
M A N N I N G

J. Harrington
B. Trebitowski
C. Allen
S. Appelcline

Examples and solutions for iPhone & iPad

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info
Praise for the previous edition
iPhone and iPad in Action

Everything you need to know about these devices of the future!
—Berndt Hamboeck, pmOne

Apple should make this its official iPhone and iPad development book.
—Jason Jung, Rockwell

Gets you up to speed and developing in a snap.
 —Clint Tredway, Developed It

Don’t launch Xcode without this book.
 —Ted Neward, Neward & Associates

Exactly what iNeed for iPhone development.
 —Christopher Haupt, Webvanta.com

It’s wonderful to have all the material that covers development for multiple Apple
mobile devices in one volume.
 —Glenn Stokol, Oracle Corporation

A good first place to start instead of wading through multiple Apple documents.
—Gershon Kagan, Tegrity, Inc.

Brandon, Christopher, and Shannon have created the quintessential book for iPhone
and iPad development.
 —Daniel McGraw, Software Engineer

Brandon Trebitowski will take you up and over the iOS learning curve with his
enjoyable writing style and excellent example code. iPhone and iPad in Action
is a must-have addition to your programming library—even for 20-year
Objective-C veterans like me!
 —Andrew Stone, CEO of stone.com

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info
iOS4 in Action
EXAMPLES AND SOLUTIONS

FOR iPHONE & iPAD

JOCELYN HARRINGTON
BRANDON TREBITOWSKI

CHRISTOPHER ALLEN
SHANNON APPELCLINE

TECHNICAL EDITOR JAMES HATHEWAY

M A N N I N G
SHELTER ISLAND

http://www.it-ebooks.info/

www.it-ebooks.info
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Maria Townsend
20 Baldwin Road Katharine Osborne
PO Box 261 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290015
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.manning.com
http://www.it-ebooks.info/

www.it-ebooks.info
brief contents
1 ■ Introducing iOS 4 with iPhone and iPad 1
2 ■ Learning Objective-C 20
3 ■ Using Xcode 4 31
4 ■ Xcode and debugging 58
5 ■ Basic view controllers 75
6 ■ Monitoring events and actions 93
7 ■ Advanced view controllers 117
8 ■ Data: actions, preferences, and files 146
9 ■ Data: advanced techniques 166

10 ■ Positioning: accelerometers, location, and the compass 195
11 ■ Media: images and the camera 219
12 ■ Media: audio and recording 239
13 ■ Graphics: Quartz, Core Animation, and OpenGL 258
14 ■ The web: web views and internet protocols 287
15 ■ Peer-to-peer connections using Game Kit 311
16 ■ Using Event Kit on the iPhone and iPad 332
17 ■ Local and Push notification services 347
18 ■ The Map Kit framework 363
19 ■ In-app purchasing using Store Kit 378
20 ■ Making money with iAd 393
21 ■ Introducing multitasking 407
22 ■ Multitasking in depth 425
v

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info
contents
preface xvii
acknowledgments xviii
about this book xx
about the cover illustration xxiv

1 Introducing iOS 4 with iPhone and iPad 1
1.1 All for one and one for all: the iOS platform 2
1.2 Understanding iPhone and iPad touch interaction 2
1.3 Getting ready for the SDK 4

Installing the SDK 4 ■ The anatomy of the SDK 6

1.4 Introducing iOS 8
The anatomy of iOS 8 ■ The object hierarchy of iOS 9
Windows and views 10

1.5 iOS’s methods 11
Object creation 11 ■ Memory management 13 ■ Event
response 14 ■ Lifecycle management 16

1.6 How to make an application from an idea 16
The checklist 17 ■ What’s the category for your application? 17
Making money with your application 18

1.7 Summary 19
vii

http://www.it-ebooks.info/

CONTENTSviii

www.it-ebooks.info
2 Learning Objective-C 20
2.1 Introducing Objective-C 20
2.2 The message 22

Messages with arguments 22 ■ Nested messages 23
Message recipients 23

2.3 Class definition 24
The interface 24 ■ The implementation 25
Object instantiation 26

2.4 Properties 26
The purpose of properties 26 ■ Setting a property 27
Using the accessors 27 ■ The dot syntax 28 ■ Property
complexities 28

2.5 The @ directive 28
2.6 Categories and protocols 29

The category 29 ■ The protocol 29

2.7 Wrapping up Objective-C 30
2.8 Summary 30

3 Using Xcode 4 31
3.1 Introducing Xcode 4 31
3.2 Using Xcode 4 to create the HelloWorld application 32

Creating a new project 32 ■ Getting familiar with the
workspace window 35

3.3 Closer look at files under the Navigation area 36
HelloWorld folder 36 ■ Frameworks folder and Product folder 41
Building and running an application in Xcode 41 ■ Writing code
for HelloWorld 42

3.4 Using Interface Builder in Xcode 4 45
The anatomy of Interface Builder 46 ■ Building the
AppleStock application 48

3.5 Summary 57

4 Xcode and debugging 58
4.1 Creating a new class in Xcode 59

Creating a new class 59 ■ The header file 61 ■ The source code
file 62 ■ Linking it in 63

http://www.it-ebooks.info/

CONTENTS ix

www.it-ebooks.info
4.2 Creating objects with Interface Builder 64
Creating new nib files 64 ■ Initializing Interface Builder
objects 65 ■ Accessing .xib files 66 ■ More tips under
Xcode 67

4.3 Debugger and Instruments 68
Fix-it function 68 ■ Analyze 69 ■ Debugger essentials 69
Running Instruments from Xcode 72

4.4 Summary 74

5 Basic view controllers 75
5.1 The view controller family 76
5.2 The standard view controller 77

The anatomy of a view controller 77 ■ Creating a view
controller 78 ■ Creating another view controller 78
Building up a view controller interface 79 ■ Using your
view controller 80

5.3 The table view controller 84
The anatomy of a table view controller 85 ■ Creating a
table view controller 85 ■ Building up a table
interface 86 ■ Using your table view controller 91

5.4 Summary 92

6 Monitoring events and actions 93
6.1 An introduction to events 94

The responder chain 94 ■ Touches and events 95

6.2 A touching example: the event reporter 97
Setting things up in Interface Builder 98 ■ Preparing a
view for touches 99 ■ Controlling your events 101

6.3 Other event functionality 103
Regulating events 103 ■ Other event methods and
properties 104

6.4 An introduction to actions 105
The UIControl object 105 ■ Control events and actions 105
Using addTarget:action:forControlEvents: 107

6.5 Adding a button to an application 108
Using addTarget:action:forControlEvents: with a button 108
Using an IBAction with a button 109

http://www.it-ebooks.info/

CONTENTSx

www.it-ebooks.info
6.6 Other action functionality 110
Accepting text input with UITextField 110 ■ Allowing value
selection with UISlider 112 ■ A TextField/Slider mashup 112
Actions made easy 114 ■ Actions in use 114

6.7 Introducing notifications 115
6.8 Summary 116

7 Advanced view controllers 117
7.1 The tab bar view controller 118

The anatomy of a tab bar view controller 118 ■ Creating a tab bar
view controller 119 ■ Building a tab bar interface 121
Using your tab bar controller 124

7.2 The navigation controller 125
The anatomy of a navigation controller 125 ■ Creating a
navigation controller 126 ■ Completing the navigation
controller 127 ■ Using your navigation controller 130

7.3 Using the flipside controller 132
7.4 The split view controller 134

Creating a split view controller 135 ■ Building the split view
controller 137 ■ Using your split view controller 140
Adjusting the interface for vertical and landscape modes 141

7.5 Popover and modal view controllers 142
Creating a popover view controller 142 ■ Creating a modal
view controller 143

7.6 Combining view controllers in universal applications 143
Design universal applications for the iPhone and iPad 143
Combining view controllers 144

7.7 Summary 145

8 Data: actions, preferences, and files 146
8.1 Accepting user actions 147
8.2 Maintaining user preferences 148

Creating your own preferences 149 ■ Using the system
settings 154

8.3 Opening files 158
Accessing your bundle 159 ■ Accessing other directories 160
Manipulating files 161 ■ Filesaver: a UITextView example 163

8.4 Summary 165

http://www.it-ebooks.info/

CONTENTS xi

www.it-ebooks.info
9 Data: advanced techniques 166
9.1 Using SQLite 167

Setting up an SQLite database 167 ■ Accessing SQLite 169
Accessing your SQLite database 169 ■ Building a navigation
menu from a database 170 ■ Expanding this example 177

9.2 Accessing the Address Book 177
An overview of the frameworks 177 ■ Accessing Address Book
properties 178 ■ Querying the Address Book 180 ■ Using the
Address Book UI 182

9.3 An introduction to Core Data 186
Background information about Core Data 187 ■ Setting up Core
Data in your application 187 ■ Initializing the Core Data
objects 189 ■ Adding objects to the database 192 ■ Fetching,
updating, and deleting objects in Core Data 192

9.4 Summary 194

10 Positioning: accelerometers, location, and the compass 195
10.1 The accelerometers and orientation 196

The orientation property 196 ■ The orientation notification 196

10.2 The accelerometers and movement 197
Accessing the UIAccelerometer 197 ■ Parsing the
UIAcceleration 198 ■ Checking for gravity 198
Checking for movement 201 ■ Recognizing simple
accelerometer movement 201

10.3 The accelerometers and gestures 204
Using accelerometers 204 ■ Gesture recognizer 206

10.4 All about Core Location 208
The location classes 208 ■ An example using location and
distance 210 ■ An example using altitude 213 ■ Using the
compass 215 ■ Retrieving data from the compass 216
Core Location and the internet 217

10.5 Summary 217

11 Media: images and the camera 219
11.1 An introduction to images 220

Loading a UIImage 220 ■ Drawing a UIImageView 221
Modifying an image in UIKit 222

11.2 Drawing simple images with Core Graphics 223

http://www.it-ebooks.info/

CONTENTSxii

www.it-ebooks.info
11.3 Accessing photos 224
Using the image picker 225 ■ Taking photos 225
Saving to the photo album 226

11.4 Collage: an image example 227
The collage view controller 227 ■ The collage temporary image
view 231 ■ The collage view 231 ■ Further exploration of this
example 232

11.5 Printing images 233
Printing workflow 233 ■ Simulating printing 234
Creating a demo app-printing image 235 ■ Launching the
printer app on the Simulator 237

11.6 Summary 238

12 Media: audio and recording 239
12.1 Playing audio from the iPod library 240

Retrieving audio items from the iPod media library 240 ■ Getting
information about an MPMediaItem 242 ■ Playing media items
using MPMusicPlayerController 242 ■ Example: creating a
simple media player application 244

12.2 Recording audio 247
Initializing the audio recorder 247 ■ Controlling the audio
recorder 248 ■ Responding to AVAudioRecorder events 249

12.3 Playing sounds 249
Initializing the AVAudioPlayer 250 ■ The
AVAudioPlayerDelegate 250 ■ Controlling the
AVAudioPlayer 251

12.4 Example: creating a simple audio
recording/playback application 252
Creating a view-based application 253 ■ Adding the needed
frameworks 253 ■ Setting up the IBActions 253
Creating the interface 254 ■ Setting up the audio recorder
and implementing the IBActions 254

12.5 Recording, playing, and accessing video 255
12.6 Summary 257

13 Graphics: Quartz, Core Animation, and OpenGL 258
13.1 An introduction to Quartz 2D 259
13.2 The Quartz context 260

Drawing to a UIView 261 ■ Drawing to a bitmap 262

http://www.it-ebooks.info/

CONTENTS xiii

www.it-ebooks.info
13.3 Drawing paths 263
Finishing a path 264 ■ Drawing rectangles 266

13.4 Setting the graphical state 266
Setting colors 267 ■ Making transformations 268
Setting clipping paths 270 ■ Other settings 271
Managing the state 272

13.5 Advanced drawing in Quartz 272
Drawing gradients 272 ■ Drawing images 274
Drawing words 275 ■ What we didn’t cover 276

13.6 Drawing on a picture: an example 277
The PhotoDraw view controller 277 ■ The photodraw
view 279 ■ Expanding on the example 281

13.7 An introduction to Core Animation 281
The fundamentals of Core Animation 282 ■ Getting s
tarted with Core Animation 283 ■ Drawing a simple implicit
animation 283 ■ Drawing a simple explicit animation 284

13.8 An introduction to OpenGL 285
13.9 Summary 286

14 The web: web views and internet protocols 287
14.1 The hierarchy of the internet 287
14.2 Low-level networking 288
14.3 Working with URLs 290

Creating an NSURL 290 ■ Building an NSURLRequest 291
Manipulating HTML data by hand 291

14.4 Using UIWebView 292
Calling up the web view 292 ■ Managing the web view
delegate 294 ■ Thumbnails: a web view example 294

14.5 Parsing XML 296
Starting up NSXMLParser 297 ■ Acting as a delegate 297
Building a sample RSS reader 298 ■ Altitude redux: a Core
Location example 303

14.6 POSTing to the web 305
POSTing by hand 305 ■ Submitting forms 306

14.7 Accessing the social web 307
Using web protocols 307 ■ Using TouchJSON 308

14.8 Summary 310

http://www.it-ebooks.info/

CONTENTSxiv

www.it-ebooks.info
15 Peer-to-peer connections using Game Kit 311
15.1 Overview of Game Kit 311
15.2 Creating peer-to-peer applications using the peer

picker 312
Using Apple’s built-in peer picker 312 ■ Implementing the
GKSessionDelegate methods 315 ■ Sending and receiving
data between peers 317

15.3 Example: creating a multiplayer table tennis game 319
Starting the GKTennis project 320 ■ Creating the header
file 320 ■ Creating the table tennis interface 322 ■ Game
initialization 322 ■ Setting up the peer picker and getting
connected 323 ■ Implementing the send and receive
methods 324 ■ The game loop 327 ■ User interaction 329

15.4 Summary 331

16 Using Event Kit on the iPhone and iPad 332
16.1 An overview of the Event Kit frameworks 333

Adding Event Kit frameworks to your project 333 ■ Event Kit
classes 334

16.2 Adding new events to Calendar programmatically 335
Adding Event Kit frameworks to the Birthday application 336
Adding an event to Calendar 336

16.3 Creating an event with the Event Edit view controller 338
16.4 Fetching events 340

Fetching events with the predicate 341 ■ Displaying events
with Event view controller 341

16.5 Fetching events with GCD 344
Grand Central Dispatch overview 344 ■ Fetching events
with GCD 345

16.6 Summary 346

17 Local and Push notification services 347
17.1 What are local and push notifications? 348
17.2 Implementing local notifications on Timer

application 349
17.3 An overview of Apple’s push notification system 352

http://www.it-ebooks.info/

CONTENTS xv

www.it-ebooks.info
17.4 Preparing your application to use push notifications 354
Setting up your application certificate 354 ■ Setting up your
provisioning profile 354 ■ The code for handling push
notifications 356 ■ Preparing audio files 358

17.5 Creating a push notification provider in PHP 358
Creating the SSL certificate 359 ■ Implementing the PHP push
notification provider 360

17.6 Summary 361

18 The Map Kit framework 363
18.1 Adding a map view to an application 363

Adding the map using Interface Builder 364 ■ Adding the map
view programmatically 365 ■ Controlling the map 365

18.2 Reverse geocoding 368
18.3 Annotating the map 370

Adding basic map annotations 371 ■ Adding custom
map annotations 372

18.4 Summary 377

19 In-app purchasing using Store Kit 378
19.1 Setting up a sandbox testing environment 379

Creating an iTunes test user 379 ■ Adding products 380

19.2 Creating a simple store interface 383
Creating the demo app 383 ■ Adding Store Kit interface 384
Creating individual wallpaper product 386 ■ Store Kit
Payment 388

19.3 Summary 391

20 Making money with iAd 393
20.1 Adding a banner ad into your application 394

Creating a simple app for the ad banner view 394
Adding the banner view to the view controller 395

20.2 Supporting both portrait mode and landscape mode 397
20.3 How to handle advertisement downloading errors 400

Adding a delegate to ADBannerView’s view controller 401
Simulating event handling 402

http://www.it-ebooks.info/

CONTENTSxvi

www.it-ebooks.info
20.4 Going live with the application 404
20.5 Summary 406

21 Introducing multitasking 407
21.1 Overview of multitasking 408

Application lifecycle 409 ■ How to enable multitasking 412

21.2 Background state 412
Understanding the background state 413 ■ Opting out of the
background state 414

21.3 Using fast app switching 414
Building a simple application for fast app switching 414
Updating the user interface in the view controller 416

21.4 Task completion in the background 418
Task-completion API 418 ■ Finishing a task in the
background 419

21.5 Monitoring location changes in the background 420
An overview of the location service in the background 421
Monitoring significant location change 422 ■ Monitoring
region-based location change 423

21.6 Summary 424

22 Multitasking in depth 425
22.1 Using the location-monitoring service 426

Updating the UI when the app relaunches 426 ■ Enabling the
significant-change location service 427

22.2 Building an audio-playing application
with the Audio Toolbox framework 430

22.3 Enabling audio playing in the background 437
Adding the UIBackgroundModes in Info.plist 437
Handling the remote-control events 438

22.4 Building the background audio application 439
22.5 Summary 441

appendix A iOS class reference 442
appendix B External sources and references 446
appendix C Publishing your application 448
appendix D Updating current applications for the iPad 451

index 459

http://www.it-ebooks.info/

www.it-ebooks.info
preface
When I started playing with the first-generation iPhone back in 2008, I was amazed by
the simplicity and versatility of the smart phone. With the iPhone in hand, I could
take pictures, navigate with GPS, tell time, and of course, play games—especially when
I was bored while waiting in line at the DMV for my license plate. It’s hard to believe
it’s only been a few years since it was introduced, but the iPhone has become an inte-
gral part of my life. The universe of applications in the App Store attracts not only the
user but also inspires a lot of developers.

 Developing on the iOS has been an amazing adventure for me. I have authored/
coauthored a few applications in the App Store and I am also a full time iOS devel-
oper.

 When I decided one year ago to join the team to work on a third edition of this
book, the main goal was to power up the book with iOS 4 features for the application
developer. Thanks to the previous work from Shannon, Christopher, and Brandon on
the two earlier editions, this book already had a great foundation on iOS development
for both iPhone and iPad.

 During this time Apple never slowed down on releasing new devices, such as the
iPhone 4, the iPad 2, a new-generation iPod Touch, a new iOS platform, and even a
new Xcode 4 IDE for application development. We did our best to keep up with this
race and include the latest technology on the iOS platform, all of which you will find
in this revised version of the book.

 I hope you enjoy reading this book and that it will help you develop the next Top 10
application!

JOCELYN HARRINGTON
xvii

http://www.it-ebooks.info/

www.it-ebooks.info
acknowledgments
A technical book is a massive undertaking, due to the number of people required to
make sure that it reads well, looks good, and is technically correct. Thus, we have to
thank the entire Manning staff, without whom this book would not exist. They did
more than just correct our errors and polish our words; they also helped make inte-
gral decisions about the organization and the content of the book—decisions that
improved it dramatically.

 In particular, we’d like to thank the four people at Manning who helped us at the
most pivotal times: Troy Mott, our acquisitions editor, who initially agreed to take on
the project and who stayed with us every step of the way; Maria Townsley, our develop-
ment editor, who put in an incredible amount of work to ensure the quality of writing
and offered tons of guidance and support along the way; Katharine Osborne who
helped with the Xcode 4 updates; and Marjan Bace, our publisher, who offered some
of the biggest challenges regarding content and organization and initiated some of
the best improvements.

 We’d also like to thank Tiffany Taylor, our copyeditor, and Katie Tennant, our
proofreader. Beyond that, tech editors are crucial to the success of a book like this, so
we want to thank Kalle Alm and Matt Wyman who did the technical proofread of the
manuscript a number of times as it was being revised and updated, and James Hathe-
way who worked as the technical editor on this edition of the book during production,
catching errors and minutiae that we weren’t even aware of. Though it’s clichéd to say,
it’s true: any errors that sneaked by despite their best efforts are ours, but many others
were corrected by all of the people we mention—and many more who worked behind
the scenes at Manning. They were crucial to the book, and we’d like to thank them all.
xviii

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xix

www.it-ebooks.info
 Finally, we’d like to thank the reviewers who generously agreed to read our manu-
script as we worked on it; they improved the book immensely: Ted Neward, Jason
Jung, Glenn Stokol, Gershon Kagan, Cos DiFazio, Clint Tredway, Christopher Haupt,
Berndt Hamboeck, Rob Allen, Peter Scott, Lester Lobo, Frank Jania, Curtis Miller,
Chuck Hudson, Carlton Gibson, Amos Bannister, Emeka Okereke, Pratik Patel, Kunal
Mittal, Tyson Maxwell, TVS Murthy, Kevin Butler, David Hanson, Timothy Binkley-
Jones, Carlo Bottiglieri, Barry Ezell, Rob Abbe, David M. Sinclair, Austin Ziegler, Jonas
Bandi, Patrick Karjala, Greg Vaughn, Jeroen Benckhuijsen, and Alex Curylo.

JOCELYN would like to thank her husband Peter for giving her tons of support while
she worked on this book. She would also like to thank Troy Mott for all the effort he
contributed to this project and James Hatheway, the technical editor, who spent tons
of time on this version. Last but not least, she is thankful for all the support from the
important people in her life.

BRANDON would like to thank his wife Ashley for putting up with the long nights he
spent working on the second edition of this book. Without her love and support, he
would not have been able to complete a single chapter. He would also like to thank
Matt Woodward, who introduced him to Troy Mott and provided him with the oppor-
tunity to work on this book.

CHRISTOPHER would like to thank Chris Messina for inviting him to be a founder of
iPhoneDevCamp and to also thank his long-time MacHack and SmartFriends col-
leagues for their support and assistance.

SHANNON would like to thank Christopher, who got the book started in the first place,
and Brandon and Jocelyn for taking on the revised editions.

http://www.it-ebooks.info/

www.it-ebooks.info
about this book
iOS 4 in Action is an introductory book, intended to teach the basics of iOS develop-
ment in a tutorial form. It’s an update of iPhone in Action, which first appeared in 2008,
and iPhone and iPad in Action which appeared in 2010. We encourage you to read this
book straight through, from chapter 1 to 22. This will introduce the platform, show
you how to program for the iPhone and iPad, and walk you through the entire process
step by step.

The audience
We’ve done our best to make this book accessible to everyone who is interested in writ-
ing native programs for the iPhone and iPad. We hope it will be especially useful to
people who are looking to dive into the iPhone/iPad arena, because it allows you to
create native applications for all of Apple’s iDevices.

 If you want to learn about iOS programming, you should have some experience
with programming in general. It’d be best if you’ve worked with C or at least one
object-oriented language before, but that’s not a necessity; if you haven’t, you can
read our introduction to Objective-C in chapter 2, and you should expect to do some
research on your own to clarify things. There’s no need to be familiar with Objective-
C, Cocoa, or Apple programming in general. We’ll give you everything you need to
become familiar with Apple’s unique programming style. You’ll probably have a leg-
up if you understand object-oriented concepts; but it’s not necessary (and again,
you’ll find an introduction in chapter 2).
xx

http://www.it-ebooks.info/

ABOUT THIS BOOK xxi

www.it-ebooks.info
Roadmap
Chapter 1 explains the iOS SDK, introducing the new features in iOS 4 and covers how
to install the iOS SDK.

 Chapter 2 kicks things off by highlighting Objective-C, which is the programming
language used on the iPhone SDK.

 Chapter 3 looks at Xcode 4, the newly released tool in iOS SDK. This integrated
development environment does more than just compile your code. It also helps you
correct simple errors as you type and provides quick, integrated access to all the
iPhone programming documents.

 Chapter 4 shifts the focus to mastering Xcode by writing code for applications and
debugging with Xcode.

 Chapter 5 covers simple view controllers. The basic view controller is an important
building block of the MVC paradigm, dividing control from view; and the table view
controller provides an easy way to organize information while matching the standard
iPhone OS look and feel.

 Chapter 6 steps back to talk about user interaction. It covers events, which users
generate by touching the screen with one or more fingers, and actions, which happen
when users interact with a control object like a button or a slider.

 Chapter 7 finishes our look at view controllers by examining two more-advanced
possibilities. The tab bar view controller allows for modal selection between multiple
pages of content, and the navigation view controller adds hierarchy to tables. Also the
universal application design concept will be covered.

 Chapter 8 opens the SDK toolkit by talking about data. This includes user input,
such as actions and preferences; data storage, such as files; and tools that combine
input and storage, such as the devices’ address book.

 Chapter 9 goes into more advanced data strategies. In this chapter, you learn how
to store complex data in an SQLite database or by using Core Data.

 Chapter 10 highlights two of the most unique features on the iPhone and iPad—
the accelerometer and the GPS—showing how the iPhone can track movement
through space.

 Chapter 11 covers another of the device’s strengths—media—by showing how to
do basic work with pictures, movies, and sound.

 Chapter 12 looks at working with audio. It discusses how to play and record audio
using a device’s microphone and speakers.

 Chapter 13 provides an extensive look at graphics, centering on the iPhone’s and
iPad’s vector graphic language, Quartz 2D. It also offers a brief overview of Core Ani-
mation and touches on OpenGL for the iOS.

 Chapter 14 examines how you can use the iPhone and iPad to interact with the
internet. This chapter moves through the entire hierarchy of internet communica-
tion, from low-level host connections to URLs, from web views to modern social lan-
guages like XML and JSON.

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii

www.it-ebooks.info
 Chapter 15 takes you through the entire process of creating a multiplayer pong
game on the iPhone or iPad. You learn everything about peer-to-peer communication
using the Game Kit framework.

 Chapter 16 walks through the new Event Kit framework on iOS 4. It also covers a
great example of using Grand Central Dispatch with blocks.

 Chapter 17 shows you how to handle push notifications in your applications. It
also provides a simple example of how to create your own push notification server
using PHP.

 Chapter 18 takes an in-depth look at the Map Kit framework. It shows you every-
thing you need in order to integrate fully functional Google maps in any application.

 Chapter 19 walks you through one of the main methods for creating a virtual store
in your applications. Using the Store Kit framework, you learn every step of the pro-
cess, from creating products to processing purchases.

 Chapter 20 covers how to implement and monetize iAd.
 Chapters 21 and 22 dive into iOS 4’s core feature: multitasking. We start with the

basics of the application life cycle and provide you with a real example using back-
ground audio and background location.

 The appendixes contain additional information that didn’t fit with the flow of the
main text. Appendix A contains a list of SDK objects and what they do. Appendix B
features links for many websites of note for iOS programming. Appendix C includes
the current information on how to deploy your SDK programs to actual devices.
Appendix D shows techniques that you can use to convert iPhone applications into
iPad applications.

Code conventions and downloads
Code examples appear throughout this book. Longer listings appear under clear list-
ing headings, and shorter listings appear between lines of text. All code is set in a
monospaced font like this to differentiate it from the regular text. Class names have
also been set in code font; if you want to type the code into your computer, you’ll be
able to make it out clearly.

 With the exception of a few cases of abstract code examples, all code snippets
began life as working programs. You can download the complete set of programs from
www.manning.com/iOS4inAction. You’ll find two ZIP files there, one for each of the
SDK programs. We encourage you to try the programs as you read; they include addi-
tional code that doesn’t appear in the book and provide more context. In addition, we
feel that seeing a program work can elucidate the code required to create it.

 The code snippets in this book include extensive explanations. We often include
short annotations beside the code; and sometimes numbered cueballs beside lines of
code link the subsequent discussion to the code lines.

www.manning.com/iOS4inAction
http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

www.it-ebooks.info
Software requirements
An Intel-based Macintosh running OS X 10.6 or higher is required to develop iOS
applications. You also need to download the iOS SDK, but this is freely downloadable
as soon as you sign up with Apple.

 The book offers full coverage of the iOS 4 and Xcode 4.

Author Online
Purchase of iOS4 in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/iOS4inAction. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it’s example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or to solve a problem. They need books that allow
them to jump in and jump out easily and learn just what they want just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.

www.manning.com/iOS4inAction
http://www.it-ebooks.info/

www.it-ebooks.info
about the cover illustration
The figure on the cover of iOS4 in Action is captioned “Russian Guard” and is taken
from the four-volume Collection of the Dresses of Different Nations by Thomas Jefferys,
published in London between 1757 and 1772. This collection, which includes beauti-
fully hand-colored copperplate engravings of costumes from around the world, has
influenced theatrical costume design ever since it was published.

 The diversity of the drawings in the Collection of the Dresses of Different Nations speaks
vividly of the richness of the costumes presented on the London stage over 200 years
ago. The costumes, both historical and contemporaneous, offered a glimpse into the
dress customs of people living in different times and in different countries, bringing
them to life for London theater audiences.

 Dress codes have changed in the last century and the diversity by region, so rich in
the past, has faded away. It’s now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and
visual diversity for a more varied personal life. Or a more varied and interesting intel-
lectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional and historical
costumes brought back to life by pictures from collections such as this one.
xxiv

http://www.it-ebooks.info/

www.it-ebooks.info
Introducing iOS 4
with iPhone and iPad
The iPhone and iPad provide an unforgettable user experience. It’s one of the rare
technologies that’s so intuitive that even a toddler can use it without a user manual.
iOS provides a whole platform for developers. It comes with a huge global market
and one integrated distribution place: the App Store. The iOS SDK offers a rich set
of APIs for developers to turn their best ideas into killer applications. The new
enhancements in iOS 4 allow developers to create applications faster and easier.

 In this chapter, we’ll first introduce iOS 4 and then go over the key specifica-
tions of the iPhone, iPad, and iPod Touch. We’ll cover the anatomy of iOS, includ-
ing frameworks, windows, views, and methods. We’ll also cover events, memory
management, and lifecycle management before providing tips on creating a suc-
cessful application. Let’s start the story with the iOS platform.

This chapter covers
 Understanding Apple’s iPhone and iPad technology

 Installing the iOS 4 SDK

 Anatomy of iOS

 Turning your idea into an iOS application
1

http://www.it-ebooks.info/

2 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
1.1 All for one and one for all: the iOS platform
The iPod Touch, iPhone, and iPad (and likely future generations of Apple devices) all
use iOS 4.3.1 (at the time of writing). The iOS moniker may be a bit confusing at first,
but having one OS for all these devices makes it an easy and rewarding platform on
which to develop. Learn how to develop for it once using the iOS SDK, and you can
adapt your applications to whichever devices you like. For example, you can deter-
mine that the application will support only the devices with GPS or camera.

 Let’s review a bit of history on iOS. The iOS SDK was first introduced in 2007 and
released in March of 2008. The third major release, iOS 3.0, was released in 2009.
Prior to iOS 4.2, there was a short, fragmented OS history on the iPhone and iPad; the
iPhone was running on iOS 4.0 and the iPad was on iOS 3.2. With the new iOS, all the
iOS-powered devices can once again run the same OS. For developers, the experience
for application development is a lot smoother and easier. The most prominent feature
on iOS 4 is that iOS supports multitasking services, including playing audio, push noti-
fications, receiving location change events, and fast app switching. We’ll cover the
details later in this book.

 The social experience is emphasized on iOS 4 with Game Center and iTunes 10
with Ping. Game Center allows developers to create social game experiences with the
Game Kit framework. For end users, it’s amazing to start multiplayer games through
automatching, tracking their achievements, and so on.

 There are differences in developing applications for the iPad as opposed to the
iPhone, but they’re primarily related to the varying amount of real estate available to
each device, as illustrated in figure 1.1. Obviously, the iPad has a much bigger screen
for display or interaction. The content focus is to provide a rich information presenta-
tion. In the UI design, you may want to distinguish the iPad from the iPhone. For the
most part, you can run the examples in this book on either the iPad or the iPhone
with little adaptation. (iPhone applications are fully compatible on the iPad as is; uni-
versal applications support different experiences depending on the platform they’re
being run on.)

 One more thing: iOS 4.3 allows applications to support printing through Airprint.
Imagine that you can edit your photo with the iPad or iPhone and tap the Print but-
ton to get the photo printed out on your wi-fi printer! We’ll cover this function in
detail later in chapter 11.

1.2 Understanding iPhone and iPad touch interaction
The iPhone and iPad use a multitouch-capable capacitive touchscreen. Users access
the device by tapping around with their finger. But a finger isn’t a mouse. Generally, a
finger is larger and less accurate than a more traditional pointing device. This disal-
lows certain traditional types of UI that depend on precise selection. For example, the
iPhone and iPad don’t have scrollbars. Selecting a scrollbar with a fat finger would
either be an exercise in frustration or require a huge scrollbar that would take up a lot
of the iPhone’s precious screen real estate. Apple solved this problem by allowing

http://www.it-ebooks.info/

3Understanding iPhone and iPad touch interaction

www.it-ebooks.info
users to tap anywhere on an iPhone screen and then flick in a specific direction to
cause scrolling.

 Another interesting element of the touchscreen is shown off by the fact that a fin-
ger isn’t necessarily singular. Recall that the iPhone and iPad touchscreens are multi-
touch. This allows users to manipulate the device with multifinger gestures. Pinch-
zooming is one such example. To zoom into a page, you tap two fingers on the page
and then push them apart; to zoom out, you similarly push them together.

 Finally, a finger isn’t persistent. A mouse pointer is always on the display, but the same
isn’t true for a finger, which can tap here and there without going anywhere in
between. As you’ll see, this causes issues with some traditional web techniques that
depend on a mouse pointer moving across the screen. It also provides limitations that
may be seen throughout SDK programs. For example, there’s no standard for cut and
paste, a ubiquitous feature for any computer produced in the last couple of decades.

 In addition to some changes to existing interfaces, the input interface introduces a
number of new touches (one-fingered input) and gestures (two-fingered input), as
described in table 1.1.

Figure 1.1 The iPad and iPhone side by side. The primary difference between the two—the available
screen real estate—is readily apparent.

http://www.it-ebooks.info/

4 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
When you’re designing with the SDK, many of the nuances of finger mousing are
taken care of for you. Standard controls are optimized for finger use, and you have
access only to the events that work on the iPhone or iPad. Chapter 6 explains how to
use touches, events, and actions in iOS; as an iOS developer, you’ll need to change
your way of thinking about input to better support the new devices.

1.3 Getting ready for the SDK
The iOS software development kit (SDK) is a suite of programs available in one gar-
gantuan (at the time of writing over 4 GB) download from Apple. It gives you the tools
you need to program (Xcode—Xcode 4 is the version of the iDE used in this book),
debug (Instruments), and test (Simulator) your iPhone, iPod Touch, and iPad code.

NOTE You must have an Intel-based Apple Macintosh running Mac OS X
10.6.5 or higher to use the SDK.

1.3.1 Installing the SDK

To obtain the SDK, download it from Apple’s iOS Dev Center, which at the time of this
writing is accessible at http://developer.apple.com/devcenter/ios/. You’ll need to
register as an iOS Developer in order to get there, but it’s a fairly painless process.
Note that you can also use this site to access Apple documentation and sample source
code.

NOTE Xcode 4 is a free download for all members of the iOS Developer Pro-
gram, which costs US$99 per year. If you’re not an iOS Developer Program
member, you can purchase Xcode 4 from the Mac App Store for US$4.99 or
download Xcode 3 for free.

THE APPLE DOCS AND THE SDK

To see the full API documentation as well as sample code, visit http://developer
.apple.com/devcenter/ios/. It contains a few introductory papers, of which we think
the best are “iOS Overview” and “Learning Objective-C: A Primer,” plus the complete
class and protocol references for the SDK.

Table 1.1 iPhone and iPad touches and gestures allow you to accept user input in new ways.

Input Type Summary

Bubble Touch Touch and hold. Pops up an info bubble on clickable elements.

Flick Touch Touch and flick. Scrolls the page.

Flick, two-finger Gesture Touch and flick with two fingers. Scrolls the scrollable element.

Pinch Gesture Move fingers in relation to each other. Zooms in or out.

Tap Touch A single tap. Selects an item or engages an action such as a button
or link.

Tap, double Touch A double tap. Zooms a column.

http://developer.apple.com/devcenter/ios/
http://developer.apple.com/devcenter/ios/
http://developer.apple.com/devcenter/ios/
http://www.it-ebooks.info/

5Getting ready for the SDK

www.it-ebooks.info
 As we’ll discuss in the next chapter, you can also access all of these docs from
inside Xcode. We usually find Xcode a better interface because it allows you to click
through from your source code to your local documents. Nonetheless, the website is a
great source of information when you don’t have Xcode handy.

 Because they tend to be updated relatively frequently, we’ve been constantly aware
of Apple’s documents while writing this book, and we’ve done our best to ensure that
what we include complements Apple’s information. We’ll continue to provide you
with introductions to topics and to point you toward the references when there’s a
need for in-depth information.

 After you’ve downloaded the SDK, you’ll find that it leaves a disk image sitting on
your hard drive. Double-click it to mount the disk image, and then double-click
Xcode and iOS SDK in the folder that pops up to start the installation process (as
shown in figure 1.2).

 This will bring you through the entire
install process, which will probably take
20–40 minutes. You’ll also get a few licens-
ing agreements that you need to sign off
on, including the iPhone Licensing
Agreement, which lists some restrictions
on what you’ll be able to build for the iOS-
based devices.

IOS SDK LICENSING RESTRICTIONS

Although Apple is making the iOS SDK widely available for public programming, the
company has placed some restrictions on what you can do with it. We expect these
restrictions to change as the SDK program evolves, but what follows are some of the
limitations at the time of this writing.

 Among the most notable technical restrictions: you can’t use the code to create
plug-ins, nor can you use it to download non-SDK code. It was the latter that appar-
ently spoiled Sun’s original plans to port Java over to the iPhone. You also can use only
Apple’s published APIs. In addition, there are numerous privacy-related restrictions,
the most important of which is that you can’t log the user’s location without permis-
sion. Finally, Apple has some specific application restrictions, including restrictions on
apps that incorporate pornography or other objectionable content.

Figure 1.2 Double-clicking Xcode
and iOS SDK starts your installation.

Warning: installation dangers
The default installation of Xcode and
iOS SDK will replace any existing
Apple development tools you have.
You’ll still be able to do regular Apple
development, but you’ll be working
with a slightly more bleeding-edge
development environment.

http://www.it-ebooks.info/

6 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
 In order for your program to run on iPhones and iPads, you’ll need an Apple cer-
tificate, and Apple maintains the right to refuse your cert if it doesn’t like what you’re
doing. If you’re planning to write anything that might be questionable, you should
probably check whether Apple is likely to approve it first. For example, the most-used
third-party software package that isn’t available natively is Flash. This book is going to
cover how to develop an app on iPhone or iPad with the iOS SDK. But there’s another
way to deliver an application to iPhone or iPad: using HTML5+JavaScript for web apps.
We won’t cover web application development in this book.

 When the SDK finishes installing, you’ll find it in the /Developer directory of your
Mac system disk. Most of the programs appear in /Developer/Applications, which we
suggest you make accessible using the Add to Sidebar feature in the Finder. The iOS
Simulator is located separately at /Developer/Platforms/iPhoneSimulator.platform/
Developer/Applications. Because this is off on its own, you may want to add it to your
Dock.

 You now have everything you need to program for the iOS devices, but you won’t
be able to release iPhone or iPad programs on your own—that takes a special certifi-
cate from Apple. See appendix C for complete information on this process, which is
critical for moving your programs from the Simulator onto a real device. The Simula-
tor turns out to be one of several programs you’ve installed, each of which can be use-
ful in SDK programming.

1.3.2 The anatomy of the SDK

Xcode, Instruments, and Dashcode were all available as part of the development
library of Mac OS X before the iPhone came along. Many of these programs are
expanded and revised for use on the iPhone, so we’ve opted to briefly summarize
them all, in decreasing order of importance to an SDK developer:

 Xcode 4 is the core of the SDK’s integrated development environment (IDE). It’s
where you’ll set up projects, write code in a text editor, compile code, and gen-
erally manage your applications. It supports code written in Objective-C (a
superset of C that we’ll cover in more depth in the next chapter) and can also
parse C++ code. Interface Builder is now a part of Xcode 4, and it allows you to
put together the graphical elements of your program, including windows and
menus, via a quick, reliable method. You’ll learn the specifics of how to use
Xcode 4 in chapters 3 and 4.

 iOS Simulator allows you to view an iPhone or iPad screen on your desktop. It’s a
great help for debugging web pages. It’s an even bigger help when you’re work-
ing on native apps, because you don’t have to get your code signed by Apple to
test it out.

 Instruments is a program that allows you to dynamically debug, profile, and trace
your program. If you were creating web apps, we would have to point you to a
slew of browsers, add-ons, and remote websites to do this sort of work; but for
your native apps, that’s all incorporated into this one package.

http://www.it-ebooks.info/

7Getting ready for the SDK

www.it-ebooks.info
 Dashcode is listed here only for the sake of completeness because it’s part of the
/Developer area. It’s a graphical development environment that’s used to cre-
ate web-based programs incorporating HTML, CSS, and JavaScript. Dashcode is
used when developing for the web; you won’t use it with the iOS SDK.

JUMPING AHEAD

If you’d prefer to immediately dive into your first program, HelloWorld, head to chap-
ter 3. You can then pop back here to see what it all means.

 Figure 1.3 shows the most important developer tools. In addition to the visible
tools that you’ve downloaded into /Developer, you’ve also downloaded the entire set
of iOS frameworks: a huge collection of header files and source code—all written in
Objective-C—that will greatly simplify your programming experience. In the next
chapter, we’ll look at Objective-C, the SDK’s programming language. Rather than
jumping straight into your first program, we instead want to touch on these founda-
tional topics. In the next section, we’ll examine some of the basics of iOS.

Figure 1.3 The SDK includes Xcode (top) and two instances of the iOS Simulator, running in
iPad mode (bottom left) and iPhone mode (right).

http://www.it-ebooks.info/

8 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
1.4 Introducing iOS
Apple’s iOS SDK provides you with a vast library of objects arranged into several
frameworks. As a result, you’ll spend a lot more time sending messages to objects that
are ready-made for your use than creating new ones. Let’s begin our look at iOS by
exploring several of these objects and how they’re arranged. We’ll take a tour of the
anatomy of iOS, at how the object hierarchy is arranged, and how iOS handles win-
dows and views.

1.4.1 The anatomy of iOS

iOS’s frameworks are divided into four major layers, as
shown in figure 1.4.

 Each of these layers contains a variety of frameworks that
you can access when writing iOS SDK programs. Generally,
you should prefer the higher-level layers when you’re cod-
ing (those shown toward the top in the diagram).

Cocoa Touch is the framework that you’ll become most
familiar with. It contains the UIKit framework—which is
what we spend most of our time on in this book—and the
Address Book UI framework. UIKit includes window sup-
port, event support, and user-interface management, and it
lets you display both text and web pages. It further acts as
your interface to the accelerometers, the camera, the photo
library, and device-specific information.

Media is where you can get access to the major audio and video protocols built into
the iPhone and iPad. Its four graphical technologies are OpenGL ES, EAGL (which
connects OpenGL to your native window objects), Quartz (which is Apple’s vector-
based drawing engine), and Core Animation (which is also built on Quartz). Other
frameworks of note include Core Audio, Open Audio Library, and Media Player.

Core Services offers the frameworks used in all applications. Many of them are data
related, such as the internal Address Book framework. Core Services also contains the
critical Foundation framework, which includes the core definitions of Apple’s object-
oriented data types, such as its arrays and sets.

Core OS includes kernel-level software. You can access threading, files, networking,
other low-level I/O, and memory functions.

 Most of your programming work will be done using the UIKit (UI) or Foundation
(NS) framework. These libraries are collectively called Cocoa Touch; they’re built on
Apple’s modern Cocoa framework, which is almost entirely object oriented and, in
our opinion, much easier to use than older libraries. The vast majority of code in this
book will be built solely using Cocoa Touch.

 But you’ll sometimes have to fall back on libraries that are instead based on simple
C functionality. Examples include Apple’s Quartz 2D and Address Book frameworks,
as well as third-party libraries like SQLite. Expect object creation, memory manage-
ment, and even variable creation to work differently for these non-Cocoa libraries.

Core Services

Core OS

Cocoa Touch

Media

Figure 1.4 Apple provides
you with four layers of
frameworks to use when
writing iOS programs.

http://www.it-ebooks.info/

9Introducing iOS

www.it-ebooks.info
 When you fall back on non-Cocoa libraries, you’ll sometimes have to use Apple’s
Core Foundation framework, which lies below Cocoa. Your first encounter with Core
Foundation will be when we discuss the Address Book framework in chapter 9; we’ll
provide more details about how to use Core Foundation at that point.

 Although Core Foundation and Cocoa are distinct classes of frameworks, many of
their common variable types are toll-free bridged, which means they can be used inter-
changeably as long as you cast them. For example, CFStringRef and NSString * are
toll-free bridged, as you’ll see when we talk about the Address Book. The Apple class
references usually point out this toll-free bridging for you.

1.4.2 The object hierarchy of iOS

Within these frameworks, you can access an immense wealth of classes arranged in a
huge hierarchy. You’ll see many of these used throughout this book, and you’ll find a
listing of even more in appendix A. Figure 1.5 shows many of the classes that you’ll use
over the next several chapters, arranged in a hierarchy. They’re a fraction of what’s
available.

THE NS CLASSES

The NS classes come from Core Services’ Foundation framework (the Cocoa equiva-
lent of the Core Foundation framework), which contains a huge number of funda-
mental data types and other objects.

 You should use the fundamental Cocoa classes like NSString and NSArray when-
ever you can, rather than C fundamentals like char* or a plain array. This is because
they tend to play nicely with each other and with the UIKit frameworks, and there-
fore you’re less likely to encounter bizarre errors. They also follow the memory-
management rules of Objective-C (reference counting). Although it isn’t shown,
NSNumber is another class you should be aware of. Although it shouldn’t be used in
place of an ordinary number, it serves as a great wrapper when you need a number
expressed as an object. This is useful for sending numbers via message passing.
NSNumber is capable of holding many sorts of numerical values, from floats to integers
and more.

NSObject

NSString

NSArray

NSSet

NSDictionary

NSIndexPath

UIResponder

UIViewController

UIView

UITableViewUIScrollViewUIControl

UIApplication

UIButton UISlider

Figure 1.5 This hierarchy graph
shows a small selection of the classes
available in iOS.

http://www.it-ebooks.info/

10 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
 The objects that can hold collections of values like NSArray (a numerical array)
and NSDictionary (an associative array) are picky about your sticking to their NS
brethren. You’ll need to wrap C variables inside Cocoa classes whenever you hand off
objects to these arrays. Finally, though NSString can take many sorts of objects when
you’re formatting a string, you should be aware that Cocoa objects may require a dif-
ferent formatting string than their C equivalents.

 In two situations, you’ll find that these NS classes can be a deficit. First, if you’re
using the Core Foundation framework, you’ll often have to take advantage of toll-free
bridging by casting variables, as you’ll see starting in chapter 9, when we look at the
Address Book. Second, if you’re using external APIs, you may need to convert some
classes into their C equivalents. Chapter 9’s look at the SQLite API explores this possi-
bility, with NSString objects often being converted to their UTF-8 equivalent.

 The most important of Cocoa’s Foundation objects is NSObject, which contains a
lot of default behavior, including methods for object creation and memory manage-
ment; you’ll learn about these later in this chapter.

THE UI CLASSES

The second broad category contains the UI classes. These come from Cocoa Touch’s
UIKit framework, which includes all the graphical objects you’ll be using as well as all
the functionality for the iOS’s event model, much of which appears in UIResponder.
That’s another topic we’ll return to soon.

1.4.3 Windows and views

As the UI classes demonstrate, iOS is deeply rooted in the idea of a graphical user
interface. Therefore, let’s finish our introduction to iOS by looking at some of the
main graphical abstractions embedded in the UIKit. There are three major abstrac-
tions: windows, views, and view controllers.

 A window is something that spans the device’s entire screen. An application usually
has only one, and it’s the overall container for everything your application does.

 A view is the content holder in your application. You may have several of them,
each covering different parts of the window or doing different things at different
times. They’re all derived from the UIView class. But don’t think of a view as a blank
container. Almost any object you use from UIKit will be a subclass of UIView that fea-
tures a lot of behavior of its own. Among the major subclasses of UIView are
UIControl, which gives you buttons, sliders, and other items with which users may
manipulate your program, and UIScrollableView, which gives users access to more
text than can appear at once.

 A view controller does what its name suggests. It acts as the controller element of the
Model-View-Controller triad and in the process manages a view, sometimes called an
application view. As such, it takes care of events and updating for your view.

 In this book, we’ve divided view controllers into two types. Basic view controllers man-
age a screenful of information (such as the table view controller), whereas advanced
view controllers let a user move around among several subviews (such as the navigation
bar controller and the tab bar controller).

http://www.it-ebooks.info/

11iOS’s methods

www.it-ebooks.info
 Windows, views, and view controllers are ultimately part of a view hierarchy. This is a
tree of objects that begins with the window at its root. A simple program may have a
window with a view under it. Most programs start with a window and have a view con-
troller under that, perhaps supported by additional view controllers, each of which
controls views that may have their own subviews. We’ll illustrate this concept more
clearly in chapter 5 when we start looking at the basic view controllers that make this
sort of hierarchy possible.

1.5 iOS’s methods
As you’ve seen, iOS has a complex and deep structure of classes. In this section, we look
at object creation, memory management, event response, and lifecycle management.

 Two of the most important classes are NSObject and UIResponder, which contain
many of the methods and properties you’ll use throughout your programming.
Thanks to inheritance, these important functions (and others) can be used by many
different iOS objects. We cover some of these foundational methods here to provide a
single reference for their usage, but we’ll be sure to point them out again when you
encounter them for the first time in future chapters.

1.5.1 Object creation

We talked earlier about how to define classes; but as we said at the time, the specifics
of how instance objects are created from classes depend on the implementation of
your framework. In iOS, the NSObject class defines how object creation works.

 You’ll meet a few different interfaces that are used to support object creation, but
they all ultimately fall back to a two-step procedure that uses the alloc class method
and the init instance method. The alloc method allocates the memory for your
object and returns the object itself. The init method then sets some initial variables
in that method. They usually occur through a single, nested message:

id newObject = [[objectClass alloc] init];

The alloc method from NSObject should always do the right thing for you. But when
you write a new subclass, you’ll almost always want to write a new init method,
because that’s where you define the variables that make your class what it is. Here’s a
default setup for an init, which would appear as part of your @implementation:

- (id)init
{
 if (self = [super init]) {
// Instance variables go here
 }
 return self;
}

This code shows all the usual requirements of an init method. First, it calls its parent
to engage in its class’s initialization. Then, it sets any instance variables that should be
set. Last, it returns the object, usually with return self;.

 The bare init is one of a few major ways you can create objects in iOS.

http://www.it-ebooks.info/

12 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
THE ARGUMENTATIVE ALTERNATIVE

Sometimes you’ll want to send an argument with an init. You can do so with an ini-
tialization function that you name using the format initWithArgument:(argument).
Other than the fact that you’re sending it an argument, it works exactly like a bare
init. Here’s another example drawn from code you’ll see in upcoming chapters:

[[UITextView alloc] initWithFrame:textFieldFrame];

Initialization methods with arguments allow you to create nonstandard objects set up
in ways that you choose. They’re common in UIKit.

 One initialization method with an argument deserves a bit of extra mention. init-
WithCoder: is a special initialization method that’s called whenever you create an
object with Interface Builder—and important if you want to do setup for such objects.
We’ll return to Interface Builder in chapter 3.

THE FACTORY METHOD ALTERNATIVE

A final sort of init supported through iOS is the factory method (class method). This
is a one-step message that takes care of both the memory allocation and initialization
for you. All factory methods are named with the format objecttypeWithArgument:
(argument) Here’s another real example:

[UIButton buttonWithType:UIButtonTypeRoundedRect];

Class (or factory) methods make messaging a little clearer. They also have the advan-
tage of handling some memory management, which is the topic of the next major cat-
egory of iOS methods.

OBJECT CREATION WRAP-UP

We’ve summarized the four major ways that iOS supports the creation of objects in
table 1.2. As witnessed by the examples, you’ll use all these methods as you move
through the upcoming chapters.

Table 1.2 iOS supports several methods that you can use to create objects. Different methods are supported by
different classes.

Method Code Summary

Simple [[object alloc] init]; Plain initialization

Argument [[object alloc] initWithArgument:argument]; An initialization where one or more
arguments is passed to the method

Coder [[object alloc] initWithCoder:decoder]; An initialization with an argument
used for Interface Builder objects

Factory [object objecttypeWithArgument:argument]; A one-step initialization process with
an argument

http://www.it-ebooks.info/

13iOS’s methods

www.it-ebooks.info
1.5.2 Memory management

Because of power considerations, iOS doesn’t support garbage collection. That means
every object that’s created must eventually have its memory released by hand—at
least, if you don’t want to introduce a memory leak into your program.

 The fundamental rule of memory management in iOS is this: if you allocate mem-
ory for an object, you must release it. This is done via the release message (which is
once again inherited from NSObject):

[object release];

Send that message when you’ve finished using an object, and you’ve done your proper
duty as a programmer.

 Note that we said you must release the memory only if you allocated the memory for
it. You are considered to “own” the memory for an object if you created it using a
method that contains alloc, new, copy, or mutableCopy. You can free memory for an
object using the release message as mentioned earlier; however, an easier way in gen-
eral is making use of the wonders of autorelease. (Factory methods like UIButton’s
buttonWithType: return objects that are already autoreleased, so you don’t need to
manage their memory unless you explicitly retain it.)

THE AUTORELEASE ALTERNATIVE

If you’re responsible for the creation of an object and you’re going to pass it off to
some other class for usage, you should autorelease the object before you send it off.
This is done with the autorelease method:

[object autorelease];

You’ll typically send the autorelease message just before you return the object at the
end of a method. After an object has been autoreleased, it’s watched over by a special
NSAutoreleasePool. The object is kept alive for the scope of the method to which it’s
been passed, and then the NSAutoreleasePool cleans it up.

RETAINING AND COUNTING

What if you want to hold onto an object that has been passed to you and that will be
autoreleased? In that case, you send it a retain message:

[object retain];

When you do this, you’re saying you want the object to stay around, but now you’ve
become responsible for its memory as well: you must send a release message at some
point to balance your retain.

 At this point, we should probably back up and explain the underlying way that iOS
manages memory objects. It does so by maintaining a count of object usage. By
default, it’s set to 1. Each retain message increases that count by 1, and each release
message reduces that count by 1. When the count drops to 0, the memory for the
object is freed up.

http://www.it-ebooks.info/

14 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
 Therefore, all memory management can be thought of as pairs of messages. If you
balance every alloc and every retain with a release, your object will eventually be
freed up when you’ve finished with it.

WARNING Memory management can be the root cause of the bugs. Instru-
ments is a good tool for attempting to diagnose issues with memory leaks.

Whenever you use the keyword retain or alloc, make sure to release. If the object is
already released, don’t try to access the released object. A good habit would be to
assign nil to a released object and check the value isn’t nil before accessing the
object.

MEMORY MANAGEMENT WRAP-UP

Table 1.3 provides a quick summary of the methods we’ve looked at to manage the
memory used by your objects.

For more information on memory management, including a look at the copy method
and how this all interacts with properties, look at Manning’s Objective-C Fundamentals
(Christopher Fairbairn, Collin Ruffenach, and Johannes Fahrenkrug, 2011). A good
description of memory-management rules is also found in the “Memory Management
Programming Guide” on the Mac Developer Library website.

1.5.3 Event response

The next-to-last category of methods that we examine for iOS is event response.
Unlike object creation and memory management, we tackle this issue only briefly,
because it’s much better documented in chapter 6. The topic is important enough
that we want to offer a quick overview of it now.

 Events can appear on the iPhone or iPad in three main ways: through bare events
(or actions), through delegated events, and through notification. Whereas the meth-
ods of our earlier topics all derived from NSObject, event response instead comes
from the UIResponder object, whereas notification comes from the NSNotification-
Center. You won’t have to worry about accessing responder methods and properties

Table 1.3 The memory-management methods help you keep track of the memory you’re using and
clean it up when you’re finished.

Method Summary

alloc Part of the object-creation routine that allocates the memory for an object’s
usage.

autorelease Request to reduce an object’s memory count by 1 when it goes out of scope.
This is maintained by an NSAutoreleasePool.

release Reduces the object’s memory count by 1.

retain Increases the object’s memory count by 1.

http://www.it-ebooks.info/

15iOS’s methods

www.it-ebooks.info
because UIResponder is the parent of most UIKit objects, but the NSNotification-
Center requires special access.

EVENTS AND ACTIONS

Most user input results in an event being placed into a responder chain. This is a linked
set of objects that, for the most part, goes backward up through the view hierarchy.
Any input is captured by the first responder, which tends to be the object the user is
directly interacting with. If that object can’t resolve the input, it sends it up to its super-
view (for example, a label might send it up to its full-screen view), then to its super-
view, all the way up the chain (up through the views, then up through the view
controllers). If input gets all the way up the view hierarchy to the window object, it’s
next sent to the application itself, which tends to pass it off to an application delegate as
a last resort.

 Any of these objects can choose to handle an event, which stops its movement up
the responder chain. Following the standard MVC model, you’ll often build event
response into UIViewController objects, which are pretty far up the responder chain.

 For any UIControl objects, such as buttons, sliders, and toggles, events are often
turned into actions. Whereas events report touches to the screen, actions instead
report manipulations of the controls and are easier to read. Actions follow a slightly
different hierarchy of response.

DELEGATES AND DATA SOURCES

Events can be sent to an object in a way other than via a first responder: through a del-
egate. This is an object (usually a view controller) that says it will take care of events for
another object (usually a view). It’s close kin to a data source, which is an object
(again, usually a view controller) that promises to do the data setup and control for
another object (again, usually a view).

 Delegation and data sourcing are each controlled by a protocol, which is a set of
methods the delegate or data source agrees to respond to. For example, a table’s dele-
gate might have to respond to a method that alerts it when a row in the table has been
selected. Similarly, a table’s data source might describe what all the rows of the table
look like.

 Delegates and data sources fit cleanly into the MVC model used by Objective-C,
because they allow a view to hand off its work to its controller without having to worry
about where each of those objects is in the responder chain.

NOTIFICATIONS

Standard event response and delegation represent two ways that objects can be
alerted to standard events, such as fingers touching the screen. A third method can
also be used to program many different sorts of activities, such as the device’s orienta-
tion changing or a network connection closing: the notification.

 Objects register to receive a certain type of notification with the NSNotification-
Center and afterward may process those notifications accordingly. Again, we’ll discuss
this topic in chapter 6.

http://www.it-ebooks.info/

16 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
1.5.4 Lifecycle management

In this discussion, we’ve neglected a topic: how to recognize when objects are being
created and destroyed—starting with your application. With multitasking enabled in
iOS 4, you can create custom behavior before or after your application enters back-
ground mode. We’ll cover more details on this topic in chapter 21.

 Table 1.4 summarizes some of the important messages that will be sent as part of
the lifecycle of your program. To respond to them, you fill in the contents of the
appropriate methods in either an object or its delegate—which requires writing a sub-
class and is one of the prime reasons to do so.

Note that we’ve included init: here, because it forms a natural part of the object life-
cycle. You should look at the individual Apple class references, particularly
UIApplicationDelegate, for other methods you may want to respond to when writing
programs.

 With that, we’ve completed our look at the big-picture methods of iOS. You’ve not
yet seen them in real use, so bookmark these pages—we’ll refer to them when you
begin programming in chapter 3.

1.6 How to make an application from an idea
At the beginning of this chapter we talked about turning great idea in to a killer appli-
cation. How do you do it? Let’s walk through the general steps to help make your
dreams come true.

Table 1.4 Several important methods let you respond to the lifecycle of your application or its individual objects.

Method Object Summary

application:DidFinishLaunching
WithOptions:

UIApplicationDelegate Application has loaded. You
should create initial win-
dows and otherwise start
your program.

applicationDidReceiveMemoryWarning: UIApplicationDelegate Application received a low-
memory warning. You should
free up memory.

applicationWillTerminate: UIApplicationDelegate Application is about to end.
You should free up memory
and save state.

init: NSObject Object is being created. You
should initialize it here.

dealloc: NSObject Object is freeing up its mem-
ory. You should release any
objects that haven’t been
autoreleased.

http://www.it-ebooks.info/

17How to make an application from an idea

www.it-ebooks.info
1.6.1 The checklist

There are several ways to build a universal application running on both the iPhone
and iPad. Let’s start with a handy checklist. (If you’ve already installed the Xcode and
iOS SDK as demonstrated earlier in this chapter, you’ve finished half of the task.)

1 Join Apple’s iOS Developer Program (US$ 99/year will give you access to submit
applications to the App Store).

2 Have access to an Intel-based Mac computer with Mac OS X 10.6 or above.
3 Get a good book for beginners (this book, for example).
4 Get a test device: iPhone, iPod touch, or iPad. It will be mainly for testing dur-

ing application development. If you’re on a tight budget and don’t already own
one of these devices, you don’t have to purchase one. There are test device ser-
vices that provide rental equipment.

5 Get a sketchbook for the UI design, or make use of UI mocking software such as
that from Balsamiq.

That’s it! The last step is to learn Objective-C by reading this book and build your
application with the iOS SDK. With this goal in mind, let’s move on to the application
concept.

1.6.2 What’s the category for your application?

Knowing the category your application fits into will help you make a better estimate of
how difficult it will be to build, which will help you plan your release date. Let’s review
the most common app categories.

GAMES AND ENTERTAINMENT

This category is hot and crowded. It’s super competitive to create a successful applica-
tion under games or entertainment. A game or entertainment application generally is
heavy on media. As a developer, you should consider working with a UI designer in
order to take advantage of the awesome graphic display quality of the iPhone and iPad.

 Generally speaking, a game application may combine the use of the accelerometer,
drawing and animations, audio, and Game Kit. Once you’re familiar with the iOS SDK
basics, you can jump to later chapters that will cover the iOS frameworks in detail.
Chapter 15 provides complete coverage of game application development.

 The difficulty level for a developer of game applications is higher compared to
other categories. Fortunately, the rich UI tools on iOS provide a decent, fast prototyp-
ing environment for game developers.

RICH CONTENT APPLICATIONS

Rich content applications are commonly data oriented—for instance, a Twitter appli-
cation. To allow user access data from the cloud, rich content applications provide
organized data on the client side.

 On the iPhone, the challenge of this rich content application is the limited screen
real estate. The key to success, therefore, is in presenting the user with a good amount
of well-organized data.

http://www.it-ebooks.info/

18 CHAPTER 1 Introducing iOS 4 with iPhone and iPad

www.it-ebooks.info
 On the iPad, the focus is to provide rich content on one screen. The iPad screen
can be compared to a book. With a detail-oriented UI design, you can add plenty of
realism to your application. For example, the page-flipping animation in an iBook
application allows users to flip through a digital book as if it were a traditional paper
book.

 This type of application needs to download data from the server and then store the
data locally. Chapters 8 and 9 provide a great introduction on how to store data locally
on the iPhone and iPad. Chapter 14 demos how to fetch data through Internet proto-
cols on iOS.

NAVIGATION AND TRAVEL APPLICATIONS

This category makes more sense on the iPhone compared to the iPad. With its built-in
GPS and compass, the iPhone can be used to provide the user’s current location on
the fly.

 If you’re thinking about presenting Map View on the screen, don’t miss out on
chapter 18, which covers the details on iOS’s Map Kit framework.

 With the combination of an accelerometer, GPS chip, and camera, you can build
an augmented reality navigation application with iOS’s hardware framework access.
iOS frameworks for these hardware accesses can be found in this book.

UTILITY APPLICATIONS

The key to a successful utility application is to keep it simple. Make sure your applica-
tion will focus on one major task and stick with it. The calculator application on
iPhone is a good example. For a beginner, this is a relatively easy category. Moreover,
it fits the needs for the creative idea or the niche market. With the knowledge
acquired in the first seven chapters of this book, you’ll be able to create a decent util-
ity application.

 Next, we’ll cover the business model for the iOS platform.

1.6.3 Making money with your application

Generally speaking, there are three ways to generate profit on the iOS platform:

 Submit a paid application. You can price your application at the level you’re
happy with; the current price tier allowed on the App Store is from US$0.99 to
US$999.99 (there are similar pricing tiers for each App Store market in local cur-
rencies). It should be mentioned that you have a 30% profit share with Apple.

 Submit a free application with in-app purchase. You can use Store Kit on iOS to gen-
erate profit through an in-app purchase. For details, please refer to chapter 19.
You share 30% of all revenue through in-app purchases with Apple.

 Submit a free application supported by advertisements. This is a common business
model for free applications. Follow the step-by-step instructions on iAd from
chapter 20; you’ll be able to make money with your application in no time.

You don’t have to build an application for profit. Simply creating a cool application
and learning a new programming technique is fun and rewarding in itself. The

http://www.it-ebooks.info/

19Summary

www.it-ebooks.info
bottom line is if you’re planning to distribute your application through the App Store,
make sure you read and follow the application guidelines from the iOS Developer
Center.

 Finally, stay focused and don’t give up! Learning a new programming language
isn’t easy. Try listing the key features for your application, and focus on the most
important ones throughout the development process. Unless you have unlimited
resources, it will be hard to put all the features you want inside one application. And
even if you manage to, it may be too hard for users to figure out how to use your app.
Remember: sometimes less is more.

1.7 Summary
In this chapter, we first explored iOS on the iPhone and iPad, and then we explained
how to install the iOS SDK on your Mac. We also covered the anatomy of iOS, includ-
ing objects, classes, and methods, providing the backdrop for coding in Objective-C,
which follows in the next chapter. With the program environment ready, you can start
the journey with iOS development.

http://www.it-ebooks.info/

www.it-ebooks.info
Learning Objective-C
In this chapter, we’ll examine all of the Objective-C elements that are applicable to
iOS development. We assume that you have a good understanding of a rigorous
programming language (like C), that you know the basic concepts behind object-
oriented programming (OOP), and that you understand what the Model-View-
Controller (MVC) architectural model is.

 We’re now ready to move into the world of SDK development. We’ll take a quick
tour to examine the programming language and frameworks you’ll be using when
you program with the SDK.

2.1 Introducing Objective-C
All of the SDK’s programming is done in Objective-C, a full superset of C, allowing
you to write any traditional C code. (There is also Objective-C++, which allows for

This chapter covers
 Introducing Objective-C

 Using messages

 Implementing classes

 Setting properties

 Learning categories and protocols
20

http://www.it-ebooks.info/

21Introducing Objective-C

www.it-ebooks.info
full integration of Objective-C and C++, with some caveats.) It adds powerful object-
oriented capabilities as well. These extensions come by way of the design philosophies
of Smalltalk, one of the earliest object-oriented languages. Because of its origin
beyond the standard boundaries of C, Objective-C’s messaging code may look a little
strange to you at first. But after you get the hang of it, you’ll discover that it’s elegant
and easy to read, providing some nice improvements over traditional ANSI C code.

 We’ll look at Objective-C’s messages, class definitions, properties, compiler direc-
tives, categories, and protocols. Although this overview gives you enough to get started
with Objective-C, it can’t provide all the details, particularly for more complex func-
tionality like properties and categories. If you need more information than we’ve
been able to provide, look at Apple’s own references on the topic, particularly “Learn-
ing Objective-C: A Primer,” “Object-Oriented Programming with Objective-C,” and
“The Objective-C 2.0 Programming Language,” all of which can be found in Apple’s
iOS developer library.

 Let’s start with a look at Objective-C’s big picture. It’s an object-oriented language,
which means it’s full of classes and objects, instance variables, and methods.

 As implemented by Apple and used throughout iOS’s frameworks, Objective-C is
built entirely around objects. Windows, views, buttons, sliders, and controllers all
exchange information with each other, respond to events, and pass actions in order to
make your program run.

 A header (.h) file and a source code (.m) file together represent each object in
Objective-C. Sometimes you’ll access standard classes of objects that come built into
the iOS frameworks, but often you’ll instead subclass objects so that you can create
new behaviors. When you do this, you’ll add a new header file and source code file to
your project that together represent the new subclass you’ve invented.

 Although we won’t dwell on it much, note that C++ code can be mixed in with
Objective-C code. We leave the specifics of that for the experienced object-oriented
programmer (and, as usual, there’s more detail on Apple’s website). You can also
freely insert older C syntax; as we’ll discuss shortly; this is necessary when you’re work-
ing with older libraries.

 With all that said, we’re ready to dive into Objective-C’s unique syntax. Table 2.1
summarizes the seven major elements of syntax.

Table 2.1 Objective-C code can look different from ANSI C; it depends on a handful of syntactic
changes.

Syntax element Summary

Messages Messages send commands to objects in [bracketed] code (similar to functions in C).

Classes Classes define object types in matched .h and .m files.

Properties Properties allow for the easy definition of accessors and mutators (setting and get-
ting object member variables).

Categories Categories can be used to add to classes without subclassing.

http://www.it-ebooks.info/

22 CHAPTER 2 Learning Objective-C

www.it-ebooks.info
We offer a more technical summary at the end of this section, showing all the syntax
of these elements. But first, we discuss these syntactic elements at length, in approxi-
mate order of importance.

2.2 The message
Objective-C’s most important extension to the C programming language is the mes-
sage. A message is sent when one object asks another to perform a specific action; it’s
Objective-C’s equivalent to the procedural functional call. Messages are also where
Objective-C’s syntax varies the most from ANSI C standards—which means that when
you understand them, you’ll be able to read most Objective-C code.

 A simple message call looks like this:

[receiver message];

Here’s a real-life example that you’ll meet in the next chapter:

[window makeKeyAndVisible];

That message sends the window object the makeKeyAndVisible: command, which tells
it to appear and start accepting user input.

 There are three ways in which this message could be slightly more complex. First,
it could accept arguments; second, it could be nested; and third, it could be a call to
one of a few different recipients.

2.2.1 Messages with arguments

Many messages include a simple command, as in the previous example. But some-
times you’ll want to send one or more arguments along with a message to provide
more information about what you want done. When you send a single argument, you
do so by adding a colon and the argument after the message, like so:

[receiver message:argument];

Here’s another real-world example:

[textView setText:@"These are the times ..."];

Protocols Protocols define methods that a class promises to respond to (similar to interfaces
in languages like Java).

@ @ directives are used by the compiler for a variety of purposes.

^ With iOS 4, blocks were introduced. Blocks are objects that encapsulate a unit of
work—or, in less abstract terms, a segment of code—that can be executed at any
time. The caret symbol (^) is used as a syntactic marker for blocks.

Table 2.1 Objective-C code can look different from ANSI C; it depends on a handful of syntactic
changes. (continued)

Syntax element Summary

http://www.it-ebooks.info/

23The message

www.it-ebooks.info
When you want to send multiple arguments, each additional argument is sent follow-
ing a label, as shown here:

[receiver message:arg1 label2:arg2 label3:arg3];

Here’s an example:

[myButton setTitle:@"Goodbye" forState:UIControlStateNormal];

This is the way in which Objective-C’s messages vary the most from C’s functions.
You’re going to come to love it. You no longer need to remember the ordering of the
arguments because each gets its own title, clearly marking it. The result is much more
readable.

2.2.2 Nested messages

One of the most powerful elements of Objective-C’s messaging system is the fact that
you can nest messages. This allows you to replace either the recipient or the argument
of a message (or both) with another message. Then, the return of that nested message
automatically fills in the appropriate space of the message it’s nested inside.

 Object creation frequently replaces the receiver in this manner:

[[UITextView alloc] initWithFrame:textFieldFrame];

The object created by sending the alloc message to the UITextView class object is
then initialized. (We’ll get to class objects in a moment.)

 When you’re passing a color as an argument, you almost always do so by nesting a
call to the UIColor class object:

[textView setTextColor:[UIColor colorWithWhite:newColor alpha:1.0]];

Message nesting is a core Objective-C coding style, and you’ll see it frequently. It also
shows why Objective-C’s bracketed messaging style is cool. With good use of code
indentation, it can make complex concepts readable.

2.2.3 Message recipients

As you’ve seen over the last couple of examples, Objective-C uses two different types of
objects. Class objects innately exist, and each represents one of the classes in your
framework. They can be sent certain types of requests, such as a request to create a
new object, by sending a message to the class name:

[class message];

Here’s an example:

UIButton *myButton =
 [UIButton buttonWithType:UIButtonTypeRoundedRect];

Instance objects are what you’re more likely to think of when you hear the term object.
You create them yourself, and the majority of your programming time is spent manip-
ulating them. Except for those examples of creating new objects, all of our real-life
examples so far have involved instance objects.

http://www.it-ebooks.info/

24 CHAPTER 2 Learning Objective-C

www.it-ebooks.info
 In addition to calling an object by name, you can also refer to an object by one of
two special keywords: self and super. The first always refers to the object itself,
whereas the second always refers to the class’s parent.

 You’ll often see self used internal to a class’s source code file:

[self setText:@"That try men's souls. "];

You’ll often see super used as part of an overridden method, where the child calls the
parent’s method before it executes its own behavior:

[super initWithFrame:frame]

All your message calls should follow one of these four patterns when naming its
receiver: they can call something by its class name (for a class method), by its instance
name (for an instance method), by the self keyword, or by the super keyword.

 Now that you know how to send messages between objects, you’d probably like to
know how to create those classes from which your objects are instantiated in the first
place. That’s the topic of the next section.

2.3 Class definition
As we’ve noted, each class tends to be represented by a matched pair of files: a header
file and a source code file. To define a class, each of these files must contain a special
compiler directive, which is always marked in Objective-C with an @ symbol.

 First, you define the interface for the class, which is a simple declaration of its pub-
lic variables and methods. You do this in
the header (.h) file. Next, you define the
implementation for the class, which is
the content of all its methods; this is
done in a source (.m) file.

 Figure 2.1 shows this bifurcation
graphically; we’ll look at the headers and
implementation files in more depth in
the next few sections.

2.3.1 The interface

Interfaces begin with an @interface directive and finish with an @end directive. They
contain instance variable declarations in curly brackets and then method declarations.
The following listing shows an example of their usage. It’s the first of several examples
that we offer in this section that depict a fake class, AppleTree.

/* AppleTree.h */
@interface AppleTree : UrTree
{
 NSString *appleType;
}

Listing 2.1 Defining the class of Appletree

Class Definition

.h File

@interface
Variable Declaration
Method Declaration

.m File

@implementation
Method Definition

Figure 2.1 Headers and source code files contain
distinctive parts of your Objective-C classes.

http://www.it-ebooks.info/

25Class definition

www.it-ebooks.info
- (id)growFruit:(NSString *)appleColor;
@end

You begin the interface command with the @interface directive and end it with the
@end directive. Note that the @interface directive includes not only the class name
but also the name of its superclass, following a colon. It could also include a list of pro-
tocols, a topic we’ll return to later in this section.

 The variable declaration is entirely normal. NSString is a type that you’ll meet
when we look at iOS later in this chapter. Note that you don’t have to declare all your
variables in your @interface—those instance variables that you want to be accessible
outside a particular method. You’ll declare variables that are used within only individ-
ual methods inside those methods, as you’d expect.

 The method declaration contains a typed description of a method with one argu-
ment, matching the syntax you’ve seen for messages. It also contains one other new
element: it starts with a hyphen (–). That means this is an instance method, which is a
method that can only be used by an instance object. Its opposite number, which is
marked with a plus sign (+), is the class method, which is used by a class object. Class
methods can’t make use of instance variables or call install methods, because they’re
accessible only from an instantiated object.

 The id type used as the return of growFruit: is another Objective-C innovation.
Objective-C allows for dynamic typing, where type is decided at runtime. To support
this, it includes the weak type of id, which can be a pointer to any object.

 Before we finish our discussion of method declarations, we’d like to mention that,
as with variables, you only have to declare those methods that can be called externally.
Methods that remain internal to a class can remain hidden if you desire.

2.3.2 The implementation

After you’ve declared a class with an @interface, you can then define it with the
@implementation directive. The following listing provides a brief example of what the
implementation might look like for the AppleTree class, including a single example
method.

/* AppleTree.m */
#import "AppleTree.h"
#import "Apple.h"
@implementation AppleTree
- (id)growFruit:(NSString *)appleColor

{

 Apple *fruit = [Apple appleWithColor:appleColor];

 return fruit;

}
@end

Listing 2.2 Implementation file for the AppleTree class

Definition
of method

http://www.it-ebooks.info/

26 CHAPTER 2 Learning Objective-C

www.it-ebooks.info
The code starts with the #import directive. This is Objective-C’s variant for the
#include macro. It includes the file unless it’s already been included, and it’s the pre-
ferred alternative when using Objective-C. In this case, you include AppleTree.h,
which should contain the interface described in the code snippet in listing 2.1. With-
out including it, you’d need to redefine all the instance variables and include the
superclass in the @implementation statement. The #import helps you avoid redun-
dant code. You also include the Apple.h file so that you can create an Apple.

 As with the interface, the implementation code begins with a directive and ends
with @end. In between, you describe what the method does, which includes sending a
message to the Apple class object.

2.3.3 Object instantiation

You now have two parts of a puzzle: how to create new classes of objects and how to
send messages among instantiated objects. What you’re missing is how to instantiate
an object from a class.

 Generally, object instantiation follows the same pattern. First, you allocate memory
for the object, and then you initiate any variables and perform any other setup. The
precise manner in which this is done can vary from class to class. A framework usually
decides how object creation works—which for our purposes means iOS. As you’ll see
later in this chapter, iOS specifies two methods for object instantiation: the alloc-init
method and the class (or factory) method. You’ll meet each of these soon, when we
talk about iOS, but first let’s finish up with the core syntax of Objective-C.

2.4 Properties
What we’ve covered so far should be sufficient for you to understand (and write) most
simple Objective-C code. One other major feature in Objective-C deserves some
extended discussion because of its unique syntax: the property.

2.4.1 The purpose of properties

Because instance variables are encapsulated, you usually have to write tons of getter
and setter methods when doing OOP. This can get tedious, and you must also be care-
ful about consistency so you don’t have dozens of different syntaxes for your accessors
and mutators.

 Objective-C offers a solution to these problems: you can declare an instance vari-
able as a property. When you do so, you standardize the variable’s accessor and muta-
tor methods by automatically declaring a getter and a setter. The setter is called
setVariable and the getter is called variable.

 For example, returning to the apples that we’ve been talking about in our major
examples, if you define the NSString *appleType; variable as a property, the follow-
ing declarations automatically occur:

-(void)setAppleType:(NSString *)newValue;
-(NSString *)appleType;

You’ll never see these declarations, but they’re there.

http://www.it-ebooks.info/

27Properties

www.it-ebooks.info
2.4.2 Setting a property

You declare an instance variable as a property by using the @property directive as part
of your @interface statement. The following listing demonstrates how to do so, in the
full context of the example so far.

@interface AppleTree : UrTree
{
 NSString *appleType;

}
@property(retain) NSString *appleType;
- (id)growFruit:(NSString *)appleColor;
@end

The header file shows that any property must start with the declaration of an instance
variable. The @property directive then repeats that declaration. If you wish, you can
stop here. You’ve now implicitly declared your accessor and mutator methods, and
you can go and write those methods on your own if you see fit. Let’s look at another
example.

#import "AppleTree.h"
#import "Apple.h"
@implementation AppleTree
@synthesize appleType;
- (id)growFruit:(NSString *)appleColor
{
 Apple *fruit = [Apple appleWithColor:appleColor];
 return fruit;
}
@end

Objective-C will also write these methods for you if you ask it to. This is done with the
@synthesize declaration in the @implementation statement. This creates accessor
methods that read and set the variable by the simple methods you’d expect. The setter
method is by default of type assign, but you can choose a different method using
property attributes, which we’ll talk about down the road.

2.4.3 Using the accessors

If you’re not doing anything fancy, you can immediately use your class’s default getter
and setter methods, as shown in the following three examples:

NSString *chosenType = [AppleTree appleType];
[AppleTree setAppleType:@"Washington Red"];
[AppleTree setAppleType:myAppleType];

In addition to providing you with automatically created accessors and mutators, prop-
erties also give you access to a bit of syntactic sugar, which can make using them that
much easier.

Listing 2.3 AppleTree.h

Listing 2.4 AppleTree.m

http://www.it-ebooks.info/

28 CHAPTER 2 Learning Objective-C

www.it-ebooks.info
2.4.4 The dot syntax

Objective-C offers a dot syntax that makes it easy to use an object’s accessor and muta-
tor methods (whether you synthesized them or created them yourself). The following
are the dot-syntax equivalents to the messages you sent earlier:

NSString *chosenType = AppleTree.appleType;
AppleTree.appleType = @"Washington Red";
AppleTree.appleType = myAppleType;

The dot syntax can also be nested, just as you can nest messages. In the following exam-
ple, the treeType property returns a tree object that has an AppleType property:

Apple.treeType.AppleType

With that in hand, you should now be able to write simpler and more intuitive code.

2.4.5 Property complexities

There are several complexities of properties that we’ve opted not to delve into here.
First, property declarations can include attributes. They let you change getter and set-
ter names, change setter assignment methods, modify memory management (retain,
autorelease, and so on), set nonatomic accessors (which are accessors that can be
interrupted by the CPU scheduler while in use), and determine whether the property
is read-only or read-write. These can all be set as part of the @property line.

 Second, another directive called @dynamic lets you add accessor and mutator
methods at runtime.

 Third, it’s possible to override default values that you’ve synthesized through nor-
mal method creation as part of your @implementation.

 A variety of information about properties is available in Apple’s Objective-C refer-
ence; if you need to delve into any of these complexities, you should refer to that.

2.5 The @ directive
We’re almost finished with our overview of Objective-C, but we want to alert you to
one other frequently used bit of syntax. As you’ve seen, the @ symbol denotes a com-
pile directive. It’s a core part of class definition, and it’s required for properties. You’ll
also see it in a few other places in Objective-C code.

 Sometimes an @ is used to create variables of certain types, most frequently a vari-
able of type NSString *. You saw this in a few of the messaging examples. You include
the @ symbol, followed by the string value you want to set:

NSString *mySample = @"What does this have to do with apples?";

In chapter 6, you’ll also encounter the @selector directive, which is used to create a
variable of type SEL. This is a method selector, which is what you use when you want to
pass the name of a method as an argument, as will occur when we get to events and
actions. A standard usage looks like this:

SEL mySelector = @selector(growFruit:);

http://www.it-ebooks.info/

29Categories and protocols

www.it-ebooks.info
There are many other directives you can use in Objective-C. Our purpose here is to
highlight those you’re most likely to see in this book and most likely to use in intro-
ductory SDK programming.

TIP Forgetting to mark a string with an @ is the most common error in iOS
programming, so keep an eye out for this one! (Without the @, you’ll have a
C-style char* string, which is almost certainly not what you want.)

2.6 Categories and protocols
It’s important to touch on two final elements of Objective-C: the category and the pro-
tocol. We broadly define what they do, but we won’t delve too deeply into their details.
To learn more, refer to Objective-C Fundamentals by Manning Publications.

2.6.1 The category

Categories are used if you want to add behavior to a class without subclassing. As
usual, you do so by creating a new pair of files containing @interface and
@implementation code. This time, you no longer need to worry about the superclass
name but must include a category name in parentheses, as follows:

@interface AppleTree (MyAppleChanges)
@implementation AppleTree (MyAppleChanges)

As a result, the categorized methods and variables that you describe for the classes are
added to the core class definition in your program.

 We don’t use categories in this book.

2.6.2 The protocol

A protocol is effectively an interface that’s not tied to a class. It declares a set of meth-
ods, listing their arguments and their returns. Classes can then state that they’re
using the protocol in their own @interface statements. For example, if you had a
Growing protocol that was used by plants and animals alike, you could define its
usage as follows:

@interface AppleTree : UrTree <Growing>

The AppleTree class would be promising that it would respond to all the methods
defined in the Growing protocol.

 You won’t be creating any new protocols in this book. But you’ll use existing ones,
because within Apple’s iOS, they’re tied integrally to the MVC model. Views hand off
protocol descriptions of how they should be used to view controllers via datasource
and delegate properties—both topics that we’ll introduce when we talk about iOS.

 With that, the shine has gone off our apples, so we’ll return to real-life examples
when we move on. But first, having provided an overview of a whole new program-
ming language in an impossibly short number of pages, we’ll summarize what you’ve
learned.

http://www.it-ebooks.info/

30 CHAPTER 2 Learning Objective-C

www.it-ebooks.info
2.7 Wrapping up Objective-C
Table 2.2 summarizes the syntax specifics of the Objective-C elements that we’ve been
discussing. This table can serve as a quick reference whenever you want to revisit how
Objective-C code works differently from traditional C.

And with that, we’ve completed our look at the syntax and structure of the Objective-
C programming language. But that’s only half of the foundation you need in order to
use the SDK. You also need to be familiar with the specific methods and programming
styles provided by iOS’s extensive set of frameworks.

2.8 Summary
Objective-C is your programming language for creating iOS applications. It’s an
object-oriented version of C that has some unique syntax thanks to its elegant Small-
talk inspiration. After you get used to it, you’ll find it simple and easy to read.

 Now that we’ve completed our Objective-C primer, let’s dive into putting
Objective-C to use in Xcode 4 in chapter 3.

Table 2.2 Objective-C uses many typical object-oriented coding elements, but its syntax is
somewhat unique.

Object-oriented element Syntax

Object messaging [recipient message];

Class creation /* .h file */
@interface class: super
 declarations
@end
/* .m file */
@implementation class
 definitions
@end

Method declaration - (return type)instancemethod:arguments
+ (return type)classmethod:arguments

Property declaration @property (Property Behavior Modifiers) variable;

Property synthesis @synthesize property;

Property accessor [object property];

Property mutator [object setProperty:value];

Property dot syntax object.property

Category declaration @interface class: super (category)
@implementation class: super (category)

Protocol declaration @interface class: super <protocol>

http://www.it-ebooks.info/

www.it-ebooks.info
Using Xcode 4
Now that you have Xcode and the iOS SDK installed, and you’ve learned a bit about
the puzzle pieces needed to build an application, you’re ready to write your first
HelloWorld application. The main purpose of this chapter is to show you the new
features in Xcode 4 and how Xcode works. Using a traditional HelloWorld applica-
tion, we’ll look at the parts of a standard application, and you’ll learn how to build
and run your first iOS application. Then we’ll look at how Interface Builder works
under Xcode 4. And last, you’ll create the AppleStock application, which shows how
to create new objects, manipulate them graphically, and use the inspector window.

3.1 Introducing Xcode 4
At the time of this writing, Xcode 4 is a brand-new release to iOS developers. With a
new user interface, Xcode 4 also includes a lot more changes under the hood. Let’s
first look at the new features in Xcode 4.

This chapter covers
 What’s new in Xcode 4

 Creating your HelloWorld application

 Using the Interface Builder editor under Xcode 4

 Creating the AppleStock application
31

http://www.it-ebooks.info/

32 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
 When Xcode 4 was first introduced at Apple’s WWDC 2010, developers were
excited and looked forward to the new features in Xcode 4. Compared to Xcode 3,
Xcode 4 is more powerful, more tightly integrated, easier to use, and great for orga-
nizing your projects.

 Note that you can have both Xcode 4 and Xcode 3 installed on your Mac at the
same time, and the existing project will be fully compatible in Xcode 4.

 Let’s look at the advantages in Xcode 4:

 Single-window interface—You can create a workspace and add multiple projects
under the same workspace and edit them in the same window. In Xcode 4,
Interface Builder is fully integrated as part of the Xcode application, making it
much easier to connect objects between the source code and the graphic
design interface.

 Source control—Although this isn’t an exciting topic, Xcode 4 makes it a lot eas-
ier to control and compare the new changes with version control and Git. New
projects are even given the option to automatically have a Git repository cre-
ated. Version Editor provides the side-by-side view for any two versions of a file.

 LLVM 2.0 compiler includes full support for C, Objective-C, and C++—The benefit is
in the speed of compiling and linking, as well as improvements to syntax high-
lighting and code completion driven by the new LLVM parser.

 Powerful debug support—The Fix-it feature presents the potential solution for the
issue inside the program.

 Scheme concept—Instead of creating each platform as a build target, you can use
Xcode Schemes to collectively define targets to build, the configuration to be
used, and the associated tests to execute.

There are more features in Xcode 4. You can find out the details from the iOS Dev
Center. Now let’s launch the Xcode 4 application on your Mac.

3.2 Using Xcode 4 to create the HelloWorld application
In this section, you’ll work through creating your first iOS application with step-by-step
instructions under Xcode 4. The goal is to get you started programming with Xcode
and teach you how to write code and run the application on the iOS Simulator.

3.2.1 Creating a new project

Through the default installation path, you can launch Xcode 4 from the Developer
directory (typically located at Macintosh HD > Developer > Applications > Xcode). An
even easier way to launch Xcode is to use Spotlight: press Command-spacebar, type
xcode, and then press Enter. The first time you launch the Xcode 4 program, you’ll
see the Welcome to Xcode window, as shown in figure 3.1.

http://www.it-ebooks.info/

33Using Xcode 4 to create the HelloWorld application

www.it-ebooks.info
Select Create a New Xcode Project (or choose File > New > New Project), and you’re
immediately prompted to choose a template for your new project, as shown in figure 3.2.

 The template you choose will fill your project with default frameworks, default
files, default objects, and even default code. As you’ll see, it’ll be a great help in jump-
starting your own coding.

Figure 3.1 The Welcome to Xcode window appears when Xcode launches.

Figure 3.2 Choose a template for your new project.

http://www.it-ebooks.info/

34 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
For your first program, go with the simplest template you can find: Window-Based
Application. Select Next. You can specify options for your project, as shown in figure 3.3.

 First, enter your project’s name under Product Name. In this example, use Hello-
World. Then fill in the company’s name. Make sure to select iPhone from the Device
Family option. (Note that neither Use Core Data nor Include Unit Tests is selected, as
shown in figure 3.3.)

 Click Next, and choose where to save this new project. You’re ready to start coding
under Xcode. Now, let’s look at the single-window interface.

Templates for new projects
When you’re creating a new project in Xcode, you always have the option to select
from among several templates, as shown in figure 3.2, each of which gives you a dif-
ferent basis for your code. Besides a Window-Based Application, you can create a proj-
ect as a View-Based Application, a Tab Bar Application, a Navigation-Based
Application, a Utility Application, a Split View-Based Application, or an OpenGL ES
Application.

Most of these templates will involve view controllers, which you won’t encounter for
a couple of chapters. We provide you with an overview for now so you can see the
possibilities that Xcode offers:

 A Window-Based Application is entirely minimalist. It provides a starting point
for your application with the application delegate and window.

 A View-Based Application has a bit more functionality. It includes a basic view
controller that allows you to add custom content. You’ll use it in chapter 5 (and
most of the time thereafter).

 A Tab Bar Application creates a tab bar along the bottom of the screen that
allows you to switch between multiple views. The template does this by creat-
ing a tab bar controller and then defining what each of its views looks like.
You’ll use it in chapter 7.

 A Navigation-Based Application sets you up with a navigation controller, a navi-
gation bar along the top, and a table view in the middle of the page so you can
easily build hierarchical applications. You’ll also use it in chapter 7.

 A Utility Application defines a flip-side controller that has two sides, the front
side containing an info button that allows you to call up the backside. This is
the last view controller we’ll explore in chapter 7.

 An OpenGL ES Application is another minimalistic application. The difference
from the Window-Based Application is that it includes GL frameworks, sends
the glView messages to get it started, and otherwise sets certain GL proper-
ties. We won’t get to GL until chapter 13, and even then we’ll only touch on it
lightly.

 A Split View-Based Application is a split view controller–based application that
works only on the iPad. You’ll use this template in chapter 7.

http://www.it-ebooks.info/

35Using Xcode 4 to create the HelloWorld application

www.it-ebooks.info
3.2.2 Getting familiar with the workspace window

As you can see in figure 3.4, Xcode 4’s single workspace window contains a lot of infor-
mation. The toolbar is on the top of the Xcode workspace window, and it offers a few
commonly used commands for quick access. Below the toolbar, the window is divided
into three main areas or sections: Navigator area on the left pane, Editor area in the
center, and Utility area on the right pane. (Note that by using the default setting, the
Utility area is hidden. You can show the utility view by selecting View > Utilities > Show
Utilities, or clicking the Utility View button on the top-right-corner toolbar.)

 The Navigator area contains a list of all the files that are being used in your proj-
ect, organized by type. Whenever you need to add new frameworks, images, databases,
or other files to your project, you can do so under the Navigator.

 Select any .h file in the project in the Navigator area, and the contents appear in
the Editor area in the center. When you select the HelloWorld application under the
Navigator area (the top-level node of the tree, which also lists the iOS Build Target),
the Editor area is the place to change the product information, such as the applica-
tion icon, launching image, build setting, and so on.

 The Utility area shows the selected file information. It’s split into two sections: on
the top is the identity info, and on the bottom is the library.

 Now that you have an overview of the Xcode single-window interface, let’s zoom in
to the Navigator area and learn the details of the files under your HelloWorld project.

Figure 3.3 Choose options for your new project.

http://www.it-ebooks.info/

36 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
3.3 Closer look at files under the Navigation area
The HelloWorld application has three subfolders: HelloWorld, Frameworks, and
Products. Let’s spend some time reviewing what’s under the hood.

3.3.1 HelloWorld folder

The HelloWorld folder is where you spend most of your time writing code and design-
ing the application’s interface. Click the triangle beside the HelloWorld folder to
expand the contents so that you can review what it contains. You’ll find one subfolder
called Supporting Files and three files: HelloWorldAppDelegate.h, HelloWorldApp-
Delegate.m, and MainWindow.xlb.

SUPPORTING FILES SUBFOLDER

The Supporting Files subfolder contains files that support the application. In the
HelloWorld project, you can find HelloWorld-Info.plist, InfoPlist.strings, HelloWorld-
Prefix.pch, and main.m. HelloWorld-Info.plist is a property list that contains informa-
tion about the application, as shown in figure 3.5. It contains a number of instructions
for your program compilation, the most important of which is the reference to the
main nib file used in your program. InfoPlist.strings is a localization string file for your
application’s InfoPlist.

Figure 3.4 Xcode 4 in a single-window interface, which has the Navigator area on the left pane, the Editor
area in the center pane, and the Utility area on the right pane

http://www.it-ebooks.info/

37Closer look at files under the Navigation area

www.it-ebooks.info
The HelloWorld-Prefix.pch file contains special prefix headers, which are imported
into every one of your source code files.

 Main.m comes with standard code generated by the project template, as you can
see in the following listing.

#import <UIKit/UIKit.h>

int main(int argc, char *argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

The creation of this main routine is automatic, and you generally shouldn’t have to
fool with it at all. But it’s worth understanding what’s going on. You start with an
#import directive, which you’ll recall is Objective-C’s substitute for #include. More
specifically, you include the UIKit framework, the most important framework in
Cocoa Touch. Notice that it’s also in the helloworldxc_Prefix.pch file, but at least at
the time of this writing, it’s part of the default main.m file.

 Notice that NSAutoreleasePool is created here. Recall that we mentioned this in
our discussion of memory management in chapter 2. Note that the autorelease pool is
released after you’ve run your application’s main routine, following the standard rule
that if you allocate the memory for an object, you must also release it.

 The UIApplicationMain line creates your application and kicks off the event cycle.
The function’s arguments look like this:

int UIApplicationMain (int argc, char *argv[], NSString *principalClassName,
NSString *delegateClassName);

Listing 3.1 Main.m file

Figure 3.5 Select the project’s Info.plist file to show details in the Editor area.

http://www.it-ebooks.info/

38 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
As with the rest of the main.m file, you should never have to change this. But we nev-
ertheless briefly touch on what the latter two arguments mean—although they’ll usu-
ally be set to their defaults, thanks to the nil arguments.

principalClassName defines the application’s main class, which is UIApplication
by default. This class does a lot of the action and event controlling for your program,
topics that we’ll return to in chapter 6. The UIApplication object is created as part of
this startup routine, but you’ll note that no link to the object is provided. If you need
to access it (and you will), you can use a UIApplication class method to do so:

[UIApplication sharedApplication];

This returns the application object. It’s typically sent as part of a nested message to a
UIApplication method, as you’ll see in future chapters. For now, the application does
two things to note: it calls up your default .xib file, and it interfaces with your applica-
tion delegate.

 The delegateClassName defines the application object’s delegate, an idea intro-
duced in chapter 2. As noted there, this is the object that responds to some of the
application’s messages, as defined by the UIApplicationDelegate protocol. Among
other things, the application delegate must respond to lifecycle messages: most impor-
tant, the applicationDidFinishLaunching: message, which runs your program’s
content, as we’ll talk more about momentarily.

APPDELEGATE

As you’ve already seen, the application delegate is responsible for answering many of
the application’s messages. You can refer to the previous chapter for a list of some of
the more important ones or to Apple’s UIApplicationDelegate protocol reference
for a complete listing.

 More specifically, an application delegate should do the following:

 At launch time, it must create an application’s windows and display them to the
user.

 It must initialize your data.
 It must respond to “quit” requests.
 It must handle low-memory warnings.

Of these topics, the first one is the most important to you. Your application delegate
files, HelloWorldAppDelegate.h and HelloWorldAppDelegate.m, start your program.

 Now that you’ve moved past main.m, you’ll be using classes, which is the sort of
coding that makes up the vast majority of Objective-C code. Select HelloWorldApp-
Delegate.h in the Navigator area to view the source in the Editor area. You can also
enable the assistant for the Editor area (choose View > Editor > Assistant). You’ll see
that the side-by-side editor view contains the header file in the left section and the
source file in the right section, as shown in figure 3.6.

 Listing 3.2 shows the HelloWorldAppDelegate header file.

http://www.it-ebooks.info/

39Closer look at files under the Navigation area

www.it-ebooks.info
#import <UIKit/UIKit.h>
@interface HelloWorldAppDelegate: NSObject <UIApplicationDelegate> {
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Again, there’s nothing to change here, but we want to examine the contents, both to
reiterate some of the lessons you learned in the previous chapter and to give you a
good foundation for work you’ll do in the future.

 First, an @interface line subclasses your delegate from NSObject (which is appro-
priate, because the app delegate is a nondisplaying class) and includes a promise to
follow the UIApplicationDelegate protocol. Then @property declares window as a
property. Note that this statement includes some of the property attributes, nonatomic
and retain. You use the nonatomic attribute to specify that the synthesized getter
method return the value directly. The retain attribute means that when a new value is
assigned through the synthesized setter method, the old value will be released and the
new value will be retained.

Listing 3.2 HelloWorldAppDelegate’s header file

Figure 3.6 HelloWorldAppDelegate header file and source file under editor assistant view

http://www.it-ebooks.info/

40 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
 This line also includes an IBOutlet statement, which is used to mark the object as
usable from Interface Builder. We’ll examine this concept in more depth in the next
section; for now, you only need to know that you have a window object already pre-
pared for your application. Although you won’t modify the header file in this exam-
ple, you will in the future, and you’ll generally be repeating the patterns you see here:
creating more instance variables, including IBOutlets, and defining more properties.
You may also declare methods in this header file, something that this first header file
doesn’t contain.

 The following listing shows the application delegate’s source code file, Hello-
WorldAppDelegate.m.

#import "HelloWorldAppDelegate.h"
@implementation HelloWorldAppDelegate
@synthesize window=_window;
-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [self.window makeKeyAndVisible];
 return YES;
}
- (void)applicationWillResignActive:(UIApplication *)application{
}
- (void)applicationDidEnterBackground:(UIApplication *)application{
}
- (void)applicationWillEnterForeground:(UIApplication *)application{
}
- (void)applicationDidBecomeActive:(UIApplication *)application{
}
- (void)applicationWillTerminate:(UIApplication *)application{
}
- (void)dealloc{
 [_window release];
 [super dealloc];
}
@end

The source begins with an inclusion of the class’s header file and an @implementation
statement. The window property is also synthesized, which means the setter and getter
methods will be automatically added when the program is compiled. Here window
=_window means the property window is represented by the instance variable _window.

 It’s the content of the application:didFinishLaunchingWithOptions: method
that’s of most interest. As you’ll recall, that’s one of the iOS lifecycle messages we
touched on in chapter 2. Whenever an iOS application gets entirely loaded into mem-
ory, it sends an application:didFinishLaunchingWithOptions: message to your
application delegate, running that method. Note that there’s already some code to
display in that Interface Builder–created window.

 Inside the dealloc method, the instance variable _window, which represents the
property window, is released for the memory management. (Recall we mentioned that

Listing 3.3 HelloWorldAppDelegate source code

http://www.it-ebooks.info/

41Closer look at files under the Navigation area

www.it-ebooks.info
the window property declared in listing 3.2 will be retained through a setter accessor;
if there’s no release command here, you’ll end up with a memory leak.)

MAINWINDOW.XIB

MainWindow.xib is an Interface Builder file, more broadly called a nib file. MainWin-
dow creates a window, which is the root for your application to draw any other view.
This is your connection to the interface design that may be used to easily create
graphic interfaces for your project. We’ll discuss it in depth in the next section.

3.3.2 Frameworks folder and Product folder

The Frameworks folder contains all the libraries that will be linked into your project.
By default, UIKit.framework, Foundation.framework, and CoreGraphics.framework
are automatically added by the template. The Foundation framework gives you access
to NS objects, UIKit gives you access to UI objects, and CoreGraphics gives you access
to various graphics functions. Later in this book, we’ll cover the details on how to add
a new framework to the project. For now, you can leave this folder the way it is.

 The Products folder contains the products when the project compiles or builds.
For the HelloWorld project, HelloWorld.app is the only product sitting under this
folder. Right now, HelloWorld.app is shown in red, which means this file doesn’t exist
yet. You’ll compile the HelloWorld project shortly, which will generate the commpiled
application HelloWorld.app.

3.3.3 Building and running an application
in Xcode

To compile in Xcode, navigate to Product and choose
Product > Build from the drop-down menu. Your pro-
gram compiles, and with a successful build, it can be
launched on the iOS Simulator or an iOS device. Then
choose Product > Run, and the iOS Simulator starts it
up. Or, you can click the Run button in the top-left cor-
ner of the Xcode window. If you try this using the Hel-
loWorld project you just created, you’ll see the whole
build and run process, resulting in an empty white
screen displaying on your iOS Simulator, as shown in
figure 3.7.

 iOS applications run only on your iOS Simulator (or
on the iPhone or iPad device); they can’t be run on
your Macintosh directly. Notice that by default the
iPhone Simulator is started up. To switch to the iPad
Simulator, navigate to the top-left Scheme menu on the
Xcode window, choose iPad Simulator, and click the
Run button. You’ll see the iOS Simulator displaying the
iPad interface.

Figure 3.7 Build and run the
application on the iOS Simulator.

http://www.it-ebooks.info/

42 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
If you later want to restart a program that you’ve already compiled, you can do so in
one of three ways. You can click the program’s icon, which should now appear in your
iOS Simulator. Or, you can choose Product > Run from the Xcode menu. Finally, you
can click the Run button in the Xcode window, which builds only if required and then
executes your application.

 That’s it! With a rudimentary understanding of Xcode now in hand, you’re ready
to write code for your first iOS program.

3.3.4 Writing code for HelloWorld

We’ve been promising for a while that you’ll be amazed by how simple it is to write
things using the iOS SDK. Granted, the HelloWorld program may not be as easy as a
single printf statement, but nonetheless it’s pretty simple, considering that you’re
dealing with a complex, windowed UI environment.

 As promised, you’ll write everything inside the application:DidFinishing-
Launching method, as shown in the next listing. The bolded code is the extra code
you need to display “Hello, World!” on a window.

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
[_window setBackgroundColor:[UIColor redColor]];
CGRect textFieldFrame = CGRectMake(50, 50, 150, 40);
UILabel *label = [[UILabel alloc] initWithFrame:textFieldFrame];
label.textColor = [UIColor whiteColor];
label.backgroundColor = [UIColor redColor];
label.shadowColor = [UIColor blackColor];
label.font = [UIFont systemFontOfSize:24];
label.text = @"Hello, World!";
[_window addSubview:label];
[label release];
[self.window makeKeyAndVisible];
return YES;
}

Listing 3.4 Presenting HelloWorld on the screen

How to create a universal application
If you try to run the current HelloWorld application on the iPad Simulator, it will end
up displaying the small iPhone window in the center of the iPad Simulator. That’s
because when you create this project, the project options for Device Family are set
to iPhone (refer to figure 3.3).

You could create a real iPad target for this project when creating the new project for
the Device Family option. Do this by selecting iPad or Universal (supports both iPhone
and iPad). Because you’ve already created the project, there’s another way to update
the current project to change the device family to Universal. For details, please refer
to appendix D. We won’t cover the details in this chapter because the essentials have
been covered. Please take this opportunity to practice on your own and gain more
knowledge of Xcode by yourself.

http://www.it-ebooks.info/

43Closer look at files under the Navigation area

www.it-ebooks.info
Because this is your first look at real live Objective-C code, we’ll examine everything in
some depth. You start by sending a message to the window object, telling it to set the
background color to red. Recall back in the AppDelegate’s header file, Interface
Builder created the window. The IBOutlet that was defined in the header allows you
to do manipulations of this sort.

 Note that this line also makes use of a nested message, which we promised you’d
see with some frequency. Here, you make a call to the UIColor class object and ask it
to send the red color to the receiver, which then passes that on to the window. In this
book, we hit a lot of UIKit classes without explaining them in depth. That’s because
the simpler objects all have standard interfaces; the only complexity is in which partic-
ular messages they accept. If you ever feel you need more information about a class,
look at appendix A, which contains short descriptions of many objects, or see the com-
plete class references available online at http://developer.apple.com (or in Xcode,
select the class name for which you wish to find the defination, navigate to View > Util-
ities, and choose Quick Help. You should be able to see the documentation related to
the class shown on the Utility area under the Quick Help section).

 You next define where the text label is placed. You start that process by using
CGRectMake to define a rectangle. Much as with Canvas, the iOS drawing uses a grid
with the origin (0,0) set at the upper left. Your rectangle’s starting point is 50 to the
right and 50 down (50,50) from the origin. The rest of this line of code sets the rect-
angle to be 150 pixels wide and 40 pixels tall, which is enough room for your text.

 You’ll use this rectangle as a frame, which is one of the methods you can use to
define a view’s location. Where your view goes is one of the most important parts of
your view’s definition. Many classes use an initWithFrame: method, inherited from
UIView, which defines location as part of the object’s setup.

 The frame is a rectangle that you’ve defined with a method like CGRectMake.
Another common way to create a rectangular frame is to set it to take up your full
screen with the following code snippet:

[[UIScreen mainScreen] bounds];

Sometimes you’ll opt not to use the initWithFrame: method to create an object.
UIButton is an example of a UIKit class that instead suggests you use a class factory
method that lets you define a button shape.

 In a situation like that, you must set your view’s location by hand. Fortunately, this
is easy to do, because UIView also offers a number of properties that you can set to
determine where your view goes, even after it’s been initialized. UIView’s frame prop-
erty can be passed as a rectangle, like the initWithFrame: method. Alternatively, you
can use its center property to designate where the middle of the object goes and the
bounds property to designate its size internal to its own coordinate system. All three of
these properties are further explained in the UIView class reference. Note that
CGRectMake is a function, not a method. It takes arguments using the old, unlabeled
style of C, rather than Objective-C’s more intuitive manner of using labeled argu-
ments. When you get outside of Cocoa Touch, you’ll find that many frameworks use

http://developer.apple.com
http://www.it-ebooks.info/

44 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
this older paradigm. For now, all you need to know is what it does and that you
needn’t worry about releasing its memory. If you require more information, read the
section “Using Core Foundation” in chapter 9.

 The label is a simple class that allows you to print text on the screen. Figure 3.2
shows what the label (and the rest of the program) looks like.

 As you’d expect, your label work begins with the creation of a label object. Note
that you follow the standard methodology of nested object creation that we intro-
duced in the previous chapter. First, you use a class method to allocate the object, and
then you use an instance method to initialize it. Afterward, you send a number of mes-
sages to your object, this time using the dot syntax. We offer this as a variation from
the way you set the window’s background color. If you prefer, you can use the dot
shorthand of _window.backgroundColor there, too. The two ways to access properties
are equivalent.

 The most important of the messages sets the label’s text. You also set a font size
and font color. You can even give the text an attractive black shadow, to demonstrate
how easy it is to do cool stuff using iOS’s objects. Every object that you use from a
framework is full of properties, methods, and notifications that you can take advan-
tage of. The best place to look up all these is the class references in Quick Help.

 The final steps in your program are all pretty simple and standard. First, you con-
nect the label and the window by using the window’s addSubview method. This is a
standard (and important!) method for adding views or view controllers to your win-
dow. You’ll see it again and again.

 Do you remember the standard rule that you must
release anything you allocated? Here, that’s the label.
And that’s a simple HelloWorld program, completely
programmed and working, with some neat graphical
nuances. Now click the Run button on Xcode’s toolbar,
and enjoy your first application running in the iOS Sim-
ulator (see figure 3.8)!

 Although it was sufficient for this purpose, Hel-
loWorld didn’t make much use of the class creation
that’s possible in an object-oriented language. Sure,
you depended on some existing classes—including
UIColor, UILabel, and UIWindow—but all of your new
code went into a single function, and you didn’t create
any classes of your own. We’ll address how to create
your own class in chapter 4, when you start working
with new classes.

 Creating a project for the iPad is almost identical to
creating one for the iPhone. The main difference is
that the window is much larger. We won’t cover the
iPad files in detail as we did for the iPhone template in
the beginning of this section, because they’re almost

Figure 3.8 Running HelloWorld
on the iOS Simulator

http://www.it-ebooks.info/

45Using Interface Builder in Xcode 4

www.it-ebooks.info
the same. As mentioned earlier, the primary difference is the size of the main window.
We’ll discuss the iPad interface and universal application further in chapter 7.

 So far, you created your first iOS application with Xcode and pure Objective-C
code. Now that you’re familiar with the basics of Xcode, let’s move on to the next
most important tool for iOS application development under Xcode: Interface Builder.

3.4 Using Interface Builder in Xcode 4
At the beginning of this chapter, we mentioned the new Xcode 4 interface and high-
lighted the single-window interface. Interface Builder is a graphical environment tool
built into Xcode 4. Whenever you write an Xcode project, it includes a MainWin-
dow.xib file that contains Interface Builder definitions for where graphical objects are
placed. Every Xcode template comes with different objects prebuilt this way. Some of
them have multiple, linked .xib files, with one file representing each separate screen
of information.

 In the project navigator, find the nib file MainWindow.xib. Click MainWindow.xib
to open the document in the Interface Builder Editor pane. In the Xcode menu bar,
choose View > Navigators > Hide Navigator to narrow the focus of the workspace. If
the dock on the left doesn’t look like the one in figure 3.9, click the button in the
lower-left corner to switch the dock to outline view. In the Xcode menu, choose View >
Utilities to show the Utility area on the right pane.

Figure 3.9 Interface Builder displaying the MainWindow.xib file. A few fundamental displays in Interface Builder
are the nib document window (left), the main Editor pane in the middle, together with the Library pane (right bottom),
and the Inspector pane (right top).

http://www.it-ebooks.info/

46 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
Let’s look at what’s inside Interface Builder and then quickly look at how to mock up
Interface Builder objects.

3.4.1 The anatomy of Interface Builder

You usually access Interface Builder by selecting a .xib file in your project under Navi-
gator area. The default .xib file is generally called MainWindow.xib. Clicking it brings
up the MainWindow on the Canvas inside the Interface Builder window, showing how
default objects have been designed visually, as shown in figure 3.9.

NIB VERSUS .XIB

You’ll see both terms .xib files and nib files in this and later chapters. They’re pretty
much the same thing: a nib file is a compiled .xib file. (.xib files express the same data
as nib files but in a text-based XML format.) They appear as .xib files in Xcode, but
some methods call them nib files, as you’ll see later in this chapter. Apple documents
refer to a nib document window in Interface Builder; we’ve done the same here.

INTERFACE BUILDER

As you can see in figure 3.9, when you select a nib file or .xib file, the Interface
Builder window will become the focus of the editor view automatically; all the files stay
in the same window with your source code. Interface Builder contains a couple of
important windows: the nib document dock on the left and the main Editor pane
(Canvas) in the middle.

 Turn on the utility view on the right panel view by selecting View > Utilities > Show
Utilities or by clicking the utility view button on the top-right window. Utility view has
two parts: the Inspector pane and the Library pane. The top part contains the Inspec-
tor window; and the third tab starting from the left is the Identity tab, followed by
Object Attributes tab, Size tab, and Connections tab, as shown in figure 3.10. The
Inspector window gives you access to a wide variety of information about an object and
lets you change it.

 The bottom part contains the Objects library
available for Interface Builder. It’s the third tab
from the left on the bottom toolbar, as shown in
figure 3.11. The Library window is where you can
find all the UI elements that you may want to add
to your program. You can start exploring the
library by selecting the submenu under the
Objects drop-down menu. You’ll see four main
classes of UI elements:

 Controllers give you different ways to man-
age your views.

 Data Views give you different ways to dis-
play data.

 Inputs & Values give you a variety of simple
input mechanisms.

Figure 3.10 Inspector pane with
Identity tab selected

http://www.it-ebooks.info/

47Using Interface Builder in Xcode 4

www.it-ebooks.info
 Windows, Views & Bars give you the core
window and view objects, plus a variety of
other elements.

Interface Builder is one of the most important edi-
tors within Xcode 4, so you may want to spend
more time digging out the features under each tab
and objects. It will definitely make your future
design much smoother.

 So, what’s inside the nib file? Taking a closer
look under the MainWindow.nib file (see
figure 3.12), you find two categories: Objects and
Placeholders. Interface objects are the objects that
are created when the nib file is loaded. Placehold-
ers refer to files that live outside the nib file but
are connected to the contents of the nib file.

 Under Placeholders in the nib file, you can see
File’s Owner and First Responder. The File’s
Owner placeholder is the main bridge between
your application and the contents of the nib file.
The File’s Owner object is the owner of this nib file. The First Responder placeholder
object represents the first object in the responder chain, which is determined dynami-
cally at runtime by the UIKit frameworks. Don’t worry if you find the concept difficult
for now because we’ll cover events and actions in detail in chapter 6.

 A default MainWindow.xib file includes one window object. The window object is
the one real object you can see on the Canvas here; you can play with it in the Editor
pane on the Canvas. As you’d expect, this is the window object that was created by
default in the templates you’ve used so far.

 The Canvas in the center shows what the
.xib file currently looks like. Because you used
the Window-Based Application template in
Xcode, there’s nothing here yet. If you’d used
one of the other templates, you’d see tab bars
or other prebuilt elements. In any case, this is
where you arrange your user interface ele-
ments as you create them.

 Before you start using Interface Builder to
create an application, though, we want to intro-
duce two additional core concepts: IBOutlets
and IBActions.

Figure 3.11 Library pane

Figure 3.12 Contents of the
MainWindow.nib file shown on the dock

http://www.it-ebooks.info/

48 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
IBOUTLET AND IBACTION

In order for Interface Builder–created objects to be useful, Xcode must be able to
access their properties and respond to actions sent to them. This is done with
IBOutlet and IBAction.

 You saw an IBOutlet in listing 3.2, as part of the app delegate header file for your
first project:

@property (nonatomic, retain) IBOutlet UIWindow *window;

An IBOutlet provides a link to an Interface Builder–created object. It’s what you use
to access that object’s properties and methods. You won’t see an IBAction until we get
to chapter 6, where we’ll deal with events and actions, but it’s similar. You declare a
method in your class, including IBAction as its return:

- (IBAction)pushButton:(id)sender;

 An IBAction is a message that’s executed when a specific action is applied to an
Interface Builder–created object, such as when a slider moves or a button is clicked.

 With the overview of Interface Builder out of the way, you’re ready to create a sim-
ple application that will show a web view atop a background image.

3.4.2 Building the AppleStock application

Now let’s build the AppleStock application. In this sec-
tion, we’ll look at how to create new objects, manipu-
late them graphically, and use the Inspector window.
You can follow the step-by-step instructions to get famil-
iar with the new tool. To give you a preview of the
result, figure 3.13 shows what the AppleStock applica-
tion will look like when it’s finished.

CREATING A WINDOW-BASED APPLICATION

Go to Xcode 4, select File > New > New Project, and
select Window-Based Application. When the prompt
for the project name appears, enter AppleStock and
your company or your own name as the project identi-
fier. In the example, this book’s name is used as the
identifier, so the final project will be uniquely identi-
fied in the app store as com.iOS4inAction.AppleStock.
Under Device Family, choose iPhone. The rest of the
options are similar to when you created the Hel-
loWorld application, as shown in figure 3.3.

 Once the project is created under the workspace,
under the project navigator on the left panel, go to the
Resources folder and click the MainWindow.xib file to
bring up the Interface Builder window under the Edi-
tor focus, as shown in figure 3.14.

Figure 3.13 The AppleStock
application in the iOS Simulator,
running with a web view atop a
background image

http://www.it-ebooks.info/

49Using Interface Builder in Xcode 4

www.it-ebooks.info
Make sure your utilities view is shown. You’re now ready to create new objects on the
blank Canvas in the center.

CREATING NEW OBJECTS IN INTERFACE BUILDER

Imagine a program that uses an image as a background, sets up a web view on top of
that, and has a label running above everything. We’ll show you how easy it is to create
those entirely usable objects in Interface Builder.

 You’ll find the Image View object under Data Views in the Objects Library on the
bottom of the utility view. Drag it over to your window in the center, and it quickly
resizes to suggest a full-screen layout. You should be able to arrange it to fit exactly
over the screen, and then release your mouse button to let it go. One object created!

 The Web View object will be near the Image View. Drag it over to the main window.
If you move it toward the center of the view, dashed lines appear: they’re intended to
help you center your object. If you mouse over the middle of the screen, a dashed line
appears in each direction, forming a sort of crosshairs. When that happens, release
the mouse button—you now have a web view in the middle of the screen. Two objects
created!

 Finally, select Label, which is under Inputs & Values. Drag it toward the top left of
your screen, and let go. You’re finished! You now have three objects laid out in Inter-
face Builder, as shown in figure 3.15.

Figure 3.14 MainWindow.xib under Interface Builder

http://www.it-ebooks.info/

50 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
Notice that when you mouse over and select the
object in the library, a quick helper window pops
up; it’s helpful when you’re not so familiar with all
the objects at the beginning.

USING THE INSPECTOR WINDOW

Let’s spend some time here to make the graphic
interface look pretty. Interface Builder is an editor
that focuses primarily on user interface design, so it
makes sense that you can do some simple manipula-
tion of your objects graphically. For example, if you
want to change the text of your label, double-click
it; then you’re given the option to fill in your own
text. To adjust the font color and the font size of
the label, navigate to the Attributes tab under the
Inspector pane on the top of the utility view, as
show in figure 3.16.

 Double-click the label, and type My Apple Stock.
Don’t forget to press Enter to finish the change.
When you manipulated the label graphically, you
changed the text to My Apple Stock for reasons that
will become obvious shortly. You can see that this

Figure 3.15 MainWindow.xib file in the center with an image view on the bottom and web view and label added in

Figure 3.16 Using the inspector to
update the label’s text, font color,
font size, and so on

http://www.it-ebooks.info/

51Using Interface Builder in Xcode 4

www.it-ebooks.info
change has already been made in the label’s attri-
butes. You can set a lot of other properties via this
single window, with no programming required.

 Do you want your text to be a nice blue? No
problem: click the Text Color box. Doing so leads
you to a window that offers several ways to set col-
ors. Choose the tab that allows selection by name,
and find blue on the list. You can also set shadows,
alignments, font size, and a number of other text
options from this panel.

 In addition to the label options, the Attributes
tab contains several options that relate to the
view—they’re the UIView properties that most
graphical objects inherit. You can change alpha
transparency, background color, and a number of
other elements. For now, you can stop after having
changed the color of the text and having generally
seen what the Attributes tab can do.

 The Attributes tab is available to all Interface Builder objects, but it has different
contents depending on the object in question. If you look at the attributes for the web
view and image view objects you created, you’ll see that you can set them in specific
ways as well, but we’ll save those for later. For now,
we’re concentrating on that label.

 You can use the Size tab to adjust the size and
position of an object. Figure 3.17 shows the options
you can change here.

 This tab leads off with values for size and posi-
tion. Not only can you change an object’s starting
point, but you can also define where that starting
point is, relative to the object, using the grid at the
upper left. Width and height are available here too.

 The Autosizing box controls how your object
resizes its subviews when it resizes. For now, leave it
as is; it’ll be of more importance when we talk
about basic view controllers in chapter 5.

 Finally, the Arrange section lets you align your
current object.

 The Identity tab is of little use for this label, but
we cover its functionality for the sake of complete-
ness. Figure 3.18 shows what it looks like. For sim-
ple Interface Builder objects (like this example
label), you use only the Interface Builder Identity
section at the bottom of the Identity tab. This lets
you name your object, which makes it easier to see

Figure 3.17 Size tab under the
Inspector pane. You can change an
object’s position and size from the
Size tab.

Figure 3.18 Identity tab under the
Inspector window

http://www.it-ebooks.info/

52 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
what you’re accessing in Interface Builder. It’s
strictly for your own use.

 The Connections tab shows an object’s
IBOutlets and IBActions, as shown in figure
3.19. The example label doesn’t have an IBOut-
let, which means it can’t be accessed from
Xcode yet. But this is fine; we’re happy with
how the label is set up in Interface Builder, and
you won’t need to adjust it during runtime for
this example.

 The Class Actions and Class Outlets sections
show IBAction and IBOutlet declarations that
you’ve made in your object’s header file. For
example, the app delegate object has a window
IBOutlet (which you’ve seen several times), and the web view object has a few system-
defined actions, as shown in figure 3.19. These are the things to which you can build
connections.

 For now, leave them alone. They’re not required for the label. But you have two
more objects to work with in Interface Builder: the image view and the web view.

 We promised you that we were going to introduce a totally new object in this sec-
tion: the image view. As with web views, we’ll get more into the guts of images several
chapters down the line; for now, we want to show how easy it is to work with an unfa-
miliar object type—like the image view—in Interface Builder.

ADDING AN IMAGE

To use an image in an application, you need to add that image into your project first.
That means you drag the image file into Xcode Navigator area, alongside all your
other files. Generally, you should drag the images into the separate group from your
source code. After dragging a file into Xcode, you’ll see a confirmation prompt, as
shown in figure 3.20. Make sure you select the Copy Items into Destination Group’s
Folder check box; this will ensure that all your resources are managed inside your
project.

 Once you’ve done that, you can go to your image view’s Attributes tab in Interface
Builder and select or type in the filename of your image file. In this case, it’s
apple.png. As soon as you enter this name, your picture should automatically pop up
in Interface Builder’s main window.

 You then may wish to use the Attributes tab to change how the picture displays in
the window (including automatically resizing it if you didn’t build your image to be a
specific size) or to adjust other elements. For example, we opted to change the
image’s alpha transparency to .5, to make it easier to see the text over the image.

 If you want, you can now go ahead compile and run this program, which was built
entirely in Interface Builder. You can see the results in figure 3.21.

Figure 3.19 Connection tab showing a
web view’s IBOutlets and IBActions

http://www.it-ebooks.info/

53Using Interface Builder in Xcode 4

www.it-ebooks.info
Figure 3.20 Prompt window for adding new files to the project

Figure 3.21 Combining graphics and text can be hard in some programming languages, but under the SDK it can
be done entirely with Interface Builder. Here you see a background image with a text overlay.

http://www.it-ebooks.info/

54 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
 The problem is that an unsightly web view box is sitting in the middle of the dis-
play. If you inspect the Attributes tab for the web view, you’ll see why you didn’t do
anything more with it: you can’t set the starting URL from inside Interface Builder.

 You can do other things in Interface Builder. Specifically, you can easily resize the
view. We chose to set it to 280 x 391 pixels, which various Interface Builder guidelines
suggested was the right size; but you can size it by dragging the corners. We also
opted to leave the Scales Page to Fit option off, which would make the web view act as
if it had a viewport 980 pixels wide, like iPhone Safari. But to fill the web view win-
dow, you have to access it from the source code, which means adding a new IBOutlet
to the app delegate.

CONNECTING THE DOTS IN INTERFACE BUILDER

Now it’s time to code. Let’s declare the web view as an IBOutlet in the app delegate,
by connecting the outlets from app delegate to myWebView from Interface Builder.

 Connecting takes a few steps with drag and drop:

1 With the MainWindow.nib file open, click the Assistant button. You see a side-
by-side view under the Editor pane.

2 In the jump bar above the assistant view, select the header file in which you
want to declare a new outlet. In this case, it’s the AppleStockAppDelegate.h file.

3 Control-drag from a nib object to the location in the header file for the new
outlet. In this case, Control-drag from the web view to the header file, and
insert a new outlet (as shown in figure 3.22).

Figure 3.22 Control-drag from the web view to the app delegate header file to create a new outlet.

http://www.it-ebooks.info/

55Using Interface Builder in Xcode 4

www.it-ebooks.info
4 In the dialog (see figure 3.23),
choose Outlet from the Connec-
tion menu, type the name of the
new outlet, and click Connect. In
this case, use webView as the new
IBOutlet name.

That’s all! Now you have the webView
IBOutlet added to the header file auto-
matically by Xcode, and it can be manipu-
lated from within the Interface Builder editor. You can examine the app delegate’s
header file and source code. Notice that you have the new IBOutlet property prop-
erly declared and synthesized. Even the memory management is automatically taken
care of.

ADDING CODE FOR IBOUTLET

Now it’s time to add in the function to load the AppleStock’s URL in the web view.
Select the AppleStockAppDelegate.m file, and the implementation file will be in the
Editor area (you can hide other views to focus on the source file editing). Add the
code snippet from the following listing.

- (void)refreshQuote {
 NSString *url = [[NSString alloc] initWithString:@"http://quote-"
"web.aol.com/?syms=AAPL&e=NAS&action=hq&dur=1&type=mountain&hgl=1&vgl=1&vol="
"1&splits=1&div=0&w=723&h=964&gran=d"];
 [_webView loadRequest:[NSURLRequest requestWithURL:[NSURL
URLWithString:url]]];
 [url release];
}

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [self refreshQuote];
 [NSTimer scheduledTimerWithTimeInterval:5 target:self
selector:@selector(refreshQuote) userInfo:nil repeats:YES];
 [self.window makeKeyAndVisible];
 return YES;
}

Note how you call the refreshQuote method. It’s called using an NSTimer. This
allows you to automatically call the refreshQuote method every so often—in this case,
every 5 seconds.

 Also note that you don’t have to allocate the web view, nor do you have to initialize
it, nor do you have to add it as a subview of your window; all those details are taken
care of by Interface Builder. But after you link to the object via an outlet, you can
access it like any object you created yourself.

Listing 3.5 Create webView with automatic refresh content from Apple’s stock quote

Figure 3.23 Dialog box to create the Outlet
connection from the nib object to the header file

http://www.it-ebooks.info/

56 CHAPTER 3 Using Xcode 4

www.it-ebooks.info
 We’ll take a more complete look at how web views work in chapter 14. But we
wanted to include them here to demonstrate (again) how easy it is to incorporate an
unfamiliar object into your code using Interface Builder.

 In addition, a web view provides a nice example of client-server integration
between web design and the application—a topic that we first touched on in chapter 2
and that turns out to be pretty simple to attain using the iOS. By linking to a URL that
sends dynamic content to your device, you can make a sophisticated, always-up-to-date
program despite only designing the display engine on the iOS program side of things.

UPGRADING TO A UNIVERSAL APPLICATION

Follow appendix D to upgrade the current iPhone application to a universal applica-
tion. Under the new MainWindow for iPad, adjust the image view’s size to fit the full
screen of iPad. That’s it! Now click Build and Run. You’ll have a nice stock chart show
up in the web view and refresh every 5 seconds on the iOS Simulator.

 Congrats! You just built your first application, AppleStock, in Xcode, with the
major help of Interface Builder, as shown in figure 3.24.

Figure 3.24 This shows what the final product looks like. An image, a label, and a
dynamic web view are put together in Interface Builder with only a single line of code
required. This demonstrates how simple it is to build a sophisticated interface with little
work by using Interface Builder.

http://www.it-ebooks.info/

57Summary

www.it-ebooks.info
 That brings us to the end of the AppleStock example. It presented some funda-
mental uses of Interface Builder that you’ll encounter again and again. In particular,
creating objects in Interface Builder and then adding an outlet to a header file will
likely become a regular part of your iOS coding experience, so you should make sure
you’re entirely familiar with that process.

3.5 Summary
Xcode is ultimately the tool to build an iOS application. It’s where you write the code
that allows you to create, manipulate, and destroy objects. As you’ve seen in this chap-
ter, it’s easy to use Xcode to do some sophisticated things.

 You can also create basic user interface objects visually using the Interface Builder
tool under Xcode. It allows you to design objects using a graphical UI that makes their
arrangement a lot easier.

 In the next chapter, you’ll use Xcode to create a new file and define a custom class.
You’ll also learn how to debug under Xcode.

http://www.it-ebooks.info/

www.it-ebooks.info
Xcode and debugging
In the last chapter, you created your first HelloWorld application and an Apple-
Stock application with Xcode. In this chapter, you’ll build on this foundation of iOS
application programming with a focus on how to create the custom view class in
Xcode and how to use the Debugger to eliminate bugs during the project develop-
ment lifecycle.

 First, let’s work on how to create a custom class together with Xcode. New pro-
grams are usually full of new classes. Here are three major reasons you may want to
create new classes:

 You can create a totally new class, with different functionality from anything
else. If it’s a user interface class, it’ll probably be a subclass of UIView. If it’s
not a view class, it’ll probably be a subclass of NSObject.

This chapter covers
 Creating a custom view in Xcode

 Learning how the debugger works
58

http://www.it-ebooks.info/

59Creating a new class in Xcode

www.it-ebooks.info
 You can create a new class that works similarly to an old class but with some
standardized differences. This new class will generally be a subclass of the old
class.

 You can create a new class that has specific event responses built in. This class
will also generally be a subclass of the old class.

4.1 Creating a new class in Xcode
Creating a new class with Xcode is easier than you think. In this example, you’ll create
a project called NewClass that will include a new class called LabeledWebView. It will
be a subclass of UIView. When LabeledWebView is initialized, it’ll display both a web
page and the URL of that web page on the iPhone screen by linking together some
existing classes that you used in the last chapter, such as label and webview. It will also
display a toolbar at the top behind the label. In a way, it’s similar to the Safari browser
window on the iPhone.

 Again, you’ll build this project using the Window-Based Application template, and
the device family is iPhone.

4.1.1 Creating a new class

When you have your new project going, the process of creating a new class (see table
4.1) is simple, with Xcode doing most of the work for you in creating the file.

 In the NewClass application, choose File > New File to create a new Objective-C
class (as shown in figure 4.1). Select Objective-C class, and then click Next.

Table 4.1 Three steps to create a new class in Xcode

Step Description

1. Create your new file. Choose File > New File. Choose the class to use as your parent from
among the Cocoa Touch Classes options. Select a filename, preferably
an intuitive name reflecting your object. When a subclass prompt win-
dow shows up, choose the subclass if there is one. Xcode should auto-
matically create the header and source code files.

2. Modify your files. If you weren’t able to select your preferred class to subclass, change
that now by modifying the parent class in the @interface line of the
header file.

3. Import your object. Add an #import line for your class’s header in whatever file will be
using it.

http://www.it-ebooks.info/

60 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
After clicking the Next button, you’ll be presented with a screen to select what class
the new class is inheriting from (see figure 4.2). Under the Subclass drop-down menu,
choose UIView as the subclass option for the new class, and then click Next.

 When the Save window appears, type in the name of the new class. In this example,
use LabeledWebView.

 Now import your new LabeledWebView.h file into your application delegate’s .m
(NewClassAppDelegate.m) file:

#import "LabeledWebView.h"

Click the Run button to make sure there are no errors in the code.
 Afterward, it’s a simple matter of designing your new LabeledWebView class with

the desired functionality. As we mentioned earlier, you’ll create an object that will dis-
play both a web page and the URL of that web page on the iPhone screen by linking
together some existing classes.

 The process has three steps, all of which we touch on in this section: you need to
write your new header file, write your new source code file, and use the new class in
your program.

Figure 4.1 Create a new Objective-C class under iOS.

http://www.it-ebooks.info/

61Creating a new class in Xcode

www.it-ebooks.info
4.1.2 The header file

As usual, you have the start of a header file already, thanks to Xcode. The following
listing shows how to expand it to create your new class.

#import <UIKit/UIKit.h>
@interface LabeledWebView : UIView {
 UILabel *myLabel;
 UIToolbar *myToolbar;
 UIWebView *myWebView;
}
@property(nonatomic, retain) UILabel *myLabel;
@property(nonatomic, retain) UIToolbar *myToolbar;
@property(nonatomic, retain) UIWebView *myWebView;
- (void)loadURL:(NSString *)url;
@end

Within the header file, you make use of some common patterns that you saw back in
the last chapter. First, you declare some instance variables B that you want to use
throughout your class. In this case, you have a label, a toolbar, and a web view. Then
you define those instance variables as properties C.

Listing 4.1 Header file for the LabeledWebView class

Figure 4.2 Choose UIView as the subclass option of the new file.

Instance
variables

B

Property
declarations

C

New methodD

http://developer.apple.com/membercenter/
http://www.it-ebooks.info/

62 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
 Finally, you declare a method loadURL: D that you want to make available outside
the class. You plan to use this method to define the URL for the web view. Now you’re
ready to edit the source code.

4.1.3 The source code file

The source code file contains the guts of your new class. With all the new instances
and properties declared in the header file, it’s time to define the content inside the
source code, as shown in the following listing.

#import "labeledwebview.h"
@implementation labeledwebview
@synthesize myWebView;
@synthesize myToolbar;
@synthesize myLabel;

- (id)initWithFrame:(CGRect)frame {
 if ((self = [super initWithFrame:frame])) {
 myToolbar = [[UIToolbar alloc] initWithFrame:
 CGRectMake(0, 19, 320, 44)];
 myLabel = [[UILabel alloc] initWithFrame:
 CGRectMake(10, 7, 300, 28)];
 myWebView = [[UIWebView alloc] initWithFrame:
 CGRectMake(20,64,280,400)];
 myLabel.textColor = [UIColor whiteColor];
 myLabel.shadowColor = [UIColor blackColor];
 myLabel.adjustsFontSizeToFitWidth = YES;
 myWebView.scalesPageToFit = YES;
 [myToolbar addSubview: myLabel];
 [self addSubview:myToolbar];
 [self addSubview:myWebView];
 }
 return self;
}
- (void)setBackgroundColor:(UIColor *)color {
 [super setBackgroundColor:color];
 [myLabel setBackgroundColor:color];
}
- (void)loadURL:(NSString *)url {
 [myWebView loadRequest:[NSURLRequest requestWithURL:
 [NSURL URLWithString:url]]];
 myLabel.text = url;
}
- (void)dealloc {
 [myWebView release];
 [myToolbar release];
 [myLabel release];
 [super dealloc];
}
@end

Listing 4.2 Source code file for a new class

Create new
class’s objects

B

Override setter
method

C

Load URLD

http://www.it-ebooks.info/

63Creating a new class in Xcode

www.it-ebooks.info
Figure 4.3 shows the results of the class creation in use.
Next, we’ll explain the parts of the code that get you
there before you put it all together in the app delegate.

 Inside the source code, you first synthesize the
three properties so the compiler will automatically cre-
ate the setter and getter methods. You put together the
pieces of your new class in the initWithFrame:

method. As usual, you call the parent’s init. Then, you
create the three objects your new class will contain: a
label, a toolbar, and a web view B. After setting some
basic values for each, you make them subviews of your
new LabeledWebView class. The code in C will override
the setter method for background color property.
When it’s called, you first pass the message to super
and then set the label background color to match that
of the parent view.

 The real work occurs in the new loadURL:

method D. You should be familiar with this method
because you used a similar method to load the URL in
the AppleStock application. (You can find more infor-
mation on how webView loads URLs in chapter 14.)
That’s all you need to generate a fully functional web
page, which is pretty amazing. If you play with it, you’ll
find that it has much of the iPhone’s unique output
functionality: you can pinch, tap, and zoom just like in Safari. You finish the method by
setting the label to match your URL.

 Your new class ends with the standard dealloc: method, where you clean up the
objects that you allocated as part of your object creation.

 In less than a page of code, you created an object that would require a lot more
work if you were programming it by hand. So many tools are available to you in the
iOS SDK that knocking out something like this is, as you can see, simplicity itself. You
could definitely improve this example: you could link into the web view’s delegate
protocol to update the label whenever the web view changes. But for now, we’re
pleased with this example of Safari browser mockup.

4.1.4 Linking it in

Creating a new class isn’t enough: you also need to use it. Add the bolded code in the
following listing into the application delegate (NewClassAppDelegate.m) to use your
new subclass.

Figure 4.3 Brand-new class
makes it easy to display a URL
and call it up on the screen.
You’ve finished the first step in
building a web browser.

http://www.it-ebooks.info/

64 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
#import "NewClassAppDelegate.h"
#import "LabeledWebView.h"
@implementation NewClassAppDelegate
@synthesize window=_window;
- (BOOL)application:(UIApplication *)
 applicationdidFinishLaunchingWithOptions: (NSDictionary *)launchOptions
{
 LabeledWebView *myBook = [[LabeledWebView alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 [myBook loadURL:@"http://www.manning.com/jharrington/"];
 [myBook setBackgroundColor:[UIColor clearColor]];
 [_window addSubview:myBook];
 [myBook release];
 [self.window makeKeyAndVisible];
 return YES;
}
...

The code is pretty simple. First, initialize the subclass of UIView with the full screen size.
Then load the URL of this book, iOS 4 in Action, and set the background color to trans-
parent. The most important step is to add this new subview to the window.

 That’s all! Click the Run button on Xcode toolbar, and without errors during the
build you should see the iOS Simulator launch with the screen shown in figure 4.3.

 Now you know how to create a new Objective-C file under Xcode. In the next sec-
tion, we’ll cover the details of creating a new nib.

4.2 Creating objects with Interface Builder
In the last section, you built your first UIView subclass: the LabeledWebview class.
You’ll be building a lot more subclasses in your application development, and you’ll
often want to use Interface Builder to create a new nib file so you can connect out-
lets and actions to the object directly. Additionally, you don’t need to crunch num-
bers for each subview’s size because Interface Builder provides a visual design
experience. How do you create a new nib file in Interface Builder? We’ll cover the
details in this section.

4.2.1 Creating new nib files

To create a new nib file under Xcode, navigate to the menu under Xcode, and choose
File > New File to begin. Select User Interface under the template prompt window, as
shown in figure 4.4.

 You’re then asked to choose a template: Application, Window, View, or Empty.
You’ll most often create new .xib files for view controllers, in which case you should
select View. (You’ll learn more about view controllers in chapter 5.) To make your new
.xib file part of your existing project, save the .xib file to the main project directory.

Listing 4.3 Using the new class in the app delegate file

http://www.it-ebooks.info/

65Creating objects with Interface Builder

www.it-ebooks.info
Table 4.2 outlines the two-step process. We say that you start the process with an
“appropriate object.” For a totally new object, this will probably be the blank object.
But if you’re making a subclass of an existing object, you should start with that object.

After you type your new subclass name into your object’s Class field (CustomWebView
for example), things are automatically linked up. You’ll use this technique in future
chapters.

4.2.2 Initializing Interface Builder objects

Eventually, you’ll want to do some initialization when an Interface Builder object is
created. But if you try to build your setup into a standard init method, it won’t work.
As we’ve mentioned, Interface Builder objects use a special init method called init-
WithCoder:. You must create it by hand, as follows:

Table 4.2 Creating a new proxy object to link to in Interface Builder takes a couple of steps.

Step Description

1. Create a new object. From the Controllers section of the library, drag an appropriate object to
the nib document window.

2. Change the class. Open the Identity inspector tab, and change the class name to your new
class.

Figure 4.4 Create a new nib file under Xcode.

http://www.it-ebooks.info/

66 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
- (id)initWithCoder:(NSCoder *)decoder {
 if (self = [super initWithCoder:decoder]) {
 // Setup code goes here
 }
 return self;
}

Other than its decoder argument (which you should be able to ignore), it should
work like any other init method.

4.2.3 Accessing .xib files

Finally, we come to the .xib file. We’ve taken it for granted so far, but there are ways
you can specify a different .xib file than MainWindow.xib and even ways to specify the
use of multiple .xib files.

THE MAIN NIB FILE

The main .xib file is defined in <project name>-Info.plist, which you saw in the last
chapter. You can look at its contents in Xcode, or you can read the XML from the com-
mand line or any text editor. It’s easy to find where the main .xib file (or rather, its
compiled nib twin) is defined:

<key>NSMainNibFile</key>
<string>MainWindow</string>

If you ever need to change the name of your main .xib file, do it here, using either
Xcode or any text editor. Generally, we’ll leave it the way it’s generated by the project
template.

MULTIPLE FILES

As we’ve mentioned, a .xib file should generally lay out the contents of a single pro-
gram view. Although this has been fine for the programs so far, it becomes a limitation
when you want to create more-complex programs. Fortunately, it’s easy to build multi-
ple .xib files into a single program.

 New .xib files are usually loaded through view controllers, which is the topic of the
next chapter. As we’ve discussed previously, view controllers tend to control a pageful
of objects, and it makes sense that they use .xib files to help manage that. To use a new
.xib file for a new page in your program, all you need to do is associate the new .xib
file with the appropriate view controller.

 The easiest way to do that is through Xcode’s File menu. Select File > New File, and
under Cocoa Touch Class select the UIViewController subclass. Make sure you select
the With Xib for User Interface check box.

 If you create a view controller, you can link in a new .xib file through its init
method:

FlipsideViewController *viewController = [[FlipsideViewController alloc]
 initWithNibName:@"FlipsideViewController" bundle:nil];

http://www.it-ebooks.info/

67Creating objects with Interface Builder

www.it-ebooks.info
If you feel a little fuzzy on the concept of view controllers, don’t worry, because we’re
about to dive into this topic wholeheartedly in chapter 5. For now, note this connec-
tion between view controllers and the nib files.

4.2.4 More tips under Xcode

There’s one more important window under Xcode we haven’t covered yet: the Orga-
nizer window. You can launch the Organizer (see figure 4.5) by choosing Window >
Organizer or by clicking the Organizer button on the Xcode toolbar.

 As shown in figure 4.5, the Organizer window is used for organizing your projects
and reading documentation. You can look up the Xcode 4 Developer documentation
here as well.

 For iOS projects, the Organizer window is also used for managing devices for devel-
opment. You’ve learned how to run the application on the iOS Simulator, but this is
the solution for launching the application on your iPhone or iPad.

 Note that if you haven’t created the certificate file under the iOS Provisioning
Portal, you need to first head over to the iOS developer member center at http://
developer.apple.com/membercenter/; then follow the step-by-step instructions

Figure 4.5 Organizer window with the Documentation tab selected

http://www.it-ebooks.info/

68 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
under the iOS Provisioning Portal to generate the certificate for both Developing
and Distributing Provisioning profiles (needed for development/personal testing
and ad hoc distribution/submitting to the App Store, respectively).

 Now head back to the Xcode Organizer window, go to the Devices tab, select Provi-
sioning Profiles, and then select the Automatic Device Provisioning option (you may
need to click the Refresh button to allow the new provisioning file to be downloaded
to your Mac, as shown in figure 4.6).

 Xcode will use your login credentials to automatically generate the provisioning
file under the iOS Provisioning Portal. Now you can plug in your device and select Use
for Development to allow Xcode to automatically provision the device for
development.

 In the next section, we’ll cover another important aspect of iOS development:
debugging. You may not need all the debug functions under Xcode right now, but
debugger knowledge will be handy when you inevitably encounter a bug in your
application.

4.3 Debugger and Instruments
Now that we’ve covered some of the fundamental features in Xcode, let’s talk about
an important part of writing an application: debugging. Although you may have some
reservations about the debugging process as a developer, it’s critical to discover and
remove bugs in the product development lifecycle.

 Xcode provides a handy tool for debugging: Debugger. The iOS SDK package pro-
vides another important application: Instruments. These tools will provide you with a
better debugging experience.

 In this section, we’ll cover the basics of Debugger in Xcode, such as monitoring
the value of an object under the console window and setting up a breakpoint. Then
we’ll explore the functions under Instruments.

4.3.1 Fix-it function

While you’re typing the demo application in Xcode, you’ll notice the Fix-it function,
as shown in figure 4.7. Under the hood, when your target is set to use the LLVM com-
piler, Fix-it scans your source code as you type. It’s handy for correcting mistakes.
When there’s an error, you can see the red highlight, and if you click the icon in the
gutter, you may discover the solution to your bug.

 Another way to discover bugs early is by using static analysis under Xcode.

Figure 4.6 Select
Automatic Device
Provisioning under the Xcode
Devices Organizer window.

http://www.it-ebooks.info/

69Debugger and Instruments

www.it-ebooks.info
4.3.2 Analyze

Use static analysis to examine the semantics of your code to capture bugs early. Xcode
lets you perform the analysis, examine the results, and edit your source files all from
within the workspace window.

 In Xcode, navigate to Product > Analyze (or click the Run button on the Xcode
toolbar to activate the drop-down menu and then select Analyze). By static-analyzing
code, you may discover a potential leak of an object or mismatching arguments, as
shown in figure 4.8.

 When you need to trace the variables inside the project, it’s time to use the
Debugger.

4.3.3 Debugger essentials

Under the Xcode menu, navigate to View > Show Debug Area (or click the debug view
on the Xcode toolbar). When you select to show the debug area, Xcode will automati-

Figure 4.7 Fix-it solutions under Xcode

http://www.it-ebooks.info/

70 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
cally launch the Debugger toolbar on the top, the variable window at lower left, and
the console window at lower right, as shown in figure 4.9.

 The Xcode Debugger is a graphical interface for GDB, the underlying debugger
used by Xcode. Now let’s add a breakpoint to the code. You can add a breakpoint at
any line in your code by single-clicking at the line number in the gutter. When that
line of code is about to execute during runtime, Xcode will pause at the breakpoint so
you can trace local variables, function output, and so on. Once a breakpoint is added,
you’ll see a blue breakpoint marker at the line number. When the Debugger is run-
ning with breakpoints on, you can trace the program’s variables in the Debugger win-
dow, as shown in figure 4.10.

Figure 4.8 Static analysis under Xcode reports a potential leak for an object.

Figure 4.9 Debugger console window

http://www.it-ebooks.info/

71Debugger and Instruments

www.it-ebooks.info
When the code is paused at the breakpoint, you can use the toolbar to step into the
code line by line. If you select a thread or a stack within a thread in the debug bar,
Xcode will display the corresponding source file or assembly code in the main editor.
Notice that all of the variables will show up in the variable window on the bottom left.

 Although you can read out the memory address for every variable, it would be nice
to read out the content from the NSString on the fly. You can print out the object by
typing po under the GDB console window. For example, try printing out the web view’s
description at the breakpoint, as shown in figure 4.11.

Figure 4.10 The Debugger window with breakpoints on pause

Figure 4.11 How to print out an object’s details in the Debugger console window

http://www.it-ebooks.info/

72 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
 You can also manage all the breakpoints
under the Breakpoints Navigator, as shown in fig-
ure 4.12.

 In the next section, we’ll cover some basics
under Instruments.

4.3.4 Running Instruments from Xcode

In the previous section, you learned how to use
the Debugger under Xcode; but certain mem-
ory-allocation bugs are hard to discover with the Debugger, and that’s when Instru-
ments is useful. Under Xcode, navigate to Product > Profile (or click the Run button
to bring up the drop-down menu, and then select Profile). Selecting Profile will
launch Instruments with the application running on the iOS Simulator, as shown in
figure 4.13.

Figure 4.12
Breakpoints Navigator window

Figure 4.13 Launching instruments from Xcode

http://www.it-ebooks.info/

73Debugger and Instruments

www.it-ebooks.info
Select Allocations under the iOS Simulator. With this runtime memory-analysis tool,
you can monitor and improve memory allocations (see figure 4.14).

 Leaks is another trace tool under Instruments, which comes in handy for memory-
related bugs. Select Leaks when Instruments launches under the template prompt
window. Leaks runs with a sample of every 10 seconds by default; you can manually
check for leaks by clicking the Check for Leaks Now button on the bottom-left control
panel (see figure 4.15).

 Once you find a leaked object, double-click that object. Instruments will show you
the function name related to the memory leak.

 In this section, we covered some essential debugging tools for your application
development. Try to play with each tool in order to discover your preferred debugging
procedure.

Figure 4.14 Use Allocations under Instruments to analyze the memory allocations during application runtime.

http://www.it-ebooks.info/

74 CHAPTER 4 Xcode and debugging

www.it-ebooks.info
4.4 Summary
In the previous chapter, we showed you how to create some simple programs using
Xcode. You also have access to Interface Builder, a powerful graphic design program
that allows you to lay out objects by dragging and dropping and then linking those
objects back to Xcode for use there.

 The example you created in this chapter, which focused on creating a new class in
Xcode, provided a demo of how to mock up the iPhone Safari browser with a subclass
of UIView. You may not use the Debugger for your application right away, but it will
come in handy when the time comes for debugging.

 Although you now have the fundamental development tools of the iOS SDK well in
hand, we’ve neglected two of the SDK building blocks you’ll use to create projects:
view controllers and events. In the next three chapters, we’ll cover those topics, and in
the process, we’ll complete our look at the iOS classes you’ll use in almost any iOS pro-
gram you write.

Figure 4.15 Instruments with Leaks to trace leaked blocks

http://www.it-ebooks.info/

www.it-ebooks.info
Basic view controllers
So far in the last two chapters we haven’t strayed far from the most fundamental
building block of the SDK: the view, whether a UILabel, a UIWebView, or a UIImage-
View. Ultimately, the view is only part of the story. As we mentioned when we looked
at iOS, views are usually connected to view controllers, which manage events and
otherwise take the controller role in the MVC model. We’re now ready to begin a
three-part exploration of what that all means.

 In this chapter, we look at basic view controllers that manage a single page of
text. With that basis, we can examine events and actions in chapter 6, correctly inte-
grating them into the MVC model. Finally, in chapter 7, we’ll return to the topic of
view controllers to look at advanced classes that can be used to connect several
pages of text.

 Over the course of our two view controller chapters (5 and 7), we’ll offer code
samples that are a bit more skeletal than usual. That’s because we want to provide
you with the fundamental, reusable code that you’ll need to use the controllers on

This chapter covers
 Understanding the importance of controllers

 Programming bare view controllers

 Utilizing table view controllers
75

http://www.it-ebooks.info/

76 CHAPTER 5 Basic view controllers

www.it-ebooks.info
your own. Consider chapters 5 and 7 more of a reference—although a critical one.
You’ll make real-world use of the controllers in the rest of this book, including when
we look at events and actions in chapter 6. Right now, though, let’s examine the avail-
able view controllers.

5.1 The view controller family
When we first talked about view controllers in chapter 2, we mentioned that they
come in several flavors. These run from the bare-bones UIViewController, which is
primarily useful for managing autorotation and for taking the appropriate role in the
MVC model, to the more organized UITableViewController, on to a few different
controllers that allow navigation across multiple pages.

 All of these view controllers—and their related views—are listed in table 5.1.

Table 5.1 There are a variety of view controllers, giving you considerable control over how navigation
occurs in your program.

Object Type Summary

UIViewController View
controller

A default controller, which controls a
view. Also the basis for the flipside
controller, which appears only as an
Xcode template, not as a UIKit object.

UIView View Either your full screen or some part
thereof. This is what a view controller
controls, typically through some child
of UIView, not this object itself.

UITableViewController View
controller

A controller that uses UITableView
to organize data listings.

UITableView View A view that works with the
UITableViewController to
create a table UI. It contains
UITableCells.

UITabBarController View
controller

A controller that works with a
UITabBar to control multiple
UIViewControllers.

UITabBar View A view that works with the
UITabBarController to create the
tab bar UI. It contains
UITabBarItems.

UINavigationController View
controller

A controller used with a
UINavigationBar to control multi-
ple UIViewControllers.

UINavigationBar View A view that works with
UINavigationController to
create the navigation UI.

http://www.it-ebooks.info/

77The standard view controller

www.it-ebooks.info
As we’ve already noted, we’ll be discussing these view controllers in two different
chapters. Here, we’ll look at the single-page view controllers: UIViewController and
UITableViewController. In chapter 7, we’ll examine the multipage view controllers:
UITabBarController, UINavigationController, and the flipside controller. This is a
clear functional split: the single-page controllers exist primarily to support the con-
troller role of the MVC model, whereas the multipage controllers exist primarily to
support navigation and may even delegate MVC work to a simpler view controller lying
below them. (As for the modal controllers, we’ll get to them when we cover the appro-
priate topics in chapters 8 and 11.)

 So far, you’ve been programming without using view controllers, which are an
important part of SDK programming. You could write an SDK program without them,
but every SDK program should include them, even if you use a bare-bones view control-
ler to manage the rotation of the screen.

5.2 The standard view controller
The plain view controller is simple to embed inside your program. But why would you
want to use a view controller? That’s going to be one of the topics we’ll cover here.
Now, we’ll look at how view controllers fit into the view hierarchy, how you create
them, how you expand them, and how you make active use of them. Let’s get started
with the most basic anatomical look at the view controller.

5.2.1 The anatomy of a view controller

A view controller is a UIViewController object that sits
immediately above a view (of any sort). It, in turn, sits below
some other object as part of the tree that ultimately goes back
to an application’s main window. This is shown in figure 5.1.

 When we move on to advanced view controllers in chap-
ter 7, you’ll see that the use of a bare view controller can
grow more complex. Bare view controllers often sit
beneath advanced view controllers, to take care of the indi-
vidual pages that advanced view controllers let you navi-
gate among.

Flipside controller View
controller

A special template that supports a
two-sided UIViewController.

ABPeoplePickerNavigationController
ABNewPersonViewController
ABPersonViewController
ABUnknownPersonViewController
UIImagePickerController

View
controller

Modal view controllers that allow inter-
action with sophisticated user inter-
faces for the Address Book and the
photos roll.

Table 5.1 There are a variety of view controllers, giving you considerable control over how navigation
occurs in your program. (continued)

Object Type Summary

UIViewController

Window
or superview

View

Figure 5.1 A bare view
controller shows view
controlling at its simplest:
it sits below one object and
above another.

http://www.it-ebooks.info/

78 CHAPTER 5 Basic view controllers

www.it-ebooks.info
 Looking at the iOS’s class hierarchy, you can see that the UIViewController is a
direct descendent of UIResponder, which is a descendent of NSObject. It’s also the
parent object of all the other view controllers we’ll discuss. Practically, this means that
the lessons learned here also apply to all the other controllers.

 But learning about how a view controller works leaves out one vital component:
how do you create it?

5.2.2 Creating a view controller

The easiest way to incorporate a plain view controller into your project is to select a
different template when you create it. The View-Based Application template should
probably be your default template for programming from here on out, because it
comes with a view controller built in.

 As usual, the template’s work is primarily done visually. When you create a new
project (which we’ve called viewex for the purpose of this example), you can verify
this by looking up the view controller’s IBOutlet command in the program’s app
delegate header file:

ViewexViewController *viewController;

The app delegate’s source code file further shows that the view controller’s view has
already been hooked up to the main window:

[window addSubview:viewController.view];

This view is a standard UIView that’s created as part of the template. Although a view
controller has only one view, that view may have a variety of subviews, spreading out
into a hierarchy. We’ll show you how to add a single object beneath the view in a
moment, and you’ll make more complete use of it in the next chapter. But before we
get there, we want to step back and look at how you can create a view controller by
hand if you need to.

5.2.3 Creating another view controller

Creating another view controller is simple. First, drag a view controller from the
Library to your xib document window. Alternatively, you can alloc and init an object
from the UIViewController class.

 Second, note that the previous IBOutlet command shows that the controller isn’t
instantiated directly from the UIViewController class. Rather, it’s instantiated from
its own subclass, which has its own set of files (viewexViewController.{h|m}), named
after the example project’s name. This is standard operating procedure.

 Because you want a view controller to do event management, you’ll often need
to modify some of the controller’s standard event methods, so you require your
own subclass. To start, the view controller class files are mostly blank, but Xcode
helpfully highlights a number of standard view controller methods that you may
want to modify.

http://www.it-ebooks.info/

79The standard view controller

www.it-ebooks.info
 After you’ve finished creating a bare view controller, you’re mostly ready to go. But
you have a slight opportunity to modify the view controller for your specific program,
and that’s what we’ll cover next.

5.2.4 Building up a view controller interface

In order to correctly use a view controller, you need to build your view objects as sub-
views of the view controller, rather than subviews of your main window or whatever
else lies above it. This is easy to do both programmatically and visually.

THE PROGRAMMATIC SOLUTION

The view controller class file gives you access to a pair of methods that can be used to
set up your view controller’s views. If the view controller’s view is linked to a .xib file,
you should use viewDidLoad, which will do additional work after the .xib is done load-
ing; if you didn’t first create it visually, you should instead use loadView.

 Before you do any of this, your view controller will always start off with a standard
UIView as its one subview. But by using these methods, you can instead create the view
controller’s view as you see fit, even creating a whole hierarchy of subviews if you
desire.

 The following code adds a simple UILabel to your view controller using viewDid-
Load. In the following listing, we’ve chosen a humongous font that is automatically
sized down so that later we can show off how rotation and resizing work:

- (void)viewDidLoad {
 [super viewDidLoad];
 UILabel *myLabel = [[UILabel alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 myLabel.adjustsFontSizeToFitWidth = YES;
 myLabel.font = [UIFont fontWithName:@"Arial" size:60];
 myLabel.textAlignment = UITextAlignmentCenter;
 myLabel.text = @"View Controllers!";
 myLabel.backgroundColor = [UIColor grayColor];
 [self.view addSubview:myLabel];
 [myLabel release];
}

The self.view line is the only one of particular note B. It connects your label object
as a subview of the view controller’s UIView.

 This example is also noteworthy because it’s the first time you’ve definitively
moved outside of your app delegate for object creation. You could have done this
object creation in the app delegate, but that’s often sloppy programming because this
needs to be done in the view controller. Now that you have view controllers, you’ll
increasingly do your work in those class files. This not only better abstracts your object
creation but also kicks off your support of the MVC model, because you now have
controllers instantiating the views they manage. Watch for a lot more of this in the
future. We’ll also briefly return to the viewDidLoad and loadView methods when we
talk about the bigger picture of the view controller lifecycle, shortly.

Listing 5.1 Add a UILabel to your view controller

Connects label
as subview

B

http://www.it-ebooks.info/

80 CHAPTER 5 Basic view controllers

www.it-ebooks.info
THE VISUAL SOLUTION

In the last chapter, we noted that view controllers
often have their own .xib files, allowing you to have
one .xib file for each page of content. That’s what’s
going on in the program you created from the View-
Based Application template. At creation, the tem-
plate contains two .xib files: MainWindow.xib and
viewexViewController.xib.

 The MainWindow.xib file contains a view control-
ler and a window. The all-important link to the sec-
ond .xib file can be found here. If you click the view
controller’s Attribute tab, it helpfully shows you that
the controller’s content is drawn from viewexView-
Controller(.xib). This is shown in figure 5.2.

 Now that you understand the hierarchy of .xib files that’s been set up, how do you
make use of them? In order to create an object as a subview of the view controller, you
need to place it inside the .xib file that the view controller manages—in this case,
viewexViewController.xib. To add a UILabel to your view controller, you call up the
viewexViewController.xib file and then drag a label to the main display window, which
should represent the existing view. Afterward, you can muck with the label’s specifics
in the inspector window, as usual.

 Practically, there’s nothing more you need to do to set up your basic view control-
ler, but we still need to consider a few runtime fundamentals.

5.2.5 Using your view controller

If you’ve chosen to use a standard view controller, it should be because you’re only
managing one page of content, not a hierarchy of pages. In this situation, you don’t
need your view controller to do a lot, but your view controller is still important for
three things, all related to event management:

 It should act as the hub for controlling its view and subviews, following the MVC
model. To do this, it needs easy access to object names from its hierarchy.

 It should control the rotation of its view, which will also require resizing the
view in rational ways. Similarly, it should report back on the device’s orientation
if queried.

 It should deal with lifecycle events related to its view.

We’ve split these main requirements into six topics, which we’ll cover in turn.

PUTTING THE MVC MODEL TO USE

Although we’ve talked about the Model-View-Controller (MVC) architectural pattern,
you haven’t yet put it to real use. Up to this point, it’s been a sort of abstract methodol-
ogy for writing programs. But now that you’re ready to use view controllers, you can
start using MVC as a real-world ideal for programming.

Figure 5.2 To hook up a new .xib
file to a view controller, enter its
name in the view controller’s
attributes under NIB Name.

http://www.it-ebooks.info/

81The standard view controller

www.it-ebooks.info
 As you’ll recall, under MVC, the model is your backend data and the view is your fron-
tend user interface. The controller sits in between, accepting user input and modifying
both of the other entities. The view controller should take the role of the controller in
the MVC, as the name suggests. We’ll get into this more in the next chapter, but we can
say confidently that event and action control will happen through the view controller.

 We can say this confidently because you’ll pretty much be forced into using MVC. A
view controller is automatically set up to access and modify various elements of views
that sit under it. For example, the view controller has a title property that is
intended to be a human-readable name for the page it runs. In chapter 7, you’ll learn
that tab bars and navigation bars automatically pick up that information for their own
use. In addition, you’ll often see view controllers automatically linked up to delegate
and datasource properties, so that they can respond to the appropriate protocols for
their subviews.

 When you start seeing view controllers telling other objects what to do, look at it
through the MVC lens. You should also think about MVC as you begin to program
more complex projects using view controllers.

FINDING RELATED ITEMS

If a view controller is going to act as a controller, it needs easy access to the objects
that lie both above and below it in the view hierarchy. For this purpose, the view con-
troller contains a number of properties that can be used to find other items that are
connected to it. They’re listed in table 5.2.

 These properties will be useful primarily when we move on to advanced view con-
trollers, because they’re more likely to link multiple view controllers together. We’re
mentioning them here because they’re related to the idea of MVC and because they’re
UIViewController properties that will be inherited by all other types of controllers.

 For now, we’ll leave these MVC-related properties and get into some of the more
practical things you can immediately do with a view controller, starting with managing
view rotation.

Table 5.2 When you begin connecting a view controller to other things, you can use its properties to
quickly access references to those other objects.

Property Summary

modalViewController Reference to a temporary view controller, such as the Address Book
and photo roll controllers that we’ll discuss in chapter 8 and 11.

navigationController Reference to a parent of the navigation controller type.

parentViewController Reference to the immediate parent view controller, or nil if there is no
view controller nesting.

tabBarController Reference to a parent of the tab bar controller type.

tabBarItem Reference to a tab bar item related to this particular view.

view Reference to the controller’s managed view. The view’s subviews
property may be used to dig further down in the hierarchy.

http://www.it-ebooks.info/

82 CHAPTER 5 Basic view controllers

www.it-ebooks.info
ROTATING VIEWS

Telling your views to rotate is simple. In your view controller class file, you’ll find a
method called shouldAutorotateToInterfaceOrientation:. In order to make your
application correctly rotate, all you need to do is set that function to return the Bool-
ean YES, as shown here:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return YES;
}

At this point, if you compile your program, you’ll find that when you rotate your
iPhone or iPad, the label shifts accordingly. Even better, because you set its font size to
vary based on the amount of space it has, it gets larger when placed horizontally. This
is a simple application of modifying your content based on the device’s orientation.

 You should consider one additional thing when rotating your views: whether they
will resize to account for the different dimensions of the new screen.

RESIZING VIEWS

When you change your device’s orientation from portrait to landscape, you change
the amount of space for displaying content—for example, an iPhone goes from 320 x
480 to 480 x 320. As you just saw, when you rotated your label, it automatically resized,
but this doesn’t happen without some work.

 A UIView (not the controller!) contains two properties that affect how resizing
occurs. The autoresizesSubviews property is a Boolean that determines whether
autoresizing occurs. By default, it’s set to YES, which is why things worked correctly in
the first view controller example. If you instead set it to NO, your view will stay the same
size when a rotation occurs. In this case, your label will stay 320 pixels wide despite
now being on a 480-pixel wide screen.

 After you’ve set autoresizesSubviews, which says that resizing will occur, your
view looks at its autoresizingMask property to decide how it should work. The
autoresizingMask property is a bitmask that you can set with the different constants
listed in table 5.3.

Table 5.3 autoresizingMask properties allow you to control how your views resize.

Constant Summary

UIViewAutoresizingNone No resizing

UIViewAutoresizingFlexibleHeight Height resizing allowed

UIViewAutoresizingFlexibleWidth Width resizing allowed

UIViewAutoresizingFlexibleLeftMargin Width resizing allowed to left

UIViewAutoresizingFlexibleRightMargin Width resizing allowed to right

UIViewAutoresizingFlexibleBottomMargin Height resizing allowed to bottom

UIViewAutoresizingFlexibleTopMargin Height resizing allowed to top

http://www.it-ebooks.info/

83The standard view controller

www.it-ebooks.info
 If you want to modify how your label resizes programmatically, you can do so by
adding the following lines to viewDidLoad:

myLabel.autoresizesSubviews = YES;
myLabel.autoresizingMask = UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleWidth;

Note again that these resizing properties apply to a
view, not to the view controller. You can apply them
to any view you’ve seen so far. There has been little
need for them before you started rotating things.

 Modifying the way resizing works is even easier if
you do it visually. If you recall, the Resize tab of the
inspector window contains an Autosizing section, as
shown in figure 5.3.

 You can click six different arrows that correspond
to the six resizing constants other than None. Highlighting an individual arrow turns
on that type of resizing. The graphic to the right of these arrows serves as a nice guide
to how resizing will work.

CHECKING ORIENTATION

Now that you have an application that can rotate at will, you may occasionally want to
know what orientation a user’s iPhone or iPad is sitting in. You do this by querying the
interfaceOrientation view controller property. It’s set to one of four constants, as
shown in table 5.4.

 You don’t have to have a view controller to look up this information. A view con-
troller’s data is kept in tune with orientation values found in the UIDevice object—a
useful object that also contains other device information, such as your system version.
We’ll talk about it in chapter 10.

MONITORING THE LIFECYCLE

We’ve covered the major topics of loading, rotating, and resizing views within a view
controller. With that under your belt, we can now look at the lifecycle events that may
relate to these topics.

 You saw lifecycle events in chapter 2, where we examined methods that alert you to
the creation and destruction of the application, and some individual views. Given that

Table 5.4 The view controller’s interfaceOrientation property tells you the current
orientation of an iPhone or iPad.

Constant Summary

UIInterfaceOrientationPortrait Device is vertical, right side up.

UIInterfaceOrientationPortraitUpsideDown Device is vertical, upside down.

UIInterfaceOrientationLandscapeLeft Device is horizontal, tilted left.

UIInterfaceOrientationLandscapeRight Device is horizontal, tilted right.

Figure 5.3 Here you can see
exactly what autoresizing looks like.

http://www.it-ebooks.info/

84 CHAPTER 5 Basic view controllers

www.it-ebooks.info
one of the purposes of a controller is to manage events, it shouldn’t be a surprise that
the UIViewController has several lifecycle methods of its own, as shown in table 5.5.

 You’ve met loadView and viewDidLoad, which are run as part of the view control-
ler’s setup routine and which you used to add extra subviews. The viewWillAppear:
message is sent afterward. The rest of the messages are sent at the appropriate times,
as views disappear and rotation occurs.

 Any of these methods can be overwritten to provide the specific functionality that
you want when each message is sent.

OTHER VIEW METHODS AND PROPERTIES

The view controller object contains a number of additional methods that can be used
to control exactly how rotation works, including controlling its animation and what
header and footer bars slide in and out. These are beyond the scope of our introduc-
tion to view controllers but you can find information about them in the UIView-
Controller class reference.

 That’s our look at the bare view controller. You now know not only how to create
your first view controller but also how to use the fundamental methods and properties
that you’ll find in every view controller. But the other types of view controller also have
special possibilities all their own. We’ll look at these, starting with the one other view
controller that’s intended to control a single page of data: the table view controller.

5.3 The table view controller
Like the plain view controller, the table view controller manages a single page. Unlike
the plain view controller, it does so in a structured manner. It automatically organizes
the data in a nicely formatted table.

 Our discussion of the table view controller will be similar to the discussion we just
completed of the bare view controller. We’ll examine its place in the view hierarchy,
and then you’ll learn how to create it, modify it, and use it at runtime.

 Let’s get started by examining the new view controller’s anatomy.

Table 5.5 You can use the view controller’s event-handler methods to monitor and manipulate the
creation and destruction of its views.

Method Summary

loadView: Creates the view controller’s view if it isn’t
loaded from a .xib file.

viewDidLoad: Alerts you that a view has finished load-
ing. This is the place to put extra startup
code if loading from a .xib file.

viewWillAppear: Runs just before the view loads.

viewWillDisappear: Runs just before a view disappears —
because it’s dismissed or covered.

willRotateToInterfaceOrientation:duration: Runs when rotation begins.

didRotateToInterfaceOrientation: Runs when rotation ends.

http://www.it-ebooks.info/

85The table view controller

www.it-ebooks.info
5.3.1 The anatomy of a table view controller

The table view controller’s setup is slightly more com-
plex than that of the bare view controller. A
UITableViewController controls a UITableView,
which is an object that contains some number of
UITableViewCell objects arranged in a single column.
This is shown in figure 5.4.

 By default, the controller is both the delegate and
the data source of the UITableView. As we’ve previ-
ously discussed, these properties help a view hand off
events and actions to its controller. The responsibilities
for each of these control types are defined by a specific
protocol: UITableViewDelegate declares which messages the table view controller
must respond to, and UITableViewDataSource details how it must provide the table
view with content. You can look up these protocols in the same library that you’ve
been using for class references.

 Of all the view controllers, the table view controller is the trickiest to create on its
own, for reasons that you’ll see momentarily.

5.3.2 Creating a table view controller

The easiest way to create an application that uses a table view controller is to use the
Navigation-Based template in Xcode. This provides you with a delegate and a view that
contains a table view controller. It also creates some of the delegate methods required
for interfacing with the table view.

 Although you can quickly start an application using the Navigation-Based tem-
plate, we’ll discuss in detail how you can manually build a table view controller proj-
ect. This will give you a better understanding of what’s going on when you use the
template. Table 5.6 shows the process.

Table 5.6 Creating a table view controller is simple, but it involves several steps.

Step Description

1. Create a new project. Open a Window-Based Application, and select iPhone from the
Product drop-down menu.

2. Create a table view controller. Create a new file containing a subclass of
UIViewController. Then, select
UITableViewController from the options. By default, the
.xib for the view controller will be automatically created and
linked. If not, you can perform step 3 manually.

3. Link your Interface Builder object. Create an IBOutlet for your interface in the app delegate
header file.
Link an outlet from your table view controller to the IBOutlet
in the app delegate object, using the Connections tab of the
inspector window.

4. Connect your controller. Link the controller’s view to your main window.

UITableViewController

UITableView

UITableViewCell UITableViewCell

UITableViewCell

Figure 5.4 A table view controller
controls a table view and its
collection of cells.

http://www.it-ebooks.info/

86 CHAPTER 5 Basic view controllers

www.it-ebooks.info
 The project-creation, object-creation, and object-linking steps pretty much follow
the lessons you’ve already learned. You have to create the subclass for the table view
controller because the class file is where you define what the table view contains; we’ll
cover this in more depth shortly.

 Note that you use two of the more advanced visual techniques that you learned in
chapter 4: first linking in a new class (by changing the Identity tab) and then creating
a new connection from it to your app delegate (via the Connections tab). As a result,
you end up with two connections. On the one hand, the table view controller depends
on your RootViewController files for its own methods; on the other hand, your app
delegate file links to the controller (and eventually to the methods) via its outlet. This
two-part connection is common, and you should make sure you understand it before
moving on.

 As usual, you could elect to create this object programmatically, by using an alloc-
init command:

UITableViewController *myTable = [[RootViewController alloc]
 initWithStyle:UITableViewStylePlain];

The following simple code finishes the table-creation process by linking in the table’s
view in step 4 of the process:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 [window addSubview:myTable.view];
 [window makeKeyAndVisible];
}

Note that you link up your table view controller’s view—not the controller itself—to
your window. You’ve seen in the past that view con-
trollers come with automatically created views.
Here, the view is a table view.

 If you want to see how that table view works, you
can now click the table view to get its details. As
shown in figure 5.5, it already has connections cre-
ated for its dataSource and delegate properties.

 Next, you need to fill the table with content.

5.3.3 Building up a table interface

As the data source, the controller needs to provide the view with its content. This is
why you created a subclass for your table view controller and why every one of your
table view controllers should have its own subclass: each will need to fill in its data in a
different way.

 We’ve mentioned that the UITableViewDataSource protocol declares the methods
your table view controller should pay attention to in order to correctly act as the data
source. The main work of filling in a table is done by the tableView:cellForRowAt-
IndexPath: method. When passed a row number, this method should return the
UITableViewCell for that row of your table.

Figure 5.5 A look at the connections
automatically created for a controller’s
table view

http://www.it-ebooks.info/

87The table view controller

www.it-ebooks.info
 Before you can get to that method, though, you need to do some work. First, you
must define the content that will fill your table. Then, you must define how large the
table will be. Only then can you fill in the table using the tableView:cellForRowAt-
IndexPath: method.

 In addition to these major table view elements, we’ll also cover two optional vari-
ants that can change how a table looks: accessory views and sections.

CREATING THE CONTENT

You can use numerous SDK objects to create a list of data that your table should con-
tain. In chapter 9, we’ll talk about SQLite databases; and in chapter 14, we’ll discuss
pulling RSS data off the Internet. For now, we stay with the SDK’s simpler objects. The
most obvious are NSArray, which produces a static indexed array; NSMutableArray,
which creates a dynamic indexed array; and NSDictionary, which defines an associa-
tive array.

 For this example of table view content creation, you’ll create an NSArray contain-
ing an NSDictionary that itself contains color names and UIColor values. As you can
probably guess, you’ll fill this skeletal table view example with something like the
color selector that you wrote back when you were learning about views in chapter 4.
The code required to create your content array is shown in the following listing.

- (void)viewDidLoad {
colorList = [NSArray arrayWithObjects:
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"brownColor",@"titleValue",
 [UIColor brownColor],@"colorValue",nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"orangeColor",@"titleValue",
 [UIColor orangeColor],@"colorValue",nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"purpleColor",@"titleValue",
 [UIColor purpleColor],@"colorValue",nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"redColor",@"titleValue",
 [UIColor redColor],@"colorValue",nil],
 nil];
 [colorList retain];
}

You should do this sort of setup before the view appears. Here, you do it in the view-
DidLoad method. This method is called prior to the view appearing and is a good
place to do your initialization.

 The array and dictionary creations are simple. The Apple class references contain
complete information about how to create and manipulate these objects; but, in short,
you can create an NSArray as a listing of objects ending in a nil, and you can create an
NSDictionary using pairs of values and keys, ending in a nil. Here, you’re creating an
array containing four dictionaries, each of which will fill one line of your table.

 You also have to think about memory management here. Because your array was
created with a class factory method, it’ll be released when it goes out of scope. In

Listing 5.2 Create the content array

http://www.it-ebooks.info/

88 CHAPTER 5 Basic view controllers

www.it-ebooks.info
order to use this array elsewhere in your class, you not only need to have defined it in
your header file, but you also need to send it a retain message to keep it around.
You’ll release it in your dealloc method, elsewhere in the class files.

BUILDING YOUR TABLE CELLS

When you’ve set up a data backend for your table, you need to edit three methods in
your table view controller file: two that define the table and one that fills it, as shown
in the following listing. We’ll explain each of these in turn.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return colorList.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier]
autorelease];
 }

 cell.textLabel.textColor= [[colorList objectAtIndex:indexPath.row]
 objectForKey:@"colorValue"];
 cell.textLabel.text = [[colorList objectAtIndex:indexPath.row]

objectForKey:@"titleValue"];

 return cell;

}

All these methods should appear by default in the table view controller subclass you
create, but you may need to make changes to some of them to accommodate the spe-
cifics of your table.

 The first method is numberOfSectionsInTableView:. Tables can optionally
include multiple sections, each of which has its own index of rows, and each of which
can have a header and a footer. For this example, you’re creating a table with one sec-
tion, but we’ll look at multiple sections before we finish this chapter.

 The second method, tableView:numberOfRowsInSection:, reports the number of
rows in this section. Here, you return the size of the array you created. Note that you
ignore the section variable because you have only one section.

 The third method, tableView:cellForRowAtIndexPath:, takes the table set up by
the previous two methods and fills its cells one at a time. Although this chunk of code
looks intimidating, most of it will be sitting there waiting for you the first time you

Listing 5.3 Three methods that control how your table is created and runs

Sets cell’s text
and text color

B

http://www.it-ebooks.info/

89The table view controller

www.it-ebooks.info
work with a table. In particular, the creation of UITableViewCell will be built in. All
you need to do is set the values of the cell before it’s returned. Here you use your
NSDictionary to set the cell’s text color and text content B.

 Also note that this is your first use of the NSIndexPath data class. It encapsulates
information on rows and sections. Cells have two views that you can access. The first is
the textLabel. As you saw, this contains the text displayed in the cell. The other is
imageView. It’s basically an icon for the cell. You can set this to an image view. See sec-
tion 11.2 for more information about using UIImage.

 You may want to change more than text content and color. Table 5.7 lists all the
cell label features that you may want to experiment with at this point.

Using these properties, you can make each table cell look unique, depending on the
needs of your program.

ADDING ACCESSORY VIEWS

Although you didn’t do so in the color-selector example, you can optionally set acces-
sories on cells. Accessories are special elements that appear to the right of each list item.

 Most frequently, you’ll set accessories using an accessoryType constant that has
four possible values, as shown in table 5.8.

Table 5.7 You can modify your table cells in a variety of ways.

Property Summary

textLabel.font Sets the cell label’s font using UIFont

textLabel.lineBreakMode Sets how the cell label’s text wraps using
UILineBreakMode

textLabel.text Sets the content of a cell label to an NSString

textLabel.textAlignment Sets the alignment of a cell’s label text using the
UITextAlignment constant

textLabel.textColor Sets the color of the cell’s label text using UIColor

textLabel.selectedTextColor Sets the color of selected text using UIColor

imageView.image Sets the content of a cell’s imageView to a UIImage

imageView.selectedImage Sets the content of a selected cell to UIImage

Table 5.8 A cell accessory gives additional information.

Constant Summary

UITableViewCellAccessoryNone No accessory

UITableViewCellAccessoryDisclosureIndicator A normal chevron:

UITableViewCellAccessoryDetailDisclosureButton A chevron in a blue button:

UITableViewCellAccessoryCheckmark A checkmark:

http://www.it-ebooks.info/

90 CHAPTER 5 Basic view controllers

www.it-ebooks.info
An accessory can be set as a property of a cell:

cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;

The normal chevron is usually used with a navigation controller, the blue chevron is
typically used for configuration, and the checkmark indicates selection.

 There is also an accessoryView property, which lets you undertake the more com-
plex task of creating an entirely new view to the right of each list item. You create a
view and then set accessoryView to that view:

cell.accessoryView = [[myView alloc] init];

There’s an example of this in chapter 8, where you’ll be working with preference
tables.

ADDING SECTIONS

The example shows how to display a single section’s worth of cells, but it would be triv-
ial to rewrite the functions to offer different outputs for different sections within the
table. Because of Objective-C’s ease of accessing nested objects, you can prepare for
this by nesting an array for each section inside a larger array:

masterColorList = [NSArray arrayWithObjects:colorList,otherColorList,nil];

Then, you return the count from this über-array for the numberOfSections: method:

return masterColorList.count;

You similarly return a subcount of one of the subarrays for the tableView:numberOf-
Rows: method:

return [[masterColorList objectAtIndex:section] count];

Finally, you pull content from the appropriate subarray when filling in your cells using
the same type of nested messaging.

 When you’re working with sections, you can also think about creating headers and
footers for each section. Figure 5.6 shows what the revised application looks like so far,
including two different sections, each of which has its own section header.

 How do you create those section headers? As with all the methods you’ve seen that
fill in table views, the section header messages and properties show up in the
UITableViewDataSource protocol reference.

 To create section headers, you write a tableView:titleForHeaderInSection:
method. As you’d expect, it renders a header for each individual section.

 An example of its use is shown here. You could probably do something fancier
instead, such as building the section names directly into your array:

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 if (section == 0) {
 return @"SDK Colors";
 } else if (section == 1) {
 return @"RGB Colors";
 }
 return 0;
}

http://www.it-ebooks.info/

91The table view controller

www.it-ebooks.info
You can similarly set footers and otherwise manipulate sections according to the pro-
tocol reference.

 There’s still more to the table view controller. Not only do you have to work with
data when you’re setting it up, but you also have to do so when it’s in active use, which
usually occurs when the user selects individual cells.

5.3.4 Using your table view controller

We won’t dwell too much on the more dynamic possibilities of the UITableView-
Controller here. For the most part, you’ll either use it to hold relatively static data (as
you do here) or use it to interact with a navigation controller (as you’ll see in
chapter 7). But before we finish up with table view controllers, we’ll look at one other
fundamental: selection.

SELECTED CELLS

If you try the sample table view application that you’ve been building throughout
section 5.3, you’ll see that individual elements in a table view can be selected.

 In table 5.7, you saw that some properties apply explicitly to selected cells. For
example, the following maintains the color of your text when it’s selected, rather than
changing it to white, as per the default:

cell.textLabel.textColor =
 [[[masterColorList objectAtIndex:indexPath.section]
 objectAtIndex:indexPath.row] objectForKey:@"colorValue"];

Figure 5.6 Section headers can
improve the usability of table views.
Here they’re shown in use on both the
iPad and iPhone.

http://www.it-ebooks.info/

92 CHAPTER 5 Basic view controllers

www.it-ebooks.info
To set this value, you must add this line of code to your tableView:didSelectRowAt-
IndexPath: method. Also note that this is another example of using nested arrays to
provide section- and row-specific information for a table list.

 The tableView:didSelectRowAtIndexPath: method is the most important for
dealing with selections. This method appears in the UITableViewDelegate protocol
and tells you when a row has been selected. The message includes an index path,
which, as you’ve already seen, contains both a row and a section number.

 Here’s a simple example of how you might use this method to checkmark items in
your list:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [[tableView cellForRowAtIndexPath:indexPath]
 setAccessoryType:UITableViewCellAccessoryCheckmark];
}

You can easily retrieve the selected cell by using the index path, and then you use that
information to set the accessory value. You’ll make more use of cell selection in chap-
ter 7, when we talk about navigation controllers.

5.4 Summary
View controllers are the most important building blocks of the iOS SDK that you
hadn’t seen up to this point. As we explained in this chapter, they sit atop views of all
sorts and control how those views work. Even in this chapter’s simple examples, you
saw some real-world examples of this control, as view controllers managed rotation,
filled tables, and reacted to selections.

 You can think of a view controller as being like the glue of your application. It con-
nects your view components to the underlying models. View controllers provide inter-
action with the interface through IBOutlets and IBActions.

 Now that we’re getting into user interaction, we’re ready to examine how it works
in more depth, and that’s the focus of the next chapter. We’ll examine the underpin-
nings of user interaction: events and actions.

http://www.it-ebooks.info/

www.it-ebooks.info
Monitoring events
and actions
In the previous chapter, you learned how to create the basic view controllers that
fulfill the controller role of an MVC architectural model. You’re now ready to start
accepting user input, because you can send users to the correct object. Users can
interact with your program in two ways: by using the low-level event model or by
using event-driven actions. In this chapter, you’ll learn the difference between the
two types of interactions and how to implement them. Then we’ll look at notifica-
tions, a third way that your program can learn about user actions.

 Of these three models, events provide the lowest-level detail and ultimately
underlie everything else (they’re essential for sophisticated programs), so we’ll
begin with events.

This chapter covers
 The SDK’s event modeling

 How events and actions differ

 Creating simple event- and action-driven apps
93

http://www.it-ebooks.info/

94 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
6.1 An introduction to events
We briefly touched on the basics of event management in chapter 2. But as we said at
the time, we wanted to put off a complete discussion until we could cover events in
depth; we’re now ready to tackle that job.

 The fundamental unit of user input is the touch: a user puts a finger on the screen.
This may be built into a multitouch or a gesture, but the touch remains the building
block on which everything else is constructed. It’s the basic unit that we’ll examine in
this chapter. In this section, we’ll look at how touches and events are related. Let’s
start by examining the concept of a responder chain.

6.1.1 The responder chain

When a touch occurs in an SDK program, you have to worry about what responds to
the event. That’s because SDK programs are built of tens—perhaps hundreds—of dif-
ferent objects. Almost all of these objects are subclasses of the UIResponder class,
which means they contain all the functionality required to respond to an event. What
gets to respond?

 The answer is embedded in the concept of the responder chain. This is a hierarchy of
different objects that are each given the opportunity, in turn, to answer an event
message.

 Figure 6.1 shows an example of how an event moves up the responder chain. It
starts out at the first responder of the key window, which is typically the view where the
event occurred—where the user touched the screen. As we’ve already noted, this first
responder is probably a subclass of UIResponder—which is the class reference you’ll
want to look to for a lot of responder functionality.

 Any object in the chain may accept an event and resolve it; when that doesn’t
occur, the event moves farther up the list of responders. From a view, an event goes to
its superview and then its superview, until it eventually reaches the UIWindow object,
which is the superview of everything in your application. It’s useful to note that from
the UIWindow downward, the responder chain is the view hierarchy turned on its head;
when you’re building hierarchies, they do double duty.

 Although figure 6.1 shows a direct connection
from the first responder to the window, there can
be any number of objects in this gap in a real-
world program.

 Often, the normal flow of the responder chain
is interrupted by delegation. A specific object (usu-
ally a view) delegates another object (usually a
view controller) to act for it. You already saw this
put to use in your table view in chapter 5, but you
now understand that delegation occurs as part of
the normal movement up the responder chain.

App
Delegate

The
Application

The
Window

First
Responder

Figure 6.1 Events are
initially sent to the first
responder but then travel
up the responder chain
until they’re accepted.

http://www.it-ebooks.info/

95An introduction to events

www.it-ebooks.info
If an event gets all the way up through the responder chain to the window and it can’t
deal with an event, then it moves up to the UIApplication, which most frequently
punts the event to its own delegate: the application delegate, an object that you’ve been
using in every program to date.

 Ultimately, you, the programmer, must decide what in the responder chain will
respond to events in your program. You should keep two factors in mind when you
make this decision: how classes of events can be abstracted together at higher levels in
your chain, and how you can build your event management using the concepts of MVC.

 At the end of this section, we’ll address how you can subvert this responder chain
by further regulating events, but for now let’s build on its standard setup.

6.1.2 Touches and events

Now that you know a bit about how events find their way to the appropriate object, we
can dig into how they’re encoded by the SDK. First, we want to offer a caveat: usually
you won’t need to worry about this level of detail because the standard UIKit objects
generally convert low-level events into higher-level actions for you, as we discuss in the
second half of this chapter. With that said, let’s look at the nuts and bolts of event
encoding.

 The SDK abstracts events by combining a number of touches (which are repre-
sented by UITouch objects) into an event (which is represented by a UIEvent object).
An event typically begins when the first finger touches the screen and ends when the
last finger leaves the screen. In addition, it should generally include only those
touches that happen in the same view.

First responders and keyboards
Before we leave the topic of responders, we’d like to mention that the first responder
is an important concept. Because this first responder is the object that can accept
input, it sometimes takes a special action to show its readiness for input. This is par-
ticularly true for text objects like UITextField and UITextView, which (if editable)
pop up a keyboard when they become the first responder. This has two immediate
consequences.

If you want to pop up a keyboard for the text object, you can do so by turning it into
the first responder:

[myText becomeFirstResponder];

Similarly, if you want to get rid of a keyboard, you must tell your text object to stop
being the first responder:

[myText resignFirstResponder];

We’ll discuss these ideas more when you encounter your first editable text object
toward the end of this chapter.

http://www.it-ebooks.info/

96 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
 In this chapter, you’ll work mainly with UITouches (which make it easy to parse
single-touch events) and not with UIEvents (which are more important for parsing
multitouch events). Let’s lead off with a more in-depth look at each.

UITOUCH REFERENCE

A UITouch object is created when a finger is placed on the screen, moves on the
screen, or is removed from the screen. A handful of properties and instance methods
can give you additional information on the touch, as detailed in table 6.1.

Together, the methods and properties shown in table 6.1 offer considerable informa-
tion about a touch, including when and how it occurred.

 Only the phase property requires additional explanation. It returns a constant that
can be set to one of five values: UITouchPhaseBegan, UITouchPhaseMoved, UITouch-
PhaseStationary, UITouchedPhaseEnded, or UITouchPhaseCancelled. You’ll often
want to have different event responses based on exactly which phase a touch occurred
in, as you’ll see in the event example.

UIEVENT REFERENCE

To make it easy to see how individual touches occur as part of more complex gestures,
the SDK organizes UITouches into UIEvents. Figure 6.2 shows how these two sorts of
objects interrelate.

 Just as with the UITouch object, the UIEvent object contains a number of proper-
ties and methods that you can use to figure out more information about your event, as
described in table 6.2.

Table 6.1 Additional properties and methods can tell you precisely what happened during a touch event.

Method or property Type Summary

phase Property Returns a touch phase constant, which indicates
whether touch began, moved, ended, or was canceled

tapCount Property The number of times the screen was tapped

timestamp Property When the touch occurred or changed

view Property The view where the touch began

window Property The window where the touch began

locationInView: Method The current location of the touch in the specified view

previousLocationInView: Method The previous location of the touch in the specified view

UITouch

phase:
UITouchPhaseBegan

locationInView:
(10,15)

UITouch

phase:
UITouchPhaseEnded

locationInView:
(28,32)

UITouch

phase:
UITouchPhaseMoved

locationInView:
(28,32)

UIEvent

Figure 6.2 UIEvent objects
contain a set of related
UITouch objects.

http://www.it-ebooks.info/

97A touching example: the event reporter

www.it-ebooks.info
The main use of a UIEvent method is to give you a list of related touches that you can
break down by several means. If you want to get a list of every touch in an event, or if
you want to specify just gestures on a certain part of the screen, then you can do that
with UIEvent methods. This ends our discussion of event containers in this chapter.

 Note that all of these methods compact their touches into an NSSet, which is an
object defined in the Foundation framework. You can find a good reference for the
NSSet at Apple’s developer resources site.

THE RESPONDER METHODS

How do you access touches and/or events? You do so through a series of four different
UIResponder methods, which are summarized in table 6.3.

 Each of these methods has two arguments: an NSSet of touches that occurred dur-
ing the phase in question and a UIEvent that provides a link to the entire event’s
worth of touches. You can choose to access either one, as you prefer; as we’ve said,
we’ll be playing with the bare touches. We’re now ready to dive into an example that
demonstrates how to capture touches in a real-life program.

6.2 A touching example: the event reporter
The sample application for events is an event reporter, which offers a variety of
responses depending on how and when the device screen is touched. The sample pro-
gram has two goals.

Table 6.2 The encapsulating event object has a number of methods and properties that let
you access its data.

Method or property Type Summary

timestamp Property The time of the event

allTouches Method All event touches associated with the receiver

touchesForView: Method All event touches associated with a view

touchesForWindow: Method All event touches associated with a window

Table 6.3 The UIResponder methods are the heart of capturing events.

Method Summary

touchesBegan:withEvent: Reports UITouchPhaseBegan event when fingers touch
the screen

touchesMoved:withEvent: Reports UITouchPhaseMoved events when fingers move
across the screen

touchesEnded:withEvent: Reports UITouchPhaseEnded events when fingers leave
the screen

touchesCancelled:withEvent: Reports UITouchPhaseCancelled events when the
phone is put up to your head, or other events that might
cause an external cancellation

http://www.it-ebooks.info/

98 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
 First, we want to show you a cool and simple application that you can write using
events—one that should get you thinking about everything you can do.

 Second, we want to show some of the low-level details of how events work in a visual
form. If you take the time to code and compile this program, you’ll gain a better
understanding of how the various phases work as well as how tapping works.

 You’ll kick off this development process by creating a project named eventreporter
that uses the View-Based Application template. That means you’ll start with a view con-
troller already in place. We’ll also use this example to show how an MVC program can
be structured.

6.2.1 Setting things up in Interface Builder

For this program, you’ll create three new objects: two button-shaped objects that float
around the screen to mark the beginning and end of touches, plus a status bar to go at
the bottom of the screen and describe a few other events when they occur.

 Because you want all your new objects to lie beneath the view controller in the
view hierarchy, you call up the view controller’s own .xib file, eventreporterView-
Controller.xib. As usual, you’ll add your new objects to the Main Display window that
represents the view controller’s view.

 All this work is graphical, so we can’t show the code of this programming process.
But we’ve included a quick summary of the
actions you should take (the results are shown
in figure 6.3):

 Set the background color of the UIView
to an attractive aluminum color. You do
this in the Attributes Inspector, as you
do most of your work in this project.

 Create a UILabel, stretch it across the
bottom of the screen, and set the color
to be steel. Also, clear its text so it
doesn’t display anything at startup.

 Create two UITextFields. This class of
objects is generally used to accept input,
but we opted to use the objects for pure
display purposes because we like their
look. (Don’t worry; we’ll show how to
use the full functionality of a UIText-
Field toward the end of this chapter.)

 Place each UITextField at the center
of the screen using the handy position-
ing icons as guides. Set this location’s
coordinates to 159, 230; and set its ori-
gin to middle.

Figure 6.3 Two UITextFields (one of
them hidden) and one UILabel, set against
an aluminum-colored background on the
iPhone, complete the object creation you
need for your eventreporter project.

http://www.it-ebooks.info/

99A touching example: the event reporter

www.it-ebooks.info
 For each UITextField, input text that lists its starting position; this will later be
updated by the program as the text field moves. Deselect the user interaction–
enabled option for each UITextField so that users can’t manipulate them.

The process takes longer to explain than it takes to accomplish. You’ll have a working
interface in a couple of minutes.

 Because you’ll modify all three of these objects during the course of your pro-
gram’s runtime, you need to link them to variables. You should link everything to your
controller, because it takes care of updates, as is appropriate under the MVC model.

 The tricky thing here is that the view controller doesn’t seem to appear in your
eventreporterViewController.xib file—at least not by that name. Fortunately, there’s a
proxy for it. Because the view controller is what loads up the .xib, it appears as the
file’s owner in the nib document window. You can therefore connect objects to the
view controller by linking them to the file’s owner proxy. This is a common situation,
because view controllers frequently load additional .xib files for you.

 The following is your view controller’s header file, eventreportViewController.h,
following the addition of these IBOutlets. The code also contains a declaration of a
method that you’ll use later in this project:

@interface eventreporterViewController : UIViewController {
 IBOutlet UITextField *startField;
 IBOutlet UITextField *endField;
 IBOutlet UILabel *bottomLabel;
}
- (void)manageTouches:(NSSet *)touches;
@end

To finish this process, connect your interface objects to the IBOutlets, using the pro-
cedures described in chapter 4.

6.2.2 Preparing a view for touches

Touch events can be captured only by UIView objects. Unfortunately, as of this writing,
there’s no way to automatically delegate those touches to a view controller. Therefore,
in order to manage touch events using the MVC model, you typically need to subclass
a UIView, capture the events there, and then send messages to the view controller.

 In this project, you create a new object class, reportView, which is a subclass of UIV-
iew. You then link, visually, that new class into the view controller’s existing view. Open
eventreporterViewController.xib, go to the Identity tab
for the view object you’ve been using, and change its
name from UIView to reportView, as you did in chapter 5
when you created a table view controller subview.

 Any new methods you write into reportView, includ-
ing methods that capture touch events, will be now
reflected in your view. To clarify this setup, figure 6.4
shows the view hierarchy that you’ve built for your even-
treporter project.

UIViewController

UIWindow

reportView

UILabel UITextFieldUITextField

Figure 6.4 You’ll connect six
objects that you’ll use to report
events.

http://www.it-ebooks.info/

100 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
 With a brand-new UIView subclass in hand, you can now write methods into it to
capture touch events and forward them to its controller. This code, which appears in
reportView.m, is as follows:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 [self.nextResponder manageTouches:touches];
}
- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 [self.nextResponder manageTouches:touches];
}
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 [self.nextResponder manageTouches:touches];
}

This code is pretty simple. You’re filling in standard methods so that your program
will have the responses you want when those messages are sent. The overall structure
of these methods reminds us of several important facts about events.

 First, as promised, there are a variety of responder methods. Each of them reports
only the events for its specific phase. So, for example, the touchesBegan:withEvent:
method only has UITouchPhaseBegan touches in it. In forwarding these touches, you
could keep the different phases distinct, but instead you throw everything together
and sort it out on the other side.

 Second, we’ll comment one final time that these methods send you two pieces of
information: a set of touches and an event. They’re partially redundant, and which one
you work with will probably depend on the work you’re doing. If you’re not doing com-
plex multitouch events, then the NSSet of touches will probably be sufficient.

Third, note that you’re sending the touches to the view controller by way of the next-
Responder method. As you’ll recall, the responder chain is the opposite of the view
hierarchy at its lower levels, which means in this case the nextResponder of report-
View is the UIViewController. We would have preferred to have the UIView-
Controller naturally respond to the touches’ messages, but we made use of the
responder chain in the next-best way. As of this writing, the compiler warns that next-
Responder may not know about the manageTouches method, but it will; you can
ignore this warning.

An aside on the text fields and label
If you were to code in this example, you’d discover that the program correctly
responds to touch events even when the touches occur atop one of the text fields or
the label at the bottom of the page. How does the program manage that when you
built event response into only the reportView?

The answer is this: it uses the responder chain. The text fields and the label don’t
respond to the event methods themselves. As a result, the events are passed up the
responder chain to the reportView, which does leap on those events, using the code
you’ve just seen.

http://www.it-ebooks.info/

101A touching example: the event reporter

www.it-ebooks.info
 You’ll see some other ways to use the nextResponder method toward the end of
our discussion of events.

6.2.3 Controlling your events

Intercepting touches and forwarding them up to the view controller may be the
toughest part of this code. After the events get to the view controller, they run through
a simple method called manageTouches:, as in the following listing, which shows the
view controller implementation file.

- (void)manageTouches:(NSSet *)touches {
 for (UITouch *touch in touches) {
 if (touch.phase == UITouchPhaseBegan) {
 CGPoint touchPos = [touch locationInView:self.view];
 startField.center = touchPos;
 startField.text = [NSString stringWithFormat:
 @"Begin: %3.0f,%3.0f",touchPos.x,touchPos.y];
 } else if (touch.phase == UITouchPhaseMoved) {
 bottomLabel.text = @"Touch is moving ...";
 } else if (touch.phase == UITouchPhaseEnded)
 {
 if (touch.tapCount > 1) {
 bottomLabel.text = [NSString stringWithFormat:
 @"Taps: %2i",touch.tapCount];
 } else {
 bottomLabel.text = [NSString string];
 }
 CGPoint touchPos = [touch locationInView:self.view];
 endField.center = touchPos;
 endField.text = [NSString stringWithFormat:
 @"End: %3.0f,%3.0f",touchPos.x,touchPos.y];
 }
 }
}

Touches are sent as an NSSet, which can be broken apart in a number of ways, as
described in the NSSet class reference. Here, you use a simple for ... in construction
that lets you look at each touch in turn.

 When you get a touch, the first thing you do is determine what phase it arrived in.
Originally, you could have determined this information based on which method a
touch arrived through, but because you combined everything you have to fall back on
the phase property. Fortunately, it’s easy to use. You match it up to one of three con-
stants B, and that determines which individual actions your program undertakes.

 Having different responses based on the phase in which a touch arrives is com-
mon—which is why the event methods are split up in the first place. The example
demonstrates this with some distinct responses: you move your start field when
touches begin, you move your end field when touches end, and you update the bot-
tom label in both the moved and ended phases.

Listing 6.1 manageTouches, which accepts inputs and changes views

Determines
touch
phase

B

http://www.it-ebooks.info/

102 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
 In the UITouchPhaseBegan response, you delve further into your touches’ data by
using the locationInView: method to figure out the precise coordinates where a
touch occurred. You’re then able to use that data to reposition your text field and to
report the coordinates in the text field. You later do the same thing in the UITouch-
PhaseEnded response.

 Finally, you look at the tapCount in the UITouchPhaseEnded response. This is gen-
erally the best place to look at taps because the device now knows that the user’s finger
has come off the screen. As you can see, it’s easy to both run a command based on the
number of taps and to report that information.

 Figure 6.5 shows the event responder in action. Imagine a finger that touches
down on the space where the Begin text field is and that is currently moving across the
screen.

 And with that, your event reporter is complete. In addition to illustrating how a
program can respond to touches, we’ve highlighted how the MVC model can be used
in a real application.

 The project contains four views: a reportView, a UILabel, and two UITextFields.
It’s tempting to process events in the reportView, especially because you had to create
a subclass anyway, but instead you pushed the events up to the view controller and in
doing so revealed why you want to do MVC modeling.

 Because it takes on the controller role, you give the view controller access to all of
its individual objects, and therefore you don’t have to try to remember what object

Figure 6.5 Your event responder
uses a few graphical elements to
report events as they occur.

http://www.it-ebooks.info/

103Other event functionality

www.it-ebooks.info
knows about what other object. Tying things into the view controller, rather than scat-
tering them randomly across your code, makes the project that much more readable
and reusable, which is what most architectural and design patterns are about.

6.3 Other event functionality
Before we complete our discussion of events, we’d like to cover a few more topics of
interest. We’ll explore how to regulate the report of events in a variety of ways and
then describe some deficiencies in the event model.

6.3.1 Regulating events

As we mentioned earlier, there are some ways that you can modify how events are
reported (and whether they are at all). As you’ll see, three different objects give you
access to this sort of regulation: UIResponder, UIView, and UIApplication. We’ve
listed all the notable options we’ll discuss in table 6.4.

 Because UIView is a subclass of UIResponder, you generally have access to the
methods from both classes in most UIKit objects. You’ll need to do some additional
work to access the UIApplication methods.

UIRESPONDER REGULATION

You’ve already seen that UIResponder is the source of the methods that let you cap-
ture events; as shown here, it’s also the home of the methods that control how the
responder chain works.

Table 6.4 Properties in various objects allow for additional control of when events are monitored.

Method or property Type Summary

nextResponder UIResponder method Returns the next responder in
the chain by default but can be
modified

hitTest:withEvent: UIView method Returns the deepest subview con-
taining a point by default but can be
modified

exclusiveTouch UIView property A Boolean set to NO by default;
controls whether other views in the
same window are blocked from
receiving events

multipleTouchEnabled UIView property A Boolean set to NO by default;
controls whether multitouches after
the first are thrown out

beginIgnoringInteractionEvents UIApplication method Turns off touch event handling

endIgnoringInteractionEvents UIApplication method Turns on touch event handling

isIgnoringInteractionEvents UIApplication method Tells whether the application is
ignoring touch events

http://www.it-ebooks.info/

104 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
 Most of the responder chain–related methods aren’t directly used by your code;
instead, they typically appear deep in frameworks. becomeFirstResponder and
resignFirstResponder (which control who the first responder is) and canBecome-
FirstResponder, canResignFirstResponder, and isFirstResponder (which return
Booleans related to the information in question) all typically fall into this category.

 The last UIResponder method, nextResponder, may be of use in your programs. As
defined by UIResponder, nextResponder returns the next responder, per the normal
responder chain. You used it in the example to pass your touches up.

 If you want to change the normal order of the responder chain, you can do so by
creating your own nextResponder function in a subclass. This new function overrides
its parent method and allows your program to take a different path up your responder
chain.

UIVIEW REGULATION

When you move into the UIView class methods, you can take the opposite approach by
overriding hitTest:withEvent:. This method is passed a CGPoint and an event, and
by default it returns the deepest subview that contains the point. By writing a new
method, you can cause your responder chain to start at a different point.

 The two UIView properties that we noted both work as you’d expect. exclusive-
Touch declares that the view in question is the only one that can receive events (which
is an alternative way you could have managed the eventreporter example, where you
didn’t want anything but the reportView to accept events). Meanwhile, multiple-
TouchEnabled starts reporting of multitouch events, which are otherwise ignored.

UIAPPLICATION REGULATION

Finally, we come to the UIApplication methods. These lie outside the normal hierar-
chy of objects, and thus you can’t get to them from your view objects. Instead, you
need to call them directly from the UIApplication object, as shown here:

[[UIApplication sharedApplication] beginIgnoringInteractionEvents];

As you may recall from chapter 3, sharedApplication is a UIApplication class
method that provides a reference to the application object. Typically, you use its
return as the receiver for the beginIgnoringInteractionEvents message.

 Each of the three methods listed under UIApplication works as you’d expect
when you know the secret to accessing them.

6.3.2 Other event methods and properties

We’ve spent a lot of time on events, but at the same time we’ve only scratched the sur-
face. Events give you low-level access to user input, but you won’t use events much.
Instead, you’ll use the device’s many control objects (and thus actions) in order to
accept almost all user input.

 As a result, this chapter offers you a compromise: a solid look at how events work
that should suffice for those times when you do need to descend to touch manage-
ment, but not all of the intricacies. The thing that we’ve most clearly left out is how to

http://www.it-ebooks.info/

105An introduction to actions

www.it-ebooks.info
work with multitouch events. For that, we point you, as usual, to the Apple iOS SDK
developer website. A good tutorial on multitouch events is available as part of the iOS
Programming Guide; you should read if you’re one of that smaller percentage of
developers—such as programmers creating games and novelties—who may need
access to multitouches and more complex gestures.

6.4 An introduction to actions
If you won’t usually be programming directly with events, how will you access user
input? The answer is by using actions. You’ll typically depend on preexisting text
views, buttons, and other widgets to run your programs. When using these objects, you
don’t have to worry about raw events. Instead, you can build programs around control
events and actions that are generated by UIControls. Let’s look at the UIControl
object first; then, we’ll examine the relationship between control events and actions
and how to hook them up.

6.4.1 The UIControl object

When you were working with events, you found that the UIResponder class held many
of the methods critical for event control. Similarly, you can access a lot of the methods
important to SDK controls through the UIControl class.

UIControl is a child of UIView (and thus UIResponder). It’s the parent of important
user interface controls such as UIButton, UISwitch, UIPageControl, UISegmented-
Control, UISlider, and UITextField. It’s not used for some other control-looking
objects such as UISearchBar, so you should check the Apple class references before try-
ing to use its functionality. Also note that the higher-level UIControl class can’t be used
on its own; it defines the common methods used by its children.

 The UIControl class contains several properties that control its basic setup, such as
enabled (which determines whether it’s on), highlighted (which determines its visual
state), and selected (which sets Boolean state for appropriate sorts of controls, such
as switches). You can also directly access a control’s touch events with beginTracking-
WithTouch:withEvent:, continueTrackingWithTouch:withEvent:, and endTrack-
ingWithTouch:withEvent:, methods that work in a similar way to the event response
functions that you played with in UIResponder. But you won’t be using these methods,
because they don’t represent the simple advantages that you’ll see when using control
objects. For that, we turn to UIControl’s action-target mechanism.

6.4.2 Control events and actions

The UIControl object introduces a new event-handling infrastructure that takes touch
events of the sort that you might have directly handled in the previous section and
(eventually) converts them into simple actions, without your having to worry about
the specifics of how a user accessed a control. The complete sequence of events is out-
lined in figure 6.6.

http://www.it-ebooks.info/

106 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
When a touch event arrives at a UIControl object (via normal dispatching along the
responder chain), the control does something unique. Inside the standard
UIResponder methods that you used in the previous section (such as touches-
Began:withEvent:), a UIControl object turns standard touch events into special con-
trol events.

 These control events broadly describe how the user has interacted with the con-
trols rather than recording gestures. For example, they may report that a button has
been pushed or a slider moved. They’re divided into three categories: touch events,
editing events, and a slider event. The touch events describe how a user’s finger inter-
acted with the control, the editing events describe changes to a UITextField, and the
UIControlEventValueChanged event describes changes to a UISlider.

 These control events are all enumerated in a bitmask that’s defined in the
UIControl object. An almost-complete listing of them—including some composite
control events—can be found in table 6.5. We’ve left out only a few reserved values.

Table 6.5 UIControl objects recognize a number of special events.

Value Summary

UIControlEventTouchDown A finger touch.

UIControlEventTouchDownRepeat A repeated finger touch (with tapCount > 1).

UIControlEventTouchDragInside A finger movement ending inside the control.

UIControlEventTouchDragOutside A finger movement ending just outside the control.

UIControlEventTouchDragEnter A finger movement that enters the control.

UIControlEventTouchDragExit A finger movement that exits the control.

UIControlEventTouchUpInside A finger removed from the screen inside the control.

UIControlEventTouchUpOutside A finger removed from the screen outside the control.

UIControlEventTouchCancel A system event canceled a touch.

UIControlEventValueChanged A slider (or other similar) object changed its value.

touch
events

sendActionsForControlEvents:

UIResponder
methods

sendAction:to:forEvent:

UIControl

sendAction:to:fromSender:forEvent:

UIApplication

target or
responder

chain

Figure 6.6 UIControl objects take standard touch events and turn them into
actions that are dispatched by UIApplication.

http://www.it-ebooks.info/

107An introduction to actions

www.it-ebooks.info
After a standard event has been turned into a control event, a sequence of additional
methods is called, as shown in figure 6.6. First, the UIControl object calls send-
ActionsForControlEvents:. That in turn breaks down the events it’s been sent and
calls sendAction:to:forEvent: once per event. Here, the control event is turned into
an action, which is a specific method that’s going to be run in a specific target object.
Finally, the UIApplication method sendAction:to:fromSender:forEvent: is called
by the control, again once per event.

 This is another situation where the application object does big-picture controlling
of messaging. The application sends the action to the target object. But there’s one
catch: if the target that the action is being sent to has been listed as nil, the action is
sent to the first responder instead and from there moves up the responder chain.

 That process can be slightly exhausting, and fortunately you shouldn’t normally
need to know its details. For your purposes, you should be aware that a UIControl
object turns a touch event first into a control event and then into an action with a spe-
cific recipient. Even better, you need to code only the last part of that conversion,
from control event into targeted action.

6.4.3 Using addTarget:action:forControlEvents:

A UIControl object maintains an internal dispatch table that correlates control events
with target-action pairs. This table says which method should be run by which object
when a specified event occurs. You can add entries to this table with the UIControl
object’s addTarget:action:forControlEvents: method. The following example
shows how it works:

[controlObject addTarget:recipientObject action:@selector(method)
 forControlEvents:UIControlEvents];

The first argument, addTarget:, says where the message will be sent. It’s frequently set
to self, which usually refers to a view controller that instantiated the control object.

 The second argument, action:, is the trickiest. First, note that it uses the @ syntax
that we mentioned in chapter 2. The selector should identify the name of the method
that’s going to be run in the target object. Second, be aware that you can send the

UIControlEventEditingDidBegin Editing began in a UITextField.

UIControlEventEditingChanged Editing changed in a UITextField.

UIControlEventEditingDidEnd Editing ended in a UITextField due to a touch out-
side the object.

UIControlEventEditingDidEndOnExit Editing ended in a UITextField due to a touch.

UIControlEventAllTouchEvents Composite for all the touch-related events.

UIControlEventAllEditingEvents Composite for the editing-related events.

UIControlEventAllEvents Composite for all events.

Table 6.5 UIControl objects recognize a number of special events. (continued)

Value Summary

http://www.it-ebooks.info/

108 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
action argument either without a colon (method) or with a colon (method:). In the lat-
ter case, the ID of the controlObject is sent as an argument. Be sure your receiving
method is correctly defined to accept an argument if you include that colon in your
selector.

 The third argument, forControlEvents:, is a bitmasked list of possible control
events, taken from table 6.5.

 With all these puzzle pieces in place, you’re ready to write some code that uses
actions (and this method). As a simple example, you’ll expand the functionality to
your event reporter by adding a reset button.

6.5 Adding a button to an application
The simplest use of an action is probably adding a button to an application and then
responding to the press of that button. As you’ll see, this turns out to be a lot easier
than digging through individual touches.

 We’ve opted to show you how to work with a button in two ways: first by using the
addTarget:action:forControlEvents: method that we just introduced and then
visually by using an IBAction declaration.

 Both of these examples begin with your existing eventreporter program. You’ll add
a simple UIButton to it visually. Place the button atop the label at the bottom of your
page and use the attributes tag to label it Reset. With it in place and defined, it’s
ready to be linked into your program by one of two different ways.

 Both examples will call a method called resetPage:, which restores the three
changeable objects in your eventreporter to their default states. It’s in eventreporter-
ViewController.m, and as you can see it’s entirely elementary:

- (void)resetPage:(id)sender {
 startField.text = @"Begin: 159,230";
 startField.center = CGPointMake(159,230);
 endField.text = @"Begin: 159,230";
 endField.center = CGPointMake(159,230);
 bottomLabel.text = [NSString string];
}

We can now look at the two ways you can call this method.

6.5.1 Using addTarget:action:forControlEvents: with a button

On the one hand, you may wish to add actions to your button programmatically. This
could be the case if you created your button from within Xcode or if you created your
button visually but want to change its behavior during runtime.

 Your first step is bringing your button into Xcode. If you created your button visu-
ally, as we suggested earlier, you need to create an IBOutlet for the button, which
should be old hat by now. If you didn’t create your button visually, you can do so pro-
grammatically in Xcode. This probably means using the factory class method button-
WithType:, which lets you create either a rounded rectangle button or one of a few
special buttons, like the info button. By either means, you should now have a button
object available in Xcode.

http://www.it-ebooks.info/

109Adding a button to an application

www.it-ebooks.info
 Your second step is to send the addTarget:action:forControlEvents: message as
part of your application’s startup. Assuming that you’re having your view controller
manage the button’s action, this message should be sent from the view controller’s
loadView method (if your controller was created in Xcode) or in its viewDidLoad
method (if you created the controller in Interface Builder).

 Here’s what the viewDidLoad method of your view controller looks like when
applied to a button called myButton:

- (void)viewDidLoad {
 [myButton addTarget:self action:@selector(resetPage:)
 forControlEvents:UIControlEventTouchUpInside];
 [super viewDidLoad];
}

This real-life example of addTarget:action:forControlEvents: looks much like the
sample in the previous section. You’re sending a message to your button that tells it to
send the view controller a resetPage: message when the user takes their finger off
the screen while touching the button.

 That single line of code is all that’s required; from there on out, your button will
connect to your resetPage: method whenever it’s pushed (and released).

6.5.2 Using an IBAction with a button

The other way you can link up actions to methods is to do everything visually. This is the
preferred choice if you’ve created your object visually (as we’ve suggested) and you’re
not planning to change its behavior at runtime.

 When you use this procedure, you don’t need to make your button into an
IBOutlet. It’s effectively invisible from Xcode, which is fine, because all you care
about is what happens when the button is pushed. You also don’t use the somewhat
complex addTarget:action:forControlEvents: method that we just ran through;
instead, you connect things via intuitive visual means.

 For the purposes of this example, start with a clean slate: with a button freshly
crafted inside the interface pane and no connections yet built.

 To link an interface object to an action, you must declare the method you’re using
as having a return of IBAction. This means adding the following declaration to the
header file of your view controller:

- (IBAction)resetPage:(id)sender;

The implementation of the method should share the same return.
Afterward, you can go into Interface Builder and create a connection, as shown in
figure 6.7.

 As shown, when you’re connecting a control, you’re given access to the entire pal-
ette of possible control events. You select the one (or ones) that you want to connect
to IBActions, and then you drag over to the top-level object containing your IBAc-
tion. In this case, that’s once again the file’s owner object, which represents your view

http://www.it-ebooks.info/

110 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
controller. As usual, a menu pops up, this time showing possible IBActions to which
you can link your control event.

 The results are almost magical. With that single graphical link, you replace the
addTarget:action:forControlEvents: call and any code of any type. The button
now links to the targeted action automagically.

 What we’ve described so far covers the broad strokes of actions; everything else lies
in the details. If we spent less time on actions than events, it’s not because actions are
less important than events, but because they’re a lot simpler.

 From here on, your challenge in using controls will be figuring out how individual
controls work. See appendix A for an overview of classes and the Apple Class Refer-
ences for specifics. But there are a few controls that we’d like to give more attention to
because they vary from the norm.

6.6 Other action functionality
In this section we’ll look at two controls that report back different signals than the
simple button-up or button-down control events. The first is the UITextField, the
prime control for entering text, and the second is the relatively simple (but unique)
UISlider. In the process, we’ll also explore the other text-based entry formats,
because they share some unique issues with UITextField.

6.6.1 Accepting text input with UITextField

You have four ways to display pure text in the SDK: the UILabel, the UISearchBar, the
UITextView, and the UITextField. Each has a slightly different purpose. The UILabel
and the UISearchBar are intended for short snippets of text; the UITextView is
intended for multiple lines. Each of those text objects except the UILabel is editable,
but only the UITextField is a UIControl subclass with its own control events already
defined.

Figure 6.7 With an IBAction, there’s no code, just a link.

http://www.it-ebooks.info/

111Other action functionality

www.it-ebooks.info
 If the UITextField sounds familiar, that’s because you used it in the eventreporter
example. If you go back and look at the screenshots, you’ll see that the Begin and End
buttons are displayed in ovals that look a lot like input boxes. As we mentioned at the
time, we liked the way they looked, but they also gave us a good excuse to familiarize
you with the object without getting into its details.

 Usually, a UITextField will accept user input. It’s intended to be used mainly for
accepting short user input. The trickiest thing about using a UITextField is getting it
to relinquish control of your device after you call up a keyboard. The following code
shows the two steps needed to resolve this problem. We’re assuming that you’re work-
ing with a myText UITextField object visually and instantiated inside a view controller:

- (void)viewDidLoad {
 myText.returnKeyType = UIReturnKeyDone;
 [super viewDidLoad];
}
- (BOOL)textFieldShouldReturn:(UITextField *)textField {
 [textField resignFirstResponder];
 return YES;
}

Your setup of an interface object begins, pretty typically, inside its controller’s view-
DidLoad method. Here you turn the text field keyboard’s Return key into a bright
blue Done key, to make it clear that’s how you get out. You accomplish this by using
part of the UITextInputTraits protocol, which defines a couple of common features
for objects that use keyboards.

 To do anything else, you need to declare a delegate for the UITextField that fol-
lows the UITextFieldDelegate protocol. This can be done either by setting the text
field’s delegate property programmatically or by drawing a delegate link visually.
(This sample code presumes you’ve taken the easier solution of doing so visually.)
After you’ve done that, you can modify the textFieldShouldReturn: delegate
method. We’re assuming that the view controller has been set as the delegate, which
would be typical, and which allows you to do this work in the same view controller
class file.

 Finally, you enter two standard lines of code into this delegate method. They tell
the text field to let go of first-responder status (which, as we’ve previously noted, is
what’s necessary to make a keyboard go away) and return a YES Boolean.

 With this code in place, a user can get in and out of a UITextField. To use the text
field afterward, you need to monitor the text field’s special control events (especially
UIControlEventEditingDidEnd) and also look at its text property.

 In a moment, we’ll provide a sample of how that works. First, let’s examine a few
other text objects that aren’t controls but that you might use to accept text entry.

UILABEL

The UILabel isn’t user editable.

http://www.it-ebooks.info/

112 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
UISEARCHBAR

The UISearchBar looks an awful lot like a UITextField with some nuances, such as a
button to clear the field and a bookmark button. Despite the similarities in style, the
UISearchBar isn’t a UIControl object but instead follows an entirely different
methodology.

 To use a UISearchBar, set its delegate to be the object of your choice, likely your
view controller. Then, respond to the half-dozen messages described in UISearch-
BarDelegate. The most important of these is the searchBarSearchButtonClicked:
method. Be sure to include resignFirstResponder in order to clear the keyboard;
then, you can take actions based on the results. There’s an example of a UISearchBar
in chapter 9, section 9.2.3.

UITEXTVIEW

A UITextView works like a UITextField, except that it allows users to enter many lines
of text. The biggest gotcha here is that you can’t use the Return key as your Done but-
ton, because users will likely want to hit Returns in their text. Instead, you must have a
Done button somewhere near the top of your screen, where it can be seen when the
keyboard is up. When that button is clicked, you can set the text view to resignFirst-
Responder. Beyond that, you must set the UITextView’s delegate property; then you
can watch for delegate messages, most importantly textViewDidEndEditing:.

 With the quick digression into this variety of text objects out of the way, we can now
return to the other UIControl object that we wanted to discuss: UISlider.

6.6.2 Allowing value selection with UISlider

The slider is a simple object, but we’ve singled it out because it’s the one other class
that has its own control event, UIControlEventValueChanged. If you target this event,
you’ll find that it gets called whenever the slider moves, but the control event won’t
tell you what the new value is. To get that information, your action method must query
the slider’s properties.

 Three properties are of particular note: value shows a slider’s current value,
minimumValue shows the bottom of its scale, and maximumValue shows the top of its
scale. You can use value without modification if you’ve set your slider to return a rea-
sonable number (as described in the class reference); or if you prefer, you can use all
three properties together to determine the percentage that the slider is moved over—
which is what you’ll do in one final control example.

6.6.3 A TextField/Slider mashup

Because we want to examine two UIControl objects more closely, it makes sense to
quickly mash up an example that takes advantage of both of them. You’ll do this in the
View-Based RGB Application, which sets the background color of a view based on the
word you type into a UITextField and the selected position of a UISlider.

 As usual, you create all of these objects visually. Then, go hog wild linking objects
to your view controller. In all, you should create five links: an outlet each for your text
field and slider, an action link for the important text field and the slider events, and a

http://www.it-ebooks.info/

113Other action functionality

www.it-ebooks.info
delegate link for the text field. Figure 6.8 shows what the view controller’s Connec-
tions tab looks like after these have all been done.

 As shown, the actions from both of the controls link into a single method, called
changeColor:. Whenever either control is changed, this method adjusts the color of
the screen accordingly. The following listing shows how.

- (IBAction)changeColor:(id)sender {
 int red; int green; int blue;
 if ([myText.text caseInsensitiveCompare:@"red"]
 == NSOrderedSame) {
 red = 1; green = 0; blue = 0;
 } else if ([myText.text caseInsensitiveCompare:@"blue"]
 == NSOrderedSame) {
 red = 0; green = 0; blue = 1;
 } else if ([myText.text caseInsensitiveCompare:@"green"]
 == NSOrderedSame) {
 red = 0; green = 1; blue = 0;
 } else {
 red = .5; green = .5; blue = .5;
 }
 float newShade = mySlider.value /
 (mySlider.maximumValue - mySlider.minimumValue);
 [self.view setBackgroundColor:
 [UIColor colorWithRed:red green:green blue:blue alpha:newShade]];
}

The hardest part of working with a UITextField is setting it up, which you did earlier.
Now that you have input coming back, all you need to do is access the text property
and do with it as you will B.

 Meanwhile, by working with your three slider values, you’re able to easily generate
a value from 0 to 1 C. Putting that together with
the color you generated from your text field
input results in a background color that you can
change in two ways. Figure 6.9 takes a final look at
this new program.

 Would it be better to do this with a
UISegmentedControl and a UISlider? Probably.
But as is, it offers a quick example of how a text
field works. Furthermore, it shows how you can
combine action management by letting multiple
controls point to a single method, a technique
that will be useful in more complex programs.

 As usual, more information about both of
these controls is available in the Apple class refer-
ences, including lots of methods and properties
that we didn’t talk about.

Listing 6.2 Accessing a text field and a slider

Checks
text
input

B

Calculates alpha
percentage

C

Figure 6.8 A heavily connected view
controller will be a pretty normal sight
as you gain experience in creating
objects visually.

http://www.it-ebooks.info/

114 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
6.6.4 Actions made easy

Throughout the latter half of this chapter, you’ve seen controls that are tied to the
fully fledged target-action mechanism. In the next chapter, that will change when you
see the same idea in a somewhat simplified form.

 Sometimes, buttons or other controls are built into other classes of objects (such as
the button that can be built into the navigation bar). These controls have special
methods that allow them to automatically create a target-action pair. As a result, you
don’t have to go through the nuisance of calling the addTarget:action:forControl-
Events: method separately.

 We’ll point out this technique when we encounter it as part of the navigation
controller.

6.6.5 Actions in use

There are numerous control objects that we’ve opted not to cover here, mainly
because they use the same general principles as those we’ve talked about. Nonethe-
less, they’ll remain an important factor throughout the rest of this book.

 In particular, controls represent one of the main ways that users can offer input to
your programs, and we’ll discuss them when we talk about data in chapter 9. We’ll also
offer more complex programs that use a variety of controls from chapter 9 on.
Through those examples, the majority of the UI controls will receive some coverage in
this book.

Figure 6.9 A text field and a slider
conspire to set the color of the
iPhone’s background.

http://www.it-ebooks.info/

115Introducing notifications

www.it-ebooks.info
6.7 Introducing notifications
As we mentioned in chapter 1, there’s one other way that a program can learn about
events: through notifications. When directly manipulating events or actions, as you
have throughout this chapter, individual objects receive events because the events
occurred in their view, because the events occurred in a subview, or because the events
occurred in a view that has been delegated to them.

 Notifications step outside this paradigm. Now, an object registers to receive notice
when certain events occur. These are often events that lie beyond the standard view
hierarchy, such as information when a network connection closes or when the device’s
orientation changes. Notably, these notifications are also broadcast messages: many
different objects can be notified when the event occurs.

 All notifications occur through the NSNotificationCenter. You must create a
copy of this shared object to use it:

[NSNotificationCenter defaultCenter]

Afterward, you may use the addObserver:selector:name:object: method to request
a certain notification. The Observer: is the object that receives the notification
method (usually, self), the selector: is the method that is called in the observer,
name: is the name of the notification (which is in the class reference), and the
object: can be used if you want to restrict which objects you receive notification from
(but it’s usually set to nil).

 For example, to receive the UIDeviceOrientationDidChangeNotification notifi-
cation that we’ll talk about in chapter 10, you might use the following code:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(deviceDidRotate:)
 name:@"UIDeviceOrientationDidChangeNotification" object:nil];

 Overall, notification programming tends to have four steps:

1 You learn that there’s a notification by reading the appropriate class reference
(UIDevice in this case).

2 You may need to explicitly turn on the notification (as is indeed the case for
UIDeviceOrientationDidChangeNotification).

3 You write a method that will respond to the notification (in this case, device-
DidRotate:).

4 You connect the notification to the method with the NSNotificationCenter.

There is considerably more power in the notification system. Not only can you set up
multiple observers, but you can also post your own notifications. If you want more
information on these advanced features, you should read the class references on
NSNotificationCenter, NSNotification, and NSNotificationQueue.

http://www.it-ebooks.info/

116 CHAPTER 6 Monitoring events and actions

www.it-ebooks.info
6.8 Summary
The iOS includes an extensive set of frameworks that takes care of a lot of details for
you, making your programming as painless as possible. You’ve seen this to date in
everything you’ve done, as sophisticated objects appear on screen with almost no work.

 The same applies to the iPhone’s and iPad’s event system. There is a complex
underlying methodology. It centers on a responder chain and granular reporting of
touches and allows you to follow precise user gestures. You may occasionally have to
manipulate events via these more complex means.

 But the iPhone and iPad also support a higher-level iOS action system that lets pro-
grams respond to specific actions applied to controls rather than more freeform ges-
tures. We’ve explained how to use both, but it’s the target-action mechanism that
you’re more likely to rely on when programming.

 With actions and events out of the way, we’re ready to look at the final fundamen-
tal building block of the SDK. We’ve already discussed views, controls, and basic view
controllers, but another category of object is critical for most SDK programming: the
advanced view controller that allows for navigation over multiple screens of content.

 That’s the basis of the next chapter.

http://www.it-ebooks.info/

www.it-ebooks.info
Advanced
view controllers
When we started our look at view controllers in chapter 5, we promised that we’d
return to the more advanced view controllers that manage several pages of content
at once. That’s the purpose of this chapter: to introduce you to the final fundamental
building block of iOS that allows you to build complex multipage applications.

 In this chapter, we’ll take an in-depth look at three view controllers: the tab bar
controller, the navigation controller, and the unique split view controller (at the
time of writing, it’s only available on the iPad). We’ll also take a briefer look at the
flipside controller that appears in one of Xcode’s iOS templates and talk about
some modal controllers that you’ll see later in the book.

This chapter covers
 Working with navigation-based interfaces

 The flipside controller

 The split view controller

 Popover and modal view controllers

 Mixture of view controllers
117

http://www.it-ebooks.info/

118 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
 As in the previous chapter on view controllers, we’ll offer skeletal examples: the
main purpose is to provide you with the reusable programming frameworks that will
let you use these controllers in your own programs. Let’s kick off the discussion with
the tab bar view controller.

7.1 The tab bar view controller
Of the multipage view controllers, the tab bar is the easiest to use because it supports
simple navigation between several views. Like all the advanced view controllers, it has
a complex underlying structure incorporating several objects that work in tandem.

7.1.1 The anatomy of a tab bar view controller

To function, a tab bar view controller requires a hierarchy of at least six objects:

 One UITabBarController
 A minimum of two UIViewControllers
 One UITabBar
 A minimum of two UITabBarItems

This hierarchy of objects is depicted in figure 7.1.
 The tab bar controller and its associated view controllers are the heart of this

setup. The tab bar controller switches off between different pages, each of which uses
a view controller to manage its events. When you create them visually they are auto-
matically hooked up, but you will you need to fill in the controllers’ views when your
controllers are ready to go.

 The tab bar itself is created automatically when you instantiate a tab bar controller.
It displays a set of radio buttons that go at the bottom of the page. Each of those but-
tons is a tab bar item (which is also created automatically). Each tab bar item then
links to an individual view controller. Usually you shouldn’t have to mess with the tab
bar; you can make all the modifications you require through either the tab bar con-
troller or the view controllers.

 The connection between the tab bar controller and its tab bar is a simple delegation,
as you’ve seen in use in previous chapters. The tab bar has a delegate property that’s
hooked up to the controller, which must respond to the UITabBarDelegate protocol.

 The tab bar controller can also designate a delegate. The controller’s delegate
must follow the UITabBarControllerDelegate protocol. This protocol requires
response to two types of high-level events: when the tab bar is rearranged and when a
view controller is selected.

UITabBarController

UIViewControllerUIViewController
UITabBar

UITabBarItemUITabBarItem

Figure 7.1 A collection of six
objects (at minimum) is required
to create a functioning tab bar
view controller.

http://www.it-ebooks.info/

119The tab bar view controller

www.it-ebooks.info
7.1.2 Creating a tab bar view controller

Each of the advanced view controllers has its own Xcode template that you can use to
immediately instantiate the controller. Because this is your first advanced view control-
ler, though, we’ll look at how you create it by hand before we move over to simpler,
template-driven object creation.

CREATING A TAB BAR VIEW CONTROLLER BY HAND

To create a tab bar view controller manually, begin with the Window-Based Applica-
tion template. Use it to create a project imaginatively called tabex. Note that this exam-
ple will work on any of the devices. After you’ve created the project, open the
MainWindow.xib file.

 Now, to create the tab bar view controller, follow these steps:
1 Drag the Tab Bar Controller object from the Library window (where you’ll find

it under Controllers) to the nib display window.
2 Drop the controller next to your window object. When you do that, the Tab Bar

Controller Main display window appears.
3 Dismiss the old Main display; you don’t need it anymore. Instead, you’ll create

new objects as subviews of your tab bar view controller.
The results are shown in figure 7.2.

Figure 7.2 Dragging a tab bar controller to the nib display window creates the tab bar interface.

http://www.it-ebooks.info/

120 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
 Believe it or not, that’s all there is to it. All six objects of note have been created.
The tab bar controller is accessible from the nib display window. The other five objects
are accessible from the black bar at the bottom of the Main display window. Click a but-
ton once to get its UIViewController and a second time to get its UITabBarItem. Click
in the middle of the strip (between the buttons) to access the UITabBar. By selecting
these items, you can set their attributes, connections, size, and identity.

 We took this slight diversion into the harder side of tab bar controller design to
show what all the objects look like. After you’ve seen all the fundamental objects that
are created as part of an advanced view controller, you’ve played the Window-Based
Application template’s last trick. In the future, we’ll jump straight to the appropriate
template for each sort of view controller—starting with the tab bar controller template.

CREATING YOUR TAB BAR THROUGH A TEMPLATE

It’s even easier to create a tab bar view controller using the existing tab bar template.
Select Tab Bar Application when you create a new project. This template sets you up
with a tab bar controller much like the one you just created by hand, except it does
three additional things:

 The template defines the tab bar controller as an IBOutlet, giving the app del-
egate access to the object IBOutlet UITabBarController *tabBarController;.

 The template creates the view controller for the first window as part of a special
FirstViewController class. You’ll probably want to have an individual view
controller class for each tab to take care of events on a per-page basis, but that’s
easy to change by adding class files and adjusting the Identity tab for the view
controllers. For now, leave things as they are so that we can examine how to
work with the default template setup.

 The template associates a second .xib file with the second view. It does this in a
way you’ve seen before: by defining a nib Name for the view controller.

For the rest of this section, we’ll assume that you’re working with this prebuilt tab bar
controller template as your tabex project.

 With a working tab bar controller in hand, you can begin programming multiple
pages of screens.

TAB BARS AND TOOLBARS

The UIKit supports two similar interfaces, the UITabBar and the UIToolBar. They
each include a strip of icons that goes along the bottom of the screen. Their main dif-
ference is in functionality.

 The UITabBar is intended as a modal interface that changes the selections when
they’re tapped (usually with a permanent highlight). The purpose of the UIToolBar is
to provide a menu of possible actions that don’t change the appearance of the selec-
tion when tapped (except with a temporary highlight).

 Despite their similar appearance, the two items share no inheritance other than a
common ancestor in UIView. Consider it convergent evolution.

 We’ll present a fully functional example of a UIToolBar in chapter 11.

http://www.it-ebooks.info/

121The tab bar view controller

www.it-ebooks.info
7.1.3 Building a tab bar interface

At this point, you have a tab bar controller that contains two tabs, each of which has
relatively empty content. You also have tabs on your tab bar without pictures and with-
out meaningful names. To build your tab bar interface, you’ll want to adjust all these
things.

ADDING MORE TABS

You can add tabs to the tab bar by dragging a tab bar item to the tab bar. A tab bar
item and related view controller are added to the right side of your bar. Go ahead and
create a third tab.

 To allow for easy access to this new controller’s view, you should create a new .xib
file and connect the view controller to it.

CONNECTING VIEWS

When you have the right number of tabs, you can connect views to each of the tab
bar’s view controllers. This can be done in three ways:

 You can input views through .xib files, as noted earlier.
 If a view controller has its own class file, you can add views through the load-

View or viewDidLoad method for that class.
 If a view controller doesn’t have its own class file, you can load views elsewhere,

such as in the app delegate’s applicationDidFinishLaunching:.

Because the latter two view controllers don’t have their own class files, you’ll see how to
create their views using applicationDidFinishLaunching:. It would probably be sim-
pler to create their views visually, but this example will demonstrate how you can use
the tab bar controller.

 Although you don’t have outlets for the controllers, you can link to them straight
from the tab bar controller object, which you do have access to, thanks to that
IBOutlet that you’ve already seen. This relates to a concept we discussed when talking
about basic view controllers because view controllers have to do MVC management:
they should give you easy access to related objects. Within the tab bar controller is a
viewControllers property, which is an NSArray list of the view controllers that a tab
bar controller contains.

 Listing 7.1 shows how to access this information and programmatically build a cou-
ple of views for the second and third controllers within tabexAppDelegate.m. This is
the skeleton of a simple program that lets you edit a text view in the first window, keep
a count of what you’ve written in the second, and search in the third.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 UIViewController *secondController =
 [tabBarController.viewControllers objectAtIndex:1];
 UIViewController *thirdController =
 [tabBarController.viewControllers objectAtIndex:2];

Listing 7.1 Tab bar controller setup

Retrieves view
controllersB

http://www.it-ebooks.info/

122 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
 UITextView *secondView = [[UITextView alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 secondView.text = @"A word count would appear here.";
 secondView.editable = NO;
 secondController.view = secondView;
 UITextView *thirdView = [[UITextView alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];
 thirdView.text = @"A search function would go here.";
 thirdView.editable = NO;
 thirdController.view = thirdView;
 [window addSubview:tabBarController.view];
 [secondView release];
 [thirdView release];
 [window makeKeyAndVisible];
 return YES;
}

To access the view controllers, you pull elements out of an array using the appropriate
NSArray calls B. You then associate views with each view controller, as you’ve done in
the past C. Finally, you link the tab bar controller to the window, using a call that was
already sitting in your file when you loaded it D.

 You now have three modal pages (including that first controller’s page, which we
assume was taken care of in its class files, provided by default by the template). Each
does what you want, and navigation among them is easy. But you can still do some
work to make your tab bar look better.

MODIFYING THE BUTTONS

Although you have views associated with each button, the buttons say First, Second,
and Third, rather than providing any useful clue as to the buttons’ purpose. You can
change three things on each button to improve its usability: the icon, the title, and the
badge. Figure 7.3 shows the goal, which is to fill out some or all of this information for
each of your tab buttons.

 The icon is the image that appears on the tab bar item. This image can be set only
when you create a tab bar item. If you were creating the tab bar programmatically,
you’d use the initWithTitle:image:tag: method when creating the tab bar item.
More likely, you’ll go into Xcode and load a small PNG graphic that you want to use.

 This process is similar to incorporating the image into your project in chapter 4.
You create a transparent PNG that’s approximately 30 x 30. If your image is too big,
the SDK will resize it, but it’s better to start at the right size. After you drag the image
into your project, you can access it in the Media Library. We used a Wingdings font to
create the simple images that appeared in figure 7.3.

 The title is the word that appears on the tab bar. You can set that by going to the
field in question in the Attributes Inspector and changing the text there.

 If you want to later change the title during runtime, it’s accessible in Xcode. The
catch is that these titles aren’t found in the tab bar controller. Instead, they follow the
overarching idea of MVC: because a view controller is responsible for an individual
view, the controller sets the title of the page. This is done with the view controller’s
title property, which we’ve mentioned before and which you’ll meet again:

Sets viewsC

Displays tab
bar controllerD

http://www.it-ebooks.info/

123The tab bar view controller

www.it-ebooks.info
secondController.title = @"Word Count";

The badge is the little red circle that appears above the title and over the icon on the
tab bar. As always, you can change this in the Attributes Inspector, but you’ll usually
want to do this programmatically. That’s because the information in a badge is meant
to be dynamic, changing as the view changes and alerting a user to new content dur-
ing runtime. For example, badges tell you when you have new mail or new voicemail.

 Getting to the badge property is a two-step process. Start with your view controller.
From there, you access tabBarItem, which is a property of the controller that links you
to its connected tab bar item, and then badgeValue, which is a property of the tab bar
item. Fortunately, you can do all this as one nested line:

secondController.tabBarItem.badgeValue = @"16";

The 16, as it happens, is the initial character count of the main text view. If you were
building a live program, you could change this count over the course of your pro-
gram’s runtime.

 Table 7.1 summarizes the three main elements of the tab bar and how to customize
them.

Figure 7.3 You can
customize tab bars to make
navigation clear and simple.

http://www.it-ebooks.info/

124 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
There’s one more way to change both the icon and the title of a tab bar item simulta-
neously: by creating a tab bar item with the initWithTabBarSystemItem:tag:
method. Doing so creates a tab bar using one of the constants defined under
UITabBarSystemItem, each of which relates to a standard iOS function and correlates
a name and a picture with that function.

 You’ll probably do this in the Attribute Inspector, where you select a specific iden-
tifier instead of entering a title and a picture. Because your third tab allows searches,
you can initialize it as a UITabBarSystemItemSearch button, which gives it the title of
Search and the picture of a magnifying glass, as shown in figure 7.3.

 When you have the tab bar set up, you’re ready to start using the controller.

7.1.4 Using your tab bar controller

The main function of a tab bar is to allow navigation between multiple pages in your
application. This is an implicit function of the object, and you needn’t do anything
more to enable it. The rest of the tab bar controller’s functionality goes beyond our
basic overview of the topic, but we’ll mention it briefly. The two main elements we
want to consider are customization and delegation.

TAB BAR CUSTOMIZATION

One of the neat things about tab bars is that users can customize them to contain
exactly the tab bar items that interest them. This can be done when the number of tab
bar items exceeds the allowed space of five items. You can allow this by setting the
customizableViewControllers property to include a list of view controllers that the
user can change:

tabBarController.customizableViewControllers =
 tabBarController.viewControllers;

The UITabBar reference contains all the information you’ll need on managing cus-
tomization.

TAB BAR CONTROLLER DELEGATION

As we noted, you can set a delegate for your tab bar controller to hand off the scant
amount of event management that it requires. The delegate object must follow the
UITabBarControllerDelegate protocol, which is a fancy way of saying that it will
respond to two specific events: one when a view controller is selected and another
when the tab bar controller is customized. A protocol reference covers the specifics
of this.

Table 7.1 From your view controllers, it’s easy to customize the associated tab bar items.

Property Summary
Interface
Builder

Xcode

badge Tab bar info Yes viewcontroller.tabBarItem.badgeValue

icon Tab bar picture Yes Only at init

title Tab bar words Yes viewcontroller.title

http://www.it-ebooks.info/

125The navigation controller

www.it-ebooks.info
 Two methods are associated with these protocols: tabBarController:didEnd-
CustomizingViewControllers:changed: reports the end of tab bar customization,
and tabBarController:didSelectViewController: reports when the user switches
between controllers. The latter is probably more generally useful. For example, you
might use it in the word-count example to recalculate the word-count totals whenever
a user jumps to the word-count page.

 Now that you have a basic example of how to navigate with a tab bar, you’re ready
for the next advanced controller: the navigation controller.

7.2 The navigation controller
The navigation controller is probably the most-seen user interface item on the iOS
device. Whenever you have a stack of view controllers in which you can move up and
down through the hierarchy, that’s the navigation controller at work. It appears in the
Text, Calendar, Photos, and Notes iPhone utilities, to name a few.

 Working with the navigation controller is a bit harder than working with the tab
bar controller, because you have to manage your hierarchy of views live as the user
interacts with your program; but the SDK still keeps it simple.

 As with the previous view controllers, we’ll look at an overview of the class and then
examine how to create, build, and use a navigation controller. Let’s get started with an
overview of its hierarchy.

7.2.1 The anatomy of a navigation controller

As with the tab bar controller, the navigation controller involves a hierarchy of items.
The UINavigationController sits atop a stack of UIViewControllers that can be
pushed or popped as a user moves up and down through it.

 Each of these controllers also has an associated UINavigationItem, which sits in
the UINavigationBar when it’s active. Each UINavigationItem may also contain one
or more UIBarButtonItems, which allow for additional action items to sit on the navi-
gation bar.

 To tie things back together, the UINavigationBar is also linked to the
UINavigationController so that navigation items and view controllers stay in sync
over the course of a program’s runtime. Whenever a UIViewController loads into the
UINavigationController, its UINavigationItem also loads into the UINavigationBar.

 A minimalistic navigation controller contains just four objects: the UINavigation-
Controller, the UINavigationBar, a stack containing a single UIViewController, and
a UINavigationItem (which is placed into the UINavigationBar). Presumably, more
view controllers and associated navigation items will be added to the stack as the pro-
gram runs. This is illustrated in figure 7.4.

 Note how similar this diagram of navigation controller parts is to figure 7.1, the
diagram of tab bar controller parts. This isn’t an accident in the drawing, nor do we
expect that it was an accident in Apple’s design. The navigation controller works
much like the tab bar controller, and you’ll see familiar elements, such as the title of
the view controller creating the title within the navigator.

http://www.it-ebooks.info/

126 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
The biggest difference is that whereas the tab bar controller presents a modal para-
digm, entirely organized by the controller, the navigation controller creates a hierar-
chical paradigm. The navigation controller doesn’t have any particular sense of the
organization of the entire structure. Instead, a linked list is created, with each naviga-
tion item knowing only about the pages on either side of it.

7.2.2 Creating a navigation controller

To create a navigation controller, create a new project (in this example, called navex)
using the Navigation-Based Application template. You can page through the .xib file
and the Xcode listing to see what you’re given. Let’s start with the .xib files, whose
content you can see in figure 7.5.

 Mainwindow.xib contains a UINavigationController in the nib window with a
UINavigationBar hidden under it. The main display window contains a UINavigation-
Item and a RootViewController. The latter is a subclass of UIViewController created
through Xcode, just as when you designed your own table controller in chapter 5. Note
that this sets up the standard iPhone paradigm of navigation controllers being built
atop table controllers. The table view controller’s contents are instantiated through a
second .xib file, RootViewController.xib, as shown in the table view controller’s attri-
butes window.

 RootViewController.xib is a boring .xib file because it contains only a table view.
Consider it a good example of how pairing .xib files with view controllers can keep
your program well organized.

UINavigationController

UIViewControllerUIViewController
UINavigationBar

UINavigationItemUINavigationItem

UIBarButtonItemUIBarButtonItem

(optional) (optional)

Figure 7.4 A navigation
controller contains at least four
objects and may be built into a
complex web of
interconnections.

A note on table views
The standard device paradigm is to do hierarchical navigation through table
views, each of which contains lists of many different subpages that you can go
to. As a result, despite the fact that any UIViewController can sit beneath a
UINavigationController, it’s usually a UITableViewController. This is
exactly the setup you see in the navigation-based template.

http://www.it-ebooks.info/

127The navigation controller

www.it-ebooks.info
Finally, if you look at the Xcode files created by the template, you see that the naviga-
tion controller is linked to your window in the app delegate file. Among the other
default files are the RootViewController class files you’d expect to see. Because
you’re working with a table view controller, you know the RootViewController class
files will be important when you input the table view’s data.

7.2.3 Completing the navigation controller

At this point, you need to do three things to complete the navigation controller: add a
title, add navigation links, and (optionally) add action buttons.

ADDING A TITLE

Like the tab bar controller, the navigation controller takes its title from the title of the
individual page’s view controller. All you have to do is define title in your table view
controller file:

self.title = @"Color List";

This turns out to be a critical bit of data, because it’s also what the navigation control-
ler uses as a back button when you’re deeper in the hierarchy.

ADDING THE LINKS

You could theoretically use whatever method you wanted to link to additional pages
via a navigational controller. The default mechanism is to use a table list, and that’s
the method you’ll use in this example.

Figure 7.5 The Navigation-
Based Application template
contains two .xib files: one for
the main view (top) and one for
what appears inside the
controller (bottom).

http://www.it-ebooks.info/

128 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
 Design your table view controller as discussed in chapter 5, but this time give each
table cell an accessory view of type UITableViewCellAccessoryDisclosureIndicator.
That’s the standard chevron used to indicate hierarchical navigation.

 The following listing includes all the major elements required to define this navi-
gation table in RootViewController.m.

- (void) viewDidLoad {
 self.title = @"Color List";
 colorList = [NSArray arrayWithObjects:
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Red",@"titleValue",
 [UIColor redColor],@"colorValue",nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Green",@"titleValue",
 [UIColor greenColor],@"colorValue",nil],
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"Blue",@"titleValue",
 [UIColor blueColor],@"colorValue",nil],
 nil];
 [colorList retain];
}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {

 return [colorList count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *MyIdentifier = @"MyIdentifier";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:MyIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:MyIdentifier] autorelease];
 } cell.textLabel.text = [[colorList objectAtIndex:indexPath.row]
 objectForKey:@"titleValue"];
 cell.textLabel.textColor = [[colorList objectAtIndex:indexPath.row]
 objectForKey:@"colorValue"];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

NOTE Make sure to declare colorList in the header file.

There’s nothing new here, but we’ve included it to clarify the rest of the discussion of
the navigation controller. Figure 7.6 shows what this application looks like on both
devices.

Listing 7.2 A table for a navigator

http://www.it-ebooks.info/

129The navigation controller

www.it-ebooks.info
ADDING ACTIONS

If you want, you can move right on to using your navigation controller. Alternatively,
you can do some extra work with buttons. In addition to the standard navigation con-
trols, you can add buttons to the navigation bar. You do so through the leftBar-
ButtonItem and rightBarButtonItem properties of the UINavigationItem. A left
button replaces the back button, and a right button sits in the usually blank right side
of the navigation bar.

 As we’ve noted, each view controller is linked to its own navigation item. A view con-
troller can access its navigation item through the navigationItem property at any time.

 When you set a button, you must set it to be a UIBarButtonItem object, which you
have to create. You can use four init methods, as shown in table 7.2. You’ll probably
instantiate the buttons in the viewDidLoad: method, the same place where you
should initialize your array for use with the table view.

 Note that all the buttons except the custom-view button come with their own target
and action links. These are the simpler target-action mechanisms that we alluded to in
the previous chapter. They work exactly like the more complex target-action mecha-
nisms but are built in.

Figure 7.6 The navigation
controller shown on both the
iPad and iPhone

http://www.it-ebooks.info/

130 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
Here’s how you can create a button as part of the page represented by your
UITableViewController:

self.navigationItem.rightBarButtonItem = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self action:@selector(changeTitle)];

As you can guess from the title, this button press enacts an innocuous title change, but
it would be easy to redraw your table list or even to integrate that button with the nav-
igation itself, perhaps using it as a home button.

 At this point, you have a navigation controller that does precisely nothing (other
than showing a gray bar with a title) and perhaps a working button. Unlike with the
other controllers you’ve met so far, you’ll need to do some runtime work to get your
navigation controller operating.

7.2.4 Using your navigation controller

A navigation controller has one core job: to allow a user to move up and down
through a hierarchy of pages.

NAVIGATING FORWARD

To allow a user to navigate to a page deeper in your hierarchy, you need to use the nav-
igation controller’s interface to push a new view controller on top of the navigation
controller’s stack, which then causes that new view controller’s view to become the vis-
ible view in your program. This is shown in the following listing, which continues to
expand on RootViewController.m.

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 UIViewController *colorController = [[UIViewController alloc] init];
 colorController.title =
 [[tableView cellForRowAtIndexPath:indexPath].textLabel text];
 colorController.view = [[UIView alloc] init];
 colorController.view.backgroundColor =
 [[tableView cellForRowAtIndexPath:indexPath].textLabel textColor];
 [self.navigationController

Table 7.2 You can create navigation bar button items using a variety of methods to get precisely what
you want.

Method Summary

initWithBarButtonSystemItem:target:action: Creates a standard button drawn from
UIButtonSystemItem

initWithCustomView: Creates a special button

initWithImage:style:target:action: Creates a button with a picture

initWithTitle:style:target:action: Creates a button with a word

Listing 7.3 Activating a navigation controller

http://www.it-ebooks.info/

131The navigation controller

www.it-ebooks.info
 pushViewController:colorController animated:YES];
 [colorController release];
}

To navigate using tables, you must modify the table view controller’s tableView:did-
SelectRowAtIndexPath: method, which you first met in chapter 5. Clearly, if you’re
activating your navigation controller by some other method, you’ll use different
means.

 When a user selects an item that should lead them to the next page, you have to
create the page they’ll go to. You start by creating a view controller. Remember to set
title, because it will be the title that appears in your new view controller’s navigation
item. Matching the title to the table cell’s text is a common way to set this property.

 After you’ve created a view controller, you need to decide how to create its default
view. Here, you create a plain view. Prefer to create your view in Xcode? No problem.
Use the initWithNibName: method when you create your view controller, visually.

 Each view should have different content based on what the user selects. Here, you
look at the color of the table cell’s text and then set the whole view to that color. More
often, you’ll probably look up an NSDictionary element from the same array you
used to fill in your table and use that information to generate a unique page. For
example, it’d be easy to pull a nib name out of a dictionary.

 After you’ve set up your new page, you send a message to the navigation controller
to switch over to it. Note that you can find a refer-
ence to your navigation controller by using the view
controller’s navigationController property,
another of many object links available in the view
controller. The push command is simple: it adds a
new page to the top of the navigation controller’s
stack and sends your user over to it.

NAVIGATING BACKWARD

After you’ve loaded a new page onto a navigation
controller’s stack, it appears with all the peripherals
you’d expect, including a titled navigation bar with a
titled back button (each based on the title property
of the appropriate controller). This is all shown in
figure 7.7.

 You also don’t have to worry about coding the
backward navigation. Clicking the back button auto-
matically pops the top controller off the stack without
any work on your part. Moreover, if you want to play
with the back button’s title, the tricky part is to define
the back button in the root view controller.

 Go back to the RootViewController in the view-
DidLoad: method, and add the following snippet to
define the back button’s title:

Figure 7.7 With a few simple
commands, a navigation controller’s
setup is largely automated. Here you
see the titled navigation bar with a
titled back button.

http://www.it-ebooks.info/

132 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
UIBarButtonItem *backBtn = [[UIBarButtonItem alloc] initWithTitle:@"Back"
style:UIBarButtonItemStyleDone target:nil action:nil];

self.navigationItem.backBarButtonItem = backBtn;
[backBtn release];

OTHER TYPES OF NAVIGATION

Navigation doesn’t have to be just forward and backward. You can also do some
slightly more complex things, either during setup or at runtime.

 At setup, you can create a navigational hierarchy and push a user into it before they
take any actions. You can see this in action in various iPhone programs. Mail always
returns you to the last mailbox you were at, whereas Contacts always gives you a back
button to return to the Groups page.

 You can do fancy things during runtime using three navigation controller methods:
popToRootViewControllerAnimated: (which brings you back to the top of your stack),
popToViewController:animated: (which returns you to a specific view controller),
and popViewController-Animated: (which pops the top controller off the stack).

 They’re powerful, although you have to take care when changing the standard nav-
igation paradigm so you don’t confuse your users. But, for example, you could place a
UIBarButtonItem in your nav bar that returns you to home from deep in your hierar-
chy. Alternatively, you might pop the top page automatically after a user takes some
action on the page that concludes its usefulness.

NAVIGATORS AND DATABASES

So far, you’ve built all your table view controllers—including the one embedded in
this navigation controller—using arrays. This is a perfectly acceptable technique for a
small, static table. But if you want a bigger or a more dynamic table, you’ll probably
want to use a database as your data backend. We’ll present a complete example of
how to do so in chapter 9, when we cover the SQLite database package.

OTHER METHODS AND PROPERTIES

There’s little else to be done with the navigation controller, although you can find a
few other properties in the class reference. You can set those properties to modify the
look of individual UIBarButtonItems and to set your nav bar to be hidden.

 We’ve now covered the two most important advanced view controllers. But before
we finish our discussion of the topic, let’s take a brief look at the flipside controller,
which exists only as a template, not as a class in the UIKit framework. The template
instead creates a subclass of ViewController in your program.

7.3 Using the flipside controller
To create a flipside controller on iPhone, choose the Utility Application template
when you start a new project. Please note that this template is only available to the
iPhone platform. It creates a small hierarchy of objects, as shown in figure 7.8.

 The flipside controller contains three view controllers and two views. Each of the
view controllers is a subclass of UIViewController, whereas the views are each a sub-
class of UIView.

http://www.it-ebooks.info/

133Using the flipside controller

www.it-ebooks.info
 The main view controller is called the Root-
ViewController. It’s loaded through MainWin-
dow.xib. Much of the template’s work is done, as
you’d expect, through its class files. The Root-
ViewController.m file loads the MainViewCon-
troller (using the initWithNibName: method
to load its unique nib file) and then creates a
special toggleView method for when the info
button at the bottom of the page is pushed.
When this happens, the FlipsideView-

Controller also loads. The following listing
shows this standard method, which you shouldn’t have to modify.

- (IBAction)toggleView {
 if (flipsideViewController == nil) {
 [self loadFlipsideViewController];
 }
 UIView *mainView = mainViewController.view;
 UIView *flipsideView = flipsideViewController.view;
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:1];
 [UIView setAnimationTransition:([mainView superview] ?
 UIViewAnimationTransitionFlipFromRight :
 UIViewAnimationTransitionFlipFromLeft) forView:self.view
 cache:YES];
 if ([mainView superview] != nil) {
 [flipsideViewController viewWillAppear:YES];
 [mainViewController viewWillDisappear:YES];
 [mainView removeFromSuperview];
 [infoButton removeFromSuperview];
 [self.view addSubview:flipsideView];
 [self.view insertSubview:flipsideNavigationBar
 aboveSubview:flipsideView];
 [mainViewController viewDidDisappear:YES];
 [flipsideViewController viewDidAppear:YES];
 } else {
 [mainViewController viewWillAppear:YES];
 [flipsideViewController viewWillDisappear:YES];
 [flipsideView removeFromSuperview];
 [flipsideNavigationBar removeFromSuperview];
 [self.view addSubview:mainView];
 [self.view insertSubview:infoButton
 aboveSubview:mainViewController.view];
 [flipsideViewController viewDidDisappear:YES];
 [mainViewController viewDidAppear:YES];
 }
 [UIView commitAnimations];
}

Listing 7.4 The flipside toggler

RootViewController

MainViewController
FlipsideViewController

MainView
FlipsideView

MainWindow.xib

MainView.xib

FlipsideView.xib

Figure 7.8 Several objects are created
in a flipside controller.

http://www.it-ebooks.info/

134 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
Because you shouldn’t need to modify it, we
won’t cover all this code; but if you read through
it, you’ll find that it includes some nice nuances,
including the ability to work with UIView’s sim-
ple animation and some different ways to call
insertSubview:. This template provides a great
example of how to connect multiple Xcode class
files and multiple nib files, and reading it can
serve as a great tutorial for more advanced work
you’ll do yourself.

 For example, look at the MainWindow.xib file.
Note that connections are made to two different
files, as shown in figure 7.9. The app-delegate file
contains a link to the root-view controller object,
whereas the root-view controller file contains
links to the info button object and its action. This
shows the sort of organization you’ll want to con-
sider for your own projects.

 Given that, how do you use the flipside controller? All you need to do is lay out
objects in the two .xib files and/or make changes to their accompanying class files.
Then, you can build controller actions, events, and other activities into the two con-
troller files.

 For example, you can make your main view red; then, you can go into the
FlipsideViewController.m file and change the default background color to green-
Color (instead of its current flipsideColor) to create a simple red and green flash-
card, which can be used to express your interest in a conference topic. We’ll also
show you how to use a flipside controller to create local preferences on the back side
of your program in chapter 8, section 8.2.1. If you ever need a two-sided application,
the flipside controller is a great place to get started.

 Now that we’ve explored the template view controllers that work on iPhone, we’ll
discuss the iPad-specific view controllers.

7.4 The split view controller
The split view controller is an iPad-specific view controller that allows you to separate
content into different panes. Although you can implement it a few ways, by far the
most common is to have a UITableView on the left and a UIView on the right. Because
the split view is made of two views that you have learned about in previous chapters,
we’ll focus on the example instead of the individual views.

 One of the major places you’ll see this interface component in use is in the iPad’s
Mail application. The left pane of the split view controller displays all of your mail
messages, whereas the right displays the content of the selected message.

Figure 7.9 Interface objects can be
connected to a variety of different files.

http://www.it-ebooks.info/

135The split view controller

www.it-ebooks.info
7.4.1 Creating a split view controller

To create a project based on SplitViewController, start by selecting the Split View-
Based Application template from Apple’s project templates, as shown in figure 7.10.
Titled the project SplitViewx. This will provide you with a complete basic application,
including a simple data set.

 You’ll walk through the code and modify it to display a list of website bookmarks.
When the user taps the bookmark in the left pane, it will load the website in the right
one. As you modify the code, we’ll explain in detail how the SplitViewController is
constructed. Figure 7.11 shows what the application will look like.

 When you first create a split view–based application, a number of files are added to
your project automatically. Open MainWindow.xib, and inspect the contents.
Figure 7.12 shows the various view elements you see when you click the SplitView-
Controller.

 As you can see, the SplitViewController is made up of two main views. The navi-
gation bar in the left view should hint that its view is a navigation controller. The
object viewer in the bottom corner confirms this. Notice that the view hierarchy is
exactly the same as that for the navigation controller in section 7.2.

 The right view is loaded from another nib called DetailView. Double-clicking the
blue text labeled DetailView opens it and allows you to modify it as you would any
other view. You’ll see that later in the section when you add a web view to the example
application.

Figure 7.10 Creating a split view–based application

http://www.it-ebooks.info/

136 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
Figure 7.11 The bookmarks application employing a split view

Figure 7.12 SplitViewController view elements

http://www.it-ebooks.info/

137The split view controller

www.it-ebooks.info
7.4.2 Building the split view controller

Now that you’ve seen how the views are organized, it’s time to review the code neces-
sary for them to function. As mentioned earlier, the project will contain a sample data
set that you’ll modify to fit the application.

 The first steps are exactly the same as in section 7.2, when you created the naviga-
tion controller. You need to create an array of data, display it in the table view, and
respond to actions when a row has been selected.

DECLARING THE DATA ARRAY

Open RootViewController.h, and modify the code to look like the following listing.

@class DetailViewController;

@interface RootViewController : UITableViewController {
 DetailViewController *detailViewController;

 NSArray *bookmarks;
}

@property (nonatomic, retain) IBOutlet
 DetailViewController *detailViewController;
@property (nonatomic, retain) NSArray *bookmarks;

@end

You add B and C to declare the array of bookmarks to be displayed in the table. For
this example, the user can’t modify the bookmarks, so the array is declared as an
NSArray rather than an NSMutableArray.

 Now that you have your declaration, let’s synthesize the property and populate the
array with various bookmarks of your choice. Open RootViewController.m, and add
the code in this listing.

@synthesize bookmarks;

- (void)viewDidLoad {
 [super viewDidLoad];
 self.clearsSelectionOnViewWillAppear = NO;
 self.contentSizeForViewInPopover = CGSizeMake(320.0, 600.0);

 NSArray *_bookmarks = [[NSArray alloc]
 initWithObjects:@"http://manning.com",
 @"http://apple.com",
 @"http://twitter.com",
 @"http://google.com",nil];

 self.bookmarks = _bookmarks;
 [_bookmarks release];
}

Listing 7.5 Declaring the dataset array for the SplitViewController

Listing 7.6 Populating the dataset for the SplitViewController

Declares array
of bookmarks

B

Creates property
for class

C

Initializes
array with
URLs

B

http://www.it-ebooks.info/

138 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
You’ve seen the first line earlier in the book: it synthesizes the bookmarks property,
allowing getter and setter methods to be automatically created for it. You initialize the
bookmarks array with strings B, which are the URLs to be loaded when a given cell is
selected. This declaration is similar to the first method implemented in listing 7.2.

 Now that your data has been initialized, you need to implement the delegate meth-
ods of the UITableViewController in the left pane of your SplitView.

TABLEVIEW DELEGATE METHODS

Because the left pane is a UITableViewController, you’ll implement the same methods
to interact with it that you did in listing 7.2. The following listing details the methods
for displaying your array of bookmarks instead of the default data.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)aTableView
 numberOfRowsInSection:(NSInteger)section {
 return [bookmarks count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"CellIdentifier";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 cell.accessoryType = UITableViewCellAccessoryNone;
 }

 cell.textLabel.text = [self.bookmarks objectAtIndex:indexPath.row];
 return cell;
}

You first set the number of sections for the UITableView to 1 because your dataset
doesn’t have any groupings B. Next, you return the number of bookmarks in the
array C. As you’ve seen before, this denotes the number of cells to be displayed in the
UITableView. Finally, you set the text of the cell to the URL string of the bookmark D.
At this point, the application has enough code to display the bookmarks; running it in
the simulator looks like figure 7.13.

 When you select a row in the table, the label updates with text that says something
like “Row X”, where X is the row number selected.

 Next, we’ll show you how to modify this view to do something a little more interest-
ing. You’ll add a UIWebView to the DetailView and display the page of the selected
URL inside it.

Listing 7.7 UITableViewDelegate methods for displaying bookmark data

Sets number of
table sectionsB

Sets number
of rows equal
to number of
bookmarksC

DSets text
of cell to

bookmark

http://www.it-ebooks.info/

139The split view controller

www.it-ebooks.info
MODIFYING THE DETAILVIEW

Start by opening DetailViewController.h and adding an IBOutlet for a UIWebView.
The code is shown here.

@interface DetailViewController : UIViewController
<UIPopoverControllerDelegate, UISplitViewControllerDelegate> {

 UIPopoverController *popoverController;
 UIToolbar *toolbar;

 id detailItem;
 UILabel *detailDescriptionLabel;

 UIWebView *webView;
}

@property (nonatomic, retain) IBOutlet UIToolbar *toolbar;

@property (nonatomic, retain) id detailItem;
@property (nonatomic, retain) IBOutlet UILabel *detailDescriptionLabel;

@property (nonatomic, retain) IBOutlet UIWebView *webView;

@end

Listing 7.8 Adding an IBOutlet for your UIWebView

Figure 7.13 A first look at your bookmark application as shown on an iPad in landscape orientation

http://www.it-ebooks.info/

140 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
At this point, the code should look pretty familiar. You declare an IBOutlet for a
UIWebView. This gives you the ability to control the UIWebView from within your class.
Now that the outlet has been added, be sure to synthesize it in the .m file.

 Open DetailView.xib, and drag a UIWebView onto the main view. Move the label
out of the way if necessary. Make sure you connect your webView outlet from the file’s
Owner object to the UIWebView you place on the view. (If you don’t recall how to do
this, refer to section 3.4.2.)

 Now that all of your views have been created, it’s time to implement the code that
actually does something.

7.4.3 Using your split view controller

As you did in section 7.2.4, you’ll implement the didSelectRowAtIndexPath delegate
method of the UITableView to respond to the user tapping on a cell. In this example,
the user taps on the cell to load the selected bookmark’s website in the UIWebView.

 Open RootViewController.m, and modify the code as follows:

- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 detailViewController.detailItem = [bookmarks
 objectAtIndex:indexPath.row];
}

You don’t modify the code much from the sample code given to you by the project
template. Note that you set the detailItem of the detailViewController to your
selected URL string. The data type of detailItem is id; this is a generic data type that
can be set to any object, making the detailViewController class very dynamic.

 Normally, in the didSelectRowAtIndexPath method, you’d initialize a new view
controller, set its data, and push it onto the view stack. This isn’t the case when you’re
dealing with a split view, because the detailViewController has already been initial-
ized for you—you just want to modify its data.

 The last step in displaying the web page is to tell the UIWebView to reload with the
selected URL when the detailItem property is set. As mentioned earlier, when the
detailItem property was synthesized, the getter and setter methods were automati-
cally created. You can override either one of these methods to modify its functionality.
This is what has been done in DetailViewController.m, because you want to update
the interface when the detailItem property is modified. Although you won’t modify
the code in this method, you do need to modify the code in a method called from it.
Open DetailViewController.m, and update the configureView method to contain the
following code:

- (void)configureView {
 detailDescriptionLabel.text = [detailItem description];
 NSURLRequest *request = [NSURLRequest
 requestWithURL: [NSURL URLWithString:[detailItem description]]];
 [self.webView loadRequest:request];
}

http://www.it-ebooks.info/

141The split view controller

www.it-ebooks.info
This code should look very familiar. It’s almost identical to the code you wrote in sec-
tion 3.4.2 when loading the Apple stock into the web view. This code creates an NSURL-
Request with the selected URL and loads it into the UIWebView.

 When you run this code in the simulator, tapping on a row loads the selected URL
in the web view. But one gotcha remains: the interface doesn’t look right when you
switch from vertical to horizontal mode. To rotate the simulator, press Cmd-left arrow
or Cmd-right arrow.

7.4.4 Adjusting the interface for vertical and landscape modes

Apple is very clear that all iPad-specific apps should work correctly in both portrait
and landscape modes. This is in an effort to enforce the idea that there is no wrong
way to hold the device.

 Currently, your web view looks fine when the device is vertical, but it’s cut off when
the device is rotated to be horizontal. To resolve this issue, you must implement the
shouldAutorotateToInterfaceOrientation method of your DetailViewController.

 You need to adjust the frame of all the view elements for a given device orienta-
tion. Doing so lets you position the view items correctly no matter how the user is
holding the device. Update DetailViewController.m to include the following code.

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {

 if(interfaceOrientation == UIInterfaceOrientationLandscapeLeft ||
 interfaceOrientation == UIInterfaceOrientationLandscapeRight) {
 self.webView.frame = CGRectMake(
 self.webView.frame.origin.x,
 slef.webView.frame.origin.y,
 662,
 662);
 } else {
 self.webView.frame = CGRectMake(
 self.webView.frame.origin.x,
 self.webView.frame.origin.y,
 728,
 911);
 }
 return YES;
}

You first determine whether the device is being held in landscape mode B. If so, you
adjust the frame accordingly C. Note that the numbers used to update the frame are
picked based on personal preference—you should adjust the frame to what you feel
looks correct for the given orientation. Then, you update the frame of the WebView to
look correct in portrait mode D.

 So far, you’ve explored the view controllers that you might use as the building
blocks of your own views. Tab bars, navigators, flipsides, and split views are ultimately

Listing 7.9 Responding to device rotation

B

Device in
landscape

mode?
Updates frame
of web view
for landscape
mode

C

Updates frame
of web view
for portrait
mode

D

http://www.it-ebooks.info/

142 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
tools that you’ll use to construct other sorts of programs. But a couple types of view
controllers exist to accomplish specific tasks: the modal view controller and the pop-
over view controller.

7.5 Popover and modal view controllers
Technically, a modal view refers to a temporary view that’s placed on top of all the ele-
ments of an existing view and then later dismissed. A modal view controller is a view
controller that manages such a modal view. The iPhone camera is an example of a
view controller that has been presented modally.

 The popover view is a lightweight view intended to display data in a specific area.
It’s available to the iPad. In contrast to a modal view, the
popover view doesn’t consume the entire screen; rather,
it’s displayed as a context menu. In the previous example,
the split view controller project template gave you a pop-
over view for free when the device was in portrait mode.

7.5.1 Creating a popover view controller

A popover view controller is initialized with the view con-
troller containing the view to be displayed inside it.
Figure 7.14 shows what this looks like in the previous
example when the device is held in portrait mode.

 As you can see, it contains the data that is normally
displayed in the table view on the left side of the split
view. This list is displayed when the user presses the Root
List button.

 Let’s look at the code for displaying a popover view
when a button is pressed, shown in the following listing.
This code is taken from Apple’s example of working with
popover view controllers.

- (IBAction) buttonPressed:(id) sender {
 MyCustomViewController* content = [[MyCustomViewController alloc]
 init];
 UIPopoverController* aPopover = [[UIPopoverController alloc]
 initWithContentViewController:content];
 aPopover.delegate = self;
 [content release];

 self.popoverController = aPopover;
 [aPopover release];

 [self.popoverController presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
}

Listing 7.10 Displaying a popover view when a button is pressed

Figure 7.14 A popover view

http://www.it-ebooks.info/

143Combining view controllers in universal applications

www.it-ebooks.info
The pattern that this code follows should be fairly familiar to you. It’s similar to the
code that handles a touch on a UITableView row. You first initialize the new view con-
troller to display in; this controller is then used to initialize the popover. You basically
tell the popover to display the view contents of the view controller it was initialized with.

 Finally, you display the popover view near the button the user tapped. Fortunately,
UIKit automatically handles the placing of the popover view for you. In addition, it
allows you to configure the direction the arrow is pointing in, giving your popover
some sort of context.

7.5.2 Creating a modal view controller

Practically, the modal views available in iOS are all “helper” programs. They let you
start up a complex graphical interface that’s been preprogrammed by Apple while
only managing the responses. You get the advantage of lots of programming (and a
standardized interface), and you don’t have to do much yourself.

 Whenever you want to display a modal view, you use the UIViewController’s
presentModalViewController:animated: method to start it up:

[self presentModalViewController:myPicker animated:YES];

Later, you dismiss it using another UIViewController method:

[self dismissModalViewControllerAnimated::YES];

You can design your own modal view controllers for when you want to have users
make a choice before you return them to the regular program. More commonly,
you’ll use picker controllers that are intended to be run as modal view controllers.

 In chapter 9, you’ll meet the Address Book UI people picker (as well as some
related controllers that run inside a navigator), and in chapter 11 you’ll meet the
image picker.

7.6 Combining view controllers in universal applications
You learned how to create view controllers inside your application or start an applica-
tion by using the template under iOS projects. How do you combine these view con-
trollers inside your application for both the iPhone and iPad? In this section, we will
talk about how to design universal applications for both the iPhone and iPad and how
to combine the view controllers inside the project.

7.6.1 Design universal applications for the iPhone and iPad

There are multiple ways to build a universal application running on both the iPhone
and iPad. But think about the user experience before you start to work on the univer-
sal application for both the iPhone and iPad. Generally speaking, the application run-
ning on the iPhone is limited to the screen size. That’s why you commonly see the
combination of table view controller and navigation controller on the iPhone. This
pattern works great on the iPhone because the application’s content is well organized

http://www.it-ebooks.info/

144 CHAPTER 7 Advanced view controllers

www.it-ebooks.info
under the menu selection user interface, and the information is easy to spot on the go
with only one-thumb navigation on the screen.

 The split view controller template is created for the iPad only, simply because there
is more space available on the iPad for content display and user interactions. The user
would expect much more on an iPad application, not only because the content needs
to be richer compared to the iPhone, but also because the navigation on the iPad is
not limited to one thumb; multitouch gestures are commonly used.

 The iPhone, as we mentioned earlier, is limited to 320 x 480 size for the full-screen
display. Therefore, you often see navigation controllers with a table view controller as
a menu-selection user interface.

 When you design an application, it’s recommended that you study the difference
in the users’ habits between the iPhone and iPad. Next, let’s talk about common cases
for reusing view controllers in a universal application.

7.6.2 Combining view controllers

On the iPhone, you see a navigation controller as a parent view controller. A table
view is the child view controller. Based on the user’s selection on the table view, you
can present a modal view controller or other
view controller for more detailed information.
A good example would be the Messages appli-
cation on the iPhone.

 On the iPad, you often see the split view con-
troller template with the popover controller as a
menu selection user interface. For example, the
Notes application on the iPad is designed based
on the split view controller template.

 Let’s look at an example; you are about to
design an application running on iPhone with a
list of selections on table view. When you select
one option, a detailed view controller will
appear, as shown in figure 7.15.

 On iPad, the split view controller will be
used at the root. Under landscape mode, the
menu selection is on the left in the table view
and the detailed view controller is on the right
side, as shown in figure 7.16.

 Under portrait mode, the detailed view con-
troller is on the screen. The menu selection
becomes a button on the top screen. When you
tap the button, the menu selection presents as a
popover controller.

Select
one
option

Table View
Controller

Detail View
Controller

iPhone
Screen 1

iPhone
Screen 2

Figure 7.15 The prototype for an iPhone
application with a table view controller
and a detail view controller

Table View
Controller

Detail View
Controller

Split View Controller on iPad

Left Right

Figure 7.16 The prototype for an iPad with
a split view controller contains a table view
on the left and a detail view on the right.
Download from Wow! eBook <www.wowebook.com>

http://www.it-ebooks.info/

145Summary

www.it-ebooks.info
 You can separate the view controllers between the iPhone and iPad. But that’s a lot
of duplicate code inside this project. In this case, how do you reuse the view control-
lers in the iPhone on the iPad?

 The common thing to do is to find the same view controllers in both projects. As
shown in the prototype drawings, the table view for the menu selection and the detail
view controller are in both the iPhone and iPad design.

 Therefore, you can use the same detail view controller and table view controller as
your split view controller’s detail view controller and master view controller, respec-
tively.

 Sometimes, drawing the prototype on a sketchbook is beneficial. This process
helps developers to analyze the structure of the program.

 There is more than one way to design a universal application. In this section, we
first looked at the user interface design differences on the iPhone and iPad; then we
talked about how to combine the view controllers in the universal application. I hope
you find the design pattern useful in your own practice.

7.7 Summary
At this point, we’ve finished with what we consider the basic introduction to the SDK.
Because this is an introductory SDK book, our main goal has been to show you all the
fundamentals before we set you loose in the wilds of iPhone and iPad programming,
so you have the building blocks you need when you begin programming on your own.

 Let’s briefly review:

 The SDK is built on top of Objective-C and is supported by a large set of frame-
works provided by iOS. (See chapters 1 and 2.)

 Programming can be done in either programmatically or visually, supporting
two powerful ways to create objects. (See chapters 3 and 4.)

 Basic view controllers take the controller role of the MVC model and allow you
to administer your views in a rational way. (See chapter 5.)

 Events provide low-level methods for seeing what a user is doing, whereas
actions provide more sophisticated connections to buttons, sliders, text fields,
and other tools. (See chapter 6.)

 Advanced view controllers provide you with a variety of ways to navigate among
pages. (See chapter 7.)

Although we’ve completed our introduction to the iOS SDK, we’re not finished yet.
Our next stop is an in-depth look at the many ways to input data into an application.

http://www.it-ebooks.info/

www.it-ebooks.info
Data: actions,
preferences, and files
In the preceding chapters, we offered a tutorial on the most important features of
the SDK: we outlined Objective-C and iOS and explained Xcode, we examined view
controllers of all types, and we looked at the standard event and action models for
the iPhone and iPad. In the process, we tried to provide the strong foundation that
you need to do any type of iOS programming. Armed with that knowledge, and
with the extensive documentation available online (or as part of Xcode), you
should be able to start programming right away.

 But we also want to offer you some additional information about many of the
SDK’s best features. In the coming chapters, we’ll touch on some of the major cate-
gories of SDK tools and show you how to use them.

 We’ll expand on the sample programs a bit. Having completed the introduction
to the SDK, we can take advantage of your knowledge of Objective-C to incorporate

This chapter covers
 Accepting user input through controls

 Allowing user choice through preferences

 Accessing and creating files
146

http://www.it-ebooks.info/

147Accepting user actions

www.it-ebooks.info
at least one in-depth example in each upcoming chapter; our intent is to show how
different objects can work together to create a more complex Objective-C project. We
can’t give you ready-to-submit App Store programs because of the breadth of what
we’re covering here, but expect to see some code examples that are more than a page
long and that typically include some off-topic elements.

 This chapter will kick off our look at the SDK toolkit with a discussion of data,
which will describe many of the ways you can deal with information generally (and
text specifically). We’ve broken this into a couple of broad categories. First, we’ll
look at the ways users can input data into your program, focusing on actions and
preferences. Second, we’ll examine ways that you can store and retrieve internal data
using files.

8.1 Accepting user actions
The simplest way to accept new data from a user is through UIControls, a topic that
we covered in some depth in the latter half of chapter 6 and that we’re looking at
again here for the sake of completeness. Table 8.1 includes some notes on the con-
trols that you can use to accept user input.

Table 8.1 Various controls allow you to accept user input, most using simple interfaces.

Control Summary

UIButton Offers simple functionality when the user clicks a button. See section 6.5
for an example.

UIPageControl A pure navigation object that allows users to move between multiple pages
using a trio of dots.

UIPickerView Not a UIControl object, but allows the user to select from a number of
items in a “slot machine” selection. It includes the subclass
UIDatePicker.

UISearchBar Not a UIControl object, but offers similar functionality to a
UITextField. It provides an interface that includes a single-line text
input, a search button, a cancel button, and a bookmark button. See
section 9.2.3 for an example.

UISegmentedControl A horizontal bar containing several buttons. See section 18.1.3 for an
example.

UISlider A slider that allows users to input from a range of approximate values. See
section 6.6.2 for an example.

UISwitch An on-off button of the sort used in preferences. See section 8.2.1 for an
example.

UITextField A single-line text input and probably the most common control for true user
input. It requires some work to make the keyboard relinquish control. See
section 6.6.1 for a complete discussion and an example.

http://www.it-ebooks.info/

148 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
Clearly, these controls serve a variety of uses. Many exist for pure user interface pur-
poses, which we covered pretty extensively in chapter 6. What’s of more interest here
are the text-input controls (UISearchBar, UITextField, and UITextView) that you’re
likely to use in conjunction with files and databases. We’ll look particularly at
UISearchBar and UITextView, the two text inputs that we hadn’t previously given
much attention to, over the course of this chapter.

 Not included in this table are the integrated controller pickers that allow users to
input data and make choices using complex prebuilt systems. We’ll discuss these pick-
ers in later chapters.

 Controls are central to any real-life program, so you’ll see them throughout the
upcoming chapters. Because you’ll be seeing lots of examples of their use, we can now
move on to the next method of user data input: preferences.

8.2 Maintaining user preferences
Preferences are the way an iPhone or iPad program maintains user choices, particularly
from one session to another. They’re a way to not only accept user input but also save
it. You can use your own programmatic interface to maintain these preferences, or
you can use the Settings interface provided in the iOS SDK.

 If your program includes preferences that may change frequently, or if it would be
disruptive for a user to leave your program to set a preference, you can create a prefer-
ences page within your program. This type of program-centric preferences page is
seen in the Stocks and Maps programs, each of which has settings that can be changed
on the backside of the main utility.

 Alternatively, if your program has preferences that don’t change that much, partic-
ularly if the defaults are usually okay, you should instead set them using the system’s
settings. Typically, you use this option when your configuration controls are pretty
standard, because this method is limited to a specific set of possible interactions. This
type of device-centric setting can be seen in the iPod, Mail, Phone, Photos, and Safari
applications, all of which have their settings available under the Settings icon on the
device screen.

UITextView Not a UIControl object, but does allow the user to enter longer bits of
text. As with a text field, you must have it resignFirstResponder
status to return control to the program when the user has finished typing.
As shown in the iPhone Notes utility, this is typically done with a separate
Done button at the top of the interface, because the Return key is used to
input returns. See section 8.3.4 for an example.

UIToolBar Not a UIControl object. Instead, it’s a bar meant to hold a collection of
UIBarButtonItems, each of which can be clicked to initiate an action. The
bar is easy to configure and change. See section 11.4.2 for an example.

Table 8.1 Various controls allow you to accept user input, most using simple interfaces. (continued)

Control Summary

http://www.it-ebooks.info/

149Maintaining user preferences

www.it-ebooks.info
 Of the two, the latter is the Apple-preferred way of doing things, but we’ll touch on
both, starting with creating your own preferences page. You should feel free to use
either method, based on the needs of your program; but you should most definitely
not mix the two styles of preferences, because that’s likely to be confusing for your
users.

8.2.1 Creating your own preferences

You’ll typically use this method of creating preferences when your application has
more than basic data to store. For example, if one of your application settings is a user
photo, you can’t store this type of information in the built-in system settings. You need
a custom interface to allow the user to pick a photo from their library.

 Whenever you’re writing apps, you should always do your best to match the look,
feel, and methodology of Apple’s existing programs. Looking through built-in pro-
grams can offer lessons about when and how to use personal preferences on your
own. Here’s what the personal preferences of those built-in programs can tell you:

 They’re used infrequently.
 When they do appear, they’re used in conjunction with a program that has only

a single page of content (like Stocks) or one that has multiple identical pages of
content (like Weather).

 They appear on the backside of a flipside controller.
 The preferences appear in a special list view that includes cells.

You can easily accommodate these standards when building your own programs.
You’ll do so over the next few examples, with the goal being to create the simple pref-
erences table shown in figure 8.1.

DRAWING THE PREFERENCES PAGE

If you’re going to create a program that has built-in preferences, you should do so
using the Utility Application template. As you’ve previously seen, this will give you
access to a flipside controller, which will allow you to create your preferences on the
backside of your application.

 To create the special cartouched list used by preferences, you must create a table
view controller with the special UITableViewGrouped style. You can do this by choosing
the Grouped style for your table view in the Attributes Inspector or by using the init-
WithStyle: method in Xcode. The following code shows the latter method by creating
the UITableViewController subclass (here called PreferencesController) inside
the flipside controller’s viewDidLoad method:

- (void)viewDidLoad {
 PreferencesController *myTableView = [[PreferencesController alloc]
 initWithStyle:UITableViewStyleGrouped];
 [self.view addSubview:myTableView.view];
}

http://www.it-ebooks.info/

150 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
After you’ve done this, you can fill in your PreferencesController’s table view using
the methods described in chapter 5. You’ll probably use the cells’ accessoryView
property, because you’ll want to add switches and other objects to the preference list-
ing. The following listing shows the most important methods required to create a sim-
ple preferences page with two switches.

- (id)initWithStyle:(UITableViewStyle)style {
 if (self = [super initWithStyle:style]) {
 settingsList = [NSArray arrayWithObjects:
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 @"Sounds",@"titleValue",
 @"switch",@"accessoryValue",
 [NSNumber numberWithBool:YES],
 @"prefValue",
 @"setSounds:",@"targetValue",nil],
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 @"Music",@"titleValue",
 @"switch",@"accessoryValue",
 [NSNumber numberWithBool:YES],@"prefValue",
 @"setMusic:",@"targetValue",nil],nil];
 [settingsList retain];
 switchList = [NSMutableArray arrayWithCapacity:settingsList.count];

Listing 8.1 Following the table view methods to fill out your preferences table

Figure 8.1 This preferences page
was built from scratch on the
backside of a flipside controller.

http://www.it-ebooks.info/

151Maintaining user preferences

www.it-ebooks.info
 for (int i = 0 ;
 i < [settingsList count] ;
 i++) {
 if ([[[settingsList objectAtIndex:i]
 objectForKey:@"accessoryValue"] compare:@"switch"] ==
 NSOrderedSame) {
 UISwitch *mySwitch = [[[UISwitch alloc]
 initWithFrame:CGRectZero] autorelease];
 mySwitch.on = [[[settingsList objectAtIndex:i]
 objectForKey:@"prefValue"] boolValue];
 [mySwitch addTarget:self
 action:NSSelectorFromString([[settingsList
 objectAtIndex:i] objectForKey:@"targetValue"])
 forControlEvents:UIControlEventValueChanged];

 [switchList insertObject:mySwitch atIndex:i];
 } else {
 [switchList insertObject:@"" atIndex:i];
 }
 }
 [switchList retain];
 CGPoint tableCenter = self.view.center;
 self.view.center = CGPointMake(tableCenter.x,tableCenter.y+22);
 }
 return self;
}
- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {
 return 1;
}
- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 return @"Audio Preferences";
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return settingsList.count;
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *MyIdentifier = @"MyIdentifier";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:MyIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:MyIdentifier] autorelease];
 }
 cell.textLabel.text = [[settingsList objectAtIndex:indexPath.row]
 objectForKey:@"titleValue"];
 if ([switchList objectAtIndex:indexPath.row]) {
 cell.accessoryView =
 [switchList objectAtIndex:indexPath.row];
 }
 return cell;
}

BPrepares
switch
array

Moves
table down

C

Creates
cells

D

Puts switch in
accessory view

E

http://www.it-ebooks.info/

152 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
This example generally follows the table view methodology that you learned in chap-
ter 5. You use an array to set up your table view. In addition to a title, these (mutable)
dictionaries include additional info about the switch that goes into the table view,
including what it should be set to and what action it should call. This example shows
one nuance we mentioned before: only NSObjects can be placed in an NSDictionary,
so you have to encode a Boolean value in order to use it.

 The initWithStyle: method must do two other things. First, it must create a muta-
ble array to hold all your switches for later access. You do all the creation B based on
settingsList (or on whatever other means you used to pull in preferences data),
because if you wait until you get to the table view methods, you can’t guarantee the
order in which they’ll be created. If you didn’t fill the switch list here, you could get an
out-of-bounds error—if, for example, the switch in row 1 was created before the switch
in row 0. Note also that these switches are created with no particular location on the
screen, because you’ll place them later. Second, the method must move your table
down a bit to account for the navigation bar at the top of the flipside page C.

 The methods that define the section count, the section head, and the row count
are all pretty standard. It’s the method that defines the contents of the rows D that’s
of interest, primarily because it contains code that takes advantage of the accessory-
View property that we touched on in chapter 5. In this method, you read back the
appropriate switch from your array and input it E.

 There’s no real functionality in this preferences page—that ultimately will depend
on the needs of your program. But this skeleton should give you everything you need
to get started. Afterward, you’ll need to build your methods (here, setMusic: and
setSounds:), which should access the switchList array, and then do the appropriate
thing for your program when the switches are toggled.

 Switches are the most common element of a preferences page. The other common
feature that you should consider programming is the select list. That’s usually done by
creating a subpage with a table view all its own. It should be set in UITableView-
Grouped style, like this table. You’ll probably allow users to checkmark one or more
elements in the list.

SAVING USER PREFERENCES

We’re leaving one element out of this discussion: what to do with your users’ prefer-
ences after they’ve set them. It’s possible that you’ll want to save user preferences only
for the length of a single session, but it’s our experience that it can be confusing and
even annoying to users. More commonly, you should save preferences from one ses-
sion to another. We offer three different ways to do so:

 Save the preferences in a file—Section 8.3 talks about file access. You can either
save the preferences in plain text or else use a more regulated format like XML,
which is covered in chapter 14.

 Save the preferences in a database—Sections 9.1 and 9.3 cover this.
 Save the preferences using NSUserDefaults—This option is discussed next.

http://www.it-ebooks.info/

153Maintaining user preferences

www.it-ebooks.info
NSUserDefaults is a storage mechanism that’s specific to user preferences, so we’ll
cover it here.

 Generally, NSUserDefaults is a persistent shared object that you can use to remem-
ber a user’s preferences from one session to another. It’s sort of like a preferences
associative array. It has three major methods, listed in table 8.2.

It would be simple enough to modify the previous preferences example to use
NSUserDefaults. First, you’d change the init method to create a shared defaults
object and then read from it when creating the settingListing array, as shown in the
following listing.

NSUserDefaults *myDefaults = [NSUserDefaults standardUserDefaults];
settingsList = [NSArray arrayWithObjects:
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 @"Sounds",@"titleValue",
 @"switch",@"accessoryValue",
 [NSNumber numberWithBool:[myDefaults

boolForKey:@"soundsValue"]],@"prefValue",
 @"setSounds:",@"targetValue",nil],
 [NSMutableDictionary dictionaryWithObjectsAndKeys:
 @"Music",@"titleValue",
 @"switch",@"accessoryValue",
 [NSNumber numberWithBool:[myDefaults
 boolForKey:@"musicValue"]],@"prefValue",
 @"setMusic:",@"targetValue",nil],nil];

The lines in which the prefValues are set are the new material here. The information
is extracted from NSUSerDefaults first.

 The methods called when each of these switches are moved can set and save
changes to the default values. You’ll want to do other things here too, but the abbrevi-
ated form of these methods is shown in the following listing.

Table 8.2 Notable methods for NSUserDefaults

Method Summary

standardUserDefaults: Class method that creates a shared defaults object.

objectForKey: Instance method that returns an object for the key; numerous
variants return specific types of objects such as strings, Bool-
eans, and the like.

setObjectForKey: Instance method that sets a key to the object; numerous vari-
ants set specific types of objects such as strings, Booleans,
and so on.

Listing 8.2 Preferences setup with NSUserDefaults

Extracts/sets
sound value

Extracts/sets
music value

http://www.it-ebooks.info/

154 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
-(void)setMusic:(id)sender {
 NSUserDefaults *myDefaults = [NSUserDefaults standardUserDefaults];
 UISwitch *musicSwitch = [switchList objectAtIndex:1];
 [myDefaults setBool:musicSwitch.on forKey:@"musicValue"];
}
-(void)setSounds:(id)sender {
 NSUserDefaults *myDefaults = [NSUserDefaults standardUserDefaults];
 UISwitch *soundsSwitch = [switchList objectAtIndex:0];
 [myDefaults setBool:soundsSwitch.on forKey:@"soundsValue"];
}

This functionality is simple. You call up NSUserDefaults, set any values you want to
change, and then save them. If you call up your program again, you’ll find that the two
switches remain in the position where you set them the last time you ran the program.

 After you decide how to save your personal preferences, you’ll have a skeleton for
creating your own preferences page; if that’s appropriate for your program, you’re fin-
ished. But that’s just one of two ways to let users add preference data to your program.
More commonly, you’ll export your settings to the main Settings program. So, how do
you do that?

8.2.2 Using the system settings

When you created a personal preferences page in the previous section, you used all
the iOS programming skills you’ve been learning to date, creating objects and manip-
ulating them. Conversely, using the system settings is much easier: it just requires cre-
ating some files.

Listing 8.3 Setting and saving NSUserDefaults

About bundles
Xcode allows you to tie multiple files together into a coherent whole called a bundle.
In practice, a bundle is just a directory. Often a bundle is made opaque, so that users
can’t casually see its contents; in this case, it’s called a package.

The main advantage of a bundle is that it can invisibly store multiple variants of a file,
using the right one when the circumstances are appropriate. For example, an appli-
cation bundle can include executable files for different chip architectures or in differ-
ent formats.

When working with Xcode, you’re likely to encounter three different types of bundles:
framework bundles, application bundles, and settings bundles. All frameworks
appear packaged as framework bundles, although that’s largely invisible to you. An
application bundle is what’s created when you compile a program to run on your
iPhone or iPad; we’ll talk about how to access individual files in a bundle in the next
section, when we talk about files in general. Finally, the settings bundle contains a
variety of information about system settings, a topic that we’ll address now.

You can find more information about how to access bundles in the NSBundle and
CFBundle classes.

http://www.it-ebooks.info/

155Maintaining user preferences

www.it-ebooks.info
To begin using the system settings, you must create a settings bundle. You do this in
Xcode by choosing the File > New File option. To date, you’ve only created new files
using the Cocoa Touch Classes option (starting in section 3.3). Now, you should
instead choose Resources in the side pane, which gives you the option to create one
sort of settings file: Settings Bundle. When you do this, Settings.bundle is added to
your current project.

EDITING EXISTING SETTINGS

Root.plist is an XML property list file, but as usual, you can view it in Xcode, where it
appears as a list of keys and values. All of your settings appear under the Preference-
Specifiers category, as shown in figure 8.2.

 You can enter seven types of data in the Settings plist file, each of which creates a
specific tool on the Settings page. Of these, four appear by default in the plist file at
the time of this writing and are the easiest to modify. All seven options are shown in
table 8.3.

 The plist editor is simple to use and lets you easily do the vast majority of work
required to create the settings for your program. You can cut and paste the existing
four preferences (noted by checkmarks in table 8.3) to reorder them or create new
instances of the four existing preference types. Then, you fill in their data to create
preferences that look exactly like you want them.
Table 8.3 Different preference types let you create different tools on the Settings page.

Preference Summary Default

PSChildPaneSpecifier Points to a subpage of preferences

PSGroupSpecifier Contains a group header for the current table sec-
tion

Figure 8.2 This look at system settings reveals some of Root.plist’s PreferenceSpecifiers.

http://www.it-ebooks.info/

156 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
For any setting, the Type string always describes which sort of preference you’re set-
ting. Other settings define what you can change. For example, to change the text that
appears in a PSGroupSpecifier, you adjust the Title string inside the PSGroup-
Specifier dictionary. Changing the PSSliderSpecifier, PSTextFieldSpecifier,
and PSToggleSwitchSpecifier is equally easy. The only thing to note on those is the
Key string, which sets the name of the variable for the preference. You’ll need that
name when you want to look it up from inside your program (a topic we’ll return to).

CREATING NEW SETTINGS

The remaining three preferences are a bit harder to implement because you don’t
have a preexisting template for them sitting in the default Root.plist file. But all you
have to do is create a dictionary that contains the right values.

 When you click individual rows in the plist editor, you’ll see some iconic options to
help you create new preferences. At any time, you can create new Preference-
Specifiers (which is to say, new preferences) by clicking the plus (+) symbol to the
right of the current row. You can likewise add to dictionaries or arrays by opening
them and then clicking the indented row symbol to the right of the current row.

 A PSTitleValueSpecifier is an unchangeable preference. It shows the prefer-
ence name and a word on the Settings page. Its dictionary includes a Type (string) of
PSTitleValueSpecifier, a Title (string) that defines the name of the preference, a
Key (string) that defines the variable name, and a DefaultValue (string).

 A PSMultiValueSpecifier is a select list that appears on a subpage. Its dictionary
contains a Type (string) of PSMultiValueSpecifier, a Title (string), a Key (string), a
DefaultValue (string), a Titles (array) that contains a number of String items, and
a matched Values (array) that contains Number items.

 Figure 8.3 shows what these two items look like, laid out in Xcode.
 The last sort of setting, PSChildPaneSpecifier, does something totally different: it

lets you create additional pages of preferences.

PSMultiValueSpecifier Points to a subpage containing a select list

PSSliderSpecifier A UISlider

PSTextFieldSpecifier A UITextField

PSTitleValueSpecifier Shows the current, unchangeable value of the
preference

PSToggleSwitchSpecifier A UISwitch

Table 8.3 Different preference types let you create different tools on the Settings page. (continued)

Preference Summary Default

http://www.it-ebooks.info/

157Maintaining user preferences

www.it-ebooks.info
CREATING HIERARCHICAL SETTINGS

If necessary, you can have multiple pages of settings. To create a subpage, use the
PSChildPaneSpecifier type. It should contain a Type (string) of PSChildPane-
Specifier, a Title (string), and a File (string) that contains the new plist file with-
out an extension.

 After you’ve done this, you need to create your
new plist file. There is currently no easy “Add plist”
option, so we suggest copying your existing
Root.plist file, renaming it, and going from there.

 We’ve put together an example of all seven
preference types in figure 8.4. It shows the types of
preference files that you can create using Apple’s
built-in functionality.

 Now you know everything that’s required to
give your users a long list of preferences that they
can set. But how do you use them from within
Xcode?

ACCESSING SETTINGS

Settings end up encoded as variables. As you saw
when looking through the plist editor, each individ-
ual preference is an NSString, an NSArray, an
NSNumber, or a Boolean. You can access these vari-
ables using the shared NSUserDefaults object. We
already discussed this class in the last section; it so
happens that Apple’s settings bundle uses it, as we
suggested you might. The functionality remains the
same. You can create it as follows:

[NSUserDefaults standardUserDefaults];

Figure 8.3 This display shows how
a PSTitleValueSpecifier and
a PSMultiValueSpecifier look
in Xcode.

Figure 8.4 As seen on an iPhone,
in order from top to bottom, a Group,
a TextField, another Group, a
Switch, a TitleValue, a
MultiValue, a ChildPane, a
third Group, and a Slider

http://www.it-ebooks.info/

158 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
When you’ve done that, you can use NSUserDefaults’ objectForKey: methods, such
as arrayForKey:, integerForKey:, and stringForKey:, as appropriate to access the
information from the settings. For example, the following code applies a string from
the settings to a label:

myLabel.text = [[NSUserDefaults standardUserDefaults]
 stringForKey:@"name_preference"];

Similarly, you can save new settings by using the various setObjectForKey: methods—
although we don’t think this is a particularly good idea if users are otherwise modify-
ing these values in Settings.

 There is one considerable gotcha that you must watch for: if a user hasn’t yet
accessed the settings for your program, then all settings without default values have a
value of nil. This means you either need to create your preferences by hand or build
defaults into your program, as appropriate.

 Most of the time, you’ll only need to retrieve the setting values, as described here;
but if more is required, you should look at the class reference for NSUserDefaults.

 That concludes our look at the two ways to create preferences for your programs
and also at how users can input data into your program. But user input represents just
one part of the data puzzle. Certainly, a lot of important data comes from users, but
data can also come from various files and databases built into your program or into
the device. Retrieving data from those sources is the topic of the latter half of this
chapter.

8.3 Opening files
When we talked about bundles earlier in this chapter, you saw how the iPhone and
iPad arrange their internal information for programs. That arrangement becomes
vitally important when you’re trying to access files that you’ve added to a project.

 Fortunately, for the iPhone, you can look at how your program’s files are arranged
when you’re testing applications on the Simulator. Each time you run a program, the
program is compiled to a directory under ~/Library/Application Support/iPhone
Simulator/Users/Applications. The specific directory has a hexadecimal name, but
you can search to find the right one. Figure 8.5 shows an example of the directory for
the sample program that we used to set up the system preferences example (the subdi-
rectories are the same for any basic program). The process is similar for the iPad.

 As shown, there are four directories of files for this one simple program. The
majority of the content appears in the application bundle, which in this example is
called systempreferences.app. There, you find everything you’ve added to your proj-
ect, including text files, pictures, and databases. The other three directories you can
use are Documents, Library, and tmp.

 These are all intended to be used for files that are created or modified when the
program is run. Documents should contain user-created information (including new
or modified text files, pictures, and databases), Library should contain more program-
matic items (like preferences), and tmp should contain temporary information. Each

http://www.it-ebooks.info/

159Opening files

www.it-ebooks.info
of these directories starts out empty, other than the fact that Library maintains a local
copy of your system settings. We’ll talk about how and why you fill them momentarily.
First, let’s look at how to access your bundle; later, we’ll discuss how to access other
directories and also how to manipulate files. At the end of the section, we’ll put every-
thing together with a concrete example.

8.3.1 Accessing your bundle

In previous chapters, we’ve shown how easy it is to add files to your project. You drag
the file into Xcode, and everything is correctly set up so that the file will become part
of your program when it compiles. As you now know, that means the file is copied into
your application bundle.

 For many bundled files, you don’t have to worry about anything beyond that. For
example, when you work with picture files, you enter the name of the file in Xcode,
and the SDK automatically finds it for you. But if you want to access a file that doesn’t
have this built-in link, you need to do a bit more work.

 Whenever you’re working with the filesystem on the iPhone or iPad, access is
abstracted through objects. You send messages that tell the SDK what area of the file-
system you’re looking for, and the SDK then gives you precise directory paths. The
benefit of this abstraction is that Apple can reorganize the filesystem in future
releases, and your program won’t be affected at all.

 The first files you’ll want to access will probably be in your bundle: files that you
included when you compiled your program. Accessing a bundle file is usually a two-step
process, as shown in this database example (which we’ll return to in the next section):

Figure 8.5 Compiled programs contain several directories full of files.

http://www.it-ebooks.info/

160 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
NSString *paths = [[NSBundle mainBundle] resourcePath];
NSString *bundlePath = [paths stringByAppendingPathComponent:dbFile];

In this example, mainBundle returns the directory path that corresponds to your
application’s bundle, and resourcePath expands that to be the directory path for the
resources of your program (including, in this case, a database, but this could be any-
thing else you added to your program). Finally, you use stringByAppendingPath-
Component: to add your specific file to the path. This NSString method makes sure a
path is constructed using slashes (//) as needed.

 The result is a complete path that can be handed to other objects as needed.
You’ll see how that works with a database in the next section. You can likewise use it
for UImage’s imageWithContentsOfFile: method or NSFileHandle’s fileHandleFor-
ReadingAtPath method. We’ll return to the latter shortly.

 But there’s one fundamental problem with accessing files in the application bun-
dle: you can’t modify them. Apple generally suggests that you should treat the applica-
tion bundle as read only, and there’s a real penalty if you don’t: your program will stop
working because it won’t checksum correctly. This means that the application bundle
is great for files that don’t change, but if you want to modify something (or create
something new), you need to use the other directories we mentioned, starting with
the Documents folder.

8.3.2 Accessing other directories

When you’re working with directories other than the bundle, you have to think about
two things: how to access those files and how to move files among multiple directories.

RETRIEVING A FILE

When a file is sitting in your Documents directory, you can retrieve it much as you
retrieved files from the bundle directory:

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
NSString *documentsDirectory = [paths objectAtIndex:0];
NSString *docPath = [documentsDirectory
 stringByAppendingPathComponent:dbFile];

The magic here occurs in the NSSearchPathForDirectoriesInDomains function. The
first argument is usually NSDocumentDirectory or NSLibraryDirectory, depending
on which directory you want to get to. The other two arguments should always be the
same for the iPhone and iPad. The result is an array of strings, each containing a path.
The first path in the NSArray is usually the right one, as shown here. You can then use
the stringByAppendingPathComponent: method, as before, to build the complete
path for your file. Voila! You’ve now used some slightly different methods to access a
file in your Documents directory rather than the bundle directory.

COPYING A FILE

There’s been a slight disconnect in our discussion of files and directories to date.
When you compile your project, all of your files are placed into your application

http://www.it-ebooks.info/

161Opening files

www.it-ebooks.info
bundle. But if you ever want to edit a file, it must be placed in a different directory,
such as Documents. So how do you get a file from one place to the other? You use the
NSFileManager:

NSFileManager *fileManager = [NSFileManager defaultManager];
success = [fileManager copyItemAtPath:bundlePath toPath:docPath
 error:&error];

The file manager is a class that allows you to easily manipulate files by creating them,
moving them, deleting them, and otherwise modifying them. As is the case with many
classes you’ve seen, you initialize it by accessing a shared object. You can do lots of
things with the file manager, including copying (as you’ve done here) and checking
for a file’s existence (which we’ll demonstrate shortly). You should look at the
NSFileManager class reference for complete information.

 As you’ll see, the NSFileManager is one of numerous classes that you can use to
work with files.

8.3.3 Manipulating files

It’s possible that after you’ve built your file path, you’ll be ready to immediately read
the file’s contents, using something like the UIImage methods (which we’ll touch on
in chapter 13) or the functions related to SQLite (which we’ll cover in the next chap-
ter). But it’s also possible that you’ll want to manipulate the raw files, reading and
parsing them in your code, as soon as you’ve created a file path. There are numerous
ways to do this, as shown in table 8.4.

Table 8.4 Ways to manipulate files using the SDK

Class Method Summary

NSFileHandle fileHandleForReadingAtPath:
fileHandleForWritingAtPath:
fileHandleForUpdatingAtPath:

Class methods that allow you to
open a file

NSFileHandle readDataOfLength: Returns an NSData containing
the specified number of bytes
from the file

NSFileHandle readDataToEndOfFile: Returns an NSData with the rest
of the file’s content

NSFileHandle closeFile: Closes an NSHandle

NSFileManager contentsAtPath: Returns an NSData with the
complete file’s contents

NSData initWithContentsOfFile: Creates an NSData with the
complete file’s contents

NSData writeToFile:atomically: Writes the NSData to a file

http://www.it-ebooks.info/

162 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
As table 8.4 shows, you can access files in a huge variety of ways after you’ve created a
file path. If you’re a C programmer, opening a file handle, reading from that file han-
dle, and finally closing that file handle is apt to be the most familiar approach. Or, you
can use a shortcut and go straight to the NSFileManager and have it do the whole pro-
cess. Even quicker is using methods from NSData or NSString to directly create an
object of the appropriate type.

 Any of these simpler methods will cost you the ability to step through a file byte by
byte, which may be a limitation or a benefit, depending on your program. But with the
simpler methods, you need only a single line of code:

NSString *myContents = [NSString stringWithContentsOfFile:myFile
 encoding:NSASCIIStringEncoding error:&error];

Table 8.4 also lists a few ways to write back to files, including simple ways to dump an
NSData object or an NSString object to a file. There are also other ways. When you
decide which set of methods you’re most comfortable using, you should consult the
appropriate class reference for additional details.

 When you’re working with files, you’re likely to be doing one of two things. Either
you have files that contain large blobs of user information, or you have files that con-
tain short snippets of data that you’ve saved for your program. To demonstrate how to
use a few of the file objects and methods, you’ll tackle the first problem by building a
simple notepad prototype.

NSString stringWithContentsOfFile:encoding:error: Class method that returns an
NSString with the complete
file’s contents

NSString initWithData:encoding: Returns an NSString with the
NSData’s contents

NSString writeToFile:atomically:encoding:error: Writes the NSString to a file

Table 8.4 Ways to manipulate files using the SDK (continued)

Class Method Summary

File content
In this section—and in our next example—we’re largely assuming that files contain
plain, unstructured text. But this doesn’t have to be the case. XML is a great way to
store local data in a more structured format. Chapter 14 covers how to read XML and
includes an example of reading local XML data.

http://www.it-ebooks.info/

163Opening files

www.it-ebooks.info
8.3.4 Filesaver: a UITextView example

This program lets you maintain a text view full of information from one session to
another. It’s relatively basic, but you can imagine how you could expand it to mimic the
Notepad program, with its multiple notes, toolbars, navigator, and image background.

 The following listing shows this simple filesaver example. The objects, as usual,
were created in Xcode: a UIToolBar (with associated UIBarButtonItem) and a
UITextView.

@implementation filesaverViewController
- (void)viewDidLoad {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *documentsDirectory =
 [paths objectAtIndex:0];
 filePath = [documentsDirectory
 stringByAppendingPathComponent:
 @"textviewcontent"];
 [filePath retain];
 NSFileManager *myFM =
 [NSFileManager defaultManager];
 if ([myFM isReadableFileAtPath:filePath]) {
 myText.text =
 [NSString stringWithContentsOfFile:filePath
 encoding:NSASCIIStringEncoding error:nil];
 }
 keyboardIsActive = NO;
 [super viewDidLoad];
}
-(IBAction)finishEditing:(id)sender {
 if (keyboardIsActive == YES) {
 [myText resignFirstResponder];
 }
- (void)textViewDidBeginEditing:
 (UITextView *)textView {
 if ([myText.text compare:@"Type Text Here."] == NSOrderedSame) {
 myText.text = [NSString string];
 }
 keyboardIsActive = YES;
}
- (void)textViewDidEndEditing:(UITextView *)textView {
 [textView.text writeToFile:filePath atomically:YES
 encoding:NSASCIIStringEncoding error:NULL];
 keyboardIsActive = NO;
}
...
@end

This program shows how easy it is to access files. The hardest part is determining the
path for the file, but that involves using the path-creation methods we looked at a few

Listing 8.4 A prototype notepad program that maintains a text field as a file

BCreates
file path

Executes
Done action

C

http://www.it-ebooks.info/

164 CHAPTER 8 Data: actions, preferences, and files

www.it-ebooks.info
sections back. When you have your path, you save it as a variable so that you won’t
have to re-create the path later B. Next, you use NSFileManager to determine
whether a file exists. If it does, you can immediately fill your UITextField with its con-
tent. Finally, you set a keyboardIsActive variable, which you update throughout the
program.

 As we’ve previously noted, the objects that pull up keyboards are a bit tricky,
because you have to explicitly get rid of the keyboard when editing is done. For
UITextFields, you can turn the Return key into a Done key to dismiss the keyboard;
but for a UITextView, you usually want the user to be able to enter returns, so you
must typically create a bar at the top of the page with a Done button. Figure 8.6 shows
this layout of items.

 When the user presses Done, the finishEditing: method C is called, which
resigns the first responder, making the keyboard disappear (unless you’re not editing,
in which case it closes the program).

 The last two methods are defined in the UITextFieldDelegate protocol. When
editing begins on the text field, the program checks to see if the starting text is still
there, and if so clears it. When editing ends on the text field, the content is saved to
your file. Finally, the keyboardIsActive variable is toggled, to control what the Done
button does in each state.

Figure 8.6 The filesaver application
with the keyboard activated on both
the iPhone and the iPad

http://www.it-ebooks.info/

165Summary

www.it-ebooks.info
 As you saw in table 8.4, there are numerous other ways to read files and save them.
The methods in listing 8.4 are simple, but they allow you to make good use of your
notepad’s file.

 Files are okay to use for saving one-off data, but if you’re storing a lot of really large
data, we suggest using a database when it’s available. And on the iPhone and iPad, a
database is always available, as you’ll see in chapter 9.

8.4 Summary
In this chapter, we covered a variety of ways that you can import primarily text-based
data into your program. User action is one of the most important methods, one well
covered by previous sections. In addition to UITextFields, UITextViews, and
UISearchBars, many nontextual interface options are available.

 Preferences mark the other major way users can influence your program. You can
either program them manually or use the System Setting bundle.

 Ultimately, user input is somewhat limited on the iPhone because of the slow typ-
ing speed. If you’re dealing with piles of text, you’ll more frequently want to pull that
data from an existing resource. The iPad doesn’t suffer from this issue, because users
can type more quickly on the keyboard.

 Files are the traditional way to access large amounts of data. We’ll return to files
when we deal with photos and sounds in the later chapters. Databases are frequently
an easier way to access data, particularly if the data is well organized, as you’ll see in
chapter 9.

 There’s only one data-input method that we’ve largely ignored: the internet. We
consider it so important that we’ll cover it in chapter 14.

 The data-input and -retrieval methods discussed in this chapter and the next will
form a foundation for much of the work you do with the iPhone and iPad, because
ultimately everything is data. You’ll need to retrieve data when you work with images
and sounds. Similarly, you may want to save data from your accelerometer, from your
Core Location, or when you create a graphic. Keep what you’ve learned here in your
back pocket as you move on to the rest of the iOS toolbox.

 We’re now ready to discuss more advanced data access techniques, including inter-
facing with the Address Book and saving persistent data with SQLite.

http://www.it-ebooks.info/

www.it-ebooks.info
Data:
advanced techniques
In the last chapter, we discussed how information can be saved and retrieved on
the iPhone and iPad. Those techniques are great for simple data such as user pref-
erences, but what happens when you want to save more complicated large
amounts of data?

 Saving large amounts of information to NSUserDefaults would be awkward and
clunky, and serialization is too slow. The solution is to use a relational database.
Apple has provided a couple of options for mass storage using relational databases.
These options are SQLite and Core Data. We’ll look at both as well as the built-in
Address Book framework, which isn’t related to data storage but has some complex-
ities of its own.

SQLite is a compact version of MySQL. Even though it doesn’t offer as many
field types as MySQL, it’s still a powerful method of storage. One of the greatest

This chapter covers
 Using SQLite

 Using the Address Book framework

 Using Core Data
166

http://www.it-ebooks.info/

167Using SQLite

www.it-ebooks.info
strengths of an SQLite database is its portability. Unlike MySQL, it doesn’t require a
server in order to run. You can drop the database into your application directory and
start using it to store persistent data.

 Core Data is a powerful layer that sits on top of an SQLite database. It removes
many of the complexities of SQL and allows you to interface with the database in a
more natural way. It does this by making the database rows into real Objective-C
objects (called managed objects) and lets you manipulate them without any knowledge
of SQL. We’ll be discussing both methods of storage and leave it up to you to decide
which works best with your project.

9.1 Using SQLite
Let’s look more closely at what SQLite is, look at how to set up and access an SQLite
database, and finally explore an example that puts an SQLite database in practice.

 The SDK’s built-in database is SQLite, a public domain software package. You can
find more information on it at www.sqlite.org, including documentation that’s consid-
erably more extensive than what we can include here. You need to know the SQL lan-
guage to use SQLite, and we won’t cover SQL syntax here at all. In addition, you must
be familiar with the SQLite API. We’ll show how to use it for some basic tasks here, but
there’s a much more extensive reference online.

SQLite has what we find to be two major limitations. First, there’s no simple way to
create a database. You must create the database by hand for now. Second, SQLite has
no object-oriented interface. Instead, you use an API that falls back on C code, which
we find less elegant and harder to use than the typical Objective-C class.

 Given these limitations, we still think that using an SQL database is a better option
than files for most situations, and we highly suggest that you learn enough about SQL
to use it comfortably.

9.1.1 Setting up an SQLite database

Prior to using SQLite in your program, you must set up a database that contains all of
your tables and the initial data you want. We’ll look at the general steps first, and then
you’ll set up a database that can be used to drive a navigation menu.

CREATING AN SQLITE DATABASE

Creating an SQLite database typically is done from the command line, although it can
also be done entirely programmatically. We won’t cover programmatic creation of the
database here, but you can find documentation on the SQLite site for doing that. The
steps for creating a database from the command line are listed in table 9.1.

 To show how all this works, you’ll put together a data file for a database-driven
navigation controller. When we talked about tables in chapters 5 and 7, you created
them from arrays and dictionaries. This is a fine technique when you’re creating
small, stable hierarchies, but what if you want to build something larger or something
that can be modified by the user? In those cases, a database is a great backend for a
navigation menu.

www.sqlite.org
http://www.it-ebooks.info/

168 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
DESIGNING A NAVIGATION MENU

To support a database-driven menu, we’ve designed a simple database schema. Each
row in the navigation hierarchy is represented by one row in a database. Each of those
rows has five elements:

 catid—Provides a unique (and arbitrary) ID for an individual row in the menu
 parentid—Indicates which row in the database acts as the hierarchical parent

of the current row, or lists 0 if it’s a top-level row that would appear on the first
page of the menu

 title—Contains the printed text that will appear in the menu
 entrytype—Specifies whether the row is a category (which opens a submenu) or

a result (which performs some action)
 ordering—Lists the order in which the rows should appear on an individual

page of the menu

Here’s an example of what a data file might look like, with the five elements shown in
the preceding order:

> cat nav.data
1|0|First|category|1
2|0|Third|category|3
3|0|Second|category|2
4|2|Submenu|category|1
5|0|Action #1|result|4
6|1|Action #1B|result|1

And here’s how you create a table for that data and import it:

> sqlite3 nav.db
SQLite version 3.6.12
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE TABLE menu (catid int(5),parentid int(5),title

varchar(32),entrytype varchar(12), ordering int(5));
sqlite> .import nav.data menu

Table 9.1 Creating an SQLite database from the command line

Step Description

1. Prepare your table. Figure out the design of each table in your database.
Create a file for the initial data of each table (if any) that has data cells
separated by pipes (|) and data rows separated by returns.

2. Create your database. Start SQLite with this command:
sqlite3 filename
Use a CREATE TABLE command to create each table.

3. Enter your initial info. Use this command to fill each table:
.import table filename
Quit SQLite.

4. Add your database to
the Xcode.

Inside Xcode, use the Add > Existing Files menu option to add your data-
base to your project.

http://www.it-ebooks.info/

169Using SQLite

www.it-ebooks.info
Note that to quit SQLite, type .quit and press Enter.
 Afterward, you can add your now-complete database to Xcode using the normal

procedures, a step that’s not shown here. After you’ve linked in your database the first
time, you can go back and make changes to it, and the new version will always be used
when you recompile your project.

 You now have a ready-to-run database, but you’ll still need to prepare your Xcode
to use SQLite. We’ll look at that next.

9.1.2 Accessing SQLite

You have to link in some additional resources to use SQLite, as is typical for any
major new functionality. First, you need to add the framework, which you can find
under /usr/lib/libsqlite3.0.dylib, rather than in the standard framework directory.
Second, you must add an import of sqlite3.h.

 You now have a database that’s ready to use, and you’ve included the functionality
that you need to use it. The next step is to access SQLite’s functions.

9.1.3 Accessing your SQLite database

SQLite includes approximately 100 functions, about 20 object types, and a huge list of
constants. We’ll cover the basics that you’ll need to access the database you’ve created.
Table 9.2 shows the most critical API commands. They generally revolve around two
important concepts: the database handle (which is returned by sqlite3_open and is
used by everything else) and the prepared statement (which is returned by
sqlite3_prepare and is used to run queries).

Table 9.2 The most important SQLite API commands

Function Arguments Summary

sqlite3_open filename, address of
database

Opens a database.

sqlite3_prepare database, SQL as UTF-8,
max length to read,
address of statement,
address of unread
results

Turns an SQL statement in UTF-8 for-
mat into a pointer to a prepared
statement, which can be handed to
other functions.

sqlite3_step prepared statement Processes a row of results from a
prepared statement, or else returns
an error.

sqlite3_column_int prepared statement,
column #

Returns an int from the active row.
Several other simple functions simi-
larly return a specific column from
the active row.

http://www.it-ebooks.info/

170 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
These functions, in order, show the usual lifecycle of an SQLite database:

1 Open the database.
2 Prepare statements, one at a time.
3 Step through a statement, reading columns.
4 Finalize the statement.
5 Close the database.

SQLite includes two convenience functions, sqlite3_exec() and sqlite3_get_
table(), that simplify these steps. But the functions are built using the core function-
ality just mentioned, so that’s what we’ve decided to highlight.

9.1.4 Building a navigation menu from a database

Now that you have a basic understanding of the SQLite functions, you can put
together a prototype of a database-driven menu navigation system. What you’ll do
here is by no means complete, but it’ll give you a great basis to build on. This example
will also be one of the most complex in the book. It includes multiple classes of new
objects designed to work either apart (in different programs) or together.

 In this section, we’ll cover the SKDatabase class (which abstracts database connec-
tions), the SKMenu class (which abstracts navigator menu creation), and the Database-
ViewController (which transforms a typical table view controller into a database-
driven class). In the end, you’ll hook everything together with the app delegate.

THE DATABASE CLASS

Because there aren’t any preexisting object-oriented classes for the SQLite database
functions, any program using a database should start by creating its own. The follow-
ing listing contains the start of such a class, creating methods for the parts of the API
that you’ll need to create the database view controller.

#import "SKDatabase.h"
#import "sqlite3.h"
@implementation SKDatabase
- (id)initWithFile:(NSString *)dbFile {

sqlite3_column_string prepared statement,
column #

Returns a char *, which is to say a
string, from the active row. Several
other simple functions similarly
return a specific column from the
active row.

sqlite3_finalize prepared statement Deletes a prepared statement.

sqlite3_close database Closes a database.

Listing 9.1 SKDatabase, a new sqlite3 database class

Table 9.2 The most important SQLite API commands (continued)

Function Arguments Summary

http://www.it-ebooks.info/

171Using SQLite

www.it-ebooks.info
 self = [super init];
 NSString *paths = [[NSBundle mainBundle] resourcePath];
 NSString *path = [paths stringByAppendingPathComponent:dbFile];
 int result = sqlite3_open([path UTF8String], &dbh);
 NSAssert1(SQLITE_OK == result, NSLocalizedStringFromTable
 (@"Unable to open the sqlite database (%@).",
 @"Database", @""),
 [NSString stringWithUTF8String:sqlite3_errmsg(dbh)]);
 return self;
}
- (void)close {
 if (dbh) {
 sqlite3_close(dbh);
 }
}
- (sqlite3 *)dbh {
 return dbh;
}
- (sqlite3_stmt *)prepare:(NSString *)sql {
 const char *utfsql = [sql UTF8String];
 sqlite3_stmt *statement;
 if (sqlite3_prepare([self dbh],utfsql,-1,&statement,NULL)==SQLITE_OK) {
 return statement;
 } else {
 return 0;
 }
}
- (id)lookupSingularSQL:(NSString *)sql forType:
 (NSString *)rettype {
 sqlite3_stmt *statement;
 id result;
 if (statement = [self prepare:sql]) {
 if (sqlite3_step(statement) == SQLITE_ROW) {
 if ([rettype compare:@"text"] == NSOrderedSame) {
 result = [NSString stringWithUTF8String:
 (char *)sqlite3_column_text
 (statement,0)];
 } else if ([rettype compare:@"integer"] == NSOrderedSame) {
 result = (id)sqlite3_column_int
 (statement,0);
 }
 }
 }
 sqlite3_finalize(statement);
 return result;
}

@end

The header file (not shown) includes one variable declaration for the dbh (database
handle) variable, the database handle. That’s the one variable you want to always have
available to your class, because it gives access to the database. Now you’re ready to
start working on the source code file.

Looks up
SQL results

B

Calls prepare
function

C

http://www.it-ebooks.info/

172 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
 The initWithFile: method uses some of the file commands that you learned in
the previous section to find the database file, which is in the main bundle (but
remember, you’ll want to copy this to the Documents directory if you make changes to
your database). It then opens the file using sqlite3_open, the first of several sqlite3
API commands. Note that the NSString for the path has to be converted with the
UTF8String method. This must be done throughout the class, because the SQLite API
doesn’t use the Objective-C classes you’re familiar with.

 The next few methods are pretty simple. close signals the end of the database life-
cycle, dbh is a getter for the class’s one variable, and prepare turns an SQL statement
into a prepared statement.

 The lookupSingularSQL: method is where things get interesting, because it shows
off the lifecycle of a complete SQL function call B. Note that this function allows only
a simple SQL call that returns one column from one row of information. That’s all you
need for the database view controller, but you’ll doubtless need more complexity for a
larger application.

 The function starts by turning the SQL statement into a prepared statement C.
Then it steps to the first row. Depending on the type of lookup, it fetches either a
string or an int. Finally, it cleans up the statement with a finalize.

 In a more complex class, you’d doubtless want to write methods that execute SQL
calls without any returns, that return multiple columns from a row, and that return
multiple rows, but we’ll leave that for now (because we don’t need any of those fea-
tures for this example) and move on to the menu class. The SQLite API has more
information on these features if you need them.

THE MENU CLASS

The next class, SKMenu, acts as an intermediary. At the frontend, it accepts requests for
information about the menu that will fill the table view. On the backend, it turns those
requests into SQL queries. It’s been designed in this way to create an opaque interface:
you never have to know that a database is being used, just that the SKMenu class returns
results for a table view.

 The code of SKMenu is shown in the following listing. It mainly illustrates how to
use the SKDatabase class in listing 9.1.

#import "SKMenu.h"
@implementation SKMenu
- (id)initWithFile:(NSString *)dbFile {
 self = [super init];
 myDB = [[SKDatabase alloc] initWithFile:dbFile];
 return self;
}
- (int)countForMenuWithParent:(int)parentid {
 int resultCount = 0;
 NSString *sql = [NSString stringWithFormat:
 @"SELECT COUNT(*) FROM menu WHERE parentid=%i",parentid];

Listing 9.2 SKMenu, an interface to the SKDatabase class

Counts rows
in a page

B

http://www.it-ebooks.info/

173Using SQLite

www.it-ebooks.info
 resultCount = (int)[myDB lookupSingularSQL:sql forType:@"integer"];
 return resultCount;
}
- (id)contentForMenuWithParent:(int)parentid
 Row:(int)row content:(NSString *)contenttype {
 NSString *sql = [NSString stringWithFormat:@"SELECT %@ FROM menu WHERE
 parentid=%i AND ordering=%i",contenttype,parentid,row];
 return [myDB lookupSingularSQL:sql forType:@"text"];
}
- (int)integerForMenuWithParent:(int)parentid
 Row:(int)row content:(NSString *)contenttype {
 NSString *sql = [NSString stringWithFormat:@"SELECT %@ FROM menu WHERE
 parentid=%i AND ordering=%i",contenttype,parentid,row];
 return (int)[myDB lookupSingularSQL:sql forType:@"integer"];
}
- (void)dealloc {
 [myDB close];
 [myDB release];
 [super dealloc];
}
@end

Again, we haven’t shown the include file, but it includes one variable, myDB, which is a
reference to the database object linked to the menu. The initWithFile: method ini-
tializes myDB by creating the database object.

 The countForMenuWithParent: method is the first one to use the database B. It
gets a sum of how many menu items there are at a particular level of the menu
hierarchy. contentForMenuWithParent: C and integerForMenuWithParent: D are
two other lookup functions. The first looks up database entries that return strings,
and the second looks up database entries that return ints. This is required because,
as you’ll recall, SQLite has different database lookup functions for each of the vari-
able types.

 Finally, the dealloc method cleans up the database, first closing it and then releas-
ing the object. It’s always important in Objective-C to keep track of which objects are
responsible for which other objects. Here, the menu is responsible for the database,
so it does the cleanup.

THE DATABASE VIEW CONTROLLER

Now that you have some menu methods that allow a program to figure out the con-
tents of a hierarchy of menus, you can put together your table view controller, which
will read that information and fill table views on the fly. The next listing shows how the
menu functions are used.

- (id)initWithParentid:(int)parentid
 Menu:(SKMenu *)passedMenu {1
 if (self = [super initWithStyle:UITableViewStylePlain]) {
 menuparentid=parentid;
 myMenu = passedMenu;

Listing 9.3 DatabaseViewController, a database-driven table view controller

Gets text
for row

C

Gets number
for row

D

Sets up
variables

B

http://www.it-ebooks.info/

174 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
 }
 return self;
}

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [myMenu countForMenuWithParent:menuparentid];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *MyIdentifier = @"MyIdentifier";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:MyIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero
 reuseIdentifier:MyIdentifier] autorelease];
 }
 int thisRow = indexPath.row + 1;
 cell.textLabel.text = [myMenu contentForMenuWithParent:
 menuparentid Row:thisRow
 content:@"title"];
 NSString *cellType = [myMenu contentForMenuWithParent:menuparentid
 Row:thisRow content:@"entrytype"];
 if ([cellType compare:@"category"] == NSOrderedSame) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 return cell;
}
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 int thisRow = indexPath.row + 1;
 NSString *cellType = [myMenu contentForMenuWithParent:menuparentid
 Row:thisRow content:@"entrytype"];
 if ([cellType compare:@"category"] == NSOrderedSame) {
 NSString *thisText = [myMenu contentForMenuWithParent:menuparentid
 Row:thisRow content:@"title"];
 int newParent = [myMenu integerForMenuWithParent:menuparentid
 Row:thisRow content:@"catid"];
 DatabaseViewController *newController =
 [[DatabaseViewController alloc]
 initWithParentid:newParent Menu:myMenu];
 newController.title = thisText;
 [self.navigationController pushViewController:newController
 animated:YES];
 [newController release];
 }
}

Counts
sections

C

Counts
rows

D

Draws
cell

E

Pops up
submenu

F

http://www.it-ebooks.info/

175Using SQLite

www.it-ebooks.info
To properly understand how the database view controller works, recall the menu for-
mat we introduced a few pages ago. Remember that each row of the menu has an indi-
vidual ID (the catid) and a parentid that indicates what lies above it in the menu
hierarchy. There’s also a title, which lists what the menu row says; a category, which
indicates whether it leads to a new menu or is an end result; and an ordering variable.
You use all that information in putting together your table view.

 The database view controller is called multiple times by your project: once per
menu or submenu. Each time, the initWithParentid:Menu: method identifies what
level of the hierarchy to draw from the menu that’s enclosed B. For example, if the
parentid is 0, the top-level menu is drawn; if the parentid is 2, the menu that lies
under entry (catid) 2 is drawn. The sole purpose of the init is to save that
information.

 You then have to fill in the standard table view controller methods. The count of
sections is always 1 C. The number of rows is calculated from the database, using the
SKMenu’s countForMenuWithParent: method D .

tableView:cellForRowAtIndexPath: is the first somewhat complex method E.
After the standard setup of the cell, the method looks up the title to be placed in the
menu row. It then determines whether the menu row is a category; this affects
whether the chevron accessory is placed.

 Finally, tableView:didSelectRowAtIndexPath: does the fancy work F. If the cell
isn’t a category, it doesn’t do anything. (You’ll probably change this when creating
another program, because you may want results to result in some action; this could
be a great place to introduce a new protocol to respond when a result row is
selected.)

 If the cell is a category, magic happens. The database view controller creates a new
database view controller, on the fly, using the same old menu. But the current catid
becomes the new parentid, which means the new view controller contains all the rows
that lie under the current row on the hierarchy. The new database view controller is
then placed on the navigator controller’s stack, using the navigation methods you
learned in chapter 7.

 Figure 9.1 shows how all this fits together, using the database you created at the
beginning of this section.

 There’s one thing missing from this example—the app delegate.

THE APP DELEGATE

The app delegate needs to create the Navigator, initialize the menu object, build the
first level of the menu hierarchy, and clean things up afterward. Listing 9.4 shows the
couple of steps required to do this.

http://www.it-ebooks.info/

176 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 (UIApplication *)application {
 myMenu = [[SKMenu alloc] initWithFile:@"nav.db"];
 DatabaseViewController *newController = [[DatabaseViewController alloc]
 initWithParentid:0 Menu:myMenu];
 newController.title = @"DB Menu";
 [self.navigationController pushViewController:newController
 animated:NO];
 [newController release];
 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
 return YES;
}
- (void)dealloc {
 [myMenu release];
 [navigationController release];
 [window release];
 [super dealloc];
}

Listing 9.4 The app delegate that glues together these classes

Figure 9.1 This menu was
created directly from a database.

http://www.it-ebooks.info/

177Accessing the Address Book

www.it-ebooks.info
The applicationDidFinishLaunchingWithOptions: method sets things up. After
initializing the menu, it creates the first database view controller and pushes it onto
the navigation stack. The dealloc method later closes everything out. Note that it
releases the menu object, which in turn will close the database and release that, end-
ing the menu’s lifecycle.

 Not shown here is the Xcode file, which includes one object, a navigation control-
ler. Its standard view controller should be deleted, because you’ll be replacing it here.

 Though it’s relatively basic, you now have a hierarchical menu of tables built
entirely from a database.

9.1.5 Expanding this example

This example showed not only how to use databases in a real application but also how
to put together a more complex project. Nonetheless, if you wanted to make regular
use of the database and menu classes, you’d probably want to expand it more. We’ve
already noted that SKDatabase could use more functionality and that the database
view controller needs to do something for the result pages that it arrives on.

 Because this is all database driven, you can also hand off considerable power to the
users. It would be easy to expand this example so that users could create their own
rows in menus and reorder the existing ones.

 With SQLite now covered to the depth we can give it, we’ll move on to another
major method of data retrieval, one of equal complexity: the Address Book.

9.2 Accessing the Address Book
Like SQLite, the Address Book is too complex to wholly document within the con-
straints of this chapter. It’s made up of two different frameworks—the Address Book
framework and the Address Book UI framework—and together they contain over a
dozen references. Fortunately, Apple offers an extensive tutorial on the Address Book:
“Address Book Programming Guide for iOS.”

 In this section, we’ll provide a basic reference that supplements Apple’s own tuto-
rial, but we suggest you read their guide for more extensive information. We’ll look at
the Address Book frameworks, show how to access the Address Book’s properties, and
explain how to use the Address Book UI.

9.2.1 An overview of the frameworks

As noted, there are two frameworks for the Address Book. The Address Book frame-
work contains what you’d expect: information on the data types that make up the
Address Book and how to access them. The Address Book UI framework contains a
bunch of handy interfaces that allow you to hand off the selection and editing of
Address Book entries to modal view controllers that Apple has already written.

 To use this functionality, you must include one or both frameworks, plus the appro-
priate include files: AddressBook/AddressBook.h and AddressBookUI/Address-
BookUI.h.

http://www.it-ebooks.info/

178 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
Table 9.3 lists many of the most important classes in the frameworks.

Each of these classes contains numerous functions that can be used to build Address
Book projects. We’ll talk about a few important functions and point you to the class
references for the rest.

9.2.2 Accessing Address Book properties

As you’ll see shortly, the Address Book and Address Book UI frameworks ultimately
provide different ways of accessing the Contacts data information: you might be work-
ing with the Address Book programmatically, or a user may be making selections
through fancy UIs. Ways to select individual contacts may vary, but after a contact has
been selected, you’ll generally use the same getter and setter functions to work with
that record. These important functions are listed in table 9.4.

Table 9.3 The Address Book classes, the framework they belong to, and what they do

Class Framework Summary

ABAddressBook Address Book Interface for accessing and changing the
Address Book; may not be required if you
use the Address Book UI framework

ABNewPersonViewController Address Book UI Interface for entering new record
manually

ABPeoplePickerNavigationController Address Book UI Interface for selecting users and
properties

ABPersonViewController Address Book UI Interface for displaying and editing
records

ABUnknownPersonViewController Address Book UI Interface for displaying “fake” contact
and possibly adding it to Address Book

ABGroup Address Book Opaque type giving access to the records
of groups

ABPerson Address Book Opaque type giving access to the records
of individual people

ABRecord Address Book Record providing information on a person
or group

ABMultiValue Address Book Type containing multiple values, each
with its own label; its precise use is
defined in ABPerson, where it’s applied
to addresses, dates, phone numbers,
instant messages, URLs, and related
names

ABMutableMultiValue Address Book An ABMultiValue whose values can be
modified

http://www.it-ebooks.info/

179Accessing the Address Book

www.it-ebooks.info
Generally, when you’re using the getter functions for contacts in the Address Book,
you’ll follow this procedure:

1 Select one or more contacts through either the Address Book or the Address
Book UI framework.

2 To look at an individual property, like a name or phone number, use ABRecord-
CopyValue:

3 If it’s a single-value property, you can immediately work with it as a string or
some other class.

4 If it’s a multivalue property, you need to use the ABMultiValue functions to
access individual elements of the multivalue.

We included the setter methods in table 9.4 to keep the methods all in one place, but
you’ll usually only be using the setters if you’re working with the Address Book frame-
work, not the Address Book UI framework. Here’s how they work:

1 Make changes to individual properties or to multivalues (using the mutable
multivalue).

2 Use ABRecordSetValue to save the value to your local copy of the Address Book.
3 Use ABAddressBookSave to save your local changes to the real Address Book

database.

We won’t cover the setter side of things (which you can find out about in the “Address
Book Programming Guide for iOS”), but you’ll use many of the getter functions in the
next section.

Table 9.4 Property setters and getters are among the most important functions in the Address Book.

Function Arguments Summary

ABRecordCopyValue ABRecordRef, property Looks up a specific property
from a specific record

ABRecordSetValue ABRecordRef, property,
value, &error

Sets a property to a value in a
record

ABMultiValueGetCount ABMultiValue Returns the size of a multivalue
(which can contain one or more
copies of a record, such as mul-
tiple phone numbers)

ABMultiValueCopyLabelAtIndex ABMultiValueRef, index Looks up the label of an entry in
a multivalue

ABMultiValueCopyValueAtIndex ABMultiValueRef, index Looks up the content of an entry
in a multivalue

ABCreateMutableCopy ABMultiValueRef Creates a copy of a multivalue

ABMultiValueReplaceLabelAtIndex ABMutableMultiValueRef,
label, index

Replaces a label at an index in a
multivalue

http://www.it-ebooks.info/

180 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
9.2.3 Querying the Address Book

Your first exploration of the Address Book will use the plain Address Book framework
to access the Address Book and look up many of the values. This is shown in
listing 9.5. It centers on a simple application with two objects built in Xcode: a
UISearchBar and a UITextView (with an IBOutlet called myText).

 You haven’t used search bars before, but they’re a simple way to enter search text.
You set the search bar’s delegate and then respond to appropriate messages. In this
case, your program responds to the searchBarSearchButtonClicked: delegate
method and then looks up the information that was entered.

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [searchBar resignFirstResponder];
 ABAddressBookRef addressBook =
 ABAddressBookCreate();
 CFIndex abPCount =
 ABAddressBookGetPersonCount(addressBook);
 CFIndex abGCount =
 ABAddressBookGetGroupCount(addressBook);
 CFArrayRef searchResults = ABAddressBookCopyPeopleWithName(addressBook,
 (CFStringRef)searchBar.text);
 myText.text = [NSString stringWithString:@"Possible Completions:"];
 for (int i=0; i < CFArrayGetCount(searchResults); i++) {
 ABRecordRef thisPerson =
 CFArrayGetValueAtIndex(searchResults, i);
 myText.text = [myText.text stringByAppendingFormat:@"\n\n%@",
 (NSString *)ABRecordCopyCompositeName
 (thisPerson)];
 CFStringRef thisJob = ABRecordCopyValue(thisPerson,
 kABPersonJobTitleProperty);
 CFStringRef thisOrg = ABRecordCopyValue(thisPerson,
 kABPersonOrganizationProperty);
 if (thisJob != NULL && thisOrg != NULL) {
 myText.text = [myText.text stringByAppendingFormat:
 @"\n%@ of %@",thisJob,thisOrg];
 }
 ABMultiValueRef thisPhones = ABRecordCopyValue(thisPerson,
 kABPersonPhoneProperty);
 if (thisPhones != NULL) {
 for (int j = 0; j <ABMultiValueGetCount(thisPhones); j++) {
 myText.text = [myText.text stringByAppendingFormat:
 @"\n%@: %@", (NSString *)
 ABMultiValueCopyLabelAtIndex(thisPhones, j),
 (NSString *)
 ABMultiValueCopyValueAtIndex
 (thisPhones, j)];
 }
 }
 }
 myText.text = [myText.text stringByAppendingFormat:@"\n\nThere are %ld
 records and %ld groups in this address book.",abPCount,abGCount];

Listing 9.5 Looking up information in the Address Book

Copies
Address Book

B

Searches
Address Book

C

Gets personal
record

D

Gets phone
multivalue

E

Prints
individual
phone number

F

http://www.it-ebooks.info/

181Accessing the Address Book

www.it-ebooks.info
 CFRelease(searchResults);
 CFRelease(addressBook);
}

You start by running ABAddressBookCreate, which makes a local copy of the Address
Book B. You’ll need to do this whenever you’re working manually with the Address
Book. After that, you use a few general Address Book functions that let you do things
like count your number of contacts and groups. But it’s the search function that’s
most important C. This is one of two ways you can extract contacts from the Address
Book by hand, the other being ABAddressBookCopyArrayOfAllPeople. Note the typ-
ing of searchBar.text as CFStringRef. This is a Core Foundation class equivalent to
NSString *; you can find more information about the details of Core Foundation in
the section “Using Core Foundation.”

 The preceding steps are the major ones that differentiate working with the
Address Book manually from working with it through a UI. With the Address Book
framework, your program does the selection of contact records; with the UI frame-
work, the user does it through a graphical interface. Beyond that, things work simi-
larly via either methodology.

 When you have a list of contacts, you need to extract individuals from the
array D. You can then use numerous functions to look
at their properties. ABRecordCopyCompositeName gives
you a full name already put together, and ABRecord-
CopyValue lets you pick out other properties. The list
of properties and returned values is in the ABPerson
reference.

 Multivalues are only a little more difficult to use
than simple properties. You use ABRecordCopyValue as
usual E, but then you have to work through the
entire multivalue, which is effectively an associative
array. The easiest thing to do is extract all the individ-
ual labels and values F. This program displays the
slightly awkward label names (for your reference), but
you probably won’t usually want to show off words like
$!<Mobile>!$, and it’s easy enough to strip them out.

 The program ends by cleaning up some of the Core
Foundation objects, using the standard Core Founda-
tion memory-management functions. When you run it,
this program displays some of the data from names that
you search for, as shown in figure 9.2.

 You can do lots more with the Address Book, but
this should outline the basics of how to access its several
classes.

Figure 9.2 As shown here on the
iPhone, the Address Book
framework gives you low-level
access to contact information.

http://www.it-ebooks.info/

182 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
9.2.4 Using the Address Book UI

There are definitely times when you’ll want to work with the low-level Address Book
functions you’ve seen so far. But you also don’t want to reinvent the wheel. If you need
to let a user select, edit, or insert a new contact, you don’t need to program the UI.
Instead, you can use the Address Book UI framework, which has all that functionality
preprogrammed.

 The Address Book UI framework contains only the four classes that we summarized
in table 9.3: ABPeoplePickerNavigationController, ABNewPersonViewController,
ABPersonViewController, and ABUnknownPersonViewController. Each of these UI
objects is—as the names suggest—a view controller. To be precise, they’re highly spe-
cialized modal controllers that each assist you in a single Address Book–related task.
Each controller also has a delegate protocol, which is how you link to a class that’s
already pretty fully realized. We’ll touch on each of these classes, but we’ll give a lot of
attention to only the people picker (ABPeoplePickerNavigationController).

THE PEOPLE PICKER VIEW CONTROLLER

To demonstrate the people picker, you’ll put together a quick utility with substantially
identical functionality to the previous Address Book example. But rather than search-
ing for multiple users using the Address Book framework, the user will instead select a
specific user using the Address Book UI framework.

 This program is built with a couple of Xcode–created objects. A UIToolBar with a
single button allows the user to activate the program via the selectContact: method,
and text will once more be displayed in a non-editable UITextView called myText. The
program is shown in the following listing.

-(IBAction)selectContact:(id)sender {
 ABPeoplePickerNavigationController *myPicker =
 [[ABPeoplePickerNavigationController alloc]
 init];
 myPicker.peoplePickerDelegate = self;
 [self presentModalViewController:myPicker
 animated:YES];
 [myPicker release];
}
- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)peoplePicker
 shouldContinueAfterSelectingPerson:
 (ABRecordRef)thisPerson {
 CFIndex abPCount =
 ABAddressBookGetPersonCount
 (peoplePicker.addressBook);
 CFIndex abGCount =
 ABAddressBookGetGroupCount
 (peoplePicker.addressBook);
 myText.text = [NSString stringWithString:@"Selected Contact:"];
 myText.text = [myText.text stringByAppendingFormat:@"\n\n%@",
 (NSString *)ABRecordCopyCompositeName(thisPerson)];

Listing 9.6 People picker: a simple, graphical way to select contacts

Creates
people pickerB

Sets delegateC
Displays
people pickerD

Gets
overall
counts

E

http://www.it-ebooks.info/

183Accessing the Address Book

www.it-ebooks.info
 CFStringRef thisJob = ABRecordCopyValue(thisPerson,
 kABPersonJobTitleProperty);
 CFStringRef thisOrg = ABRecordCopyValue(thisPerson,
 kABPersonOrganizationProperty);
 if (thisJob != NULL && thisOrg != NULL) {
 myText.text = [myText.text stringByAppendingFormat:@"\n%@ of
 %@",thisJob,thisOrg];
 }
 ABMultiValueRef thisPhones = ABRecordCopyValue(thisPerson,
 kABPersonPhoneProperty);
 if (thisPhones != NULL) {
 for (int j = 0; j < ABMultiValueGetCount(thisPhones) ; j++) {
 myText.text = [myText.text stringByAppendingFormat:@"\n%@: %@",
 (NSString *)ABMultiValueCopyLabelAtIndex(thisPhones, j),
 (NSString *)ABMultiValueCopyValueAtIndex(thisPhones, j)];
 }
 }
 myText.text = [myText.text stringByAppendingFormat:@"\n\nThere are %ld
 records and %ld groups in this address book.",abPCount,abGCount];
 [self dismissModalViewControllerAnimated:YES];
 return NO;
}
- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)peoplePicker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
 identifier:(ABMultiValueIdentifier)identifier {
 return NO;
}
- (void)peoplePickerNavigationControllerDidCancel:
 (ABPeoplePickerNavigationController *)
 peoplePicker {
 [self dismissModalViewControllerAnimated:YES];
}

To instantiate a modal view controller, you follow three simple steps that are executed
when the user clicks the appropriate button in the toolbar. You create the controller
B, set its delegate C, and use UIViewController’s presentModalViewController:
animated: method to place it at the top of your user’s screen D. You then don’t have
to worry about how the modal view controller looks or works; you just have to respond
to the messages listed in the protocol reference.

 The fully featured interface that’s available to you as soon as you pop up the con-
troller is shown in figure 9.3.

 You do most of the work in the peoplePickerNavigationController:should-
ContinueAfterSelectingPerson: method. This is called whenever a user selects an
individual contact. Note that you can use a property of the peoplePicker variable to
access the Address Book E, which allows you to use many of the ABAddressBook
functions without needing to create the Address Book manually. Beyond that, the
people picker sends you an ABRecordRef for the contact that the user selected; from
there, you work with it exactly as you worked with the ABRecordRefs you looked up
in listing 9.5.

http://www.it-ebooks.info/

184 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
In this example, users can only select individual contacts, so when the method is done,
you dismiss the modal view controller and then return NO, which tells the people
picker that you don’t want to take the standard action for selecting the contact (which
would be to call up a subpage with all of that contact’s properties).

 If you wanted to let a user select a specific property from within a contact, you’d
fill in the peoplePickerNavigationController:shouldContinueAfterSelecting-
Person:property:identifier: method.

 The third method defined by the ABPeoplePickerNavigationController proto-
col is peoplePickerNavigationControllerDidCancel:, which here causes the pro-
gram to (again) dismiss the people picker.

 You can do a little more with the people picker. As we already noted, you could
have opted to let a user select an individual property by returning YES for the first
shouldContinue method and then filling in the second one. You could also choose
the individual properties that display on a contact page. Information on these possi-
bilities is available in the ABPeoplePickerNavigationController and ABPeople-
PickerNavigationControllerDelegate class references.

USING CORE FOUNDATION

The Address Book framework is the first framework you’ve worked with that requires
you to use Core Foundation, a non-Cocoa library. This means you have to program
slightly differently, as we promised would be the case back in chapter 1. The biggest
differences are how variables and memory allocation work.

Figure 9.3 A people picker view
controller shown on both the iPad
and iPhone

http://www.it-ebooks.info/

185Accessing the Address Book

www.it-ebooks.info
 Core Foundation variables use different classes, such as CFStringRef replacing
NSString *. Remember that the Core Foundation variable types usually have equiva-
lents in Cocoa that you can freely switch between by casting, as is done in listing 9.5
when moving between the Address Book records and the UITextView text. When
you’re using the Core Foundation variables natively, you have to use Core Foundation
functions, such as CFArrayCount, to deal with them.

 You also have to deal with memory management a little differently. Core Founda-
tion memory management uses the same general approach as Cocoa Touch. There’s a
reference count for each object that’s increased when it’s created or retained and
decreased when it’s released. You have to remember slightly different rules for when
you have a reference. If you create an object with a function using the word create or
copy, you own a reference to it and must CFRelease it. If you create an object in
another way, you don’t have a reference, and you must CFRetain the object if you want
to keep it around. Some classes of objects may have their own release and retain func-
tions. The “Memory Management Programming Guide for Core Foundation” tutorial
at http://developer.apple.com has more information.

 Core Foundation will show up again in chapter 12, where it controls some audio
services, and in chapter 13, where it’s used for the Quartz 2D graphics package. You
can use three other view controllers to allow users to interact with the Address Book,
as we’ll discuss next.

THE OTHER VIEW CONTROLLERS

The other three view controllers work much like ABPeoplePickerNavigation-
Controller, with one notable difference: they must each be built on top of a naviga-
tion controller. Technically, they’re probably not modal view controllers, because they
go inside a navigation controller, but you can treat the navigation controller as a
modal view controller once everything is loaded up, as you’ll see in the example.

 The ABNewPersonViewController allows a user to enter a new contact. You can
prefill some of the info by recording it in an ABRecordRef and setting the displayed-
Person property, but this is purely optional (and probably won’t usually be done).
After you’ve created the controller, you need to respond to a method that tells you
when the user has entered a new contact. You don’t have to do anything with it except
dismiss the modal controller, because the controller automatically saves the new con-
tact to the Address Book. You can see what info the user entered, though, and do
something with it if you want. The following listing shows how to deploy a new person
view on top of a navigation controller and how to respond to its single method.

-(IBAction)newContact:(id)sender {
 ABNewPersonViewController *myAdder =
 [[ABNewPersonViewController alloc] init];
 myAdder.newPersonViewDelegate = self;
 UINavigationController *myNav = [[UINavigationController alloc]
 initWithRootViewController:myAdder];

Listing 9.7 Functionality required to call up a new person view controller

http://developer.apple.com
http://www.it-ebooks.info/

186 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
 [self presentModalViewController:myNav animated:YES];
 [myAdder release];
 [myNav release];
}
- (void)newPersonViewController:
 (ABNewPersonViewController *)newPersonViewController
 didCompleteWithNewPerson:(ABRecordRef)person {
 [self dismissModalViewControllerAnimated:YES];
}

The other two view controllers work the same way, except for the specifics about what
methods each protocol defines.

 The ABPersonViewController displays the information for a specific user. You’ll
need to set the displayedPerson property to an ABRecordRef before you call it up.
This ABRecordRef might have been retrieved from the Address Book search functions
or from the people picker, using the functions we’ve already discussed. The person
view controller can optionally be editable. There’s one method listed in the protocol,
which activates when an individual property is selected.

 Finally, the ABUnknownPersonViewController allows you to display the ABRecord-
Ref defined by displayedPerson as if it were a real contact. Optionally, the user can
create that information as a new contact, add it to an existing contact, or take
property-based actions, like calling a number or showing a URL. It’s a great way to give
users the option to add contact info for your software company to their Address Book.

 You should now understand the basics of how to use the Address Book in your own
programs.

9.3 An introduction to Core Data
The Core Data framework is a data storage system that was added to the iOS SDK 3.0. It
provides a powerful and structured method to save and retrieve persistent data on the
iPhone and iPad.

 Core Data is based on the design methodology of Model-View-Controller. It’s
intended as the model and provides such functionality. This allows the data to be com-
pletely separate from the views and controllers, giving the developer more control of
their application.

 Traditionally, when you wanted to save structured data on the device, you looked
to such methods as SQLite or serialization. Core Data can be considered a hybrid of
these two with some added functionality. It gives you the power of SQL with the sim-
plicity of serialization.

 Core Data allows you to take objects you already have in your application and save
them directly into a database. You no longer need to do complex queries or make sure
that your object property names match up with your database field names. Core Data
handles these tasks for you.

 Because Core Data is such a large topic, we’ll only scratch the surface of what’s pos-
sible. The next subsections will teach you how to use Core Data by walking you
through a simple example of creating a to-do list application. Your application will
display a table view of to-do objects that will be saved and retrieved using Core Data.

http://www.it-ebooks.info/

187An introduction to Core Data

www.it-ebooks.info
You’ll see how to set up Core Data, how to initialize Core Data objects, how to add
those objects to the database, and then how to access and manipulate them. Although
this won’t be an in-depth discussion about Core Data, it will give you the knowledge
necessary to use Core Data for storage in your own applications.

9.3.1 Background information about Core Data

Let’s briefly look at the concepts and terminology we’ll be using. We’ll start by discuss-
ing the heart of Core Data, the managed object.

MANAGED OBJECT

A managed object is a representation of an object you want to store in a database. Think
of it as a record in SQL. It generally contains fields that match up with the properties
of an object being saved in your application. After you create a managed object, you
must insert it into a managed object context before you can save it to the data store.

MANAGED OBJECT CONTEXT

The managed object context holds all of your managed objects until they’re ready to
be committed to the database. Inside this context, managed objects can be added,
modified, and deleted. This is like a buffer between your application and the database.

MANAGED OBJECT TABLE

This object describes the schema of your database. It’s used when interfacing the man-
aged object context with the database. A managed object table contains a collection of
entity descriptions. Each of these entities describes a table in your database and is
used when mapping managed objects to database entries.

9.3.2 Setting up Core Data in your application

Integrating Core Data into your application is simple. It requires less code than SQLite
and offers a much simpler interface. The sample application we’ll look at in this section
is a basic journal application. It will allow you to post entries and view them by date. To
start using the Core Data API, be sure to add CoreData.framework to your project.

 The first thing you must do to integrate Core Data is add the data model to
your project. The data model file is where you do all the creation of your Core Data
database. To add it, choose File > New File. Then, select Data Model under
Resource. Name it something appropriate to your application. In
this example, name it CDJournal.Xcdatamodel, and click Finish.

 Now that you’ve added the data model to your project, you
must define your database entities. Click the Xcdatamodel to open
the table editor. Now, follow these steps to add the table for the
journal entries:

1 Click the + Add Entity button on the bottom of the editor
area. Doing so adds a new entity with a default name.
Change the name of this field to Entry. Figure 9.4 shows
what this box should look like.

Figure 9.4
Entry box

http://www.it-ebooks.info/

188 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
2 Now that you’ve created an entity named
Entry, you must create the properties that
go along with it. To do this, click + in the
Attributes box and add your attribute prop-
erties: in this case, body, title, and cre-
ationDate. Notice that you can specify the
type of each property, similarly to how you’d
do it in SQLite. The Property box should
look like figure 9.5.

3 At this point you may also create any other entities needed for your application.
If one entity contains another, you can drag and drop to create relationships.
This is similar to a foreign key in SQL. In this case, you could have authors, and
an author could have many entries.

Now that you’ve created your database, you must generate the classes that represent
your database objects. This allows you to get a code representation of your entities. To
do this, select the entity in your Xcdatamodel file. Then, choose Editor > Create
NSManagedObject Subclass. Figure 9.6 shows what this menu should look like.
Accept the default path, and click Create. That’s it!

 When you’ve completed this process, you should see .h and .m files added to your
project for the entity in your Core Data model. You may now use these class files like

Figure 9.6 Creating a managed object class

Figure 9.5 Properties of an Entry

http://www.it-ebooks.info/

189An introduction to Core Data

www.it-ebooks.info
any other class in your project. You’ll see a little later how they’re used to interface
with your database.

 The last thing you must do to prepare your application is to add the Core Data
framework to your project. To do this, in the project editor, select the target; in this
case CDJournal is the target. Click Build Phases at the top of the project editor. Open
the Link Binary With Libraries section. Then, click the + button and select core-
data.framework from the list. Now you’re ready to start writing the code to initialize
your Core Data model.

9.3.3 Initializing the Core Data objects

As with SQLite, Core Data requires quite a bit of setup before you can get it up and
running. Fortunately, the code for doing this is standard and is roughly the same in
most situations.

 First, you must declare the objects needed by Core Data. As you did with SQLite,
you declare them in your application delegate. This lets you send the context to only
the classes that need to work with it. The objects you need to declare are model,
context, and persistent store. The following listing shows this code.

#import <CoreData/CoreData.h>

@interface CDJournalAppDelegate : NSObject <UIApplicationDelegate> {
 NSManagedObjectModel *managedObjectModel;
 NSManagedObjectContext *managedObjectContext;
 NSPersistentStoreCoordinator *persistentStoreCoordinator;

 UIWindow *window;
 UINavigationController *navigationController;
}

@property (nonatomic, retain, readonly) NSManagedObjectModel
 *managedObjectModel;
@property (nonatomic, retain, readonly)
 NSManagedObjectContext *managedObjectContext;
@property (nonatomic, retain, readonly)
 NSPersistentStoreCoordinator *persistentStoreCoordiantor;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController
 *navigationController;

@end

Now that the properties have been declared, they must be initialized. After they’re ini-
tialized, only the managed object context will be used to interface with the data store.
You must add a few methods to your delegate method to initialize all of these
properties. They’re pretty standard and can be implemented the same way in all your
applications. We’ll walk you through each of these methods.

Listing 9.8 Declaring the Core Data objects

http://www.it-ebooks.info/

190 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
 The first method is the getter for the persistentStoreCoordinator. It’s where
you’ll be loading and initializing the database used by your Core Data application.
The next listing shows the code for this method.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 if (persistentStoreCoordinator != nil) {
 return persistentStoreCoordinator;
 }
 NSString *docs = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];
 NSURL *storeUrl = [NSURL fileURLWithPath: [docs
 stringByAppendingPathComponent: @"CDJournal.sqlite
 NSError *error = nil;
 persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:[self managedObjectModel]];

 if (![persistentStoreCoordinator
 addPersistentStoreWithType:NSSQLiteStoreType configuration:nil
 URL:storeUrl options:nil error:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 return persistentStoreCoordinator;
}

This is a fairly standard getter method. You first check to see if the store coordinator
has already been initialized. If so, you return it. This is the case on every call following
the first one to this method.

 Next, you resolve the path to the database used by your application B. As noted
before, Core Data is built on top of SQLite. The name of the SQLite database you need
to link to is the same as that of your Xcdatamodel file. In this case, it’s CDJournal.sqlite.

 Finally, you initialize the persistent store coordinator with this path and the man-
aged object model C. In the event that an error occurs, the abort methods tell the
application to fail and generate an error report. The last line returns a reference to
the persistentStoreCoordinator object.

 The next methods you’ll implement are the setters for the managedObjectContext
and managedObjectModel properties. The following code shows how these methods
are implemented.

- (NSManagedObjectContext *) managedObjectContext {

 if (managedObjectContext != nil) {
 return managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator =
 [self persistentStoreCoordinator];

Listing 9.9 Setter methods for Core Data objects

Listing 9.10 Object model and object context getter methods

BResolves path
to database

C
Initializes store

coordinator

http://www.it-ebooks.info/

191An introduction to Core Data

www.it-ebooks.info
 if (coordinator != nil) {
 managedObjectContext = [[NSManagedObjectContext alloc] init];
 [managedObjectContext setPersistentStoreCoordinator: coordinator];
 }
 return managedObjectContext;
}

- (NSManagedObjectModel *)managedObjectModel {

 if (managedObjectModel != nil) {
 return managedObjectModel;
 }
 managedObjectModel = [[NSManagedObjectModel mergedModelFromBundles:nil]
 retain];
 return managedObjectModel;
}

Both of these methods check to see if their property has been initialized. If not,
they’re initialized and returned. The final method you need to implement is
applicationWillTerminate. This is where you’ll save your managed object context to
the data store. You save your context every time the user makes a change to the data.
This code is needed in case some unsaved data is lying around when the application
exits. The following listing shows the code for this method.

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSError *error = nil;
 if (managedObjectContext != nil) {
 if ([managedObjectContext hasChanges] &&
 ![managedObjectContext save:&error]) {
 NSLog(@"Unresolved error %@, %@", error,
 [error userInfo]);
 abort();
 }
 }
}

The first thing this method does is check to see if your managedObjectContext is nil.
This will most likely never be the case, but it’s still good practice to check. Next, you
check to see if there are any unsaved changes to the context by calling the hasChanges
method. The context will have changes anytime something is added, modified, or
deleted.

 If changes are present, the context is saved by calling the save method. Similarly to
the code in listing 9.9, you call the abort method in the event of an error in order to
generate a crash log. You’re now ready to make changes to your data.

Listing 9.11 Saving the managed object context

http://www.it-ebooks.info/

192 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
9.3.4 Adding objects to the database

As you’ve seen, to work with database objects in SQLite, you must write the raw SQL
code. Also, every time you want to add a record, you must write many lines of code that
can’t be reused in other areas. This is where the true power of Core Data comes in.

 In Core Data, you’re working with only the class files that were generated from
your data model. This allows you to manipulate them as you would any other object in
Objective-C. Let’s start by looking at the code to add an object to the database. The
code for adding a new entity to the database is shown here.

Entry * e = (Entry *)[NSEntityDescription
 insertNewObjectForEntityForName:@"Entry"
 inManagedObjectContext:managedObjectContext];

[e setTitle:textField.text];
[e setBody:textView.text];
[e setCreationDate:[NSDate date]];
NSError *error;

if (![managedObjectContext save:&error]) {
 NSLog(@"Error Saving: %@",[error description]);
}

As you can see, the only difference here is how you initialize the Entry object. Instead
of doing a [[Entry alloc] init], you allow Core Data to create a new object inside
the context. After this object has been created, you can begin using its accessor and
mutator methods. You can even create your own methods inside these objects and
call them.

 When you’re ready to save your managed object, you call the save method of the
managed object context. This causes your changes to be made permanent by writing
them to the database.

9.3.5 Fetching, updating, and deleting objects in Core Data

To update or delete objects from the database, you must first have them in memory.
To do this, you need to fetch them into an array.

 Fetching in Core Data is much more elegant than it is in SQL. You tell Core Data
what objects you want and how to sort the objects, and it returns them in an array with
little code. The code to do a simple fetch on your journal entries and sort them by
their creation date is shown here.

NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription
 entityForName:@"Entry"
 inManagedObjectContext:managedObjectContext];
 [request setEntity:entity];
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

Listing 9.12 Adding an entity to the database

Listing 9.13 Fetching data

BCreates sort
descriptor

to sort results

http://www.it-ebooks.info/

193An introduction to Core Data

www.it-ebooks.info
 initWithKey:@"creationDate" ascending:NO];
 NSArray *sortDescriptors = [[NSArray alloc]
 initWithObjects:sortDescriptor, nil];
 [request setSortDescriptors:sortDescriptors];
 [sortDescriptors release];
 [sortDescriptor release];

 NSError *error;
 NSMutableArray *mutableFetchResults = [[managedObjectContext
 executeFetchRequest:request error:&error] mutableCopy];
 if (mutableFetchResults == nil) {
 NSLog(@"Error fetching result %@",[error description]);
 }

 [self setEntries:mutableFetchResults];
 [mutableFetchResults release];
 [request release];

The first step in retrieving results from the database is to create the fetch request.
After the request has been created, you must set its entity. The entity represents which
object type you’re retrieving. In this case, the entity is an Entry of your journal.

 After your request is created, you must tell it how to sort the results. If you omit this
step, the ordering of the results will be undefined. This means the results returned
could be in any order. The sort descriptor you create B tells the request to sort the
results by the creation date in ascending order. You can sort based on any field in your
entity.

 The last thing you need to do is execute the request C. Notice that the request
returns an NSMutableArray. This array contains all the objects retrieved from the data-
base in the order specified by the sort descriptor. To keep these results around, you set
them to a class variable D.

 When you have an array of objects on hand, you can begin modifying or deleting
them. Let’s look at modifying objects. Here’s how you update a managed object:

- (void) update:(Entry *) entry {
 [entry setTitle:textField.text];
 [entry setBody:textView.text];
 [entry setCreationDate:[NSDate date]];

 NSError *error;
 if (![self.managedObjectContext save:&error]) {
 NSLog(@"Error Saving: %@",[error description]);
 }
}

As you can see, the code is almost identical to the code to add a new entry. The only
difference is how the entry is retrieved. Instead of letting Core Data allocate a new
entry for you, you modify one you already have on hand. Typically, this is first
retrieved from the array you created in listing 9.13.

 As with updating, you must have a managed object on hand in order to delete it.
You can’t delete a managed object without first retrieving it. Here’s how you delete a
managed object from the database:

CExecutes request

Localizes arrayD

http://www.it-ebooks.info/

194 CHAPTER 9 Data: advanced techniques

www.it-ebooks.info
-(void) delete:(Entry *) entry {
 [managedObjectContext deleteObject:entry];

 [entries removeObject:entry];
 NSError *error;
 if (![managedObjectContext save:&error]) {
 NSLog(@"Error deleted entry %@",[error description]);
 }
}

The delete method is fairly straightforward. The first thing to do is remove the object
from the managed object context. Any time the context is saved after removing the
object, it deletes that object from the data store.

 Next, you delete the object from the global array of entries so you can reflect the
update to the user. If you don’t do this, the user may still see the object in a table view,
even though it’s deleted forever when the application exits.

 Finally, you save the context. As with any changes made to the context, saving it
makes them permanent.

9.4 Summary
As you’ve seen, you have two powerful options to consider when storing large
amounts of data on the iPhone and iPad. SQLite is great for anyone with prior experi-
ence with SQL and MySQL. You have the ability to use full SQL syntax to work with the
records without having to learn a new design pattern.

 Core Data is Apple’s response to solving the complexities associated with SQL. You
no longer need to know complicated SQL syntax in order to have a fully functional
database in your application. Core Data extracts much of the process and gives you
high-level objects to work with as you please.

 In the next chapter, we’ll move away from data storage and work with some of the
cool hardware features of the iPhone and iPad. These include the accelerometer, GPS,
and compass.

http://www.it-ebooks.info/

www.it-ebooks.info
Positioning: accelerometers,
location, and the compass
When we first introduced the iPhone and iPad, we highlighted a number of their
unique features. Among them were three components that allow the device to fig-
ure out precisely where it is in space: a trio of accelerometers or gyroscope, which
gives it the ability to sense motion such as shaking or rotation; a locational device
(using either GPS or faux GPS), which lets it figure out where in the world it is; and
a compass to figure out which direction it’s facing.

 Other than accessing some basic orientation information, we haven’t done
much with these features. We’ll now dive into these positioning technologies and
examine how to use them in your programming.

 We’ll start with some new ways to look at orientation data and then explain how
to use the accelerometers, compass, and GPS in real applications.

This chapter covers
 Sensing gravity

 Gauging movement

 Determining location and orientation

 Using Core Location
195

http://www.it-ebooks.info/

196 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
10.1 The accelerometers and orientation
The easiest use of the accelerometers is to determine the device’s current orientation.
You already used the view controller’s interfaceOrientation property, back in chap-
ter 5. As we mentioned at the time, you can also access orientation information
through the UIDevice object. It can provide more information and real-time access
that isn’t available using the view controller.

 You have two ways to access the UIDevice information: through properties and
through a notification. Let’s examine the orientation property first.

10.1.1 The orientation property

The easy way to access the UIDevice’s orientation information is to look at its
orientation property. You must first access the UIDevice itself, which you can do by
calling a special UIDevice class method, pretty much the same way you access the
UIApplication object:

UIDevice *thisDevice = [UIDevice currentDevice];

After you’ve done this, you can get to the orientation property. It returns a constant
drawn from UIDeviceOrientation. This looks exactly like the results from a view con-
troller’s orientation property except there are three additional values, shown in
table 10.1.

 These three additional values are one reason you may want to access the UIDevice
object rather than examine orientation using a view controller.

10.1.2 The orientation notification

The UIDevice class can also give you instant access to an orientation change when it
occurs. This is done through a notification (a topic we introduced in chapter 6). The
following code shows how to access this information:

 [[UIDevice currentDevice]
 beginGeneratingDeviceOrientationNotifications];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(deviceDidRotate:)

Table 10.1 UIDeviceOrientation lists seven types of the device orientation.

Constant Summary

UIDeviceOrientationPortrait Device is vertical, right side up.

UIDeviceOrientationPortraitUpsideDown Device is vertical, upside down.

UIDeviceOrientationLandscapeLeft Device is horizontal, tilted left.

UIDeviceOrientationLandscapeRight Device is horizontal, tilted right.

UIDeviceOrientationFaceUp Device is lying on its back.

UIDeviceOrientationFaceDown Device is lying on its screen.

UIDeviceOrientationUnknown Device is in an unknown state.

http://www.it-ebooks.info/

197The accelerometers and movement

www.it-ebooks.info
 name:@"UIDeviceOrientationDidChangeNotification"
 object:nil];

This is a two-step process. First, you alert the device that you’re ready to start listening
for a notification about an orientation change. This is one of a pair of UIDevice
instance methods, the other being endGeneratingDeviceOrientationNotifications.
You generally should leave notifications on only when you need them, because they
take up CPU cycles and increase your power consumption.

 Second, you register to receive the UIDeviceOrientationDidChangeNotification
messages, the first live example of the notification methods we introduced in
chapter 6. Then, whenever an orientation change notification occurs, the device-
DidRotate: method is called. Note that you don’t receive notification of what the new
orientation is; you only know that a change happened. For more details, you have to
query the orientation property.

 You’ve now seen the two ways in which orientation can be tracked with the
UIDevice object, providing more information and more rapid notification than you
receive when using the view controller. But that only touches the surface of what you
can do with the device’s accelerometers. It’s the raw data about changes in three-
dimensional space that you’ll really want to access.

10.2 The accelerometers and movement
When you use orientation notification, the frameworks do the work for you: they take
low-level acceleration reports and turn them into more meaningful events. It’s similar
to the concept of actions, which turn low-level touch events into high-level control
events.

WARNING Accelerometer programs can’t be tested on the Simulator. Instead,
you need to have a fully provisioned iPhone or iPad to test your code. See
appendix C for information about provisioning your device.

Notifications aren’t sufficient if you want to program entire interfaces that effectively
use the device’s movement in three-dimensional space as a new user-input device. For
that, you need to access two classes: UIAccelerometer and UIAcceleration. Let’s look
at accessing and parsing data from UIAccelerometer. Later in the section, you’ll use
the accelerometers to check for gravity and movement.

10.2.1 Accessing the UIAccelerometer

UIAccelerometer is a class you can use to receive acceleration-related data. It’s a
shared object, like UIApplication and UIDevice. The process of using it is as follows:

- (void)viewDidLoad {
 UIAccelerometer *myAccel =
 [UIAccelerometer sharedAccelerometer];
 myAccel.updateInterval = .1;
 myAccel.delegate = self;
 [super viewDidLoad];
}

http://www.it-ebooks.info/

198 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
The first step is to access the accelerometer, which you do with another call to a
shared-object method. Having this step on its own line is probably unnecessary,
because you could perform the other two steps as nested calls, but we find this a lot
more readable.

 Next, you select your update interval, which specifies how often you receive infor-
mation about acceleration. This is hardware limited, with a current default of 100
updates per second. That’s most likely just right if you’re creating a game using the
accelerometer, but it’s excessive for other purposes. We’ve opted for 10 updates per
second, which is an updateInterval of 0.1. You should always set the lowest accept-
able input to preserve power on the device.

 Finally, you must set a delegate for the accelerometer, which is how you receive data
on accelerometer changes. The delegate needs to respond to only one method, accel-
erometer:didAccelerate:, which sends a message containing a UIAcceleration
object whenever acceleration occurs (to the limit of the updateInterval). Note that
the class that utilizes this mechanism needs to declare the UIAccelerometerDelegate
protocol in the interface.

10.2.2 Parsing the UIAcceleration

You can use UIAcceleration information to accurately
and easily measure two things: the device’s relationship
to gravity and its movement through three-dimensional
space. These are both done through a set of three prop-
erties, x, y, and z, which refer to the three-dimensional
axes, as shown in figure 10.1.

 The x-axis measures along the short side of the
iPhone or iPad, the y-axis measures along the long
side, and the z-axis measures through the device. All
values are measured in units of g, which is to say
g-force. A value of 1 g represents the force of gravity on
Earth at sea level.

 The thing to watch for when accessing the acceler-
ometer is that it measures two types of force applied to
the device: both the force of movement in any direc-
tion and the force of gravity, measured in units of g.
That means an iPhone or iPad at rest always shows an acceleration of 1 g toward the
Earth’s core. This may require filtering if you’re doing more sophisticated work.

10.2.3 Checking for gravity

When the accelerometers are at rest, they naturally detect gravity. You can use this fea-
ture to detect the precise orientation an iPhone or iPad is currently held in, going far
beyond the four or six states supported by the orientation variables.

+x-x

+y

-y

+z

-z

Figure 10.1 The accelerometers
measure acceleration in three-
dimensional space.

http://www.it-ebooks.info/

199The accelerometers and movement

www.it-ebooks.info
READING ACCELERATION INFORMATION

The following code shows how you can use the accelerometers to modify redBall, a
UIImage picture of a red ball initially set in the middle of the screen:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 CGPoint curCenter = [redBall center];
 float newX = 3 * acceleration.x + curCenter.x;
 float newY = -3 * acceleration.y + curCenter.y;
 if (newX < 25) newX = 25;
 if (newY < 25) newY = 25;
 if (newX > 295) newX = 295;
 if (newY > 455) newY = 455;
 redBall.center = CGPointMake(newX,newY);
}

Any accelerometer program begins with the accelerometer:didAccelerate:

method, which you access by setting the current program as a delegate of the
Accelerometer shared action. You then mark the current position of the redBall.

 To access the accelerometer, all you do is look at the x and y coordinates of the
UIAcceleration object and prepare to modify the redBall’s position based on those.
The acceleration is multiplied by 3 here to keep the ball’s movement from being snail-
like. There’s also a z property for the third axis and a timestamp property indicating
when the UIAcceleration object was created, none of which you need in this exam-
ple. Movement has a limited effect on the example anyway, because an abrupt move-
ment doesn’t change the ball’s slow roll much.

 After acquiring your gravitic information, you make sure the 50 x 50 red ball stays
within the bounds of the screen. If you wanted to be fancy, you could introduce vec-
tors and bounce the ball when it hits the edge, but that’s beyond the scope of this
example. After that check, you move the ball. Figure 10.2 shows what this program
looks like on the iPad.

 With a minimal amount of work, you’ve created a program that’s acted on by grav-
ity. This program could easily be modified to act as a leveler tool for pictures (by
having it move along only one of the three axes) or could be turned into a game

Filtering and the accelerometer
It may seem that the acceleration data is mushed together, but it’s easy to isolate
exactly the data you need using basic electronics techniques.

A low-pass filter passes low-frequency signals and attenuates high-frequency signals.
That’s what you use to reduce the effects of sudden changes in your data, such as
those caused by an abrupt motion.

A high-pass filter passes high-frequency signals and attenuates low-frequency sig-
nals. That’s what you use to reduce the effects of ongoing forces, such as gravity.

You’ll see examples of these two filtering methods in the upcoming sections.

http://www.it-ebooks.info/

200 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
where a player tries to move a ball from one side of the screen to the other, avoiding
pits on the way.

 Now, what would it take to make this example totally functional by filtering out all
movement? The answer, it turns out, is not much more work at all.

FILTERING OUT MOVEMENT

To create a low-pass filter that lets through gravitic force but not movement, you need
to average out the acceleration information you’re receiving, so that at any time the
vast majority of your input is coming from the steady force of gravity. This is shown in
the following code, which modifies the previous example:

gravX = (acceleration.x * kFilteringFactor)
 + (gravX * (1 - kFilteringFactor));
gravY = (acceleration.y * kFilteringFactor)
 + (gravY * (1 - kFilteringFactor));
float newX = 3 * gravX + curCenter.x;
float newY = -3 * gravY + curCenter.y;

This example depends on three predefined variables: kFilteringFactor is a constant
set to .1, which means that only 10 percent of the active movement is used at any time;
gravX and gravY each maintain a cumulative average for that axis of movement as the
program runs.

 You filter things by averaging 10 percent of the active movement with 90 percent of
the average. This smoothes out any bumps, which means sudden acceleration is
largely ignored. This example does this for the x- and y-axes because that’s all that are
used in the example. If you cared about the z-axis, you’d need to filter that too.

Figure 10.2 Gravity test as shown on the
iPad. The ball falls as if pulled by gravity
and responds accordingly to changes in the
orientation of the device.

http://www.it-ebooks.info/

201The accelerometers and movement

www.it-ebooks.info
 Afterward, you use the average acceleration instead of the raw acceleration when
you’re changing the position of the ball. The gravity information can be extracted
from what looked like an imposing mass of data with a couple of lines of code.

 As you’ll see, looking at only the movement is just as easy.

10.2.4 Checking for movement

In the previous example, you isolated the gravitic portion of the accelerometer’s data
by creating a simple low-pass filter. With that data in hand, it’s trivial to create a high-
pass filter. All you need to do is subtract the low-pass filtered data from the accelera-
tion value; the result is the pure movement data:

gravX = (acceleration.x * kFilteringFactor)
 + (gravX * (1 - kFilteringFactor));
gravY = (acceleration.y * kFilteringFactor)
 + (gravY * (1 - kFilteringFactor));
float moveX = acceleration.x - gravX;
float moveY = acceleration.y - gravY;

This filter doesn’t entirely stop gravitic movement, because it takes several iterations
for the program to cut out gravity completely. In the meantime, the program is influ-
enced by gravity for a few fractions of a second at startup. If that’s a problem, you can
tell the program to ignore acceleration input for a second after it loads and after an
orientation change. We’ll show the first solution in the next example.

 With that exception, as soon as you start using these new moveX and moveY vari-
ables, you’re looking at the filtered movement information rather than the filtered
gravity information. But when you start looking at movement information, you see
that it’s trickier to use than gravity information. There are two reasons for this.

 First, movement information is a lot more ephemeral. It appears for a second, and
then it’s gone again. If you’re displaying some type of continuous movement, as with
the red ball example, you need to make your program much more sensitive to detect
the movements. You’d have to multiply the moveX and moveY values by about 25 to see
movement forces applied to the ball in any recognizable manner.

 Second, movement information is a lot noisier. As you’ll see when we look at real
movement data, motion occurs in a multitude of directions at the same time, forcing
you to parse out the exact information you want.

 Ultimately, to interpret movement, you have to be more sophisticated, recognizing
what are effectively gestures in three-dimensional space.

10.2.5 Recognizing simple accelerometer movement

If you want to write programs using acceleration gestures, we suggest that you down-
load the Accelerometer Graph program available from Apple’s developer site. This is
a nice, simple example of accelerometer use; but more important, it also provides you
with a clear display of what the accelerometers report as you make different gestures.
Make sure you enable the high-pass filter to get the clearest results.

http://www.it-ebooks.info/

202 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
 Figure 10.3 shows what the Accelerometer Graph
looks like in use (but without movement occurring). As
you move the device around, you’ll quickly come to see
how the accelerometers respond.

 Here are some details you’ll notice about how the
accelerometers report information when you look at
the Accelerometer Graph:

 Most gestures cause all three accelerometers to
report force; the largest force should usually be
in the axis of main movement.

 Even though there’s usually a compensating stop
force, the start force is typically larger and shows
the direction of main movement.

 Casual movement usually results in forces of .1 g
to .5 g.

 Slightly forceful movement usually tops out at 1 g.
 A shake or other more forceful action usually

results in a 2 g force.
 The accelerometers can show things other than

simple movement. For example, when you’re
walking with an iPhone or iPad, you can see the
rhythm of your pace in the accelerometers.

All of this suggests a simple methodology for detecting basic accelerometer move-
ment: you monitor the accelerometer over the course of movement, saving the largest
acceleration in each direction. When the movement has ended, you can report the
largest acceleration as the direction of movement.

 The following listing puts these lessons together in a program that could easily be
used to report the direction of the device’s movement (which you could then use to
take some action).

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 accelX = ((acceleration.x * kFilteringFactor)
 + (accelX * (1 - kFilteringFactor)))
 accelY = ((acceleration.y * kFilteringFactor)
 + (accelY * (1 - kFilteringFactor)));
 accelZ = ((acceleration.z * kFilteringFactor)
 + (accelZ * (1 - kFilteringFactor)));
 float moveX = acceleration.x - accelX;
 float moveY = acceleration.y - accelY;
 float moveZ = acceleration.z - accelZ;
 if (!starttime) {
 starttime = acceleration.timestamp;
 }

Listing 10.1 Movement reporter that could be applied as a program controller

Gathers
filtered
info

B

Measures
movement

C

Marks
start time

D

Figure 10.3 The Accelerometer
Graph shows movement in all
three directions.

http://www.it-ebooks.info/

203The accelerometers and movement

www.it-ebooks.info
 if (acceleration.timestamp > starttime + 1 &&
 (fabs(moveX) >= .3 ||
 fabs(moveY) >= .3 ||
 fabs(moveZ) >= .3)) {
 if (fabs(moveX) > fabs(moveVector)) {
 moveVector = moveX;
 moveDir = (moveVector > 0 ? @"Right" : @"Left");
 }
 if (fabs(moveY) > fabs(moveVector)) {
 moveVector = moveY;
 moveDir = (moveVector > 0 ? @"Up" : @"Down");
 }
 if (fabs(moveZ) > fabs(moveVector)) {
 moveVector = moveZ;
 moveDir = (moveVector > 0 ? @"Forward" : @"Back");
 }
 lasttime = acceleration.timestamp;
 } else if (moveVector && acceleration.timestamp
 > lasttime + .1) {
 myReport.text =
 [moveDir stringByAppendingFormat:
 @": %f.",moveVector];
 moveDir = [NSString string];
 moveVector = 0;
 }
}

You start by creating a low-pass filter B and then taking the inverse of it C in order to
get relatively clean movement data. Because the data can be a little dirty at the start,
you don’t accept any acceleration data sent in the first second D. You could cut this
down to a mere fraction of a second.

 You start looking for movement whenever one of the accelerometers goes above
.3 g. When that occurs, you save the direction of highest movement E and keep mea-
suring it until movement drops below .3 g. Afterward, you make sure that at least a
tenth of a second has passed, so that you know you’re not in a lull during a movement.

 Finally, you do whatever you want to do with your movement data. This example
reports the information in a label, but you’d doubtless do something much more
intricate in a live program. Cleanup is required to get the next iteration of movement
reporting going.

 This sample program works well, unless the movement is very subtle. In those
cases, it occasionally reports the opposite direction because of the force when the
device stops its motion. If this type of subtlety is a problem for your application, more
work is required. To resolve this, you need to make a better comparison of the start
and stop forces for movements; if they’re similar in magnitude, you’ll usually want to
use the first force measured, not necessarily the biggest one. But for the majority of
cases, the code in listing 10.1 is sufficient. You now have an application that can accu-
rately report (and take action based on) direction of movement.

 Together, gravity and force measurement represent the most obvious things that
you can do with the accelerometers, but they’re by no means the only things. We

Saves
largest
movements

E

http://www.it-ebooks.info/

204 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
suspect that using the accelerometers to measure three-dimensional gestures will be
one of their best (and most frequent) uses as the platform matures.

10.3 The accelerometers and gestures
Three-dimensional gestures are one of the coolest results of having accelerometers
inside your iPhone or iPad. They let users manipulate your programs without ever
having to touch (or even look at) the screen.

 To recognize a gesture, you must do two things. First, you must accurately track the
movements that make up the gesture. Second, you must make sure that in doing so,
you don’t recognize a random movement that wasn’t intended to be a gesture at all.

 Recognizing a gesture requires only the coding foundation that we’ve discussed
already. But we’ll show one example that puts that foundation into real-world use by
creating a method that recognizes a shake gesture.

10.3.1 Using accelerometers

We’re defining a shake as a rapid shaking back and forth of the device, like you might
shake dice in your hand before you throw them. Apple’s Accelerometer Graph is a
great tool to use to figure out what’s going on. It shows a shake as primarily having
these characteristics, presuming a program that’s running in portrait mode:

 Movement is primarily along the x-axis, with some movement along the y-axis,
and even less along the z-axis.

 There are at least three peaks of movement, with alternating positive and nega-
tive forces.

 All peaks are at least +/-1 g, with at least one peak being +/-2 g for a relatively
strong shake.

You can use the preceding characteristics to define the average requirements for a
shake. If you wanted to tighten them up, you’d probably require four or more peaks
of movement, but for now, this will do. Alternatively, you might want to decrease the
g-force requirements so that users don’t have to shake their device quite as much.
We’ve detailed the code that watches for a shake in the following listing.

- (BOOL)didShake:(UIAcceleration *)acceleration {
 accelX = ((acceleration.x * kFilteringFactor)
 + (accelX * (1 - kFilteringFactor)));
 float moveX = acceleration.x - accelX;
 accelY = ((acceleration.x * kFilteringFactor)
 + (accelY * (1 - kFilteringFactor)));
 float moveY = acceleration.x - accelY;
 if (lasttime && acceleration.timestamp > lasttime + .25) {
 BOOL result;
 if (shakecount >= 3 && biggestshake >= 1.25) {
 result = YES;
 } else {

Listing 10.2 Shake, shake your iPhone

BWaits after
last shake

http://www.it-ebooks.info/

205The accelerometers and gestures

www.it-ebooks.info
 result = NO;
 }
 lasttime = 0;
 shakecount = 0;
 biggestshake = 0;
 return result;
 } else {
 if (fabs(moveX) >= fabs(moveY)) {
 if ((fabs(moveX) > .75) && (moveX * lastX <= 0)) {
 lasttime = acceleration.timestamp;
 shakecount++;
 lastX = moveX;
 if (fabs(moveX) > biggestshake) biggestshake = fabs(moveX);
 }
 } else {
 if ((fabs(moveY) > .75) && (moveY * lastY <= 0)) {
 lasttime = acceleration.timestamp;
 shakecount++;
 lastY = moveY;
 if (fabs(moveY) > biggestshake) biggestshake = fabs(moveY);
 }
 }
 return NO;
 }
}

In this code, you generally follow the logic you used when viewing the accelerometer
graph, although with increased sensitivity, as promised. The didShake: method regis-
ters a shake if it sees three or more movements of at least .75 g, at least one of which is
1.25 g, with movements going in opposite directions.

 You start by removing gravity from the accelerometer data, as you did in previous
examples. This time, you don’t worry about the quirk at the beginning of data collec-
tion; it doesn’t register as a shake, because it’s a small fraction of a g.

 The main work of the function is found in its latter half, which is called whenever
movement continues to occur. First, you check whether the strongest movement is
along the x-axis C. If so, you register the movement if it’s at least .75 g and if it’s in the
opposite direction of the last x-axis move. You do the latter check by seeing if the
product of the last two moves on that axis is negative; if so, one must have been posi-
tive and the other negative, which means they were opposite each other.

 If the strongest move was instead on the y-axis, you check for a sufficiently strong
y-axis move that’s in the opposite direction as the last y-axis move D. We could have
written a more restrictive shake checker that only looked for x-axis movement, or a
less restrictive checker that also looked for z-axis movement, but we opted for this
middle ground.

 As long as movement continues without a break of more than a quarter of a sec-
ond, the shakecount continues to increment, but when movement stops B, the pro-
gram is ready to determine whether a shake occurred. You check this by seeing if the
shake count equals or exceeds 3 and if the largest movement exceeded 1.25 g. After-
ward, all of the variables are reset to check for the next shake.

Checks x
movement

C

DMeasures y movement

http://www.it-ebooks.info/

206 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
 By building this shake checker as a separate method, you could easily integrate it
into a list of checks made in the accelerometer:didAccelerate: method. The follow-
ing code shows a simple use that changes the color of the screen every time a shake
occurs. The nextColor method can be changed to do whatever you want:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 if ([self didShake:(UIAcceleration *)acceleration]) {
 self.view.backgroundColor = [self nextColor];
 }

}

We expect that the shake will be the most common three-dimensional gesture pro-
grammed into the iPhone or iPad. With this code, you already have it ready to go,
though you may choose to change its sensitivity or to make it work in either one or
three dimensions.

10.3.2 Gesture recognizer

Standard gestures, such as a tap, double tap, a swipe or a pan may be of use, depend-
ing on the specifics of your program; you can take the advantage of the gesture API on
the standard gestures defined in the iOS platform.

UIGestureRecognizer is the base class for the gesture recognizer under iOS. The
common gestures are defined as subclasses of UIGestureRecognizer:

 UITapGestureRecognizer—This class handles single or multiple taps.
 UIPinchGestureRecognizer—This class recognizes pinch gestures.
 UIRotationGestureRecognizer—This class looks for gestures when the user

moves fingers opposite each other in a circular motion.
 UISwipeGestureRecognizer—This class detects swipes based on the swipe

direction definition, such as from left to right or down.
 UIPanGestureRecognizer—This class recognizes the panning/dragging

gesture.
 UILongPressGestureRecognizer—This class handles the long press gesture.

To create a gesture recognizer, you need to know which view will be the object to mon-
itor for the gesture events. For example, inside the view controller you want to moni-
tor the tap gesture on the view:

UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(handleGesture:)];

 [self.view addGestureRecognizer:tap];
 [tap release];

With this code, you can create the tap gesture recognizer to the view; when the tap
gesture is detected, the method handleGesture: will be called to perform the anima-
tion or other cool response, depending on the application’s specs.

http://www.it-ebooks.info/

207The accelerometers and gestures

www.it-ebooks.info
 Seems simple, right? Let’s practice this new API with other gesture types. For exam-
ple, we’d like to present an alert view when the user presses the view for longer than 2
seconds.

 Fire up the Xcode and create an application with a View-Based Application tem-
plate. Go to the view controller to add in the long press gesture recognizer, as shown
in the following listing.

- (void)viewDidLoad {
 [super viewDidLoad];
 UILongPressGestureRecognizer *lpress = [[UILongPressGestureRecognizer

alloc] initWithTarget:self action:@selector(longPressed:)];
 lpress.minimumPressDuration = 2.0;
 [self.view addGestureRecognizer:lpress];
 [lpress release];
}

-(void)longPressed:(UILongPressGestureRecognizer *)sender {
 if ((sender.state == UIGestureRecognizerStateChanged) ||
 (sender.state == UIGestureRecognizerStateEnded)) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Long Press"
 message:@"Would you like to quit now?"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
}

In the viewDidLoad method, you created the long press recognizer B and then
defined the minimum press duration as 2 seconds; by default, this value is 0.5. When
the user presses the view up to 2 seconds, the method longPressed C gets called.

 Inside the gesture recognizer, the gesture lookup is continuous. The UIGesture-
Recognizer’s state will be switched among UIGestureRecognizerStatePossible,
UIGestureRecognizerStateBegan, UIGestureRecognizerStateChanged, UIGesture-

RecognizerStateEnded, UIGestureRecognizerStateCancelled, UIGestureRecognizer-
StateFailed, and UIGestureRecognizerStateRecognized. Inside our response func-
tion, you’ll present the alert view only when the gesture recognizer’s state is ended or
changed. Without this condition, you might see the alert view pop up two times in a
row, which isn’t desirable during the application runtime.

 For now, we’ve covered all of the main points of the accelerometers: orientation,
gravity, movement, and gestures. In iOS 4, the Core Motion framework is available for
raw data access on the accelerometer and gyroscope. This framework is useful when
you’re combining the 3D model into your app. We’re not going to cover the details in
this book.

Listing 10.3 Detect user gesture with long press gesture recognizer

BCreating long
press recognizer

Display
alert view

C

http://www.it-ebooks.info/

208 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
 We’re now ready to dive into the other major positioning-related tool, and one
that we find a lot easier to program because the results are less noisy: Core Location.

10.4 All about Core Location
We have only one unique feature left to look at: the device’s ability to detect a user’s
location.

WARNING You can only minimally test Core Location using the Simulator.
Longitude and latitude work, but they always report Apple’s Cupertino head-
quarters. Altitude isn’t displayed. For most realistic testing—particularly
including distance or altitude—you must use a provisioned device.

There are three ways available on iOS to detect current location: cell phone towers,
wi-fi, and, most accurately, GPS. Its accuracy could vary from a few blocks’ radius to a
few miles, even in an urban area. The iPhone 4 (also iPad 3G, iPhone 3G, and 3GS)
has a built-in GPS, but it still has limitations. The iPhone’s antenna power is limited,
which affects accuracy, and accuracy is further limited by concerns about power
usage. As a result, even if you have an iPhone with a built-in GPS, the device makes
preferential use of cell tower data and provides information about GPS locations
using the minimal number of satellite contacts possible (although that minimum par-
tially depends on an accuracy requirement that you set).

 With all that said, the iPhone 4 provides better location information. But it may
not be entirely accurate; in particular, altitude seems to be the least reliable informa-
tion. The wi-fi–only iPad can determine your location based only on its IP address,
making it the least accurate.

 We offer this preamble both to describe how the location information is created
and to introduce a bit of skepticism about the results. What you get should be good
enough for 99 percent of your programs, but you don’t want to do anything mission
critical unless you’re careful.

 The good news is that you don’t have to worry about which type of device a user
owns. The Core Location API works identically whether they have a built-in GPS or
not. Better, because GPS consumes a lot of power, you’ll learn how to save users’ bat-
tery life in chapter 21 by using the background location service available in the Core
Location API. In this section, we’ll examine the location classes and how to use the
compass. You’ll also build two applications: one that finds the current location and
distance traveled and one that incorporates an altitude measurement.

10.4.1 The location classes

Location awareness is built into two API classes and one protocol. CLLocationManager
gives you the ability to access location information in a variety of ways. It includes a
delegate protocol, CLLocationManagerDelegate, which defines methods that can tell
you when new location information arrives. Finally, the location information appears
as CLLocation objects, each of which defines a specific location at a specific time.

http://www.it-ebooks.info/

209All about Core Location

www.it-ebooks.info
 Table 10.2 describes the most important properties associated with each of these
classes. For more details, you should, as usual, consult the Apple class references. You
should examine a number of additional properties and methods to aid with deter-
mining location (particularly for the CLLocation class), but we’re staying with the
basics here.

Table 10.2 The most important methods and properties for accessing location information

Method/Property Type Summary

Class: CLLocationManager

delegate Property Defines the object that responds to
CLLocationManagerDelegate

desiredAccuracy Property Sets the desired accuracy of location as
a CLLocationAccuracy object

distanceFilter Property Specifies how much lateral movement
must occur to cause a location update
event

location Property Specifies the most recent location

startUpdatingLocation Method Starts generating update events

stopUpdatingLocation Method Stops generating update events

startUpdatingHeading Method Starts generating heading update
events

stopUpdatingHeading Method Stops generating heading update
events

headingFilter Property The minimum angle required to gener-
ate heading events

headingAvailable Property Returns true if heading events can be
generated

Class: CLLocationManagerDelegate

locationManager:didUpdateToLocation:
fromLocation:

Method Delegate method that reports whenever
an update event occurs

locationManager:didFailWithError: Method Delegate method that reports whenever
an update event fails to occur

Class: CLLocation

altitude Property Specifies the height of the location in
meters

coordinate Property Returns the location’s coordinates as a
CLLocationCoordinate2D variable

timestamp Property Specifies an NSDate of when the loca-
tion was measured

http://www.it-ebooks.info/

210 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
 Generally, location information is generated much like accelerometer information.
You access a shared object (CLLocationManager) and set some standard properties for
how you want it to work, including how often to update (distanceFilter). As with the
accelerometer, you also have to explicitly turn on location updating (startUpdating-
Location). Afterward, you keep an eye on certain methods (as defined by CLLocation-
ManagerDelegate). These methods generate an object (CLLocation) when the
location changes; you read the object to get the specifics.

 With those generalities out of the way, let’s see how CLLocation works in a real
example.

10.4.2 An example using location and distance

This section shows an example of using Core Location to record a starting location,
monitor the current location, and calculate the distance between them. As usual, the
foundation of this program is built in Xcode. Figure 10.4 displays the general setup.

 There are three labels: startLabel (at the top) and endLabel (at the bottom)
each display information about a location; distanceLabel shows the distance between
the two. There are two controls: a button control instantly updates the current loca-
tion, and a segmented control chooses between miles and kilometers. They’re each
linked to an IBAction, which executes a method that you’ll meet in the code.

 The following listing shows the code. This is the first of two longer examples in this
chapter.

Figure 10.4 This simple utility
shows off locations and distance.

http://www.it-ebooks.info/

211All about Core Location

www.it-ebooks.info
- (void)viewDidLoad {
 [super viewDidLoad];
 myLM = [[CLLocationManager alloc] init];
 myLM.delegate = self;
 myLM.desiredAccuracy =
 kCLLocationAccuracyNearestTenMeters;
 myLM.distanceFilter = 100;
 [myLM startUpdatingLocation];
}
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 if (startLoc == nil) {
 startLoc = newLocation;
 [self updateLocationFor:startLabel toLocation:newLocation];
 [startLoc retain];
 }

 [self updateLocationFor:endLabel
 toLocation:newLocation];
 [self updateDistanceLabel:newLocation];
}
- (IBAction)setEnd:(id)sender {
 [myLM stopUpdatingLocation];
 [myLM startUpdatingLocation];
}
- (IBAction)controlChange:(id)sender {
 if (myLM.location) {
 [self updateDistanceLabel:myLM.location];
 }
}
- (void)updateDistanceLabel:(CLLocation *)newLocation {
 if (startLoc != nil) {
 CLLocationDistance traveled
 = [startLoc distanceFromLocation:newLocation] / 1000;
 if (segmentControl.selectedSegmentIndex == 1) {
 traveled *= .62;
 }
 distanceLabel.text = [NSString stringWithFormat:@"%5.1f",traveled];
 }
}
- (void)updateLocationFor:(UILabel *)thisLabel
 toLocation:(CLLocation *)newLocation {
 CLLocationCoordinate2D curCoords = newLocation.coordinate;
 thisLabel.text = [NSString stringWithFormat:
 @"Lat: %2.4f; Long: %2.4f",curCoords.latitude,curCoords.longitude];
}

This program generally follows the broad outline of steps that we’ve already discussed,
but we’ll go through each step in turn.

 Make sure to add the Core Location framework to your project and import Core-
Location/CoreLocation.h in all the files in which you intend to utilize location ser-
vices. After that, you begin by initializing a CLLocationManager object and then set

Listing 10.4 An application of Core Location for distances

Starts location
updates

B

Waits for
updates

C

Forces
location
update

D

Forces
label
update

E

Updates
distance
label

F

Updates
location
label

G

http://www.it-ebooks.info/

212 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
some standard properties—here a delegate, the desiredAccuracy, and the
distanceFilter. The desired accuracy of tens of meters and the update interval of
every 100 meters may be more than this particular application requires, but you can
tune these in your projects as seems appropriate. Remember that demanding more
accuracy and updating more frequently will decrease the battery life of your user’s
iPhone or iPad. Finally, you start the CLLocationManager running B.

 The locationManager:didUpdateToLocation:fromLocation: method is the
workhorse of this program C. It should be called shortly after the LocationManager
starts updating and every time the user walks 100 meters or so. First, it saves the cur-
rent location as the starting location the first time it’s called, updating the startLabel
at the same time. Then, every time it runs, it updates the endLabel and the distance-
Label. Note that you don’t have to use the LocationManager’s location property
here (or at almost any other time in the program), because this method always pro-
vides the current location of the device; it seems to do so well before the location
property is updated, based on our own tests. Caveat programmer.

 The next few methods have to do with I/O. The method setEnd: is run whenever
the button control is pushed, to update the current location D. Unfortunately, there’s
no particularly clean way to ask for an update, so you must stop and start the location
updates, as shown here. Letting the user force a location update is particularly impor-
tant if you’re using a high distanceFilter or if you’re trying to measure altitude
changes. In the altitude example in the next section, you’ll see an alternative way to
do this, where the location manager usually isn’t running at all. The controlChange:
method is run whenever the segmented control is updated E. It updates the
distanceLabel. Note that this is the one time when you depend on the location
property, because there isn’t a location event when you change the button.

 The last few methods are utilities. The updateDistanceLabel: method makes use
of an interesting CLLocation method that we haven’t discussed, distanceFrom-
Location: F. This measures the true distance between two locations, using complex
calculations that correctly account for the curvature of the Earth. The method also
converts meters to kilometers and alternatively converts them to miles, depending on
the status of the segmented control. Finally, updateLocationFor:toLocation:

updates either the startLabel or the endLabel by extracting the latitude and longi-
tude coordinates from the CLLocation object it’s passed G.

 The result is a program that can show a simple distance traveled in a single direc-
tion. If we were going to improve it, we’d probably save the starting location to a file
and perhaps even make it possible to record multiple trips. But for the purposes of
showing how Core Location works, this is sufficient.

 There’s one thing that the example didn’t show: how to measure altitude. It’s
another CLLocation property, but you’ll write another short program to highlight this
part of Core Location.

http://www.it-ebooks.info/

213All about Core Location

www.it-ebooks.info
10.4.3 An example using altitude

Altitude is as easy to work with as longitude and latitude. It’s another property that can
be read from a CLLocation object. The biggest problem is that it isn’t available to all
users. The Simulator and the original iPhone don’t support altitude.

 Apple suggests using the following code to determine whether altitude is
unavailable:

if (signbit(newLocation.verticalAccuracy)) {

If its return is nonzero, you need to discontinue checking for altitude information.
 Even if a user has an iPhone or an iPad 3G, you must watch out for two other got-

chas. First, altitude information can be 10 times more inaccurate than the rest of the
location information. Adjust your desiredAccuracy accordingly. Second, remember
that the Core Location information updates only when you move a certain distance, as
determined by the distanceFilter, in a nonvertical direction. This means you need
to allow the user to update the distance by hand rather than depending on automatic
updates.

 Listing 10.5 repeats the techniques you used previously, applying them to altitude.
It also shows another useful integration of user input with a slightly more complex
program. As usual, its core objects are built in Xcode: three UILabels, one UIText-
Field, two UIImageViews, and a UIActivityIndicatorView. The last is the most inter-
esting, because you haven’t seen it before; we’ll talk about it in our quick discussion of
the code. You should be able to pick out all of the objects other than the activity indi-
cator in figure 10.5, which follows the code.

@implementation altitudeViewController
- (void)viewDidLoad {
 destinationHeight.returnKeyType = UIReturnKeyDone;
 myLM = [[CLLocationManager alloc] init];
 myLM.delegate = self;
 myLM.desiredAccuracy = kCLLocationAccuracyBest;
 savedDestinationHeight = 0;
 [super viewDidLoad];
}
- (BOOL)textFieldShouldReturn:(UITextField *)textField {
 [textField resignFirstResponder];
 return YES;
}
-(IBAction)changeDestination:(id)sender {
 savedDestinationHeight = [destinationHeight.text intValue];
 [self resetGPS:sender];
}
-(IBAction)resetGPS:(id)sender {
 if (savedDestinationHeight) {
 [myLM startUpdatingLocation];
 [myActivity startAnimating];

Listing 10.5 Keeping track of a mountain climb with your iPhone

Responds to
text field

B

Requests
location
updates

C

Animates
activity icon

D

http://www.it-ebooks.info/

214 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
 }
}
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {

 if (savedDestinationHeight) {
 if (signbit(newLocation.verticalAccuracy)) {
 heightLabel.text = [NSString stringWithString:@"?? m."];
 } else {
 int currentHeight = 395 –
 ceil((float)newLocation.altitude/savedDestinationHeight *
 (401-65));
 heightLabel.text = [NSString stringWithFormat:@"%6.2f m.",
 newLocation.altitude];
 heightButton.center = CGPointMake(106,currentHeight);
 heightLabel.center = CGPointMake(220,currentHeight);
 }
 [myLM stopUpdatingLocation];
 [myActivity stopAnimating];
 }
}
...
@end

Receives
location update

E

Shows
altitude failure

F

Reports altitude infoG

Figure 10.5 An altitude
program measures how high
you’ve climbed on a mountain
of your choice.

http://www.it-ebooks.info/

215All about Core Location

www.it-ebooks.info
Much of this code combines two SDK elements that you’ve already met: the flourishes
necessary to make a UITextField work and the protocols you must follow to use a
location manager. You can see both of these elements in the viewDidLoad: method,
which sets up the text field’s return key and then starts the location manager. Note
that you don’t start the location manager updating; you can’t depend on it to update
when you’re measuring only vertical change, so it’s best to have the user do it by hand.
Next, you finish the text field’s functionality with the textFieldShouldReturn:
method, which you’ve met before.

 This project contains two controls that can generate actions. When the text field is
adjusted B, the project saves that destination height for future calculation and then
updates the current height using the resetGPS: method. The latter method is also
used when the Check Height button is pressed. Figure 10.5 shows these input devices
for clarity.

 Note that resetGPS: does two things. First, it starts the location update C, which
you turn on only for brief, one-time uses. In addition to being more appropriate for
monitoring altitude, this also helps save energy. Second, it starts your activity indica-
tor D. This object is created visually, where you should mark it with the hidesWhen-
Stopped property. The view is automatically hidden so it doesn’t appear when the
program is loaded. As a result, there’s nothing on the screen until you start the ani-
mation, at which time a little activity indicator appears and continues animating until
it’s stopped (which you’ll see in a minute).

 The heavy lifting is done when the location manager reports back its informa-
tion E. In this section, you check whether you’re getting altitude information F. If
you are G, you move the dot image and update its height label. To finish, you turn
off the location update and then stop the animation of the activity indicator, which
makes it disappear.

 Voila! You have a working altitude monitor (if you have an iPhone 4, iPhone 3G,
3GS, or iPad 3G) and a nice combination of a few different SDK elements.

10.4.4 Using the compass

In addition to knowing your location, the iPhone 4 and 3GS have the ability to know
what direction you’re heading. This is because the iPhone 4 and 3GS have a built-in
magnetic compass.

 With the addition of the CLHeading class to the Core Location framework, you can
now determine your magnetic heading as well as your true heading. The magnetic
heading uses the built-in magnetometer and points to magnetic north, whereas the
true heading uses your current location and points to true north.

 Let’s first examine the properties of the CLHeading class. Table 10.3 describes each
of these properties.

 In addition to these properties, you have access to the raw geomagnetic data.
These properties include the raw x, y, and z data, which you can use individually.

http://www.it-ebooks.info/

216 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
Accessing the compass information is similar to accessing the GPS information. You
first get a reference to the CLLocationManager object, and then you may begin collect-
ing data:

- (void)viewDidLoad {
 CLLocationManager * locationManager = [[[CLLocationManager alloc] init]
 autorelease];
 if (locationManager.headingAvailable == YES) {
 locationManager.delegate = self;
 [locationManager startUpdatingHeading];
 }
}

You first create a new CLLocationManager to interact with the location data. The next
line is required to ensure that the device supports the compass. The only devices that
return YES here are the iPhone 4 and 3GS and iPads. If this fails, it’s a good idea to
notify the user that their device doesn’t support the compass. You then start the com-
pass and begin sending data to the CLLocationManagerDelegate. In this case, the del-
egate is set to the caller class. Alternatively, if it’s only going to work when certain
sensors are available, you can also define the hardware in the info.plist. For example,
in order to make sure the Augmented Reality app will only run on the devices with
magnetometer and GPS, you can add UIRequiredDeviceCapabilities key to your
app’s info.plist. The App Store will make sure that only the devices with a magnetome-
ter and GPS will be able to download your app.

10.4.5 Retrieving data from the compass

To retrieve data from the compass, you must implement the CLLocationManager-
Delegate method locationManager:didUpdateHeading:. This method is called auto-
matically every time the compass heading changes on the device. The heading
variable passed into this method contains all the data as described in table 10.3.
Here’s an example of how to implement this method:

Table 10.3 Properties of CLHeading used for determining the device’s heading

Property Description

magneticHeading The heading that points to magnetic north. This value uses the built-in mag-
netometer and contains a value from 0 to 360.

trueHeading Represents the heading that points to geographic north. This property relies
on the current location and so isn’t always guaranteed to be valid. It ranges
from 0 to 360.

headingAccuracy This value represents the error in degrees of the magneticHeading. A low
value means the heading is relatively accurate. A negative value means the
heading is invalid and can’t be trusted.

timestamp The timestamp when the heading was found.

http://www.it-ebooks.info/

217Summary

www.it-ebooks.info
- (void)locationManager:(CLLocationManager *)manager
didUpdateHeading:(CLHeading *)heading {

 self.heading = heading;
}

This example isn’t too exciting because it only localizes the heading variable to the
heading class property. This is useful because you can now use the heading in other
places in the code. The two most important properties of this heading variable are
magneticHeading and trueHeading.

 These variables are of the type CLLocationDirection, which is a typedef double.
This value ranges from 0 to 360 degrees. A reading of 0 degrees means the device is
pointing north, 90 means east, 180 south, and 270 west. If this value is ever negative,
that means it’s invalid.

 Although the compass is a simple addition, it offers much power and flexibility
within your applications. The addition has allowed for development of interesting
apps, including navigation systems, augmented reality apps, and many others that
depend on the user’s orientation.

10.4.6 Core Location and the internet

In this section, you’ve seen a few real-world examples of how to use location informa-
tion in meaningful ways, but you’ll find that you can make much better use of the
information when you have an internet connection. When you do, you can feed longi-
tudes and latitudes to various sites. For example, you can pull up maps with a site like
Google Maps. You can also improve on the altitude information by instead requesting
the geographic altitude of a location using a site like GeoNames. This won’t be accu-
rate if your user is in an airplane or a tall office building, but for the majority of situa-
tions, it’ll be better than what the device can currently deliver. See chapter 14 for
some examples of using Core Location with the internet.

10.5 Summary
In this chapter, we’ve covered three of the most unique features available to you as an
iOS programmer.

 The accelerometers can give you access to a variety of information about where a
device exists in space. By sensing gravity, you can easily discover precise orientation.
By measuring movement, you can see how the device is being guided through space.
Finally, you can build more complex movements into three-dimensional gestures,
such as a shake.

 We’ve talked about the touch screen when discussing input, but the accelerome-
ters and gyroscopes provide another method for allowing users to make simple adjust-
ments to a program. We can imagine game controls and painting programs built
entirely around the accelerometers.

 The internal GPS can give you information about longitude, latitude, and altitude.
The horizontal information is the most reliable, although it’s more useful when you

http://www.it-ebooks.info/

218 CHAPTER 10 Positioning: accelerometers, location, and the compass

www.it-ebooks.info
connect to the internet. Altitude information isn’t available to everyone, and even if it
is, it has a higher chance of being incorrect, so use it with caution.

 The compass gives you complete information about the user’s heading. It lets you
determine exactly which way the device is facing and allows for a large variety of new
application types.

 In the next chapter, we’ll talk about media, highlighting pictures, videos, and
sounds.

http://www.it-ebooks.info/

www.it-ebooks.info
Media: images
and the camera
So far, our focus has mainly been on text. Sure, we’ve displayed the occasional
UIImage, such as the mountain drawing in the previous chapter, but we’ve consid-
ered only the simplest means for doing so.

 The iPhone, iPod Touch, and iPad offer an experience that’s potentially much
richer and more engaging. Cameras, a microphone, a complete library of photos,
and a speaker are just some of the utilities built into these devices. Less the camera,
the first-generation iPad contains all the aforementioned libraries. In this chapter
and the next, we’ll look at these features as part of a general exploration of media.
We’ll provide deep coverage of images as well as how to use the camera.

 More complex questions are beyond the scope of this chapter. We’re saving the
topic of image editing for a later chapter, when we look at the graphic libraries.

This chapter covers
 Accessing and manipulating images

 Using the camera

 Creating a simple collage application

 Using AirPrint for images
219

http://www.it-ebooks.info/

220 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
11.1 An introduction to images
We’ve touched on using images a few times, begin-
ning in chapter 3, where one of the earliest SDK
examples included an image. You’ve created a
UIImageView in Xcode, attached it to a filename,
and not worried about the details.

 We’re now ready to consider the details. We’ll
look at some of the options available when you dive
into Xcode.

 When you look more closely, you’ll discover that
using images is a two-step process. First, you load
data into a UIImage, and then you make use of that
UIImage via some other means. There are two
major ways to use UIImages, as shown in figure 11.1.

 We’re going to explore the primary method of displaying images, using
UIImageView, in this section, and in section 11.2 we’ll examine the more complex
means available for drawing images onto the back layer of a UIView.

11.1.1 Loading a UIImage

The UIImage class offers seven different ways to create an instance of an image. The
four factory methods are probably the easiest to use, and they’re the ones we’ve listed
in table 11.1. You can also use some equivalent init methods if you prefer.

 The image data can be of several file types, including BMP, CUR, GIF, JPEG, PNG,
and TIFF. In this book, we use mostly JPEGs (because they’re small) and PNGs (because
they look good and are accelerated on the hardware). You can also create a UIImage
from a Quartz 2D object; this is the SDK’s fundamental graphics package, which we’ll
talk about more in chapter 13. To support the retina display, the system uses the suffix
of the image filename to load the best-matching image. For example, if you have two
image files for one icon, one standard image and one higher-resolution image for ret-
ina display, name the standard file icon.png and HD version file icon@2x.png. During
the loading time, the UIImage class will handle which image to load automatically. If
you don’t have this HD version image file, the UIImage class will load the standard file
and scale it up to fit in the higher-resolution screen display.

Table 11.1 Class methods for creating a UIImage

Class method Summary

imageNamed: Creates a UIImage based on a file in the main bundle. In iOS 4
and later, you may omit the filename’s extension.

imageWithCGImage: Creates a UIImage from a Quartz 2D object. This is the same as
initWithCGImage:.

CALayer

Data

UIImage

UIImageView UIView

Figure 11.1 Images can be shown in
UIImageViews or in UIViews.

http://www.it-ebooks.info/

221An introduction to images

www.it-ebooks.info
After you import an image into your program, you can display it. If you’re going to
stay entirely within the simple methods of UIKit, you should use the UIImageView class
to display the image.

11.1.2 Drawing a UIImageView

You’ve already used the UIImageView in your programs when displaying pictures.
We’re now ready to talk about the details of how it works.

 You can initialize a UIImageView two ways. First, you can use the initWithImage:
method, which allows you to pass a UIImage, as follows:

UIImage *myImage1 = [UIImage imageNamed:@"sproul1.jpg"];
UIImageView *myImageView =
 [[UIImageView alloc] initWithImage:myImage1];
[self.view addSubview:myImageView];

Alternatively, you can use a plain initWithFrame: method and modify the object’s
properties by hand. Table 11.2 shows a few of the properties and methods you’re most
likely to use when doing more extensive work with a UIImageView.

 To load a normal image, you can use the image property, but there’s usually little
reason to use it rather than the initWithImage: method—unless you’re dynamically
changing your image. If you want to create a set of images to animate, it’s useful to
take advantage of the other UIImageView methods and properties.

imageWithContentsOfFile: Creates a UIImage from a complete file path that you specify, as
discussed in chapter 8. This is the same as
initWithContentsOfFile:.

imageWithData: Creates a UIImage from NSData. This is the same as
initWithData:.

Table 11.2 A few properties and methods of note for UIImageView

Method or property Type Summary

animationDuration Property Specifies how often an animation cycles

animationImages Property Identifies an NSArray of images to load into the
UIImageView

animationRepeatCount Property Specifies how many times to run an animation cycle

image Property Identifies a single image to load into a UIImageView

startAnimating: Method Starts the animation

stopAnimating: Method Stops the animation

Table 11.1 Class methods for creating a UIImage (continued)

Class method Summary

http://www.it-ebooks.info/

222 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
 You can load an array of images into a UIImageView, declare how fast and how
often they should animate, and start and stop them as you see fit. A simple example of
this is shown in the following listing.

- (void)viewDidLoad {
 UIImage *myImage1 =
 [UIImage imageNamed:@"sproul1.jpg"];
 UIImage *myImage2 =
 [UIImage imageNamed:@"sproul2.jpg"];
 UIImage *myImage3 =
 [UIImage imageNamed:@"sproul3.jpg"];
 UIImage *myImage4 =
 [UIImage imageNamed:@"sproul4.jpg"];
 UIImageView *myImageView =
 [[UIImageView alloc]
 initWithFrame:[[UIScreen
 mainScreen] bounds]];
 myImageView.animationImages =
 [NSArray arrayWithObjects:myImage1,
 myImage2,myImage3,myImage4,nil];
 myImageView.animationDuration = 4;
 [myImageView startAnimating];
 [self.view addSubview:myImageView];
 [myImageView release];
 [super viewDidLoad];
}

This code first loads the images, then creates a UIView, and finally starts the anima-
tion. Taking advantage of UIImageView’s animation capability is one of the main rea-
sons you may want to load images by hand.

11.1.3 Modifying an image in UIKit

You’ve seen how to create images and load them into image views programmatically.
The next thing to do is to start modifying them.

 Unfortunately, you have only a limited ability to do so while working with UIImage-
View. You can make some changes, based on simple manipulations of the view. For
example, if you resize your UIImageView, it automatically resizes the picture it con-
tains. Likewise, you can decide where to draw your UIImageView by setting its frame to
something other than the whole screen. You can even layer multiple images by using
multiple UIImageViews.

 This starts to get unwieldy quickly, though, and you can’t do anything fancier,
like transforming images or modifying how they stack through blending or alpha
transparency options. To do that sort of work (and to stack graphics, not just views),
you need to learn about Core Graphics.

UIImage offers some simple ways to access Core Graphics functionality that doesn’t
require going out to the Core Graphics framework (or learning about contexts or the

Listing 11.1 Using UIImageView to animate images

http://www.it-ebooks.info/

223Drawing simple images with Core Graphics

www.it-ebooks.info
other complexities that underlie its use). We’ll talk about those briefly here, but for
the most part, Core Graphics will wait for the next chapter, which concentrates on the
entire Quartz 2D graphics engine.

11.2 Drawing simple images with Core Graphics
Although it doesn’t give access to the entire Core Graphics library of transformations
and other complexities, the UIImage class includes five simple methods that take
advantage of the way Core Graphics works. They’re described in table 11.3.

The trick is that these methods can’t be used as part of viewDidLoad: or whatever
other method you usually use to load up your objects. That’s because they depend on
a graphical context to work. We’ll talk about contexts more in chapter 13; for now, keep
in mind that a graphical context is a destination you’re drawing to, like a window, a
PDF file, or a printer.

 On the iPhone and iPad, UIViews automatically create a graphical context as part
of their CALayer, which is a Core Animation layer associated with each UIView. You
can access this layer by writing a drawRect: method for the UIView (or rather, for a
new subclass that you’ve created). You usually have to capture a special context vari-
able to do this type of work, but the UIView methods take care of this for you, to keep
things simple.

 Here’s how to collage together a few pictures using this method:

- (void)drawRect:(CGRect)rect {
 UIImage *myImage1 = [UIImage imageNamed:@"sproul1.jpg"];
 UIImage *myImage2 = [UIImage imageNamed:@"sproul2.jpg"];
 UIImage *myImage3 = [UIImage imageNamed:@"sproul3.jpg"];
 [myImage1 drawAtPoint:CGPointMake(0,0) blendMode:kCGBlendModeNormal
 alpha:.5];
 [myImage2 drawInRect:CGRectMake(10, 10, 140, 210)];
 [myImage3 drawInRect:CGRectMake(170, 240, 140, 210)];
}

Table 11.3 Instance methods for drawing a UIImage

Method Summary

drawAsPatternInRect: Draws the image inside the rectangle, unscaled, but tiled
as necessary

drawAtPoint: Draws the complete unscaled image with the CGPoint as
the upper-left corner

drawAtPoint:blendMode:alpha: A more complex form of drawAtPoint:

drawInRect: Draws the complete image inside the CGRect, scaled
appropriately

drawInRect:blendMode:alpha: A more complex form of drawInRect:

http://www.it-ebooks.info/

224 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
Note that the drawAtPoint: method gives you access to more complex possibilities,
such as blending your pictures (using Photoshop-like options such as color dodge and
hard light) and making them partially transparent. Here you’re using a normal blend
but only 50 percent transparency (hence the use of the drawAtPoint: method). Using
singular draw commands is simpler than going through the effort of creating multiple
UIImageView objects.

 There’s still a lot that you can’t do until we dive fully into the Core Graphics frame-
work; but for now you have some control, which should be sufficient for most com-
mon media needs. If you need more control, skip right ahead to chapter 13.

 We’ve talked a lot about images, and we’ve presumed so far that you’re loading
them from your project’s bundle. But what if you want to let a user select photo-
graphs? That’s the topic of the next section.

11.3 Accessing photos
You can use the SDK to access pictures from the photo library or the camera roll. You
can also allow a user to take new photos. This is all done with the UIImagePicker-
Controller, another modal controller that manages a fairly complex graphical inter-
face without much effort on your part. Figure 11.2 shows what it looks like.

Figure 11.2 The image picker is another
preprogrammed controller for your use.

http://www.it-ebooks.info/

225Accessing photos

www.it-ebooks.info
11.3.1 Using the image picker

By default, the UIImagePickerController lets users access the pictures in their photo
library. You load the UIImagePickerController by creating the object, setting a few
variables, and presenting it. On the iPhone, you present it as a modal view controller;
on the iPad, you need to display it in a UIPopoverController. Make sure your class
implements the UIImagePickerControllerDelegate protocol in order to use its
methods.

 To display the picker on the iPhone, you can use the following code snippet:

UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
myImagePicker.delegate = self;
myImagePicker.allowsImageEditing = NO;
[self presentModalViewController:myImagePicker animated:YES];

As we mentioned, the iPad requires that you display the UIImagePickerController
inside a UIPopoverController. One great thing about this is that you can specify the
location on the screen in which the picker appears. The following code displays the
UIImagePickerController on the iPad:

UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
 myImagePicker.delegate = self;
 myImagePicker.allowsEditing = NO;

 UIPopoverController *popover = [[UIPopoverController alloc]
 initWithContentViewController:myImagePicker];
 [popover presentPopoverFromRect:CGRectMake(0,0,320,480)
 inView:self.view permittedArrowDirections:
 UIPopoverArrowDirectionAny animated:YES];

After you’ve created your UIImagePickerController, you need to have its delegate
respond to two methods: imagePickerController:didFinishPickingMediaWith-
Info: and imagePickerControllerDidCancel:. For the first method, you dismiss the
modal view controller (or hide the popover on the iPad) and respond appropriately
to the user’s picture selection; for the second, you only need to dismiss the controller.

 Overall, the UIImagePickerController is easy to use because you’re mainly react-
ing to a picture that was selected. Section 11.4 presents a complete example of its use.

11.3.2 Taking photos

As we noted earlier, the UIImagePickerController has three possible sources, repre-
sented by these constants:

 UIImagePickerControllerSourceTypePhotoLibrary—A picture from the
photo library

 UIImagePickerControllerSourceTypeSavedPhotosAlbum—A picture from the
camera roll

 UIImagePickerControllerSourceTypeCamera—A new picture taken by the
camera

http://www.it-ebooks.info/

226 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
You should always make sure that the source is available before you launch a UIImage-
PickerController, although this is most important for the camera. You can confirm
that the source exists with the isSourceTypeAvailable: class method:

if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {

After you’ve verified the existence of a source, you can tell the image picker to use it
with the sourceType property. For example, to use the camera, do the following:

myImagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

Note that pictures taken in a program go only to that program. If you want them to
go into the photo album, your program has to save them there (as we’ll discuss
momentarily).

NOTE In our experience, the camera is a bit of a resource hog. More than
anything else, this means you need to think about saving your program’s state
when using the camera, because it could cause you to run out of memory.

We’ll present an example of using the camera in section 11.4.

11.3.3 Saving to the photo album

You may wish to save a new photograph to the photo album, or you may wish to place
a graphic created by your program there. In either case, you use the UIImageWriteTo-
SavedPhotosAlbum function. It has four variables: the first lists the image, and the
other three reference an optional asynchronous notification function to call when the
save has been completed. Usually you call the function like this:

UIImageWriteToSavedPhotosAlbum(yourImage,nil,nil,nil);

If you instead want to take advantage of the asynchronous notification, look at the
UIKit function reference, which is where this function is hidden, or look at the exam-
ple in chapter 13.

 You can use this function (and a bit of trickery) to save the CALayer of a UIView to
your photo album, which, for example, lets you save the draw commands that you
wrote straight to the CALayer earlier. This again depends on graphical contexts, which
we’ll explain in the next chapter, but here’s how to do it:

UIGraphicsBeginImageContext(myView.bounds.size);
[myView.layer renderInContext:UIGraphicsGetCurrentContext()];
UIImage *collageImage = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
UIImageWriteToSavedPhotosAlbum(collageImage,nil,nil,nil);

In order for this to work correctly, you must add the Quartz Core framework to your
project.

 With all the fundamentals of images now covered, we’re ready to put them
together in our big example for this chapter. It’s a program that collages together
multiple pictures, first selecting them with a UIImagePickerController, then

http://www.it-ebooks.info/

227Collage: an image example

www.it-ebooks.info
allowing them to be moved about with a UIImageView, and finally drawing them to a
CALayer that can be saved.

11.4 Collage: an image example
The collage program depends on three objects. The collageViewController, as
usual, does most of the work. It writes out to a collageView object, which exists
mainly as a CALayer to be written upon. Finally, you’ll have a tempImageView object
that allows the user to position an image after it’s been selected but before it’s perma-
nently placed.

 For this example, the code will be written to deploy the collage application to the
iPhone. To learn how to port it to the iPad, be sure to read appendix D; it contains
step-by-step instructions for porting this app as well as your own apps to the iPad.

11.4.1 The collage view controller

The collage view controller is built with a few objects: the view controller itself; a tool-
bar called myTools, which will be filled over the course of the program; and the
collageView UIView class, which exists as its own class file and is referred to in the
program as self.view. You also need to add the Quartz Core framework to your proj-
ect because you’ll use the save-picture trick that we just discussed.

 The next listing shows the complete view controller, which is the most extensive
file in this program.

@implementation collageViewController
- (void)viewDidLoad {
 UIBarButtonItem *picButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAction target:self
 action:@selector(choosePic:)];
 UIBarButtonItem *camButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCamera target:self
 action:@selector(takePic:)];
 UIBarButtonItem *saveButton = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave target:self
 action:@selector(savePic:)];
 picButton.style = UIBarButtonItemStyleBordered;
 camButton.style = UIBarButtonItemStyleBordered;
 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
 origToolbar = [[NSArray alloc] initWithObjects:
 picButton,camButton,saveButton,nil];
 } else if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary]) {
 origToolbar = [[NSArray alloc] initWithObjects:
 picButton,saveButton,nil];
 } else {
 exit(0);
 }
 [myTools setItems:origToolbar animated:NO];
 [picButton release];

Listing 11.2 A view controller, which manages most of the collage’s tasks

http://www.it-ebooks.info/

228 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
 [camButton release];
 [super viewDidLoad];
}
-(IBAction)choosePic:(id)sender {
 UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
 myImagePicker.delegate = self;
 myImagePicker.allowsImageEditing = NO;
 [self presentModalViewController:myImagePicker animated:YES];
}
-(IBAction)takePic:(id)sender {
 UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
 myImagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 myImagePicker.delegate = self;
 myImagePicker.allowsImageEditing = NO;
 [self presentModalViewController:myImagePicker animated:YES];
}
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image
 editingInfo:(NSDictionary *)editingInfo {
 [self dismissModalViewControllerAnimated:YES];
 [picker release];
 float percentage = [self scaleImage:image] / 2;
 startingSize = CGSizeMake(image.size.width*percentage,
 image.size.height*percentage);
 myImageView = [[tempImageView alloc]
 initWithFrame:CGRectMake(80,115,
 startingSize.width,startingSize.height)];
 myImageView.image = image;
 myImageView.userInteractionEnabled = YES;
 [self.view addSubview:myImageView];
 [myTools setItems:[NSArray arrayWithObject:[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone target:self
 action:@selector(finishPic:)]] animated:YES];
 mySlider = [[UISlider alloc] initWithFrame:CGRectMake(90,415,210,44)];
 mySlider.value = .5;
 [mySlider addTarget:self action:@selector(rescalePic:)
 forControlEvents:UIControlEventValueChanged];
 [self.view addSubview:mySlider];
}
- (void)imagePickerControllerDidCancel:
 (UIImagePickerController *)picker {
 [self dismissModalViewControllerAnimated:YES];
 [picker release];
}
-(void)rescalePic:(id)sender {
 myImageView.frame = CGRectMake(myImageView.frame.origin.x,
 myImageView.frame.origin.y,
 startingSize.width * mySlider.value * 2,
 startingSize.height * mySlider.value * 2);
}
-(void)finishPic:(id)sender {
 [self.view addPic:myImageView.image at:myImageView.frame];
 [myImageView removeFromSuperview];
 [myImageView release];

Responds to
image selectionB

Responds to
picker cancellation

C

http://www.it-ebooks.info/

229Collage: an image example

www.it-ebooks.info
 [mySlider removeFromSuperview];
 [mySlider release];
 [myTools setItems:origToolbar animated:NO];
}
-(void)savePic:(id)sender {
 UIGraphicsBeginImageContext(self.view.bounds.size);
 myTools.hidden = YES;
 [self.view.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *collageImage = UIGraphicsGetImageFromCurrentImageContext();
 myTools.hidden = NO;
 UIGraphicsEndImageContext();
 UIImageWriteToSavedPhotosAlbum(collageImage,nil,nil,nil);
}
-(float)scaleImage:(UIImage *)image {
 float toSize = 1.0;
 if (image.size.width * toSize > 320) {
 toSize = 320 / image.size.width;
 }
 if (image.size.height * toSize > 460) {
 toSize = 460 / image.size.height;
 }
 return toSize;
}
// ...
@end

Although long, this code is simple to follow in bite-size chunks. It starts with viewDid-
Load:, which sets up the UIToolBar. You can’t efficiently fill the UIToolBar in Xcode
because you’ll be changing it based on the program’s state. You place buttons on the
toolbar that call three methods: choosePic:, takePic: (when a camera’s available),
and savePic:.

choosePic: and takePic: are similar methods. Each calls up the image picker
controller, but the first one accesses the photo library and the second one lets the user
take a new picture. The wonder of these modal controllers is that you don’t have to do
a thing between the time when you create the picker and the point at which the user
either selects a picture or cancels.

 When the user selects a picture, imagePickerControl:didFinishPickingImage
:editingInfo: is called B, returning control to your program. Here you do four
things:

1 Dismiss the modal view controller.
2 Look at the picture you’ve been handed, and resize it to fill a quarter or less of

the screen.
3 Instantiate the image as a tempImageView object, which is a subclass of

UIImageView.
4 Change the toolbar so a Done button is available, along with a slider.

At this point, the user can do three things:

 Use UITouches to move the image view (which is covered in the tempImageView
class, because that’s where the touches go, as you saw in chapter 6).

http://www.it-ebooks.info/

230 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
 Use the slider to change the size of the picture.
 Tap Done to accept the image size and location.

The results of what can be produced are shown in figure 11.3.
 Note that if the user instead cancels the image picker, your imagePicker-

ControllerDidCancel: method correctly shuts down the modal controller C.
 The UISlider is hooked up to the rescalePic: method. It redraws the frame of

the UIImageView, which automatically resizes the picture inside. Meanwhile, the Done
button activates the finishPic: method. This sends a special addPic:at: message to
the collageView, which is where the CALayer drawing is done, and which we’ll return
to momentarily. finishPic: also dismisses the UISlider and the tempImageView and
resets the toolbar to its original setup.

 That original toolbar has one more button that we haven’t covered yet: Save. It
activates the savePic: method, which saves a CALayer to the photo library. Note that
this method temporarily hides the toolbar in the process. Because the toolbar is a sub-
view of the UIView, it would be included in the picture if you didn’t do this.

 The last method, scaleImage:, is the utility that sets each image to fill about a
quarter of the screen.

 This code has two dangling parts: the methods in the tempImageView, which allow
a user to move the UIImageView, and the methods in the collageView, which later
draw the image into a CALayer.

Figure 11.3 The collager displays
many photos simultaneously.

http://www.it-ebooks.info/

231Collage: an image example

www.it-ebooks.info
11.4.2 The collage temporary image view

The tempImageView class has only one purpose: to intercept UITouches that indicate
that the user wants to move the new image to a different part of the collage. This sim-
ple code is shown in the following listing.

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *thisTouch = [touches anyObject];
 CGPoint thisPoint =
 [thisTouch locationInView:self];
 float newX = thisPoint.x+self.frame.origin.x;
 float newY = thisPoint.y+self.frame.origin.y;
 if (newX < 0) {
 newX = 0;
 } else if (newX > 320) {
 newX = 320;
 }
 if (newY < 0) {
 newY = 0;
 } else if (newY > 416) {
 newY = 416;
 }
 self.center = CGPointMake(newX,newY);
}

This is similar to the touch code that you wrote in chapter 6. Recall that locationIn-
View: B gives a CGPoint internal to the view’s coordinate system and needs to be con-
verted C into the global coordinate system of the application.

 In testing, we discovered that when run on an iPhone (but not in the iPhone Sim-
ulator), the result is sometimes out of bounds; you need to double-check the coordi-
nates before you move the temporary image view.

11.4.3 The collage view

Last up we have the collageView, which is the background UIView that needs to
respond to the addPic:at: message and draw on the CALayer with drawRect:. The
code to do this is shown in the following listing.

-(void)addPic:(UIImage *)newPic at:(CGRect)newLoc {
 if (! myPics) {
 myPics = [[NSMutableArray alloc] initWithCapacity:0];
 [myPics retain];
 }
 [myPics addObject:[NSDictionary dictionaryWithObjectsAndKeys:
 newPic,@"picture",
 [NSNumber numberWithFloat:newLoc.origin.x],@"xpoint",
 [NSNumber numberWithFloat:newLoc.origin.y],@"ypoint",
 [NSNumber numberWithFloat:newLoc.size.width],@"width",

Listing 11.3 Moving a temporary image by touches

Listing 11.4 Background view managing low-level drawing when an image is set

Determines
position in view

B

Calculates overall
position

C

http://www.it-ebooks.info/

232 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
 [NSNumber numberWithFloat:newLoc.size.height],@"height",
 nil]];
 [self setNeedsDisplay];
}
- (void)drawRect:(CGRect)rect {
 if (myPics) {
 for (int i = 0 ; i < myPics.count ; i++) {
 UIImage *thisPic = [[myPics objectAtIndex:i]
 objectForKey:@"picture"];
 float xpoint = [[[myPics objectAtIndex:i]
 objectForKey:@"xpoint"] floatValue];
 float ypoint = [[[myPics objectAtIndex:i]
 objectForKey:@"ypoint"] floatValue];
 float height = [[[myPics objectAtIndex:i]
 objectForKey:@"height"] floatValue];
 float width = [[[myPics objectAtIndex:i]
 objectForKey:@"width"] floatValue];
 [thisPic drawInRect:CGRectMake(xpoint,ypoint,width,height)];
 }
 }
}

This code is broken into two parts. The addPic:at: method saves its information into
an instance variable, adding a myPics dictionary to the NSMutableArray. Note that you
have to convert values into NSNumbers so that you can place them in the dictionary.
This method then calls setNeedsDisplay on the view. You should never call drawRect:
directly. Instead, when you want it to be executed, call the setNeedsDisplay method,
and everything else will be done for you.

drawRect: is called shortly afterward. It reads through the whole NSMutableArray,
breaks it apart, and draws each image onto the CALayer using the techniques you
learned earlier.

 We haven’t shown the few header files and the unchanged app delegate, but this is
everything important needed to write a complete collage program.

11.4.4 Further exploration of this example

This was one of our longer examples, but it could still bear some expansion to turn it
into a fully featured application.

 First, it’s a little unfriendly with memory. It would be better to maintain references
to filenames, rather than keep the UIImages around. In addition, the NSArray that the
CALayer is drawn from should be saved out to a file so it won’t get lost if memory is
low. But the program as it exists should work fine.

 The program could be made more usable. An option to crop the pictures would be
nice, but it may require access to Core Graphics functions. An option to move pictures
around after they’ve been locked in would be relatively simple: you could test for
touches in the collageView and read backward through the NSArray to find which
object the user was touching. Reinstantiating it as a UIImageView would then be simple.

http://www.it-ebooks.info/

233Printing images

www.it-ebooks.info
11.5 Printing images
AirPrint comes with iOS 4.2 and is available to both the iPhone and iPad. The AirPrint
user interface on the iPhone and iPad is shown in figure 11.4. Generally, the print but-
ton is bar button item. When the user taps the Print button, the view controller to
assign the printing task will present as a modal view controller on the iPhone and a
popover view on the iPad. Once the print task is assigned, it will be printed right away
or it will wait in the print queue. Users can check on the status by accessing the Print
Center under the multitasking UI.

 AirPrint is handled by the iOS system’s UIKit, and no extra framework is required
for the project.

 The UIWebView, UITextView, and data such as UIImage and PDF files are print
ready and can be handled by the print controller directly.

 In this section you’ll learn how to print an image from the application with the
UIPrintInteractionController on the iPhone and iPad. Before we start coding, let’s
examine the printing workflow.

11.5.1 Printing workflow

Inside the AirPrint API, you can create the UIPrintInteractionController and pres-
ent it as a modal view controller in the iPhone or a popover view on the iPad. It works
the same as the system printing UI, as shown in figure 11.4.

UIPrintInteractionController is the key class in iOS for printing. You can create
a printing user interface by calling the following code:

UIPrintInteractionController *controller = [UIPrintInteractionController
sharedPrintController];

Figure 11.4 Printing UI on the iPad and iPhone

http://www.it-ebooks.info/

234 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
To make sure the print view controller is available in the current system, you can use
the method [UIPrintInteractionController isPrintingAvailable] to check the
availability.

 Next, you need to define or customize the print task by setting the properties of the
controller. There are some important properties for the controller listed in table 11.4.

 In order to define the printInfo, you need to create an instance of UIPrintInfo.
UIPrintInfo is a class that allows you to customize the printing job’s information.
UIPrintInfo includes properties such as the print-job name, the printer identifier,
the orientation of the printed content, the duplex mode, and the kind of content
(general, photo, or grayscale).

 Similar to the UIImagePickerController, make sure you are implementing the
UIPrintInteractionController’s delegate method to handle the callback messages.
For example, when the print task is assigned, show an alert view to notify the end user.

In order to present the print view controller on
the iPhone, you must create the completion han-
dler and present it with method present-

Animated:completionHandler:; on the iPad,
present the popover controller with the method
presentFromBarButtonItem:animated:completion

Handler:.

11.5.2 Simulating printing

Luckily, the iOS SDK after 4.2 comes with the Air-
Print simulator app for Mac OS in case you don’t
have a printer for testing. You can find this print
simulator app at <Xcode>/Platforms/iPhoneOS
.platform/Developer/Applications/Printer Simu-
lator, as shown in figure 11.5.

Table 11.4 A few properties in UIPrintInteractionController

Property Summary

printingItem A single UIImage, NSData, NSURL, or ALAsset object containing or referenc-
ing image data or PDF data.

printInfo A UIPrintInfo object to customize the printItem.

printingItems An array of objects either containing or referencing image data or PDF data.
These objects are directly printable.

printFormatter A UIPrintFormatter object handles the printing format.

printPageRender An instance of a custom class of UIPrintPageRenderer draws each page
of printable content partially or entirely.

Figure 0.1 Printer Simulator under
the iOS SDK

http://www.it-ebooks.info/

235Printing images

www.it-ebooks.info
Launch the Printer Simulator app on your Mac. You will see a message similar to the
one shown in figure 11.6.

 With the Printer Simulator running, you can test the printing tasks directly from
the iOS Simulator. Now we will start coding for printing.

11.5.3 Creating a demo app-printing image

In this section, we will create a simple view-based application for the iPhone and iPad
containing an image in the center, which will print when the user taps the Print button.

 Fire up Xcode and create a new project with View-Based Application template
under iOS. Name it iPrint. Drag a photo you would like to print to this project’s
Resources folder.

 Select the iPrintViewController header file and add in the changes shown in the fol-
lowing listing.

#import <UIKit/UIKit.h>
@interface iPrintViewController :
UIViewController<UIPrintInteractionControllerDelegate> {
 IBOutlet UIBarButtonItem *printButton;
 IBOutlet UIImageView *myPhoto;
}
-(IBAction)printPhoto:(id)sender;
@end

With the image view, Print button, and printPhoto: method added, let’s drag and
hook up the two subviews to iPrintViewController’s nib file visually. Connect the
method printPhoto: to the Print button’s action.

 Now add in the following code to the view controller’s implementation file to com-
plete the print task.

#import "iPrintViewController.h"
@implementation iPrintViewController

Listing 11.5 iPrintViewController header file

Listing 11.6 iPrintViewController implementation file

Figure 11.6 Printer
Simulator screenshot

http://www.it-ebooks.info/

236 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
@synthesize myPhoto;
@synthesize printButton;

- (void)viewDidLoad {
 [super viewDidLoad];
 if (![UIPrintInteractionController isPrintingAvailable]) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Sorry"
 message:@"Printing is not available on your device!"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
}

-(IBAction)printPhoto:(id)sender {
 UIPrintInteractionController *controller = [UIPrintInteractionController
sharedPrintController];
 controller.delegate = self;
 UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.outputType = UIPrintInfoOutputPhoto;
 printInfo.jobName = @"iPrint Photo";
 controller.printInfo = printInfo;
 controller.printingItem = myPhoto.image;
 controller.showsPageRange = YES;
 void (^completionHandler)(UIPrintInteractionController *,
 BOOL, NSError *) = ^(UIPrintInteractionController *pic,
 BOOL completed, NSError *error) {
 if (!completed && error)
 NSLog(@"FAILED! due to error in domain %@ with error code
 %u",error.domain, error.code);
 };
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 [controller presentFromBarButtonItem:printButton animated:YES
 completionHandler:completionHandler];
 } else {
 [controller presentAnimated:YES
 completionHandler:completionHandler];
 }
}

-(void)printInteractionControllerDidFinishJob:(UIPrintInteractionController*)
printInteractionController {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Congrats"
 message:@"Your photo is ready to pick up!"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
}

BPrint view
controller

availability

Print button tappedC

Print button tappedC

Print job
finishedD

http://www.it-ebooks.info/

237Printing images

www.it-ebooks.info
- (void)viewDidUnload {
 self.printButton = nil;
 self.myPhoto = nil;
}

- (void)dealloc {
 [myPhoto release];
 [printButton release];
 [super dealloc];
}

@end

In the viewDidLoad: method, you first check the availability of the print view control-
ler B. If it’s not currently available on iOS, an alert view will pop up to notify the user.
The print job is defined in the printPhoto: method C. First, create the print view
controller, and then define the delegate and the print info. In this example, the print-
ing item is the image from the image view. Then, define the block for the completion
handler. You want to monitor the error message in this example:

void (^completionHandler)(UIPrintInteractionController *, BOOL, NSError *) =
^(UIPrintInteractionController *pic, BOOL completed, NSError *error) {
 if (!completed && error)
 NSLog(@"FAILED! due to error in domain %@ with error code %u",
 error.domain, error.code); };"
};

On the iPad, the print view controller will show as a popover controller from the bar
button; on the iPhone, the print view controller will present as a modal view controller.

 When the printing job is finished, the delegate: method D will be called, so you
notify the user with an alert view. That’s all!

11.5.4 Launching the printer app on the Simulator

Now save all the changes. Before you build and run this iPrint app, make sure the
printing simulator app is running. When the app is launched in the Simulator, tap the
Print button. You will see that the simulator printer is available on the print view con-
troller, as shown in figure 11.7.

 You can play around with this app. For example, you can set the print info’s prop-
erty to change the content to grayscale. Even better, you can change the input image
to one of the photos from the photo library.

 That’s all! Now you’ve learned how to print out image with AirPrint and test it in iOS.

http://www.it-ebooks.info/

238 CHAPTER 11 Media: images and the camera

www.it-ebooks.info
11.6 Summary
Dealing with media is a huge topic that probably could fill a book on its own. Fortu-
nately, there are relatively easy (if limited) ways to utilize each major sort of media. In
this chapter, we discussed the various ways to manage and manipulate images on the
iPhone and iPad. We first discussed how to load them from disk. This includes images
saved in an application’s directory as well as from the camera roll.

 We also showed you how the UIImagePickerController can be slightly modified
to allow the user to take a photo and use it in an application.

 You’ve seen how all these pictorial fundamentals work together, so we’re now ready
to move on to the next major types of media: audio and video.

Figure 11.7 iPrint app running on the Simulator for the iPhone and iPad

http://www.it-ebooks.info/

www.it-ebooks.info
Media: audio
and recording
In the previous chapter, we discussed the basics of images. This chapter will detail
how to play and record various types of audio and video. This will include how to
play back audio items in the user’s iPod library as well as how to record to and play
from the user’s video library.

 To further demonstrate these concepts, you’ll create two sample applications.
The first application is a simple media player that lets the user choose a song from
their iPod library and play it back within the application. The next will be a simple
recording and playback application that lets the user record audio of an arbitrary
length and play it back.

This chapter covers
 Accessing the iPod library to play music

 Recording audio from the built-in microphone

 Playing sounds

 Recording, playing, and accessing video
239

http://www.it-ebooks.info/

240 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
12.1 Playing audio from the iPod library
You may wonder: why do you want to play music from the iPod music library. Many
people bought their fancy new iPhones for the sole purpose of combining their elec-
tronics (cell phone, iPod, GPS, camera, and so on).

 Apple saw the need for such control within an application and provided the Media
Player framework to allow you to retrieve items from the iPod media library as well as
play them.

 There are many reasons why you’d want to have control over the iPod in your
applications. You may want to allow the user to use their personal music instead of
your game music, or you may want to create a “Name That Tune” sort of game that
uses songs from the user’s iPod library. Apple has now made it simple to access and
play these items. We’ll look at how to retrieve items from the media library, how to get
information about an item, and how to play an item, and we’ll put it all together in a
concrete example at the end of the section.

12.1.1 Retrieving audio items from the iPod media library

Retrieving items from the iPod media library is similar to retrieving photos from the
photo library. The process is as follows:

1 Display the MPMediaPickerController in the current view.
2 Select media items from the iPod library.
3 A callback method in the MPMediaPickerControllerDelegate is called with the

media items.

The following example demonstrates how to display the MPMediaPickerController
to select media items:

MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeMusic];
[picker setDelegate:self];

[self presentModalViewController:picker animated:YES];

MPMediaPickerController allows you to select multiple items. To enable this feature,
you must set the allowsPickingMultipleItems property to YES.

 Because MPMediaPickerController is a view controller, it can be displayed any way
that you can display a view controller. It can be inside a tab bar view controller, pushed
onto a navigation controller stack, or, in this case, presented as the modal view con-
troller. How you choose to display it is up to you. Make sure you choose the method
that fits the flow of your application. Figure 12.1 shows what the MPMediaPicker-
Controller looks like when displayed.

 The media types you select aren’t limited to music. You can also select podcasts
and audio books. When you initialize a new MPMediaPickerController, you have the
option of selecting what type of media is shown by default. In the previous example,
the picker will display the user’s music library. Following in table 12.1 are the con-
stants you can use to change which library is shown.

http://www.it-ebooks.info/

241Playing audio from the iPod library

www.it-ebooks.info
After you’ve created your MPMediaPickerController, you need to create a delegate to
respond to two methods: mediaPicker:didPickMediaItems: and mediaPicker-
DidCancel:.

mediaPickerDidCancel: is called when the user presses the Cancel button in the
toolbar. Typically, you want to hide the MPMediaPickerController from this method.

Table 12.1 Media constants

Constant Description

MPMediaTypeMusic The media type is music, and the picker is limited to the music library.

MPMediaTypePodcast The media type is a podcast, and the picker is limited to the podcast
library.

MPMediaTypeAudioBook The media type is an audio book, and the picker is limited to the audio
book library.

MPMediaTypeAnyAudio The media type is an unspecified type of audio. The picker isn’t limited
to any specific audio type.

MPMediaTypeAny Similar to MPMediaTypeAnyAudio. This allows the picker to pick any
audio item from the library.

Figure 12.1 The
MPMediaPickerController

http://www.it-ebooks.info/

242 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
 When a media item has been selected, the mediaPicker:didPickMediaItems:
method of the delegate automatically is called with an MPMediaItemCollection con-
taining the selected item. An MPMediaItemCollection is a sorted set of MPMediaItems.

12.1.2 Getting information about an MPMediaItem

When you select an MPMediaItem from the iPod’s media library, it comes with all the
associated meta-information. To get access to this information, you call the valueFor-
Property: method of the MPMediaItem with a given key. The complete list of keys can
be found in the API documentation for MPMediaItem. Table 12.2 provides a short list
of some of the more common keys.

Other properties you have access to include genre, composer, duration, track and disc
number, album artwork, rating, lyrics, last played date, and play and skip counts.

 Now that you know how to select media items from the iPod library, playing these
items is fairly easy.

12.1.3 Playing media items using MPMusicPlayerController

The class used to play media items is MPMusicPlayerController. It gives you total
control over the built-in iPod on the device.

 When initializing a new MPMusicPlayerController, you have two options for inter-
acting with the iPod. The first way limits the iPod playback to your application. When
you choose this method of playback, the iPod will stop playing as soon as your applica-
tion exits. The other allows you to invoke the global iPod application. Exiting your
application won’t cause the iPod to stop playing. The following code snippet details
how to initialize the MPMusicPlayerController:

MPMusicPlayerController *player =
[MPMusicPlayerController applicationMusicPlayer];

By using the applicationMusicPlayer method of MPMusicPlayerController, you’re
limiting the media playback to your application. Using this method doesn’t affect the

Table 12.2 Common MPMediaItem keys

Constant Description

MPMediaItemPropertyMediaType Corresponds to one of the media types dis-
cussed in table 12.1

MPMediaItemPropertyAlbumTitle The title of the album that the media item
belongs to

MPMediaItemPropertyArtist The artist of the current media item

MPMediaItemPropertyPlaybackDuration An NSInteger that represents the length in
seconds of the current media item

MPMediaItemPropertyArtwork The artwork image for the media item

http://www.it-ebooks.info/

243Playing audio from the iPod library

www.it-ebooks.info
device’s iPod state in any way. If you want to use the main iPod application for media
playback, you use the iPodMusicPlayer method.

 After you’ve initialized the MPMusicPlayerController, you need to tell it which
items you want it to play. You do so with the setQueueWithItemCollection: method.
This method takes an MPMediaItemCollection as an argument. Conveniently
enough, an MPMediaItemCollection is available to you when the MPMediaPicker-
Controller selects an item. Here’s an example detailing how to set up the media
player to play items selected from the user’s media library:

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {

 [player setQueueWithItemCollection:mediaItemCollection];
}

After you set up the MPMusicPlayerController, quite a few settings are available to
further control the iPod (see table 12.3).

See the documentation for the names of the constants for playbackState, repeat-
Mode, and shuffleMode.

 The MPMusicPlayerController provides a full set of methods that you’d expect to
control the playback of the iPod. Table 12.4 provides a complete list of these methods
as well as their descriptions.

Table 12.3 Common iPod control properties

Constant Description

currentPlaybackTime The current playback time in seconds.

nowPlayingItem A reference to the currently playing item in the queue.

playbackState The current playback state of the media player. The states are stopped,
playing, paused, interrupted, seeking forward, and seeking backward.

repeatMode The repeat mode of the player. The repeat modes are default, none, one,
and all.

shuffleMode The shuffle mode of the player. The shuffle modes are default, off,
songs, and albums.

volume The volume of the player. This is a float value between 0.0 and 1.0.

Table 12.4 Playback control methods for MPMusicPlayerController

Method Description

play Starts or resumes the iPod’s playback of the current media item.

pause Pauses the playback if the player is currently playing.

stop Stops the playback if the player is currently playing.

beginSeekingForward Moves playback forward at a faster than normal rate.

http://www.it-ebooks.info/

244 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
As you can see, the API gives you quite a bit of control over the iPod. With all of these
controls, you’re able to create fully featured media playback applications. In the next
section, we’ll show you how to put it all together, and you’ll create a simple media
player application.

12.1.4 Example: creating a simple media player application

You’ve already written most of the code needed to create a simple media player appli-
cation. This example will demonstrate how to use the MPMediaPickerController to
find media and then play it using the MPMusicPlayerController.

 Make sure you’re testing directly on your device, because the Simulator doesn’t
have an iPod application. Testing from the Simulator will yield an error when trying to
display the picker.

CREATING A VIEW-BASED APPLICATION

You’ll start the application from the View-Based Application template provided by
Apple. This template creates an application delegate as well as a view controller. The
View-Based Application is perfect, because you’ll only need to add three buttons to
the view. Name the application iPodTest.

ADDING THE NEEDED FRAMEWORKS

This project requires one more framework beyond the defaults provided by the View-
Based Application template: MediaPlayer.framework. To add it, right-click Frame-
works and select Add; then, select Existing Frameworks. Search for Media-

Player.framework and select it.

SETTING UP THE IBACTIONS

Before you create the interface, you need to create the actions that the buttons will
connect to. Open iPodSampleViewController.h, and add the code in the next listing.

#import <UIKit/UIKit.h>
#import <MediaPlayer/MPMusicPlayerController.h>
#import <MediaPlayer/MPMediaPickerController.h>

beginSeekingBackward Moves playback backward at a faster than normal rate.

endSeeking Stops seeking and resumes playback.

skipToNextItem Starts playback of the next media item in the playback queue. This
method ends playback if it’s already at the last item in the queue.

skipToBeginning Starts playback of the current media item at the beginning.

skipToPreviousItem Starts playback of the previous media item in the playback queue. This
method ends playback if it’s already at the first item in the queue.

Listing 12.1 iPodSampleViewController.h

Table 12.4 Playback control methods for MPMusicPlayerController (continued)

Method Description

http://www.it-ebooks.info/

245Playing audio from the iPod library

www.it-ebooks.info
 @interface iPodTestViewController :
 UIViewController<MPMediaPickerControllerDelegate> {
 MPMusicPlayerController * player;
 MPMediaPickerController * picker;
}
- (IBAction) pickMedia:(id) sender;
- (IBAction) playMedia:(id) sender;
- (IBAction) stopMedia:(id) sender;

@end

The first import is added by default. The next two are needed to access the music player
and media picker. They contain all the classes and methods that you’ll be referencing.

 Looking at the class signature for iPodTestViewController, you see that it imple-
ments the MPMediaPickerControllerDelegate interface. This means the class is the
delegate for the MPMediaPickerController. It
receives all the actions sent by the media picker
and allows you to respond to them.

 After declaring the media player and media
picker, you declare the IBActions. These actions
are hooked up to the UIButtons on the interface.
As you can see, you implement only two of the nine
methods found in MPMusicPlayerController.
Because the rest of the methods are similar, we’ll
leave implementing them up to you.

CREATING THE INTERFACE

Open iPodTestViewController.xib for editing.
Drag three UIButtons from the library onto your
view, and title them Pick Media, Play, and Stop.
Connect each of them to its corresponding
IBAction by right-clicking it and dragging to the
File’s Owner icon. The interface should look
like figure 12.2.

 Next you will need to edit the view controller
implementation file and add the code that will
control this interface

WRITING THE CODE

Open iPodTestViewController.m, and add the
code in the following listing.

#import "iPodTestViewController.h"

@implementation iPodTestViewController

- (void)viewDidLoad {
 player = [MPMusicPlayerController iPodMusicPlayer];

Listing 12.2 iPodTestViewController.m

Figure 12.2
A simple media player interface

http://www.it-ebooks.info/

246 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
 picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeAnyAudio];
 [picker setDelegate:self];
 [super viewDidLoad];
}

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
 [player setQueueWithItemCollection:mediaItemCollection];
 [self dismissModalViewControllerAnimated:YES];
}

- (IBAction) pickMedia:(id) sender {
 [self presentModalViewController:picker animated:YES];
}

- (IBAction) playMedia:(id) sender {
 [player play];
}

- (IBAction) stopMedia:(id) sender {
 [player stop];
}

- (void)dealloc {
 [super dealloc];
 [player release];
 [picker release];
}

@end

You begin by initializing the media player and picker. Because the player is being ini-
tialized with the iPodMusicPlayer method, the application uses the global iPod player
when playing media items. The media picker is initialized with the MPMediaType-
AnyAudio constant; this lets the user select any sort of audio media from the iPod
library. Finally, you set the class as the delegate to the MPMediaPickerController so
you can respond to its actions.

 The mediaPicker method is called automatically whenever the user selects an
audio item from the iPod library. It receives an MPMediaItemCollection, which con-
tains the audio item to be played. The next line takes this collection and adds it to the
iPod media collection’s queue. To hide the picker, you call dismissModalView-
ControllerAnimated.

 The pickMedia method displays the media picker on top of the current view. The
playMedia and stopMedia methods are fairly self-explanatory because they only con-
trol the media player. Use these methods as a template for implementing other media
player controls on your own.

 Finally, you need to make sure to release objects that you allocate. Doing so
ensures that your application doesn’t use more memory than it needs and runs as effi-
ciently as possible.

 In the next section, we’ll discuss how to let users record audio files.

http://www.it-ebooks.info/

247Recording audio

www.it-ebooks.info
12.2 Recording audio
In this section, you’ll learn how to record audio by building a demo app with AVFoun-
dation framework.

 AVFoundation framework is really easy to use for a simple audio recording or play-
ing task. You can find all the classes for recording audio in the AV Foundation frame-
work. In order to use these classes, you must add AVFoundation.framework to your
project. We’ll look at how to initialize and control the audio reader and also how to
respond to its associated events.

12.2.1 Initializing the audio recorder

When you’re initializing a new AVAudioRecorder object, you should avoid using the
default constructor init. This is to reduce complexity, because this class requires quite
a bit of configuration. The constructor you should use is initWithURL:settings:
error. It allows you to specify the location on disk to record the audio to as well as pro-
vide various audio settings.

 The first parameter is the location where the recording will be stored. Although
it’s expressed as an NSURL, it’s really a local path that points to a location on disk. In
most cases, you’ll want to store recordings in the Documents directory.

 The next parameter is an NSDictionary that contains the settings for the record-
ing. Table 12.5 lists some of the settings that you may want to consider when setting up
your recorder.

You can specify quite a few other settings when creating your recorder. All of these set-
tings are optional and have default values; you can use them to fine-tune your audio
recording. The next listing demonstrates how to build an AVAudioRecorder object
with some basic settings.

NSString * filePath = [NSHomeDirectory()
 stringByAppendingPathComponent:@"Documents/recording.caf"];

Table 12.5 Basic audio settings for AVAudioRecorder

Setting key Description

AVSampleRateKey A sample rate, in Hertz, expressed as an NSNumber floating-
point value.

AVFormatIDKey A format identifier. A common value for this is
kAudioFormatAppleLossless.

AVNumberOfChannelsKey The number of channels expressed as an NSNumber integer
value. You can set this value to 1.

AVEncoderAudioQualityKey A key that refers to the quality of the audio being played.

Listing 12.3 Initialization code for AVAudioRecorder

http://www.it-ebooks.info/

248 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
NSDictionary *recordSettings =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSNumber numberWithFloat: 44100.0], AVSampleRateKey,
 [NSNumber numberWithInt: kAudioFormatAppleLossless],AVFormatIDKey,
 [NSNumber numberWithInt: 1], AVNumberOfChannelsKey,
 [NSNumber numberWithInt: AVAudioQualityMax], AVEncoderAudioQualityKey,nil];
AVAudioRecorder * soundRecorder =
 [[AVAudioRecorder alloc] initWithURL: [NSURL fileURLWithPath:filePath]
 settings: recordSettings
 error: nil];

Note the filePath. This is an NSString that points to a file named recording.caf in
the Documents directory. This path is converted to an NSURL during the construction
of the recorder.

12.2.2 Controlling the audio recorder

After you construct an AVAudioRecorder, you have quite a bit of control over it.
Table 12.6 lists all the methods you can call on a recorder to control the recording
session.

 The following code shows how to make a simple toggleRecord method that can be
used as an IBAction for a button. The code assumes you’ve created a few global prop-
erties. Theses properties include recording of type BOOL and soundRecorder of type
AVAudioRecorder:

- (IBAction) toggleRecord:(id) sender {
 if (recording) {
 [soundRecorder stop];
 } else {
 [soundRecorder record];
 }
 recording = !recording;
}

Table 12.6 Methods to control audio recording

Method Description

- (BOOL)prepareToRecord Creates the recording file on disk at the specified URL path.
This method also prepares the system for recording.

- (BOOL)record Starts or resumes recording. This method implicitly calls the
prepareToRecord method.

- (BOOL)recordForDuration:
 (NSTimeInterval)duration

Starts the recorder and records for a specified amount of
time.

- (void)pause Pauses a recording. To resume recording, call the record
method again.

- (void)stop Stops the recording and closes the audio file.

- (BOOL)deleteRecording Deletes the current recording. For this method to work, the
recording must be stopped.

http://www.it-ebooks.info/

249Playing sounds

www.it-ebooks.info
When toggleRecord is called for the first time, record is set to NO. This starts the
audio recording and sets the recording property to YES. The system creates the
recording file and begins receiving input from the built-in microphone. If the device’s
headset is plugged in, the system uses the headset’s microphone instead.

 The second time toggleRecord is called, the recorder stops recording. This closes
the audio file and allows it to be played. The recording property is also set to NO.

12.2.3 Responding to AVAudioRecorder events

Like many API classes, AVAudioRecorder sends messages to a delegate. To respond to
delegate actions from the AVAudioRecorder, your class must implement the AVAudio-
RecorderDelegate. Table 12.7 describes the methods that can be implemented.

As with most delegate classes, it’s important to implement all of these methods in your
class. Doing so ensures that your application responds correctly in any circumstance.

 Now that you know how to record audio, the next step is to play it back. The next
section will discuss the method for playing your recordings as well as any other audio
files in your application.

12.3 Playing sounds
Prior to the release of the iOS 3.0 API, playing audio files was a fairly complex task.
There were functions to simplify the process, but they were limited to 30 seconds and
didn’t support simultaneous playback. To achieve this functionality, you had to use
some relatively low-level audio libraries. These include Audio Queue Services, Audio
File Stream Services, Audio File Services, OpenAL, Audio Session Services, and more.

 The aforementioned audio libraries are powerful but are no longer needed. The
AVAudioPlayer has replaced all of them and is now recommended by Apple for all

Table 12.7 AVAudioRecorderDelegate methods

Method Description

- (void)audioRecorderDidFinishRecording:
 (AVAudioRecorder *)recorder
 successfully:(BOOL)flag

Called when the recorder finishes recording.
This method is passed a reference to the
recorder and a Boolean value that’s YES if it
was successful.

-(void)audioRecorderEncodeErrorDidOccur:
 (AVAudioRecorder *)recorder
 error:(NSError *)error

Called when an error occurs during recording.

- (void)audioRecorderBeginInterruption:
 (AVAudioRecorder *)recorder

Called when the recording is interrupted. The
most common interruption is when the user
gets an incoming call while recording.

- (void)audioRecorderEndInterruption:
 (AVAudioRecorder *)recorder

Called when the interruption ends. An exam-
ple is pressing Ignore in response to an
incoming call.

http://www.it-ebooks.info/

250 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
audio playback. According to the API documentation of the AVAudioPlayer, “Apple
recommends that you use this class for audio playback unless your application
requires stereo positioning or precise synchronization, or you are playing audio cap-
tured from a network stream.”

 The AVAudioPlayer class provides a fully featured interface for playing and man-
aging audio. Following is a list of some of the features available in AVAudioPlayer:

 Plays sounds of any length
 Loops sounds
 Plays sounds simultaneously
 Controls the playback level for each sound
 Seeks, which allows you to do fast forward and rewind
 Obtains and displays metering data about levels, peaks, and so on

Let’s look at how to use the AVAudioPlayer. Later in the section, we’ll also explain
how to vibrate an iPhone.

12.3.1 Initializing the AVAudioPlayer

The AVAudioPlayer provides two methods for initialization. The first method is init-
WithData:error. This method initializes the player with an NSData object containing
the audio data to be played. The second parameter is a reference to an NSError for
error reporting. This method is useful when you have audio data on hand and don’t
need to load it from disk.

 The second method of initialization is initWithContentsOfURL:error. This
method will probably be more useful unless you’re working on an audio-editing appli-
cation. The first parameter is an NSURL containing the location of the audio file. You’ll
need to build an NSURL from the path to your audio file. Here’s an example of initial-
izing an AVAudioPlayer using the initWithContentsOfURL:error method:

NSString * filePath = [NSHomeDirectory() stringByAppendingPathComponent:
 @"Documents/recording.caf"];

AVAudioPlayer *newPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:
 [NSURL fileURLWithPath:filePath] error: nil];
newPlayer.delegate = self;

This example initializes an audio player with a file named recording.caf located in the
Documents directory. Like the AVAudioRecorder, this variable is of the type NSURL.

 After building a new AVAudioPlayer object, you need to set its delegate to respond
to its actions. In this example, the delegate is assigned to the calling class.

12.3.2 The AVAudioPlayerDelegate

The delegate for the AVAudioPlayer is similar to the delegate for the AVAudio-
Recorder. It responds to exactly the same events, replacing recorder with player.
Table 12.8 discusses these events.

http://www.it-ebooks.info/

251Playing sounds

www.it-ebooks.info
As you can see, there’s nothing new here. These delegate methods are as expected
and should all be implemented in your delegate class.

12.3.3 Controlling the AVAudioPlayer

One useful thing Apple did with the AVAudioPlayer was to allow it to be controlled like
a music player. It contains all the methods you’d expect and then some. These include
play, pause, and stop. You can also seek by modifying the currentTime property.

 One additional method you may find useful is prepareToPlay. This method pre-
loads the player’s buffer with the audio data so that it’s ready to play when the play
method is called. It minimizes the lag between initializing the player and playing the
audio.

 An example usage is in a video game. You want to preload all the audio for a given
level before the user starts playing. That way, when the user attacks an enemy, the
attack sound plays right away rather than after the user has already defeated the
enemy.

 You need to consider quite a few other properties when coding an AVAudioPlayer.
Here’s a list of these properties along with their descriptions:

 playing—A Boolean value that’s YES when the player is currently playing a
sound file. This property is read-only.

 volume—The relative volume of this sound. The value is a float and ranges
from 0.0 to 1.0.

 numberOfLoops—The number of times to loop the sound. The default value for
this is 0, which means to play the sound once. Setting this value to a positive
number loops the sound that many times. To loop the sound indefinitely until
the stop method is called, set this value to any negative number.

 numberOfChannels—The number of audio channels in the sound. This prop-
erty is read-only.

Table 12.8 AVAudioPlayerDelegate methods

Method Description

- (void)audioPlayerDidFinishPlaying:
 (AVAudioPlayer *)player
 successfully:(BOOL)flag

Called when the player finishes playing. This
method is passed a reference to the player and a
Boolean value that’s YES if it was successful.

-(void)audioPlayerDecodeErrorDidOccur:
 (AVAudioPlayer *)player
 error:(NSError *)error

Called when an error occurs during audio play-
back.

- (void)audioPlayerBeginInterruption:
 (AVAudioPlayer *)player

Called when the player is interrupted. The most
common interruption is when the user gets an
incoming call while playing.

- (void)audioPlayerEndInterruption:
 (AVAudioPlayer *)recorder

Called when the interruption ends. An example is
pressing Ignore in response to an incoming call.

http://www.it-ebooks.info/

252 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
 duration—The total length in seconds of the sound file. This property is read-
only.

 currentTime—The current playback time of the sound. This file can be used to
“seek” or fast-forward and rewind.

 URL—An NSURL with the location of the sound file.
 data—An NSData object containing the audio data for the sound file.
 meteringEnabled—A Boolean value that determines if metering is currently

enabled. When this is set to YES, you have access to some metering data associ-
ated with the sound. By default, this property is set to NO.

These properties make it simple to manage and control audio objects. You no longer
need advanced knowledge of audio programming to integrate sounds into your appli-
cations. This code shows how to play back the recording you created in the previous
section:

NSString * filePath = [NSHomeDirectory() stringByAppendingPathComponent:
 @"Documents/recording.caf"];

AVAudioPlayer *newPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:
 [NSURL fileURLWithPath:filePath] error: nil];
newPlayer.delegate = self;
[newPlayer play];

Again, you resolve the URL from the file path and pass it to the player. Next, the dele-
gate is set to the caller class. Finally, play is called to start the audio playback.

12.4 Example: creating a simple audio
recording/playback application
Years ago, little electronic devices, commonly available in grocery stores, allowed you
to press a button, record some audio, and play it right back. In this section, you’ll cre-
ate an application that will function similarly to one of these devices.

Vibrating the iPhone
One cool feature of the API related to audio programming is vibrating the iPhone. It’s
related because it uses the system’s audio interface. The API used is a C interface
found in the Audio Toolbox framework. It’s a really powerful API on iOS. We will cover
details on Audio Toolbox framework in Chapter 22 for background audio.

You can find the function for vibrating the device in AudioToolbox/AudioServices.h.
Make sure you add the AudioToolbox.framework to your project and import
AudioToolbox/AudioServices.h. Here’s the single line of code needed to vibrate the
iPhone or iPad:
AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

Place that line of code in any method that needs to vibrate the phone. It’s short and
easy to use.

http://www.it-ebooks.info/

253Example: creating a simple audio recording/playback application

www.it-ebooks.info
 The interface for the application is fairly simple. It contains only a Record button
and a Play button. When the user presses the Record button, they must hold it down
for as long as they’d like to record. When they release the button, the recorder stops.
The user then presses the Play button to play back the audio they just recorded.

12.4.1 Creating a view-based application

As you did in the last example, start by creating a new view-based application. You
need this template, because it provides a single view along with the application’s dele-
gate. Name the project TalkBack.

12.4.2 Adding the needed frameworks

You’ll need to add two additional frameworks to the project in order for it to func-
tion. The first framework you need is AVFoundation.framework. This contains all the
sAVAudioRecorder and AVAudioPlayer classes and methods you’ll be using. The
next framework is CoreAudio.framework; it contains a constant that’s needed in the
application.

12.4.3 Setting up the IBActions

The application will need to respond to three events. The first is when the user ini-
tially pushes the Record button; this event should initialize the recorder and start the
recording. The second event occurs when the user releases the Record button; this
should stop the recorder. Finally, the third event occurs when the user presses the Play
button; this should play back the recorded audio. You need to write the method signa-
tures for each of these methods in the header file. The following listing contains the
code inside TalkBackViewController.h.

#import <UIKit/UIKit.h>
#import <AVFoundation/AVAudioRecorder.h>
#import <AVFoundation/AVAudioPlayer.h>
#import <CoreAudio/CoreAudioTypes.h>

@interface TalkBackViewController :
UIViewController<AVAudioPlayerDelegate,AVAudioRecorderDelegate> {

 AVAudioRecorder * recorder;
}

- (IBAction) record: (id) sender;
- (IBAction) recordStop: (id) sender;
- (IBAction) play: (id) sender;
@end

This code import the APIs you use, declares an AVAudioRecorder, and then declares
the IBActions. Now that you’ve set up the IBActions, you need to create the interface.

Listing 12.4 TalkBackViewController.h

http://www.it-ebooks.info/

254 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
12.4.4 Creating the interface

Open TalkBackViewController.xib, and add two
UIButtons to the view. Title one Record and the
other Play. You can place them anywhere on the
view, which should look like figure 12.3.

 The Record button will have both the record
and recordStop methods connected to it, but
they’ll be connected to different selectors. Click
the Record button, and open the connection
inspector. Drag from the Touch Down action to
the File’s Owner object, and select Record.
Doing so invokes the record method when the
button is first touched. Next, drag the Touch Up
Inside action to the File’s Owner object, and
select recordStop. This will execute after the
button has been released. This way, the applica-
tion will start recording when the Record button
is pressed and keep recording until it’s released.

 Now, click the Play button and open the
connection inspector. Drag from Touch Up
Inside to the File’s Owner object, and select the
Play action.

12.4.5 Setting up the audio recorder
and implementing the IBActions

Now that the interface is set up and the connections have been made, it’s time to
implement these actions. The next listing contains the code that you need to add to
TalkBackViewController.m.

#import "TalkBackViewController.h"

@implementation TalkBackViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 NSString * filePath = [NSHomeDirectory()
 stringByAppendingPathComponent: @"Documents/recording.caf"];

NSDictionary *recordSettings =
[[NSDictionary alloc] initWithObjectsAndKeys:
[NSNumber numberWithFloat: 44100.0],AVSampleRateKey,
[NSNumber numberWithInt: kAudioFormatAppleLossless],AVFormatIDKey,
[NSNumber numberWithInt: 1], AVNumberOfChannelsKey,
[NSNumber numberWithInt: AVAudioQualityMax],AVEncoderAudioQualityKey,nil];

Listing 12.5 TalkBackViewController.m

Figure 12.3 The talkback interface: a
simple record/playback application

http://www.it-ebooks.info/

255Recording, playing, and accessing video

www.it-ebooks.info
recorder = [[AVAudioRecorder alloc]
 initWithURL: [NSURL fileURLWithPath:filePath]
 settings: recordSettings error: nil];

recorder.delegate = self;

}

- (IBAction) record: (id) sender {
 [recorder record];
}

- (IBAction) recordStop: (id) sender {
 [recorder stop];
}

- (IBAction) play:(id) sender {
 NSString * filePath = [NSHomeDirectory()
 stringByAppendingPathComponent: @"Documents/recording.caf"];

 AVAudioPlayer * player = [[AVAudioPlayer alloc] initWithContentsOfURL:
 [NSURL fileURLWithPath:filePath] error: nil];
 player.delegate = self;
 [player play];
}

- (void)dealloc {
 [super dealloc];
 [recorder release];
}

@end

You perform all the setup for the AVAudioRecorder in the viewDidLoad method. This
is so the recorder is available for recording when the user presses the Record button.

 The next few methods are straightforward. record starts the recorder when the
button is pressed, and recordStop stops recording when the button is released. The
play method builds a new AVAudioPlayer and initializes it with the audio file you just
recorded. After the player is initialized, the play method is called to start playback.

 As always, you should be a good steward of the iPhone’s memory: make sure you
release the recorder when you’ve finished using it. The application should be ready to
launch.

 Next, we’ll look at how to work with video.

12.5 Recording, playing, and accessing video
At the time of writing, the iPhone 4, iPod Touch 4th Generation, and the iPad 2 have
two built-in video cameras. This allows users to easily record video and save it to their
media library. The code for recording video is almost identical to the code to show the
camera in chapter 11, but it does have a few required checks.

 The following listing shows the code for bringing up the video camera interface.

http://www.it-ebooks.info/

256 CHAPTER 12 Media: audio and recording

www.it-ebooks.info
-(void) showVideoCamera {
if ([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
myImagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
} else {
 NSLog(@"Camera not supported");
return;
}
NSArray *media = [UIImagePickerController availableMediaTypesForSourceType:
UIImagePickerControllerSourceTypeCamera];

if([media containsObject:kUTTypeMovie]) {
 myImagePicker.mediaTypes = [NSArray
arrayWithObjects: kUTTypeMovie,nil];
 [self presentModalViewController:myImagePicker animated:YES];

} else {
 NSLog(@”Video not supported”);
}
}

The first thing you do is check to see if the device has camera support B. In two cases,
this returns false. The first is when the when the video camera is not available on the
device. The other case is that the camera is damaged on the current device.

 Next, you check to see what media types the camera supports C. In this case, you
look for the media type kUTTypeMovie. If this is found, the camera supports video.
You set the media type of the picker to kUTTypeMovie to tell it to display the video
camera. By default, it’s set to kUTTypeImage, which specifies photos, so it’s necessary
that you set it. The camera control interface will allow the user to switch between the
front facing camera and rear camera.

 Finally, you display the video camera on the screen D. One great feature that
Apple added is the ability to edit the video on the fly. This is easy to integrate in the
code. Add this line prior to displaying the video camera:

myImagePicker.allowsEditing = YES;

This great one-liner from Apple adds a ton of functionality. After the user finishes
recording the video, the delegate method didFinishPickingMediaWithInfo: for the
picker is called. The dictionary passed to this method contains a system path URL to
the video file that was just recorded. The following code shows how to use this path to
retrieve and play back the video:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {

 NSURL * pathURL = [info objectForKey: UIImagePickerControllerMediaURL];
 MPMoviePlayerController * player =
 [[MPMoviePlayerController alloc] initWithContentURL:pathURL];
 [player play];
}

Listing 12.6 Displaying the video camera

Is camera
available?

B

Gets list of
supported
media typesC

D

Shows
video

camera

http://www.it-ebooks.info/

257Summary

www.it-ebooks.info
The first thing this method does is retrieve the path URL from the info dictionary. The
path URL is the object stored with the key UIImagePickerControllerMediaURL. Next,
an MPMoviePlayerController is allocated with the contents of the path URL. This
loads the video and prepares it to play. The last thing to do is call the play method,
and the video begins.

12.6 Summary
Even novice programmers can now achieve audio recording and playback. With the
AV Foundation frameworks, writing fully featured audio applications is a breeze.

 The MPMediaPickerController provides a method for accessing the user’s iPod
media library. Using this in conjunction with the MPMusicPlayerController gives you
the ability to create applications in which the user has complete control over the
audio being played.

 In addition to discussing how to play music from the user’s iPod library, we covered
how to play audio from within your own application. This can be anything from sim-
ple sounds to recordings made with the AVAudioRecorder. The AVAudioPlayer makes
audio playback a simple and painless task.

 Although we’ve only begun to scratch the surface of audio management, you now
have the tools necessary to integrate audio into any application. In iOS 4.0, you can
also enable background audio as part of its multitasking features. You will learn the
details in Chapter 22.

http://www.it-ebooks.info/

www.it-ebooks.info
Graphics: Quartz, Core
Animation, and OpenGL
As you saw in chapter 11, creating and displaying images often isn’t enough. In
games and other more complex programs, you’ll also want to manipulate those
images in various ways at runtime. In iOS there are two major ways to do this.

 The first is through Quartz 2D, a two-dimensional drawing library that allows for
complex line drawings, much as Canvas did on the web. It’s also the heart of the
Core Graphics frameworks. We already touched on Quartz in chapter 11, when you
drew images straight to the CALayer of a UIView; it will be the focus of the majority
of this chapter. Quartz also supports Core Animation functions, which we’ll address
somewhat more briefly.

This chapter covers
 Using Quartz 2D for drawing

 Understanding context, paths, and state

 Using Core Animation

 Learning about OpenGL ES
258

http://www.it-ebooks.info/

259An introduction to Quartz 2D

www.it-ebooks.info
 The second major way to manipulate images is through the OpenGL ES API. This
cross-platform API, originally developed by Silicon Graphics, could be the topic of its
own book, so we’ll only show you how to get started with it.

 But most of this chapter will be about Quartz. We’ll look at drawing paths, setting
the graphical state, and more advanced drawing techniques. We’ll dive into Quartz
immediately.

13.1 An introduction to Quartz 2D
Quartz 2D is a two-dimensional drawing library that’s tightly integrated into iOS. It
works well with all the relevant frameworks, including Core Animation, OpenGL ES,
and the UIKit.

 Fundamentally, Quartz’s drawings depend on three core ideas: context, paths, and
state, each of which will be the topic of a future section:

 Context is a description of where the graphics are being written to, as defined by
a CGContextRef. You’ll usually be writing to a UIView or to a bitmap.

 Layers are a little less important for this overview, but they’re where Quartz
drawing occurs. They can be stacked one on top of another, creating a complex
result. When working with the iPhone or iPad, you’ll often only have a single
layer associated with each of your UIKit objects.

 Paths are what you’ll typically draw in Quartz. These are collections of lines and
arcs that are drawn in advance and then are painted to the screen by either
stroking or filling the path in question (or, possibly, by clipping it).

 State saves the values of transformations, clipping paths, fill and stroke settings,
alpha values, other blending modes, text characteristics, and more. The current
state can be stored with CGContextSaveGState and restored with CGContext-
RestoreGState, allowing for easy switching among complex drawing setups.

Quartz is built on the older Core Foundation framework that you’ve met a few times
over the course of this part of the book. This means you’ll need to use older styles of
variables to integrate with Cocoa Touch using toll-free bridging, and to respect Core
Foundation’s memory-management techniques.

 If you need more information about any Quartz topic, see the “Quartz 2D Pro-
gramming Guide” at Apple’s developer website. It’s a fine introduction to Quartz,
although not as focused as you’d probably like, a deficiency that we’ll correct in this
chapter.

 Using Quartz requires little special setup. It can be easily integrated into any tem-
plate and any project you want. Be sure to include the Core Graphics framework and
the CoreGraphics/CoreGraphics.h include file before you get started.

 With that said, we’re ready to dive into our first major Quartz topic: the context.

http://www.it-ebooks.info/

260 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
13.2 The Quartz context
A graphical context is a description of where Quartz writes to. This could include a
printer, a PDF file, a window, or a bitmap image. On the iPhone and iPad, you’re only
likely to use two of these possibilities.

 Most frequently, you’ll work with the graphical context that’s automatically associ-
ated with the CALayer (Core Animation layer) of each UIView. That means you can
use Quartz to draw to most UIKit objects. To do so, you override the drawRect:
method and, inside the object in question, use UIGraphicsGetCurrentContext to
retrieve the current context.

 You may alternatively create a bitmap context in order to create or modify an
image that you’ll use elsewhere in your program. You do this by using the
UIGraphicsBeginImageContext and UIGraphicsEndImageContext functions.

 You can use a variety of Core Graphics functions to access other sorts of contexts—
types that you won’t usually use on an iPhone or iPad. The functions required to cap-
ture a PDF context are one such example. These have two deficits you should be aware
of: they depend more heavily on the Core Foundation frameworks, and they use
Quartz’s inverted coordinate system.

 One thing to note about graphical contexts is that they’re created in a stack: when
you create a new context, it’s pushed on top of a stack, and when you’ve finished with
it, it’s popped off. This means that if you create a new bitmap context, it’s placed on

Warning: inverse coordinate system ahead
By now, you should be familiar with the standard iOS coordinate system. It has the
origin at upper left on the screen, with the main axes running to the right and down.
Quartz’s default coordinate system is inverted, with the origin at lower left and the
main axes running right and up.

This isn’t usually a problem. The Cocoa Touch methods you use to create and write
to graphical contexts usually transform Quartz’s default coordinates so that they look
like iPhone coordinates to you.

Once in a while, though, you’ll run into a situation where you’ll draw to a UI-derived
context and find your content flipped upside down (and in the wrong position). This is
a result of accessing Quartz in a way that hasn’t been transformed.

As of this writing, we’re aware of two situations where you’ll have to correct Quartz’s
coordinate system by yourself, even when using one of the UI-derived contexts: if you
import images using the native Quartz functions (as opposed to the UIImage meth-
ods you saw in chapter 11), and if you write text. We’ll talk about each of these when
we get to them.

Personally, we consider these coordinate inversions bugs, and it’s our expectation
that they’ll eventually be corrected.

If you create a context without using Cocoa Touch, expect everything to be inverted.
This is something that we don’t expect to change in the future.

http://www.it-ebooks.info/

261The Quartz context

www.it-ebooks.info
top of any existing context, such as the one associated with your UIView, and stays
there until you’ve finished with the bitmap.

 Table 13.1 lists these context-related functions, including both the standard UI
context functions and the older Core Graphics function you’re most likely to use—
for PDFs.

We won’t cover PDFs in this book, but we’ll look at how to use each of the UIKit con-
text styles, starting with the UIView.

13.2.1 Drawing to a UIView

In chapter 11, we offered an introductory example of how to write to a UIView graphi-
cal context using the drawRect: method. That example was somewhat simplified
because the UIKit draw-image commands mostly hide the idea of graphical contexts
from you. They automatically write to the current context, which inside drawRect: is
the context related to the UIView. For most other functions, you need to do a bit more
work: retrieving the graphical context and passing that context along to any drawing
commands that you use.

 Here’s how to draw a simple abstract face using this technique:

- (void)drawRect:(CGRect)rect {
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 CGContextBeginPath(ctx);
 CGContextAddArc(ctx,110,50,30,0,2*M_PI,1);
 CGContextAddArc(ctx,210,50,30,0,2*M_PI,1);
 CGContextAddArc(ctx,160,110,15,0,2*M_PI,1);
 CGContextAddArc(ctx,160,210,25,0,2*M_PI,1);
 CGContextFillPath(ctx);
}

This example is fairly simple. You create a UIView subclass, and then you go to its
drawRect: method. Once there, you capture the current context and use it to do
whatever Quartz 2D drawing you desire.

Table 13.1 Methods for graphical context creation

Function Arguments Summary

UIGraphicsGetCurrentContext (none) Returns the current context, which is
usually the context of the current
UIKit object but can also be a con-
text that you create by hand

UIGraphicsBeginImageContext CGSize Creates a bitmap context

UIGraphicsEndImageContext (none) Pops a bitmap context off the stack

UIGraphicsGetImageFrom-
CurrentImageContext

(none) Returns a bitmap as a UIImage *;
used with a bitmap context only

CGPDFContextCreate CGDataConsumerRef,
 CGRect, CGDictionaryRef

Creates a PDF context

http://www.it-ebooks.info/

262 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 The function calls won’t be familiar to you, but they’re calls
to draw a bunch of circles; we’ll discuss them in the next sec-
tion. As shown in figure 13.1, the art ends up looking oddly
abstract, which shows how Quartz draws continuous paths. You
see lines connecting one circle to the next, as if the pencil
never comes off the page, a topic we’ll talk about more in the
next section.

 Leaving aside those specifics for a moment, this shows one
of the two ways you can use all the Quartz functions described
in this chapter: by painting a UIView. And remember that a
UIView can be almost any UIKit object, due to inheritance.

 Drawing to a UIView allows for on-screen picture creation,
but you can also draw pictures without displaying them imme-
diately. That’s done with a bitmap.

13.2.2 Drawing to a bitmap

The main reason to create a bitmap rather than draw directly to a view is to use your
graphic several times in your program—perhaps all at the same time. For example,
Apple offers a sample program that draws the periodic table by creating a standard
bitmap that’s used for all the elements and then repeating it. You might similarly cre-
ate billiard balls using bitmaps if you were programming a billiards game. In
chapter 10, you could have used Quartz to create the dots that you used in the gravity
and altitude programs as bitmaps, so that you didn’t have to separately create them
outside the program.

 The process of creating a bitmap and turning it into a UIImage is relatively simple.
You create a graphical context, draw in that context, save the context to an image, and
close the context. The following code shows how to create a red dot image like the
one you used in earlier programs:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIGraphicsBeginImageContext(CGSizeMake(20,20));
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 CGContextBeginPath(ctx);
 CGContextAddArc(ctx,10,10,10,0,2*M_PI,1);
 CGContextSetRGBFillColor(ctx, 1, 0, 0, 1);
 CGContextFillPath(ctx);
 UIImage *redBall =
 UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 UIImageView *redBallView = [[UIImageView alloc] initWithImage:redBall];
 redBallView.center = CGPointMake(160,330);
 [self.view addSubview:redBallView];
}

Again, this example is simple. You could do this work anywhere you wanted, but we’ve
elected to use the viewDidLoad setup method. To start the process, you create an

Figure 13.1 The iPhone
does abstract art.

http://www.it-ebooks.info/

263Drawing paths

www.it-ebooks.info
image context, which is to say a bitmap, and you immediately retrieve that context’s
variable for use. Following that, you do whatever drawing work you want. When you’ve
finished, you turn the bitmap into a UIImage and close out your context. You can then
manipulate the image as you see fit; here it’s turned into a UIImageView.

 You now know two ways to use contexts in the Quartz environment. With that in
hand, you’re ready to dive straight into what Quartz can do, starting with paths, which
are the foundation of most Quartz work.

13.3 Drawing paths
The path is what Quartz draws. If you’ve worked with Canvas, this will look familiar,
because both libraries use the same drawing paradigm. A path is a set of lines, arcs,
and curves that are all placed continuously within a graphical context. You only paint a
path when it’s complete, at which point you can choose to either fill it or stroke it.

 Many of the functions required to define and draw paths are listed in table 13.2.
CGContextMoveToPoint is the one function that deserves some additional discussion.
As you’ll recall, we said that a path is a continuous series of lines and arcs that you
draw without picking the pen up off the paper. But there is a way to pick up the pen,
and that’s with the CGContextMoveToPoint function, which is vital when you want to
draw unconnected objects as part of a single path.

Table 13.2 A variety of simple drawing functions that allow for vector-based graphics

Function Arguments Summary

CGContextBeginPath context Creates a new path.

CGContextAddArc context, x, y,
radius,
startangle,
endangle,
clockwise

Creates an arc, with the angles defined in radians.
A line is drawn to the start point if there are previ-
ous entries in the path and from the end point if
there are additional entries.
The more complex functions
CGContextAddArcToPoint,
CGContextAddCurveToPoint, and
CGContextAddQuadCurveToPoint allow for
the creation of tangential arcs, Bezier curves, and
quadratic Bezier curves.

CGContextAddEllipseInRect context, CGRect Creates an ellipse that fits inside the rectangle.

CGContextAddLineToPoint context, x, y Creates a line from the current point to the desig-
nated end point.
The more complex CGContextAddLines func-
tion allows the addition of an array of lines.

CGContextAddRect context, CGRect Creates a rectangle.
The more complex CGContextAddRects func-
tion adds a series of rectangles.

CGContextMoveToPoint context, x, y Moves to the point without drawing.

http://www.it-ebooks.info/

264 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 For example, to avoid drawing a line between the first two circles in the earlier
abstract-art example, you can use the following code:

CGContextAddArc(ctx,110,50,30,0,2*M_PI,1);
CGContextMoveToPoint(ctx, 240, 50);
CGContextAddArc(ctx,210,50,30,0,2*M_PI,1);

After drawing the first circle, you move your virtual pencil to the point where you
begin drawing the arc of the second circle, which is 240, 50.

 The rest of the functions are largely self-explanatory. You already saw the arc com-
mands in some of the earlier examples, and the others work in similar ways. For more
information about the more complex functions, look at the CGContext class
reference.

 We’ll move on from these simple drawing commands to the question of what you
do once you have a path. You have several options, beginning with the simple possibil-
ity of closing it and drawing it.

13.3.1 Finishing a path

As we’ve already noted, the path functions define the points and lines that make up a
drawing. When you have that in hand, you have to do something with it. There are
three main choices: stroke the path, fill the path, or turn it into a clipping path. These
functions are all listed in table 13.3.

 You’ll usually either stroke (outline) a path or fill it when you’ve finished. You used
a fill in each of the previous examples, but a stroke could be substituted; the differ-
ence is that the circles wouldn’t be filled in.

 A clipping path is a bit more complex, in that you don’t draw something on the
screen. Instead, you define an area, which corresponds to the area inside the path that
you’d have filled in, and you only show later drawings that appear inside that clipping
path. We’ll talk about clipping paths more, and show an example, when we get to graph-
ical states. For now, note that you create them from paths. Creating reusable paths

Table 13.3 Functions for finishing a path

Function Arguments Summary

CGContextClosePath context Draws a line from the end point of your path to the
start point, and then closes it. This is an optional final
command that’s usually used when you’re stroking a
path.

CGContextFillPath context Closes your path automatically, and paints it by filling
it in. CGContextEOFillPath is an alternative that
does the filling in a slightly different way.

CGContextStrokePath context Paints your path by stroking it.

CGContextClip context Turns the current path into a clipping path.

http://www.it-ebooks.info/

265Drawing paths

www.it-ebooks.info
So far, you’ve created paths by drawing them directly to a context, be it a UIView or a
bitmap. But it’s also possible to create reusable paths that you can quickly and easily
apply later. This has many of the same advantages as creating a bitmap: you get reus-
ability and multiplicity. Reusable paths are particularly useful in animations and pro-
grams where you use the same graphic on multiple pages.

 To create reusable paths, you use the CGPath commands rather than the CGCon-
text commands. There are equivalents to many of the simple CGContext functions, as
shown in table 13.4.

When you’re working with reusable paths, you first use the CGPathCreateMutable
function to create a CGPathRef, and then you use CGPath commands to add lines or
arcs to that CGPathRef. The reusable path can include multiple, discrete subpaths that
don’t have to connect to each other. You can end one subpath and start another with
the CGPathCloseSubpath function.

 Note that no painting functions are associated with the reusable paths. That’s
because they’re storage devices. To use one, you add it to a normal path with the
CGContextAddPath function, which draws your stored path to your graphical context,
where it abides by the normal rules.

 The following code uses a mutable path to replace the CGContext commands that
you previously used to draw an abstract face. A more realistic example would probably
hold onto the path for use elsewhere; you release it here as a reminder of how Core
Foundation memory management works:

- (void)drawRect:(CGRect)rect {
 CGMutablePathRef myPath = CGPathCreateMutable();
 CGPathAddArc(myPath,NULL,110,50,30,0,2*M_PI,1);
 CGPathMoveToPoint(myPath,NULL, 240, 50);
 CGPathAddArc(myPath,NULL,210,50,30,0,2*M_PI,1);
 CGPathAddArc(myPath,NULL,160,110,15,0,2*M_PI,1);
 CGPathAddArc(myPath,NULL,160,210,25,0,2*M_PI,1);

 CGContextRef ctx = UIGraphicsGetCurrentContext();
 CGContextBeginPath(ctx);
 CGContextAddPath(ctx,myPath);

Table 13.4 CGPath commands and their CGContext equivalents

CGPath function CGContext function

CGPathCreateMutable CGContextBeginPath

CGPathAddArc CGContextAddArc

CGPathAddEllipseInRect CGContextAddEllipseInRect

CGPathAddLineToPoint CGContextAddLineToPoint

CGPathAddRect CGContextAddRect

CGPathMoveToPoint CGContextMoveToPoint

CGPathCloseSubpath CGContextClosePath

http://www.it-ebooks.info/

266 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 CGContextStrokePath(ctx);
 CFRelease(myPath);
}

Of note here is the NULL that’s constantly being sent as a second argument to the
CGPath commands. This argument is intended to be a CGAffineTransform variable. It
allows you to apply a transformation to the element being drawn, which is something
we’ll discuss shortly.

 Now that we’ve looked at two different ways to create complex paths, we’ll take a
step back and look at how to draw much simpler objects in a simpler way.

13.3.2 Drawing rectangles

Drawing paths takes some work, but if you want to draw a rectangle, Quartz makes it
easy. All you have to do is use one of a few functions listed in table 13.5. These func-
tions take care of the path creation, drawing, and painting for you in a single step.

The CGContextClearRect function can be particularly useful for erasing a window
when you’re ready to draw something new to it. Now that we’ve told you how to draw
objects in the simplest way possible, we’re ready to move on and discuss how to draw
objects in more complex ways—by modifying state.

13.4 Setting the graphical state
The graphical state is how Quartz draws. It includes a variety of information such as
what colors are used for fills or strokes, which clipping paths constrain the current
drawing path, what transformations are applied to the drawing, and a number of
other less-important variables.

 State is maintained in a stack. You can save a state at any time; it doesn’t change
how things are being drawn, but it does push that current state onto the top of a stack
for later retrieval. Later, you can restore a state, which pops the top state off the stack,
putting things back to how they were before the last save. We’ve mentioned these
functions before, but we’ve also listed them here in table 13.6.

Table 13.5 Specific functions allow you to draw rectangles

Function Arguments Summary

CGContextClearRect context, CGRect Erases a rectangle.

CGContextFillRect context, CGRect Draws a filled rectangle.
The more complex variant
CGContextFillRects
allows you to fill a whole
array of rectangles.

CGContextStrokeRect context, CGRect Draws a stroked rectangle.

CGContextStrokeRectWithWidth context, CGRect, width Draws a stroked rectangle,
with the stroke being the
designated width.

http://www.it-ebooks.info/

267Setting the graphical state

www.it-ebooks.info
As we’ve already noted, you can store a lot of things in graphical state. We’ll cover
many of them here, starting with colors.

13.4.1 Setting colors

In Quartz, you select colors by setting the fill color, the stroke color, or both in the cur-
rent graphic state. After you’ve done this, any fill or stroke commands following the
color commands appear in the appropriate colors. Note that color is irrelevant while
you’re drawing the individual elements of a path—the color commands apply only to
the painting of the complete path at the end.

 You can select colors from a variety of color spaces, which are different ways to
choose colors. They include RGB (red-green-blue), RGBA (red-green-blue-alpha),
CMYK (cyan-magenta-yellow-black), and CGColor (the underlying Core Graphics color
model). On the iPhone and iPad, you’ll usually either use the RGBA color space or use
a command that lets you select a color using standard UIKit methods. Table 13.7 lists
the four most relevant of these functions.

The two RGB functions allow you to set a color using values from 0 to 1 for each of red,
green, blue, and alpha transparency (opacity). You saw an example of this earlier:

CGContextSetRGBFillColor(ctx, 1, 0, 0, 1);

The last two functions in table 13.7 allow you to set the color using any CGColor, and
you’ll understand how useful that is when you realize that you can read a CGColor
property from any UIColor you create:

CGContextSetFillColorWithColor(ctx, [[UIColor redColor] CGColor]);

Table 13.6 State-related functions that help define how you draw

Function Arguments Summary

CGContextSaveGState context Pushes the state onto a stack

CGContextRestoreGState context Pops the state off a stack

Table 13.7 The most important of numerous coloring functions

Function Arguments Summary

CGContextSetRGBFillColor context, red, green,
blue, alpha

Sets the fill to the RGBA
value

CGContextSetRGBStrokeColor context, red, green,
blue, alpha

Sets the stroke to the
RGBA value

CGContextSetFillColorWithColor context, CGColor Sets the fill to the
CGColor

CGContextSetStrokeColorWithColor context, CGColor Sets the stroke to the
CGColor

http://www.it-ebooks.info/

268 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
Given that you’re already familiar and comfortable with the UIColors, we expect that
this latter function will be a popular one.

 Having now covered the main ways to apply colors to your graphical state, we’re
ready to move on to the next topic: how to change how you draw through graphical
state transformations.

13.4.2 Making transformations

Transformations modify how you draw to your graphic context. They do this by chang-
ing the grid on which you’re drawing by moving its origin, rotating, or resizing.

 Why would you want to do these transformations?

 They can be useful for drawing photographs (or other images), because they
allow you to scale or rotate the picture.

 They can make it a lot easier to do certain types of mathematical drawing. For
example, it’s probably easier to draw a symmetric mathematical construct if you
have your origin in the center of the screen rather than in the upper-left corner.

 They can allow you to flip your screen if you end up in a context (or using a
function) with an inverse coordinate system.

CTM TRANSFORMATIONS

The simplest way to apply a transformation is to use one of the functions that modify
the current transformation matrix (CTM), which is a matrix that’s applied to all draw-
ing done in your current graphical state. These functions are described in table 13.8.

There are two gotchas that you should watch for.
 First, note that the ordering of transformations is somewhat pickier than the

ordering of color commands. You need to start your transformation before you add the
relevant lines to your path, and you need to maintain it until after you paint that path.

 Second, although these transformations can be applied in any sequence, order
matters. Following are two transformation commands that can be applied together:

CGContextTranslateCTM(ctx, 100, 100);
CGContextRotateCTM(ctx, .25*M_PI);

These functions move a drawing 100 to the right and 100 down and rotate it by
45 degrees. Figure 13.2 shows the untransformed picture (which you’ve seen before),
the results if these commands are applied with the translation before the rotation, and
the results if they’re applied in the opposite order.

Table 13.8 CTM transformation functions that allow you to change how you draw

Function Arguments Summary

CGContextRotateCTM context, radian rotation Rotates the grid

CGContextScaleCTM context, x-scale, y-scale Scales the grid

CGContextTranslateCTM context, x-change, y-change Moves the origin

http://www.it-ebooks.info/

269Setting the graphical state

www.it-ebooks.info
Clearly, you need to be careful and think about ordering when you’re applying CTM
transformations.

 But CTM transformations aren’t the only way to change your drawing space.

AFFINE TRANSFORMATIONS

Just as you can create a reusable path and then apply that to the context with the
CGContextAddPath function, you can also create a reusable transformation matrix
(using the affine transformation functions) and then apply that to the context with the
CGContextConcatCTM function. This is managed by a set of six core functions, listed in
table 13.9. Half of them create a new matrix, applying a transformation at the same
time, and the other half apply a transformation to an existing matrix. The last function
is the one that applies an affine transformation to your current graphical state.

Table 13.9 Affine transformations for creating reusable transformations

Function Arguments Summary

CGAffineTransformMake-
Rotation

radian rotation Makes an array with the
rotation

CGAffineTransformMakeScale x-scale, y-scale Makes an array with the scale

CGAffineTransformMake-
Translation

x-change, y-change Makes an array with the
translation

Figure 13.2 As these variant transformations show, order matters. The left picture is untransformed,
the middle one is translated and then rotated, and the right one is rotated and then translated.

http://www.it-ebooks.info/

270 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
The following code applies a rotation followed by a translation using a reusable affine
matrix:

CGAffineTransform myAffine = CGAffineTransformMakeRotation(.25*M_PI);
CGAffineTransformTranslate(myAffine, 100, 100);
CGContextConcatCTM(ctx, myAffine);

In addition to creating reusable affine transformations, you can also modify the trans-
forms at a much lower level. Any affine transformation is constructed from a 3 x 3
matrix that’s then multiplied across the individual vectors of your path using matrix
multiplication. If you have specific needs, you can use the CGAffineTransformMake
function to create a matrix by hand. Using it looks like this:

CGAffineTransform flip = CGAffineTransformMake(1,0,0,-1,0,0);

You can find information about how the matrix works and about some other functions
in the CGAffine reference.

 The next sort of state you may want to change is one that makes fairly large-scale
changes to your drawings: the clipping path.

13.4.3 Setting clipping paths

We already spoke about clipping paths in section 13.3. You create a path as usual, but
then you clip it, rather than filling it or stroking it. Anything you paint on the screen
afterward (within that graphical state) appears only if it’s inside the clipping path.

 For example, the following code causes later painting to appear only inside a large
circle centered on the screen:

CGContextBeginPath(ctx);
CGContextAddArc(ctx,160,240,160,0,2*M_PI,1);
CGContextClip(ctx);

Figure 13.3 shows what a full-screen image looks like before clipping and after.
 As with most of these Quartz functions, you have some opportunities for subtleties

when using clipping paths. The CGContext reference offers a few additional functions
for creating and modifying clipping paths.

 So far, we’ve discussed all the big-picture options for modifying your graphical
state. You can do many smaller things, too.

CGAffineTransformRotate array, radian rotation Rotates the array

CGAffineTransformScale array, x-scale, y-scale Scales the array

CGAffineTransformTranslate array, x-change,
y-change

Translates the array

CGContextConcatCTM context, array Applies the transformation

Table 13.9 Affine transformations for creating reusable transformations (continued)

Function Arguments Summary

http://www.it-ebooks.info/

271Setting the graphical state

www.it-ebooks.info
13.4.4 Other settings

A wide variety of additional settings can be used as part of the graphical state.
Table 13.10 lists many of the most interesting ones.

Table 13.10 A selection of other ways to change state

Function Arguments Summary

CGContextSetAlpha context, alpha Sets alpha transparency

CGContextSetBlendMode context,
CGBlendMode

Sets blending to one of almost
30 values, which specify how
objects laid on top of each other
interact with each other

CGContextSetFlatness context, flatness Defines the accuracy of curves

CGContextSetLineCap context, CGLineCap Defines how to draw the end of a
line

CGContextSetLineDash context, phase,
lengths array, count

Describes how to draw dashes
along a stroke

CGContextSetLineJoin context, CGLineJoin Defines how lines come together

CGContextSetLineWidth context, width Describes the width of a stroke

CGContextSetShadow context, CGSize, blur Sets a shadow behind all drawings

CGContextSetShadowWithColor context, CGSize,
blur, color

Sets a colored shadow behind all
drawings

Figure 13.3 An example of
a clipping path in use. The
unclipped image is on the
left, and the clipped image is
on the right.

http://www.it-ebooks.info/

272 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
You can also find a number of more complex state changes in the CGContext class ref-
erence, but we’ve described the ones you’re most likely to use in the course of an aver-
age program.

 We’re drawing to a close on the topic of graphical state, so let’s step back for a
moment and look at how graphical state works.

13.4.5 Managing the state

When you use any of the various functions that modify the graphical state, you’re
changing how you paint inside your current graphical context. The functions change
the colors you’re using, they transform your underlying grid, they clip the area you’re
allowed to paint within, or they make various smaller changes.

 You can constantly reset these variables as your needs change, but this can get
annoying. That’s why you should use the stack of states. It allows you to make many
changes to state and then revert to a previous setup that you were happy with. We’ve
already shown the two functions that do this in table 13.6.

 Remember to save the state before you make a big change, such as adding a clip-
ping path or running a whole bunch of graphical state functions. Then, restore the
state when you’ve done that. If you want, you can even be clever and slowly build up a
set of states in your stack and move back through them appropriately.

 You should now understand the three most important elements of drawing with
Quartz: contexts, which specify where to draw; paths, which specify what to draw; and
graphical states, which specify how to draw. You can do numerous more advanced
things in Quartz, and although we won’t get to all of them, the next section covers the
most interesting ones.

13.5 Advanced drawing in Quartz
Quartz has a number of advanced capabilities that go beyond simple line drawings. In
this section, we’ll look at using gradients, images, and words.

13.5.1 Drawing gradients

Gradients are a core part of SDK design, because they’re a clearly evident aspect of the
standard user interface. Unfortunately, there’s no UIKit-level class for creating gradi-
ents; instead, you have to fall back on Quartz.

 You can create gradients in Quartz in two ways: using a CGShadingRef object or a
CGGradientRef object. As is often the case in Core Foundation functions, the differ-
ence is in complexity. CGGradientRef allows you to draw simple gradients, and
CGShadingRef requires you to define a CGFunctionRef object to precisely calculate
how the colors in the gradient are displayed. As you’ve probably guessed, we’ll talk
about CGGradientRef here and point you to the Apple class references for
CGShadingRef.

 Table 13.11 shows the important functions required to draw gradients with
CGGradientRef.

http://www.it-ebooks.info/

273Advanced drawing in Quartz

www.it-ebooks.info
Drawing a gradient is a four-step process:

1 Define the color space, which you usually do by calling CGColorSpaceCreate-
DeviceRGB for the iPhone and iPad.

2 Define the gradient by listing colors and where they appear in the gradient,
from 0 to 1. You can do this two ways. You can hand off an array of CGColors
(which may be useful if you want to generate them using UIColors), or you can
hand off a longer array that defines the colors using another method, such as
RGBA.

3 Draw the gradient as a linear gradient (going from point to point) or a radial
gradient (going from the center to the edge of a circle).

4 Free up the memory.

The following code shows the steps required to draw a three-color linear gradient that
spans an entire iPhone screen:

CGColorSpaceRef myColorSpace =
 CGColorSpaceCreateDeviceRGB();
CGFloat components[12] = {1,0,0,1,
 0,1,0,1,
 0,0,1,1};
CGFloat locations[3] = {0,.5,1};
CGGradientRef myGradient =
 CGGradientCreateWithColorComponents(myColorSpace,
 components, locations, (size_t)3);
CGContextDrawLinearGradient(ctx, myGradient, CGPointMake(0,0),

Table 13.11 CGColorSpace, CGGradient, and CGContext functions for drawing gradients

Function Arguments Summary

CGColorSpaceCreateWithName color space constant Creates a color space by
name

CGGradientCreateWithColors color space, color
array, location array

Creates a gradient using
pregenerated colors

CGGradientCreateWithColorComponents color space, color
components array,
location array,
color count

Creates a gradient with an
array of color parts

CGContextDrawLinearGradient context, gradient,
start CGPoint, end
CGPoint, options

Draws a linear gradient

CGContextDrawRadialGradient context, gradient,
start center, start
radius, end center,
end radius, options

Draws a radial gradient

CGColorSpaceRelease color space Frees up a color space
object

CGGradientRelease gradient Frees up a gradient object

http://www.it-ebooks.info/

274 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 CGPointMake(320,480), (CGGradientDrawingOptions)NULL);
CGColorSpaceRelease(myColorSpace);
CGGradientRelease(myGradient);

This code steps through the steps we just listed, defining the color space, creating the
parts of the gradient, drawing it, and cleaning up after it. As usual, you can find more
info about gradients in the CGGradient reference. For now, though, we’re ready to
move on to the next advanced category of Quartz work: images.

13.5.2 Drawing images

In chapter 11, you saw one way to work with images, using methods that largely hid
the specifics of graphical contexts from you as a programmer. Now that you’re fully
immersed in Quartz, you can choose to use the Core Graphics functions instead.

THE IMAGE FUNCTIONS

The two major Core Graphics functions for drawing are listed in table 13.12.

These functions both require a CGImageRef, but remember that you can use the
CGImage property of a UIImage to produce one. Alternatively, you can use the com-
mands described in the CGImage reference, which offer more precise functionality, to
create a new CGImage. Our suggestion is to go with what you know, which means using
the UIKit methods, unless they can’t do what you need.

 There’s one big gotcha to using the Quartz-related image-drawing functions: they
produce a flipped image because they use Quartz’s native coordinate system inter-
nally. We’ll show you how to fix that momentarily.

DRAWING ON A BITMAP

Often, you’ll want to turn an image into a bitmap and modify it
before displaying it on the screen, most frequently so that you
can make multiple uses of the image. We’ll offer a quick exam-
ple of crossing out a picture here.

 Part of what’s unique about this example is that you can do
all your drawing work without ever showing the image to the
user (unlike if you were drawing on a UIView), thus opening up
the possibility of many image-editing functions. When you do
decide to display your newly saved image, you’ll see results like
the image in figure 13.4.

Table 13.12 Two image functions in Quartz

Function Arguments Summary

CGContextDrawImage context, CGRect, image Draws an image scaled to fit the
rectangle

CGContextDrawTiledImage context, CGRect, image Draws an image scaled to fit the
rectangle but filling the current clip
region

Figure 13.4 You can
change a UIImage
without showing it to
the user.

http://www.it-ebooks.info/

275Advanced drawing in Quartz

www.it-ebooks.info
 The code needed to accomplish this simple crossing out is shown in the next listing.

UIImage *origPic = [UIImage imageNamed:@"pier.jpg"];
UIGraphicsBeginImageContext(origPic.size);
CGContextRef thisctx = UIGraphicsGetCurrentContext();

CGContextRotateCTM(ctx, M_PI);
CGContextTranslateCTM(ctx, -origPic.size.width, -origPic.size.height);
CGContextDrawImage(ctx,CGRectMake(0,0,origPic.size.width,
 origPic.size.height),[origPic CGImage]);

CGContextSetLineWidth(ctx, 20);
CGContextBeginPath(ctx);
CGContextMoveToPoint(ctx, 0, 0);
CGContextAddLineToPoint(ctx, origPic.size.width,origPic.size.height);
CGContextMoveToPoint(ctx, 0, origPic.size.height);
CGContextAddLineToPoint(ctx, origPic.size.width, 0);
CGContextSetStrokeColorWithColor(ctx, [[UIColor redColor] CGColor]);
CGContextStrokePath(ctx);
UIImage *newPic =
 UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

The process of modifying an image involves relatively few steps. You start by creating
your bitmap context. Next, you apply any transformations that you want to use for the
picture B. If you want to rotate or scale the original picture, here’s where you do it.
Likewise, you can use a combination of translations and the context size to easily crop
an image. In this example, you flip the picture over by applying a rotation and a trans-
lation, to account for the fact that CGContextDrawImage produces an inverted picture.
(You’ll see an alternative way to do this in the next example.)

 When your transformations are finished, you can draw your image and then draw
whatever you want on top of it C (or modify it in some other way). Finally, you save
the new picture.

 We’ll return to the idea of drawing on pictures in section 13.6 (though we’ll do it
in a much more interactive way), but in the meantime we’re ready to draw words.

13.5.3 Drawing words

Unlike Canvas, Quartz supports drawing words on top of your pictures. The functions
required are intricate, though, and we generally suggest using UILabel or other UIKit
objects and placing them on top of your Quartz objects. But if you need words in
Quartz (either because you’re interweaving the words with other Quartz content or
because you’re adding words to a picture), you’ll need to use the CGContext text
options.

 The majority of the text-related functions modify the graphical state, as described
in table 13.13. The last two functions in the table draw your text.
You can find several other text-related functions in the CGContext reference. Most
notably, if you need more control over your fonts (and particularly if you want to link

Listing 13.1 Using bitmaps to edit images

Transforms
image

B

Draws on
image

C

http://www.it-ebooks.info/

276 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
up to UIFonts), you should use CGContextSetFont and CGContextSetFontSize
instead of the CGContextSelectFont function that’s noted here—but keep in mind
that you can’t use CGContextShowTextAtPoint when you set your font in this alterna-
tive way.

 Here’s a simple example of printing text in Quartz:

CGContextSelectFont (ctx, "Helvetica",20,kCGEncodingMacRoman);
CGContextSetTextDrawingMode(ctx, kCGTextFill);
CGAffineTransform flip = CGAffineTransformMake(1,0,0,-1,0,0);
CGContextSetTextMatrix(ctx, flip);
CGContextShowTextAtPoint(ctx, 20, 85, "A Quartz Example", 16);

The only thing of note is the creation of the affine transformation matrix, flip.
We’ve already pointed out that the text-drawing functions don’t use the iOS coordi-
nate system at present. Instead, they’re stored in an inverted manner, so you need to
flip them over to use them correctly. (We hope that this changes in some future
release of iOS.)

 The affine transformation shown here describes the matrix using the CGAffine-
TransformMake function. It effectively does the same thing as the two-part transforma-
tion in listing 13.1. In our view, it’s a bit simpler but less clear.

 That’s only the basics of using text, but it should be enough to get you started
when you need to draw in Quartz.

13.5.4 What we didn’t cover

Quartz 2D is a fully featured drawing and painting language that we can only briefly
touch on in this chapter. Among the other topics you may want to research if you’re
going to do more advanced work with Quartz are patterns, transparency layers, layer

Table 13.13 A variety of functions for drawing text in Quartz

Function Arguments Summary

CGContextSelectFont context, font name,
size, text encoding

Sets a font for the graphical
state

CGContextSetTextDrawingMode context,
CGTextDrawingMode

Defines how to draw text in the
graphical state

CGContextSetTextMatrix context, affine
transform

Places a transformation matrix
in the graphical state for drawing
only text

CGContextSetSetPosition context, x, y Sets where to draw in the graphi-
cal state

CGContextShowText context, string,
length

Draws the text at the current
position

CGContextShowTextAtPoint context, x, y, string,
length

Draws the text at the specified
position

http://www.it-ebooks.info/

277Drawing on a picture: an example

www.it-ebooks.info
drawing, and PDF creation. As we’ve mentioned previously, Apple’s “Quartz 2D Pro-
gramming Guide” is an excellent introduction to these topics.

 We’re not quite finished with Quartz. Before we finish this chapter, we’ll put
together an example that combines some of the Quartz lessons from this chapter with
some of the photographic work we covered in chapter 11.

13.6 Drawing on a picture: an example
To put together the lessons we’ve covered, you’ll create
a program that allows a user to load up a picture, draw
on it, and then save the results. Figure 13.5 shows the
intended result.

 As usual, you’ll begin by building your interface
visually, but you have only two simple things to do:

1 Create a UIButtonBar with a single action-type
button (which is one of the standard styles you
can select for a button).

2 Link the existing UIView to a new drawView class
(which should be a UIView subclass).

When you get into Xcode, the programming will look a
lot like the collage program in chapter 11, but with
some nuances related to your greater understanding of
Quartz.

 You’ll do the coding in two parts. The overall struc-
ture of the program will go in PhotoDrawView-
Controller.m, and the drawing specifics will go in
drawView.m.

13.6.1 The PhotoDraw view controller

The view controller manages an image selector as well as several toolbar buttons,
including the action button you created, and Save and Cancel buttons that appear
later. The code is shown in listing 13.2. We’ve omitted some of the view controller’s
overall structure and focused on the code that’s involved when the user pushes the
action button and activates choosePic:.

-(IBAction)choosePic:(id)sender {
 UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
 myImagePicker.delegate = self;
 myImagePicker.allowsEditing = NO;
 [self presentModalViewController:myImagePicker animated:YES];
}
- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingImage:(UIImage *)image

Listing 13.2 The important bits of a view controller for a PhotoDraw program

Figure 13.5 PhotoDraw can
place drawings on pictures.

http://www.it-ebooks.info/

278 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 editingInfo:(NSDictionary *)editingInfo {
 [self dismissModalViewControllerAnimated:YES];
 [picker release];
 [myTools setItems:[NSArray arrayWithObjects:
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemSave
 target:self action:@selector(savePic:)],
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCancel
 target:self action:@selector(clearDrawing:)],
 nil] animated:YES];
 [(drawView *)self.view drawPic:image];
}
- (void)imagePickerControllerDidCancel:
 (UIImagePickerController *)picker {
 [self dismissModalViewControllerAnimated:YES];
 [picker release];
}
- (void)savePic:(id)sender {
 UIGraphicsBeginImageContext(self.view.bounds.size);
 [myTools removeFromSuperview];
 [self.view.layer renderInContext:UIGraphicsGetCurrentContext()];
 UIImage *finishedPic = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 UIImageWriteToSavedPhotosAlbum(finishedPic,self,
 @selector(exitProg:didFinishSavingWithError:contextInfo:),nil);
}
- (void)exitProg:(UIImage *)image didFinishSavingWithError:(NSError *)error
 contextInfo:(void *)contextInfo {
 exit(0);
}
-(void)clearDrawing:(id)sender {
 [(drawView *)self.view cancelDrawing];
}

This is a fairly simple snippet of code because it shows the view controller acting as a
traffic cop, accepting input from controls and sending messages to other objects,
which is pretty much the definition of what a view controller should do.

 For once, you don’t have any setup in viewDidLoad:. Instead, the toolbar initiates
your program’s actions. At startup, the user has only one choice: to click the action
button and start the image picker. When the picker returns, you modify the UIBut-
tonBar to give options for Save and Cancel, and then you send the picture to
drawView to be dealt with B. Alternatively, you clear away the image picker if the user
cancels it C.

 The save-picture routine works the same way as the one you wrote in the collage
program. The only difference is that this one includes a callback, which ends the pro-
gram after the saving is done D. The clear-drawing method, meanwhile, makes a call
to the drawView object again.

 To learn what’s done with the initial picture, how drawing occurs, and what hap-
pens when the drawing is cleared, we need to look at this program’s other major class.

Finishes
image
pickerB

Resolves image
cancellation

C

Ends
programD

http://www.it-ebooks.info/

279Drawing on a picture: an example

www.it-ebooks.info
13.6.2 The photodraw view

As you saw in the previous section, the view controller hands off three responsibilities
to the view: displaying a picture, responding to touch events, and clearing the draw-
ing. We’ll step through these functions one at a time.

 Here’s what’s done when a user picks an image:

-(void)drawPic:(UIImage *)thisPic {
 myPic = thisPic;
 [myPic retain];
 [self setNeedsDisplay];
}

This routine is simple: it saves the picture to an instance variable and then alerts the
UIView that its CALayer must be drawn.

 We’ll save the CALayer’s drawRect: method for last, so we’ll look now at how the
drawView class interprets touch events. This is shown in the next listing.

- (void) touchesBegan:(NSSet *)
 touches withEvent:(UIEvent *)event {
 [myDrawing addObject:[[NSMutableArray alloc] initWithCapacity:4]];
 CGPoint curPoint = [[touches anyObject] locationInView:self];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.x]];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.y]];
}
- (void) touchesMoved:(NSSet *)touches
 withEvent:(UIEvent *)event {
 CGPoint curPoint = [[touches anyObject] locationInView:self];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.x]];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.y]];
 [self setNeedsDisplay];
}
- (void) touchesEnded:(NSSet *)touches
 withEvent:(UIEvent *)event {

 CGPoint curPoint = [[touches anyObject] locationInView:self];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.x]];
 [[myDrawing lastObject] addObject:[NSNumber
 numberWithFloat:curPoint.y]];
 [self setNeedsDisplay];
}

The overall concept here is simple. You maintain an NSMutableArray called
myDrawing as an instance variable. Within that, you create a number of NSMutable-
Array subarrays, each of which contains an individual path. You set up a new subarray
when a touch starts and then add the current point when the touch moves or ends.

Listing 13.3 Recording touch events

http://www.it-ebooks.info/

280 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
The result is an array that contains a complete listing of all touches. But again, you’ll
have to wait to see how that’s drawn.

 It’s notable that you tell drawView to draw (via the setNeedsDisplay method) both
when a touch moves and when it ends. That’s because whenever the touch moves, you
want to provide instant gratification by drawing what the user has sketched out so far.
When the touch ends, you do the same thing.

 The following method clears all current drawings. Its functionality is obvious now
that you know that the list of drawings is held as an array:

-(void)cancelDrawing {

 [myDrawing removeAllObjects];
 [self setNeedsDisplay];
}

At this point, the drawView object is maintaining two different instance variables:
myPic contains the current picture, and myDrawing contains an array of paths. Putting
them together into a coherent whole requires using some of the Quartz functions we
discussed in the last two chapters. The results are shown in the next listing.

- (void)drawRect:(CGRect)rect {
 float newHeight;
 float newWidth;
 if (!myDrawing) {
 myDrawing = [[NSMutableArray alloc] initWithCapacity:0];
 }
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 if (myPic != NULL) {
 float ratio = myPic.size.height/460;
 if (myPic.size.width/320 > ratio) {
 ratio = myPic.size.width/320;
 }
 newHeight = myPic.size.height/ratio;
 newWidth = myPic.size.width/ratio;
 [myPic drawInRect:CGRectMake(0,0,newWidth,newHeight)];
 }
 if ([myDrawing count] > 0) {
 CGContextSetLineWidth(ctx, 5);
 for (int i = 0 ; i < [myDrawing count] ; i++) {
 NSArray *thisArray = [myDrawing objectAtIndex:i];
 if ([thisArray count] > 2) {
 float thisX = [[thisArray objectAtIndex:0] floatValue];
 float thisY = [[thisArray objectAtIndex:1] floatValue];
 CGContextBeginPath(ctx);
 CGContextMoveToPoint(ctx, thisX, thisY);
 for (int j = 2; j < [thisArray count] ; j+=2) {
 thisX = [[thisArray objectAtIndex:j] floatValue];
 thisY = [[thisArray objectAtIndex:j+1] floatValue];
 CGContextAddLineToPoint(ctx, thisX,thisY);
 }

Listing 13.4 Drawing from user-created variables

Draws image
to context

B

Starts drawing pathC

DAdds line

http://www.it-ebooks.info/

281An introduction to Core Animation

www.it-ebooks.info
 CGContextStrokePath(ctx);
 }
 }
 }
}

The bulk of this method is spent iterating through the information you saved in other
methods. Four Quartz functions do the drawing work. First, you draw the selected
image. You go back to using the UIKit methods from chapter 11 B so the image
doesn’t end up upside-down. Then, you begin working through the myDrawing array.
Each subarray results in your program beginning a new path C and moving to the
start. As you move through the array, you add lines D. Finally, when a subarray is com-
plete, you stroke the path E.

 The result allows for drawing simple lines on a picture, which can then be saved, as
you saw back in the view controller.

 But is it possible to do more with this example? As usual, the answer is, yes.

13.6.3 Expanding on the example

If you want to expand this example into a more complete application, you can take
several routes. The first and most obvious expansion is to select a color before drawing
a line. The hard part is creating a color picker, although you can make a standalone
class that you can then reuse elsewhere. With that in hand, it’s simple to add a color
variable to your line arrays, by always saving it as the 0 element of a subarray.

 The program could also benefit from a more sophisticated line-drawing algorithm
that tosses out nearby points and smoothes the lines into curves, removing some of
the sharp edges that show up in the current program.

 In any case, that ends our look at Quartz 2D. There’s a lot more you can learn, but
you should have the foundation you need to move forward.

 Two other ways you can draw using the SDK are Core Animation and OpenGL. We
don’t have the space in this introductory book to give full attention to either, but we’ll
introduce them and show you where to go for more information, beginning with Core
Animation.

13.7 An introduction to Core Animation
Core Animation is a fundamental technology on the iPhone and iPad. It manages all
the nifty scrolls, pivots, zoom-ins, zoom-outs, and other bits of animation that make up
the user interface. As you’ve already seen, many UIKit classes give you an option to use
animation or not, usually by having an animated: argument as part of a method.

 Core Animation is also tightly integrated with Quartz. As you’ve seen, each UIView
is linked to a graphical layer called the CALayer, which is the Core Animation layer.
Though you’ve only used it to depict simple graphics and images so far, you can also
use it to manage more complex changes.

 But you don’t have to use Quartz at all to create animations. There’s a CALayer
behind every UIView; and because almost everything is built on a UIView, you can

Strokes
pathE

http://www.it-ebooks.info/

282 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
animate your existing UIViews, possibly including pictures that you’ve loaded into
UIImageViews. For example, figure 13.6 shows how you can use Core Animation to
show an approaching plane by moving its UIImageView and turning it opaque as it
approaches.

 This is the example we’ll show later in this section, using two different means to
create the animation.

13.7.1 The fundamentals of Core Animation

When we speak of animation using Core Animation, we’re talking about changing the
properties of the CALayer and then smoothly animating those property changes. The
CALayer class reference lists which properties can be animated; they include anchor-
Point, backgroundColor, opacity, position, transform, and several others. This
means you can use Core Animation to animate the position of an object, its color, its
transparency, and also its CGAffine transformations.

 Before we get further into Core Animation, we want to talk about its fundamen-
tals—those terms and ideas that you’ll meet throughout this section:

 Layer—This is where animation occurs. You always have one CALayer hooked up
to every UIView, accessible via the layer property. You can call up additional
layers with a [CALayer layer] class message and then add them to your existing
CALayer with the addSublayer: method. Adding layers this way results in
inverted coordinate systems. Each layer can be individually animated, allowing
for complex interactions between numerous animated properties. You may find
it as easy to create a more complex animation by creating multiple UIKit objects
(most likely multiple UIImageViews) and animating each one.

Figure 13.6 A jet moves across
the screen on an iPhone, thanks
to Core Animation.

http://www.it-ebooks.info/

283An introduction to Core Animation

www.it-ebooks.info
 Implicit animation—This is the simplest type of animation. You tell the UIView
that it should animate and then you change the properties.

 Explicit animation—This is an animation created with CABasicAnimation that
allows you to more explicitly define how the property change animates.

 Key-frame animation—This is an even more explicit type of animation, where you
define not only the start and end of the animation but also some of the frames
in between.

You can also create much more complex animations, such as redefining how implicit
animations work, collecting animations into transactions, and building complex ani-
mation layer hierarchies. For more information, look at the “Core Animation Pro-
gramming Guide” and the “Core Animation Cookbook,” both available from Apple.

13.7.2 Getting started with Core Animation

To use Core Animation, make sure you add Quartz Core, the framework required for
animation, to your project. You should also include QuartzCore/QuartzCore.h, the
main header file for Core Animation.

 With that done, you’re ready to try the two simplest types of animation: a simple
implicit animation and an explicit animation.

13.7.3 Drawing a simple implicit animation

Implicit animations are the simplest type of animation, because they just require start-
ing an animation block and then changing CALayer-level properties. The following
code shows a simple example involving a UIImageView called plane that contains a
clipart picture of a plane. The image starts at the upper-left corner of the screen with
25 percent opacity and moves downward while growing more opaque:

[UIView beginAnimations:nil context:NULL];
CGAffineTransform moveTransform
 = CGAffineTransformMakeTranslation(200, 200);
[plane.layer setAffineTransform:moveTransform];
plane.layer.opacity = 1;
[UIView commitAnimations];

Between them, beginAnimations:context: and commitAnimations define an anima-
tion block.

 Within the block, you set two properties to animate. setAffineTransform: is a spe-
cial CALayer method that allows the setting of its transform property using an affine
transformation matrix, which you’re already familiar with; opacity is a more obvious
property.

 Alternatively, you can pass the implicit animation blocks in class method. The fol-
lowing table contains common animations API in iOS 4:

http://www.it-ebooks.info/

284 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
Let’s take a look at the previous code example, the plane image starts at the upper-left
corner of the screen with 25 percent opacity and moves downward while growing
more opaque. Use the animation blocks API, use the default animation duration
value, 0.2 second.

[UIView animateWithDuration:0.2 animations:^{
 CGAffineTransform moveTransform = CGAffineTransformMakeTranslation(200,200);
 [plane.layer setAffineTransform:moveTransform];
 plane.layer.opacity = 1;
}];

With a start of “^”, the complier understands the following anonymous blocks of code
applying to animations.

 As soon as you close out the block, the animation begins. The plane moves and
grows more distinct. That’s all there is to it!

 But sometimes an implicit animation doesn’t give you as much control as you want.
That’s where explicit animations come in.

13.7.4 Drawing a simple explicit animation

When you’re working with explicit animations, instead of defining a bunch of changes
to a CALayer and executing them all, you define animations one by one using the
CABasicAnimation class. Each of these animations can have its own value for
duration, repeatCount, and numerous other properties. You then apply each anima-
tion to a layer separately, using the addAnimation:forKey: method.

Table 13.2 Common animations API with blocks arguments in iOS 4

Class method Details

+ (void)animateWithDuration:
(NSTimeInterval)duration animations:
(void (^)(void))animations

This method will apply the animation blocks
to views without delay and the duration is in
seconds.

+ (void)animateWithDuration:
(NSTimeInterval)duration animations:
(void (^)(void))animations completion:
(void (^)(BOOL finished))completion

This method will apply the animation blocks
to views and execute the completion han-
dler after the animation.

+ (void)animateWithDuration:
(NSTimeInterval)duration delay:
(NSTimeInterval)delay options:
(UIViewAnimationOptions)options
animations:(void (^)(void))animations completion:
(void (^)(BOOL finished))completion

This method will apply the animation
blocks, options and completion handler to
the views. UIViewAnimationOptions options
can be defined.

+ (void)transitionWithView:
(UIView *)view duration:
(NSTimeInterval)duration options:
(UIViewAnimationOptions)options animations:
(void (^)(void))animations completion:
(void (^)(BOOL finished))completion

This method will apply the animation transi-
tion from the first view to the second view.
For example, the view controller can use
this method to transit from the main view
to the flip view.

http://www.it-ebooks.info/

285An introduction to OpenGL

www.it-ebooks.info
 The following code executes an animation similar to the previous one but with
more control:

CABasicAnimation *opAnim = [CABasicAnimation
 animationWithKeyPath:@"opacity"];
opAnim.duration = 3.0;
opAnim.fromValue = [NSNumber numberWithFloat:.25];
opAnim.toValue= [NSNumber numberWithFloat:1.0];
opAnim.cumulative = YES;
opAnim.repeatCount = 2;
[plane.layer addAnimation:opAnim forKey:@"animateOpacity"];
CGAffineTransform moveTransform
 = CGAffineTransformMakeTranslation(200, 200);
CABasicAnimation *moveAnim = [CABasicAnimation
 animationWithKeyPath:@"transform"];
moveAnim.duration = 6.0;
moveAnim.toValue= [NSValue valueWithCATransform3D:
 CATransform3DMakeAffineTransform(moveTransform)];
[plane.layer addAnimation:moveAnim forKey:@"animateTransform"];

This example is definitely longer than the implicit animation example, but you get to
define the two animations with separate durations, which is the first step to creating a
more beautiful and better-controlled animation. Note that you also use yet another
way to change an affine transformation matrix into a Transform3D matrix of the type
used by Core Animation: the CATransform3DMakeAffineTransform function.

 The code includes a bit of a kludge: to keep the plane opaque through the last
3 seconds, it keeps counting opacity cumulatively, making it climb from 1.0 to 1.75 the
second time through. A better solution would create three key frames for opacity: .25
at 0 seconds, 1.0 at 3 seconds, and 1.0 at 6 seconds. That’s why you may want to use a
key-frame animation of the sort we alluded to at the start of this section, rather than a
basic animation.

 These simple methods for using Core Animation can take you far. Look through
the CALayer class reference for everything you’re allowed to animate. For more
details, read the two Apple guides we pointed out.

 Before we leave graphics behind, we want to touch on one other toolkit: OpenGL.

13.8 An introduction to OpenGL
OpenGL is SGI’s standardized 2D and 3D graphical drawing language. The iPhone and
iPad more specifically use OpenGL ES, or OpenGL for Embedded Systems, which fea-
tures a reduced API for use on devices like mobile phones. For full information about
using OpenGL, you should pick up a book on the topic or read Apple’s “OpenGL ES
Framework Reference,” which links to the most important documents available from
Apple. We’ll cover some of the general information you need to access OpenGL
through iOS.

 iOS manages OpenGL through EAGL, a class that interfaces between the device’s
views and OpenGL’s drawing functions. It allows for the writing of OpenGL functions
onto an EAGLView, which is the CAEAGL layer of a UIView, showing the same layer-based
paradigm you met when using Core Animation.

http://www.it-ebooks.info/

286 CHAPTER 13 Graphics: Quartz, Core Animation, and OpenGL

www.it-ebooks.info
 To simplify your programming of OpenGL projects, Xcode supplies a standard
template to use, which sets up all the OpenGL defaults for you. It’s the OpenGL ES
Application template, the only Xcode template that we have yet to examine. This tem-
plate includes all the basic setup of OpenGL, which is extensive. That includes the
setup of a timer, the creation of frame buffers, and the code needed to draw some-
thing. To do basic OpenGL programming, all you have to do is write your code into
the drawView method of the EAGLView class.

 Rather than giving a completely insufficient overview of this enormous library,
we’ll instead point you toward a few bits of sample code. The OpenGL template comes
complete with a rotating square as an example. There are also three OpenGL samples
currently available from Apple: GLGravity shows simple OpenGL rendering related to
accelerometer output, GLSprite demonstrates texturing, and GLPaint explores
another way to allow finger painting.

 These examples should be sufficient to get you started if you already have a strong
basis in OpenGL and need to see how it’s integrated into the iPhone and iPad.

13.9 Summary
Graphics are one of the most important elements for making your projects look great.
Not only does iOS support high-quality graphics, but it also gives you a wide variety of
options, depending on the needs of your program.

 Quartz 2D will be your main workhorse for most graphical programs. If you’re
already familiar with the Canvas library for the web, you’ll see that Quartz is similar.
You can draw paths and use many graphical state variables to modify exactly how that
path is painted.

 Core Animation is an expansion to Quartz that was created for the iPhone and
iPad. You’ve already seen it integrated into numerous native programs, and now you
can use it yourself. Core Animation is built around the idea of automated animations:
you tell it the endpoints, and Core Animation fills in the rest for you. Again, this is
much as you may have seen on the web, with the WebKit’s various styles of implicit and
explicit animation.

 OpenGL is a whole new graphics library that has been imported into iOS, much as
SQLite is a third-party library that Apple made available to developers. The difference
is that Apple has made OpenGL easier to use, thanks to the creation of the EAGL
framework. Although this chapter suggests how to get started with OpenGL, the topic
is large enough that you’ll need to pick up a book to fully explore the topic.

 With graphics covered, we need to look at another major topic in the SDK toolkit:
the internet. How do you access the Net, and how do you use various protocols that let
you access the web’s ever-growing social network?

http://www.it-ebooks.info/

www.it-ebooks.info
The web: web views
and internet protocols
Internet connectivity is an essential feature of modern life, and the iPhone and iPad
are so useful because iOS allows for easy internet access. In this chapter, we’ll cover
the major ways to access the internet from the SDK. You can use a variety of
approaches, and we’ll outline their hierarchy in the first section. Later in the chap-
ter, we’ll look at low-level networking, working with URLs, using the UIWebView, pars-
ing XML, using POST, and accessing the social web using various protocols.

14.1 The hierarchy of the internet
Internet programming involves a hierarchy of protocols. At the lowest level are the
sockets you use to connect one computer to another. Above them are a variety of
more sophisticated technologies, such as FTP, Bonjour, and HTTP. HTTP is a critical
protocol, represented on the iPhone and iPad by both low-level access and the

This chapter covers
 Using web views

 Parsing XML

 Accessing other protocols
287

http://www.it-ebooks.info/

288 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
high-level UIWebView. Recently, an increasing number of protocols have been built on
top of HTTP, forming what we call the social web.

 This hierarchy of internet protocols is shown in figure 14.1, along with iOS classes
of note.

 In this chapter, we’ll cover all these protocols, starting with the lowest level. But
our real focus will be on the higher-level internet and social web protocols, because
they’re the protocols that are best supported by iOS, and they’re the ones you’re most
likely to want to interact with.

14.2 Low-level networking
We’ve opted not to pay much attention to BSD sockets and the lower-level networking
classes, because we expect they’ll be of little interest to most application program-
mers. If you need to work with BSD sockets, you should look at Apple’s “Introduction
to CFNetwork Programming Guide.”

 If you need to work with the lower-level protocols, CFNetwork provides a variety of
classes that you’ll find useful. You can find more information about them in the “Net-
working & Internet” topic in the Apple docs. In particular, the “CFNetwork Frame-
work Reference” will give you an overview of the various classes. Among the classes are
CFFTPStream, which lets you communicate with FTP servers; and CFNetServices,
which gives you access to Bonjour—Apple’s service discovery protocol. There are also
two low-level HTTP-related classes, CFHTTPMessage and CFHTTPStream. We’ll leave
these classes alone, because our HTML work will be related to the higher-level NSURL,
NSURLRequest, UIWebView, NSMutableURLRequest, and NSURLConnection classes.

Low-level
networking

BSD
sockets CFNetworking

Web
views

Abstracted HTML display UIWebView

Web
protocols

Social networking,
Ajax, JSON, RSS,

SOAP, XML

NSXMLParser
Third-Party libraries

Raw HTML access
Raw Host Connections

CFHost
CFHTTPMessage

NSData
NSURLRequest

Unabstracted
protocols

Figure 14.1 Internet protocols are arranged in a hierarchy.

http://www.it-ebooks.info/

289Low-level networking

www.it-ebooks.info
 Rather than skipping over these low-level and unabstracted protocols entirely, we’ll
look at one of them: CFHost. It’s the easiest to work with and perhaps the most imme-
diately useful.

CFHost allows your program to request information about an internet host, such as
its name, its address, and whether it’s reachable. The following listing shows a sample
of how to determine whether a hostname exists.

-(IBAction)reportStatus:(id)sender {
 CFStreamError errorTest;
 if (myInput.text) {
 CFHostRef myHost = CFHostCreateWithName(kCFAllocatorDefault,
 (CFStringRef)myInput.text);
 if (myHost) {
 if (CFHostStartInfoResolution(myHost, kCFHostAddresses,
 &errorTest)) {
 myOutput.text = [myInput.text stringByAppendingString:
 @" COULD be resolved."];
 } else {
 myOutput.text = [myInput.text stringByAppendingFormat:
 @" could NOT be resolved (Error: %i).",
 errorTest.error];
 }
 }
 CFRelease(myHost);
 }
}

The sample method, reportStatus:, is activated by a button push. It reads a host-
name from a UITextField called myInput and reports out to a UITextView called
myOutput.

 All uses of the CFHost commands follow the same pattern. First you create a
CFHostRef object with CFHostCreateCopy, CFHostCreateWithAddress, or CFHost-
CreateWithName. Then, you use CFHostStartInfoResolution to request a certain type
of information, which can be kCFHostAddresses, kCFHostNames, or kCFHostReach-
ability. This example omits a final step in which you retrieve the information with
CFHostGetAddressing, CFHostGetNames, or CFHostReachability—something that
isn’t necessary here because the point is to see if the request for an address resolves
correctly.

 You can find more information about these functions, and about how to use a call-
back function to make the host resolution asynchronous, in the CFHost reference.

 We consider this look at low-level networking—and CFHost—an aside, meant only
to hint at what’s possible if you must do lower-level networking work. Now, we’ll move
on to higher-level HTML-related network work that’s more likely to be the focus of
your network programming. The first thing you’ll need to know is how to use iOS’s
URL objects.

Listing 14.1 A simple hostname lookup

http://www.it-ebooks.info/

290 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
14.3 Working with URLs
With HTTP being the basis of most internet programming, it shouldn’t be a surprise
that URLs are a foundational technique for internet-based programming. You’ll use
them whether you’re calling up UIImageViews, accessing content by hand, or parsing
XML. As a result, we’ll spend some time on the two fundamental URL classes: NSURL
and NSURLRequest. We’ll also look at how to manipulate HTML data by hand.

14.3.1 Creating an NSURL

An NSURL is an object that contains a URL. It can reference a website or a local file, as
any URL can. You’ve used it in the past to access Apple’s stock page and to load local
media files for play.

 As noted in the NSURL class reference, you can use numerous methods to create
an NSURL. The most important ones are listed in table 14.1.

When you have an NSURL in hand, you can do any number of things with it:

 You can pass it on to functions that require a bare NSURL.
 You can query its properties to easily break down the URL into its parts. As

usual, you can find a complete list of properties in the Apple reference, but
properties like baseURL, fragment, host, path, port, and query may be particu-
larly useful.

 You can use the NSURL to load a UIWebView.

The first two possibilities require only the use of an NSURL; but when you’re working
with a UIWebView, you must first create an NSURL and then turn it into an NSURLRequest.

Table 14.1 A variety of NSURL creation methods

Method Summary

fileURLWithPath: Creates a URL from a local file path

URLWithString: Creates a URL from a string; equivalent to
initWithString:

URLWithString:relativeToURL: Adds a string to a base URL; equivalent to
initWithString:relativeToURL:

NSURL and CFURLRef
NSURL is a toll-free bridge to CFURL, making an NSURL * and a CFURLRef equivalent.
We take advantage of this in chapter 12 when dealing with the MPMoviePlayer-
Controller and with sounds. Whenever you need to create a CFURLRef, you can do
so using the standard methods for NSURL creation that are described in this chapter.

http://www.it-ebooks.info/

291Working with URLs

www.it-ebooks.info
14.3.2 Building an NSURLRequest

The NSURLRequest class contains two parts: a URL and a specific policy for dealing
with cached responses. As noted in table 14.2, there are four ways to create an NSURL-
Request, although we expect you’ll usually fall back on the simple factory method,
requestWithURL:.

By default, an NSURLRequest is built with a caching policy that’s dependent on the
protocol and a timeout value of 60 seconds, which should be sufficient for most of
your programming needs. If you need to get more specific about how things are
loaded, you can call requestWithURL:cachePolicy:timeoutInterval:, giving it an
NSURLRequestCachePolicy for the policy and an NSTimeInterval for the timeout.

 You can also create a more interactive NSURLRequest by using the NSMutableURL-
Request class, which allows you to more carefully form and modify the request that
you’re sending. We’ll talk about this in section 14.6, when we examine how to send
POST requests.

 The NSURLRequest will get you through most web page work. As with the NSURL,
you can do a few different things with an NSURLRequest. You can hand it off to a
UIImageView, or you can use it to read in the contents of a web page, to later manipu-
late it by hand.

14.3.3 Manipulating HTML data by hand

To read the contents of a web page manually, you need to access an NSURLRequest’s
properties. Table 14.3 lists some of the most important ones, although, as usual, you
can find more information in the class reference.

Table 14.2 The related NSURLRequest init methods

Method Summary

requestWithURL: Creates a default request from the
URL; equivalent to initWithURL:

requestWithURL:cachePolicy:timeoutInterval: Creates a request with specific caching
choices; equivalent to initWithURL:
cachePolicy:timeoutInterval:

Table 14.3 NSURLRequest can give access to a page’s content.

Property Summary

allHTTPHeaderFields Returns an NSDictionary of the header

HTTPBody Returns an NSData with the body

valueforHTTPHeaderField: Returns an NSString with the header

http://www.it-ebooks.info/

292 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
The catch with these properties is that you can work only with well-defined HTML
pages. Most notably, the NSURLRequest properties can’t read fragments, such as would
be generated by Ajax or JSON, nor can they parse other sorts of content, such as XML
or RSS.

 You may also discover that you need a more interactive way to deal with HTML
data. In this case, you’ll probably use an NSURLConnection object; but as with the
NSMutableURLRequest, we’ll save that for later, because you’ll typically need to use it
only when you’re POSTing information to a web page rather than just retrieving it.

 For the moment, we’ll put all these complexities aside and look at how to display
straight HTML data using the SDK’s UIWebView.

14.4 Using UIWebView
One of the easiest ways to connect to the internet is to use the UIWebView class, which
gives you full access to web pages of any sort. In some ways, this class is of limited util-
ity, because it largely duplicates Safari, and Apple isn’t interested in approving applica-
tions that duplicate their existing technology. But there are clearly situations where
you’ll want a program to be able to refer to some specific web pages, and that’s what
UIWebView is for.

 The class is easy to use—we included it in simple examples way back in chapters 3
and 4. The only real complexity is in building an NSURL or NSURLRequest object to get
your web view started, but that process follows the methods you’ve already seen.

14.4.1 Calling up the web view

The two main ways to fill a web view once you’ve created it are listed in table 14.4.
Most frequently, you’ll start with an NSURLRequest, which you must create using the
two-step process we described in the previous section; but you can also load a web view
with an NSURL and an NSString. A few other init methods can be found in the class
reference.

Other ways to read HTTP content
If you’re not reading data that meets the HTTP protocol, you can’t use NSURL-
Request’s properties to access the data. Instead, you must fall back on other func-
tions that let you read in data from an NSURL.

You’ve already met functions that read data that follows other protocol specifica-
tions, such as the MPMoviePlayerController and the sound players from
chapter 12. Similarly, in this chapter we’ll talk about an XML parser. All of these
classes can read directly from a URL.

If you need to capture raw data that isn’t set in HTML, the best way to do so is with
an init or factory method that reads from a URL, such as NSData’s dataWith-
ContentsOfURL:. We’ll look at an example of that in the last section of this chapter.

http://www.it-ebooks.info/

293Using UIWebView

www.it-ebooks.info
Assuming you use the more common NSURLRequest method, you can put together all
the lessons you’ve learned so far, which is just what you did back in chapter 3 when
you created your first UIWebView:

[myWebView loadRequest:
 [NSURLRequest requestWithURL:
 [NSURL URLWithString:url]]];

When you have a UIWebView, you can start working with it. The five UIWebView meth-
ods and properties of particular note are summarized in table 14.5.

We think the most exciting options are the goBack, goForward, and reload methods,
which give you some control over how the UIWebView moves among pages. Similarly,
the loadRequest: method can be continually rerun if you want to move a user
through multiple pages, treating the UIWebView more like a web slideshow than a
browser.

WARNING In our opinion, the scalesPageToFit property doesn’t work cor-
rectly at the current time. It always scales the page as if the UIWebView were
full screen, and it leaves a less than optimal view if you create a small UIWeb-
View, as you’ll do in the next example. As of iOS 4.0, this has yet to be
resolved.

You must always load NSURLs using the loadRequest: method of NSURLRequest that
we’ve laid out here to load pages into your web views.

Table 14.4 Methods for loading UIWebView

Method Summary

loadHTMLString:baseURL: Loads a page from a URL and a string

loadRequest: Loads a page from an NSURLRequest

Table 14.5 Some sterling UIWebView options

Method/Property Type Summary

goBack Method Moves back a page; check canGoBack property first

goForward Method Moves forward a page; check canGoForward property
first

reload Method Reloads the current page

scalesPageToFit Property Boolean that determines whether the page is zoomed into
a viewport and whether user zooming is allowed

http://www.it-ebooks.info/

294 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
14.4.2 Managing the web view delegate

One critical element we haven’t discussed previously is that you can set a delegate to
manage a few common responses. You must follow the UIWebViewDelegate protocol,
which lists four methods, described in table 14.6.

Together with the UIWebView methods, these delegate methods give you considerable
power. You can use them to load alternative web pages if the preferred ones don’t
load. Or, continuing the slideshow analogy, you can use them to continuously load
new pages when old ones finish. All those possibilities highlight the ways you may be
able to use the UIWebView as more than a Safari clone.

14.4.3 Thumbnails: a web view example

As we’ve previously stated, UIWebViews are easy to set up, and we’re not going to spend
a lot of time on a coding sample. Listing 14.2 presents a simple example that creates a
set of web page thumbnails, similar to the startup page of the Google Chrome
browser. It uses delegates first to get rid of UIWebViews that don’t load and later to
zoom in on the one the user selects.

 You should initially create it visually by laying out four UIWebViews on your inter-
face. Make sure they’re set to scale, and set their delegates to be the view controller.

- (void)viewDidLoad {
 [super viewDidLoad];
 webArray = [[NSArray alloc]
 initWithObjects:webView1,webView2,webView3,webView4,nil];
 NSString *paths = [[NSBundle mainBundle] resourcePath];
 NSString *filePath = [paths
 stringByAppendingPathComponent:@"weblist.txt"];
 NSString *webList = [NSString stringWithContentsOfFile:filePath
encoding:NSASCIIStringEncoding error:nil];
 NSArray *webListArray = [webList componentsSeparatedByString:@"\n"];
 for (int i = 0 ; i < [webArray count] ; i++) {
 [[webArray objectAtIndex:i] loadRequest:
 [NSURLRequest requestWithURL:

Table 14.6 Managing UIWebViews with delegate methods

Method Summary

webView:shouldStartLoadWithRequest:navigationType: Called prior to content loading

webViewDidStartLoad: Called after content begins
loading

webViewDidFinishLoad: Called after content finishes
loading

webView:didFailLoadWithError: Called after content fails to
load

Listing 14.2 A thumbnail web viewer

Sets up
web viewsB

http://www.it-ebooks.info/

295Using UIWebView

www.it-ebooks.info
 [NSURL URLWithString:
 [webListArray objectAtIndex:i]]]];
 }
}
- (void)webView:(UIWebView *)webView
 didFailLoadWithError:(NSError *)thiserror {
 NSLog(@"Web Thumbs Error: %@",thiserror);
 if (thiserror.code == -1003) {
 [webView removeFromSuperview];
 }
}
- (void)webViewDidFinishLoad:(UIWebView *)webView {
 if (webView.canGoBack == YES) {
 for (int i = 0 ; i < [webArray count] ; i ++) {
 if ([webArray objectAtIndex:i] != webView) {
 [[webArray objectAtIndex:i] removeFromSuperview];
 } else {
 webView.frame = [[UIScreen mainScreen] bounds];
 }
 }
 }
}

To start with, you read a set of (exactly) four URLs from a file and use the NSString
method componentsSeparatedByString: to turn them into an NSArray that you use to
seed your web views B. After that, it’s a question of responding to delegation messages.

 The webView:didFailLoadWithError: method C shows off some valuable tech-
niques for both debugging and error management. You should use NSLog when you
want to do a printf-style reporting of runtime variables. It outputs to /var/log/system
.log when you run it in the Simulator.

 In a UIWebView, two error codes come up with some frequency: -1003 is “Can’t find
host,” and -999 is “Operation could not be completed.” This example ignores -999
(which usually means the user clicked a link before the page finished loading); but in
the case of a -1003 failure, you dismiss the web view.

Resolves
errors

C

Zooms
active view

D

Debugging
We haven’t talked much about debugging your SDK program in this book, primarily
for reasons of space. Here’s a short overview of our favorite techniques:

Xcode itself provides the best debugging. Pay careful attention to autocompletion of
words and note when an expected autocompletion doesn’t occur, because that usu-
ally means you didn’t set a variable correctly.

Always carefully consider the warnings and errors that appear on compilation.

Finally, after you’ve finished with your program, you should run it through Instruments
to check for memory leaks.

For more information, see “Xcode Debugging Guide,” “Debugging with GDB,” and
“Instruments User Guide,” Apple articles that contain comprehensive explanations of
those subjects.

http://www.it-ebooks.info/

296 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
Finally, the webViewDidFinishLoad: method D zooms
in on an individual web view (dismissing the rest) after
a user clicks a link and the page loads. Realistically, this
should occur whenever the user touches the web view;
but we wanted to show the UIWebView delegate meth-
ods, so we chose this slightly more circuitous route.

 And that’s it—a simple web thumbnail program, as
shown in figure 14.2. It could be improved by giving the
user the ability to manage the selected URLs and by pol-
ishing the way the user selects an individual page
(including an option to return to the thumbnail page
afterward). For our purposes, though, it does a great
job of demonstrating some of the intricacies of the
UIWebView.

 Before we finish with web views, we’ll look at one
more example. In chapter 10, we talked about how
Core Location would be better served when we got into
the world of the internet. In section 14.5.4, we’ll look at
the first of two Core Location internet examples.

14.5 Parsing XML
Extensible Markup Language (XML) is a generalized
markup language whose main purpose is to deliver data in a well-formed and orga-
nized way. It has some similarities to HTML, and an XML version of HTML has been
released, called XHTML.

 Because of XML’s popularity on the internet, the iOS SDK includes its own XML
parser, the NSXMLParser class. This is an event-driven API, which means it reports start
and end tags as it moves through the document, and you must take appropriate action
as it does.

 Running the NSXMLParser involves setting it up, starting it running, and then
reacting to the results. We’ll cover that process in the rest of this section. For more
information about any of these topics, we suggest reading Apple’s “Event-Driven XML

XML and files
When using NSXMLParser, you’ll probably immediately think about reading data
taken from the internet, but it’s equally easy to read XML from your local files. You
create a path to the file and then use NSURL’s fileURLWithPath: method, as you’ve
seen elsewhere in this book.

An XML file can be a nice intermediary step between saving data in plain text files
and saving it in databases, which were two of the options you saw in chapter 9.
Although you’re still using files, you can do so in a well-organized manner. You’ll see
an example of this in section 14.5.3.

Figure 14.2 As shown on an
iPhone, the thumbnail web
views load on the screen.

http://www.it-ebooks.info/

297Parsing XML

www.it-ebooks.info
Programming Guide for Cocoa,” but we’ll provide a tutorial on the basics and build
an RSS reader. We’ll start with the parser class.

14.5.1 Starting up NSXMLParser

In order to get started with the NSXMLParser, you need to create it, set various proper-
ties, and then start it running. The most important methods for doing so are listed in
table 14.7.

Not listed are a few additional setters that allow the parser to process namespaces,
report namespace prefixes, and resolve external entities. By default, these properties
are all set to NO; you shouldn’t need them for simple XML parsing.

14.5.2 Acting as a delegate

There are approximately 14 delegate methods for NSXMLParser. They’re all optional:
you need to write delegates only for things you’re watching for.

 In this chapter, we’ll look at the five most critical methods you’ll need to use when-
ever you’re parsing XML. These methods report the start and end of elements, the
contents inside, when the XML parsing has ended (unrecoverably!) with an error, and
when the XML parsing has ended because it’s finished. These are listed in table 14.8.

 Generally, when you’re parsing XML, you should take the following steps as you
move through elements:

1 When you receive the didStartElement: method, look at the NSString to see
what element is being reported, and then prepare a permanent variable to save
its content, to prepare your program to receive the information, or both.
Optionally, look at the NSDictionary passed by the attributes: handle and
modify things accordingly.

2 When you receive the foundCharacters: method, save the contents of the ele-
ment into a temporary variable. You may have to do this several times, append-
ing the results to your temporary variable each time, because there’s no
guarantee that all the characters will appear in one lot.

3 When you receive the didEndElement: method, copy your temporary variable
into your permanent variable, take an action based on having received the com-
plete element, or both.

4 Optionally, when you receive parserDidEndDocument:, do any final cleanup.

Table 14.7 Methods to get your NSXMLParser going

Method Summary

initWithContentsOfURL: Creates a parser from an NSURL

initWithData: Creates a parser from an NSData

setDelegate: Defines a delegate for the parser

parse Starts the parser going

http://www.it-ebooks.info/

298 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
Beyond that, the parser:parseErrorOccurred: method should call up an NSAlert or
otherwise alert the user to the problem. As we noted, this is only for an unrecoverable
problem: the user can’t do anything about it without modifying the original XML.

 To show how you can use the NSXMLParser, the next example involves writing a
simple RSS reader. Building an RSS reader on your own will allow you to walk through
the basic functionality of NSXMLParser using an XML type that’s widely available on
the internet for testing.

14.5.3 Building a sample RSS reader

Now that you understand the basics of XML, you’re ready to put together a sample
program that uses NSXMLParser in two ways: first to read a text file, and then to read
an RSS feed. The results will be output to a hierarchy of tables. The first level of the
hierarchy will show all the possible feeds, and the second level will show the contents
of individual feeds. An example of the latter sort of page is shown in figure 14.3.

THE TOP-LEVEL TABLE

To start this project, you’ll need to create a Navigation-Based Application, which will
provide the navigator and initial table setup needed to get this project started. In a
more advanced program, you’d give users the opportunity to create a settings file for
whichever RSS feeds they want to read. But for the purposes of this example, create an
XML settings file called rssfeeds.xml by hand, using the following format:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <feed title="RPGnet News" url="http://www.rpg.net/index.xml" />
 <feed title="RPGnet Columns" url="http://www.rpg.net/columns/index.xml"
 />
</rdf:RDF>

For each entry, create a singular <feed> element and include title and url
attributes.

Table 14.8 The five important NSXMLParser delegate methods

Method Summary

parser:didStartElement:namespaceURI:qualifiedName:attributes: Reports the start of an
element and its attributes

parser:foundCharacters: Reports some or all of the
content of an element

parser:didEndElement:namespaceURI:qualifiedName: Reports the end tag of an
element

parserDidEndDocument: Reports the end of parsing

parser:parseErrorOccurred: Reports an unrecoverable
parsing error

http://www.it-ebooks.info/

299Parsing XML

www.it-ebooks.info
After you’ve added rssfeeds.xml to your project, you’re ready to write the code for the
top-level table, which will parse your local XML file and give your user the option to
select one of the RSS feeds. The following listing displays this code, which appears in
the main view controller.

- (void)viewDidLoad {
 [super viewDidLoad];
 self.title = @"RSS Feeds";
 rssList = [[NSMutableArray alloc] initWithCapacity:1];
 NSString *paths = [[NSBundle mainBundle] resourcePath];
 NSString *xmlFile = [paths
 stringByAppendingPathComponent:@"rssfeeds.xml"];
 NSURL *xmlURL = [NSURL fileURLWithPath:xmlFile isDirectory:NO];
 NSXMLParser *firstParser = [[NSXMLParser alloc]
 initWithContentsOfURL:xmlURL];
 [firstParser setDelegate:self];
 [firstParser parse];
}
- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 if ([elementName compare:@"feed"] == NSOrderedSame) {

Listing 14.3 Reading an XML text file

Figure 14.3 RSS feeds can easily
be placed in table views.

Parses
XML fileB

Reads attribute
elements

C

http://www.it-ebooks.info/

300 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
 [rssList addObject:[[NSDictionary alloc] initWithObjectsAndKeys:
 [attributeDict objectForKey:@"title"],@"title",
 [attributeDict objectForKey:@"url"],@"url",
 nil]];
 }
}
- (void)parserDidEndDocument:(NSXMLParser *)parser {
 [parser release];
}
- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [rssList count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];

 }
 cell.textLabel.text = [[rssList objectAtIndex:indexPath.row]
 objectForKey:@"title"];
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 rssViewController *nextController =
 [[rssViewController alloc] initWithURL:
 [[rssList objectAtIndex:indexPath.row] objectForKey:@"url"]];
 nextController.title = [[rssList objectAtIndex:indexPath.row]
 objectForKey:@"title"];
 [self.navigationController pushViewController:nextController
 animated:YES];
 [nextController release];
}

This example begins by reading in XML from a file B. The result is a lot more pleas-
ing than trying to read raw text, as in the thumbnail example earlier in this chapter, so
we suggest encoding simple preference files as XML in the future.

 Because we designed a simple XML format, where the information is encoded as
attributes, you have to watch only one delegate method, didStartElement: C. Here
you add the information to rssList, an NSMutableArray, for use later. The only other
thing you have to do with your XML parser is clean it up when you’ve finished D.

 The next few functions are standard table view work, because you define the sec-
tions, rows, and cells using the rssList array you created. Finally, you define what

Cleans up
parser

D

Calls up
RSS view

E

http://www.it-ebooks.info/

301Parsing XML

www.it-ebooks.info
happens when the user selects a row E, and that’s to call up a brand-new type of
object, the rssViewController.

THE RSS TABLE

The rssViewController is a subclass of the UITableViewController that displays an
RSS feed if initialized with a URL. Listing 14.4 shows the complete contents, much of
which are similar to listing 14.3. The biggest differences are in the XML parsing,
because an RSS feed is a much more complicated XML format, even when you’re using
only minimal information from it, as is the case here.

- (id)initWithURL:(NSString *)url {
 if (self = [super init]) {
 feedList = [[NSMutableArray alloc] initWithCapacity:0];
 NSXMLParser *nextParser = [[NSXMLParser alloc]
 initWithContentsOfURL:[NSURL URLWithString:url]];
 [nextParser setDelegate:self];
 [nextParser parse];
 }
 return self;
}
- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 if ([elementName compare:@"item"] == NSOrderedSame) {
 currentItem = [[NSMutableDictionary alloc] initWithCapacity:0];
 } else if (currentItem != NULL) {
 currentContents = [[NSMutableString alloc] initWithCapacity:0];
 }
}
- (void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string {
 if (currentContents && string) {
 [currentContents appendString:string];
 }
}
- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName {
 if ([elementName compare:@"item"] == NSOrderedSame) {
 [feedList addObject:currentItem];
 [currentItem release];
 } else if (currentItem && currentContents) {
 [currentItem setObject:currentContents forKey:elementName];
 currentContents = nil;
 [currentContents release];
 }
}
- (void)parserDidEndDocument:(NSXMLParser *)parser {

Listing 14.4 Creating a table from an RSS feed

Parses
RSS feedB

Reads
content

C

Finishes
reading

D

http://www.it-ebooks.info/

302 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
 [parser release];
}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [feedList count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }
 if ([[feedList objectAtIndex:indexPath.row] objectForKey:@"title"]) {
 cell.textLabel.text = [[feedList objectAtIndex:indexPath.row]
 objectForKey:@"title"];
 }
 if ([[feedList objectAtIndex:indexPath.row] objectForKey:@"link"]) {
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;
 }
 return cell;
}
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 UIWebView *thisInfo = [[UIWebView alloc] init];
 [thisInfo loadRequest:[NSURLRequest requestWithURL:
 [NSURL URLWithString:[[feedList objectAtIndex:indexPath.row]
 objectForKey:@"link"]]]];
 thisInfo.scalesPageToFit = YES;
 UIViewController *thisVC = [[UIViewController alloc] init];
 thisVC.view = thisInfo;
 thisVC.title = [[feedList objectAtIndex:indexPath.row]
 objectForKey:@"title"];
 [self.navigationController pushViewController:thisVC animated:YES];
 [thisInfo release];
 [thisVC release];
}

The difference in this new table view starts with the fact that you have a custom init
function that allows you to start an XML parser running on an RSS feed B. In a more
polished application, you’d check for the feed’s existence, but for this example you
can dive right in.

 Because this XML file is more complex than the previous one, you can’t do all
your work in didStartElement:. Instead, you use this method as part of a systemic
examination of the XML content, by preparing variables, creating a dictionary to hold
the contents of a complete RSS item, and initializing a string to hold each individual
element.

Calls up
web view

E

http://www.it-ebooks.info/

303Parsing XML

www.it-ebooks.info
 In parser: foundCharacters: C, you have to keep appending data to the current
element’s string, as we promised. The XML parser will break the data from an individ-
ual element into multiple strings, so you have to be careful about this.

 When you’ve finished D, you can add your string to the element’s dictionary; and
when the element is done, you can add the dictionary to the array of RSS contents that
you’re maintaining.

 From here on, most of the table work is similar to the previous example. You read
back through your master array to fill in the contents of the table. The only thing of
note comes in the last method E, when a user clicks a table row. At this point, you call
up a UIWebView so the user can hop straight to the RSS feed item they’re interested in.

 Before we finish with XML entirely, we want to look at one more Core Location
example, using GeoNames to read in altitude.

14.5.4 Altitude redux: a Core Location example

GeoNames, which you can find at www.geonames.org, offers a variety of web services
related to location. It can give you information about postal codes, countries,
addresses, and more. A complete listing of its web services is available at
www.geonames.org/export/ws-overview.html.

 Most of GeoNames’s information is returned in either XML or JSON format, as you
prefer. We’ll look at the XML interface here. Table 14.9 shows off some of the XML-
based GeoNames information that you may find particularly useful.

We’ll use gtopo30 to follow through on our promise from chapter 10 to look up the
altitude from GeoNames based on the location manager’s results. This project
requires a somewhat complex chaining together of multiple delegate-driving classes,
as shown in figure 14.4.

Table 14.9 GeoNames searches allowable with coordinate information

Information Summary

findNearestIntersection Returns nearest street intersection in the U.S.

gtopo30 Returns altitude of location or -9999 for sea

srtm3 Returns altitude of location or -32768 for sea

timezone Returns not only the time zone info but also the current time

www.geonames.org
www.geonames.org/export/ws-overview.html
http://www.it-ebooks.info/

304 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
The bare skeleton of the code needed to make this work is shown in the following
listing.

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 [myLM stopUpdatingLocation];
 [myActivity stopAnimating];
 NSString *gnLookup = [NSString stringWithFormat:
 @"http://ws.geonames.org/gtopo30?lat=%f&lng=%f&style=full&type=XML",
 newLocation.coordinate.latitude,newLocation.coordinate.longitude];
 NSXMLParser *gnParser = [[NSXMLParser alloc]
 initWithContentsOfURL:[NSURL URLWithString:gnLookup]];
 [gnParser setDelegate:self];
 [gnParser parse];
}
- (void)parser:(NSXMLParser *)parser
 didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 if ([elementName compare:@"gtopo30"] == NSOrderedSame) {
 gnAlt = [[NSMutableString alloc] initWithCapacity:4];
 }
}
- (void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string {
 if (gnAlt && string) {
 [gnAlt appendString:string];
 }
}
- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName {

Listing 14.5 Deriving altitude from GeoNames

foundCharacters:
Reports feedback

didEndElement:
Reports feedback

didEndDocument:
reports feedback

didStartElement:
Reports feedback

Continue
program

Create
NSXMLParser

locationManager:
Delegate reports

feedback
Create

CLLocationManager

Figure 14.4 Complex SDK programs can
chain multiple classes.

Prepares XMLB

Watches for
gtopo30

C

Saves altitudeD

Writes altitudeE

http://www.it-ebooks.info/

305POSTing to the web

www.it-ebooks.info
 if ([elementName compare:@"gtopo30"] == NSOrderedSame) {
 altLabel.text = [NSString stringWithFormat:@"%@ m.",gnAlt];
 }
}

In general, this is a simple application of lessons you’ve already learned. It’s also an
interesting application of the internet to Core Location.

 The only thing particularly innovative comes in the Core Location delegate B,
where you create a GeoNames URL using the format documented at the GeoNames
site. Then you watch the start tags C, content D, and end tags E and use those to
derive altitude the same way that you pulled out XML information when you were
reading RSS feeds.

 As we mentioned in chapter 10, the result should be an altitude that’s much more
reliable than what the iPhone and iPad can currently provide, unless you’re in a tall
building, in an airplane, or hang gliding.

 To date, all the examples of web parsing have involved simple GET connections,
where you can encode arguments as part of a URL. That won’t always be the case on the
web; so before we leave web pages behind, we’ll return to some basics of URL requests
and look at how to POST information to a web page when it becomes necessary.

14.6 POSTing to the web
Many web pages allow you to GET or POST information interchangeably. But in some
situations, that’s not the case, and you’re instead forced to POST (and then to read
back the response manually). In this section, we’ll look at both how to program a sim-
ple POST and how to do something more complex, like a form.

14.6.1 POSTing by hand

When you need to POST to the web, you have to fall back on some HTTP-related low-
level commands that we haven’t yet discussed in depth, including NSMutableURL-
Request (which allows you to build a piecemeal request) and NSURLConnection
(which allows you to extract information from the web).

 In general, you’ll follow this process:

1 Create an NSURL pointing to the site you’ll POST to.
2 Create and encode the data you plan to POST, as appropriate.
3 Create an NSMutableURLRequest using your NSURL.
4 Use the NSMutableURLRequest’s addValue:forHTTPHeaderField: method to

set a content type.
5 Set the NSMutableURLRequest’s HTTPMethod to POST.
6 Add your data to the NSMutableURLRequest as the HTTPBody.
7 Create an NSURLConnection using your NSMutableURLRequest.
8 Either immediately capture the return using a synchronous response, or set up

a delegate to receive the data as it comes, as defined in the NSURLConnection
class reference.

9 Parse the NSData you receive as you see fit.

http://www.it-ebooks.info/

306 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
For a simple synchronous response, the next listing shows how to put these elements
together.

NSURL *myURL = [NSURL URLWithString:@"http://www.example.com"];
NSMutableURLRequest *myRequest = [NSMutableURLRequest
 requestWithURL:myURL];
[myRequest setValue:@"text/xml" forHTTPHeaderField:@"Content-type"];
[myRequest setHTTPMethod:@"POST"];
NSData *myData = [@"someText" dataUsingEncoding:NSASCIIStringEncoding];
[myRequest setHTTPBody:myData];
NSURLResponse *response;
NSError *error;
NSData *myReturn = [NSURLConnection sendSynchronousRequest:myRequest
 returningResponse:&response error:&error];

A large number of steps are required to move from the URL through to the data
acquisition, just as there were when creating a URL for a simple UIWebView; but when
you have them down, the process is easy. The hardest part, as it turns out, often is get-
ting the data ready to POST.

 This code works fine for posting plain data to a web page. For example, you could
use it with the Google Spell API found at www.google.com/tbproxy/spell to send XML
data and then read the results with NSXMLParser.

 Things can get tricky if you’re doing more intricate work than that, such as POST-
ing form data.

14.6.2 Submitting forms

Sending form data to a web page follows the same process as any other POSTed data,
and reading the results works the same way. The only tricky element is packaging the
form data so it’s ready to use.

 The easiest way to work with form data is to create it using an NSDictionary or
NSMutableDictionary of keys and values, because that matches the underlying struc-
ture of HTML forms. When you’re ready to process the data, you pass the dictionary to
a method that turns it into NSData, which can be sent as an NSMutableURLRequest
body. After you’ve written this method the first time, you can use it again and again.

 The next listing shows how to turn a dictionary of NSStrings into NSData.

- (NSData*)createFormData:(NSDictionary*)myDictionary
 withBoundary:(NSString *)myBounds {
 NSMutableData *myReturn = [[NSMutableData alloc] initWithCapacity:10];
 NSArray *formKeys = [dict allKeys];
 for (int i = 0; i < [formKeys count]; i++) {
 [myReturn appendData:
 [[NSString stringWithFormat:@"--%@\n",myBounds]
 dataUsingEncoding:NSASCIIStringEncoding]];
 [myReturn appendData:

Listing 14.6 A simple POSTing example

Listing 14.7 Creating form data

www.google.com/tbproxy/
http://www.it-ebooks.info/

307Accessing the social web

www.it-ebooks.info
 [[NSString stringWithFormat:
 @"Content-Disposition: form-data; name=\"%@\"\n\n%@\n",
 [formKeys objectAtIndex:i],
 [myDictionary valueForKey:[formKeys objectAtIndex: i]]]
 dataUsingEncoding:NSASCIIStringEncoding]];
 }
 [myReturn appendData:
 [[NSString stringWithFormat:@"--%@--\n", myBounds]
 dataUsingEncoding:NSASCIIStringEncoding]];
 return myReturn;
}

There’s nothing particularly notable here. If you have a sufficiently good understand-
ing of the HTML protocol, you can easily dump the dictionary elements into an
NSData object. The middle appendData: method is the most important, because it
adds both the key (saved in an NSArray) and the value (available in the original
NSDictionary) to the HTML body.

 Back outside the method, you can add the data to your NSMutableURLRequest just
as in listing 14.6, except the content type looks a little different:

NSMutableURLRequest *myRequest = [NSMutableURLRequest
 requestWithURL:myURL];
NSString *myContent = [NSString stringWithFormat:
 @"multipart/form-data; boundary=%@",myBounds];
[myRequest setValue:myContent forHTTPHeaderField:@"Content-type"];
[myRequest setHTTPMethod:@"POST"];
[myRequest setHTTPBody:myReturn];

Some other types of data processing, such as file uploads, require somewhat different
setups, and you’d do well to look at HTML documentation for the specifics; but the
general methods used to POST data remain the same.

 With POSTing out of the way, we’ve now covered all of the SDK’s most important
functions related to the internet. But we want to touch on one other topic before we
close this chapter—a variety of internet protocols that you can access through third-
party libraries.

14.7 Accessing the social web
Since the advent of Web 2.0, a new sort of internet presence has appeared. We call it
the social web. This is an interconnected network of web servers that exchange infor-
mation based on various well-known protocols. If you’re building internet-driven pro-
grams, you may wish to connect to this web so that your users can become a part of it.

14.7.1 Using web protocols

To participate in the social web, clients need to speak a number of protocols, most of
them built on top of HTML. These include Ajax, JSON, RSS, SOAP, and XML. Here’s
how to use each of them from your iPhone and iPad:

 Ajax—Ajax is something that, as it turns out, you can largely ignore. It’s usually
used as part of a client/server setup, with HTML on the front side, but iOS uses

http://www.it-ebooks.info/

308 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
an entirely different paradigm. You can dynamically load material into labels or
text views, and you can dynamically call up websites using the XML or HTML
classes we’ve discussed. There’s no need for Ajax-type content as long as you
have good control over what a server will output. You just need to remember
some of the lessons that Ajax teaches, such as downloading small bits of infor-
mation rather than a whole page.

 JSON—JSON is perhaps the most troublesome protocol to integrate. It’s impor-
tant as a part of the social web, because it’s one of the standardized ways to
download information from a website. It also depends on your iPhone or iPad
being able to understand JavaScript, which it doesn’t (unless you do some fancy
work with DOM and the WebKit, which are beyond the scope of this section).
Fortunately, two JSON toolkits are already available: JSON Framework and
TouchJSON. We’ll look at an example of the latter shortly.

 RSS—At the time of this writing, we’re not aware of any RSS libraries for the
iPhone and iPad. But as we’ve already demonstrated in this chapter, it’s easy to
parse RSS using an XML parser.

 SOAP—SOAP isn’t as popular in the social web as most of the other protocols
listed here, but if you must use it, you’ll want a library. One SOAP library writ-
ten for Objective-C (though not necessarily for the iPhone and iPad), is SOAP
Client.

 XML—XML is, as you’ve seen, fully supported by iOS. But if you don’t like how
the default parser works and want an alternative, you should look at TouchXML.

These libraries should all be easy to find with simple searches on the internet, but
table 14.10 lists their current locations as of this writing.

 Because of its importance to the social web, we’ll pay some additional attention to
JSON, using the TouchJSON library.

14.7.2 Using TouchJSON

For this final example, we’ll return to Core Location one more time, because
GeoNames offers a lot of JSON information. You’re going to use GeoNames to display
the postal codes near a user’s current location. Figure 14.5 shows our intended result
by highlighting the postal codes near Apple headquarters, the location reported by
the Simulator.

Table 14.10 Download sites for social protocol libraries

Library Location

JSON Framework http://code.google.com/p/json-framework/

TouchJSON https://github.com/TouchCode/TouchJSON

SOAP Client http://code.google.com/p/mac-soapclient/

TouchXML https://github.com/TouchCode/TouchXML

http://code.google.com/p/json-framework/
https://github.com/TouchCode/TouchJSON
http://code.google.com/p/mac-soapclient/
https://github.com/TouchCode/TouchXML
http://www.it-ebooks.info/

309Accessing the social web

www.it-ebooks.info
 In order to get to this point, you must first install
this third-party library and make use of it.

INSTALLING TOUCHJSON

To integrate TouchJSON into your project, you must
download the package from Google and move the
source code into your project. The easiest way to do
this is to open the TouchJSON download inside Xcode
and copy the Source folder to your own project. Tell
Xcode to copy all the files into your project as well.
Afterward, you’ll probably want to rename the copied
folder from Source to TouchJSON.

 Then you need to include the header CJSON-
Deserializer.h wherever you want to use TouchJSON.

USING TOUCHJSON

In order to use TouchJSON, you pass the CJSON-
Deserializer class an NSData object containing the
JSON code. Listing 14.8 shows how to do so. In this
example, this work occurs inside a location manager
delegate. It’s part of a program similar to our earlier
GeoNames example, but this time we’re looking up
postal codes with a JSON return rather than altitudes
with an XML return.

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 [myLM stopUpdatingLocation];
 [myActivity stopAnimating];
 NSString *gnLookup = [NSString
 stringWithString:@"http://ws.geonames.org/findNearbyPostalCodesJSON"
 "?lat=37.331689&lng=-122.030731"];
 NSData *gnData = [NSData dataWithContentsOfURL:
 [NSURL URLWithString:gnLookup]];
 NSError *error = nil;
 NSDictionary *dictionary = [[CJSONDeserializer deserializer]
 deserializeAsDictionary:gnData error:&error];
 if(error) {
 postalLabel.text = [NSString stringWithFormat:@"Error: %@",
 [[error userInfo] objectForKey:@"NSLocalizedDescription"]];
 } else {
 NSMutableString *postCodes = [NSMutableString
 stringWithString:@"Nearby post codes are:\n\n"];
 for (int i = 0 ;
 i < [[dictionary objectForKey:@"postalCodes"] count] ;
 i++) {
 [postCodes appendFormat:@"%@ (%@)\n",
 [[[dictionary objectForKey:@"postalCodes"] objectAtIndex:i]

Listing 14.8 Using TouchJSON

Grabs the content of the
URL and stores as NSData

B

Converts the
JSON into an
NSDictionary C

Figure 14.5 It’s easy to extract
data using TouchJSON.

http://www.it-ebooks.info/

310 CHAPTER 14 The web: web views and internet protocols

www.it-ebooks.info
 objectForKey:@"postalCode"],
 [[[dictionary objectForKey:@"postalCodes"] objectAtIndex:i]
 objectForKey:@"placeName"]];
 }
 postalLabel.text = postCodes;
 }
}

To access the JSON results, you first retrieve the data from a URL using the dataWith-
ContentsOfURL: method B, which was one of the ways we suggested for retrieving
raw data earlier in the chapter. Then you plug that NSData object into the CJSON-
Deserializer C to generate an NSDictionary containing the JSON output.

 The TouchJSON classes are much easier to use than the XML parser we met earlier
in this chapter. All you need to do is read through the arrays and dictionaries that are
output. The downside is that the resulting dictionary may take up a lot of memory
(which is why the XML parser didn’t do things this way), so be aware of that if you’re
retrieving particularly large JSON results.

 Absent that concern, you should be on your way to using JSON and creating yet
another link between your users and the whole World Wide Web.

14.8 Summary
“There’s more than one way to do it.”

 That was the slogan of Perl, one of the first languages used to create dynamic web
pages, and today you could use that slogan equally well to describe the iPhone and
iPad, two of the popular mobile devices.

 We opened this book by talking about the two different ways that you could write
apps: using web technologies and using the SDK. We also highlighted two different ways
that you could interact with the internet: either as an equal participant—a web-based
member of the internet’s various peer-to-peer and client/server protocols—or as a
pure client that runs its own programs and connects to the internet via its own means.

 We’ve said before that each programming method has its own advantages, and we
continue to think that web development is often a better choice when you’re interact-
ing with the internet already. But when you need to use other SDK features, the SDK
offers some great ways to connect to the web.

 As you’ve seen in this chapter, you have easy and intuitive access to the social
web—that conglomeration of machines that’s connected via various public protocols.
You should have no trouble creating projects that use the HTML and XML protocols,
and even further flung protocols like JSON and SOAP are usable thanks to third-party
libraries. That’ll cover most programmers’ needs, but for those of you who need to dig
deeper, the SDK has you covered there too, thanks to Core Foundation classes.

 In the next chapter, we’ll take networking one step further and introduce the
Game Kit framework. There, we’ll show you how to use Apple’s built-in network layers
to create a fully functional two-player video game.

http://www.it-ebooks.info/

www.it-ebooks.info
Peer-to-peer connections
using Game Kit
Networking has always been a complicated task in any programming language. It
normally requires intimate knowledge of sockets, as well as a solid understanding
of various network protocols such as TCP/IP and UDP. Apple has simplified this pro-
cess with the release of the Game Kit framework.

 In this chapter, we’ll take a tour of the Game Kit framework. Then, we’ll exam-
ine how to create peer-to-peer applications and a simple multiplayer game.

15.1 Overview of Game Kit
Game Kit is a framework that provides some simple yet powerful classes for accom-
plishing various networking tasks. These classes are built on top of the Bonjour
protocol and do much of the heavy lifting needed for peer-to-peer interaction.

This chapter covers
 Overview of Game Kit

 Creating peer-to-peer applications using the peer picker

 Building a multiplayer game
311

http://www.it-ebooks.info/

312 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
 Although the Game Kit framework was primarily intended for game development,
it isn’t limited to that. Many applications incorporate the Game Kit framework to
accomplish network-related tasks. These tasks may be as simple as sharing photos or as
complex as multiuser collaboration on a drawing board.

 In Game Kit, peers communicate through objects called sessions. Each peer creates
a session and uses it to discover other sessions. The sessions are also responsible for
sending data to and receiving data from each peer.

 Three different modes of a session determine how it interacts with peers. The first
is server mode. When sessions are in this mode, they advertise their service to every-
one on the network. The next is client mode. In this mode, sessions search for servers
that are advertising. Finally, there is peer mode. In peer mode sessions play the role of
both the client and the server at the same time.

 We’ll show you how to implement the built-in peer picker in peer mode to estab-
lish a connection between two devices. After you’ve learned the basics, you’ll be able
to move on and create a fully functional multiplayer application.

15.2 Creating peer-to-peer applications
using the peer picker
The peer picker gives you a simple way to connect two devices over Bluetooth or wire-
less. It involves displaying Apple’s built-in Peer Picker view and implementing the del-
egate methods. This view is easy to use but is somewhat limited. First, it allows a
connection only between two peers. You can never have more than two users playing
the same game at once. Second, it can’t be customized. Although the view looks nice,
it may not always fit into the look and feel of your application.

 If you find yourself in a situation where you need to connect more than two
peers at a time, you must create your own custom peer picker. Because we’ll be
focusing on using Apple’s built-in peer picker, you should refer to the developer
documentation titled “Game Kit Programming Guide” if you want more informa-
tion about creating one.

 This section will discuss how to communicate using the peer picker component of
the Game Kit framework. We’ll use a simple chat application to demonstrate the con-
cepts. You can obtain the full source for the chat application on the book’s website.

NOTE You can’t test Game Kit applications using the Simulator. To run the
examples in this chapter, you must have two devices in hand.

15.2.1 Using Apple’s built-in peer picker

Before you can do any programming using Game Kit, you must import the Game Kit
framework into your project. After you’ve imported the framework, you must include
the Game Kit/Gamekit.h header file in every project file that you wish to use the
Game Kit functionality.

 The GKPeerPickerController is simple to implement. You initialize it, set its dele-
gate, and show it. Here’s an example of displaying the GKPeerPickerController:

http://www.it-ebooks.info/

313Creating peer-to-peer applications using the peer picker

www.it-ebooks.info
-(void)viewDidLoad {
 [super viewDidLoad];
 chatPicker = [[GKPeerPickerController alloc] init];
 [chatPicker setDelegate:self];
 [chatPicker setConnectionTypesMask:GKPeerPickerConnectionTypeNearby];
 peers = [[NSMutableArray alloc] init];
}

-(IBAction) connect {
 [chatPicker show];
}

As you can see, it isn’t much different than displaying a UIAlertView or UIAction-
Sheet. Here, you initialize the picker inside the viewDidLoad method and show it
when the user presses a connect button. This allows you to reuse the same picker in
case the user wants to find a different peer or needs to reconnect in the event the con-
nection gets dropped. Figure 15.1 shows what the peer-picker interface looks like
when it’s displayed.

 One interesting variable you set is connectionTypeMask. It lets the picker know
what type of peers it’s searching for. The values you can use here are GKPeer-
ConnectionTypeNearby and GKPeerConnectionTypeOnline. The value GKPeer-

ConnectionTypeNearby is required by any application that wants to use Game Kit; it
tells the application to look for peers over Bluetooth as well as the local wireless net-
work. If this value isn’t included, your application will throw an exception. The other

Figure 15.1 The peer-picker interface
on both the iPhone and iPad. Using
Bluetooth, users can connect to other
nearby devices and interact in real time.

http://www.it-ebooks.info/

314 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
value, GKPeerConnectionTypeOnline, tells the picker that you want to search for peers
online. This requires some more complex networking knowledge that’s out of the
scope of this book.

 As usual, you set the delegate of the picker to self. This requires that the class
implement the GKPeerPickerControllerDelegate interface. Table 15.1 describes the
delegate methods in detail.
Although all the delegate methods are optional, it’s a good idea to implement all of
them in your application for greater control over the picker’s actions. The last thing
you do in the viewDidLoad method is to create an NSMutableArray of peers. You add
peers to this array as they join. Keeping a reference to all connected peers is necessary
when sending data to them. We’ll discuss this in greater detail later in this section.

 Now that you’ve created the picker, the next step is to implement these delegate
methods. The following listing shows how you can implement each of these delegate
methods.

- (void)peerPickerController:(GKPeerPickerController *)picker
 didSelectConnectionType:(GKPeerPickerConnectionType)type{
}

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker{
 NSLog(@"The connection was cancelled");
}

- (void)peerPickerController:(GKPeerPickerController *)picker

Table 15.1 GKPeerPickerControllerDelegate method descriptions

Delegate Method Description

peerPickerController:didSelectConnectionType: This optional method is called when the user
selects a connection type. As noted previously,
the possible connection types are
GKPeerConnectionTypeNearby and
GKPeerConnectionTypeOnline.

peerPickerController:sessionForConnectionType: This optional method is called when the control-
ler requests a session. Implementing this
method gives you greater control over the ses-
sion, including the ability to customize the dis-
play name and session ID.

peerPickerController:didConnectPeer:toSession: This is an optional method but is expected to be
implemented. It’s called when a peer connects.
At this point, you should dismiss the peer picker
and take ownership of the session.

peerPickerControllerDidCancel: This is another optional but expected method
that’s called when the user cancels the request.
At this point, you notify the user that the ses-
sion was cancelled.

Listing 15.1 GKPeerPickerControllerDelegate methods

http://www.it-ebooks.info/

315Creating peer-to-peer applications using the peer picker

www.it-ebooks.info
 didConnectPeer:(NSString *)peerID toSession:(GKSession *)session{

 self.chatSession = session;

 self.chatSession.delegate = self;
 [self.chatSession setDataReceiveHandler: self withContext:nil];
 [chatPicker dismiss];
}

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type{

 GKSession* session = [[GKSession alloc]
 initWithSessionID:@"chatSession" displayName:@"Peer"
 sessionMode:GKSessionModePeer];
 [session autorelease];
 return session;
}

The peerPickerController:didSelectConnectionType: method has no use in this
application because you have only one connection type. If you added multiple con-
nection types, you’d do an if statement here and handle each connection type
accordingly.

 The peerPickerControllerDidCancel: method isn’t very interesting and is useful
only to the developer. This method prints a message to the console notifying you that
the connection was cancelled. Normally, you might want to do something like display
an UIAlertView to do this.

peerPickerController:didConnectPeer: does three things B. First, it sets the
incoming session to the class’s session property. This lets you use it in other methods.
Next, the session’s delegate is set to the class. Table 15.2 lists the session delegate
methods that can be implemented. Finally, the dataReceiveHandler of the session is
set to the class. This allows the class to receive network data sent to the session. In
order to use the class as the session’s dataReceiveHandler, you must implement the
receiveData method. We’ll discuss this method a little later in this section.

 When the picker has done its job and is no longer needed, you dismiss it C. The
last method lets you create a custom session D If you didn’t implement this method, a
default session would be created for you. As you can see, you can specify a custom ses-
sion ID as well as a display name. The session ID is used to differentiate the applica-
tion’s session from others that might be in the area. The display name is a custom
name for a given peer. Think of it as a username.

 The next step is to implement the session delegate methods to manage the session.

15.2.2 Implementing the GKSessionDelegate methods

To send and receive data with Game Kit, you must implement the delegate methods
for GKSession. These methods provide a nice high-level interface for you to use to
send data over the network. Your class must also implement the GKSessionDelegate
interface. Your application should implement four delegate methods, outlined in
table 15.2.

B
Localizes

session to class

Hides pickerC

Creates
custom
sessionD

http://www.it-ebooks.info/

316 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
For most applications, you only need to implement the didChangeState method. The
others are handled automatically. The didChangeState method is important for keep-
ing track of all the peers connected. When a peer connects, you should maintain a ref-
erence to it by adding it to a global peers array. That way, when it comes time to send
data to it, you’ll know where to send it. When a peer leaves, you should remove it from
the peer array. The following listing details a simple way to implement this method.

- (void)session:(GKSession *)session peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state)
 {
 case GKPeerStateConnected:
 [peers addObject:peerID];
 [chatTextArea setText:[NSString stringWithFormat:
 @"%@ has joined the chat.\n",[session displayName]]];
 break;
 case GKPeerStateDisconnected:
 [peers removeObject:peerID];
 NSString * text = [chatTextArea text];
 [chatTextArea setText:[NSString stringWithFormat:
 @"%@\n%@ has left the chat.\n",text,
 [session displayName]]];
 break;
 }
}

Table 15.2 GKSessionDelegate methods

Delegate method Description

session:peer:didChangeState: Called any time a peer changes state. The five
possible states are GKPeerStateAvailable,
GKPeerStateUnavailable,
GKPeerStateConnected,
GKPeerStateDisconnected, and
GKPeerStateConnecting.

session:didReceiveConnectionRequestFromPeer: Called when a peer wants to connect. Apple’s doc-
umentation suggests that this method can be
ignored if you’re using the built-in peer picker.

session:connectionWithPeerFailed:withError: Called when a connection error occurs. This
method can also be ignored if you’re using Apple’s
peer picker, because it automatically handles it
and displays a UIAlertView.

session:didFailWithError: Called when an unrecoverable error happens. In
this method, you should disconnect all peers and
notify the user.

Listing 15.2 Implementing the didChangeState delegate method

Adds peer to
peers list

B

Removes peer
from peers listC

http://www.it-ebooks.info/

317Creating peer-to-peer applications using the peer picker

www.it-ebooks.info
As you can see, this method is relatively simple to implement. You determine the state
of the peer with a simple case statement. You add code to detect the two most impor-
tant states, GKPeerStateConnected and GKPeerStateDisconnected. You should also
handle the other states as noted in table 15.2.

 In the event that a peer connects, you want to make sure to maintain a reference to
that peer’s ID B. You do this by adding the ID to an array of peer IDs. You’ll later use
this ID to send data to that specific peer. Note that you update the text of a UIText-
View to notify the user that a given peer has connected. You can also do this with a
UIAlertView or else start the game if you’re creating a multiplayer game.

 The session object contains quite a bit of information about the incoming session.
The most important property for the sake of the chat application is the displayName
field. This lets you display the unique name of a given peer. As you can imagine,
almost any multiuser application can benefit from this field.

 Finally, you handle the case where a peer disconnects C. In the event of a discon-
nection, you want to remove the peer ID from the array. This ensures that you don’t
waste any resources sending data to it. Again, you notify the user that the peer has
disconnected.

 Now that you’ve implemented the delegate methods, you need a way to send and
receive data.

15.2.3 Sending and receiving data between peers

When you’re sending data from one peer to another, keep in mind that everything
you send must be converted to NSData. Every one of Apple’s built-in objects supports
this conversion. You can even convert custom objects to NSData using the NSKeyed-
Archiver class.

 The type of data you send over the network is highly dependent on what your appli-
cation does. For example, if you’re creating a real-time game that sends a lot of data
quickly, then you probably don’t want to send complete objects. In this case, you’re bet-
ter off sending low-level data structures such as a struct. Although this method is
much faster, it requires that you have a good understanding of some low-level C code.
You’ll see more about sending structs over the network in the next section.

 On the other hand, if your application doesn’t rely so much on speed, you can
send high-level objects and greatly reduce the complexity of your application. For the
simple chat application, you convert strings to NSData, send them over the network,
and convert them back into strings. In the next listing you’ll see how to implement the
receiveData method as well as the send method.

-(IBAction) send:(id)sender {
 NSData * data = [[sendTextField text]
 dataUsingEncoding:NSASCIIStringEncoding];

 [chatSession sendData:data toPeers:peers

Listing 15.3 Implementing the receiveData and send methods

http://www.it-ebooks.info/

318 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
 withDataMode:GKSendDataReliable error:nil];

 NSString * text = [chatTextArea text];
 [chatTextArea setText:[NSString stringWithFormat:
 @"%@Me: %@\n",text,[sendTextField text]]];
 [sendTextField setText:@""];
 [sendTextField resignFirstResponder];
}

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
 (GKSession *)session context:(void *)context
{
 NSString * string = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];
 NSString * text = [chatTextArea text];
 [chatTextArea setText:[NSString stringWithFormat:
 @"%@%@: %@\n",text,[session displayName],string]];
}

The first thing you do is convert the NSString to NSData. This is relatively straightfor-
ward because you use the dataUsingEncoding method of NSString. For almost all
strings, the encoding type is NSASCIIStringEncoding.

 Next, you send the string data to all the connected peers. Only two potential values
can be used with the withDataMode property: GKSendDataReliable and GKSend-
DataUnreliable. The type of data mode you choose depends on the application
you’re creating. It can even be dependent on the type of data you’re sending.

 The GKSendDataReliable value tells the session to keep sending the data until it’s
received. It does this by using TCP/IP. The session knows when the data has been
received because the receiver sends an acknowledgement back to the sender to con-
firm. Another benefit of reliable transmission is that the data is always received in
order. If you send data packet A and then data packet B, the receiver always gets data
packet A before it gets data packet B. The downside of GKSendDataReliable is that it’s
much slower than GKSendDataUnreliable. You use this method of sending when you
want to ensure the data is received and you don’t care about speed. The protocol used
when sending data unreliably is UDP. Examples include sending initial game informa-
tion such as usernames, maps, and stats. This is also good for sending textual data, as
in the chat application.

 The GKSendDataUnreliable value tells the session that you don’t care if the data is
received or in what order. Choosing this route gives you a big improvement in speed
but is a little more complex to use. A good example of when you would use this is in a
game where the position of an object changes quite a bit. Say you have a spaceship
that moves three pixels, sending its position to the other peer every time it moves one
pixel. If the data packet that notifies the peer that the ship has entered the second
pixel gets dropped, but the packet at pixel 3 arrives, it’s not a problem. This is trivial,
and you can move the ship’s position from pixel 1 to pixel 3 without the user ever
knowing. If too many packets get dropped, your application may experience lag.

 Another thing that you must track when sending unreliable data is the ordering of
the packets. In the previous example, if the data packet containing position 1 arrives

Updates user
interface

B

Converts
NSData back
to NSString

C

Updates UID

http://www.it-ebooks.info/

319Example: creating a multiplayer table tennis game

www.it-ebooks.info
before the packet containing position 3, the ship will appear to go backward if you
don’t keep track of the ordering. You can manage the data packet ordering by assign-
ing a unique packet number to each of the data packets that get sent. We’ll discuss
assignment of unique packet numbers in further detail in section 15.3.

 Next, in listing 15.3, you update the interface B. As with most chat applications, it
appends the text of the user who just wrote the message to their chat window. This
allows the user to see the text they just wrote. This section does a couple other things
to clean up, such as clearing the text field where the user typed the text as well as hid-
ing the keyboard.

 To convert the NSData back into an NSString, you must call the initWithData
method of NSString C. Again, you should use NSASCIIStringEncoding for the
encoding property. The last thing to do is update the user interface to display the
received string. You append to the chat window the received string along with the
name of the sender D.

 Now that you’ve seen the basics of connecting two peers, we can show you how to
dig deeper and create a fully functional multiplayer application. The next section will
discuss how to create a simple multiplayer table tennis application using the Game Kit
framework.

15.3 Example: creating a multiplayer table tennis game
Although Game Kit is practical in a wide variety of business applications, it was
intended for gaming. When using Game Kit for this purpose, you must consider quite
a few things. These include game state, multiple packet types, packet frequency, and
size. You’ll learn about all these topics in the following example.

Basic game development design patterns
Programming games for the iPhone and iPad is different than for other applications.
It’s often intimidating for new developers to jump right in and start creating them.
Luckily, some basic design patterns are commonly used. After you’ve wrapped your
head around these patterns, you’ll be able to create a game with any programming
language.

Note that games generally follow a Model-View-Controller design. This means the
interface code, game logic code, and game objects code are all separate. This
approach, although a little challenging to get used to, removes complexity and pro-
motes great code organization.

The driving force behind every game is called the game loop. This loop is usually
invoked during initialization and periodically updates the game state. The rate at
which the loop updates can vary, but it’s normally every hundredth of a second. The
game loop is responsible for applying the game logic to the game objects and calling
the draw methods in the interface to render them to the screen. The entire flow of
the game depends on this loop.

http://www.it-ebooks.info/

320 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
The game you’ll create is a simple table tennis clone, where two users hit a ball back
and forth trying to get it past their opponent. The player who reaches five points first
wins the game. You’ll use the Game Kit framework to establish the connection
between the players and allow them to send data to one another.

15.3.1 Starting the GKTennis project

Begin the project by creating a View-Based Application. Name it GKTennis. Make sure
you add the Game Kit framework to your application, because you’ll use it extensively.
You’ll need to work with only three files: GKTennisViewController.h, GKTennisView-
Controller.m, and GKTennisViewController.xib.

15.3.2 Creating the header file

You’ll start by declaring the properties needed for the application in the GKTennis-
ViewController.h header file. The following listing contains this code.

#import <UIKit/UIKit.h>
#import <GameKit/GameKit.h>

typedef struct {
 CGPoint ballPosition;
 CGPoint paddlePosition[2];
 CGPoint ballVelocity;
 int score[2];
} gameInfo;

typedef enum {
 kStateStartGame,
 kStatePicker,
 kStateMultiplayer,
 kStateMultiplayerCointoss,
 kStateMultiplayerReconnect,
 kStateGameOver
} gameStates;

typedef enum {
 NETWORK_COINTOSS,

Listing 15.4 GKTennisViewController.h

(continued)
Along with a game loop, any multiplayer game on the iPhone or iPad needs to imple-
ment all the networking methods mentioned in the previous section. The combina-
tions of these provide a great starting point for any game.

One problem in multiplayer games involving the game loop is synchronization. How
do you ensure that both players have the same game state? You achieve this by mak-
ing one of the players a server and the other a client. The server maintains the global
game state and sends it to the client. That way, if the client ever gets out of sync,
the next message from the server will get it right back on track.

Defines network
packet to be sent

B

http://www.it-ebooks.info/

321Example: creating a multiplayer table tennis game

www.it-ebooks.info
 NETWORK_MOVE_EVENT,
 NETWORK_BALL_MOVE_EVENT,
 NETWORK_GAME_STATUS
} packetCodes;

typedef enum {
 kServer,
 kClient
} gameNetwork;

@interface GKTennisViewController : UIViewController
 <GKPeerPickerControllerDelegate,GKSessionDelegate> {
 IBOutlet UIView * paddle_1;
 IBOutlet UIView * paddle_2;
 IBOutlet UIImageView * ball;

 IBOutlet UILabel * score_1_label;
 IBOutlet UILabel * score_2_label;
 IBOutlet UILabel * game_label;

 NSInteger gameState;
 NSInteger peerStatus;

 gameInfogameStatus;
 BOOL justCollided;

 GKSession *gameSession;
 int gameUniqueID;
 int gamePacketNumber;
 NSString *gamePeerId;

}

@property(nonatomic, retain) IBOutlet UIView * paddle_1;
@property(nonatomic, retain) IBOutlet UIView * paddle_2;
@property(nonatomic, retain) IBOutlet UIImageView * ball;

@property(nonatomic, retain) IBOutlet UILabel * score_1_label;
@property(nonatomic, retain) IBOutlet UILabel * score_2_label;
@property(nonatomic, retain) IBOutlet UILabel * game_label;

@property(nonatomic) NSInteger gameState;
@property(nonatomic) NSInteger peerStatus;

@property(nonatomic, retain) GKSession *gameSession;
@property(nonatomic, copy) NSString *gamePeerId;

- (void)showPicker;
- (void)sendNetworkPacket:(GKSession *)session packetID:(int)packetID

withData:(void *)data ofLength:(int)length reliable:(BOOL)howtosend;
- (void) resetBall;
@end

We won’t go into much detail about what’s in the header file right now because we’ll
discuss each property and method as you implement them in the code. One section of
code you may find unfamiliar is the group of structs B. Structs are C data struc-
tures for organizing variables and are lightweight in terms of size. The first struct

Implements
delegate
methods

View
outlets

Game state
properties

Networking
properties

http://www.it-ebooks.info/

322 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
maintains most of the information about the state of the game, including the ball
position, ball velocity, paddle positions, and scores. You also use it to send over the
network in order to update each player on the state of the game. The next struct
contains all the possible states of the game. You use these states in the game loop to
control the flow of the game. Following that is a struct containing the various packet
types you send over the network. Even though you’re sending the same data every
time, it’s important to distinguish the event that just occurred. We’ll explain this in
section 15.3.5. Finally, you declare a struct that contains two values. This is used to
determine which peer is the client and which peer is the server.

 Now, you need to create the interface and hook it up to the IBOutlets.

15.3.3 Creating the table tennis interface

The interface for the table tennis game is simple. It consists
of two paddles, a ball, and three labels. Open GKTennisView-
Controller.xib to add these interface elements. Figure 15.2
shows how you should set up your view.

 For the paddles, drag two UIViews onto the main view and
resize them to your liking. Set the background color of each
one to something different. Now, connect each paddle to its
respective IBOutlet that was declared in the header file.

 To create the ball, drag a UIImageView onto the main
view. You may either create your own ball image or use the
one provided with the source code for this section. Make
sure the ball image has been added to the project, and set
the image property of this view to your ball. Finally, connect
the ball to its IBOutlet.

 The last things you need to add to the view are three labels. Two of them are for
the scores, and the other is for displaying game messages. Set the text of the game
label to the string “Touch To Start.” After you connect these labels to their IBOutlets,
save the nib file.

15.3.4 Game initialization

Initializing the game is straightforward. You set all the properties to their default val-
ues and invoke the main game loop. Also, you must synthesize all the properties you
declared in the header file. You don’t need to do anything related to the Game Kit at
this point. The following listing shows the initialization methods.

- (void)viewDidLoad {
 [super viewDidLoad];

 self.gameState = kStateStartGame;

 NSString *uid = [[UIDevice currentDevice] uniqueIdentifier];

Listing 15.5 Game initialization

BGets
device’s

UDID

Figure 15.2
The GKTennis interface

http://www.it-ebooks.info/

323Example: creating a multiplayer table tennis game

www.it-ebooks.info
 gameUniqueID = [uid hash];

 [self resetBall];

 gameStatus.paddlePosition[0].x =
 gameStatus.paddlePosition[1].x = 320/2;

 [NSTimer scheduledTimerWithTimeInterval:0.01 target:self
 selector:@selector(gameLoop) userInfo:nil repeats:YES];
}
- (void) resetBall {
 gameStatus.ballPosition.x = 320/2;
 gameStatus.ballPosition.y = 480/2;
 float isNegative = random() % 2;
 int direction = (isNegative < 1) ? -1 : 1;
 gameStatus.ballVelocity.x = 4 * direction;
 gameStatus.ballVelocity.y = 4 * direction;
 score_1_label.text = [NSString

stringWithFormat:@"%d",gameStatus.score[kServer]];
 score_2_label.text = [NSString

stringWithFormat:@"%d",gameStatus.score[kClient]];
 if(gameSession)
 [self sendNetworkPacket:gameSession packetID:NETWORK_GAME_STATUS
 withData:&gameStatus ofLength:sizeof(gameInfo) reliable:YES];
}

You set the initial game state to kStateStartGame. You’ll see this used later in the
touchesMoved method to show the picker when the user touches the screen. Next, you
get the UDID of the device B and store it. The UDID of each device playing is used to
determine who is the client and who is the server. Next, you call the method D that
resets the ball position to the center of the screen. Don’t worry about the last line,
which sends the network packet—we’ll discuss it a little further in this section. Finally,
you create a timer that runs the game loop every hundredth of a second C.

15.3.5 Setting up the peer picker and getting connected

Now that you’ve initialized the game, it’s time to establish a connection to another
peer. As you did in the previous section, you need to implement the GKPeerPicker-
Controller delegate methods. The next listing shows the implementation of these
methods.

- (void) showPicker {
 self.gameState = kStatePicker;
 GKPeerPickerController * picker =
 [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 [picker show];
}

- (void)peerPickerControllerDidCancel:(GKPeerPickerController *)picker {

 picker.delegate = nil;
 [picker autorelease];

Listing 15.6 Setting up the peer picker and responding to its events

Resets ball
to center

C

dInvokes game timer

http://www.it-ebooks.info/

324 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
 self.gameState = kStateStartGame;
 self.game_label.hidden = NO;
}

(GKSession *)peerPickerController:(GKPeerPickerController *)picker
 sessionForConnectionType:(GKPeerPickerConnectionType)type {
 GKSession *session = [[GKSession alloc] initWithSessionID:@"GKTennis"
 displayName:nil sessionMode:GKSessionModePeer];
 return [session autorelease];
}

- (void)peerPickerController:(GKPeerPickerController *)picker
 didConnectPeer:(NSString *)peerID toSession:(GKSession *)session {
 self.gamePeerId = peerID;
 self.gameSession = session;
 self.gameSession.delegate = self;
 [self.gameSession setDataReceiveHandler:self withContext:NULL];

 [picker dismiss];
 picker.delegate = nil;
 [picker autorelease];

 self.gameState = kStateMultiplayerCointoss;
}

The showPicker method is called in the touchesMoved method when the state of the
game is kStateStartGame. It then shows the peer picker. Notice that you’re not releas-
ing the peer picker after showing it, as you would with an alert or action sheet. The rea-
son is that it’s up to the delegate methods to release the picker when they finish using it.

 The peerPickerControllerDidCancel: method is straightforward. It fires when
the user presses the Cancel button on the peer picker. At this point, you set the game
state back to kStateStartGame and show the Touch To Start label.

 As in the previous section, you create a custom session called GKTennis for the
game and return it.

 The last method fires when a successful connection has been made to a peer. At
this point, you retain the session and peer ID as well as set the delegate to the class.
Finally, you hide the peer picker and set the game state to kStateMultiplayer-
Cointoss. This state is used in the game loop method to allow the peers to determine
who is the client and who is the server. The last methods related to networking that
must be implemented are the send and receive methods.

15.3.6 Implementing the send and receive methods

The send and receive methods are a crucial part of the application because they do
much of the heavy lifting. They’re also where most of the complexity associated with
networking lies.

 You can implement the send method in any number of ways. Apple has created a
sample send method in the GKTanks application that can be used in most situations.
Here, you take that method and use it directly. In general, send takes in some data,
adds a header and packet ID, and sends the data over the network. The following list-
ing shows how this method is implemented.

http://www.it-ebooks.info/

325Example: creating a multiplayer table tennis game

www.it-ebooks.info
- (void)sendNetworkPacket:(GKSession *)session packetID:(int)packetID
 withData:(void *)data ofLength:(int)length reliable:(BOOL)howtosend {

 static unsigned char networkPacket[1024];
 const unsigned int packetHeaderSize = 2 * sizeof(int);

 if(length < (1024 - packetHeaderSize)) {
 int *pIntData = (int *)&networkPacket[0];
 pIntData[0] = gamePacketNumber++;
 pIntData[1] = packetID;
 memcpy(&networkPacket[packetHeaderSize], data, length);

 NSData *packet = [NSData dataWithBytes: networkPacket length:
 (length+8)];
 if(howtosend == YES) {
 [session sendData:packet toPeers:[NSArray
 arrayWithObject:gamePeerId]
 withDataMode:GKSendDataReliable error:nil];
 } else {
 [session sendData:packet toPeers:[NSArray
 arrayWithObject:gamePeerId]
 withDataMode:GKSendDataUnreliable error:nil];
 }
 }
}

This code may look frightening if you’re unfamiliar with the C programming lan-
guage. Although the code is a little complex, you have to write it only once, because
most applications can use this method completely unchanged. We’ll give you a high-
level explanation of what’s going on.

 First, you declare a char array. You copy data into this array to be sent over the net-
work. Next, you add two ints to the header. The first int is a unique packet number
that gets incremented every time you send a packet. This is useful in the receive
method in case the packets are received out of order. The second is the type of packet
you’re sending; you saw the various packet types declared in the header file.

 Now, the data you passed in to the send method is copied to the packet B. Follow-
ing that, the char array is converted to an NSData object in preparation to be sent.
Finally, the data is sent C.

 The receive method must be implemented in the exact opposite manner. After
unpacking the data, receive must determine what to do based on the packet ID that
was sent. You’ll see this handled in the following listing as a switch statement.

- (void)receiveData:(NSData *)data fromPeer:(NSString *)peer
 inSession:(GKSession *)session context:(void *)context {
 static int lastPacketTime = -1;
 unsigned char *incomingPacket = (unsigned char *)[data bytes];
 int *pIntData = (int *)&incomingPacket[0];

Listing 15.7 sendNetworkPacket method

Listing 15.8 The receiveData method

BCopies data to
char array

Sends dataC

http://www.it-ebooks.info/

326 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
 int packetTime = pIntData[0];
 int packetID = pIntData[1];
 if(packetTime < lastPacketTime && packetID != NETWORK_COINTOSS) {
 return;
 }

 lastPacketTime = packetTime;
 switch(packetID) {
 case NETWORK_COINTOSS:
 {
 int coinToss = pIntData[2];
 if(coinToss > gameUniqueID) {
 self.peerStatus = kClient;
 }
 self.game_label.hidden = YES;
 }
 break;
 case NETWORK_GAME_STATUS:
 {
 gameInfo *gs = (gameInfo *)&incomingPacket[8];
 memcpy(&gameStatus, gs, sizeof(gameInfo));
 score_1_label.text = [NSString
 stringWithFormat:@"%d",gameStatus.score[kServer]];
 score_2_label.text = [NSString
 stringWithFormat:@"%d",gameStatus.score[kClient]];
 }
 break;
 case NETWORK_MOVE_EVENT:
 {
 gameInfo *gi = (gameInfo *)&incomingPacket[8];
 gameStatus.paddlePosition[1-self.peerStatus].x =
 gi->paddlePosition[1-self.peerStatus].x;

 }
 break;
 case NETWORK_BALL_MOVE_EVENT:
 {
 gameInfo * gi = (gameInfo *)&incomingPacket[8];
 gameStatus.ballPosition.x = gi->ballPosition.x;
 gameStatus.ballPosition.y = gi->ballPosition.y;
 gameStatus.ballVelocity.x = gi->ballVelocity.x;
 gameStatus.ballVelocity.y = gi->ballVelocity.y;
 break;
 }
 }
}

As noted before, the first part of this method reverses what you did in the send
method: it converts the NSData back into an array of chars and retrieves the header
data. Next, you determine whether the packet number is less than the number of
the previous packet. If so, you ignore it because you’re interested in only the most
recent data.

 If the packet is current, you use a switch statement to determine what to do with
the data. The switch statement is based on the packet ID specified in the header file.

Determines client
and server

B

Updates
game state

C

Updates
paddle location

D

Updates
ball location

e

http://www.it-ebooks.info/

327Example: creating a multiplayer table tennis game

www.it-ebooks.info
 At the beginning of the game, players send a coin-toss packet that contains their
UDID. The code compares the UDIDs and determines who is the client and who is the
server B.

 The next packet type is the game status packet. This type of packet is sent reliably
and is used when you want to push the entire state of the game from the server to the
client C. When this packet is sent, the client will memcpy its contents to its local copy
of the game state.

 The next packet is sent every time a player moves their paddle D. You use
1-self.peerStatus to set the position of the opponent.

 The final packet denotes the ball’s location E. It’s sent every time the ball collides
with the wall or a paddle.

 Now that all the heavy lifting is out of the way, it’s time to implement the game
loop method.

15.3.7 The game loop

The game loop is the driving force behind the application. This method is called fre-
quently and is responsible for modifying game variables, updating the interface, and
making sure the peers are in sync. Your game loop will generally be the largest
method in your application. The next listing shows the code used for the game loop.

-(void) gameLoop {

 switch (self.gameState) {
 case kStatePicker:
 case kStateStartGame:
 break;
 case kStateMultiplayerCointoss:
 {
 [self sendNetworkPacket:self.gameSession
 packetID:NETWORK_COINTOSS withData:&gameUniqueID
 ofLength:sizeof(int) reliable:YES];
 self.gameState = kStateMultiplayer;
 }
 break;
 case kStateMultiplayer:
 {
 BOOL collision = NO;
 if(self.peerStatus == kServer) {
 CGPoint bottomRight =
 CGPointMake(ball.frame.origin.x +
 ball.frame.size.width, ball.frame.origin.y +
 ball.frame.size.height);

 if(gameStatus.ballPosition.y <= 0) {
 gameStatus.score[kClient]++;
 [self resetBall];
 return;
 }

Listing 15.9 The game loop

Detects collisionB

http://www.it-ebooks.info/

328 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
 if(gameStatus.ballPosition.y >= 480) {
 gameStatus.score[kServer]++;
 [self resetBall];
 return;
 }

 if(ball.frame.origin.x <= 0 || bottomRight.x >= 320) {
 gameStatus.ballVelocity.x *= -1;
 collision = YES;
 }

 if(collision)
 [self sendNetworkPacket:gameSession
 packetID:NETWORK_BALL_MOVE_EVENT
 withData:&gameStatus
 ofLength:sizeof(gameInfo)
 reliable:NO];

 if((CGRectIntersectsRect(ball.frame, paddle_1.frame) ||
 CGRectIntersectsRect(ball.frame, paddle_2.frame)) &&
 !justCollided) {
 gameStatus.ballVelocity.y *= -1;
 collision = YES;
 justCollided = YES;
 [self performSelector:@selector(resetCollision)
 withObject:nil afterDelay:1.0];
 }

 paddle_2.center = CGPointMake(gameStatus.paddlePosition[1-
 self.peerStatus].x, paddle_2.center.y);

 } else {
 paddle_1.center = CGPointMake(gameStatus.paddlePosition[1-
 self.peerStatus].x , paddle_1.center.y);
 }
 gameStatus.ballPosition.y = gameStatus.ballPosition.y +
 gameStatus.ballVelocity.y;
 gameStatus.ballPosition.x = gameStatus.ballPosition.x +
 gameStatus.ballVelocity.x;

 ball.center = CGPointMake(gameStatus.ballPosition.x,
 gameStatus.ballPosition.y);
 if(gameStatus.score[kServer] >= 5) {
 self.game_label.text = @"Player 1 wins!";
 self.game_label.hidden = NO;
 self.gameState = kStateGameOver;
 [self sendNetworkPacket:gameSession
 packetID:NETWORK_GAME_STATUS
 withData:&gameStatus
 ofLength:sizeof(gameInfo)
 reliable:YES];
 return;
 }

 if(gameStatus.score[kClient] >= 5) {
 self.game_label.text = @"Player 2 wins!";
 self.game_label.hidden = NO;
 self.gameState = kStateGameOver;

Updates ball
position for
other peer

C

DUpdates local
ball position

Checks winning
conditionsE

http://www.it-ebooks.info/

329Example: creating a multiplayer table tennis game

www.it-ebooks.info
 [self sendNetworkPacket:gameSession
 packetID:NETWORK_GAME_STATUS
 withData:&gameStatus
 ofLength:sizeof(gameInfo)
 reliable:YES];
 return;
 }
 }
 break;
 default:
 break;
 }
}

The first case occurs only once per game, when the game is in the coin-toss state. In
this state, each player sends their UDID to the other. Immediately after this, the game
state is set to multiplayer, and the game begins.

 The next case gets into the game logic B. You first determine whether you’re in the
game loop of the client or the server. Following that is collision detection to determine
if the ball hits a paddle, a side wall, or a back wall to score a point. Note that you set the
collision Boolean to NO. You use this to determine when to send the ball’s location to
the other peer C. Because both peers are running different timers, there’s a good
chance that the ball’s location could get out of sync. To combat this, the server sends
the ball’s current position to the client every time the ball collides with something.

 One thing you may think of doing here is sending the ball’s position on every step
of the timer. This would be a bad approach, because it would quickly flood the net-
work, causing poor performance for the client. You must always be clever about when
to send network packets. Try to send them as far apart as possible while still maintain-
ing synchronization between the peers. For the example, you send a packet every time
the ball changes direction, which is about once every half second.

 Both the client and the server update the position of the ball on the screen D. Fol-
lowing this, the winning conditions are checked to see if either player has scored five
points E. If this is the case, you end the game.

 Although the code for this game loop could be improved quite a bit to make the
game more interesting, it does a good job of showing when to send network packets.
Because you send network data only when the ball collides with something, this loop
may run a couple hundred times before the client is updated. The last part of the
game involves user interaction by implementing the touchesMoved method.

15.3.8 User interaction

As with most applications, you’ll handle the user interaction by implementing the
touchesBegan and touchesMoved methods. In these methods, you’ll capture the user’s
touch location, move the paddle to that location, and send that location to the other
peer. The following listing shows the code for these methods.

http://www.it-ebooks.info/

330 CHAPTER 15 Peer-to-peer connections using Game Kit

www.it-ebooks.info
-(void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 [self touchesMoved:touches withEvent:event];
}

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 switch (self.gameState) {
 case kStateStartGame:
 {
 self.game_label.hidden = YES;
 [self showPicker];
 }
 break;
 case kStateMultiplayer:
 {
 UITouch * t = [[event allTouches] anyObject];
 CGPoint paddlePoint = [t locationInView:self.view];

 if(self.peerStatus == kServer) {
 paddle_1.center = CGPointMake(paddlePoint.x,
 paddle_1.center.y);
 gameStatus.paddlePosition[self.peerStatus].x =
 paddle_1.center.x;
 } else {
 paddle_2.center = CGPointMake(paddlePoint.x,
 paddle_2.center.y);
 gameStatus.paddlePosition[self.peerStatus].x =
 paddle_2.center.x;
 }
 [self sendNetworkPacket:gameSession
 packetID:NETWORK_MOVE_EVENT withData:&gameStatus
 ofLength:sizeof(gameStatus) reliable: NO];
 }
 break;
 case kStateGameOver:
 exit(0);
 break;
 default:
 break;
 }
}

The first thing you see is common in many applications. Because the touchesBegan
and touchesMoved methods do the exact same thing, you have one call the other.

 As in most of the game methods, the game state is determined at the beginning of
this method B. That’s because you want to do different things based on the state of
the game. If you’re at the beginning of the game, and the user taps the screen, the
method showPicker is called to display the peer picker to the user. At that point, the
Game Kit code takes over until a connection is established.

 You next get the location on the screen where the user touched C. The x coordi-
nate of this touch is used to move the player’s paddle. As the user drags their finger on
the screen, their paddle moves along with it.

Listing 15.10 Methods for user interaction

Determines
game stateB

CCaptures touch
location;

moves paddle

DSends network packet to
update other player

http://www.it-ebooks.info/

331Summary

www.it-ebooks.info
 After each movement of the paddle, you must notify the other player of its new
location D. Notice that you send the data unreliably; this is because you’re sending so
many packets to the other user that you don’t care if they don’t receive a few of them.

 The game you’ve just created is nowhere near complete, but it provides you with
enough code to understand how Game Kit should be used in a multiplayer game. You
could take this game further by adding better graphics as well as basic physics for the
collisions.

15.4 Summary
The Game Kit framework provides a high-level interface to create fully networked
applications. It handles every step of the process, including finding peers, establishing
a connection, and transferring various types of data between them.

 You must implement three things when creating any application that uses Game
Kit for networking. The first is the set of delegate methods for the peer picker. These
methods respond to various events, including finding peers and selecting which ones
you want to connect to. The next thing is the set of delegate methods for the session.
These methods allow you to create custom sessions as well as keep track of all the ses-
sions currently connected. The last methods you must consider are send and receive.
They’re responsible for all the data that’s transferred over the network.

 As you saw in section 15.3, Game Kit is easy to integrate into a game application.
You can use the basic Game Kit methods along with a game loop to create a simple
template for any multiplayer game.

 With the networking code behind you, you’re ready to learn how to communicate
with the mother ship. The next chapter will discuss how to use the Event Kit.

http://www.it-ebooks.info/

www.it-ebooks.info
Using Event Kit
on the iPhone and iPad
With the Calendar app in iOS 4, iPhone or iPad owners can easily consolidate their
Gmail account, Microsoft Exchange account, Mobile Me account, and other calen-
dar accounts on the same device. The Calendar’s database can be accessed within
your application through Event Kit frameworks. The Event Kit frameworks are
made up of two frameworks: the Event Kit framework and the Event Kit UI frame-
work. Together, they help your application access the Calendar’s database from a
high level. Previously, in chapter 9, we covered the Address Book frameworks on
iOS. The Event Kit frameworks are quite similar to the Address Book API in a way.

 Imagine you can build a birthday event planner application and have every
friend’s birthday party plan automatically added to the Calendar’s database by

This chapter covers
 Overview of the Event Kit frameworks

 Adding an event programmatically

 Using Event Kit view controllers

 Fetching events by using Grand Central Dispatch
332

http://www.it-ebooks.info/

333An overview of the Event Kit frameworks

www.it-ebooks.info
clicking one button. In this chapter, we’ll first provide some basic references on the
Event Kit framework with the Birthday application, and then we’ll show another Event
application to fetch and display the existing events from the Calendar’s database to
the table view controller, with the help of the Event Kit UI framework. Finally, with the
help of Grand Central Dispatch (GCD) from iOS 4, we’ll demonstrate an improved
technique for fetching data from Calendar’s database.

16.1 An overview of the Event Kit frameworks
Calendar apps coming with iOS on iPhone and iPad are convenient for several reasons
(see figure 16.1). They allow users to check out their schedule on the go and consoli-
date all the information into one Calendar database.

 In order to access the Calendar database, Apple provides a convenient API in iOS 4
called Event Kit. There are two frameworks for Event Kit, as we mentioned earlier.
The Event Kit framework gives you access to insert and delete an event in the Calen-
dar’s database. It’s high-level API access to the Calendar database, and the best part is
that any changes made to the Calendar will be synced automatically, so you can have
peace of mind when you’re writing the code for Calendar access. The Event Kit UI
framework provides the handy interfaces to display and edit the Calendar’s database
with the same view controller you’re already familiar with by using the Calendar app
on the iPhone or iPad.

16.1.1 Adding Event Kit frameworks to your project

In order to use the Event Kit frameworks, you first need to add the existing frame-
works EventKit.framework and EventKitUI.framework into the project. Head over
to Xcode, highlight the top-level Project node in the project navigator tree, and on
the right side view choose a target; then select the Build Phases tab. Under this tab is

Figure 16.1 Calendar app on iPhone and iPad

http://www.it-ebooks.info/

334 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
an entry called Link Binary with Libraries.
Click the + button, and you’ll see a window
with the entire list of available frameworks
under the current SDK, as shown in
figure 16.2. Navigate to EventKit.framework
and click the Add button. You’ll see a new
framework added to your project. Repeat the
same process for EventKitUI.framework.

 After adding the required frameworks
into the project, you also need to include two
files to the header file you wish to use Event
Kit, as follows:

#import <EventKit/EventKit.h>
#import <EventKitUI/EventKitUI.h>

With the Event Kit frameworks added into
the project, you can start to use them for
accessing Calendar’s database from the
application. First, we’ll look at the Event Kit
classes.

16.1.2 Event Kit classes

Inside the powerful Event Kit API are a handful of classes that are like useful friends;
figure 16.3 gives you a general idea about the relationships among these important
classes.

 As you can see from figure 16.3, EKEventStore is the key object here, and it’s the
connection to the Calendar database. You can use the following code snippet to ini-
tialize an EKEventStore object for Calendar data access:

EKEventStore *store = [[EKEventStore alloc] init];

Note that this initial method may consume a lot of time, so it’s a good practice to keep
around that EKEventStore object in your program for all data access.

EKEventStore

EKRecurrenceRule

EKAlarm

EKEvent

EKCalendar

EPParticipant

Figure 16.3
The Event Kit class structure

Figure 16.2 Add the Event Kit framework
from the project panel.

http://www.it-ebooks.info/

335Adding new events to Calendar programmatically

www.it-ebooks.info
EKEvent is the object representing an event, which includes some import proper-
ties, as listed in table 16.1.

After the EKEventStore object is initialized, the Calendar is ready for you to add or
delete events. You can create an event object and add it to the Calendar’s database
programmatically. Alternatively, you can use the Event Kit UI framework for event view
controllers, which is a great choice for calendaring related user interaction. The Event
Kit UI framework contains two types of view controllers for manipulating events:

 EKEventViewController—Use if you have an existing event you want to display
or allow the user to edit

 EKEventEditViewController—Use if you allow the user to create, edit, or
delete events

We’ll talk about how to do this in section 16.3. Next, let’s look at how to add a new
event to Calendar programmatically with the Event Kit framework.

16.2 Adding new events to Calendar programmatically
At the beginning of this chapter, we mentioned a birthday application example. In
this section, you’ll build a small application that you can use to add a friend’s birthday
party planner into Calendar’s database by clicking a button. The user interface looks
like figure 16.4.

 Let’s get started.

Table 16.1 EKEvent’s property table

Property Details

title Title of the event; NSString type

location Location of the event; NSString type

allday BOOL type, indicating the event is an all-day event

startDate Start date of the event

endDate End date of the event

calendar Calendar for a new event, EKCalendar type

attendees Array of participants

alarms Array of EKAlarm objects

eventIdentifier Unique identifier for an event; NSString type

http://www.it-ebooks.info/

336 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
16.2.1 Adding Event Kit frameworks to the Birthday application

Fire up Xcode, and create a new project from the iOS application template: select
View-Based Application, and select Device Family of iPhone. Name the application
Birthday. Add the Event Kit and Event Kit UI frameworks to the project (as shown in
figure 16.2); then include them in BirthdayViewController.h, as noted in section
16.1.1. Add a new method to the view controller:

-(IBAction)addEventToCalendar:(id)sender;

Click BirthdayViewController’s nib file to bring up the Interface Builder. You want
to throw in a button for adding a new event to Calendar; don’t forget to hook up the
button to the method you created for adding an event.

 Go back to Xcode, and select Birthday under Targets. Navigate to Project >
Upgrade Current Target for iPad, and create the universal application for the iPhone
and iPad.

16.2.2 Adding an event to Calendar

Now it’s time to add code to BirthdayViewController.m. The process to create a new
event and add it to the Calendar database is shown in the following listing.

-(IBAction)addEventToCalendar:(id)sender
{
EKEventStore *store = [[EKEventStore alloc] init];

Listing 16.1 Adding a new event to Calendar’s database

Figure 16.4 Birthday application
launching on the iPhone and IPad

Init event
store

B

http://www.it-ebooks.info/

337Adding new events to Calendar programmatically

www.it-ebooks.info
EKEvent *myEvent = [EKEvent eventWithEventStore: store];
myEvent.title = @”Amy’s Birthday”;
myEvent.location = @”BBQ House”;
myEvent.startDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24];
myEvent.endDate = [NSDate dateWithTimeIntervalSinceNow:60*60*26];
myEvent.calendar = store.defaultCalendarForNewEvents;
EKAlarm *reminder = [EKAlarm alarmWithRelativeOffset:-2*60*60];
[myEvent addAlarm:reminder];
NSError *error;
BOOL saved = [store saveEvent:myEvent span:EKSpanThisEvent
 error:&error];
if (saved) {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Amy's Party"
 message:@"Saved to Calendar" delegate:self
 cancelButtonTitle:@"Right On!"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }
}

First, you initialize the event store with [[EKEventStore alloc] init] B. Then, you
create a new event from the event store with [EKEvent eventWithEventStore:

store] C, followed by setting properties for the birthday party’s title, location, start-
Date, endDate, and default Calendar and configuring a reminder alarm that will trig-
ger two hours before the event’s start time. In the code, the start time is 24 hours from
now and the event will end after 2 hours. Finally, you save that event to the event store
with method [store saveEvent:myEvent span:EKSpanThisEvent error:&error] D
and give feedback to the user when the event is saved to Calendar successfully. That’s
all you need to do to add a new event.

NOTE At the time of writing, the iOS SDK doesn’t include the Calendar app
on the Simulator. In order to test this application, you need to use a real
device: your iPhone, iPod Touch, or iPad.

Build and run this application on your device. You should have a Birthday application
similar to the one shown in figure 16.4. Click the Add to Calendar button to add a new
event to Calendar. You should see the alert view informing you that the new birthday
party event was added to Calendar successfully.

 Go to the Calendar application on your device. You should see the new event
appear on your schedule for tomorrow (figure 16.5).

 You’ve learned how to create a new event and add it to the Calendar database.
Next, we’ll discuss how to add or edit an event by using the Event Kit UI framework.

C
Create
new
event

Save eventD

http://www.it-ebooks.info/

338 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
16.3 Creating an event with the Event Edit view controller
Previously, we focused on how to add a new event to Calendar’s database programmat-
ically. With the Event Kit UI framework, you can use the modal view controller to allow
the user to add and edit events with a few lines of codes. As explained in section 16.1,
EKEventEditViewController is for new events, whereas EKEventViewController is
for existing events. First, let’s learn how to create a new event from EKEventEditView-
Controller.

 Follow the same steps as in section 16.2.1 and add the Event Kit frameworks to a
simple view-based project. With the necessary frameworks included, the project is
ready for the Event Edit view controller.

 In order to allow the user to add a new event to the calendar you’ll use the
EKEventEditViewController and EKEventEditViewController’s delegate. The Event
Edit view controller must contain the eventStore property. The eventStore is an
EKEventStore object representing the Calendar database. In the code example, you’ll
use the default Calendar to save the new event.

 The Event Edit view controller can be presented as a modal view controller; the
delegate method eventEditViewController:didCompleteWithAction: lets you dis-
miss the Event Edit view controller once the user finishes editing or cancels the cur-
rent work:

- (void)eventEditViewController:(EKEventEditViewController *)controller
didCompleteWithAction:(EKEventEditViewAction)action {
 [self dismissModalViewControllerAnimated:YES];
}

Now let’s continue the example. Add the Event Edit view controller to the Simple-
EventViewController in the application.

Figure 16.5 The Birthday
application successfully
added the new event to
the Calendar.

http://www.it-ebooks.info/

339Creating an event with the Event Edit view controller

www.it-ebooks.info
 In the header file, add EKEventEditViewDelegate and a new method for event
editing, as shown in the following listing.

#import <UIKit/UIKit.h>
#import <EventKitUI/EventKitUI.h>
#import <EventKit/EventKit.h>
@interface SimpleEventViewController : UIViewController
<EKEventEditViewDelegate> {
 EKEventStore *eventStore;
 EKCalendar *defaultCalendar;
}
@property (nonatomic, retain) EKEventStore *eventStore;
@property (nonatomic, retain) EKCalendar *defaultCalendar;

-(IBAction) addEvent:(id)sender;
@end

The code in listing 16.2 is similar to the header file in the birthday party planner in
section 16.2. Make sure you have a button linked to the addEvent method from Inter-
face Builder. Next, add the code from the following listing to implement the Event
Edit view controller

@implementation SimpleEventViewController
@synthesize eventStore;
@synthesize defaultCalendar;

- (void)viewDidLoad {
 self.eventStore = [[EKEventStore alloc] init];
 self.defaultCalendar = [self.eventStore defaultCalendarForNewEvents];
 [super viewDidLoad];
}

- (void)dealloc {
 [eventStore release];
 [defaultCalendar release];
 [super dealloc];
}

-(IBAction) addEvent:(id)sender {
 EKEventEditViewController *addController =
 [[EKEventEditViewController alloc] initWithNibName:nil bundle:nil];
 addController.eventStore = self.eventStore;
 addController.editViewDelegate = self;
 [self presentModalViewController:addController animated:YES];
 [addController release];
}

- (void)eventEditViewController:(EKEventEditViewController *)controller
 didCompleteWithAction:(EKEventEditViewAction)action {
 NSError *error = nil;
 EKEvent *thisEvent = controller.event;

Listing 16.2 SimpleEventViewController header file

Listing 16.3 Using EventEditViewController and delegate to add a new event

Init Event Store
and Calendar

B

Release
memory

C

Create
event

D

E
Dismiss view

controller

http://www.it-ebooks.info/

340 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
 switch (action) {
 case EKEventEditViewActionCanceled:
 break;
 case EKEventEditViewActionSaved:
 [controller.eventStore saveEvent:thisEvent

span:EKSpanThisEvent error:&error];
 break;
 default:
 break;
 }

 [controller dismissModalViewControllerAnimated:YES];
}

The access to Calendar’s database is done by a few lines of code. You initialize the
event store [[EKEventStore alloc] init] and define Calendar for data access
[self.eventStore defaultCalendarForNewEvents] B. As mentioned earlier, it’s a
good practice to keep one event store around for all the data access. dealloc C
reminds you to release the memory when the view controller is released. The new
thing you learned for using Event Edit view controller is all in addEvent D and the
delegate method -(void)eventEditViewController:(EKEventEditViewController

*)controller didCompleteWithAction:(EKEventEditViewAction)action E. You
define the Event Edit view controller’s event store and delegate and then present the
modal view controller [self presentModalViewController:addController

animated:YES] D. When the user finishes editing
the new event, the method [controller

dismissModalViewControllerAnimated:YES] E will
dismiss the edit view and save the new event to the
Calendar.

 Now let’s build and run it. When the application
launches, click the Add button to present the Event
Edit view controller. As you can see in figure 16.6,
the new event’s Title, Location, Starts, Ends, Repeat,
and Alert options are editable.

 Congrats! You just created a new event and saved
it successfully to the local Calendar with the Event
Kit UI framework! Now let’s talk about how to fetch
the existing events from the Calendar’s database.

16.4 Fetching events
Previously, you learned how to create an event with
EKEventEditViewController. The next step is to get
the existing events from Calendar’s database.

 First, you need to learn how to access Calendar’s
database to fetch the existing events. It’s time to
introduce a new friend, the predicate.

Figure 16.6
EventEditViewController
presented as a modal view controller

http://www.it-ebooks.info/

341Fetching events

www.it-ebooks.info
16.4.1 Fetching events with the predicate

A common task is to find out all the events within a certain time period. For example,
the user wants to figure out what’s on their Calendar for the next 24 hours. This task
can be defined as a predicate in the following listing. Once you have the predicate,
you can use a method called eventsMatchingPredicate in the event store to search
for qualified events; the return of the search results will be an array of existing events.

NSDate *startDate = [NSDate date];
NSDate *endDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24];
EKEventStore *defaultCalendar = [[EKEventStore alloc] init];
NSArray *calendarArray = [NSArray arrayWithObject:defaultCalendar];
NSPredicate *predicate =
 [defaultCalendar predicateForEventsWithStartDate:startDate
 endDate:endDate calendars:calendarArray];
NSArray *events = [defaultCalendar
 eventsMatchingPredicate:predicate];

TIP Because the eventsMatchingPredicate method is running synchro-
nously, you may not want to run it on your application’s main thread
because that would block the UI until the operation is done. For example, if
you’re fetching events from last month, you may want to have a spinner ani-
mation indicating the waiting time. The background thread will take care of
the data fetching asynchronously. We’ll cover how to do this with GCD in the
next section.

You create the predicate with the method [defaultCalendar predicateForEvents-
WithStartDate:startDate endDate:endDate calendars:calendarArray] B. In the
events array from [defaultCalendar eventsMatchingPredicate:predicate] C,
each object is an object of EKEvent.

 The application you’re about to build will show you how to fetch all the existing
events in your Calendar from the app and display the events array as the table view’s
data. Each of the rows in the table view will be an event’s title. When you select a row
by tapping, the event’s detail view controller will get pushed onto the navigation con-
troller’s stack. Sound good?

16.4.2 Displaying events with Event view controller

Let’s create a new project with the Navigation-based application template. Name it
Event. First, let’s add the two Event Kit frameworks into the project. You learned how
to do so in section 16.1.

 Inside the RootViewController, define that the table view’s data equals the events
array from Calendar’s database. Single-click the file RootViewController.h, and add
the changes from the following listing.

Listing 16.4 Using NSPredicate to search for existing events in the device’s Calendar

Create
predicate

B

Store data
to array

C

http://www.it-ebooks.info/

342 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info

#import <UIKit/UIKit.h>
#import <EventKit/EventKit.h>
#import <EventKitUI/EventKitUI.h>
@interface RootViewController : UITableViewController {
 EKEventStore *eventStore;
 EKCalendar *defaultCalendar;
 NSArray *events;
}
@property (nonatomic, retain) NSArray *events;
@property (nonatomic, retain) EKEventStore *eventStore;
@property (nonatomic, retain) EKCalendar *defaultCalendar;

-(NSArray *)fetchEventsForTommorrow;
@end

The method in listing 16.5 is for the table view’s data, which will be fetched by predi-
cate from Calendar’s database.

 Now you’ll implement the RootViewController.m file. First, fetch the events array
before the table view is loaded inside the method viewWillAppear:; then store the
data in the events array.

 Single-click the file RootViewController.m, and then add the new method from
the next listing.

#import "RootViewController.h"
@implementation RootViewController
@synthesize events;
@synthesize eventStore, defaultCalendar;

-(NSArray *)fetchEventsForTommorrow {
 NSDate *startDate = [NSDate date];
 NSDate *endDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24];
 NSArray *calendarArray = [NSArray arrayWithObject:defaultCalendar];
 NSPredicate *predicate = [self.eventStore
 predicateForEventsWithStartDate:startDate
 endDate:endDate calendars:calendarArray];
 NSArray *eventList = [self.eventStore
 eventsMatchingPredicate:predicate];
 return eventList;
}

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 self.title = @"Event List";
 self.eventStore = [[EKEventStore alloc] init];
 self.defaultCalendar = [self.eventStore defaultCalendarForNewEvents];
 self.events = [NSArray arrayWithArray:[self fetchEventsForTommorrow]];
}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

Listing 16.5 RootViewController’s header file

Listing 16.6 Fetch tomorrow’s events from Calendar and display the details

Fetch data
with predicate

B

http://www.it-ebooks.info/

343Fetching events

www.it-ebooks.info
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [events count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 EKEvent *myEvent = (EKEvent *)[self.events
 objectAtIndex:indexPath.row];
 cell.textLabel.text = myEvent.title;
 return cell;
}

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
 (NSIndexPath *)indexPath {
 EKEvent *selectEvent = (EKEvent *)[self.events
 objectAtIndex:indexPath.row];
 EKEventViewController *eventViewController = [[EKEventViewController
 alloc] init];
 eventViewController.event = selectEvent;
 eventViewController.allowsEditing = NO;
 [self.navigationController pushViewController:eventViewController
 animated:YES];
 [eventViewController release];
}

The method fetchEventsForTommorrow B fetches the events from the Calendar data-
base and returns them as an array. It’s called in the method viewWillAppear. Each
time the Root view controller’s view appears, it will fetch the next day’s events from
the device’s Calendar and store the data into the array eventList. With the events
data in an array, you define the total number of rows as the count of events. Then you
get the event in each row in C and pass the event’s title to the cell’s text. The code in
D is almost self-explanatory. You get the selected event, define the event on the view
controller, and present the Event view controller by pushing it on the Navigation con-
troller. (We covered the view controllers in chapter 6.) Save all the changes, and build
the application.

 You may define the Event view controller’s property allowEditing = YES. Doing so
will allow the user to edit the existing event.

 Save all the changes. Try to build and run the app on your device. You should be
able to fetch all the existing events for the next day. The app launches in table view
format, as shown in figure 16.7. As you can see inside my Calendar, I have a few events
coming up. Tap each event; the details appear in the Event view controller.

Display
event’s title

C

Event view
controllerD

http://www.it-ebooks.info/

344 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
TIP Make sure you have some events scheduled in Calendar during the test.
That’s how the application will get the events’ data.

In this section, you learned how to fetch existing events from the Calendar database
and then how to display the events’ details in the application with the Event view con-
troller. As noted, the fetching method isn’t performed asynchronously. In the next
section, you’ll use an improved method and use Grand Central Dispatch to fetch the
existing events asynchronously.

16.5 Fetching events with GCD
Grand Central Dispatch (GCD) was introduced in Mac OS X Snow Leopard as a com-
prehensive library for concurrent code execution on multicore hardware technology.
Now it’s available on iOS 4 as a C API. Although multicore isn’t available on most cur-
rent iOS devices (the iPad 2 has a multicore processor), GCD helps the application to
run faster, more efficiently, and asynchronously. Concurrency is an advanced topic,
and we don’t plan to dive into this concept in this chapter. You can find more informa-
tion on the Concurrency Programming Guide from the iOS developer website. Let’s
look at GCD and use it to fetch events.

16.5.1 Grand Central Dispatch overview

GCD is available to any application, and there’s no need to add in any other frame-
work. Imagine that you have queues of operations, and each queue is running in its
own thread separately on the system. You don’t have to worry about when to run the
time-consuming operations. The system will take care of the order and make sure that
the queue’s operations get done.

 In order to keep the application running responsively, the key concept is don’t block
the main thread. Throw the time-consuming tasks, such as fetching a list of events from
the Calendar’s database or downloading an image file from the internet, to the

Figure 16.7 Fetching and
displaying events from the
device’s Calendar database

http://www.it-ebooks.info/

345Fetching events with GCD

www.it-ebooks.info
background thread. Then update the UI after the work in the background is done and
the data is ready to display.

 How do you accomplish this task with GCD? As it turns out, it’s pretty easy. Call the
method dispatch_async() to submit a queue of operations (a block of code) to the
main queue and execute the task on a dispatch queue asynchronously; then tell the
system to update the UI. You’ve already learned how to use blocks in the Core Anima-
tion API in chapter 13.

 The definition for dispatch_async() is listed as

void dispatch_async(dispatch_queue_t queue,
dispatch_block_t block);

How do you create a queue or get the main queue? Here are some common methods
related to GCD:

 Creating a queue—dispatch_queue_t dispatch_queue_create(const char
*label, NULL);

 Releasing a queue—void dispatch_release(dispatch_queue_t);

 Getting the main queue—dispatch_queue_t dispatch_get_main_queue();

Don’t forget to release the queue when it’s created with the method
dispatch_queue_create().

 With GCD and blocks in hand, how can you improve the code in section 16.4? You
want to create a queue for the fetching-events operations and let the system decide
when to run this queue, followed by updating the UI in the main thread.

16.5.2 Fetching events with GCD

Let’s use GCD and blocks to fetch the whole month of events and update the table
view display. You’ll re-create the Events application from section 16.4 but use the
method in the following listing to fetch events with GCD.

-(void)fetchEventsForNextMonth {
NSDate *startDate = [NSDate date];
NSDate *endDate = [NSDate dateWithTimeIntervalSinceNow:60*60*24*30];
NSPredicate *predicate = [self.eventStore
 predicateForEventsWithStartDate:startDate
 endDate:endDate
 calendars:eventStore.calendars];
dispatch_queue_t fetching_queue =
 dispatch_queue_create("Fetching events", NULL);
dispatch_async(fetching_queue, ^{
 NSArray *eventList =
 [self.eventStore eventsMatchingPredicate:predicate];
 dispatch_async(dispatch_get_main_queue(), ^{
 [self.events addObjectsFromArray:eventList];
 [self.tableView reloadData];
 });

Listing 16.7 Fetching events with GCD

Define
custom queue

B

Fetch eventsC

Update UID

http://www.it-ebooks.info/

346 CHAPTER 16 Using Event Kit on the iPhone and iPad

www.it-ebooks.info
 });
dispatch_release(fetching_queue);
}

In listing 16.7, you first create the custom queue B. Then the GCD function starts C.
The block of operations will first execute the custom task to fetch events from the Cal-
endar database on the dispatch queue. When the eventList array is ready, you want
to update the table view’s UI with the new data on the main queue dispatch. The block
D first updates the events array and then reloads the table view’s data. Finally, don’t
forget to release the queue E. Follow the design flow; GCD will automatically finish
the task and provide a quick response asynchronously.

 As you can see from the example, with a few lines of code, you manage to perform
a task in the background and update the UI when the new data is ready. That’s the
power of GCD and blocks.

16.6 Summary
The Event Kit framework provides an interface for accessing Calendar events on a
user’s device. You can use this framework to get existing events and add new events to
the user’s Calendar. In this chapter, you learned how to accomplish this task both with
the Event Kit UI view controllers and programmatically. With GCD, the application’s
performance is greatly improved, especially when fetching events from Calendar’s
database asynchronously.

 Calendar events can also include alarms to notify the user of the upcoming events.
Similar to the alarms, the local notifications provide an alert view but with more inter-
esting features. In the next chapter, we’ll tackle the local notifications and push
notifications.

Release queueE

http://www.it-ebooks.info/

www.it-ebooks.info
Local and Push
notification services
As mobile devices become more popular, developers must face new and exciting
challenges. One of these major challenges has been around since the dawn of
mobile software. It’s related to background processes. All the previous chapters we
have been focusing on the foreground activities. When the application is active and
running, it’s easy to interact with users. However, what shall we do when the appli-
cation is not in the foreground. What is the best way to update application data
and notify users to launch the application without the user explicitly running the
application? Local and Push notifications are Apple’s solution on iOS 4. In this
chapter we’ll look at Apple’s local and push notification system, how to use local
notifications, how to prepare an application to work with push notifications, and

This chapter covers
 Introducing the local notification

 An overview of Apple’s local and push notification system

 Preparing your application to use push notifications

 Creating a simple push notification provider server in PHP
347

http://www.it-ebooks.info/

348 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
how to create a notification provider on a server. First though, let’s examine what
exactly local and push notifications are.

17.1 What are local and push notifications?
At the beginning of this chapter, we briefly discussed that we would like to have the
local and push notifications to notify end users when the application is not running
on the foreground. First let’s take a closer look at what notifications are. On iOS 4, the
notifications may include the sound, a short message, and badge the application’s
icon. For example, in figure 17.1 you will find the common user interface for local
and push notifications.

 There are two notification methods in iOS 4: local and push notifications. On the
first glance, they are similar. Both may come with the alert sound, short custom mes-
sage body and badge number on the icon. What’s the difference?

 Push notification is a notification sent remotely by Apple’s Push Notification ser-
vice to the device that your application is running on. A classic example of the prob-
lem of presenting the user with real-time data updates is an instant messenger
program. Instant messaging allows users to send quick chat messages to their contacts
who are online.

 Suppose that a contact isn’t online, so they can’t receive the chat messages. In
order to maintain constant communication, you must stay online indefinitely. One
way to solve this problem on a mobile device is to run the chat client in the back-
ground and pulling data from server even after the user has exited the application.

Figure 17.1 Local and push notifications
with custom message and badge number

http://www.it-ebooks.info/

349Implementing local notifications on Timer application

www.it-ebooks.info
This allows the chat client to periodically ping the server to check whether the user
has received any new chat messages.

 The elegant solution that Apple came up with is called push notification. A push
notification is a simple message that originates at a push provider, containing informa-
tion related to a specific program. These messages can contain any number of things,
including a message, a sound file to play, a badge count, and any custom key-value
pair needed for an application. Figure 17.1 shows an example of what a push notifica-
tion might look like for an application. As you can see in the figure, the push notifica-
tion looks similar to a text message. It contains a title, a message, and buttons. The
title is the title of the application that the push notification is related to. When the
user taps the View button, the iPhone or iPad launches the application that invoked
the push notification.

 It should become apparent how this approach solves the issue of background pro-
cessing for most applications. In the case of an instant message program, users can opt
to stay online via the chat server. That way, they can exit the application and the server
can push notifications any time they receive a new chat message. Users don’t have to
waste system memory having their chat client run in the background, pinging the
server for new messages. Push notifications are simple to include in your applications,
because little code is required. One challenge is the fact that in addition to enabling
your applications for push notifications, you must also create a push provider. We’ll
discuss both of these aspects of the system and show you how to create a full system for
sending and receiving push notifications.

 Push notification has been a great service since iOS 3, but it only works when the
iPhone or iPad is connected to the internet. With local notifications available in iOS 4,
it’s much easier to handle local reminders for your To-Do list application or fire up an
alert for your timer application locally on the iPhone, iPod Touch, or iPad. In this
chapter we will work on how to implement a custom local notification in the Alarm
application. Using local notifications, you need to define exactly when the alarm
should trigger, so the event has to be predefined. However in some occasions, for
example, you may want to notify your users about the latest score from ESPN or a new
game application you just created is available in the App Store, you won’t be able to
forecast the date or message ahead of time. How can you notify your users in this situ-
ation? The solution is push notification. We will cover this topic later in this chapter.
First, let’s start coding with local notifications.

17.2 Implementing local notifications on Timer application
In this section, we will cover how to fire up a countdown local notification with sound
and badge count. Let’s start by creating a new project. In Xcode, select New Project…
from the File menu. When the new project assistant comes up, choose view-based
application, the target is iPhone, and name the new application Alarm.

 By default, the app’s icon is a white square. Let’s change the icon to be a better
looking clock image as we see in figure17.1. There will be a button on the AlarmView-

http://www.it-ebooks.info/

350 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
Controller’s nib file. When you tap on the button, the
createAlarm method will be called and schedule a local
notification based on the count down timer. The UI is
similar to figure 17.2.

 We are going to create our very first local notifica-
tion in the application. Single-click AlarmView-

Controller.h, and add in the methods to create the
alarm and respond to the date picker:

#import <UIKit/UIKit.h>
@interface AlarmViewController : UIViewController {
IBOutlet UIDatePicker *myPicker;
NSTimeInterval myTimer;
}
-(IBAction)createAlarm;
-(IBAction)datePickerValueDidChange:(id)sender;
@end

Double-click the AlarmViewController’s nib file, drag
and add the button and date picker to the view as figure
17.3 demonstrates.

 Select our new button, bring up the attributes inspector, change the text and font
color; click the File’s Owner icon next to the view, keep the mouse button down. Drag
away toward to the View’s button. When the actions options appear, choose Touch up

Figure 17.3 The screenshot of the AlarmViewController.xib with button and date picker connected to
action methods under Interface Builder

Figure 17.2
The AlarmViewController.xib
under Interface Builder

http://www.it-ebooks.info/

351Implementing local notifications on Timer application

www.it-ebooks.info
inside. By doing so, we connect the method createAlarm to button’s event Touch up
inside. Follow the same step to link the method datePickerValueDidChange to UIPick-
erView’s event Value Did Change.

 Next, single-click the AlarmViewController.m file, and add listing17.1. We want to
display an alert view message: Wake up right now, the action button will be “view
details”, and add a badge count on the Icon to inform user there is one notification
from this application.

-(IBAction)createAlarm {
[[UIApplication sharedApplication] cancelAllLocalNotifications];
 NSDate *itemDate = [NSDate dateWithTimeIntervalSinceNow:myTimer];

 UILocalNotification *localNotification = [[UILocalNotification alloc]
init];

 if (localNotification == nil)
 return;
localNotification.fireDate = itemDate;
localNotification.timeZone = [NSTimeZone defaultTimeZone];
localNotification.alertBody = [NSString stringWithFormat:
@”Wake up right now!”];
localNotification.alertAction = @”View Details”;
 localNotification.soundName = UILocalNotificationDefaultSoundName;
 localNotification.applicationIconBadgeNumber = 1;
 [[UIApplication sharedApplication]
scheduleLocalNotification:localNotification];
 [localNotification release];
}

-(IBAction)datePickerValueDidChange:(id)sender {
 myTimer = myPicker.countDownDuration;
}

Let’s take a look at the code. Inside the method createAlarm, we first use can-
celAllLocalNotifications B to cancel all the previous local notifications to reset
the system, and then define the starting date based on the count down timer. We cre-
ate a localNotification object C, define the fire date, with a custom message “Wake up
right now.” custom the notification’s action button and the alarm sound. More we
defined the badge count to 1 on the application’s icon; use scheduleLocalNotific-
aiton D to schedule the localNotification for this application. In datePickerValue-
DidChange E, we simply read out the count down timer from the date picker’s value.

 The local notification methods are straightforward. You can play with the property
settings to custom the notification on your own.

 One more thing, we need to reset the badge number back to 0 when the applica-
tion is launched again. Let’s next add in the new changes to the appdelegate.m file.
Inside the method application:didFinishLaunchingWithOptions: add the reset
as highlighted in the code snippet below:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 [window addSubview:viewController.view];

Listing 17.1 Creating a custom local notification based on the count down timer

Cancel previous notification B

Create local
notification C

Schedule
notificationD

Timer from
picker

E

http://www.it-ebooks.info/

352 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
 [window makeKeyAndVisible];
 application.applicationIconBadgeNumber = 0;
 return YES;
}

That’s all we need to do for setting up a timer based local notification. Build and Run,
you will have the application launching in the simulator. When you set the timer value
and click the button, it will automatically schedule a local notification for you.

 Now it’s time to take a break and go back to the home screen, drink a cup of cof-
fee. Soon the local notification will work though the application is not running in
foreground, you will see an message on the home screen similar to figure 17.1; that’s
the local notification, as defined in the notification’s badge number property, there
will be a badge count showing up on the app’s icon. When you click on the button
options “view details”, the alarm app will launch automatically.

 So far it’s pretty amazing, right? You’ve already learned how to implement local
notifications. It’s time to move to the next part: push notifications.

17.3 An overview of Apple’s push notification system
Push notifications rely on one specific service provided by Apple. This service is called
Apple Push Notification Service (APNS). APNS is a web service that every provider
must communicate with in order to send notifications to a client device. Devices estab-
lish a connection to this service and receive messages from it when they’re available. If
a device isn’t running the application that received the notification, it’s prompted
with an alert window containing information pertaining to the state of the applica-
tion. Figure 17.4 shows the complete cycle of a push notification that we’ll discuss in
this section.

 Push notifications originate in what Apple calls the push notification provider. The
provider is a server created by the developer of an application. These providers are
often used in conjunction with applications that depend on the web to get new data
to use.

 When something changes on the provider, data must be generated and sent to the
APNS. This data, called the payload, is in the format of a JSON dictionary. JSON is an
acronym that stands for JavaScript Object Notation. It’s a simple format that allows asso-
ciative arrays to be transferred between applications regardless of their implementa-
tion language. The following code shows an example of the JSON data that is sent to
APNS:

{
"aps":{"alert":"This is a message","badge":11,"sound":"default"}
}

Figure 17.4 The lifecycle of
a push notification

http://www.it-ebooks.info/

353An overview of Apple’s push notification system

www.it-ebooks.info
This format isn’t much different from a dictionary. You first have a key named aps that
has a value of an associative array. Within this array, you see the various types of data
that you can send to Apple. Table 17.1 lists all of these data types as well as their
descriptions.

 In addition to the aps dictionary, you can also send a dictionary containing your
own custom data. Here’s an example of a notification containing the standard data as
well as a custom dictionary:

{
"aps":{"alert":"Hello World","badge":1,"sound":"default"},
"foo":{"bar":1,"baz":"Custom text"}
}

Notice that you add a new dictionary with the key foo. You can assign this dictionary
to strings, numbers, and even other dictionaries. This one contains a key named bar
that has the value 1 and a key named baz that has the value of “Custom text”. Using
this technique, you can customize the data that is sent to your application.

 After the payload has been created, you must establish a secure connection to
APNS. This is done using an SSL certificate, which you’ll create in section 17.5. The
SSL certificate also contains other data that APNS uses to identify which application is
receiving the notification. After APNS receives the payload and device token, it
attempts to send a push notification to the given device. But sometimes the notifica-
tion isn’t received.

 If APNS tries to send a notification to a device and fails, it queues up the notifica-
tion until a connection can be established. One of the main reasons for failed deliver-
ies is a device that doesn’t have an internet connection. This happens when a device is
off or is out of range for cell and wi-fi service. When a connection is established, all of
the stored-up notifications are sent to the device.

 If a device receives more than one push notification at a time, only the most recent
one is displayed. Although the other messages can still play a sound and modify the
badge number, their alert messages are hidden from view and aren’t shown again.

 You’ll see in section 17.5 that a device will handle notifications differently
depending on whether the application is running. The next section will walk you
through all the steps necessary to get your application ready to receive and process
push notifications.

Table 17.1 Push data descriptions

Data Description

Alert The text message that appears to users when they aren’t running the application that
received the notification.

Badge The number to display on the icon of the application receiving the notification. If you
choose to omit this value, the badge number is set to 0 and isn’t displayed.

Sound The sound file in your application to be played when the notification arrives. This file must
be in a specific format, as discussed later in this section.

http://www.it-ebooks.info/

354 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
17.4 Preparing your application to use push notifications
Leave it to Apple to make the preparation more complex than the coding. You’ll find
that you spend more time creating and uploading the signing certificates than writing
the code to receive push notifications. You begin by setting up the signing certificates.

17.4.1 Setting up your application certificate

You must have a valid Apple iOS developer account to test push notifications. We’ll
show you how to generate two items that are required. The first item you’ll generate is
a special provisioning profile. This profile will be used to sign the application when
deploying it to your device. The second is a client SSL certificate. The push provider
will use this to establish a connection with Apple’s push notification servers.

 Start by logging into your iOS developer account. Then, open the program portal,
and navigate to the App IDs tab. If you haven’t already done so, you’ll need to add
your application bundle identifier to this list. The format for this should be reverse
domain—for example, com.rightsprite.pushtest. Make sure you don’t use any wild-
cards, because the system must be able to uniquely identify your application.

 After you’ve added your application, you must configure it to receive push notifica-
tions. You have the option to configure the app for development as well as produc-
tion. It’s always good practice to use the development certificate when testing and
switch to the production certificate when you’re ready to submit to the app store. Fig-
ure 17.5 shows what this section should look like.

Click the Configure button. The following screen gives you the option to configure
either the development or the production certificate. For this example, you’ll config-
ure the debug certificate, but the steps for both are exactly the same. Figure 17.6
shows what this process looks like.

 As you may have guessed, this process is similar to creating any other provisioning
profile. After completing this step, you need to download this certificate and install it
in your keychain by double-clicking it.

17.4.2 Setting up your provisioning profile

Now that you’ve created the signing certificate, you need to create the provisioning
profile to allow the application to be installed. Again, you don’t want to use your
generic developer certificate. You must generate a new certificate that is specific to
your app’s full bundle id.

 Go to the Provisioning tab. Because you created a push certificate for debug, you
must also create a debug provisioning profile. Had you created a production certifi-
cate, you would need to create an app store or ad hoc certificate. Click the New Pro-
file button on the Development tab.

Figure 17.5 Configuring the app
to receive push notifications

http://www.it-ebooks.info/

355Preparing your application to use push notifications

www.it-ebooks.info
As you may have seen before, you need to set up quite a few options. The first is the
profile name. This can be anything you want, but your best bet is to be descriptive.
Name the profile something of the format “(application name) Debug”. Next, you’ll
select the certificate that the profile will use.

 If you’re a single user, you should see only your certificate in the list. But if you’re
on a team, you should see a certificate for every one of your team members. Check the
boxes of the teammates who will be testing the push notifications. Note that when
you’re creating a build for the app store, you’ll select your distribution certificate.

 Following the certificate, you need to select the app id that the profile will be used
for. This corresponds to the app id created in section 17.4.1. Finally, you must select
the devices the provisioning profile will work on. Figure 17.7 shows an example of
what this form looks like when it’s complete.

 After you create this profile, you need to download and install it. That’s about it for
the certificate creation. We’ll now discuss how to implement the methods in your cli-
ent application to enable and receive push notifications.

Figure 17.6 Wizard to create a push certificate

http://www.it-ebooks.info/

356 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
17.4.3 The code for handling push notifications

As we mentioned earlier, the code to handle push notifications is simple. You need to
implement only three methods. We’ll walk through each of these methods and discuss
their use.

 The first method is application:didFinishLaunchingWithOptions:. This
method is already implemented for you in any application that you create. You need
to add one line of code that tells your application to register for push notifications.
The following code shows you how to do this:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:(UIRemoteNotificationTypeAlert
 |UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound)];
}

As you may have seen, your application will have other setup tasks in this method; we
just wanted to show you the line of code that must be added to register for push notifi-
cations. This code tells the device that this application wants to receive push notifica-
tions in the form of alerts, badge numbers, and sounds. You can omit any of these
properties if you choose not to send them.

 You may wonder why you must do this more than once. The reason is that the
token generated when you set up push notifications isn’t guaranteed to be the same.
You must touch base with Apple every time the application launches, to make sure
everything is correct to receive notifications.

 As you may have guessed, you must implement some delegate methods to react to
events generated by this registration call. The following code shows a simple imple-
mentation of these methods:

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)devToken {
 [self sendProviderDeviceToken: devToken];
}

- (void)application:(UIApplication *)app

Figure 17.7 Provisioning profile form

http://www.it-ebooks.info/

357Preparing your application to use push notifications

www.it-ebooks.info
 didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSLog(@"Error in registration. Error: %@", err);
}

The first method fires upon successful registration for push notifications. When you
register to receive push notifications, your application communicates with Apple and
receives back a unique device token. This token is used in all push communication
with your device.

 Notice that you call a method called sendProviderDeviceToken: in the class. This
is a custom method you should create to send the device token to your push provider.
You can do this via a web service interaction, as discussed in chapter 14. We’ll discuss a
simple method for creating a push provider in the next section.

 The method didFailToRegisterForRemoteNotificationsWithError: is for error
handling. It fires when there is an error registering for push notifications. If this
method is called, your signing certificate is probably invalid, or the device doesn’t
have an internet connection. Make sure you put some code in this method to notify
the user that there was a problem registering for notifications and they won’t receive
any at this point.

 Now that the application has registered to receive push notifications, the next
step is to handle the notifications when they come in. Apple gives you a few methods
that let you control what happens when the user clicks the View button on the notifi-
cation alert.

 The first way to handle an incoming push notification is to implement the code in
the application:didFinishLaunchingWithOptions: method. You should go this
route if the notification was used to open the application and didn’t pass any addi-
tional data. The following code shows a simple way to respond:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 application.applicationIconBadgeNumber = 0;
 [self getUpdatedDataFromServer];
}

The first and most important thing you must do here is to reset the badge number to
0. If you don’t do this, the badge count will stay at whatever number was sent by the
push notification. After that, you should perform any updates that are needed. The
previous code assumes that some data has changed on the server and calls a method
to download the updated data.

 If the notification contains a custom dictionary, you must use the application:
didFinishLaunchingWithOptions: method. The options variable is an NSDictionary
containing the custom values passed in.

 In the event that the user is currently running the application, you must imple-
ment the application:didReceiveRemoteNotification: method. It’s called auto-
matically and passed a dictionary containing all the standard information, including
badge number, message, sound, and any custom dictionaries sent to the device.

http://www.it-ebooks.info/

358 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
 After implementing the aforementioned methods, your application should be
ready to receive push notifications. One final step in preparation is to format any
audio files that will be played in response to a push notification.

17.4.4 Preparing audio files

As noted before, when a push notification is received, it can invoke the playback of an
audio file included with your application. There are many interesting scenarios in
which different audio files may be appropriate. For example, during a chess match, if
a player receives a notification informing them that it’s their turn, the system might
play the default audio file. But if they receive a notification related to a piece being
captured, the system might play some sort of battle sound effects. The more creative
you get with this, the more value you add to your application.

 The first thing to note when considering the audio file to play is the fact that the
file must be stored in your application’s main bundle directory. This is the root folder
in which your applications files are stored. Your audio file could be any format but
based on best practice, AIFF, WAV or CAF format is recommended and is limited to
30 seconds. In order to convert the audio file to one of these formats, use the
afconvert command on your Mac.

 To do this, open the terminal and navigate to the directory containing the audio
file you wish to convert. Next, type the afconvert command followed by -f caff -d
LEI16 {INPUT} {OUTPUT}. The following shows an example of using this command to
convert the file track2.mp3 to track2.caf (see figure 17.8):

/usr/bin/afconvert -f caff -d LEI16 track2.mp3 track2.caf

Now that your application is ready to receive push notifications, we can discuss a
method for creating a push notification provider using the PHP programming
language.

17.5 Creating a push notification provider in PHP
Push notification providers can be implemented in many different ways. Plenty of open
source scripts are available for you to use in your applications; but we’ll show you a sim-
ple way to implement your own using PHP. This book isn’t about PHP development, so

Figure 17.8 Converting
audio files in the terminal

http://www.it-ebooks.info/

359Creating a push notification provider in PHP

www.it-ebooks.info
we won’t go into much detail about the code. But we’ll explain the process at a high
level to help you understand it. The first step is to create an SSL certificate.

17.5.1 Creating the SSL certificate

Before you can begin coding, you must generate an SSL certificate to communicate
with Apple. You’ll create this certificate in the terminal using your push certificate and
the private key that you generated in section 17.4.

 Here are the steps required to generate this certificate:

1 Open your keychain.
2 Click My Certificates.
3 Click the arrow next to the Apple Development Push Services certificate, to

expand it.
4 Ctrl-click the certificate, and select Export (see figure 17.9). Save this certificate

as apns_cert.p12.
5 Do the same thing with the private key, and name it apns_key.p12. Note that

you’ll be prompted for a password when exporting. Make it something simple,
because you’ll need it later.

6 You need to merge the key and the certificate and convert the merged file to the
.pem format. This allows your PHP application to load it. Open the terminal,

Figure 17.9 Exporting your Apple developer certificate

http://www.it-ebooks.info/

360 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
navigate to the location of your certificate and key, and type the following com-
mands:
openssl pkcs12 -clcerts -nokeys -out apns_cert.pem -in apns_cert.p12
openssl pkcs12 -nocerts -out apns_key.pem -in apns_key.p12

7 To remove the passphrase on your apns_key.p12 file, type the following
command:
openssl rsa -in apns_key.pem -out apns_key_unenc.pem

8 The last thing you need to do is merge these two files using the cat command.
Type the following command into the terminal:
cat apns_cert.pem apns_key_unenc.pem > apns.pem

Make sure you keep track of all these files, because you may need to do this again if
you change your APNS provider server.

NOTE This process is exactly the same for development and production.

Now that you’ve generated this certificate, upload it to the server, and place it in the
directory where you’ll be putting the provider script.

17.5.2 Implementing the PHP push notification provider

A quick Google search reveals that quite a few free libraries are available to help you
interface with Apple’s push servers. Although it’s recommended that you use a pre-
made solution, we’ll show you how to write your own.

 The code for sending a push notification to Apple’s server is simple. You need to
make an SSL connection and send the data in the form of JSON. As we mentioned in
section 17.3, JSON data is a form of a dictionary. Apple uses this data to create an
NSDictionary that is sent to the device.

 The following listing shows the code in PHP to send a push notification to Apple.

<?php
$message = "Text to send";
$badgeCount = 1;
$sound = "default";
$payload['aps'] = array('alert' => $message,
 'badge' => $badgeCount,
 'sound' => $default);

$payload = json_encode($payload);

$deviceToken =
 'c902XXX556dc5581f2750XXX97ea8c496XXXa613fafXXX50cb356749XXX07cf1';

$apnsHost = 'gateway.sandbox.push.apple.com';
$apnsPort = 2195;
$apnsCert = 'apns-dev.pem';

$streamContext = stream_context_create();
stream_context_set_option($streamContext, 'ssl', 'local_cert', $apnsCert);

Listing 17.2 PHP code to send a push notification

Establishes
connectionB

http://www.it-ebooks.info/

361Summary

www.it-ebooks.info
$apns = stream_socket_client('ssl://' . $apnsHost . ':' . $apnsPort,
 $error, $errorString, 2, STREAM_CLIENT_CONNECT, $streamContext);
$apnsMessage = chr(0) . chr(0) . chr(32) . pack('H*', str_replace(' ', '',
 $deviceToken)) . chr(0) . chr(strlen($payload)) . $payload;

fwrite($apns, $apnsMessage);

fclose($apns);
?>

The first thing you see is a declaration of all the data that will be sent in the payload.
This includes the text, badge count, and sound to play. If you specify a custom sound
in your application, make sure it’s in the correct format, as discussed in 17.4.2. Follow-
ing this, you create the payload and convert it into the JSON format. You also see a
declaration for the device token to which you’ll send a notification.

 Normally, you’ll want to send data to every device that has registered for notifica-
tions. To achieve this, you must store the device tokens in a database when they’re sent
to you from your application. Then, you use a loop in your server code to send notifi-
cations to each token in the system.

 Next, you establish a connection stream with Apple B. Notice that you connect to
Apple’s sandbox server. This is because you chose to send messages in debug mode.
You should switch to Apple’s production server when you’re ready to submit your app
to the store. Note the $appCert variable: this is the name of the SSL certificate you
uploaded to the server. The code uses this certificate to establish a secure connection
to Apple.

 The next section is a little tricky C: it converts the packet to be sent into the binary
interface required by Apple. You can find more information about this format in the
documentation for push notifications. Finally, you write the data to the stream and
close it.

 The code for this provider is by no means complete for production. You must
make several improvements. The first includes making a way for devices to send their
tokens to your server. You need some sort of endpoint that takes a device token as a
POST or GET request and stores it into a database. Also, you need to loop over these
tokens and send out push notifications to everyone to which you intend to send a
push notification. Finally, you need to create an interface to your provider that sends
notifications when certain actions occur. These actions may be anything from a text
message to notifying the user that it’s their turn to move in a game.

17.6 Summary
In this chapter, we started by introducing the notifications and the system behind
both local and push notifications. Now, you’ve learned how to create a local notifica-
tion inside the alarm application, then get the application ready for Apple’s push noti-
fication service. As you’ve seen, local and push notifications offer a simple solution to
a complex problem. They give developers the ability to notify users while the applica-
tion is running in the background and conserving the system resources on the iPhone
and iPad.

C
Converts data into format

required by Apple

http://www.it-ebooks.info/

362 CHAPTER 17 Local and Push notification services

www.it-ebooks.info
 Apple has provided a robust service that you can use free of charge. This service is
the centerpiece of the entire push notification system and lets you send simple mes-
sages from a provider to a specific device with little delay.

 The communication is done using a simple data format known as JSON. The JSON
format allows you to send text messages, badge counts, sounds, and even custom data
from your provider to any device with your application installed.

 In order to receive push notifications, applications must be prepared and signed
with a special signing certificate generated on Apple’s website. You must create a sign-
ing certificate for use in development mode as well as debug mode when testing push
notifications in your application. This certificate is used in conjunction with your pri-
vate key to create the SSL certificate needed to communicate with Apple’s servers.

 The last thing to keep in mind when creating a push notification system is the archi-
tecture of your provider. We showed you how to create a simple provider using a few
lines of PHP code. You may choose to use this as the core code of your system, or you
can select from a growing number of open source solutions. In the next chapter, we’ll
discuss the MapKit framework, which offers an easy way to integrate fully functional
and customizable maps into your application, complete with custom annotations.

http://www.it-ebooks.info/

www.it-ebooks.info
The Map Kit framework
With the Map Kit framework, you can add fully functional and customizable google
maps to your application. This framework provides you with a simple view that you
can add anywhere you want a map to appear.

 In addition to adding the map, you can add custom annotations such as pins to
show more information about a specific location. In this chapter we will look at
how to add a map to an application first, then use the other functions available in
Map Kit to find out the address and put the annotations on the map. Let’s get
started!

18.1 Adding a map view to an application
Adding a map view to an application is similar to adding any other view. You can
either do it through Interface Builder or programmatically. The choice is up to you,
depending on how you like to work with UI elements. We’ll show you both methods.

 The view that displays a map is called MKMapView. This class contains quite a bit
of functionality including how to display the map, annotations, and user location.

This chapter covers
 Adding a map to an application

 Reverse geocoding

 Annotating the map
363

http://www.it-ebooks.info/

364 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
We’ll first discuss how to add an MKMapView through Interface Builder. After you add
the map to the view, you’ll connect it to an IBOutlet and set its delegate class.

18.1.1 Adding the map using Interface Builder

In this section we will build a View-based application containing the map view and
name it SimpleMap. Before you start coding the MKMapView, you must first import Map-
Kit.framework to your project. It provides all the libraries you need to work with maps.

 To add a map to your view, your must first create an MKMapView IBOutlet in the
class that will be using the map. The following listing shows how to include the MapKit
to the header file in the view controller and define the outlet for the map view.

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface SimpleMapViewController : UIViewController<MKMapViewDelegate> {
 IBOutlet MKMapView * theMap;
}

@property (nonatomic, retain) IBOutlet MKMapView * theMap;
@end

The first thing we want to point out is that you must import the MapKit.h header file.
It’s included in MapKit.framework and is needed for all Map Kit interaction. Second,
your class implements the MKMapViewDelegate interface. It will allow this class to
become the delegate of the MKMapView and receive messages from it. We’ll discuss the
delegate methods in detail later in this section. In addition to making a property, you
should also synthesize the map property in the .m file.

 Now that the IBOutlet has been declared,
you need to add the MKMapView to the view in
the nib file. To do this, open the nib file associ-
ated with the class that contains your IBOutlet.
Select MKMapView from the Object Library, and
drag it on to your view. Figure 18.1 shows what
this object should look like.

 When you drag the map onto your view, you
can move and resize it however you like. Now
that it’s been added, you must connect it to the
IBOutlet. To do this, click the file’s owner
object and open the Connection Inspector.
Drag from the map outlet to the map view to
make the connection.

 The last thing you need to do is set the dele-
gate of the MKMapView. To do this, right-click the
map, and drag to the file’s owner object. It

Listing 18.1 View Controller header file with map view

Figure 18.1 Adding an MKMapView to
your view

http://www.it-ebooks.info/

365Adding a map view to an application

www.it-ebooks.info
should pop up a bubble that reads delegate.
Click the word delegate to make the connection.
Figure 18.2 shows what the Connection Inspec-
tor should look like after you’ve completed all
these steps.

 As you can see, adding an MKMapView is very
similar to adding UILabels, UITextFields, and
other view elements. Next, we’ll show you how
to add one programmatically.

18.1.2 Adding the map view programmatically

As noted before, whether you add the map visually or with code is up to you. It
depends completely on your preferences and organizational technique. The following
example demonstrates how to add an MKMapView to your view controller’s view using
code:

- (void)viewDidLoad {
 [super viewDidLoad];

 MKMapView * map = [[MKMapView alloc] initWithFrame:
 CGRectMake(0, 0, 320, 480)];
 map.delegate = self;
 [self.view addSubview:map];
}

This code is quite short. You create the map using a frame, set its delegate to your
class, and add it to your class’s view. As with any other view, modifying the frame
passed to the map will alter its size and position.

18.1.3 Controlling the map

By default, a map gives the user some control. Without any additional code, they can
scroll all over the world by scrolling the map. The map also lets users zoom in and out
by using the pinch and tap gestures.

 To navigate a map programmatically, you must specify a region. Doing this lets you
move the map to a specified location. You also can set the zoom level.

 Let’s examine the region properties and methods for navigating a map. Table 18.1
discusses them and their uses.

Table 18.1 MKMapView region properties and methods for navigating the map

Task Type Description

region Property A property of type MKCoordinateRegion.
This is made up of two float values for lati-
tude and longitude and a float value for span.
The span represents the zoom level. The
larger the span, the lower the zoom level.

Figure 18.2 Connection Inspector for the
MKMapView connections

http://www.it-ebooks.info/

366 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
Continue with our app SimpleMap. In this section, we want to add a button titled
Apple inside the view controller’s nib file. When the user taps on the button, it will
move the map’s center from the current location to Apple’s headquarters in Cuper-
tino. The method in listing 18.2 shows how to create an MKCoordinateRegion and
move the map to display it on the screen. Connect the bar button’s action to the
method - (IBAction) apple:(id) sender under the interface builder.

- (IBAction) apple:(id) sender {
 CLLocationCoordinate2D coords;
 coords.latitude = 37.33188;
 coords.longitude = -122.029497;
 MKCoordinateSpan span = MKCoordinateSpanMake(0.002389, 0.005681);

 MKCoordinateRegion region = MKCoordinateRegionMake(coords, span);
 [theMap setRegion:region animated:YES];
}

The first thing you see here is the creation of a CLLocationCoordinate2D. This is a
struct that holds two doubles for latitude and longitude. Next, you assign them to
the Apple coordinates using the WGS 84 reference frame.

 Following the coordinates, you create a span using the MKCoordinateSpanMake
method. An MKCoordinateSpan is a struct made of two doubles that represent a delta
for latitude and longitude. The span represents the amount of area to view and is used
when setting the zoom level. A larger number tells the map to show a larger view area,
resulting in the map zooming out. Similarly, a smaller number tells the map to show
less area and causes it to zoom in.

 After the coordinates and span have been initialized, you can create a region using
the MKCoordinateRegionMake method. Finally, you set the region of the map to your
newly created one and animate the transition.

 In addition to controlling the map’s location, you can control how the user can
interact with it. Table 18.2 details these properties.

setRegion:animated: Method Sets the region on the map with the option to
use an animation. If animated is set to
YES, the map animates to the new location.

centerCoordinate Property Sets the coordinates on which to center the
map without changing the current zoom level.

setCenterCoordinate:animated: Method Sets the coordinates on which to center the
map without changing the current zoom level.
Allows you to animate the map to the new
coordinate.

regionThatFits: Method Adjusts the aspect ratio of the region so that
is fits in the map’s frame.

Listing 18.2 Controlling the zoom in and center on the map view

Table 18.1 MKMapView region properties and methods for navigating the map (continued)

Task Type Description

http://www.it-ebooks.info/

367Adding a map view to an application

www.it-ebooks.info
As we’ve mentioned, the mapType property allows you to display the map in three dif-
ferent ways. Most likely, you’ll want to make this configurable by the user, because
preferences vary about how the map should display. In the SimpleMap’s view control-
ler, let’s add in a segmented controller to the navigation bar as shown in Figure 18.3.
There are three choices for map type. We will use this segmented controller to allow
user change the map type. Now let’s add a new function to the view controller in
charge of the segmented controller’s action - (IBAction) changeMapType:(id)sender;
Make sure it’s connected to the segmented controller under the nib file. Then define
the function inside the view controller’s implementation file as below:

- (IBAction) changeMapType:(id)sender {
 UISegmentedControl *control = (UISegmentedControl *)sender;

 [self.theMap setMapType:control.selectedSegmentIndex];
}

Table 18.2 MKMapView user interaction properties

Task Description

mapType The type of map to be displayed. The possible options for this variable are
MKMapTypeStandard, MKMapTypeSatellite, and MKMapTypeHybrid.
Updating this property automatically causes the map to change its view.

zoomEnabled Determines if the user is able to zoom in. If set to NO, the map is fixed to a spe-
cific span.

scrollEnabled When set to YES, the user is able to scroll around the map. If set to NO, the
map becomes fixed on one location.

Figure 18.3 Layout of MKMapView with segmented controller set up with appropriate options in
Interface Builder

http://www.it-ebooks.info/

368 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
Build and launch the app after all the changes you will see the difference between the
map types as shown in figure 18.4. As you can see, you have quite a bit of control over
how the map looks. The standard map view looks much like a road map that you use
for navigation. This is often the most useful of the map types.

 The other two are similar. The only difference between them is the road names
that appear in the hybrid view in addition to the satellite photos.

 Now that you have a grasp of the basic map controls, we’ll discuss something a little
more interesting: reverse geocoding.

18.2 Reverse geocoding
Reverse geocoding is the process of finding an address, an area, or other information
about a given location based on its latitude and longitude. Apple has provided a sim-
ple interface for retrieving this information.

 The class used for reverse geocoding is called MKReverseGeocoder. It’s a powerful
class with a simple interface. In addition to its init method, it only has two other
methods and two properties. Table 18.3 lists these and explains their use.

Table 18.3 MKReverseGeocoder class methods and properties

Task Type Description

delegate Property Specifies the delegate of the reverse geocoder. The delegate receives
messages from the geocoder, including errors and location information.

coordinate Property The coordinate for which the reverse geocoder is retrieving data.

start: Method Invokes the reverse geocoding. When this method completes, it calls
one of the two delegate methods for this class.

querying Property A Boolean variable to indicate whether the reverse geocoder is currently
retrieving data.

cancel: Method Cancels the request for data.

Figure 18.4 mapTypes: (from left to right) MKMapTypeStandard, MKMapTypeSatellite,
MKMapTypeHybrid

http://www.it-ebooks.info/

369Reverse geocoding

www.it-ebooks.info
 To create a new MKReverseGeocoder object, you must call its initWithCoordinate
method. This method sets the geocoder’s coordinate property to the incoming value
and prepares it to receive the data. The following code shows how to initialize an
MKReverseGeocoder given the center of a map:

- (IBAction) getAddress:(id) sender {
 MKReverseGeocoder * geoCoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:theMap.centerCoordinate];
 [geoCoder setDelegate:self];
 [geoCoder start];
}

You need to make sure you set the geocoder’s delegate property to something that
implements the MKReverseGeocoderDelegate protocol. Otherwise, you won’t see the
data that gets received.

 Only two methods must be implemented as part of the MKReverseGeocoder-
Delegate protocol: reverseGeocoder:didFindPlacemark: and reverseGeocoder:
didFailWithError:.

 The didFailWithError method is similar to any other error delegate method. It’s
passed a reference to the geocoder as well as an error object containing information
about the failure.

 There are two cases for a failure. The first occurs when the device isn’t connected
to the internet. Because information is retrieved from Google’s web servers, a device
must be connected to the internet to be able to access it. The second case for failure
occurs when no data is available for the given coordinate. This may occur when the
user requests information about a remote location or the ocean.

 Upon a successful retrieval of data, the didFindPlacemark method is called with a
reference to the geocoder and an MKPlacemark object. An MKPlacemark is a simple
object that contains specific information about a given location. This information is
stored inside a property called addressDictionary. In addition to this dictionary, all
the values are parsed out and put into their own properties of the class. Here’s some
simple code to output the placemark data in the form of an NSDictionary:

-(void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFindPlacemark:(MKPlacemark *)placemark {
 NSLog(@"%@",placemark.addressDictionary);
}

Figure 18.5 shows the output of the method.
 As you can see, the dictionary contains quite a bit of information about a location

in Glendale, Arizona. In addition to this dictionary, all these keys are made available
through properties of an MKPlacemark. For example, if you just want to output the
country, you can call placemark.country, and it will return the string “US”.

 Keep in mind that Google limits the number of reverse geocode lookups. This is
often believed to be by IP address. Make sure you save the retrieved data in order to
cut down on duplicated calls.

 Now that you’ve seen how to retrieve data for a specific location, we’ll show you
how to drop pins on the map to display that data.

http://www.it-ebooks.info/

370 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
18.3 Annotating the map
As you may have seen with applications such as Maps, developers can annotate an
MKMapView. By dropping “pins” on the map, you can display additional information to
the user about a given location. This may be anything from geographic details to the
spot where they parked their car.

 Apple gives you considerable control when creating annotations for the map. You
can use the built-in pins or create your own. We’ll explore both methods and show
you how to annotate a map using the MKAnnotationView class.

 At first glance, the design pattern used when annotating a map seems strange. But
when you start writing code for it, you’ll quickly understand why it’s needed. You add
an annotation to the map by calling the addAnnotation method of MKMapView. This
adds the annotation to a queue to be displayed on the map. When the map needs to

Figure 18.5 Reverse geocoder output

http://www.it-ebooks.info/

371Annotating the map

www.it-ebooks.info
display the annotation, it calls the viewForAnnotation method in the delegate class.
This is where you tell the map how to display your annotation.

 Apple recommends that you add all your annotations at once, even if they won’t be
seen. They aren’t added to the map until they’re needed in the view. This saves mem-
ory, because the map reuses each of the annotation UI elements.

18.3.1 Adding basic map annotations

If you only plan to display simple pins in your application, the basic map annotations
are the way to go. They’re simple to use, and you can quickly integrate them with any
application. The example code in this section uses the code you created in the reverse
geocoding section as a base.

 The first thing you must do when annotating a map is make the calling class imple-
ment the MKMapViewDelegate protocol. To add annotations to the map, you need to
implement only one of the delegate methods. The following listing shows how you
can use the reverse geocoder code to drop a pin at the center of the map.

- (IBAction) dropPin:(id) sender {
 MKReverseGeocoder * geoCoder = [[MKReverseGeocoder alloc]
 initWithCoordinate:theMap.centerCoordinate];
 [geoCoder setDelegate:self];
 [geoCoder start];
}

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFindPlacemark:(MKPlacemark *)placemark {
 [mapView addAnnotation:placemark];
}

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder
 didFailWithError:(NSError *)error {
 UIAlertView * alert = [[UIAlertView alloc] initWithTitle:@"Error"
 message:@"Unable to get address"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

- (MKAnnotationView *)mapView:(MKMapView *)mapView viewForAnnotation:(id
 <MKAnnotation>)annotation {

 MKPinAnnotationView *aView = [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:@"location"];
 aView.animatesDrop = YES;
 return aView;
}

As you can see, you add little code to the geocoder example to annotate the map. In
the first new code, MKPlaceMark conforms to the MKAnnotation protocol and can be

Listing 18.3 Dropping a pin on the center of the map

Starts
geocoder
when button
is pressed

Adds placemark
to map

B

Handles errors

Tells map how to
display annotation

http://www.it-ebooks.info/

372 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
used to add an annotation to the map B. In this case, it uses the address as the title of
the annotation. When the geocoder finds a location, it adds it to the map using the
addAnnotation method of your MKMapView object.

 Now that the annotation has been added, the map queries your delegate to find
out how to display it. In this case, you create a new object of type MKPinAnnotation-
View. This is a simple view, similar to the one used in the Maps application that comes
on the iPhone. When you tap the pin, it displays the address of the location in a pop-
up. Figure 18.6 shows what the annotated map should look like after dropping a pin.

 All the data for the pin, including how the pin looks, is fully customizable. We’ll
discuss how to do this customization in the next section.

18.3.2 Adding custom map annotations

Adding a custom annotation isn’t much different than creating custom UITableView-
Cells. You create a view that extends the parent and return that in the viewFor-
Annotation method. In this case, the parent is MKAnnotationView.
Before we dive into the code for creating your own view, let’s discuss some of the prop-
erties available for use in customization. Table 18.4 details some of the important
MKAnnotationView properties associated with customization.

Figure 18.6 Annotated map

http://www.it-ebooks.info/

373Annotating the map

www.it-ebooks.info
 As you can see, Apple gives you considerable control over annotations while pre-
serving their basic use. Note that MKPinAnnotationView is an MKAnnotationView with
the image property set to an image of a pin.

 To create your own MKAnnotationView, you’ll also need to create a class that imple-
ments the MKAnnotation protocol. The MKAnnotation object will be used to populate
the information for the MKAnnotationView.

 In the following example, you’ll plot custom views for the locations of Google and
Apple on an MKMapView. After the map has been added to your view, you must create
the MKAnnotation object. The next listing shows the code for the header file.

#import <MapKit/MapKit.h>

typedef enum AnnotationType {
 Apple,
 Google
} AnnotationType;

@interface MyAnnotation : NSObject<MKAnnotation> {
 CLLocationCoordinate2D coordinate;

Table 18.4 MKAnnotationView properties

Property Description

enabled A Boolean value that determines whether an annotation is
enabled. If this is set to NO, the annotation won’t respond to vari-
ous events such as touching.

image The graphic representing the annotation. The MKPin-
AnnotationView is a view with the graphic set to an image of a
pin. This is probably the most useful property in customization.

highlighted You should never manually set this property. It’s set by the map
view and is accessed by calling isHighlighted. It’s set to YES
when the user touches the annotation.

centerOffset Tells the annotation where to center. By default, it centers on the
point on the map. This property is useful when you want to
change where the annotation is with respect to the map point.

calloutOffset Determines the offset of the callout when the user taps the anno-
tation. By default, this is (0,0) and is placed on the top center
point of the annotation’s frame.

canShowCallout Determines whether the annotation shows the callout when the
user taps it.

rightCalloutAccessoryView View on the right side of the callout. Usually used to display addi-
tional information or link to another place in the app. This is usually
a UIButton with type UIButtonTypeDetailDisclosure.

leftCalloutAccessoryView View on the left side of the callout. Usually used to display addi-
tional information or link to another place in the app.

Listing 18.4 MyAnnotation.h

Struct containing
types of annotations

B

Declares class
properties

C

http://www.it-ebooks.info/

374 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
 NSString * title;
 NSString * subtitle;
 AnnotationType annotationType;
}

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, retain) NSString * title;
@property (nonatomic, retain) NSString * subtitle;
@property (nonatomic) AnnotationType annotationType;

- (id)initWithCoords:(CLLocationCoordinate2D) coords
 andType:(AnnotationType) type;

@end

Because your map will have different annotations, you must come up with a way to
specify which image to display. One solution is to give your annotations a type. In this
case, the possible types are Google and Apple. You define an enum that differentiates
the annotation types B.

 The most important code for this class implements the MKAnnotation protocol C.
To fulfill the requirements of being an MKAnnotation, your class must have a read-only
property named coordinate. This is the coordinate location of the annotation on the
map and will be used to determine where to display it.

 Because the coordinate property is defined to be read-only, you need a way to set
it. The best way to do this is to set it in the class init method. The code defines the
init method that you use to build your objects D. It takes a coordinate and an anno-
tation type.

 In addition to the coordinate property, you can optionally define title and sub-
title properties for your MKAnnotation. These are displayed in the callout when the
user taps your annotation. The implementation of this class is fairly simple and is
shown in the following listing.

@implementation MyAnnotation

@synthesize title;
@synthesize subtitle;
@synthesize annotationType;

- (id)initWithCoords:(CLLocationCoordinate2D) coords
 andType:(AnnotationType) type {
 if(self = [super init]) {
 coordinate = coords;
 self.annotationType = type;
 }
 return self;
}

- (CLLocationCoordinate2D) coordinate {
 return coordinate;
}

- (void) dealloc {

Listing 18.5 MKAnnotation.m

Declares init
method

D

Initialization
method

Getter method for
coordinate property

http://www.it-ebooks.info/

375Annotating the map

www.it-ebooks.info
 [title release];
 [subtitle release];
 [super dealloc];
}

Notice that you don’t synthesize the coordinate property. This is because it’s read-
only and is set only when the object is initialized. As noted earlier, this is the only
required method in this class.

 Now that you’ve created your custom MKAnnotation object, you need to create the
view that will use it. The view must be a subclass of MKAnnotationView and doesn’t have
any required methods or properties. Note that it’s a standard view, so you can add any
UI components to it that you want. The header file for your view looks like this:

#import <MapKit/MapKit.h>
#import "MyAnnotation.h"
@interface MyAnnotationView : MKAnnotationView{
}
- (id)initWithAnnotation:(id)annotation reuseIdentifier:
 (NSString *)reuseIdentifier;
@end

Notice that you import MyAnnotation.h. You’ll need this in your init method to
determine the type of annotation to be displayed. Other than that, there should be
nothing new here. The next listing shows this class’s implementation.

#import "MyAnnotationView.h"
@implementation MyAnnotationView

- (id)initWithAnnotation:(id)annotation reuseIdentifier:
 (NSString *)reuseIdentifier {
 MyAnnotation * myAnnotation = (MyAnnotation*)annotation;

 if([myAnnotation annotationType] == Apple) {
 self = [super initWithAnnotation:myAnnotation
 reuseIdentifier:reuseIdentifier];
 self.image = [UIImage imageNamed:@"sign-apple.png"];
 } else if([myAnnotation annotationType] == Google) {
 self = [super initWithAnnotation:myAnnotation
 reuseIdentifier:reuseIdentifier];
 self.image = [UIImage imageNamed:@"sign-google.png"];
 }

 return self;
}
@end

First, you cast the incoming annotation to the type you declared earlier. This lets you
access the annotationType property. Based on this type, you set the image property of
your MKAnnotationView.

 You may be tempted to set the frame of your view here. This isn’t needed because
the frame is automatically changed based on the size of the image.

Listing 18.6 MyAnnotationView.m

http://www.it-ebooks.info/

376 CHAPTER 18 The Map Kit framework

www.it-ebooks.info
 After these classes have been created, integrating them into your map is simple.
You must first add the annotations to the map, similarly to the next listing.

- (void)viewDidLoad {
 [super viewDidLoad];

 CLLocationCoordinate2D coords;
 coords.latitude = 37.331689;
 coords.longitude = -122.030731;
 MKCoordinateSpan span = MKCoordinateSpanMake(0.011209, 0.22597);

 MKCoordinateRegion region = MKCoordinateRegionMake(coords, span);
 [theMap setRegion:region animated:YES];

 CLLocationCoordinate2D appleCoords;
 appleCoords.latitude = 37.331689;
 appleCoords.longitude = -122.030731;
 MyAnnotation * apple = [[MyAnnotation alloc] initWithCoords:
 appleCoords andType:Apple];
 [apple setTitle:@"Apple Inc."];
 [apple setSubtitle:@"Cupertino, CA"];
 [theMap addAnnotation:apple];
 [apple release];

 CLLocationCoordinate2D googleCoords;
 googleCoords.latitude = 37.421793;
 googleCoords.longitude = -122.084434;
 MyAnnotation * google = [[MyAnnotation alloc] initWithCoords:
 googleCoords andType:Google];
 [google setTitle:@"Google Inc."];
 [google setSubtitle:@"Mountain View, CA"];
 [mapView addAnnotation:google];
 [google release];
}

As you can see, adding custom annotations to the map isn’t much different than add-
ing a standard annotation. You set up the coordinates to denote the location of your
annotation B, and then you initialize the MKAnnotation with these coordinates along
with the type of annotation to be displayed.

 Next, you set the title and subtitle. As previously noted, these properties are
displayed on the annotation’s callout when the user taps it. Finally, you add the anno-
tation to the map by calling the addAnnotation method of the MKMapView.

 Now that the annotations have been added to the map, the last thing you must do
is implement the viewForAnnotation delegate method of the MKMapViewDelegate:

- (MKAnnotationView *)mapView:(MKMapView *)mapView viewForAnnotation:(id
 <MKAnnotation>)annotation {
 MyAnnotationView *aView = [[MyAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:@"location"];
 [aView setEnabled:YES];
 [aView setCanShowCallout:YES];
 return aView;
}

Listing 18.7 Adding custom annotations to the map

Centers map over
point of interest

Gets coordinates
for annotation

B

Creates annotation
and sets properties

http://www.it-ebooks.info/

377Summary

www.it-ebooks.info
This code is similar to the code you saw earlier for this
method. The only difference is, you create your cus-
tom annotation view rather than the built-in pin
annotation view. This lets you display custom annota-
tions when the map asks for them. Figure 18.7 shows
what the map looks like with custom annotations.

18.4 Summary
You’ve now seen how easy it is to integrate fully func-
tional maps into any application. The Map Kit frame-
work is powerful but simple to use.

 To add a map to any application, drag and drop it
onto your view in Interface Builder and connect it
using an IBOutlet. This gives you complete control
over the look, feel, and behavior of the map.

 If you require additional data to be added to the
map, the Map Kit framework provides a great mecha-
nism for adding annotations. These can either be the
built-in pins or completely customized to suit your
application’s needs.

 In the next chapter, we’ll discuss the Store Kit
framework and how to integrate it with your applica-
tions. It may seem complex to use, but it can be a great way to make a profit in the
App Store. You’ll use it to support in-app purchases.

Figure 18.7 MKMapView with
custom annotations

http://www.it-ebooks.info/

www.it-ebooks.info
In-app purchasing
using Store Kit
This chapter will be structured a little differently than ones prior. Rather than
going over the Store Kit API, we’ll demonstrate the topics for creating an in-app
store by walking through a basic example. We’ll look at how to set up a sandbox
testing environment (to mimic selling actual items) and work through how to build
the store interface.

 The Store Kit API allows you to sell various items within your application. The
items sold are called products. These products may be virtual goods, services, or
even subscriptions. All transactions are processed securely through iTunes without
the user ever having to enter their payment information on the device. There are
countless ways to add a store to your application, and how you do so depends
entirely on your needs. In this chapter, we’ll discuss one of those ways and give you
the tools to implement your own store.

This chapter covers
 Setting up a sandbox testing environment

 Creating a simple store
378

http://www.it-ebooks.info/

379Setting up a sandbox testing environment

www.it-ebooks.info
 The example store you’ll be creating will let users purchase iPhone backgrounds
on their phone. Users will browse through the available products and purchase the
ones they want to keep. When a background has been purchased, it will be saved to
the user’s camera roll so the user can use it on their device.

19.1 Setting up a sandbox testing environment
Prior to building a store into your application, you must set up the products and test-
ing environment on iTunes Connect. This will allow you to simulate payment process-
ing without charging your iTunes account each time.

 The major prerequisite for setting up products is that you must first add the appli-
cation you want to test with to iTunes Connect at http://itunesconnect.apple.com. To
do this, you must go through all the steps to create a new app under Manage your
applications. Keep in mind that you shouldn’t upload a binary, so your application
isn’t accidently submitted to Apple before it’s ready.

 The sample application we’ve uploaded for this test is called RS Wallpaper. It has
the bundle identifier com.rightsprite.wallpaper. You’ll want to change this to some-
thing unique to you. It’s important to use this reverse domain style when adding your
bundle ID, because this is what iTunes uses to recognize your application for in-app
purchase. For example, if your website is www.foobar.com, and your application is
called baz, your bundle identifier should be com.foobar.baz.

19.1.1 Creating an iTunes test user

In order to test in Apple’s sandbox (testing) environment, you must first set up a test
iTunes account in iTunes Connect. The sandbox account functions exactly like a live
one except that it doesn’t bill your iTunes account. Attempting to log into the sandbox
with your normal iTunes account will cause your iTunes account to become invalid.

 To create a test user, navigate to the Manage Users section in iTunes Connect. Fig-
ure 19.1 shows what this link looks like.

 When you’re inside, iTunes Connect asks what type of user you want to create.
Make sure you select In App Purchase Test User, as shown in figure 19.2.

Figure 19.1 Managing users in iTunes Connect
Figure 19.2 In App
Purchase Test User

www.foobar.com
http://itunesconnect.apple.com
http://www.it-ebooks.info/

380 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
This user is created for the sole purpose of testing the sandbox store. Apple is
picky about the information you use here, so be sure you don’t use the informa-
tion from your current iTunes account. If you don’t have a ton of email addresses
to test with, a good trick is to use Gmail. If you have a Gmail account, you can add
+1, +2, and so on after your existing address to a create new one. For example, if
your email address is manningreader@gmail.com, you can register for new
accounts with the address manningreader+1@gmail.com, and all the mail will for-
ward to manningreader@gmail.com.

 After you click the Add New User button, you’re presented with the form shown in
figure 19.3.

 A new test user must be created for each territory you want to test with. For exam-
ple, if you want to test products in the U.S. App Store and the Chinese App Store,
you’ll need to create two separate users. That way, each user will see their localized
version of your product. If you don’t specify, your purchase will be available in all the
app stores. After you’ve added all your test users, navigate back to the iTunes Connect
homepage.

19.1.2 Adding products

You can sell three types of products in your store:

 Consumable—A product that is purchased every time the user needs it. An exam-
ple of a consumable product might be a power-up in a video game.

 Non-consumable—A product that a user purchases only once and gets to keep.
An example is a downloadable song or image.

 Subscription—Consumable or non-consumable. This gives you the ability to let
users renew their subscriptions as frequently as you want. Because this is the
case, Apple doesn’t provide a record of whether a subscription is valid. You
must provide this on your own server.

Figure 19.3 The form to add
a new test user

http://www.it-ebooks.info/

381Setting up a sandbox testing environment

www.it-ebooks.info
For this example, you’ll create non-consumable products. After the user has pur-
chased a background, they will forever have access to it without any additional charge.
Follow these steps:

1 Select Manage Your In App Purchases from the iTunes Connect homepage, as
shown in figure 19.4.

2 On the next screen, click the Create New button, as shown in figure 19.5. You
see all the applications you’ve added to iTunes Connect.

3 Select the application that will be using in-app purchasing. Doing so takes you to
a page where you’ll add your first product.

4 You need to fill out three sections. The first contains the pricing details and
product type. Figure 19.6 shows the information to add for one of the example
background products.

The first field is Reference Name. This is a plain text name that identifies
the product in iTunes Connect; it’s only for your reference and is never seen by
the user.

Figure 19.4 Choosing Manage Your
In App Purchases in iTunes Connect

Figure 19.5 Click the Create New button.

Figure 19.6 Setting up wallpaper product pricing in iTunes Connect

http://www.it-ebooks.info/

382 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
The Product ID is similar to your application identifier and must be unique
for each product. You’ll use this identifier to look up products in the store code
later in the chapter.

For the Type value, choose Non-Consumable. This is the most appropriate
for the type of application you’re creating.

Finally, set the price tier and clear the product for sale. Apple provides a link
so that you see what price corresponds with which tier. For this example, use
Tier 1, which is $.99.

5 In the next section, you create the product title and description. You need to
create a localized name and description for every language in which you intend
to offer your product. Figure 19.7 shows the information you should add for the
first test product.

You don’t have to add a localized name and description for every language,
but doing so is a good idea if you want to increase profits in countries that don’t
speak English.

6 In the last section, you can add a screenshot. This is important only when
you’re ready to submit the in-app purchase to Apple for approval, so you can
do it later.

7 Click the Save button.

You need to add a separate product in iTunes Connect for each thing you want to sell.
For this example, add two more products. You can call your products whatever you
want, but make sure you keep their product IDs consistent with your application. In
this case, use the IDs com.rightsprite.wallpaper.02 and com.rightsprite.wallpaper.03.
After you submit all of your products, your in-app purchase screen should look some-
thing like figure 19.8.

 Note that Apple must approve your products before you can sell them in your
application. When you’ve fully tested your products, you must come back to this
screen and approve each product. Then, they will go into review by Apple. The review
process for products is similar to the review process for applications and follows the
same guidelines as to what’s appropriate. It can take several days for your products to
be approved.

Figure 19.7 Creating a test
product name and description
in iTunes Connect

http://www.it-ebooks.info/

383Creating a simple store interface

www.it-ebooks.info
19.2 Creating a simple store interface
Generally, you’ll add a store to an existing applica-
tion to improve functionality. This is why, for this
example, you’ll create a basic store without any addi-
tional bells and whistles. It will use the Navigation-
Based Application template and display a list of
products in a UITableView. Check out figure 19.9 for
an idea of what the application will look like.

19.2.1 Creating the demo app

To get started, open Xcode and create a new
navigation-based project. Name the project WPStore.
Then, add the Store Kit framework to your project by
right-clicking Frameworks and selecting Existing
Framework from the menu that displays.

 Now, you need to declare the class properties and
methods that will be used in the application. Open
RootViewController.h, and add the code in the fol-
lowing listing.

#import <StoreKit/StoreKit.h>

@interface RootViewController : UITableViewController
<SKProductsRequestDelegate,SKPaymentTransactionObserver> {
 NSMutableArray * products;
 NSMutableArray * transactionHistory;
}

@property (nonatomic, retain) NSMutableArray * transactionHistory;

Listing 19.1 RootViewConroller.h

Figure 19.8 Your in-app purchase list in iTunes Connect

Figure 19.9 The wallpaper store
interface as shown on the iPhone

http://www.it-ebooks.info/

384 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
- (void) requestProductData;
- (void) completeTransaction: (SKPaymentTransaction *)transaction;
- (void) restoreTransaction: (SKPaymentTransaction *)transaction;
- (void) failedTransaction: (SKPaymentTransaction *)transaction;
- (void) recordTransaction:(SKPaymentTransaction *)transaction;
- (void) provideContent:(NSString *)productIdentifier;

@end

The first thing you see here is that the class imports the Store Kit header file. This gives
you access to all the objects and properties needed for the application to implement a
store. Following that, the class signature states that the class implements the
SKProductsRequestDelegate and SKPaymentTransactionObserver protocols. We’ll
explain what each of these does further on in this section.

 The class has two properties. The first is an NSMutableArray of products. This is
the product array that populates the UITableView. The other property stores transac-
tion history when a user purchases items. The last bit of code declares the methods
you’re using in the class. We’ll explain these methods in detail when you implement
them in this section.

19.2.2 Adding Store Kit interface

Now that you’ve created the header file, you’re ready to implement the initialization
method. Open RootViewController.m, and add the code in the following listing to the
viewDidLoad method.

#import "RootViewController.h"
#import "WallpaperViewController.h"

@implementation RootViewController

@synthesize transactionHistory;

- (void)viewDidLoad {
 [super viewDidLoad];

 [[SKPaymentQueue defaultQueue] addTransactionObserver:self];

 products = [[NSMutableArray alloc] init];

 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString * path = [documentsDirectory stringByAppendingPathComponent:
 @"history.plist"];

 self.transactionHistory =
 [NSMutableArray arrayWithContentsOfFile:
 path];

 if(!transactionHistory) {
 NSMutableArray *_transactionHistory = [[NSMutableArray alloc]
 init];
 self.transactionHistory = _transactionHistory;

Listing 19.2 viewDidLoad method of RootViewController.m

BSets payment
observer to class

Initializes products array

C

Builds path to
transaction
history file

Initializes
transaction
history

http://www.it-ebooks.info/

385Creating a simple store interface

www.it-ebooks.info
 [_transactionHistory release];
 }

 [self requestProductData];
}

The first thing you may notice is you import a file called WallpaperViewController.h.
Don’t worry about it at the moment; you’ll create it later in the section.

 You add the class as the transaction observer B. This means the class implements
the SKPaymentTransactionObserver protocol as well as the delegate methods. The
methods that must be implemented for this protocol are completeTransaction,
restoreTransaction, and failedTransaction. These methods are called in response
to various actions received from the Store Kit framework.

 Next, you retrieve the transaction history. Whenever transactions are made, it’s a
good idea to store them somewhere in your application or on a server. You store the
products that are purchased in a simple plist file and attempt to load the plist file into
memory C. If no history exists, this array is initialized to be empty.

 The last line in the code starts the process of retrieving your products from Apple.
Although you don’t do it here, it’s a good idea to display a loading message to the user
at this point while they wait for the product list to download. The next listing shows
the code for this method.

- (void) requestProductData {
 SKProductsRequest *request= [[SKProductsRequest alloc]
 initWithProductIdentifiers:[NSSet setWithObjects:
 @"com.rightsprite.wallpaper.01",
 @"com.rightsprite.wallpaper.02",
 @"com.rightsprite.wallpaper.03",nil]];
 request.delegate = self;
 [request start];
}
- (void)productsRequest:(SKProductsRequest *)request
 didReceiveResponse:(SKProductsResponse *)response{

 NSArray *myProducts = response.products;
 for(SKProduct * product in myProducts) {
 [products addObject:product];
 }

 [request autorelease];
 [self.tableView reloadData];
}

You start by creating the product request. Notice that these are the product IDs you
registered in section 19.1.2. You’re basically asking iTunes for information about the
products with these identifiers. If you wanted to make your application a little more
dynamic, you could load the identifier list from a server. We won’t go into detail about
that because it’s out of the scope of this book.

Listing 19.3 Requesting product information

http://www.it-ebooks.info/

386 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
 After the request has been created, the code starts the process of retrieving the
product information from iTunes. When the information has been retrieved, the dele-
gate method didReceiveResponse is called with the data. You loop over the products
and add them to the global products array. That way, you can populate the
UITableView with their names and descriptions.

 Finally, you reload the UITableView with the product data. The last thing you need
to do to see the product list is to implement the delegate methods for the
UITableView. Add the code from the following listing to your RootViewController.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [products count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:CellIdentifier] autorelease];
 }

 SKProduct * product = [products objectAtIndex:indexPath.row];
 cell.textLabel.text = [NSString stringWithFormat:@"$%.2f %@",
 product.price.doubleValue, product.localizedTitle];
 cell.detailTextLabel.text = product.localizedDescription;
 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 return cell;
}

This code is straightforward: you’ve already seen how to populate a UITableView from
an NSArray. Note that you populate the cell’s text label and detail text label from the
localized product information.

 At this point, you should be able to see your list of products when you run the
application. If you intend to test now, make sure you comment out the line to import
WallpaperViewController.h, because you haven’t yet created it.

19.2.3 Creating individual wallpaper product

The next step is to display the wallpapers to the user when they tap on a row in the
table. This will allow them to see the wallpaper as well as purchase it. Before you cre-
ate the view controller you’ll use, let’s implement the didSelectRowAtIndexPath
method of the UITableView to push the new view onto the navigation stack. The next
listing details this code.

Listing 19.4 Delegate methods for UITableView

http://www.it-ebooks.info/

387Creating a simple store interface

www.it-ebooks.info
- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 SKProduct * product = [products objectAtIndex:indexPath.row];

 WallpaperViewController * wpViewController = [[WallpaperViewController
 alloc] initWithNibName:@"WallpaperViewController" bundle:
 [NSBundle mainBundle]];

 wpViewController.product = product;

 [self.navigationController pushViewController:wpViewController
 animated:YES];

 [wpViewController release];
}

You first get the product associated with the selected
row. This is then passed to the WallpaperView-
Controller class after initialization. The Wallpaper-
ViewController uses this product to determine which
wallpaper image to display. Finally, the view is pushed
onto the navigation view stack.

 You’ll now create the WallpaperViewController.
Figure 19.10 shows what its view will look like.

 To create this object, add a new UIViewController
subclass called WallpaperViewController to your
project. Make sure you select the With XIB for User
Interface check box.

 Before creating the interface, you need to create
the IBOutlets and IBAction. Open WallpaperView-
Controller.h, and add the code in the following listing.

#import <UIKit/UIKit.h>
#import <StoreKit/StoreKit.h>

@interface WallpaperViewController : UIViewController {
 IBOutlet UIImageView * imageView;
 SKProduct * product;
}

@property (nonatomic, retain) IBOutlet UIImageView * imageView;
@property (nonatomic, retain) SKProduct * product;

- (IBAction) buttonClicked:(id) sender;

@end

Listing 19.5 didSelectRowAtIndexPath method for the UITableView

Listing 19.6 WallpaperViewController.h

Figure 19.10 Previewing the
product in the wallpaper view

http://www.it-ebooks.info/

388 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
As you may have guessed, you only need an IBOutlet for the UIImageView that will
display the selected wallpaper. You set its image property from the product property
after the view has been initialized.

 In addition to the IBOutlet, you create an IBAction that responds when the user
presses the Purchase button. As you’ll see later in this section, this will initiate the in-
app purchasing process.

 After you’ve created this header file, open WallpaperViewController.xib and add a
UIImageView and a UIButton. Finally, connect the UIImageView to your IBOutlet and
the touchUpInside method of the UIButton to your IBAction.

19.2.4 Store Kit Payment

The code for this class is simple. Open WallpaperViewController.m, and implement
the methods in the following listing.

#import "WallpaperViewController.h"

@implementation WallpaperViewController

@synthesize product;
@synthesize imageView;

- (void)viewDidLoad {
 [super viewDidLoad];
 imageView.image = [UIImage imageNamed:[NSString
 stringWithFormat:@"%@.jpeg",self.product.productIdentifier]];
}

- (IBAction) buttonClicked:(id) sender {
 SKPayment *payment = [SKPayment paymentWithProductIdentifier:
 self.product.productIdentifier];
 [[SKPaymentQueue defaultQueue] addPayment:payment];
}

You set the image property of the UIImageView to a JPEG with the same name as the
product identifier B. To make things easy, you name each of the images you’re selling
based on their product identifiers. For example, the three images in the sample code
are named com.rightsprite.wallpaper.01.jpeg, com.rightsprite.wallpaper.02.jpeg, and
com.rightsprite.wallpaper.03.jpeg. If you didn’t want to name your images this way,
you could store a mapping of product IDs to image names in a plist file.

 When the user presses the Purchase button, the code creates a new SKPayment
object and queue in the global payments queue. Because SKPaymentQueue is a single-
ton class, payments can be queued from anywhere in your code. All you need is the
product identifier of the product being purchased.

 After the payment has been queued, Store Kit takes over and begins processing it.
Figure 19.11 shows the alert that pops up when you press the Purchase button.

 When the user presses the Buy button, Store Kit notifies your transaction observer
class about the status of payment via the delegate methods you declared in listing 19.1.

Listing 19.7 WallpaperViewController.m

Sets image
property of
imageView

B

http://www.it-ebooks.info/

389Creating a simple store interface

www.it-ebooks.info
We’ll now discuss how to implement those methods and deliver the purchased con-
tent to the user.

 Add the code from the next listing to the file RootViewController.m.

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

{
 for (SKPaymentTransaction *transaction in transactions)
 {
 switch (transaction.transactionState)
 {
 case SKPaymentTransactionStatePurchased:
 [self completeTransaction:transaction];
 break;
 case SKPaymentTransactionStateFailed:
 [self failedTransaction:transaction];
 break;
 case SKPaymentTransactionStateRestored:
 [self restoreTransaction:transaction];
 default:
 break;
 }
 }
}

Store Kit calls this method after the user has tried to
purchase an item, and it’s used as a controller based on
the status of the purchase. A purchase has three poten-
tial states:

 SKPaymentTransactionStatePurchased Occurs
when the transaction was successful. At this
point, you should deliver the content to the user
and record the transaction history.

 SKPaymentTransactionStateFailed The trans-
action may fail for a number of reasons, includ-
ing insufficient funds or a network error. If this
is the case, you need to notify the user that their
purchase wasn’t completed.

 SKPaymentTransactionStateRestored Occurs
when the user has already purchased an item. If
this is the state of the transaction, you should
deliver the content to the user as if it was a new
transaction.

Now that you’ve implemented this driver method, you
need to implement each of the response methods that
it calls. Add the code from the following listing to your
RootViewController.m file.

Listing 19.8 Delegate methods for Store Kit

Figure 19.11 A purchase
confirmation as shown on the
iPhone

http://www.it-ebooks.info/

390 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
- (void) completeTransaction: (SKPaymentTransaction *)transaction
{
 [self.navigationController popViewControllerAnimated:YES];
 [self recordTransaction: transaction];
 [self provideContent: transaction.payment.productIdentifier];
 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
}

- (void) restoreTransaction: (SKPaymentTransaction *)transactionB
{
 [self completeTransaction:transaction];
}

- (void) failedTransaction: (SKPaymentTransaction *)transaction
{
 if (transaction.error.code != SKErrorPaymentCancelled)
 {
 UIAlertView * alert = [[UIAlertView alloc]
 initWithTitle:@"Error in purchase"
 message:transaction.error.description delegate:nil
 cancelButtonTitle:@"Ok" otherButtonTitles:nil];

 [alert show];
 [alert release];
 }
 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
}

As we stated before, the actions for completing and
restoring transactions are usually similar. For the
example, you have restoreTransaction call
completeTransaction to save lines of code.

 When a purchase is successful, Store Kit notifies
the user via a UIAlertView. Figure 19.12 shows what
this view looks like in the application.

 The process you should follow when completing a
transaction is usually the same in every application.
You call a series of methods to record the history, pro-
vide the content to the user, and finalize the transac-
tion. Listing 19.10 details each of these methods. To
record the transactions, you keep a plist file on disk
containing the product identifiers of every product
purchased by the user. Although you don’t do much
with the recorded transaction information in this
application, it’s good practice to track it.

Listing 19.9 Store Kit response methods

Completes
transaction and
delivers content

Restores
transaction

Notifies user that
transaction failed

Figure 19.12 A successful
purchase confirmation as shown
on an iPhone

http://www.it-ebooks.info/

391Summary

www.it-ebooks.info

- (void) recordTransaction:(SKPaymentTransaction *)transaction {

 if([self.transactionHistory containsObject:
 transaction.payment.productIdentifier]) return;

 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString * path = [documentsDirectory
 stringByAppendingPathComponent:@"history.plist"];
 [self.transactionHistory
 addObject:transaction.payment.productIdentifier];
 [self.transactionHistory writeToFile:path atomically:YES];
}

- (void) provideContent:(NSString *)productIdentifier {
 UIImageWriteToSavedPhotosAlbum([UIImage imageNamed:[NSString
 stringWithFormat:@"%@.jpeg",productIdentifier]],self,
 @selector(image:didFinishSavingWithError:contextInfo:),nil);
}

- (void)image:(UIImage *)image didFinishSavingWithError:(NSError *)error
 contextInfo:(void *)contextInfo {

 UIAlertView * alert = [[UIAlertView alloc]
 initWithTitle:@"Purchase Complete"
 message:@"The wallpaper has been saved to your camera roll."
 delegate:nil cancelButtonTitle:@"Ok" otherButtonTitles:nil];
 [alert show];
 [alert release];
}

The code first checks to see if the user has already purchased the given item. If so, you
don’t need to double-record it. After that, you resolve the path to the file history.plist
in the application’s documents directory and write the history to it B.

 When you’re creating a store in an application, the provideContent method var-
ies depending on what type of content you’re selling. In the case of the wallpaper
sale application, you need to save the purchased wallpaper from the application’s
directory to the user’s camera roll. You can do this using the
UIImageWriteToSavedPhotosAlbum method C. After this method completes, it calls
the selector you passed in, which notifies the user that the wallpaper was saved to
their device D. The user now has full access to that wallpaper via their camera roll.

 The last method in D shows what to do if an error occurs. It’s important to notify
the user that their payment wasn’t processed. Otherwise, you’ll have unhappy custom-
ers thinking they paid for something and it wasn’t delivered.

19.3 Summary
In this chapter, you’ve seen one way to implement a store for non-consumable goods.
You provided a simple store interface that lets users browse, purchase, and save wallpa-
pers on their iPhones.

Listing 19.10 Recording transactions and delivering content

Saves history
to disk

B

Saves image
to user’s
camera roll

C

DNotifies user

http://www.it-ebooks.info/

392 CHAPTER 19 In-app purchasing using Store Kit

www.it-ebooks.info
 Stores can come in many different varieties to suit your needs. Almost anything
can be considered a product to be sold in a store. Be creative, and utilize this opportu-
nity to make some extra income off your application.

 When adding a store to your application, always think about how it will affect
development time. Be sure to submit your in-app purchase products as soon as you
consider them ready, so the review process doesn’t slow down your deployment.

 Finally, keep functionality in mind. Don’t make your application entirely depen-
dent on in-app purchases. Be sure to offer some value for the users who download it
and choose not to purchase your products. Make sure you structure your store in such
a way that it adds to your application rather than being the focus of it.

 In the next chapter, we’ll discuss how to make money with iAd.

http://www.it-ebooks.info/

www.it-ebooks.info
Making money with iAd
You may remember the popular quotation from the movie Jerry Maguire: “Show me
the money!” Let’s talk about making money. We covered the majority of the iOS 4
frameworks in the previous 19 chapters. You may have a plan to get your app-design
business started. Sure, there are a lot of ways to make money with your applications.
You can build a paid app, a free app with an app purchase, or a totally free app with
some advertisements; when users see and interact with the ads inside your app,
you’ll get paid. How much money can you make? The answer will be based on how
many active users you have for your apps and, in turn, how many ads you’ve served
and the reaction of your users. Apple will sell and distribute the ads through the
iAd service; as a developer, you’ll keep 60% of the total revenue from iAd (at the
time of writing).

This chapter covers
 Creating a banner ad in your application

 Responding to a user’s interaction, such as
screen rotation

 Handling ad downloading errors

 Going live with iAd
393

http://www.it-ebooks.info/

394 CHAPTER 20 Making money with iAd

www.it-ebooks.info
 If you decide to go for the advertisement option, there’s a good chance you’ll con-
sider the iAd framework in iOS 4. In this chapter, we’ll cover how to integrate banner
ads into your application, how to implement screen-rotation support for iAd, and how
to handle ad-downloading errors. At the end of the chapter, we’ll cover how to enable
iAd through iTunes Connect.

20.1 Adding a banner ad into your application
Before you start to code, let’s spend some time together on the banner advertisement
structure. First, you need to provide some space for the banner image view in your
application’s user interface, roughly 10% of the screen size. For example, the banner
view under portrait mode on iPhone is 320 x 50 points (pt) in size, and portrait mode
on the iPad is 768 x 66 pt. Ad sizes based on device and screen orientation are
described in detail in table 20.1.

The iAd framework provides a convenient way to display that image banner view
through ADBannerView. ADBannerView will make sure that the advertisements are
automatically loaded from the iAd Network and presented in your application prop-
erly. When an end user or customer taps a banner image view, the current advertise-
ment will begin its animation. A full-screen view controller will appear and interact
with user gestures. The full-screen view controller could be a mini-application, which
is a rich media advertisement based on HTML5; it may contain other features, such as
the ability to use maps and purchase directly from iTunes. The customer can return to
the app interface by tapping the Close button on the top-left corner of the screen.

 Where is the advertisement from? It’s from the iAd service running on Apple’s ad
servers. The good news is that you don’t need to worry about how the banner image
was downloaded. That’s what the iAd framework is for. In this section, you’ll create a
demo app with an ad banner view added to the view hierarchy.

20.1.1 Creating a simple app for the ad banner view

To start your money-making journey, you need to have a simple app to get your busi-
ness going. Let’s use a simple application in the app template. Keep one important
rule in mind: you need to have a view controller to display the banner view. In this sec-
tion, you’ll use a view-based application for the iAd demonstration. It will give you a
nice, simple view controller to display the AdBannnerView.

Table 20.1 iAd banner view size table

Device Screen orientation
Banner size

(width x height in points)

iPhone Portrait 320 x 50

iPhone Landscape 480 x 32

iPad Portrait 768 x 66

iPad Landscape 1280 x 66

http://www.it-ebooks.info/

395Adding a banner ad into your application

www.it-ebooks.info
 Fire up Xcode, and create a new project. When the project template opens, under
iOS Application, choose View-Based Application. The product is iPhone. Name it
MyApp. Now you have the basic view controller for the banner ad. Single-click the
Classes folder on the Groups & Files panel. You’re going to use MyAppViewController
as the parent view controller for the banner display.

 Do you remember how to add a new framework into your app? (You can refer to
chapter 16 for details.) You need to add the iAd framework into the app. Head back to
Xcode. Highlight the top-level Project node in the Projects tree, and on the right side,
choose a Target; then select the Build Phases tab. Under this tab is an entry called
Link Binary with Libraries. Click the + button next to it, and you’ll see a window with
the entire list of available frameworks under the current SDK. Navigate to iAd.frame-
work, and click the Add button. Now the iAd framework is added to the app.

 In order to have this simple app running on both the iPhone and iPad, go to
Xcode 4 and select MyApp project node in the Navigation View. The editor view will
display the project summary. Select MyApp target, and choose Universal for Devices
option. Now you have the universal app for the iAd banner demonstration.

20.1.2 Adding the banner view to the view controller

It’s time to add in the banner view. Single-click the MyAppViewController.h file, and
add the header file for iAd framework:

#import <iAd/iAd.h>

Single-click the MyAppViewController.m file. Add the code in the following listing to
make a simple banner ad.

#import "MyAppViewController.h"

@implementation MyAppViewController

- (void)viewDidLoad {
 [super viewDidLoad];
 ADBannerView *adView = [[ADBannerView alloc]
 initWithFrame:CGRectZero];
 adView.currentContentSizeIdentifier =
 ADBannerContentSizeIdentifierPortrait;
 [self.view addSubview:adView];
}
-(BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return (interfaceOrientation ==
 UIInterfaceOrientationPortrait);
}
...
- (void)dealloc {
 [super dealloc];
}

@end

Listing 20.1 Creating the banner view inside the view controller

Create
ADBannerView

B

Define
content size

C

Add adView to
current viewD

Define interface
orientationE

http://www.it-ebooks.info/

396 CHAPTER 20 Making money with iAd

www.it-ebooks.info
Let’s go through the changes. Inside the viewDidLoad method, you create a banner
view B, and then you define the content size to be portrait (320 x 50 on iPhone, 768
x 66 on iPad) C. Finally, you add the banner view to the view controller’s view hierar-
chy D. In order to define the interface orientation as portrait mode only, you define
the interfaceOrientation E. Save all the changes.

 Click Build and Run on the Simulator. You should see the app running with a nice
test banner on the top of the screen. Make sure your laptop is connected to the inter-
net, because the test banner in figure 20.1 will work only when there’s an internet
connection.

 As we mentioned in the beginning of the chapter, the banner view will respond to
the user’s action. Click the banner view; are you getting the text shown in figure 20.2
on your Simulator now? Congrats! As you can tell from the message, you have the test
advertisement running successfully.

 Click the top-left button to close the full-screen view controller. Now you have the
banner view running smoothly in the app when it’s under portrait mode only. What if
the user rotates the device from portrait mode to landscape mode? We’ll look into this
scenario in the next section.

Figure 20.1 A successful demonstration of a test iAd banner view inside the view controller

http://www.it-ebooks.info/

397Supporting both portrait mode and landscape mode

www.it-ebooks.info
20.2 Supporting both portrait mode and landscape mode
Previously we talked about how to integrate the portrait-mode banner ad. It turns out
that when the device is in landscape mode, you can change the banner view size from
320 x 50 to 480 x 32 on the iPhone and from 768 x 66 to 1024 x 66 on the iPad. In this
section, we’ll cover how to change banner size dynamically when the user rotates the
iPhone or iPad.

 In order to make the app more responsive, let’s add a text label in the center of
the screen. Go back to Xcode, single-click the MyAppViewController.h file, and add
the following changes.

#import <UIKit/UIKit.h>
#import <iAd/iAd.h>
@interface MyAppViewController : UIViewController {
 ADBannerView *adView;
 IBOutlet UILabel *textLabel;
}
@property (nonatomic, retain) ADBannerView *adView;
@end

This text label will be updated to show you the current device orientation. Save the
changes, and follow up with the new code in the MyAppViewController.m file in the

Listing 20.2 Adding the text label and banner view in MyAppViewController.h

Figure 20.2 Full-screen view controller presented when the user taps the banner ad

Show current
device interface

http://www.it-ebooks.info/

398 CHAPTER 20 Making money with iAd

www.it-ebooks.info
following listing. Single-click the MyAppViewController.m file, and implement the
changes.

#import "MyAppViewController.h"

@implementation MyAppViewController
@synthesize adView;

- (void)viewDidLoad {
 [super viewDidLoad];
 self.adView = [[ADBannerView alloc] initWithFrame:CGRectZero];
 self.adView.requiredContentSizeIdentifiers =
 [NSSet setWithObjects: ADBannerContentSizeIdentifierPortrait,
 ADBannerContentSizeIdentifierLandscape, nil];
 self.adView.autoresizingMask =
 UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleBottomMargin;
 [self.view addSubview:adView];
}

- (void)willRotateToInterfaceOrientation:
 (UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration
{
 if (UIInterfaceOrientationIsLandscape(
 toInterfaceOrientation)) {
 self.adView.currentContentSizeIdentifier =
 ADBannerContentSizeIdentifierLandscape;
 textLabel.text = @"Landscape Mode";
 } else {
 self.adView.currentContentSizeIdentifier =
 ADBannerContentSizeIdentifierPortrait;
 textLabel.text = @"Portrait Mode";
 }
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 return YES;
}

- (void)viewDidUnload {
 self.adView = nil;
}

- (void)dealloc {
 [adView release];
 [super dealloc];
}

@end

Listing 20.3 Presenting the banner view dynamically when the orientation changes

BDefine
content size

CAutoresize
view to top

Landscape
mode

D

Portrait
mode

E

Support all
directions

F

Release
banner view

G

http://www.it-ebooks.info/

399Supporting both portrait mode and landscape mode

www.it-ebooks.info
Save the changes. Let’s spend some time examining listing 20.3. You create a banner
view B and define the size to include both portrait mode and landscape mode. Then
you add autoresizing and position the banner view during the runtime C. Inside the
method willRotateToInterfaceOrientation, you change the banner view’s size
dynamically according to the new device interface. Next, you change the banner to
landscape mode D and update the textLabel’s text to indicate that the current ban-
ner size will be in landscape mode. Then you define the banner to portrait mode and
update the textLabel’s text to indicate that the new banner size will be portrait
mode E. Remember that you define interfaceorientation to be portrait mode
only: you change it here to support all directions F. You release the banner view in
the memory because you’re a good citizen G.

 Don’t forget to create the textLabel inside the nib file. Double-click the MyApp-
ViewController.xib file. Fire up the library, drag a UILabel onto the view, and place
the label in the center. Double-click the label you just created, and change the text to
Portrait Mode. Bring up the Connection Inspector (View menu > Utilities > Connec-
tions Inspector), click the File’s Owner icon in the MyAppViewController.xib file win-
dow to have the textLabel showing in the outlets, and then hook up the textLabel
with the label you just created. When everything is finished, you should see a user
interface similar to the one in figure 20.3.

 Under the text label’s Size tab, you can set the label’s positioning to be the center
of the view. Save all the changes. Now you’re ready for the test run.

 Click Build and Run on the Simulator. With everything running smoothly, you
should be able to see the screen shown in figure 20.4 under portrait mode; and when
you rotate the Simulator to landscape mode (press Command-left arrow on the key-
board, or choose Hardware menu > Rotate Left), the banner view is changed to the
landscape size.

Figure 20.3 MyAppViewController.xib file, connecting the textLabel outlet to the label inside the view

http://www.it-ebooks.info/

400 CHAPTER 20 Making money with iAd

www.it-ebooks.info
Looking good! So far you’ve learned how to create a banner view inside the universal
app with the iAd framework. We also looked into how to define the banner size
dynamically when the device changes its interface orientation. Now let’s tackle
another issue you may face in the real world: what if the iPhone or iPad has no wi-fi
connection?

 As we mentioned earlier, the banner ad is downloaded from the iAd Network. You
won’t have a banner-ad view when no connection is available. It’s a bad user experi-
ence to have some sort of gray view on the top or bottom of the screen, with nothing
showing up. Maybe you can try to hide the banner when there’s no ad or an error
occurs. We’ll discuss this technical problem in the following section.

20.3 How to handle advertisement downloading errors
As we mentioned in the beginning of this chapter, the iAd banner is downloaded from
the iAd Network somewhere in the cloud. When no connection or no ad is available, a
download error will occur. Here we’ll revisit MyApp from section 20.2 to demonstrate
how to hide the banner view when an error occurs during advertisement downloading
and how to show the banner view with animation when a new advertisement arrives.

ADBannerViewDelegate provides you with some helpful methods for these com-
mon events:

 When a new advertisement is loaded:
-(void)bannerViewDidLoadAd:(ADBannerView *)banner

 When an error occurs or advertisements are not available:
-(void)bannerView:(ADBannerView *)banner
 didFailToReceiveAdWithError:(NSError *)error

In this section, we’ll cover how to handle the ad-downloading error with the
ADBannerViewDelegate methods.

Figure 20.4 Dynamically update the
banner view size to support both portrait
mode and landscape mode.

http://www.it-ebooks.info/

401How to handle advertisement downloading errors

www.it-ebooks.info
20.3.1 Adding a delegate to ADBannerView’s view controller

In Xcode, single-click the MyAppViewController.h file, and add the ADBannerView-
Delegate to the header file as follows:

@interface MyAppViewController : UIViewController <ADBannerViewDelegate> {

Now you’ll add the new changes to the MyAppViewController.m file. Single-click the
MyAppViewController.m file, define the adView’s delegate as self in the viewDidLoad
method, and hide the banner view, as shown in the following listing.

- (void)viewDidLoad {
 [super viewDidLoad];
 self.adView = [[ADBannerView alloc] initWithFrame:CGRectZero];
 self.adView.requiredContentSizeIdentifiers = [NSSet
 setWithObjects: ADBannerContentSizeIdentifierPortrait,
 ADBannerContentSizeIdentifierLandscape, nil];
 self.adView.hidden = YES;
 self.adView.frame = CGRectOffset(adView.frame, 0,
 -adView.frame.size.height);
 self.adView.delegate = self;
 self.adView.autoresizingMask = UIViewAutoresizingFlexibleWidth |
 UIViewAutoresizingFlexibleHeight |

UIViewAutoresizingFlexibleBottomMargin;

 [self.view addSubview:adView];
}

The view controller now has the delegate methods ready to implement. Notice that
you hide the banner view when you create the banner B. Then you offset the ban-
ner’s frame height C to prepare for the banner view’s slide in animation. We’ll cover
two methods in this section: when a new advertisement is loaded, you’ll load the ban-
ner view with animation; when an error occurs during the loading time, you’ll hide
the banner view with the method bannerView:didFailToReceiveAdWithError.

 Add the two ADBannerView delegate methods to the MyAppViewController.m file,
as shown in the following listing.

- (void)bannerView:(ADBannerView *)banner
 didFailToReceiveAdWithError:(NSError *)error {
 if (!self.adView.hidden) {
 [UIView beginAnimations:@"animateAdBannerSlideOut"
 context:NULL];
 banner.frame = CGRectOffset(banner.frame, 0,
 -banner.frame.size.height);
 [UIView commitAnimations];
 self.adView.hidden = YES;
 textLabel.text = @"Sorry, no ad.";
 }
}

Listing 20.4 Creating ADBannerView and assigning delegate to view controller

Listing 20.5 Implementing the delegate methods for ADBannerView

Hide
banner
view

B

Offset frameC

B Error occurred
in banner view

B Error occurred
in banner view

http://www.it-ebooks.info/

402 CHAPTER 20 Making money with iAd

www.it-ebooks.info
- (void)bannerViewDidLoadAd:(ADBannerView *)banner {
 if (self.adView.hidden) {
 [UIView beginAnimations:@"animateAdBannerSlideIn"
 context:NULL];
 banner.frame = CGRectOffset(banner.frame, 0,
 banner.frame.size.height);
 [UIView commitAnimations];
 self.adView.hidden = NO;
 textLabel.text = @"You've got a new ad.";
 }
}

 You use the ADBannerView’s delegate method B to hide the banner view when an
error occurs inside the banner view and add the animation to slide out the banner
when a new ad is loaded. Meanwhile, you update the textLabel’s text to give a hint as
to what’s going on with the banner view. With the next method C, you define the ban-
ner view to appear when a new advertisement is loaded and update the textLabel’s
text to “You’ve got a new ad.” Pretty easy, right?

 Next, let’s test the delegate methods with the application running under the
Simulator.

20.3.2 Simulating event handling

Save all the changes, click Build, and run the project on the Simulator. With an inter-
net connection, you’ll see the screen shown in figure 20.5 on the Simulator when you
get a new test advertisement. The animation effect is kind of cool, right?

New ad
arrived in
banner view

C

Figure 20.5 The banner view delegate
method notifies you when there’s a new
advertisement on the iPad.

http://www.it-ebooks.info/

403How to handle advertisement downloading errors

www.it-ebooks.info
Turn off the internet connection (Apple’s iAd test environment will send you the
error example from time to time even with the wi-fi connection). You’ll have a hidden
banner view and a message saying “Sorry, no ad,” as shown in figure 20.6.

 With the error handling, MyApp’s user interface makes the default error banner
view unnoticeable. Instead of showing a gray empty banner as in figure 20.7, you have
a much better user experience with a few lines of code from listing 20.5.

 Some other delegate methods are worth mentioning here. When a user taps on
the banner view, before the full-screen view controller presents, it calls the delegate’s
bannerViewActionShouldBegin:willLeaveApplication: method. If your app is a
game, you may want to save the current status or pause the game before the user
leaves the application’s interface, so when the user comes back, the app can continue
running without losing all the data. When the user dismisses the full-screen modal
view controller, another method, bannerViewActionDidFinish:, gets called. Inside
this method, you can restart the game or continue to run the app before the full-
screen view controller appears.

 Let’s review the new methods you’ve added in this part. You assigned the delegate
to the view controller self when you first created the banner view; then you saw how

Figure 20.6 Hide the banner view when
there’s an error in the banner view.

Figure 20.7 Default banner view
when an error occurs during
advertisement downloading

http://www.it-ebooks.info/

404 CHAPTER 20 Making money with iAd

www.it-ebooks.info
to hide the banner view when an error occurs in the delegate method bannerView
didFailToReceiveAd:WithError:. You can test the app on the device now: try it by
either disabling wi-fi and 3G data on the device or by disabling networking entirely by
setting the device to Airplane Mode in the Settings app. The banner view will be hid-
den as defined in the delegate method.

 You’ve done enough testing. What if you want to go live and publish the applica-
tion with the iAd Network? We’ll talk about this next.

20.4 Going live with the application
So far, you’ve tested the view-based application MyApp with test advertisements from
the iAd Network service. You may wonder when you can see some real advertisements
instead of the test ads. Well, it turns out the iAd Network will send test advertisements
to MyApp under the entire testing process, which means under Simulator, under
developer builds on the device, under ad hoc distribution builds to beta testers, and
so on. The live ads will be available to MyApp only when the distribution build is sub-
mitted to the App Store. When end users download your app from the App Store,
they’ll see the live ads automatically displayed.

 First, go to the iPhone Developer Program portal, and open the iTunes Connect
Online Application. You need to accept the contract for iAd. Once your contract is
ready, you can submit the final distribution build to the App Store. To receive adver-
tisements from the iAd Network, you first need to enable the iAd service for the appli-
cation you’re submitting, as shown in figure 20.8.

 When you have at least one application with iAd enabled, there should be a new
iAd Network item available on your iTunes Connect page, as shown in figure 20.9.

 Click iAd Network. You can use this page to manage the ads that appear in your
apps. You can also monitor the ads’ performance in your apps. For example, you can

Figure 20.8 Enable the iAd Advertising Network for your application during the new application
submission.

http://www.it-ebooks.info/

405Going live with the application

www.it-ebooks.info
find out ad revenue, key metrics, and ad performance by app or country, as shown in
figure 20.10.

 Another important feature on this page is that you can add exclusions for each
app. You can add certain keywords, Apple IDs, or URLs to make sure ads from your

Figure 20.9 Your iTunes Connect page will include the iAd Network when the iAd’s contract
is accepted.

Figure 20.10 iAd Network under iTunes Connect

http://www.it-ebooks.info/

406 CHAPTER 20 Making money with iAd

www.it-ebooks.info
competitors or certain unwanted advertisers won’t show up in your app. Click the app
that you would like to add exclusions to, and the Exclusions feature will appear, as
shown in figure 20.11.

 In this section, we talked about how to get live ads with iTunes Connect on the iOS
Developer Program website. With all the tools in hand, you should be able to mone-
tize your app through iAd. When your application is approved and becomes live in the
App Store, users will start to download your app; you can come back to the iTunes
Connect page and check your revenue through iAd. Have fun!

20.5 Summary
You’re ready to make money via iAd with your application! Let’s recap what you’ve
learned in this chapter. First, you managed to create a portrait mode–only banner
view, and then you learned how to handle some real problems, such as screen rotation
or advertisement download errors. Now you can get live ads from iAd Network, moni-
tor the ads’ performance, and get a revenue report.

 Hope you’ve had a good time with iAd so far. Sit tight, because you’re heading to a
fun and important part of iOS 4: multitasking.

Figure 20.11 Add exclusions to your app.

http://www.it-ebooks.info/

www.it-ebooks.info
Introducing multitasking
iOS 4 is muscled up with tons of exciting new features. We’ve covered the Game Kit
framework, local notifications, the Event Kit framework, GCD, and iAd in previous
chapters. In this chapter, it’s time to introduce multitasking! Multitasking is a fea-
ture that has been requested on iOS since its first release. But there’s limited screen
size and battery life on the iPhone or iPad, so generally only one application is visi-
ble and active at a time. In iOS 4 and later, with multitasking introduced, applica-
tions can continue running in the background.

 What’s multitasking? It’s one of the important and exciting API features in iOS 4.
When the user quits an application, instead of terminating, the application will
enter the background state; you can use this feature to support fast app switching
and running tasks in the background.

 In this chapter, we’ll first cover the multitasking basics, the application’s lifecy-
cle on iOS 4, followed by the background state and best practices based on an app’s

This chapter covers
 Overview of multitasking on iOS 4

 Fast app switching

 Finishing a task in the background

 Monitoring location change in the background
407

http://www.it-ebooks.info/

408 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
lifecycle transitions. Then we’ll talk about how to adopt fast app switching on the
iPhone and iPad and how to update the application interface with the correct user
data when the application gets restarted from the background state. Finally, we’ll use a
demo app to explain how to finish a task in the background with an expiration han-
dler. First, let’s explore some basics on multitasking.

21.1 Overview of multitasking
Multitasking is the ability to let the device run more than one application at once. For
example, you may want to listen to music using the Pandora application while per-
forming other tasks such as checking your email.

 In the past, Apple had a few arguments against multitasking on iOS; the primary
ones were that it slows down the device, degrades the battery life, and makes for an
overall poor user experience. If you allow the user to run too many applications at
once, the device will eventually run out of memory and start killing those applications.
Running many applications at the same time quickly drains battery life. Because run-
ning an app requires processing power, the constant strain on the processor will soon
result in a drained battery.

 In iOS 4, Apple has implemented the ability for programs to run in the back-
ground. Figure 21.1 shows the multitasking UI on the iPhone and iPad. This isn’t true
multitasking per se, but it’s getting closer and addresses most of users’ other gripes.

Figure 21.1 Multitasking UI
on the iPad and iPhone

http://www.it-ebooks.info/

409Overview of multitasking

www.it-ebooks.info
Applications that need to execute operations in the background are restricted to cer-
tain tasks, including the following:

 Requesting a set amount of time to finish a task
 Implementing specific services allowed by Apple, including location tracking,

audio playback, and voice over IP services

By default, all applications that are compiled for iOS 4 will support multitasking. But
after the user taps the Home button, the app will go into the background suspended
state unless the background running mode is added.

 Because most applications don’t require constant usage, the system automatically
puts them into a suspended state when the user exits them. When the user resumes
the application, it should load into the last state it was in when the user exited it. This
is more of a fast application-switching model. A great comparison is that when you’re
reading a book, you may want to take a break and get a cup of coffee, so you put a
bookmark at the page where you stopped. When you return, you can continue from
the exact same page where you left off.

 Next we’ll look at the application lifecycle and how to enable multitasking on iOS 4.

21.1.1 Application lifecycle

With iOS multitasking support, the application lifecycle expands to not running, run-
ning in the foreground, and running in the background, as shown in figure 21.2.
When the application launches, it will move from the not-running state to the fore-
ground, stay inactive briefly, and become active. That’s when the MainWindow.xib file
gets loaded into the application. While the application is running in the foreground
state, an SMS message or an incoming call could pop out and interrupt the current
application, which therefore would become inactive.

Application is
not running Application is running in foreground

application:
didFinishLaunching

WithOptions
applicationDidBecomeActive: applicationWillResignActive: applicationDidEnterBackground: applicationWillTerminate:

Application enters
background Application is not running

Not
running

Not
running

Active

Inactive

Running

Suspended

Foreground Background

Figure 21.2 Application’s lifecycle in iOS 4

http://www.it-ebooks.info/

410 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
 When the user taps the Home button, the application will move from the fore-
ground state to the background. The application may continue running if the back-
ground mode is supported on the device (iPhone 3G and iPod Touch 2nd Gen don’t
support the background state at all), such as background audio. When a user is listen-
ing to their iPod and taps the Home button, the application still plays music in the
background state.

 Most applications will stay in the suspended state after moving to background
mode and won’t execute code in the suspended state. When the user switches back to
this application after some time, it will automatically return from the background to
the foreground state, where it was left previously.

 Sometimes, when the system is running low on memory, applications with heavy
memory usage in the background are terminated in order to free up more memory
for the foreground application. Another possibility is that the user will manually ter-
minate the application from the multitasking UI stack.

 In iOS 4, it’s important to understand the application’s lifecycle in order to design
a responsive and smooth-transitioning application. For example, when you’re design-
ing a game application, you should pause the game when there’s an incoming call and
save important data before the application quits or moves to the background state.
How can you monitor the application’s lifecycle during runtime?

 Two solutions are available on iOS 4. One solution is to respond to each major call-
back method in the application delegate. Another way is to observe the notifications
from the notification center. Table 21.1 has a complete list of application delegate
methods and notifications.

Table 21.1 A complete list of application delegate callbacks and notifications

Method Notification Description

application:
didFinishLaunching-
WithOptions:

UIApplication-
DidFinishLaunching-
Notification

The application launches.

application-
DidBecomeActive:

UIApplication-
DidBecomeActiveNotification

The application runs actively in the
foreground.

application-
WillResignActive:

UIApplication-
WillResignActiveNotification

During interruption, the application
becomes inactive.

application-
DidEnterBackground:

UIApplication-
DidEnterBackground-
Notification

The application enters the background
state.

application-
WillEnterForeground:

UIApplication-
WillEnterForeground-
Notification

The application resumes from the
background.

application-
WillTerminate:

UIApplication-
WillTerminateNotification

The application is terminated and not
running.

http://www.it-ebooks.info/

411Overview of multitasking

www.it-ebooks.info
Inside the application’s delegate, you can monitor the application’s lifecycle state and
transitions; at the time of writing, six major callbacks are available in the application
delegate:

 application:didFinishLaunchingWithOptions—This is the most important
method and has been used in the entire book. This method can be used to ini-
tialize the application and prepare it for running in the foreground state, such
as loading the Main Window nib file.

 applicationDidEnterBackground—This is the key callback method to prepare
the application for the background state. Use this method to release shared
resources, save user data, invalidate timers, and store enough application state
information to restore your application to its current state. If the application
supports background execution, this method will be called instead of
applicationWillTerminate when the user taps the Home button.

 applicationWillEnterForeground—This method is sent when the application
resumes from the background state and will enter the foreground. You can use
this method to restore the application and undo the changes before the appli-
cation enters the background. For example, the application can load the
resources and restore the data.

 applicationDidBecomeActive—This method can be used to customize appli-
cation behavior when the application becomes active in the foreground. For
example, it will be called when the interruption is gone or when the application
continues transition from inactive state to active state after the method
applicationWillEnterForeground gets called. Use this task to restart the tasks
paused previously. For example, you should continue the game, restart the
timer, and update the user interface.

 applicationWillResignActive—This method gets called when the applica-
tion is about to move from active to inactive state. This can occur for certain
types of temporary interruptions (such as an incoming phone call or SMS mes-
sage) or when the user quits the application and it’s about to start the transition
to the background state. You can use this method to pause ongoing tasks, dis-
able timers, and tune down OpenGL ES usage.

 applicationWillTerminate—This method is called when the application is
about to be terminated. The application will transit back to the not-running
state.

You can use the notifications in table 21.1 to monitor the application’s transition
states with the notification center. For example, you can use the following code snip-
pet to register a notification for UIApplicationWillResignActiveNotification
inside the view controllers:

NSNotificationCenter *notifCenter = [NSNotificationCenter defaultCenter];
[notifCenter addObserver:self selector:@selector(resignActive:)
name:UIApplicationWillResignActiveNotification object:nil];

http://www.it-ebooks.info/

412 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
As you can tell, in order to smoothly support multitasking in the application, you need
to consider saving the application’s data properly before the application moves to the
background and reload the necessary data before the application launches from the
background mode.

 You may have more questions related to the background state at this point, which
is important to understand for multitasking in iOS 4. We’ll take a closer look at the
application’s background state in the following section.

21.1.2 How to enable multitasking

The applications built under iOS 4 are automatically enabled for multitasking. But in
order to support certain constantly running types of multitasking, the background
mode must be declared in advance. To do so, include the UIBackgroundModes key in
the application’s Info.plist file. Table 21.2 contains a detailed list for the multitask-
ing mode.

The value for the UIBackgroundModes key is an array that may contain one or more
strings. For example, the turn-by-turn navigation application will need both location
service and audio running in the background mode, so you must add both audio and
location to the Info.plist. We’ll touch on how to monitor significant location changes
in the background in section 21.5 and continue with advanced background audio in
the next chapter.

21.2 Background state
Background state is important for iOS 4. In this section, we’ll look at the definition of
the background state under iOS 4 and explore the application lifecycle with the back-
ground state.

Table 21.2 Multitasking mode list in Info.plist

UIBackgroundModes Descriptions

Audio The application plays audible content to the user while in the background,
such as the music application Pandora or a turn-by-turn audio navigation
application.

Location The application keeps the user informed about current location updates,
even while running in the background. This mode is designed for a turn-by-
turn navigation application. Note that a significant location change or region-
monitoring location service doesn’t have to register for the location mode
because the specific location update isn’t required.

VoIP The application provides the ability for the user to make phone calls using an
internet connection.

http://www.it-ebooks.info/

413Background state

www.it-ebooks.info
21.2.1 Understanding the background state

When the application is about to enter the background state, a couple of application
delegate methods will be called. The process flow chart in figure 21.3 demonstrates
the process. When user taps the Home button, the application will move from the
foreground to the background. The application delegate method application-
DidEnterBackground: gets called.

 The application delegate method applicationDidEnterBackground: has only
about 6 seconds to finish the task; then it may enter the suspended state. You want to
make sure your application performs some best practices before the application tran-
sitions to the background:

 Save user data—Save important user data in a few seconds or incrementally, such
as saving data at each stage in the middle of the game.

 Reduce memory usage—The system will terminate apps in the background
when the memory is exhausted in order to free up memory for the fore-
ground application.

 Stop GPU usage—OpenGL framework–related objects must be released or the
application will be terminated.

 Finish long-running tasks—We’ll cover this in detail in section 21.4.

After the application continues running in the background for about 6 seconds, the
system will move the application to the suspended state. The system takes a snapshot
of the application’s current image, and the application can’t perform any task or exe-
cute code after it’s suspended.

 How does the application resume in the foreground? When the user launches an
application that’s in the background state, the application delegate sends a message to
the applicationWillEnterForeground: method in order to restart any services or
tasks. Once the application resumes running in the foreground, a second message,
applicationDidBecomeActive:, will be sent, as shown in figure 21.4.

 In the stage when the application moves from the background to the foreground,
you should undo the changes made before the application entered the background.
For example, OpenGL framework objects need to be re-created. You may also want to
respond to screen-rotation events and update the user interface.

applicationWillResignActive:

applicationDidEnterBackground:
Application
enters the

background

User presses the
home button

Application
running in the

foreground

Figure 21.3 Application moves from
the foreground to the background.

http://www.it-ebooks.info/

414 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
21.2.2 Opting out of the background state

The background state provides many possibilities for applications on iOS. But if for
some reason you wish to turn off the background state, you can add the
UIApplicationExitsOnSuspend key to your application’s Info.plist file and set its
value to YES. If your application does opt out of the background state, the application
will directly move to the not-running state once the user taps the Home button,
which means the applicationWillTerminate: method of the application delegate is
called instead.

 In this section, you learned the basics of multitasking on iOS 4, saw how to monitor
the application’s state change in the lifecycle, and thoroughly explored the back-
ground state. Next, you’ll practice writing real code for multitasking.

21.3 Using fast app switching
As we mentioned earlier, fast app switching offers a great user experience. When users
want to switch between two apps, they double-tap the Home button to enable the mul-
titasking UI, as shown previously in figure 21.1. All applications built on iOS 4 will sup-
port fast app switching automatically—no additional setup is required. In this section,
you’ll build an application that will handle fast app switching smoothly.

21.3.1 Building a simple application for fast app switching

Start Xcode, and create a new project with the iOS template Navigation-Based Applica-
tion. Name the application Quick. In this application, you want to keep track of each
time the application launches from the not-running state or resumes from the back-
ground state. All the data collected will be listed on the table view.

 In order to collect user data every time the application starts, you’ll use the appli-
cation delegates application:didFinishLaunchingWithOptions: and application-
WillEnterForeground: to save the launching time. Single-click the QuickApp-
Delegate.m file, and add the changes from the following listing.

applicationWillEnterForeground:

applicationDidBecomeActive:
Application

enters
foreground

User restarts
the application

Application in
the background

Figure 21.4 The application restarts
from the background and resumes in
the foreground.

http://www.it-ebooks.info/

415Using fast app switching

www.it-ebooks.info
#import "QuickAppDelegate.h"
#import "RootViewController.h"

@implementation QuickAppDelegate

@synthesize window=_window;
@synthesize navigationController=_navigationController;

- (NSString *)getCurrentTime {
 NSDate *lauchtime = [NSDate date];
 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateFormat:@"yyyy/MM/dd HH:mm:ss"];
 NSString *stringFromDate = [formatter stringFromDate:lauchtime];
 [formatter release];
 return stringFromDate;
}
- (void)saveCurrentData {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSMutableArray *savedData = [[NSMutableArray alloc] initWithArray:
 [defaults objectForKey:@"kQuickData"]];
 [savedData addObject:[self getCurrentTime]];
 [defaults setObject:savedData forKey:@"kQuickData"];
 [savedData release];
}
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {
 [self saveCurrentData];
 [_window addSubview:_navigationController.view];
 [_window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillEnterForeground:(UIApplication *)application {
 [self saveCurrentData];
}

- (void)dealloc {
 [_navigationController release];
 [_window release];
 [super dealloc];
}

@end

In the application delegate, you want to get the system time when the application
starts. You define the method getCurrentTime B to get the system time using NSDate
and convert the time to string format including the date and time as “yyyy/MM/dd
HH:mm:ss”; then you define another method, saveCurrentData C, to save the
launch time with NSUserDefaults, which you learned how to do in chapter 8. There
are two callback methods in the application delegate related to the application launch
time. First is application:didFinishLaunchingWithOptions:D. It occurs when the
application initially launches from the not-running state, so you want to save the new

Listing 21.1 Implement QuickAppDelegate to collect user data when app launches

Get
launch time

B

Save dataC

App
launchesD

App resumes
from backgroundE

http://www.it-ebooks.info/

416 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
launch data here. The second method, in applicationWillEnterForeground: E,
occurs when the application relaunches from the background to continue running in
the foreground state, so you need to save this new user data as well.

 You’ve now prepared the application delegate for collecting the launch time data;
in the next section you’ll make sure the table view can display the user data correctly.

21.3.2 Updating the user interface in the view controller

Single-click the RootViewController.h file, and add in the changes from the following
code snippet:

#import <UIKit/UIKit.h>

@interface RootViewController : UITableViewController {
 NSArray *events;
}
@property (nonatomic, retain) NSArray *events;
@end

You’ll use the array events as the table view’s data source. Move to the RootView-
Controller.m file. You want to make sure that each time the application launches, the
table view will reload the data that you’ve saved inside the application delegate, as
shown in the following listing.

#import "RootViewController.h"

@implementation RootViewController
@synthesize events;

- (void)updateUI {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 self.events = [defaults objectForKey:@"kQuickData"];
 [self.tableView reloadData];
}

- (void)viewDidLoad {
 [super viewDidLoad];
 self.title = @"App Tracking List";
 [self updateUI];
 NSNotificationCenter *notifcenter = [NSNotificationCenter
 defaultCenter];
 [notifcenter addObserver:self selector:@selector(updateUI)
 name:UIApplicationWillEnterForegroundNotification object:nil];
}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [events count];
}

Listing 21.2 Implementing the RootViewController.m file to update the user interface

Update UI in
table view

B

Load
init data

C

DRegister
relaunch

notification

http://www.it-ebooks.info/

417Using fast app switching

www.it-ebooks.info
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle: UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 cell.textLabel.text = [events objectAtIndex:indexPath.row];
 return cell;
}

- (void)dealloc {
 [events release];
 [super dealloc];
}

@end

In listing 21.2 you use the array events as the table view’s data source. Each row will
display the launching date you’ve saved in the application delegate methods. First,
you create a new method updateUI B to reload the data from NSUserDefaults and
update the table view’s data and the table view’s user interface. When the table view
controller is first created, you need to load the data with the method updateUI C.
Then you define the notification D to get notified by the system in order to reload
the table view’s data when the application relaunches from the background. Inside
the table view delegate methods, you define the table view’s row number and display
content. Then, when the view controller is released, you need to release the retained
object events in the memory.

 With all the new changes included, save the project. Build and launch the applica-
tion. You should see a UI display similar to the one shown in figure 21.5.
Quit the application, double-tap the Home button when the multitasking UI appears,
relaunch the application, and notice that the new time stamp is successfully added to
the table view even though the application is launched from the background.

 Congrats: you’ve learned how to save the application’s user data inside the applica-
tion delegate callback methods and how to update the user interface when the appli-
cation launches from background to foreground by using the notification inside the
view controller. You can use this demo application to test out different application
state changes. Playing around with different cases will help you understand how to
update the user interface and respond to changes correctly.

 Next, we’ll look at a more in-depth use for the multitasking API: how to finish a
task in the background.

http://www.it-ebooks.info/

418 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
21.4 Task completion in the background
In the previous sections, we went through multitasking basics and fast app switching.
Most of the time, it will be good enough for an application to use only fast app switch-
ing. But some applications may need extra time to finish the task in the background
state before being suspended: for example, uploading a photo to the cloud, tweeting
your current status, or downloading the latest RSS feeds. When the user taps the
Home button, the application can continue running for about 6 seconds in the back-
ground before the application is suspended. In this section, we’ll look at the task-
completion API and build a demo app for practice.

21.4.1 Task-completion API

With the task completion in the background, the user doesn’t have to wait until the
task is completed, but you need to tell the application how to start and when to end
the task in the background. How can you do that? iOS 4 provides a pair of methods
under UIApplication to wrap up a big task in between. You can begin the task assign-
ment by calling beginBackgroundTaskWithExpirationHandler:, and when it’s done,
you call the method endBackgroundTask: to end the task.

 Here are the basics to use the task-completion API:

Figure 21.5 The Quick application
keeps tracking the application’s launch
time and updating the table view’s UI
whenever the application starts.

http://www.it-ebooks.info/

419Task completion in the background

www.it-ebooks.info
1 Define the identifier for the background task in the application’s delegate
applicationDidEnterBackground: method.

2 Indicate the start of the task by assigning the expiration handler, calling the
method beginBackgroundTaskWithExpirationHandler:. The definition of this
method is listed here:
-(UIBackgroundTaskIdentifier) beginBackgroundTaskWithExpirationHandler:
 (void(^)(void))handler

This method will take a block as an argument and return the task’s unique
identifier.

3 End the task. Call the method endBackgroundTask: to end the task by calling
the task identified in step 2.

As you can tell, the task-completion API is easy to follow. The remaining time in the
background for task completion can be accessed from the UIApplication’s property:
backgroundTimeRemaining. In case a few tasks are waiting to be done, you can use this
property to check the remaining time in between tasks.

21.4.2 Finishing a task in the background

Back in section 21.1, you learned about the application’s lifecycle in iOS 4. When the
application moves from the foreground to the background state, its delegate method
applicationDidEnterBackground: will be called.

 Listing 21.3 is an example of a task-completion API, showing how to finish a task in
the background before the applications gets suspended. You can create a window-
based project from the iOS template project in Xcode, because this part of API will
only make changes to the app delegate file. In the app delegate header file, add in the
task identifier: UIBackgroundTaskIdentifier bgTask. Define bgTask as a property of
the app delegate, and synthesize it in the .m file.

 Next, add the new changes from the following listing to the app delegate file.

- (void)uploadPhoto {
 [[UIApplication sharedApplication] cancelAllLocalNotifications];
 UILocalNotification *localNotification = [[UILocalNotification alloc]
 init];
 if (localNotification == nil)
 return;
 localNotification.fireDate = [NSDate dateWithTimeIntervalSinceNow:3];
 localNotification.timeZone = [NSTimeZone defaultTimeZone];
 localNotification.alertBody = [NSString stringWithFormat:
 @"Your photo is uploaded!"];
 localNotification.alertAction = @"View Details";
 localNotification.soundName = UILocalNotificationDefaultSoundName;
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];
 [localNotification release];
}

Listing 21.3 Task completion in the background

Background taskB

http://www.it-ebooks.info/

420 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
- (void)applicationDidEnterBackground:
 (UIApplication *)application {
 UIApplication *app = [UIApplication sharedApplication];
 self.bgTask = [app
 beginBackgroundTaskWithExpirationHandler:^{
 [app endBackgroundTask:self.bgTask];
 self.bgTask = UIBackgroundTaskInvalid;
 }];

 dispatch_async(dispatch_get_global_queue
 (DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 [self uploadPhoto];
 [app endBackgroundTask:bgTask];
 self.bgTask = UIBackgroundTaskInvalid;
 }
);
}

In this application, you want to finish a task, and after completion, send a local notifi-
cation out to notify the user that the work is done. This example uses a simple method
uploadPhoto B to demonstrate the local notification setup in the background state.
If you’re interested, you can look up Flickr’s photo-uploading API and add real photo
uploading code into this method.

 Because the main purpose of this listing is to demonstrate the task-completion
API, let’s take a closer look at how the job is done here. In the method
applicationDidEnterBackground: you start the bgTask by calling the method
beginBackgroundTaskWithExpirationHandler C. The argument for the expiration
handler is a block to end the task and release the bgTask. Then, with the help of
Grand Central Dispatch (GCD), the task uploadPhoto gets called, and you end the
task by calling the method endBackgroundTask: D and release the task identifier by
assigning the UIBackgroundTaskInvalid value to bgTask D. We covered the GCD
back in chapter 16.

 Save the changes, and build and run the application. Tap the Home button to let
the application enter the background. When the application completes the task in the
background, it will send out a local notification, as shown in figure 21.6.

 Cool! You just managed to finish a task in the background. Always keep in mind
that the permission and time limit are not guaranteed when you use the task-
completion API. That’s why it’s a good practice to end the task gracefully instead of let-
ting it get suspended when it doesn’t finish in time.

 Next, we’ll cover how to monitor location changes in the background on iOS 4.

21.5 Monitoring location changes in the background
We covered the Core Location framework in chapter 10 and the Map Kit framework
in chapter 18. Because iOS provides an easy-to-use Core Location framework and Map
Kit framework, developers have the chance to build creative and amazing applica-
tions. For example, Foursquare is one of the most-famous location-based social appli-
cations. With iOS 4’s location service, you can even check in to places through

Begin
background
task

C

End taskD

http://www.it-ebooks.info/

421Monitoring location changes in the background

www.it-ebooks.info
Foursquare while the app isn’t running. You may ask, ”How did they do that? Will the
battery drain quickly because the location service consumes a lot of power?”

 In iOS 4, an application can monitor location changes even though the application
isn’t running. The best part is, you don’t need to worry about battery usage in this case.
In this section, we’ll first look at the techniques behind background location monitor-
ing and then explore the new API under iOS 4 for background location monitoring.

21.5.1 An overview of the location service in the background

As mentioned in chapter 10, the location service will use more battery power when
the accuracy requirement is higher. Of the three location service providers—cell
phone tower, wi-fi, and GPS—cell phone tower uses the least power and provides
acceptable accuracy (the 300-meter accuracy is good enough for the majority of
cases).

 There are several ways to track the user’s location in the background, some of
which don’t require the application running regularly in the background:

 Significant location changes and region-based location monitoring—The significant
location change service offers a low-power way to receive location data through
cell phone towers and is highly recommended when precise location data isn’t
required. With this service, location updates are generated only when the user’s

Figure 21.6 The application
finishes the task in the background
and sends out a local notification on
the iPad and iPhone.

http://www.it-ebooks.info/

422 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
location changes significantly—for instance, when the user moves from one cell
tower range to another. If the application is suspended or not running when an
updated location occurs, the system will wake it up in the background to handle
the event. This service is available in iOS 4 and only on devices that contain a
cellular radio, such as the iPhone and iPad with 3G. The region-based location
monitoring works exactly the same way as significant location changes.

 Regular location updates before the application gets suspended—Before the applica-
tion gets suspended, you can access the regular location service for a few sec-
onds. The application won’t be restarted once it’s suspended and a new
location update occurs.

 Accurate and continuous location updates—An application needs accurate location
updates, both in the foreground and background states, for example, a turn-by-
turn navigation application. It should add the UIBackgroundModes key to its
Info.plist file and add the location string to the array value.

If your application doesn’t need to provide precise and continuous location informa-
tion to the user, the significant location change service works out the best. This service
provides location updates in the background and can even wake up a suspended or
not-running application. Combine this feature with the region monitor in the core
location, and you can create an awesome application.

 In case the application requires precise and continuous location data, such as a
navigation application, you need to declare the location service in the Info.plist. Keep
in mind that it increases power consumption because of the GPS usage, but it’s avail-
able for applications that truly need it. The device should be plugged into the power
supply in the real-time case.

 We focused on the significant location change service here, mainly because the
other options are the same in the background as the regular location updates in the
foreground, which we covered in chapter 10.

21.5.2 Monitoring significant location change

The significant location change service offers a low-power location service for devices
with cellular radios. The location data isn’t as accurate as that of the GPS, but it’s suit-
able for most cases. For example, you can use this background location service to
trace how far the user has driven their car.

 Use the method significantLocationChangeMonitoringAvailable to check if
the current device supports significant location change monitoring. You can use the
following code snippet to verify the availability:

BOOL available = [CLLocationManager
significantLocationChangeMonitoringAvailable];

When this service is available, you can use two methods in CLLocationManager to start
and stop receiving the updates:

-(void)startMonitoringSignificantLocationChanges;
-(void)stopMonitoringSignificantLocationChanges;

http://www.it-ebooks.info/

423Monitoring location changes in the background

www.it-ebooks.info
Remember to turn off this service when you no longer need to receive the updates.
Otherwise, the system will still wake up the application whenever new updates are
available. That may annoy the user because it’s unnecessary.

 When the application isn’t running, the new location updates will wake up the
application. How can you handle this update in the application? Remember the appli-
cation delegate method in the application’s lifecycle that we discussed in section 21.1?
In this case, the application:didFinishLaunchingWithOptions: method gets called,
and the dictionary launchOptions contains the UIApplicationLaunchOptions-
LocationKey key. You can use this method to restart the CLLocationManager if it’s not
available. You can use the CLLocationManager delegate method location-

Manager:didUpdateToLocation:fromLocation: to get the new location data.

21.5.3 Monitoring region-based location change

The region-based location updates service works exactly the same way as the signifi-
cant location updates. The new location update wakes up the application, even
though the application may be suspended or not running at all. You can use two meth-
ods available in CLLocationManager to start and stop the monitoring for a region:

- (void)startMonitoringForRegion:(CLRegion *)
 desiredAccuracy:(CLLocationAccuracy);
- (void)stopMonitoringForRegion:(CLRegion *);

Before using the region-based location monitoring service, make sure the application
has this service available. For the hardware availability, you can use the CLLocation-
Manager class method + (BOOL)regionMonitoringAvailable;.

 But even if the device can support the region-based location monitoring service,
the user can enable or disable the region monitoring service in the settings. There-
fore, you also need to check to see if this service is currently enabled. Use the
CLLocationManager class method regionMonitoringEnabled to do so.

 The region-based location service will send the new location to the CLLocation-
Manager’s delegate methods. Table 21.3 lists the important delegate methods for the
region-monitoring location service.

Table 21.3 Region-based location-monitoring methods

Description Methods

User entered the specified
region.

 -(void)locationManager:(CLLocationManager *)
manager didEnterRegion:(CLRegion *)region;

User left the specified region. -(void)locationManager:(CLLocationManager *)
manager didExitRegion:(CLRegion *)region;

A region monitoring error
occurred.

 -(void)locationManager:(CLLocationManager *)
manager monitoringDidFailForRegion: (CLRegion *)
region withError:(NSError *)error;

http://www.it-ebooks.info/

424 CHAPTER 21 Introducing multitasking

www.it-ebooks.info
The region-based location service can be helpful and is easy to implement. For exam-
ple, you can use this service to notify the user that a grocery store is nearby, or in a to-
do list application you can remind the user to pick up clothes from the dry cleaner
when they are near it.

21.6 Summary
Multitasking is useful in many ways. With the application running in the background,
you can provide an amazing user experience with the iOS 4 platform. Instead of yank-
ing the user out of the application when the app quits, with a little extra work you can
have the application return to the previous state or, even better, perform operations
without the application running in the foreground.

 Try to adopt fast app switching in your application. It will give the user a chance to
resume the application.

 In the next chapter, we’ll spend more time on continuous location updates in the
background and build an application together. We’ll also tackle multitasking in depth;
we’ll show how to enable audio playing in the background and control the back-
ground audio through remote-control events.

http://www.it-ebooks.info/

www.it-ebooks.info
Multitasking in depth
In the previous chapter, you learned the multitasking basics in iOS 4 and how to fin-
ish a task in the background with blocks and Grand Central Dispatch. When the
application needs to (or for better user experience) continue running in the back-
ground, remember that these multitasking features are available on iOS 4:

 Audio—The application can continue running and play audio to the user
while in the background. The user can use the multitasking UI or the lock
screen UI to remotely control the audio play, pause, fast-forward, and so on.

 Location—The application can receive location updates to support location-
related tasks or navigation in the background, such as the significant loca-
tion change service and turn-by-turn directions.

 VoIP—Allows the application to receive voice calls through the internet even
though other applications are in the foreground.

This chapter covers
 Monitoring the location service in the background

 Building an audio-playing application

 Enabling background audio playing

 Handling remote-control events
425

http://www.it-ebooks.info/

426 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
These multitasking features are useful and can boost your application to a brand-new
level. In this last chapter of the book, first we’ll continue the background location-
monitoring service from the previous chapter by building a location-tracking applica-
tion. Next, we’ll focus on background audio playing and cover some additional
advanced topics, such as handling interruptions and remote-control events.

22.1 Using the location-monitoring service
In the last chapter, you learned the features of significant location change updates
and region-based location monitoring in the background. Now let’s continue explor-
ing the location service by building a location-monitoring application. In this section,
we’ll build a demo application that tracks location updates in the background.

22.1.1 Updating the UI when the app relaunches

The first step is to create the application to display the location data collected. First,
open Xcode and create a project using the Navigation-Based Application template in
the iOS application projects. Name it Locations. In this application, we’ll use a table
view to display all the new location updates from the location service running in the
background.

 The application’s view controller needs to update the user interface with location
data when the app is restarted from the background state. You learned how to do that
in the last chapter’s fast app-switching section, section 21.2.

 Inside the RootViewController.h file, define an NSArray called locationData
and use it as the table view’s data source, as shown in listing 22.1. Then in the Root-
ViewController.m file, display the location data on the table view. Keep in mind that
the table view needs to reload the data when the application is restarted from the
background.

HEADER
#import <UIKit/UIKit.h>
@interface RootViewController : UITableViewController {
 NSArray *locationData;
}
@property (nonatomic, retain) NSArray *locationData;
@end

IMPLEMENTATION FILE
#import "RootViewController.h"
@implementation RootViewController
@synthesize locationData;

- (void)updateUI {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 self.locationData = [defaults objectForKey:@"kLocationData"];
 [self.tableView reloadData];
}

Listing 22.1 RootViewController’s header file and implementation file

http://www.it-ebooks.info/

427Using the location-monitoring service

www.it-ebooks.info
- (void)viewDidLoad {
 [super viewDidLoad];
 self.title = @"Locations";
 [self updateUI];
 NSNotificationCenter *notifcenter =
 [NSNotificationCenter defaultCenter];
 [notifcenter addObserver:self selector:@selector(updateUI)
 name:UIApplicationWillEnterForegroundNotification
 object:nil];
}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [locationData count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }
 cell.textLabel.text = [locationData
 objectAtIndex:indexPath.row];
 return cell;
}
- (void)dealloc {
 [locationData release];
 [super dealloc];
}
@end

When the table view controller gets loaded, the locationData array will fetch the data
stored with NSUserDefaults and then update the table view based on the location-
Data array. The notification center will observe the event when the application
resumes from the background state and reload the table view’s data.

 Now the table view is ready to display the location data. Next, let’s look at how to
get the location updates from the Core Location framework with the significant-
change location service.

22.1.2 Enabling the significant-change location service

In this section, we’ll add the significant-change location service to our Locations appli-
cation. First, add the Core Location framework to the project and include the core
location header (CoreLocation/CoreLocation.h) in the app delegate file.

http://www.it-ebooks.info/

428 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
 Then add the Core Location Manager to the app delegate as an instance variable:
CLLocationManager *locationManager;. You must also modify the definition of the
LocationsAppDelegate @interface to state that CLLocationManagerDelegate is
implemented, like this:

@interface LocationsAppDelegate : NSObject <UIApplicationDelegate,
CLLocationManagerDelegate>

Now add changes from the following listing into the app delegate implementation file
to enable the location-monitoring service when the app launches.

#import "LocationsAppDelegate.h"
#import "RootViewController.h"

@implementation LocationsAppDelegate
@synthesize window = _window;
@synthesize navigationController = _navigationController;

-(void)initLocationManager {
 if (locationManager == nil) {
 locationManager = [[CLLocationManager alloc] init];
 locationManager.delegate = self;
 [locationManager startMonitoringSignificantLocationChanges];
 }
}
- (void)saveCurrentData:(NSString *)newData {
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSMutableArray *savedData = [[NSMutableArray alloc]
 initWithArray:[defaults
 objectForKey:@"kLocationData"]];
 [savedData addObject:newData];
 [defaults setObject:savedData forKey:@"kLocationData"];
 [savedData release];
}
- (BOOL)application:(UIApplication *) application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 if (![CLLocationManager
 significantLocationChangeMonitoringAvailable])
 {
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Sorry"
 message:@"Your device won't support the significant"
 "location change."
 delegate:self cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 return YES;
 }
 [self initLocationManager];
 [self.window addSubview:navigationController.view];
 [self.window makeKeyAndVisible];
 return YES;
}

Listing 22.2 Implementing location updates in the background

Start location
service

B

Store
data

C

Test if location
service is available

D

Test if location
service is availableD

http://www.it-ebooks.info/

429Using the location-monitoring service

www.it-ebooks.info
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 NSString *locationData = [NSString stringWithFormat:
 @"%.6f, %.6f", newLocation.coordinate.latitude,
 newLocation.coordinate.longitude];
 [self saveCurrentData:locationData];
}

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSString *errorData = [NSString stringWithFormat:@"%@",[error
 localizedDescription]];
 NSLog(@"%@", errorData);
}
- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [locationManager release];
 [_navigationController release];
 [window release];
 [super dealloc];
}

@end

Inside the application delegate, you use the Core Location Manager to monitor the
significant location change. When the application first launches, you call the method
initLocationManager B to initialize the Location Manager and start the significant
location update service. In order to make sure the location service is actually available
on this device, you use the method significantLocationChangeMonitoring-

Available D to test the availability, and if it’s not possible to use the location update
service on this device, you give the user an alert.

 Once the new location is available, the Location Manager delegate method gets
called E. You need to store the new location data using NSDefaults in the method
saveCurrentData C. That’s how the table view can get all the new location updates
from the application delegate.

 In case an error occurs during location updating, the Location Manager calls the
delegate method F. You can read the error message inside the console window
under Xcode.

 You need to test this application on your iPhone or iPad with 3G because the Simu-
lator doesn’t support the location change service. Build and run this application on
the device. Quit the application to let the location service run in the background.

 The location application will continue receiving updates in the background, and
once it’s relaunched, you can track all the places you’ve been. Notice that even if the
application is suspended in the background or
the application isn’t running at all, the location
service is running. You can tell by the indicator
on the status bar of your iPhone or iPad 3G, as
shown in figure 22.1.

EUpdate
location data

FError handling

Figure 22.1 Significant location
updates application running in the
background

http://www.it-ebooks.info/

430 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
You can combine this significant location updates service and notify the user with
local notifications. The region-based location monitoring service works exactly like
the significant location updates service. You can define which region to monitor;
when the user enters that specific region, the application will receive the location
update through Core Location delegate methods. The system will wake up the appli-
cation even if the application isn’t running or suspended. We covered the key meth-
ods in the previous chapter.

 Next, we’ll dive into the background audio techniques and build an advanced
application to support background audio together, step by step.

22.2 Building an audio-playing application
with the Audio Toolbox framework
In order to demonstrate the background audio API, we need to have an application
playing audio. Back in chapter 12, you learned how to use the AV Foundation frame-
work to play music inside the application. Let’s start by building a MySong application
to play music with the AV Foundation framework. We’re going to use the AV Founda-
tion framework’s audio player that you’ve already learned and add in the new Audio
Toolbox framework to support background audio-playing and remote-control events.

 The Audio Toolbox framework sits one level below the AV Foundation framework,
so there are more methods available. The new class we’re going to use is AVAudio-
Session in the Audio Toolbox framework.

 First, you may want to spend some time learning new methods in AVAudioSession.
AVAudioSession is a singleton object that helps you configure the audio behavior in
your application. Call the following class method to get the singleton audio session:
[AVAudioSession sharedInstance];

 There are a few reasons for using an audio session:

 To define the audio session category
 To respond to the headset plug-in or unplug it
 To handle interruptions during audio playing

Why do you need to define the audio session category? Table 22.1 show the six catego-
ries in iOS that allow you to customize the audio role in your application.

Table 22.1 Audio session category

Audio session category Definition

AVAudioSessionCategoryAmbient Audio playing is not the primary purpose but it
allows another application’s audio to play. Will be
muted when the screen is autolocked or the
Silent switch is on.

AVAudioSessionCategorySoloAmbient Default value. Only the current application will
play the audio. Will be muted when the screen is
autolocked or the Silent switch is on.

http://www.it-ebooks.info/

431Building an audio-playing application with the Audio Toolbox framework

www.it-ebooks.info
When you set the category to playback, the system knows your application’s main pur-
pose is to play music, and it should continue playing even when the application isn’t
active. By default, this value in the audio session’s category is AVAudioSession-
CategorySoloAmbient, and the system will stop the audio playing when the applica-
tion is inactive. Because we’re building an audio-playing application that supports
continuous audio playing in the background, we need to set the audio session cate-
gory to playback.

 Use this code snippet to define the audio session’s category to playback:

[[AVAudioSession sharedInstance] setCategory:
AVAudioSessionCategoryPlayback error: nil];

Let’s build the audio-playing application with both the Audio Toolbox and AV Foun-
dation frameworks in Xcode. Create a new project, use the View-Based Application
template in the iOS application, and name it MySong. Because we’re going to use the
AV Foundation and Audio Toolbox frameworks in this application, go ahead and add
in the needed extra frameworks. Include the header files inside the MySongView-
Controller.h file:

#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>

Let’s add an audio file called backgroundmusic.m4a into our project. That’s the audio
file we’ll play in the application. You can use any music or audio file available on your
own computer; just make sure the name matches the example in this project.

AVAudioSessionCategoryPlayback Audio playing is the primary purpose in this appli-
cation. Won’t allow other applications to play
along. Won’t be muted even if the Silent switch
is on. Supports background audio playing.

AVAudioSessionCategoryRecord Audio recording is the primary purpose. Contin-
ues recording when the screen is autolocked.

AVAudioSessionCategoryPlayAndRecord For audio playing and recording at the same time
or not, i.e., voice over IP. This setting will mute the
other application’s audio.

AVAudioSessionCategoryAudioProcessing Not playing audio or recording but processing the
audio, such as format conversion.

Table 22.1 Audio session category (continued)

Audio session category Definition

What is M4A format?
Files in M4A format are actually the audio layer of (nonvideo) MPEG 4 movies. M4A
is slated to become the new standard for audio file compression.

http://www.it-ebooks.info/

432 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
Next, we’ll design the UI inside the MySong view controller. There will be a text label
to display the current audio file’s name in the center of the screen, and below the
label will be three buttons: one button for play/pause events, one for fast-forward,
and another one for rewind. When you tap the Play button, the button image will flip
to Pause, indicating you can pause the currently playing audio.

 In order to have a better user experience, let’s add the background images for the
three buttons into our project.

 Select the MySongViewController.h file, and add in the new changes, as shown in
the following listing.

#import <UIKit/UIKit.h>
#import <AVFoundation/AVFoundation.h>
#import <AudioToolbox/AudioToolbox.h>
@interface MySongViewController :
 UIViewController <AVAudioPlayerDelegate> {
 AVAudioPlayer *myPlayer;
 IBOutlet UILabel *fileName;
 IBOutlet UIButton *playButton;
 IBOutlet UIButton *ffwButton;
 IBOutlet UIButton *rewButton;
}
@property (nonatomic, assign) AVAudioPlayer *myPlayer;
@property (nonatomic, retain) UILabel *fileName;
@property (nonatomic, retain) UIButton *playButton;
@property (nonatomic, retain) UIButton *ffwButton;
@property (nonatomic, retain) UIButton *rewButton;

- (IBAction)playButtonPressed:(UIButton*)sender;
- (IBAction)rewButtonPressed:(UIButton*)sender;
- (IBAction)ffwButtonPressed:(UIButton*)sender;
@end

In the header file, you add in one label for the filename and three buttons for the
audio playing control. Three methods are defined to handle each button’s touch
event.

 Save the changes for the header file. Next, let’s add the new objects to the nib file
and connect them to the view controller’s header file.

 Click the MySongViewController.xib file to open it for editing, and then open the
object library. First, add a new text label into the view, and then drag three buttons into
the view. By default, the button’s type is a rounded rectangle. Let’s change the button’s
attributes to a custom type and assign the background image to each button. Once it’s
complete, you’ll see the view controller’s UI, similar to the one shown in figure 22.2.

 Single-click the file’s owner under the MySongViewController’s File panel. Go to
the connection inspector and make sure all four UI outlets in the file’s owner are con-
nected to new subviews. Hook up the three action buttons and save everything.

 Now we’ll move on to implement the MySongViewController.m file. There are many
changes in the next step, considering this is a comprehensive audio playing project.

Listing 22.3 Project MySong’s view controller header file

http://www.it-ebooks.info/

433Building an audio-playing application with the Audio Toolbox framework

www.it-ebooks.info
Select the file and add in the code according to the following listing.

#import "MySongViewController.h"

@implementation MySongViewController
@synthesize myPlayer;
@synthesize fileName;
@synthesize playButton;
@synthesize ffwButton;
@synthesize rewButton;

#define SKIP_TIME 3.0
- (void)updateViewForPlayerState:(AVAudioPlayer *)player
{
 UIImage *buttonImg;
 if (player.playing)
 buttonImg = [UIImage imageNamed:@"pause.png"];
 else
 buttonImg = [UIImage imageNamed:@"play.png"];
 [playButton setBackgroundImage:buttonImg forState:UIControlStateNormal];
}

-(void)pausePlaybackForPlayer:(AVAudioPlayer*)player
{
 [player pause];
 [self updateViewForPlayerState:player];
}

-(void)startPlaybackForPlayer:(AVAudioPlayer*)player
{

Listing 22.4 MySongViewController.m file

Figure 22.2 MySong’s view controller UI

Update
Play button
bgimage

B

Pause
audio
playingC

Start audio
playingD

http://www.it-ebooks.info/

434 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
 if ([player play])
 [self updateViewForPlayerState:player];
}

- (void)rewind
{
 myPlayer.currentTime -= SKIP_TIME;
}

- (void)fastforward
{
 myPlayer.currentTime += SKIP_TIME;
}

- (IBAction)playButtonPressed:(UIButton *)sender
{
 if (myPlayer.playing == YES)
 [self pausePlaybackForPlayer:myPlayer];
 else
 [self startPlaybackForPlayer:myPlayer];
}

- (IBAction)rewButtonPressed:(UIButton *)sender
{
 [self rewind];
}

- (IBAction)ffwButtonPressed:(UIButton *)sender
{
 [self fastforward];
}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
 successfully:(BOOL)flag {
 [player setCurrentTime:0.];
 [self updateViewForPlayerState:player];
}

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player
{
 [self updateViewForPlayerState:player];
}

-(void)audioPlayerEndInterruption:(AVAudioPlayer *)player
 withFlags: (BOOL)flags

{
 if (flags & AVAudioSessionInterruptionFlags_ShouldResume)
 [self startPlaybackForPlayer:player];
}

- (void)viewDidLoad {
 NSURL *fileURL = [[NSURL alloc] initFileURLWithPath:
 [[NSBundle mainBundle]
 pathForResource:@"backgroundmusic" ofType:@"m4a"]];
 self.myPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:
 fileURL error:nil];
 if (self.myPlayer)
 {

RewindE

Fast-forwardF

Play/Pause
button pressed

G

Rewind
button pressed

H

Fast-forward
button pressed

I

JAudio player finishes
the audio file

Interuptions
start

1)

Interuptions
end1!

Create
audio player

1@

http://www.it-ebooks.info/

435Building an audio-playing application with the Audio Toolbox framework

www.it-ebooks.info
 fileName.text = [[myPlayer.url relativePath] lastPathComponent];
 [self updateViewForPlayerState:myPlayer];
 myPlayer.numberOfLoops = 10;
 myPlayer.delegate = self;
 }
 [[AVAudioSession sharedInstance] setDelegate: self];
 NSError *setCategoryError = nil;
 [[AVAudioSession sharedInstance] setCategory:
 AVAudioSessionCategoryPlayback
 error: &setCategoryError];
 if (setCategoryError)
 NSLog(@"Error setting category! %d", setCategoryError);
 [fileURL release];
 [super viewDidLoad];
}

- (void)viewDidUnload {
 self.fileName = nil;
 self.playButton = nil;
 self.ffwButton = nil;
 self.rewButton = nil;
}
- (void)dealloc {
 [fileName release];
 [playButton release];
 [ffwButton release];
 [rewButton release];
 [myPlayer release];
 [super dealloc];
}

@end

Let’s review what you’ve changed inside this view controller file.
 You want to use the Play/Pause button to toggle between play and pause, so you

define the method updateViewForPlayerState B to update the Play/Pause button’s
background image, indicating the audio player’s status. The method pausePlayback-
ForPlayer C can pause the audio player and update the UI. The method startPlay-
backForPlayer D will start playing the audio file if the audio player is not playing.

 The method rewind E can control the audio player’s timeline to go back 3 sec-
onds, and the method fastforward F will control it to fast-forward 3 seconds.

 The action method playButtonPressed G will respond to the Play/Pause button’s
action event. The action methods rewButtonPressed H and ffwButtonPressed I
will respond to the Rewind button’s action and the Fast-forward button’s action,
respectively.

 Then you define the audio player’s delegate callbacks in audioPlayerDidFinish-
Playing J, audioPlayerBeginInterruption 1), and audioPlayerEndInterruption
1!. In audioPlayerDidFinishPlaying J, when the audio playing task is complete,
you reset the timeline back to the beginning. When an interuption occurs in the sys-
tem, the delegate callbacks give you the chance to update the UI. When the interup-
tion is gone, you need to resume playing the music.

Define
audio session

1#

Release
retained objects

1$

http://www.it-ebooks.info/

436 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
 Finally, in viewDidLoad 1@, you first define the audio player’s music file as back-
groundmusic.m4a and then customize the view controller’s UI by displaying the file’s
name in the label fileName. In addition, you want to autoplayback this music file 10
times and set the delegate to self.

 Then inside the audio session 1#, you define the category as AVAudioSession-
CategoryPlayback to inform the system that this application will use audio playing as
a primary function.

 Finally, you release the retained objects inside the dealloc 1$.
 That’s all! Change the target to a universal application for both iPhone and iPad.

Save all the changes, click Build, and run it in Xcode.
 If everything runs smoothly, you should see a comprehensive audio-playing appli-

cation launch on your iPhone or iPad that contains a Play/Pause button, Fast-forward
button, and Rewind button. The text label will display the audio file’s name, as shown
in figure 22.3.

 Play with this application a bit, and you will find that our application has the first
priority in audio playing. For example, try to play music using the iPod system app in
the background, and when this application starts playing audio, the system will mute
the iPod music; this application will continue playing even if the screen is autolocked.

 When you have an incoming phone call, this application will pause playing the cur-
rent music as defined in the interruption-handling methods.

Figure 22.3 The audio-playing
application when it’s launched on
the iPhone and iPad

http://www.it-ebooks.info/

437Enabling audio playing in the background

www.it-ebooks.info
 This application uses fast app switching to automatically handle the different appli-
cation’s life transitions. You just built an advanced audio-playing application with the
Audio Toolbox and AV Foundation frameworks. Keep in mind that the audio session
category is important for audio-playing applications.

 Now let’s continue with our multitasking project to enable background audio play-
ing and handle remote-control events.

22.3 Enabling audio playing in the background
Under iOS 4, when an application is playing music in the background, such as an iPod
application or Pandora, the status bar on the iPhone or iPad has an audio-playing
indicator (a Play icon) on the right corner indicating that the music is playing, as
shown in figure 22.4.

 In the previous section we created a pretty nice audio-playing application, but the
music will stop playing if the user taps the Home button. How can we continue play-
ing the music in the application when it’s in the background? Even more, how can we
control the music playing through the remote-control UI just like in the iPod applica-
tion, as shown in figure 22.4? We’ll explain the details in the next section.

22.3.1 Adding the UIBackgroundModes in Info.plist

The first step to enable the background audio playing is to tell the system that this
application will continue playing audio while in the background. How can we do that?

 In iOS 4, there’s a new key inside the application’s Info.plist called UIBackground-
Modes, and we need to define the value of this key as “App plays audio.”

 Inside our MySong project, go to the Resources folder and select MySong’s
Info.plist. Add in a new row, Required background modes, and define the item’s value
as “App plays audio,” as shown in figure 22.5.

 That’s the important step to tell the system that we need to enable the background
audio for this application. Let’s give it a try right now.

Figure 22.4 Two remote-
control UIs on the iPhone
when the audio application is
playing in the background

http://www.it-ebooks.info/

438 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
Save the change, and hit Build and Run under Xcode. When the application launches
on your iPhone or iPad, tap the Play button to start playing the music. Then tap the
Home button to quit the application. Notice that there is an audio-playing icon on the
right corner of the status bar, indicating that you have a background audio application
running.

 Are you listening to the music playing in the background? Congrats! You just
learned how to enable the background audio in iOS 4.

NOTE At the time of writing, background audio is not supported on the Sim-
ulator, so make sure you’re testing your application on a real device, either
on an iPhone, iPod Touch, or iPad. That will save you some time trying to fig-
ure out what the problem is with the background audio playing.

Now you might want to try the remote-control UI to pause the music, but it won’t
work. Why? That’s because the response is not defined yet, so the system doesn’t know
what to do when the remote-control events occur. We’ll work through the new
changes in the next section.

22.3.2 Handling the remote-control events

You’ve already learned how to enable background audio in the MySong application.
Now it’s time to handle the remote-control events.

 There are two kinds of remote-control user interfaces in iOS 4. One is on the mul-
titasking UI deck, as shown in figure 22.4 on the left side; when you swipe from left to
right under the multitasking UI deck, the remote-control UI will present. A few but-
tons are available: Fast-forward, Play/Pause, and Rewind. The other remote control UI
appears when you lock the screen and double-tap the Home button, it’s the iPod
remote control UI that you’ve been familiar with since iOS 3, as shown in figure 22.4
on the right side.

 It turns out that you just need to define the remote-control events once, and they’ll
work for both remote control user interfaces. Let’s get started.

 First, you need to tell the application that you want to begin receiving the
remote-control events. Call the method beginReceivingRemoteControlEvents

under UIApplication and define the view controller as the first responder when the
Remote-control button is tapped. Use the following code snippet:

-(void)viewDidAppear:(BOOL)animated {
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
 [self becomeFirstResponder];
}

Figure 22.5 The info.plist with the background audio key enabled

http://www.it-ebooks.info/

439Building the background audio application

www.it-ebooks.info
- (BOOL)canBecomeFirstResponder {
 return YES;
}

Then you can start to define each event’s action method in the view controller:
-(void)remoteControlReceivedWithEvent:(UIEvent *)event

 There are quite a few touch events inside the subtypes, and you want to define the
related method inside our application so the system will know how to handle different
remote-control events. The UIEvent’s subtypes related to the audio remote-control
events are listed in table 22.2.

Now with the new remote-control method you learned, we’ll start coding with the back-
ground audio application and handle the remote-control events in the next section.

22.4 Building the background audio application
In our MySong application, three action methods are defined already: when the Play/
Pause button is tapped, when the Fast-forward button is tapped, and when the Rewind
button is tapped. Therefore, in the method remoteControlReceivedWithEvent:,
we’ll use the three action methods to handle the remote-control events:

Table 22.2 UIEvent’s remote-control subtypes and descriptions

UIEvent subtype Description

UIEventSubtypeNone The event has no subtype.

UIEventSubtypeRemoteControlPlay Playing audio.

UIEventSubtypeRemoteControlPause Pausing audio.

UIEventSubtypeRemoteControlStop Stopping audio from playing.

UIEventSubtypeRemoteControlTogglePlayPause Toggling audio between play
and pause.

UIEventSubtypeRemoteControlNextTrack Fast-forward, skipping to the
next audio.

UIEventSubtypeRemoteControlPreviousTrack Rewind, skipping to the previous
audio.

UIEventSubtypeRemoteControlBeginSeekingBackward Start seeking backward through
the audio.

UIEventSubtypeRemoteControlEndSeekingBackward End seeking backward through
the audio.

UIEventSubtypeRemoteControlBeginSeekingForward Start seeking forward through
the audio.

UIEventSubtypeRemoteControlEndSeekingForward End seeking forward through
the audio.

http://www.it-ebooks.info/

440 CHAPTER 22 Multitasking in depth

www.it-ebooks.info
 UIEventSubtypeRemoteControlTogglePlayPause:—Toggle between Play
and Pause

 UIEventSubtypeRemoteControlNextTrack:—Next track, fast-forward 3
seconds

 UIEventSubtypeRemoteControlPreviousTrack:—Previous track, rewind 3
seconds

With the methods from the last section, define the view controller to be the first
responder and begin to receive the remote-control events. Then define the reaction
method for each remote-control event in the view controller’s method remote-
ControlReceivedWithEvent:, as shown in the following listing.

-(void)viewDidAppear:(BOOL)animated {
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
 [self becomeFirstResponder];
}

- (BOOL)canBecomeFirstResponder {
 return YES;
}
-(void)remoteControlReceivedWithEvent:(UIEvent *)event
{
 switch (event.subtype) {
 case UIEventSubtypeRemoteControlTogglePlayPause:
 [self playButtonPressed:nil];
 break;
 case UIEventSubtypeRemoteControlNextTrack:
 [self ffwButtonPressed:nil];
 break;
 case UIEventSubtypeRemoteControlPreviousTrack:
 [self rewButtonPressed:nil];
 break;
 }
}

With new methods added in the MySongViewController.m
file, the new audio-playing application MySong can now
handle the remote-control events.

 Save all the changes, build the application under
Xcode, and launch the app on the device. When the appli-
cation launches, first tap the Play button to start the music
playing, and then tap the Home button to quit. The music
will continue playing in the background.

 Double-tap the home screen to enable the multitask-
ing UI dock, and swipe from left to right to launch the
remote-control UI on the multitasking dock, as shown in
figure 22.6.

Listing 22.5 Enabling remote-control and handling remote-control event reactions

Begin receiving
remote-control events

View control is
first responder

Remote-control
events occurred

Figure 22.6
Remote-control UI of My-
Song application on the
multitasking dock

http://www.it-ebooks.info/

441Summary

www.it-ebooks.info
Now this application can support the remote-control play/pause feature. When you
tap the Fast-forward button, the music timeline will jump 3 seconds forward. Tap the
icon, and this app will launch from the background to the foreground.

 In addition, when you have an incoming phone call or some other notification
from the system, the audio player delegate callback methods will handle the interrup-
tion and resume playing music when the interruption is dismissed.

Now enjoy this audio-playing application! You did a great job of building an awesome
application that supports background audio.

22.5 Summary
In this last chapter of the book, we dug further into the multitasking topic, built the
location-tracking application with background significant location updates, and then
focused on the background audio topic. We enhanced the audio-playing application
with the audio session from the lower-level Audio Toolbox framework and multitask-
ing API for background audio playing. This application will not only continue running
in the background but also react to remote-control events. Even more, it’s capable of
handling system interruptions. When you combine background audio with internet
streaming data, such as Pandora, there’s unlimited potential.

 iOS 4 provides many enhancements to the user’s experience. By default, fast app
switching is supported on all applications built on iOS 4. Moreover, multitasking gives
developers the power to use local notifications, enable background audio playing, fin-
ish a task in the background, and track location updates in the background with lower
power consumption. With multitasking knowledge, you can create amazing applica-
tions with all the frameworks covered throughout the book.

 As always, we encourage you to explore more with the iOS SDK.
 So long, my friend! Thanks for staying with us. You started with a basic application

and mastered the solid foundation and advanced features of iOS 4. You’re ready to
build the next best-selling application in the App Store.

 We wish you the best of luck on the application development journey!

Remote-control UI dock is last-in, first-out
In the remote-control UI dock, the application queues are last-in, first-out. So, if you
have the application running in the background and change to another music-playing
application, such as the iPod application, the latter one will be on the remote-control
dock.

http://www.it-ebooks.info/

www.it-ebooks.info
appendix A
iOS class reference

After reading this book, your main resource for learning more about iOS develop-
ment should be the references at http://developer.apple.com. To help you find docu-
ments that might interest you, this appendix lists the major classes in the UIKit and
Foundation hierarchies that you may want to know more about, excluding classes that
only appear as a part of another class.

A.1 UIKit framework classes
The UIKit framework contains those classes most tightly connected to the devices,
including all the graphical classes you use to make up pages. A partial listing appears
as table A.1. It’s current as of iOS 4.3 and will probably be mostly correct when you
read this, but the UIKit does sometimes change between releases.

Table A.1 The most important user interface classes

Class Parent Summary

UIActionSheet UIView A pop-up window that includes options; simi-
lar to a UIAlertView

UIActivityIndicatorView UIView An indeterminate progress display

UIAlertView UIView A pop-up window that includes options; simi-
lar to a UIActionSheet

UIApplication UIResponder The main source for application information
and control

UIButton UIControl A push button

UIColor NSObject A color output class

UIControl UIView An abstract class that is parent to many user
controls

UIDatePicker UIControl A wheeled date-selection device

UIDevice NSObject A class that holds info about the device itself

UIEvent NSObject A container for touches; part of the event
model
442

http://developer.apple.com
http://www.it-ebooks.info/

443UIKit framework classes

www.it-ebooks.info
UIFont NSObject A font output class

UIImage NSObject A nondisplaying image holder

UIImagePickerController UINavigationController A modal controller for image selection

UIImageView UIView An image display that holds one or more
UIImage objects

UILabel UIView A small, non-editable text display

UINavigationController UIViewController A hierarchical controller; often linked with a
UITableViewController to produce hier-
archical menus

UIPageControl UIControl A toolbar for navigating among pages using
dots

UIPickerView UIView A wheel-based selection mechanism

UIProgressView UIView A determinate progress display

UIResponder NSObject An abstract class that defines all classes
that can receive and respond to events

UIScreen NSObject A class containing the device’s entire screen

UIScrollView UIView A parent class for views with multiple pages
of content

UISearchBar UIView A text-input mechanism specialized for
searches

UISegmentedControl UIControl A control for making one of several choices

UISlider UIControl A control for setting discrete values

UISwitch UIControl A control for selecting binary values

UITabBarController UIViewController A controller for moving among multiple
screens

UITableViewController UIViewController A controller for displaying tables of content;
often linked with a
UINavigationController

UITextField UIControl A control for inputting short text

UITextView UIScrollView A display for text of any size

UITouch NSObject An individual touch on the device’s screen

UIView UIResponder The abstract class that lies at the core of
most UIKit objects

UIViewController UIResponder A simple view controller

Table A.1 The most important user interface classes (continued)

Class Parent Summary

http://www.it-ebooks.info/

444 APPENDIX A iOS class reference

www.it-ebooks.info
A.2 Foundation framework classes
Foundation framework classes, whose names begin with NS, are almost as important as
the UI classes because they represent foundational variable types, like strings and
numbers. Table A.2 only lists the major classes that have some relevance to the sort of
work you’ve done in this book; for more, look at Apple’s developer site under Core
Services Frameworks.

UIWebView UIView A Safari-like web browser

UIWindow UIView The root for the view hierarchy

Table A.2 A listing of the most important Foundation classes

Class Parent Summary

NSArray NSObject An array

NSAutoreleasePool NSObject A memory-management class

NSBundle NSObject A pointer toward a project’s filesystem home

NSCharacterSet NSObject Methods for managing characters

NSCountedSet NSMutableSet An unordered collection of elements

NSData NSObject A wrapper for a byte buffer

NSDictionary NSObject An associative array

NSError NSObject Encapsulated error information

NSFileHandle NSObject A methodology for controlling files

NSFileManager NSObject A manager for filesystem work

NSIndexPath NSObject A node path

NSLog NSObject A very important object for debugging; logs a formatted
string to the system log

NSMutableArray NSArray An array that can be changed

NSMutableCharacterSet NSCharacterSet A character set that can be changed

NSMutableData NSData Data that can be changed

NSMutableDictionary NSDictionary A dictionary that can be changed

NSMutableSet NSSet A set that can be changed

NSMutableString NSString A string that can be changed

NSMutableURLRequest NSURLRequest A URL request that can be changed

Table A.1 The most important user interface classes (continued)

Class Parent Summary

http://www.it-ebooks.info/

445Other classes

www.it-ebooks.info
A.3 Other classes
The UI and NS classes should contain most of the objects you use when programming.

 We’ve also covered several other frameworks throughout this book, including the
Address Book framework (chapter 9), the Address Book UI framework (chapter 9),
the Core Location framework (chapter 10), the Core Audio framework (chapter 12),
the Media Player framework (chapter 12), the Core Graphics framework
(chapter 11), the Quartz Core framework (chapter 13), the OpenGL ES framework
(chapter 13), the CFNetwork framework (chapter 14), the Game Kit Framework
(chapter 15), the Event Kit framework (chapter 16), the APNS framework (chapter
17), the Map Kit framework (chapter 18), the Store Kit framework (chapter 19), and
the iAd framework (chapter 20). Finally, you may wish to pay some attention to the
Core Foundation framework, which we’ve used (as infrequently as possible) through-
out the last part of this book.

NSNotificationCenter NSObject A notification manager

NSNumber NSValue A way to encapsulate many types of numbers

NSObject N/A The root class for Cocoa Touch

NSString NSObject A class for various sorts of string storage and manipu-
lation

NSURL NSObject A simple URL object

NSURLRequest NSObject A URL plus a cache policy

NSValue NSObject A simple container for data

NSXMLParser NSObject An XML parser

Table A.2 A listing of the most important Foundation classes (continued)

Class Parent Summary

http://www.it-ebooks.info/

www.it-ebooks.info
appendix B
External sources

and references

What follows are web resources that we suggest for continuing your exploration of iPhone and
iPad development.

General resources

Site URL Summary

iCodeBlog http://icodeblog.com Brandon Trebitowski’s iPhone and iPad develop-
ment blog. Updated weekly with great tutorials
related to iPhone OS development.

iPhone Atlas www.iphoneatlas.com iPhone news blog.

iPhone Dev Forums www.iphonedevforums.com Forums for SDK or web discussion.

Stack Overflow www.stackoverflow.com Great community of developers where you can
ask and answer programming questions for any
language.

iPhone in Action http://iphoneinaction.manning.com/ Christopher and Shannon’s blog for this book.
Keeps you up to date with new links of interest
and occasionally covers some of the topics
that aren’t covered in this book.

The Apple Blog http://theappleblog.com General Apple blog, including some iOS
discussion.
446

http://icodeblog.com
www.iphoneatlas.com
www.iphonedevforums.com
www.stackoverflow.com
http://iphoneinaction.manning.com/
http://theappleblog.com
http://www.it-ebooks.info/

447

www.it-ebooks.info
SDK resources

Other technologies

Site URL Summary

Apple Developer Site http://developer.apple.com/devcenter/ios/ Official Apple site for developer
resources; requires ADC login

Apps Amuck www.appsamuck.com/ Thirty-one programs with source
code in 31 days

Cocoa Dev Central http://cocoadevcentral.com/ A hub of Objective-C and Cocoa
information

Cocoa Is My Girlfriend www.cimgf.com/ News and tutorial blog

Cocoa Samurai http://cocoasamurai.blogspot.com/ Cocoa and iPhone discussion

Furbo.org http://furbo.org/ General blog that’s mostly iPhone
discussion

iPhone Dev SDK www.iphonedevsdk.com/ Forums

iPhone Development http://iphonedevelopment.blogspot.com/ Blog with extensive original content

Mobile Orchard www.mobileorchard.com/ News blog

Safe from the Losing Fight www.losingfight.com/blog/ Blog about Macs with some empha-
sis on iPhones

Site URL Summary

JavaScript.com www.javascript.com/ A comprehensive JavaScript site

Mozilla.org https://developer.mozilla.org/en/JavaScript A comprehensive Javascript refer-
ence and tutorial site

SQLite www.sqlite.org/ The official SQLite site

W3C XML www.w3.org/XML/ The official XML site

www.appsamuck.com/
http://cocoadevcentral.com/
www.cimgf.com/
http://cocoasamurai.blogspot.com/
http://furbo.org/
www.iphonedevsdk.com/
www.w3.org/XML/
www.sqlite.org/
www.javascript.com/
http://iphonedevelopment.blogspot.com/
www.mobileorchard.com/
www.losingfight.com/blog/
http://developer.apple.com/devcenter/ios/
https://developer.mozilla.org/en/JavaScript
http://www.it-ebooks.info/

www.it-ebooks.info
appendix C
Publishing your

application
All of your programming will be for naught if you don’t sign up for the iOS Developer
Program with Apple. This is a multistep process that can take quite some time, so
make sure to get it all in hand well before you want to upload your program to the
App Store.

C.1 Signing up with Apple
To get started, you must register as a developer at http://developer.apple.com/
devcenter/ios/. When you register, you’re asked for some basic information about
what you’ll be developing, and you need to sign Apple’s Terms & Conditions for work-
ing with the iOS. You’ve probably already done this step, because it’s required in order
to get access to the SDK and the online documentation.

 Sometime afterward—maybe in a few hours, maybe in a few weeks—you’ll get a
call from Apple confirming your signup information and giving you the OK for the
program. Apple will then send you an email that allows you to finish your registration.
At this point, expect to pay a fee, currently $99/year (standard) or $299/year (enter-
prise), to become a full-fledged developer. The standard program allows for distribu-
tion via the App Store, and the enterprise program allows distribution of in-house
applications to over 500 employees.

C.2 Compiling to the device
The first advantage of being a registered iOS developer is that you can compile pro-
grams directly to your device. This is fairly critical for certain types of testing. As
you’ve seen in this book, features like altitude detection, volume control, and the
accelerometer don’t work correctly when tested in the Simulator.

 To compile to a device, you must create a provisioning profile, which is a multistep
process. You need to use some new tools that appear under a Program Portal link at
the top of http://developer.apple.com after you finish your signup and pay your fee.
Apple has a complete “iTunes Connect Developer Guide” that explains how to use
everything here, but we’ll outline the main steps:
448

http://developer.apple.com
http://www.it-ebooks.info/

449Compiling to the device

www.it-ebooks.info
1 Add team members (admin)—If you registered as a company, you can add addi-
tional team members under the Team tab. The initial creator of a team is the
Team Agent, who has the highest-level powers in the Developer Program; other
users are Team Administrators or Team Members. From here, individual mem-
bers can set themselves up to compile to their devices, with some steps requir-
ing interventions from Team Admins.

2 Create a certificate signing request (member)—This is the first step required to gener-
ate the certificate you need to sign (and thus run) applications on your device.
You create a certificate signing request (CSR) inside Keychain Access on your
Mac and then upload it from the Certificates > Development tab; a Team
Admin must then approve it.

3 Download a certificate (member)—After your Admin (who may be you) has
approved your CSR, you can download a certificate. From Certificates >
Development, download the WWDR Intermediate Certificate, and double-click
to install it. Afterward, download your developer certificate, and double-click to
install it.

WARNING Your certificate will be permanently installed in your keychain; if
you rebuild your machine or move to a new machine, you’ll lose it. To avoid
this, be sure you export the private key associated with your developer certifi-
cate. You can then import it on a different machine, and redownload the two
certificates from Apple. If you fail to do this, a Team Admin may need to
revoke your certificate so that you can create a new one.

4 Add devices (admin)—Add any devices (iPhones, iPods, or iPads) that you want
to build on using the Devices tab.

5 Create an app ID (admin)—Each application needs an app ID, which controls its
access to devices. For the purposes of testing, you’ll probably use one general
wildcard ID that you create by appending a wildcard (.*) to your app ID bundle
identifier.

6 Create a provisioning profile (admin)—A provisioning profile is a unique combina-
tion of multiple developer certificates, multiple device IDs, and a single app ID.
It’s what ties your device to your overall development profile and what allows
you to run programs. You create a provisioning profile from the Provisioning >
Development tab, at which point you’re asked to enter the three elements that
make it up.

7 Download a provisioning profile (member) —Download the profile from Devices,
and drag it your Xcode dock icon or the organizer window of Xcode.

Although the setup can be a bit extensive for an Admin, after the initial work is done,
a member can create a CSR, download a certificate, and download a provisioning pro-
file. From that point, the member can choose to compile onto a device rather than to
the iOS Simulator by changing the pop-up window at upper left in Xcode.

http://www.it-ebooks.info/

450 APPENDIX C Publishing your application

www.it-ebooks.info
C.3 Preparing for distribution via the App Store
Preparing your program for distribution via the App Store follows much the same pro-
cess as preparing your programs for testing on iPhones on iPads, except that the steps
can only be undertaken by the Team Agent:

1 Create a certificate (agent) —As before, you must upload a CSR, but here you
should create a certificate from the Certificates > Distribution tab, rather than
Certificates > Development.

2 Create a provisioning profile (agent) —Create a provisioning profile in the Provi-
sioning > Distribution tab. It’s usually an App Store profile. As before, drag your
new profile to Xcode.

3 Prepare to compile (anyone)—Create a new Distribution configuration that uses
the distribution provisioning profile. Update other info in the configuration,
update your Info.plist as appropriate, and then build.

4 Prepare media (anyone)—Prepare a set of 57 x 57 (required), 72x72(required),
114x114(recommended), 29x29(recommended), 50x50(recommended) and
58x58(recommended). PNG icons, a 512 x 512 JPG/TIFF large application icon,
and full-screen portrait and landscape screenshots, as well as other information
required by the App Store.

5 Upload (agent)—Go to the Distribution tab, and create the new app under
iTunes Connect. Upload the binary file with Application loader.

6 Wait (everyone)—It will take some time for your application to be approved and
go on sale.

These procedures may change over time; but for now, this is what you need to do to
get your program from your desktop to the App Store.

 There are also two alternative ways to distribute your software: enterprise distribu-
tion lets you distribute an in-house application to employees within your company,
and ad hoc distributions let you distribute to up to 100 other users by email or a web-
site. Both are explained further in Apple’s documentation.

http://www.it-ebooks.info/

www.it-ebooks.info
appendix D
Updating current

applications for the iPad
Developing for the iPad is nearly identical as developing for the iPhone, so you should
almost always release a version of your application for both. iPad users can always run
your iPhone application in 2x mode (which stretches your iPhone application to fit
the dimensions of the iPad screen), but this makes for an overall poor experience.

 In a development document1 called “Introducing Universal Application for
iPhone OS”, Apple provides a clear and concise document for creating your applica-
tion for both the iPhone and the iPad. Rather than restating that document, we felt it
would be more beneficial to walk you through how to update an iPhone app to sup-
port the iPad in converting an actual application.

 You’ll follow a few standard steps to convert iPhone applications into iPad
applications:

1 Configure Xcode. Add iPad to the build target.
2 Update the Info.plist, which is needed to support multiple interface

orientations.
3 Add iPad-specific interface components.
4 Update the views. Because the device is larger, you need to update the frames of

all your views.
5 Add multiple-orientation support.

In this appendix, you’ll convert the collage application that you created in chapter 11
to an iPad application.

D.1 Configuring Xcode
The process for updating your build target to include iPad support is simple. This is
because the latest version of Xcode includes a tool that performs the migration for you.
Apple strongly recommends against manually updating your files to support the iPad.

1 http://devimages.apple.com/iphone/resources/introductiontouniversalapps.pdf
451

http://devimages.apple.com/iphone/resources/introductiontouniversalapps.pdf
http://www.it-ebooks.info/

452 APPENDIX D Updating current applications for the iPad

www.it-ebooks.info
 Follow these steps:

1 Open the collage project in Xcode. This is a project we created in chapter 11,
section 11.4.

2 Select collage project in the navigation view. The editor view will display the
project summary. Select your collage target, and choose Universal for Devices
option (see figure D.1).

3 Xcode will present a dialog to confirm that you would like to transit to univer-
sal target. Select Yes.

As soon as you perform the upgrade,
you’ll notice that an iPad folder is added
to your project. It contains a new Main-
Window-iPad.xib file for the main window
of your application. Now run the applica-
tion in the iPad Simulator. Because you
have multiple targets, you must specify
which target to run. Make sure the target
is iPad 4.3 Simulator. (see figure D.2).

 Your application should now run in
the iPad Simulator (see figure D.3)

Figure D.1 Upgrading your build target for the iPad

Figure D.2 Collage application running on the iPad

http://www.it-ebooks.info/

453Updating Info.plist to support multiple orientations

www.it-ebooks.info
 .

Notice that most of the interface is resized for you. This is because you have a simple
interface composed of native UI elements. More complicated interfaces would require
more updates.

D.2 Updating Info.plist to support multiple orientations
In all iOS applications you can define the support interface orientations. In order to
do this, you must add the UISupportedInterfaceOrientations key to your project’s
Info.plist. The steps to do this manually are as follows.

1 Open the Info.plist file, right-click in the plist window, and select Add Row.
2 In the Key column, type UISupportedInterfaceOrientations~ipad. The

~ipad after the field denotes that this field applies to the iPad only. You can just
as easily add ~iphone or ~ipod to apply the field to the other devices.

3 Right-click the field and set the value type to Array.
4 Right-click again, add a row, and add each of the three interface types.

Figure D.4 shows what the plist should look like when you’re finished.

Alternatively, you can simply update Info.plist to support multiple orientations by sev-
eral mouse clicks. Select collage Targets and under Summary tab, drag down to iPad

Figure D.3 Set the target to
collage-iPad 4.3 Simulator.

Figure D.4 Collage application running on the iPad

http://www.it-ebooks.info/

454 APPENDIX D Updating current applications for the iPad

www.it-ebooks.info
Deployment Info. You will find the Supported Device Orientations. Click on Portrait,
Landscape Left and Landscape Right options.

 If you tap the arrow in the lower-left corner of the screen to add images, the appli-
cation present the “UIImagePickerController modally instead of via the UIPopover-
Controller”. You’ll now make the necessary change to correctly display the picker.

D.3 Adding iPad-specific interface components
With the iPhone, the UIImagePickerController is presented modally. The iPad screen
is much bigger, so it’s recommended to present a list of options using a UIPopover-
Controller instead. As you start experimenting with iPad development, you’ll notice
little changes like this that vary from project to project. The compiler generally notifies
you of these issues by printing a message to the terminal.

 You can use a simple method from the SDK to determine the device for which
you’re building. Based on the build device, you handle the UIImage-

PickerController differently. Open the file collageViewController.m, and update the
choosePic method to look like the following listing.

-(IBAction)choosePic:(id)sender {

 UIImagePickerController *myImagePicker =
 [[UIImagePickerController alloc] init];
 myImagePicker.delegate = self;
 myImagePicker.allowsEditing = YES;

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 UIPopoverController *popover = [[UIPopoverController alloc]
 initWithContentViewController:myImagePicker];
 [popover presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
} else {
 [self presentModalViewController:myImagePicker animated:YES];
}

}

As of this writing, this is the currently accepted way to determine if you’re building for
the iPhone or the iPad. Although the condition of the if statement is likely to change
in the future, the logic will remain the same.

 You first determine if the build target is the iPad B. If so, the code displays the
UIImagePickerController inside of a UIPopoverController that is oriented around
the button that was tapped. The picker’s behavior remains the same—it’s just pre-
sented in a different manner. Finally, the code presents the picker modally if you’re
building for the iPhone.

 The application is now almost fully functional. You can choose photos, add them
to the screen, and move and scale them. But one problem remains: if you notice, the
area that you have to work with is restricted to 320 x 400 pixels. This is because you
need to update the frame of the working area.

Listing D.1 Adding compiler directives in collageViewController.m

Building
for iPad?

B

http://www.it-ebooks.info/

455Updating your views for the iPad

www.it-ebooks.info
D.4 Updating your views for the iPad
When you’re updating applications, you’ll spend the most time updating your view
frames. If you’re an iPhone developer, you’re probably so used to the 320 x 480 reso-
lution that you have no problem hardcoding those numbers in your applications.
Because you now have a 1024 x 768 interface, you must make your view sizes a little
more dynamic.

 The best approach to resizing views is to make all of their sizes relative to the
device size. That way, you can build for all devices without using compiler directives.
You can obtain the size of the screen by using the following method call on UIScreen:

[[UIScreen mainScreen] applicationFrame]

This returns a CGSize containing your device’s height and width. What makes it even
more dynamic is the fact that these values are automatically adjusted when the device
is rotated. This will aid you in the next section as well.

 In the collage application, two major areas break on the iPad. The first is the work-
ing area in which you can place images: currently, you’re restricted to the 320 x 480
resolution. Second, the UISlider has been absolutely placed and appears in the cen-
ter of the screen. Figure D.5 shows these issues.

 Let’s start by solving the issue of photos being restricted to the 320 x 480 frame.
Open tempImageView.m, and change the touchesMoved: method to look like
listing D.2.

Figure D.5 Broken interface on the iPad

http://www.it-ebooks.info/

456 APPENDIX D Updating current applications for the iPad

www.it-ebooks.info
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {

 UITouch *thisTouch = [touches anyObject];
 CGPoint thisPoint = [thisTouch locationInView:self];

 float newX = thisPoint.x+self.frame.origin.x;
 float newY = thisPoint.y+self.frame.origin.y;

 if (newX < 0) {
 newX = 0;
 }

 if (newY < 0) {
 newY = 0;
 }
 CGRect scRect = [[UIScreen mainScreen] applicationFrame];
 if(newX > scRect.size.width) {
 newX = scRect.size.width;
 }
 if(newY > scRect.size.height) {
 newY = scRect.size.height;
 }

 if (thisTouch) {
 self.center = CGPointMake(newX,newY);
 }
}

You get the current dimensions of the device’s screen B and then restrict the x posi-
tion of the user’s photo to the screen bounds C. You do the same thing for the y
coordinate D.

 If you run the application at this point, you can drag the photos all around the
screen. But there is still a problem with the UISlider: it’s obviously in the wrong area.

 In the original application, the UISlider was positioned to appear on top of the
toolbar. You did this by placing it on top of the UIToolbar at the bottom. This wasn’t
the best approach for building on multiple devices. The solution is to add the
UISlider as a subview of the UIToolbar. That way, as the UIToolbar scales and
rotates, so does the UISlider. Open CollageViewController.m, locate imagePicker-
Controller:didFinishPickingImage:, and update the lines

mySlider = [[UISlider alloc] initWithFrame:CGRectMake(90,415,210,44)];
[self.view addSubview:mySlider];

to the following:

mySlider = [[UISlider alloc] initWithFrame:CGRectMake(90,0,210,44)];
 [myTools addSubview:mySlider];

Now that the UISlider is a subview of the toolbar at the bottom, you won’t have to
worry about its positioning. It will always appear in the toolbar next to the Done but-
ton. Figure D.6 shows the updated interface with these improvements.

Listing D.2 Updating the image-view frame in tempImageView.m

Gets
screen
size

B

Restricts photo’s
x position to
screen areaC

Restricts
y positionD

http://www.it-ebooks.info/

457Adding multiple-orientation support

www.it-ebooks.info
The application is starting to look much more complete. But one problem remains:
when the user rotates the device, the interface stays in portrait mode. You need to tell
the interface to rotate as well as update the frames of the main views.

D.5 Adding multiple-orientation support
As we mentioned earlier, adding support for all orientations is necessary for iPad
applications. To do this, you must implement the shouldAuto-

rotateToInterfaceOrientation method on all your views. This method should
respond to the interface changes and return YES. To update the application, open col-
lageViewController.m and add the following code:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 return YES;
} else {
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
}

Because you’ve been careful when updating your view frames in the previous chap-
ters, no real work is needed here. The code returns YES if you’re building for the iPad
device and returns YES for the iPhone if in portrait mode.

Figure D.6 Updated iPad interface

http://www.it-ebooks.info/

458 APPENDIX D Updating current applications for the iPad

www.it-ebooks.info
All built-in interface components should rotate and resize automatically. Problems
generally occur when you create custom views with hardcoded sizes. Making sure you
develop according to the device’s screen size will drastically reduce the amount of
work you have to do in this method. Figure D.7 shows what the final interface looks
like in landscape mode.

 For the most part, converting applications won’t be as simple as this, because the
collage is such a basic application. But the conversion patterns are the same. For more
information about how to support universal applications please read the Apple’s
developer article titled “Introducing Universal Application for iPhone OS” as listed in
the beginning of this appendix.

Figure D.7 The collage application in landscape mode

http://www.it-ebooks.info/

index

www.it-ebooks.info
Symbols

^, introduction 22
–, marking instance method 25
.pem 359
.xib file 98

accessing 66–67
hierarchy 80
See also nib file

@ directive 28–29
introduction 22

@dynamic directive 28
@end directive 24
@implementation directive 25
@interface directive 24
@property directive 27
@selector directive 28

syntax 107
@synthesize directive 27
#import directive 26
+, marking class method 25

A

ABAddressBook 178
ABAddressBookCopyArrayOfAllPeople 181
ABAddressBookCreate 181
ABCreateMutableCopy 179
ABGroup 178
ABMultiValue 178
ABMultiValueCopyLabelAtIndex 179
ABMultiValueCopyValueAtIndex 179
ABMultiValueGetCount 179
ABMultiValueReplaceLabelAtIndex 179
ABMutableMultiValue 178
ABNewPersonViewController 178, 182, 185
ABPeoplePickerNavigationController 178,

182–184

ABPerson 178, 181
ABPersonViewController 178, 182, 186
ABRecord 178
ABRecordCopyCompositeName 181
ABRecordCopyValue 179, 181
ABRecordRef 185
ABRecordSetValue 179
ABUnknownPersonViewController 178, 182, 186
acceleration

data, reading 199–200
data, receiving with UIAccelerometer 197–198
gestures 201–204

accelerometer
filtering data 199
force, measuring 198
gestures and 204–208
gravity, measuring 198–201
movement 197–204

basic, detecting 202
recognizing 201–204

orientation, and 196–197
rhythm 202
Simulator, and 197

Accelerometer Graph 201–204
accelerometer:didAccelerate: 198–199, 206
accessory view, in table cell 128
accessory, for table cells 89
accessoryType 89
accessoryView 90, 150
action 105–108, 112

adding to navigation controller 129–130
example 108–110
target listed as nil 107

ad hoc distribution 450
ADBannerView 394
ADBannerViewDelegate

adding to view controller 400–402
methods 400
459

http://www.it-ebooks.info/

460 INDEX

www.it-ebooks.info
addAnimation:forKey: 284
addAnnotation: 370
addObserver:selector:name:object: 115
Address Book 177–186

ABPeoplePickerNavigationController 182–184
and Core Foundation 184–185
Apple tutorial 177
classes 178
contacts, extracting 181
framework 177
getter functions 179
include files 177
individuals, extracting 181
memory management 185
people picker view controller 182
properties, accessing 178–179
querying 180–181
setter functions 179
UI framework 177, 182–186
view controllers 182, 185–186

AddressBook/AddressBook.h 177
AddressBookUI/AddressBookUI.h 177
addressDictionary 369
addSublayer: 282
addTarget:action:forControlEvents: 107–109
afconvert 358
Ajax 307
album title 242
allHTTPHeaderFields 291
alloc method 14

introduction 11
allowsEditing 256
allowsPickingMultipleItems 240
allTouches 97
altitude

Core Location and 213–215
determining availability 213
finding, with GeoNames 304
monitor 215

altitude property 209
animation

applying to layer 284
block, defining 283
explicit 283–285
implicit 283–284
key-frame 283

vs. basic 285
animationDuration 221
animationImages 221
animationRepeatCount 221
API documentation 4
APNS. See Apple Push Notification Service
app delegate database 175
app ID, creating 449
App Store, distribution via 450
Apple

Blog 446

Developer Site 447
existing apps, matching look and feel of 149
product review 382
registering as developer with 448

Apple certificate 6
Apple Development Push Services 359
Apple Push Notification Service 352

connecting to with SSL 353
notification failure 353

AppleStock application 48–57
application

building, general steps 16–19
business model 18
categories 17
certificate 354
converting from iPhone to iPad 451–458

adding iPad-specific components 454
adding multiple-orientation support 457–458
configuring Xcode 451–452
updating Info.plist 453–454
updating views 455–457

application delegate 15, 38
and unhandled events 95
callbacks and notifications 410

application object
big-picture controlling of messaging 107
getting reference to 104

application view. See view
application:DidFinishLaunching: 16
application:didFinishLaunchingWithOptions: 40,

357, 410, 423
application:didReceiveRemoteNotification: 357
applicationDidBecomeActive: 410, 413
applicationDidEnterBackground: 410, 413, 419
applicationDidFinishLaunching: 38, 121, 177,

356–357
applicationDidReceiveMemoryWarning: 16
applicationIconBadgeNumber 357
applicationMusicPlayer 242
applicationWillEnterForeground: 410, 413
applicationWillResignActive: 410
applicationWillTerminate: 16, 191, 410
Apps Amuck 447
arrayForKey: 158
audio

items 240, 242–244
playing from iPod library 240–246
playing sounds manually 249, 252
recorder 247–249
recording 247–249
recording/playback example 252–255
retrieving from iPod library 242
sound 251–252

audio book 240
audio file 358
Audio File Services 249

http://www.it-ebooks.info/

461INDEX

www.it-ebooks.info
Audio File Stream Services 249
Audio Queue Services 249
Audio Session Services 249
Audio Toolbox Framework 252
audioPlayerBeginInterruption 251
audioPlayerDecodeErrorDidOccur:error: 251
audioPlayerDidFinishPlaying:successfully: 251
audioPlayerEndInterruption: 251
audioRecorderBeginInterruption: 249
audioRecorderDidFinishRecording:successfully:

249
audioRecorderEncodeErrorDidOccur:error: 249
audioRecorderEndInterruption: 249
AudioServicesPlaySystemSound 252
AudioToolbox.framework 252
AudioToolbox/AudioServices.h 252
Automatic Device Provisioning 68
autorelease method 13
autoresizesSubviews 82
autoresizing 82
autoresizingMask 82

UIViewAutoresizingFlexibleBottomMargin 82
UIViewAutoresizingFlexibleHeight 82
UIViewAutoresizingFlexibleLeftMargin 82
UIViewAutoresizingFlexibleRightMargin 82
UIViewAutoresizingFlexibleTopMargin 82
UIViewAutoresizingFlexibleWidth 82
UIViewAutoresizingNone 82

AVAudioPlayer 250–252
AVAudioPlayerDelegate 250–251
AVAudioRecorder 255

audio settings 247
controls 248
events, responding to 249
initializing 247–248

AVAudioRecorderDelegate, methods 249
AVEncoderAudioQualityKey 247
AVFormatIDKey 247
AVFoundation.framework 247, 253
AVNumberOfChannelsKey 247
AVSampleRateKey 247

B

background color 44
background process 347
background state 412–414

best practices when transitioning to 413
completing tasks in 418–420
monitoring location changes in 420–424
opting out of 414
resuming in foreground 413

badge property 124
badge, on tab bar item 123
badgeValue 123
Balsamiq, UI mocking software 17

banner ad
adding to application 394
downloading errors 400–404
sizes 394
supporting portrait and landscape mode

397–400
testing 396
view

adding to view controller 395–396
app for 394–395

bannerViewActionDidFinish: 403
bannerViewActionShouldBegin:willLeave-

Application: 403
bannerViewDidLoadAd 400
becomeFirstResponder 95, 104
beginAnimations:context: 283
beginBackgroundTaskWithExpirationHandler:

418–419
beginIgnoringInteractionEvents 104

UIApplication method 103
beginSeekingBackward 244
beginSeekingForward 243
bitmap

drawing on 274–275
drawing to 262–263
using to edit images 275

bitmask, enumerating control events in 106
block 22
Bluetooth, looking for peers over 313
Bonjour, accessing 288
breakpoint, adding 70
Breakpoints Navigator 72
BSD socket 288
bundle 154

accessing 159–160
application bundle 154, 158
framework bundle 154
settings bundle 154

creating 155
bundle identifier 379
button 147

adding to application 108–110
adding to navigation bar 129
bringing into Xcode 108
on tab bar, modifying 122–124
using addTarget:action:forControlEvents:

with 108
using IBAction with 109–110

buttonWithType: 108

C

CABasicAnimation 283–284
CAEAGL 285
CALayer 223, 281–282

http://www.it-ebooks.info/

462 INDEX

www.it-ebooks.info
Calendar
and Event Kit frameworks 333
event

adding programmatically 335–337
adding with Event Edit view controller

338–340
displaying with Event view controller 341–344
fetching 340–344
fetching with Grand Central Dispatch 344–346

calloutOffset 373
camera

resource usage 226
support, checking for 256
video support 256

camera roll 391
canBecomeFirstResponder 104
cancel method, of MKReverseGeocoder 368
canResignFirstResponder 104
canShowCallout 373
Canvas 47
cartouche, list used by preference lists 149
category 29

introduction 21
CATransform3DMakeAffineTransform 285
cell views 89
centerCoordinate 366
centerOffset 373
certificate 449–450
CFArrayCount 185
CFBundle 154
CFFTPStream 288
CFHost 289
CFHTTPMessage 288
CFHTTPStream 288
CFNetServices 288
CFNetwork 288
CFRelease 185
CFRetain 185
CFURLRef 290
CGAffine 270
CGAffineMakeScale 269
CGAffineMakeTranslation 269
CGAffineTransform 266
CGAffineTransformMake 276
CGAffineTransformMakeRotation 269
CGAffineTransformMakeScale 269
CGAffineTransformMakeTranslation 269
CGAffineTransformRotate 270
CGAffineTransformScale 270
CGAffineTransformTranslate 270
CGColorSpaceCreateDeviceRGB 273
CGColorSpaceCreateWithName 273
CGColorSpaceRelease 273
CGContext text options 275
CGContextAddArc 263
CGContextAddArcToPoint 263

CGContextAddCurveToPoint 263
CGContextAddEllipseInRect 263
CGContextAddLineToPoint 263
CGContextAddQuadCurveToPoint 263
CGContextAddRect 263
CGContextAddRects 263
CGContextBeginPath 263
CGContextClearRect 266
CGContextClip 264
CGContextClosePath 264
CGContextConcatCTM 269–270
CGContextDrawImage 274
CGContextDrawLinearGradient 273
CGContextDrawRadialGradient 273
CGContextDrawTiledImage 274
CGContextEOFillPath 264
CGContextFillPath 264
CGContextFillRect 266
CGContextFillRects 266
CGContextMoveToPoint 263
CGContextRef 259
CGContextRestoreGState 259, 267
CGContextRotateCTM 268
CGContextSaveGState 259, 267
CGContextScaleCTM 268
CGContextSelectFont 276
CGContextSetAlpha 271
CGContextSetBlendMode 271
CGContextSetFillColorWithColor 267
CGContextSetFlatness 271
CGContextSetFont 276
CGContextSetLineCap 271
CGContextSetLineDash 271
CGContextSetLineJoin 271
CGContextSetLineWidth 271
CGContextSetRGBFillColor 267
CGContextSetRGBStrokeColor 267
CGContextSetSetPosition 276
CGContextSetShadow 271
CGContextSetShadowWithColor 271
CGContextSetStrokeColorWithColor 267
CGContextSetTextDrawingMode 276
CGContextSetTextMatrix 276
CGContextShowText 276
CGContextShowTextAtPoint 276
CGContextStrokePath 264
CGContextStrokeRect 266
CGContextStrokeRectWithWidth 266
CGContextTranslateCTM 268
CGGradientCreateWithColorComponents 273
CGGradientCreateWithColors 273
CGGradientRef 272
CGGradientRelease 273
CGPath functions 265
CGPathAddArc 265
CGPathAddEllipseInRect 265

http://www.it-ebooks.info/

463INDEX

www.it-ebooks.info
CGPathAddLineToPoint 265
CGPathAddRect 265
CGPathCloseSubpath 265
CGPathCreateMutable 265
CGPathMoveToPoint 265
CGPDFContextCreate 261
CGRectMake function 43
CGShadingRef 272
CGSize 455
changeColor 113
CJSONDeserializer 309–310
class

custom
creating 59–64
reasons to create 58
using 63–64

defining 24–26
header file. See header file
implementation. See implementation
interface. See interface
introduction 21
source code file. See source code file
steps to create 59

class method 25
class object 23
CLHeading 215, 217
clipping path

closing 264
setting, in Quartz 270

CLLocation 208–209
CLLocationCoordinate2D 366
CLLocationDirection 217
CLLocationManager 208, 216, 422
CLLocationManagerDelegate 208, 216

methods 209
close 172
closeFile 161
Cocoa Dev Central 447
Cocoa Is My Girlfriend 447
Cocoa Samurai 447
Cocoa Touch

introduction 8
Quartz, and 259

collage 223
example 227–232
temporary image view 231–232
view 231–232
view controller 227–230

collageView 227
collageViewController 227
collision Boolean 329
color 267
color space 267
commitAnimations 283
compass 215–217

retrieving data from 216
support for 216

compiling, to phone 448
completeTransaction 385, 390
componentsSeparatedByString: 295
configureView 140
connectionTypeMask 313
contentForMenuWithParent 173
contentsAtPath: 161
context

graphical. See graphical context
in Quartz 259–263

control event 106
control, events and actions 105–107
controlChange 212
controllers

flipside 132–134
modal view 142–143
navigation 125–132
popover 142–143
split view 134–142
tab bar view 118–125

coordinate property 209
of MKReverseGeocoder 368

coordinate system 260
coordinates, reporting 102
Core Animation 283

explicit animation 283–285
fundamentals 282–283
implicit animation 283–284
integration with Quartz 281
introduction 8, 281–285
key-frame animation 283
layer 281

Core Data 186–194
background 187
data model, adding to project 187
database, creating 187
design methodology 186
managed object context 187
managed object table 187
objects

declaring 189
fetching, updating, and deleting 192–194
initializing 189–191
inserting 192
setter methods 190

setting up 187–189
Core Foundation

and Address Book 184–185
and Quartz 259
memory management 185
variables, use of different classes 185

Core Graphics
drawing simple images 223–224
images, drawing functions for 274

Core Location 208–217
altitude and 213–215
GeoNames example 303–305

http://www.it-ebooks.info/

464 INDEX

www.it-ebooks.info
Core Location (continued)
internet and 217
Simulator, and 208
TouchJSON example 308–310
using location and distance 210–212

Core OS, introduction 8
Core Services, introduction 8
CoreAudio.framework 253
CoreData.framework 187
CoreGraphics.framework 41
CoreLocation/CoreLocation.h 211
countForMenuWithParent 173, 175
CTM 268
current transformation matrix. See CTM
currentPlaybackTime 243
currentTime

AVAudioPlayer 251
AVAudioRecorder 252

customizableViewControllers 124

D

Dashcode, introduction 7
data array, declaring in split view controller

137–138
data, non-HTML, capturing 292
database

accessing 169–170
and table-view controllers 132
app delegate, creating 175–177
building navigation menu from 170–177
class, creating 170–172
creating from command line 167
setting up 167–169
view controller, creating 173–175

DatabaseViewController 170
dataReceiveHandler 315
dataUsingEncoding: 318
dataWithContentsOfURL: 292, 310
dbh 172
dealloc 16, 173
debug provisioning profile 354
Debugger 69–73

breakpoints 70
debugging 68, 295

Debugger. See Debugger
Fix-it 68
Instruments. See Instruments
static analysis 69

delegate
introduction 15
NSXMLParser acting as 297–298
of MKMapView 364
of reverse geocoder 368
of web view 294

delegate property 209
of MKReverseGeocoder 368

delegate protocol 182
delegateClassName 38
delegation 94
deleteRecording 248
desiredAccuracy 209
detailItem, id data type 140
DetailView 135

adding UIWebView to 139–140
detailViewController 140–141
DetailViewController.h 139
DetailViewController.m 140–141
developer, registering with Apple 448
development, web resources 446
device token 353

and push notifications 357
deviceDidRotate 197
didEndElement 297
didFailToReceiveAdWithError: 400
didFailToRegisterForRemoteNotificationsWith-

Error: 357
didFailWithError: 369
didFindPlacemark: 369
didFinishPickingMediaWithInfo: 256
didReceiveResponse: 386
didRegisterForRemoteNotificationsWithDevice-

Token: 356
didRotateToInterfaceOrientation 84
didSelectRowAtIndexPath: 140, 386
didStartElement 297
direction, determining with compass 215
directory, accessing 160–161
dismissModalViewControllerAnimated 143
dispatch_async 345
dispatch_queue_create 345
displayedPerson 186
displayName 317
distance, and Core Location 210–212
distanceFilter 209
distribution 450
Documents directory 158

retrieving files from 160
dot syntax 28
drawAsPatternInRect: 223
drawAtPoint: 223–224
drawAtPoint:blendMode:alpha: 223
drawing functions 263
drawing, advanced, in Quartz 272–277
drawInRect: 223

accessing CALayer 223
drawView 286
duration 252

E

EAGL 285
introduction 8

http://www.it-ebooks.info/

465INDEX

www.it-ebooks.info
EAGLView 285
Editor 35
EKEvent 335

properties 335
EKEventEditViewController 335

creating new event 338
dismissing 338
eventStore property 338

EKEventStore 334
EKEventViewController 335
enabled property, of MKAnnotationView 373
endBackgroundTask: 418–419
endGeneratingDeviceOrientationNotifications

197
endIgnoringInteractionEvents 103
endSeeking 244
enterprise distribution 450
event 94–97

accessing via UIResponder 97
and manageTouches 101
and responder chain 94
controlling 101–103
definition of beginning and end 95
encoding 95–97
example 97–103
functionality 103–105
introduction 15
listing every touch in 97
methods and properties 96
multitouch, reporting 104
regulating 95, 103–104
turning into special control event 106
unhandled 95

Event Kit classes 334–335
Event Kit frameworks 333–335

adding to application 336
adding to project 333–334

Event Kit UI framework
view controllers 335

event reporter example 97–103
view hierarchy 99

event response 14–15
delegation 15
notification 15

EventKit.framework 333
EventKitUI.framework 333
eventreporter 98
eventsMatchingPredicate: 341
exclusiveTouch 104

UIView property 103

F

factory method, introduction 12
failedTransaction 385

file
access, abstracted through objects 159
bundles. See bundle
copying 160
getting number of bytes 161
manipulating 161–162
NSData, writing to 161
NSString, writing to 162
opening 158, 161–165
retrieving from Documents directory 160
writing back to 162

file manager 161
File’s Owner placeholder 47
fileHandleForReadingAtPath: 160–161
fileHandleForWritingAtPath: 161
filesaver example 163–165
fileURLWithPath: 290, 296
filtering

and accelerometer 199
high pass 201

finishTransaction: 390
first responder 15
First Responder placeholder 47
FirstViewController 120
Fix-it 68
flicking 3
Flickr, photo-uploading API 420
flipside controller 77, 132–134

contents 132
creating preferences 149
RootViewController 133

FlipsideViewController 133
font, controlling 275
force, measuring with accelerometer 198
form

data, packaging 306
submitting 306–307

Foundation
framework classes 444–445
introduction 8
NS classes 9

Foundation.framework 41
foundCharacters 297
Foursquare 420
Frameworks folder 41
FTP server, communicating with 288
Furbo.org 447

G

game
collision detection 329
initializing 322–323
multiplayer 319–331

connecting peers 323–324
game loop 327–329
header file 320–322

http://www.it-ebooks.info/

466 INDEX

www.it-ebooks.info
game, multiplayer (continued)
initialization 322–323
interface 322
sending and receiving data 324–327
setup 320
synchronization 320

user interaction 329–331
game development, design patterns 319
Game Kit

connection 316
data, sending and receiving 315–319
header file 312
multiplayer example 319–331

connecting peers 323–324
game loop 327–331
header file 320–322
initialization 322–323
interface 322
sending and receiving data 324–327
setup 320

network packet 326
overview 311–312
peer picker 312–319
peer states 316
session 312

creating 315
game loop 319

implementing 327–329
synchronization 320

geocoding, reverse. See reverse geocoding
geomagnetic data 215
GeoNames 217, 303–305

finding altitude 304
findNearestIntersection 303
gtopo30 303
srtm3 303
timezone 303
TouchJSON example 308
XML-based information 303

gesture 3
accelerometer and 204–208
recognizing 204

getDistanceFrom: 212
g-force 198
GKPeerConnectionTypeNearby 313
GKPeerConnectionTypeOnline 313
GKPeerPickerConnectionTypeNearby 313
GKPeerPickerController 312, 323
GKPeerPickerControllerDelegate, methods 314
GKPeerStateConnected 317
GKPeerStateDisconnected 317
GKSendDataReliable 318
GKSendDataUnreliable 318
GKSession, delegate methods 315
GKSessionDelegate

implementing 315–317
methods 316

GKTanks 324
GKTennis 319–331

collision detection 329
connecting peers 323–324
game loop 327–329
header file 320–322
initialization 322–323
interface 322
sending and receiving data 324–327
setup 320
user interaction 329–331

Gmail, using to set up iTunes test user 380
goBack 293
goForward 293
Google Spell API 306
GPS, built-in 208
gradient

drawing, in Quartz 272–274
functions 272
linear, three-color 273

Grand Central Dispatch (GCD)
common methods 345
fetching events 345–346
overview 344–345

graphical context 223
in Quartz 260
methods 261
stack 260
transformations and 268

graphical state
maintaining in stack 266
managing 272
methods 271
selecting colors in 267
setting in Quartz 266–272

gravity
checking 198–201
data, vs. movement data 201
measuring relationship to 198

H

header file 61–62
instance variables 61

heading, magnetic vs. true 215
headingAccuracy 216
headingAvailable 209
headingFilter 209
HelloWorld 32–44
hidesWhenStopped 215
hierarchical navigation through table views 126
highlighted property of MKAnnotationView 373
hitTest:withEvent: 103–104
HTML

data, manipulating by hand 291–292
displaying with UIWebView 292–296

HTTPBody 291

http://www.it-ebooks.info/

467INDEX

www.it-ebooks.info
I

iAd 394–406
ADBannerView 394
banner ad. See banner ad
downloading errors 400–404
excluding ads 405
framework, adding into app 395
going live 404–406
iAd Network 404
service, enabling 404

IBAction 108–109
introduction 48
using with a button 109–110

IBOutlet
coding 55
connecting 54
defining tab bar controller as 120
introduction 48

iCodeBlog 446
icon 122
icon property 124
id type 25
Identity tab 99
image 220–223

adding 52–54
album, saving to 226
blending 224
collaging 223

example 227–232
data types 220
displaying 221–222
drawing with Core Graphics 223–224, 275
drawing, in Quartz 274
editing, with a bitmap 275
flipped, in Quartz 274
layering 222
modifying 274–275
modifying in UIKit 222
resizing 222
source availability, checking 226
transparency 224

image picker 225
image property 221

of MKAnnotationView 373
imageNamed: 220
imagePickerControl:didFinishPickingImage:editin

gInfo: 229
imagePickerController:didFinishPickingMediaWit

hInfo: 225
imagePickerControllerDidCancel 225, 230
imageView 89
imageView.image 89
imageView.selectedImage 89
imageWithCGImage 220
imageWithContentsOfFile 160, 221

imageWithData 221
implementation 25–26

defining 24
In App Purchase Test User 379
in-app purchasing

adding products 380–382
example. See WPStore
product types 380
setting up test environment 379–382
store interface. See WPStore

Info.plist
adding UISupportedInterfaceOrientations 453
updating, when converting iPhone app to

iPad 453–454
init method 16

argument 12
introduction 11

initWithBarButtonSystemItem:target:action: 130
initWithCoder: 65

introduction 12
initWithContentsOfFile: 161
initWithContentsOfURL: 297
initWithContentsOfURL:error 250
initWithCoordinate: 369
initWithCustomView: 130
initWithData: 297
initWithData:encoding 162
initWithData:error 250
initWithFile 173
initWithFrame: 43, 63, 221
initWithImage: 221
initWithImage:style:target:action: 130
initWithNibName: 133
initWithParentid:Menu: 175
initWithStyle: 149, 152
initWithTabBarSystemItem:tag: 124
initWithTitle:image:tag 122
initWithTitle:style:target:action: 130
initWithURL:settings:error 247
insertSubview: 134
Inspector 46, 50–52

Arrange section 51
Attributes tab 51
Autosizing box 51
Class Actions section 52
Class Outlets section 52
Connections tab 52
Identity tab 51
Size tab 51

instance method 25
instance object 23
instance variable, declaring as property 26
Instruments 72–73

Allocations 72
introduction 6
Leaks 73
using to check for memory leaks 295

http://www.it-ebooks.info/

468 INDEX

www.it-ebooks.info
integerForKey: 158
integerForMenuWithParent 173
interface 24–25

adjusting for vertical and landscape modes
141–142

defining 24
Interface Builder 45–57, 86

anatomy of 46–48
objects

creating 49–50
initializing 65

interfaceOrientation 83, 196
internet

host, requesting information about 289
programming, hierarchy 287–288

iOS
anatomy of 8–9
framework layers 8–9
GUI, introduction 10–11
introduction 8–11
methods 11–16
NS classes 9–10
object hierarchy 9–10
UI classes 10

iOS Developer Program 4
iOS platform

history 2
introduction 2

iOS SDK. See SDK
iOS Simulator, introduction 6
iPad 458

apps required to support all orientations 453
built-in programs, preferences 149
compass, support for 216
compiling to 448
location, determining 208
Mail, split view controller 134
UIImagePickerController, vs. on iPhone 454
view 457

iPad Simulator, file arrangement 158
iPhone

altitude, support for 213
application, converting to iPad 451–458

adding iPad-specific components 454
adding multiple-orientation support 457–458
configuring Xcode 451–452
updating Info.plist 453–454
updating views 455–457

built-in programs, preferences 149
camera, as modal view controller 142
compass, magnetic, built-in 215
compiling to 448
UIImagePickerController, vs. on iPad 454

iPhone Atlas 446
iPhone Dev Forums 446
iPhone Dev SDK 447

iPhone Development 447
iPhone in Action, blog 446
iPhone OS

coordinate system 260
OpenGL, managing 285

iPhone SDK, XML parser 296
iPhone Simulator, file arrangement 158
iPod

control properties 243
controlling with MPMusicPlayerController 242
global application 242
media player example 244–246

IBActions 244–245
interface 245
media, picking 245

settings 243
iPod library 240–246

getting information about audio items 242
iPodMusicPlayer 243
isFirstResponder 104
isHighlighted 373
isIgnoringInteractionEvents 103
isSourceTypeAvailable: 226
iTunes Connect, and iAd 404
iTunes, test user, creating 379–380

J

JavaScript.com 447
JSON 308

and push notification 360
dictionary, use as payload 352

JSON Framework 308

K

kAudioFormatAppleLossless 247
key window, and event response 94
keyboard

clearing 112
dismissing with UITextView 164
Done key 111
for text object 95
getting rid of 95
relinquishing control after calling up 111
Return key 112

keyboardIsActive 164
kStateMultiplayerCointoss 324
kSystemSoundID_Vibrate 252
kUTTypeMovie 256

L

landscape mode, adjusting interface for 141–142
latitude 366

http://www.it-ebooks.info/

469INDEX

www.it-ebooks.info
layer
in CALayer 282
in Quartz 259

leftBarButtonItem 129
leftCalloutAccessoryView 373
Library 46
Library directory 158
lifecycle

management 16
monitoring 83

link, adding to navigation controller 127–128
loadHTMLString:baseURL: 293
loadRequest: 293
loadView 84, 109, 121
location

and Core Location 210–212
classes 208–210
methods and properties 209
monitoring changes in the background 420–424
property 209

location service, in the background 421
locationInView: 96, 102
locationManager 209
locationManager:didUpdateHeading: 216
locationManager:didUpdateToLocation:from-

Location: 423
locationManager:fromLocation: 212
longitude 366
lookupSingularSQL 172

M

magneticHeading 216–217
Mail, split view controller in 134
Main.m file 37
mainBundle 160
MainWindow.xib 41, 46, 80, 126

and flipside controller 133
and split view controllers 135

MainWindow-iPad.xib 452
managed object 187
managed object context 187
managed object table 187
managedObjectContext 190
managedObjectModel 190
manageTouches 101
map

adding programmatically 365
adding using Interface Builder 364–365
adding visually 363–368
annotations 370–377

basic 371–372
centering 373
creating view for 375
custom 372–377
graphic representing 373

controls 365–368
region 365–366
scrolling 367
types 367
user interactions 366
zooming 367

Map Kit
adding a map programmatically 365
adding a map visually 363–368
annotations 370–377

basic 371–372
custom 372–377

map controls 365–368
reverse geocoding 368–369

MapKit.framework 364
MapKit.h 364
mapType 367
matrix 270
media

audio
playing sounds manually 249, 252
recording 247–249
recording/playback example 252–255

constants 240
items 242–244
player example 244–246
type shown in picker by default 240
video

editing on the fly 256
recording and playing back 255–257

Media frameworks, introduction 8
media picker 240–242
mediaPicker:didPickMediaItems: 241
mediaPickerDidCancel: 241
MediaPlayer framework 240, 244
memory leak, checking for 295
memory management 13–14

autorelease 13
in Address Book 185
retaining objects 13
with tables 87

menu class, creating 172–173
message 22–24

arguments 22
introduction 21
nested 23
nested. See nested message
recipients 23–24

meteringEnabled 252
MKAnnotation 373–374
MKAnnotationView 370, 373
MKCoordinateRegion 365–366
MKCoordinateRegionMake 366
MKCoordinateSpan 366
MKCoordinateSpanMake 366
MKMapTypeHybrid 367–368

http://www.it-ebooks.info/

470 INDEX

www.it-ebooks.info
MKMapTypeSatellite 367–368
MKMapTypeStandard 367–368
MKMapView 363–364, 366–367
MKMapViewDelegate 364
MKPinAnnotationView 372–373
MKPlaceMark 369, 371
MKReverseGeocoder 368
MKReverseGeocoderDelegate 369
Mobile Orchard 447
modal view controller 142–143
modal view, definition 142
modalViewController 81
movement

accelerometer and 197–204
casual, force of 202
checking for 201
data, vs. gravity data 201
filtering out 200
forceful, force of 202
slightly forceful, force of 202
through 3-D space, measuring 198
very subtle 203

MPMediaItem 242
MPMediaItem:valueForProperty: 242
MPMediaItemCollection 242–243
MPMediaItemPropertyAlbumTitle 242
MPMediaItemPropertyArtist 242
MPMediaItemPropertyArtwork 242
MPMediaItemPropertyMediaType 242
MPMediaItemPropertyPlaybackDuration 242
MPMediaPickerController 240, 243
MPMediaPickerControllerDelegate 240, 245
MPMediaTypeAny 241
MPMediaTypeAnyAudio 241
MPMediaTypeAudioBook 241
MPMediaTypeMusic 241
MPMediaTypePodcast 241
MPMoviePlayerController 256
MPMusicPlayerController 245

control methods 243
initializing 242
specifying items to play 243

multipleTouchEnabled 104
UIView property 103

multitasking
application delegate callbacks and

notifications 410
application lifecycle 409–412

monitoring 410
arguments against 408
background mode, declaring in advance 412
background state, declaring in advance 412
completing tasks in the background 418–420
definition 407
enabling 412
fast app switching 414–417

monitoring location changes in the
background 420–424

overview 408–412
restrictions 409
saving user data in delegate callback

methods 414–416
task-completion API 418–419
updating UI when app launches from back-

ground to foreground 416–417
multitouch, events, reporting 104
MVC 122

and event management 95
and view controllers 80
components 81
managing touch events 99
using in a real app 102

N

navigating, using tables 131
Navigation 36–45
navigation bar

adding buttons to 129
hiding 132

navigation controller 125, 130–132
activating 130
adding a title 127
adding actions 129–130
adding links 127–128
anatomy of 125–126
creating 126–127
difference from tab bar 126
finding reference to 131
minimal configuration 125
navigating backward 131
navigating forward 130–131
navigation other than forward and

backward 132
navigation menu

app delegate, creating 175–177
building from database 170–177
database class, creating 170–172
database view controller, creating 173–175
designing 168
menu class, creating 172–173

navigation paradigm, changing 132
Navigation-Based Application

template 85, 126
navigationController 81
navigationItem 129
Navigator 35
navigators and databases 132
nested message 23, 43
network packets, when to send 329
networking

low-level 288–289

http://www.it-ebooks.info/

471INDEX

www.it-ebooks.info
networking (continued)
send and receive methods 324
with Game Kit 311

nextResponder 104
sending touches to view controller 100
UIResponder method 103

nib file
contents 47
main 66
multiple 66
vs. .xib file 46

nil, action target as 107
no wrong way to hold the device 141
notification

about orientation change 197
introduction 115
programming steps 115
through NSNotificationCenter 115

NSArray 444
creating table content 87
introduction 9
list of view controllers 121

NSASCIIStringEncoding 318
NSAutoreleasePool 13, 444
NSBundle 154, 444
NSCharacterSet 444
NSCountedSet 444
NSData 161, 444

converting to NSString 319
NSDictionary 444

creating table content 87
introduction 10
working with form data 306

NSDocumentDirectory 160
NSError 444
NSFileHandler 444
NSFileManager 161, 444
NSHandle 161
NSIndexPath 89, 444
NSKeyedArchiver 317
NSLibraryDirectory 160
NSLog 444

reporting runtime variables 295
NSMutableArray 444

creating table content 87
NSMutableCharacterSet 444
NSMutableData 444
NSMutableDictionary 444

working with form data 306
NSMutableSet 444
NSMutableString 444
NSMutableURLRequest 288, 291, 305–306, 444
NSNotification 115
NSNotificationCenter 115, 445

introduction 15
NSNotificationQueue 115

NSNumber 445
introduction 9

NSObject 78, 445
introduction 10
object creation 11–12

NSPredicate 341
NSSearchPathForDirectoriesInDomains 160
NSSet

as argument to UIResponder method 97
breaking apart 101
compacting touches into 97

NSString 162, 445
and cell label 89
componentsSeparatedByString 295
dataUsingEncoding 318
dictionary of, turning into NSData 306
introduction 9
loading a web view 292

NSURL 288, 445
creating 290
fileURLWithPath 290
loading a web view 292
URLWithString 290
URLWithString:relativeToURL 290

NSURLConnection 288, 292, 305
NSURLRequest 141, 288, 291–292, 445
NSUserDefaults 153
NSValue 445
NSXMLParser 296, 445

delegate methods 297
delegate, acting as 297–298
example, RSS reader 298–303
initWithContentsOfURL 297
initWithData 297
parse method 297
parser:didEndElement:namespaceURI:

qualifiedName: 298
parser:didStartElement:namespaceURI:

qualifiedName:attributes: 298
parser:foundCharacters: 298
parser:parseErrorOccurred: 298
parserDidEndDocument: 298
setDelegate: 297
starting 297

numberOfChannels 251
numberOfLoops 251
numberOfSections 90
numberOfSectionsInTableView: 88

O

object
animating, with Core Animation 282
creation 11–12

abstracting 79
as subview 80

http://www.it-ebooks.info/

472 INDEX

www.it-ebooks.info
object, creation (continued)
as subview of tab bar controller 119

custom, converting to NSData 317
instantiating 26
registering to receive notice 115

objectForKey: 153, 158
Objective-C

header file and source code file 21
introduction 20–22
syntax elements 21
syntax reference 30

Objects menu 46
OpenAL 249
OpenGL 285–286

EAGL 285
standard template 286

OpenGL ES, introduction 8
openssl 360
Organizer 67–68
orientation

and accelerometer 196–197
change, notification 196–197
of a view, checking 83
precise, determining 199–200
property 196
UIDevice 196

P

package 154
packet ID 324
packet, network 324
page control 147
parentViewController 81
parse method 297
parser:didEndElement:namespaceURI:qualified-

Name: 298
parser:didStartElement:namespaceURI:qualified-

Name:attributes: 298
parser:foundCharacters: 298
parser:parseErrorOccurred: 298
parserDidEndDocument: 297–298
path

clipping. See clipping path
drawing, in Quartz 263–266
finishing 264
functions to define and draw 263
in Quartz 259
reusable, creating 264–266
unconnected objects on 263

pause 248
pause method, for MPMusicPlayerController 243
payload 352
payment, queuing 388
paymentWithProductIdentifier 388
peer

adding to global peers array 316

determining which is client and which is
server 324

looking for 313
sending and receiving data between 317–319
states 316

peer picker
delegate 314
displaying 312–319
finding peers 312–319
type of peers being searched for 313

peerPickerController:didConnectPeer:toSession:
314

peerPickerController:didSelectConnectionType:
314

peerPickerController:sessionForConnectionType:
314

peerPickerControllerDidCancel: 314
peoplePickerNavigationController:should-

ContinueAfterSelectingPerson: 183–184
peoplePickerNavigationControllerDidCancel: 184
persistentStoreCoordinator 190
phase 96

property 101
photo

accessing 224–227
album, saving to 226
drawing on, in Quartz, program example 277

view 279–281
view controller 277–278

taking 225
See also image

picker view 147
picture. See image
placeholder, definition 47
placemark data, outputting 369
play method, for MPMusicPlayerController 243
playbackState 243
playing property 251
plist editor 155
plist file, creating 157
podcast 240
popover view controller 142–143
popToRootViewControllerAnimated: 132
popToViewController:animated: 132
popViewControllerAnimated: 132
POST 305–307
predicate 341

creating 341
preference

of built-in iPhone/iPad programs 149
page 149–152
See also user preference

preferences page 148
PreferenceSpecifiers 155–156
prepare 172
prepareToPlay 251

http://www.it-ebooks.info/

473INDEX

www.it-ebooks.info
prepareToRecord 248
presentModalViewController:animated: 143, 183
previousLocationInView: 96
principalClassName 38
product

adding for in-app purchasing 380–382
Apple approval 382
consumable 380
data, loading in UITableView 386
displaying 386
ID 382
introduction 378
non-consumable 380
retrieving from Apple 385
subscription 380
types 380

production certificate, configuring 354
program distribution, via App Store 450
project

creating 32–34
templates 33–34

property 26–28
accessors 27
complexities 28
declaring instance variable as 26
dot syntax 28
introduction 21
purpose of 26
setting 27

protocol 29
introduction 15, 22

provideContent 391
provisioning file 68
provisioning profile 354

creating 448–450
debug 354
setting up 354–355

PSChildPaneSpecifier 155–157
PSGroupSpecifier 155
PSMultiValueSpecifier 156
PSSliderSpecifier 156
PSTextFieldSpecifier 156
PSTitleValueSpecifier 156
PSToggleSwitchSpecifier 156
purchase, potential states 389
push notification

alert 353
application certificate 354
audio files 358
badge number 353

resetting 357
cycle 352
data descriptions 353
device token 356–357
example provider in PHP 358–361
failed notification 353
handling 356–358

multiple simultaneous 353
overview 352–353
payload 352
preparing an application 354–358
registering for 356
responding to registration 356
sound 353

push notification provider 352, 358–361
PHP code 360–361
SSL certificate, creating 359

Q

Quartz 259
advanced drawing 272–277
affine transformation 269–270
bitmap, drawing to 262–263
Cocoa Touch, and 259
color space 267
color, setting 267–268
context 259–263
coordinate system 260
Core Foundation, and 259
gradients, drawing 272–274
graphical state, setting 266–272
images, drawing 274–275
integration with Core Animation 281
introduction 8
layers 259
paths 259

drawing 263–266
finishing 264
reusable 264–266

program example 277–281
view 279–281
view controller 277–278

rectangle, drawing 266
state 259
text, drawing 275–276
transformation 268–270
UIView, drawing to 261–262
words, drawing 275–276

Quartz 2D, UIImage 220
Quartz Core framework 283
QuartzCore/QuartzCore.h 283
querying property of MKReverseGeocoder 368
queue

creating 345
main, getting 345
releasing 345

R

readsDataToEndOfFile 161
receive method 324
receiveData 315, 325

http://www.it-ebooks.info/

474 INDEX

www.it-ebooks.info
record 248
recordForDuration 248
rectangle, drawing 266
region

creating 366
using to navigate a map 365

region property, of MKMapView 365
region-based location updates service 423–424

methods 423
regionMonitoringEnabled method 423
regionThatFits: 366
registerForRemoteNotificationTypes: 356
regular location service 422
release message 13
reload 293
repeatMode 243
requestWithURL: 291
requestWithURL:cachePolicy:timeoutInterval: 291
resetGPS 215
resetPage 109
resignFirstResponder 95, 104, 112
resizing automatically 82
resourcePath 160
responder

first 94
and keyboards 95

methods 100
responder chain 15, 94–95

changing normal order of 104
controlling with UIResponder methods 103
interruption by delegation 94
starting at different point 104
subverting 95
vs. view hierarchy 100

restoreTransaction 385
retain message 13
returnKeyType 111
reverse geocoding 368–369
reverseGeocoder:didFailWithError: 369
reverseGeocoder:didFindPlacemark: 369
rightBarButtonItem 129
rightCalloutAccessoryView 373
Root.plist, editing 155
RootViewController 126, 133
RootViewController.h 137
RootViewController.m 128, 133, 137
RootViewController.xib 126
rotation, responding to 141
RS Wallpaper 379
RSS 308

feed, creating RSS table from 301–303
reader, building 298–303
table, creating from RSS feed 301–303

rssViewController 301

S

Safe from the Losing Fight 447
sandbox testing environment 379–382
scalesPageToFit 293
screen, obtaining size of 455
scrollEnabled 367
SDK 4–7

documentation 4–5
events, abstracting 95
included programs 6–7
installing 4–6
licensing restrictions 5–6
resources 447

search bar 147, 180
searchBarSearchButtonClicked: 112, 180
secondController.tabBarItem.badgeValue 123
segmented control 147
select list 152
selectContact 182
self keyword 24
send method 324
sendAction:to:forEvent: 107
sendAction:to:fromSender:forEvent: 107
sendActionsForControlEvents: 107
sendNetworkPacket 325
sendProviderDeviceToken 357
session

displayName 317
in Game Kit 312, 315

session:connectionWithPeerFailed:withError: 316
session:didFailWithError: 316
session:didReceiveConnectionRequestFromPeer:

316
session:peer:didChangeState: 316
setAffineTransform: 283
setCenterCoordinate:animated: 366
setConnectionTypesMask 313
setDelegate: 297
setObjectForKey 153, 158
setQueueWithItemCollection: 243
setRegion:animated: 366
Settings, page, tools, creating 155
settings, using to save user preferences 154–158
setVariable 26
shake 204
sharedApplication 104
shouldAutorotateToInterfaceOrientation: 82, 141,

457
shuffleMode 243
significant location change service 421–423
significantLocationChangeMonitoringAvailable

422
Simulator

and Core Location 208
no iPod application 244
no support for altitude 213

http://www.it-ebooks.info/

475INDEX

www.it-ebooks.info
SKDatabase 170
skipToBeginning 244
skipToNextItem 244
skipToPreviousItem 244
SKMenu 170
SKPayment 388
SKPaymentQueue 384, 388
SKPaymentTransaction 389
SKPaymentTransactionObserver 384–385
SKPaymentTransactionStateFailed 389
SKPaymentTransactionStatePurchased 389
SKPaymentTransactionStateRestored 389
SKProduct 386
SKProductsRequest 385
SKProductsRequestDelegate 384
slider 147
SOAP 308
social web 288

accessing 307–310
protocols 307–308
TouchJSON example 308–310

software development kit. See SDK
sound 251–252
source availability, checking 226
source code file 62–63
split view controller 134–142

adjusting for vertical and landscape modes
141–142

creating 135
declaring data array 137–138
in Mail app 134
using 140–141

Split View-Based Application template 135
SplitViewController 135
SQLite 447

accessing 169
API commands 169
database 167–170
documentation 167
framework, adding 169
include file 169
limitations 167
using 167–177

SQLite3 API 172
sqlite3_close 170
sqlite3_column_int 169
sqlite3_column_string 170
sqlite3_exec 170
sqlite3_finalize 170
sqlite3_get_table 170
sqlite3_open 169
sqlite3_prepare 169
sqlite3_step 169
SSL certificate 354

creating 359
using to connect to APNS 353

stack
building set of states in 272
maintaining graphical state in 266

Stack Overflow 446
stack, in graphical context 260
standardUserDefaults 153
start force 202
start method, of MKReverseGeocoder 368
startAnimating 221
startUpdatingHeading 209
startUpdatingLocation 209
state

in Quartz 259
set of, building in stack 272

stop 248
stop force 202
stop method, for MPMusicPlayerController 243
stopAnimating 221
stopUpdatingHeading 209
stopUpdatingLocation 209
store interface, creating. See WPStore
Store Kit

framework 383
payment, processing 388
response methods 390

stringByAppendingPathComponent: 160
stringForKey: 158
stringWithContentsOfFile:encoding:error 162
struct, sending over network 317
subvert 95
subview, deepest, returning 104
super keyword 24
superview 15

in responder chain 94
Supporting Files subfolder 36
switch 147

T

tab bar
buttons 122–123
connection with tab bar controller 118
controller 118

defining as IBOutlet 120
delegate 118
viewControllers property 121

created automatically 118
customizing 124
delegate 118
difference from navigation controller 126
initWithTabBarSystemItem:tag: method 124
interface 119

building 121–124
item 118

badgeValue property 123
linking to view controller 118

http://www.it-ebooks.info/

476 INDEX

www.it-ebooks.info
item (continued)
tabBarController:didEndCustomizingView-

Controllers:changed: 125
tabBarController:didSelectViewController:

125
tabs, adding 121
view controller 118–125

anatomy 118
creating 119–120
creating objects as subviews 119

views, connecting 121–122
vs. toolbar 120

Tab Bar Application 120
tabBarController 81
tabBarController:didEndCustomizingView-

Controllers:changed: 125
tabBarController:didSelectViewController: 125
tabBarItem 81, 123
table

cells
accessories 89
building 88–89
label properties 89
selecting 91

content, creating 87–88
interface, building 86–91
memory management 87
sections 88

adding 90–91
headers and footers 90

table view
and hierarchical navigation 126
in split view controller 137

table view controller 84–92
anatomy 85
creating 85–86
selection 91
subclasses 86
table interface, building 86–91
using 91–92
view, linking to window 86

TableView, delegate methods 138
tableView:cellForRowAtIndexPath: 86, 88
tableView:didSelectRowAtIndexPath: 92, 131
tableView:numberOfRows: 90
tableView:numberOfRowsInSection: 88
tableView:titleForHeaderInSection: 90
TalkBack 253

IBActions 253
initializing 254–255
interface 254
playback 255
recording 255

tapCount 96, 102
TCP/IP, and reliable transmission 318
tempImageView 227, 231

text
displaying using SDK 110
drawing, in Quartz 275–276

text field 147–148
text object, as first responder 95
TextField/Slider mashup 112–113
TextFieldDelegate 164
textLabel: 89
textLabel.font 89
textLabel.lineBreakMode 89
textLabel.selectedTextColor 89
textLabel.text 89
textLabel.textAlignment 89
textLabel.textColor 89
textViewDidEndEditing 112
thumbnail, web view example 294–296
Tier 1 382
timer 323
timestamp 96–97, 216
timestamp property 209
title

adding to navigation controller 127
on tab bar item 122

accessing in Xcode 122
title property 124
tmp directory 158
toggleView method 133
toolbar 148
touch

accessing via UIResponder 97
and events 95–97
as fundamental unit of user input 94
as part of a gesture 96
compacting into NSSet 97
coordinates of 102
event, interpreting 279
events 99
example 97–103
location, capturing 329
methods and properties 96
phase 101
preparing view for 99–100
responding to 94
sending to view controller with

nextResponder 100
touch interaction 2–4

types of touches and gestures 4
touchesBegan 329
touchesBegan:withEvent: 97, 100
touchesCancelled:withEvent: 97
touchesEnded:withEvent: 97
touchesForView: 97
touchesForWindow: 97
touchesMoved 323–324, 329
touchesMoved:withEvent: 97
TouchJSON 308–310

installing 309

http://www.it-ebooks.info/

477INDEX

www.it-ebooks.info
TouchXML 308
transaction 389–390

history 385
transformation

affine, in Quartz 269–270
CTM 268–269
in Quartz 268–270
matrix, reusable 269
reasons to use 268
reusable 269

transmission 318
transparency 224
trueHeading 216–217
type preference, describing 156

U

UDID 323
UDP, and unreliable transmission 318
UIAcceleration 198

and gravity 198
parsing 198–199

UIAccelerometer 197–198
UIAccelerometerDelegate 198
UIActionSheet 442
UIActivityIndicatorView 442
UIAlertView 442
UIApplication 442

and unhandled events 95
beginIgnoringInteractionEvents 103
endIgnoringInteractionEvents 103
event regulation 104
isIgnoringInteractionEvents 103
sendAction:to:fromSender:forEvent: 107

UIApplicationDidBecomeActiveNotification 410
UIApplicationDidEnterBackgroundNotification

410
UIApplicationDidFinishLaunchingNotification

410
UIApplicationExitsOnSuspend 414
UIApplicationLaunchOptionsLocationKey 423
UIApplicationMain 37
UIApplicationWillEnterForegroundNotification

410
UIApplicationWillTerminateNotification 410
UIBackgroundModes 412
UIBackgroundTaskIdentifier 419
UIBarButtonItem 129

and UINavigationItem 125
modifying look 132

UIButton 105, 147, 442
UIColor 442

and cell label 89
UIControl 105–108, 442

accepting user input 147
event-handling infrastructure 105

events 106
introduction 10
properties 105
specifying which method should run after an

event 107
UIControlEventAllEditingEvents 107
UIControlEventAllEvents 107
UIControlEventAllTouchEvents 107
UIControlEventEditingChanged 107
UIControlEventEditingDidBegin 107
UIControlEventEditingDidEnd 107, 111
UIControlEventEditingDidEndOnExit 107
UIControlEventTouchCancel 106
UIControlEventTouchDown 106
UIControlEventTouchDownRepeat 106
UIControlEventTouchDragEnter 106
UIControlEventTouchDragExit 106
UIControlEventTouchDragInside 106
UIControlEventTouchDragOutside 106
UIControlEventTouchUpInside 106
UIControlEventTouchUpOutside 106
UIControlEventValueChanged 106, 112
UIDatePicker 147, 442
UIDevice 196, 442

orientation values 83
UIDeviceOrientation 196
UIDeviceOrientationDidChangeNotification 197
UIDeviceOrientationFaceDown 196
UIDeviceOrientationFaceUp 196
UIDeviceOrientationLandscapeLeft 196
UIDeviceOrientationLandscapeRight 196
UIDeviceOrientationPortrait 196
UIDeviceOrientationPortraitUpsideDown 196
UIDeviceOrientationUnknown 196
UIEvent 95, 442

allTouches 97
as argument to UIResponder method 97
getting list of related touches 97
interrelation with UITouch 96
reference 96–97
timestamp 97
touchesForView 97
touchesForWindow 97

UIFont 443
and cell label 89

UIGraphicsBeginImageContext 260–261
UIGraphicsEndImageContext 260–261
UIGraphicsGetCurrentContext 261

in Quartz 260
UIGraphicsGetImageFromCurrentImageContext

261
UIImage 443

and table cells 89
Core Graphics and 223
factory methods 220
instance methods 223

http://www.it-ebooks.info/

478 INDEX

www.it-ebooks.info
UIImage (continued)
loading 220
modifying 274
reading file contents 161

UIImagePickerController 224, 443
loading 225
presentation on iPhone vs. iPad 454
sources 225

UIImagePickerControllerMediaURL 257
UIImagePickerControllerSourceTypeCamera 225,

256
UIImagePickerControllerSourceTypePhotoLibrary

225
UIImagePickerControllerSourceTypeSavedPhotos

Album 225
UIImageView 443

drawing 221–222
UIImageWriteToSavedPhotosAlbum 226, 391
UIInterfaceOrientationLandscapeLeft 83
UIInterfaceOrientationLandscapeRight 83
UIInterfaceOrientationPortrait 83
UIInterfaceOrientationPortraitUpsideDown

83
UIKit 226

framework classes 442–444
image, modifying in 222
introduction 8

UIKit.framework 41
UILabel 110, 443

not user editable 111
UILineBreakMode, and cell label 89
UINavigationBar 76, 125
UINavigationController 76, 125, 443

link to UINavigationBar 125
UINavigationItem 125

adding buttons 129
view controller, navigationItem 129

UIPageControl 105, 147, 443
UIPickerView 147, 443
UIPopoverController 454
UIProgressView 443
UIRemoteNotificationTypeAlert 356
UIRemoteNotificationTypeBadge 356
UIResponder 94, 443

event regulation 103
methods 97
nextResponder 103
touchesBegan:withEvent: 97
touchesCancelled:withEvent: 97
touchesEnded:withEvent: 97
touchesMoved:withEvent: 97

UIReturnKeyDone 111
UIScreen 443
UIScrollableView

introduction 10
UIScrollView 443

UISearchBar 110, 147, 180, 443
not a child of UIControl 105
using 112

UISegmentedControl 105, 147, 443
UISlider 105, 110, 147, 443

allowing value selection with 112
UISupportedInterfaceOrientations 453
UISwitch 105, 147, 443
UITabBar 76

vs. UIToolBar 120
UITabBarController 76, 118, 443
UITabBarControllerDelegate protocol 118, 124
UITabBarDelegate protocol 118
UITabBarSystemItem 124
UITabBarSystemItemSearch 124
UITableView 76, 85

didSelectRowAtIndexPath method 386
loading with product data 386

UITableViewCell 85–86
creation, built it 89

UITableViewCellAccessoryCheckmark 89
UITableViewCellAccessoryDetailDisclosureButton

89
UITableViewCellAccessoryDisclosureIndicator 89,

128
UITableViewCellAccessoryNone 89
UITableViewController 76, 85, 126, 443

RootViewController 126
UITableViewDataSource 85–86

table section headers and footers 90
UITableViewDelegate 85, 138

tableView:didSelectRowAtIndexPath: 92
UITableViewGrouped 149, 152
UITextAlignment, and cell label 89
UITextField 105, 110–112, 147, 443

as first responder 95
prime control for entering text 110
using for display 98

UITextFieldDelegate 111
UITextInputTraits 111
UITextView 110, 148, 180, 443

as first responder 95
dismissing keyboard 164
example 163–165
using 112

UIToolBar 120, 148
UITouch 95–96, 443
UITouchPhaseBegan 96, 100, 102
UITouchPhaseCancelled 96
UITouchPhaseEnded 102
UITouchPhaseMoved 96
UITouchPhaseStationary 96
UIView 76, 79, 443

animating 281
CAEAGL layer 285
CALayer 223

http://www.it-ebooks.info/

479INDEX

www.it-ebooks.info
UIView (continued)
capturing touch events 99
drawing to 261–262
event regulation 104
exclusiveTouch 103
hitTest:withEvent: 103
introduction 10
multipleTouchEnabled 103
properties that affect resizing 82

UIViewController 76, 387, 443
and flipside controller 132
and UINavigationController 125
descendent of NSObject 78
dismissModalViewControllerAnimated:

method 143
lifecycle events 84
presentModalViewController:animated:

method 143
properties 81

UIWebView 288, 292–296, 444
adding DetailView to 139–140
error codes 295
goBack 293
goForward 293
loadHTMLString:baseURL: 293
loading, methods 292–293
loadRequest: 293
methods 293
reload 293
reloading 140
scalesPageToFit 293

UIWebViewDelegate, methods 294
UIWindow 94, 444
universal application 56
updatedTransactions 389
updateLocationFor:toLocation: 212
URL

and NSURL 290
working with 290–292

URLWithString 290
URLWithString:relativeToURL: 290
user input 147–148
user interaction, in a game 329–331
user preference 148

creating 149–154
creating settings 156
default value of nil 158
dictionary of values 156
editing settings 155–156
maintaining 148–158
saving 152–154
settings 157–158
using system settings 154–158

UTF8String 172
Utility 35

Utility Application template 132
flipside controller 149

utility view 46

V

ValueChanged event 106
valueforHTTPHeaderField 291
variable, toll-free bridged 9
vertical mode, adjusting interface for 141–142
vibration 252
video

editing on the fly 256
playback 255–257
recording 255–257
showing camera 256

video camera 255
view 96

controlling rotation of 80
delegation by 94
for cells 89
handling lifecycle events of 80
in responder chain 94
introduction 10
lifecycle events 84
location 43
multiple-orientation support 457–458
objects, as subviews of view controller 79
orientation, checking 83
preparing for touches 99–100
resizing 82–83
rotating 82
size, making relative to device size 455
subviews 78
updating during conversion from iPhone to

iPad 455–457
view controller 77–84

.xib file 98

.xib files 80
accessing related objects 81
advanced 77
anatomy 77
as MVC controller 80
bare 77
connecting views to 121
controlling views and subviews 80
creating 78
customizing tab bar items 124
database 175
family 76–77
in Address Book 182
interface, building 79–80
interfaceOrientation 83
introduction 10
lifecycle events 80

managing 84

http://www.it-ebooks.info/

480 INDEX

www.it-ebooks.info
lifecycle events (continued)
linking to tab bar item 118
MainWindow.xib 80
multipage 77
MVC management 121
navigationController property 131
people picker 182–184
properties 81
proxy 99
rotating 82
rotation, controlling 84
setting up 79
single-page 77
standard 80
subviews 79
table view controller. See table view controller
title property 122
using 80–84
viewexViewController.xib 80

view hierarchy
introduction 11
vs. responder chain 100

view property 81
View-Based Application 98

template as default 78
viewControllers 121
viewDidLoad 79, 84, 87, 109, 121, 149, 229, 384
viewexViewController.xib 80
viewForAnnotation 371–372, 376
viewWillAppear method: 343
viewWillAppear: 84, 342
viewWillDisappear: 84
volume 243

AVAudioPlayer 251

W

W3C XML 447
web

POSTing to 305–307
protocols 307–308
social. See social web

web resources 446
web view 55, 294–296

calling up 292–293
delegate 294

webView:didFailLoadWithError: 294–295
webView:shouldStartLoadWithRequest:

navigationType: 294
webViewDidFinishLoad: 294, 296
webViewDidStartLoad: 294
willRotateToInterfaceOrientation:duration: 84
window 96

introduction 10
key, and event response 94

Window-Based Application
creating 48
template 120

word, drawing, in Quartz 275–276
WPStore

creating 383–391
delivering content 391
displaying products 386
handling errors 391
header file 383
initialization 384
preparing for purchase 388
processing a transaction 389
recording a transaction 391
requesting product information 385
selecting a product 387
Store Kit framework, adding 383
transaction history 385

writeToFile:atomically: 161
writeToFile:atomically:encoding:error 162

X

x, y, z properties 198
Xcode

application, building and running 41–42
automatic migration of build target 451
compiling 41
configuring, to convert iPhone app to iPad

451–452
debugging 295
HelloWorld 32–44
restarting compiled program 42
workspace window 35

Xcode 4
advantages 32
introduction 6, 31–32
obtaining 4

XHTML 296
XML

Core Location example 303–305
element 298
error 298
example, RSS reader 298–303
parsing 296–305

reporting end of 298
reporting unrecoverable error 298

reading from files 296
text file, reading 299

Z

zoomEnabled 367

http://www.it-ebooks.info/

Harrington Trebitowski Allen Appelcline

V
ersion 4 of the iOS SDK adds powerful new features like
multitasking, GCD, blocks, and iAds. With the release
of Xcode 4, it’s easier than ever to get programming,

even if you’re new to Objective-C.

iOS 4 in Action, written for Xcode 4, is a detailed, hands-on guide
that goes from setting up your development environment,
through your fi rst coding steps, all the way to creating a polished,
commercial iOS 4 application. You’ll run through examples from
a variety of areas including a chat client, a video game, an interac-
tive map, and background audio. You’ll also learn how the new
iOS 4 features apply to your existing iOS 3 based apps. Th is book
will help you become a confi dent, well-rounded iOS 4 developer.

What’s Inside
Full coverage of iOS SDK 4.3

Mastering Xcode 4
Multitasking for iPhone and iPad
Game Center, iAd, and AirPrint
Local and push notifi cation
Implementing in-app purchasing

No previous iPhone or iPad know-how needed. Familiarity
with C, Cocoa , or Objective-C helps but is not required.

Jocelyn Harrington is an experienced full-time mobile developer
with a dozen entries in the App Store. Brandon Trebitowski,
Christopher Allen, and Shannon Appelcline are the authors of the
previous edition, iPhone and iPad in Action.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/iOS4inAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

iOS 4 IN ACTION

iPHONE/iPAD DEVELOPMENT

“Th e best iOS development
 book — and the fi rst to
 feature Xcode 4!”
 —Alex Curylo, Trollwerks Inc.

“All the information you need
 to write a large variety of
 iOS applications.”
 —Glenn Stokol
 Oracle Corporation

“Th e ideal quick-start to
 programming Apple’s
 mobile devices.”
 —Jonas Bandi, TechTalk

“A no-nonsense approach
 to writing apps for iOS 4.”
 —David Sinclair
 Digital Innovators

“Take an Apple, byte,
 and start coding.”
 —Jeroen Benckhuijsen
 Salves Development

M A N N I N G

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	iOS 4 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	The audience
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online
	About the title

	about the cover illustration
	Chapter 1 Introducing iOS 4 with iPhone and iPad
	1.1 All for one and one for all: the iOS platform
	1.2 Understanding iPhone and iPad touch interaction
	1.3 Getting ready for the SDK
	1.3.1 Installing the SDK
	1.3.2 The anatomy of the SDK

	1.4 Introducing iOS
	1.4.1 The anatomy of iOS
	1.4.2 The object hierarchy of iOS
	1.4.3 Windows and views

	1.5 iOS’s methods
	1.5.1 Object creation
	1.5.2 Memory management
	1.5.3 Event response
	1.5.4 Lifecycle management

	1.6 How to make an application from an idea
	1.6.1 The checklist
	1.6.2 What’s the category for your application?
	1.6.3 Making money with your application

	1.7 Summary

	Chapter 2 Learning Objective-C
	2.1 Introducing Objective-C
	2.2 The message
	2.2.1 Messages with arguments
	2.2.2 Nested messages
	2.2.3 Message recipients

	2.3 Class definition
	2.3.1 The interface
	2.3.2 The implementation
	2.3.3 Object instantiation

	2.4 Properties
	2.4.1 The purpose of properties
	2.4.2 Setting a property
	2.4.3 Using the accessors
	2.4.4 The dot syntax
	2.4.5 Property complexities

	2.5 The @ directive
	2.6 Categories and protocols
	2.6.1 The category
	2.6.2 The protocol

	2.7 Wrapping up Objective-C
	2.8 Summary

	Chapter 3 Using Xcode 4
	3.1 Introducing Xcode 4
	3.2 Using Xcode 4 to create the HelloWorld application
	3.2.1 Creating a new project
	3.2.2 Getting familiar with the workspace window

	3.3 Closer look at files under the Navigation area
	3.3.1 HelloWorld folder
	3.3.2 Frameworks folder and Product folder
	3.3.3 Building and running an application in Xcode
	3.3.4 Writing code for HelloWorld

	3.4 Using Interface Builder in Xcode 4
	3.4.1 The anatomy of Interface Builder
	3.4.2 Building the AppleStock application

	3.5 Summary

	Chapter 4 Xcode and debugging
	4.1 Creating a new class in Xcode
	4.1.1 Creating a new class
	4.1.2 The header file
	4.1.3 The source code file
	4.1.4 Linking it in

	4.2 Creating objects with Interface Builder
	4.2.1 Creating new nib files
	4.2.2 Initializing Interface Builder objects
	4.2.3 Accessing .xib files
	4.2.4 More tips under Xcode

	4.3 Debugger and Instruments
	4.3.1 Fix-it function
	4.3.2 Analyze
	4.3.3 Debugger essentials
	4.3.4 Running Instruments from Xcode

	4.4 Summary

	Chapter 5 Basic view controllers
	5.1 The view controller family
	5.2 The standard view controller
	5.2.1 The anatomy of a view controller
	5.2.2 Creating a view controller
	5.2.3 Creating another view controller
	5.2.4 Building up a view controller interface
	5.2.5 Using your view controller

	5.3 The table view controller
	5.3.1 The anatomy of a table view controller
	5.3.2 Creating a table view controller
	5.3.3 Building up a table interface
	5.3.4 Using your table view controller

	5.4 Summary

	Chapter 6 Monitoring events and actions
	6.1 An introduction to events
	6.1.1 The responder chain
	6.1.2 Touches and events

	6.2 A touching example: the event reporter
	6.2.1 Setting things up in Interface Builder
	6.2.2 Preparing a view for touches
	6.2.3 Controlling your events

	6.3 Other event functionality
	6.3.1 Regulating events
	6.3.2 Other event methods and properties

	6.4 An introduction to actions
	6.4.1 The UIControl object
	6.4.2 Control events and actions
	6.4.3 Using addTarget:action:forControlEvents:

	6.5 Adding a button to an application
	6.5.1 Using addTarget:action:forControlEvents: with a button
	6.5.2 Using an IBAction with a button

	6.6 Other action functionality
	6.6.1 Accepting text input with UITextField
	6.6.2 Allowing value selection with UISlider
	6.6.3 A TextField/Slider mashup
	6.6.4 Actions made easy
	6.6.5 Actions in use

	6.7 Introducing notifications
	6.8 Summary

	Chapter 7 Advanced view controllers
	7.1 The tab bar view controller
	7.1.1 The anatomy of a tab bar view controller
	7.1.2 Creating a tab bar view controller
	7.1.3 Building a tab bar interface
	7.1.4 Using your tab bar controller

	7.2 The navigation controller
	7.2.1 The anatomy of a navigation controller
	7.2.2 Creating a navigation controller
	7.2.3 Completing the navigation controller
	7.2.4 Using your navigation controller

	7.3 Using the flipside controller
	7.4 The split view controller
	7.4.1 Creating a split view controller
	7.4.2 Building the split view controller
	7.4.3 Using your split view controller
	7.4.4 Adjusting the interface for vertical and landscape modes

	7.5 Popover and modal view controllers
	7.5.1 Creating a popover view controller
	7.5.2 Creating a modal view controller

	7.6 Combining view controllers in universal applications
	7.6.1 Design universal applications for the iPhone and iPad
	7.6.2 Combining view controllers

	7.7 Summary

	Chapter 8 Data: actions, preferences, and files
	8.1 Accepting user actions
	8.2 Maintaining user preferences
	8.2.1 Creating your own preferences
	8.2.2 Using the system settings

	8.3 Opening files
	8.3.1 Accessing your bundle
	8.3.2 Accessing other directories
	8.3.3 Manipulating files
	8.3.4 Filesaver: a UITextView example

	8.4 Summary

	Chapter 9 Data: advanced techniques
	9.1 Using SQLite
	9.1.1 Setting up an SQLite database
	9.1.2 Accessing SQLite
	9.1.3 Accessing your SQLite database
	9.1.4 Building a navigation menu from a database
	9.1.5 Expanding this example

	9.2 Accessing the Address Book
	9.2.1 An overview of the frameworks
	9.2.2 Accessing Address Book properties
	9.2.3 Querying the Address Book
	9.2.4 Using the Address Book UI

	9.3 An introduction to Core Data
	9.3.1 Background information about Core Data
	9.3.2 Setting up Core Data in your application
	9.3.3 Initializing the Core Data objects
	9.3.4 Adding objects to the database
	9.3.5 Fetching, updating, and deleting objects in Core Data

	9.4 Summary

	Chapter 10 Positioning: accelerometers, location, and the compass
	10.1 The accelerometers and orientation
	10.1.1 The orientation property
	10.1.2 The orientation notification

	10.2 The accelerometers and movement
	10.2.1 Accessing the UIAccelerometer
	10.2.2 Parsing the UIAcceleration
	10.2.3 Checking for gravity
	10.2.4 Checking for movement
	10.2.5 Recognizing simple accelerometer movement

	10.3 The accelerometers and gestures
	10.3.1 Using accelerometers
	10.3.2 Gesture recognizer

	10.4 All about Core Location
	10.4.1 The location classes
	10.4.2 An example using location and distance
	10.4.3 An example using altitude
	10.4.4 Using the compass
	10.4.5 Retrieving data from the compass
	10.4.6 Core Location and the internet

	10.5 Summary

	Chapter 11 Media: images and the camera
	11.1 An introduction to images
	11.1.1 Loading a UIImage
	11.1.2 Drawing a UIImageView
	11.1.3 Modifying an image in UIKit

	11.2 Drawing simple images with Core Graphics
	11.3 Accessing photos
	11.3.1 Using the image picker
	11.3.2 Taking photos
	11.3.3 Saving to the photo album

	11.4 Collage: an image example
	11.4.1 The collage view controller
	11.4.2 The collage temporary image view
	11.4.3 The collage view
	11.4.4 Further exploration of this example

	11.5 Printing images
	11.5.1 Printing workflow
	11.5.2 Simulating printing
	11.5.3 Creating a demo app-printing image
	11.5.4 Launching the printer app on the Simulator

	11.6 Summary

	Chapter 12 Media: audio and recording
	12.1 Playing audio from the iPod library
	12.1.1 Retrieving audio items from the iPod media library
	12.1.2 Getting information about an MPMediaItem
	12.1.3 Playing media items using MPMusicPlayerController
	12.1.4 Example: creating a simple media player application

	12.2 Recording audio
	12.2.1 Initializing the audio recorder
	12.2.2 Controlling the audio recorder
	12.2.3 Responding to AVAudioRecorder events

	12.3 Playing sounds
	12.3.1 Initializing the AVAudioPlayer
	12.3.2 The AVAudioPlayerDelegate
	12.3.3 Controlling the AVAudioPlayer

	12.4 Example: creating a simple audio recording/playback application
	12.4.1 Creating a view-based application
	12.4.2 Adding the needed frameworks
	12.4.3 Setting up the IBActions
	12.4.4 Creating the interface
	12.4.5 Setting up the audio recorder and implementing the IBActions

	12.5 Recording, playing, and accessing video
	12.6 Summary

	Chapter 13 Graphics: Quartz, Core Animation, and OpenGL
	13.1 An introduction to Quartz 2D
	13.2 The Quartz context
	13.2.1 Drawing to a UIView
	13.2.2 Drawing to a bitmap

	13.3 Drawing paths
	13.3.1 Finishing a path
	13.3.2 Drawing rectangles

	13.4 Setting the graphical state
	13.4.1 Setting colors
	13.4.2 Making transformations
	13.4.3 Setting clipping paths
	13.4.4 Other settings
	13.4.5 Managing the state

	13.5 Advanced drawing in Quartz
	13.5.1 Drawing gradients
	13.5.2 Drawing images
	13.5.3 Drawing words
	13.5.4 What we didn’t cover

	13.6 Drawing on a picture: an example
	13.6.1 The PhotoDraw view controller
	13.6.2 The photodraw view
	13.6.3 Expanding on the example

	13.7 An introduction to Core Animation
	13.7.1 The fundamentals of Core Animation
	13.7.2 Getting started with Core Animation
	13.7.3 Drawing a simple implicit animation
	13.7.4 Drawing a simple explicit animation

	13.8 An introduction to OpenGL
	13.9 Summary

	Chapter 14 The web: web views and internet protocols
	14.1 The hierarchy of the internet
	14.2 Low-level networking
	14.3 Working with URLs
	14.3.1 Creating an NSURL
	14.3.2 Building an NSURLRequest
	14.3.3 Manipulating HTML data by hand

	14.4 Using UIWebView
	14.4.1 Calling up the web view
	14.4.2 Managing the web view delegate
	14.4.3 Thumbnails: a web view example

	14.5 Parsing XML
	14.5.1 Starting up NSXMLParser
	14.5.2 Acting as a delegate
	14.5.3 Building a sample RSS reader
	14.5.4 Altitude redux: a Core Location example

	14.6 POSTing to the web
	14.6.1 POSTing by hand
	14.6.2 Submitting forms

	14.7 Accessing the social web
	14.7.1 Using web protocols
	14.7.2 Using TouchJSON

	14.8 Summary

	Chapter 15 Peer-to-peer connections using Game Kit
	15.1 Overview of Game Kit
	15.2 Creating peer-to-peer applications using the peer picker
	15.2.1 Using Apple’s built-in peer picker
	15.2.2 Implementing the GKSessionDelegate methods
	15.2.3 Sending and receiving data between peers

	15.3 Example: creating a multiplayer table tennis game
	15.3.1 Starting the GKTennis project
	15.3.2 Creating the header file
	15.3.3 Creating the table tennis interface
	15.3.4 Game initialization
	15.3.5 Setting up the peer picker and getting connected
	15.3.6 Implementing the send and receive methods
	15.3.7 The game loop
	15.3.8 User interaction

	15.4 Summary

	Chapter 16 Using Event Kit on the iPhone and iPad
	16.1 An overview of the Event Kit frameworks
	16.1.1 Adding Event Kit frameworks to your project
	16.1.2 Event Kit classes

	16.2 Adding new events to Calendar programmatically
	16.2.1 Adding Event Kit frameworks to the Birthday application
	16.2.2 Adding an event to Calendar

	16.3 Creating an event with the Event Edit view controller
	16.4 Fetching events
	16.4.1 Fetching events with the predicate
	16.4.2 Displaying events with Event view controller

	16.5 Fetching events with GCD
	16.5.1 Grand Central Dispatch overview
	16.5.2 Fetching events with GCD

	16.6 Summary

	Chapter 17 Local and Push notification services
	17.1 What are local and push notifications?
	17.2 Implementing local notifications on Timer application
	17.3 An overview of Apple’s push notification system
	17.4 Preparing your application to use push notifications
	17.4.1 Setting up your application certificate
	17.4.2 Setting up your provisioning profile
	17.4.3 The code for handling push notifications
	17.4.4 Preparing audio files

	17.5 Creating a push notification provider in PHP
	17.5.1 Creating the SSL certificate
	17.5.2 Implementing the PHP push notification provider

	17.6 Summary

	Chapter 18 The Map Kit framework
	18.1 Adding a map view to an application
	18.1.1 Adding the map using Interface Builder
	18.1.2 Adding the map view programmatically
	18.1.3 Controlling the map

	18.2 Reverse geocoding
	18.3 Annotating the map
	18.3.1 Adding basic map annotations
	18.3.2 Adding custom map annotations

	18.4 Summary

	Chapter 19 In-app purchasing using Store Kit
	19.1 Setting up a sandbox testing environment
	19.1.1 Creating an iTunes test user
	19.1.2 Adding products

	19.2 Creating a simple store interface
	19.2.1 Creating the demo app
	19.2.2 Adding Store Kit interface
	19.2.3 Creating individual wallpaper product
	19.2.4 Store Kit Payment

	19.3 Summary

	Chapter 20 Making money with iAd
	20.1 Adding a banner ad into your application
	20.1.1 Creating a simple app for the ad banner view
	20.1.2 Adding the banner view to the view controller

	20.2 Supporting both portrait mode and landscape mode
	20.3 How to handle advertisement downloading errors
	20.3.1 Adding a delegate to ADBannerView’s view controller
	20.3.2 Simulating event handling

	20.4 Going live with the application
	20.5 Summary

	Chapter 21 Introducing multitasking
	21.1 Overview of multitasking
	21.1.1 Application lifecycle
	21.1.2 How to enable multitasking

	21.2 Background state
	21.2.1 Understanding the background state
	21.2.2 Opting out of the background state

	21.3 Using fast app switching
	21.3.1 Building a simple application for fast app switching
	21.3.2 Updating the user interface in the view controller

	21.4 Task completion in the background
	21.4.1 Task-completion API
	21.4.2 Finishing a task in the background

	21.5 Monitoring location changes in the background
	21.5.1 An overview of the location service in the background
	21.5.2 Monitoring significant location change
	21.5.3 Monitoring region-based location change

	21.6 Summary

	Chapter 22 Multitasking in depth
	22.1 Using the location-monitoring service
	22.1.1 Updating the UI when the app relaunches
	22.1.2 Enabling the significant-change location service

	22.2 Building an audio-playing application with the Audio Toolbox framework
	22.3 Enabling audio playing in the background
	22.3.1 Adding the UIBackgroundModes in Info.plist
	22.3.2 Handling the remote-control events

	22.4 Building the background audio application
	22.5 Summary

	Appendix A iOS class reference
	A.1 UIKit framework classes
	A.2 Foundation framework classes
	A.3 Other classes

	Appendix B External sources and references
	General resources
	SDK resources
	Other technologies

	Appendix C Publishing your application
	C.1 Signing up with Apple
	C.2 Compiling to the device
	C.3 Preparing for distribution via the App Store

	Appendix D Updating current applications for the iPad
	D.1 Configuring Xcode
	D.2 Updating Info.plist to support multiple orientations
	D.3 Adding iPad-specific interface components
	D.4 Updating your views for the iPad
	D.5 Adding multiple-orientation support

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back Cover

