2 1

a The wine here is Pinot Noir. Region refers to distinct geographic regions.
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a. Fit a multiple linear regression model relating wine quality to
these predictors. Do not include the “Region” variable in the
model.

b. Test for significance of regression. What conclusions can you
draw?

c. Use t-tests to assess the contribution of each predictor to the
model. Discuss your findings.

d. Analyze the residuals from this model. Is the model adequate?
e. Calculate R2 and the adjusted R2 for this model. Compare these

values to the R2 and adjusted R2 for the linear regression model
relating wine quality to only the predictors “Aroma” and “Flavor.”
Discuss your results.

f. Find a 95% CI for the regression coefficient for “Flavor” for both
models in part e. Discuss any differences.

3.8 Reconsider the wine quality data in Table E3.4. The “Region” pre-
dictor refers to three distinct geographical regions where the wine
was produced. Note that this is a categorical variable.
a. Fit the model using the “Region” variable as it is given in Table

E3.4. What potential difficulties could be introduced by including
this variable in the regression model using the three levels shown
in Table E3.4?

b. An alternative way to include the categorical variable “Region”
would be to introduce two indicator variables x1 and x2 as follows:

Region x1 x2

1 0 0
2 1 0
3 0 1

Why is this approach better than just using the codes 1, 2,
and 3?

c. Rework Exercise 3.7 using the indicator variables defined in part
b for “Region.”

3.9 Table B.6 in Appendix B contains data on the global mean surface
air temperature anomaly and the global CO2 concentration. Fit a
regression model to these data, using the global CO2 concentration
as the predictor. Analyze the residuals from this model. Is there
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evidence of autocorrelation in these data? If so, use one iteration of
the Cochrane–Orcutt method to estimate the parameters.

3.10 Table B.13 in Appendix B contains hourly yield measurements from
a chemical process and the process operating temperature. Fit a
regression model to these data, using the temperature as the pre-
dictor. Analyze the residuals from this model. Is there evidence of
autocorrelation in these data?

3.11 The data in Table E3.5 give the percentage share of market of a
particular brand of canned peaches (yt) for the past 15 months and
the relative selling price (xt).

TABLE E3.5 Market Share and Price of Canned Peaches

t xt yt t xt yt

1 100 15.93 9 85 16.60
2 98 16.26 10 83 17.16
3 100 15.94 11 81 17.77
4 89 16.81 12 79 18.05
5 95 15.67 13 90 16.78
6 87 16.47 14 77 18.17
7 93 15.66 15 78 17.25
8 82 16.94

a. Fit a simple linear regression model to these data. Plot the resid-
uals versus time. Is there any indication of autocorrelation?

b. Use the Durbin–Watson test to determine if there is positive
autocorrelation in the errors. What are your conclusions?

c. Use one iteration of the Cochrane–Orcutt procedure to estimate
the regression coefficients. Find the standard errors of these
regression coefficients.

d. Is there positive autocorrelation remaining after the first itera-
tion? Would you conclude that the iterative parameter estimation
technique has been successful?

3.12 The data in Table E3.6 give the monthly sales for a cosmetics man-
ufacturer (yt) and the corresponding monthly sales for the entire
industry (xt). The units of both variables are millions of dollars.
a. Build a simple linear regression model relating company sales

to industry sales. Plot the residuals against time. Is there any
indication of autocorrelation?
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TABLE E3.6 Cosmetic Sales Data for Exercise 3.12

t xt yt t xt yt

1 5.00 0.318 10 6.16 0.650
2 5.06 0.330 11 6.22 0.655
3 5.12 0.356 12 6.31 0.713
4 5.10 0.334 13 6.38 0.724
5 5.35 0.386 14 6.54 0.775
6 5.57 0.455 15 6.68 0.78
7 5.61 0.460 16 6.73 0.796
8 5.80 0.527 17 6.89 0.859
9 6.04 0.598 18 6.97 0.88

b. Use the Durbin–Watson test to determine if there is positive
autocorrelation in the errors. What are your conclusions?

c. Use one iteration of the Cochrane–Orcutt procedure to estimate
the model parameters. Compare the standard error of these regres-
sion coefficients with the standard error of the least squares
estimates.

d. Test for positive autocorrelation following the first iteration. Has
the procedure been successful?

3.13 Reconsider the data in Exercise 3.12. Define a new set of transformed
variables as the first difference of the original variables, y′t = yt −
yt−1 and x′t = xt − xt−1. Regress y′t on x′t through the origin. Compare
the estimate of the slope from this first-difference approach with the
estimate obtained from the iterative method in Exercise 3.12.

3.14 Show that an equivalent way to perform the test for significance
of regression in multiple linear regression is to base the test on R2

as follows. To test H0 : 𝛽1 = 𝛽2 = ⋯ = 𝛽k versus H1: at least one
𝛽j ≠ 0, calculate

F0 =
R2(n − p)

k(1 − R2)

and reject H0 if the computed value of F0 exceeds Fa,k,n−p, where
p = k + 1.

3.15 Suppose that a linear regression model with k = 2 regressors has
been fit to n = 25 observations and R2 = 0.90.
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a. Test for significance of regression at 𝛼 = 0.05. Use the results of
the Exercise 3.14.

b. What is the smallest value of R2 that would lead to the conclusion
of a significant regression if 𝛼 = 0.05? Are you surprised at how
small this value of R2 is?

3.16 Consider the simple linear regression model yt = 𝛽0 + 𝛽1x + 𝜀t,
where the errors are generated by the second-order autoregressive
process

𝜀t = 𝜌1𝜀t−1 + 𝜌2𝜀t−2 + at

Discuss how the Cochrane–Orcutt iterative procedure could be used
in this situation. What transformations would be used on the vari-
ables yt and xt? How would you estimate the parameters 𝜌1 and
𝜌2?

3.17 Show that an alternate computing formula for the regression sum of
squares in a linear regression model is

SSR =
n∑

i=1

ŷ2
i − nȳ2

3.18 An article in Quality Engineering (The Catapult Problem: Enhanced
Engineering Modeling Using Experimental Design, Vol. 4, 1992)
conducted an experiment with a catapult to determine the effects
of hook (x1), arm length (x2), start angle (x3), and stop angle (x4)
on the distance that the catapult throws a ball. They threw the ball
three times for each setting of the factors. Table E3.7 summarizes
the experimental results.

TABLE E3.7 Catapult Experiment Data for Exercise 3.18

x1 x2 x3 x4 y

−1 −1 −1 −1 28.0 27.1 26.2
−1 −1 1 1 46.5 43.5 46.5
−1 1 −1 1 21.9 21.0 20.1
−1 1 1 −1 52.9 53.7 52.0

1 −1 −1 1 75.0 73.1 74.3
1 −1 1 −1 127.7 126.9 128.7
1 1 −1 −1 86.2 86.5 87.0
1 1 1 1 195.0 195.9 195.7
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a. Fit a regression model to the data and perform a residual analysis
for the model.

b. Use the sample variances as the basis for WLS estimation of the
original data (not the sample means).

c. Fit an appropriate model to the sample variances. Use this model
to develop the appropriate weights and repeat part b.

3.19 Consider the simple linear regression model yi = 𝛽0 + 𝛽1xi + 𝜀i,
where the variance of 𝜀i is proportional to x2

i ; that is, Var (𝜀i) = 𝜎
2x2

i .
a. Suppose that we use the transformations y′ = y∕x and x′ = 1∕x.

Is this a variance-stabilizing transformation?
b. What are the relationships between the parameters in the original

and transformed models?
c. Suppose we use the method of WLS with wi = 1∕x2

i . Is this
equivalent to the transformation introduced in part a?

3.20 Consider the WLS normal equations for the case of simple linear
regression where time is the predictor variable, Eq. (3.62). Suppose
that the variances of the errors are proportional to the index of time
such that wt = 1∕t. Simplify the normal equations for this situation.
Solve for the estimates of the model parameters.

3.21 Consider the simple linear regression model where time is the pre-
dictor variable. Assume that the errors are uncorrelated and have
constant variance 𝜎2. Show that the variances of the model parame-
ter estimates are

V(𝛽0) = 𝜎
2 2(2T + 1)

T(T − 1)

and

V(𝛽1) = 𝜎
2 12

T(T2 − 1)

3.22 Analyze the regression model in Exercise 3.1 for leverage and influ-
ence. Discuss your results.

3.23 Analyze the regression model in Exercise 3.2 for leverage and influ-
ence. Discuss your results.

3.24 Analyze the regression model in Exercise 3.3 for leverage and influ-
ence. Discuss your results.
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3.25 Analyze the regression model for the wine quality data in Exercise
3.7 for leverage and influence. Discuss your results.

3.26 Consider the wine quality data in Exercise 3.7. Use variable selection
techniques to determine an appropriate regression model for these
data.

3.27 Consider the catapult data in Exercise 3.18. Use variable selection
techniques to determine an appropriate regression model for these
data. In determining the candidate variables, consider all of the
two-factor cross-products of the original four variables.

3.28 Table B.10 in Appendix B presents monthly data on airline miles
flown in the United Kingdom. Fit an appropriate regression model to
these data. Analyze the residuals and comment on model adequacy.

3.29 Table B.11 in Appendix B presents data on monthly champagne
sales. Fit an appropriate regression model to these data. Analyze the
residuals and comment on model adequacy.

3.30 Consider the data in Table E3.5. Fit a time series regression model
with autocorrected errors to these data. Compare this model with
the results you obtained in Exercise 3.11 using the Cochrane–Orcutt
procedure.

3.31 Consider the data in Table E3.5. Fit the lagged variables regression
models shown in Eqs. (3.119) and (3.120) to these data. Compare
these models with the results you obtained in Exercise 3.11 using
the Cochrane–Orcutt procedure, and with the time series regression
model from Exercise 3.30.

3.32 Consider the data in Table E3.5. Fit a time series regression model
with autocorrected errors to these data. Compare this model with
the results you obtained in Exercise 3.13 using the Cochrane–Orcutt
procedure.

3.33 Consider the data in Table E3.6. Fit the lagged variables regression
models shown in Eqs. (3.119) and (3.120) to these data. Compare
these models with the results you obtained in Exercise 3.13 using
the Cochrane–Orcutt procedure, and with the time series regression
model from Exercise 3.32.

3.34 Consider the global surface air temperature anomaly data and the
CO2 concentration data in Table B.6 in Appendix B. Fit a time series
regression model to these data, using global surface air temperature
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anomaly as the response variable. Is there any indication of auto-
correlation in the residuals? What corrective action and modeling
strategies would you recommend?

3.35 Table B.20 in Appendix B contains data on tax refund amounts and
population. Fit an OLS regression model to these data.
a. Analyze the residuals and comment on model adequacy.
b. Fit the lagged variables regression models shown in Eqs. (3.119)

and (3.120) to these data. How do these models compare with
the OLS model in part a?

3.36 Table B.25 contains data from the National Highway Traffic Safety
Administration on motor vehicle fatalities from 1966 to 2012, along
with several other variables. These data are used by a variety of
governmental and industry groups, as well as research organizations.
a. Plot the fatalities data. Comment on the graph.
b. Construct a scatter plot of fatalities versus number of licensed

drivers. Comment on the apparent relationship between these two
factors.

c. Fit a simple linear regression model to the fatalities data, using
the number of licensed drivers as the predictor variable. Discuss
the summary statistics from this model.

d. Analyze the residuals from the model in part c. Discuss the
adequacy of the fitted model.

e. Calculate the Durbin–Watson test statistic for the model in part
c. Is there evidence of autocorrelation in the residuals? Is a time
series regression model more appropriate than an OLS model for
these data?

3.37 Consider the motor vehicle fatalities data in Appendix Table B.25
and the simple linear regression model from Exercise 3.36. There
are several candidate predictors that could be added to the model.
Add the number of registered motor vehicles to the model that you
fit in Exercise 3.36. Has the addition of another predictor improved
the model?

3.38 Consider the motor vehicle fatalities data in Appendix Table B.25.
There are several candidate predictors that could be added to the
model. Use stepwise regression to find an appropriate subset of
predictors for the fatalities data. Analyze the residuals from the
model, including the Durbin–Watson test, and comment on model
adequacy.
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3.39 Consider the motor vehicle fatalities data in Appendix Table B.25.
There are several candidate predictors that could be added to the
model. Use an all-possible-models approach to find an appropriate
subset of predictors for the fatalities data. Analyze the residuals
from the model, including the Durbin–Watson test, and comment
on model adequacy. Compare this model to the one you obtained
through stepwise model fitting in Exercise 3.38.

3.40 Appendix Table B.26 contains data on monthly single-family res-
idential new home sales from 1963 through 2014. The number of
building permits issued is also given in the table.
a. Plot the home sales data. Comment on the graph.
b. Construct a scatter plot of home sales versus number of building

permits. Comment on the apparent relationship between these
two factors.

c. Fit a simple linear regression model to the home sales data, using
the number of building permits as the predictor variable. Discuss
the summary statistics from this model.

d. Analyze the residuals from the model in part c. Discuss the
adequacy of the fitted model.

e. Calculate the Durbin–Watson test statistic for the model in part
c. Is there evidence of autocorrelation in the residuals? Is a time
series regression model more appropriate than an OLS model for
these data?





CHAPTER 4

EXPONENTIAL SMOOTHING
METHODS

If you have to forecast, forecast often.
EDGAR R. FIEDLER, American economist

4.1 INTRODUCTION

We can often think of a data set as consisting of two distinct components:
signal and noise. Signal represents any pattern caused by the intrinsic
dynamics of the process from which the data are collected. These patterns
can take various forms from a simple constant process to a more compli-
cated structure that cannot be extracted visually or with any basic statistical
tools. The constant process, for example, is represented as

yt = 𝜇 + 𝜀t, (4.1)

where 𝜇 represents the underlying constant level of system response and
𝜀t is the noise at time t. The 𝜀t is often assumed to be uncorrelated with
mean 0 and constant variance 𝜎

2
𝜖
.

We have already discussed some basic data smoothers in Section 2.2.2.
Smoothing can be seen as a technique to separate the signal and the noise

Introduction to Time Series Analysis and Forecasting, Second Edition.
Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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FIGURE 4.1 The process of smoothing a data set.

as much as possible and in that a smoother acts as a filter to obtain an
“estimate” for the signal. In Figure 4.1, we give various types of signals
that with the help of a smoother can be “reconstructed” and the under-
lying pattern of the signal is to some extent recovered. The smoothers
that we will discuss in this chapter achieve this by simply relating the
current observation to the previous ones. For a given data set, one can
devise forward and/or backward looking smoothers but in this chapter we
will only consider backward looking smoothers. That is, at any given T,
the observation yT will be replaced by a combination of observations at
and before T. It does then intuitively make sense to use some sort of an
“average” of the current and the previous observations to smooth the data.
An obvious choice is to replace the current observation with the average
of the observations at T, T −1, …, 1. In fact this is the “best” choice in the
least squares sense for a constant process given in Eq. (4.1).

A constant process can be smoothed by replacing the current observation
with the best estimate for 𝜇. Using the least squares criterion, we define
the error sum of squares, SSE, for the constant process as

SSE =
T∑

t=1

(yt − 𝜇)2
.
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FIGURE 4.2 The Dow Jones Index from June 1999 to June 2001.

The least squares estimate of 𝜇 can be found by setting the derivative of
SS with respect to 𝜇 to 0. This gives

𝜇 = 1
T

T∑
t=1

yt, (4.2)

where 𝜇 is the least squares estimate of 𝜇. Equation (4.2) shows that the
least squares estimate of 𝜇 is indeed the average of observations up to
time T.

Figure 4.2 shows the monthly data for the Dow Jones Index from June
1999 to June 2001. Visual inspection suggests that a constant model can
be used to describe the general pattern of the data.1 To further confirm
this claim, we use the smoother described in Eq. (4.2) for each data point
by taking the average of the available data up to that point in time. The
smoothed observations are shown by the line segments in Figure 4.2. It
can be seen that the smoother in Eq. (4.2) indeed extracts the main pattern

1Please note that for this data the independent errors assumption in the constant process in Eq. (4.1) may
have been violated. Remedies to check and handle such violations will be provided in the following
chapters.
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FIGURE 4.3 The Dow Jones Index from June 1999 to June 2006.

in the data and leads to the conclusion that during the 2-year period from
June 1999 to June 2001, the Dow Jones Index was quite stable.

As we can see, for the constant process the smoother in Eq. (4.2) is
quite effective in providing a clear picture of the underlying pattern. What
happens if the process is not constant but exhibits a more complicated
pattern? Consider again, for example, the Dow Jones Index from June 1999
to June 2006 given in Figure 4.3 (the complete data set is in Table 4.1). It is
clear that the data do not follow the behavior typical of a constant behavior
during this period. In Figure 4.3, we can also see the pattern that the
smoother in Eq. (4.2) extracts for the same period. As the process changes,
this smoother is having trouble keeping up with the process. What could
be the reason for the poor performance after June 2001? The answer is
quite simple: the constant process assumption is no longer valid. However,
as time goes on, the smoother in Eq. (4.2) accumulates more and more
data points and gains some sort of “inertia”. So when there is a change
in the process, it becomes increasingly more difficult for this smoother to
react to it.

How often is the constant process assumption violated? The answer to
this question is provided by the Second Law of Thermodynamics, which
in the most simplistic way states that if left on its own (free of external
influences) any system will deteriorate. Thus the constant process is not
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the norm but at best an exception. So what can we do to deal with this
issue? Recall that the problem with the smoother in Eq. (4.2) was that it
reacted too slowly to process changes because of its inertia. In fact, when
there is a change in the process, earlier data no longer carry the information
about the change in the process, yet they contribute to this inertia at an
equal proportion compared to the more recent (and probably more useful)
data. The most obvious choice is to somehow discount the older data.
Also recall that in a simple average, as in Eq. (4.2), all the observations
are weighted equally and hence have the same amount of influence on
the average. Thus, if the weights of each observation are changed so that
earlier observations are weighted less, a faster reacting smoother should
be obtained. As mentioned in Section 2.2.2, a common solution is to use
the simple moving average given in Eq. (2.3):

MT =
yT + yT−1 + ⋅ ⋅ ⋅ + yT−N+1

N
= 1

N

N∑
t=T−N+1

yt.

The most crucial issue in simple moving averages is the choice of the
span, N. A simple moving average will react faster to the changes if N
is small. However, we know from Section 2.2.2 that the variance of the
simple moving average with uncorrelated observations with variance 𝜎2 is
given as

Var(MT ) = 𝜎
2

N
.

This means that as N gets small, the variance of the moving average gets
bigger. This creates a dilemma in the choice of N. If the process is expected
to be constant, a large N can be used whereas a small N is preferred if the
process is changing. In Figure 4.4, we show the effect of going from a span
of 10 observations to 5 observations. While the latter exhibits a more jit-
tery behavior, it nevertheless follows the actual data more closely. A more
thorough analysis on the choice of N can be performed based on the predic-
tion error. We will explore this for exponential smoothers in Section 4.6.1,
where we will discuss forecasting using exponential smoothing.

A final note on the moving average is that even if the individual obser-
vations are independent, the moving averages will be autocorrelated as two
successive moving averages contain the same N−1 observations. In fact,
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FIGURE 4.4 The Dow Jones Index from June 1999 to June 2006 with moving
averages of span 5 and 10.

the autocorrelation function (ACF) of the moving averages that are k-lags
apart is given as

𝜌k =
⎧⎪⎨⎪⎩

1 − |k|
N

, k < N

0, k ≥ N
.

4.2 FIRST-ORDER EXPONENTIAL SMOOTHING

Another approach to obtain a smoother that will react to process changes
faster is to give geometrically decreasing weights to the past observations.
Hence an exponentially weighted smoother is obtained by introducing a
discount factor 𝜃 as

T−1∑
t=0

𝜃
tyT−t = yT + 𝜃yT−1 + 𝜃

2yT−2 +⋯ + 𝜃
T−1y1. (4.3)
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Please note that if the past observations are to be discounted in a geo-
metrically decreasing manner, then we should have |𝜃| < 1. However, the
smoother in Eq. (4.3) is not an average as the sum of the weights is

T−1∑
t=0

𝜃
t = 1 − 𝜃

T

1 − 𝜃
(4.4)

and hence does not necessarily add up to 1. For that we can adjust the
smoother in Eq. (4.3) by multiplying it by (1−𝜃)/(1−𝜃T). However, for
large T values, 𝜃T goes to zero and so the exponentially weighted average
will have the following form:

ỹT = (1 − 𝜃)
T−1∑
t=0

𝜃
tyT−t

= (1 − 𝜃)(yT + 𝜃yT−1 + 𝜃
2yT−2 +⋯ + 𝜃

T−1y1)

(4.5)

This is called a simple or first-order exponential smoother. There is an
extensive literature on exponential smoothing. For example, see the books
by Brown (1963), Abraham and Ledolter (1983), and Montgomery et al.
(1990), and the papers by Brown and Meyer (1961), Chatfield and Yar
(1988), Cox (1961), Gardner (1985), Gardner and Dannenbring (1980),
and Ledolter and Abraham (1984).

An alternate expression in a recursive form for simple exponential
smoothing is given by

ỹT = (1 − 𝜃)yT + (1 − 𝜃)(𝜃yT−1 + 𝜃
2yT−2 +⋯ + 𝜃

T−1y1)
= (1 − 𝜃)yT + 𝜃 (1 − 𝜃)(yT−1 + 𝜃

1yT−2 +⋯ + 𝜃
T−2y1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ỹT−1

)

= (1 − 𝜃)yT + 𝜃ỹT−1.

(4.6)

The recursive form in Eq. (4.6) shows that first-order exponential
smoothing can also be seen as the linear combination of the current obser-
vation and the smoothed observation at the previous time unit. As the latter
contains the data from all previous observations, the smoothed observation
at time T is in fact the linear combination of the current observation and
the discounted sum of all previous observations. The simple exponential
smoother is often represented in a different form by setting 𝜆 = 1−𝜃,

ỹT = 𝜆yT + (1 − 𝜆)ỹT−1 (4.7)
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In this representation the discount factor, 𝜆, represents the weight put
on the last observation and (1−𝜆) represents the weight put on the smoothed
value of the previous observations.

Analogous to the size of the span in moving average smoothers, an
important issue for the exponential smoothers is the choice of the discount
factor, 𝜆. Moreover, from Eq. (4.7), we can see that the calculation of ỹ1
would require us to know ỹ0. We will discuss these issues in the next two
sections.

4.2.1 The Initial Value, ỹ0

Since ỹ0 is needed in the recursive calculations that start with ỹ1 = 𝜆y1 +
(1 − 𝜆)ỹ0, its value needs to be estimated. But from Eq. (4.7) we have

ỹ1 = 𝜆y1 + (1 − 𝜆)ỹ0
ỹ2 = 𝜆y2 + (1 − 𝜆)ỹ1 = 𝜆y2 + (1 − 𝜆)(𝜆y1 + (1 − 𝜆)ỹ0)

= 𝜆(y2 + (1 − 𝜆)y1) + (1 − 𝜆)2ỹ0
ỹ3 = 𝜆(y3 + (1 − 𝜆)y2 + (1 − 𝜆)2y1) + (1 − 𝜆)3ỹ0
⋮

ỹT = 𝜆(yT + (1 − 𝜆)yT−1 +⋯ + (1 − 𝜆)T−1y1) + (1 − 𝜆)T ỹ0,

which means that as T gets large and hence (1 − 𝜆)T gets small, the
contribution of ỹ0 to ỹT becomes negligible. Thus for large data sets, the
estimation of ỹ0 has little relevance. Nevertheless, two commonly used
estimates for ỹ0 are the following.

1. Set ỹ0 = y1. If the changes in the process are expected to occur early
and fast, this choice for the starting value for ỹT is reasonable.

2. Take the average of the available data or a subset of the available data,
ỹ, and set ỹ0 = ȳ. If the process is at least at the beginning locally
constant, this starting value may be preferred.

4.2.2 The Value of 𝝀

In Figures 4.5 and 4.6, respectively, we have two simple exponential
smoothers for the Dow Jones Index data with 𝜆 = 0.2 and 𝜆 = 0.4. It
can be seen that in the latter the smoothed values follow the original obser-
vations more closely. In general, as 𝜆 gets closer to 1, and more emphasis is
put on the last observation, the smoothed values will approach the original
observations. Two extreme cases will be when 𝜆 = 0 and 𝜆 = 1. In the
former, the smoothed values will all be equal to a constant, namely, y0.
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FIGURE 4.5 The Dow Jones Index from June 1999 to June 2006 with first-order
exponential smoothing with 𝜆 = 0.2.
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FIGURE 4.6 The Dow Jones Index from June 1999 to June 2006 with first-order
exponential smoothing with 𝜆 = 0.4.
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We can think of the constant line as the “smoothest” version of whatever
pattern the actual time series follows. For 𝜆 = 1, we have ỹT = yT and
this will represent the “least” smoothed (or unsmoothed) version of the
original time series. We can accordingly expect the variance of the simple
exponential smoother to vary between 0 and the variance of the original
time series based on the choice of 𝜆. Note that under the independence and
constant variance assumptions we have

Var(ỹT ) = Var

(
𝜆

∞∑
t=0

(1 − 𝜆)tyT−t

)

= 𝜆
2

∞∑
t=0

(1 − 𝜆)2tVar (yT−t)

= 𝜆
2

∞∑
t=0

(1 − 𝜆)2tVar(yT)

= Var(yT )𝜆2
∞∑

t=0

(1 − 𝜆)2t

= 𝜆

(2 − 𝜆)
Var(yT ).

(4.8)

Thus the question will be how much smoothing is needed. In the litera-
ture, 𝜆 values between 0.1 and 0.4 are often recommended and do indeed
perform well in practice. A more rigorous method of finding the right 𝜆
value will be discussed in Section 4.6.1.

Example 4.1 Consider the Dow Jones Index from June 1999 to June 2006
given in Figure 4.3. For first-order exponential smoothing we would need to
address two issues as stated in the previous sections: how to pick the initial
value y0 and the smoothing constant 𝜆. Following the recommendation in
Section 4.2.2, we will consider the smoothing constants 0.2 and 0.4. As for
the initial value, we will consider the first recommendation in Section 4.2.1
and set ỹ0 = y1. Figures 4.5 and 4.6 show the smoothed and actual data
obtained from Minitab with smoothing constants 0.2 and 0.4, respectively.

Note that Minitab reports several measures of accuracy; MAPE, MAD,
and MSD. Mean absolute percentage error (MAPE) is the average absolute
percentage change between the predicted value that is ỹt−1 for a one-step-
ahead forecast and the true value, given as

MAPE =

T∑
t=1

|(yt − ỹt−1)∕yt|
T

× 100 (yt ≠ 0).
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Mean absolute deviation (MAD) is the average absolute difference
between the predicted and the true values, given as

MAD =

T∑
t=1

|(yt − ỹt−1)|
T

.

Mean squared deviation (MSD) is the average squared difference
between the predicted and the true values, given as

MSD =

T∑
t=1

(yt − ỹt−1)2

T
.

It should also be noted that the smoothed data with 𝜆 = 0.4 follows the
actual data closer. However, in both cases, when there is an apparent linear
trend in the data (e.g., from February 2003 to February 2004) the smoothed
values consistently underestimate the actual data. We will discuss this issue
in greater detail in Section 4.3.

As an alternative estimate for the initial value, we can also use the
average of the data between June 1999 and June 2001, since during this
period the time series data appear to be stable. Figures 4.7 and 4.8 show
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FIGURE 4.7 The Dow Jones Index from June 1999 to June 2006 with first-order
exponential smoothing with 𝜆= 0.2 and ỹ0 = (

∑25
t=1 yt∕25) (i.e., initial value equal

to the average of the first 25 observations).
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FIGURE 4.8 The Dow Jones Index from June 1999 to June 2006 with first-order
exponential smoothing with 𝜆= 0.4 and ỹ0 = (

∑25
t=1 yt∕25) (i.e., initial value equal

to the average of the first 25 observations).

the single exponential smoothing with the initial value equal to the average
of the first 25 observations corresponding to the period between June 1999
and June 2001. Note that the choice of the initial value has very little effect
on the smoothed values as time goes on.

4.3 MODELING TIME SERIES DATA

In Section 4.1, we considered the constant process where the time series
data are expected to vary around a constant level with random fluctuations,
which are usually characterized by uncorrelated errors with mean 0 and
constant variance 𝜎2

𝜀
. In fact the constant process represents a very special

case in a more general set of models often used in modeling time series data
as a function of time. The general class of models can be represented as

yt = f (t; 𝛽) + 𝜀t, (4.9)

where 𝛽 is the vector of unknown parameters and 𝜀t represents the uncorre-
lated errors. Thus as a member of this general class of models, the constant
process can be represented as

yt = 𝛽0 + 𝜀t, (4.10)
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where 𝛽0 is equal to 𝜇 in Eq. (4.1). We have seen in Chapter 3 how to
estimate and make inferences about the regression coefficients. The same
principles apply to the class of models in Eq. (4.9). However, we have
seen in Section 4.1 that the least squares estimates for 𝛽0 at any given time
T will be very slow to react to changes in the level of the process. For
that, we suggested to use either the moving average or simple exponential
smoothing.

As mentioned earlier, smoothing techniques are effective in illustrating
the underlying pattern in the time series data. We have so far focused partic-
ularly on exponential smoothing techniques. For the class of models given
in Eq. (4.9), we can find another use for the exponential smoothers: model
estimation. Indeed for the constant process, we can see the simple expo-
nential smoother as the estimate of the process level, or in regards to Eq.
(4.10) an estimate of 𝛽0. To show this in greater detail we need to introduce
the sum of weighted squared errors for the constant process. Remember
that the sum of squared errors for the constant process is given by

SSE =
T∑

t=1

(yt − 𝜇)2
.

If we argue that not all observations should have equal influence on
the sum and decide to introduce a string of weights that are geometrically
decreasing in time, the sum of squared errors becomes

SS∗
E =

T−1∑
t=0

𝜃
t(yT−1 − 𝛽0)2, (4.11)

where |𝜃| 1 < 1. To find the least squares estimate for 𝛽0, we take the
derivative of Eq. (4.11) with respect to 𝛽0 and set it to zero:

dSS∗
E

d𝛽0

|||||𝛽0

= −2
T−1∑
t=0

𝜃
t(yT−t − 𝛽0) = 0. (4.12)

The solution to Eq. (4.12), 𝛽0, which is the least squares estimate of
𝛽0, is

𝛽0

T−1∑
t=0

𝜃
t =

T−1∑
t=0

𝜃
tyT−t. (4.13)
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From Eq. (4.4), we have

𝛽0 = 1 − 𝜃

1 − 𝜃T

T−1∑
t=0

𝜃
tyT−t. (4.14)

Once again for large T, 𝜃T goes to zero. We then have

𝛽0 = (1 − 𝜃)
T−1∑
t=0

𝜃
tyT−t. (4.15)

We can see from Eqs. (4.5) and (4.15) that 𝛽0 = ỹT . Thus the simple expo-
nential smoothing procedure does in fact provide a weighted least squares
estimate of 𝛽0 in the constant process with weights that are exponentially
decreasing in time.

Now we return to our general class of models given in Eq. (4.9) and
note that f (t; 𝛽) can in fact be any function of t. For practical purposes it is
usually more convenient to consider the polynomial family for nonseasonal
time series. For seasonal time series, we will consider other forms of f (t; 𝛽)
that fit the data and exhibit a certain periodicity better. In the polynomial
family, the constant process is indeed the simplest model we can consider.
We will now consider the next obvious choice: the linear trend model.

4.4 SECOND-ORDER EXPONENTIAL SMOOTHING

We will now return to our Dow Jones Index data but consider only the
subset of the data from February 2003 to February 2004 as given in Fig-
ure 4.9. Evidently for that particular time period it was a bullish market
and correspondingly the Dow Jones Index exhibits an upward linear trend
as indicated with the dashed line.

For this time period, an appropriate model in time from the polynomial
family should be the linear trend model given as

yt = 𝛽0 + 𝛽1t + 𝜀t, (4.16)

where the 𝜀t is once again assumed to be uncorrelated with mean 0 and
constant variance 𝜎

2
𝜀
. Based on what we have learned so far, we may

attempt to smooth/model this linear trend using the simple exponential
smoothing procedure. The actual and fitted values for the simple expo-
nential smoothing procedure are given in Figure 4.10. For the exponential
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FIGURE 4.9 The Dow Jones Index from February 2003 to February 2004.

smoother, without any loss of generality, we used ỹ0 = y1 and 𝜆= 0.3. From
Figure 4.10, we can see that while the simple exponential smoother was
to some extent able to capture the slope of the linear trend, it also exhibits
some bias. That is, the fitted values based on the exponential smoother
are consistently underestimating the actual data. More interestingly, the
amount of underestimation is more or less constant for all observations.
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FIGURE 4.10 The Dow Jones Index from February 2003 to February 2004 with
simple exponential smoothing with 𝜆 = 0.3.
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In fact similar behavior for the simple exponential smoother can be
observed in Figure 4.5 for the entire data from June 1999 to June 2006.
Whenever the data exhibit a linear trend, the simple exponential smoother
seems to over- or underestimates the actual data consistently. To further
explore this, we will consider the expected value of ỹT ,

E(ỹT ) = E

(
𝜆

∞∑
t=0

(1 − 𝜆)tyT−t

)

= 𝜆

∞∑
t=0

(1 − 𝜆)tE(yT−t).

For the linear trend model in Eq. (4.16), E (yt) = 𝛽0 + 𝛽1t. So we have

E(ỹT) = 𝜆

∞∑
t=0

(1 − 𝜆)t(𝛽0 + 𝛽1(T − t))

= 𝜆

∞∑
t=0

(1 − 𝜆)t(𝛽0 + 𝛽1T) − 𝜆

∞∑
t=0

(1 − 𝜆)t(𝛽1t)

= (𝛽0 + 𝛽1T)𝜆
∞∑

t=0

(1 − 𝜆)t − 𝜆𝛽1

∞∑
t=0

(1 − 𝜆)tt.

But for the infinite sums we have

∞∑
t=0

(1 − 𝜆)t = 1
1 − (1 − 𝜆)

= 1
𝜆

and
∞∑

t=0

(1 − 𝜆)tt = 1 − 𝜆

𝜆2
.

Hence the expected value of the simple exponential smoother for the
linear trend model is

E(ỹT) = (𝛽0 + 𝛽1T) − 1 − 𝜆

𝜆
𝛽1

= E(yT ) − 1 − 𝜆

𝜆
𝛽1.

(4.17)

This means that the simple exponential smoother is a biased estimator
for the linear trend model and the amount of bias is −[(1 − 𝜆)∕𝜆]𝛽1. This
indeed explains the underestimation in Figure 4.10. One solution will be to
use a large 𝜆 value since (1 − 𝜆)/𝜆→ 0 as 𝜆→ 1. In Figure 4.11, we show
two simple exponential smoothers with 𝜆 = 0.3 and 𝜆 = 0.99. It can be
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FIGURE 4.11 The Dow Jones Index from June 1999 to June 2006 using expo-
nential smoothing with 𝜆 = 0.3 and 0.99.

seen that the latter does a better job in capturing the linear trend. However,
it should also be noted that as the smoother with 𝜆 = 0.99 follows the
actual observations very closely, it fails to smooth out the constant pattern
during the first 2 years of the data. A method based on adaptive updating
of the discount factor, 𝜆, following the changes in the process is given
in Section 4.6.4. In this section to model a linear trend model we will
instead introduce the second-order exponential smoothing by applying
simple exponential smoothing on ỹT as

ỹ(2)
T = 𝜆ỹ(1)

T + (1 − 𝜆)ỹ(2)
T−1, (4.18)

where ỹ(1)
T and ỹ(2)

T denote the first- and second-order smoothed exponen-
tials, respectively. Of course, in Eq. (4.18) we can use a different 𝜆 than in
Eq. (4.7). However, for the derivations that follow, we will assume that the
same 𝜆 is used in the calculations of both ỹ(1)

T and ỹ(2)
T .

From Eq. (4.17), we can see that the first-order exponential smoother
introduces bias in estimating a linear trend. It can also be seen in Fig-
ure 4.7 that the first-order exponential smoother for the linear trend model
exhibits a linear trend as well. Hence the second-order smoother—that is,
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a first-order exponential smoother of the original first-order exponential
smoother—should also have a bias. We can represent this as

E
(

ỹ(2)
T

)
= E

(
ỹ(1)

T

)
− 1 − 𝜆

𝜆
𝛽1. (4.19)

From Eq. (4.19), an estimate for 𝛽1 at time T is

𝛽1,T = 𝜆

1 − 𝜆

(
ỹ1

T − ỹ2
T

)
(4.20)

and for an estimate of 𝛽0 at time T, we have from Eq. (4.17)

ỹ(1)
T =

(
𝛽0,T + 𝛽1,TT

)
− 1 − 𝜆

𝜆
𝛽1,T

⇒ 𝛽0,T = ỹ(1)
T − T𝛽1,T + 1 − 𝜆

𝜆
𝛽1,T .

(4.21)

In terms of the first- and second-order exponential smoothers, we have

𝛽0,T = ỹ(1)
T − T

𝜆

1 − 𝜆

(
ỹ(1)

T − ỹ(2)
T

)
+ 1 − 𝜆

𝜆

(
𝜆

1 − 𝜆

(
ỹ(1)

T − ỹ(2)
T

))
= ỹ(1)

T − T
𝜆

1 − 𝜆

(
ỹ(1)

T − ỹ(2)
T

)
+
(

ỹ(1)
T − ỹ(2)

T

)
=
(

2 − T
𝜆

1 − 𝜆

)
ỹ(1)

T −
(

1 − T
𝜆

1 − 𝜆

)
ỹ(2)

T .

(4.22)

Finally, combining Eq. (4.20) and (4.22), we have a predictor for yT as

ỹT = 𝛽0,T + 𝛽1,TT

= 2ỹ(1)
T − ỹ(2)

T .

(4.23)

It can easily be shown that ŷT is an unbiased predictor of yT. In Fig-
ure 4.12, we use Eq. (4.23) to estimate the Dow Jones Index from February
2003 to February 2004. From Figures 4.10 and 4.12, we can clearly see
that the second-order exponential smoother is doing a much better job in
modeling the linear trend compared to the simple exponential smoother.

As in the simple exponential smoothing, we have the same two issues
to deal with: initial values for the smoothers and the discount factors. The
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FIGURE 4.12 The Dow Jones Index from February 2003 to February 2004 with
second-order exponential smoother with discount factor of 0.3.

latter will be discussed in Section 4.6.1. For the former we will combine
Eqs. (4.17) and (4.19) as the following:

ỹ(1)
0 = 𝛽0,0 −

1 − 𝜆

𝜆
𝛽1,0

ỹ(2)
0 = 𝛽0,0 − 2

(1 − 𝜆

𝜆

)
𝛽1,0.

(4.24)

The initial estimates of the model parameters are usually obtained by
fitting the linear trend model to the entire or a subset of the available data.
The least squares estimates of the parameter estimates are then used for
𝛽0,0 and 𝛽1,0.

Example 4.2 Consider the US Consumer Price Index (CPI) from January
1995 to December 2004 in Table 4.2. Figure 4.13 clearly shows that the data
exhibits a linear trend. To smooth the data, following the recommendation
in Section 4.2, we can use single exponential smoothing with 𝜆 = 0.3 as
given in Figure 4.14.

As we expected, the exponential smoother does a very good job in cap-
turing the general trend in the data and provides a less jittery (smooth)
version of it. However, we also notice that the smoothed values are
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FIGURE 4.13 US Consumer Price Index from January 1995 to December 2004.

consistently below the actual values. Hence there is an apparent bias in
our smoothing. To fix this problem we have two choices: use a bigger 𝜆 or
second-order exponential smoothing. The former will lead to less smooth
estimates and hence defeat the purpose. For the latter, however, we can use
𝜆 = 0.3 to calculate and ỹ(1)

T and ỹ(2)
T as given in Table 4.3.
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FIGURE 4.14 Single exponential smoothing of the US Consumer Price Index
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TABLE 4.3 Second-Order Exponential Smoothing of the US Consumer
Price Index (with 𝝀 = 0.3, ỹ(1)

0
= y1, and ỹ(2)

0
= ỹ(1)

0

Date yt ỹ(1)
T ỹ(2)

T ỹT = 2ỹ(1)
T − ỹ(2)

T

Jan-1995 150.3 150.300 150.300 150.300
Feb-1995 150.9 150.480 150.354 150.606
Mar-1995 151.4 150.756 150.475 151.037
Apr-1995 151.9 151.099 150.662 151.536
May-1995 152.2 151.429 150.892 151.967
Nov-2004 191.0 190.041 188.976 191.106
Dec-2004 190.3 190.119 189.319 190.919

Note that we used ỹ(1)
0 = y1, and ỹ(2)

0 = ỹ(1)
0 as the initial values of ỹ(1)

T

and ỹ(2)
T . A more rigorous approach would involve fitting a linear regression

model in time to the available data that give

ŷt = 𝛽0,T + 𝛽1,T t
= 149.89 + 0.33t,

where t goes from 1 to 120. Then from Eq. (4.24) we have

ỹ(1)
0 = 𝛽0,0 −

1 − 𝜆

𝜆
𝛽1,0

= 149.89 − 1 − 0.3
0.3

0.33 = 146.22

ỹ(2)
0 = 𝛽0,0 − 2

(1 − 𝜆

𝜆

)
𝛽1,0

= 149.89 − 2
(1 − 0.3

0.3

)
0.33 = 142.56.

Figure 4.15 shows the second-order exponential smoothing of the CPI.
As we can see, the second-order exponential smoothing not only captures
the trend in the data but also does not exhibit any bias.

The calculations for the second-order smoothing for the CPI data are
performed using Minitab. We first obtained the first-order exponential
smoother for the CPI, ỹ(1)

T , using 𝜆 = 0.3 and ỹ(1)
0 = y1. Then we obtained

ỹ(2)
T by taking the first-order exponential smoother ỹ(1)

T using 𝜆 = 0.3 and

ỹ(2)
0 = ỹ(1)

1 . Then using Eq. (4.23) we have ŷT = 2ỹ(1)
T − ỹ(2)

T .
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FIGURE 4.15 Second-order exponential smoothing of the US Consumer Price
Index (with 𝜆 = 0.3, ỹ(1)

0 = y1, and ỹ(2)
0 = ỹ(1)

1 ).

The “Double Exponential Smoothing” option available in Minitab is
a slightly different approach based on Holt’s method (Holt, 1957). This
method divides the time series data into two components: the level, Lt, and
the trend, Tt. These two components can be calculated from

Lt = 𝛼yt + (1 − 𝛼)(Lt−1 + Tt−1)

Tt = 𝛾(Lt − Lt−1) + (1 − 𝛾)Tt−1

Hence for a given set of 𝛼 and 𝛾 , these two components are calculated
and Lt is used to obtain the double exponential smoothing of the data at
time t. Furthermore, the sum of the level and trend components at time t
can be used as the one-step-ahead (t + 1) forecast. Figure 4.16 shows the
actual and smoothed data using the double exponential smoothing option
in Minitab with 𝛼 = 0.3 and 𝛾 = 0.3.

In general, the initial values for the level and the trend terms can be
obtained by fitting a linear regression model to the CPI data with time as
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FIGURE 4.16 The double exponential smoothing of the US Consumer Price
Index (with 𝛼 = 0.3 and 𝛾 = 0.3).

the regressor. Then the intercept and the slope can be used as the initial
values of Lt and Tt respectively.

Example 4.3 For the Dow Jones Index data, we observed that first-order
exponential smoothing with low values of 𝜆 showed some bias when there
were linear trends in the data. We may therefore decide to use the second-
order exponential smoothing approach for this data as shown in Figure 4.17.
Note that the bias present with first-order exponential smoothing has been
eliminated. The calculations for second-order exponential smoothing for
the Dow Jones Index are given in Table 4.4.

4.5 HIGHER-ORDER EXPONENTIAL SMOOTHING

So far we have discussed the use of exponential smoothers in estimating
the constant and linear trend models. For the former we employed the
simple or first-order exponential smoother and for the latter the second-
order exponential smoother. It can further be shown that for the general
nth-degree polynomial model of the form

yt = 𝛽0 + 𝛽1t +
𝛽2

2!
t2 +⋯ +

𝛽n

n!
tn + 𝜀t, (4.25)
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1 ).

where the 𝜀t is assumed to be independent with mean 0 and constant
variance 𝜎

𝜀

2, we employ (n + 1)-order exponential smoothers

ỹ(2)
T = 𝜆yT + (1 − 𝜆)ỹ(1)

T−1

ỹ(2)
T = 𝜆ỹ(1)

T + (1 − 𝜆)ỹ(2)
T−1

⋮

ỹ(n)
T = 𝜆ỹ(n−1)

T + (1 − 𝜆)ỹ(n)
T−1

TABLE 4.4 Second-Order Exponential Smoothing of the Dow Jones Index
(with 𝝀 = 0.3, ỹ(1)

0
= y1, and ỹ(2)

0
= ỹ(1)

1
)

Date ỹt ỹ1
T ỹ2

T ŷT = 2ỹ(1)
T − ỹ(2)

T

Jun-1999 10,970.8 10,970.8 10,970.8 10,970.8
Jul-1999 10,655.2 10,876.1 10,942.4 10,809.8
Aug-1999 10,829.3 10,862.1 10,918.3 10,805.8
Sep-1999 10,337.0 10,704.6 10,854.2 10,554.9
Oct-1999 10,729.9 10,712.2 10,811.6 10,612.7
May-2006 11,168.3 11,069.4 10,886.5 11,252.3
Jun-2006 11,247.9 11,123.0 10,957.4 11,288.5
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to estimate the model parameters. For even the quadratic model (second-
degree polynomial), the calculations get quite complicated. Refer to Mont-
gomery et al. (1990), Brown (1963), and Abraham and Ledolter (1983) for
the solutions to higher-order exponential smoothing problems. If a high-
order polynomial does seem to be required for the time series, the autore-
gressive integrated moving average (ARIMA) models and techniques dis-
cussed in Chapter 5 can instead be considered.

4.6 FORECASTING

We have so far considered exponential smoothing techniques as either
visual aids to point out the underlying patterns in the time series data or to
estimate the model parameters for the class of models given in Eq. (4.9).
The latter brings up yet another use of exponential smoothing—forecasting
future observations. At time T, we may wish to forecast the observation
in the next time unit, T + 1, or further into the future. For that, we will
denote the 𝜏-step-ahead forecast made at time T as ŷT+𝜏 (T). In the next two
sections and without any loss of generality, we will once again consider
first- and second-order exponential smoothers as examples for forecasting
time series data from the constant and linear trend processes.

4.6.1 Constant Process

In Section 4.2 we discussed first-order exponential smoothing for the con-
stant process in Eq. (4.1) as

ỹT = 𝜆yT + (1 − 𝜆)ỹT−1.

In Section 4.3 we further showed that the constant level in Eq. (4.1),
𝛽0, can be estimated by ỹT . Since the constant model consists of two
parts—𝛽0 that can be estimated by the first-order exponential smoother
and the random error that cannot be predicted—our forecast for the future
observation is simply equal to the current value of the exponential smoother

ŷT+𝜏 (T) = ỹT = ỹT . (4.26)

Please note that, for the constant process, the forecast in Eq. (4.26) is the
same for all future values. Since there may be changes in the level of the
constant process, forecasting all future observations with the same value
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will most likely be misleading. However, as we start accumulating more
observations, we can update our forecast. For example, if the data at T + 1
become available, our forecast for the future observations becomes

ỹT+1 = 𝜆yT+1 + (1 − 𝜆)ỹT

or

ŷT+1+𝜏(T + 1) = 𝜆yT+1 + (1 − 𝜆)ŷT+𝜏(T) (4.27)

We can rewrite Eq. (4.27) for 𝜏 = 1 as

ŷT+2(T + 1) = ŷT+1(T) + 𝜆(yT+1 − ŷT+1(T))
= ŷT+1(T) + 𝜆eT+1(1),

(4.28)

where eT+1 (1) = yT+1 − ŷT+1 (T) is called the one-step-ahead forecast or
prediction error. The interpretation of Eq. (4.28) makes it easier to under-
stand the forecasting process using exponential smoothing: our forecast
for the next observation is simply our previous forecast for the current
observation plus a fraction of the forecast error we made in forecasting
the current observation. The fraction in this summation is determined by
𝜆. Hence how fast our forecast will react to the forecast error depends on
the discount factor. A large discount factor will lead to fast reaction to the
forecast error but it may also make our forecast react fast to random fluc-
tuations. This once again brings up the issue of the choice of the discount
factor.

Choice of 𝝀 We will define the sum of the squared one-step-ahead
forecast errors as

SSE(𝜆) =
T∑

t=1

e2
t (1). (4.29)

For a given historic data, we can in general calculate SSE values for
various values of 𝜆 and pick the value of 𝜆 that gives the smallest sum of
the squared forecast errors.

Prediction Intervals Another issue in forecasting is the uncertainty
associated with it. That is, we may be interested not only in the “point
estimates” but also in the quantification of the prediction uncertainty. This
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is usually achieved by providing the prediction intervals that are expected at
a specific confidence level to contain the future observations. Calculations
of the prediction intervals will require the estimation of the variance of
the forecast errors. We will discuss two different techniques in estimating
prediction error variance in Section 4.6.3. For the constant process, the 100
(1 − 𝛼∕2) percent prediction intervals for any lead time 𝜏 are given as

ỹT ± Z
𝛼∕2�̂�e,

where ỹT is the first-order exponential smoother, Z
𝛼∕2 is the 100(1 − 𝛼∕2)

percentile of the standard normal distribution, and �̂�e is the estimate of the
standard deviation of the forecast errors.

It should be noted that the prediction interval is constant for all lead
times. This of course can be (and probably is in most cases) quite unrealis-
tic. As it will be more likely that the process goes through some changes as
time goes on, we would correspondingly expect to be less and less “sure”
about our predictions for large lead times (or large 𝜏 values). Hence we
would anticipate prediction intervals that are getting wider and wider for
increasing lead times. We propose a remedy for this in Section 4.6.3. We
will discuss this issue further in Chapter 6.

Example 4.4 We are interested in the average speed on a specific stretch
of a highway during nonrush hours. For the past year and a half (78 weeks),
we have available weekly averages of the average speed in miles/hour
between 10 AM and 3 PM. The data are given in Table 4.5. Figure 4.18
shows that the time series data follow a constant process. To smooth out
the excessive variation, however, first-order exponential smoothing can be
used. The “best” smoothing constant can be determined by finding the
smoothing constant value that minimizes the sum of the squared one-step-
ahead prediction errors.

The sum of the squared one-step-ahead prediction errors for various
𝜆 values is given in Table 4.6. Furthermore, Figure 4.19 shows that the
minimum SSE is obtained for 𝜆 = 0.4.

Let us assume that we are also asked to make forecasts for the next
12 weeks at week 78. Figure 4.20 shows the smoothed values for the first
78 weeks together with the forecasts for weeks 79–90 with prediction inter-
vals. It also shows the actual weekly speed during that period. Note that
since the constant process is assumed, the forecasts for the next 12 weeks
are the same. Similarly, the prediction intervals are constant for that
period.



TABLE 4.5 The Weekly Average Speed During Nonrush Hours

Week Speed Week Speed Week Speed Week Speed

1 47.12 26 46.74 51 45.71 76 45.69
2 45.01 27 46.62 52 43.84 77 44.59
3 44.69 28 45.31 53 45.09 78 43.45
4 45.41 29 44.69 54 44.16 79 44.75
5 45.45 30 46.39 55 46.21 80 45.46
6 44.77 31 43.79 56 45.11 81 43.73
7 45.24 32 44.28 57 46.16 82 44.15
8 45.27 33 46.04 58 46.50 83 44.05
9 46.93 34 46.45 59 44.88 84 44.83

10 47.97 35 46.31 60 45.68 85 43.93
11 45.27 36 45.65 61 44.40 86 44.40
12 45.10 37 46.28 62 44.17 87 45.25
13 43.31 38 44.11 63 45.18 88 44.80
14 44.97 39 46.00 64 43.73 89 44.75
15 45.31 40 46.70 65 45.14 90 44.50
16 45.23 41 47.84 66 47.98 91 45.12
17 42.92 42 48.24 67 46.52 92 45.28
18 44.99 43 45.59 68 46.89 93 45.15
19 45.12 44 46.56 69 46.01 94 46.24
20 46.67 45 45.02 70 44.98 95 46.15
21 44.62 46 43.67 71 45.76 96 46.57
22 45.11 47 44.53 72 45.38 97 45.51
23 45.18 48 44.37 73 45.33 98 46.98
24 45.91 49 44.62 74 44.07 99 46.64
25 48.39 50 46.71 75 44.02 100 44.31

726456484032241681

49

48

47

46

45

44

43

Week

S
p

ee
d

FIGURE 4.18 The weekly average speed during nonrush hours.
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FIGURE 4.19 Plot of SSE for various 𝜆 values for average speed data.

4.6.2 Linear Trend Process

The t-step-ahead forecast for the linear trend model is given by

ŷT+𝜏(T) = 𝛽0,T + 𝛽l,T (T + 𝜏)

= 𝛽0,T + 𝛽1,TT + 𝛽1,T𝜏

= ŷT + 𝛽1,T𝜏.

(4.30)
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FIGURE 4.20 Forecasts for the weekly average speed data for weeks 79–90.
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In terms of the exponential smoothers, we can rewrite Eq. (4.30) as

ŷT+𝜏(𝜏) =
(

2ỹ(1)
T − ỹ(2)

T

)
+ 𝜏

𝜆

1 − 𝜆

(
ỹ(1)

T − ỹ(2)
T

)
=
(

2 + 𝜆

1 − 𝜆
𝜏

)
ỹ(1)

T −
(

1 + 𝜆

1 − 𝜆
𝜏

)
ỹ(2)

T .

(4.31)

It should be noted that the predictions for the trend model depend on
the lead time and, as opposed to the constant model, will be different for
different lead times. As we collect more data, we can improve our forecasts
by updating our parameter estimates using

𝛽0,T+1 = 𝜆(1 + 𝜆)yT+1 + (1 − 𝜆)2(𝛽0,T + 𝛽1,T )

𝛽1,T+1 =
𝜆

(2 − 𝜆)

(
𝛽0,T+1 − 𝛽0,T

)
+ 2 (1 − 𝜆)

(2 − 𝜆)
𝛽1,T

(4.32)

Subsequently, we can update our 𝜏-step-ahead forecasts based on Eq.
(4.32). As in the constant process, the discount factor, 𝜆, can be estimated
by minimizing the sum of the squared one-step-ahead forecast errors given
in Eq. (4.29).

In this case, the 100(1 − 𝛼/2) percent prediction interval for any lead
time 𝜏 is (

2 + 𝜆

1 − 𝜆
𝜏

)
ŷ(1)

T −
(

1 + 𝜆

1 − 𝜆
𝜏

)
ŷ(2)

T ± Z
𝛼∕2

c
𝜏

c1
�̂�e,

where

c2
i = 1 + 𝜆

(2 − 𝜆)3
[(10 − 14𝜆 + 5𝜆2) + 2i𝜆(4 − 3𝜆) + 2i2

𝜆
2].

Example 4.5 Consider the CPI data in Example 4.2. Assume that we
are currently in December 2003 and would like to make predictions of
the CPI for the following year. Although the data from January 1995 to
December 2003 clearly exhibit a linear trend, we may still like to consider
first-order exponential smoothing first. We will then calculate the “best”
𝜆 value that minimizes the sum of the squared one-step-ahead prediction
errors. The predictions and prediction errors for various 𝜆 values are given
in Table 4.7.

Figure 4.21 shows the sum of the squared one-step-ahead prediction
errors (SSE) for various values of 𝜆.
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FIGURE 4.21 Scatter plot of the sum of the squared one-step-ahead prediction
errors versus 𝜆.

We notice that the SSE keeps on getting smaller as 𝜆 gets bigger. This
suggests that the data are highly autocorrelated. This can be clearly seen in
the ACF plot in Figure 4.22. In fact if the “best” 𝜆 value (i.e., 𝜆 value that
minimizes SSE) turns out to be high, it may indeed be better to switch to a
higher-order smoothing or use an ARIMA model as discussed in Chapter 5.
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FIGURE 4.23 The 1- to 12-step-ahead forecasts of the CPI data for 2004.

Since the first-order exponential smoothing is deemed inadequate, we
will now try the second-order exponential smoothing to forecast next year’s
monthly CPI values. Usually we have two options:

1. On December 2003, make forecasts for the entire 2004 year; that
is, 1-step-ahead, 2-step-ahead, … , 12-step-ahead forecasts. For that
we can use Eq. (4.30) or equivalently Eq. (4.31). Using the double
exponential smoothing option in Minitab with 𝜆 = 0.3, we obtain the
forecasts given in Figure 4.23.

Note that the forecasts further in the future (for the later part of 2004) are
quite a bit off. To remedy this we may instead use the following strategy.

2. In December 2003, make the one-step-ahead forecast for January
2004. When the data for January 2004 becomes available, then make
the one-step-ahead forecast for February 2004, and so on. We can see
from Figure 4.24 that forecasts when only one-step-ahead forecasts
are used and adjusted as actual data becomes available perform better
than in the previous case where, for December 2003, forecasts are
made for the entire following year.

The JMP software package also has an excellent forecasting capa-
bility. Table 4.8 shows output from JMP for the CPI data for double
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FIGURE 4.24 The one-step-ahead forecasts of the CPI data for 2004.

exponential smoothing. JMP uses the double smoothing procedure that
employs a single smoothing constant. The JMP output shows the time
series plot and summary statistics including the sample ACF. It also pro-
vides a sample partial ACF, which we will discuss in Chapter 5. Then
an optimal smoothing constant is chosen by finding the value of 𝜆 that

TABLE 4.8 JMP Output for the CPI Data

Time series CPI 

150

160

170

180

190

C
P

I

0 20 40 60 80 100 120 140

Row

Mean 170.13167
Std 11.629323
N 120
Zero Mean ADF 8.4844029
Single Mean ADF –0.075966
Trend ADF –2.443095

(continued )
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TABLE 4.8 (Continued)

Lag AutoCorr Plot autocorr Ljung-box Q p-Value
12 0.6924 1074.46 <.0001
13 0.6699 1135.85 <.0001
14 0.6469 1193.64 <.0001
15 0.6235 1247.84 <.0001
16 0.6001 1298.54 <.0001
17 0.5774 1345.93 <.0001
18 0.5550 1390.14 <.0001
19 0.5324 1431.24 <.0001
20 0.5098 1469.29 <.0001
21 0.4870 1504.36 <.0001
22 0.4637 1536.48 <.0001
23 0.4416 1565.91 <.0001
24 0.4205 1592.87 <.0001
25 0.4000 1617.54 0.0000

Lag Partial plot partial
0 1.0000
1 0.9743
2 –0.0396
3 –0.0095
4 0.0128
5 –0.0117
6 –0.0212
7 –0.0379
8 –0.0070
9 0.0074

10 0.0033
11 –0.0001
12 –0.0116
13 0.0090
14 –0.0224
15 –0.0220
16 –0.0139
17 –0.0022
18 –0.0089
19 –0.0174
20 –0.0137
21 –0.0186
22 –0.0234
23 0.0074
24 0.0030
25 –0.0036

Time series basic diagnostics 
Lag AutoCorr Plot autocorr Ljung-box Q p-Value

0 1.0000 . .
1 0.9743 116.774 <.0001
2 0.9472 228.081 <.0001
3 0.9203 334.053 <.0001
4 0.8947 435.091 <.0001
5 0.8694 531.310 <.0001
6 0.8436 622.708 <.0001
7 0.8166 709.101 <.0001
8 0.7899 790.659 <.0001
9 0.7644 867.721 <.0001

10 0.7399 940.580 <.0001
11 0.7161 1009.46 <.0001
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TABLE 4.8 (Continued)

Model Comparison
Model DF Variance AIC
Double (Brown) Exponential Smoothing 117 0.247119 171.05558

SBC RSquare -2LogLH AIC Rank SBC Rank MAPE MAE
173.82626 0.998 169.05558 0 0 0.216853 0.376884

Model: Double (Brown) Exponential Smoothing
Model Summary

DF 117
Sum of Squared Errors 28.9129264
Variance Estimate 0.24711903
Standard Deviation 0.49711068
Akaike's 'A' Information Criterion 171.055579
Schwarz's Bayesian Criterion 173.826263
RSquare 0.99812888
RSquare Adj 0.99812888
MAPE 0.21685285
MAE 0.37688362
–2LogLikelihood 169.055579

Stable Yes
Invertible Yes

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Level Smoothing Weight 0.81402446 0.0919040 8.86 <.0001

Forecast
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(continued )
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TABLE 4.8 (Continued)

Lag AutoCorr plot autocorr Ljung-box Q p-Value
0 1.0000 . .
1 0.0791 0.7574 0.3841
2 –0.3880 19.1302 <.0001
3 –0.2913 29.5770 <.0001
4 –0.0338 29.7189 <.0001
5 0.1064 31.1383 <.0001
6 0.1125 32.7373 <.0001
7 0.1867 37.1819 <.0001
8 –0.1157 38.9063 <.0001
9 –0.3263 52.7344 <.0001

10 –0.1033 54.1324 <.0001
11 0.2149 60.2441 <.0001
12 0.2647 69.6022 <.0001
13 –0.0773 70.4086 <.0001
14 0.0345 70.5705 <.0001
15 –0.1243 72.6937 <.0001
16 –0.1429 75.5304 <.0001
17 0.0602 76.0384 <.0001
18 0.1068 77.6533 <.0001
19 0.0370 77.8497 <.0001
20 –0.0917 79.0656 <.0001
21 –0.0363 79.2579 <.0001
22 –0.0995 80.7177 <.0001
23 –0.0306 80.8570 <.0001
24 0.2602 91.0544 <.0001
25 0.1728 95.6007 <.0001

Lag Partial plot partial
0 1.0000
1 0.0791
2 –0.3967
3 –0.2592
4 –0.1970
5 –0.1435
6 –0.0775
7 0.1575
8 –0.1144
9 –0.2228
10 –0.1482

Lag AutoCorr plot autocorr
11 –0.0459

Ljung-box Q p-Value

12 0.0368
13 –0.1335
14 0.2308
15 –0.0786
16 0.0050
17 0.0390
18 –0.0903
19 –0.0918
20 0.0012
21 –0.0077
22 –0.1935
23 –0.0665
24 0.1783
25 0.0785
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minimizes the error sum of squares. The value selected is 𝜆 = 0.814. This
relatively large value is not unexpected, because there is a very strong linear
trend in the data and considerable autocorrelation. Values of the forecast
for the next 12 periods at origin December 2004 and the associated pre-
diction interval are also shown. Finally, the residuals from the model fit
are shown along with the sample ACF and sample partial ACF plots of the
residuals. The sample ACF indicates that there may be a small amount of
structure in the residuals, but it is not enough to cause concern.

4.6.3 Estimation of 𝝈2
e

In the estimation of the variance of the forecast errors, 𝜎2
e , it is often

assumed that the model (e.g., constant, linear trend) is correct and constant
in time. With these assumptions, we have two different ways of estimat-
ing 𝜎

2
e :

1. We already defined the one-step-ahead forecast error as eT(1) = yT −
ŷT (T − 1). The idea is to apply the model to the historic data and obtain
the forecast errors to calculate:

�̂�
2
e = 1

T

T∑
t=1

e2
t (1)

= 1
T

T∑
t=1

(yt − ŷt(t − 1))2

(4.33)

It should be noted that in the variance calculations the mean adjustment
was not needed, since for the correct model the forecasts are unbiased; that
is, the expected value of the forecast errors is 0.

As more data are collected, the variance of the forecast errors can be
updated as

�̂�
2
eT+1 =

1
T + 1

(
T�̂�2

e,T + e2
T+1(1)

)
. (4.34)

As discussed in Section 4.6.1, it may be counterintuitive to have a
constant forecast error variance for all lead times. We can instead define
𝜎

2
e (𝜏) as the 𝜏-step-ahead forecast error variance and estimate it by

�̂�
2
e (𝜏) = 1

T − 𝜏 + 1

T∑
t=𝜏

e2
1(𝜏). (4.35)
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Hence the estimate in Eq. (4.35) can instead be used in the calculations
of the prediction interval for the 𝜏-step-ahead forecast.

2. For the second method of estimating 𝜎
2
e we will first define the mean

absolute deviation Δ as

Δ = E(|e − E(e)|) (4.36)

and, assuming that the model is correct, calculate its estimate by

Δ̂T = 𝛿|eT(1)| + (1 − 𝛿)Δ̂T−1. (4.37)

Then the estimate of the 𝜎
2
e is given by

�̂�e,T = 1.25Δ̂T . (4.38)

For further details, see Montgomery et al. (1990).

4.6.4 Adaptive Updating of the Discount Factor

In the previous sections we discussed estimation of the “best” discount
factor, �̂�, by minimizing the sum of the squared one-step-ahead forecasts
errors. However, as we have seen with the Dow Jones Index data, changes
in the underlying time series model will make it difficult for the exponential
smoother with fixed discount factor to follow these changes. Hence a need
for monitoring and, if necessary, modifying the discount factor arises. By
doing so, the discount factor will adapt to the changes in the time series
model. For that we will employ the procedure originally described by
Trigg and Leach (1967) for single discount factor. As an example we will
consider the first-order exponential smoother and modify it as

ŷT = 𝜆TyT + (1 − 𝜆T )ỹT−1. (4.39)

Please note that in Eq. (4.39), the discount factor 𝜆T is given as a function
of time and hence it is allowed to adapt to changes in the time series model.
We also define the smoothed error as

QT = 𝛿eT (1) + (1 − 𝛿)QT−1, (4.40)

where 𝛿 is a smoothing parameter.
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Finally, we define the tracking signal as

QT

Δ̂T

, (4.41)

where Δ̂T is given in Eq. (4.37). This ratio is expected to be close to 0 when
the forecasting system performs well and to approach ±1 as it starts to fail.
In fact, Trigg and Leach (1967) suggest setting the discount factor to

𝜆T =
|||||
QT

Δ̂T

||||| (4.42)

Equation (4.42) will allow for automatic updating of the discount factor.

Example 4.6 Consider the Dow Jones Index from June 1999 to June 2006
given in Table 4.1. Figure 4.2 shows that the data do not exhibit a single
regime of constant or linear trend behavior. Hence a single exponential
smoother with adaptive discount factor as given in Eq. (4.42) can be used.
Figure 4.25 shows two simple exponential smoothers for the Dow Jones
Index: one with fixed 𝜆= 0.3 and another one with adaptive updating based
on the Trigg–Leach method given in Eq. (4.42).
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FIGURE 4.25 Time series plot of the Dow Jones Index from June 1999 to June
2006, the simple exponential smoother with 𝜆 = 0.3, and the Trigg–Leach (TL)
smoother with 𝛿 = 0.3.
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TABLE 4.9 The Trigg–Leach Smoother for the Dow Jones Index

Date Dow Jones Smoothed 𝜆 Error Qt Dt

Jun-99 10,970.8 10,970.8 1 0 0
Jul-99 10,655.2 10,655.2 1 −315.6 −94.68 94.68
Aug-99 10,829.3 10,675.835 0.11853 174.1 −14.046 118.506
Sep-99 10,337 10,471.213 0.6039 −338.835 −111.483 184.605
Oct-99 10,729.9 10,471.753 0.00209 258.687 −0.43178 206.83
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
May-06 11,168.3 11,283.962 0.36695 −182.705 68.0123 185.346
Jun-06 11,247.9 11,274.523 0.26174 −36.0619 36.79 140.561

This plot shows that a better smoother can be obtained by making
automatic updates to the discount factor. The calculations for the Trigg–
Leach smoother are given in Table 4.9.

The adaptive smoothing procedure suggested by Trigg and Leach is a
useful technique. For other approaches to adaptive adjustment of exponen-
tial smoothing parameters, see Chow (1965), Roberts and Reed (1969),
and Montgomery (1970).

4.6.5 Model Assessment

If the forecast model performs as expected, the forecast errors should
not exhibit any pattern or structure; that is, they should be uncorrelated.
Therefore it is always a good idea to verify this. As noted in Chapter 2, we
can do so by calculating the sample ACF of the forecast errors from

rk =

T−1∑
t=k

[et(1) − ē]
[
et−k(1) − ē

]
T−1∑
T=0

[et(1) − ē]2

, (4.43)

where

ē = 1
n

T∑
t=1

et(1).

If the one-step-ahead forecast errors are indeed uncorrelated, the sample
autocorrelations for any lag k should be around 0 with a standard error
1∕

√
T . Hence a sample autocorrelation for any lag k that lies outside the

±2∕
√

T limits will require further investigation of the model.
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4.7 EXPONENTIAL SMOOTHING FOR SEASONAL DATA

Some time series data exhibit cyclical or seasonal patterns that cannot be
effectively modeled using the polynomial model in Eq. (4.25). Several
approaches are available for the analysis of such data. In this chapter
we will discuss exponential smoothing techniques that can be used in
modeling seasonal time series. The methodology we will focus on was
originally introduced by Holt (1957) and Winters (1960) and is generally
known as Winters’ method, where a seasonal adjustment is made to the
linear trend model. Two types of adjustments are suggested—additive and
multiplicative.

4.7.1 Additive Seasonal Model

Consider the US clothing sales data given in Figure 4.26. Clearly, for
certain months of every year we have high (or low) sales. Hence we can
conclude that the data exhibit seasonality. The data also exhibit a linear
trend as the sales tend to get higher for the same month as time goes on. As
the final observation, we note that the amplitude of the seasonal pattern,
that is, the range of the periodic behavior within a year, remains more or
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FIGURE 4.26 Time series plot of US clothing sales from January 1992 to
December 2003.
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less constant in time and remains independent of the average level within
a year.

We will for this case assume that the seasonal time series can be repre-
sented by the following model:

yt = Lt + St + 𝜀t, (4.44)

where Lt represents the level or linear trend component and can in turn
be represented by 𝛽0 + 𝛽1t; St represents the seasonal adjustment with
St = St+s = St+2s = … for t = 1,… , s − 1, where s is the length of the
season (period) of the cycles; and the 𝜀t are assumed to be uncorrelated
with mean 0 and constant variance 𝜎

2
𝜀
. Sometimes the level is called the

permanent component. One usual restriction on this model is that the
seasonal adjustments add to zero during one season,

s∑
t=1

St = 0. (4.45)

In the model given in Eq. (4.44), for forecasting the future observations,
we will employ first-order exponential smoothers with different discount
factors. The procedure for updating the parameter estimates once the cur-
rent observation yT is obtained is as follows.

Step 1. Update the estimate of LT using

L̂T = 𝜆1(yT − ŜT−s) + (1 − 𝜆1)
(
L̂T−1 + 𝛽1,T−1

)
, (4.46)

where 0 < 𝜆1 < 1. It should be noted that in Eq. (4.46), the first part can
be seen as the “current” value for LT and the second part as the forecast of
LT based on the estimates at T − 1.

Step 2. Update the estimate of 𝛽1 using

𝛽1,T = 𝜆2(L̂T − L̂T−1) + (1 − 𝜆2)𝛽1,T−1, (4.47)

where 0 < 𝜆2 < 1. As in Step 1, the estimate of 𝛽1 in Eq. (4.47) can be seen
as the linear combination of the “current” value of 𝛽1 and its “forecast” at
T − 1.

Step 3. Update the estimate of St using

ŜT = 𝜆3(yT − L̂T) + (1 − 𝜆3)ŜT−s, (4.48)

where 0 < 𝜆3 < 1.
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Step 4. Finally, the 𝜏-step-ahead forecast, ŷT+𝜏 (T), is

ŷT+𝜏(T) = L̂T + 𝛽1,T𝜏 + ŜT(𝜏 − s). (4.49)

As before, estimating the initial values of the exponential smoothers is
important. For a given set of historic data with n seasons (hence ns obser-
vations), we can use the least squares estimates of the following model:

yt = 𝛽0 + 𝛽1t +
s−1∑
i=1

𝛾i(It,i − It,s) + 𝜀t, (4.50)

where

It,i =
{

1, t = i, i + s, i + 2s,…
0, otherwise

. (4.51)

The least squares estimates of the parameters in Eq. (4.50) are used to
obtain the initial values as

𝛽0,0 = L̂0 = 𝛽0

𝛽1,0 = 𝛽1

Ŝj−s = Ŷj for 1 ≤ j ≤ s − 1

Ŝ0 = −
s−1∑
j=1

ŷj

These are initial values of the model parameters at the original origin of
time, t= 0. To make forecasts from the correct origin of time the permanent
component must be shifted to time T by computing L̂T = L̂0 + ns𝛽1. Alter-
natively, one could smooth the parameters using equations (4.46)–(4.48)
for time periods t = 1, 2,…,T.

Prediction Intervals As in the nonseasonal smoothing case, the cal-
culations of the prediction intervals would require an estimate for the
prediction error variance. The most common approach is to use the rela-
tionship between the exponential smoothing techniques and the ARIMA
models of Chapter 5 as discussed in Section 4.8, and estimate the prediction
error variance accordingly. It can be shown that the seasonal exponential
smoothing using the three parameter Holt–Winters method is optimal for
an ARIMA (0, 1, s+ 1)× (0, 1, 0)s, process, where s represents the length of
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the period of the seasonal cycles. For further details, see Yar and Chatfield
(1990) and McKenzie (1986).

An alternate approach is to recognize that the additive seasonal model is
just a linear regression model and to use the ordinary least squares (OLS)
regression procedure for constructing prediction intervals as discussed in
Chapter 3. If the errors are correlated, the regression methods for autocor-
related errors could be used instead of OLS.

Example 4.7 Consider the clothing sales data given in Table 4.10. To
obtain the smoothed version of this data, we can use the Winters’ method
option in Minitab. Since the amplitude of the seasonal pattern is constant
over time, we decide to use the additive model. Two issues we have encoun-
tered in previous exponential smoothers have to be addressed in this case
as well—initial values and the choice of smoothing constants. Similar rec-
ommendations as in the previous exponential smoothing options can also
be made in this case. Of course, the choice of the smoothing constant, in
particular, is a bit more concerning since it involves the estimation of three
smoothing constants. In this example, we follow our usual recommenda-
tion and choose smoothing constants that are all equal to 0.2. For more
complicated cases, we recommend seasonal ARIMA models, which we
will discuss in Chapter 5.

Figure 4.27 shows the smoothed version of the seasonal clothing sales
data. To use this model for forecasting, let us assume that we are currently in
December 2002 and we are asked to make forecasts for the following year.
Figure 4.28 shows the forecasted sales for 2003 together with the actual
data and the 95% prediction limits. Note that the forecast for December
2003 is the 12-step-ahead forecast made in December 2002. Even though
the forecast is made further in the future, it still performs well since in the
“seasonal” sense it is in fact a one-step-ahead forecast.

4.7.2 Multiplicative Seasonal Model

If the amplitude of the seasonal pattern is proportional to the average
level of the seasonal time series, as in the liquor store sales data given
in Figure 4.29, the following multiplicative seasonal model will be more
appropriate:

yt = LtSt + 𝜀t, (4.52)

where Lt once again represents the permanent component (i.e., 𝛽0 + 𝛽1t);
St represents the seasonal adjustment with St = St+s = St+2s = ⋯ for
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FIGURE 4.27 Smoothed data for the US clothing sales from January 1992 to
December 2003 using the additive model.
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FIGURE 4.29 Time series plot of liquor store sales data from January 1992 to
December 2004.

t = i,…, s − 1, where s is the length of the period of the cycles; and the 𝜀t
are assumed to be uncorrelated with mean 0 and constant variance 𝜎2

𝜀
. The

restriction for the seasonal adjustments in this case becomes

s∑
t

St = s. (4.53)

As in the additive model, we will employ three exponential smoothers
to estimate the parameters in Eq. (4.52).

Step 1. Update the estimate of LT using

L̂T = 𝜆1
yT

ŜT−s

+ (1 − 𝜆1)(L̂T−1 + 𝛽1,T−1), (4.54)

where 0 <𝜆1 < 1. Similar interpretation as in the additive model can
be made for the exponential smoother in Eq. (4.54).

Step 2. Update the estimate of 𝛽1 using

𝛽1,T = 𝜆2(L̂T − L̂T−1) + (1 − 𝜆2)𝛽1,T−1, (4.55)

where 0 < 𝜆2 < 1.
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Step 3. Update the estimate of St using

ŜT = 𝜆3

yT

L̂T

+ (1 − 𝜆3)ŜT−s, (4.56)

where 0 <𝜆3 < 1.
Step 4. The 𝜏-step-ahead forecast, ŷT+𝜏(T), is

ŷT+𝜏(T) = (L̂T + 𝛽1,T𝜏)ŜT(𝜏 − s). (4.57)

It will almost be necessary to obtain starting values of the model
parameters. Suppose that a record consisting of n seasons of data is
available. From this set of historical data, the initial values, 𝛽0,0, 𝛽1,0,
and Ŝ0, can be calculated as

𝛽0,0 = L̂0 =
ȳn − ȳ1

(n − 1)s
,

where

ȳi =
1
s

is∑
t=(i−1)s+1

yt

and

𝛽1,0 = ȳ1 −
s
2
𝛽0,0

Ŝj−s = s
Ŝ∗

j

s∑
i=1

Ŝ∗
i

for 1 ≤ j ≤ s,

where

Ŝ∗
j = 1

n

n∑
t=1

y(t−1)s+j

ȳt − ((s + 1) ∕2 − j) 𝛽0

.

For further details, please see Montgomery et al. (1990) and Abraham
and Ledolter (1983).

Prediction Intervals Constructing prediction intervals for the multi-
plicative model is much harder than the additive model as the former is
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nonlinear. Several authors have considered this problem, including Chat-
field and Yar (1991), Sweet (1985), and Gardner (1988). Chatfield and Yar
(1991) propose an empirical method in which the length of the prediction
interval depends on the point of origin of the forecast and may decrease
in length near the low points of the seasonal cycle. They also discuss the
case where the error is assumed to be proportional to the seasonal effect
rather than constant, which is the standard assumption in Winters’ method.
Another approach would be to obtain a “linearized” version of Winters’
model by expanding it in a first-order Taylor series and use this to find
an approximate variance of the predicted value (statisticians call this the
delta method). Then this prediction variance could be used to construct
prediction intervals much as is done in the linear regression model case.

Example 4.8 Consider the liquor store data given in Table 4.11. In Fig-
ure 4.29, we can see that the amplitude of the periodic behavior gets larger
as the average level of the seasonal data gets larger due to a linear trend.
Hence the multiplicative model will be more appropriate. Figures 4.30
and 4.31 show the smoothed data with additive and multiplicative mod-
els, respectively. Based on the performance of the smoothers, it should
therefore be clear that the multiplicative model should indeed be preferred.

As for forecasting using the multiplicative model, we can assume as
usual that we are currently in December 2003 and are asked to forecast
the sales in 2004. Figure 4.32 shows the forecasts together with the actual
values and the prediction intervals.

4.8 EXPONENTIAL SMOOTHING OF
BIOSURVEILLANCE DATA

Bioterrorism is the use of biological agents in a campaign of aggression.
The use of biological agents in warfare is not new; many centuries ago
plague and other contagious diseases were employed as weapons. Their
use today is potentially catastrophic, so medical and public health officials
are designing and implementing biosurveillance systems to monitor popu-
lations for potential disease outbreaks. For example, public health officials
collect syndrome data from sources such as hospital emergency rooms,
outpatient clinics, and over-the-counter medication sales to detect disease
outbreaks, such as the onset of the flu season. For an excellent and highly
readable introduction to statistical techniques for biosurveillance and syn-
dromic surveillance, see Fricker (2013). Monitoring of syndromic data
is also a type of epidemiologic surveillance in a biosurveillance process,
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FIGURE 4.30 Smoothed data for the liquor store sales from January 1992 to
December 2004 using the additive model.
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FIGURE 4.31 Smoothed data for the liquor store sales from January 1992 to
December 2004 using the multiplicative model.
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FIGURE 4.32 Forecasts for the liquor store sales for 2004 using the multiplica-
tive model.

where significantly higher than anticipated counts of influenza-like illness
might signal a potential bioterrorism attack.

As an example of such syndromic data, Fricker (2013) describes daily
counts of respiratory and gastrointestinal complaints for more than 2 1∕2
years at several hospitals in a large metropolitan area. Table 4.12 presents
the respiratory count data from one of these hospitals. There are 980
observations. Fifty observations were missing from the original data set.
The missing values were replaced with the last value that was observed on
the same day of the week. This type of data imputation is a variation of “Hot
Deck Imputation” discussed in Section 1.4.3 and in Fricker (2013). It is
also sometimes called last observation (or Value) carried forward (LOCF).
For additional discussion see the web site: http://missingdata.lshtm.ac.uk/.

Figure 4.33 is a time series plot of the respiratory syndrome count data
in Table 4.12. This plot was constructed using the Graph Builder feature
in JMP. This software package overlays a smoothed curve on the data. The
curve is fitted using locally weighted regression, often called loess. This
is a variation of kernel regression that uses a weighted average of the data
in a local neighborhood around a specific location to determine the value to
plot at that location. Loess usually uses either first-order linear regression
or a quadratic regression model for the weighted least squares fit. For more
information on kernel regression and loess see Montgomery, et al. (2012).

http://missingdata.lshtm.ac.uk/
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FIGURE 4.33 Time series plot of daily respiratory syndrome count, with kernel-
smoothed fitted line. (𝛼 = 0.1).

Over the 2 1∕2 year period, the daily counts of the respiratory syn-
drome appear to follow a weak seasonal pattern, with the highest peak
in November–December (late fall), a secondary peak in March–April, and
then decreasing to the lowest counts in June–August (summer). The ampli-
tude, or range within a year, seems to vary, but counts do not appear to be
increasing or decreasing over time.

Not immediately evident from the time series plots is a potential day
effect. The box plots of the residuals from the loess smoothed line in
Figure 4.33 are plotted in Figure 4.34 versus day of the week. These
plots exhibit variation that indicates slightly higher-than-expected counts
on Monday and slightly lower-than-expected counts on Thursday, Friday,
and Saturday.

The exponential smoothing procedure in JMP was applied to the res-
piratory syndrome data. The results of first-order or simple exponential
smoothing are summarized in Table 4.13 and Figure 4.35, which plots only
the last 100 observations along with the smoothed values. JMP reported
the value of the smoothing constant that produced the minimum value of
the error sum of squares as 𝜆 = 0.21. This value also minimizes the AIC
and BIC criteria, and results in the smallest values of the mean absolute
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FIGURE 4.34 Box plots of residuals from the kernel-smoothed line fit to daily
respiratory syndrome count.

prediction error and the mean absolute, although there is very little differ-
ence between the optimal value of 𝜆 = 0.21 and the values 𝜆 = 0.1 and
𝜆 = 0.4.

The results of using second-order exponential smoothing are summa-
rized in Table 4.14 and illustrated graphically for the last 100 observations
in Figure 4.36. There is not a lot of difference between the two procedures,
although the optimal first-order smoother does perform slightly better and
the larger smoothing parameters in the double smoother perform more
poorly.

Single and double exponential smoothing do not account for the appar-
ent mild seasonality observed in the original time series plot of the data.

TABLE 4.13 First-Order Simple Exponential Smoothing Applied to the
Respiratory Data

Model Variance AIC BIC MAPE MAE

First-Order Exponential (min SSE,
𝜆 = 0.21)

52.66 6660.81 6665.70 21.43 5.67

First-Order Exponential (𝜆 = 0.1) 55.65 6714.67 6714.67 22.23 5.85
First-Order Exponential (𝜆 = 0.4) 55.21 6705.63 6705.63 21.87 5.82
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FIGURE 4.35 Respiratory syndrome counts using first-order exponential
smoothing with 𝜆 = 0.1, 𝜆 = 0.21 (min SSE), and 𝜆 = 0.4.

We used JMP to fit Winters’ additive seasonal model to the respiratory
syndrome count data. Because the seasonal patterns are not strong, we
investigated seasons of length 3, 7, and 12 periods. The results are summa-
rized in Table 4.15 and illustrated graphically for the last 100 observations
in Figure 4.37. The 7-period season works best, probably reflecting the
daily seasonal pattern that we observed in Figure 4.34. This is also the
best smoother of all the techniques that were investigated. The values of
𝜆= 0 for the trend and seasonal components in this model are an indication
that there is not a significant linear trend in the data and that the seasonal
pattern is relatively stable over the period of available data.

TABLE 4.14 Second-Order Simple Exponential Smoothing Applied to the
Respiratory Data

Model Variance AIC BIC MAPE MAE

Second-Order Exponential
(min SSE, 𝜆 = 0.10)

54.37 6690.98 6695.86 21.71 5.78

Second-Order Exponential
(𝜆 = 0.2)

58.22 6754.37 6754.37 22.44 5.98

Second-Order Exponential
(𝜆 = 0.4)

74.46 6992.64 6992.64 25.10 6.74
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FIGURE 4.36 Respiratory syndrome counts using second-order exponential
smoothing with 𝜆 = 0.10 (min SSE), 𝜆 = 0.2, and 𝜆 = 0.4.

TABLE 4.15 Winters’ Additive Seasonal Exponential Smoothing Applied
to the Respiratory Data

Model Variance AIC BIC MAPE MAE

S = 3
Winters Additive (min SSE,
𝜆1 = 0.21, 𝜆2 = 0, 𝜆3 = 0)

52.75 6662.75 6677.40 21.70 5.72

Winters Additive (𝜆1 = 0.2,
𝜆2 = 0.1, 𝜆3 = 0.1)

57.56 6731.59 6731.59 22.38 5.94

S = 7
Winters Additive (min SSE,
𝜆1 = 0.22, 𝜆2 = 0, 𝜆3 = 0)

49.77 6593.83 6608.47 21.10 5.56

Winters Additive (𝜆1 = 0.2,
𝜆2 = 0.1, 𝜆3 = 0.1)

54.27 6652.57 6652.57 21.47 5.70

S = 12
Winters Additive (min SSE,
𝜆1 = 0.21, 𝜆2 = 0, 𝜆3 = 0)

52.74 6635.58 6650.21 22.13 5.84

Winters Additive (𝜆1 = 0.2,
𝜆2 = 0.1, 𝜆3 = 0.1)

58.76 6703.79 6703.79 22.77 6.08
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FIGURE 4.37 Respiratory syndrome counts using winters’ additive seasonal
exponential smoothing with S = 3, S = 7, and S = 12, and smoothing parameters
that minimize SSE.

4.9 EXPONENTIAL SMOOTHERS AND ARIMA MODELS

The first-order exponential smoother presented in Section 4.2 is a very
effective model in forecasting. The discount factor, 𝜆, makes this smoother
fairly flexible in handling time series data with various characteristics. The
first-order exponential smoother is particularly good in forecasting time
series data with certain specific characteristics.

Recall that the first-order exponential smoother is given as

ỹT = 𝜆yT + (1 − 𝜆)ỹT−1 (4.58)

and the forecast error is defined as

eT = yT − ŷT−1. (4.59)

Similarly, we have

eT−1 = yT−1 − ŷT−2. (4.60)
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By multiplying Eq. (4.60) by (1 − 𝜆) and subtracting it from Eq. (4.59),
we obtain

eT − (1 − 𝜆)eT−1 = (yT − ŷT−1) − (1 − 𝜆)(yT−1 − ŷT−2)

= yT − yT−1 − ŷT−1 + 𝜆yT−1 + (1 − 𝜆)ŷT−2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=ŷT−1

= yT − yT−1 − ŷT−1 + ŷT−1

= yT − yT−1.

(4.61)

We can rewrite Eq. (4.61) as

yT − yT−1 = eT − 𝜃eT−1, (4.62)

where 𝜃 = 1 − 𝜆. Recall from Chapter 2 the backshift operator, B, defined
as B(yt) = yt−1. Thus Eq. (4.62) becomes

(1 − B)yT = (1 − 𝜃B)eT . (4.63)

We will see in Chapter 5 that the model in Eq. (4.63) is called the
integrated moving average model denoted as IMA(1,1), for the backshift
operator is used only once on yT and only once on the error. It can be
shown that if the process exhibits the dynamics defined in Eq. (4.63),
that is an IMA(1,1) process, the first-order exponential smoother provides
minimum mean squared error (MMSE) forecasts (see Muth (1960), Box
and Luceno (1997), and Box, Jenkins, and Reinsel (1994)). For more
discussion of the equivalence between exponential smoothing techniques
and the ARIMA models, see Abraham and Ledolter (1983), Cogger (1974),
Goodman (1974), Pandit and Wu (1974), and McKenzie (1984).

4.10 R COMMANDS FOR CHAPTER 4

Example 4.1 The Dow Jones index data are in the second column of the
array called dji.data in which the first column is the month of the year. We
can use the following simple function to obtain the first-order exponential
smoothing

firstsmooth<-function(y,lambda,start=y[1]){
ytilde<-y
ytilde[1]<-lambda*y[1]+(1-lambda)*start
for (i in 2:length(y)){

ytilde[i]<-lambda*y[i]+(1-lambda)*ytilde[i-1]
}

ytilde
}
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Note that this function uses the first observation as the starting value
by default. One can change this by providing a specific start value when
calling the function.

We can then obtain the smoothed version of the data for a specified
lambda value and plot the fitted value as the following:

dji.smooth1<-firstsmooth(y=dji.data[,2],lambda=0.4)
plot(dji.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='Dow

Jones',xaxt='n')
axis(1, seq(1,85,12), dji.data[seq(1,85,12),1])
lines(dji.smooth1)
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For the first-order exponential smoothing, measures of accuracy such as
MAPE, MAD, and MSD can be obtained from the following function:

measacc.fs<- function(y,lambda){
out<- firstsmooth(y,lambda)
T<-length(y)
#Smoothed version of the original is the one step
ahead prediction

#Hence the predictions (forecasts) are given as
pred<-c(y[1],out[1:(T-1)])
prederr<- y-pred
SSE<-sum(prederrˆ2)
MAPE<-100*sum(abs(prederr/y))/T
MAD<-sum(abs(prederr))/T
MSD<-sum(prederrˆ2)/T
ret1<-c(SSE,MAPE,MAD,MSD)
names(ret1)<-c("SSE","MAPE","MAD","MSD")
return(ret1)

}

measacc.fs(dji.data[,2],0.4)
SSE MAPE MAD MSD

1.665968e+07 3.461342e+00 3.356325e+02 1.959962e+05



302 EXPONENTIAL SMOOTHING METHODS

Note that alternatively we could use the Holt–Winters function from
the stats package. The function requires three parameters (alpha, beta,
and gamma) to be defined. Providing a specific value for alpha and set-
ting beta and gamma to “FALSE” give the first-order exponential as the
following

dji1.fit<-HoltWinters(dji.data[,2],alpha=.4, beta=FALSE, gamma=FALSE)

Beta corresponds to the second-order smoothing (or the trend term) and
gamma is for the seasonal effect.

Example 4.2 The US CPI data are in the second column of the array
called cpi.data in which the first column is the month of the year. For this
case we use the firstsmooth function twice to obtain the double exponential
smoothing as

cpi.smooth1<-firstsmooth(y=cpi.data[,2],lambda=0.3)
cpi.smooth2<-firstsmooth(y=cpi.smooth1,lambda=0.3)
cpi.hat<-2*cpi.smooth1-cpi.smooth2 #Equation 4.23
plot(cpi.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='CPI',

xaxt='n')
axis(1, seq(1,120,24), cpi.data[seq(1,120,24),1])
lines(cpi.hat)
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Note that the fitted values are obtained using Eq. (4.23). Also the corre-
sponding command using Holt–Winters function is

HoltWinters(cpi.data[,2],alpha=0.3, beta=0.3, gamma=FALSE)
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Example 4.3 In this example we use the firstsmooth function twice for
the Dow Jones Index data to obtain the double exponential smoothing as
in the previous example.

dji.smooth1<-firstsmooth(y=dji.data[,2],lambda=0.3)
dji.smooth2<-firstsmooth(y=dji.smooth1,lambda=0.3)
dji.hat<-2*dji.smooth1-dji.smooth2 #Equation 4.23
plot(dji.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='Dow
Jones',xaxt='n')
axis(1, seq(1,85,12), cpi.data[seq(1,85,12),1])
lines(dji.hat)
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Example 4.4 The average speed data are in the second column of the
array called speed.data in which the first column is the index for the week.
To find the “best” smoothing constant, we will use the firstsmooth function
for various lambda values and obtain the sum of squared one-step-ahead
prediction error (SSE) for each. The lambda value that minimizes the sum
of squared prediction errors is deemed the “best” lambda. The obvious
option is to apply firstsmooth function in a for loop to obtain SSE for
various lambda values. Even though in this case this may not be an issue,
in many cases for loops can slow down the computations in R and are to
be avoided if possible. We will do that using sapply function.

lambda.vec<-seq(0.1, 0.9, 0.1)
sse.speed<-function(sc){measacc.fs(speed.data[1:78,2],sc)[1]}
sse.vec<-sapply(lambda.vec, sse.speed)
opt.lambda<-lambda.vec[sse.vec == min(sse.vec)]
plot(lambda.vec, sse.vec, type="b", main = "SSE vs. lambda\n",
xlab='lambda\n',ylab='SSE')

abline(v=opt.lambda, col = 'red')
mtext(text = paste("SSE min = ", round(min(sse.vec),2), "\n lambda
= ", opt.lambda))
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Note that we can also use Holt–Winters function to find the “best” value
for the smoothing constant by not specifying the appropriate parameter as
the following:

HoltWinters(speed.data[,2], beta=FALSE, gamma=FALSE)

Example 4.5 We will first try to find the best lambda for the CPI data
using first-order exponential smoothing. We will also plot ACF of the data.

Note that we will use the data up to December 2003.

lambda.vec<-c(seq(0.1, 0.9, 0.1), .95, .99)
sse.cpi<-function(sc){measacc.fs(cpi.data[1:108,2],sc)[1]}
sse.vec<-sapply(lambda.vec, sse.cpi)
opt.lambda<-lambda.vec[sse.vec == min(sse.vec)]
plot(lambda.vec, sse.vec, type="b", main = "SSE vs. lambda\n",

xlab='lambda\n',ylab='SSE', pch=16,cex=.5)
acf(cpi.data[1:108,2],lag.max=25)
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We now use the second-order exponential smoothing with lambda of 0.3.
We calculate the forecasts using Eq. (4.31) for the two options suggested
in the Example 4.5.

Option 1: On December 2003, make the forecasts for the entire 2004
(1- to 12-step-ahead forecasts).

lcpi<-0.3

cpi.smooth1<-firstsmooth(y=cpi.data[1:108,2],lambda=lcpi)
cpi.smooth2<-firstsmooth(y=cpi.smooth1,lambda=lcpi)

cpi.hat<-2*cpi.smooth1-cpi.smooth2

tau<-1:12
T<-length(cpi.smooth1)

cpi.forecast<-(2+tau*(lcpi/(1-lcpi)))*cpi.smooth1[T]-(1+tau*(lcpi/
(1-lcpi)))*cpi.smooth2[T]

ctau<-sqrt(1+(lcpi/((2-lcpi)ˆ3))*(10-14*lcpi+5*(lcpiˆ2)+2*tau*lcpi

*(4-3*lcpi)+2*(tauˆ2)*(lcpiˆ2)))
alpha.lev<-.05

sig.est<- sqrt(var(cpi.data[2:108,2]- cpi.hat[1:107]))

cl<-qnorm(1-alpha.lev/2)*(ctau/ctau[1])*sig.est
plot(cpi.data[1:108,2],type="p", pch=16,cex=.5,xlab='Date',

ylab='CPI',xaxt='n',xlim=c(1,120),ylim=c(150,192))

axis(1, seq(1,120,24), cpi.data[seq(1,120,24),1])
points(109:120,cpi.data[109:120,2])

lines(109:120,cpi.forecast)
lines(109:120,cpi.forecast+cl)

lines(109:120,cpi.forecast-cl)
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Option 2: On December 2003, make the forecast for January 2004. Then
when January 2004 data are available, make the forecast for February 2004
(only one-step-ahead forecasts).

lcpi<-0.3
T<-108
tau<-12
alpha.lev<-.05
cpi.forecast<-rep(0,tau)
cl<-rep(0,tau)
cpi.smooth1<-rep(0,T+tau)
cpi.smooth2<-rep(0,T+tau)

for (i in 1:tau) {
cpi.smooth1[1:(T+i-1)]<-firstsmooth(y=cpi.data[1:(T+i-1),2],

lambda=lcpi)
cpi.smooth2[1:(T+i-1)]<-firstsmooth(y=cpi.smooth1[1:(T+i-1)],

lambda=lcpi)
cpi.forecast[i]<-(2+(lcpi/(1-lcpi)))*cpi.smooth1[T+i-1]-

(1+(lcpi/(1-lcpi)))*cpi.smooth2[T+i-1]
cpi.hat<-2*cpi.smooth1[1:(T+i-1)]-cpi.smooth2[1:(T+i-1)]
sig.est<- sqrt(var(cpi.data[2:(T+i-1),2]- cpi.hat[1:(T+i-2)]))
cl[i]<-qnorm(1-alpha.lev/2)*sig.est
}

plot(cpi.data[1:T,2],type="p", pch=16,cex=.5,xlab='Date',ylab='CPI',
xaxt='n',xlim=c(1,T+tau),ylim=c(150,192))

axis(1, seq(1,T+tau,24), cpi.data[seq(1,T+tau,24),1])
points((T+1):(T+tau),cpi.data[(T+1):(T+tau),2],cex=.5)
lines((T+1):(T+tau),cpi.forecast)
lines((T+1):(T+tau),cpi.forecast+cl)
lines((T+1):(T+tau),cpi.forecast-cl)
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Example 4.6 The function for the Trigg–Leach smoother is given as:

tlsmooth<-function(y,gamma,y.tilde.start=y[1],lambda.start=1){
T<-length(y)

#Initialize the vectors
Qt<-vector()
Dt<-vector()
y.tilde<-vector()
lambda<-vector()
err<-vector()

#Set the starting values for the vectors
lambda[1]=lambda.start
y.tilde[1]=y.tilde.start
Qt[1]<-0
Dt[1]<-0
err[1]<-0

for (i in 2:T){
err[i]<-y[i]-y.tilde[i-1]
Qt[i]<-gamma*err[i]+(1-gamma)*Qt[i-1]
Dt[i]<-gamma*abs(err[i])+(1-gamma)*Dt[i-1]
lambda[i]<-abs(Qt[i]/Dt[i])
y.tilde[i]=lambda[i]*y[i] + (1-lambda[i])*y.tilde[i-1]

}
return(cbind(y.tilde,lambda,err,Qt,Dt))
}

#Obtain the TL smoother for Dow Jones Index
out.tl.dji<-tlsmooth(dji.data[,2],0.3)
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#Obtain the exponential smoother for Dow Jones Index
dji.smooth1<-firstsmooth(y=dji.data[,2],lambda=0.4)

#Plot the data together with TL and exponential smoother for
comparison

plot(dji.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='Dow
Jones',xaxt='n')

axis(1, seq(1,85,12), cpi.data[seq(1,85,12),1])
lines(out.tl.dji[,1])
lines(dji.smooth1,col="grey40")
legend(60,8000,c("Dow Jones","TL Smoother","Exponential Smoother"),
pch=c(16, NA, NA),lwd=c(NA,.5,.5),cex=.55,col=c("black",
"black","grey40"))

Example 4.7 The clothing sales data are in the second column of the
array called closales.data in which the first column is the month of the
year. We will use the data up to December 2002 to fit the model and make
forecasts for the coming year (2003). We will use Holt–Winters function
given in stats package. The model is additive seasonal model with all
parameters equal to 0.2.

dat.ts = ts(closales.data[,2], start = c(1992,1), freq = 12)
y1<-closales.data[1:132,]
# convert data to ts object
y1.ts<-ts(y1[,2], start = c(1992,1), freq = 12)
clo.hw1<-HoltWinters(y1.ts,alpha=0.2,beta=0.2,gamma=0.2,seasonal

="additive")
plot(y1.ts,type="p", pch=16,cex=.5,xlab='Date',ylab='Sales')
lines(clo.hw1$fitted[,1])
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#Forecast the the sales for 2003
y2<-closales.data[133:144,]
y2.ts<-ts(y2[,2],start=c(2003,1),freq=12)

y2.forecast<-predict(clo.hw1, n.ahead=12, prediction.interval
= TRUE)

plot(y1.ts,type="p", pch=16,cex=.5,xlab='Date',ylab='Sales',
xlim=c(1992,2004))

points(y2.ts)
lines(y2.forecast[,1])
lines(y2.forecast[,2])
lines(y2.forecast[,3])
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Example 4.8 The liquor store sales data are in the second column of
the array called liqsales.data in which the first column is the month of the
year. We will first fit additive and multiplicative seasonal models to the
entire data to see the difference in the fits. Then we will use the data up to
December 2003 to fit the multiplicative model and make forecasts for the
coming year (2004). We will once again use Holt–Winters function given
in stats package. In all cases we set all parameters to 0.2.

y.ts<- ts(liqsales.data[,2], start = c(1992,1), freq = 12)

liq.hw.add<-HoltWinters(y.ts,alpha=0.2,beta=0.2,gamma=0.2,
seasonal="additive")

plot(y.ts,type="p", pch=16,cex=.5,xlab='Date',ylab='Sales',
main="Additive Model")

lines(liq.hw.add$fitted[,1])
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liq.hw.mult<-HoltWinters(y.ts,alpha=0.2,beta=0.2,gamma=0.2,
seasonal="multiplicative")

plot(y.ts,type="p", pch=16,cex=.5,xlab='Date',ylab='Sales',
main="Multiplicative Model")

lines(liq.hw.mult$fitted[,1])
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y1<-liqsales.data[1:144,]
y1.ts<-ts(y1[,2], start = c(1992,1), freq = 12)
liq.hw1<-HoltWinters(y1.ts,alpha=0.2,beta=0.2,gamma=0.2,
seasonal="multiplicative")

y2<-liqsales.data[145:156,]
y2.ts<-ts(y2[,2],start=c(2004,1),freq=12)

y2.forecast<-predict(liq.hw1, n.ahead=12, prediction.interval =
TRUE)

plot(y1.ts,type="p", pch=16,cex=.5,xlab='Date',ylab='Sales',
xlim=c(1992,2005))

points(y2.ts)
lines(y2.forecast[,1])
lines(y2.forecast[,2])
lines(y2.forecast[,3])
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EXERCISES

4.1 Consider the time series data shown in Table E4.1.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the

first 40 time periods of this data. How well does this smoothing
procedure work?

c. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors.
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TABLE E4.1 Data for Exercise 4.1

Period yt Period yt Period yt Period yt Period yt

1 48.7 11 49.1 21 45.3 31 50.8 41 47.9
2 45.8 12 46.7 22 43.3 32 46.4 42 49.5
3 46.4 13 47.8 23 44.6 33 52.3 43 44.0
4 46.2 14 45.8 24 47.1 34 50.5 44 53.8
5 44.0 15 45.5 25 53.4 35 53.4 45 52.5
6 53.8 16 49.2 26 44.9 36 53.9 46 52.0
7 47.6 17 54.8 27 50.5 37 52.3 47 50.6
8 47.0 18 44.7 28 48.1 38 53.0 48 48.7
9 47.6 19 51.1 29 45.4 39 48.6 49 51.4

10 51.1 20 47.3 30 51.6 40 52.4 50 47.7

4.2 Reconsider the time series data shown in Table E4.1.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the first 40 time periods of this data (you can find the
optimum value from Minitab). How well does this smoothing
procedure work? Compare the results with those obtained in
Exercise 4.1.

b. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors. Compare these forecast errors with those
from Exercise 4.1. How much has using the optimum value of
the smoothing constant improved the forecasts?

4.3 Find the sample ACF for the time series in Table E4.1. Does this give
you any insight about the optimum value of the smoothing constant
that you found in Exercise 4.2?

4.4 Consider the time series data shown in Table E4.2.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the

first 40 time periods of this data. How well does this smoothing
procedure work?

c. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors.

4.5 Reconsider the time series data shown in Table E4.2.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the first 40 time periods of this data (you can find the
optimum value from Minitab). How well does this smoothing
procedure work? Compare the results with those obtained in
Exercise 4.4.
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TABLE E4.2 Data for Exercise 4.4

Period yt Period yt Period yt Period yt Period yt

1 43.1 11 41.8 21 47.7 31 52.9 41 48.3
2 43.7 12 50.7 22 51.1 32 47.3 42 45.0
3 45.3 13 55.8 23 67.1 33 50.0 43 55.2
4 47.3 14 48.7 24 47.2 34 56.7 44 63.7
5 50.6 15 48.2 25 50.4 35 42.3 45 64.4
6 54.0 16 46.9 26 44.2 36 52.0 46 66.8
7 46.2 17 47.4 27 52.0 37 48.6 47 63.3
8 49.3 18 49.2 28 35.5 38 51.5 48 60.0
9 53.9 19 50.9 29 48.4 39 49.5 49 60.9

10 42.5 20 55.3 30 55.4 40 51.4 50 56.1

b. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors. Compare these forecast errors with those
from Exercise 4.4. How much has using the optimum value of
the smoothing constant improved the forecasts?

4.6 Find the sample ACF for the time series in Table E4.2. Does this give
you any insight about the optimum value of the smoothing constant
that you found in Exercise 4.5?

4.7 Consider the time series data shown in Table E4.3.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth the

first 30 time periods of this data. How well does this smoothing
procedure work?

TABLE E4.3 Data for Exercise 4.7

Period yt Period yt Period yt Period yt Period yt

1 275 11 297 21 231 31 255 41 293
2 245 12 235 22 238 32 255 42 284
3 222 13 237 23 251 33 229 43 276
4 169 14 203 24 253 34 286 44 290
5 236 15 238 25 283 35 236 45 250
6 259 16 232 26 283 36 194 46 235
7 268 17 206 27 245 37 228 47 275
8 225 18 295 28 234 38 244 48 350
9 246 19 247 29 273 39 241 49 290

10 263 20 227 30 293 40 284 50 269
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c. Make one-step-ahead forecasts of the last 20 observations. Deter-
mine the forecast errors.

d. Plot the forecast errors on a control chart for individuals. Use
a moving range chart to estimate the standard deviation of the
forecast errors in constructing this chart. What conclusions can
you draw about the forecasting procedure and the time series?

4.8 The data in Table E4.4 exhibit a linear trend.
a. Verify that there is a trend by plotting the data.
b. Using the first 12 observations, develop an appropriate procedure

for forecasting.
c. Forecast the last 12 observations and calculate the forecast errors.

Does the forecasting procedure seem to be working satisfacto-
rily?

TABLE E4.4 Data for Exercise 4.8

Period yt Period yt

1 315 13 460
2 195 14 395
3 310 15 390
4 316 16 450
5 325 17 458
6 335 18 570
7 318 19 520
8 355 20 400
9 420 21 420

10 410 22 580
11 485 23 475
12 420 24 560

4.9 Reconsider the linear trend data in Table E4.4. Take the first differ-
ence of this data and plot the time series of first differences. Has
differencing removed the trend? Use exponential smoothing on the
first 11 differences. Instead of forecasting the original data, fore-
cast the first differences for the remaining data using exponential
smoothing and use these forecasts of the first differences to obtain
forecasts for the original data.

4.10 Table B.1 in Appendix B contains data on the market yield on US
Treasury Securities at 10-year constant maturity.
a. Make a time series plot of the data.
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b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the
data, excluding the last 20 observations. How well does this
smoothing procedure work?

c. Make one-step-ahead forecasts of the last 20 observations. Deter-
mine the forecast errors.

4.11 Reconsider the US Treasury Securities data shown in Table B.1.
a. Use simple exponential smoothing with the optimum value of𝜆 to

smooth the data, excluding the last 20 observations (you can find
the optimum value from Minitab). How well does this smoothing
procedure work? Compare the results with those obtained in
Exercise 4.10.

b. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors. Compare these forecast errors with those
from Exercise 4.10. How much has using the optimum value of
the smoothing constant improved the forecasts?

4.12 Table B.2 contains data on pharmaceutical product sales.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth this

data. How well does this smoothing procedure work?
c. Make one-step-ahead forecasts of the last 10 observations. Deter-

mine the forecast errors.

4.13 Reconsider the pharmaceutical sales data shown in Table B.2.
a. Use simple exponential smoothing with the optimum value

of 𝜆 to smooth the data (you can find the optimum value
from either Minitab or JMP). How well does this smoothing
procedure work? Compare the results with those obtained in
Exercise 4.12.

b. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors. Compare these forecast errors with those
from Exercise 4.12. How much has using the optimum value of
the smoothing constant improved the forecasts?

c. Construct the sample ACF for these data. Does this give you any
insight regarding the optimum value of the smoothing constant?

4.14 Table B.3 contains data on chemical process viscosity.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth this

data. How well does this smoothing procedure work?
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c. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors.

4.15 Reconsider the chemical process data shown in Table B.3.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP). How well does this smoothing procedure work?
Compare the results with those obtained in Exercise 4.14.

b. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors. Compare these forecast errors with those
from Exercise 4.14.How much has using the optimum value of
the smoothing constant improved the forecasts?

c. Construct the sample ACF for these data. Does this give you any
insight regarding the optimum value of the smoothing constant?

4.16 Table B.4 contains data on the annual US production of blue and
gorgonzola cheeses. This data have a strong trend.
a. Verify that there is a trend by plotting the data.
b. Develop an appropriate exponential smoothing procedure for

forecasting.
c. Forecast the last 10 observations and calculate the forecast errors.

Does the forecasting procedure seem to be working satisfacto-
rily?

4.17 Reconsider the blue and gorgonzola cheese data in Table B.4 and
Exercise 4.16. Take the first difference of this data and plot the time
series of first differences. Has differencing removed the trend? Use
exponential smoothing on the first differences. Instead of forecast-
ing the original data, develop a procedure for forecasting the first
differences and explain how you would use these forecasts of the
first differences to obtain forecasts for the original data.

4.18 Table B.5 shows data for US beverage manufacturer product ship-
ments. Develop an appropriate exponential smoothing procedure for
forecasting these data.

4.19 Table B.6 contains data on the global mean surface air temperature
anomaly.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the

data. How well does this smoothing procedure work? Do you
think this would be a reliable forecasting procedure?
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4.20 Reconsider the global mean surface air temperature anomaly data
shown in Table B.6 and used in Exercise 4.19.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP). How well does this smoothing procedure work?
Compare the results with those obtained in Exercise 4.19.

b. Do you think using the optimum value of the smoothing constant
would result in improved forecasts from exponential smoothing?

c. Take the first difference of this data and plot the time series of first
differences. Use exponential smoothing on the first differences.
Instead of forecasting the original data, develop a procedure for
forecasting the first differences and explain how you would use
these forecasts of the first differences to obtain forecasts for the
original global mean surface air temperature anomaly.

4.21 Table B.7 contains daily closing stock prices for the Whole Foods
Market.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth the

data. How well does this smoothing procedure work? Do you
think this would be a reliable forecasting procedure?

4.22 Reconsider the Whole Foods Market data shown in Table B.7 and
used in Exercise 4.21.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP). How well does this smoothing procedure work?
Compare the results with those obtained in Exercise 4.21.

b. Do you think that using the optimum value of the smoothing
constant would result in improved forecasts from exponential
smoothing?

c. Use an exponential smoothing procedure for trends on this data. Is
this an apparent improvement over the use of simple exponential
smoothing with the optimum smoothing constant?

d. Take the first difference of this data and plot the time series of first
differences. Use exponential smoothing on the first differences.
Instead of forecasting the original data, develop a procedure for
forecasting the first differences and explain how you would use
these forecasts of the first differences to obtain forecasts for the
stock price.
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4.23 Unemployment rate data are given in Table B.8.
a. Make a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the

data. How well does this smoothing procedure work? Do you
think that simple exponential smoothing should be used to fore-
cast this data?

4.24 Reconsider the unemployment rate data shown in Table B.8 and
used in Exercise 4.23.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP). How well does this smoothing procedure work?
Compare the results with those obtained in Exercise 4.23.

b. Do you think that using the optimum value of the smoothing
constant would result in improved forecasts from exponential
smoothing?

c. Use an exponential smoothing procedure for trends on this data. Is
this an apparent improvement over the use of simple exponential
smoothing with the optimum smoothing constant?

d. Take the first difference of this data and plot the time series
of first differences. Use exponential smoothing on the first dif-
ferences. Is this a reasonable procedure for forecasting the first
differences?

4.25 Table B.9 contains yearly data on the international sunspot numbers.
a. Construct a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth the

data. How well does this smoothing procedure work? Do you
think that simple exponential smoothing should be used to fore-
cast this data?

4.26 Reconsider the sunspot data shown in Table B.9 and used in Exer-
cise 4.25.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP). How well does this smoothing procedure work?
Compare the results with those obtained in Exercise 4.25.

b. Do you think that using the optimum value of the smoothing
constant would result in improved forecasts from exponential
smoothing?
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c. Use an exponential smoothing procedure for trends on this data. Is
this an apparent improvement over the use of simple exponential
smoothing with the optimum smoothing constant?

4.27 Table B.10 contains 7 years of monthly data on the number of airline
miles flown in the United Kingdom. This is seasonal data.
a. Make a time series plot of the data and verify that it is seasonal.
b. Use Winters’ multiplicative method for the first 6 years to develop

a forecasting method for this data. How well does this smoothing
procedure work?

c. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?

4.28 Reconsider the airline mileage data in Table B.10 and used in Exer-
cise 4.27.
a. Use the additive seasonal effects model for the first 6 years to

develop a forecasting method for this data. How well does this
smoothing procedure work?

b. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?

c. Compare these forecasts with those found using Winters’ multi-
plicative method in Exercise 4.27.

4.29 Table B.11 contains 8 years of monthly champagne sales data. This
is seasonal data.
a. Make a time series plot of the data and verify that it is seasonal.

Why do you think seasonality is present in these data?
b. Use Winters’ multiplicative method for the first 7 years to develop

a forecasting method for this data. How well does this smoothing
procedure work?

c. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?

4.30 Reconsider the monthly champagne sales data in Table B.11 and
used in Exercise 4.29.
a. Use the additive seasonal effects model for the first 7 years to

develop a forecasting method for this data. How well does this
smoothing procedure work?



320 EXPONENTIAL SMOOTHING METHODS

b. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?

c. Compare these forecasts with those found using Winters’ multi-
plicative method in Exercise 4.29.

4.31 Montgomery et al. (1990) give 4 years of data on monthly demand
for a soft drink. These data are given in Table E4.5.
a. Make a time series plot of the data and verify that it is seasonal.

Why do you think seasonality is present in these data?
b. Use Winters’ multiplicative method for the first 3 years to develop

a forecasting method for this data. How well does this smoothing
procedure work?

c. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?

TABLE E4.5 Soft Drink Demand Data

Period yt Period yt Period yt Period yt

1 143 13 189 25 359 37 332
2 191 14 326 26 264 38 244
3 195 15 289 27 315 39 320
4 225 16 293 28 362 40 437
5 175 17 279 29 414 41 544
6 389 18 552 30 647 42 830
7 454 19 674 31 836 43 1011
8 618 20 827 32 901 44 1081
9 770 21 1000 33 1104 45 1400

10 564 22 502 34 874 46 1123
11 327 23 512 35 683 47 713
12 235 24 300 36 352 48 487

4.32 Reconsider the soft drink demand data in Table E4.5 and used in
Exercise 4.31.
a. Use the additive seasonal effects model for the first 3 years to

develop a forecasting method for this data. How well does this
smoothing procedure work?

b. Make one-step-ahead forecasts of the last 12 months. Determine
the forecast errors. How well did your procedure work in fore-
casting the new data?
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c. Compare these forecasts with those found using Winters’ multi-
plicative method in Exercise 4.31.

4.33 Table B.12 presents data on the hourly yield from a chemical process
and the operating temperature. Consider only the yield data in this
exercise.
a. Construct a time series plot of the data.
b. Use simple exponential smoothing with 𝜆 = 0.2 to smooth the

data. How well does this smoothing procedure work? Do you
think that simple exponential smoothing should be used to fore-
cast this data?

4.34 Reconsider the chemical process yield data shown in Table B.12.
a. Use simple exponential smoothing with the optimum value

of 𝜆 to smooth the data (you can find the optimum value
from either Minitab or JMP). How well does this smoothing
procedure work? Compare the results with those obtained in
Exercise 4.33.

b. How much has using the optimum value of the smoothing con-
stant improved the forecasts?

4.35 Find the sample ACF for the chemical process yield data in Table
B.12. Does this give you any insight about the optimum value of the
smoothing constant that you found in Exercise 4.34?

4.36 Table B.13 presents data on ice cream and frozen yogurt sales.
Develop an appropriate exponential smoothing forecasting proce-
dure for this time series.

4.37 Table B.14 presents the CO2 readings from Mauna Loa.
a. Use simple exponential smoothing with the optimum value of 𝜆

to smooth the data (you can find the optimum value from either
Minitab or JMP).

b. Use simple exponential smoothing with 𝜆 = 0.1 to smooth the
data. How well does this smoothing procedure work? Com-
pare the results with those obtained using the optimum smooth-
ing constant. How much has using the optimum value of
the smoothing constant improved the exponential smoothing
procedure?

4.38 Table B.15 presents data on the occurrence of violent crimes.
Develop an appropriate exponential smoothing forecasting proce-
dure for this time series.



322 EXPONENTIAL SMOOTHING METHODS

4.39 Table B.16 presents data on the US. gross domestic product (GDP).
Develop an appropriate exponential smoothing forecasting proce-
dure for the GDP time series.

4.40 Total annual energy consumption is shown in Table B.17. Develop
an appropriate exponential smoothing forecasting procedure for the
energy consumption time series.

4.41 Table B.18 contains data on coal production. Develop an appropriate
exponential smoothing forecasting procedure for the coal production
time series.

4.42 Table B.19 contains data on the number of children 0−4 years old
who drowned in Arizona.
a. Plot the data. What type of forecasting model seems appropriate?
b. Develop a forecasting model for this data?

4.43 Data on tax refunds and population are shown in Table B.20. Develop
an appropriate exponential smoothing forecasting procedure for the
tax refund time series.

4.44 Table B.21 contains data from the US Energy Information Admin-
istration on monthly average price of electricity for the residential
sector in Arizona. This data have a strong seasonal component.
Use the data from 2001–2010 to develop a multiplicative Winters-
type exponential smoothing model for this data. Use this model
to simulate one-month-ahead forecasts for the remaining years.
Calculate the forecast errors. Discuss the reasonableness of the
forecasts.

4.45 Use the electricity price data in Table B.21 from 2010–2010 and an
additive Winters-type exponential smoothing procedure to develop
a forecasting model.
a. Use this model to simulate one-month-ahead forecasts for the

remaining years. Calculate the forecast errors. Discuss the rea-
sonableness of the forecasts.

b. Compare the performance of this model with the multiplicative
model you developed in Exercise 4.44.

4.46 Table B.22 contains data from the Danish Energy Agency on Danish
crude oil production.
a. Plot the data and comment on any features that you observe from

the graph. Calculate and plot the sample ACF and variogram.
Interpret these graphs.
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b. Use first-order exponential smoothing to develop a forecasting
model for crude oil production. Plot the smoothed statistic on
the same axes with the original data. How well does first-order
exponential smoothing seem to work?

c. Use double exponential smoothing to develop a forecasting
model for crude oil production. Plot the smoothed statistic on
the same axes with the original data. How well does double
exponential smoothing seem to work?

d. Compare the two smoothing models from parts b and c. Which
approach seems preferable?

4.47 Apply a first difference to the Danish crude oil production data in
Table B.22.
a. Plot the data and comment on any features that you observe from

the graph. Calculate and plot the sample ACF and variogram.
Interpret these graphs.

b. Use first-order exponential smoothing to develop a forecasting
model for crude oil production. Plot the smoothed statistic on
the same axes with the original data. How well does first-order
exponential smoothing seem to work? How does this compare
to the first-order exponential smoothing model you developed in
Exercise 4.46 for the original (undifferenced) data?

4.48 Table B.23 shows weekly data on positive laboratory test results for
influenza. Notice that these data have a number of missing values.
In exercise you were asked to develop and implement a scheme
to estimate the missing values. This data have a strong seasonal
component. Use the data from 1997–2010 to develop a multiplica-
tive Winters-type exponential smoothing model for this data. Use
this model to simulate one-week-ahead forecasts for the remaining
years. Calculate the forecast errors. Discuss the reasonableness of
the forecasts.

4.49 Repeat Exercise 4.48 using an additive Winters-type model. Com-
pare the performance of the additive and the multiplicative model
from Exercise 4.48.

4.50 Data from the Western Regional Climate Center for the monthly
mean daily solar radiation (in Langleys) at the Zion Canyon, Utah,
station are shown in Table B.24. This data have a strong seasonal
component. Use the data from 2003–2012 to develop a multiplicative
Winters-type exponential smoothing model for this data. Use this
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model to simulate one-month-ahead forecasts for the remaining
years. Calculate the forecast errors. Discuss the reasonableness of
the forecasts.

4.51 Repeat Exercise 4.50 using an additive Winters-type model. Com-
pare the performance of the additive and the multiplicative model
from Exercise 4.50.

4.52 Table B.25 contains data from the National Highway Traffic Safety
Administration on motor vehicle fatalities from 1966 to 2012. This
data are used by a variety of governmental and industry groups, as
well as research organizations.
a. Plot the fatalities data and comment on any features of the data

that you see.
b. Develop a forecasting procedure using first-order exponential

smoothing. Use the data from 1966–2006 to develop the model,
and then simulate one-year-ahead forecasts for the remaining
years. Compute the forecasts errors. How well does this method
seem to work?

c. Develop a forecasting procedure using based on double expo-
nential smoothing. Use the data from 1966–2006 to develop
the model, and then simulate one-year-ahead forecasts for the
remaining years. Compute the forecasts errors. How well does
this method seem to work in comparison to the method based on
first-order exponential smoothing?

4.53 Apply a first difference to the motor vehicle fatalities data in
Table B.25.
a. Plot the differenced data and comment on any features of the data

that you see.
b. Develop a forecasting procedure for the first differences based on

first-order exponential smoothing. Use the data from 1966–2006
to develop the model, and then simulate one-year-ahead forecasts
for the remaining years. Compute the forecasts errors. How well
does this method seem to work?

c. Compare this approach with the two smoothing methods used in
Exercise 4.52.

4.54 Appendix Table B.26 contains data on monthly single-family resi-
dential new home sales from 1963 through 2014.
a. Plot the home sales data. Comment on the graph.
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b. Develop a forecasting procedure using first-order exponential
smoothing. Use the data from1963–2000 to develop the model,
and then simulate one-year-ahead forecasts for the remaining
years. Compute the forecasts errors. How well does this method
seem to work?

c. Can you explain the unusual changes in sales observed in the
data near the end of the graph?

4.55 Appendix Table B.27 contains data on the airline’s best on-time
arrival and airport performance. The data are given by month from
January 1995 through February 2013.
a. Plot the data and comment on any features of the data that you

see.
b. Construct the sample ACF and variogram. Comment on these

displays.
c. Develop an appropriate exponential smoothing model for these

data.

4.56 Data from the US Census Bureau on monthly domestic automo-
bile manufacturing shipments (in millions of dollars) are shown in
Table B.28.
a. Plot the data and comment on any features of the data that you

see.
b. Construct the sample ACF and variogram. Comment on these

displays.
c. Develop an appropriate exponential smoothing model for these

data. Note that there is some apparent seasonality in the data.
Why does this seasonal behavior occur?

d. Plot the first difference of the data. Now compute the sample
ACF and variogram for the differenced data. What impact has
differencing had? Is there still some apparent seasonality in the
differenced data?

4.57 Suppose that simple exponential smoothing is being used to forecast
a process. At the start of period t*, the mean of the process shifts to a
new level 𝜇 + 𝛿. The mean remains at this new level for subsequent
time periods. Show that the expected value of the exponentially
smoothed statistic is

E(ŷt) =
{

𝜇, T ≤ t∗

𝜇 + 𝛿 − 𝛿(1 − 𝜆)T−t∗+1, T ≥ t∗
.
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4.58 Using the results of Exercise 4.44, determine the number of periods
following the step change for the expected value of the exponential
smoothing statistic to be within 0.10 𝛿 of the new time series level
𝜇 + 𝛿. Plot the number of periods as a function of the smoothing
constant. What conclusions can you draw?

4.59 Suppose that simple exponential smoothing is being used to forecast
the process yt = 𝜇 + 𝜀t. At the start of period t*, the mean of the
process experiences a transient; that is, it shifts to a new level 𝜇 + 𝛿,
but reverts to its original level y at the start of the next period t* + 1.
The mean remains at this level for subsequent time periods. Show
that the expected value of the exponentially smoothed statistic is

E(ŷt) =
{

𝜇, T ≤ t∗

𝜇 + 𝛿𝜆(1 − 𝜆)T−t∗ , T ≥ t∗
.

4.60 Using the results of Exercise 4.46, determine the number of periods
that it will take following the impulse for the expected value of
the exponential smoothing statistic to return to within 0.10 𝛿 of the
original time series level 𝜇. Plot the number of periods as a function
of the smoothing constant. What conclusions can you draw?



CHAPTER 5

AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODELS

All models are wrong, some are useful.
GEORGE E. P. BOX, British statistician

5.1 INTRODUCTION

In the previous chapter, we discussed forecasting techniques that, in gen-
eral, were based on some variant of exponential smoothing. The general
assumption for these models was that any time series data can be repre-
sented as the sum of two distinct components: deterministic and stochastic
(random). The former is modeled as a function of time whereas for the
latter we assumed that some random noise that is added on to the deter-
ministic signal generates the stochastic behavior of the time series. One
very important assumption is that the random noise is generated through
independent shocks to the process. In practice, however, this assump-
tion is often violated. That is, usually successive observations show serial
dependence. Under these circumstances, forecasting methods based on
exponential smoothing may be inefficient and sometimes inappropriate
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because they do not take advantage of the serial dependence in the obser-
vations in the most effective way. To formally incorporate this dependent
structure, in this chapter we will explore a general class of models called
autoregressive integrated moving average (MA) models or ARIMA models
(also known as Box–Jenkins models).

5.2 LINEAR MODELS FOR STATIONARY TIME SERIES

In statistical modeling, we are often engaged in an endless pursuit of finding
the ever elusive true relationship between certain inputs and the output. As
cleverly put by the quote of this chapter, these efforts usually result in
models that are nothing but approximations of the “true” relationship. This
is generally due to the choices the analyst makes along the way to ease
the modeling efforts. A major assumption that often provides relief in
modeling efforts is the linearity assumption. A linear filter, for example,
is a linear operation from one time series xt to another time series yt,

yt = L(xt) =
+∞∑

i=−∞
𝜓ixt−i (5.1)

with t = … ,−1, 0, 1,…. In that regard the linear filter can be seen as a
“process” that converts the input, xt, into an output, yt, and that conversion
is not instantaneous but involves all (present, past, and future) values of the
input in the form of a summation with different “weights”,

{
𝜓i

}
, on each

xt. Furthermore, the linear filter in Eq. (5.1) is said to have the following
properties:

1. Time-invariant as the coefficients
{
𝜓i

}
do not depend on time.

2. Physically realizable if 𝜓i = 0 for i < 0; that is, the output yt is
a linear function of the current and past values of the input: yt =
𝜓0xt + 𝜓1xt−1 +⋯.

3. Stable if
∑+∞

i=−∞
||𝜓i

|| < ∞.

In linear filters, under certain conditions, some properties such as sta-
tionarity of the input time series are also reflected in the output. We
discussed stationarity previously in Chapter 2. We will now give a more
formal description of it before proceeding further with linear models for
time series.
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5.2.1 Stationarity

The stationarity of a time series is related to its statistical properties in
time. That is, in the more strict sense, a stationary time series exhibits
similar “statistical behavior” in time and this is often characterized as a
constant probability distribution in time. However, it is usually satisfactory
to consider the first two moments of the time series and define stationarity
(or weak stationarity) as follows: (1) the expected value of the time series
does not depend on time and (2) the autocovariance function defined as
Cov(yt, yt+k) for any lag k is only a function of k and not time; that is,
𝛾y(k) = Cov(yt, yt+k).

In a crude way, the stationarity of a time series can be determined by
taking arbitrary “snapshots” of the process at different points in time and
observing the general behavior of the time series. If it exhibits “simi-
lar” behavior, one can then proceed with the modeling efforts under the
assumption of stationarity. Further preliminary tests also involve observ-
ing the behavior of the autocorrelation function. A strong and slowly
dying ACF will also suggest deviations from stationarity. Better and more
methodological tests of stationarity also exist and we will discuss some
of them later in this chapter. Figure 5.1 shows examples of stationary and
nonstationary time series data.

5.2.2 Stationary Time Series

For a time-invariant and stable linear filter and a stationary input time series
xt with 𝜇x = E(xt) and 𝛾x (k) = Cov(xt, xt+k), the output time series yt given
in Eq. (5.1) is also a stationary time series with

E(yt) = 𝜇y =
∞∑
−∞

𝜓i𝜇x

and

Cov(yt, yt+k) = 𝛾y (k) =
∞∑

i=−∞

∞∑
j=−∞

𝜓i𝜓j𝛾x (i − j + k)

It is then easy to show that the following stable linear process with white
noise time series, 𝜀t, is also stationary:

yt = 𝜇 +
∞∑

i=0

𝜓i𝜀t−i (5.2)
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t(a) y1,t  = 10 + 0.75y1,t–1 +

(b) y2,t  = 2 + 0.95y2,t–1 + t

(c) y3,t  = 20 + y3,t–1 + t
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FIGURE 5.1 Realizations of (a) stationary, (b) near nonstationary, and (c) non-
stationary processes.

with E(𝜀t) = 0, and

𝛾
𝜀

(h) =
{

𝜎
2 if h = 0

0 if h ≠ 0

So for the autocovariance function of yt, we have

𝛾y (k) =
∞∑

i=0

∞∑
j=0

𝜓i𝜓j𝛾𝜀 (i − j + k)

(5.3)

= 𝜎
2

∞∑
i=0

𝜓i𝜓i+k
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We can rewrite the linear process in Eq. (5.2) in terms of the backshift
operator, B, as

yt = 𝜇 + 𝜓0𝜀t + 𝜓1𝜀t−1 + 𝜓2𝜀t−2 +⋯

= 𝜇 +
∞∑

i=0

𝜓iB
i
𝜀t

= 𝜇 +

( ∞∑
i=0

𝜓iB
i

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=Ψ(B)

𝜀t (5.4)

= 𝜇 + Ψ (B) 𝜀t

This is called the infinite moving average and serves as a general class
of models for any stationary time series. This is due to a theorem by
Wold (1938) and basically states that any nondeterministic weakly sta-
tionary time series yt can be represented as in Eq. (5.2), where

{
𝜓i

}
satisfy∑∞

i=0 𝜓
2
i < ∞. A more intuitive interpretation of this theorem is that a sta-

tionary time series can be seen as the weighted sum of the present and
past random “disturbances.” For further explanations see Yule (1927) and
Bisgaard and Kulahci (2005, 2011).

The theorem by Wold requires that the random shocks in (5.4) to be white
noise which we defined as uncorrelated random shocks with constant vari-
ance. Some textbooks discuss independent or strong white noise for random
shocks. It should be noted that there is a difference between correlation
and independence. Independent random variables are also uncorrelated but
the opposite is not always true. Independence between two random vari-
ables refers their joint probability distribution function being equal to the
product of the marginal distributions. That is, two random variables X and
Y are said to be independent if

f (X, Y) = fX(X)fY (Y)

This can also be loosely interpreted as if X and Y are independent, knowing
the value of X for example does not provide any information about what
the value of Y might be.

For two uncorrelated random variables X and Y, we have their correlation
and their covariance equal to zero. That is,

Cov(X, Y) = E[(X − 𝜇X)(Y − 𝜇Y )]

= E[XY] − E[X]E[Y]

= 0
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This implies that if X and Y are uncorrelated, E[XY] = E[X]E[Y].
Clearly if two random variables are independent, they are also uncorre-

lated since under independence we always have

E[XY] = ∫∫ xyf (x, y)dxdy

= ∫∫ xyf (x)f (y)dxdy

=
{
∫ xf (x)dx

}{
∫ yf (y)dx

}
= E[X]E[Y]

As we mentioned earlier, the opposite is not always true. To illus-
trate this with an example, consider X, a random variable with a sym-
metric probability density function around 0, i.e., E[X] = 0. Assume
that the second variable Y is equal to |X|. Since knowing the value
of X also determines the value of Y, these two variables are clearly
not independent. However we can show that E[Y] = 2 ∫ ∞

0 xf (x)dx and

E[XY] = ∫ ∞
0 x2f (x)dx − ∫ 0

−∞ x2f (x)dx = 0 and hence E[XY] = E[X]E[Y]
This shows that X and Y are uncorrected but not independent.

Wold’s decomposition theorem practically forms the foundation of the
models we discuss in this chapter. This means that the strong assumption
of independence is not necessarily needed except for the discussion on
forecasting using ARIMA models in Section 5.8 where we assume the
random shocks to be independent.

It can also be seen from Eq. (5.3) that there is a direct relation between
the weights

{
𝜓i

}
and the autocovariance function. In modeling a stationary

time series as in Eq. (5.4), it is obviously impractical to attempt to estimate
the infinitely many weights given in

{
𝜓i

}
. Although very powerful in

providing a general representation of any stationary time series, the infinite
moving average model given in Eq. (5.2) is useless in practice except for
certain special cases:

1. Finite order moving average (MA) models where, except for a finite
number of the weights in

{
𝜓i

}
, they are set to 0.

2. Finite order autoregressive (AR) models, where the weights in
{
𝜓i

}
are generated using only a finite number of parameters.

3. A mixture of finite order autoregressive and moving average models
(ARMA).

We shall now discuss each of these classes of models in great detail.



FINITE ORDER MOVING AVERAGE PROCESSES 333

5.3 FINITE ORDER MOVING AVERAGE PROCESSES

In finite order moving average or MA models, conventionally 𝜓0 is set to
1 and the weights that are not set to 0 are represented by the Greek letter
𝜃 with a minus sign in front. Hence a moving average process of order q
(MA(q)) is given as

yt = 𝜇 + 𝜀t − 𝜃1𝜀t−1 −⋯ − 𝜃q𝜀t−q (5.5)

where
{
𝜀t

}
is white noise. Since Eq. (5.5) is a special case of Eq. (5.4) with

only finite weights, an MA(q) process is always stationary regardless of
values of the weights. In terms of the backward shift operator, the MA(q)
process is

yt = 𝜇 +
(
1 − 𝜃1B −⋯ − 𝜃qBq

)
𝜀t

= 𝜇 +

(
1 −

q∑
i=1

𝜃iB
i

)
𝜀t (5.6)

= 𝜇 + Θ (B) 𝜀t

where Θ (B) = 1 −
∑q

i=1 𝜃iB
i.

Furthermore, since
{
𝜀t

}
is white noise, the expected value of the MA(q)

process is simply

E(yt) = E
(
𝜇 + 𝜀t − 𝜃1𝜀t−1 −⋯ − 𝜃q𝜀t−q

)
(5.7)

= 𝜇

and its variance is

Var(yt) = 𝛾y (0) = Var
(
𝜇 + 𝜀t − 𝜃1𝜀t−1 −⋯ − 𝜃q𝜀t−q

)
(5.8)

= 𝜎
2
(

1 + 𝜃
2
1 +⋯ + 𝜃

2
q

)

Similarly, the autocovariance at lag k can be calculated from

𝛾y(k) = Cov(yt, yt+k)

= E[(𝜀t − 𝜃1𝜀t−1 −⋯ − 𝜃q𝜀t−q)(𝜀t+k − 𝜃1𝜀t+k−1 −⋯ − 𝜃q𝜀t+k−q)]

(5.9)

=
{

𝜎
2(−𝜃k + 𝜃1𝜃k+1 +⋯ + 𝜃q−k𝜃q), k = 1, 2,… , q

0, k > q
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From Eqs. (5.8) and (5.9), the autocorrelation function of the MA(q)
process is

𝜌y (k) =
𝛾y (k)

𝛾y (0)
=
⎧⎪⎨⎪⎩
−𝜃k + 𝜃1𝜃k+1 +⋯ + 𝜃q−k𝜃q

1 + 𝜃
2
1 +⋯ + 𝜃2

q

, k = 1, 2,… , q

0, k > q

(5.10)

This feature of the ACF is very helpful in identifying the MA model and
its appropriate order as it “cuts off” after lag q. In real life applications,
however, the sample ACF, r (k), will not necessarily be equal to zero after
lag q. It is expected to become very small in absolute value after lag q.
For a data set of N observations, this is often tested against ±2∕

√
N limits,

where 1∕
√

N is the approximate value for the standard deviation of the
ACF for any lag under the assumption 𝜌(k) = 0 for all k’s as discussed in
Chapter 2.

Note that a more accurate formula for the standard error of the kth
sample autocorrelation coefficient is provided by Bartlett (1946) as

s.e. (r(k)) = N−1∕2

(
1 + 2

k−1∑
j=1

r(j)∗2

)1∕2

where

r(j)∗ =
{

r(j) for 𝜌(j) ≠ 0

0 for 𝜌(j) = 0

A special case would be white noise data for which 𝜌(j) = 0 for all j’s.
Hence for a white noise process (i.e., no autocorrelation), a reasonable
interval for the sample autocorrelation coefficients to fall in would be
±2∕

√
N and any indication otherwise may be considered as evidence for

serial dependence in the process.

5.3.1 The First-Order Moving Average Process, MA(1)

The simplest finite order MA model is obtained when q = 1 in Eq. (5.5):

yt = 𝜇 + 𝜀t − 𝜃1𝜀t−1 (5.11)
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For the first-order moving average or MA(1) model, we have the autoco-
variance function as

𝛾y (0) = 𝜎
2
(
1 + 𝜃

2
1

)
𝛾y (1) = −𝜃1𝜎

2 (5.12)

𝛾y (k) = 0, k > 1

Similarly, we have the autocorrelation function as

𝜌y (1) =
−𝜃1

1 + 𝜃
2
1

(5.13)
𝜌y (k) = 0, k > 1

From Eq. (5.13), we can see that the first lag autocorrelation in MA(1) is
bounded as

|||𝜌y (1)||| =
||𝜃1

||
1 + 𝜃

2
1

≤ 1
2

(5.14)

and the autocorrelation function cuts off after lag 1.
Consider, for example, the following MA(1) model:

yt = 40 + 𝜀t + 0.8𝜀t−1

A realization of this model with its sample ACF is given in Figure 5.2. A
visual inspection reveals that the mean and variance remain stable while
there are some short runs where successive observations tend to follow
each other for very brief durations, suggesting that there is indeed some
positive autocorrelation in the data as revealed in the sample ACF plot.
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FIGURE 5.2 A realization of the MA(1) process, yt = 40 + 𝜀t + 0.8𝜀t−1.
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FIGURE 5.3 A realization of the MA(1) process, yt = 40 + 𝜀t − 0.8𝜀t−1.

We can also consider the following model:

yt = 40 + 𝜀t − 0.8𝜀t−1

A realization of this model is given in Figure 5.3. We can see that observa-
tions tend to oscillate successively. This suggests a negative autocorrelation
as confirmed by the sample ACF plot.

5.3.2 The Second-Order Moving Average Process, MA(2)

Another useful finite order moving average process is MA(2), given as

yt = 𝜇 + 𝜀t − 𝜃1𝜀t−1 − 𝜃2𝜀t−2
(5.15)

= 𝜇 +
(
1 − 𝜃1B − 𝜃2B2

)
𝜀t

The autocovariance and autocorrelation functions for the MA(2) model are
given as

𝛾y (0) = 𝜎
2
(
1 + 𝜃

2
1 + 𝜃

2
2

)
𝛾y (1) = 𝜎

2(−𝜃1 + 𝜃1𝜃2)
(5.16)

𝛾y (2) = 𝜎
2(−𝜃2)

𝛾y (k) = 0, k > 2

and

𝜌y (1) =
−𝜃1 + 𝜃1𝜃2

1 + 𝜃
2
1 + 𝜃

2
2

𝜌y (2) =
−𝜃2

1 + 𝜃
2
1 + 𝜃

2
2

(5.17)

𝜌y (k) = 0, k > 2
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FIGURE 5.4 A realization of the MA(2) process, yt = 40 + 𝜀t + 0.7𝜀t−1 −
0.28𝜀t−2.

Figure 5.4 shows the time series plot and the autocorrelation function for
a realization of the MA(2) model:

yt = 40 + 𝜀t + 0.7𝜀t−1 − 0.28𝜀t−2

Note that the sample ACF cuts off after lag 2.

5.4 FINITE ORDER AUTOREGRESSIVE PROCESSES

As mentioned in Section 5.1, while it is quite powerful and important,
Wold’s decomposition theorem does not help us much in our modeling and
forecasting efforts as it implicitly requires the estimation of the infinitely
many weights,

{
𝜓i

}
. In Section 5.2 we discussed a special case of this

decomposition of the time series by assuming that it can be adequately
modeled by only estimating a finite number of weights and setting the
rest equal to 0. Another interpretation of the finite order MA processes
is that at any given time, of the infinitely many past disturbances, only
a finite number of those disturbances “contribute” to the current value of
the time series and that the time window of the contributors “moves” in
time, making the “oldest” disturbance obsolete for the next observation.
It is indeed not too far fetched to think that some processes might have
these intrinsic dynamics. However, for some others, we may be required
to consider the “lingering” contributions of the disturbances that happened
back in the past. This will of course bring us back to square one in terms of
our efforts in estimating infinitely many weights. Another solution to this
problem is through the autoregressive models in which the infinitely many
weights are assumed to follow a distinct pattern and can be successfully
represented with only a handful of parameters. We shall now consider some
special cases of autoregressive processes.
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5.4.1 First-Order Autoregressive Process, AR(1)

Let us first consider again the time series given in Eq. (5.2):

yt = 𝜇 +
∞∑

i=0

𝜓i𝜀t−i

= 𝜇 +
∞∑

i=0

𝜓iB
i
𝜀t

= 𝜇 + Ψ (B) 𝜀t

whereΨ(B) =
∑∞

i=0 𝜓iB
i. As in the finite order MA processes, one approach

to modeling this time series is to assume that the contributions of the
disturbances that are way in the past should be small compared to the more
recent disturbances that the process has experienced. Since the disturbances
are independently and identically distributed random variables, we can
simply assume a set of infinitely many weights in descending magnitudes
reflecting the diminishing magnitudes of contributions of the disturbances
in the past. A simple, yet intuitive set of such weights can be created
following an exponential decay pattern. For that we will set 𝜓i = 𝜙

i, where|𝜙| < 1 to guarantee the exponential “decay.” In this notation, the weights
on the disturbances starting from the current disturbance and going back
in past will be 1,𝜙,𝜙2,𝜙3,… Hence Eq. (5.2) can be written as

yt = 𝜇 + 𝜀t + 𝜙𝜀t−1 + 𝜙
2
𝜀t−2 +⋯

(5.18)
= 𝜇 +

∞∑
i=0

𝜙
i
𝜀t−i

From Eq. (5.18), we also have

yt−1 = 𝜇 + 𝜀t−1 + 𝜙𝜀t−2 + 𝜙
2
𝜀t−3 +⋯ (5.19)

We can then combine Eqs. (5.18) and (5.19) as

yt = 𝜇 + 𝜀t + 𝜙𝜀t−1 + 𝜙
2
𝜀t−2 +⋯

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝜙yt−1−𝜙𝜇

= 𝜇 − 𝜙𝜇
⏟⏟⏟

=𝛿

+𝜙yt−1 + 𝜀t (5.20)

= 𝛿 + 𝜙yt−1 + 𝜀t
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where 𝛿 = (1 − 𝜙)𝜇. The process in Eq. (5.20) is called a first-order
autoregressive process, AR(1), because Eq. (5.20) can be seen as a regres-
sion of yt on yt−1 and hence the term autoregressive process.

The assumption of |𝜙| < 1 results in the weights that decay exponen-
tially in time and also guarantees that

∑+∞
i=0 |𝜓i| < ∞. This means that

an AR(1) process is stationary if |𝜙| < 1. For |𝜙| > 1, past disturbances
will get exponentially increasing weights as time goes on and the result-
ing time series will be explosive. Box et al. (2008) argue that this type
of processes are of little practical interest and therefore only consider
cases where |𝜙| = 1 and |𝜙| < 1. The solution in (5.18) does indeed
not converge for |𝜙| > 1. We can however rewrite the AR(1) process
for yt+1

yt+1 = 𝜙yt + at+1 (5.21)

For yt, we then have

yt = −𝜙−1
𝜇 + 𝜙

−1yt+1 − 𝜙
−1
𝜀t+1

= −𝜙−1
𝜇 + 𝜙

−1
(
−𝜙−1

𝜇 + 𝜙
−1yt+2 − 𝜙

−1
𝜀t+2

)
− 𝜙

−1
𝜀t+1

= −
(
𝜙
−1 + 𝜙

−2
)
𝜇 + 𝜙

−2yt+2 − 𝜙
−1
𝜀t+1 − 𝜙

−2
𝜀t+2 (5.22)

⋮

= −𝜇
∞∑

i=1

𝜙
−1 −

∞∑
i=1

𝜙
−1
𝜀t+1

For |𝜙| > 1 we have |𝜙−1| < 1 and therefore the solution for yt given
in (5.22) is stationary. The only problem is that it involves future val-
ues of disturbances. This of course is impractical as this type of models
requires knowledge about the future to make forecasts about it. These
are called non-causal models. Therefore there exists a stationary solution
for an AR(1) process when |𝜙| > 1, however, it results in a non-causal
model. Throughout the book when we discuss the stationary autoregres-
sive models, we implicitly refer to the causal autoregressive models. We
can in fact show that an AR(I) process is nonstationary if and only if|𝜙| = 1.

The mean of a stationary AR(1) process is

E(yt) = 𝜇 = 𝛿

1 − 𝜙
(5.23)
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The autocovariance function of a stationary AR(1) can be calculated
from Eq. (5.18) as

𝛾(k) = 𝜎
2
𝜙

k 1
1 − 𝜙2

for k = 0, 1, 2,… (5.24)

The covariance is then given as

𝛾(0) = 𝜎
2 1

1 − 𝜙2
(5.25)

Correspondingly, the autocorrelation function for a stationary AR(1)
process is given as

𝜌(k) = 𝛾(k)
𝛾(0)

= 𝜙
k for k = 0, 1, 2, … (5.26)

Hence the ACF for an AR(1) process has an exponential decay form.
A realization of the following AR(1) model,

yt = 8 + 0.8yt−1 + 𝜀t

is shown in Figure 5.5. As in the MA(1) model with 𝜃 = −0.8, we can
observe some short runs during which observations tend to move in the
upward or downward direction. As opposed to the MA(1) model, however,
the duration of these runs tends to be longer and the trend tends to linger.
This can also be observed in the sample ACF plot.

Figure 5.6 shows a realization of the AR(1) model yt = 8 − 0.8yt−1 + 𝜀t.
We observe that instead of lingering runs, the observations exhibit jittery
up/down movements because of the negative 𝜙 value.
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FIGURE 5.5 A realization of the AR(1) process, yt = 8 + 0.8yt−1 + 𝜀t.
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FIGURE 5.6 A realization of the AR(1) process, yt = 8 − 0.8yt−1 + 𝜀t.

5.4.2 Second-Order Autoregressive Process, AR(2)

In this section, we will first start with the obvious extension of Eq. (5.20)
to include the observation yt−2 as

yt = 𝛿 + 𝜙1yt−1 + 𝜙2yt−2 + 𝜀t (5.27)

We will then show that Eq. (5.27) can be represented in the infinite MA
form and provide the conditions of stationarity for yt in terms of 𝜙1 and
𝜙2. For that we will rewrite Eq. (5.27) as

(1 − 𝜙1B − 𝜙2B2)yt = 𝛿 + 𝜀t (5.28)

or

Φ(B)yt = 𝛿 + 𝜀t (5.29)

Furthermore, applying Φ(B)−1 to both sides, we obtain

yt = Φ(B)−1
𝛿

⏟⏞⏟⏞⏟

=𝜇

+Φ(B)−1

⏟⏟⏟

=Ψ(B)

𝜀t

= 𝜇 + Ψ(B) 𝜀t (5.30)

= 𝜇 +
∞∑

i=0

𝜓i𝜀t−i

= 𝜇 +
∞∑

i=0

𝜓iB
i
𝜀t
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where

𝜇 = Φ(B)−1
𝛿 (5.31)

and

Φ(B)−1 =
∞∑

i=0

𝜓iB
i = Ψ(B) (5.32)

We can use Eq. (5.32) to obtain the weights in Eq. (5.30) in terms of 𝜙1
and 𝜙2. For that, we will use

Φ(B)Ψ(B) = 1 (5.33)

That is,

(1 − 𝜙1B − 𝜙2B2)(𝜓0 + 𝜓1B + 𝜓2B2 +⋯) = 1

or

𝜓0 + (𝜓1 − 𝜙1𝜓0)B + (𝜓2 − 𝜙1𝜓1 − 𝜙2𝜓0)B2

+ ⋯ + (𝜓j − 𝜙1𝜓j−1 − 𝜙2𝜓j−2)Bj +⋯ = 1 (5.34)

Since on the right-hand side of the Eq. (5.34) there are no backshift oper-
ators, for Φ(B)Ψ(B) = 1, we need

𝜓0 = 1

(𝜓1 − 𝜙1𝜓0) = 0 (5.35)

(𝜓j − 𝜙1𝜓j−1 − 𝜙2𝜓j−2) = 0 for all j = 2, 3,…

The equations in (5.35) can indeed be solved for each 𝜓j in a futile attempt
to estimate infinitely many parameters. However, it should be noted that
the 𝜓j in Eq. (5.35) satisfy the second-order linear difference equation and
that they can be expressed as the solution to this equation in terms of the
two roots m1 and m2 of the associated polynomial

m2 − 𝜙1m − 𝜙2 = 0 (5.36)
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If the roots obtained by

m1, m2 =
𝜙1 ±

√
𝜙

2
1 + 4𝜙2

2

satisfy ||m1
||, ||m2

|| < 1, then we have
∑+∞

i=0 |𝜓i| < ∞. Hence if the roots m1
and m2 are both less than 1 in absolute value, then the AR(2) model is causal
and stationary. Note that if the roots of Eq. (5.36) are complex conjugates

of the form a ± ib, the condition for stationarity is that
√

a2 + b2 < 1.
Furthermore, under the condition that ||m1

||, ||m2
|| < 1, the AR(2) time series,{

yt

}
, has an infinite MA representation as in Eq. (5.30).

This implies that for the second-order autoregressive process to be sta-
tionary, the parameters 𝜙1 and 𝜙2 must satisfy.

𝜙1 + 𝜙2 < 1

𝜙2 − 𝜙1 < 1|𝜙2| < 1

Now that we have established the conditions for the stationarity of
an AR(2) time series, let us now consider its mean, autocovariance, and
autocorrelation functions. From Eq. (5.27), we have

E(yt) = 𝛿 + 𝜙1E(yt−1) + 𝜙2E(yt−2) + 0

𝜇 = 𝛿 + 𝜙1𝜇 + 𝜙2𝜇

⇒ 𝜇 = 𝛿

1 − 𝜙1 − 𝜙2
(5.37)

Note that for 1 − 𝜙1 − 𝜙2 = 0, m = 1 is one of the roots for the associated
polynomial in Eq. (5.36) and hence the time series is deemed nonstationary.
The autocovariance function is

𝛾(k) = Cov(yt, yt−k)

= Cov(𝛿 + 𝜙1yt−1 + 𝜙2yt−2 + 𝜀t, yt−k)

(5.38)= 𝜙1Cov(yt−1, yt−k) + 𝜙2 Cov(yt−2, yt−k) + Cov(𝜀t, yt−k)

= 𝜙1𝛾(k − 1) + 𝜙2𝛾(k − 2) +
{

𝜎
2 if k = 0

0 if k > 0
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Thus 𝛾(0) = 𝜙1𝛾(1) + 𝜙2𝛾(2) + 𝜎
2 and

𝛾(k) = 𝜙1𝛾(k − 1) + 𝜙2𝛾(k − 2), k = 1, 2, … (5.39)

The equations in (5.39) are called the Yule–Walker equations for 𝛾(k).
Similarly, we can obtain the autocorrelation function by dividing Eq. (5.39)
by 𝛾 (0):

𝜌(k) = 𝜙1𝜌(k − 1) + 𝜙2𝜌(k − 2), k = 1, 2, … (5.40)

The Yule–Walker equations for 𝜌(k) in Eq. (5.40) can be solved recursively
as

𝜌(1) = 𝜙1 𝜌 (0)
⏟⏟⏟

=1

+𝜙2 𝜌 (−1)
⏟⏟⏟

=𝜌(1)

=
𝜙1

1 − 𝜙2

𝜌 (2) = 𝜙1𝜌 (1) + 𝜙2

𝜌 (3) = 𝜙1𝜌 (2) + 𝜙2𝜌 (1)

⋮

A general solution can be obtained through the roots m1 and m2 of the
associated polynomial m2 − 𝜙1m − 𝜙2 = 0. There are three cases.

Case 1. If m1 and m2 are distinct, real roots, we then have

𝜌(k) = c1mk
1 + c2mk

2, k = 0, 1, 2,… (5.41)

where c1 and c2 are particular constants and can, for example, be
obtained from 𝜌(0) and 𝜌(1). Moreover, since for stationarity we
have ||m1

||, ||m2
|| < 1, in this case, the autocorrelation function is a

mixture of two exponential decay terms.
Case 2. If m1 and m2 are complex conjugates in the form of a ± ib, we

then have

𝜌(k) = Rk
[
c1 cos (𝜆k) + c2 sin (𝜆k)

]
, k = 0, 1, 2,… (5.42)

where R = |mi| = √
a2 + b2 and 𝜆 is determined by cos (𝜆) = a∕R,

sin (𝜆) = b∕R. Hence we have a ± ib = R [cos (𝜆) ± i sin (𝜆)]. Once
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again c1 and c2 are particular constants. The ACF in this case has the
form of a damped sinusoid, with damping factor R and frequency 𝜆;
that is, the period is 2𝜋∕𝜆.

Case 3. If there is one real root m0, m1 = m2 = m0, we then have

𝜌 (k) = (c1 + c2k)mk
0 k = 0, 1, 2,… (5.43)

In this case, the ACF will exhibit an exponential decay pattern.

In case 1, for example, an AR(2) model can be seen as an “adjusted”
AR(1) model for which a single exponential decay expression as in the
AR(1) model is not enough to describe the pattern in the ACF, and hence
an additional exponential decay expression is “added” by introducing the
second lag term, yt−2.

Figure 5.7 shows a realization of the AR(2) process

yt = 4 + 0.4yt−1 + 0.5yt−2 + 𝜀t

Note that the roots of the associated polynomial of this model are real.
Hence the ACF is a mixture of two exponential decay terms.

Similarly, Figure 5.8 shows a realization of the following AR(2) process

yt = 4 + 0.8yt−1 − 0.5yt−2 + 𝜀t.

For this process, the roots of the associated polynomial are complex con-
jugates. Therefore the ACF plot exhibits a damped sinusoid behavior.
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FIGURE 5.7 A realization of the AR(2) process, yt = 4 + 0.4yt−1 + 0.5yt−2 +
𝜀t.
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FIGURE 5.8 A realization of the AR(2) process, yt = 4 + 0.8yt−1 − 0.5yt−2 +
𝜀t.

5.4.3 General Autoregressive Process, AR(p)

From the previous two sections, a general, pth-order AR model is given as

yt = 𝛿 + 𝜙1yt−1 + 𝜙2yt−2 +⋯ + 𝜙pyt−p + 𝜀t (5.44)

where 𝜀t is white noise. Another representation of Eq. (5.44) can be given
as

Φ(B)yt = 𝛿 + 𝜀t (5.45)

where Φ(B) = 1 − 𝜙1B − 𝜙2B2 −⋯ − 𝜙pBp.
The AR(p) time series

{
yt

}
in Eq. (5.44) is causal and stationary if the

roots of the associated polynomial

mp − 𝜙1mp−1 − 𝜙2mp−2 −⋯ − 𝜙p = 0 (5.46)

are less than one in absolute value. Furthermore, under this condition,
the AR(p) time series

{
yt

}
is also said to have an absolutely summable

infinite MA representation

yt = 𝜇 + Ψ(B) 𝜀t = 𝜇 +
∞∑

i=0

𝜓i𝜀t−i (5.47)

where Ψ(B) = Φ(B)−1 with
∑∞

i=0
||𝜓i

|| < ∞.
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As in AR(2), the weights of the random shocks in Eq. (5.47) can be
obtained from Φ(B)Ψ(B) = 1 as

𝜓j = 0, j < 0

𝜓0 = 1 (5.48)

𝜓j − 𝜙1𝜓j−1 − 𝜙2𝜓j−2 −⋯ − 𝜙p𝜓j−p = 0 for all j = 1, 2,…

We can easily show that, for the stationary AR(p) process

E(yt) = 𝜇 = 𝛿

1 − 𝜙1 − 𝜙2 −⋯ − 𝜙p

and

𝛾(k) = Cov(yt, yt−k)

= Cov(𝛿 + 𝜙1yt−1 + 𝜙2yt−2 +⋯ + 𝜙pyt−p + 𝜀t, yt−k)
(5.49)

=
p∑

i=1

𝜙iCov(yt−i, yt−k) + Cov(𝜀t, yt−k)

=
p∑

i=1

𝜙i𝛾 (k − i) +
{

𝜎
2 if k = 0

0 if k > 0

Thus we have

𝛾 (0) =
p∑

i=1

𝜙i𝛾(i) + 𝜎
2 (5.50)

⇒ 𝛾 (0)

[
1 −

p∑
i=1

𝜙i𝜌 (i)

]
= 𝜎

2 (5.51)

By dividing Eq. (5.49) by 𝛾 (0) for k > 0, it can be observed that the ACF
of an AR(p) process satisfies the Yule–Walker equations

𝜌 (k) =
p∑

i=1

𝜙i𝜌 (k − i) , k = 1, 2,… (5.52)

The equations in (5.52) are pth-order linear difference equations, imply-
ing that the ACF for an AR(p) model can be found through the p roots of
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the associated polynomial in Eq. (5.46). For example, if the roots are all
distinct and real, we have

𝜌(k) = c1mk
1 + c2mk

2 +⋯ + cpmk
p, k = 1, 2,… (5.53)

where c1, c2,… , cp are particular constants. However, in general, the roots
may not all be distinct or real. Thus the ACF of an AR(p) process can
be a mixture of exponential decay and damped sinusoid expressions
depending on the roots of Eq. (5.46).

5.4.4 Partial Autocorrelation Function, PACF

In Section 5.2, we saw that the ACF is an excellent tool in identifying
the order of an MA(q) process, because it is expected to “cut off” after
lag q. However, in the previous section, we pointed out that the ACF
is not as useful in the identification of the order of an AR(p) process
for which it will most likely have a mixture of exponential decay and
damped sinusoid expressions. Hence such behavior, while indicating that
the process might have an AR structure, fails to provide further information
about the order of such structure. For that, we will define and employ the
partial autocorrelation function (PACF) of the time series. But before
that, we discuss the concept of partial correlation to make the interpretation
of the PACF easier.

Partial Correlation Consider three random variables X, Y, and Z. Then
consider simple linear regression of X on Z and Y on Z as

X̂ = a1 + b1Z where b1 = Cov(Z, X)
Var(Z)

and

Ŷ = a2 + b2Z where b2 = Cov(Z, Y)
Var(Z)

Then the errors can be obtained from

X∗ = X − X̂ = X − (a1 + b1Z)

and

Y∗ = Y − Ŷ = Y − (a2 + b2Z)
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Then the partial correlation between X and Y after adjusting for
Z is defined as the correlation between X∗ and Y∗; corr(X∗, Y∗) =
corr(X − X̂, Y − Ŷ). That is, partial correlation can be seen as the cor-
relation between two variables after being adjusted for a common factor
that may be affecting them. The generalization is of course possible by
allowing for adjustment for more than just one factor.

Partial Autocorrelation Function Following the above definition, the
PACF between yt and yt−k is the autocorrelation between yt and yt−k after
adjusting for yt−1, yt−2,… , yt−k+1. Hence for an AR(p) model the PACF
between yt and yt−k for k > p should be equal to zero. A more formal
definition can be found below.

Consider a stationary time series model
{

yt

}
that is not necessarily an

AR process. Further consider, for any fixed value of k, the Yule–Walker
equations for the ACF of an AR(p) process given in Eq. (5.52) as

𝜌 (j) =
k∑

i=1

𝜙ik𝜌 (j − i), j = 1, 2, … , k (5.54)

or

𝜌(1) = 𝜙1k + 𝜙2k𝜌(1) +⋯ + 𝜙kk𝜌(k − 1)

𝜌(2) = 𝜙1k𝜌(1) + 𝜙2k +⋯ + 𝜙kk𝜌(k − 2)

⋮

𝜌 (k) = 𝜙1k𝜌 (k−) + 𝜙2k𝜌(k − 2) +⋯ + 𝜙kk

Hence we can write the equations in (5.54) in matrix notation as

⎡⎢⎢⎢⎢⎣

1 𝜌(1) 𝜌(2) … 𝜌(k − 1)
𝜌(1) 1 𝜌(3) … 𝜌(k − 2)
𝜌(2) 𝜌(1) 1 … 𝜌(k − 3)
⋮ ⋮ ⋮ ⋱ ⋮

𝜌(k − 1) 𝜌(k − 2) 𝜌(k − 3) … 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜙1k
𝜙2k
𝜙3k
⋮
𝜙kk

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝜌(1)
𝜌(2)
𝜌(3)
⋮

𝜌(k)

⎤⎥⎥⎥⎥⎦
(5.55)

or

Pk𝜙k = 𝜌k (5.56)
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where

Pk =

⎡⎢⎢⎢⎢⎣

1 𝜌(1) 𝜌(2) … 𝜌(k − 1)
𝜌(1) 1 𝜌(3) … 𝜌(k − 2)
𝜌(2) 𝜌(1) 1 … 𝜌(k − 3)
⋮ ⋮ ⋮ ⋱ ⋮

𝜌(k − 1) 𝜌(k − 2) 𝜌(k − 3) … 1

⎤⎥⎥⎥⎥⎦
,

𝜙k =

⎡⎢⎢⎢⎢⎣

𝜙1k
𝜙2k
𝜙3k
⋮
𝜙kk

⎤⎥⎥⎥⎥⎦
, and 𝜌k =

⎡⎢⎢⎢⎢⎣

𝜌(1)
𝜌(2)
𝜌(3)
⋮

𝜌(k)

⎤⎥⎥⎥⎥⎦
.

Thus to solve for 𝜙k, we have

𝜙k = P−1
k 𝜌k (5.57)

For any given k, k = 1, 2,… , the last coefficient 𝜙kk is called the partial
autocorrelation of the process at lag k. Note that for an AR(p) process
𝜙kk = 0 for k > p. Hence we say that the PACF cuts off after lag p for an
AR(p). This suggests that the PACF can be used in identifying the order of
an AR process similar to how the ACF can be used for an MA process.

For sample calculations, �̂�kk, the sample estimate of 𝜙kk, is obtained by
using the sample ACF, r(k). Furthermore, in a sample of N observations
from an AR(p) process, �̂�kk for k > p is approximately normally distributed
with

E(�̂�kk) ≈ 0 and Var(�̂�kk) ≈ 1
N

(5.58)

Hence the 95% limits to judge whether any �̂�kk is statistically significantly

different from zero are given by ±2∕
√

N. For further detail see Quenouille
(1949), Jenkins (1954, 1956), and Daniels (1956).

Figure 5.9 shows the sample PACFs of the models we have considered
so far. In Figure 5.9a we have the sample PACF of the realization of the
MA(1) model with 𝜃 = 0.8 given in Figure 5.3. It exhibits an exponential
decay pattern. Figure 5.9b shows the sample PACF of the realization of the
MA(2) model in Figure 5.4 and it also has an exponential decay pattern in
absolute value since for this model the roots of the associated polynomial
are real. Figures 5.9c and 5.9d show the sample PACFs of the realization
of the AR(1) model with 𝜙 = 0.8 and 𝜙 = −0.8, respectively. In both



FINITE ORDER AUTOREGRESSIVE PROCESSES 351

24222018161412108642

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

Lag

24222018161412108642

Lag

24222018161412108642

Lag

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n 1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function
(with 5% significance limits for the partial autocorrelations)

24222018161412108642

Lag

24222018161412108642

Lag

24222018161412108642

Lag

(a) (b)

(c) (d)

(e) (f )

FIGURE 5.9 Partial autocorrelation functions for the realizations of (a) MA(1)
process, yt = 40 + 𝜀t − 0.8𝜀t−1; (b) MA(2) process, yt = 40 + 𝜀t + 0.7𝜀t−1 −
0.28𝜀t−2; (c) AR(1) process, yt = 8 + 0.8yt−1 + 𝜀t; (d) AR(1) process, yt =
8 − 0.8yt−1 + 𝜀t; (e) AR(2) process, yt = 4 + 0.4yt−1 + 0.5yt−2 + 𝜀t; and (f) AR(2)
process, yt = 4 + 0.8yt−1 − 0.5yt−2 + 𝜀t.

cases the PACF “cuts off” after the first lag. That is, the only significant
sample PACF value is at lag 1, suggesting that the AR(1) model is indeed
appropriate to fit the data. Similarly, in Figures 5.9e and 5.9f, we have the
sample PACFs of the realizations of the AR(2) model. Note that the sample
PACF cuts off after lag 2.



352 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS

As we discussed in Section 5.3, finite order MA processes are stationary.
On the other hand as in the causality concept we discussed for the autore-
gressive processes, we will impose some restrictions on the parameters of
the MA models as well. Consider for example the MA(1) model in (5.11)

yt = 𝜀t − 𝜃1𝜀t−1 (5.59)

Note that for the sake of simplicity, in (5.59) we consider a centered
process, i.e. E(yt) = 0.

We can then rewrite (5.59) as

𝜀t = yt + 𝜃1𝜀t−1

= yt + 𝜃1

[
yt−1 + 𝜃1𝜀t−2

]
= yt + 𝜃1yt−1 + 𝜃

2
1𝜀t−2 (5.60)

⋮

=
∞∑

i=0

𝜃
i
1yt−i

It can be seen from (5.60) that for |𝜃1| < 1, 𝜀t is a convergent series
of current and past observations and the process is called an invertible
moving average process. Similar to the causality argument, for |𝜃1| > 1,
𝜀t can be written as a convergent series of future observations and is called
noninvertible. When |𝜃1| = 1, the MA(1) process is considered noninvert-
ible in a more restricted sense (Brockwell and Davis (1991)).

The direct implication of invertibility becomes apparent in model iden-
tification. Consider the MA(1) process as an example. The first lag auto-
correlation for that process is given as

𝜌(1) =
−𝜃1

1 + 𝜃
2
1

(5.61)

This allows for the calculation of 𝜃1 for a given 𝜌(1) by rearranging (5.61)
as

𝜃
2
1 −

𝜃1

𝜌(1)
+ 1 = 0 (5.62)

and solving for 𝜃1. Except for the case of a repeated root, this equation has
two solutions. Consider for example 𝜌(1) = 0.4 for which both 𝜃1 = 0.5
and 𝜃1 = 2 are the solutions for (5.62). Following the above argument, only
𝜃1 = 0.5 yields the invertible MA(1) process. It can be shown that when
there are multiple solutions for possible values of MA parameters, there
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is only one solution that will satisfy the invertibility condition (Box et al.
(2008), Section 6.4.1).

Consider the MA(q) process

yt = 𝜇 +

(
1 −

q∑
i=1

𝜃iB
i

)
𝜀t

= 𝜇 + Θ(B) 𝜀t

After multiplying both sides with Θ(B)−1, we have

Θ(B)−1 yt = Θ(B)−1
𝜇 + 𝜀t

(5.63)
Π(B) yt = 𝛿 + 𝜀t

where Π(B) = 1 −
∑∞

i=1 𝜋iB
i = Θ(B)−1 and Θ(B)−1

𝜇 = 𝛿. Hence the infi-
nite AR representation of an MA(q) process is given as

yt −
∞∑

i=1

𝜋iyt−i = 𝛿 + 𝜀t (5.64)

with
∑∞

i=1
||𝜋i

|| < ∞. The 𝜋i can be determined from

(1 − 𝜃1B − 𝜃2B2 −⋯ − 𝜃qBq)(1 − 𝜋1B − 𝜋2B2 +⋯) = 1 (5.65)

which in turn yields

𝜋1 + 𝜃1 = 0

𝜋2 − 𝜃1𝜋1 + 𝜃2 = 0
(5.66)

⋮

𝜋j − 𝜃1𝜋j−1 −⋯ − 𝜃q𝜋j−q = 0

with 𝜋0 = −1 and 𝜋j = 0 for j < 0. Hence as in the previous arguments for
the stationarity of AR(p) models, the 𝜋i are the solutions to the qth-order
linear difference equations and therefore the condition for the invertibility
of an MA(q) process turns out to be very similar to the stationarity condition
of an AR(p) process: the roots of the associated polynomial given in
Eq. (5.66) should be less than 1 in absolute value,

mq − 𝜃1mq−1 − 𝜃2mq−2 −⋯ − 𝜃q = 0 (5.67)

An invertible MA(q) process can then be written as an infinite AR process.
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Correspondingly, for such a process, adjusting for yt−1, yt−2,… , yt−k+1
does not necessarily eliminate the correlation between yt and yt−k and
therefore its PACF will never “cut off.” In general, the PACF of an
MA(q) process is a mixture of exponential decay and damped sinusoid
expressions.

The ACF and the PACF do have very distinct and indicative properties
for MA and AR models, respectively. Therefore, in model identification,
we strongly recommend the use of both the sample ACF and the sample
PACF simultaneously.

5.5 MIXED AUTOREGRESSIVE–MOVING AVERAGE
PROCESSES

In the previous sections we have considered special cases of Wold’s decom-
position of a stationary time series represented as a weighted sum of infinite
random shocks. In an AR(1) process, for example, the weights in the infi-
nite sum are forced to follow an exponential decay form with 𝜙 as the rate
of decay. Since there are no restrictions apart from

∑∞
i=0 𝜓

2
i < ∞ on the

weights (𝜓i), it may not be possible to approximate them by an exponential
decay pattern. For that, we will need to increase the order of the AR model
to approximate any pattern that these weights may in fact be exhibiting. On
some occasions, however, it is possible to make simple adjustments to the
exponential decay pattern by adding only a few terms and hence to have a
more parsimonious model. Consider, for example, that the weights 𝜓i do
indeed exhibit an exponential decay pattern with a constant rate except for
the fact that 𝜓1 is not equal to this rate of decay as it would be in the case of
an AR(1) process. Hence instead of increasing the order of the AR model
to accommodate for this “anomaly,” we can add an MA(1) term that will
simply adjust 𝜓1 while having no effect on the rate of exponential decay
pattern of the rest of the weights. This results in a mixed autoregressive
moving average or ARMA(1,1) model. In general, an ARMA(p, q) model
is given as

yt = 𝛿 + 𝜙1yt−1 + 𝜙2yt−2 +⋯ + 𝜙pyt−p + 𝜀t − 𝜃1𝜀t−1

− 𝜃2𝜀t−2 −⋯ − 𝜃q𝜀t−q

= 𝛿 +
p∑

i=1

𝜙iyt−i + 𝜀t −
q∑

i=1

𝜃i𝜀t−i (5.68)
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or

Φ(B) yt = 𝛿 + Θ(B) 𝜀t (5.69)

where 𝜀t is a white noise process.

5.5.1 Stationarity of ARMA(p, q) Process

The stationarity of an ARMA process is related to the AR component in the
model and can be checked through the roots of the associated polynomial

mp − 𝜙1mp−1 − 𝜙2mp−2 −⋯ − 𝜙p = 0. (5.70)

If all the roots of Eq. (5.70) are less than one in absolute value, then
ARMA(p, q) is stationary. This also implies that, under this condition,
ARMA(p, q) has an infinite MA representation as

yt = 𝜇 +
∞∑

i=0

𝜓i𝜀t−i = 𝜇 + Ψ(B) 𝜀t (5.71)

with Ψ(B) = Φ(B)−1 Θ(B). The coefficients in Ψ(B) can be found from

𝜓i − 𝜙1𝜓i−1 − 𝜙2𝜓i−2 −⋯ − 𝜙p𝜓i−p =
{−𝜃i, i = 1,… , q

0, i > q
(5.72)

and 𝜓0 = 1.

5.5.2 Invertibility of ARMA(p, q) Process

Similar to the stationarity condition, the invertibility of an ARMA process
is related to the MA component and can be checked through the roots of
the associated polynomial

mq − 𝜃1mq−1 − 𝜃2mq−2 −⋯ − 𝜃q = 0 (5.73)

If all the roots of Eq. (5.71) are less than one in absolute value, then
ARMA(p, q) is said to be invertible and has an infinite AR representation,

Π(B)yt = 𝛼 + 𝜀t (5.74)
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where 𝛼 = Θ(B)−1
𝛿 and Π(B) = Θ(B)−1 Φ(B). The coefficients in Π(B)

can be found from

𝜋i − 𝜃1𝜋i−1 − 𝜃2𝜋i−2 −⋯ − 𝜃q𝜋i−q =
{

𝜙i, i = 1,… , p

0, i > p
(5.75)

and 𝜋0 = −1.
In Figure 5.10 we provide realizations of two ARMA(1,1) models:

yt = 16 + 0.6yt−1 + 𝜀t + 0.8𝜀t−1 and yt = 16 − 0.7yt−1 + 𝜀t − 0.6𝜀t−1.

Note that the sample ACFs and PACFs exhibit exponential decay behavior
(sometimes in absolute value depending on the signs of the AR and MA
coefficients).

5.5.3 ACF and PACF of ARMA(p, q) Process

As in the stationarity and invertibility conditions, the ACF and PACF
of an ARMA process are determined by the AR and MA components,
respectively. It can therefore be shown that the ACF and PACF of an
ARMA(p, q) both exhibit exponential decay and/or damped sinusoid pat-
terns, which makes the identification of the order of the ARMA(p, q)
model relatively more difficult. For that, additional sample functions such
as the Extended Sample ACF (ESACF), the Generalized Sample PACF
(GPACF), the Inverse ACF (IACF), and canonical correlations can be
used. For further information see Box, Jenkins, and Reinsel (2008), Wei
(2006), Tiao and Box (1981), Tsay and Tiao (1984), and Abraham and
Ledolter (1984). However, the availability of sophisticated statistical soft-
ware packages such as Minitab JMP and SAS makes it possible for the
practitioner to consider several different models with various orders and
compare them based on the model selection criteria such as AIC, AICC,
and BIC as described in Chapter 2 and residual analysis.

The theoretical values of the ACF and PACF for stationary time series
are summarized in Table 5.1. The summary of the sample ACFs and PACFs
of the realizations of some of the models we have covered in this chapter
are given in Table 5.2, Table 5.3, and Table 5.4 for MA, AR, and ARMA
models, respectively.
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FIGURE 5.10 Two realizations of the ARMA(1,1) model: (a) yt = 16 +
0.6yt−1 + 𝜀t + 0.8𝜀t−1 and (b) yt = 16 − 0.7yt−1 + 𝜀t − 0.6𝜀t−1. (c) The ACF of
(a), (d) the ACF of (b), (e) the PACF of (a), and (f) the PACF of (b).

TABLE 5.1 Behavior of Theoretical ACF and PACF for Stationary
Processes

Model ACF PACF

MA(q) Cuts off after lag q Exponential decay and/or
damped sinusoid

AR(p) Exponential decay and/or damped
sinusoid

Cuts off after lag p

ARMA(p,q) Exponential decay and/or damped
sinusoid

Exponential decay and/or
damped sinusoid



T
A

B
L

E
5.

2
Sa

m
pl

e
A

C
F

s
an

d
PA

C
F

s
fo

r
So

m
e

R
ea

liz
at

io
ns

of
M

A
(1

)
an

d
M

A
(2

)
M

od
el

s

M
od

el
Sa

m
pl

e
A

C
F

Sa
m

pl
e

PA
C

F

M
A

(1
)

y t
=

40
+
𝜀

t
−

0.
8𝜀

t−
1

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

2
4

6
8

24
22

18
20

16
14

12
10

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

2
4

6
8

24
22

18
20

14
16

12
10

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
pa

rt
ia

l a
ut

oc
or

re
la

tio
ns

)

y t
=

40
+
𝜀

t
+

0.
8𝜀

t−
1

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

2
4

6
8

24
22

18
20

16
14

10
12

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
au

to
co

rr
el

at
io

ns
)

22
24

20
18

14
12

10

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

2
4

6
8

16
La

g

358



M
A

(2
)

y t
=

40
+
𝜀

t
+

0.
7𝜀

t−
1
−

0.
28
𝜀

t−
2

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

2
4

6
8

22
24

18
20

16
14

10
12

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
au

to
co

rr
el

at
io

ns
)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

2
4

6
8

24
22

20
18

16
12

14
10

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
pa

rt
ia

l a
ut

oc
or

re
la

tio
ns

)

y t
=

40
+
𝜀

t
−

1.
1𝜀

t−
1
+

0.
8𝜀

t−
2

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

2
4

6
8

24
22

20
18

16
14

12
10

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

24
22

18
20

16
14

12
10

2
4

6
8

L
ag

Partial autocorrelation

P
ar

tia
l a

u
to

co
rr

el
at

io
n

 f
u

n
ct

io
n

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
pa

rt
ia

l a
ut

oc
or

re
la

tio
ns

)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

359



T
A

B
L

E
5.

3
Sa

m
pl

e
A

C
F

s
an

d
PA

C
F

s
fo

r
So

m
e

R
ea

liz
at

io
ns

of
A

R
(1

)
an

d
A

R
(2

)
M

od
el

s

M
od

el
Sa

m
pl

e
A

C
F

Sa
m

pl
e

PA
C

F

A
R

(1
)

y t
=

8
+

0.
8y

t−
1
+
𝜀

t

24
22

20
18

16
14

12
10

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

2
4

6
8

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

24
22

18
20

14
16

10
12

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

2
4

6
8

y t
=

8
−

0.
8y

t−
1
+
𝜀

t

22
24

20
18

16
14

12
10

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
au

to
co

rr
el

at
io

ns
)

2
4

6
8

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

22
24

20
18

16
14

10
12

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

2
4

6
8

360



A
R

(2
)

y t
=

4
+

0.
4y

t−
1
+

0.
5y

t−
2
+
𝜀

t

24
16

18
20

22
14

12
10

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

2
4

6
8

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

Partial autocorrelation

24
22

20
18

16
14

12
10

L
ag

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
 

(w
ith

 5
%

 s
ig

ni
fic

an
ce

 li
m

its
 fo

r 
th

e 
pa

rt
ia

l a
ut

oc
or

re
la

tio
ns

)

2
4

6
8

y t
=

4
+

0.
8y

t−
1
−

0.
5y

t−
2
+
𝜀

t

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

20
22

24
14

16
18

12
10

L
ag

2
4

6
8

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

24
18

20
22

16
14

12
2

4
6

8
10

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

361



T
A

B
L

E
5.

4
Sa

m
pl

e
A

C
F

s
an

d
PA

C
F

s
fo

r
So

m
e

R
ea

liz
at

io
ns

of
A

R
M

A
(1

,1
)

M
od

el
s

M
od

el
Sa

m
pl

e
A

C
F

Sa
m

pl
e

PA
C

F

A
R

M
A

(1
.1

)
y t
=

16
+

0.
6y

t−
1
+
𝜀

t
+

0.
8𝜀

t−
1

24
20

22
18

14
16

12
10

2 
   

   
  4

   
   

  6
   

   
   

8

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

au
to

co
rr

el
at

io
ns

)

22
24

20
18

16
14

12

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

2
4

6
8

10

y t
=

16
−

0.
7y

t−
1
+
𝜀

t
−

0.
6𝜀

t−
1

24
22

20
18

16
14

10
8

6
4

2
12

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Autocorrelation

A
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

it
h

 5
%

 s
ig

n
if

ic
an

ce
 li

m
it

s 
fo

r 
th

e 
au

to
co

rr
el

at
io

n
s)

24
22

20
18

16
14

12
10

8
6

4
2

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

–0
.2

–0
.4

–0
.6

–0
.8

–1
.0

L
ag

Partial autocorrelation

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n
 f

u
n

ct
io

n
(w

ith
 5

%
 s

ig
ni

fic
an

ce
 li

m
its

 fo
r 

th
e 

pa
rt

ia
l a

ut
oc

or
re

la
tio

ns
)

362



NONSTATIONARY PROCESSES 363

5.6 NONSTATIONARY PROCESSES

It is often the case that while the processes may not have a constant level,
they exhibit homogeneous behavior over time. Consider, for example, the
linear trend process given in Figure 5.1c. It can be seen that different
snapshots taken in time do exhibit similar behavior except for the mean
level of the process. Similarly, processes may show nonstationarity in the
slope as well. We will call a time series, yt, homogeneous nonstationary if it
is not stationary but its first difference, that is, wt = yt − yt−1 = (1 − B) yt, or
higher-order differences, wt = (1 − B)d yt, produce a stationary time series.
We will further call yt an autoregressive integrated moving average
(ARIMA) process of orders p, d, and q—that is, ARIMA(p, d, q)—if its dth
difference, denoted by wt = (1 − B)d yt, produces a stationary ARMA(p, q)
process. The term integrated is used since, for d = 1, for example, we can
write yt as the sum (or “integral”) of the wt process as

yt = wt + yt−1

= wt + wt−1 + yt−2 (5.76)

= wt + wt−1 +⋯ + w1 + y0

Hence an ARIMA(p, d, q) can be written as

Φ(B) (1 − B)d yt = 𝛿 + Θ(B) 𝜀t (5.77)

Thus once the differencing is performed and a stationary time series
wt = (1 − B)d yt is obtained, the methods provided in the previous sections
can be used to obtain the full model. In most applications first differencing
(d = 1) and occasionally second differencing (d = 2) would be enough to
achieve stationarity. However, sometimes transformations other than dif-
ferencing are useful in reducing a nonstationary time series to a stationary
one. For example, in many economic time series the variability of the
observations increases as the average level of the process increases; how-
ever, the percentage of change in the observations is relatively independent
of level. Therefore taking the logarithm of the original series will be useful
in achieving stationarity.

5.6.1 Some Examples of ARIMA(p, d, q) Processes

The random walk process, ARIMA(0, 1, 0) is the simplest nonstationary
model. It is given by

(1 − B)yt = 𝛿 + 𝜀t (5.78)



364 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS

1009080706050403020101

2500

2000

1500

1000

500

0

Time

y t
Time series plot of y(t)

Time series plot of w(t)

24222018161412108642

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

Lag

24222018161412108642
Lag

24222018161412108642

Lag
24222018161412108642

Lag

A
u

to
co

rr
el

at
io

n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0P

ar
ti

al
 a

u
to

co
rr

el
at

io
n

1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

P
ar

ti
al

 a
u

to
co

rr
el

at
io

n1.0
0.8
0.6
0.4
0.2
0.0

–0.2
–0.4
–0.6
–0.8
–1.0

A
u

to
co

rr
el

at
io

n
Autocorrelation function for y(t)

(with 5% significance limits for the autocorrelations)

Partial autocorrelation function for y(t)
(with 5% significance limits for the partial autocorrelations)

Partial autocorrelation function for w(t)
(with 5% significance limits for the partial autocorrelations)

Autocorrelation function for w(t)
(with 5% significance limits for the autocorrelations)

200

150

100

50

0

–50

–100

w
t

(a) (b)

(c)

(f )

1009080706050403020101

Time

(d)

(e)

FIGURE 5.11 A realization of the ARIMA(0, 1, 0) model, yt, its first difference,
wt, and their sample ACFs and PACFs.

suggesting that first differencing eliminates all serial dependence and yields
a white noise process.

Consider the process yt = 20 + yt−1 + 𝜀t. A realization of this process
together with its sample ACF and PACF are given in Figure 5.11a–c. We
can see that the sample ACF dies out very slowly, while the sample PACF
is only significant at the first lag. Also note that the PACF value at the
first lag is very close to one. All this evidence suggests that the process
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is not stationary. The first difference, wt = yt − yt−1, and its sample ACF
and PACF are shown in Figure 5.11d–f. The time series plot of wt implies
that the first difference is stationary. In fact, the sample ACF and PACF do
not show any significant values. This further suggests that differencing the
original data once “clears out” the autocorrelation. Hence the data can be
modeled using the random walk model given in Eq. (5.78).

The ARIMA(0, 1, 1) process is given by

(1 − B)yt = 𝛿 + (1 − 𝜃B) 𝜀t (5.79)

The infinite AR representation of Eq. (5.79) can be obtained from Eq. (5.75)

𝜋i − 𝜃𝜋i−1 =
{

1, i = 1

0, i > 1
(5.80)

with 𝜋0 = −1. Thus we have

yt = 𝛼 +
∞∑

i=1

𝜋iyt−i + 𝜀t

(5.81)
= 𝛼 + (1 − 𝜃)(yt−1 + 𝜃yt−2 +⋯) + 𝜀t

This suggests that an ARIMA(0, 1, 1) (a.k.a. IMA(1, 1)) can be written as
an exponentially weighted moving average (EWMA) of all past values.

Consider the time series data in Figure 5.12a. It looks like the mean of the
process is changing (moving upwards) in time. Yet the change in the mean
(i.e., nonstationarity) is not as obvious as in the previous example. The
sample ACF plot of the data in Figure 5.12b dies down relatively slowly and
the sample PACF of the data in Figure 5.12c shows two significant values at
lags 1 and 2. Hence we might be tempted to model this data using an AR(2)
model because of the exponentially decaying ACF and significant PACF
at the first two lags. Indeed, we might even have a good fit using an AR(2)
model. We should nevertheless check the roots of the associated polynomial
given in Eq. (5.36) to make sure that its roots are less than 1 in absolute
value. Also note that a technically stationary process will behave more
and more nonstationary as the roots of the associated polynomial approach
unity. For that, observe the realization of the near nonstationary process,
yt = 2 + 0.95yt−1 + 𝜀t, given in Figure 5.1b. Based on the visual inspection,
however, we may deem the process nonstationary and proceed with taking
the first difference of the data. This is because the 𝜙 value of the AR(1)
model is close to 1. Under these circumstances, where the nonstationarity
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FIGURE 5.12 A realization of the ARIMA(0, 1, 1) model, yt, its first difference,
wt, and their sample ACFs and PACFs.

of the process is dubious, we strongly recommend that the analyst refer
back to basic underlying process knowledge. If, for example, the process
mean is expected to wander off as in some financial data, assuming that the
process is nonstationary and proceeding with differencing the data would
be more appropriate. For the data given in Figure 5.12a, its first difference
given in Figure 5.12d looks stationary. Furthermore, its sample ACF and
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PACF given in Figures 5.12e and 5.12f, respectively, suggest that an MA(1)
model would be appropriate for the first difference since its ACF cuts off
after the first lag and the PACF exhibits an exponential decay pattern. Hence
the ARIMA(0, 1, 1) model given in Eq. (5.79) can be used for this data.

5.7 TIME SERIES MODEL BUILDING

A three-step iterative procedure is used to build an ARIMA model. First, a
tentative model of the ARIMA class is identified through analysis of his-
torical data. Second, the unknown parameters of the model are estimated.
Third, through residual analysis, diagnostic checks are performed to deter-
mine the adequacy of the model, or to indicate potential improvements.
We shall now discuss each of these steps in more detail.

5.7.1 Model Identification

Model identification efforts should start with preliminary efforts in under-
standing the type of process from which the data is coming and how it is
collected. The process’ perceived characteristics and sampling frequency
often provide valuable information in this preliminary stage of model iden-
tification. In today’s data rich environments, it is often expected that the
practitioners would be presented with “enough” data to be able to generate
reliable models. It would nevertheless be recommended that 50 or prefer-
ably more observations should be initially considered. Before engaging in
rigorous statistical model-building efforts, we also strongly recommend
the use of “creative” plotting of the data, such as the simple time series
plot and scatter plots of the time series data yt versus yt−1, yt−2, and so on.
For the yt versus yt−1 scatter plot, for example, this can be achieved in a
data set of N observations by plotting the first N − 1 observations versus
the last N − 1. Simple time series plots should be used as the preliminary
assessment tool for stationarity. The visual inspection of these plots should
later be confirmed as described earlier in this chapter. If nonstationarity is
suspected, the time series plot of the first (or dth) difference should also
be considered. The unit root test by Dickey and Fuller (1979) can also
be performed to make sure that the differencing is indeed needed. Once
the stationarity of the time series can be presumed, the sample ACF and
PACF of the time series of the original time series (or its dth difference if
necessary) should be obtained. Depending on the nature of the autocorre-
lation, the first 20–25 sample autocorrelations and partial autocorrelations
should be sufficient. More care should be taken of course if the process
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exhibits strong autocorrelation and/or seasonality, as we will discuss in the
following sections. Table 5.1 together with the ±2∕

√
N limits can be used

as a guide for identifying AR or MA models. As discussed earlier, the
identification of ARMA models would require more care, as both the ACF
and PACF will exhibit exponential decay and/or damped sinusoid behavior.

We have already discussed that the differenced series
{

wt

}
may have

a nonzero mean, say, 𝜇w. At the identification stage we may obtain an
indication of whether or not a nonzero value of 𝜇w is needed by comparing
the sample mean of the differenced series, say, w̄ =

∑n−d
t=1 [w∕(n − d)], with

its approximate standard error. Box, Jenkins, and Reinsel (2008) give the
approximate standard error of w̄ for several useful ARIMA(p, d, q) models.

Identification of the appropriate ARIMA model requires skills obtained
by experience. Several excellent examples of the identification process are
given in Box et al. (2008, Chap. 6), Montgomery et al. (1990), and Bisgaard
and Kulahci (2011).

5.7.2 Parameter Estimation

There are several methods such as the methods of moments, maximum
likelihood, and least squares that can be employed to estimate the param-
eters in the tentatively identified model. However, unlike the regression
models of Chapter 2, most ARIMA models are nonlinear models and
require the use of a nonlinear model fitting procedure. This is usually auto-
matically performed by sophisticated software packages such as Minitab
JMP, and SAS. In some software packages, the user may have the choice
of estimation method and can accordingly choose the most appropriate
method based on the problem specifications.

5.7.3 Diagnostic Checking

After a tentative model has been fit to the data, we must examine its
adequacy and, if necessary, suggest potential improvements. This is done
through residual analysis. The residuals for an ARMA(p, q) process can
be obtained from

�̂�t = yt −

(
𝛿 +

p∑
i=1

�̂�iyt−i −
q∑

i=1

�̂�i�̂�t−i

)
(5.82)

If the specified model is adequate and hence the appropriate orders p and q
are identified, it should transform the observations to a white noise process.
Thus the residuals in Eq. (5.82) should behave like white noise.
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Let the sample autocorrelation function of the residuals be denoted by{
re (k)

}
. If the model is appropriate, then the residual sample autocorrela-

tion function should have no structure to identify. That is, the autocorrela-
tion should not differ significantly from zero for all lags greater than one.
If the form of the model were correct and if we knew the true parameter
values, then the standard error of the residual autocorrelations would be
N−1∕2.

Rather than considering the re(k) terms individually, we may obtain
an indication of whether the first K residual autocorrelations considered
together indicate adequacy of the model. This indication may be obtained
through an approximate chi-square test of model adequacy. The test
statistic is

Q = (N − d)
K∑

k=1

r2
e (k) (5.83)

which is approximately distributed as chi-square with K − p − q degrees
of freedom if the model is appropriate. If the model is inadequate, the
calculated value of Q will be too large. Thus we should reject the hypoth-
esis of model adequacy if Q exceeds an approximate small upper tail
point of the chi-square distribution with K − p − q degrees of freedom.
Further details of this test are in Chapter 2 and in the original refer-
ence by Box and Pierce (1970). The modification of this test by Ljung
and Box (1978) presented in Chapter 2 is also useful in assessing model
adequacy.

5.7.4 Examples of Building ARIMA Models

In this section we shall present two examples of the identification, estima-
tion, and diagnostic checking process. One example presents the analysis
for a stationary time series, while the other is an example of modeling a
nonstationary series.

Example 5.1 Table 5.5 shows the weekly total number of loan applica-
tions in a local branch of a national bank for the last 2 years. It is suspected
that there should be some relationship (i.e., autocorrelation) between the
number of applications in the current week and the number of loan appli-
cations in the previous weeks. Modeling that relationship will help the
management to proactively plan for the coming weeks through reliable
forecasts. As always, we start our analysis with the time series plot of the
data, shown in Figure 5.13.
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TABLE 5.5 Weekly Total Number of Loan Applications for the Last
2 Years

Week Applications Week Applications Week Applications Week Applications

1 71 27 62 53 66 79 63
2 57 28 77 54 71 80 61
3 62 29 76 55 59 81 73
4 64 30 88 56 57 82 72
5 65 31 71 57 66 83 65
6 67 32 72 58 51 84 70
7 65 33 66 59 59 85 54
8 82 34 65 60 56 86 63
9 70 35 73 61 57 87 62

10 74 36 76 62 55 88 60
11 75 37 81 63 53 89 67
12 81 38 84 64 74 90 59
13 71 39 68 65 64 91 74
14 75 40 63 66 70 92 61
15 82 41 66 67 74 93 61
16 74 42 71 68 69 94 52
17 78 43 67 69 64 95 55
18 75 44 69 70 68 96 61
19 73 45 63 71 64 97 56
20 76 46 61 72 70 98 61
21 66 47 68 73 73 99 60
22 69 48 75 74 59 100 65
23 63 49 66 75 68 101 55
24 76 50 81 76 59 102 61
25 65 51 72 77 66 103 59
26 73 52 77 78 63 104 63

Figure 5.13 shows that the weekly data tend to have short runs and that
the data seem to be indeed autocorrelated. Next, we visually inspect the
stationarity. Although there might be a slight drop in the mean for the
second year (weeks 53–104), in general, it seems to be safe to assume
stationarity.

We now look at the sample ACF and PACF plots in Figure 5.14. Here
are possible interpretations of the ACF plot:

1. It cuts off after lag 2 (or maybe even 3), suggesting an MA(2) (or
MA(3)) model.

2. It has an (or a mixture of) exponential decay(s) pattern suggesting an
AR(p) model.

To resolve the conflict, consider the sample PACF plot. For that, we have
only one interpretation; it cuts off after lag 2. Hence we use the second
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FIGURE 5.13 Time series plot of the weekly total number of loan applications.

interpretation of the sample ACF plot and assume that the appropriate
model to fit is the AR(2) model.

Table 5.6 shows the Minitab output for the AR(2) model. The parameter
estimates are �̂�1 = 0.27 and �̂�2 = 0.42, and they turn out to be significant
(see the P-values).

MSE is calculated to be 39.35. The modified Box–Pierce test suggests
that there is no autocorrelation left in the residuals. We can also see this in
the ACF and PACF plots of the residuals in Figure 5.15.

As the last diagnostic check, we have the 4-in-1 residual plots in Fig-
ure 5.16 provided by Minitab: Normal Probability Plot, Residuals versus
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FIGURE 5.14 ACF and PACF for the weekly total number of loan applications.
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TABLE 5.6 Minitab Output for the AR(2) Model for the
Loan Application Data

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2682 0.0903 2.97 0.004
AR 2 0.4212 0.0908 4.64 0.000
Constant 20.7642 0.6157 33.73 0.000
Mean 66.844 1.982

Number of observations: 104
Residuals: SS = 3974.30 (backforecasts excluded)

MS = 39.35 DF = 101

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 6.2 16.0 24.9 32.0
DF 9 21 33 45
P-Value 0.718 0.772 0.843 0.927

Fitted Value, Histogram of the Residuals, and Time Series Plot of the
Residuals. They indicate that the fit is indeed acceptable.

Figure 5.17 shows the actual data and the fitted values. It looks like the
fitted values smooth out the highs and lows in the data.

Note that, in this example, we often and deliberately used “vague”
words such as “seems” or “looks like.” It should be clear by now that
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FIGURE 5.15 The sample ACF and PACF of the residuals for the AR(2) model
in Table 5.6.
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the methodology presented in this chapter has a very sound theoretical
foundation. However, as in any modeling effort, we should also keep in
mind the subjective component of model identification. In fact, as we
mentioned earlier, time series model fitting can be seen as a mixture of
science and art and can best be learned by practice and experience. The
next example will illustrate this point further.

Example 5.2 Consider the Dow Jones Index data from Chapter 4. A
time series plot of the data is given in Figure 5.18. The process shows signs
of nonstationarity with changing mean and possibly variance.

Similarly, the slowly decreasing sample ACF and sample PACF with
significant value at lag 1, which is close to 1 in Figure 5.19, confirm
that indeed the process can be deemed nonstationary. On the other hand,
one might argue that the significant sample PACF value at lag 1 suggests
that the AR(1) model might also fit the data well. We will consider this
interpretation first and fit an AR(1) model to the Dow Jones Index data.

Table 5.7 shows the Minitab output for the AR(1) model. Although it is
close to 1, the AR(1) model coefficient estimate �̂� = 0.9045 turns out to be
quite significant and the modified Box–Pierce test suggests that there is no
autocorrelation left in the residuals. This is also confirmed by the sample
ACF and PACF plots of the residuals given in Figure 5.20.
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FIGURE 5.18 Time series plot of the Dow Jones Index from June 1999 to June
2006.
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FIGURE 5.19 Sample ACF and PACF of the Dow Jones Index.

TABLE 5.7 Minitab Output for the AR(1) Model for the
Dow Jones Index

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.9045 0.0500 18.10 0.000
Constant 984.94 44.27 22.25 0.000
Mean 10309.9 463.4

Number of observations: 85
Residuals: SS = 13246015 (backforecasts excluded)

MS = 159591 DF = 83

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 2.5 14.8 21.4 29.0
DF 10 22 34 46
P-Value 0.991 0.872 0.954 0.977
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FIGURE 5.20 Sample ACF and PACF of the residuals from the AR(1) model
for the Dow Jones Index data.
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FIGURE 5.21 Residual plots from the AR(1) model for the Dow Jones Index
data.

The only concern in the residual plots in Figure 5.21 is in the changing
variance observed in the time series plot of the residuals. This is indeed a
very important issue since it violates the constant variance assumption. We
will discuss this issue further in Section 7.3 but for illustration purposes
we will ignore it in this example.

Overall it can be argued that an AR(1) model provides a decent fit to the
data. However, we will now consider the earlier interpretation and assume
that the Dow Jones Index data comes from a nonstationary process. We then
take the first difference of the data as shown in Figure 5.22. While there
are once again some serious concerns about changing variance, the level
of the first difference remains the same. If we ignore the changing variance
and look at the sample ACF and PACF plots given in Figure 5.23, we may
conclude that the first difference is in fact white noise. That is, since these
plots do not show any sign of significant autocorrelation, a model we may
consider for the Dow Jones Index data would be the random walk model,
ARIMA(0, 1, 0).

Now the analyst has to decide between the two models: AR(1) and
ARIMA(0, 1, 0). One can certainly use some of the criteria we discussed
in Section 2.6.2 to choose one of these models. Since these two models are
fundamentally quite different, we strongly recommend that the analyst use
the subject matter/process knowledge as much as possible. Do we expect
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FIGURE 5.22 Time series plot of the first difference w(t) of the Dow Jones
Index data.

a financial index such as the Dow Jones Index to wander about a fixed
mean as implied by the AR(1)? In most cases involving financial data, the
answer would be no. Hence a model such as ARIMA(0, 1, 0) that takes
into account the inherent nonstationarity of the process should be preferred.
However, we do have a problem with the proposed model. A random walk
model means that the price changes are random and cannot be predicted.
If we have a higher price today compared to yesterday, that would have no
bearing on the forecasts tomorrow. That is, tomorrow’s price can be higher
or lower than today’s and we would have no way to forecast it effectively.
This further suggests that the best forecast for tomorrow’s price is in fact
the price we have today. This is obviously not a reliable and effective
forecasting model. This very same issue of the random walk models for
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FIGURE 5.23 Sample ACF and PACF plots of the first difference of the Dow
Jones Index data.
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financial data has been discussed in great detail in the literature. We simply
used this data to illustrate that in time series model fitting we can end up
with fundamentally different models that will fit the data equally well. At
this point, process knowledge can provide the needed guidance in picking
the “right” model.

It should be noted that, in this example, we tried to keep the models
simple for illustration purposes. Indeed, a more thorough analysis would
(and should) pay close attention to the changing variance issue. In fact, this
is a very common concern particularly when dealing with financial data.
For that, we once again refer the reader to Section 7.3.

5.8 FORECASTING ARIMA PROCESSES

Once an appropriate time series model has been fit, it may be used to
generate forecasts of future observations. If we denote the current time by
T, the forecast for yT+𝜏 is called the 𝜏-period-ahead forecast and denoted
by ŷT+𝜏(T). The standard criterion to use in obtaining the best forecast
is the mean squared error for which the expected value of the squared
forecast errors, E[(yT+𝜏 − ŷT+𝜏 (T))2] = E[eT(𝜏)2], is minimized. It can be
shown that the best forecast in the mean square sense is the conditional
expectation of yT+𝜏 given current and previous observations, that is, yT ,
yT−1,…:

ŷT+𝜏 (T) = E
[
yT+𝜏

|| yT , yT−1,…
]

(5.84)

Consider, for example, an ARIMA(p, d, q) process at time T + 𝜏 (i.e., 𝜏
period in the future):

yT+𝜏 = 𝛿 +
p+d∑
i=1

𝜙iyT+𝜏−i + 𝜀T+𝜏 −
q∑

i=1

𝜃i𝜀T+𝜏−i (5.85)

Further consider its infinite MA representation,

yT+𝜏 = 𝜇 +
∞∑

i=0

𝜓i𝜀T+𝜏−i (5.86)

We can partition Eq. (5.86) as

yT+𝜏 = 𝜇 +
𝜏−1∑
i=0

𝜓i𝜀T+𝜏−i +
∞∑

i=𝜏
𝜓i𝜀T+𝜏−i (5.87)
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In this partition, we can clearly see that the
∑𝜏−1

i=0 𝜓i𝜀T+𝜏−i component
involves the future errors, whereas the

∑∞
i=𝜏 𝜓i𝜀T+𝜏−i component involves

the present and past errors. From the relationship between the current
and past observations and the corresponding random shocks as well as
the fact that the random shocks are assumed to have mean zero and to
be independent, we can show that the best forecast in the mean square
sense is

ŷT+𝜏 (T) = E
[
yT+𝜏

|| yT , yT−1,…
]
= 𝜇 +

∞∑
i=𝜏

𝜓i𝜀T+𝜏−i (5.88)

since

E
[
𝜀T+𝜏−i

|| yT , yT−1,…
]
=
{

0 if i < 𝜏

𝜀T+𝜏−i if i ≥ 𝜏

Subsequently, the forecast error is calculated from

eT (𝜏) = yT+𝜏 − ŷT+𝜏 (T) =
𝜏−1∑
i=0

𝜓i𝜀T+𝜏−i (5.89)

Since the forecast error in Eq. (5.89) is a linear combination of random
shocks, we have

E
[
eT (𝜏)

]
= 0 (5.90)

Var
[
eT (𝜏)

]
= Var

[
𝜏−1∑
i=0

𝜓i𝜀T+𝜏−i

]
=

𝜏−1∑
i=0

𝜓
2
i Var(𝜀T+𝜏−i)

= 𝜎
2
𝜏−1∑
i=0

𝜓
2
i (5.91)

= 𝜎
2 (𝜏) , 𝜏 = 1, 2, …

It should be noted that the variance of the forecast error gets bigger with
increasing forecast lead times 𝜏. This intuitively makes sense as we should
expect more uncertainty in our forecasts further into the future. Moreover,
if the random shocks are assumed to be normally distributed, N(0, 𝜎2), then
the forecast errors will also be normally distributed with N(0, 𝜎2(𝜏)). We
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can then obtain the 100(1 − 𝛼) percent prediction intervals for the future
observations from

P
(
ŷT+𝜏 (T) − z

𝛼∕2𝜎 (𝜏) < yT+𝜏 < ŷT+𝜏 (T) + z
𝛼∕2𝜎 (𝜏)

)
= 1 − 𝛼 (5.92)

where z
𝛼∕2 is the upper 𝛼∕2 percentile of the standard normal distribution,

N (0, 1). Hence the 100(1 − 𝛼) percent prediction interval for yT+𝜏 is

ŷT+𝜏 (T) ± z
𝛼∕2𝜎 (𝜏) (5.93)

There are two issues with the forecast equation in (5.88). First, it involves
infinitely many terms in the past. However, in practice, we will only have
a finite amount of data. For a sufficiently large data set, this can be over-
looked. Second, Eq. (5.88) requires knowledge of the magnitude of random
shocks in the past, which is unrealistic. A solution to this problem is to
“estimate” the past random shocks through one-step-ahead forecasts. For
the ARIMA model we can calculate

�̂�t = yt −

[
𝛿 +

p+d∑
i=1

𝜙iyt−i −
q∑

i=1

𝜃i�̂�t−i

]
(5.94)

recursively by setting the initial values of the random shocks to zero for
t < p + d + 1. For more accurate results, these initial values together with
the yt for t ≤ 0 can also be obtained using back-forecasting. For further
details, see Box, Jenkins, and Reinsel (2008).

As an illustration consider forecasting the ARIMA(1, 1, 1) process

(1 − 𝜙B) (1 − B) yT+𝜏 = (1 − 𝜃B) 𝜀T+𝜏 (5.95)

We will consider two of the most commonly used approaches:

1. As discussed earlier, this approach involves the infinite MA represen-
tation of the model in Eq. (5.95), also known as the random shock
form of the model:

yT+𝜏 =
∞∑

i=0

𝜓i𝜀T+𝜏−i

(5.96)
= 𝜓0𝜀T+𝜏 + 𝜓1𝜀T+𝜏−1 + 𝜓2𝜀T+𝜏−2 +⋯
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Hence the 𝜏-step-ahead forecast can be calculated from

ŷT+𝜏 (T) = 𝜓
𝜏
𝜀T + 𝜓

𝜏+1𝜀T−1 +⋯ (5.97)

The weights 𝜓i can be calculated from(
𝜓0 + 𝜓1B +⋯

)
(1 − 𝜙B) (1 − B) = (1 − 𝜃B) (5.98)

and the random shocks can be estimated using the one-step-ahead
forecast error; for example, 𝜀T can be replaced by eT−1(1) = yT −
ŷT(T − 1).

2. Another approach that is often employed in practice is to use differ-
ence equations as given by

yT+𝜏 = (1 + 𝜙) yT+𝜏−1 − 𝜙yT+𝜏−2 + 𝜀T+𝜏 − 𝜃𝜀T+𝜏−1 (5.99)

For 𝜏 = 1, the best forecast in the mean squared error sense is

ŷT+1 (T) = E
[
yT+1

|| yT , yT−1,…
]
= (1 + 𝜙) yT − 𝜙yT−1 − 𝜃eT (1)

(5.100)

We can further show that for lead times 𝜏 > 2, the forecast is

ŷT+𝜏(T) = (1 − 𝜙) ŷT+𝜏−1(T) − 𝜙ŷT+𝜏−2(T) (5.101)

Prediction intervals for forecasts of future observations at time period
T + 𝜏 are found using equation 5.87. However, in using Equation 5.87 the
𝜓 weights must be found in order to compute the variance (or standard
deviation) of the 𝜏-step ahead forecast error. The 𝜓 weights for the general
ARIMA(p, d, q) model may be obtained by equating like powers of B in
the expansion of

(𝜓0 + 𝜓1B + 𝜓2B2 +⋯)(1 − 𝜙1B − 𝜙2B2 −⋯ − 𝜙pBp)(1 − B)d

= (1 − 𝜃1B − 𝜃2B2 −⋯ − 𝜃qBq)

and solving for the 𝜓 weights. We now illustrate this with three examples.

Example 5.3 The ARMA(1, 1) Model For the ARMA(1, 1) model the
product of the required polynomials is

(𝜓0 + 𝜓1B + 𝜓2B2 +⋯)(1 − 𝜙B) = (1 − 𝜃B)
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Equating like power of B we find that

B0: 𝜓0 = 1

B1: 𝜓1 − 𝜙 = −𝜃, or 𝜓1 = 𝜙 − 𝜃

B2: 𝜓2 − 𝜙𝜓1 = 0, or 𝜓2 = 𝜙(𝜙 − 𝜃)

In general, we can show for the ARMA(1,1) model that 𝜓j = 𝜙
j−1(𝜙 − 𝜃).

Example 5.4 The AR(2) Model For the AR(2) model the product of
the required polynomials is

(𝜓0 + 𝜓1B + 𝜓2B2 +⋯)(1 − 𝜙1B − 𝜙2B2) = 1

Equating like power of B, we find that

B0: 𝜓0 = 1

B1: 𝜓1 − 𝜙1 = 0, or 𝜓1 = 𝜙1

B2: 𝜓2 − 𝜙1𝜓1 − 𝜙2 = 0, or 𝜓2 = 𝜙1𝜓1 + 𝜙2

In general, we can show for the AR(2) model that 𝜓j = 𝜙1𝜓j−1 + 𝜙2𝜓j−2.

Example 5.5 The ARIMA(0, 1, 1) or IMA(1,1) Model Now consider
a nonstationary model, the IMA(1, 1) model. The product of the required
polynomials for this model is

(𝜓0 + 𝜓1B + 𝜓2B2 +⋯)(1 − B) = (1 − 𝜃B)

It is straightforward to show that the 𝜓 weights for this model are

𝜓0 = 1

𝜓1 = 1 − 𝜃

𝜓j = 𝜓j−1, j = 2, 3,…

Notice that the prediction intervals will increase in length rapidly as the
forecast lead time increases. This is typical of nonstationary ARIMA mod-
els. It implies that these models may not be very effective in forecasting
more than a few periods ahead.
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FIGURE 5.24 Time series plot and forecasts for the weekly loan application
data.

Example 5.6 Consider the loan applications data given in Table 5.5. Now
assume that the manager wants to make forecasts for the next 3 months
(12 weeks) using the AR(2) model from Example 5.1. Hence at the
104th week we need to make 1-step, 2-step,… , 12-step-ahead predictions,
which are obtained and plotted using Minitab in Figure 5.24 together with
the 95% prediction interval.

Table 5.8 shows the output from JMP for fitting an AR(2) model to the
weekly loan application data. In addition to the sample ACF and PACF,
JMP provides the model fitting information including the estimates of the
model parameters, the forecasts for 10 periods into the future and the
associated prediction intervals, and the residual autocorrelation and PACF.
The AR(2) model is an excellent fit to the data.

5.9 SEASONAL PROCESSES

Time series data may sometimes exhibit strong periodic patterns. This is
often referred to as the time series having a seasonal behavior. This mostly
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occurs when data is taken in specific intervals—monthly, weekly, and so
on. One way to represent such data is through an additive model where the
process is assumed to be composed of two parts,

yt = St + Nt (5.102)

where St is the deterministic component with periodicity s and Nt is the
stochastic component that may be modeled as an ARMA process. In that,
yt can be seen as a process with predictable periodic behavior with some
noise sprinkled on top of it. Since the St is deterministic and has periodicity
s, we have St = St+s or

St − St−s = (1 − Bs)St = 0 (5.103)

Applying the (1 − Bs) operator to Eq. (5.102), we have

(1 − Bs)yt
⏟⏞⏞⏟⏞⏞⏟

≡wt

= (1 − Bs)St
⏟⏞⏞⏟⏞⏞⏟

=0

+ (1 − Bs)Nt

wt = (1 − Bs)Nt

(5.104)

TABLE 5.8 JMP AR(2) Output for the Loan Application Data

Time series y(t)
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t)
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Row

Mean 67.067308
Std 7.663932
N 104
Zero Mean ADF -0.695158
Single Mean ADF -6.087814
Trend ADF -7.396174



SEASONAL PROCESSES 385

TABLE 5.8 (Continued)

Lag AutoCorr plot autocorr
0 1.0000
1 0.4617
2 0.4045
3 –0.0629
4 –0.0220
5 0.0976
6 0.0252
7 0.1155
8 –0.1017
9 0.0145

10 –0.0330
11 –0.0250
12 0.1349
13 0.0488
14 0.1489
15 –0.0842
16 0.1036
17 0.0105
18 0.0830
19 –0.0938
20 0.0052
21 –0.0927
22 0.1149
23 –0.0645
24 –0.0473
25 –0.0742

Time series basic diagnostics
Lag AutoCorr plot autocorr Ljung-Box Q p-Value

Ljung-Box Q p-Value

0 1.0000 . .
1 0.4617 22.8186 <.0001
2 0.5314 53.3428 <.0001
3 0.2915 62.6167 <.0001
4 0.2682 70.5487 <.0001
5 0.2297 76.4252 <.0001
6 0.1918 80.5647 <.0001
7 0.2484 87.5762 <.0001
8 0.1162 89.1255 <.0001
9 0.1701 92.4847 <.0001

10 0.0565 92.8587 <.0001
11 0.0716 93.4667 <.0001
12 0.1169 95.1040 <.0001
13 0.1151 96.7080 <.0001
14 0.2411 103.829 <.0001
15 0.1137 105.430 <.0001
16 0.2540 113.515 <.0001
17 0.1279 115.587 <.0001
18 0.2392 122.922 <.0001
19 0.1138 124.603 <.0001
20 0.1657 128.206 <.0001
21 0.0745 128.944 <.0001
22 0.1320 131.286 <.0001
23 0.0708 131.968 <.0001
24 0.0338 132.125 <.0001
25 0.0057 132.130 <.0001

Lag Partial plot partial

(continued)
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TABLE 5.8 (Continued)

Model Comparison
Model DF Variance AIC SBC RSquare -2LogLH
AR(2) 101 39.458251 680.92398 688.85715 0.343 674.92398

Model: AR(2)
Model Summary

DF 101
Sum of Squared Errors 3985.28336
Variance Estimate 39.4582511
Standard Deviation 6.2815803
Akaike's 'A' Information Criterion 680.923978
Schwarz's Bayesian Criterion 688.857151
RSquare 0.34278547
RSquare Adj 0.32977132
MAPE 7.37857799
MAE 4.91939717
-2LogLikelihood 674.923978

Stable Yes
Invertible Yes

Parameter Estimates
Term Lag Estimate Std Error t Ratio Prob>|t| Constant Estimate
AR1 1 0.265885 0.089022 2.99 0.0035 21.469383
AR2 2 0.412978 0.090108 4.58 <.0001
Intercept 0 66.854262 1.833390 36.46 <.0001
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TABLE 5.8 (Continued)

Lag AutoCorr plot autocorr Ljung-Box Q p-Value
11 –0.0586
12 0.0201
13 0.0211
14 0.1306
15 –0.0669
16 0.1024
17 0.0256
18 0.1477
19 –0.0027
20 0.0569
21 –0.0823
22 0.1467
23 –0.0124
24 0.0448
25 –0.0869

Lag AutoCorr plot autocorr Ljung-Box Q p-Value
0 1.0000 . .
1 0.0320 0.1094 0.7408
2 0.0287 0.1986 0.9055
3 –0.0710 0.7489 0.8617
4 –0.0614 1.1647 0.8839
5 –0.0131 1.1839 0.9464
6 0.0047 1.1864 0.9776
7 0.1465 3.6263 0.8217
8 –0.0309 3.7358 0.8801
9 0.0765 4.4158 0.8820

10 –0.0938 5.4479 0.8593
11 –0.0698 6.0251 0.8717
12 0.0019 6.0255 0.9148
13 0.0223 6.0859 0.9430
14 0.1604 9.2379 0.8155
15 –0.0543 9.6028 0.8440
16 0.1181 11.3501 0.7874
17 –0.0157 11.3812 0.8361
18 0.1299 13.5454 0.7582
19 –0.0059 13.5499 0.8093
20 0.0501 13.8788 0.8366
21 –0.0413 14.1056 0.8650
22 0.0937 15.2870 0.8496
23 0.0409 15.5146 0.8752
24 –0.0035 15.5163 0.9047
25 –0.0335 15.6731 0.9242

Lag Partial plot partial
0 1.0000
1 0.0320
2 0.0277
3 –0.0729
4 –0.0580
5 –0.0053
6 0.0038
7 0.1399
8 –0.0454
9 0.0715

10 –0.0803
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The process wt can be seen as seasonally stationary. Since an ARMA
process can be used to model Nt, in general, we have

Φ(B)wt = (1 − Bs)Θ(B)𝜀t (5.105)

where 𝜀t is white noise.
We can also consider St as a stochastic process. We will further assume

that after seasonal differencing, (1 − Bs), (1 − Bs) yt = wt becomes station-
ary. This, however, may not eliminate all seasonal features in the process.
That is, the seasonally differenced data may still show strong autocorrela-
tion at lags s, 2s,… . So the seasonal ARMA model is

(
1 − 𝜙

∗
1Bs − 𝜙

∗
2B2s −⋯ − 𝜙

∗
PBPs

)
wt =

(
1 − 𝜃

∗
1Bs − 𝜃

∗
2B2s −⋯ − 𝜃

∗
QBQs

)
𝜀t

(5.106)

This representation, however, only takes into account the autocorrelation
at seasonal lags s, 2s,… . Hence a more general seasonal ARIMA model
of orders (p, d, q) × (P, D, Q) with period s is

Φ∗(Bs)Φ(B)(1 − B)d(1 − Bs)Dyt = 𝛿 + Θ∗(Bs)Θ(B)𝜀t (5.107)

In practice, although it is case specific, it is not expected to have P,
D, and Q greater than 1. The results for regular ARIMA processes that
we discussed in previous sections apply to the seasonal models given in
Eq. (5.107).

As in the nonseasonal ARIMA models, the forecasts for the seasonal
ARIMA models can be obtained from the difference equations as illustrated
for example in Eq. (5.101) for a nonseasonal ARIMA(1,1,1) process. Sim-
ilarly the weights in the random shock form given in Eq. (5.96) can be
estimated as in Eq. (5.98) to obtain the estimate for the variance of the
forecast errors as well as the prediction intervals given in Eqs. (5.91) and
(5.92), respectively.

Example 5.7 The ARIMA (0, 1, 1) × (0, 1, 1) model with s = 12 is

(1 − B)(1 − B12)yt
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

wt

=
(
1 − 𝜃1B − 𝜃

∗
1 B12 + 𝜃1𝜃

∗
1B13

)
𝜀t
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For this process, the autocovariances are calculated as

𝛾(0) = Var(wt) = 𝜎
2
(
1 + 𝜃

2
1 + 𝜃

∗2
1 +

(
−𝜃1𝜃

∗
1

)2)
= 𝜎

2
(
1 + 𝜃

2
1

)(
1 + 𝜃

∗2
1

)
𝛾(1) = Cov(wt, wt−1) = 𝜎

2
(
−𝜃1 + 𝜃

∗
1

(
−𝜃1𝜃

∗
1

))
= −𝜃1𝜎

2
(
1 + 𝜃

∗
1

)
𝛾(2) = 𝛾(3) = ⋯ = 𝛾(10) = 0

𝛾(11) = 𝜎
2
𝜃1𝜃

∗
1

𝛾(12) = −𝜎2
𝜃
∗
1

(
1 + 𝜃

2
1

)
𝛾(13) = 𝜎

2
𝜃1𝜃

∗
1

𝛾(j) = 0, j > 13

Example 5.8 Consider the US clothing sales data in Table 4.9. The
data obviously exhibit some seasonality and upward linear trend. The
sample ACF and PACF plots given in Figure 5.25 indicate a monthly
seasonality, s = 12, as ACF values at lags 12, 24, 36 are significant and
slowly decreasing, and there is a significant PACF value at lag 12 that is
close to 1. Moreover, the slowly decreasing ACF in general, also indicates
a nonstationarity that can be remedied by taking the first difference. Hence
we would now consider wt = (1 − B) (1 − B12)yt.

Figure 5.26 shows that first difference together with seasonal
differencing—that is, wt = (1 − B)(1 − B12)yt—helps in terms of station-
arity and eliminating the seasonality, which is also confirmed by sample
ACF and PACF plots given in Figure 5.27. Moreover, the sample ACF
with a significant value at lag 1 and the sample PACF with exponentially
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FIGURE 5.25 Sample ACF and PACF plots of the US clothing sales data.
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FIGURE 5.26 Time series plot of wt = (1 − B)(1 − B12)yt for the US clothing
sales data.

decaying values at the first 8 lags suggest that a nonseasonal MA(1) model
should be used.

The interpretation of the remaining seasonality is a bit more difficult.
For that we should focus on the sample ACF and PACF values at lags 12,
24, 36, and so on. The sample ACF at lag 12 seems to be significant and
the sample PACF at lags 12, 24, 36 (albeit not significant) seems to be
alternating in sign. That suggests that a seasonal MA(1) model can be used
as well. Hence an ARIMA(0, 1, 1) × (0, 1, 1)12 model is used to model the
data, yt. The output from Minitab is given in Table 5.9. Both MA(1) and
seasonal MA(1) coefficient estimates are significant. As we can see from
the sample ACF and PACF plots in Figure 5.28, while there are still some
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FIGURE 5.27 Sample ACF and PACF plots of wt = (1 − B)(1 − B12)yt.
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TABLE 5.9 Minitab Output for the ARIMA(0, 1, 1) × (0, 1, 1)12
Model for the US Clothing Sales Data

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 0.7626 0.0542 14.06 0.000
SMA 12 0.5080 0.0771 6.59 0.000

Differencing: 1 regular, 1 seasonal of order 12
Number of observations: Original series 155, after
differencing 142
Residuals: SS = 10033560 (backforecasts excluded)

MS = 71668 DF = 140

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 15.8 37.7 68.9 92.6
DF 10 22 34 46
P-Value 0.107 0.020 0.000 0.000

small significant values, as indicated by the modified Box pierce statistic
most of the autocorrelation is now modeled out.

The residual plots in Figure 5.29 provided by Minitab seem to be accept-
able as well.

Finally, the time series plot of the actual and fitted values in Figure 5.30
suggests that the ARIMA(0, 1, 1) × (0, 1, 1)12 model provides a reasonable
fit to this highly seasonal and nonstationary time series data.
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FIGURE 5.28 Sample ACF and PACF plots of residuals from the ARIMA(0,
1, 1) × (0, 1, 1)12 model.
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FIGURE 5.29 Residual plots from the ARIMA(0, 1, 1) × (0, 1, 1)12 model for
the US clothing sales data.
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5.10 ARIMA MODELING OF BIOSURVEILLANCE DATA

In Section 4.8 we introduced the daily counts of respiratory and gastroin-
testinal complaints for more than 2-1∕2 years at several hospitals in a large
metropolitan area from Fricker (2013). Table 4.12 presents the 980 obser-
vations from one of these hospitals. Section 4.8 described modeling the
respiratory count data with exponential smoothing. We now present an
ARIMA modeling approach. Figure 5.31 presents the sample ACF, PACF,
and the variogram from JMP for these data. Examination of the original
time series plot in Figure 4.35 and the ACF and variogram indicate that
the daily respiratory syndrome counts may be nonstationary and that the
data should be differenced to obtain a stationary time series for ARIMA
modeling.

The ACF for the differenced series (d = 1) shown in Figure 5.32 cuts off
after lag 1 while the PACF appears to be a mixture of exponential decays.
This suggests either an ARIMA(1, 1, 1) or ARIMA(2, 1, 1) model.

The Time Series Modeling platform in JMP allows a group of ARIMA
models to be fit by specifying ranges for the AR, difference, and MA terms.
Table 5.10 summarizes the fits obtained for a constant difference (d = 1),
and both AR (p) and MA (q) parameters ranging from 0 to 2.

FIGURE 5.31 ACF, PACF, and variogram for daily respiratory syndrome
counts.
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FIGURE 5.32 ACF, PACF, and variogram for the first difference of the daily
respiratory syndrome counts.

TABLE 5.10 Summary of Models fit to the Respiratory Syndrome
Count Data

Model Variance AIC BIC RSquare MAPE MAE

AR(1) 65.7 6885.5 6895.3 0.4 24.8 6.3
AR(2) 57.1 6748.2 6762.9 0.5 22.9 5.9
MA(1) 81.6 7096.9 7106.6 0.2 28.5 6.9
MA(2) 69.3 6937.6 6952.3 0.3 26.2 6.4
ARMA(1, 1) 52.2 6661.2 6675.9 0.5 21.6 5.6
ARMA(1, 2) 52.1 6661.2 6680.7 0.5 21.6 5.6
ARMA(2, 1) 52.1 6660.7 6680.3 0.5 21.6 5.6
ARMA(2, 2) 52.3 6664.3 6688.7 0.5 21.6 5.6
ARIMA(0, 0, 0) 104.7 7340.4 7345.3 0.0 33.2 8.0
ARIMA(0, 1, 0)∗ 81.6 7088.2 7093.1 0.2 26.2 7.0
ARIMA(0, 1, 1)∗ 52.7 6662.8 6672.6 0.5 21.4 5.7
ARIMA(0, 1, 2) 52.6 6662.1 6676.7 0.5 21.4 5.7
ARIMA(1, 1, 0)∗ 62.2 6824.4 6834.2 0.4 23.2 6.2
ARIMA(1, 1, 1) 52.6 6661.4 6676.1 0.5 21.4 5.7
ARIMA(1, 1, 2) 52.6 6661.9 6681.5 0.5 21.4 5.7
ARIMA(2, 1, 0) 59.6 6783.5 6798.1 0.4 22.7 6.1
ARIMA(2, 1, 1) 52.3 6657.1 6676.6 0.5 21.4 5.6
ARIMA(2, 1, 2) 52.3 6657.8 6682.2 0.5 21.3 5.6

∗Indicates that objective function failed during parameter estimation.
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FIGURE 5.33 ACF, PACF, and variogram for the residuals of ARIMA(1, 1, 1)
fit to daily respiratory syndrome counts.

In terms of the model summary statistics variance of the errors, AIC and
mean absolute prediction error (MAPE) several models look potentially
reasonable. For the ARIMA(1, 1, 1) we obtained the following results from
JMP:

Figure 5.33 presents the ACF, PACF, and variogram of the residuals
from this model. Other residual plots are in Figure 5.34.

For comparison purposes we also fit the ARIMA(2, 1, 1) model. The
parameter estimates obtained from JMP are:
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FIGURE 5.34 Plots of residuals from ARIMA(1, 1, 1) fit to daily respiratory
syndrome counts.
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FIGURE 5.35 ACF, PACF, and variogram for residuals of ARIMA(2, 1, 1) fit
to daily respiratory syndrome counts.

The lag 2 AR parameter is highly significant. Figure 5.35 presents
the plots of the ACF, PACF, and variogram of the residuals from
ARIMA(2, 1, 1). Other residual plots are shown in Figure 5.36. Based
on the significant lag 2 AR parameter, this model is preferable to the
ARIMA(1, 1, 1) model fit previously.

Considering the variation in counts by day of week that was observed
previously, a seasonal ARIMA model with a seasonal period of 7 days may
be appropriate. The resulting model has an error variance of 50.9, smaller
than for the ARIMA(1, 1, 1) and ARIMA(2, 1, 1) models. The AIC is also
smaller. Notice that all of the model parameters are highly significant. The
residual ACF, PACF, and variogram shown in Figure 5.37 do not suggest
any remaining structure. Other residual plots are in Figure 5.38.

MAEMAPERSquareBICAICVarianceModel

ARIMA(2, 1, 1)(0, 0, 1)7 5.621.10.56656.46631.950.9
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FIGURE 5.36 Plots of residuals from ARIMA(2, 1, 1) fit to daily respiratory
syndrome counts.
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FIGURE 5.37 ACF, PACF, and variogram of residuals from ARIMA(2, 1, 1) ×
(0, 0, 1)7 fit to daily respiratory syndrome counts.

5.11 FINAL COMMENTS

ARIMA models (a.k.a. Box–Jenkins models) present a very powerful and
flexible class of models for time series analysis and forecasting. Over
the years, they have been very successfully applied to many problems in
research and practice. However, there might be certain situations where
they may fall short on providing the “right” answers. For example, in
ARIMA models, forecasting future observations primarily relies on the
past data and implicitly assumes that the conditions at which the data is
collected will remain the same in the future as well. In many situations this
assumption may (and most likely will) not be appropriate. For those cases,
the transfer function–noise models, where a set of input variables that may
have an effect on the time series are added to the model, provide suitable
options. We shall discuss these models in the next chapter. For an excellent
discussion of this matter and of time series analysis and forecasting in
general, see Jenkins (1979).
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5.12 R COMMANDS FOR CHAPTER 5

Example 5.1 The loan applications data are in the second column of the
array called loan.data in which the first column is the number of weeks.
We first plot the data as well as the ACF and PACF.

plot(loan.data[,2],type="o",pch=16,cex=.5,xlab='Week',ylab='Loan
Applications')
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par(mfrow=c(1,2),oma=c(0,0,0,0))

acf(loan.data[,2],lag.max=25,type="correlation",main="ACF for the
Number \nof Loan Applications")

acf(loan.data[,2], lag.max=25,type="partial",main="PACF for the
Number \nof Loan Applications")
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Fit an ARIMA(2,0,0) model to the data using arima function in the stats
package.

loan.fit.ar2<-arima(loan.data[,2],order=c(2, 0, 0))
loan.fit.ar2

Call:
arima(x = loan.data[, 2], order = c(2, 0, 0))

Coefficients:
ar1 ar2 intercept

0.2659 0.4130 66.8538
s.e. 0.0890 0.0901 1.8334

sigmaˆ2 estimated as 38.32: log likelihood = -337.46,
aic = 682.92

res.loan.ar2<-as.vector(residuals(loan.fit.ar2))
#to obtain the fitted values we use the function fitted() from
#the forecast package
library(forecast)
fit.loan.ar2<-as.vector(fitted(loan.fit.ar2))

Box.test(res.loan.ar2,lag=48,fitdf=3,type="Ljung")

Box-Ljung test

data: res.loan.ar2
X-squared = 31.8924, df = 45, p-value = 0.9295

#ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
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acf(res.loan.ar2,lag.max=25,type="correlation",main="ACF of the
Residuals \nof AR(2) Model")

acf(res.loan.ar2, lag.max=25,type="partial",main="PACF of the
Residuals \nof AR(2) Model")
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#4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.loan.ar2,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(res.loan.ar2,datax=TRUE)
plot(fit.loan.ar2,res.loan.ar2,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(res.loan.ar2,col="gray",xlab='Residual',main='')
plot(res.loan.ar2,type="l",xlab='Observation Order',
ylab='Residual')
points(res.loan.ar2,pch=16,cex=.5)
abline(h=0)
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Plot fitted values

plot(loan.data[,2],type="p",pch=16,cex=.5,xlab='Week',ylab='Loan
Applications')
lines(fit.loan.ar2)
legend(95,88,c("y(t)","yhat(t)"), pch=c(16, NA),lwd=c(NA,.5),
cex=.55)
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Example 5.2 The Dow Jones index data are in the second column of the
array called dji.data in which the first column is the month of the year. We
first plot the data as well as the ACF and PACF.

plot(dji.data[,2],type="o",pch=16,cex=.5,xlab='Date',ylab='DJI',
xaxt='n')
axis(1, seq(1,85,12), dji.data[seq(1,85,12),1])
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par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(dji.data[,2],lag.max=25,type="correlation",main="ACF for the
Number \nof Dow Jones Index")

acf(dji.data[,2], lag.max=25,type="partial",main="PACF for the
Number \nof Dow Jones Index ")
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We first fit an ARIMA(1,0,0) model to the data using arima function in the
stats package.

dji.fit.ar1<-arima(dji.data[,2],order=c(1, 0, 0))
dji.fit.ar1

Call:
arima(x = dji.data[, 2], order = c(1, 0, 0))

Coefficients:
ar1 intercept

0.8934 10291.2984
s.e. 0.0473 373.8723

sigmaˆ2 estimated as 156691: log likelihood = -629.8,
aic = 1265.59

res.dji.ar1<-as.vector(residuals(dji.fit.ar1))
#to obtain the fitted values we use the function fitted() from
#the forecast package
library(forecast)
fit.dji.ar1<-as.vector(fitted(dji.fit.ar1))

Box.test(res.dji.ar1,lag=48,fitdf=3,type="Ljung")

Box-Ljung test

data: res.dji.ar1
X-squared = 29.9747, df = 45, p-value = 0.9584
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#ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(res.dji.ar1,lag.max=25,type="correlation",main="ACF of the
Residuals \nof AR(1) Model")

acf(res.dji.ar1, lag.max=25,type="partial",main="PACF of the
Residuals \nof AR(1) Model")
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#4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.dji.ar1,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(res.dji.ar1,datax=TRUE)
plot(fit.dji.ar1,res.dji.ar1,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(res.dji.ar1,col="gray",xlab='Residual',main='')
plot(res.dji.ar1,type="l",xlab='Observation Order',
ylab='Residual')
points(res.dji.ar1,pch=16,cex=.5)
abline(h=0)
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We now consider the first difference of the Dow Jones index.

wt.dji<-diff(dji.data[,2])
plot(wt.dji,type="o",pch=16,cex=.5,xlab='Date',ylab='w(t)',
xaxt='n')
axis(1, seq(1,85,12), dji.data[seq(1,85,12),1])
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par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(wt.dji,lag.max=25,type="correlation",main="ACF for the
Number \nof w(t)")

acf(wt.dji, lag.max=25,type="partial",main="PACF for the
Number \nof w(t)")
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Example 5.6 The loan applications data are in the second column of the
array called loan.data in which the first column is the number of weeks.
We use the AR(2) model to make the forecasts.
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loan.fit.ar2<-arima(loan.data[,2],order=c(2, 0, 0))
#to obtain the 1- to 12-step ahead forecasts, we use the
#function forecast() from the forecast package
library(forecast)
loan.ar2.forecast<-as.array(forecast(loan.fit.ar2,h=12))
loan.ar2.forecast

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
105 62.58571 54.65250 70.51892 50.45291 74.71851
106 64.12744 55.91858 72.33629 51.57307 76.68180
107 64.36628 55.30492 73.42764 50.50812 78.22444
108 65.06647 55.80983 74.32312 50.90965 79.22330
109 65.35129 55.86218 74.84039 50.83895 79.86362
110 65.71617 56.13346 75.29889 51.06068 80.37167
111 65.93081 56.27109 75.59054 51.15754 80.70409
112 66.13857 56.43926 75.83789 51.30475 80.97240
113 66.28246 56.55529 76.00962 51.40605 81.15887
114 66.40651 56.66341 76.14961 51.50572 81.30730
115 66.49892 56.74534 76.25249 51.58211 81.41572
116 66.57472 56.81486 76.33458 51.64830 81.50114

Note that forecast function provides a list with forecasts as well as 80%
and 95% prediction limits. To see the elements of the list, we can do

ls(loan.ar2.forecast)
[1] "fitted" "level" "lower" "mean" "method" "model"
[7] "residuals" "upper" "x" "xname"

In this list, “mean” stands for the forecasts while “lower” and “upper”
provide the 80 and 95% lower and upper prediction limits, respectively. To
plot the forecasts and the prediction limits, we have

plot(loan.data[,2],type="p",pch=16,cex=.5,xlab='Date',ylab='Loan
Applications',xaxt='n',xlim=c(1,120))
axis(1, seq(1,120,24), dji.data[seq(1,120,24),1])
lines(105:116,loan.ar2.forecast$mean,col="grey40")
lines(105:116,loan.ar2.forecast$lower[,2])
lines(105:116,loan.ar2.forecast$upper[,2])
legend(72,88,c("y","Forecast","95% LPL","95% UPL"), pch=c(16, NA,
NA,NA),lwd=c(NA,.5,.5,.5),cex=.55,col=c("black","grey40","black",
"black"))



R COMMANDS FOR CHAPTER 5 409

Jun-05Jun-03Jun-01Jun-99

80
70

60
50

Date

Lo
an

 a
pp

lic
at

io
ns

y
Forecast
95% LPL
95% UPL

Example 5.8 The clothing sales data are in the second column of the
array called closales.data in which the first column is the month of the year.
We first plot the data and its ACF and PACF.

par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(closales.data[,2],lag.max=50,type="correlation",main="ACF for
the \n Clothing Sales")

acf(closales.data[,2], lag.max=50,type="partial",main="PACF for
the \n Clothing Sales")
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We now take the seasonal and non-seasonal difference of the data.

wt.closales<-diff(diff(closales.data[,2],lag=1),lag=12)
#Note that the same result would have been obtained with the
#following command when the order of differencing is reversed
#wt.closales<-diff(diff(closales.data[,2],lag=12),lag=1)
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plot(wt.closales,type="o",pch=16,cex=.5,xlab='Date',ylab='w(t)',
xaxt='n')
axis(1, seq(1,144,24), closales.data[seq(13,144,24),1])
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par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(wt.closales,lag.max=50,type="correlation",main="ACF for w(t)")
acf(wt.closales, lag.max=50,type="partial",main="PACF for w(t)")
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We now fit a seasonal ARIMA(0,1,1) × (0,1,1)12 model to the data. We
then plot the residuals plots including ACF and PACF of the residuals. In
the end we plot the true and fitted values.

closales.fit.sar<-arima(closales.data[,2],order=c(0,1,1),
seasonal=list(order = c(0,1,1),period=12),)

res.closales.sar<-as.vector(residuals(closales.fit.sar))
#to obtain the fitted values we use the function fitted() from
the forecast package
library(forecast)
fit.closales.sar<-as.vector(fitted(closales.fit.sar))
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#ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(res.closales.sar,lag.max=50,type="correlation",main="ACF of
the Residuals")

acf(res.closales.sar,lag.max=50,type="partial",main="PACF of the
Residuals")
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#4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.closales.sar,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(res.closales.sar,datax=TRUE)
plot(fit.closales.sar,res.closales.sar,pch=16, xlab='Fitted
Value',ylab='Residual')
abline(h=0)
hist(res.closales.sar,col="gray",xlab='Residual',main='')
plot(res.closales.sar,type="l",xlab='Observation Order',
ylab='Residual')
points(res.closales.sar,pch=16,cex=.5)
abline(h=0)
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plot(closales.data[,2],type="p",pch=16,cex=.5,xlab='Date',
ylab='Clothing Sales',xaxt='n')
axis(1, seq(1,144,24), closales.data[seq(1,144,24),1])
lines(1:144, fit.closales.sar)
legend(2,17500,c("US Clothing Sales","Fitted"), pch=c(16, NA),
lwd=c(NA,.5),cex=.55,col=c("black","black"))
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EXERCISES

5.1 Consider the time series data shown in Chapter 4, Table E4.2.
a. Fit an appropriate ARIMA model to the first 40 observations of

this time series.
b. Make one-step-ahead forecasts of the last 10 observations. Deter-

mine the forecast errors.
c. In Exercise 4.4 you used simple exponential smoothing with

𝜆 = 0.2 to smooth the first 40 time periods of this data and
make forecasts of the last 10 observations. Compare the ARIMA
forecasts with the exponential smoothing forecasts. How well do
both of these techniques work?

5.2 Consider the time series data shown in Table E5.1.
a. Make a time series plot of the data.
b. Calculate and plot the sample autocorrelation and PACF. Is there

significant autocorrelation in this time series?
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TABLE E5.1 Data for Exercise 5.2

Period yt Period yt Period yt Period yt Period yt

1 29 11 29 21 31 31 28 41 36
2 20 12 28 22 30 32 30 42 35
3 25 13 28 23 37 33 29 43 33
4 29 14 26 24 30 34 34 44 29
5 31 15 27 25 33 35 30 45 25
6 33 16 26 26 31 36 20 46 27
7 34 17 30 27 27 37 17 47 30
8 27 18 28 28 33 38 23 48 29
9 26 19 26 29 37 39 24 49 28

10 30 20 30 30 29 40 34 50 32

c. Identify and fit an appropriate ARIMA model to these data. Check
for model adequacy.

d. Make one-step-ahead forecasts of the last 10 observations. Deter-
mine the forecast errors.

5.3 Consider the time series data shown in Table E5.2.
a. Make a time series plot of the data.
b. Calculate and plot the sample autocorrelation and PA. Is there

significant autocorrelation in this time series?
c. Identify and fit an appropriate ARIMA model to these data. Check

for model adequacy.
d. Make one-step-ahead forecasts of the last 10 observations. Deter-

mine the forecast errors.

TABLE E5.2 Data for Exercise 5.3

Period yt Period yt Period yt Period yt Period yt

1 500 11 508 21 475 31 639 41 637
2 496 12 510 22 485 32 679 42 606
3 450 13 512 23 495 33 674 43 610
4 448 14 503 24 500 34 677 44 620
5 456 15 505 25 541 35 700 45 613
6 458 16 494 26 555 36 704 46 593
7 472 17 491 27 565 37 727 47 578
8 495 18 487 28 601 38 736 48 581
9 491 19 491 29 610 39 693 49 598

10 488 20 486 30 605 40 65 50 613
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5.4 Consider the time series model

yt = 200 + 0.7yt−1 + 𝜀t

a. Is this a stationary time series process?
b. What is the mean of the time series?
c. If the current observation is y100 = 750, would you expect the

next observation to be above or below the mean?

5.5 Consider the time series model

yt = 150 − 0.5yt−1 + 𝜀t

a. Is this a stationary time series process?
b. What is the mean of the time series?
c. If the current observation is y100 = 85, would you expect the next

observation to be above or below the mean?

5.6 Consider the time series model

yt = 50 + 0.8yt−1 − 0.15 + 𝜀t

a. Is this a stationary time series process?
b. What is the mean of the time series?
c. If the current observation is y100 = 160, would you expect the

next observation to be above or below the mean?

5.7 Consider the time series model

yt = 20 + 𝜀t + 0.2𝜀t−1

a. Is this a stationary time series process?
b. Is this an invertible time series?
c. What is the mean of the time series?
d. If the current observation is y100 = 23, would you expect the next

observation to be above or below the mean? Explain your answer.

5.8 Consider the time series model

yt = 50 + 0.8yt−1 + 𝜀t − 0.2𝜀t−1

a. Is this a stationary time series process?
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b. What is the mean of the time series?
c. If the current observation is y100 = 270, would you expect the

next observation to be above or below the mean?

5.9 The data in Chapter 4, Table E4.4, exhibits a linear trend. Difference
the data to remove the trend.
a. Fit an ARIMA model to the first differences.
b. Explain how this model would be used for forecasting.

5.10 Table B.1 in Appendix B contains data on the market yield on US
Treasury Securities at 10-year constant maturity.
a. Fit an ARIMA model to this time series, excluding the last

20 observations. Investigate model adequacy. Explain how this
model would be used for forecasting.

b. Forecast the last 20 observations.
c. In Exercise 4.10, you were asked to use simple exponential

smoothing with 𝜆 = 0.2 to smooth the data, and to forecast
the last 20 observations. Compare the ARIMA and exponen-
tial smoothing forecasts. Which forecasting method do you
prefer?

5.11 Table B.2 contains data on pharmaceutical product sales.
a. Fit an ARIMA model to this time series, excluding the last

10 observations. Investigate model adequacy. Explain how this
model would be used for forecasting.

b. Forecast the last 10 observations.
c. In Exercise 4.12, you were asked to use simple exponential

smoothing with 𝜆 = 0.1 to smooth the data, and to forecast
the last 10 observations. Compare the ARIMA and exponen-
tial smoothing forecasts. Which forecasting method do you
prefer?

d. How would prediction intervals be obtained for the ARIMA
forecasts?

5.12 Table B.3 contains data on chemical process viscosity.
a. Fit an ARIMA model to this time series, excluding the last

20 observations. Investigate model adequacy. Explain how this
model would be used for forecasting.

b. Forecast the last 20 observations.
c. Show how to obtain prediction intervals for the forecasts in part

b above.
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5.13 Table B.4 contains data on the annual US production of blue and
gorgonzola cheeses.
a. Fit an ARIMA model to this time series, excluding the last

10 observations. Investigate model adequacy. Explain how this
model would be used for forecasting.

b. Forecast the last 10 observations.
c. In Exercise 4.16, you were asked to use exponential smoothing

methods to smooth the data, and to forecast the last 10 observa-
tions. Compare the ARIMA and exponential smoothing forecasts.
Which forecasting method do you prefer?

d. How would prediction intervals be obtained for the ARIMA
forecasts?

5.14 Reconsider the blue and gorgonzola cheese data in Table B.4 and
Exercise 5.13. In Exercise 4.17 you were asked to take the first
difference of this data and develop a forecasting procedure based on
using exponential smoothing on the first differences. Compare this
procedure with the ARIMA model of Exercise 5.13.

5.15 Table B.5 shows US beverage manufacturer product shipments.
Develop an appropriate ARIMA model and a procedure for fore-
casting for these data. Explain how prediction intervals would be
computed.

5.16 Table B.6 contains data on the global mean surface air temperature
anomaly. Develop an appropriate ARIMA model and a procedure for
forecasting for these data. Explain how prediction intervals would
be computed.

5.17 Reconsider the global mean surface air temperature anomaly data
shown in Table B.6 and used in Exercise 5.16. In Exercise 4.20
you were asked to use simple exponential smoothing with the opti-
mum value of 𝜆 to smooth the data. Compare the results with those
obtained with the ARIMA model in Exercise 5.16.

5.18 Table B.7 contains daily closing stock prices for the Whole Foods
Market. Develop an appropriate ARIMA model and a proce-
dure for these data. Explain how prediction intervals would be
computed.

5.19 Reconsider the Whole Foods Market data shown in Table B.7 and
used in Exercise 5.18. In Exercise 4.22 you used simple exponen-
tial smoothing with the optimum value of 𝜆 to smooth the data.
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Compare the results with those obtained from the ARIMA model in
Exercise 5.18.

5.20 Unemployment rate data is given in Table B.8. Develop an appro-
priate ARIMA model and a procedure for forecasting for these data.
Explain how prediction intervals would be computed.

5.21 Reconsider the unemployment rate data shown in Table B.8 and
used in Exercise 5.21. In Exercise 4.24 you used simple exponen-
tial smoothing with the optimum value of 𝜆 to smooth the data.
Compare the results with those obtained from the ARIMA model in
Exercise 5.20.

5.22 Table B.9 contains yearly data on the international sunspot num-
bers. Develop an appropriate ARIMA model and a procedure for
forecasting for these data. Explain how prediction intervals would
be computed.

5.23 Reconsider the sunspot data shown in Table B.9 and used in Exercise
5.22.
a. In Exercise 4.26 you were asked to use simple exponential

smoothing with the optimum value of 𝜆 to smooth the data, and
to use an exponential smoothing procedure for trends. How do
these procedures compare to the ARIMA model from Exercise
5.22? Compare the results with those obtained in Exercise 4.26.

b. Do you think that using either exponential smoothing procedure
would result in better forecasts than those from the ARIMA
model?

5.24 Table B.10 contains 7 years of monthly data on the number of airline
miles flown in the United Kingdom. This is seasonal data.
a. Using the first 6 years of data, develop an appropriate ARIMA

model and a procedure for these data.
b. Explain how prediction intervals would be computed.
c. Make one-step-ahead forecasts of the last 12 months. Determine

the forecast errors. How well did your procedure work in fore-
casting the new data?

5.25 Reconsider the airline mileage data in Table B.10 and used in Exer-
cise 5.24.
a. In Exercise 4.27 you used Winters’ method to develop a forecast-

ing model using the first 6 years of data and you made forecasts
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for the last 12 months. Compare those forecasts with the ones
you made using the ARIMA model from Exercise 5.24.

b. Which forecasting method would you prefer and why?

5.26 Table B.11 contains 8 years of monthly champagne sales data. This
is seasonal data.
a. Using the first 7 years of data, develop an appropriate ARIMA

model and a procedure for these data.
b. Explain how prediction intervals would be computed.
c. Make one-step-ahead forecasts of the last 12 months. Determine

the forecast errors. How well did your procedure work in fore-
casting the new data?

5.27 Reconsider the monthly champagne sales data in Table B.11 and
used in Exercise 5.26.
a. In Exercise 4.29 you used Winters’ method to develop a forecast-

ing model using the first 7 years of data and you made forecasts
for the last 12 months. Compare those forecasts with the ones
you made using the ARIMA model from Exercise 5.26.

b. Which forecasting method would you prefer and why?

5.28 Montgomery et al. (1990) give 4 years of data on monthly demand
for a soft drink. These data are given in Chapter 4, Table E4.5.
a. Using the first three years of data, develop an appropriate ARIMA

model and a procedure for these data.
b. Explain how prediction intervals would be computed.
c. Make one-step-ahead forecasts of the last 12 months. Determine

the forecast errors. How well did your procedure work in fore-
casting the new data?

5.29 Reconsider the soft drink demand data in Table E4.5 and used in
Exercise 5.28.
a. In Exercise 4.31 you used Winters’ method to develop a forecast-

ing model using the first 7 years of data and you made forecasts
for the last 12 months. Compare those forecasts with the ones
you made using the ARIMA model from the previous exercise.

b. Which forecasting method would you prefer and why?

5.30 Table B.12 presents data on the hourly yield from a chemical process
and the operating temperature. Consider only the yield data in this
exercise. Develop an appropriate ARIMA model and a procedure for
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forecasting for these data. Explain how prediction intervals would
be computed.

5.31 Table B.13 presents data on ice cream and frozen yogurt sales.
Develop an appropriate ARIMA model and a procedure for fore-
casting for these data. Explain how prediction intervals would be
computed.

5.32 Table B.14 presents the CO2 readings from Mauna Loa. Develop
an appropriate ARIMA model and a procedure for forecasting for
these data. Explain how prediction intervals would be computed.

5.33 Table B.15 presents data on the occurrence of violent crimes.
Develop an appropriate ARIMA model and a procedure for fore-
casting for these data. Explain how prediction intervals would be
computed.

5.34 Table B.16 presents data on the US gross domestic product (GDP).
Develop an appropriate ARIMA model and a procedure for fore-
casting for these data. Explain how prediction intervals would be
computed.

5.35 Total annual energy consumption is shown in Table B.17. Develop
an appropriate ARIMA model and a procedure for forecasting for
these data. Explain how prediction intervals would be computed.

5.36 Table B.18 contains data on coal production. Develop an appropri-
ate ARIMA model and a procedure for forecasting for these data.
Explain how prediction intervals would be computed.

5.37 Table B.19 contains data on the number of children 0–4 years old
who drowned in Arizona. Develop an appropriate ARIMA model
and a procedure for forecasting for these data. Explain how predic-
tion intervals would be computed.

5.38 Data on tax refunds and population are shown in Table B.20.
Develop an appropriate ARIMA model and a procedure for fore-
casting for these data. Explain how prediction intervals would be
computed.

5.39 Table B.21 contains data from the US Energy Information Admin-
istration on monthly average price of electricity for the residential
sector in Arizona. This data has a strong seasonal component. Use
the data from 2001–2010 to develop an ARIMA model for this
data. Use this model to simulate one-month-ahead forecasts for the
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remaining years. Calculate the forecast errors. Discuss the reason-
ableness of the forecasts.

5.40 In Exercise 4.44 you were asked to develop a smoothing-type model
for the data in Table B.21. Compare the performance of that mode
with the performance of the ARIMA model from the previous
exercise.

5.41 Table B.22 contains data from the Danish Energy Agency on Danish
crude oil production. Develop an appropriate ARIMA model for this
data. Compare this model with the smoothing models developed in
Exercises 4.46 and 4.47.

5.42 Table B.23 shows Weekly data on positive laboratory test results
for influenza are shown in Table B.23. Notice that these data have
a number of missing values. In exercise you were asked to develop
and implement a scheme to estimate the missing values. This data
has a strong seasonal component. Use the data from 1997 to 2010
to develop an appropriate ARIMA model for this data. Use this
model to simulate one-week-ahead forecasts for the remaining years.
Calculate the forecast errors. Discuss the reasonableness of the
forecasts.

5.43 In Exercise 4.48 you were asked to develop a smoothing–type
model for the data in Table B.23. Compare the performance of that
mode with the performance of the ARIMA model from the previous
exercise.

5.44 Data from the Western Regional Climate Center for the monthly
mean daily solar radiation (in Langleys) at the Zion Canyon, Utah,
station are shown in Table B.24. This data has a strong seasonal com-
ponent. Use the data from 2003 to 2012 to develop an appropriate
ARIMA model for this data. Use this model to simulate one-month-
ahead forecasts for the remaining years. Calculate the forecast errors.
Discuss the reasonableness of the forecasts.

5.45 In Exercise 4.50 you were asked to develop a smoothing-type model
for the data in Table B.24. Compare the performance of that mode
with the performance of the ARIMA model from the previous
exercise.

5.46 Table B.25 contains data from the National Highway Traffic Safety
Administration on motor vehicle fatalities from 1966 to 2012. This
data is used by a variety of governmental and industry groups, as well



EXERCISES 421

as research organizations. Develop an ARIMA model for forecasting
fatalities using the data from 1966 to 2006 to develop the model,
and then simulate one-year-ahead forecasts for the remaining years.
Compute the forecasts errors. How well does this method seem to
work?

5.47 Appendix Table B.26 contains data on monthly single-family res-
idential new home sales from 1963 through 2014. Develop an
ARIMA model for forecasting new home sales using the data from
1963 to 2006 to develop the model, and then simulate one-year-
ahead forecasts for the remaining years. Compute the forecasts
errors. How well does this method seem to work?

5.48 Appendix Table B.27 contains data on the airline best on-time arrival
and airport performance. The data is given by month from Jan-
uary 1995 through February 2013. Develop an ARIMA model for
forecasting on-time arrivals using the data from 1995 to 2008 to
develop the model, and then simulate one-year-ahead forecasts for
the remaining years. Compute the forecasts errors. How well does
this method seem to work?

5.49 Data from the US Census Bureau on monthly domestic automo-
bile manufacturing shipments (in millions of dollars) are shown in
Table B.28. Develop an ARIMA model for forecasting shipments.
Note that there is some apparent seasonality in the data. Why does
this seasonal behavior occur?

5.50 An ARIMA model has been fit to a time series, resulting in

ŷt = 25 + 0.35yt−1 + 𝜀t

a. Suppose that we are at time period T = 100 and y100 = 31. Deter-
mine forecasts for periods 101, 102, 103,… from this model at
origin 100.

b. What is the shape of the forecast function from this model?
c. Suppose that the observation for time period 101 turns out to be

y101 = 33. Revise your forecasts for periods 102, 103,… using
period 101 as the new origin of time.

d. If your estimate �̂�
2 = 2, find a 95% prediction interval on the

forecast of period 101 made at the end of period 100.

5.51 The following ARIMA model has been fit to a time series:

ŷt = 25 + 0.8yt−1 − 0.3yt−2 + 𝜀t
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a. Suppose that we are at the end of time period T = 100 and we
know that y100 = 40 and y99 = 38. Determine forecasts for periods
101, 102, 103,… from this model at origin 100.

b. What is the shape of the forecast function from this model?
c. Suppose that the observation for time period 101 turns out to be

y101 = 35. Revise your forecasts for periods 102, 103,… using
period 101 as the new origin of time.

d. If your estimate �̂�
2 = 1, find a 95% prediction interval on the

forecast of period 101 made at the end of period 100.

5.52 The following ARIMA model has been fit to a time series:

ŷt = 25 + 0.8yt−1 − 0.2𝜀t−1 + 𝜀t

a. Suppose that we are at the end of time period T = 100 and we
know that the forecast for period 100 was 130 and the actual
observed value was y100 = 140. Determine forecasts for periods
101, 102, 103,… from this model at origin 100.

b. What is the shape of the forecast function from this model?
c. Suppose that the observation for time period 101 turns out to be

y101 = 132. Revise your forecasts for periods 102, 103,… using
period 101 as the new origin of time.

d. If your estimate �̂�
2 = 1.5, find a 95% prediction interval on the

forecast of period 101 made at the end of period 100.

5.53 The following ARIMA model has been fit to a time series:

ŷt = 20 + 𝜀t + 0.45𝜀t−1 − 0.3𝜀t−2

a. Suppose that we are at the end of time period T = 100 and we
know that the observed forecast error for period 100 was 0.5
and for period 99 we know that the observed forecast error was
−0.8. Determine forecasts for periods 101, 102, 103,… from this
model at origin 100.

b. What is the shape of the forecast function that evolves from this
model?

c. Suppose that the observations for the next four time periods turn
out to be 17.5, 21.25, 18.75, and 16.75. Revise your forecasts for
periods 102, 103,… using a rolling horizon approach.

d. If your estimate �̂� = 0.5, find a 95% prediction interval on the
forecast of period 101 made at the end of period 100.
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5.54 The following ARIMA model has been fit to a time series:

ŷt = 50 + 𝜀t + 0.5𝜀t−1

a. Suppose that we are at the end of time period T = 100 and
we know that the observed forecast error for period 100 was
2. Determine forecasts for periods 101, 102, 103,… from this
model at origin 100.

b. What is the shape of the forecast function from this model?
c. Suppose that the observations for the next four time periods turn

out to be 53, 55, 46, and 50. Revise your forecasts for periods
102, 103,… using a rolling horizon approach.

d. If your estimate �̂� = 1, find a 95% prediction interval on the
forecast of period 101 made at the end of period 100.

5.55 For each of the ARIMA models shown below, give the forecasting
equation that evolves for lead times 𝜏 = 1, 2,… , L. In each case,
explain the shape of the resulting forecast function over the forecast
lead time.
a. AR(1)
b. AR(2)
c. MA(1)
d. MA(2)
e. ARMA(1, 1)
f. IMA(1, 1)
g. ARIMA(1, 1, 0)

5.56 Use a random number generator and generate 100 observations from
the AR(1) model yt = 25 + 0.8yt−1 + 𝜀t. Assume that the errors are
normally and independently distributed with mean zero and variance
𝜎

2 = 1.
a. Verify that your time series is AR(1).
b. Generate 100 observations for a N(0, 1) process and add these

random numbers to the 100 AR(1) observations in part a to create
a new time series that is the sum of AR(1) and “white noise.”

c. Find the sample autocorrelation and partial autocorrelation func-
tions for the new time series created in part b. Can you identify
the new time series?

d. Does this give you any insight about how the new time series
might arise in practical settings?
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5.57 Assume that you have fit the following model:

ŷt = yt−1 + 0.7𝜀t−1 + 𝜀t

a. Suppose that we are at the end of time period T = 100. What is
the equation for forecasting the time series in period 101?

b. What does the forecast equation look like for future periods 102,
103,… ?

c. Suppose that we know that the observed value of y100 was 250
and forecast error in period 100 was 12. Determine forecasts for
periods 101, 102, 103,… from this model at origin 100.

d. If your estimate �̂� = 1, find a 95% prediction interval on the
forecast of period 101 made at the end of period 100.

e. Show the behavior of this prediction interval for future lead times
beyond period 101. Are you surprised at how wide the interval
is? Does this tell you something about the reliability of forecasts
from this model at long lead times?

5.58 Consider the AR(1) model yt = 25 + 0.75yt−1 + 𝜀t. Assume that the
variance of the white noise process is 𝜎2 = 1.
a. Sketch the theoretical ACF and PACF for this model.
b. Generate 50 realizations of this AR(1) process and compute the

sample ACF and PACF. Compare the sample ACF and the sample
PACF to the theoretical ACF and PACF. How similar to the
theoretical values are the sample values?

c. Repeat part b using 200 realizations. How has increasing the
sample size impacted the agreement between the sample and
theoretical ACF and PACF? Does this give you any insight about
the sample sizes required for model building, or the reliability of
models built to short time series?

5.59 Consider the AR(1) model yt = 25 + 0.75yt−1 + 𝜀t. Assume that the
variance of the white noise process is 𝜎2 = 10.
a. Sketch the theoretical ACF and PACF for this model.
b. Generate 50 realizations of this AR(1) process and compute the

sample ACF and PACF. Compare the sample ACF and the sample
PACF to the theoretical ACF and PACF. How similar to the
theoretical values are the sample values?

c. Compare the results from part b with the results from part b of
Exercise 5.47. How much has changing the variance of the white
noise process impacted the results?
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d. Repeat part b using 200 realizations. How has increasing the
sample size impacted the agreement between the sample and
theoretical ACF and PACF? Does this give you any insight about
the sample sizes required for model building, or the reliability of
models built to short time series?

e. Compare the results from part d with the results from part c of
Exercise 5.47. How much has changing the variance of the white
noise process impacted the results?

5.60 Consider the AR(2) model yt = 25 + 0.6yt−1 + 0.25yt−2 + 𝜀t.
Assume that the variance of the white noise process is 𝜎2 = 1.
a. Sketch the theoretical ACF and PACF for this model.
b. Generate 50 realizations of this AR(1) process and compute the

sample ACF and PACF. Compare the sample ACF and the sample
PACF to the theoretical ACF and PACF. How similar to the
theoretical values are the sample values?

c. Repeat part b using 200 realizations. How has increasing the
sample size impacted the agreement between the sample and
theoretical ACF and PACF? Does this give you any insight about
the sample sizes required for model building, or the reliability of
models built to short time series?

5.61 Consider the MA(1) model yt = 40 + 0.4𝜀t−1 + 𝜀t. Assume that the
variance of the white noise process is 𝜎2 = 2.
a. Sketch the theoretical ACF and PACF for this model.
b. Generate 50 realizations of this AR(1) process and compute the

sample ACF and PACF. Compare the sample ACF and the sample
PACF to the theoretical ACF and PACF. How similar to the
theoretical values are the sample values?

c. Repeat part b using 200 realizations. How has increasing the
sample size impacted the agreement between the sample and
theoretical ACF and PACF? Does this give you any insight about
the sample sizes required for model building, or the reliability of
models built to short time series?

5.62 Consider the ARMA(1, 1) model yt = 50 − 0.7yt−1 + 0.5𝜀t−1 + 𝜀t.
Assume that the variance of the white noise process is 𝜎2 = 2.
a. Sketch the theoretical ACF and PACF for this model.
b. Generate 50 realizations of this AR(1) process and compute the

sample ACF and PACF. Compare the sample ACF and the sample
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PACF to the theoretical ACF and PACF. How similar to the
theoretical values are the sample values?

c. Repeat part b using 200 realizations. How has increasing the
sample size impacted the agreement between the sample and
theoretical ACF and PACF? Does this give you any insight about
the sample sizes required for model building, or the reliability of
models built to short time series?



CHAPTER 6

TRANSFER FUNCTIONS AND
INTERVENTION MODELS

He uses statistics as a drunken man uses lamp posts – For support rather
than illumination

Andrew Lang, Scottish poet

6.1 INTRODUCTION

The ARIMA models discussed in the previous chapter represent a general
class of models that can be used very effectively in time series modeling
and forecasting problems. An implicit assumption in these models is that
the conditions under which the data for the time series process is collected
remain the same. If, however, these conditions change over time, ARIMA
models can be improved by introducing certain inputs reflecting these
changes in the process conditions. This will lead to what is known as
transfer function–noise models. These models can be seen as regression
models in Chapter 3 with serially dependent response, inputs, and the
error term. The identification and the estimation of these models can be
challenging. Furthermore, not all standard statistical software packages
possess the capability to fit such models. So far in this book, we have used

Introduction to Time Series Analysis and Forecasting, Second Edition.
Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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the Minitab and JMP software packages to illustrate time series model
fitting. However, Minitab (version 16) lacks the capability of fitting transfer
function–noise models. Therefore for Chapters 6 and 7, we will use JMP
and R instead.

6.2 TRANSFER FUNCTION MODELS

In Section 5.2, we discussed the linear filter and defined it as

yt = L(xt) =
+∞∑

i=−∞
vixt−i

= v(B)xt,

(6.1)

where v(B) =
∑+∞

i=−∞ viB
i is called the transfer function. Following the

definition of a linear filter, Eq. (6.1) is:

1. Time-invariant as the coefficients {vi} do not depend on time.
2. Physically realizable if vi = 0 for i < 0; that is, the output yt is a

linear function of the current and past values of the input:

yt = v0xt + v1xt−1 +⋯

=
∞∑

i=0

vixt−i.
(6.2)

3. Stable if
∑+∞

i=−∞ |vi| < ∞.

There are two interesting special cases for the input xt:

Impulse Response Function. If xt is a unit impulse at time t = 0, that is,

xt =
{

1, t = 0

0, t ≠ 0
(6.3)

then the output yt is

yt =
∞∑

i=0

vixt−i = vt (6.4)
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Therefore the coefficients vi in Eq. (6.2) are also called the impulse
response function.

Step Response Function. If xt is a unit step, that is,

xt =
{

0, t < 0

1, t ≥ 0
(6.5)

then the output yt is

yt =
∞∑

i=0

vixt−i

=
t∑

i=0

vi,

(6.6)

which is also called the step response function.

A generalization of the step response function is obtained when Eq. (6.5)
is modified so that xt is kept at a certain target value X after t ≥ 0; that is,

xt =
{

0, t < 0

X, t ≥ 0.
(6.7)

Hence we have

yt =
∞∑

i=0

vixt−i

=

(
t∑

i=0

vi

)
X (6.8)

= gX,

where g is called the steady-state gain.
A more realistic representation of the response is obtained by adding a

noise or disturbance term to Eq. (6.2) to account for unanticipated and/or
ignored factors that may have an effect on the response as well. Hence the
“additive” model representation of the dynamic systems is given as

yt = v(B)xt + Nt, (6.9)
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where Nt represents the unobservable noise process. In Eq. (6.9), xt and Nt
are assumed to be independent. The model representation in Eq. (6.9) is
also called the transfer function–noise model.

Since the noise process is unobservable, the predictions of the response
can be made by estimating the impulse response function {vt} . Simi-
lar to our discussion about the estimation of the coefficients in Wold’s
decomposition theorem in Chapter 5, attempting to estimate the infinitely
many coefficients in {vt} is a futile exercise. Therefore also parallel to the
arguments we made in Chapter 5, we will make assumptions about these
infinitely many coefficients to be able to represent them with only a handful
of parameters. Following the derivations we had for the ARMA models,
we will assume that the coefficients in {vt} have a structure and can be
represented as

v(B) =
∞∑

i=0

viB
i = w(B)

𝛿(B)

=
w0 − w1B −⋯ − wsB

s

1 − 𝛿1B −⋯ − 𝛿rBr

(6.10)

The interpretation of Eq. (6.10) is quite similar to the one we had for
ARMA models; the denominator summarizes the infinitely many coeffi-
cients with a certain structure determined by {𝛿i} as in the AR part of the
ARMA model and the numerator represents the adjustment we may like
to make to the strictly structured infinitely many coefficients as in the MA
part of the ARMA model.

So the transfer function–noise model in Eq. (6.9) can be rewritten as

yt =
w(B)
𝛿(B)

xt + Nt,

where w(B)∕𝛿(B) = 𝛿(B)−1w(B) =
∑+∞

i=0 viB
i. For some processes, there

may also be a delay before a change in the input xt shows its effect on
the response yt. If we assume that there is b time units of delay between
the response and the input, a more general representation for the transfer
function–noise models can be obtained as

yt =
w(B)
𝛿(B)

xt−b + Nt

= w(B)
𝛿(B)

Bbxt + Nt

= v(B)xt + Nt, (6.11)
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Since the denominator 𝛿(B) in Eq. (6.11) determines the structure of the
infinitely many coefficients, the stability of v(B) depends on the coef-
ficients in 𝛿(B). In fact v(B) is said to be stable if all the roots of
mr − 𝛿1mr−1 −⋯ − 𝛿r are less than 1 in absolute value.

Once the finite number of parameters in w(B) and 𝛿(B) are estimated,
v(B) can be computed recursively from

𝛿(B)v(B) = w(B)Bb

or

vj − 𝛿1vj−1 − 𝛿2vj−2 −⋯ − 𝛿rvj−r =
{

−wj−b, j = b + 1,… , b + s

0, j > b + s

(6.12)

with vb = w0 and vj = 0 for j < b.
The characteristics of the impulse response function are determined

by the values of b, r, and s. Recall that in univariate ARIMA modeling,
we matched sample autocorrelation and partial autocorrelation functions
computed from a time series to theoretical autocorrelation and partial auto-
correlation functions of specific ARIMA models to tentatively identify an
appropriate model. Thus by knowing the theoretical patterns in the auto-
correlation and partial autocorrelation functions for an AR(1) process, for
example, we can tentatively identify the AR(1) model when sample auto-
correlation and partial autocorrelation functions exhibit the same behavior
for an observed time series. The same approach is used in transfer function
modeling. However, the primary identification tool is the impulse response
function. Consequently, it is necessary that we investigate the nature of
the impulse response function and determine what various patterns in the
weights imply about the parameters b, r, and s.

Example 6.1 For illustration, we will consider cases for b = 2, r ≤ 2,
and s ≤ 2.

Case 1. r = 0 and s = 2.

We have

yt = (w0 − w1B − w2B2)xt−2



432 TRANSFER FUNCTIONS AND INTERVENTION MODELS

From Eq. (6.12), we have

v0 = v1 = 0

v2 = w0

v3 = −w1

v4 = −w2

vj = 0, j > 4

Hence vt will only be nonzero for t = 2, 3, and 4.

Case 2. r = 1 and s = 2.

We have

yt =
(w0 − w1B − w2B2)

1 − 𝛿1B
xt−2

As in the AR(1) model, the stability of the transfer function is achieved for|𝛿1| < 1. Once again from Eq. (6.12), we have

v0 = v1 = 0

v2 = w0

v3 = 𝛿1w0 − w1

v4 = 𝛿
2
1w0 − 𝛿1w1 − w2

vj = 𝛿1vj−1, j > 4

Since |𝛿1| < 1, the impulse response function will approach zero asymp-
totically.

Case 3. r = 2 and s = 2.

We have

yt =
(w0 − w1B − w2B2)

1 − 𝛿1B − 𝛿2B2
xt−2

The stability of the transfer function depends on the roots of the associated
polynomial m2 − 𝛿1m1 − 𝛿2. For stability, the roots obtained by

m1, m2 =
𝛿1 ±

√
𝛿

2
1 + 4𝛿2

2
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must satisfy |m1|, |m2| < 1. This also means that

𝛿2 − 𝛿1 < 1

𝛿2 + 𝛿1 < 1

−1 < 𝛿2 < 1

or

|𝛿1| < 1 − 𝛿2

−1 < 𝛿2 < 1.

This set of two equations implies that the stability is achieved with the
triangular region given in Figure 6.1. Within that region we might have two
real roots or two complex conjugates. For the latter, we need 𝛿

2
1 + 4𝛿2 < 0,

which occurs in the area under the curve within the triangle in Figure 6.1.
Hence for the values of 𝛿1 and 𝛿2 within that curve, the impulse response
function would exhibit a damped sinusoid behavior. Everywhere else in
the triangle, however, it will have an exponential decay pattern.

Note that when 𝛿2 = 0 (i.e., r = 1), stability is achieved when |𝛿1| < 1
as expected.

Table 6.1 summarizes the impulse response functions for the cases we
have just discussed with specific values for the parameters.

2.01.51.00.50.0

1.0

0.5

0.0

–0.5

–1.0

Complex roots

Real roots

δ2

δ1

FIGURE 6.1 The stable region for the impulse response function for r = 2.
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6.3 TRANSFER FUNCTION–NOISE MODELS

As mentioned in the previous section, in the transfer function–noise model
in Eq. (6.11) xt and Nt are assumed to be independent. Moreover, we will
assume that the noise Nt can be represented by an ARIMA(p, d, q) model,

𝜙(B) (1 − B)d

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=𝜑(B)

Nt = 𝜃(B)𝜀t, (6.13)

where {𝜀t} is white noise with E(𝜀t) = 0. Hence the transfer function–noise
model can be written as

yt = v(B)xt + 𝜓(B)𝜀t (6.14)
= w(B)

𝛿(B)
xt−b +

𝜃(B)
𝜑(B)

𝜀t

After rearranging Eq. (6.14), we have

𝛿(B)𝜑(B)
⏟⏞⏟⏞⏟

=𝛿∗(B)

yt = 𝜑(B)w(B)
⏟⏞⏞⏟⏞⏞⏟

=w∗(B)

xt−b + 𝛿(B)𝜃(B)
⏟⏞⏟⏞⏟

=𝜃∗(B)

𝜀t

(6.15)
𝛿
∗(B)yt = w∗(B)xt−b + 𝜃

∗(B)𝜀t

or

yt −
r∗∑

i=1

𝛿
∗
i yt−i = w∗

0xt−b −
s∗∑

i=1

w∗
i xt−b−i + 𝜀t −

q∗∑
i=1

𝜃
∗
i 𝜀t−i. (6.16)

Ignoring the terms involving xt, Eq. (6.16) is the ARMA representation of
the response yt. Due to the addition of xt, the model in Eq. (6.16) is also
called an ARMAX model. Hence the transfer function–noise model as
given in Eq. (6.16) can be interpreted as an ARMA model for the response
with the additional exogenous factor xt.

6.4 CROSS-CORRELATION FUNCTION

For the bivariate time series (xt, yt), we define the cross-covariance func-
tion as

𝛾xy(t, s) = Cov(xt, ys) (6.17)
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Assuming that (xt, yt) is (weakly) stationary, we have

E(xt) = 𝜇x, constant for all t

E(yt) = 𝜇y, constant for all t

Cov(xt, xt+j) = 𝛾x(j), depends only on j

Cov(yt, yt+j) = 𝛾y(j), depends only on j

and

Cov(xt, yt+j) = 𝛾xy(j), depends only on j for j = 0,±1,±2,…

Hence the cross-correlation function (CCF) is defined as

𝜌xy(j) = corr(xt, yt+j) =
𝛾xy(j)√
𝛾x(0)𝛾y(0)

for j = 0,±1,±2,… (6.18)

It should be noted that 𝜌xy(j) ≠ 𝜌xy(−j) but 𝜌xy(j) = 𝜌yx(−j).
We then define the correlation matrix at lag j as

𝜌(j) =
[
𝜌x(j) 𝜌xy(j)
𝜌yx(j) 𝜌y(j)

]

= corr

[(
xt
yt

)
, (xt+j yt+j)

] (6.19)

For a given sample of N observations, the sample cross covariance is
estimated from

�̂�xy(j) =
1
N

N−j∑
t=1

(xt − x̄)(yt+j − ȳ) for j = 0, 1, 2,… (6.20)

and

�̂�xy(j) =
1
N

N+j∑
t=1

(xt−j − x̄)(yt − ȳ) for j = −1,−2,… (6.21)
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Similarly, the sample cross correlations are estimated from

rxy(j) = �̂�xy(j) =
�̂�xy(j)√
�̂�x(0)�̂�y(0)

for j = 0,±1,±2,… (6.22)

where

�̂�x(0) = 1
N

N∑
t=1

(xt − x̄)2 and �̂�y(0) = 1
N

N∑
t=1

(yt − ȳ)2

Sampling properties such as the mean and variance of the sample CCF are
quite complicated. For a few special cases, however, we have the following.

1. For large data sets, E(rxy(j)) ≈ 𝜌xy(j) but the variance is still compli-
cated.

2. If xt and yt are autocorrelated but un(cross)correlated at all lags,
that is, 𝜌xy(j) = 0, we then have E(rxy(j)) ≈ 0 and var(rxy(j)) ≈
(1∕N)

∑∞
i=−∞ 𝜌x(i)𝜌y(i).

3. If 𝜌xy(j) = 0 for all lags j but also xt is white noise, that is, 𝜌x(j) = 0
for j ≠ 0, then we have var(rxy(j)) ≈ 1∕N for j = 0,±1,±2,….

4. If 𝜌xy(j) = 0 for all lags j but also both xt and yt are white noise, then
we have corr(rxy(i), rxy(j)) ≈ 0 for i ≠ j.

6.5 MODEL SPECIFICATION

In this section, we will discuss the issues regarding the specification of the
model order in a transfer function–noise model. Further discussion can be
found in Bisgaard and Kulahci (2006a,b, 2011).

We will first consider the general form of the transfer function–noise
model with time delay given as

yt = v(B)xt + Nt

= w(B)
𝛿(B)

xt−b +
𝜃(B)
𝜑(B)

𝜀t.

(6.23)
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The six-step model specification process is outlined next.

Step 1. Obtaining the preliminary estimates of the coefficients in v(B).

One approach is to assume that the coefficients in v(B) are zero except for
the first k lags:

yt ≅
k∑

i=0

vixt−i + Nt.

We can then attempt to obtain the initial estimates for v1, v2,… , vk through
ordinary least squares. However, this approach can lead to highly inaccurate
estimates as xt may have strong autocorrelation. Therefore a method called
prewhitening of the input is generally preferred.

Method of Prewhitening For the transfer function–noise model in
Eq. (6.23), suppose that xt follows an ARIMA model as

𝜙x(B)(1 − B)d

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=𝜑x(B)

xt = 𝜃x(B)𝛼t, (6.24)

where 𝛼t is white noise with variance 𝜎
2
𝛼
. Equivalently, we have

𝛼t = 𝜃x(B)−1
𝜑x(B)xt. (6.25)

In this notation, 𝜃x(B)−1
𝜑x(B) can be seen as a filter that when applied to

xt generates a white noise time series, hence the name “prewhitening.”
When we apply this filter to the transfer function–noise model in Eq.

(6.23), we obtain

𝜃x(B)−1
𝜑x(B)yt

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=𝛽t

= 𝜃x(B)−1
𝜑x(B)v(B)xt + 𝜃x(B)−1

𝜑x(B)Nt
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=N∗
t

𝛽t = v(B)𝛼t + N∗
t

(6.26)
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The cross covariance between the filtered series 𝛼t and 𝛽t is given by

𝛾
𝛼𝛽

(j) = Cov(𝛼t, 𝛽t+j) = Cov
(
𝛼t, v(B)𝛼t+j + N∗

t+j

)
= Cov

(
𝛼t,

∞∑
i=0

vi𝛼t+j−i + N∗
t+j

)

= Cov

(
𝛼t,

∞∑
i=0

vi𝛼t+j−i

)
+ Cov

(
𝛼t, N∗

t+j

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

(6.27)

=
∞∑

i=0

vi Cov(𝛼t, 𝛼t+j−i)

= vj Var(𝛼t).

Note that Cov(𝛼t, N∗
t+j) = 0 since xt and Nt are assumed to be independent.

From Eq. (6.27), we have 𝛾
𝛼𝛽

= vj𝜎
2
𝛼

and hence

vj =
𝛾
𝛼𝛽

(j)

𝜎2
𝛼

=
𝜌
𝛼𝛽

(j)𝜎
𝛼
𝜎
𝛽

𝜎2
𝛼 (6.28)

= 𝜌
𝛼𝛽

(j)
𝜎
𝛽

𝜎
𝛼

,

where 𝜌
𝛼𝛽

(j) = corr(𝛼t, 𝛽t+j) is the CCF between 𝛼t and 𝛽t. So through the
sample estimates we can obtain the initial estimates for the vj:

v̂j = r
𝛼𝛽

(j)
�̂�
𝛽

�̂�
𝛼

. (6.29)

Equation (6.29) implies that there is a simple relationship between the
impulse response function, v(B), and the cross-correlation function of the
prewhitened response and input series. Hence the estimation of the coef-
ficients in v(B) is possible through this relationship as summarized in
Eq. (6.29). A similar relationship exists when the response and the input
are not prewhitened (see Box et al., 2008). However, the calculations
become fairly complicated when the series are not prewhitened. Therefore
we strongly recommend the use of prewhitening in model identification
and estimation of transfer function–noise models.
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Moreover, since 𝛼t is white noise, the variance of r
𝛼𝛽

(j) is relatively
easier to obtain than that of rxy(j). In fact, from the special case 3 in the
previous section, we have

Var[r
𝛼𝛽

(j)] ≈ 1
N

, (6.30)

if 𝜌
𝛼𝛽

(j) = 0 for all lags j. We can then use ±2∕
√

N as the approximate
95% confidence interval to judge the significance of r

𝛼𝛽
(j).

Step 2. Specifications of the orders r and s.

Once the initial estimates of the vj from Eq. (6.29) are obtained, we can
use them to specify the orders r and s in

v(B) = w(B)
𝛿(B)

Bb

=
w0 − w1B −⋯ − wsB

s

1 − 𝛿1B −⋯ − 𝛿rBr
Bb

The specification of the orders r and s can be accomplished by plotting the
vj. In Figure 6.2, we have an example of the plot of the initial estimates
for the vj in which we can see that v̂0 ≈ 0, implying that there might be a

121086420

1.0

0.8

0.6

0.4

0.2

0.0

lag

v(
t)

FIGURE 6.2 Example of an impulse response function.
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time delay (i.e., b = 1). However, for j > 1, we have an exponential decay
pattern, suggesting that we may have r = 1, which implies

vj − 𝛿vj−1 = 0 for j > 1

and

s = 0.

Hence for this example, our initial attempt in specifying the order of the
transfer function noise model will be

yt =
w0

1 − 𝛿B
xt−1 + Nt. (6.31)

Caution: In model specification, one should be acutely aware of over-
parameterization as for an arbitrary 𝜂, the model in Eq. (6.31) can also be
written as

yt =
w0 (1 − 𝜂B)

(1 − 𝛿B) (1 − 𝜂B)
xt−1 + Nt

=
w0 − w1B

1 − 𝛿1B − 𝛿2B2
xt−1 + Nt.

(6.32)

But the parameters in Eq. (6.32) are not identifiable, since 𝜂 can arbitrarily
take any value.

Step 3. Obtain the estimates of 𝛿i and wi.

From 𝛿(B)v̂(B) = ŵ(B), we can recursively estimate 𝛿i and wi using
Eq. (6.12),

vj − 𝛿1vj−1 − 𝛿2vj−2 −…− 𝛿rvj−r =
{

−wj−b, j = b + 1,… , b + s

0, j > b + s

with vb = w0 and vj = 0 for j < b. Hence for the example in Step 2, we
have

v̂1 = ŵ0

v̂2 − 𝛿v̂1 = 0

⋮
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Step 4. Model the noise.

Once the initial estimates of the model parameters are obtained, the esti-
mated noise can be obtained as

N̂t = yt −
ŵ(B)

𝛿(B)
xt−b̂, (6.33)

To obtain the estimated noise, we define ŷt = (ŵ(B)∕𝛿(B))xt−b̂. We can
then calculate ŷt recursively. To model the estimated noise, we observe
its ACF and PACF and determine the orders of the ARIMA model,
𝜙(B) (1 − B)d Nt = 𝜃(B)𝜀t.

Step 5. Fitting the overall model.

Steps 1 through 4 provide us with the model specifications and the initial
estimates of the parameters in the transfer function–noise model,

yt =
w(B)
𝛿(B)

xt−b +
𝜃(B)

𝜙(B) (1 − B)d
𝜀t.

The final estimates of the model parameters are then obtained by a nonlinear
model fit. Model selection criteria such as AIC and BIC can be used to
pick the “best” model among competing models.

Step 6. Model adequacy checks.

At this step, we check the validity of the two assumptions in the fitted
model:

1. The assumption that the noise 𝜀t is white noise requires the examina-
tion of the residuals �̂�t. We perform the usual checks through analysis
of the sample ACF and PACF of the residuals.

2. We should also check the independence between 𝜀t and xt. For that,
we observe the sample cross-correlation function between �̂�t and
x̂t. Alternatively, we can examine r

�̂��̂�
(j), where 𝛼t = 𝜃x(B)−1

�̂�x(B)xt.
Under the assumption the model is adequate, r

�̂��̂�
(j) will have 0 mean,

1∕
√

N standard deviation, and be independent for different lags j.
Hence we can use ±2∕

√
N as the limit to check the independence

assumption.
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TABLE 6.2 The viscosity, y(t) and temperature, x(t)

x(t) y(t) x(t) y(t) x(t) y(t) x(t) y(t)

0.17 0.30 0.08 0.53 0.00 0.34 −0.04 −0.12
0.13 0.18 0.17 0.54 0.02 0.13 0.11 −0.26
0.19 0.09 0.20 0.42 −0.08 0.21 0.19 0.20
0.09 0.06 0.20 0.37 −0.08 0.06 −0.07 0.18
0.03 0.30 0.27 0.34 −0.26 0.04 −0.10 0.32
0.11 0.44 0.23 0.27 −0.06 −0.06 0.13 0.50
0.15 0.46 0.23 0.34 −0.06 −0.16 0.10 0.40

−0.02 0.44 0.20 0.35 −0.09 −0.47 −0.10 0.41
0.07 0.34 0.08 0.43 −0.14 −0.50 −0.05 0.47
0.00 0.23 −0.16 0.63 −0.10 −0.60 −0.12 0.37

−0.08 0.07 −0.08 0.61 −0.25 −0.49 0.00 0.04
−0.15 0.21 0.14 0.52 −0.23 −0.27 0.03 −0.10
−0.15 0.03 0.17 0.06 −0.11 −0.18 −0.06 −0.34

0.04 −0.20 0.27 −0.11 −0.01 −0.37 0.03 −0.41
0.08 −0.39 0.19 −0.01 −0.17 −0.34 0.04 −0.33
0.10 −0.70 0.10 0.02 −0.23 −0.34 0.09 −0.25
0.07 −0.22 0.13 0.34 −0.28 −0.18 −0.25 −0.18

−0.01 −0.08 −0.05 0.21 −0.26 −0.26 −0.25 −0.06
0.06 0.16 0.13 0.18 −0.19 −0.51 −0.40 0.15
0.07 0.13 −0.02 0.19 −0.26 −0.65 −0.30 −0.32
0.17 0.07 0.04 0.05 −0.20 −0.71 −0.18 −0.32

−0.01 0.23 0.00 0.15 −0.08 −0.82 −0.09 −0.81
0.09 0.33 0.08 0.10 0.03 −0.70 −0.05 −0.87
0.22 0.72 0.08 0.28 −0.08 −0.63 0.09 −0.84
0.09 0.45 0.07 0.20 0.01 −0.29 0.18 −0.73

Example 6.2 In a chemical process it is expected that changes in tem-
perature affect viscosity, a key quality characteristic. It is therefore of great
importance to learn more about this relationship. The data are collected
every 10 seconds and given in Table 6.2 (Note that for each variable the
data are centered by subtracting the respective averages). Figure 6.3 shows
the time series plots of the two variables.

Since the data are taken in time and at frequent intervals, we expect
the variables to exhibit some autocorrelation and decide to fit a transfer
function-noise model following the steps provided earlier.
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FIGURE 6.3 Time series plots of the viscosity, y(t) and temperature, x(t).
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FIGURE 6.4 Sample ACF and PACF of the temperature.

Step 1. Obtaining the preliminary estimates of the coefficients in v(B)

In this step we use the prewhitening method. First we fit an ARIMA
model to the temperature. Since the time series plot in Figure 6.3 shows
that the process is changing around a constant mean and has a constant
variance, we will assume that it is stationary.

Sample ACF and PACF plots in Figure 6.4 suggest that an AR(1) model
should be used to fit the temperature data. Table 6.3 shows that �̂� ≅ 0.73.

TABLE 6.3 AR(1) Model for Temperature, x(t)

Parameter Estimate of the AR(1) model for x(t)

Term Coef SE Coef T P-value
AR 1 0.7292 0.0686 10.63 <0.0001

Number of degrees of freedom: 99
MSE = 0.01009
AIC = −171.08
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FIGURE 6.5 Sample ACF and PACF of the residuals from the AR(1) model for
the Temperature, x(t).

The sample ACF and PACF plots in Figure 6.5 as well as the additional
residuals plots in Figure 6.6 reveal that no autocorrelation is left in the data
and the model gives a reasonable fit.

Hence we define

𝛼t = (1 − 0.73 B)xt

and

𝛽t = (1 − 0.73 B)yt

We then compute the sample cross-correlation of 𝛼t and 𝛽t, r
𝛼𝛽

given in
Figure 6.7. Since the cross correlation at lags 0, 1 and 2 do not seem to be
significant, we conclude that there is a delay of 3 lags (30 seconds) in the
system, that is, b = 3 .
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FIGURE 6.6 Residual plots from the AR(1) model for the temperature.
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From Eq. (6.34), we have

v̂j = r
𝛼𝛽

(j)
�̂�
𝛽

�̂�
𝛼

= r
𝛼𝛽

(j)
0.1881
0.1008

, (6.34)

where �̂�
𝛼

and �̂�
𝛽

are the sample standard deviations of 𝛼t and 𝛽t. The plot
of v̂j is given in Figure 6.8.
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FIGURE 6.8 Plot of the impulse response function for the viscosity data.
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Step 2. Specifications of the orders r and s.

To identify the pattern in Figures 6.7 and 6.8, we can refer back to Table
6.1. From the examples of impulse response functions given in that table,
we may conclude the denominator of the transfer function is a second order
polynomial in B. That is, r = 2 so we have 1 − 𝛿2B − 𝛿2, B2 for the denom-
inator. For the numerator, it seems that s = 0 or w0 would be appropriate.
Hence our tentative impulse response function is the following

vt =
w0

1 − 𝛿1B − 𝛿2B2
B3

.

Step 3. Obtain the estimates of the 𝛿i and wi.

To obtain the estimates of 𝛿i and wi, we refer back to Eq. (6.12) which
implies that we have

v̂0 ≈ 0
v̂1 ≈ 0
v̂2 ≈ 0
v̂3 = 1.21 = ŵ0

v̂4 = 0.37 = 1.21𝛿1

v̂5 = 0.69 = 0.37𝛿1 + 1.21𝛿2

The parameter estimates are then

ŵ0 = 1.21
𝛿1 = 0.31
𝛿2 = 0.48

or

v̂t =
1.21

1 − 0.31 B − 0.48 B2
B.

Step 4. Model the noise.

To model the noise, we first define ŷt =
ŵ(B)

𝛿(B)
xt−3 or

𝛿(B)ŷt = ŵ(B)xt−3

(1 − 0.31 B − 0.48 B2)ŷt = 1.21xt−3

ŷt = 0.31ŷt−1 + 0.48ŷt−2 + 1.21xt−3.
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FIGURE 6.9 Time series plot of N̂t.

We then define

N̂t = yt − ŷt.

Figures 6.9 and 6.10 show the time series plot of N̂t and its sample
ACF/PACF plots respectively which indicate an AR model. Note that
partial autocorrelation at lag 3 is borderline significant. However when
an AR(3) model is fitted, both 𝜙2 and 𝜙3 are found to be insignificant.
Therefore AR(1) model is considered to be the appropriate model.

The parameter estimates for the AR(1) model for N̂t are given in Table
6.4. Diagnostic checks of the residuals through sample ACF and PACF
plots in Figure 6.11 and residuals plots in Figure 6.12 imply that we have
a good fit.
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FIGURE 6.10 Sample ACF and PACF of N̂t.
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TABLE 6.4 AR(1) Model for Nt

Parameter Estimate of the AR(1) model for x(t)

Term Coef SE Coef T P-value
AR 1 0.9426 0.0300 31.42 <0.0001

Number of degrees of freedom: 96
MSE = 0.0141
AIC = −131.9
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FIGURE 6.11 Sample ACF and PACF of the residuals of the AR(1) model
for N̂t.
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Note that we do not necessarily need the coefficients estimates as they
will be re-estimated in the next step. Thus at this step all we need is a
sensible model for N̂t to put into the overall model.

Step 5. Fitting the overall model.

From Step 4, we have the tentative overall model as

yt =
w0

1 − 𝛿1 B − 𝛿2 B2
xt−3 +

1
1 − 𝜙1B

𝜀t.

The calculations that were made so far could have been performed practi-
cally in any statistical package. However as we mentioned at the beginning
of the Chapter, unfortunately only a few software packages have the capa-
bility to fit the overall transfer function-noise model described above. In
the following we provide the output from JMP with which such a model
can be fitted. At the end of the chapter, we also provide the R code that can
be used to fit the transfer function-noise model.

JMP output for the overall transfer function-noise model is provided in
Table 6.5. The estimated coefficients are

ŵ0 = 1.3276, 𝛿1 = 0.3414, 𝛿2 = 0.2667, �̂�1 = 0.8295,

and they are all significant.

Step 6. Model adequacy checks

The sample ACF and PACF of the residuals provided in Table 6.5 show
no indication of leftover autocorrelation. We further check the cross cor-
relation function between 𝛼t = (1 − 0.73B)xt and the residuals as given in
Figure 6.13. There is a borderline significant cross correlation at lag 5.
However we believe that it is at this point safe to claim that the current
fitted model is adequate.

Example 6.2 illustrates transfer function modeling with a single input
series where both the input and output time series were stationary. It is
often necessary to incorporate multiple input time series into the model.
A simple generalization of the single-input transfer function is to form an
additive model for the inputs, say

yt =
m∑

j=1

𝜔j(B)

𝛿j(B)
xj,t−bj

(6.35)
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TABLE 6.5 JMP Output for the Viscosity-Temperature Transfer
Function-Noise Model
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FIGURE 6.13 Sample cross-correlation function between 𝛼1 and the residuals
of the transfer function-noise model.

where each input series has a transfer function representation including
a potential delay. This is an appropriate approach so long as the input
series are uncorrelated with each other. If any of the original series are
nonstationary, then differencing may be required. In general, differencing
of a higher order than one may be required, and inputs and outputs need not
be identically differenced. We now present an example from Montgomery
and Weatherby (1980) where two inputs are used in the model.

Example 6.3 Montgomery and Weatherby (1980) present an example
of modeling the output viscosity of a chemical process as a function of two
inputs, the incoming raw material viscosity x1,t and the reaction temperature
x2,t. Readings are recorded hourly. Figure 6.14 is a plot of the last 100
readings. All three variables appear to be nonstationary.

Standard univariate ARIMA modeling techniques indicate that the input
raw material viscosity can be modeled by an ARIMA(0, 1, 2) or IMA(1,2)
process

(1 − B)x1,t = (1 + 0.59B + 0.32B2)𝛼1,t,

which is then used to prewhiten the output final viscosity. Similarly, an
IMA(1,1) model

(1 − B)x2,t = (1 + 0.45B)𝛼2,t

was used to prewhiten the temperature input. Table 6.6 contains the impulse
response functions between the prewhitened inputs and outputs.

Both impulse response functions in Table 6.6 exhibit approximate expo-
nential decay beginning with lag 2 for the initial viscosity input and lag 3
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FIGURE 6.14 Hourly readings of final product viscosity yt, incoming raw mate-
rial viscosity xr1,t, and reaction temperature x2,t.

for the temperature input. This is consistent with a tentative model identi-
fication of r = 1, s = 0, b = 2 for the transfer function relating initial and
final viscosities and r = 1, s = 0, b = 3 for the transfer function relating
temperature and final viscosity. The preliminary parameter estimates for
these models are

(1 − 0.62B)yt = 0.34x1,t−2

(1 − 0.68B)yt = 0.42x2,t−3.
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TABLE 6.6 Impulse Response Function for Example 6.3

Impulse Response Functions

Lag
Initial and

Final Viscosity
Temperature and
Final Viscosity

0 −0.422 −0.0358
1 −0.1121 −0.1835
2 0.3446 0.0892
3 0.2127 0.4205
4 0.1327 0.2849
5 0.2418 0.3102
6 0.0851 0.0899
7 0.1491 0.1712
8 0.1402 0.0051

The noise time series is then computed from

N̂t = yt −
0.34

1 − 0.62B
x1,t−2 −

0.42
1 − 0.68B

x2,t−3.

The sample ACF and PACF of the noise series indicate that it can be
modeled as

(1 − B)(1 − 0.64B)N̂t = 𝜀t.

Therefore, the combined transfer function plus noise model is

(1 − B)yt =
𝜔10

1 − 𝛿11B
(1 − B)x1,t−2 +

𝜔20

1 − 𝛿21B
(1 − B)x2,t−3 +

𝜀t

1 − 𝜙1B
.

The estimates of the parameters in this model are shown in Table 6.7 along
with other model summary statistics. The t-test statistics indicate that all
model parameters are different from zero.

Residual checks did not reveal any problems with model adequacy. The
chi-square statistic for the first 25 residual autocorrelations was 10.412.
The first 20 cross-correlations between the residuals and the prewhitened
input viscosity produced a chi-square test statistic of 11.028 and the first
20 cross-correlations between the residuals and the prewhitened input
temperature produced a chi-square test statistic of 15.109. These chi-square
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TABLE 6.7 Model Summary Statistics for the Two-Input Transfer
Function Model in Example 6.3

95% Confidence
Limits

Standard t-statistic for
Parameter Estimate Error H0: Parameter = 0 Lower Upper

𝛿11 0.789 0.110 7.163 0.573 1.005
𝜔10 0.328 0.103 3.189 0.127 0.530
𝛿21 0.677 0.186 3.643 0.313 1.041
𝜔20 0.455 0.124 3.667 0.212 0.698
𝜙1 0.637 0.082 7.721 0.475 0.799

test statistics are not significant at the 25% level, so we conclude that the
model is adequate. The correlation matrix of the parameter estimates is

𝛿11 𝜔10 𝛿21 𝜔20 𝜙1

𝛿11 1.00 −0.37 −0.06 0.01 0.02
𝜔10 −0.37 1.00 −0.22 0.00 0.12
𝛿21 −0.06 −0.22 1.00 −0.14 −0.07
𝜔20 −0.01 0.00 −0.14 1.00 −0.08
𝜙1 −0.02 0.07 −0.07 −0.08 1.00

Notice that a complex relationship between two input variables and one out-
put has been modeled with only five parameters and the small off-diagonal
elements in the covariance matrix above imply that these parameter esti-
mates are essentially uncorrelated.

6.6 FORECASTING WITH TRANSFER
FUNCTION–NOISE MODELS

In this section we discuss making 𝜏-step-ahead forecasts using the transfer
function–noise model in Eq. (6.23). We can rearrange Eq. (6.23) and rewrite
it in the difference equation form as

𝛿(B)𝜑(B)yt = w(B)𝜑(B)xt−b + 𝜃(B)𝛿(B)𝜀t (6.36)



FORECASTING WITH TRANSFER FUNCTION–NOISE MODELS 457

or

𝛿
∗(B)yt = w∗(B)xt−b + 𝜃

∗(B)𝜀t. (6.37)

Then at time t + 𝜏, we will have

yt+𝜏 =
r+p∗∑
i=1

𝛿
∗
i yt+𝜏−i + w∗

0xt+𝜏−b −
s+p∗∑
i=1

w∗
i xt+𝜏−b−i + 𝜀t+𝜏 −

q+r∑
i=1

𝜃
∗
i 𝜀t+𝜏−i,

(6.38)

where r is the order of 𝛿(B), p∗ is the order of 𝜑(B)(= 𝜙(B)(1 − B)d), and
s is the order of 𝜔(B), and q is the order of 𝜃(B).

The 𝜏-step ahead MSE forecasts are obtained from

ŷt+𝜏(𝜏) = E[yt+𝜏|yt, yt−1,… , xt, xt−1,…]

=
r+p∗∑
i=1

𝛿
∗
i ŷt+𝜏−i(t) + w∗

0x̂t+𝜏−b(t) (6.39)

−
s+p∗∑
i=1

w∗
i x̂t+𝜏−b−i(t) −

q+r∑
i=1

𝜃
∗
i 𝜀t+𝜏−i for 𝜏 = 1, 2,… , q.

Note that the MA terms will vanish for 𝜏 > q + r. We obtain Eq. (6.39)
using

E(𝜀t+𝜏−i|yt, yt−1,… , xt, xt−1,…) =
{

𝜀t+𝜏−i, i ≥ 𝜏

0, i < 𝜏

and

x̂t(l) = E(xt+l|yt, yt−1,… , xt, xt−1,…)

= E(xt+l|xt, xt−1,…).
(6.40)

Equation (6.40) implies that the relationship between xt and yt is unidi-
rectional and that x̂t(l) is the forecast from the univariate ARIMA model,
𝜙x(B)(1 − B)dxt = 𝜃x(B)𝛼t.

So forecasts ŷt+1(t), ŷt+2(t),… can be computed recursively from
Eqs. (6.39) and (6.40).
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The variance of the forecast errors can be obtained from the infinite MA
representations for xt and Nt given as

xt = 𝜑x(B)−1
𝜃x(B)𝛼t (6.41)

= 𝜓x(B)𝛼t

and

Nt = 𝜑(B)−1
𝜃(B)𝜀t

= 𝜓(B)𝜀t (6.42)

=
∞∑

i=0

𝜓i𝜀t−i.

Hence the infinite MA form of the transfer function–noise model is
given as

yt = v(B)𝜓x(B)
⏟⏞⏞⏟⏞⏞⏟

=v∗(B)

𝛼t−b + 𝜓(B)𝜀t

(6.43)

=
∞∑

i=0

v∗i 𝛼t−b−i+
∞∑

i=0

𝜓i𝜀t−i.

Thus the minimum MSE forecast can be represented as

ŷt+𝜏 (t) =
∞∑

i=𝜏−b

v∗i 𝛼t+𝜏−b−i+
∞∑

i=𝜏
𝜓i𝜀t+𝜏−i (6.44)

and the 𝜏-step-ahead forecast error is

et (𝜏) = yt+𝜏 − ŷt+𝜏 (t)
(6.45)

=
𝜏−b−1∑

i=0

v∗i 𝛼t+𝜏−b−i+
𝜏−1∑
i=0

𝜓i𝜀t+𝜏−i.

As we can see in Eq. (6.45), the forecast error has two components
that are assumed to be independent: forecast errors in forecasting xt,∑𝜏−b−1

i=0 v∗i 𝛼t+𝜏−b−i; and forecast errors in forecasting Nt,
∑𝜏−1

i=0 𝜓i𝜀t+𝜏−i.
The forecast variance is simply the sum of the two variances:

𝜎
2(𝜏) = Var[et(𝜏)]

(6.46)

= 𝜎
2
𝛼

𝜏−b−1∑
i=0

(
v∗i
)2+ 𝜎

2
𝜀

𝜏−1∑
i=0

𝜓
2
i .
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To check the effect of adding xt in the model when forecasting, it may
be appealing to compare the forecast errors between the transfer function–
noise model and the univariate ARIMA model for yt. Let the forecast error
variances for the former and the latter be denoted by 𝜎

2
TFN (𝜏) and 𝜎

2
UM (𝜏),

respectively. We may then consider

R2 (𝜏) = 1 −
𝜎

2
TFN (𝜏)

𝜎
2
UM (𝜏)

=
𝜎

2
UM (𝜏) − 𝜎

2
TFN (𝜏)

𝜎
2
UM (𝜏)

. (6.47)

This quantity is expected to go down significantly if the introduction of
xt were indeed appropriate.

Example 6.4 Suppose we need to make forecasts for the next minute
(6 observations) for the viscosity data in Example 6.2. We first consider
the final model suggested in Example 6.2

yt =
w0

1 − 𝛿1B − 𝛿2B2
xt−3 +

1
1 − 𝜙1B

𝜀t.

After some rearrangement, we have

yt = (𝛿1 + 𝜙1)yt−1 + (𝛿2 − 𝛿1𝜙1)yt−2 − 𝛿2𝜙1yt−3 + w0xt−3

−w0𝜙1xt−4 + 𝜀t − 𝛿1𝜀t−1 − 𝛿2𝜀t−2.

From Eq. (6.38), we have the 𝜏-step ahead prediction as

ŷ1+𝜏 (t) = (𝛿1 + �̂�1)[yt+𝜏−1] + (𝛿2 − 𝛿1�̂�1)[yt+𝜏−2] − 𝛿2�̂�1[yt+𝜏−3]

+ ŵ0[xt+𝜏−3] − ŵ0�̂�1[xt+𝜏−4] + [𝜀t+𝜏 ] − 𝛿1[𝜀t+𝜏−1] − 𝛿2[𝜀t+𝜏−2],

where

[yt+j] =
{

yt+j, j ≤ 0
ŷt+j(t), j > 0

[xt+j] =
{

xt+j, j ≤ 0
x̂t+j(t), j > 0
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and

[𝜀t+j] =
{
�̂�t+j, j ≤ 0
0, j > 0

.

Hence for the current and past response and input values, we can use the
actual data. For the future response and input values we will instead use
their respective forecasts. To forecast the input variable xt, we will use the
AR(1) model, (l − 0.73B)xt = 𝛼t from Example 6.2. As for the error esti-
mates, we can use the residuals from the transfer function-noise model or
for b ≥ 1, the one-step-ahead forecast errors for the current and past values
of the errors, and set the error estimates equal to zero for future values.

We can obtain the variance of the prediction error from Eq. (6.45). The
estimates of 𝜎2

𝛼
and 𝜎

2
𝜀

in Eq. (6.45) can be obtained from the univariate
AR(1) model for xt, and the transfer function-noise model from Example
6.2, respectively. Hence for this example we have �̂�

2
𝛼
= 0.0102 and

�̂�
2
𝜀
= 0.0128. The coefficients in v∗(B) and 𝜓(B) can be calculated from

v∗(B) =
∞∑

i=0

v∗i Bi = v(B)𝜓x(B)

(v∗0 + v∗1B + v∗2B2 +…) =
w0

(1 − 𝛿1B − 𝛿2B2)
(1 − 𝜙xB)−1

or

(v∗0 + v∗1B + v∗2B2 +…)(1 − 𝛿1B − 𝛿2B2)(1 − 𝜙xB) = w0

which means

v∗0 = w0

v∗1 = (𝛿1 + 𝜙x)v
∗
0 = (𝛿1 + 𝜙x)w0

v∗2 = (𝛿1 + 𝜙x)v
∗
1 = (𝛿2 − 𝛿1𝜙x)v∗0

= [(𝛿1 + 𝜙x)2 + (𝛿2 − 𝛿1𝜙x)]w0

⋮

and

𝜓i = 𝜙
i
1 for i = 0, 1, 2…

Hence the estimates of the coefficients in v
∗
(B) and 𝜓(B) can be obtained

by using the estimates of the parameters given in Example 6.2. Note that
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FIGURE 6.15 The time series plots of the actual and 1- to 6-step ahead forecasts
for the viscosity data.

for up to 6-step-ahead forecasts, from Eq. (6.45), we will only need to
calculate v∗0, v∗1 and v∗2.

The time series plot of the forecasts is given in Figure 6.15 together with
the approximate 95% prediction limits calculate.by ±2�̂�(𝜏).

For comparison purposes we fit a univariate ARIMA model for yt.
Following the model identification procedure given in Chapter 5, an AR(3)
model is deemed a good fit. The estimated standard deviations of the
prediction error for the transfer function-noise model and the univariate
model are given in Table 6.8. It can be seen that adding the exogenous
variable xt helps to reduce the prediction error standard deviation.

TABLE 6.8 Estimated standard deviations of the
prediction error for the transfer function-noise model
(TFM) and the univariate model (UM)

Estimated Standard Deviation
of the Prediction Error

Observation TFM UM

101 0.111 0.167
102 0.137 0.234
103 0.149 0.297
104 0.205 0.336
105 0.251 0.362
106 0.296 0.376
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6.7 INTERVENTION ANALYSIS

In some cases, the response yt can be affected by a known event that
happens at a specific time such as fiscal policy changes, introduction of
new regulatory laws, or switching suppliers. Since these interventions do
not have to be quantitative variables, we can represent them with indicator
variables. Consider, for example, the transfer function–noise model as the
following:

yt =
w(B)
𝛿(B)

𝜉
(T)
t + 𝜃(B)

𝜑(B)
𝜀t

(6.48)
= v(B)𝜉(T)

t + Nt,

where 𝜉
(T)
t is a deterministic indicator variable, taking only the values 0

and 1 to indicate nonoccurrence and occurrence of some event. The model
in Eq. (6.48) is called the intervention model. Note that this model has
only one intervention event. Generalization of this model with several
intervention events is also possible.

The most common indicator variables are the pulse and step variables,

P(T)
t =

{
0 if t ≠ T

1 if t = T
(6.49)

and

S(T)
t =

{
0 if t < T

1 if t ≥ T
, (6.50)

where T is a specified occurrence time of the intervention event. The
transfer function operator v(B) = w(B)∕𝛿(B) in Eq. (6.48) usually has a
fairly simple and intuitive form.

Examples of Responses to Pulse and Step Inputs

1. We will first consider the pulse indicator variable. We will further
assume a simple transfer function–noise model as

yt =
w0

1 − 𝛿B
P(T)

t . (6.51)
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After rearranging Eq. (6.51), we have

(1 − 𝛿B) yt = w0P(T)
t =

{
0 if t ≠ T
w0 if t = T

or

yt = 𝛿yt−1 + w0P(T)
t

So we have

yT = w0
yT+1 = 𝛿yT = 𝛿w0
yT+2 = 𝛿yT+1 = 𝛿

2yT = 𝛿
2w0

⋮
yT+k = ⋯ = 𝛿

kyT = 𝛿
kw0,

which means

yt =
{

0 if t < T
w0st−T if t ≥ T

.

2. For the step indicator variable with the same transfer function–noise
model as in the previous case, we have

yt =
w0

1 − 𝛿B
S(T)

t .

Solving the difference equation

(1 − 𝛿B) yt = w0S(T)
t =

{
0 if t < T
w0 if t ≥ T

we have

yT = w0

yT+1 = 𝛿yT + w0 = w0(1 + 𝛿)

yT+2 = 𝛿yT+1 + w0 = w0(1 + 𝛿 + 𝛿
2)

⋮

yT+k = 𝛿yT+k−1 + w0 = w0(1 + 𝛿 +⋯ + 𝛿
k)



464 TRANSFER FUNCTIONS AND INTERVENTION MODELS

or

yt = w0(1 + 𝛿 +⋯ + 𝛿
t−T) for t ≥ T

In intervention analysis, one of the things we could be interested in
may be how permanent the effect of the event will be. Generally, for
yt = (w(B)∕𝛿(B))𝜉(T)

t with stable 𝛿(B), if the intervention event is a pulse,
we will then have a transient (short-lived) effect. On the other hand, if the
intervention event is a step, we will have a permanent effect. In general,
depending on the form of the transfer function, there are many possi-
ble responses to the step and pulse inputs. Table 6.9 displays the output

TABLE 6.9 Output responses to step and pulse inputs.
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TABLE 6.10 Weekly Cereal Sales Data

Week Sales Week Sales Week Sales Week Sales

1 102,450 27 114,980 53 167,170 79 181,560
2 98,930 28 130,250 54 161,200 80 202,130
3 91,550 29 128,070 55 166,710 81 183,740
4 111,940 30 135,970 56 156,430 82 191,880
5 103,380 31 142,370 57 162,440 83 197,950
6 112,120 32 121,300 58 177,260 84 209,040
7 105,780 33 121,380 59 163,920 85 203,990
8 103,000 34 128,790 60 166,040 86 201,220
9 111,920 35 139,290 61 182,790 87 202,370

10 106,170 36 128,530 62 169,510 88 201,100
11 106,350 37 139,260 63 173,940 89 203,210
12 113,920 38 157,960 64 179,350 90 198,770
13 126,860 39 145,310 65 177,980 91 171,570
14 115,680 40 150,340 66 180,180 92 184,320
15 122,040 41 158,980 67 188,070 93 182,460
16 134,350 42 152,690 68 191,930 94 173,430
17 131,200 43 157,440 69 186,070 95 177,680
18 132,990 44 144,500 70 171,860 96 186,460
19 126,020 45 156,340 71 180,240 97 185,140
20 152,220 46 137,440 72 180,910 98 183,970
21 137,350 47 166,750 73 185,420 99 154,630
22 132,240 48 171,640 74 195,470 100 174,720
23 144,550 49 170,830 75 183,680 101 169,580
24 128,730 50 174,250 76 190,200 102 180,310
25 137,040 51 178,480 77 186,970 103 154,080
26 136,830 52 178,560 78 182,330 104 163,560

responses to the unit step and pulse inputs for several transfer function
model structures. This table is helpful in model formulation.

Example 6.5 The weekly sales data of a cereal brand for the last two
years are given in Table 6.10. As can be seen from Figure 6.16, the sales
were showing a steady increase during most of the two-year period. At the
end of the summer of the second year (Week 88), the rival company intro-
duced a similar product into the market. Using intervention analysis, we
want to study whether that had an effect on the sales. For that, we will first
fit an ARIMA model to the preintervention data from Week 1 to Week 87.
The sample ACF and PACF of the data for that time period in Figure 6.17
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FIGURE 6.16 Time series plot of the weekly sales data.

show that the process is nonstationary. The sample ACF and PACF of
the first difference given in Figure 6.18 suggest that an ARIMA(0,1,1)
model is appropriate. Then the intervention model has the following
form:

yt = w0S(88)
t + 1 − 𝜃B

1 − B
𝜀t,

where

S(88)
t =

{
0 if t < 88

1 if t ≥ 88
.
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FIGURE 6.17 Sample ACF and PACF pulse of the sales data for weeks 1–87.
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FIGURE 6.18 Sample ACF and PACF plots of the first difference of the sales
data for weeks 1–87.

This means that for the intervention analysis we assume that the compe-
tition simply slows down (or reverses) the rate of increase in the sales.
To fit the model we use the transfer function model option in JMP with
S(88)

t as the input. The output in Table 6.11 shows that there was indeed a
significant effect on sales due to the introduction of a similar product in
the market. The coefficient estimate ŵ0 = −2369.9 further suggests that
if no appropriate action is taken, the sales will most likely continue to
go down.

Example 6.6 Electricity Consumption and the 1973 Arab Oil Embargo
The natural logarithm of monthly electric energy consumption in megawatt
hours (MWh) for a regional utility from January 1951 to April 1977 is
shown in Figure 6.19. The original data exhibited considerable inequality

y t

FIGURE 6.19 Natural logarithm of monthly electric energy consumption in
megawatt hours (MWh) from January 1951 to April 1977.
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TABLE 6.11 JMP Output for the Intervention Analysis in Example 6.5

Transfer Function Analysis
Time Series Sales
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Row
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Mean 157540.87

Std 29870.833

N 104

Zero Mean ADF 0.0886817

Single Mean ADF -2.381355

Trend ADF -3.770646

Transfer Function Model (1)

Model Summary

DF 101

Sum of Squared Errors 9554575810

Variance Estimate 94599755.5

Standard Deviation 9726.24056

Akaike's 'A' Information Criterion 2186.26524

Schwarz's Bayesian Criterion 2191.5347

RSquare 0.26288323

RSquare Adj 0.25558504

MAPE 4.84506071

MAE 7399.35196

-2LogLikelihood 2182.26524

Parameter Estimates

Variable Term Factor Lag Estimate Std Error t Ratio Prob>|t|

Step Num0.0 0 0 -2359.900 1104.753 -2.15

Sales MA1,1 1 1 0.557 0.076 7.36

(1-B)*Salest=- (2369.8995 * Stept)+(1 - 0.5571*B)*et
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of variance over this time period and the natural logarithm stabilizes the
variance. In November of 1973 the Arab oil embargo affected the supply
of petroleum products to the United States. Following this event, it is
hypothesized that the rate of growth of electricity consumption is smaller
than in the pre-embargo period. Montgomery and Weatherby (1980) tested
this hypothesis using an intervention model.

Although the embargo took effect in November of 1973, we will assume
that first impact of this was not felt until the following month, December,
1973. Therefore, the period from January of 1951 until November of
1973 is assumed to have no intervention effect. These 275 months are
analyzed to produce a univariate ARIMA model for the noise model. Both
regular and seasonal differencing are required to achieve stationary and a
multiplicative (0, 1, 2) × (0, 1, 1)12 was fit to the pre-intervention data. The
model is

(1 − B)(1 − B12) lnNt = (1 − 0.40B − 0.28B2)(1 − 0.64B12)𝜀t.

To develop the intervention, it is necessary to hypothesize the effect that the
oil embargo may have had on electricity consumption. Perhaps the simplest
scenario in which the level of the consumption time series is hypothesized
to be permanently changed by a constant amount. Logarithms can be
thought of as percent change, so this is equivalent to hypothesizing that
the intervention effect is a change in the percent growth of electricity
consumption. Thus the input series would be a step function

St =
{

0, t = 1, 2,… , 275
1, t = 275, 276, 326

.

The intervention model is then

(1 − B)(1 − B12) ln yt = 𝜔0St + (1 − 𝜃1B − 𝜃2B2)(1 − Θ12B12)𝜀t,

where Θ12 is the seasonal MA parameter at lag 12. Table 6.12 gives the
model parameter estimates and the corresponding 95% confidence inter-
vals. Since the 95% confidence intervals do not contain zero, we conclude
that all model parameters are statistically significant. The residual standard
error for this model is 0.029195. Since the model was built to the natural
logarithm of electricity consumption, the standard error has a simple, direct
interpretation: namely, the standard deviation of one-step-ahead forecast
errors is 2.9195 percent of the level of the time series.
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TABLE 6.12 Model Summary Statistics for Example 6.6

95% Confidence Limits

Parameter Point Estimate Lower Upper

𝜔0 −0.07303 −0.11605 −0.03000
𝜃1 0.40170 0.28964 0.51395
𝜃2 0.27739 0.16448 0.39030
Θ12 0.64225 0.54836 0.73604

It is also possible to draw conclusions about the intervention effect.
This effect is a level change of magnitude �̂�0 = −0.07303, expressed in
the natural logarithm metric. The estimate of the intervention effect in
the original MWh metric is e�̂�0 = e−0.07303 = 0.9296. That is, the post-
intervention level of electricity consumption is 92.96 percent of the pre-
intervention level. The effect of the Arab oil embargo has been to reduce the
increase in electricity consumption by 7.04 percent. This is a statistically
significant effect.

In this example, there are 275 pre-intervention observations and 41
post-intervention observations. Generally, we would like to have as many
observations as possible in the post-intervention period to ensure that the
power of the test for the intervention effect is high. However, an extremely
long post-intervention period may allow other unidentified factors to affect
the output, leading to potential confounding of effects. The ability of the
procedure to detect an intervention effect is a function of the number of pre-
and post-intervention observations, the size of the intervention effect, the
form of the noise model, and the parameter values of the process. In many
cases, however, an intervention effect can be identified with relatively short
record of post-intervention observations.

It is interesting to consider alternative hypotheses regarding the impact
of the Arab oil embargo. For example, it may be more reasonable to
suspect that the effect of the oil embargo is not to cause an immediate level
change in electricity consumption, but a gradual one. This would suggest
a model

(1 − B)(1 − B12) ln yt =
𝜔0

1 − 𝛿1B
St + (1 − 𝜃1B − 𝜃2B2)(1 − Θ12B12)𝜀t.

The results of fitting this model to the data are shown in Table 6.13. Note
that the 95% confidence interval for 𝛿1 includes zero, implying that we can
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TABLE 6.13 Model Summary Statistics for the Alternate Intervention
Model for Example 6.6

95% Confidence Limits

Parameter Point Estimate Lower Upper

𝜔0 −0.06553 −0.11918 −0.01187
𝛿1 0.18459 −0.51429 0.88347
𝜃1 0.40351 0.29064 0.51637
𝜃2 0.27634 0.16002 0.38726
Θ12 0.63659 0.54201 0.73117

drop this parameter from the model. This would leave us with the original
intervention model that was fit in Example 6.6. Consequently, we conclude
that the Arab oil embargo induced an immediate permanent change in the
level of electricity consumption.

In some problems there may be multiple intervention effects. Generally,
one indicator variable must be used for each intervention effect. For exam-
ple, suppose that in the electricity consumption example, we think that the
oil embargo had two separate effects: the initial impact beginning in month
276, and a second impact beginning three months later. The intervention
model to incorporate these effects is

(1 − B)(1 − B12) ln yt = 𝜔10S1,t + 𝜔20S2,t + (1 − 𝜃1B − 𝜃2B2)

(1 − Θ12B12)𝜀t,

where

S1,t =
{

0, t = 1, 2, 3,… , 275
1, t = 276, 277,… , 316

and

S2,t =
{

0, t = 1, 2, 3,… , 278
1, t = 279, 277,… , 316

.

In this model the parameters𝜔10 and𝜔20 represent the initial and secondary
effects of the oil embargo and 𝜔10 + 𝜔20 represents the long-term total
impact.
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There have been many other interesting applications of intervention
analysis. For some very good examples, see the following references:

� Box and Tiao (1975) investigate the effects on ozone (O3) concen-
tration in downtown Los Angeles of a new law that restricted the
amount of reactive hydrocarbons in locally sold gasoline, regulations
that mandated automobile engine design changes, and the diversion
of traffic by opening of the Golden State Freeway. They showed that
these interventions did indeed lead to reductions in ozone levels.

� Wichern and Jones (1977) analyzed the impact of the endorsement by
the American Dental Association of Crest toothpaste as an effective
aid in reducing cavities on the market shares of Crest and Colgate
toothpaste. The endorsement led to a significant increase in market
share for Crest. See Bisgaard and Kulahci (2011) for a detailed anal-
ysis of that example.

� Atkins (1979) used intervention analysis to investigate the effect of
compulsory automobile insurance, a company strike, and a change in
insurance companies’ policies on the number of highway accidents
on freeways in British Columbia.

� Izenman and Zabell (1981) study the effect of the 9 November, 1965,
blackout in New York City that resulted from a widespread power
failure, on the birth rate nine months later. An article in The New York
Times in August 1966 noted that births were up, but subsequent med-
ical and demographic articles appeared with conflicting statements.
Using the weekly birth rate from 1961 to 1966, the authors show that
there is no statistically significant increase in the birth rate.

� Ledolter and Chan (1996) used intervention analysis to study the
effect of a speed change on rural interstate highways in Iowa on the
occurrence of traffic accidents.

Another important application of intervention analysis is in the detection
of time series outliers. Time series observations are often influenced by
external disruptive events, such as strikes, social/political events, economic
crises, or wars and civil disturbances. The consequences of these events
are observations that are not consistent with the other observations in the
time series. These inconsistent observations are called outliers. In addition
to the external events identified above, outliers can also be caused by more
mundane forces, such as data recording or transmission errors. Outliers can
have a very disruptive effect on model identification, parameter estimation,
and forecasting, so it is important to be able to detect their presence so that
they can be removed. Intervention analysis can be useful for this.
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There are two kinds of time series outliers: additive outliers and inno-
vation outliers. An additive outlier affects only the level of the t∗ observa-
tion, while an innovation outlier affects all observations yt∗ , yt∗+1, yt∗+2,…
beyond time t∗ where the original outlier effect occurred. An additive
outlier can be modeled as

zt =
𝜃(B)
𝜙(B)

𝜀t + 𝜔I(t∗)
t ,

where I(t∗)
t is an indicator time series defined as

I(t∗)
t =

{
1 if t = t∗

0 if t ≠ t∗
.

An innovation outlier is modeled as

zt =
𝜃(B)
𝜙(B)

(𝜀t + 𝜔I(t∗)
t ).

When the timing of the outlier is known, it is relatively straightforward to
fit the intervention model. Then the presence of the outlier can be tested
by comparing the estimate of the parameter 𝜔, say, �̂�, to its standard error.
When the timing of the outlier is not known, an iterative procedure is
required. This procedure is described in Box, Jenkins, and Reinsel (1994)
and in Wei (2006). The iterative procedure is capable of identifying multiple
outliers in the time series.

6.8 R COMMANDS FOR CHAPTER 6

Example 6.2 The data for this example are in the array called vis-
temp.data of which the two columns represent the viscosity and the tem-
perature respectively.

Below we first start with the prewhitening step.

xt<-vistemp.data[,1]
yt<-vistemp.data[,2]

par(mfrow=c(2,1),oma=c(0,0,0,0))
plot(xt,type="o",pch=16,cex=.5,xlab='Time',ylab=expression

(italic(x[italic(t)])))
plot(yt,type="o",pch=16,cex=.5,xlab='Time',ylab= expression

(italic(y[italic(t)])))
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#Prewhitening
#Model identification for xt
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(xt,lag.max=25,type="correlation",main="ACF for Temperature")
acf(xt, lag.max=25,type="partial",main="PACF for Temperature",

ylab="PACF")
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Fit an AR(1) model to xt.

xt.ar1<-arima(xt,order=c(1, 0, 0),include.mean=FALSE)
xt.ar1

Call:
arima(x = xt, order = c(1, 0, 0), include.mean = FALSE)

Coefficients:
ar1

0.7292
s.e. 0.0686
sigmaˆ2 estimated as 0.01009: log likelihood = 87.54,

aic = -171.08

We perform the residual analysis

res.xt.ar1(-as.vector(residuals(xt.ar1))
#to obtain the fitted values we use the function fitted() from the
forecast package
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library(forecast)
fit.xt.ar1<-as.vector(fitted(xt.ar1))
# ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(res.xt.ar1,lag.max=25,type="correlation",main="ACF of the

Residuals for x(t)")
acf(res.xt.ar1, lag.max=25,type="partial",main="PACF of the

Residuals for x(t)")
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# 4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.xt.ar1,datax=TRUE,pch=16,xlab='Residual',main=")
qqline(res.xt.ar1,datax=TRUE)
plot(fit.xt.ar1,res.xt.ar1,pch=16, xlab='Fitted Value',

ylab='Residual')
abline(h=0)
hist(res.xt.ar1,col="gray",xlab='Residual',main=")
plot(res.xt.ar1,type="l",xlab='Observation Order',ylab='Residual')
points(res.xt.ar1,pch=16,cex=.5)
abline(h=0)

Sample quantiles
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Prewhitening both series using AR(1) coefficients of 0.73.

T<-length(xt)
alphat<-xt[2:T]-0.73*xt[1:(T-1)]
betat<- yt[2:T]-0.73*yt[1:(T-1)]
ralbe<-ccf(betat,alphat,main='CCF of alpha(t) and beta(t)',

ylab='CCF')
abline(v=0,col='blue')
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#Obtain the estimates of vt
vhat<-sqrt(var(betat)/var(alphat))*ralbe$acf
nl<-length(vhat)
plot(seq(-(nl-1)/2,(nl-1)/2,1),vhat,
type='h',xlab='Lag',ylab=expression(italic(hat(v)[italic(j)])))
abline(v=0,col='blue')
abline(h=0)
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#Model the noise using the estimates given in the example

Nhat<-array(0,dim=c(1,T))
for (i in 4:T){
Nhat[i]<-yt[i]+0.31*(Nhat[i-1]-yt[i-1])+0.48*(Nhat[i-2]-yt[i-2])

+1.21*xt[i-3]
}

Nhat<-Nhat[4:T]
plot(Nhat,type="o",pch=16,cex=.5,xlab='Time',ylab=expression

(italic(hat(N)[italic(t)])))
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par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(Nhat,lag.max=25,type="correlation",main="ACF of Nhat")

acf(Nhat, lag.max=25,type="partial",main="PACF of Nhat")
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#Fit AR(1) and AR(3) models for Nhat

Nhat.ar1<-arima(Nhat,order=c(1, 0, 0),include.mean=FALSE)
Nhat.ar3<-arima(Nhat,order=c(3, 0, 0),include.mean=FALSE)
res.Nhat.ar1<-as.vector(residuals(Nhat.ar1))
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library(forecast)
fit.Nhat.ar1<-as.vector(fitted(Nhat.ar1))
# ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(res.Nhat.ar1,lag.max=25,type="correlation",main="ACF of the

Residuals for Nhat")
acf(res.Nhat.ar1, lag.max=25,type="partial",main="PACF of the

Residuals for Nhat")
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# 4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.Nhat.ar1,datax=TRUE,pch=16,xlab='Residual',main=")
qqline(res.Nhat.ar1,datax=TRUE)
plot(fit.xt.ar1,res.xt.ar1,pch=16, xlab='Fitted Value',

ylab='Residual')
abline(h=0)
hist(res.Nhat.ar1,col="gray",xlab='Residual',main=")
plot(res.Nhat.ar1,type="l",xlab='Observation Order',ylab='Residual')
points(res.Nhat.ar1,pch=16,cex=.5)
abline(h=0)
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We now fit the following transfer function–noise model

yt =
w0

1 − 𝛿1B − 𝛿2B2
xt−3 +

1
1 − 𝜙1B

𝜀t.

For that we will use the “arimax” function in TSA package.

library(TSA)

ts.xt<-ts(xt)

lag3.x<-lag(ts.xt,-3)

ts.yt<-ts(yt)

dat3<-cbind(ts.xt,lag3.x,ts.yt)

dimnames(dat3)[[2]]<-c("xt","lag3x","yt")

data2<-na.omit(as.data.frame(dat3))

#Input arguments

#order: determines the model for the error component, i.e. the

#order of the ARIMA model for y(t)

#if there were no x(t)

#xtransf: x(t)

#transfer: the orders (r and s) of the transfer function

visc.tf<-arimax(data2$yt, order=c(1,0,0), xtransf=data.frame(data2$lag3x),

transfer=list(c(2,0)), include.mean = FALSE)

visc.tf

Call:

arimax(x = data2$yt, order = c(1, 0, 0), include.mean = FALSE, xtransf =

data.frame(data2$lag3x), transfer = list(c(2, 0)))

Coefficients:

ar1 data2.lag3x-AR1 data2.lag3x-AR2 data2.lag3x-MA0

0.8295 0.3414 0.2667 1.3276

s.e. 0.0642 0.0979 0.0934 0.1104

sigmaˆ2 estimated as 0.0123: log likelihood = 75.09, aic = -142.18

res.visc.tf<-as.vector(residuals(visc.tf))

library(forecast)

fit.visc.tf <-as.vector(fitted(visc.tf))

# ACF and PACF of the Residuals

par(mfrow=c(1,2),oma=c(0,0,0,0))

acf(res.visc.tf,lag.max=25,type="correlation",main="ACF of the

Residuals \nfor TF-N Model")

acf(res.visc.tf, lag.max=25,type="partial",main="PACF of the

Residuals \nfor TF-N Model")
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# 4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.visc.tf,datax=TRUE,pch=16,xlab='Residual',main=")
qqline(res.visc.tf,datax=TRUE)
plot(fit.visc.tf,res.visc.tf,pch=16, xlab='Fitted Value',

ylab='Residual')
abline(h=0)
hist(res.visc.tf,col="gray",xlab='Residual',main=")
plot(res.visc.tf,type="l",xlab='Observation Order',ylab='Residual')
points(res.visc.tf,pch=16,cex=.5)
abline(h=0)
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T<-length(res.visc.tf)
Ta<-length(alphat)
ccf(res.visc.tf,alphat[(Ta-T+1):Ta],main='CCF of alpha(t) and

\nResiduals of TF-N Model',ylab='CCF')
abline(v=0,col='blue')
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Example 6.4 Note that this is a continuation of Example 6.2. Below we
assume that the reader followed the modeling efforts required in Example
6.2. For variable and model names, please refer to R-code for Example 6.2.

For forecasting we use the formula given in the example. Before we
proceed, we first make forecasts for x(t) based on the AR(1) model. We
will only make 6-step-ahead forecasts for x(t) even if not all of them are
needed due to delay.

tau<-6
xt.ar1.forecast<-forecast(xt.ar1,h=tau)

To make the recursive calculations given in the example simpler, we will
simply extend the xt, yt and residuals vectors as the following.

xt.new<-c(xt,xt.ar1.forecast$mean)
res.tf.new<-c(rep(0,3),res.visc.tf,rep(0,tau))

yt.new<-c(yt,rep(0,tau))

#Note that 3 0's are added to the beginning to compensate for the
#misalignment between xt and the residuals of transfer function
#noise model due to the delay of 3 lags. Last 6 0's are added
#since the future values of the error are assumed to be 0.

We now get the parameter estimates for the transfer function–noise model

phi1<-visc.tf[[1]][1]
d1<-visc.tf[[1]][2]
d2<-visc.tf[[1]][3]
w0<-visc.tf[[1]][4]
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The forecasts are then obtained using:

T<-length(yt)
for (i in (T+1):(T+tau)){

yt.new[i]<-(d1+phi1)*yt.new[i-1]+(d2-d1*phi1)*yt.new[i-2]
-d2*phi1*yt.new[i-3]+w0*xt.new[i-3]
-w0*phi1*xt.new[i-4]+res.tf.new[i]-d1*res.tf.new[i-1]-
d2*res.tf.new[i-1]

}

To calculate the prediction limits, we need to first calculate the estimate
of forecast error variance given in (6.45). As mentioned in the example,
since we only need up to six-step ahead forecasts, we need to calculate
only v∗0, v∗1 and v∗2 and 𝜓0 through 𝜓5.

phix<-xt.ar1[[1]][1]
v0star<-w0
v1star<-(d1+phix)*w0
v2star<-(((d1+phix)ˆ2)+(d2-d1*phix))*w0
vstar<-c(v0star,v1star,v2star)
psi<-phixˆ(0:(tau-1))
sig2.alpha<-xt.ar1$sigma2
sig2.err<-visc.tf$sigma2
sig2.tfn<-rep(0,6)
b<-3
for (i in 1:6) {

if ((i-b)<=0) {
sig2.tfn[i]<- sig2.err*sum(psi[1:i]ˆ2)

}
else {

sig2.tfn[i]<- sig2.alpha*sum(vstar[1:(i-b)]ˆ2)
+ sig2.err*sum(psi[1:i]ˆ2)

}
}

For comparison purposes, we also fit a univariate ARIMA model to y(t).
An AR(3) model is considered even though the AR coefficient at third lag
is borderline significant. The model is given below.

yt.ar3<-arima(yt,order=c(3,0,0),include.mean=FALSE)
> yt.ar3

Series: x
ARIMA(3,0,0) with zero mean
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Coefficients:
ar1 ar2 ar3

0.9852 0.1298 -0.2700
s.e. 0.0954 0.1367 0.0978

sigmaˆ2 estimated as 0.02779: log likelihood=36.32
AIC=-66.65 AICc=-66.23 BIC=-56.23

To calculate the prediction limits, we need to first calculate the estimate of
forecast error variance given in (5.83). To estimate 𝜓0 through 𝜓5 we use
the formula given in (5.46).

psi.yt<-vector()
psi.yt[1:4]<-c(0,0,0,1)
sig2.yt<-yt.ar3$sigma2

for (i in 5:(4+tau-1)){
psi.yt[i]<- yt.ar3[[1]][1]*psi.yt[i-1]+yt.ar3[[1]][2]

*psi.yt[i-2]+yt.ar3[[1]][3]*psi.yt[i-3]
}
psi.yt<-psi.yt[4:(4+tau-1)]
psi.yt
sig2.um<-rep(0,6)
b<-3
for (i in 1:6) {

sig2.um[i]<- sig2.yt*sum(psi.yt[1:i]ˆ2)
}

Thus for the transfer function-noise model and the univariate model we
have the following prediction error variances.

cbind(sig2.tfn,sig2.um
sig2.tfn sig2.um

[1,] 0.01230047 0.02778995
[2,] 0.01884059 0.05476427
[3,] 0.02231796 0.08841901
[4,] 0.04195042 0.11308279
[5,] 0.06331720 0.13109029
[6,] 0.08793347 0.14171137

We can see that adding the exogenous variable x(t) helps to reduce the
prediction error variance by half.
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To plot the forecasts and the prediction limits, we have

plot(yt.new[1:T],type="p",pch=16,cex=.5,xlab='Time',
ylab='Viscosity',xlim=c(1,110))

lines(101:106,yt.new[101:106],col="grey40")
lines(101:106, yt.new[101:106]+2*sqrt(sig2.tfn))
lines(101:106, yt.new[101:106]-2*sqrt(sig2.tfn))
legend(20,-.4,c("y(t)","Forecast","95% LPL","95% UPL"), pch=c(16,
NA, NA,NA),lwd=c(NA,.5,.5,.5),cex=.55,col=c("black","grey40",
"black","black"))
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Example 6.5 The data for this example are in the array called cere-
alsales.data of which the two columns represent the week and the sales
respectively. We first start with the plot of the data

yt.sales<-cerealsales.data[,2]
plot(yt.sales,type="o",pch=16,cex=.5,xlab='Week',ylab='Sales')
abline(v=88)
mtext("Week 88", side=3, at=88)
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We then try to identify the ARIMA model for the pre-intervention data (up
to week 87)

par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(yt.sales[1:87],lag.max=25,type="correlation",main="ACF

for Sales \nWeeks 1-87")
acf(yt.sales[1:87], lag.max=25,type="partial",main="PACF for Sales
\nWeeks 1-87",ylab="PACF")

252015

Lag
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weeks 1-87
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weeks 1-87

105
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2
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6
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252015

Lag

105

The series appears to be non-stationary. We try the first differences

par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(diff(yt.sales[1:87],1),lag.max=25,type="correlation",main="ACF

for First Differences \nWeeks 1-87")

acf(diff(yt.sales[1:87],1), lag.max=25,type="partial",main="PACF
for First Differences \nWeeks 1-87",ylab="PACF")

252015

ACF for first differences
weeks 1-87

ACF for first differences
weeks 1-87

Lag
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ARIMA(0,0,1) model for the first differences seems to be appropriate. We
now fit the transfer function–noise model with the step input. First we
define the step indicator variable.

library(TSA)
T<-length(yt.sales)
St<-c(rep(0,87),rep(1,(T-87)))
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sales.tf<-arimax(diff(yt.sales), order=c(0,0,1), xtransf= St[2:T],
transfer=list(c(0,0)), include.mean = FALSE)

#Note that we adjusted the step function for the differencing we
# did on the yt.sales

sales.tf
Series: diff(yt.sales)
ARIMA(0,0,1) with zero mean

Coefficients:
ma1 T1-MA0

-0.5571 -2369.888
s.e. 0.0757 1104.542

sigmaˆ2 estimated as 92762871: log likelihood=-1091.13
AIC=2186.27 AICc=2186.51 BIC=2194.17

EXERCISES

6.1 An input and output time series consists of 300 observations. The
prewhitened input series is well modeled by an AR(2) model yt =
0.5yt−1 + 0.2yt−2 + 𝛼t. We have estimated �̂�

𝛼
= 0.2 and �̂�

𝛽
= 0.4.

The estimated cross-correlation function between the prewhitened
input and output time series is shown below.

Lag, j 0 1 2 3 4 5 6 7 8 9 10
r𝛼𝛽 (j) 0.01 0.03 −0.03 −0.25 −0.35 −0.51 −0.30 −0.15 −0.02 0.09 −0.01

a. Find the approximate standard error of the cross-correlation func-
tion. Which spikes on the cross-correlation function appear to be
significant?

b. Estimate the impulse response function. Tentatively identify the
form of the transfer function model.

6.2 Find initial estimates of the parameters of the transfer function model
for the situation in Exercise 6.1.

6.3 An input and output time series consists of 200 observations. The
prewhitened input series is well modeled by an MA(1) model
yt = 0.8𝛼t−1 + 𝛼t. We have estimated �̂�

𝛼
= 0.4 and �̂�

𝛽
= 0.6. The

estimated cross-correlation function between the prewhitened input
and output time series is shown below.
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Lag, j 0 1 2 3 4 5 6 7 8 9 10
r𝛼𝛽 (j) 0.01 0.55 0.40 0.28 0.20 0.07 0.02 0.01 −0.02 0.01 −0.01

a. Find the approximate standard error of the cross-correlation func-
tion. Which spikes on the cross-correlation function appear to be
significant?

b. Estimate the impulse response function. Tentatively identify the
form of the transfer function model.

6.4 Find initial estimates of the parameters of the transfer function model
for the situation in Exercise 6.3.

6.5 Write the equations that must be solved in order to obtain initial
estimates of the parameters in a transfer function model with b = 2,
r = 1, and s = 0.

6.6 Write the equations that must be solved in order to obtain initial
estimates of the parameters in a transfer function model with b = 2,
r = 2, and s = 1.

6.7 Write the equations that must be solved in order to obtain initial
estimates of the parameters in a transfer function model with b = 2,
r = 1, and s = 1.

6.8 Consider a transfer function model with b = 2, r = 1, and s = 0.
Assume that the noise model is AR(1). Find the forecasts in terms
of the transfer function and noise model parameters.

6.9 Consider the transfer function model in Exercise 6.8 with b = 2,
r = 1, and s = 0. Now assume that the noise model is AR(2). Find
the forecasts in terms of the transfer function and noise model param-
eters. What difference does this noise model make on the forecasts?

6.10 Consider the transfer function model in the Exercise 6.8 with b =
2, r = 1, and s = 0. Now assume that the noise model is MA(1).
Find the forecasts in terms of the transfer function and noise model
parameters. What difference does this noise model make on the
forecasts?

6.11 Consider the transfer function model

yt =
−0.5 − 0.4B − 0.2B2

1 − 0.5B
xt−2 +

1
1 − 0.5B

𝜀t.

Find the forecasts that are generated from this model.
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6.12 Sketch a graph of the impulse response function for the following
transfer function:

yt =
2B

1 − 0.6B
xt.

6.13 Sketch a graph of the impulse response function for the following
transfer function:

yt =
1 − 0.2B
1 − 0.8B

xt.

6.14 Sketch a graph of the impulse response function for the following
transfer function:

yt =
1

1 − 1.2B + 0.4B2
xt.

6.15 Box, Jenkins, and Reinsel (1994) fit a transfer function model to data
from a gas furnace. The input variable is the volume of methane
entering the chamber in cubic feet per minute and the output is
the concentration of carbon dioxide emitted. The transfer function
model is

yt =
−(0.53 + 0.37B + 0.51B2)

1 − 0.57B
xt +

1
1 − 0.53B + 0.63B2

𝜀t,

where the input and output variables are measured every nine sec-
onds.
a. What are the values of b, s,and r for this model?
b. What is the form of the ARIMA model for the errors?
c. If the methane input was increased, how long would it take before

the carbon dioxide concentration in the output is impacted?

6.16 Consider the global mean surface air temperature anomaly and
global CO2 concentration data in Table B.6 in Appendix B. Fit
an appropriate transfer function model to this data, assuming that
CO2 concentration is the input variable.

6.17 Consider the chemical process yield and uncontrolled operating
temperature data in Table B.12. Fit an appropriate transfer function
model to these data, assuming that temperature is the input variable.
Does including the temperature data improve your ability to forecast
the yield data?
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6.18 Consider the U.S. Internal Revenue tax refunds data in Table B.20.
Fit an appropriate transfer function model to these data, assuming
that population is the input variable. Does including the population
data improve your ability to forecast the tax refund data?

6.19 Find time series data of interest to you where a transfer function–
noise model would be appropriate.
a. Identify and fit the appropriate transfer function–noise model.
b. Use an ARIMA model to fit only the yt series.
c. Compare the forecasting performance of the two models from

parts a and b.

6.20 Find a time series of interest to you that you think may be impacted
by an outlier. Fit an appropriate ARIMA model to the time series
and use either the additive outlier or innovation outlier model to see
if the potential outlier is statistically significant.

6.21 Table E6.1 provides 100 observations on a time series.

TABLE E6.1 Time Series Data for Exercise 6.21 (100
observations, read down then across)

86.74 83.79 88.42 84.23 82.20
85.32 84.04 89.65 83.58 82.14
84.74 84.10 97.85 84.13 81.80
85.11 84.85 88.50 82.70 82.32
85.15 87.64 87.06 83.55 81.53
84.48 87.24 85.20 86.47 81.73
84.68 87.52 85.08 86.21 82.54
84.68 86.50 84.44 87.02 82.39
86.32 85.61 84.21 86.65 82.42
88.00 86.83 86.00 85.71 82.21
86.26 84.50 85.57 86.15 82.77
85.83 84.18 83.79 85.80 83.12
83.75 85.46 84.37 85.62 83.22
84.46 86.15 83.38 84.23 84.45
84.65 86.41 85.00 83.57 84.91
84.58 86.05 84.35 84.71 85.76
82.25 86.66 85.34 83.82 85.23
83.38 84.73 86.05 82.42 86.73
83.54 85.95 84.88 83.04 87.00
85.16 86.85 85.42 83.70 85.06
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a. Plot the data.
b. There is an apparent outlier in the data. Use intervention analysis

to investigate the presence of this outlier.

6.22 Table E6.2 provides 100 observations on a time series. These data
represent weekly shipments of a product.
a. Plot the data.
b. Note that there is an apparent increase in the level of the time

series at about observation 80. Management suspects that this
increase in shipments may be due to a strike at a competitor’s
plant. Build an appropriate intervention model for these data.
Do you think that the impact of this intervention is likely to be
permanent?

TABLE E6.2 Time Series Data for
Exercise 6.22 (100 observations, read
down then across)

1551 1556 1613 1552 1838
1548 1557 1595 1558 1838
1554 1564 1601 1543 1834
1557 1592 1587 1552 1840
1552 1588 1568 1581 1832
1555 1591 1567 1578 1834
1556 1581 1561 1587 1842
1574 1572 1558 1583 1840
1591 1584 1576 1573 1840
1575 1561 1572 1578 1838
1571 1558 1554 1574 1844
1551 1571 1560 1573 1848
1558 1578 1550 1559 1849
1561 1580 1566 1552 1861
1560 1577 1560 1563 1865
1537 1583 1570 1555 1874
1549 1564 1577 1541 1869
1551 1576 1565 1547 1884
1567 1585 1571 1553 1886
1553 1601 1559 1538 1867

6.23 Table B.23 contains data on Danish crude oil production. Histor-
ically, oil production increased steadily from 1972 up to about
2000, when the Danish government presented an energy strategy
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containing a number of ambitious goals for national energy pol-
icy up through 2025. The aim is to reduce Denmark’s dependency
on coal, oil and natural gas. The data exhibit a marked downturn
in oil production starting in 2005. Fit and analyze an appropriate
intervention model to these data.

6.24 Table B.25 contains data on annual US motor vehicle fatalities from
1966 through 2012, along with data on several other factors. Fit a
transfer function model to these data using the number of licensed
drivers as the input time series. Compare this transfer function model
to a univariate ARIMA model for the annual fatalities data.

6.25 Table B.25 contains data on annual US motor vehicle fatalities from
1966 through 2012, along with data on several other factors. Fit a
transfer function model to these data using the annual unemployment
rate as the input time series. Compare this transfer function model
to a univariate ARIMA model for the annual fatalities data. Why
do you think that the annual unemployment rate might be a good
predictor of fatalities?

6.26 Table B.25 contains data on annual US motor vehicle fatalities
from 1966 through 2012, along with data on several other factors.
Fit a transfer function model to these data using both the num-
ber of licensed drivers and the annual unemployment rate as the
input time series. Compare this two-input transfer function model
to a univariate ARIMA model for the annual fatalities data, and
to the two univariate transfer function models from Exercises 6.24
and 6.25.





CHAPTER 7

SURVEY OF OTHER FORECASTING
METHODS

I always avoid prophesying beforehand, because it is a much better policy
to prophesy after the event has already taken place.

SIR WINSTON CHURCHILL, British Prime Minister

7.1 MULTIVARIATE TIME SERIES MODELS AND
FORECASTING

In many forecasting problems, it may be the case that there are more than
just one variable to consider. Attempting to model each variable individ-
ually may at times work. However, in these situations, it is often the case
that these variables are somehow cross-correlated, and that structure can
be effectively taken advantage of in forecasting. In the previous chapter we
explored this for the “unidirectional” case, where it is assumed that certain
inputs have impact on the variable of interest but not the other way around.
Multivariate time series models involve several variables that are not only
serially but also cross-correlated. As in the univariate case, multivariate
or vector ARIMA models can often be successfully used in forecasting
multivariate time series. Many of the concepts we have seen in Chapter 5

Introduction to Time Series Analysis and Forecasting, Second Edition.
Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci.
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will be directly applicable in the multivariate case as well. We will first
start with the property of stationarity.

7.1.1 Multivariate Stationary Process

Suppose that the vector time series Yt = (y1t, y2t,… , ymt) consists of m
univariate time series. Then Yt with finite first and second order moments
is said to be weakly stationary if

(i) E(Yt) = E(Yt+s) = 𝛍, constant for all s
(ii) Cov(Yt) = E[(Yt − 𝛍)(Yt − 𝛍)′] = 𝚪(0)

(iii) Cov(Yt, Yt+s) = 𝚪(s) depends only on s

Note that the diagonal elements of 𝚪(s) give the autocovariance function
of the individual time series, 𝛾ii(s). Similarly, the autocorrelation matrix is
given by

𝛒(s) =

⎡⎢⎢⎢⎢⎣

𝜌11(s) 𝜌12(s) … 𝜌1m(s)
𝜌21(s) 𝜌22(s) … 𝜌2m(s)
⋮ ⋮ ⋱ ⋮
𝜌m1(s) 𝜌m2(s) … 𝜌mm(s)

⎤⎥⎥⎥⎥⎦
(7.1)

which can also be obtained by defining

V = diag{𝛾11(0), 𝛾22(0),… , 𝛾mm(0)}

=

⎡⎢⎢⎢⎢⎣

𝛾11(0) 0 … 0
0 𝛾22(0) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝛾mm(0)

⎤⎥⎥⎥⎥⎦
(7.2)

We then have

𝛒(s) = V−1∕2𝚪(s)V−1∕2 (7.3)

We can further show that 𝚪(s) = 𝚪(−s)′ and 𝛒(s) = 𝛒(−s)′.

7.1.2 Vector ARIMA Models

The stationary vector time series can be represented with a vector ARMA
model given by

𝚽(B)Yt = 𝛅 +𝚯(B)𝛆t (7.4)
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where 𝚽(B) = I −𝚽1B −𝚽2B2 −⋯ −𝚽pBp, 𝚯(B) = I −𝚯1B −𝚯2B2 −
⋯ −𝚯qBq, and 𝛆t represents the sequence of independent random vectors
with E(𝛆t) = 0 and Cov(𝛆t) = 𝚺. Since the random vectors are independent,
we have Γ

𝜀
(s) = 0 for all s ≠ 0.

The process Yt in Eq. (7.4) is stationary if the roots of

det[𝚽(B)] = det[I −𝚽1B −𝚽2B2 −⋯ −𝚽pBp] = 0 (7.5)

are all greater than one in absolute value. Then the process Yt is also said
to have infinite MA representation given as

Yt = 𝛍 +𝚿(B)𝛆t

= 𝛍 +
∞∑

i=0

𝚿i𝛆t−i
(7.6)

where 𝚿(B) = 𝚽(B)−1𝚯(B), 𝜇 = 𝚽(B)−1
𝛿, and

∑∞
i=0 ‖𝚿i‖2

< ∞.
Similarly, if the roots of det[𝚯(B)] = det[I −𝚯1B −𝚯2B2−

⋯ −𝚯qBq] = 0 are greater than unity in absolute value the process
Yt in Eq. (7.4) is invertible.

To illustrate the vector ARMA model given in Eq. (7.4), consider the
bivariate ARMA(1,1) model with

𝚽(B) = I −𝚽1B

=
[

1 0
0 1

]
−
[
𝜙11 𝜙12
𝜙21 𝜙22

]
B

and

𝚯(B) = I −𝚯1B

=
[

1 0
0 1

]
−
[
𝜃11 𝜃12
𝜃21 𝜃22

]
B

Hence the model can be written as[[
1 0
0 1

]
−
[
𝜙11 𝜙12
𝜙21 𝜙22

]
B

]
Yt =
[
𝛿1
𝛿2

]
+
[[

1 0
0 1

]
−
[
𝜃11 𝜃12
𝜃21 𝜃22

]
B

] [
𝜀1,t
𝜀2,t

]

or

y1,t = 𝛿1 + 𝜙11y1,t−1 + 𝜙12y2,t−1 + 𝜀1,t − 𝜃11𝜀1,t−1 − 𝜃12𝜀2,t−1

y2,t = 𝛿2 + 𝜙21y1,t−1 + 𝜙22y2,t−1 + 𝜀2,t − 𝜃21𝜀1,t−1 − 𝜃22𝜀2,t−1
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As in the univariate case, if nonstationarity is present, through an appropri-
ate degree of differencing a stationary vector time series may be achieved.
Hence the vector ARIMA model can be represented as

𝚽(B)D(B)Yt = 𝛅 +𝚯(B)𝛆t

where

D(B) = diag{(1 − B)d1 , (1 − B)d2 ,… , (1 − B)dm }

=
⎡⎢⎢⎢⎣
(1 − B)d1 0 … 0

0 (1 − B)d2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … (1 − B)dm

⎤⎥⎥⎥⎦
However, the degree of differencing is usually quite complicated and has
to be handled with care (Reinsel (1997)).

The identification of the vector ARIMA model can indeed be fairly
difficult. Therefore in the next section we will concentrate on the more
commonly used and intuitively appealing vector autoregressive models.
For a more general discussion see Reinsel (1997), Lütkepohl (2005), Tiao
and Box (1981), Tiao and Tsay (1989), Tsay (1989), and Tjostheim and
Paulsen (1982).

7.1.3 Vector AR (VAR) Models

The vector AR(p) model is given by

𝚽(B)Yt = 𝛅 + 𝛆t (7.7)

or

Yt = 𝛅 +
p∑

i=1

𝚽iYt−i + 𝛆t

For a stationary vector AR process, the infinite MA representation is
given as

Yt = 𝛍 +𝚿(B)𝛆t (7.8)

where 𝚿(B) = I +𝚿1B +𝚿2B2 +⋯ and 𝛍 = 𝚽(B)−1
𝛿. Hence we have

E(Yt) = 𝛍 and Cov(𝛆t, Yt−s) = 0 for any s > 0 since Yt−s is only concerned
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with 𝛆t−s, 𝛆t−s−1,…, which are not correlated with 𝛆t. Moreover, we also
have

Cov(𝛆t, Yt) = Cov
(
𝛆t, 𝛆t +𝚿1𝛆t−1 +𝚿2𝛆t−2 +⋯

)
= Cov(𝛆t, 𝛆t)

= 𝚺

and

𝚪(s) = Cov(Yt−s, Yt) = Cov

(
Yt−s, 𝛅 +

p∑
i=1

𝚽iYt−i + 𝛆t

)

= Cov

(
Yt−s,

p∑
i=1

𝚽iYt−i

)
+ Cov(Yt−s, 𝛆t)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=0 for s>0

(7.9)=
p∑

i=1

Cov(Yt−s,𝚽iYt−i)

=
p∑

i=1

Cov(Yt−s, Yt−i)𝚽′
i

Hence we have

𝚪(s) =
p∑

i=1

𝚪(s − i)𝚽′
i (7.10)

and

𝚪(0) =
p∑

i=1

𝚪 (−i)𝚽′
i + 𝚺 (7.11)

As in the univariate case, the Yule–Walker equations can be obtained from
the first p equations as

⎡⎢⎢⎢⎢⎣

𝚪(1)

𝚪(2)

⋮

𝚪(p)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝚪(0) 𝚪(1)′ … 𝚪(p − 1)′

𝚪(1) 𝚪(0) … 𝚪(p − 2)′

⋮ ⋮ ⋱ ⋮

𝚪(p − 1) 𝚪(p − 2) … 𝚪(0)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝚽′
1

𝚽′
2

⋮

𝚽′
p

⎤⎥⎥⎥⎥⎦
(7.12)

The model parameters in 𝚽 and 𝚺 can be estimated from Eqs. (7.11) and
(7.12).
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For the VAR(p), the autocorrelation matrix in Eq. (7.3) will exhibit a
decaying behavior following a mixture of exponential decay and damped
sinusoid.

Example 7.1 VAR(1) Model The autocovariance matrix for VAR(1) is
given as

𝚪(s) = 𝚪(s − 1)𝚽′ = (𝚪(s − 2)𝚽′)𝚽′ = ⋯ = 𝚪(0)(𝚽′)s (7.13)

and

𝛒(s) = V−1∕2𝚪(s)V−1∕2

= V−1∕2𝚪(0)(𝚽′)sV−1∕2

= V−1∕2𝚪(0)V−1∕2V1∕2(𝚽′)sV−1∕2

= 𝛒(0)V1∕2(𝚽′)sV−1∕2 (7.14)

where V = diag{𝛾11(0), 𝛾22(0),… , 𝛾mm(0)}. The eigenvalues of 𝚽 deter-
mine the behavior of the autocorrelation matrix. In fact, if the eigenvalues
of 𝚽 are real and/or complex conjugates, the behavior will be a mixture of
the exponential decay and damped sinusoid, respectively.

Example 7.2 The pressure readings at two ends of an industrial furnace
are taken every 10 minutes and given in Table 7.1. It is expected the
individual time series are not only autocorrelated but also cross-correlated.
Therefore it is decided to fit a multivariate time series model to this data.
The time series plots of the data are given in Figure 7.1. To identify the
model we consider the sample ACF plots as well as the cross correlation
of the time series given in Figure 7.2. These plots exhibit an exponential
decay pattern, suggesting that an autoregressive model may be appropriate.
It is further conjectured that a VAR(1) or VAR(2) model may provide a
good fit. Another approach to model identification would be to fit ARIMA
models to the individual time series and consider the cross correlation of
the residuals. For that, we fit an AR(1) model to both time series. The
cross-correlation plot of the residuals given in Figure 7.3 further suggests
that the VAR(1) model may indeed provide an appropriate fit. Using the
SAS ARIMA procedure given in Table 7.2, we fit a VAR(1) model. The
SAS output in Table 7.3 confirms that the VAR(1) model provides an
appropriate fit for the data. The time series plots of the residuals and the
fitted values are given in Figures 7.3, 7.4, and 7.5.
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FIGURE 7.1 Time series plots of the pressure readings at both ends of the
furnace.
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FIGURE 7.2 The sample ACF plot for: (a) the pressure readings at the front
end of the furnace, y1; (b) the pressure readings at the back end of the furnace, y2;
(c) the cross correlation between y1 and y2; and (d) the cross correlation between
the residuals from the AR(1) model for front pressure and the residuals from the
AR(1) model for back pressure.
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FIGURE 7.3 Time series plots of the residuals from the VAR(1) model.

7.2 STATE SPACE MODELS

In this section we give a brief introduction to an approach to forecasting
based on the state space model. This is a very general approach that can
include regression models and ARIMA models. It can also incorporate
a Bayesian approach to forecasting and models with time-varying coef-
ficients. State space models are based on the Markov property, which
implies the independence of the future of a process from its past, given
the present system state. In this type of system, the state of the process
at the current time contains all of the past information that is required to
predict future process behavior. We will let the system state at time t be

TABLE 7.2 SAS Commands
to Fit a VAR(1) Model to the
Pressure Data

proc varmax data=simul4;
model y1 y2 / p=1 ;
output out=residuals;

run;

proc print data=residuals;
run;
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TABLE 7.3 SAS Output for the VAR(1) Model for the Pressure Data

The VARMAX Procedure

Type of Model VAR(1)
Estimation Method Least Squares Estimation

Constant Estimates

Variable Constant

y1 -6.76331
y2 27.23208

AR Coefficient Estimates

Lag Variable y1 y2

1 y1 0.73281 0.47405
y2 0.41047 -0.56040

Schematic
Representation of

Parameter Estimates

Variable/
Lag C AR1

y1 - ++
y2 + +-

+ is > 2*std error,
- is < -2*std error,

. is between,
* is N/A

Model Parameter Estimates

Standard
Equation Parameter Estimate Error t Value Pr > |t| Variable

y1 CONST1 -6.76331 1.18977 -5.68 0.0001 1
AR1_1_1 0.73281 0.03772 19.43 0.0001 y1(t-1)
AR1_1_2 0.47405 0.06463 7.33 0.0001 y2(t-1)

y2 CONST2 27.23208 1.11083 24.51 0.0001 1
AR1_2_1 0.41047 0.03522 11.66 0.0001 y1(t-1)
AR1_2_2 -0.56040 0.06034 -9.29 0.0001 y2(t-1)

Covariances of Innovations

Variable y1 y2

y1 1.25114 0.59716
y2 0.59716 1.09064

Information
Criteria

AICC 0.041153
HQC 0.082413
AIC 0.040084
SBC 0.144528
FPEC 1.040904
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FIGURE 7.4 Actual and fitted values for the pressure readings at the front end
of the furnace.
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FIGURE 7.5 Actual and fitted values for the pressure readings at the back end
of the furnace.
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represented by the state vector Xt. The elements of this vector are not
necessarily observed. A state space model consists of two equations: an
observation or measurement equation that describes how time series
observations are produced from the state vector, and a state or system
equation that describes how the state vector evolves through time. We will
write these two equations as

yt = h′
tXt + 𝜀t (observation equation) (7.15)

and

Xt = AXt−1 + Gat (state equation) (7.16)

respectively. In the observation equation ht is a known vector of constants
and 𝜀t is the observation error. If the time series is multivariate then yt and
𝜀t become vectors yt and 𝜀t, and the vector ht becomes a matrix H. In the
state equation A and G are known matrices and at is the process noise.
Note that the state equation resembles a multivariate AR(1) model, except
that it represents the state variables rather than an observed time series,
and it has an extra matrix G.

The state space model does not look like any of the time series models
we have studied previously. However, we can put many of these models in
the state space form. This is illustrated in the following two examples.

Example 7.3 Consider an AR(1) model, which we have previously
written as

yt = 𝜙yt−1 + 𝜀t

In this case we let Xt = yt and at = 𝜀t and write the state equation as

Xt = AXt−1 + Gat

[yt] = [𝜙][yt−1] + [1]𝜀t

and the observation equation is

yt = h′
tXt + 𝜀t

yt = [1]Xt + 0

yt = 𝜙yt−1 + 𝜀t

In the AR(1) model the state vector consists of previous consecutive obser-
vations of the time series yt.
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Any ARIMA model can be written in the state space form. Refer to
Brockwell and Davis (1991).

Example 7.4 Now let us consider a regression model with one predictor
variable and AR(1) errors. We will write this model as

yt = 𝛽0 + 𝛽1pt + 𝜀t

𝜀t = 𝜙𝜀t−1 + at

where pt is the predictor variable and 𝜀t is the AR(1) error term. To write
this in state space form, define the state vector as

Xt =
⎡⎢⎢⎣

𝛽0
𝛽1

pt − 𝜀t

⎤⎥⎥⎦
The vector ht and the matrix A are

ht =
⎡⎢⎢⎣

1
pt
1

⎤⎥⎥⎦ , A =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 𝜙

⎤⎥⎥⎦
and the state space representation of this model becomes

yt = [1, pt, 1]Xt + 𝜀t

Xt =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 𝜙

⎤⎥⎥⎦
⎡⎢⎢⎣

𝛽0
𝛽1

pt−1 − 𝜀t−1

⎤⎥⎥⎦ +
⎡⎢⎢⎣

0
0

𝜙𝜀t−1

⎤⎥⎥⎦
Multiplying these equations out will produce the time series regression
model with one predictor and AR(1) errors.

The state space formulation does not admit any new forecasting tech-
niques. Consequently, it does not produce better forecasts than any of the
other methods. The state space approach does admit a Bayesian formulation
of the problem, in which the model parameters have a prior distribution that
represents our degree of belief concerning the values of these coefficients.
Then after some history of the process (observation) becomes available, this
prior distribution is updated into a posterior distribution. Another formu-
lation allows the coefficients in the regression model to vary through time.
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The state space formulation does allow a common mathematical frame-
work to be used for model development. It also permits relatively easy
generalization of many models. This has some advantages for researchers.
It also would allow common computer software to be employed for mak-
ing forecasts from a variety of techniques. This could have some practical
appeal to forecasters.

7.3 ARCH AND GARCH MODELS

In the standard regression and time series models we have covered so far,
many diagnostic checks were based on the assumptions that we imposed
on the errors: independent, identically distributed with zero mean, and
constant variance. Our main concern has mostly been about the indepen-
dence of the errors. The constant variance assumption is often taken as
a given. In many practical cases and particularly in finance, it is fairly
common to observe the violation of this assumption. Figure 7.6, for exam-
ple, shows the S&P500 Index (weekly close) from 1995 to 1998. Most of
the 1990s enjoyed a bull market up until toward the end when the dot-
com bubble burst. The worrisome market resulted in high volatility (i.e.,
increasing variance). A linear trend model, an exponential smoother, or
even an ARIMA model would have failed to capture this phenomenon,
as all assume constant variance of the errors. This will in turn result in
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the underestimation of the standard errors calculated using OLS and will
lead to erroneous conclusions. There are different ways of dealing with
this situation. For example, if the changes in the variance at certain time
intervals are known, weighted regression can be employed. However, it is
often the case that these changes are unknown to the analyst. Moreover, it
is usually of great value to the analyst to know why, when, and how these
changes in the variance occur. Hence, if possible, modeling these changes
(i.e., the variance) can be quite beneficial.

Consider, for example, the simple AR(p) model from Chapter 5 given
as

yt = 𝛿 + 𝜙1yt−1 + 𝜙2yt−2 +⋯ + 𝜙pyt−p + et (7.17)

where et is the uncorrelated, zero mean noise with changing variance.
Please note that we used et to distinguish it from our general white noise
error 𝜀t. Since we let the variance of et change in time, one approach is to
model e2

t as an AR(l) model as

e2
t = 𝜉0 + 𝜉1e2

t−1 + 𝜉2e2
t−2 +⋯ + 𝜉le

2
t−l + at (7.18)

where at is a white noise sequence with zero mean and constant variance
𝜎

2
a . In this notation et is said to follow an autoregressive conditional

heteroskedastic process of order l, ARCH(l).
To check for a need for an ARCH model, once the ARIMA or regression

model is fitted, not only the standard residual analysis and diagnostics
checks have to be performed but also some serial dependence checks for
e2

t should be made.
To further generalize the ARCH model, we will consider the alternative

representation originally proposed by Engle (1982). Let us assume that the
error can be represented as

et =
√

vtwt (7.19)

where wt is independent and identically distributed with mean 0 and vari-
ance 1, and

vt = 𝜁0 + 𝜁1e2
t−1 + 𝜁2e2

t−2 +⋯ + 𝜁e2
t−l (7.20)

Hence the conditional variance of et is

Var(et|et−1,…) = E
(
e2

t |e2
t−1,…

)
= vt

= 𝜁0 + 𝜁1e2
t−1 + 𝜁2e2

t−2 +⋯ + le2
t−l (7.21)
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We can also argue that the current conditional variance should also depend
on the previous conditional variances as

vt = 𝜁0 + 𝜍1vt−1 + 𝜍2vt−2 +⋯ + 𝜍kvt−k + 𝜁1e2
t−1 + 𝜁2e2

t−2 +⋯ + 𝜁le
2
t−l

(7.22)

In this notation, the error term et is said to follow a generalized autoregres-
sive conditional heteroskedastic process of orders k and l, GARCH(k, l),
proposed by Bollerslev (1986). In Eq. (7.22) the model for conditional
variance resembles an ARMA model. However, it should be noted that
the model in Eq. (7.22) is not a proper ARMA model, as this would have
required a white noise error term with a constant variance for the MA part.
But none of the terms on the right-hand side of the equation possess this
property. For further details, see Hamilton (1994), Bollerslev et al. (1992),
and Degiannakis and Xekalaki (2004). Further extensions of ARCH mod-
els also exist for various specifications of vt in Eq. (7.22); for example,
Integrated GARCH (I-GARCH) by Engle and Bollerslev (1986), Expo-
nential GARCH (E-GARCH) by Nelson (1991), Nonlinear GARCH by
Glosten et al. (1993), and GARCH for multivariate data by Engle and
Kroner (1993). But they are beyond the scope of this book. For a brief
overview of these models, see Hamilton (1994).

Example 7.5 Consider the weekly closing values for the S&P500 Index
from 1995 to 1998 given in Table 7.4. Figure 7.6 shows that the data exhibits
nonstationarity. But before taking the first difference of the data, we decided
to take the log transformation of the data first. As observed in Chapters 2
and 3, the log transformation is sometimes used for financial data when we
are interested, for example, in the rate of change or percentage changes in
the price of a stock. For further details, see Granger and Newbold (1986).
The time series plot of the first differences of the log of the S&P500 Index
is given in Figure 7.7, which shows that while the mean seems to be stable
around 0, the changes in the variance are worrisome. The ACF and PACF
plots of the first difference given in Figure 7.8 suggest that, except for
some borderline significant ACF values at seemingly arbitrary lags, there
is no autocorrelation left in the data. As in the case of the Dow Jones Index
in Chapter 5, this suggests that the S&P500 Index follows a random walk
process. However, the time series plot of the differences does not exhibit
a constant variance behavior. For that, we consider the ACF and PACF of
the squared differences given in Figure 7.9, which suggests that an AR(3)
model can be used. Thus we fit the ARCH(3) model for the variance using
the AUTOREG procedure in SAS given in Table 7.5. The SAS output in
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FIGURE 7.7 Time series plot of the first difference of the log transformation of
the weekly close for S&P500 Index from 1995 to 1998.
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FIGURE 7.8 ACF and PACF plots of the first difference of the log transforma-
tion of the weekly close for the S&P500 Index from 1995 to 1998.
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TABLE 7.5 SAS Commands to Fit
the ARCH(3) Modela

proc autoreg data=sp5003;
model dlogc = / garch=( q=3);

run;

a dlogc is the first difference of the log trans-
formed data.

TABLE 7.6 SAS output for the ARCH(3) model

GARCH Estimates

SSE 0.04463228 Observations 156
MSE 0.0002861 Uncond Var 0.00030888
Log Likelihood 422.53308 Total R-Square .
SBC -824.86674 AIC -837.06616
Normality Test 1.6976 Pr > ChiSq 0.4279

The AUTOREG Procedure

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.004342 0.001254 3.46 0.0005
ARCH0 1 0.000132 0.0000385 3.42 0.0006
ARCH1 1 4.595E-10 3.849E-11 11.94 <.0001
ARCH2 1 0.2377 0.1485 1.60 0.1096
ARCH3 1 0.3361 0.1684 2.00 0.0460

Table 7.6 gives the coefficient estimates for the ARCH(3) model for the
variance.

There are other studies on financial indices also yielding the ARCH(3)
model for the variance, for example, Bodurtha and Mark (1991) and
Attanasio (1991). In fact, successful implementations of reasonably simple,
low-order ARCH/GARCH models have been reported in various research
studies; see, for example, French et al. (1987).

7.4 DIRECT FORECASTING OF PERCENTILES

Throughout this book we have stressed the concept that a forecast should
almost always be more than a point estimate of the value of some
future event. A prediction interval should accompany most point forecasts,
because the PI will give the decision maker some idea about the inherent
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variability of the forecast and the likely forecast error that could be experi-
enced. Most of the forecasting techniques in this book have been presented
showing how both point forecasts and PIs are obtained.

A PI can be thought of as an estimate of the percentiles of the distribution
of the forecast variable. Typically, a PI is obtained by forecasting the mean
and then adding appropriate multiples of the standard deviation of forecast
error to the estimate of the mean. In this section we present and illustrate a
different method that directly smoothes the percentiles of the distribution
of the forecast variable.

Suppose that the forecast variable yt has a probability distribution f (y).
We will assume that the variable yt is either stationary or is changing slowly
with time. Therefore a model for yt that is correct at least locally is

yt = 𝜇 + 𝜀t

Let the observations on yt be classified into a finite number of bins, where
the bins are defined with limits

B0 < B1 < ⋯ < Bn

The n bins should be defined so that they do not overlap; that is, each
observation can be classified into one and only one bin. The bins do not
have to be of equal width. In fact, there may be situations where bins may
be defined with unequal width to obtain more information about specific
percentiles that are of interest. Typically, 10 ≤ n ≤ 20 bins are used.

Let pk be the probability that the variable yt falls in the bin defined by
the limits Bk−1 and Bk. That is,

pk = P(Bk−1 < yt ≤ Bk), k = 1, 2,… , n

Assume that
∑n

k=1 pk = 1. Also, note that P(yt ≤ Bk) =
∑k

j=1 pj. Now let
us consider estimating the probabilities. Write the probabilities as an n × 1
vector p defined as

p =
⎡⎢⎢⎢⎣
p1
p2
⋮
pn

⎤⎥⎥⎥⎦
Let the estimate of the vector p at time period T be

p̂(T) =
⎡⎢⎢⎢⎣
p̂1(T)
p̂2(T)
⋮

p̂n(T)

⎤⎥⎥⎥⎦
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Note that if we wanted to estimate the percentile of the distribution of
yt corresponding to Bk at time period T we could do this by calculating∑k

j=1 p̂j(T).
We will use an exponential smoothing procedure to compute the esti-

mated probabilities in the vector p̂(T). Suppose that we are at the end of
time period t and the current observation yT is known. Let uk(T) be an
indicator variable defined as follows:

uk(T) =
{

1 if Bk−1 < yT ≤ Bk

0 otherwise

So the indicator variable uk(T) is equal to unity if the observation yT in
period T falls in the kth bin. Note that

∑T
t=1 uk(t) is the total number of

observations that fell in the kth bin during the time periods t = 1, 2,… , T.
Define the n × 1 observation vector u(T) as

u(T) =
⎡⎢⎢⎢⎣
u1(T)
u2(T)
⋮

un(T)

⎤⎥⎥⎥⎦
This vector will have n – 1 elements equal to zero and one element equal to
unity. The exponential smoothing procedure for revising the probabilities
p̂k(T − 1) given that we have a new observation yT is

p̂k(T) = 𝜆uk(T) + (1 − 𝜆)p̂k(T − 1), k = 1, 2,… , n (7.23)

where 0 < 𝜆 < 1 is the smoothing constant. In vector form, Eq. (7.23) for
updating the probabilities is

p̂k(T) = 𝜆uk(T) + (1 − 𝜆)p̂k(T − 1)

This smoothing procedure produces an unbiased estimate of the proba-
bilities pk. Furthermore, because uk(T) is a Bernoulli random variable with
parameter pk, the variance of p̂k(T) is

V[p̂k(T)] = 𝜆

2 − 𝜆
pk(1 − pk)

Starting estimates or initial values of the probabilities at time T = 0 are
required. These starting values p̂k(0), k = 1, 2,… , n could be subjective
estimates or they could be obtained from an analysis of historical data.
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The estimated probabilities can be used to obtain estimates of specific
percentiles of the distribution of the variable yt. One way to do this would
be to estimate the cumulative probability distribution of yt at time T as
follows:

F(y) =

⎧⎪⎪⎨⎪⎪⎩

0, if y ≤ B0
k∑

j=1

p̂j(T), if y = Bk, k = 1, 2,… , n

1, if y ≥ Bn

The values of the cumulative distribution could be plotted on a graph
with F(y) on the vertical axis and y on the horizontal axis and the points
connected by a smooth curve. Then to obtain an estimate of any specific
percentile, say, F̂1−𝛾 = 1 − 𝛾 , all you would need to do is determine the
value of y on the horizontal axis corresponding to the desired percentile
1 − 𝛾 on the vertical axis. For example, to find the 95th percentile of the
distribution of y, find the value of y on the horizontal axis that corresponds
to 0.95 on the vertical axis. This can also be done mathematically. If
the desired percentile 1 − 𝛾 exactly matches one of the bin limits so that
F(Bk) = 1 − 𝛾 , then the solution is easy and the desired percentile estimate
is F̂1−𝛾 = Bk. However, if the desired percentile 1 − 𝛾 is between two of the
bin limits, say, F(Bk−1) < 1 − 𝛾 < F(Bk), then interpolation is required. A
linear interpolation formula is

F̂1−𝛾 =
[F(Bk) − (1 − 𝛾)]Bk−1 + [(1 − 𝛾) − F(Bk−1)]Bk

F(Bk) − F(Bk−1)
(7.24)

In the extreme tails of the distribution or in cases where the bins are very
wide, it may be desirable to use a nonlinear interpolation scheme.

Example 7.6 A financial institution is interested in forecasting the num-
ber of new automobile loan applications generated each week by a par-
ticular business channel. The information in Table 7.7 is known at the
end of week T − 1. The next-to-last column of this table is the cumulative
distribution of loan applications at the end of week T − 1. This cumulative
distribution is shown in Figure 7.10.

Suppose that 74 loan applications are received during the current
week, T. This number of loan applications fall into the eighth bin (k = 7
in Table 7.7). Therefore we can construct the observation vector u(T)



516 SURVEY OF OTHER FORECASTING METHODS

as follows:

u(T) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
TABLE 7.7 Distribution of New Automobile Loan Applications

F(Bk), at the end F(Bk), at the end
k Bk−1 Bk p̂k(T − 1) of week T − 1 of week T − 1

0 0 10 0.02 0.02 0.018
1 10 20 0.04 0.06 0.054
2 20 30 0.05 0.11 0.099
3 30 40 0.05 0.16 0.144
4 40 50 0.09 0.25 0.225
5 50 60 0.10 0.35 0.315
6 60 70 0.13 0.48 0.432
7 70 80 0.16 0.64 0.676
8 80 90 0.20 0.84 0.856
9 90 100 0.10 0.94 0.946

10 100 110 0.06 1.00 1.000
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FIGURE 7.10 Cumulative distribution of the number of loan applications, week
T − 1.
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Equation (7.23) is now used with 𝜆 = 0.10 to update the probabilities:

p̂k(T) = 𝜆uk(T) + (1 − 𝜆)p̂k(T − 1)

= 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 0.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.02
0.04
0.05
0.05
0.09
0.10
0.13
0.16
0.20
0.10
0.06

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.018
0.036
0.045
0.045
0.081
0.090
0.117
0.244
0.180
0.090
0.054

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore the new cumulative distribution of loan applications is found by
summing the cumulative probabilities in p̂k(T − 1):

F(Bk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.018
0.054
0.099
0.144
0.225
0.315
0.432
0.676
0.856
0.946
1.000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These cumulative probabilities are also listed in the last column of
Table 7.7. The graph of the updated cumulative distribution is shown in
Figure 7.11.

Now suppose that we want to find the number of loan applications that
corresponds to a particular percentile of this distribution. If this percentile
corresponds exactly to one of the cumulative probabilities, such as the 67.6
th percentile, the problem is easy. From the last column of Table 7.7 we
would find that

F̂0.676 = 80

That is, in about two of every three weeks we would expect to have 80 or
fewer loan applications from this particular channel. However, if the desired
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FIGURE 7.11 Cumulative distribution of the number of loan applications,
week T.

percentile does not correspond to one of the cumulative probabilities in
the last column of Table 7.7, we will need to interpolate using Eq. (7.24).
For instance, if we want the 75th percentile, we would use Eq. (7.24) as
follows:

F̂0.75 =
[F(Bk) − (0.75)]Bk−1 + [(0.75) − [F(Bk−1)]Bk

F(Bk) − F(Bk−1)

= (0.856 − 0.75)90 + (0.75 − 0.676)80
0.856 − 0.676

= 85.89 ≈ 86

Therefore, in about three of every four weeks, we would expect to have
approximately 86 or fewer loan applications from this loan channel.

7.5 COMBINING FORECASTS TO IMPROVE
PREDICTION PERFORMANCE

Readers have been sure to notice that any time series can be modeled and
forecast using several methods. For example, it is not at all unusual to
find that the time series yt, t = 1, 2,…, which contains a trend (say), can
be forecast by both an exponential smoothing approach and an ARIMA
model. In such situations, it seems inefficient to use one forecast and ignore
all of the information in the other. It turns out that the forecasts from the
two methods can be combined to produce a forecast that is superior in
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terms of forecast error than either forecast alone. For a review paper on the
combination of forecasts, see Clemen (1989).

Bates and Granger (1969) suggested using a linear combination of the
two forecasts. Let ŷ1,T+𝜏 (T) and ŷ2,T+𝜏(T) be the forecasts from two differ-
ent methods at the end of time period T for some future period T + 𝜏 for
the time series yt. The combined forecast is

ŷc
T+𝜏 = k1ŷ1,T+𝜏(T) + k2ŷ2,T+𝜏(T) (7.25)

where k1 and k2 are weights. If these weights are chosen properly, the
combined forecast ŷc

T+𝜏 can have some nice properties. Let the two indi-
vidual forecasts be unbiased. Then we should choose k2 = 1 − k1 so that the
combined forecast will also be unbiased. Let k = k1 so that the combined
forecast is

ŷc
T+𝜏 = kŷ1,T+𝜏(T) + (1 − k)ŷ2,T+𝜏(T) (7.26)

Let the error from the combined forecast be ec
T+𝜏(T) = yT+𝜏 − ŷc

T+𝜏(T). The
variance of this forecast error is

Var
[
ec

T+𝜏 (T)
]
= Var

[
yT+𝜏 − ŷc

T+𝜏(T)
]

= Var[ke1,T+𝜏(T) + (1 − k)e2,T+𝜏(T)]

= k2
𝜎

2
1 + (1 − k)2

𝜎
2
2 + 2k(1 − k)𝜌𝜎1𝜎2

where e1,T+𝜏 (T) and e2s,T+𝜏(T) are the forecast errors in period T + 𝜏 for
the two individual forecasting methods, 𝜎2

1 and 𝜎
2
2 are the variances of the

individual forecast errors for the two forecasting methods, and 𝜌 is the
correlation between the two individual forecast errors. A good combined
forecast would be one that minimizes the variance of the combined forecast
error. If we choose the weight k equal to

k∗ =
𝜎

2
2 − 𝜌𝜎1𝜎2

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

(7.27)

this will minimize the variance of the combined forecast error. By choosing
this value for the weight, the minimum variance of the combined forecast
error is equal to

Min Var
[
ec

T+𝜏(T)
]
=

𝜎
2
1𝜎

2
2(1 − 𝜌

2)

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

(7.28)

and this minimum variance of the combined forecast error is less than or
equal to the minimum of the variance of the forecast errors of the two
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individual forecasting methods. That is,

Min Var
[
ec

T+𝜏(T)
] ≤ min

(
𝜎

2
1 ,𝜎2

2

)
It turns out that the variance of the combined forecast error depends

on the correlation coefficient. Let 𝜎2
1 be the smaller of the two individual

forecast error variances. Then we have the following:

1. If 𝜌 = 𝜎1∕𝜎2, then Min Var [ec
T+𝜏(T)] = 𝜎

2
1 .

2. If 𝜌 = 0, then Var [ec
T+𝜏 (T)] = 𝜎

2
1𝜎

2
2∕(𝜎2

1 + 𝜎
2
2).

3. If 𝜌 → −1, then Var [ec
T+𝜏(T)] → 0.

4. If 𝜌 → 1, then Var [ec
T+𝜏(T)] → 0 if 𝜎2

1 ≠ 𝜎
2
2 .

Clearly, we would be happiest if the two forecasting methods have
forecast errors with large negative correlation. The best possible case is
when the two individual forecasting methods produce forecast errors that
are perfectly negatively correlated. However, even if the two individual
forecasting methods have forecast errors that are positively correlated, the
combined forecast will still be superior to the individual forecasts, provided
that 𝜌 ≠ 𝜎1∕𝜎2.

Example 7.7 Suppose that two forecasting methods can be used for
a time series, and that the two variances of the forecast errors are
𝜎

2
1 = 20 and 𝜎

2
2 = 40. If the correlation coefficient 𝜌 = −0.6, then we can

calculate the optimum value of the weight from Eq. (7.27) as follows:

k∗ =
𝜎

2
2 − 𝜌𝜎1𝜎2

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

=
40 − (−0.6)

√
(40)(20)

40 + 20 − 2(−0.6)
√

(40)(20)

= 56.9706
93.9411

= 0.6065

So the combined forecasting equation is

ŷc
T+𝜏 = 0.6065ŷ1,T+𝜏(T) + 0.3935ŷ2,T+𝜏(T)

Forecasting method one, which has the smallest individual forecast error
variance, receives about 1.5 times the weight of forecasting method two.
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The variance of the forecast error for the combined forecast is computed
from Eq. (7.28):

Min Var
[
ec

T+𝜏(T)
]
=

𝜎
2
1𝜎

2
2(1 − 𝜌

2)

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

= (20)(40)[1 − (−0.6)2]

20 + 40 − 2(−0.6)
√

(20)(40)

= 512
93.9411

= 5.45

This is a considerable reduction in the variance of forecast error. If the
correlation had been positive instead of negative, then

k∗ =
𝜎

2
2 − 𝜌𝜎1𝜎2

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

=
40 − (0.6)

√
(40)(20)

40 + 20 − 2(0.6)
√

(40)(20)

= 23.0294
26.0589

= 0.8837

Now forecasting method one, which has the smallest variance of forecast
error, receives much more weight. The variance of the forecast error for
the combined forecast is

Min Var
[
ec

T+𝜏(T)
]
=

𝜎
2
1𝜎

2
2(1 − 𝜌

2)

𝜎
2
1 + 𝜎

2
2 − 2𝜌𝜎1𝜎2

= (20)(40)[1 − (0.6)2]

20 + 40 − 2(0.6)
√

(20)(40)

= 512
26.0589

= 19.6478

In this situation, there is very little improvement in the forecast error
resulting from the combination of forecasts.

Newbold and Granger (1974) have extended this technique to the com-
bination of n forecasts. Let ŷi,T+𝜏(T), i = 1, 2,… , n be the n unbiased
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forecasts at the end of period T for some future period T + 𝜏 for the time
series yt. The combined forecast is

ŷc
T+𝜏(T) =

n∑
i=1

kiŷT+𝜏(T)

= k′ŷT+𝜏 (T)

where k′ = [k1, k2,… , kn] is the vector of weights, and ŷc
T+𝜏 (T) is a vector

of the individual forecasts. We require that all of the weights 0 ≤ ki ≤ 1
and
∑n

i=1 ki = 1. The variance of the forecast error is minimized if the
weights are chosen as

k =
∑−1

T+𝜏(T)1

1′
∑−1

T+𝜏(T)1

where 𝚺T+𝜏(T) is the covariance matrix of the lead 𝜏 forecast errors given
by

∑
T+𝜏

(T) = E[eT+𝜏(T)e′T+𝜏(T)]

1′ = [1, 1,… , 1] is a vector of ones, and eT+𝜏 (T) = yT+𝜏1 − ŷT+𝜏 (T) is a
vector of the individual forecast errors.

The elements of the covariance matrix are usually unknown and will
need to be estimated. This can be done by straightforward methods for
estimating variances and covariances (refer to Chapter 2). It may also
be desirable to regularly update the estimates of the covariance matrix
so that these quantities reflect current forecasting performance. Newbold
and Granger (1974) suggested several methods for doing this, and Mont-
gomery, Johnson, and Gardiner (1990) investigate several of these methods.
They report that a smoothing approach for updating the elements of the
covariance matrix seems to work well in practice.

7.6 AGGREGATION AND DISAGGREGATION OF FORECASTS

Suppose that you wish to forecast the unemployment level of the state
in which you live. One way to do this would be to forecast this quantity
directly, using the time series of current and previous unemployment data,
plus any other predictors that you think are relevant. Another way to do
this would be to forecast unemployment at a substate level (say, by county
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and/or metropolitan area), and then to obtain the state level forecast by
summing up the forecasts for each substate region. Thus individual fore-
casts of a collection of subseries are aggregated to form the forecasts of
the quantity of interest. If the substate level forecasts are useful in their
own right (as they probably are), this second approach seems very useful.
However, there is another way to do this. First, forecast the state level
unemployment and then disaggregate this forecast into the individual sub-
state level regional forecasts. This disaggregation could be accomplished
by multiplying the state level forecasts by a series of indices that reflect the
proportion of total statewide unemployment that is accounted for by each
region at the substate level. These indices also evolve with time, so it will
be necessary to forecast them as well as part of a complete system.

This problem is sometimes referred to as the top–down versus bottom–
up forecasting problem. In many, if not most, of these problems, we are
interested in both forecasts for the top level quantity (the aggregate time
series) and forecasts for the bottom level time series that are the components
of the aggregate.

This leads to an obvious question: is it better to forecast the aggregate or
top level quantity directly and then disaggregate, or to forecast the individ-
ual components directly and then aggregate them to form the forecast of
the total? In other words, is it better to forecast from the top down or from
the bottom up? The literature in statistical forecasting, business forecasting
and econometrics, and time series analysis suggests that this question is
far from settled at either the theoretical or empirical levels. Sometimes the
aggregate quantity is more accurate than the disaggregated components,
and sometimes the aggregate quantity is subject to less measurement error.
It may be more complete and timely as well, and these aspects of the
problem should encourage those who consider forecasting the aggregate
quantity and then disaggregating. On the other hand, sometimes the bot-
tom level data is easier to obtain and is at least thought to be more timely
and accurate, and this would suggest that a bottom–up approach would be
superior to the top–down approach.

In any specific practical application it will be difficult to argue on the-
oretical grounds what the correct approach should be. Therefore, in most
situations, this question will have to be settled empirically by trying both
approaches. With modern computer software for time series analysis and
forecasting, this is not difficult. However, in conducting such a study it is a
good idea to have an adequate amount of data for identifying and fitting the
time series models for both the top level series and the bottom level series,
and a reasonable amount of data for testing the two approaches. Obviously,
data splitting should be done here, and the data used for model building
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should not be used for investigating forecasting model performance. Once
an approach is determined, the forecasts should be carefully monitored
over time to make sure that the dynamics of the problem have not changed,
and that the top–down approach that was found to be optimal in testing
(say) is now no longer as effective as the bottom–up approach. The meth-
ods for monitoring forecasting model performance presented in Chapter 2
are useful in this regard.

There are some results available about the effect of adding time series
together. This is a special case of a more general problem called temporal
aggregation, in which several time series may be combined as, for instance,
when monthly data are aggregated to form quarterly data. For example,
suppose that we have a top level time series Yt that is the sum of two
independent time series y1,t and y2,t, and let us assume that both of the
bottom level time series are moving average (MA) processes of orders q1
and q2, respectively. So, using the notation for ARIMA models introduced
in Chapter 5, we have

Yt = 𝜃1(B)at + 𝜃2(B)bt

where at and bt are independent white noise processes. Now let q be the
maximum of q1 and q2. The autocorrelation function for the top level time
series Yt must be zero for all of the lags beyond q. This means that there is
a representation of the top level time series as an MA process

Yt = 𝜃3(B)ut

where ut is white noise. This moving average process has the same order
as the higher order bottom level time series.

Now consider the general ARIMA(p1, d, q1) model

𝜙1(B)∇dyt = 𝜃1(B)at

and suppose that we are interested in the sum of two time series zt = yt + wt.
A practical situation where this occurs, in addition to the top–down versus
bottom–up problem, is when the time series yt we are interested in cannot
be observed directly and wt represents added noise due to measurement
error. We want to know something about the nature of the sum of the two
series, zt. The sum can be written as

𝜙1(B)∇dzt = 𝜃1(B)at + 𝜙1(B)∇dwt

Assume that the time series wt can be represented as a stationary
ARMA(p2, 0, q2) model

𝜙2(B)wt = 𝜃2(B)bt
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where bt is white noise independent of at. Then the top level time series is

𝜙1(B)𝜙2(B)∇dzt = 𝜙2(B)𝜃1(B)at + 𝜙1(B)𝜃2(B)∇dbt

The term on the left-hand side is a polynomial of order P = p1 + p2, the
first term on the right-hand side is a polynomial of order q1 + p2, and the
second term on the right-hand side is a polynomial of order p1 + q2 + d.
Let Q be the maximum of q1 + p2 and p1 + q2 + d. Then the top level time
series is an ARIMA(P, d, Q) model, say,

𝜙3(B)∇dzt = 𝜃3(B)ut

where ut is white noise.

Example 7.8 Suppose that we have a time series that is represented by
an IMA(1, 1) model, and to this time series is added white noise. This could
be a situation where measurements on a periodic sample of some charac-
teristic in the output of a chemical process are made with a laboratory pro-
cedure, and the laboratory procedure has some built-in measurement error,
represented by the white noise. Suppose that the underlying IMA(1, 1)
model is

yt = yt−1 − 0.6at−1 + at

Let Dt be the first difference of the observed time series zt = yt + wt, where
wt is white noise:

Dt = zt − zt−1

= (1 − 𝜃B)at + (1 − B)wt

The autocovariances of the differenced series are

𝛾0 = 𝜎
2
a(1 + 𝜃

2) + 2𝜎2
w

𝛾1 = −𝜎2
a𝜃 − 𝜎

2
w

𝛾j = 0, j ≥ 2

Because the autocovariances at and beyond lag 2 are zero, we know that
the observed time series will be IMA(1, 1). In general, we could write
this as

zt = zt−1 − 𝜃
∗ut−1 + ut
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where the parameter 𝜃∗ is unknown. However, we can find 𝜃
∗ easily. The

autocovariances of the first differences of this observed time series are

𝛾0 = 𝜎
2
u(1 + 𝜃

∗2)

𝛾1 = −𝜎2
u𝜃

∗

𝛾j = 0, j ≥ 2

Now all we have to do is to equate the autocovariances for this observed
series in terms of the parameter 𝜃∗ with the autocovariances of the time
series Dt and we can solve for 𝜃∗ and 𝜎

2
u . This gives the following:

𝜃
∗

1 − 𝜃∗
= 0.6

1 − 0.6 + 𝜎2
w∕𝜎2

a

𝜎
2
u = 𝜎

2
a

(0.6)2

𝜃∗2

Suppose that 𝜎2
a = 2 and 𝜎

2
w = 1. Then it turns out that the solution is

𝜃
∗ = 0.4 and 𝜎2

u = 4.50. Adding the measurement error from the laboratory
procedure to the original sample property has inflated the variability of the
observed value rather considerably over the original variability that was
present in the sample property.

7.7 NEURAL NETWORKS AND FORECASTING

Neural networks, or more accurately artificial neural networks, have
been motivated by the recognition that the human brain processes infor-
mation in a way that is fundamentally different from the typical digital
computer. The neuron is the basic structural element and information-
processing module of the brain. A typical human brain has an enormous
number of them (approximately 10 billion neurons in the cortex and 60 tril-
lion synapses or connections between them) arranged in a highly complex,
nonlinear, and parallel structure. Consequently, the human brain is a very
efficient structure for information processing, learning, and reasoning.

An artificial neural network is a structure that is designed to solve
certain types of problems by attempting to emulate the way the human
brain would solve the problem. The general form of a neural network is a
“black-box” type of model that is often used to model high-dimensional,
nonlinear data. In the forecasting environment, neural networks are some-
times used to solve prediction problems instead of using a formal model
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building approach or development of the underlying knowledge of the sys-
tem that would be required to develop an analytical forecasting procedure.
If it was a successful approach that might be satisfactory. For example,
a company might want to forecast demand for its products. If a neural
network procedure can do this quickly and accurately, the company may
have little interest in developing a specific analytical forecasting model to
do it. Hill et al. (1994) is a basic reference on artificial neural networks and
forecasting.

Multilayer feedforward artificial neural networks are multivariate sta-
tistical models used to relate p predictor variables x1, x2,… , xp to one
or more output or response variables y. In a forecasting application, the
inputs could be explanatory variables such as would be used in a regres-
sion model, and they could be previous values of the outcome or response
variable (lagged variables). The model has several layers, each consisting
of either the original or some constructed variables. The most common
structure involves three layers: the inputs, which are the original predic-
tors; the hidden layer, comprised of a set of constructed variables; and the
output layer, made up of the responses. Each variable in a layer is called a
node. Figure 7.12 shows a typical three-layer artificial neural network for
forecasting the output variable y in terms of several predictors.

A node takes as its input a transformed linear combination of the outputs
from the nodes in the layer below it. Then it sends as an output a transfor-
mation of itself that becomes one of the inputs to one or more nodes on the
next layer. The transformation functions are usually either sigmoidal (S
shaped) or linear and are usually called activation functions or transfer

yt–1

yt–2

x1,t

x1,t–1

x2,t

x2,t–1

Inputs Hidden layer Output layer

yt

FIGURE 7.12 Artificial neural network with one hidden layer.



528 SURVEY OF OTHER FORECASTING METHODS

functions. Let each of the k hidden layer nodes au be a linear combination
of the input variables:

au =
p∑

j=1

w1juxj + 𝜃u

where the w1ju are unknown parameters that must be estimated (called
weights) and 𝜃u is a parameter that plays the role of an intercept in linear
regression (this parameter is sometimes called the bias node).

Each node is transformed by the activation function g( ). Much of the
neural networks literature refers to these activation functions notationally
as 𝜎u because of their S shape (the use of 𝜎 is an unfortunate choice of
notation so far as statisticians are concerned). Let the output of node au be
denoted by zu = g(au). Now we form a linear combination of these outputs,
say, b =

∑k
u=1 wuevzu. Finally, the output response or the predicted value

for y is a transformation of the b, say, y = g̃(b), where g̃(b) is the activation
function for the response.

The response variable y is a transformed linear combination of the
original predictors. For the hidden layer, the activation function is often
chosen to be either a logistic function or a hyperbolic tangent function.
The choice of activation function for the output layer often depends on the
nature of the response variable. If the response is bounded or dichotomous,
the output activation function is usually taken to be sigmoidal, while if it
is continuous, an identity function is often used.

The neural network model is a very flexible form containing many
parameters, and it is this feature that gives a neural network a nearly
universal approximation property. That is, it will fit many historical data
sets very well. However, the parameters in the underlying model must be
estimated (parameter estimation is called “training” in the neural network
literature), and there are a lot of them. The usual approach is to estimate the
parameters by minimizing the overall residual sum of squares taken over all
responses and all observations. This is a nonlinear least squares problem,
and a variety of algorithms can be used to solve it. Often a procedure
called backpropagation (which is a variation of steepest descent) is used,
although derivative-based gradient methods have also been employed. As
in any nonlinear estimation procedure, starting values for the parameters
must be specified in order to use these algorithms. It is customary to
standardize all the input variables, so small essentially random values are
chosen for the starting values.

With so many parameters involved in a complex nonlinear function,
there is considerable danger of overfitting. That is, a neural network will
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provide a nearly perfect fit to a set of historical or “training” data, but it
will often predict new data very poorly. Overfitting is a familiar problem
to statisticians trained in empirical model building. The neural network
community has developed various methods for dealing with this prob-
lem, such as reducing the number of unknown parameters (this is called
“optimal brain surgery”), stopping the parameter estimation process before
complete convergence and using cross-validation to determine the number
of iterations to use, and adding a penalty function to the residual sum
of squares that increases as a function of the sum of the squares of the
parameter estimates.

There are also many different strategies for choosing the number of
layers and number of neurons and the form of the activation functions.
This is usually referred to as choosing the network architecture. Cross-
validation can be used to select the number of nodes in the hidden layer.

Artificial neural networks are an active area of research and application
in many fields, particularly for the analysis of large, complex, highly
nonlinear problems. The overfitting issue is frequently overlooked by
many users and even the advocates of neural networks, and because many
members of the neural network community do not have sound training
in empirical model building, they often do not appreciate the difficulties
overfitting may cause. Furthermore, many computer programs for imple-
menting neural networks do not handle the overfitting problem particularly
well. Studies of the ability of neural networks to predict future values of a
time series that were not used in parameter estimation (fitting) have been,
in many cases, disappointing. Our view is that neural networks are a com-
plement to the familiar statistical tools of forecasting, and they might be
one of the approaches you should consider, but they are not a replacement
for them.

7.8 SPECTRAL ANALYSIS

This book has been focused on the analysis and modeling of time series in
the time domain. This is a natural way to develop models, since time series
all are observed as a function of time. However, there is another approach
to describing and analyzing time series that uses a frequency domain
approach. This approach consists of using the Fourier representation of a
time series, given by

yt =
T∑

k=1

ak sin(2𝜋fkt) + bk cos(2𝜋fkt) (7.29)
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where fk = k∕T. This model is named after J.B.J Fourier, an 18th century
French mathematician, who claimed that any periodic function could be
represented as a series of harmonically related sinusoids. Other contrib-
utors to Fourier analysis include Euler, D. Bernoulli, Laplace, Lagrange,
and Dirichlet. The original work of Fourier was focused on phenomena
in continuous time, such as vibrating strings, and there are still many
such applications today from such diverse fields as geophysics, oceanogra-
phy, atmospheric science, astronomy, and many disciplines of engineering.
However, the key ideas carry over to discrete time series. We confine our
discussion to stationary discrete time series.

Computing the constants ak and bk turns out to be quite simple:

ak =
2
T

T∑
k=1

cos(2𝜋fkt) (7.30)

and

bk =
2
T

T∑
k=1

sin(2𝜋fkt) (7.31)

These coefficients are combined to form a periodogram

I(fk) = T
2

(
a2

k + b2
k

)
(7.32)

The periodogram is then usually smoothed and scaled to produce the spec-
trum or a spectral density function. The spectral density function is just
the Fourier transform of the autocorrelation function, so it conveys sim-
ilar information as is found in the autocorrelations. However, sometimes
the spectral density is easier to interpret than the autocorrelation function
because adjacent sample autocorrelations can be highly correlated while
estimates of the spectrum at adjacent frequencies are approximately inde-
pendent. Generally, if the frequency k∕T is important then I(fk) will be
large, and if the frequency k∕T is not important then I(fk) will be small.

It can be shown that

T∑
k=1

I(fk) = 𝜎
2 (7.33)

where 𝜎2 is the variance of the time series. Thus the spectrum decomposes
the variance of the time series into individual components, each of which is
associated with a particular frequency. So we can think of spectral analysis
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Frequency

I(fk)

π

FIGURE 7.13 The spectrum of a white noise process.

as an analysis of variance technique. It decomposes the variability in the
time series by frequency.

It is helpful to know what the spectrum looks like for some simple
ARMA models. If the time series white noise (uncorrelated observations
with constant variance 𝜎2), it can be shown that the spectrum is a horizontal
straight line as shown in Figure 7.13. This means that the contribution to
the variance at all frequencies is equal. A logical use for the spectrum is
to calculate it for the residuals from a time series model and see if the
spectrum is reasonably flat.

Now consider the AR(1) process. The shape of the spectrum depends
on the value of the AR(1) parameter 𝜙. When 𝜙 > 0, which results in a
positively autocorrelated time series, the spectrum is dominated by low-
frequency components. These low-frequency or long-period components
result in a relative smooth time series. When 𝜙 < 0, the time series is
negatively autocorrelated, and the time series has a more ragged or volatile
appearance. This produces a spectrum dominated by high-frequency or
short-period components. Examples are shown in Figure 7.14.

Frequency

I(fk)

π
Frequency

I(fk)

π

FIGURE 7.14 The spectrum of AR(1) processes.
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FIGURE 7.15 The spectrum of MA(1) processes.

The spectrum of the MA(1) process is shown in Figure 7.15. When
the MA(1) parameter is positive, that is, when 𝜃 > 0, the time series is
negatively autocorrelated and has a more volatile appearance. Thus the
spectrum is dominated by higher frequencies. When the MA(1) parameter
is negative (𝜃 > 0), the time series is negatively autocorrelated and has a
smoother appearance. This results in a spectrum that is dominated by low
frequencies.

The spectrum of seasonal processes will exhibit peaks at the harmoni-
cally related seasonal frequencies. For example, consider the simple sea-
sonal model with period 12, as might be used to represent monthly data
with an annual seasonal cycle:

(1 − 𝜙
∗B12)yt = 𝜀t

If 𝜙
∗ is positive, the spectrum will exhibit peaks at frequencies 0 and

2𝜋kt∕12, k = 1, 2, 3, 4, 5, 6. Figure 7.16 shows the spectrum.

Frequency

π0 10
π
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8
π
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π
12

4
π
12
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π
12

FIGURE 7.16 The spectrum of the seasonal (1 − 𝜙
∗B12)yt = 𝜀t process.
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Fisher’s Kappa statistic tests the null hypothesis that the values in the
series are drawn from a normal distribution with variance 1 against the
alternative hypothesis that the series has some periodic component. The test
statistic kappa (𝜅) is the ratio of the maximum value of the periodogram,
I(fk), to its average value. The probability of observing a larger Kappa if
the null hypothesis is true is given by

P(𝜅 > k) = 1 −
q∑

j=0

(−1)j

(
q
j

)[
max
(

1 −
jk

q
, 0

)]q−1

where k is the observed value of the kappa statistic, q = T∕2 if T is even
and q = (T − 1)∕2 if T is odd. The null hypothesis is rejected if the com-
puted probability is less that the desired significance level. There is also
a Kolmogorov–Smirnov test due to Bartlett that compares the normal-
ized cumulative periodogram to the cumulative distribution function of the
uniform distribution on the interval (0, 1). The test statistic equals the max-
imum absolute difference of the cumulative periodogram and the uniform
CDF. If this quantity exceeds a∕

√
q, then we should reject the hypothesis

that the series comes from a normal distribution. The values a = 1.36 and
a = 1.63 correspond to significance levels of 0.05 and 0.01, respectively.

In general, we have found it difficult to determine the exact form of an
ARIMA model purely from examination of the spectrum. The autocorre-
lation and partial autocorrelation functions are almost always more useful
and easier to interpret. However, the spectrum is a complimentary tool and
should always be considered as a useful supplement to the ACF and PACF.
For further reading on spectral analysis and its many applications, see Jenk-
ins and Watts (1969), Percival and Walden (1992), and Priestley (1991).

Example 7.9 JMP can be used to compute and display the spectrum
for time series. We will illustrate the JMP output using the monthly US
beverage product shipments. These data are shown originally in Figure 1.5
and are in Appendix Table B. These data were also analyzed in Chapter 2 to
illustrate decomposition techniques. Figure 7.17 presents the JMP output,
including a time series plot, the sample ACF, PACF, and variogram, and
the spectral density function. Notice that there is a prominent peak in the
spectral density at frequency 0.0833 that corresponds to a seasonal period
of 12 months. The JMP output also provides the Fisher kappa statistic and
the P-value indicates that there is at least one periodic component. The
Bartlett Kolmogorov–Smirnov test statistic is also significant at the 0.01
level indicating that the data do not come from a normal distribution.
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FIGURE 7.17 JMP output showing the spectrum, ACF, PACF, and variogram
for the beverage shipment data.
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FIGURE 7.17 (Continued)

7.9 BAYESIAN METHODS IN FORECASTING

In many forecasting problems there is little or no historical information
available at the time initial forecasts are required. Consequently, the initial
forecasts must be based on subjective considerations. As information
becomes available, this subjective information can be modified in light
of actual data. An example of this is forecasting demand for seasonal
clothing, which, because of style obsolescence, has a relatively short
life. In this industry a common practice is to, at the start of the season,
make a forecast of total sales for a product during the season and then
as the season progresses the original forecast can be modified taking into
account actual sales.

Bayesian methods can be useful in problems of this general type. The
original subjective estimates of the forecast are translated into subjective
estimates of the forecasting model parameters. Then Bayesian methods
are used to update these parameter estimates when information in the form
of time series data becomes available. This section gives a brief overview
of the Bayesian approach to parameter estimation and demonstrates the
methodology with a simple time series model.

The method of parameter estimation makes use of the Bayes’ theorem.
Let y be a random variable with probability density function that is charac-
terized by an unknown parameter 𝜃. We write this density as f (y|𝜃) to show
that the distribution depends on 𝜃. Assume that 𝜃 is a random variable with
probability distribution h0(𝜃) which is called the prior distribution for 𝜃.
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The prior distribution summarizes the subjective information that we have
about 𝜃, and the treatment of 𝜃 as a random variable is the major difference
between Bayesian and classical methods of estimation. If we are relatively
confident about the value of 𝜃 we should choose prior distribution with a
small variance and if we are relatively uncertain about the value of 𝜃 we
should choose prior distribution with a large variance.

In a time series or forecasting scenario, the random variable y is a
sequence of observations, say y1, y2,… , yT . The new estimate of the param-
eter 𝜃 will be in the form of a revised distribution, h1(𝜃|y), called the poste-
rior distribution for 𝜃. Using Bayes’ theorem the posterior distribution is

h1(𝜃|y) =
h0(𝜃)f (y|𝜃)

∫
𝜃

h0(𝜃)f (y|𝜃)d𝜃
=

h0(𝜃)f (y|𝜃)

g(y)
(7.34)

where f (y|𝜃) is usually called the likelihood of y, given the value of 𝜃,
and g(y) is the unconditional distribution of y averaged over all 𝜃. If the
parameter 𝜃 is a discrete random variable then the integral in Eq. (7.34)
should be replaced by a summation sign. This equation basically blends
the observed information with the prior information to obtain a revised
description of the uncertainty in the value of 𝜃 in the form of a posterior
probability distribution. The Bayes’ estimator of 𝜃, which we will denote
by 𝜃

∗, is defined as the expected value of the posterior distribution:

𝜃
∗ = ∫

𝜃

𝜃h1(𝜃|y)d𝜃 (7.35)

Typically we would use 𝜃
∗ as the estimate of 𝜃 in the forecasting model.

In some cases, it turns out that 𝜃∗ is optimal in the sense of minimizing the
variance of forecast error.

We will illustrate the procedure with a relatively simple example. Sup-
pose that y is normally distributed with mean 𝜇 and variance 𝜎

2
y ; that is,

f (y|𝜇) = N
(
𝜇, 𝜎2

y

)
=
(
2𝜋𝜎2

y

)−1∕2 exp

[
−1

2

(
y − 𝜇

𝜎y

)2
]

We will assume that 𝜎2
y is known. The prior distribution for 𝜇 is assumed

to be normal with mean 𝜇
′ and variance 𝜎

2′
𝜇

:

h0(𝜇|y) = N
(
𝜇
′,𝜎2′

𝜇

)
=
(
2𝜋𝜎2′

𝜇

)−1∕2 exp
⎡⎢⎢⎣−

1
2

(
𝜇 − 𝜇

′

𝜎′
𝜇

)2⎤⎥⎥⎦
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The posterior distribution of 𝜇 given the observation y is

h1(𝜃|y) =
2𝜋
(
𝜎

2′
𝜇
𝜎

2
y

)−1∕2 exp
[

1
2
(𝜇 − 𝜇

′)∕𝜎2′
𝜇
+ (y − 𝜇) ∕𝜎2

y

]
∫ ∞
−∞ 2𝜋

(
𝜎2′
𝜇
𝜎2

y

)−1∕2 exp
[

1
2
(𝜇 − 𝜇′)∕𝜎2′

𝜇
+ (y − 𝜇)∕𝜎2

y

]
d𝜇

=

(
2𝜋

𝜎
2′
𝜇
𝜎

2
y

𝜎2′
𝜇
+ 𝜎2

y

)−1∕2

exp

[
−1

2

[(𝜇 −
(
y𝜎2′

𝜇
+ 𝜇

′
𝜎

2
y

)
∕
(
𝜎

2′
𝜇
+ 𝜎

2
y

)
𝜎2′
𝜇
𝜎2

y∕
(
𝜎2′
𝜇
+ 𝜎2

y

)
]

which is a normal distribution with mean and variance

𝜇
′′ = E(𝜇|y) =

y𝜎2′
𝜇
+ 𝜇

′
𝜎

2
y

𝜎2′
𝜇
+ 𝜎2

y

and

𝜎
2′′

𝜇
= V(𝜇|y) =

𝜎
2′
𝜇
𝜎

2
y

𝜎2′
𝜇
+ 𝜎2

y

respectively. Refer to Winkler (2003), Raiffa and Schlaifer (1961), Berger
(1985), and West and Harrison (1997) for more details of Bayesian
statistical inference and decision making and additional examples.

Now let us consider a simple time series model, the constant process,
defined in Eq. (4.1) as

yt = 𝜇 + 𝜀t

where 𝜇 is the unknown mean and the random component is 𝜀t, which
we will assume to have a normal distribution with mean zero and known
variance 𝜎

2
y Consequently, we are assuming that the observation in any

period t has a normal distribution, say

f (yt|𝜇) = N
(
𝜇,𝜎2

y

)
Since the variance 𝜎

2
y is known, the problem is to estimate 𝜇.

Suppose that at the start of the forecasting process, time t = 0, we
estimate the mean demand rate to be 𝜇

′ and the variance 𝜎
2′
𝜇

captures the
uncertainty in this estimate. So the prior distribution for 𝜇 is the normal
prior

h0(𝜇) = N
(
𝜇
′,𝜎2′

𝜇

)
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After one period, the observation y1 is known. The estimate 𝜇
′ and the

variance 𝜎
2′
𝜇

can now be updated using the results obtained above for a
normal sampling process and a normal prior:

h1(𝜇|y1) = N[𝜇′′(1), 𝜎2′′(1)]

where

𝜇
′′(1) = E(𝜇|y1) =

y𝜎2′
𝜇
+ 𝜇

′
𝜎

2
y

𝜎2′
𝜇
+ 𝜎2

y

and

𝜎
2′′

𝜇
(1) = V(𝜇|y1) =

𝜎
2′
𝜇
𝜎

2
y

𝜎2′
𝜇
+ 𝜎2

y

At the end of period 2, when the next observation y2 becomes available,
the Bayesian updating process transforms h1(𝜇|y1) into h2(𝜇|y1,y2) in the
following way:

h2(𝜇|y1, y2) =
h1(𝜇|y1)f (y2|𝜇)

∫
𝜇

h1(𝜇|y1)f (y2|𝜇)d𝜇

Here the old posterior h1 is now used as a prior and combined with the
likelihood of y2 to obtain the new posterior distribution of 𝜇 at the end of
period 2. Using our previous results, we now have

h2(𝜇|y1, y2) = N[𝜇′′(2), 𝜎2′′(2)]

and

𝜇
′′(2) = E(𝜇|y1, y2) =

ȳ𝜎2′
𝜇
+ 𝜇

′(
𝜎

2
y∕2
)

𝜎2′
𝜇
+
(
𝜎2

y∕2
)

𝜎
2′′

𝜇
(2) = V(𝜇|y1, y2) =

𝜎
2′
𝜇
𝜎

2
y

2𝜎2′
𝜇
+ 𝜎2

y

where ȳ = (y1 + y2)∕2. It is easy to show that h2(𝜇|y1, y2) = h2(𝜇|ȳ); that
is, the same posterior distribution is obtained using the sample average ȳ as
from using y1 and y2 sequentially because the sample average is a sufficient
statistic for estimating the mean 𝜇.
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In general, we can show that after observing yT , we can calculate the
posterior distribution as

h2(𝜇|y1, y2,… , yT) = N[𝜇′′(T), 𝜎2′′(T)]

where

𝜇
′′(T) =

ȳ𝜎2′
𝜇
+ 𝜇

′(
𝜎

2
y∕T
)

𝜎2′
𝜇
+
(
𝜎2

y∕T
)

𝜎
2′′

𝜇
(T) =

𝜎
2′
𝜇
𝜎

2
y

T𝜎2′
𝜇
+ 𝜎2

y

where ȳ = (y1 + y2 +⋯ + yT )∕T . The Bayes estimator of 𝜇 after T periods
is 𝜇∗(T) = 𝜇

′′(T). We can write this as

𝜇
∗(T) = T

r + T
ȳ + r

r + T
𝜇
′ (7.36)

where r = 𝜎
2
y∕𝜎

2′
𝜇

. Consequently, the Bayes estimator of𝜇 is just a weighted
average of the sample mean and the initial subjective estimate𝜇′. The Bayes
estimator can be written in a recursive form as

𝜇
∗(T) = 𝜆(T)yT + [1 − 𝜆(T)]𝜇∗(T − 1) (7.37)

where

𝜆(T) = 1
r + T

=
𝜎

2′
𝜇

T𝜎2′
𝜇
+ 𝜎2

y

Equation (7.36) shows that the estimate of the mean in period T is updated
at each period by a form that is similar to first-order exponential smoothing.
However, notice that the smoothing factor 𝜆(T) is a function of T, and it
becomes smaller as T increases. Furthermore, since 𝜎

2′′
𝜇

(T) = 𝜆(T)𝜎2
y , the

uncertainty in the estimate of the mean decreases to zero as time T becomes
large. Also, the weight given to the prior estimate of the mean decreases as
T becomes large. Eventually, as more data becomes available, a permanent
forecasting procedure could be adopted, perhaps involving exponential
smoothing. This estimator is optimal in the sense that it minimizes the
variance of forecast error even if the process is not normally distributed.

We assumed that the variance of the demand process was known, or at
least a reasonable estimate of it was available. Uncertainty in the value of
this parameter could be handled by also treating it as a random variable.
Then the prior distribution would be a joint distribution that would reflect
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the uncertainty in both the mean and the variance. The Bayesian updating
process in this case is considerably more complicated than in the known-
variance case. Details of the procedure and some useful advice on choosing
a prior are in Raiffa and Schlaifer (1961).

Once the prior has been determined, the forecasting process is relatively
straightforward. For a constant process, the forecasting equation is

ŷT+𝜏(T) = �̂�(T) = 𝜇
∗(T)

using the Bayes estimate as the current estimate of the mean. Our uncer-
tainty in the estimate of the mean is just the posterior variance. So the
variance of the forecast is

V[ŷT+𝜏(T)] = 𝜎
2′′

𝜇
(T)

and the variance of forecast error is

V[yT+𝜏 − ŷT+𝜏(T)] = V[e
𝜏
(T + 𝜏)] = 𝜎

2
y + 𝜎

2′′

𝜇
(T) (7.38)

The variance of forecast error is independent of the lead time in the
Bayesian case for a constant process. If we assume that y and 𝜇 are nor-
mally distributed, then we can use Eq. (3.38) to find a 100(1-𝛼)% prediction
interval on the forecast V[ŷT+𝜏 (T)] as follows:

𝜇
∗(T) ± Z

𝛼∕2

√
𝜎2

y + 𝜎2′′
𝜇

(T) (7.39)

where Z
𝛼∕2 is the usual 𝛼∕2 percentage point of the standard normal dis-

tribution.

Example 7.10 Suppose that we are forecasting weekly demand for a
new product. We think that demand is normally distributed, and that at
least in the short run that a constant model is appropriate. There is no
useful historical information, but a reasonable prior distribution for 𝜇 is
N(100, 25) and 𝜎

2
y is estimated to be 150. At time period T = 0 the forecast

for period 1 is

ŷ1(0) = 100

The variance of forecast error is 150 + 25 = 175, so a 96% prediction
interval for y1 is

100 ± 1.96
√

175 or [74.1, 125.9]



BAYESIAN METHODS IN FORECASTING 541

Suppose the actual demand experienced in period 1 is y1 = 86. We can use
Eq. (7.37) to update the estimate of the mean. First, calculate r = 𝜎

2
y∕𝜎

2′
𝜇
=

150∕25 = 6 and 𝜆(1) = 1∕(6 + 1) = 0.143, then

𝜇
∗(1) = 𝜇

′′(1) = 𝜆(1)y1 + [1 − 𝜆(1)]𝜇∗(0)

= 0.143(86) + (1 − 0.143)100

= 98.0

and

𝜎
2′′

𝜇
(1) = 𝜆(1)𝜎2

y

= 0.143(150)

= 21.4

The forecast for period 2 is now

ŷ2(1) = 98.0

The corresponding 95% prediction interval for y2 is

98.0 ± 1.96
√

150 + 21.4 or [72.3, 123.7]

In time period the actual demand experienced is 94. Now 𝜆(2) = 1∕(6 +
2) = 0.125, and

𝜇
∗(2) = 𝜇

′′(2) = 𝜆(2)y2 + [1 − 𝜆(2)]𝜇∗(1)

= 0.125(94) + (1 − 0.125)98.0

= 97.5

So the forecast for period 3 is

ŷ3(3) = 97.5

and the updated variance estimate is

𝜎
2′′

𝜇
(2) = 𝜆(2)𝜎2

y

= 0.125(150)

= 18.8

Therefore the 96% prediction interval for y3 is

97.5 ± 1.96
√

150 + 18.8 or [72.0, 123.0]

This procedure would be continued until it seems appropriate to change
to a more permanent forecasting procedure. For example, a change to
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first-order exponential smoothing could be made when 𝜆(T) drop to a
target level, say 0.05 < 𝜆(T) < 0.1. Then after sufficient data has been
observed, an appropriate time series model could be fit to the data.

7.10 SOME COMMENTS ON PRACTICAL IMPLEMENTATION
AND USE OF STATISTICAL FORECASTING PROCEDURES

Over the last 35 years there has been considerable information accumu-
lated about forecasting techniques and how these methods are applied in
a wide variety of settings. Despite the development of excellent analytical
techniques, many business organizations still rely on judgment forecasts
by their marketing, sales, and managerial/executive teams. The empirical
evidence regarding judgment forecasts is that they are not as successful
as statistically based forecasts. There are some fields, such as financial
investments, where there is considerable strong evidence that this is so.
There are a number of reasons why we would expect judgment forecasts
to be inferior to statistical methods.

Inconsistency, or changing one’s mind for no compelling or obvious
reason, is a significant source of judgment forecast errors. Formalizing the
forecasting process through the use of analytical methods is one approach
to eliminating inconsistency as a source of error. Formal decision rules
that predict the variables of interest using relatively few inputs invariably
predict better than humans, because humans are inconsistent over time in
their choice of input factors to consider, and how to weight them.

Letting more recent events dominate one’s thinking, instead of weight-
ing current and previous experience more evenly, is another source of judg-
ment forecast errors. If these recent events are essentially random in nature,
they can have undue impact on current forecasts. A good forecasting sys-
tem will certainly monitor and evaluate recent events and experiences, but
will only incorporate them into the forecasts if there is sufficient evidence
to indicate that they represent real effects.

Mistaking correlation for causality can also be a problem. This is
the belief that two (or more) variables are related in a causal manner and
taking action on this, when the variables exhibit only a correlation between
them. It is not difficult to find correlative relationships; any two variables
that are monotonically related will exhibit strong correlation. So company
sales may appear to be related to some factor that over a short time period
is moving synchronously with sales, but relying on this as a causal rela-
tionship will lead to problems. The statistical significance of patterns and
relationships does not necessarily imply a cause-and-effect relationship.
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Judgment forecasts are often dominated by optimistic thinking. Most
humans are naturally optimistic. An executive wants sales for the product
line to increase because his/her bonus may depend on the results. A product
manager wants his/her product to be successful. Sometimes bonus payouts
are made for exceeding sales goals, and this can lead to unrealistically
low forecasts, which in turn are used to set the goals. However, unrealistic
forecasts, whether too high or too low, always result in problems down-
stream in the organization where forecast errors have meaningful impact
on efficiency, effectiveness, and bottom-line results.

Humans are notorious for underestimating variability. Judgment fore-
casts rarely incorporate uncertainty in any formal way and, as a result, often
underestimate its magnitude and impact. A judgment forecaster often com-
pletely fails to express any uncertainty in his/her forecast. Because all fore-
casts are wrong, one must have some understanding of the magnitude of
forecast errors. Furthermore, planning for appropriate actions in the face of
likely forecast error should be part of the decision-making process that is
driven by the forecast. Statistical forecasting methods can be accompanied
by prediction intervals. In our view, every forecast should be accompa-
nied by a PI that adequately expresses for the decision maker how much
uncertainty is associated with the point forecast.

In general, both the users of forecasts (decision makers) and the prepar-
ers (forecasters) have reasonably good awareness of many of the basic
analytical forecasting techniques, such as exponential smoothing and
regression-based methods. They are less familiar with time series mod-
els such as the ARIMA model, transfer function models, and other more
sophisticated methods. Decision makers are often unsatisfied with subjec-
tive and judgment methods and want better forecasts. They often feel that
analytical methods can be helpful in this regard.

This leads to a discussion of expectations. What kind of results can
one reasonably expect to obtain from analytical forecasting methods? By
results, we mean forecast errors. Obviously, the results that a specific fore-
caster obtains are going to depend on the specific situation: what variables
are being forecast, the availability and quality of data, the methods that can
be applied to the problem, and the tools and expertise that are available.
However, because there have been many surveys of both forecasters and
users of forecasts, as well as forecast competitions (e.g., see Makridakis
et al. (1993)) where many different techniques have been applied in head-
to-head challenges, some broad conclusions can be drawn.

In general, exponential smoothing type methods, including Winters’
method, typically experience mean absolute prediction errors ranging
from 10% to 15% for lead-one forecasts. As the lead time increases, the
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prediction error increases, with mean absolute prediction errors typically
in the 17–25% range at lead times of six periods. At 12 period lead times,
the mean absolute prediction error can range from 18% to 45%. More
sophisticated time series models such as ARIMA models are not usually
much better, with the mean absolute prediction error ranging from about
10% for lead-one forecasts, to about 17% for lead-six forecasts, and up
to 25% for 12 period lead times. This probably accounts for some of the
dissatisfaction that forecasters often express with the more sophisticated
techniques; they can be much harder to use, but they do not have substan-
tial payback in terms of reducing forecasting errors. Regression methods
often produce mean absolute prediction errors ranging from 12% to 18%
for lead-one forecasts. As the lead time increases, the prediction error
increases, with mean absolute prediction errors typically in the 17–20%
range for six period lead times. At 12 period lead times, the mean absolute
prediction error can range from 20% to 25%. Seasonal time series are often
easier to predict than nonseasonal ones, because seasonal patterns are rela-
tively stable through time, and relatively simple methods such as Winters’
method and seasonal adjustment procedures typically work very well as
forecasting techniques. Interestingly, seasonal adjustment techniques are
not used nearly as widely as we would expect, given their relatively good
performance.

When forecasting is done well in an organization, it is typically done
by a group of individuals who have some training and experience in the
techniques, have access to the right information, and have an opportunity
to see how the forecasts are used. If higher levels of management routinely
intervene in the process and use their judgment to modify the forecasts, it is
highly desirable if the forecast preparers can interact with these managers
to learn why the original forecasts require modification. Unfortunately, in
many organizations, forecasting is done in an informal way, and the fore-
casters are often marketing or sales personnel, or market researchers, for
whom forecasting is only a (sometimes small) part of their responsibili-
ties. There is often a great deal of turnover in these positions, and so no
long-term experience base or continuity builds up. The lack of a formal,
organized process is often a big part of the reason why forecasting is not
as successful as it should be.

Any evaluation of a forecasting effort in an organization should consider
at least the following questions:

1. What methods are being used? Are the methods appropriate to orga-
nizational needs, when planning horizons and other business issues
are taken into account? Is there an opportunity to use more than
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one forecasting procedure? Could forecasts be combined to improve
results?

2. Are the forecasting methods being used correctly?
3. Is an appropriate set of data being used in preparing the forecasts? Is

data quality an issue? Are the underlying assumptions of the meth-
ods employed satisfied at least well enough for the methods to be
successful?

4. Is uncertainty being addressed adequately? Are prediction intervals
used as part of the forecast report? Do forecast users understand the
PIs?

5. Does the forecasting system take economic/market forces into
account? Is there an ability to capitalize on current events, natural
forces, and swings in customer preferences and tastes?

6. Is forecasting separate from planning? Very often the forecast is
really just a plan or schedule. For example, it may reflect a production
plan, not a forecast of what we could realistically expect to sell (i.e.,
demand). Many individuals do not understand the difference between
a forecast and a plan.

In the short-to-medium term, most businesses can benefit by taking
advantage of the relative stability of seasonal patterns and the inertia present
in most time series of interest. These are the methods we have focused on
in this book.

7.11 R COMMANDS FOR CHAPTER 7

Example 7.11 The data for this example are in the array called pressure
.data of which the two columns represent the viscosity and the temperature,
respectively. To model the multivariate data we use the “VAR” function in
R package “vars.” But we first start with time series, acf, pacf, ccf plots as
suggested in the example

library(vars)

pf<-pressure.data[,1]
pb<-pressure.data[,2]
plot(pf,type="o",pch=16,cex=.5,xlab='Time', ylab='Pressure',ylim=
c(4,25))

lines(pb, type="o",pch=15,cex=.5, col="grey40")
legend(1,7,c("Variable","Front","Back"),
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pch=c(NA,16,15),lwd=c(NA,.5,.5),cex=.55,col=c("black","black",
"grey40"))
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res.pf<- as.vector(residuals(arima(pf,order=c(1,0,0))))
res.pb<- as.vector(residuals(arima(pb,order=c(1,0,0))))
par(mfrow=c(2,2),oma=c(0,0,0,0))
acf(pf,lag.max=25,type="correlation",main="ACF for Front
Pressure")

acf(pb, lag.max=25, type="correlation",main="PACF for Back
Pressure",ylab="PACF")

ccf(pb,pf,main='CCF of \nFront and Back Pressures',ylab='CCF')
ccf(res.pb,res.pf,main='CCF of Residuals for \nFront and Back
Pressures',ylab='CCF')
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We now fit a VAR(1) model to the data using VAR function:

> pressure.var1<-VAR(pressure.data)
> pressure.var1

VAR Estimation Results:
=======================

Estimated coefficients for equation pfront:
===========================================
Call:
pfront = pfront.l1 + pback.l1 + const

pfront.l1 pback.l1 const
0.7329529 0.4735983 -6.7555089

Estimated coefficients for equation pback:
==========================================
Call:
pback = pfront.l1 + pback.l1 + const

pfront.l1 pback.l1 const
0.4104251 -0.5606308 27.2369791

Note that there is also a VARselect function that will automatically select
the best p order of the VAR(p) model. In this case we tried p upto 5.

> VARselect(pressure.data,lag.max=5)

$selection
AIC(n) HQ(n) SC(n) FPE(n)

1 1 1 1

$criteria
1 2 3 4 5

AIC(n) 0.05227715 0.09275642 0.1241682 0.1639090 0.1882266
HQ(n) 0.09526298 0.16439946 0.2244684 0.2928665 0.3458413
SC(n) 0.15830468 0.26946896 0.3715657 0.4819916 0.5769942
FPE(n) 1.05367413 1.09722530 1.1322937 1.1783005 1.2074691

The output shows that VAR(1) was indeed the right choice. We now plot
the residuals.

plot(residuals(pressure.var1)[,1],type="p",pch=15,cex=.5,xlab=
'Time', ylab='Residuals',ylim=c(-3,3))

points(residuals(pressure.var1)[,2],pch=1,cex=.5, col="grey40")
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legend(100,3,c("Residuals","Front","Back"),
pch=c(NA,15,1),lwd=c(NA,.5,.5),cex=.55,col=c("black","black",
"grey40"))
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Example 7.12 The data for this example are in the array called
sp500.data of which the two columns represent the date and the S&P
500 closing values respectively. To model the multivariate data we use the
“garch” function in R package “tseries.” But we first start with time series,
acf, pacf plots as suggested in the example

library(tseries)

sp<-ts(sp500.data[,2])
logsp.d1<-diff(log(sp))
T<-length(logsp.d1)
plot(logsp.d1,type="o",pch=16,cex=.5,xlab='Date', ylab='log(SP(t))
-log(SP(t-1))',xaxt='n')

lablist<-as.vector(sp500.data[seq(1,T+1,40),1])
axis(1, seq(1,T+1,40), labels=FALSE)
text(seq(1,T+1,40),par("usr")[3]-.01, ,labels = lablist, srt = 45,
pos = 1, xpd = TRUE)
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# ACF and PACF of the first difference of the log transformation
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(logsp.d1,lag.max=25,type="correlation",main="ACF of the wt")
acf(logsp.d1, lag.max=25,type="partial",main="PACF of the wt")
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# ACF and PACF of the square of the first difference of the log
# transformation
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(logsp.d1ˆ2,lag.max=25,type="correlation",main="ACF of the wtˆ2")
acf(logsp.d1ˆ2, lag.max=25,type="partial",main="PACF of the wtˆ2")
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# Fit a GARCH(0,3) model
sp.arch3<-garch(logsp.d1, order = c(0,3), trace = FALSE)
summary(sp.arch3)

Call:
garch(x = logsp.d1, order = c(0, 3), trace = FALSE)

Model:
GARCH(0,3)

Residuals:
Min 1Q Median 3Q Max

-2.0351 -0.4486 0.3501 0.8869 2.9320

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 2.376e-04 6.292e-05 3.776 0.000159 ***
a1 2.869e-15 1.124e-01 0.000 1.000000
a2 7.756e-02 8.042e-02 0.964 0.334876
a3 9.941e-02 1.124e-01 0.884 0.376587
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Diagnostic Tests:
Jarque Bera Test

data: Residuals
X-squared = 0.4316, df = 2, p-value = 0.8059

Box-Ljung test

data: Squared.Residuals
X-squared = 2.2235, df = 1, p-value = 0.1359

EXERCISES

7.1 Show that an AR(2) model can be represented in state space form.

7.2 Show that an MA(1) model can be written in state space form.

7.3 Consider the information on weekly spare part demand shown in
Table E7.1. Suppose that 74 requests for 55 parts are received during
the current week, T. Find the new cumulative distribution of demand.
Use 𝜆 = 0.1. What is your forecast of the 70th percentile of the
demand distribution?

7.4 Consider the information on weekly luxury car rentals shown in
Table E7.2. Suppose that 37 requests for rentals are received during
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TABLE E7.1 Spare Part Demand Information for Exercise 7.3

F(Bk), at the end of
k Bk−1 Bk p̂k(T − 1) week T − 1

0 0 5 0.02 0.02
1 5 10 0.03 0.05
2 10 15 0.04 0.09
3 15 20 0.05 0.14
4 20 25 0.08 0.22
5 25 30 0.09 0.31
6 30 35 0.12 0.43
7 35 40 0.17 0.60
8 45 50 0.21 0.81
9 50 55 0.11 0.92

10 55 60 0.08 1.00

the current week, T. Find the new cumulative distribution of demand.
Use 𝜆 = 0.1. What is your forecast of the 90th percentile of the
demand distribution?

7.5 Rework Exercise 7.3 using 𝜆 = 0.4. How much difference does
changing the value of the smoothing parameter make in your esti-
mate of the 70th percentile of the demand distribution?

7.6 Rework Exercise 7.4 using 𝜆 = 0.4. How much difference does
changing the value of the smoothing parameter make in your esti-
mate of the 70th percentile of the demand distribution?

TABLE E7.2 Luxury Car Rental Demand Information for Exercise 7.4

F(Bk), at the end of
k Bk−1 Bk p̂k(T − 1) week T − 1

0 0 5 0.06 0.06
1 5 10 0.07 0.13
2 10 15 0.08 0.21
3 15 20 0.09 0.30
4 20 25 0.15 0.45
5 25 30 0.22 0.67
6 30 35 0.24 0.91
7 35 40 0.05 0.96
8 45 50 0.04 1.00
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7.7 Suppose that two forecasting methods can be used for a time series,
and that the two variances of the forecast errors are𝜎2

1 = 10 and 𝜎
2
2 =

25. If the correlation coefficient 𝜌 = −0.75, calculate the optimum
value of the weight used to optimally combine the two individual
forecasts. What is the variance of the combined forecast?

7.8 Suppose that two forecasting methods can be used for a time series,
and that the two variances of the forecast errors are𝜎2

1 = 15 and 𝜎
2
2 =

20. If the correlation coefficient 𝜌 = −0.4, calculate the optimum
value of the weight used to optimally combine the two individual
forecasts. What is the variance of the combined forecast?

7.9 Suppose that two forecasting methods can be used for a time series,
and that the two variances of the forecast errors are 𝜎2

1 = 8 and 𝜎
2
2 =

16. If the correlation coefficient 𝜌 = −0.3, calculate the optimum
value of the weight used to optimally combine the two individual
forecasts. What is the variance of the combined forecast?

7.10 Suppose that two forecasting methods can be used for a time series,
and that the two variances of the forecast errors are 𝜎

2
1 = 1 and

𝜎
2
2 = 8. If the correlation coefficient 𝜌 = −0.65, calculate the opti-

mum value of the weight used to optimally combine the two indi-
vidual forecasts. What is the variance of the combined forecast?

7.11 Rework Exercise 7.8 assuming that 𝜌 = 0.4. What effect does chang-
ing the sign of the correlation coefficient have on the weight used
to optimally combine the two forecasts? What is the variance of the
combined forecast?

7.12 Rework Exercise 7.9 assuming that 𝜌 = 0.3. What effect does chang-
ing the sign of the correlation coefficient have on the weight used
to optimally combine the two forecasts? What is the variance of the
combined forecast?

7.13 Suppose that there are three lead-one forecasts available for a time
series, and the covariance matrix of the three forecasts is as follows:

𝚺T+1(T) =
⎡⎢⎢⎣

10 −4 −2

−4 6 −3

−2 −3 15

⎤⎥⎥⎦
Find the optimum weights for combining these three forecasts. What
is the variance of the combined forecast?
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7.14 Suppose that there are three lead-one forecasts available for a time
series, and the covariance matrix of the three forecasts is as follows:

𝚺T+1(T) =
⎡⎢⎢⎣

8 −2 −1
−2 3 −2
−1 −2 10

⎤⎥⎥⎦
Find the optimum weights for combining these three forecasts.
What is the variance of the combined forecast?

7.15 Table E7.3 presents 25 forecast errors for two different forecasting
techniques applied to the same time series. Is it possible to com-
bine the two forecasts to improve the forecast errors? What is the
optimum weight for combining the forecasts? What is the variance
of the combined forecast?

TABLE E7.3 Forecast Errors for Exercise 7.15

Time period Forecast errors, method 1 Forecast errors, method 2

1 −0.78434 6.9668
2 −0.31111 4.5512
3 2.15622 −1.2681
4 −1.81293 6.8967
5 −0.77498 1.6574
6 2.31673 −8.7601
7 −0.94866 0.7472
8 0.81314 −0.7457
9 −2.95718 −0.5355

10 0.08175 −1.3458
11 1.08915 −5.8232
12 −0.20637 1.2722
13 0.57157 −2.4561
14 0.41435 4.3111
15 0.47138 5.9894
16 1.23274 −6.8757
17 −0.66288 1.5996
18 1.71193 10.5031
19 −2.00317 9.8664
20 −2.87901 3.0399
21 −2.87901 14.1992
22 −0.16103 9.0080
23 2.12427 −0.4551
24 0.60598 0.7123
25 0.18259 1.7346
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7.16 Show that when combining two forecasts, if the correlation between
the two sets of forecast errors is 𝜌 = 𝜎1∕𝜎2, then Min Var [ec

T+𝜏(T)] =
𝜎

2
1 , where 𝜎

2
1 is the smaller of the two forecast error variances.

7.17 Show that when combining two forecasts, if the correlation between
the two sets of forecast errors is 𝜌 = 0, then Var [ec

T+𝜏(T)] =
𝜎

2
1𝜎

2
2∕(𝜎2

1 + 𝜎
2
2).

7.18 Let yt be an IMA(1, 1) time series with parameter 𝜃 = 0.4. Sup-
pose that this time series is observed with an additive white noise
error.
a. What is the model form of the observed error?
b. Find the parameters of the observed time series, assuming that

the variances of the errors in the original time series and the white
noise are equal.

7.19 Show that an AR(1) time series that is observed with an additive
white noise error is an ARMA(1, 1) process.

7.20 Generate 100 observations of an ARIMA(1, 1, 0) time series. Add
100 observations of white noise to this time series. Calculate the
sample ACF and sample PACF of the new time series. Identify the
model form and estimate the parameters.

7.21 Generate 100 observations of an ARIMA(1, 1, 0) time series. Gener-
ate another 100 observations of an AR(1) time series and add these
observations to the original time series. Calculate the sample ACF
and sample PACF of the new time series. Identify the model form
and estimate the parameters.

7.22 Generate 100 observations of an AR(2) time series. Generate another
100 observations of an AR(1) time series and add these observations
to the original time series. Calculate the sample ACF and sample
PACF of the new time series. Identify the model form and estimate
the parameters.

7.23 Generate 100 observations of an MA(2) time series. Generate
another 100 observations of an MA(1) time series and add these
observations to the original time series. Calculate the sample ACF
and sample PACF of the new time series. Identify the model form
and estimate the parameters.

7.24 Table E7.4 presents data on the type of heating fuel used in new
single-family houses built in the United States from 1971 through
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TABLE E7.4 Data for Exercise 7.24

Number of Houses (in thousands)

Other types
Year Total Gas Electricity Oil or none

1971 1014 605 313 83 15
1972 1143 621 416 93 13
1973 1197 560 497 125 16
1974 940 385 458 85 11
1975 875 347 429 82 18
1976 1034 407 499 110 19
1977 1258 476 635 120 28
1978 1369 511 710 109 40
1979 1301 512 662 86 41
1980 957 394 482 29 52
1981 819 339 407 16 57
1982 632 252 315 17 48
1983 924 400 448 22 53
1984 1025 460 492 24 49
1985 1072 466 528 36 42
1986 1120 527 497 52 45
1987 1123 583 445 58 38
1988 1085 587 402 60 36
1989 1026 596 352 50 28
1990 966 573 318 48 27
1991 838 505 267 37 29
1992 964 623 283 36 22
1993 1039 682 303 34 20
1994 1160 772 333 39 16
1995 1066 708 305 37 16
1996 1129 781 299 37 11
1997 1116 771 296 38 11
1998 1160 809 307 34 10
1999 1270 884 343 35 9
2000 1242 868 329 37 8
2001 1256 875 336 35 9
2002 1325 907 371 38 10
2003 1386 967 377 31 12
2004 1532 1052 440 29 10
2005 1636 1082 514 31 9
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2005. Develop an appropriate multivariate time series model for the
gas, electricity, and oil time series.

7.25 Reconsider the data on heating fuel in Table E7.4. Suppose that you
are interested in forecasting the aggregate series (the Total column
in Table E7.4). One way to do this is to forecast the total directly.
Another way is to forecast the individual component series and
sum the forecasts of the components to obtain a forecast for the
total. Investigate these approaches for this data and report on your
conclusions.

7.26 Reconsider the data on heating fuel in Table E7.4. Suppose that you
are interested in forecasting the four individual components series
(the Gas, Electricity, Oil, and Other Types columns in Table E7.4).
One way to do this is to forecast the individual time series directly.
Another way is to forecast the total and obtain forecasts of the
individual component series by decomposing the forecast for the
totals into component parts. Investigate these approaches for this
data and report on your conclusions.

7.27 Table E7.5 contains data on property crimes reported to the police
in the United States. Both the number of property crimes and the
crime rate per 100,000 individuals are shown. Using the data on
the number of crimes reported, develop an appropriate multivariate
time series model for the burglary, larceny-theft, and motor vehicle
theft time series.

7.28 Repeat Exercise 7.27 using the property crime rate data. Compare
the models obtained using the number of crimes reported versus the
crime rate.

7.29 Reconsider the data on property crimes in Table E7.5. Suppose that
you are interested in forecasting the aggregate crime rate series.
One way to do this is to forecast the total directly. Another way is
to forecast the individual component series and sum the forecasts of
the components to obtain a forecast for the total. Investigate these
approaches for this data and report on your conclusions.

7.30 Reconsider the data on property crimes in Table E7.5. Suppose
that you are interested in forecasting the four individual component
series (the Burglary, Larceny-Theft, and Motor Vehicle Theft
columns in Table E7.5). One way to do this is to forecast the
individual time series directly. Another way is to forecast the total
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TABLE E7.5 Property Crime Data for Exercise 7.27

Property Crime (in thousands)

Year Total Burglary Larceny-theft Motor vehicle theft

1960 3096 912 1855 328
1961 3199 950 1913 336
1962 3451 994 2090 367
1963 3793 1086 2298 408
1964 4200 1213 2514 473
1965 4352 1283 2573 497
1966 4793 1410 2822 561
1967 5404 1632 3112 660
1968 6125 1859 3483 784
1969 6749 1982 3889 879
1970 7359 2205 4226 928
1971 7772 2399 4424 948
1972 7414 2376 4151 887
1973 7842 2566 4348 929
1974 9279 3039 5263 977
1975 10,253 3265 5978 1010
1976 10,346 3109 6271 966
1977 9955 3072 5906 978
1978 10,123 3128 5991 1004
1979 11,042 3328 6601 1113
1980 12,064 3795 7137 1132
1981 12,062 3780 7194 1088
1982 11,652 3447 7143 1062
1983 10,851 3130 6713 1008
1984 10,608 2984 6592 1032
1985 11,103 3073 6926 1103
1986 11,723 3241 7257 1224
1987 12,025 3236 7500 1289
1988 12,357 3218 7706 1433
1989 12,605 3168 7872 1565
1990 12,655 3074 7946 1636
1991 12,961 3157 8142 1662
1992 12,506 2980 7915 1611
1993 12,219 2835 7821 1563
1994 12,132 2713 7880 1539
1995 12,064 2594 7998 1472
1996 11,805 2506 7905 1394
1997 11,558 2461 7744 1354
1998 10,952 2333 7376 1243
1999 10,208 2102 6956 1152
2000 10,183 2051 6972 1160
2001 10,437 2117 7092 1228
2002 10,451 2152 7053 1246
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TABLE E7.5 (Continued)

Crime Rate (per 100,000 population)

Year Total Burglary Larceny-theft Motor vehicle theft

1960 1726.3 508.6 1034.7 183.0
1961 1747.9 518.9 1045.4 183.6
1962 1857.5 535.2 1124.8 197.4
1963 2012.1 576.4 1219.1 216.6
1964 2197.5 634.7 1315.5 247.4
1965 2248.8 662.7 1329.3 256.8
1966 2450.9 721.0 1442.9 286.9
1967 2736.5 826.6 1575.8 334.1
1968 3071.8 932.3 1746.6 393.0
1969 3351.3 984.1 1930.9 436.2
1970 3621.0 1084.9 2079.3 456.8
1971 3768.8 1163.5 2145.5 459.8
1972 3560.4 1140.8 1993.6 426.1
1973 3737.0 1222.5 2071.9 442.6
1974 4389.3 1437.7 2489.5 462.2
1975 4810.7 1532.1 2804.8 473.7
1976 4819.5 1448.2 2921.3 450.0
1977 4601.7 1419.8 2729.9 451.9
1978 4642.5 1434.6 2747.4 460.5
1979 5016.6 1511.9 2999.1 505.6
1980 5353.3 1684.1 3167.0 502.2
1981 5263.9 1647.2 3135.3 474.1
1982 5032.5 1488.0 3083.1 458.6
1983 4637.4 1338.7 2871.3 431.1
1984 4492.1 1265.5 2795.2 437.7
1985 4666.4 1291.7 2911.2 463.5
1986 4881.8 1349.8 3022.1 509.8
1987 4963.0 1335.7 3095.4 531.9
1988 5054.0 1316.2 3151.7 586.1
1989 5107.1 1283.6 3189.6 634.0
1990 5073.1 1232.2 3185.1 655.8
1991 5140.2 1252.1 3229.1 659.0
1992 4903.7 1168.4 303.6 631.6
1993 4740.0 1099.7 3033.9 606.3
1994 4660.2 1042.1 3026.9 591.3
1995 4590.5 987.0 3043.2 560.3
1996 4451.0 945.0 2980.3 525.7
1997 4316.3 918.8 2891.8 505.7
1998 4052.5 863.2 2729.5 459.9
1999 3743.6 770.4 2550.7 422.5
2000 3618.3 728.8 2477.3 412.2
2001 3658.1 741.8 2485.7 430.5
2002 3624.1 746.2 2445.8 432.1
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and obtain forecasts of the individual component series by decom-
posing the forecast for the totals into component parts. Investigate
these approaches using the crime rate data, and report on your
conclusions.

7.31 Table B.1 contains data on market yield of US treasury securities at
10-year constant maturity. Compute the spectrum for this time series.
What features of the time series are apparent from examination of
the spectrum?

7.32 Table B.3 contains on the viscosity of a chemical product. Compute
the spectrum for this time series. What features of the time series
are apparent from examination of the spectrum?

7.33 Table B.6 contains the global mean surface air temperature anomaly
and the global CO2 concentration data. Compute the spectrum for
both of these time series. What features of the two time series are
apparent from examination of the spectrum?

7.34 Table B.11 contains sales data on sales of Champagne. Compute
the spectrum for this time series. Is the seasonal nature of the time
series apparent from examination of the spectrum?

7.35 Table B.21 contains data on the average monthly retail price of
electricity in the residential sector for Arizona from 2001 through
2014. Take the first difference of this timer series and compute the
spectrum. Is the seasonal nature of the time series apparent from
examination of the spectrum?

7.36 Table B.22 contains data on Danish crude oil production. Compute
the spectrum for this time series. What features of the time series
are apparent from examination of the spectrum?

7.37 Table B.23 contains data on positive test results for influenza in the
US. Compute the spectrum for this time series. Is the seasonal nature
of the time series apparent from examination of the spectrum?

7.38 Table B.24 contains data on monthly mean daily solar radiation.
Compute the spectrum for this time series. Is the seasonal nature of
the time series apparent from examination of the spectrum?

7.39 Table B.27 contains data on airline on-time arrival performance.
Compute the spectrum for this time series. Is there any evidence of
seasonality in the time series that is apparent from examination of
the spectrum?
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7.40 Table B.28 contains data on US automobile manufacturing ship-
ments. Compute the spectrum for this time series. Is there any
evidence of seasonality in the time series that is apparent from
examination of the spectrum?

7.41 Weekly demand for a spare part is assumed to follow a Poisson
distribution:

f (y|𝜆) = e−𝜆𝜆y

y!
, y = 0, 1,…

The mean 𝜆 of the demand distribution is assumed to be a random
variable with a gamma distribution

h(𝜆) = ba

(a − 1)!
𝜆

a−1e−b𝜆, 𝜆 > 0

where a and b are parameters having subjectively determined values.
In the week following the establishment of this prior distribution d
parts were demanded. What is the posterior distribution of 𝜆?
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STATISTICAL TABLES

Table A.1 Cumulative Standard Normal Distribution
Table A.2 Percentage Points t𝜶,𝜈 of the t Distribution
Table A.3 Percentage Points 𝝌2

𝛼,𝜈 of the Chi-Square Distribution
Table A.4 Percentage Points f

𝛼,𝜇,𝜈 of the F Distribution
Table A.5 Critical Values of the Durbin–Watson Statistic
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TABLE A.5 Critical Values of the Durbin–Watson Statistic

k = Number of Regressors (Excluding the Intercept)

1 2 3 4 5
Sample
Size

Probability in
Lower Tail

(Significance
Level = 𝛼) dL dU dL dU dL dU dL dU dL dU

0.01 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
15 0.025 0.95 1.23 0.83 1.40 0.71 1.61 0.59 1.84 0.48 2.09

0.05 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
0.01 0.95 1.15 0.86 1.27 0.77 1.41 0.63 1.57 0.60 1.74

20 0.025 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87
0.05 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
0.01 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

25 0.025 1.13 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77
0.05 1.20 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
0.01 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

30 0.025 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73
0.05 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
0.01 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

40 0.025 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69
0.05 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
0.01 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

50 0.025 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69
0.05 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
0.01 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

60 0.025 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69
0.05 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
0.01 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

80 0.025 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1.44 1.70
0.05 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
0.01 1.52 1.56 1.50 1.58 1.48 1.60 1.45 1.63 1.44 1.65

100 0.025 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72
0.05 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

Source: Adapted from J. Durbin and G. S. Watson [1951]. Testing for serial correlation in
least squares regression II.Biometrika 38, with permission of the publisher.



APPENDIX B

DATA SETS FOR EXERCISES

Table B.1 Market Yield on US Treasury Securities at 10-Year
Constant Maturity

Table B.2 Pharmaceutical Product Sales
Table B.3 Chemical Process Viscosity
Table B.4 US Production of Blue and Gorgonzola Cheeses
Table B.5 US Beverage Manufacturer Product Shipments,

Unadjusted
Table B.6 Global Mean Surface Air Temperature Anomaly and

Global CO2 Concentration
Table B.7 Whole Foods Market Stock Price, Daily Closing

Adjusted for Splits
Table B.8 Unemployment Rate—Full-Time Labor Force, Not

Seasonally Adjusted
Table B.9 International Sunspot Numbers
Table B.10 United Kingdom Airline Miles Flown
Table B.11 Champagne Sales
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Table B.12 Chemical Process Yield, with Operating
Temperature

Table B.13 US Production of Ice Cream and Frozen Yogurt
Table B.14 Atmospheric CO2 Concentrations at Mauna Loa

Observatory
Table B.15 US National Violent Crime Rate
Table B.16 US Gross Domestic Product
Table B.17 Total Annual US Energy Consumption
Table B.18 Annual US Coal Production
Table B.19 Arizona Drowning Rate, Children 1–4 Years Old
Table B.20 US Internal Revenue Tax Refunds
Table B.21 Arizona Average Retail Price of Residential

Electricity
Table B.22 Denmark Crude Oil Production
Table B.23 US Influenza Positive Tests
Table B.24 Mean Daily Solar Radiation in Zion Canyon, Utah
Table B.25 US Motor Vehicle Traffic Fatalities
Table B.26 Single-Family Residential New Home Sales and

Building Permits
Table B.27 Best Airline On-Time Arrival Performance
Table B.28 US Automobile Manufacturing Shipments
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TABLE B.1 Market Yield on US Treasury Securities at 10-Year Constant
Maturity

Month Rate (%) Month Rate (%) Month Rate (%) Month Rate (%)

Apr-1953 2.83 Oct-1966 5.01 Apr-1980 11.47 Oct-1993 5.33
May-1953 3.05 Nov-1966 5.16 May-1980 10.18 Nov-1993 5.72
Jun-1953 3.11 Dec-1966 4.84 Jun-1980 9.78 Dec-1993 5.77
Jul-1953 2.93 Jan-1967 4.58 Jul-1980 10.25 Jan-1994 5.75
Aug-1953 2.95 Feb-1967 4.63 Aug-1980 11.10 Feb-1994 5.97
Sep-1953 2.87 Mar-1967 4.54 Sep-1980 11.51 Mar-1994 6.48
Oct-1953 2.66 Apr-1967 4.59 Oct-1980 11.75 Apr-1994 6.97
Nov-1953 2.68 May-1967 4.85 Nov-1980 12.68 May-1994 7.18
Dec-1953 2.59 Jun-1967 5.02 Dec-1980 12.84 Jun-1994 7.10
Jan-1954 2.48 Jul-1967 5.16 Jan-1981 12.57 Jul-1994 7.30
Feb-1954 2.47 Aug-1967 5.28 Feb-1981 13.19 Aug-1994 7.24
Mar-1954 2.37 Sep-1967 5.30 Mar-1981 13.12 Sep-1994 7.46
Apr-1954 2.29 Oct-1967 5.48 Apr-1981 13.68 Oct-1994 7.74
May-1954 2.37 Nov-1967 5.75 May-1981 14.10 Nov-1994 7.96
Jun-1954 2.38 Dec-1967 5.70 Jun-1981 13.47 Dec-1994 7.81
Jul-1954 230 Jan-1968 5.53 Jul-1981 14.28 Jan-1995 7.78
Aug-1954 2.36 Feb-1968 5.56 Aug-1981 14.94 Feb-1995 7.47
Sep-1954 2.38 Mar-1968 5.74 Sep-1981 15.32 Mar-1995 7.20
Oct-1954 2.43 Apr-1968 564 Oct-1981 15.15 Apr-1995 7.06
Nov-1954 2.48 May-1968 5.87 Nov-1981 13.39 May-1995 6.63
Dec-1954 2.51 Jun-1968 5.72 Dec-1981 13.72 Jun-1995 6.17
Jan-1955 2.61 Jul-1968 5.50 Jan-1982 14.59 Jul-1995 6.28
Feb-1955 2.65 Aug-1968 5.42 Feb-1982 14.43 Aug-1995 6.49
Mar-1955 2.68 Sep-1968 5.46 Mar-1982 13.86 Sep-1995 6.20
Apr-1955 2.75 Oct-1968 5.58 Apr-1982 13.87 Oct-1995 6.04
May-1955 2.76 Nov-1968 5.70 May-1982 13.62 Nov-1995 5.93
Jun-1955 2.78 Dec-1968 6.03 Jun-1982 14.30 Dec-1995 5.71
Jul-1955 2.90 Jan-1969 6.04 Jul-1982 13.95 Jan-1996 5.65
Aug-1955 2.97 Feb-1969 6.19 Aug-1982 13.06 Feb-1996 5.81
Sep-1955 2.97 Mar-1969 6.30 Sep-1982 12.34 Mar-1996 6.27
Oct-1955 2.88 Apr-1969 6.17 Oct-1982 10.91 Apr-1996 6.51
Nov-1955 2.89 May-1969 6.32 Nov-1982 10.55 May-1996 6.74
Dec-1955 2.96 Jun-1969 6.57 Dec-1982 10.54 Jun-1996 6.91
Jan-1956 2.90 Jul-1969 6.72 Jan-1983 10.46 Jul-1996 6.87
Feb-1956 2.84 Aug-1969 6.69 Feb-1983 10.72 Aug-1996 6.64
Mar-1956 2.96 Sep-1969 7.16 Mar-1983 10.51 Sep-1996 6.83
Apr-1956 3.18 Oct-1969 7.10 Apr-1983 10.40 Oct-1996 6.53
May-1956 3.07 Nov-1969 7.14 May-1983 10.38 Nov-1996 6.20
Jun-1956 3.00 Dec-1969 7.65 Jun-1983 10.85 Dec-1996 6.30

(continued )
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TABLE B.1 (Continued)

Month Rate (%) Month Rate (%) Month Rate (%) Month Rate (%)

Jul-1956 3.11 Jan-1970 7.79 Jul-1983 11.38 Jan-1997 6.58
Aug-1956 3.33 Feb-1970 7.24 Aug-1983 11.85 Feb-1997 6.42
Sep-1956 3.38 Mar-1970 7.07 Sep-1983 11.65 Mar-1997 6.69
Oct-1956 3.34 Apr-1970 7.39 Oct-1983 11.54 Apr-1997 6.89
Nov-1956 3.49 May-1970 7.91 Nov-1983 11.69 May-1997 6.71
Dec-1956 3.59 Jun-1970 7.84 Dec-1983 11.83 Jun-1997 6.49
Jan-1957 3.46 Jul-1970 7.46 Jan-1984 11.67 Jul-1997 6.22
Feb-1957 3.34 Aug-1970 7.53 Feb-1984 11.84 Aug-1997 6.30
Mar-1957 3.41 Sep-1970 7.39 Mar-1984 12.32 Sep-1997 6.21
Apr-1957 3.48 Oct-1970 7.33 Apr-1984 12.63 Oct-1997 6.03
May-1957 3.60 Nov-1970 6.84 May-1984 13.41 Nov-1997 5.88
Jun-1957 3.80 Dec-1970 6.39 Jun-1984 13.56 Dec-1997 5.81
Jul-1957 3.93 Jan-1971 6.24 Jul-1984 13.36 Jan-1998 5.54
Aug-1957 3.93 Feb-1971 6.11 Aug-1984 12.72 Feb-1998 5.57
Sep-1957 3.92 Mar-1971 5.70 Sep-1984 12.52 Mar-1998 5.65
Oct-1957 3.97 Apr-1971 5.83 Oct-1984 12.16 Apr-1998 5.64
Nov-1957 3.72 May-1971 6.39 Nov-1984 11.57 May-1998 5.65
Dec-1957 3.21 Jun-1971 6.52 Dec-1984 11.50 Jun-1998 5.50
Jan-1958 3.09 Jul-1971 6.73 Jan-1985 11.38 Jul-1998 5.46
Feb-1958 3.05 Aug-1971 6.58 Feb-1985 11.51 Aug-1998 5.34
Mar-1958 2.98 Sep-1971 6.14 Mar-1985 11.86 Sep-1998 4.81
Apr-1958 2.88 Oct-1971 5.93 Apr-1985 11.43 Oct-1998 4.53
May-1958 2.92 Nov-1971 5.81 May-1985 10.85 Nov-1998 4.83
Jun-1958 2.97 Dec-1971 5.93 Jun-1985 10.16 Dec-1998 4.65
Jul-1958 3.20 Jan-1972 5.95 Jul-1985 10.31 Jan-1999 4.72
Aug-1958 3.54 Feb-1972 6.08 Aug-1985 10.33 Feb-1999 5.00
Sep-1958 3.76 Mar-1972 6.07 Sep-1985 10.37 Mar-1999 5.23
Oct-1958 3.80 Apr-1972 6.19 Oct-1985 10.24 Apr-1999 5.18
Nov-1958 3.74 May-1972 6.13 Nov-1985 9.78 May-1999 5.54
Dec-1958 3.86 Jun-1972 6.11 Dec-1985 9.26 Jun-1999 5.90
Jan-1959 4.02 Jul-1972 6.11 Jan-1986 9.19 Jul-1999 5.79
Feb-1959 3.96 Aug-1972 6.21 Feb-1986 8.70 Aug-1999 5.94
Mar-1959 3.99 Sep-1972 6.55 Mar-1986 7.78 Sep-1999 5.92
Apr-1959 4.12 Oct-1972 6.48 Apr-1986 7.30 Oct-1999 6.11
May-1959 4.31 Nov-1972 6.28 May-1986 7.71 Nov-1999 6.03
Jun-1959 4.34 Dec-1972 6.36 Jun-1986 7.80 Dec-1999 6.28
Jul-1959 4.40 Jan-1973 6.46 Jul-1986 7.30 Jan-2000 6.66
Aug-1959 4.43 Feb-1973 6.64 Aug-1986 7.17 Feb-2000 6.52
Sep-1959 4.68 Mar-1973 6.71 Sep-1986 7.45 Mar-2000 6.26
Oct-1959 4.53 Apr-1973 6.67 Oct-1986 7.43 Apr-2000 5.99
Nov-1959 4.53 May-1973 6.85 Nov-1986 7.25 May-2000 6.44
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TABLE B.1 (Continued)

Month Rate (%) Month Rate (%) Month Rate (%) Month Rate (%)

Dec-1959 4.69 Jun-1973 6.90 Dec-1986 7.11 Jun-2000 6.10
Jan-1960 4.72 Jul-1973 7.13 Jan-1987 7.08 Jul-2000 6.05
Feb-1960 4.49 Aug-1973 7.40 Feb-1987 7.25 Aug-2000 5.83
Mar-1960 4.25 Sep-1973 7.09 Mar-1987 7.25 Sep-2000 5.80
Apr-1960 4.28 Oct-1973 6.79 Apr-1987 8.02 Oct-2000 5.74
May-1960 4.35 Nov-1973 6.73 May-1987 8.61 Nov-2000 5.72
Jun-1960 4.15 Dec-1973 6.74 Jun-1987 8.40 Dec-2000 5.24
Jul-1960 3.90 Jan-1974 6.99 Jul-1987 8.45 Jan-2001 5.16
Aug-1960 3.80 Feb-1974 6.96 Aug-1987 8.76 Feb-2001 5.10
Sep-1960 3.80 Mar-1974 7.21 Sep-1987 9.42 Mar-2001 4.89
Oct-1960 3.89 Apr-1974 7.51 Oct-1987 9.52 Apr-2001 5.14
Nov-1960 3.93 May-1974 7.58 Nov-1987 8.86 May-2001 5.39
Dec-1960 3.84 Jun-1974 7.54 Dec-1987 8.99 Jun-2001 5.28
Jan-1961 3.84 Jul-1974 7.81 Jan-1988 8.67 Jul-2001 5.24
Feb-1961 3.78 Aug-1974 8.04 Feb-1988 8.21 Aug-2001 4.97
Mar-1961 3.74 Sep-1974 8.04 Mar-1988 8.37 Sep-2001 4.73
Apr-1961 3.78 Oct-1974 7.90 Apr-1988 8.72 Oct-200l 4.57
May-1961 3.71 Nov-1974 7.68 May-1988 9.09 Nov-2001 4.65
Jun-1961 3.88 Dec-1974 7.43 Jun-1988 8.92 Dec-2001 5.09
Jul-1961 3.92 Jan-1975 7.50 Jul-1988 9.06 Jan-2002 5.04
Aug-1961 4.04 Feb-1975 7.39 Aug-1988 9.26 Feb-2002 4.91
Sep-1961 3.98 Mar-1975 7.73 Sep-1988 8.98 Mar-2002 5.28
Oct-1961 3.92 Apr-1975 8.23 Oct-1988 8.80 Apr-2002 5.21
Nov-1961 3.94 May-1975 8.06 Nov-1988 8.96 May-2002 5.16
Dec-1961 4.06 Jun-1975 7.86 Dec-1988 9.11 Jun-2002 4.93
Jan-1962 4.08 Jul-1975 8.06 Jan-1989 9.09 Jul-2002 4.65
Feb-1962 4.04 Aug-1975 8.40 Feb-1989 9.17 Aug-2002 4.26
Mar-1962 3.93 Sep-1975 8.43 Mar-1989 9.36 Sep-2002 3.87
Apr-1962 3.84 Oct-1975 8.14 Apr-1989 9.18 Oct-2002 3.94
May-1962 3.87 Nov-1975 8.05 May-1989 8.86 Nov-2002 4.05
Jun-1962 3.91 Dec-1975 8.00 Jun-1989 8.28 Dec-2002 4.03
Jul-1962 4.01 Jan-1976 7.74 Jul-1989 8.02 Jan-2003 4.05
Aug-1962 3.98 Feb-1976 7.79 Aug-1989 8.11 Feb-2003 3.90
Sep-1962 3.98 Mar-1976 7.73 Sep-1989 8.19 Mar-2003 3.81
Oct-1962 3.93 Apr-1976 7.56 Oct-1989 8.01 Apr-2003 3.96
Nov-1962 3.92 May-1976 7.90 Nov-1989 7.87 May-2003 3.57
Dec-1962 3.86 Jun-1976 7.86 Dec-1989 7.84 Jun-2003 3.33
Jan-1963 3.83 Jul-1976 7.83 Jan-1990 8.21 Jul-2003 3.98
Feb-1963 3.92 Aug-1976 7.77 Feb-1990 8.47 Aug-2003 4.45
Mar-1963 3.93 Sep-1976 7.59 Mar-1990 8.59 Sep-2003 4.27
Apr-1963 3.97 Oct-1976 7.41 Apr-1990 8.79 Oct-2003 4.29

(continued )
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TABLE B.1 (Continued)

Month Rate (%) Month Rate (%) Month Rate (%) Month Rate (%)

May-1963 3.93 Nov-1976 7.29 May-1990 8.76 Nov-2003 4.30
Jun-1963 3.99 Dec-1976 6.87 Jun-1990 8.48 Dec-2003 4.27
Jul-1963 4.02 Jan-1977 7.21 Jul-1990 8.47 Jan-2004 4.15
Aug-1963 4.00 Feb-1977 7.39 Aug-1990 8.75 Feb-2004 4.08
Sep-1963 4.08 Mar-1977 7.46 Sep-1990 8.89 Mar-2004 3.83
Ocl-1963 4.11 Apr-1977 7.37 Oct-1990 8.72 Apr-2004 4.35
Nov-1963 4.12 May-1977 7.46 Nov-1990 8.39 May-2004 4.72
Dec-1963 4.13 Jun-1977 7.28 Dec-1990 8.08 Jun-2004 4.73
Jan-1964 4.17 Jul-1977 7.33 Jan-1991 8.09 Jul-2004 4.50
Feb-1964 4.15 Aug-1977 7.40 Feb-1991 7.85 Aug-2004 4.28
Mar-1964 4.22 Sep-1977 7.34 Mar-1991 8.11 Sep-2004 4.13
Apr-1964 4.23 Oct-1977 7.52 Apr-1991 8.04 Oct-2004 4.10
May-1964 4.20 Nov-1977 7.58 May-1991 8.07 Nov-2004 4.19
Jun-1964 4.17 Dec-1977 7.69 Jun-1991 8.28 Dec-2004 4.23
Jul-1964 4.19 Jan-1978 7.96 Jul-1991 8.27 Jan-2005 4.22
Aug-1964 4.19 Feb-1978 8.03 Aug-1991 7.90 Feb-2005 4.17
Sep-1964 4.20 Mar-1978 8.04 Sep-1991 7.65 Mar-2005 4.50
Oct-1964 4.19 Apr-1978 8.15 Oct-1991 7.53 Apr-2005 4.34
Nov-1964 4.15 May-1978 8.35 Nov-1991 7.42 May-2005 4.14
Dec-1964 4.18 Jun-1978 8.46 Dec-1991 7.09 Jun-2005 4.00
Jan-1965 4.19 Jul-1978 8.64 Jan-1992 7.03 Jul-2005 4.18
Feb-1965 4.21 Aug-1978 8.41 Feb-1992 7.34 Aug-2005 4.26
Mar-1965 4.21 Sep-1978 8.42 Mar-1992 7.54 Sep-2005 4.20
Apr-1965 4.20 Oct-1978 8.64 Apr-1992 7.48 Oct-2005 4.46
May-1965 4.21 Nov-1978 8.81 May-1992 7.39 Nov-2005 4.54
Jun-1965 4.21 Dec-1978 9.01 Jun-1992 7.26 Dec-2005 4.47
Jul-1965 4.20 Jan-1979 9.10 Jul-1992 6.84 Jan-2006 4.42
Aug-1965 4.25 Feb-1979 9.10 Aug-1992 6.59 Feb-2006 4.57
Sep-1965 4.29 Mar-1979 9.12 Sep-1992 6.42 Mar-2006 4.72
Oct-1965 4.35 Apr-1979 9.18 Oct-1992 6.59 Apr-2006 4.99
Nov-1965 4.45 May-1979 9.25 Nov-1992 6.87 May-2006 5.11
Dec-1965 4.62 Jun-1979 8.91 Dec-1992 6.77 Jun-2006 5.11
Jan-1966 4.61 Jul-1979 8.95 Jan-1993 6.60 Jul-2006 5.09
Feb-1966 4.83 Aug-1979 9.03 Feb-1993 6.26 Aug-2006 4.88
Mar-1966 4.87 Sep-1979 9.33 Mar-1993 5.98 Sep-2006 4.72
Apr-1966 4.75 Oct-1979 10.30 Apr-1993 5.97 Oct-2006 4.73
May-1966 4.78 Nov-1979 10.65 May-1993 6.04 Nov-2006 4.60
Jun-1966 4.81 Dec-1979 10.39 Jun-1993 5.96 Dec-2006 4.56
Jul-1966 5.02 Jan-1980 10.80 Jul-1993 5.81 Jan-2007 4.76
Aug-1966 5.22 Feb-1980 12.41 Aug-1993 5.68 Feb-2007 4.72
Sep-1966 5.18 Mar-1980 12.75 Sep-1993 5.36
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TABLE B.2 Pharmaceutical Product Sales

Sales (In Sales (In Sales (In Sales (In
Week Thousands) Week Thousands) Week Thousands) Week Thousands)

1 10618.1 31 10334.5 61 10538.2 91 10375.4
2 10537.9 32 10480.1 62 10286.2 92 10123.4
3 10209.3 33 10387.6 63 10171.3 93 10462.7
4 10553.0 34 10202.6 64 10393.1 94 10205.5
5 9934.9 35 10219.3 65 10162.3 95 10522.7
6 10534.5 36 10382.7 66 10164.5 96 10253.2
7 10196.5 37 10820.5 67 10327.0 97 10428.7
8 10511.8 38 10358.7 68 10365.1 98 10615.8
9 10089.6 39 10494.6 69 10755.9 99 10417.3
10 10371.2 40 10497.6 70 10463.6 100 10445.4
11 10239.4 41 10431.5 71 10080.5 101 10690.6
12 10472.4 42 10447.8 72 10479.6 102 10271.8
13 10827.2 43 10684.4 73 9980.9 103 10524.8
14 10640.8 44 10176.5 74 10039.2 104 9815.0
15 10517.8 45 10616.0 75 10246.1 105 10398.5
16 10154.2 46 10627.7 76 10368.0 106 10553.1
17 9969.2 47 10684.0 77 10446.3 107 10655.8
18 10260.4 48 10246.7 78 10535.3 108 10199.1
19 10737.0 49 10265.0 79 10786.9 109 10416.6
20 10430.0 50 10090.4 80 9975.8 110 10391.3
21 10689.0 51 9881.1 81 10160.9 111 10210.1
22 10430.4 52 10449.7 82 10422.1 112 10352.5
23 10002.4 53 10276.3 83 10757.2 113 10423.8
24 10135.7 54 10175.2 84 10463.8 114 10519.3
25 10096.2 55 10212.5 85 10307.0 115 10596.7
26 10288.7 56 10395.5 86 10134.7 116 10650.0
27 10289.1 57 10545.9 87 10207.7 117 10741.6
28 10589.9 58 10635.7 88 10488.0 118 10246.0
29 10551.9 59 10265.2 89 10262.3 119 10354.4
30 10208.3 60 10551.6 90 10785.9 120 10155.4
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TABLE B.3 Chemical Process Viscosity

Time Time Time Time
Period Reading Period Reading Period Reading Period Reading

1 86.7418 26 87.2397 51 85.5722 76 84.7052
2 85.3195 27 87.5219 52 83.7935 77 83.8168
3 84.7355 28 86.4992 53 84.3706 78 82.4171
4 85.1113 29 85.6050 54 83.3762 79 83.0420
5 85.1487 30 86.8293 55 84.9975 80 83.6993
6 84.4775 31 84.5004 56 84.3495 81 82.2033
7 84.6827 32 84.1844 57 85.3395 82 82.1413
8 84.6757 33 85.4563 58 86.0503 83 81.7961
9 86.3169 34 86.1511 59 84.8839 84 82.3241
10 88.0006 35 86.4142 60 85.4176 85 81.5316
11 86.2597 36 86.0498 61 84.2309 86 81.7280
12 85.8286 37 86.6642 62 83.5761 87 82.5375
13 83.7500 38 84.7289 63 84.1343 88 82.3877
14 84.4628 39 85.9523 64 82.6974 89 82.4159
15 84.6476 40 86.8473 65 83.5454 90 82.2102
16 84.5751 41 88.4250 66 86.4714 91 82.7673
17 82.2473 42 89.6481 67 86.2143 92 83.1234
18 83.3774 43 87.8566 68 87.0215 93 83.2203
19 83.5385 44 88.4997 69 86.6504 94 84.4510
20 85.1620 45 87.0622 70 85.7082 95 84.9145
21 83.7881 46 85.1973 71 86.1504 96 85.7609
22 84.0421 47 85.0767 72 85.8032 97 85.2302
23 84.1023 48 84.4362 73 85.6197 98 86.7312
24 84.8495 49 84.2112 74 84.2339 99 87.0048
25 87.6416 50 85.9952 75 83.5737 100 85.0572
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TABLE B.4 US Production of Blue and Gorgonzola Cheeses

Year Production (103 lb) Year Production (103 lb)

1950 7,657 1974 28,262
1951 5,451 1975 28,506
1952 10,883 1976 33,885
1953 9,554 1977 34,776
1954 9,519 1978 35,347
1955 10,047 1979 34,628
1956 10,663 1980 33,043
1957 10,864 1981 30,214
1958 11,447 1982 31,013
1959 12,710 1983 31,496
1960 15,169 1984 34,115
1961 16,205 1985 33,433
1962 14,507 1986 34,198
1963 15,400 1987 35,863
1964 16,800 1988 37,789
1965 19,000 1989 34,561
1966 20,198 1990 36,434
1967 18,573 1991 34,371
1968 19,375 1992 33,307
1969 21,032 1993 33,295
1970 23,250 1994 36,514
1971 25,219 1995 36,593
1972 28,549 1996 38,311
1973 29,759 1997 42,773

Source: http://www.nass.usda.gov/QuickStats/.

http://www.nass.usda.gov/QuickStats/
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TABLE B.9 International Sunspot Numbers

Sunspot Sunspot Sunspot Sunspot Sunspot
Year Number Year Number Year Number Year Number Year Number

1700 5.1 1761 86 1622 4.1 1883 63.8 1944 9.7
1701 11.1 1762 61.3 1623 1.9 1884 63.6 1945 33.3
1702 16.1 1763 45.2 1824 8.6 1885 52.3 1946 92.7
1703 23.1 1764 36.5 1825 16.7 1886 25.5 1947 151.7
1704 36.1 1765 21 1826 36.4 1887 13.2 1948 136.4
1705 58.1 1766 11.5 1827 49.7 1888 6.9 1949 134.8
1706 29.1 1767 37.9 1828 64.3 1889 64 1950 84
1707 20.1 1768 69.9 1829 67.1 1890 7.2 1951 69.5
1708 10.1 1769 106.2 1830 71 1891 35.7 1952 31.6
1709 8.1 1770 100.9 1831 47.9 1892 73.1 1953 14
1710 3.1 1771 81.7 1832 27.6 1893 85.2 1954 4.5
1711 0.1 1772 66.6 1833 8.6 1894 78.1 1955 38.1
1712 0.1 1773 34.9 J834 13.3 1895 64.1 1956 141 .8
1713 2.1 1774 30.7 1835 57 1896 41 .9 1957 190.3
1714 11.1 1775 7.1 1836 121.6 1897 26.3 1958 184.9
1715 27.1 1776 19.9 1837 138.4 1898 26.8 1959 159.1
1716 47.1 1777 92.6 1838 103.3 1899 12.2 1960 112.4
1717 63.1 1778 154. 5 1839 85.8 1900 9.6 1961 54
1718 60.1 1779 126 1840 64.7 1901 2.8 1962 37.7
1719 39.1 1780 84.9 1841 36.8 1902 5.1 1963 28
1720 28.1 1781 68.2 1842 24.3 1903 24.5 1964 10.3
1721 26.1 1782 38.6 1843 10.8 1904 42.1 1965 152
1722 22.1 1783 22.9 1844 15.1 1905 63.6 1966 47.1
1723 11.1 1784 10.3 1845 40.2 1906 53.9 1967 93.8
1724 21.1 1785 24.2 1846 61.6 1907 62.1 1966 106
1725 40.1 1786 83 1847 98.6 1908 48.6 1969 105.6
1726 78.1 1787 132.1 1848 124. 8 1909 44 1970 104.6
1727 122.1 1788 131 1849 96.4 1910 18.7 1971 66.7
1728 103.1 1789 118.2 1850 66.7 1911 5.8 1972 69
1729 73.1 1790 90 1851 64.6 1912 3.7 1973 38.1
1730 47.1 1791 66.7 1852 54.2 1913 1.5 1974 34.6
1731 35.1 1792 60.1 1853 39.1 1914 9.7 1975 15.6
1732 11.1 1793 47 1854 20.7 1915 47.5 1976 12.7
1733 5.1 1794 41.1 1855 6.8 1916 57.2 1977 27.6
1734 16.1 1795 21.4 1856 4.4 1917 104 1978 92.6
1735 34.1 1796 16.1 1857 22.8 1918 80.7 1979 155.5
1736 70.1 1797 6.5 1858 54.9 1919 63.7 1980 154.7
1737 81.1 1798 4.2 1859 93.9 1920 37.7 1981 140.6
1738 111.1 1799 6.9 1860 95.9 1921 26.2 1982 116
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TABLE B.9 (Continued)

Sunspot Sunspot Sunspot Sunspot Sunspot
Year Number Year Number Year Number Year Number Year Number

1739 101.1 1800 14. 6 1861 77.3 1922 14.3 1983 66.7
1740 73.1 1801 34.1 1862 59.2 1923 59 1984 46
1741 40.1 1802 45.1 1863 44.1 1924 16.8 1985 18
1742 20.1 1803 43.2 1864 47.1 1925 44.4 1986 13.5
1743 16.1 1804 47.6 1865 30.6 1926 64 1987 29.3
1744 5.1 1805 42.3 1866 16.4 1927 69.1 1988 100.3
1745 11.1 1606 28.2 1867 7.4 1928 77.9 1989 157.7
1746 22.1 1807 10.2 1868 37.7 1929 65 1990 142.7
1747 40.1 1808 8.2 1869 74.1 1930 35.8 1991 145.8
1748 60.1 1809 2.6 1870 139.1 1931 21.3 1992 94.4
1749 81 1810 0.1 1871 111.3 1932 11.2 1993 54.7
1750 83.5 1811 1.5 1872 101.7 1933 5.8 1994 30
1751 47.8 1812 5.1 1873 66.3 1934 8.8 1995 17.6
1752 47.9 1813 12.3 1874 44.8 1935 36.2 1996 8.7
1753 30.8 1814 14 1875 17.1 1936 79.8 1997 21.6
1754 12.3 1815 35.5 1876 11.4 1937 114.5 1998 64.4
1755 9.7 1816 45.9 1877 12.5 1938 109.7 1999 93.4
1756 10.3 1817 41.1 1878 3.5 1939 88.9 2000 119.7
1757 32.5 1818 30.2 1879 6.1 1940 67.9 2001 111.1
1758 47.7 1819 24 1880 32.4 1941 47.6 2002 104.1
1759 54.1 1620 15.7 1881 54.4 1942 30.7 2003 63.8
1760 63 1821 6.7 1882 59.8 1943 16.4 2004 40.5

Source: http://sidc.oma.be/html/sunspot.html (yearly sunspot number).

http://sidc.oma.be/html/sunspot.html


TABLE B.10 United Kingdom Airline Miles Flown

Month Miles (In Millions) Month Miles (In Millions)

Jan-1964 7.269 Jul-1967 12.222
Feb-1964 6.775 Aug-1967 12.246
Mar-1964 7.819 Sep-1967 13.281
Apr-1964 8.371 Oct-1967 10.366
May-1964 9.069 Nov-1967 8.730
Jun-1964 10.248 Dec-1967 9.614
Jul-1964 11.030 Jan-1968 8.639
Aug-1964 10.882 Feb-1968 8.772
Sep-1964 10.333 Mar-1968 10.894
Oct-1964 9.109 Apr-1968 10.455
Nov-1964 7.685 May-1968 11.179
Dec-1964 7.682 Jun-1968 10.588
Jan-1965 8.350 Jul-1968 10.794
Feb-1965 7.829 Aug-1968 12.770
Mar-1965 8.829 Sep-1968 13.812
Apr-1965 9.948 Oct-1968 10.857
May-1965 10.638 Nov-1968 9.290
Jun-1965 11.253 Dec-1968 10.925
Jul-1965 11.424 Jan-1969 9.491
Aug-1965 11.391 Feb-1969 8.919
Sep-1965 10.665 Mar-1969 11.607
Oct-1965 9.396 Apr-1969 8.852
Nov-1965 7.775 May-1969 12.537
Dec-1965 7.933 Jun-1969 14.759
Jan-1966 8.186 Jul-1969 13.667
Feb-1966 7.444 Aug-1969 13.731
Mar-1966 8.484 Sep-1969 15.110
Apr-1966 9.864 Oct-1969 12.185
May-1966 10.252 Nov-1969 10.645
Jun-1966 12.282 Dec-1969 12.161
Jul-1966 11.637 Jan-1970 10.840
Aug-1966 11.577 Feb-1970 10.436
Sep-1966 12.417 Mar-1970 13.589
Oct-1966 9.637 Apr-1970 13.402
Nov-1966 8.094 May-1970 13.103
Dec-1966 9.280 Jun-1970 14.933
Jan-1967 8.334 Jul-1970 14.147
Feb-1967 7.899 Aug-1970 14.057
Mar-1967 9.994 Sep-1970 16.234
Apr-1967 10.078 Oct-1970 12.389
May-1967 10.801 Nov-1970 11.594
Jun-1967 12.953 Dec-1970 12.772

Source: Adapted from Montgomery, Johnson, and Gardner (1990), with permission of the
publisher.
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TABLE B.11 Champagne Sales

Sales Sales Sales
(In Thousands (In Thousands (In Thousands

Month of Bottles) Month Bottles) Month Bottles)

Jan-1962 2.851 Sep-1964 3.528 May-1967 4.968
Feb-1962 2.672 Oct-1964 5.211 Jun-1967 4.677
Mar-1962 2.755 Nov-1964 7.614 Jul-1967 3.523
Apr-1962 2.721 Dec-1964 9.254 Aug-1967 1.821
May-1962 2.946 Jan-1965 5.375 Sep-1967 5.222
Jun-1962 3.036 Feb-1965 3.088 Oct-1967 6.873
Jul-1962 2.282 Mar-1965 3.718 Nov-1967 10.803
Aug-1962 2.212 Apr-1965 4.514 Dec-1967 13.916
Sep-1962 2.922 May-1965 4.520 Jan-1968 2.639
Oct-1962 4.301 Jun-1965 4.539 Feb-1968 2.899
Nov-1962 5.764 Jul-1965 3.663 Mar-1968 3.370
Dec-1962 7.132 Aug-1965 1.643 Apr-1968 3.740
Jan-1963 2.541 Sep-1965 4.739 May-1968 2.927
Feb-1963 2.475 Oct-1965 5.428 Jun-1968 3.986
Mar-1963 3.031 Nov-1965 8.314 Jul-1968 4.217
Apr-1963 3.266 Dec-1965 10.651 Aug-1968 1.738
May-1963 3.776 Jan-1966 3.633 Sep-1968 5.221
Jun-1963 3.230 Feb-1966 4.292 Oct-1968 6.424
Jul-1963 3.028 Mar-1966 4.154 Nov-1968 9.842
Aug-1963 1.759 Apr-1966 4.121 Dec-1968 13.076
Sep-1963 3.595 May-1966 4.647 Jan-1969 3.934
Oct-1963 4.474 Jun-1966 4.753 Feb-1969 3.162
Nov-1963 6.838 Jul-1966 3.965 Mar-1969 4.286
Dec-1963 8.357 Aug-1966 1.723 Apr-1969 4.676
Jan-1964 3.113 Sep-1966 5.048 May-1969 5.010
Feb-1964 3.006 Oct-1966 6.922 Jun-1969 4.874
Mar-1964 4.047 Nov-1966 9.858 Jul-1969 4.633
Apr-1964 3.523 Dec-1966 11.331 Aug-1969 1.659
May-1964 3.937 Jan-1967 4.016 Sep-1969 5.951
Jun-1964 3.986 Feb-1967 3.957 Oct-1969 6.981
Jul-1964 3.260 Mar-1967 4.510 Nov-1969 9.851
Aug-1964 1.573 Apr-1967 4.276 Dec-1969 12.670
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TABLE B.12 Chemical Process Yield, with Operating Temperature
(Uncontrolled)

Hour Yield (%) Temperature (◦F) Hour Yield (%) Temperature (◦F)

1 89.0 153 26 99.4 152
2 90.5 152 27 99.6 153
3 91.5 153 28 99.8 153
4 93.2 153 29 98.8 154
5 93.9 154 30 99.9 154
6 94.6 151 31 98.2 153
7 94.7 153 32 98.7 153
8 93.5 152 33 97.5 154
9 91.2 151 34 97.9 152
10 89.3 150 35 98.3 152
11 85.6 150 36 98.8 151
12 80.3 149 37 99.1 150
13 75.9 149 38 99.2 149
14 75.3 147 39 98.6 148
15 78.3 146 40 95.3 147
16 89.1 143 41 94.2 146
17 88.3 148 42 91.3 148
18 89.2 151 43 90.6 145
19 90.1 152 44 91.2 143
20 94.3 153 45 88.3 145
21 97.7 154 46 84.1 150
22 98.6 152 47 86.5 147
23 98.7 153 48 88.2 150
24 98.9 152 49 89.5 151
25 99.2 152 50 89.5 152



DATA SETS FOR EXERCISES 605

TABLE B.13 US Production of Ice Cream and Frozen Yogurt

Ice Cream Frozen Yogurt Ice Cream Frozen Yogurt
Year (103 gal) (103 gal) Year (103 gal) (103 gal)

1950 554,351 – 1975 836,552 –
1951 568,849 – 1976 818,241 –
1952 592,705 – 1977 809,849 –
1953 605,051 – 1978 815,360 –
1954 596,821 – 1979 811,079 –
1955 628,525 – 1980 829,798 –
1956 641,333 – 1981 832,450 –
1957 650,583 – 1982 852,072 –
1958 657,175 – 1983 881,543 –
1959 698,931 – 1984 894,468 –
1960 697,552 – 1985 901,449 –
1961 697,151 – 1986 923,597 –
1962 704,428 – 1987 928,356 –
1963 717,597 – 1988 882,079 –
1964 738,743 – 1989 831,159 82,454
1965 757,000 – 1990 823,610 117,577
1966 751,159 – 1991 862,638 147,137
1967 745,409 – 1992 866,110 134,067
1968 773,207 – 1993 866,248 149,933
1969 765,501 – 1994 876,097 150,565
1970 761,732 – 1995 862,232 152,097
1971 765,843 – 1996 878,572 114,168
1972 767,750 – 1997 913,770 92,167
1973 773,674 – 1998 937,485 87,777
1974 781,971 – 2000 979,645 94,478

Source: USDA–National Agricultural Statistics Service.
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TABLE B.14 Atmospheric CO2 Concentrations at Mauna Loa
Observatory

Average CO2 Average CO2
Year Concentration (ppmv) Year Concentration (ppmv)

1959 316.00 1982 341.09
1960 316.91 1983 342.75
1961 317.63 1984 344.44
1962 318.46 1985 345.86
1963 319.02 1986 347.14
1964 319.52 1987 348.99
1965 320.09 1988 351.44
1966 321.34 1989 352.94
1967 322.13 1990 354.19
1968 323.11 1991 355.62
1969 324.60 1992 356.36
1970 325.65 1993 357.10
1971 326.32 1994 358.86
1972 327.52 1995 360.90
1973 329.61 1996 362.58
1974 330.29 1997 363.84
1975 331.16 1998 366.58
1976 332.18 1999 368.30
1977 333.88 2000 369.47
1978 335.52 2001 371.03
1979 336.89 2002 373.07
1980 338.67 2003 375.61
1981 339.95

Source: Adapted from C. D. Keeling, T. P. Whorf, and the Carbon Dioxide Research Group
(2004); Scripps Institution of Oceanography (SIO), University of California, La Jolla,
California USA 92093-0444, with permission of the publisher.
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TABLE B.15 US National Violent Crime Rate

Year Violent Crime Rate (per 100,000 Inhabitants)

1984 539.9
1985 558.1
1986 620.1
1987 612.5
1988 640.6
1989 666.9
1990 729.6
1991 758.2
1992 757.7
1993 747.1
1994 713.6
1995 684.5
1996 636.6
1997 611.0
1998 567.6
1999 523.0
2000 506.5
2001a 504.5
2002 494.4
2003 475.8
2004 463.2
2005 469.2

Source: http://www.census.gov/compendia/statab/hist_stats.html.
aThe murder and nonnegligent homicides that occurred as a result of the events
of September 11, 2001 are not included in the rate for the year 2001.

http://www.census.gov/compendia/statab/hist_stats.html


608 DATA SETS FOR EXERCISES

TABLE B.16 US Gross Domestic Product

Year GDP, Current Dollars (Billions) GDP, Real (1996) Dollars (Billions)

1976 1823.9 4311.7
1977 2031.4 4511.8
1978 2295.9 4760.6
1979 2566.4 4912.1
1980 2795.6 4900.9
1981 3131.3 5021.0
1982 3259.2 4919.3
1983 3534.9 5132.3
1984 3932.7 5505.2
1985 4213.0 5717.1
1986 4452.9 5912.4
1987 4742.5 6113.3
1988 5108.3 6368.4
1989 5489.1 6591.8
1990 5803.2 6707.9
1991 5986.2 6676.4
1992 6318.9 6880.0
1993 6642.3 7062.6
1994 7054.3 7347.7
1995 7400.5 7543.8
1996 7813.2 7813.2
1997 8318.4 8159.5
1998 8781.5 8508.9
1999 9274.3 8859.0
2000 9824.6 9191.4
2001 10,082.2 9214.5
2002 10,446.2 9439.9

Source: http://www.census.gov/compendia/statab/hist_stats.html.

http://www.census.gov/compendia/statab/hist_stats.html
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TABLE B.17 Total Annual US Energy Consumption

Year BTUs (Billions) Year BTUs (Billions)

1949 31,981,503 1978 79,986,371
1950 34,615,768 1979 80,903,214
1951 36,974,030 1980 78,280,238
1952 36,747,825 1981 76,342,955
1953 37,664,468 1982 73,286,151
1954 36,639,382 1983 73,145,527
1955 40,207,971 1984 76,792,960
1956 41,754,252 1985 76,579,965
1957 41,787,186 1986 76,825,812
1958 41,645,028 1987 79,223,446
1959 43,465,722 1988 82,869,321
1960 45,086,870 1989 84,999,308
1961 45,739,017 1990 84,729,945
1962 47,827,707 1991 84,667,227
1963 49,646,160 1992 86,014,860
1964 51,817,177 1993 87,652,195
1965 54,017,221 1994 89,291,713
1966 57,016,544 1995 91,199,841
1967 58,908,107 1996 94,225,791
1968 62,419,392 1997 94,800,047
1969 65,620,879 1998 95,200,433
1970 67,844,161 1999 96,836,647
1971 69,288,965 2000 98,976,371
1972 72,704,267 2001 96,497,865
1973 75,708,364 2002 97,966,872
1974 73,990,880 2003 98,273,323
1975 71,999,191 2004 100,414,461
1976 76,012,373 2005 99,894,296
1977 77,999,554

Source: Annual Energy Review—Energy Overview 1949–2005, US Department of Energy–
Energy information Center, http://www.eia.doe.gov/aer/overview.html.

http://www.eia.doe.gov/aer/overview.html
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TABLE B.18 Annual US Coal Production

Coal Production Coal Production
Year (103 Short Tons) Year (103 Short Tons)

1949 480,570 1978 670,164
1950 560,386 1979 781,134
1951 576,335 1980 829,700
1952 507,424 1981 823,775
1953 488,239 1982 838,112
1954 420,789 1983 782,091
1955 490,838 1984 895,921
1956 529,774 1985 883,638
1957 518,042 1986 890,315
1958 431,617 1987 918,762
1959 432,677 1988 950,265
1960 434,329 1969 980,729
1961 420,423 1990 1,029,076
1962 439,043 1991 995,984
1963 477,195 1992 997,545
1964 504,182 1993 945,424
1965 526,954 1994 1,033,504
1966 546,822 1995 1,032,974
1967 564,882 1996 1,063,856
1968 556,706 1997 1,089,932
1969 570,978 1998 1,117,535
1970 612,661 1999 1,100,431
1971 560,919 2000 1,073,612
1972 602,492 2001 1,127,689
1973 598,568 2002 1,094,283
1974 610,023 2003 1,071,753
1975 654,641 2004 1,112,099
1976 684,913 2005 1,133,253
1977 697,205

Source: Annual Energy Review—Coal Overview 1949–2005, US Department of Energy–
Energy Information Center.
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TABLE B.19 Arizona Drowning Rate, Children 1–4 Years Old

Drowning Rate per 100,000 Drowning Rate per 100,000
Year Children 1–4 Years Old Year Children 1–4 Years Old

1970 19.9 1988 9.2
1971 16.1 1989 11.9
1972 19.5 1990 5.8
1973 19.8 1991 8.5
1974 21.3 1992 7.1
1975 15.0 1993 7.9
1976 15.5 1994 8.0
1977 16.4 1995 9.9
1978 18.2 1996 8.5
1979 15.3 1997 9.1
1980 15.6 1998 9.7
1981 19.5 1999 6.2
1982 14.0 2000 7.2
1983 13.1 2001 8.7
1984 10.5 2002 5.8
1985 11.5 2003 5.7
1986 12.9 2004 5.2
1987 8.4

Source: http://www.azdhs.gov/plan/report/im/dd/drown96/01dro96.htm.

http://www.azdhs.gov/plan/report/im/dd/drown96/01dro96.htm
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TABLE B.20 US Internal Revenue Tax Refunds

Amount Refunded National Population
Fiscal Year (Millions Dollars) (Thousands)

1987 96,969 242,289
1988 94,480 244,499
1989 93,613 246,819
1990 99,656 249,464
1991 104,380 252,153
1992 113,108 255,030
1993 93,580 257,783
1994 96,980 260,327
1995 108,035 262,803
1996 132,710 265,229
1997 142,599 267,784
1998 153,828 270,248
1999 185,282 272,691
2000 195,751 282,193
2001 252,787 285,108
2002 257,644 287,985
2003 296,064 290,850
2004 270,893 293,657
2005 255,439 296,410
2006 263,501 299,103

Source: US Department of Energy–Internal Revenue Service, SOI Tax Stats–Individual
Time Series Statistical Tables, http://www.irs.gov/taxstats/indtaxstats/article/O,,id=
96679,00.html.

http://www.irs.gov/taxstats/indtaxstats/article/O,,id=96679,00.html
http://www.irs.gov/taxstats/indtaxstats/article/O,,id=96679,00.html
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TABLE B.21 Arizona Average Retail Price of Residential Electricity
(Cents per kWh)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001 6.99 7.13 7.4 8.09 9.41 9.04 8.84 8.84 8.81 8.95 7.17 7.26
2002 7.01 7.17 7.46 7.69 9.37 8.97 8.65 8.78 8.79 8.99 7.37 7.46
2003 7.06 7.57 7.59 7.82 9.52 9.09 8.78 8.74 8.7 8.83 7.21 7.55
2004 7.27 7.49 7.61 8.05 9.26 9.1 8.88 8.87 8.96 8.79 8.05 7.86
2005 7.75 7.99 8.19 8.67 9.6 9.41 9.3 9.28 9.3 9.23 8.12 7.88
2006 8.05 8.21 8.38 8.92 10.19 10.05 9.9 9.88 9.89 9.88 8.74 8.56
2007 8.33 8.46 8.8 9.19 10.2 9.96 10.37 10.33 10.17 10.16 9.08 8.89
2008 8.85 9.02 9.38 10.02 11.03 11.06 10.95 10.86 10.63 10.46 9.55 9.61
2009 9.51 9.82 9.93 10.65 11.33 11.27 11.3 11.29 11.17 10.97 9.86 9.7
2010 9.57 9.84 9.98 10.24 11.75 11.74 11.78 11.59 11.52 10.96 10.14 10
2011 9.84 9.93 10.25 10.97 11.77 11.77 11.85 11.67 11.53 11.08 10.31 9.98
2012 10.01 10.26 10.44 11.17 11.88 11.9 11.86 11.83 11.66 11.36 10.73 10.41
2013 10.25 10.7 10.87 11.74 12.17 12.18 12.51 12.33 12.22 12.02 11.06 11.01
2014 10.92 11.23 11.32 11.97 – – – – – – – –

Source: http://www.eia.gov/electricity/data.cfm#sales.

TABLE B.22 Denmark Crude Oil Production (In Thousands of Tons)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2001 1372 1439 1499 1399 1340 1018 1121 1411 1560 1492 1578 1709
2002 1627 1457 1536 1560 1575 1431 1567 1267 1421 1619 1531 1592
2003 1617 1445 1598 1464 1482 1514 1406 1520 1560 1578 1574 1550
2004 1560 1335 1626 1645 1685 1617 1715 1471 1607 1726 1543 1731
2005 1577 1536 1632 1605 1568 1541 1518 1591 1459 1536 1485 1470
2006 1459 1351 1471 1330 1518 1377 1547 1364 1086 1456 1429 1450
2007 1266 1194 1290 1256 1290 1258 1240 1340 1159 1382 1264 1231
2008 1255 1024 1242 1101 1275 1138 1268 1141 1085 1196 1155 1156
2009 1201 1067 1140 1110 1081 1066 1112 1061 1129 1051 925 959
2010 1095 937 1014 1116 1061 906 1110 710 1014 1080 1009 1106
2011 987 791 964 925 1090 872 937 906 861 859 930 818
2012 826 830 854 867 866 860 853 820 724 824 819 838
2013 787 752 808 764 756 682 741 679 635 720 687 671
2014 675 637 691 659 – – – – – – – –

Source: http://www.ens.dk/en/info/facts-figures/energy-statistics-indicators-energy-
efficiency/monthly-statistics.

http://www.eia.gov/electricity/data.cfm#sales
http://www.ens.dk/en/info/facts-figures/energy-statistics-indicators-energy-efficiency/monthly-statistics
http://www.ens.dk/en/info/facts-figures/energy-statistics-indicators-energy-efficiency/monthly-statistics
http://www.ens.dk/en/info/facts-figures/energy-statistics-indicators-energy-efficiency/monthly-statistics
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TABLE B.24 Mean Daily Solar Radiation in Zion Canyon, Utah
(Langleys)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 – – – – – – – – – – 184 178
2004 212 229 453 503 619 615 573 535 464 262 208 175
2005 166 216 385 508 529 549 579 474 443 302 224 170
2006 184 272 310 477 572 583 508 509 431 291 211 177
2007 220 263 396 466 590 634 542 511 432 316 233 179
2008 176 270 415 569 542 647 569 499 459 333 208 157
2009 214 240 423 487 593 586 638 617 523 367 283 196
2010 213 282 440 546 672 703 665 595 570 322 244 153
2011 242 294 389 533 584 703 597 625 488 371 248 214
2012 246 321 425 560 713 733 550 517 485 367 241 158
2013 232 333 457 506 541 645 494 463 412 320 207 180
2014 205 265 401 479 549 642 – – – – – –

Source: http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?utZIOC.

http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?utZIOC


618 DATA SETS FOR EXERCISES

TABLE B.25 US Motor Vehicle Traffic Fatalities

Year Fatalities

Resident
Population

(Thousands)

Licensed
Drivers

(Thousands)

Registered
Motor

Vehicles
(Thousands)

Vehicle
Miles

Traveled
(Billions)

Annual
Unemployment

Rate (%)

1966 50,894 196,560 100,998 95,703 926 3.8
1967 50,724 198,712 103,172 98,859 964 3.8
1968 52,725 200,706 105,410 102,987 1016 3.6
1969 53,543 202,677 108,306 107,412 1062 3.5
1970 52,627 205,052 111,543 111,242 1110 4.9
1971 52,542 207,661 114,426 116,330 1179 5.9
1972 54,589 209,896 118,414 122,557 1260 5.6
1973 54,052 211,909 121,546 130,025 1313 4.9
1974 45,196 213,854 125,427 134,900 1281 5.6
1975 44,525 215,973 129,791 126,153 1328 8.5
1976 45,523 218,035 134,036 130,793 1402 7.7
1977 47,878 220,239 138,121 134,514 1467 7.1
1978 50,331 222,585 140,844 140,374 1545 6.1
1979 51,093 225,055 143,284 144,317 1529 5.8
1980 51,091 227,225 145,295 146,845 1527 7.1
1981 49,301 229,466 147,075 149,330 1555 7.6
1982 43,945 231,664 150,234 151,148 1595 9.7
1983 42,589 233,792 154,389 153,830 1653 9.6
1984 44,257 235,825 155,424 158,900 1720 7.5
1985 43,825 237,924 156,868 166,047 1775 7.2
1986 46,087 240,133 159,486 168,545 1835 7
1987 46,390 242,289 161,816 172,750 1921 6.2
1988 47,087 244,499 162,854 177,455 2026 5.5
1989 45,582 246,819 165,554 181,165 2096 5.3
1990 44,599 249,464 167,015 184,275 2144 5.6
1991 41,508 252,153 168,995 186,370 2172 6.8
1992 39,250 255,030 173,125 184,938 2247 7.5
1993 40,150 257,783 173,149 188,350 2296 6.9
1994 40,716 260,327 175,403 192,497 2358 6.1
1995 41,817 262,803 176,628 197,065 2423 5.6
1996 42,065 265,229 179,539 201,631 2484 5.4
1997 42,013 267,784 182,709 203,568 2552 4.9
1998 41,501 270,248 184,861 208,076 2628 4.5
1999 41,717 272,691 187,170 212,685 2690 4.2
2000 41,945 282,162 190,625 217,028 2747 4
2001 42,196 284,969 191,276 221,230 2796 4.7
2002 43,005 287,625 194,602 225,685 2856 5.8
2003 42,884 290,108 196,166 230,633 2890 6
2004 42,836 292,805 198,889 237,949 2965 5.5



DATA SETS FOR EXERCISES 619

TABLE B.25 (Contionued)

Year Fatalities

Resident
Population

(Thousands)

Licensed
Drivers

(Thousands)

Registered
Motor

Vehicles
(Thousands)

Vehicle
Miles

Traveled
(Billions)

Annual
Unemployment

Rate (%)

2005 43,510 295,517 200,549 245,628 2989 5.1
2006 42,708 298,380 202,810 251,415 3014 4.6
2007 41,259 301,231 205,742 257,472 3031 4.6
2008 37,423 304,094 208,321 259,360 2977 5.8
2009 33,883 306,772 209,618 258,958 2957 9.3
2010 32,999 309,326 210,115 257,312 2967 9.6
2011 32,479 311,588 211,875 265,043 2950 8.9
2012 33,561 313,914 211,815 265,647 2969 8.1

Sources: http://www-fars.nhtsa.dot.gov/Main/index.aspx, http://www.bls.gov/data/.

http://www-fars.nhtsa.dot.gov/Main/index.aspx
http://www.bls.gov/data/
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APPENDIX C

INTRODUCTION TO R

Throughout the book, we often refer to commercial statistical software
packages such as JMP and Minitab when discussing the examples. These
software packages indeed provide an effective option particularly for the
undergraduate level students and novice statisticians with their pull-down
menus and various built-in statistical functions and routines. However there
is also a growing community of practitioners and academicians who prefer
to use R, an extremely powerful and freely available statistical software
package that can be downloaded from http://www.r-project.org/. According
to this webpage,

R is an integrated suite of software facilities for data manipulation, calcu-
lation and graphical display. It includes

� an effective data handling and storage facility,
� a suite of operators for calculations on arrays, in particular matrices,
� a large, coherent, integrated collection of intermediate tools for data

analysis,
� graphical facilities for data analysis and display either on-screen or

on hardcopy, and

Introduction to Time Series Analysis and Forecasting, Second Edition.
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628 INTRODUCTION TO R

� a well-developed, simple and effective programming language which
includes conditionals, loops, user-defined recursive functions and input
and output facilities.

The term “environment” is intended to characterize it as a fully planned and
coherent system, rather than an incremental accretion of very specific and
inflexible tools, as is frequently the case with other data analysis software.

R, like S, is designed around a true computer language, and it allows users to
add additional functionality by defining new functions. Much of the system
is itself written in the R dialect of S, which makes it easy for users to follow
the algorithmic choices made. For computationally-intensive tasks, C, C++
and Fortran code can be linked and called at run time. Advanced users can
write C code to manipulate R objects directly.

Many users think of R as a statistics system. We prefer to think of it of an
environment within which statistical techniques are implemented. R can be
extended (easily) via packages. There are about eight packages supplied
with the R distribution and many more are available through the CRAN
family of Internet sites covering a very wide range of modern statistics.

In this second edition of our book, we decided to provide the R-code for
most of the examples at the end of the chapters. The codes are generated
with the novice R user in mind and we therefore tried to keep them simple
and easy to understand, sometimes without taking full advantage of more
sophisticated options available in R. We nonetheless believe that they offer
readers the possibility to immediately apply the techniques covered in the
chapters with the data provided at the end of the book or with their own
data. This after all we believe is the best way to learn time series analysis
and forecasting.

BASIC CONCEPTS IN R

R can be downloaded from the R project webpage mentioned above.
Although there are some generic built-in functions such as mean() to calcu-
late the sample mean or lm() to fit a linear model, R provides the flexibility
of writing your own functions as in C++ or Matlab. In fact one of the main
advantages of R is its ever-growing user community, who openly shares
the new functions they wrote in terms of “packages.” Each new package
has to be installed and loaded from “Packages” option in order to be able
to use its contents. We provide the basic commands in R below.
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Data entry can be done manually using c() function such as

> temp<-c(75.5,76.3,72.4,75.7,78.6)

Now the vector temp contains 5 elements that can displayed using

> temp
[1] 75.5 76.3 72.4 75.7 78.6

or

> print(temp)
[1] 75.5 76.3 72.4 75.7 78.6

However for large data sets, importing the data from an ASCII file,
for example, a .txt file, is preferred. If, for example, each entry of temp
represents the average temperature on a weekday and is stored in a file
named temperature.txt, the data can then be imported to R using read.table()
function as

> temp<-read.table("temperature.txt",header=TRUE,Sep="")

This command will assign the contents of temperature.txt file into the
data frame “temp.” It assumes that the first row of the file contains the
names of the individual variables in the file, for example, in this case
“Day” and “Temperature” and the data are space delimited. Also note that
the command further assumes that the file is in the working directory,
which can be changed using the File option. Otherwise the full directory
has to be specified, for example, if the file is in C:/Rcoding directory,

read.table("C:/Rcoding/temperature.txt",header=T,sep=",")

Now we have

> temp
Day Temperature

1 1 75.5
2 2 76.3
3 3 72.4
4 4 75.7
5 5 78.6
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We can access each column of the temp matrix by one of the two
commands

> temp$Temperature
[1] 75.5 76.3 72.4 75.7 78.6
> temp[,2]
[1] 75.5 76.3 72.4 75.7 78.6

Now that the data are imported, we can start using built-in function such
as the sample mean and the log transform of the temperature by

> mean(temp$Temperature)
[1] 75.7
> log(temp$Temperature)
[1] 4.324133 4.334673 4.282206 4.326778 4.364372

One can also write user-defined functions to analyze the data. As we
mentioned earlier, for most basic statistical functions there already exists
packages containing the functions that would serve the desired purpose.
Some basic examples of functions are provided in the R-code of the
examples.

As indicated in the R project’s webpage: “One of R’s strengths is the
ease with which well-designed publication-quality plots can be produced,
including mathematical symbols and formulae where needed. Great care
has been taken over the defaults for the minor design choices in graphics,
but the user retains full control.” In order to show the flexibility of plotting
options in R, in the examples we provide the code for different plots for
time series data and residual analysis with various options to make the
plots look very similar to the ones generated by the commercial software
packages used in the chapters.

Exporting the output or new data can be done through write.table()
function. In order to create, for example, a new data frame by appending
to the original data frame the log transform of the temperature and export
the new data frame into a .txt file, the following commands can be used

> temp.new<-cbind(temp,log(temp$Temperature))
> temp.new

Day Temperature log(temp$Temperature)
1 1 75.5 4.324133
2 2 76.3 4.334673
3 3 72.4 4.282206
4 4 75.7 4.326778
5 5 78.6 4.364372
> write.table(temp.new," C:/Rcoding/Temperaturenew.txt")
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