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Preface

Nowadays, the energy grid in its diverse carriers is undergoing tremendous evolu-

tion due to rapidly appearing hybrid energy systems as well as stochastic devices in

the core of the energy network infrastructure. Indeed, rapid developments in infor-

mation technologies, different clean energy production systems, energy conversion

units, and communication paradigms have driven the energy landscape to experi-

ence great changes. In such a hybrid energy structure, some crucial challenges

threaten the reliable and sustainable operation of integrated energy networks due to

the lack of cloud-based intelligent energy management and control systems, high

level of stochastic fluctuations in the energy generation sector, and coordinated

operation of different energy networks. In this respect, coordinated operation and

energy management of multicarrier energy networks are essential for unbroken

serving multi-energy demand, which needs cloud-based intelligent energy systems

to realize secure connections among smart devices. In this regard, the Internet of

Things (IoT) is recognized as a dominant solution for creating a cloud-based intelli-

gent energy management scheme that enables hybrid energy networks for optimal

cooperation. This book aims to evaluate the IoT-based solutions for facilitating the

modernization process of multicarrier energy networks with a high/full share of

renewables. It is targeted to cover the modeling, optimization, and assessing the

necessity of IoT technologies and their applications for grid modernization, and

coordinated operation of multivector energy grids, for an audience of energy,

power, mechanical, chemical, process, and environmental engineers as well as the

researchers and postgraduate students who work in the field of various types of

energy systems. Indeed, this book scrutinizes the IoT-based solutions for optimally

integrating multicarrier energy networks with a high/full contribution of renewable

energy resources.

The current book consists of nine chapters. Chapter 1 wants to provide an over-

view of the key role of IoT in the energy management of future modern energy net-

works with a high/full share of renewable energy sources. Moreover, this chapter

discusses the capability of IoT technology in improving synergies among the differ-

ent smart energy management devices. Chapter 2 provides an overview of multi-

energy interconnected systems in different energy grids. It also elucidates the role

of interconnected multi-energy systems (MESs) in a smart city as a transactive

energy structure and investigates the challenges and opportunities of interconnected

MESs, as well as contests of IoT-based systems components and different control

approaches. Chapter 3 aims to provide an overview of the application of IoT tech-

nology in the power failure positioning service in the power system operation. It

also discusses the presence of IoT in the monitoring section of cyber-physical



power systems by having a look at its definition, structure, advantages, challenges,

and future development opportunities. Chapter 4 describes the architecture and

applications of IoT in smart grids. It also assesses the consequences of IoT in distri-

bution networks, smart cities, microgrids, and smart buildings at the distribution

level. Chapter 5 explains the features of the energy internet as the IoT in energy

grid output that are appropriate for grid performance evaluation. It also discusses

IoT challenges in the smart grid along with the future research and development

potentials aiming to provide a suitable overview for future trends. Chapter 6

describes data science leverage and big data’s role in IoT energy systems. It also

discusses the related tools and analytics with attention to data-driven decision-mak-

ing in smart energy systems. Chapter 7 presents the battery cloud that collects mea-

sured battery data from electric vehicles and energy storage systems. It also

explains the applications of advanced algorithms for improving battery perfor-

mance. Chapter 8 describes federated learning and its applications in security and

privacy together with a demonstration case involving the implementation of a simu-

lated model of federated learning for enhancing the security of systems. Chapter 9

aims to evaluate, develop, and test a lightweight string-matching technique

suitable for a smart IoT-based virtual wireless sensor network.

As any research achievement may not be free of gaps, the editors kindly wel-

come any suggestions and comments from the respectful readers for improving the

quality of this work. The interested readers can share their valuable comments with

the editors via m.r.daneshvar95@gmail.com.

Mohammadreza Daneshvar

Behnam Mohammadi-Ivatloo

Kazem Zare

Amjad Anvari-Moghaddam
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1Overview of Internet of Things-

based multi-energy management

of cleaner multi-energy mix
Mohammadreza Daneshvar and Behnam Mohammadi-Ivatloo

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Chapter Outline

1.1 Introduction 1

1.2 Applications of Internet of Things 2

1.3 Characteristics of Internet of Things 2

1.4 Opportunities of Internet of Things 4

1.5 Challenges of Internet of Things 5

1.6 Summary 7

References 7

1.1 Introduction

Recent progress in information and communication technologies forces the energy

structure to be upgraded in accordance with the new changes in different sectors of the

energy network. The energy generation sector has experienced evolutionary changes by

promoting decentralized energy generation units, especially intermittent renewable

energy sources (RESs) [1]. How the system deals with unexpected variations in energy

production is a challenge that needs innovative technologies to address [2]. From

another perspective, multi-energy devices create reliance among various energy net-

works and drive energy grids to be operated interdependently [3]. Now, such challenges

make the energy management of the cleaner multi-energy mix structure difficult. Due

to this, addressing the aforementioned challenge became the prominent goal of similar

researches in recent works. In most of these studies, the Internet of Things (IoT) was

the main tool that is used as an effective remedy for acquiring suitable outcomes. In

Ref. [4], an IoT enabled novel method is presented for enhancing the network reliabil-

ity as well as optimizing the operation costs considering the uncertainty effects in the

energy management of the integrated energy system with multicarrier energy hubs,

RESs, plug-in hybrid electric vehicles, and combined heat and power. In another work

[5], the authors applied an advanced IoT technology for the energy management of an

intelligent commercial building system. The proposed smart energy management

framework is used for determining the most economic conditions for commercial build-

ings. An IoT-based framework is suggested in Ref. [6] for monitoring and measuring

the distribution sector data with very low latency and higher controllability and

IoT Enabled Multi-Energy Systems. DOI: https://doi.org/10.1016/B978-0-323-95421-1.00001-X
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accuracy aiming to investigate the economic and social aspects of the distribution sys-

tem with various types of RESs. In Ref. [7], the multiobjective distributed dispatching

algorithm is used for introducing an IoT-based energy management system to facilitate

the incorporation of green energy resources in the smart electrical grid. The IoT frame-

work is used in Ref. [8] for proposing the energy management system with the aim of

optimally controlling distribution system resources based on continuous data monitor-

ing. In Ref. [9], a new IoT framework is proposed to benefit the effective potential of

IoT in developing an energy-efficient intelligent lighting system with significant energy

savings. Moreover, the development and design of the IoT-based domain model are

assessed in Ref. [10] to provide a basic understanding of flexible energy management

strategies for the effective energy exchange in the presence of RESs. According to the

recent studies in the context of IoT, the idea of merging IoT-based technologies with

intelligent energy systems together indicates immense growth potential and attracts the

attention of the research community in grid modernization plans [11]. At the pinnacle

of the grid modernization expansion stage, IoT-based technologies offer a promising

way of implementing energy programs with high-quality energy services. The IoT-

based technologies can reduce congestion and enhance energy efficiency for improving

the reliability of energy supply and making the realization of 100% RESs possible for

future modern energy networks. Given the key role of IoT-based technologies in suc-

cessfully implementing grid modernization schemes, this chapter is targeted to provide

an overview of their application in the multi-energy management of a cleaner multi-

energy mix. To this end, this chapter discusses the real-world applications of IoT, its

characteristics, opportunities, and challenges in the modern energy grid area.

1.2 Applications of Internet of Things

In the IoT paradigm, several smart objects can interact with each other and these inter-

actions can be formed based on exchanging different types of information such as mul-

timedia data and sensor data. In recent years, IoT penetration is highly increased in

various sectors of the economy to improve the quality of life [12]. Its services can intel-

ligently shape people’s lives in different layers from agriculture to health care. Some of

the real-world applications of IoT are depicted in Fig. 1.1 [13,14].

1.3 Characteristics of Internet of Things

With the ceaseless development of different technologies, there is an urgent growth

in the need for multicarrier energy in the life cycles. This enormous requirement for

a multi-energy supply demonstrates the necessity for new coordinated technologies

to make the energy supply match its demand. Such revolutions in modernization

can be realized with end-to-end IoT solutions. In today’s world, manifold defini-

tions are presented for IoT due to its rapidly growing applicability in multifarious

research domains. Beyond giving specialized services for diverse goals, IoT
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platforms have enough potential for flexibility in allowing third parties to use the

application program interface for developing complex applications [15]. In this

respect, the technology synthesis is essential for binding the work of automatics,

artificial intelligence technology, advanced network technology, and perceptive

technology together into a system possible aiming to establish the interconnection

of objects and people [16]. The IoT-based technologies can facilitate the coordi-

nated development of lifestyle and its culture, society, work, habitat, and material

production environment according to the theory for the social�economic�natural

complex ecosystem that is in line with the IoT purpose [17,18]. A large number of

existing intelligent devices force the system to require interoperability throughout

the different layers of the integrated system. This issue is immensely intensified by

working under the IoT architecture with numerous technologies and smart devices.

Fig. 1.2 exhibits the general characteristics of IoT in smart systems.

Figure 1.1 Real-world applications of IoT [13,14]. IoT, Internet of Things.
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The IoT architecture is the collection of enormous intelligent devices, which are

interconnected and need to be coordinately worked under the integrated manage-

ment umbrella. The success of the IoT’s missions directly depends on the purpose-

ful interoperability among smart devices. As all interactions pursue the autonomous

process on a large scale, the scalability of adopted technologies is essential for the

IoT platform. The data deluge and extensibility are other key characteristics of IoT

that have important effects due to the generation of data all the time.

1.4 Opportunities of Internet of Things

IoT-based technologies offer plenty of benefits due to their ability to implement smart

connections with high-quality services [19]. Such types of connections can bring the

automation opportunity for the network of intelligent devices. Automation can

Figure 1.2 General characteristics of IoT in smart systems. IoT, Internet of Things.
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provide the possibility of controlling different smart products leading to the manage-

ment of the action of day-to-day activities as well as uniformity of tasks. Herein, a

transparent process can be maintained under this automation over the entire machine-

to-machine communication as one of the main advantages of automation.

Automation, alongside the existence of a machine-to-machine interface, can increase

the efficiency of the overall system. Thus increasing efficiency is another prominent

opportunity for the modern energy network that can be reached using IoT-based tech-

nologies. IoT technologies realize such opportunities by developing communication

platforms that create connectivity among devices on a daily basis resulting in the

improvement of the quality of services and time factor. Such communications facili-

tate energy interactions among multifarious agents that arrange cost-effective day-to-

day activities and make the system’s development economical. Hence, IoT platforms

procure cost-saving opportunities in various sectors of the modern grid.

On the other hand, the network of connected intelligent devices makes instant

access to data possible in a rapid fashion. This is a great opportunity for simply

managing the process and conducting decision-making very quickly, which helps in

making the people’s life easier and more comfortable. Fig. 1.3 illustrates some of

the important opportunities created by IoT [13].

1.5 Challenges of Internet of Things

In recent decades, energy networks have witnessed momentous changes in their

different forms from generation, transportation, and utilization around the world

[20]. One of the key transformations is related to the increase of RESs’ penetra-

tion, which brings uncertainties to the system scheduling [21]. Another one is the

Figure 1.3 Some of the important opportunities of IoT [13]. IoT, Internet of Things.
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massive emergence of smart devices in various parts of energy networks, which

brings complexity and technological challenge to system management. As men-

tioned, IoT-based technologies are introduced as a promising way of the energy

management of a cleaner multi-energy mix. Although IoT-based platforms are

introduced as one of the effective remedies for addressing the mentioned con-

cerns, their implementation and usage create new challenges for the modern

energy grid that needs to be deeply analyzed and addressed. In the IoT enabled

energy structure, dynamically connecting numerous appliances and services to

each other [22] threaten privacy preservation by making the stored information

readily available. Thus such information is open to hackers’ attacks with unautho-

rized concerns [23], so the privacy and security issue is one of the main chal-

lenges of IoT. Another challenge is related to the compatibility issue due to the

lack of sufficient international standards that can provide appropriate conditions

for the stakeholders and manufacturers to have interactions with the services with-

out difficulties. In the widespread network of connected smart devices, the com-

plexity is another key concern as the occurrence of a small failure in the hardware

and software components can result in damaging the entire system. In addition to

the complexity, such networks rely on the machine-to-machine interface with the

automation control and procedure that reduces the need for employees as well as

human interactions in the process. Fig. 1.4 demonstrates some of the important

challenges of IoT [13].

Figure 1.4 Some of the important challenges of IoT. IoT, Internet of Things.

6 IoT Enabled Multi-Energy Systems



1.6 Summary

A multitude of decentralized energy generation technologies, especially RESs, are

on the verge of becoming the common alternative to traditional energy production

units to effectively benefit economic and environmental advantages. Herein, clean

energy systems are targeted for multi-energy generation, which brings up the need

for the energy management of cleaner multi-energy mix processes. Meeting such

requirements of modern energy networks cannot be possible without using IoT

technologies for the automation control of the system. Due to this, the present chap-

ter provided an overview of the IoT-based multi-energy management of a cleaner

multi-energy mix. In this respect, the real-world applications of IoT were investi-

gated to give a suitable overview regarding its capability for the energy control and

management of future modern energy networks. The characteristics of IoT were

scrutinized to clarify how IoT-based technologies can realize the comprehensive

autonomous process with a high level of interoperability among a large number of

connected intelligent devices. In the end, the opportunities and challenges of IoT

were deeply investigated to highlight the strengths and weaknesses of IoT schemes

in implementing the practice plans of future modern multi-energy networks. The

conducted overview provides a clear understanding of IoT capability in the success

of smart energy programs in facilitating the transition from isolated energy grids to

modern interconnected energy networks.
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P2G power to gas
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TE transactive energy

2.1 Introduction

World energy consumption is projected to increase by 34% up to 2035 [1].

Moreover, it is predicted that electricity consumption will grow 48% between 2012

and 2040 [2]. The increasing use of energy leads to rise up more environmental and

economic challenges, especially the climate change and the fossil fuels crises [3].

To deal with such concerns, a sustainable way of development is required focusing

on energy productivity and distributed energy resources (DERs) [4]. In this regard,

the development of interconnected multi-energy systems (MESs) can be contem-

plated as an appropriate and efficient solution which locally satisfies the end users’

demands by utilizing renewable energy systems and multi-energy carriers in an

integrated structure [5]. Indeed, MESs are the main building blocks of the future

smart cities infrastructures. Therefore future smart cities have more sustainable and

more efficient structure incorporating transactive features of interconnected MESs.

To competent implementation of interconnected MESs, digitalized and advanced

technologies should be regarded as a systematic communication infrastructure. The

integration of new embedded computing, information technology, and control tech-

nologies are known as the Internet of Things (IoT). Studies show that IoT is a con-

structive platform improving interoperability of interconnected MESs [6]. Therefore

assessment of the role of IoT in the interconnected MESs is considered as a signifi-

cant subject investigating in the current chapter. An interconnected MES based on

the IoT technology offers an operative framework for local energy trading among

end users that is well known in the literature as peer-to-peer (P2P) energy trading.

The application of P2P energy trading based on the advanced technologies such as

IoT is addressed in literature. In Ref. [7], the IoT and blockchain technologies are

used to present an efficient P2P energy trading pilot platform. In Ref. [8], the

blockchain-enabled P2P energy society with multi-scale flexibility services is pro-

posed in an energy community environment. In Ref. [9], the real-time virtual

energy prosumer business model is proposed based on IoT technology. On the other

hand, MESs provide vital interrelationships between energy, environment, and pro-

ductivity which can improve all technical, social, and environmental sustainability

[10]. The impacts of MESs’ implementation on emission reduction and operation

costs reduction are addressed in Refs. [11,12], while positive effects of MESs on

reliability and flexibility are ensured in Ref. [12]. It is shown in Ref. [13] that

MESs have a critical effect on system reliability. A flexible-reliable operation opti-

mization model of interconnected MESs incorporating distributed generations,

energy storage systems, and demand response is analyzed in Ref. [14].
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In this regard, the main objectives of this chapter are as follows:

1. An overview of the integrated transactive structure and control methods of interconnected

MESs is carried out.

2. The role of IoT technology in the interconnected MESs as a transactive energy (TE) struc-

ture is investigated.

3. Different types of uncertainty modeling approaches in the interconnected MESs are

debated.

4. The benefits and challenges of interconnected MESs from different point of views such as

technical, economic, environmental, and social are discussed.

This book chapter is established as follows: Section 2.2 gives the structure of

independent and interconnected energy networks. Section 2.3 discusses about the

importance of IoT framework in TE structure. Section 2.4 analyzes the control

methods of MESs. Section 2.5 illustrates various modeling approaches in two parts:

deterministic and nondeterministic modes, in which different uncertainty modeling

methods are precisely demonstrated. In Section 2.6, benefits and challenges of

MESs are discussed, while concluding remarks are summarized in Section 2.7.

2.2 Modern interconnected energy networks

Human society is currently seeking better solutions to integrate energy system

structures, from demand side to supply side, in order to achieve more efficient and

reliable energy system known as an MES. The MES can be defined as an optimal

interaction among heat, electricity, fuels, cooling, and other energy components as

well as energy carriers to improve economic, environmental, and technical perfor-

mances compared to conventional energy systems [15]. Furthermore, a number of

small-scale MESs can be interconnectedly operated in an integrated transactive

structure. In the following subsections, the structure of independent and intercon-

nected MES is more elucidated in details.

2.2.1 Independent multi-energy system

An MES is a small piece of a smart city puzzle in which various energy carriers

such as electrical, thermal, gas, and water are employed. Under such an environ-

ment, an optimal coordination among energy conversion, storage, and generation

units should be performed to determine the finest operating point of MES. Thus the

required information of system operator, such as different energy carriers’ prices,

demands, characteristics of generation resources, conversion systems, and storage

systems, should be provided by an IoT infrastructure. Now, the system operator

optimizes the performance of MES by concentrating on preplanned targets.

Accordingly, the operation commands are sent to all players including generation

pattern, charging and discharging status, energy conversion commitment, and

demand response implementation. The demand historical data can be also used to

organize the energy efficiency programs as a midterm demand-side management
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program. A simple architecture of a smart MES is displayed in Fig. 2.1, whereas

electrical and gas energy carries are contemplated as primal energy resources.

However, other energy carriers such as cooling, thermal, and water can be also

taken into consideration in the MES system. Referring to Fig. 2.1, it can be seen

that a battery is merely considered as an electrical storage system, while other stor-

age units like compressed-air energy storage (CAES) and power to gas (P2G) are

also examined in some recent researches [16]. Furthermore, different renewable

resources have been recently contemplated in the MES structure.

2.2.2 Interconnected multi-energy systems

Under a smart environment incorporating IoT, a number of MESs are intercon-

nected where a TE structure may lead to new challenges in energy policy making,

ranging from long-term to short-term strategies. Therefore, in an interconnected

MES, the energy and data will be exchanged amongst MESs through an IoT sys-

tem, whereas different types of excess energy can be shared to operate efficiently.

In other words, under such a condition, every single MES can efficiently satisfy

both demand and losses in adjacent MESs. Accordingly, in order to establish a deci-

sive management, a system controller is desired to coordinate the operation of all

independent MESs. Moreover, by strategically reacting to dispatching signals, the

system coordinator acts as an interface between independent MESs and the power

grid. Additionally, some important concerns such as particular mess, information

privacy, and operation control may be resolved under interconnected MES [15].

Fig. 2.2 shows the structure of a simple smart interconnected MES.

Gas Energy

+

+

CHP

Boiler

+

Industrial

Residential

Electrical Energy Data

Sensor

Thermal Energy

+

+

Wind

Solar

Electrical Energy

Input Energies Demand

Internet of Things

Electrical Storage

Figure 2.1 A schematic of a sample smart MES. MES, Multi-energy system.
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2.3 Internet of Things technologies for transactive
energy systems

The energy transition from a conventional energy system into a future democratic

energy system brings several major challenges to energy research era [17]. The

widespread use of DERs as well as adoption of demand-side management

resources including demand response programs (DRPs) and energy efficiency pro-

grams can be considered as pivotal issues which show the necessity of integrated

control in TE systems [18]. Utilizing an integrated control framework, both

demand-side and supply-side resources can be simultaneously managed which is

challenging due to a large number of smart elements in TE systems. However, the

integrated control improves affordability, reliability, and sustainability of the

future energy system which positively affects interoperability in energy systems

[19]. In this regard, the GridWise Architecture Council (GWAC) held a seminar

concentrating on novel ideas about the integrated control in 2011 [20]. The main

achievement of this seminar was TE concept as a market-type solution. Referring

to GWAC, TE is “a set of economic and control mechanisms that allows the

dynamic balance of supply and demand across the entire electrical infrastructure

using value as a key operational parameter.” This definition emphasizes the

active role of end users in a TE structure to manage the dynamic equilibrium of

energy supply and demand. Accordingly, a modern smart ecosystem has been

MES

MES

MES

MES

NG
IO

T

Gas

Thermal

Information

Grid

Demand Side

Electricity

Figure 2.2 Architecture of a simple interconnected MES. MES, Multi-energy system.
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efficiently established to integrate supplier�buyer relationship. In fact, TE market

organizes intelligent devices to integrate automation systems and DERs concen-

trating on interoperability properties among all market participants [21]. To real-

ize this concept, simultaneous development in an economic sector and control

systems is required. Moreover, it should be mentioned that some beneficial attri-

butes of TE systems such as interoperability, transaction, temporal variability,

alignment of objectives, stability, and reliability have been affirmed in previous

researches.

To competent implementation of TE structure, a smart and efficient infrastruc-

ture is desired to process the real-time data. Here, the IoT framework plays an

important role to provide a systematic communication environment among TE

market players which handle energy system problems. Today, rapid innovation

flow in digital technologies can facilitate the development of TE structure which

leads to a better management of grid activities via providing customer-friendly

information. Referring to International Energy Agency (IEA), use of smart meters,

intelligent sensors, IoT devices, and thermostats have been annually increased by

around 20%, whereas a drastic growth has been planned in over the next few dec-

ades [22]. In the following, fundamental components of IoT-based TE systems are

listed.

� Sensors: These components are electronic devices which can generate digital, optical,

electrical, or data from a physical situation or an event. Sensors’ output signals are pro-

cessed by smart devices, and proper command will be sent. Here, the most crucial chal-

lenges are power rating, intelligence of level sensing, security, size, price, and

interoperability.
� Networks: A reliable network path is needed to transmit collected signals from sensors.

The network path can be employed wired or wireless technologies such as Wi-Fi,

Bluetooth, cellular networks, Wi-Max, and Li-Fi. Here, security, latency, and power con-

sumption can be contemplated as the most challenges of IoT-based systems’ networks.
� Cloud: To perform actual data processing, a temporary or permanent space is required to

keep the massive data which are transferred by network paths. An IoT cloud is a massive

database network which can support a large number of devices in high-speed data storage,

traffic management, and precise computational analysis. However, the IoT cloud is faced

with different challenges such as cloud distribution in the network, data security, real-time

accessibility, and storage capacity.
� Analytics: Here, comprehensive insights are provided to exactly analyze massive data

which helps the users to detect anomalies in collected data and rapidly respond to prevent

unintended situations. The key concerns of analytics component are information sorting

from collected data, precision, and exactness.
� Standards: All activities in IoT networks, including network protocols such as Li-Fi, com-

munication protocols such as HTTP, and data aggregation such as transformation, should

be followed prespecified rules and regulation to communicate efficiently. Privacy and

security provision, as well as unstructured data management standards, are critical chal-

lenges of IoT systems from standards aspect.
� User Interface: This part facilitates communication of users and devices. The design of

interface should be user friendly, interactive, and low power consumption which can be

considered as main challenges of design selection.
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2.4 Control methods of interconnected energy networks

Today, using the MES concept, diverse types of energy infrastructure in different

consumption sectors including agricultural, industrial, commercial, and residential

can be efficiently connected which may improve the social welfare and system reli-

ability and reduce different types of system risks. Under such a transactive struc-

ture, an appropriate platform for energy and data exchange between two different

MESs is provided that is managed via an efficient control method depending on the

level of energy consumption as well as MESs’ scale. Hence, three control

approaches, including centralized, decentralized, and distributed, are suggested to

handle the interconnected MESs which are elaborated in the following subsections.

Fig. 2.3 exhibits the control architecture of such interconnected MESs, while a con-

cise comparison between these methods is presented in Table 2.1.

Central Coordinator

Control Area #1

Control Area #3Control Area #2

Centralized Approach Decentralized Approach

Agent #2

Control Area #1

Control Area #3Control Area #2

Agent #1

Agent #3

Distributed Approach

Control Area #1

Control Area #3Control Area #2

Figure 2.3 Drawing of control models of a simple interconnected energy system.

Table 2.1 Comparison between control methods of multi-energy system (MES).

Centralized control Decentralized control Distributed control

Control All regions are

supervised by the

central coordinator

Only one operator is

responsible for each

region

No central operator

supervisory

Organization Regions send data to a

central coordinator

Data is exchanged

between agents

Autonomous

controllers are there

in the entire system

Computational

load

More than other

methods

Lower than

centralized control

Lower than

centralized control

Fault Influences the entire

system

Only faulty region is

not checked

anymore, other

zones are still under

controlled

Does not influence

the entire system

Profit More than other

methods

Lower than

centralized control

Lower than

centralized control
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2.4.1 Centralized approach

Here, a central supervisory controller collects the information of MESs to solve the

centralized optimization problem [23]. The main challenge of this approach is the

reliability issue since a failure in the central controller affects the reliability of

the entire system. Additionally, the point-to-point connections between MESs and

central coordinator lead to a high computational process which complicates finding

of an optimal operational decision [24]. Hence, this method merely works compe-

tently for small-scale systems. However, the computational complicacy and data

processing might also be affected by the number of parameters and information.

The management of interconnected MESs is commonly performed by such cen-

tralized approach. As an example, the centralized control approach is used to handle

the interconnected MESs incorporating DR and storage units in Ref. [25], while an

optimal operation of centralized electrolysis-based hydrogen generation and storage

systems is achieved in Ref. [26].

2.4.2 Decentralized approach

In a decentralized approach, each one of regions is handled by the self-control

authority to provide a higher degree of reliability, while control decisions and infor-

mation are shared between other regions. Here, the operator of an MES concen-

trates on its own profit maximization which is broken into several subproblems

[27]. As provided in Table 2.1, the convergence time of this method is less in com-

parison with centralized approach. This issue occurs since the optimization process

of different MESs can be parallelly performed, although MESs are connected. This

privilege becomes more important when an area with multiple interconnected MES

gets larger in size [23]. A novel voltage decentralized autonomous control strategy

has been provided in Ref. [28] which is based on a multiagent system. A decentra-

lized self-optimizing control method for residential multisplit air-conditioning sys-

tems is suggested in Ref. [29].

2.4.3 Distributed approach

Distributed control strategy as an effective control method that has been extensively

examined in different field of domains including traffic control and process control

[30]. This control strategy can also be employed to effectively manage intercon-

nected MESs. In a distributed approach, each one of MESs accomplishes its self-

optimization and individually schedules its components [31]. Here, the convergence

time of optimal solution is more affected by size of interconnected MESs in com-

parison with previous approaches since a central supervisory controller is not acces-

sible in distributed approach. Accordingly, information privacy and reliability level

of interconnected MESs in this strategy can be more superior due to the lack of cen-

tral coordinator. Although this approach is used to model energy systems, some

researches declare that provided solution by distributed control strategies may not

lead to a dominant global optimal solution [32]. The operation of a modular
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photovoltaic (PV) generation system is optimized in Ref. [33] by using such distrib-

uted control strategy based upon improved DC bus signaling.

2.5 Modeling methods of interconnected multi-energy
systems: a survey on state-of-the-art

The concept of an interconnected MES is formed by integrating small-scale MESs

in a smart city. As mentioned before, the interconnected MES can drastically

improve the system flexibility due to accessing various infrastructure such as

resources, conversion units, and storage systems. However, the MES scheduling is

an extremely complicated problem while considering uncertainties makes it even

more sophisticated. Hence, different deterministic and nondeterministic modeling

frameworks have been recently examined to overcome such complications which

are reviewed in the following sections.

2.5.1 Deterministic approach

The deterministic modeling of an interconnected MES is typically performed based

on the cost and benefit analysis arising, whereas the selection of time resolution in

an optimization process is usually dependent on the upstream energy market price.

However, the scheduling time horizon of an MES optimization problem can be

altered from 24 hours to 1 year. As an example, an hourly scheduling of MES is

addressed in Ref. [34] to minimize the operation costs over a 1-day horizon,

whereas all parameters including energy price, demand, and power generation of

distributed units are modeled by deterministic approaches. A deterministic model

incorporating electrical vehicles is proposed in Ref. [35] while concentrating on

minimization of operation expenditure and emitted pollutants over a 1-year horizon.

Furthermore, from mathematical modeling point of view, deterministic models of

MES can be structured as both mixed integer nonlinear programming problem and

mixed integer linear programming problem [36], while various optimization meth-

ods such as classical [37], heuristic [38], and metaheuristic [39] approaches can be

used to solve the interconnected MES optimization problem.

2.5.2 Nondeterministic approach

The application of renewable energies in an interconnected MES is one of the main

reasons considering uncertainties in modeling process. Prices of energy carriers are

also regarded as uncertain parameter depending on different factors such as sudden

fluctuations in demand, unexpected outages of generation and infrastructure, as

well as weather forecasting. Furthermore, the energy consumption in different sec-

tors such as electrical, thermal, gas, and water cannot be precisely predictable. All

these uncertainties of the interconnected MES can be modeled by various

approaches which are comprehensively explained in next subsections.
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2.5.2.1 Scenarios-based approach

The scenario-based method is a very prevalent approach to model the uncertainty

which is used in cases that the historical data of uncertain events is accessible. The

scenario-based uncertainty modeling approach has several stages as follows:

1. Historical data gathering: Here, the historical data of the uncertain event is collected, and

the faulty data are refined.

2. Fitting the probability distribution function (PDF) to historical data: In this stage, the

appropriate PDF should be selected as it is fitted into the historical data. Referring to pre-

vious studies in scenario-based uncertainty modeling issues, the normal PDF is a good

candidate for modeling the uncertainty of demand and energy prices. Furthermore,

Weibull and Beta PDFs are respectively used to model the power generation of wind and

PV.

3. Scenario generation: The selected PDF in previous stage is a continuous function, thus

the Monte Carlo approach is used to generate a sufficient number of scenarios. Therefore

the continuous function is discretized without any violation of the problem generality.

4. Scenario reduction: Utilizing Monte Carlo approach, a large number of scenarios are gen-

erated which should be decreased via scenario reduction approaches. In this regard, the K-

means and SCENRED functions in the GAMS environment can be used as popular sce-

nario reduction tools.

5. Applying selected scenarios to the MES model.

In some researches associated with the MES scheduling, uncertainties of wind

and PV generation as well as demand are modeled by the scenario-based approach.

In Ref. [36], the scenario-based approach is used to model the nonshiftable demand

and generation of PV system, while the Monte Carlo approach incorporating

k-means is implemented to generate a sufficient number of scenarios. However, the

backward scenario reduction technique is applied in Ref. [40]. In Ref. [41], the

electrical vehicle uncertainty is modeled via a scenario-based approach and a

special algorithm based on grasshopper search, while the future uncertainty in

electricity price of MES is also dealt with grasshopper search.

2.5.2.2 Robust optimization

The robust optimization approach is one of the most appropriate methods for

modeling uncertainties [42]. This method solves the problem under the worst-case

scenario which guarantees the robustness of solution as a highly conservative reso-

lution [43]. The objective function of the robust optimization is an NP-hard func-

tion with three sections. Some mathematical approaches such as Benders

decomposition and column-and-constraint generation are used to relax the NP-hard

robust optimization problem into a typical problem.

The robust optimization method is addressed in some researches to handle the

energy management problem in MES. The planning and operation scheduling of

the MES are simultaneously optimized by an adaptive robust optimization method

in Ref. [44], where the objective function involves the minimization of investment

cost in the first stage, worst scenario identification in the second stage, and minimi-

zation of operating cost in the third stage under the worst-case scenario. In Ref.
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[45], the coordinated operation of interconnected MES is modeled by the robust

optimization method.

2.5.2.3 Information gap decision theory

Information gap decision theory (IGDT) is a nonprobabilistic decision theory which

is used when the historical data of the uncertain parameter is not accessible. Under

the uncertain environment, this method seeks to maximize the robustness of the

problem to failure or opportunity for windfall success [46]. Accordingly, two con-

trasting consequences of uncertainty are simultaneously raised [47]. Moreover, this

approach facilitates the optimization process by conducting solving methods against

the various uncertainties in a straightforward approach without necessitating PDF

or membership function of corresponding uncertain variables [48].

The IGDT approach is recently addressed in MES optimization model. The

IGDT-based robust scheduling of combined cooling, heat, and power is proposed in

Ref. [49] to model the electrical price uncertainty. Uncertainties of renewable gen-

eration as well as electrical demand under extreme operational uncertainties are

modeled by the IGDT approach in smart distribution network [50]. The hybrid sto-

chastic/IGDT optimization method for the optimal scheduling of wind integrated

MES is presented in Ref. [51], considering the uncertainties of wind power genera-

tion, energy price, and demands. The penetration rate of DRPs in MES scheduling

has been modeled by the IGDT in Ref. [52].

2.5.2.4 Chance constraints

The chance-constrained uncertainty modeling method as a nonprobabilistic

approach is used to solve optimization problems under various uncertainties. Here,

the optimization problem is modeled so that ensuring probability of meeting a cer-

tain constraint is above a certain level. In fact, the chance constraints approach

restricts the feasible region so that the solution confidence level becomes high. The

chance-constrained method is relatively considered as a robust approach which is

often difficult to solve.

The chance-constrained method is lately utilized in MES researches. In Ref.

[53], a chance-constrained uncertainty modeling of planning and operation schedul-

ing of an interconnected MES is addressed, while the suggested structure decreases

operating expense and increases the penetration rate of renewable resources in plan-

ning horizon. The electrical and gas flow in an interconnected MES is modeled by

the chance constraints approach in Ref. [54].

2.5.2.5 Fuzzy method

The fuzzy programming method is a useful and powerful tool when adequate input

data for the uncertainty modeling is not available.

In Ref. [55], the fuzzy-based optimal scheduling of the MES is handled where

the uncertainties of wind power generation, electrical load, and electricity price are
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evaluated. In Ref. [56], utilizing fuzzy approach, the optimal location of renewable

resources in Vietnam in the presence of uncertainties is nominated.

2.5.2.6 Z-number

The z-number uncertainty modeling approach was proposed in 2011 [57]. This

method is the more comprehensive version of the fuzzy approach which models the

uncertain parameter by two independent parts: Probability and Possibility. The PDF

is used to model the probability part and the possibility part is determined by

experts.

In previous studies of energy system, the z-number uncertainty modeling

approach is commonly used to accurately model the uncertain parameters. In Ref.

[58], the flexibility of smart power system considering DRPs is assessed, whereas

the penetration rate of DRPs is modeled by z-number method. Moreover, a price

elasticity�based model of DRPs is structured by z-number uncertainty modeling

approach in Ref. [59].

2.5.2.7 Interval analysis

In some real-world problems, the uncertain input parameters are provided in terms

of ranges or intervals. The interval analysis is applied to such systems, the para-

meters of which are described as intervals or ranges.

In an MES, some uncertain parameters are placed in certain range which can be

modeled by interval analysis approach. The uncertainty of the PV generation in

Ref. [60] and the uncertainty correlation between renewable resources (wind turbine

and PV generation) as well as uncertainty of demand response in Refs. [61,62] have

been modeled by the interval modeling approach. The operation of MES is handled

by a hybrid stochastic-interval optimization approach in Ref. [63], while the energy

price and other input uncertain parameters are modeled by interval uncertainty

modeling approach.

2.6 Advantages and challenges of interconnected multi-
energy systems

Investigation and concentration on different positive and negative aspects of imple-

menting interconnected MES can be considered as crucial issues which provide the

more secure and the more promising environment. In the following sections, the

most important benefits and difficulties of using interconnected MES will be

scrutinized.

2.6.1 Advantages

The interconnected MES structure can bring some benefits to system players,

including improvement of economic efficiency, system resiliency, reliability, and
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flexibility, as well as emission mitigation, which are elucidated in details in the fol-

lowing subsections.

2.6.1.1 Economic efficiency

Economic efficiency is the most significant benefit of networked MESs. It is clear

that electrical energy demand shows cyclical fluctuations in a specified time hori-

zon which is not coordinated with consumption pattern of other types of energy car-

riers. Accordingly, economic efficiency in MES can be achieved by using this

potential and converting from one form of energy to another based on the conserva-

tion law constraint.

The improvement of economic efficiency has been verified in an integrated elec-

trical and gas structure [64]. Moreover, in Ref. [65], it is shown that considering

different alternative energy resources and conversion units has been led to eco-

nomic efficiency enhancement during peak hours of electricity demand. It is worth

mentioning that from target standpoint, the economic benefit (or cost) of MESs is

contemplated in the objective function; however, some studies added the capital

recovery rate to objective function to examine the life span of the MESs [66,67].

2.6.1.2 Emission abatement

In the last decade, the world environmental crisis is one of crucial concerns which

motivates energy research institutes to find effective solutions to relieve emitted

pollutants. The energy sector is a major contributor to greenhouse gas emissions

and other types of air pollution that negatively affect the environment and human

health. To overcome this environmental challenges, green energy resources become

promising solutions [68]. Thus the development of small-scale green energy

resources should be considered as a pivotal energy policy. Referring to IEA survey,

renewable resources capacity has been drastically increased in recent years which

denotes the importance of environmental issues [69].

The MES incorporating advanced control system can be regarded as the best

structure to integrate small-scale green energy resources. It is affirmed that the

environmental index of an MES is significantly declined in the presence of renew-

able energy resources [70]. Additionally, energy conversion units and storage sys-

tems such as combined heat and power (CHP), CAES, and P2G can efficiently

amended the environmental impacts in energy system. As an example, the simu-

lated results in Ref. [71] show that carbon dioxide emissions in MES have been

reduced by 9.89% in the presence of P2G unit, since it is consuming the emitted

carbon dioxide of CHP as well as boiler. Furthermore, in some researches related to

MES scheduling, the emission abatement target is considered as part of the objec-

tive function along with the economic target, whereas the selection of MES opera-

tion point can be a considerable challenge for system operator. Supporting this

issue, using the suggested multi-objective framework in Ref. [72], the 9.51% reduc-

tion in emitted pollutants has led to 5% increasing in operation cost.
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2.6.1.3 Resiliency improvement

From the standpoint of end users, the resiliency issue of energy systems is one of

the most crucial problems, where various natural disasters, such as floods and earth-

quakes, can violate the resiliency of traditional energy systems. In recent

researches, the fast restoration time and the electrification of energy system are con-

sidered as the most important indices to assess resiliency. However, the presence of

DRPs, electrical vehicles, energy storages, conversion units, and DERs can posi-

tively affect the resilience level of energy systems. Consequently, the MES can pro-

vide an appropriate infrastructure for implementation of such technologies. As an

example, the impacts of electrical energy storage systems and DRPs on the resil-

ience level of MES are appraised in Ref. [3].

2.6.1.4 Reliability enhancement

In an energy system, reliability concept refers to a system’s ability to procure suffi-

cient power in the quantity and quality demanded under safe operating conditions

as well as short-term utility failures or spontaneous demand variations [73]. In inter-

connected MESs, energy demand (such as electrical, thermal, gas, and water) can

be satisfied in various ways due to the availability of different types of resources,

as well as storage and conversion systems. Hence, the supply of demand in MESs

has more degrees of freedom in comparison with conventional systems.

Furthermore, reliability indices such as expected energy not served, loss of load

expectation, and loss of load probability will be improved due to the presence of

DRPs, DERs, storage, and conversion units [14]. Components’ maintenance and

inspection in interconnected MESs can be performed such that the system reliability

is higher than the conventional systems. Finally, it can be concluded that intercon-

nected MESs can be considered as a useful and efficient structure from a reliability

point of view.

2.6.1.5 Flexibility improvement

The energy system flexibility refers to “ability of a power system to reliably and

cost-effectively manage the variability and uncertainty of demand and supply across

all relevant timescales” [2]. The fast ramp resources such as micro turbines, energy

storage technologies (such as batteries and CAES), and DRPs are the main sources

of flexibility in energy systems [74]. Moreover, the use of a fast real-time local

energy management system can improve the system flexibility. The interconnected

MESs can provide an appropriate and efficient environment for implementation of

such technologies which leads to higher flexibility compared with conventional

system.

2.6.2 Challenges

Besides mentioned advantages, the interconnected MESs will be faced to different

challenges as demonstrated in the following sections.
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2.6.2.1 Economic risk

Today, the operational risk of interconnected MESs is increased by developing

renewable energy policies. The system operator should select risk-averse/taker

operation strategies which depends on its behavioral characteristics. Thus multifari-

ous methods have been recently proposed to model the operational risk of intercon-

nected MESs. The conditional value at risk and the downside risk approaches are

commonly used to overcome such challenges.

2.6.2.2 Social challenges

Today, humanity faces a modern energy structure with completely different rules

compared with conventional energy systems due to increasing penetration of inter-

connected MESs in World. As an example, P2P energy trading can be hosted by

the novel interconnected MESs, whereas human is the main decision-maker of P2P

energy trading. On such energy trading platform, the energy price has a dynamic

feature, since the energy can be exchanged between end users who participate in a

local energy market. Hence, risk-averse end users may prefer to avoid participation

in the local energy market. Moreover, home energy management systems, which

support network regulatory via demand monitoring, should also coordinate and

manage the P2P trading in such a way that both system efficiency and human bene-

fits become maximized. All these concerns and complexities can violate the social

acceptance of modern energy structures such as interconnected MESs.

2.6.2.3 Technological challenges

The IoT, as a technological advancement pillar, plays a key role in the modern

interconnected MESs. The concept of IoT refers to connecting human world and

things in an appropriate way. Under the smart energy environment, IoT is capable

of filling the gap between the real world and the virtual world by developing smart

objects into energy systems. Thus, in an integrated energy system, each object is

live and smart which can sense the surroundings environment, deliver data, and

communicate with other ones. The functional blocks of IoT are identification, com-

munication, sensing, computation, semantics, and services which can make the

whole energy system smarter and more convenient. However, the IoT implementa-

tion in an interconnected MESs can bring some challenges which are addressed as

follows:

� Cybersecurity: The cybersecurity of energy participants in interconnected MESs is consid-

ered as a vital challenge due to more possibilities of cyberattacks in different information

layers. Thus the advanced security protection applications have focused on securing the

network and cloud sections.
� Connectivity: This concept addresses the ability of devices, infrastructure, cloud, and

applications to enable seamless information flow. Regarding the complexity feature of the

IoT infrastructures, good connectivity can be an important challenge for planners in IoT-

based energy systems.
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� Continuity: The continuity operation of the IoT-based interconnected MESs is an impor-

tant issue. Therefore concentrating on batteries lifetime and other consumable parts can

be considered as an indispensible point to ensure the service continuity in IoT-based struc-

ture. As an example, in industrial and large-scale IoT infrastructures, a battery life span

ranging from 5 to 10 years is acceptable.
� Compliance: The compliance of clouds, applications, and other elements is an extremely

pivotal issue due to a large number of components in an interconnected IoT-based MESs.

Thus various standards and instruments have been published by institutes to address the

compliance challenge.
� Coexistence: Coexistence is about the ability of wireless device to reliably operate in the

presence of other interfering signals. Nevertheless, diverse types of wireless devices from

different brands may lead to difficulties in the coexistence of components in IoT-based

MES infrastructures.

2.7 Conclusion

This chapter concentrates on introducing the energy system modernization by

developing interconnected MESs which is already compatible with TE structure

concept. Under such transactive structure, the optimal operation solution of inter-

connected MESs is determined so that different types of energy as well as data can

be efficiently exchanged between all MES operators. This information exchange

can be managed by various control structures clustering into (1) centralized, (2)

decentralized, and (3) distributed approaches. Accordingly, to competent handling

of interconnected MESs, the presence of advanced IoT-based systems is imperative.

Moreover, interconnected MESs scheduling is an extremely complicated problem,

and considering uncertain parameters such as uncertainties of renewable resources,

unanticipated variations of energy carriers’ price, and spontaneous fluctuations in

demand makes it even more complex. To overcome these difficulties, various

uncertainty modeling approaches such as Monte Carlo, robust optimization, IGDT,

chance constraints, fuzzy methods, z-number, and interval analysis can be investi-

gated. Moreover, the interconnected MESs will be faced to different concerns such

as economic risk and social and technological challenges. Besides these challenges,

the positive and efficient aspects of the interconnected MESs, such as improvement

of economic efficiency, system resiliency, reliability, and flexibility, as well as

emission mitigation, should be considered as crucial issues.

The main achievements of this chapter can be listed as follows:

� The MES as a TE structure supports various energy-related programs to improve flexibil-

ity, resiliency, and energy sustainability. Definitely, the future smart cities will be inter-

connected multi-energy systems.
� The IoT framework plays an important role to provide an appropriate communication

between MESs. In fact, the IoT infrastructure positively affects the interoperability of

interconnected MESs.
� Basic components of IoT-based system such as sensors, networks, cloud, analytics, stan-

dards, and user interface face to critical challenges in energy systems which should be

taken into consideration in future researches.
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� Widespread adoption of interconnected MESs requires the precise and comprehensive

researches on challenges as well as advantages.
� Selection of an appropriate uncertainty modeling method has great significance in inter-

connected MES scheduling. As an example, it is shown that the scenario-based

approaches are more applicable to model uncertainties of renewable generations.
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3.1 Introduction

The Internet of Things (IoT) influences our lifestyle from a behavioral perspective.

From controllable air conditioners to electrical vehicles or smartwatches which

track daily activities, all of them are the general applications of IoT. They construct

a network of interconnected devices with data flow between each other and the
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control unit [1]. These data are usually obtained via sensors and are about their

usage and the environment’s condition. Sensors are usually available in any device

that is within an IoT network, such as mobile phones, electrical appliances, and bar-

code sensors. These sensors gather and transmit data about the working state of the

aforementioned devices. The data that is obtained from these sensors can be used to

improve our lifestyle, and the efficiency of devices, and ease the user access to

refined data about the usage pattern of each device. In summary, an IoT network is

a communication platform for the connected devices to share the obtained data

from their operating environment. The obtained data is sent to the computing center

to analyze the necessary specifications and improve the application of the devices

[2]. Finally, the interpreted information is shared with other devices to provide a

better user experience, more automation in the processes, and improved efficiency

in the performance of the devices in this network.

IoT is one of the gravitating developments nowadays. The idea of IoT was first

presented by the Massachusetts Institute of Technology [3]. The idea of IoT was to

connect different devices through a wireless communication channel to create a

central control unit. The main intentions behind this technology were to ease the

access of the user to the information about the owned assets while providing easy

controllability. IoT has been adopted by many users for various purposes since

then. The main application of IoT in modern power systems is the integration of

power and communication networks and the usage of multiple sensors to optimize

the operation of the grid, as seen in Fig. 3.1. The integration of IoT technology in

modern power systems resulted in the creation of cyber-physical power systems

(CPPSs). In short, CPPSs are power systems in which the network-based control

assets are used to connect the physical infrastructure using wireless communication

protocols to provide higher flexibility and accessibility for control parameters [4].

The implementation of IoT technology in the operation of power systems relies

upon online monitoring and real-time control in all aspects of grid management,

such as state estimation, unit commitment, and infrastructure protection. The pri-

mary characteristics of IoT-based power systems are grid information, communica-

tion, and automation. Meanwhile, IoT technology is used to implement [5,6]:

� the complete perception of the grid,
� reliable transmission of data, and
� intelligent analysis of the obtained data.

One of the most critical challenges in power systems is blackouts [7].

Approximately, 10% of the total generation capacity is lost during the power trans-

mission process [8]. Fault occurrences and sequential contingency events in trans-

mission and distribution systems will lead to power system blackouts, and it is

challenging to locate the failure [9,10]. IoT technology used in overhead transmis-

sion lines assists operators with line state monitoring and performance improvement

of power transmission lines in operation conditions simultaneously. Various opera-

tional states include but are not limited to different meteorological conditions,

ground wire vibration, components temperature, voltage sag, and power line wind-

age yaw [11,12].
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Integration of IoT and machine learning technologies will help the operators to

overcome real-time difficulties. Grid operators will be able to integrate the commu-

nication and electrical power systems infrastructure effectively to increase the

observability rate of the power system and improve the operational efficiency of

the electrical infrastructure. If IoT technology is used in protection services of smart

grids (SGs), such as real-time monitoring, maintenance, and fault location detection

in the generation, transmission, and distribution section, the performance of the grid

operators can be profoundly improved.

The rapid growth of electricity demand has become one of the complicated chal-

lenges in modern systems. To meet these changes in the state of the grid and to

reduce the grid expansion costs, various network designs such as intelligent multi-

carrier energy grids are introduced [13]. The distribution of renewable power gener-

ation units and other clean energy generation sources in these energy systems will

require the construction of additional transmission and distribution lines. Also, the

establishment of energy storage systems and their application in providing neces-

sary supply capacity, ancillary services [14], and optimizing renewable resource

allocation in nonlinear demand profiles of consumption categories [15] will create

multiple connection nodes in the power lines. Therefore it is predicted that future

power systems will experience far more challenges in the fault monitoring issue.

Figure 3.1 A schematic view of the integration of the electrical energy infrastructure with a

communication network.
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They will be forced to function at their operating limits instead of generating power

at total capacity. Dealing with increased usage of energy in times of failure is one

of the vital concerns which needs extra attention. In terms of transmission lines,

accurate fault positioning and classification are important since they transmit power

over long distances [16]. Thus this will lead to a better understanding of the issue

for the maintenance team. On the other hand, it will reduce the outage time. As a

result, with the assistance of wide area monitoring control and protection, it is pos-

sible to reduce repair expenses and financial losses [17]. Also, consumer satisfac-

tion could be heightened.

Distribution networks are one of the most essential segments of SGs. A wide

range of decisions in the distribution network is made without adequate information

technology and technical support. Safety technologies and management methods

should be taken into account to achieve the power system reliability and power

quality, as the complexity of distribution networks increases. Thus IoT can play a

pivotal role in obtaining this goal by providing online state monitoring and accurate

fault location after a system failure, thereby improving the efficiency and reliability

of distribution networks [18].

Power grids have been facing challenges due to inappropriate and unreliable

communication channels. Also, considering the high penetration rate of distributed

generations (DGs) in modern power systems, real-time monitoring of transmission

and distribution networks has encountered some disorders. IoT-based power system

monitoring schemes can be a good solution to address these issues. A few reasons

that motivate and encourage us to benefit from IoT in online monitoring and control

of both transmission and distribution networks are listed below:

� IoT increases the efficiency of electricity transmission and distribution in the speed, reli-

ability, and observability indexes.
� IoT avoids inaccurate operation of protective devices within DG-integrated grids.
� IoT reduces operational and maintenance costs of grid components.

In this chapter, studying the impact of IoT on online efficient monitoring of

transmission and distribution lines is the main goal. Moreover, how IoT can

improve the fault positioning of power networks, applications, challenges, and

future opportunities will also be discussed.

3.2 Structure of Internet of Things-based fault
monitoring cyber-physical system for clean
multi-energy mixes

One of the most common applications of IoT in SGs is the Power Internet of

Things (PIoT). Overhead transmission lines are vulnerable to different types of

faults, which can be occurred due to extreme weather status, technical failures, and

human errors similar to other sections of the grid. Some of these faults are illus-

trated in Fig. 3.2. Therefore it is essential to recognize the exact fault location.
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Moreover, online monitoring of the transmission lines gives the opportunity of

being aware of the system state at any moment. It is quite a challenging task for

grid operators to look for the fault location in the transmission line physically.

Furthermore, the whole network cannot be shut down to locate and clear the fault

due to the financial losses and consumer dissatisfaction.

Transmission lines are more likely to be exposed to failures such as thundering,

lightning phenomena, and short circuits. In IoT-based online monitoring of trans-

mission lines, the entire power network grid has been divided into subsections, each

of which will have small sections. There are some nodes between each substation

and small stations composed of current and voltage sensors. These nodes are placed

on every transmission line that supplies energy to industrial sectors or households.

Using communication devices such as Wi-Fi modules, optical fiber, and microcon-

troller units, a connection link is provided between the nodes and substations. There

should also be a cloud computing infrastructure to deliver and transport data and

various files across the IoT data centers [19]. The received data by the nodes,

including the state of power flow and the relays, can assist cloud computing to ana-

lyze and determine the section in a grid that needs to be isolated to prevent the

expansion of the failure impact radius. The data are stored in the cloud for further

analysis and real-time processes such as fault diagnosing throughout the line.

It is noteworthy that in the earlier versions of the IoT-based protection system,

an alarm signal is issued to the operators to take the necessary preventive actions

after analyzing the collected data. In that case, there is a strong possibility that the

power grid will face severe damage due to the processing delay. To address this

problem, the operating time should be reduced by adding a signal transmitter and a

signal receiver to the old sensors to perceive the content of sending and receiving a

detection signal before transmitting the data to the data center. As a result, opera-

tors locate the exact location of the short circuit based on the acquired data and

take promising steps at an earlier stage before causing irreparable damage.

Figure 3.2 Categories of possible security threats in modern power systems.

35Overview of Internet of Things-based fault positioning cyber-physical systems



Eventually, the power distribution system delivers the electricity from the trans-

mission network to the customers. Grid management becomes more challenging

day by day with the expansion of the grid. Also, the power distribution grid is

becoming progressively dynamic, increasing the complexity of the operation and

the volume of data that the operator needs to analyze and operate the grid based on

them. Fault location methods in distribution networks can be divided into the

impedance and traveling wave method based on the Feeder Terminal Unit method

and voltage sag information during the short circuit [20]. With the assistance of the

IoT in the distribution network, all the industrial and residential power customers

exchange data with each other, which paves the way for having a productive con-

nection between the grid and the consumers. As a result, the grid network no longer

uses one information source. Recently, the share of the inverter-interfaced distrib-

uted generators (IIDGs) such as photovoltaic or wind power stations has increased

remarkably in the energy mix of the modern power systems due to their environ-

mental and economic benefits. Therefore the role of the IIDGs on the distribution

network fault flow should be taken into a significant source of concern.

When a fault occurs in the distribution network while a DG unit has connected

to the grid, the short-circuit current tends to be a part of the fault current. Due to

the existence of the DGs, the power flow is bidirectional. In distribution networks,

distribution phasor measurement unit (D-PMU) is defined as one of the critical

PIoT devices [18]. D-PMU can measure the voltage and current signals of the dis-

tribution networks under both stable and abnormal conditions. The D-PMU and

GPS technologies measure the real-time three-phase fundamental voltage, current,

angle, and other essential data. These measurement data and samples should be

from a few cycles before and after the fault occurrence [21]. After the data sam-

pling process, data is sent to an intelligent control center which is one of the main

parts for dynamic monitoring, protection, and fault diagnosis. Amplitude and angle

of three-phase voltage and current of fundamental positive sequence network are

measured by D-PMU. This information is the main requirement for the fault loca-

tion process. As various nodes are configured with different sensors in different

places in the distribution network, D-PMU can be added to these nodes. In that

case, the voltage and current of the nodes will be known, and fault location can be

calculated using the obtained information [18].

Developed IoT-based power systems intend to utilize up-to-date technologies

and various types of communication means to improve the human-to-thing and

thing-to-thing real-time data exchange simultaneously. The objective of IoT-based

power systems is to have a real-time and high-speed energy transmission and

improve the intelligent functionality of power networks in case of any critical

decision-making. With the assistance of Information and Communications

Technology (ICT), a considerable amount of data is collected and analyzed. The

mentioned goals can be achieved far more swiftly than it was in the past. Also,

comparing the modern and traditional power systems clarifies that the development

of various technologies such as Artificial Intelligence, IoT and other advanced com-

munication means enhanced the linkage of all parts of the power system to have a

better state awareness of every asset in the system.
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The IoT-based power systems consist of three main segments, as shown in

Fig. 3.3: sensor or perception layer, network layer, and application layer:

3.2.1 Perception (sensor) layer

In the first layer two main objectives, which are sensing and collecting information,

should be achieved using a wide range of intelligent and micro-intelligent sensing

devices such as radio-frequency identification (RFID), cameras, Global Positioning

System, and machine-to-machine (M2M) communication devices. The first layer

itself is composed of two sublayers:

� perception control sublayer and
� communication extension sublayer.

The goal of the perception control sublayer is to monitor, control, and acquire

data by analyzing the installed IoT devices to realize the perception from the real

world. In contrast, the next sublayer can create a connection between IoT devices

and the network layer with the help of a communication module.

3.2.2 Network layer

The second layer of the three-layered IoT-based power system is mainly composed

of telecommunication networks and the internet. The collected data and information

in the perception layer are stored and transmitted in this layer. In the next step, col-

lected data and information are sent to the third layer, the application layer, with

the assistance of wireless networks, optical fiber, 5G, and other communication

methods. Due to communication between IoT devices, the network protocols play a

vital role in information transmission in this layer.

Figure 3.3 IoT-based power system structure layers. IoT, Internet of Things.
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3.2.3 Application layer

This layer is the last section of an IoT-based power system. This layer uses intelli-

gent analysis technology on all of the information and data collected in the network

layer to operate power systems more accurately, increase the efficiency of the

decision-making, create fault alarms, and monitor remotely. As a result, this layer

determines what data is required from which sensor at which time interval to opti-

mize an IoT-based power system operation [22].

3.3 Advantages and opportunities of Internet of Things-
based fault monitoring system

IoT brings essential benefits to the SG network. Previously, the use of IoT by

humankind in various fields was not prevalent. In recent decades, however, IoT tech-

nology has become one of the most vital and inseparable parts of every intelligent

network, such as SGs, building management systems, and smart cities. At the broad-

er level, real-time monitoring and control of power networks will lead to better fail-

ure diagnosis and be aware of the weaknesses of the system. According to the

McKinsey Global Institute, by 2050, the economic impact of IoT on energy and

power systems will be approximately 200�500 billion USD [23]. Considering the

remarkable penetration of distributed energy resources (DERs), IoT technologies will

make the operation, control, and protection of power systems easier. For example,

power transmission lines play a crucial role in transmitting the generated power to

the distribution network for industrial and residential use. In transmission lines, ana-

log collection of the data generated in remote areas has turned into a pretty challeng-

ing task. In contrast, IoT technology for data acquisition has made it easier to access

data without considering how far the operators are from the remote data center.

The SG is considered the next generation of power grid, which consists of bidi-

rectional electricity exchange. An intelligent power network is the integration of

cyber technologies and communication devices. By connecting DERs to the power

grid, the protection methods face a significant challenge. Therefore the possibility

of maloperation in the protective devices increases dramatically. For an SG, self-

healing is defined as one of the vital characteristics to reduce the downtime of the

grid. To achieve this reduced downtime, it is necessary to perform fault positioning

initially. Afterward, the self-healing specification can be implemented on the recog-

nized grid asset. With this capability, energy can be transmitted to industrial and

residential areas far more efficiently. Furthermore, small energy sectors and inde-

pendent power producers use IoT to control and monitor their consumption without

the help of centralized power systems. In other words, energy sectors have con-

cluded that individually managing the consumption and production will provide a

wide range of advantages such as more upgraded security and a better understand-

ing of the microgrids [17].

Since the IoT has got a wide range of applications, it has been widely welcomed

by various energy sectors to take advantage of that to control, monitor, gather data,
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and protect the power grid far more efficiently. IoT technology paves the way for

accelerated data analysis using various data collected from different terminals. This

technology will lead to fast response services for industrial sectors and end users. A

few numbers of advantages of using IoT in SGs are illustrated in Fig. 3.4 and

described in the following sections.

3.3.1 Location awareness

Communication and IoT devices are entirely aware of the situation and state of the

networks by collecting a tremendous amount of data. Therefore, in case of any fail-

ures and fault events, fast and accurate decision-making will be possible with the

assistance of the recorded data by the advanced metering infrastructure [24].

3.3.2 Low latency

IoT speeds up the data collecting process even from remote terminals by minimiz-

ing human interferences, as gathering the data from remote terminals is quite a

challenging task for operators. This is because the data is transmitted to a data cen-

ter through communication channels. Therefore the access time to the data reduces

significantly, assisting the operators in the decision-making process.

3.3.3 Machine-to-machine communication

Intelligent energy systems are implemented in a way that has a complete connection

to the IoT devices and exchanges the data between them through these links. In

IoT-based power networks, human interference has almost been eliminated. Thus

the connection is designed through M2M for monitoring the distribution networks

and transmission lines to acquire more efficiency [25].

Figure 3.4 Advantages of IoT-based power systems. IoT, Internet of Things.
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3.3.4 Self-healing networks

Self-healing power systems are kinds of grids, in which the network problems are

resolved without the need for humans to get involved. Network automatic diagnos-

tic and protection tools can detect and remediate outages, failures, and breaches.

Self-healing networks provide various benefits:

� cost savings
� real-time fixes without delay
� customer/user satisfaction

3.3.5 Burgeoning renewable energy units’ integration

The penetration rate of renewable energy systems (RESs) in the modern power

grids has increased since the initiation of climate change countermeasures and poli-

cies to decarbonize the electrical industry. However, the usage of IoT-based moni-

toring devices can be considered another motivation for investments in RESs [26].

This is due to the benefits of IoT systems in monitoring and protecting modern

power grids. IoT-based fault positioning systems can communicate wirelessly from

remote areas with other sensors and the control center. This option eases the con-

struction of geographically distributed renewable power stations. Also, the presence

of IoT-based sensors in the renewable-integrated power systems can provide access

to the accurate and real-time data from the grid status, thus enabling automation in

the operation of power systems [27]. Additionally, real-time data from the grid sta-

tus will increase the security of energy supply in the modern power systems, as

access to online data will help operators to reduce their decision-making latency or

prevent an energy supply-threatening incident to happen.

Moreover, the usage of IoT-based assets for the protection of power systems

reduces the overall costs of maintenance and operation in the grid. This issue is

important since the sparse positioning of RESs in modern power systems requires

extended line construction. Therefore an increase in the investment costs of the grid

expansion is inevitable. However, IoT-based monitoring devices will provide useful

data from the failures or help the operators to consider preventive actions in the

grid [28]. This issue will cause a considerable reduction in the overall maintenance

costs that will assist the power system with economic planning for increasing the

share of renewable energy in the clean multi-energy mixes. An overview of the

impacts of IoT-based monitoring infrastructure on the penetration rate of RESs is

presented in Fig. 3.5.

IoT provides limitless prospects for power grid networks which makes the grid

interconnected with its up/downstream network altogether [29]. To illustrate, the

data is shared by advanced metering devices to exchange information with other

nearby/remote metering devices. In this case, the operators will have a clear vision

of the system without interfering. For example, whenever the network faced a fail-

ure, there was no communication link between the error point and the utility pro-

vider before using intelligent monitoring devices. This means that it would take a

long time to figure out the accurate location of the fault. After the fault positioning
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was done, the operators could tend to fix the failure by separating the faulted seg-

ment of the line for a while, creating an isolated section in the power line. This

decision could lead to uncertainty and low reliability. By stark contrast, the gap

mentioned above can be shrunk in IoT-based power networks. For instance, before

a significant problem occurs, utility providers can be informed about the state of

the equipment earlier.

3.4 Challenges of Internet of Things-based fault
monitoring system

With the evolution of SG, some emerging technologies are being available commer-

cially to reduce the communication protocols’ complexity and quantity, while handling

big data in SGs. The IoT is one of the most recent technologies in this field for the

SG. Cyberattacks and big data are considered the most crucial challenges in IoT-based

SGs and will be discussed generally. Therefore, in case of failure for IoT devices, the

reliability of the IoT-based SGs should not be jeopardized. This could be achieved

using self-healing and self-organization ability which makes the system develop other

alternatives, thereby keeping the whole network under steady-state conditions.

The SG is the design scheme for modern power systems in which IoT-based

devices are implemented to ease access to the information of distributed grid assets.

Figure 3.5 Overview of the impacts of IoT-based monitoring infrastructure on the

penetration rate of RESs. IoT, Internet of Things; RESs, renewable energy systems.
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The bidirectional communication network is expanded through the generation,

transmission, distribution, and consumption section in SGs. This network expansion

eases the operation of SGs while increasing the accuracy of operational decisions.

For instance, consumers will be provided with advanced metering devices, power

generators will contain smart unit commitment signal devices, and electric transmis-

sion and distribution networks will be equipped with various sensors and actuators.

The main goal of SGs is to maintain a real-time balance between energy demand

and supply by allowing IoT-based devices to perform real-time monitoring, protec-

tion, and control over the power system.

The newborn technology called ICT has moved the conventional power system

toward a smarter grid. This technology has provided a power system with novel

security matters and challenges [30]. Without any doubt, cyber-security is one of

the most significant challenges which can be faced by IoT devices. While the use

of IoT can provide considerable benefits in the protection and technical security of

the SG, it could also lead to catastrophic failures.

Indeed, SG is more attractive for cyber-terrorists as critical infrastructure since

its monitoring, protection, and control could be done over standard IoT-based proto-

cols and approaches. Also, the interconnection with public communication infra-

structure may generate additional concerns. As a result, an attacker could cause

financial losses in the operation of the grid and reduce the resiliency of the grid

assets by manipulating the real-time data exchange, which is responsible for the

balance between energy demand and supply. This manipulation could be done on

the generated data, and signals of the IoT devices or control center. In other words,

security plays a vital role in developing reliable IoT-based SGs. Cyber threats can

jeopardize the secure operation of the system by disrupting the monitoring and con-

trol processes. In general, cyberattacks are divided into the following three catego-

ries [31].

3.4.1 Device attack

Device attack mainly concentrates on compromising and taking control of the IoT

devices. Attackers initiate the attack by jeopardizing the SG devices to control the

whole network. For instance, there is a possibility that a sensor has been modified

so that instead of transmitting real-time and accurate data, it sends manipulated and

misleading information. As SGs consist of a wide range of interconnected IoT

devices, in that case, if one device is affected, it will inject malware into the sys-

tem. In this case, all parts of the modern power system such as generation, transmis-

sion, distribution, and consumption will be infected. As a result, the whole network

becomes vulnerable and its reliability will decrease. To overcome this challenge,

the operation of all IoT devices should be improved.

3.4.2 Data attack

In terms of data attacks, the main goal is to manipulate, alter, change, and insert

data unauthorized or even delete the communication commands to misguide the
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intelligent IoT devices of the grid to make wrong decisions which leads to signifi-

cant problems in the network operation. In general, data attacks happen mainly due

to weakness in technology. As the number of communication devices increases and

they are getting even more connected than before, there are more places for data to

slip through. By using IoT devices and technology without considering the obliga-

tory secure communication protocols, convenience is increasingly valued over secu-

rity and safety in the operation of IoT-based power systems. Therefore the system

will always be vulnerable to security threats. For example, one of the main issues

in the monitoring of IoT-based power systems is receiving inaccurate generation

data from RESs. This inaccurate dataset can deceive the planning procedure in the

power system in a way that they cannot forecast the generation and consumption

rates of RESs. Therefore an imbalance between demand and supply can create a

contingency event in the operation of the power system, even causing blackouts.

3.4.3 Network attack

Most of the time, network attacks occur in the form of Denial-of-Service (DoS)

attacks. A DoS attack can cause outages in the network, barring the access to its

vital data for its intended users. DoS attacks accomplish this by flooding the target

with cloned and excessive data traffic using the communication channels, which

eventually trigger the malfunction in the grid operation. Though DoS attacks do not

typically result in the theft or loss of important information or other assets, they can

cause the network to lose considerable hardware resources, resulting in increased

time for decision-making. Thus it takes the power network operator a while until it

verifies the authenticity of the received data. Therefore, in case of any failure in the

system, IoT and communication devices will operate with considerable time delay.

Regarding a significant number of “things” such as sensors, RFID, cameras and

actuators have made a considerable change in the world. Their strong interactions

almost have eliminated the human interference to have an integrated cyber-physical

system [32]. On the other hand, each device would collect a wide range of data

called “big data.” This data includes end users’ load demand, power line faults, net-

work components status, scheduling energy consumption, forecast conditions,

advanced metering records, outage management records, and a few more [33]. Big

data refers to the data that is so large, fast, and complex that makes it considerably

time- and hardware-consuming to process using traditional methods. Accessing and

storing large amounts of information for analytics has been around for a long time.

It has become a challenging task for IoT-based power systems to acquire, store,

analyze, transmit, and secure the generated data [23]. Big data can hand out vital

data for the operation of modern power systems by proper analysis. Big data’s value

does not come from the collection of information. The real value comes from the

system’s ability to use that stored information to uncover new insights about the

state of the network. With big data analytics, it is possible to have an up-to-date,

intelligent, and improved power network in all segments (generation, transmission,

and distribution). If we want to have IoT-based SGs, various challenges exist

regarding big data, which should be considered a significant source of concern.
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These hurdles should be addressed because, in case of any failures in the system,

they could lead to unpleasant results, especially in transmission and distribution

lines, as they are the only way for transmitting energy to different segments. Some

of these challenges can be categorized as below [31]:

1. Redundancy reduction and data compression:

Technically, there exist a wide range of redundant data in the datasets collected from

various nearby/remote terminals. Eliminating the iterated data from datasets and reducing

their redundancy without threatening the valuable data for the operation of the grid is an

important task to do.

2. Data life-cycle management (DLM):

DLM is a policy-based approach that manages the flow of data in an information

system throughout its life cycle. This life cycle expands from the creation and ini-

tial storage to when it becomes obsolete and is deleted. One of the challenges is

that current data centers are not capable of storing a wide range of data. The more

up-to-date data a system can host, the more valuable information can be provided

to make an appropriate decision in case of failure.

As a result, the acquired data from IoT-based SGs need to be analyzed and pro-

cessed just like data that requires big data analysis methods [22]. Therefore various

collected raw data from different sensing devices should be stored and processed to

have real-time monitoring, protection, and control of the SGs.

3.5 Applicability of Internet of Things technology with
conventional methods

Technically speaking, the fault current is relatively high during the fault occurrence.

Thus the power flow is diverted to the fault, disrupting the power supply of the adja-

cent zone. In this case, voltage imbalance is inevitable in the power system.

Therefore it is critical to identify the problem as soon as possible to prevent irrevers-

ible problems in the grid. Many companies that generate and transfer electrical

energy via the power grid need to be able to detect different failures such as short

circuits on their transmission lines. It is now simple to detect such flaws due to

recent improvements in state estimation, fault detection, and positioning technolo-

gies. Identifying the relevant fault location was not always straightforward formerly.

It was frequently accomplished through the use of specialist organizations tasked

with examining transmission lines for faults in a time-consuming procedure [34].

Almost 8 out of 10 outages in the power distribution systems are caused by

faults, which result in a loss of system availability. This issue can be considerably

improved by speeding up system restoration and minimizing outage length. Also,

transmission lines are the most extensively used technical systems for transporting

large amounts of electricity between buses in the system [35]. In both of these net-

works, accurate detection of the failure’s location can prevent revenue losses,

improve the reliability of the system, and ease access to vital technical parameters
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that can be used in maintenance scheduling. As a result, numerous types of fault

location approaches are investigated, taking into account the intrinsic characteristics

of distribution and transmission lines which can be classified as follows. These

approaches are divided into two categories of model-based and data-driven methods

[36]:

1. Model-based methods:

The goal of the model-based techniques is to make sure that the assessed variables are

in accordance with the model. Adaptive-based, centralized-based, decentralized-based,

differential-based, external device�based, agent-based, local variable�based, traveling

wave�based, and transformation/sequence component�based methods are in this category.

Specifications, including their advantages and disadvantages, are available in Table 3.1.

2. Data-driven methods:

The basis of these methods is on examination, analysis, and discovery of data and

the relationship between various data flow directions of the power system. Usage of

decision trees, artificial neural networks, and fuzzy systems in analyzing incoming

data from the grid to locate the fault are among the possible data-driven approaches.

Specifications, including their advantages and disadvantages, are given in Table 3.1.

Table 3.1 Fault detection and positioning methods.

Method Explanation Disadvantages Resources

Model-based

Adaptive-based Examine the updated

mode of operation at

the relay location

whenever the

configuration

changes. The

adaptive protection

scheme is applicable

for all types of faults

in the microgrid

system

� Regular

readjustment

requirements
� Calculation

complication with

the change in the

grid topology

[37�40]

Centralized/

decentralized-

based

Involves the

introduction of

Merging Units

(MUs) as a

synchronized data

collector for

capturing precise

measurements of the

instrument.

� The centralized

method has higher

reliability but

longer

communication

delay
� The decentralized

method has lower

reliability but faster

information

relaying ability

[41,42]

(Continued)
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Table 3.1 (Continued)

Method Explanation Disadvantages Resources

Differential-based The differential current

exists only in the

case of faults inside

the zone

� Lack of backup

protection scheme

in the case of

communication loss

[43�46]

External

device�based

An external device is

utilized to determine

the fault condition of

the segmented bus

� Higher capital costs [47�50]

Agent-based A computerized system

is built of numerous

interacting intelligent

agents for the

protection scheme

� Uncertainty in

interagent

communications

[51,52]

Local

variable�based

Indicating the fault

location using the

local impedance

measurements

� Strong dependency

on the grid topology
� Higher time delay

reduces the

performance quality

[53�55]

Traveling

wave�based

The internal fault can

be identified when

the voltage and

current traveling

waves have opposing

polarity on both sides

� Detection is based

on high-frequency

failures
� Vulnerable in front

of communication

losses

[56,57]

Transformation/

sequence

component�based

The fault location is

detected using a

protection approach

based on positive

sequence impedance,

and the three-phase

data retrieved from

the PMU is then

translated into

sequence components

� Requiring fixation

of the performance

threshold value on

the transformation

to prevent

malfunction in grid

[58,59]

Data-driven

Decision tree Defining a decision tree

for the protection

scheme using the

acquired data from

the model-based

methods

� Need for big data
� The complication in

decision branch

definition
� Higher decision

uncertainties in

interfered grids

[60�62]

(Continued)
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IoT-based communication technology can be of great assistance for the above-

mentioned methods. Covering disadvantages by providing services and positive

effects on the grid such as higher reliability, faster communication, reduced capital

costs, real-time data presentation, edge computing, and higher observability rates

makes IoT technology an attractive option to be implemented in any protection

scheme using the methods in Table 3.1.

3.6 The future development path for Internet of Things-
based fault detection systems for clean multi-energy
mixes

As mentioned in previous sections, IoT-based SG systems are used in power net-

works in different sections such as monitoring, controlling, and protecting transmis-

sion and distribution lines to make them far more intelligent. Therefore providing

reliability and availability for communication technologies is of great importance.

To make the right decision, communication devices should operate efficiently.

Furthermore, self-healing and self-organization are the two vital abilities of IoT-

based SGs, which assist the system operation in getting out of abnormal conditions

and remaining under stable status [22]. In other words, whenever one of the intelli-

gent IoT devices fails to operate, with the assistance of these capabilities, a new

alternative solution must be implemented to prevent the compromising of the sys-

tem’s reliability. To achieve this, various disorders and challenges that IoT-based

SGs are facing currently should be addressed in the future.

Table 3.1 (Continued)

Method Explanation Disadvantages Resources

ANN Forming one or

multiple ANNs for

the protection

scheme to train using

acquired data from

the model-based

methods and locate

the failure

� Time-consuming

training process
� Overfitting and

inability in

detecting possible

relationships within

data

[63,64]

Fuzzy Construct a fuzzy-based

decision-making

system by defining

the membership

functions using

obtained fault data

� Membership

function definition

complexity
� Requiring testing to

ensure sufficient

reliability

[65�67]
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Batteries are the main power supply of most IoT and communication devices.

The online monitoring, control, and protection of power lines in fault positioning

applications include various sensors, which operate on batteries in many IoT-based

SG systems. It is worth mentioning that batteries can be utilized on longer time

scales. Also, their life cycle and deterioration rates can be calculated through multi-

ple methods [68]. To provide power for IoT devices, there is a need to use energy

storage resources since their power demand will become one of the main challenges

in the short-term future [22]. Developing the electrical energy storage technology to

meet sensors’ energy demand would result in a breakthrough in electricity transmis-

sion and distribution protection, especially in the fault diagnosis of these networks.

To achieve this goal, electricity storage devices can manage the amount of power

required to supply IoT-based communication devices when needed.

In addition to that, researchers are currently working on one of the critical tasks

related to data transmission approaches. To simplify, a significant amount of raw

data is transferred between the sensor and the data center. To move this amount of

data with higher speed and accuracy, there should be a new generation of communi-

cation infrastructures such as 5G and 6G networks between sensors and the data

center. Moreover, as IoT-based SGs transfer data based on various wireless nodes,

having a proper communication medium in which data can be transferred with high

speed is of great significance [29]. For instance, accurate fault data should be trans-

mitted to the data center as quickly as possible to reduce the latency in the

decision-making process in transmission and distribution networks. For this pur-

pose, a fast and reliable communication channel should exist to avoid the conse-

quences of delayed performance.

Other future research and open issues can also be considered as a significant

source of concern, one of which is that gateway of the communication devices is

limited due to functions, considering that only the most necessary data must be

selected to be sent and analyzed. Every IoT device has the capability of recording a

limited amount of data. It means these devices transmit prespecified data to the

data centers. Therefore there should be data fusion technology to integrate the col-

lected raw data by each IoT device. Data fusion means getting data from multiple

sources to build more sophisticated models and understand more about the current

status of the system. For example, when a fault occurs in transmission or distribu-

tion networks, the related data of the failure in the network is not transmitted by a

single sensor. Various IoT devices which are distributed in these networks can relay

the necessary data about the fault location and its impact on the power system vari-

ables such as current and voltage angles. Combining these data will lead to an

understandable state report for the operators. In the short-term future, data fusion

technology will gain much popularity among researchers to investigate the possible

ways to distinguish between necessary and unnecessary data. This will assist power

system operation with high-speed operation capability in case of failures in both

transmission and distribution networks to provide a secure IoT-based power system.

The IoT has grown so broad that the efforts on the development of its security

have to be boosted. While IoT devices play a huge role in the discussion of IoT

security, placing all the focus on this aspect does not provide a complete picture of
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why protection is necessary and what it entails. However, security is one of the

major fields in this regard which requires a deep consideration for researchers in

large-scale adoptions [30]. For example, an IoT device can be manipulated so that

instead of transferring actual data, erroneous data is sent, and the whole decision-

making process is compromised.

3.7 Summary

In this chapter, an overview of IoT technology application in the protection of

power networks is discussed. Also, the structure of IoT-based monitoring devices

and how they can be implemented in the network are reviewed. The fault location

process in transmission and distribution networks was the main focus of this chap-

ter. Transmission and distribution lines are defined as one of the most critical seg-

ments of SGs due to their crucial role in transmitting energy. Applying IoT

technology makes power systems far more intelligent, and it provides a wide range

of opportunities such as M2M communication and self-healing capabilities.

However, meanwhile, there exist various challenges and disorders in this regard.

One of the main concerns is that IoT-based power systems will be vulnerable in

front of different cyberattacks, which can destabilize the whole network. In addition

to that, big data is the other challenge that needs to be considered by the researchers

as it is getting more and more complex to deal with its presence in modern power

systems. As a result, IoT-based power networks require a high-speed communica-

tion channel to transfer data, such as 5G and 6G to have reliable protective counter-

measures in the SGs. The most remarkable achievements of this chapter are listed

below:

� Fault location can be identified far faster and easier with the assistance of various IoT-

based devices when compared to traditional fault positioning methods.
� The need for human resources will be minimum as the grid will have the capability to

automatically detect the failures and take the proper action.
� Because collecting data from remote terminals is quite difficult, IoT-based power system

monitoring schemes make the whole network to be observable by connecting the IoT

devices to access data in any given instant.
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4.1 Introduction

The Internet of Things (IoT) is a new and exciting technology that has the potential

to alter the global by connecting physical things. With the launch of the first appli-

cation for automated inventory systems in 1983 [1], the concept of IoT as a collec-

tion of heterogeneous smart devices became real. However, it took off as a

promising technology for the internet’s future vision in 1999 [2]. Today, the rising

scarcity of tiny and affordable computer devices with detection and communication

capabilities is paving the road for IoT perception everywhere. IoT provides an inter-

connected connection to everyday objects. All physical items on the Earth (such as

appliances, products, buildings, cars, and plants) are referred to as “Things” in the

“Internet of Things”. It was predicted that by 2020, IoT would be associated with

roughly 50 billion smart devices, which will be more than six times the world’s

expected population, making it one of the fastest growing technologies in all com-

puting. Though IoT consequences are prevalent, the smart link is with present net-

works, with information sensing by computers conducted without the help of

human participation. IoT implementations are being expanded into various
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applications such as households, industries, energy systems, logistics, cities, agricul-

ture, and health care [3].

Electricity is a requirement that significantly influences our contemporary civili-

zation and the worldwide community. However, the majority of power system

architecture was created more than 50 years ago, has grown complicated, and can-

not meet the needs of today’s contemporary civilization [4]. The incorporation of

IoT technology into power systems can successfully integrate and increase the

information level, power infrastructure usage, and device interaction facilities as

well as promote advanced information and communication system services within

the power grid system. In addition, since there is such a wide variety of devices,

energy forms with their intrinsic behavior, the variation of specific parameters in

the energy field, and the unpredictability of certain phenomena, large volumes of

data must be sent and analyzed in near real time, and choices must be taken with

little delay. The data should be transferred to the correct destinations quickly and

securely, and the needed actions should be carried out automatically. Consequently,

the solution is to outfit individual components with technologies geared toward IoT

so that they may utilize networks of information technology. Electric boards are

included in IoT-based products that include microprocessors and can transfer infor-

mation, such as sensors, meters, or controllers [5]. These boards are also known as

“Internet of Things” boards. In addition, the veracity and accuracy of the informa-

tion must be ensured, both of which might be jeopardized by intentional or uninten-

tional cyberattacks or interruptions [6].

So, based on the importance of IoT in power system, different researchers have

paid special attention to this concept in recent years. For instance, in Ref. [7], a

review about IoT applications in smart grid (SG) was proposed. In Ref. [8], low-

cost smart meters for the applications of IoT in SGs were discussed. In Ref. [9],

improving the security of SGs using capability of IoT was presented. In Ref. [10], a

review about using IoT in demand response of SGs was presented. So, these papers

and many similar ones show the importance of using IoT in SGs. Therefore, in this

chapter, some applications of IoT in SGs will be introduced.

4.2 Internet of Things in smart grid

The IoT helps to solve some of the problems hindering the development of SG.

These problems include the tracking and connectivity of a large number of SG

devices as well as the collaboration that is required between these devices via ubiq-

uitous, distributed, and autonomous communications. As a result, IoT technologies

would be capable of creating, facilitating, and accelerating the overall developments

in the SG by providing support for various network operations inside the grid.

Utilizing the IoT technologies in the power industry typically consists of three fun-

damental steps, the first of which is digitizing the assets, the second of which is col-

lecting the asset data, and the third of which is developing computational

algorithms in the control systems. In this context, communications infrastructures
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must have a guaranteed Quality of Service and comply with industrial standards

and particular security needs in the SG. Fig. 4.1 illustrates an element of the IoT

that will be discussed in more depth in the following sections.

4.3 Internet of Things in generation level

Historically, the generation resource management was managed via local regulating

devices. Since the system operator has limited controllability of remote control,

many activities have to be carried out by sending orders or instructions to be done

by a local operator. This is necessary because of the nature of the system. In addi-

tion, the management of generating assets in power systems is becoming more com-

plicated than it has ever been for various reasons. Besides, there is an increase in

the penetration of renewable energy resources, which significantly contributes to

the unpredictability of power networks. Electric cars will become more prevalent

shortly, affecting the power grid generation schedule. Third, the engagement of

loads as demand response resources is growing, closely related to the volatile

hourly power prices. The price of electricity is also tied to numerous other factors,

including the structure of the power market and the price of immediate fuel.

Furthermore, demand-side medium-scale or small-scale distributed generation

(DG), also known as virtual power plant, or microsources will be widely used soon.

The operator should cope with such a high level of unpredictability in the network,

in addition to current grid limits, which might result in load shedding in different

situations. To avoid such actions and maintain security, stability, dependability, and

environmental sustainability of the power system, IoT technology may help with

issue solving and problem-solving. In IoT-enabled SGs, all fluctuations and

Figure 4.1 Different aspects of IoT in smart grid. IoT, Internet of Things.
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generations on both the demand and supply sides can be automatically and precisely

monitored, allowing the operator to have more sophisticated grid supervision. The

combination of a few energy resources such as nuclear, oil, coal, and hydro as well

as renewable energy sources such as geothermal, solar, wind, and marine-based

energies is the focus of IoT technologies at the generation level, in order to improve

the performance of the generation sector and maintain the dynamic and static secu-

rity of the power system. Furthermore, energy storage utilities may be used to cor-

rect imbalances created by various sources of uncertainty that IoT networks might

alter. Notion of IoT has been mostly centered on the demand side, with little

emphasis on the supply side. Because of a greater degree of controllability and

observability, deployment of IoT at this level may lead to better efficiency and per-

formance, bringing enormous advantages to power systems. A comprehensive sche-

matic of using IoT in generation level is presented in Fig. 4.2.

4.3.1 Internet of Things and wind energy

Wind energy has seen rapid growth in terms of installed capacity worldwide. By

2014 worldwide wind energy output had surpassed 369 GW, with more than

51 GW of new capacity 2014, reflecting a 16% growth rate. China had the most

Figure 4.2 Implementation of IoT for generation level [6]. IoT, Internet of Things.
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installed capacity in 2014, with 23.4 GW, Germany had 5.3 GW, the United States

had 4.9 GW, Brazil had 2.5 GW, and India had 2.3 GW. Denmark has set a new

global record with 39% of total energy output from wind power. Other nations with

a high wind percentage of energy generation include Spain (21%), Portugal (20%),

Ireland (16%), and Germany (9%) [11]. Wind energy deployment objectives for the

future are lofty. Wind energy’s global expansion necessitates technology break-

throughs such as floating, offshore, large-scale, and flying wind turbines. The

deployment of these systems underscores the need for more strict and comprehen-

sive procedures for designing, installing, operating, and maintaining safe, secure,

and cost-effective frameworks. Wind energy has significant hurdles due to the sto-

chastic nature of the wind power generation, including fluctuations and unwanted

dynamic changes in captured power. Furthermore, a wind turbine amid strong tur-

bulence may suffer detrimental consequences such as fatigue and excessive stress.

As a result, wind turbine control systems are mainly concerned with capturing

energy at the lowest possible cost, that is, to allow efficient energy production with

specific power characteristics while reducing loads to extend the turbine’s life span

and decrease maintenance costs. These goals need complicated and efficient man-

agement systems [12].

The energy businesses are confronting various issues due to rising energy con-

sumption and a limited supply of fossil fuels. These issues need the development of

novel technologies for effective and dispersed energy generation, management, and

consumption. For instance, in intelligent coal mines and oil fields, ubiquitous sen-

sors with pervasive and real-time computing are used. In terms of wind energy,

modern wind energy conversion system (WECS) designs are shifting from central-

ized and traditional structures to decentralized, distributed, and more complicated

systems to meet varying energy production needs, consumer demands, and environ-

mental fluctuations. Utility-scale wind turbines are becoming more extensive, while

wind farms span wider regions and increase attention in distant and offshore places.

Furthermore, wind energy produces varying amounts of electricity, necessitating

modern power electronics and energy storage devices [13]. As a result of the rising

complexity of WECS and the management of interactions and coordination between

components, more comprehensive and systematic techniques are required.

Furthermore, a wind turbine amid strong turbulence may suffer detrimental conse-

quences such as fatigue and excessive stress. As a result, wind turbine control sys-

tems are mainly concerned with capturing energy at the lowest possible cost. That

is, to allow efficient energy production with specific power characteristics while

reducing loads to extend the turbine’s lifespan and decrease maintenance costs.

These goals need complicated and efficient management systems [14].

A wind turbine is made up of several major components, including the yaw sys-

tem, tower and foundation structure, blades, rotor hub, pitch system, drive shaft,

high-speed shaft, brake system, gearbox, generator, power converter, wind sensor,

nacelle, transformer, and central controller. The controller layer is densely packed

with sensors and actuators. The sensors may report each intrinsic component’s

health and performance. The control system is responsible for regulating and

manipulating the components. It does this by using a set of actuators. The five
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layers of sensors are temperature (bearings, oils, windings, and electronic compo-

nents); environmental (humidity, wind speed, ice, and illumination); mechanical

(speeds, positions, stresses, angles, and strain); electrical (current, voltages, frequen-

cies, power factors, and faults); and fluid sensors. The environmental sensors mea-

sure things such as ice and wind speed (pressure, levels, flow). The controller is

responsible for providing electric, hydraulic, and mechanical commands and

instructions and receiving sensor data via power amplifiers [13].

Consequently, cyber-physical devices are needed to link the physical layer of

wind turbines to the cyber layer by means of network architecture. The cyber layer

comprises the network, the system of condition monitoring, and the supervisory

control and data acquisition (SCADA) system. A network is a dependable connec-

tion that enables the transmission of control signals and data between a controller.

Additionally, a network provides for the connectivity of intelligent equipment and

devices that are deeply buried inside a wind farm. The network’s primary purpose

is to simplify the transfer of control signals and data in real time between the con-

troller, supervisory center, sensors, actuators, and data storage stations. In particu-

lar, the local circumstances significantly impact the architecture of the

communication network used in offshore wind farms. Installing what is known as a

remote terminal unit, or RTU, on each wind turbine is necessary to establish a con-

nection to a local area network (LAN). A LAN is linked to a condition-monitoring

system (CMS) at both the wind farm and turbine levels. This is done to allow con-

trol of wind turbines and simplify earlier fault detection to stop cascading failures

of wind turbines in a wind farm caused by voltage dips. In addition, an SCADA

system is also linked to all of these monitoring systems.

As a consequence, CMS can maintain its stability by using one of three different

methods: under-voltage ride through, fault ride through, and low-voltage ride

through. These systems function in conjunction with a centralized data center to

spread the data via a wide area network hosted in the cloud. All wind farm turbines

are integrated with distributed intelligence devices and embedded systems based on

the IoT and use wireless sensor networks. Furthermore, these turbines are equipped

with machine-to-machine (M2M) communication with a cloud-based network that

sends data to servers through internet-enabled and open communication protocols.

Last but not least, these turbines can be operated and monitored through unified

computer-aided interfaces or mobile human�machine interfaces (HMIs). It is

hypothesized that the IoT-based controlling system will have a heftier price tag

than the standard SCADA systems in use today; nevertheless, it will have a greater

capacity for diagnosis due to a higher information frequency and a higher sample

rate. IEC 61400-25 is a standard developed to execute unified monitoring and infor-

mation sharing. Within this standard, the autonomy, diagnostics, extensibility, and

standardization of the data exchange gateway are enhanced [15].

4.3.2 Internet of Things and solar energy

One of the most important forms of renewable energy now available is solar photo-

voltaic, or PV, energy. Solar power is emerging as a viable option for meeting the
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need for sustainable energy sources in the years to come. There is a growing

demand for monitoring of real-time generation data obtained from solar PV plants

to optimize the overall performance of the solar power plant and maintain the grid’s

stability as more and more rooftop solar PV systems are getting integrated into the

existing grid. This is necessary in order to keep the grid stable. Because the installa-

tion cannot carry out local monitoring, monitoring from a distant location is an

absolute need for any solar power plant [16].

Solar panels, sometimes known as PV arrays, wiring, switches, mounting system,

and inventors, are the primary components of a PV system. A battery storage unit is

an option that may be paired with these accessories (battery bank). New technolo-

gies, such as global positioning system (GPS) solar trackers, maximum power point

tracker (MPPT) controlling schemes, solar radiation sensors, and anemometers, are

incorporated into today’s PV systems to facilitate the more effective collection of

solar power. Concentrator photovoltaics (CPV) are solar panels that, in contrast to

traditional PV systems, are outfitted with optical lenses and curved mirrors. These

components work together to assist in concentrating sunlight onto a multijunction

solar cell that is very small but very efficient. In addition, a cooling system is often

included in CPVs to increase their overall efficiency. Both PV and solar power

work best in areas with high average irradiation. Due it has considerably smaller

capital cost per kW, traditional PV systems may also be employed for DG, such as

building-integrated solar output or rooftop-mounted. This is possible because of the

systems’ flexibility. Currently, many PV systems are grid-connected rather than

self-contained. The generation power of PV systems primarily depends on the sur-

rounding environment’s temperature and the amount of sunshine radiation. It is

important to remember that the performance of the PV system may be significantly

worsened by shade and dirt, which can lead to a significant decrease in output

power. In addition, if the temperature rises, the PV system’s efficiency will

decrease, which is a significant drawback. The Maximum Power Point Tracking

(MPPT) technology will tilt the panel to either face the sun head-on or the brightest

portion of the sky when it is partially cloudy. It is essential to have a storage facility

because solar electricity has to be stored at all times when it is available, and the

storage facility has to be able to supply the energy that has been saved when it is

required [17].

Changes in sun irradiation, temperature, and other conditions may impact the

amount of electricity solar PV plants generate. Therefore remote monitoring is

essential. IoT is an approach that is being taken to develop a remote monitoring

system for solar PV power plants. This approach envisions a near future where

commonplace objects will be equipped with microcontrollers and transceivers for

digital communication. IoT-based systems take a giant leap toward monitoring by

intelligent decision-making from the web, which is made possible by the elimina-

tion of risks associated with traditional wiring systems, which are eliminated by the

use of remote monitoring, which also makes the process of data measurement and

monitoring much simpler and more cost-effective. The remote monitoring system’s

decentralized design and deployment flexibility make it ideal for use in industrial

settings [18].
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4.3.3 Internet of Things and thermal generation

Thermal power plants are essential to the world’s current power generation infra-

structure. The functioning of the grid is made more reliable and resilient because of

the presence of these kinds of devices. However, to reduce their environmental

impact, conventional thermal power plants are being phased out in favor of renew-

able resources in future power systems. They are also characterized by poor levels

of efficiency and adaptability in their operations. Currently, gas-fired generators are

included in the category of costly generating units. Because of these factors, there

will likely be the least amount of deployment of IoT technology in this area of the

electrical grid compared to other aspects. However, IoT function’s importance

might come from two different aspects. At first, the state of the transformers and

tap changers, the status of the generators, and the power through each branch need

to be precisely presented to the system’s control center. Therefore the architecture

of the IoT might make retrieving data in real time more straightforward. In addi-

tion, traditional steam power plants have a diverse assortment of parts and features

in their construction. To schedule preventive maintenance and overhauls, which

reduce the risk of unplanned outages, the engineers at the power plant must ensure

that the current state of health is automatically recorded and monitored by using

advanced sensors based on the IoT [6].

4.4 Internet of Things in transmission level

The transmission level sits between the generating and distribution levels, acting as

a link between the two. This level is an essential component of the power systems

that must be present to guarantee a steady supply of demand. Integration of IoT

technologies at the transmission level is significant for two reasons. The first is the

influence that IoT will have on the continued upkeep of system security, and the

second will be the consequence that IoT will have on the development of conges-

tion management. Intelligent electronic devices that are equipped with the IoT tech-

nology may be deployed in the transmission sector to provide information to the

operator about the electrical status of the lines, such as losses and disruptions.

Phasor measurement units, also known as PMUs, use the GPS to keep their time

synchronized, enabling them to calculate the magnitude and angle of the voltage

and current at a particular point along the line. Additionally, this apparatus can dif-

ferentiate the frequency. A commercial version of the PMU can provide readings

with a high temporal resolution at around 30�60 measurements per second.

Because of this issue, power system engineers are given the ability to do dynamic

event analysis inside the power system. A measurement that is both so quick and

exact would be impossible to take with typical SCADA systems, which only com-

municate their results once every 2 or 4 seconds. In conjunction with the protective

relays, the protective monitoring units (PMU) may be used to implement the wide-

area protection systems. The development of microsynchronous PMUs that use a

non-GPS reference time calibration has made it possible to report 120 samples per
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second, which assists in preventing catastrophic blackouts. PMUs can offer data

with a high degree of accuracy to display both the active and reactive power travel-

ing through the line. This increases the visibility of the system. Because of this

issue, preventive and astute control activities and techniques have been developed.

The operator can automatically control congestion in crowded power networks or

locally congested regions thanks to the monitoring of real-time power through the

lines. This is especially helpful in the event of crises and other unanticipated cir-

cumstances. As a consequence, the operator’s degree of mobility may be boosted.

In addition, overhead cables are susceptible to damage from natural catastrophes.

Strong winds and extreme snowy conditions may produce galloping and freezing of

power lines, all of which can result in an uneven pulling force to the wires, which

can cause towers to lean over. Damage to the overhead wires is incurred due to

these variables, increasing operational risk. In addition, the transmission system is

dispersed over a large region of land, making it difficult to maintain and monitor in

certain areas due to its isolation. The use of IoT can potentially reduce the amount

of harm caused by such natural occurrences. It is necessary to collect the relevant

data using sophisticated sensing devices mounted atop the conductor or towers of

the transmission line. The data must first be sent to the device that serves as the

sync node, and then it must be transmitted to the central command and control cen-

ter via either an optical fiber network or wireless communication channels.

4.5 Internet of Things in distribution level

When energy storage equipment, electric vehicles, large-scale DG, electric vehicles,

and flexible loads gain high-density access to the distribution network, the distribu-

tion network shifts from the passive network used in the past to the active network

with power flowing in both directions. The introduction of multiple dynamic, active

components at the distribution level, such as energy storage equipment, distributed

energy resources (DERs), electric vehicles, and flexible loads, lead to new chal-

lenges to the system stability, particularly regarding power quality, voltage regula-

tion, and the dependability of the grid. Therefore the active distribution network

(ADN) technology offers viable solutions to the abovementioned issues. With the

help of this technology, the conventional passive mode of operation of the distribu-

tion network may be replaced with the active management and control that is per-

formed by the current state of operation of the grid [19].

In light of what was just discussed, it is essential to look at practical ways to

enhance one’s knowledge of the current operational condition of the distribution

network. To provide active control and management of distribution networks, the

construction of distributed monitoring systems can provide vast amounts of real-

time information. This information can include the current operating state of DERs,

energy storage equipment, and flexible loads, amongst other things. This sort of

observability in space may be realized with the help of a distributed monitoring sys-

tem based on the IoT technology. In addition, because of the unpredictability and
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volatility risk involved in the functioning of distribution networks, it is essential to

improve the observability of situation awareness on a temporal scale. It is possible

to use situation awareness technology to accomplish the change from passive treat-

ment to active prevention as well as to master the operating situation of a distribu-

tion network in real time and analyze the trend of the future scenario. As a result,

developing a distributed monitoring system for ADN and investigating situation

awareness technologies are necessary steps toward achieving space-time panoramic

situation awareness and early warning.

4.5.1 Internet of Things in microgrids

The management of energy in a microgrid has to be carried out in a manner that is

separate from the main network. On microsources, the main network has no control

and can make no observations. The operator of the microgrid is the one who is

responsible for making projections about unreliable microsources. The internal stor-

age unit is responsible for restoring equilibrium after the imbalances it has caused.

However, because such systems have restricted abilities in terms of resiliency, the

operator of microgrid is required to implement unplanned and undesirable load

shedding. The introduction of IoT into interconnected microgrids enhances the con-

trollability and observability of the operator of main grid on microgrid components.

It enables the operator to consider the characteristics of all microsources to generate

the whole system. Because of this issue, there will be an increase in the penetration

of renewable energy resources and an improvement in the functioning of the power

system. Also, the operator of microgrid can improve the cooperation between

renewable energy sources and storage facilities, which may raise the microgrid’s

profitability in the real-time pricing of the power market. Also, real-time monitor-

ing is beneficial to the regulating schemes since it helps to get higher quality elec-

tricity. In addition, if two or more microgrids are linked, their scales’

incompatibility might affect the system’s joint stability. As a result, the safety of

the others may be jeopardized by even a somewhat severe imbalance in any one of

them. In this context, the incorporation of real-time frequency and voltage stability

regulating systems is necessary to satisfy the demand continuously. Because of this

topic, it is necessary to use an environment based on the internet and IoT infrastruc-

ture. The data must be obtained from all of the sensors for the controlling devices

to be informed of the real-time condition of the essential parameters. The data must

be processed by utilizing cloud computing, and the appropriate action has to be

chosen by following the prespecified instructions [20].

4.5.2 Internet of Things in smart cities and homes

In the past, the demand pattern was considered a random process guided by statisti-

cal laws. Today, however, this view has changed. As a result, the professionals

working in the power business and the planners must utilize complex procedures to

adjust the generation to the demand in real time. As a result of this lack of demand

management, excessive expenses were paid since the grid size was intended for
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peak transmission. Due to the nature of this situation, it is necessary to create a sig-

nificant amount of generating capacity that will only be used for a few hours each

year. As a result, the concept of encouraging higher levels of demand in exchange

for lower levels of consumption via incentives or penalties was established. This

notion eventually developed into what we now know as demand response due to its

success. Customers were encouraged to sign voluntary or mandatorily contracts that

were understood to represent a particular form of demand response program (DRP).

DRPs may be broken down into two categories: incentive-based programs and

time-based rate programs (TBR). The term “time-based rate” refers to the pricing

strategy for energy that encourages a response from the user owing to the immedi-

ate price. Real-time pricing, also known as RTP, time-of-use pricing, often known

as TOU pricing, and critical peak pricing comprise TBR. These systems incentivize

consumers to demonstrate a sensitive reaction associated with the price of electric-

ity at the moment [21].

When seen from the point of view of the operator, demand response resources,

which are also referred to as DRRs, are conceptualized in the same manner as a vir-

tual demand-side power plant. In today’s world, operators frequently allow DRRs

that are more reliable as an alternative to calling in an expensive unit during peak

hours. This is because calling in a unit can be expensive. After the establishment of

power markets and the beginning of the process of reorganizing power systems, the

concept of demand response arose as a potential solution to the problem. The

restructuring and deregulatory policies put into place brought about a change in

how electrical networks operate.

Nevertheless, the incorporation of advanced metering infrastructures that are fit-

ted with IoT connection technologies has the potential to be a big step forward

toward another shift. At this present moment, people all around the world are seeing

a shift toward a more significant digital presence in their day-to-day lives. Some

DRPs may be carried out on an impromptu basis by end users, in addition to the

automated demand response for home appliances or gadgets discussed before.

Therefore, by incorporating an IoT-based communication infrastructure, end users

can have a more convenient level of control over a wide variety of devices and

pieces of equipment by employing computer-based interfaces or HMIs such as

mobiles and tablets. This is possible because of the benefits discussed previously. A

comprehensive schematic of using IoT in smart homes is presented in Fig. 4.3.

4.6 Internet of Things in transportation networks

As the IoT continues to develop, more and more apps that aim to improve people’s

lives are being created. Cities are becoming “smarter,” and apps designed specifi-

cally for smart cities are being created to use the most recent technological

advances. The development of intelligent transportation systems is made possible

by the IoT arrival in the realm of transportation, which enables transportation sys-

tems to “feel” and “think” for the first time [22]. Because there are plenty of
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chances for additional improvements, intelligent transportation has garnered the

attention of many researchers. Navigation and optimizing travel routes are two criti-

cal topics of interest in smart transportation. Applications try to estimate traffic con-

gestion using data from users’ mobile devices [23] or side units placed in specific

locations on the road [24]. These applications also propose optimal route options to

minimize travel times, reducing the amount of energy consumed by cars and the

emissions they produce.

In addition, to promote the decrease in energy usage, it is recommended to

install street lights capable of detecting the current traffic circumstances and operat-

ing appropriately, as opposed to always being on according to a predetermined

timetable. The IoT has also been widely used to create intelligent parking systems.

Researchers have proposed new parking reservation systems using cameras [25] or

other wireless sensors such as a magnetic field or infrared [26]. These systems

allow for the availability and capacity of a parking lot to be maximized while

simultaneously reducing the amount of time spent searching. In addition, there have

been suggestions made for systems that may assist with detecting irregularities in

the road surface by using input data from sensors mounted to vehicles or carried by

the driver on their phone. Accidents may be averted if poor road conditions can be

identified and reported in time. There have also been attempts to use IoT devices to

Figure 4.3 Implementation of IoT for a smart home [6]. IoT, Internet of Things.
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identify or avoid vehicular accidents. Last but not least, the IoT M2M communica-

tion option has made it possible to develop vehicle-to-vehicle communication and

vehicle social networks. In these networks, individual vehicles can communicate

with one another to share relevant information and open up a wide variety of new

application possibilities [27].

4.7 Summary

This chapter studied the use of the IoT in different aspects of SGs. The findings of

the research were separated into four main areas. The first part of this chapter

described the implications of the IoT on the generation level, in which the necessity

of innovation corresponding with solar and wind resources and thermal plant facili-

ties has been explained. The next part represents the transmission layer. The IoT in

this layer enhances the observability of lines, ultimately leading to improved moni-

toring of the transmission grid. Therefore the operation will be more secure, and

better emergency congestion management will be possible with integrated control-

lers with autonomous IoT technology. The following part was about distribution

network, in which an investigation was conducted into the function that the IoT

plays in distribution networks, microgrids, smart cities, smart buildings, and smart

homes. Finally, the last part presented the implementation of IoT in transportation

networks.
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5.1 Introduction

Throughout time, state-of-the-art technologies are changing the industrial and

energy environments. Specifically, in artificial intelligence (AI)-based technologies

in the connectivity area, the most popular application is mainly Internet of Things

(IoT) and its settings implementation. New AI-based methods help with the compu-

tation and analytical power needed in modern energy grids. Hence, we will delve

into IoT knowledge to facilitate the process.

IoT process generally is categorized into (1) Internet technologies usage and

smart objects interconnection, (2) Likewise internet services, aiding in technologies

batch are required to find out the perceptions, such as radio-frequency identifica-

tions (RFID), sensors, switches, actuators, and machine-to-machine (M2M) connec-

tion devices, and (3) service and application layers influencing such technologies to

trigger new grid’s business opportunities. Since only one frequent Internet protocol

(IP)-based digital network in the IoT is available, different networks such as home

area network (HAN), wide area network, and neighborhood area network (NAN)

are not necessarily used [1]. All the subdepartments in the industry retain help from

an IP-based network by service providers in their applications layer. The recent

approach is the communication networks’ architecture incentive that reduces time

and smoothens the path for capital investment reallocation. The first main smart

grid (SG)’s deployment component is the smart meter that gives access to smart

metering setup at dwelling units, profit-making sector, and industrial users [1].

In this chapter, a new approach for IoT technologies in SGs is discussed. This

new approach looks at these technologies as an object that contains features, includ-

ing infrastructure, components, challenges, future structure, and applications. There

are some combinations of these features discussed in this chapter, such as the role

of new IoT technologies in SGs and Energy Internet, which are AI-enabled IoT

technologies.

5.1.1 Internet of Things basics in smart grids

Modern power networks are being introduced as SGs. Some key problems of the

current electric power system are one-orientation information, spoiled energy, flour-

ishing energy demand, and reliability. In modern power grids, it is vital to imple-

ment operations and analytics in a new way that stands on employing AI-based

technologies on the IoT platform. There are many important tasks in these grids,

including data gathering, data preprocessing, data processing, data analytics, and

reaching results. Each of these tasks is considered in modern energy grids’ tasks

with regard to its challenges.

Computing integration and bidirectional communication potential with current

power infrastructures happen in SG. All energy value chain levels are considered,

which are not restricted to smart metering (SM). In addition, intelligent use of sen-

sors, embedded computing, and digital communications make the electricity net-

work discernible (measurement and visualization scope), controllable (manipulation
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and optimization scope), automated (adaptive and self-correcting), and fully inte-

grated (full interoperability with current systems and being able to incorporate a

wide energy source span) [2]. So, a complete SG requires IoT devices connectivity,

automation, and real-time monitoring. A vast range of network functions throughout

the generation, transmission, distribution, and power consumption are supported in

SG systems by the IoT devices integration [2].

5.1.2 The relationships between Internet of Things and
intelligent grids

An SG creates a cross-directional data platform for optimal monitoring of the sys-

tem and efficient energy supply by AI technologies network. In an intelligent grid,

end users are able to determine the demand by data collection via an IoT network.

IoT helps with battery management and monitoring, causing the minimizing of the

unnecessary waste demand by electricity supply [3].

The prospective view of IoT facilitated SGs is not determined with the virtual

connection considering all utility providers to customers. The interconnection that

contains smart phones data becomes possible with data-driven decision-making

through collaboration comprising IoT reduction in application total cost of owner-

ship. In the past, since no communication between the user and utility provider was

available, a failing transformer had a poor supply. The smart meters and sensors

used for data extraction provide complete information for triggering the process.

This is the basics of a compressive work order generation. When a blackout hap-

pens, a notification by the power line sensor is sent to utility providers where the

transformer action is being monitored. This instant action is accomplished more

gently, making an efficient wireless system by IoT [4].

5.1.3 Internet of Things in power systems

IoT is mostly used in the distribution and consumption power sector. According to

Fig. 5.1, in the third and fourth layers, IoT and the system’s operator control the

interactions with power distribution and consumption.

A power flow example is explained by Fig. 5.2, which is the complement of

Fig. 5.1. A step-by-step power development process and IoT usage are shown in

Fig. 5.2. Because of the urgent alert in the power system operation and control cen-

ter in the moment of failure in transformers, IoT is a crucial problem in SGs. With

the approach of power saving, SGs try to solve the power consumption problem

with the help of IoT, since the process is monitored on a momentary basis in the

data center. The outcome is efficient power saving with an active scheduling

approach.

The modern SGs have interconnected elements with built-in preservation and

intelligence. Because of the need in utilizing substitute energy resources, service

providers are no longer dependent on the customers. IoT is completely adjusting

the energy zone with the largest chain added value. Hence, inferential data analytics
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is suitable using for the collected dataset and the other real-time equipment results in

pivotal insight toward settled business decisions that have become transcendent [4].

5.1.4 Smart grid roles and drawbacks in power systems

Smart grid (SG) is basically defined as a smart automated electric grid, including a

batch of computers and services [5]. Based on the load type in use and energy sys-

tems network (ESN) type (e.g., residential, operational, monetary, and industrial),

differences will be obvious in services. The present SG framework is associated

with several structure scenarios, which change based on the operational range. Some

of these operations such as energy-dependent smart cities output, energy-based resi-

dential operations computing systems, and energy conservation blueprints enabled

by metering and tracing processes [5]. SG technologies and device utilization can

substantially reduce renewable energy resources (RER) problems and allow SGs to

effectively use the potential of RERs for clean energy production. Accomplishing

complete SG is significant for the distributed energy resources (DER) efficiency. It

is also important to provide electricity management (demand/supply) between

Figure 5.2 General power flow systems.

Figure 5.1 IoT in power systems. IoT, Internet of Things.
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renewable energy (RE) technologies and energy storage systems (ESSs) with atten-

tion to both electricity consumers and producers [6].

Despite SGs having many positive effects to help the industry in many ways,

there are also drawbacks to triggering such a system. First, the overhead costs of an

SG are extremely expensive and time-consuming and cause labor costs increasing;

however, this will result in creating many jobs in the new market for electricity.

Second, the privacy standards violation which is possible according to continuous

data usage. This internet-based system usage could lead to security issues. Some of

the problems are acquainted with the trend of SG technology installation.

One of the main SG’s goals is promising peer’s active attendance with mecha-

nized bonds. Data-driven decisions are vital for a distributed energy distribution net-

work that has a bidirectional electricity flow with the associated data. Besides

residential, economic, and industrial loads, SG also helps with a combined operation

for electric vehicle (EV) charging structures. As a matter of fact, SGs gather all the

electrical system production, transmission, and consumption architecture together, so

the overall system performance will be improved for the sake of customers and the

IoT ecosystem. In general, the SG strengthens ESN operation and the context of

generation, transmission, and distribution management and decision-making [7].

Conversion to SG fundamentals from traditional grids, including digital energy

vision and its devices deployment, can be gradual and piecemeal. The related pro-

cess will be started by running a small prototype project as a nanogrid, mini-grid,

or microgrid remotely. The SG implementation drawback shows the interest of the

provider and the consumer, bolstered by third-party regulatory restrictions and tech-

nological standards hindering SG solutions [8].

While designing SG, concerns such as ensuring reliability, resiliency, security,

computational, and the SG operations’ energy efficiency in the digitalization pro-

cess become vital. Fast, modern computing methods and digital tools such as AI,

IoT, big data analytics, machine learning (ML), deep learning (DL), cloud comput-

ing, and blockchain have been rationally applied in building administration, trans-

portation, networking, and manufacturing to build sustainable and energy-efficient

systems.

With new technologic devices and emerging algorithms, enabling data-driven

decisions will help with the quotes below, which will be discussed in the chapter

[8]:

� An introduction to DER, power electronics components, communication and cyber-

security issues in SG.
� The techniques associated with AI, such as fuzzy logic, knowledge-based systems, artifi-

cial neural networks, and their roles in distributed energy-based SGs.
� Energy Internet architecture, including the IoT components.
� The AI-based analysis has the potential to enhance SG services.
� The IoT and blockchain services, such as data collection, data storage, and digital transac-

tions among the associates within ESN and its groups, are accomplished.
� Automated services to associates are achieved by the ESN’s real-time extracted knowl-

edge from data for monitoring, authenticity, accessibility, flexibility, strength, security,

and viability purposes.
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5.2 Communication infrastructure

After a brief knowledge of the different aspects of IoT in SGs, information about

the infrastructures, including networks, electrical components, etc., needs to be

investigated.

5.2.1 Smart grid internet infrastructure

The SG Architecture Model framework is introduced as an SG applications refer-

ence architecture and contains specifically five main interoperability layers,

employment, functions, information, communications, and elements. Different

aspects of SG and its services, operations, assets, and devices are addressed by one

layer in the power grid’s functionality support. Four interconnected sectors aggre-

gate the communication infrastructure of SG, including the backbone network, the

middle-mile network, the last-mile network, and the premises area network (PAN)

[9]. Each of the sectors’ functionality is discussed as follows:

� The backbone network supporting the link between the diverse subsystems and the public

utility sites.
� The backhaul network conveys data flow to the advanced metering infrastructure (AMI)

with mechanized distribution in architecture and public utilities operation control centers.

The network explains an efficient evaluation focusing on its utilization and application

[10].
� Moreover, the communication in SG networks progresses considering operational and sen-

sorial data structure, which must be adjustable and consecutive. Hence, the network might

be managed by operators and employ wireless technologies such as wireless fidelity (Wi-

Fi), Worldwide Interoperability for Microwave Access, and mobile networks such as

long-term evolution (LTE) and 5G [10].
� The last-mile network: Supporting by NAN, FAN, and AMI, which facilitates the smart

energy meters’ data gathering and their propagation to concentrators [10].
� The PAN: It is implemented by HANs, based on programmable logic controller (PLC)

standards. The HAN adjusts several elements, such as lighting control, basement automa-

tion, thermostats, heating, ventilation and air conditioning, and plug-in hybrid electric

vehicle/electric vehicle [10].

Cellular technology has been progressive with one goal, which is new industry

enhancement. With the arrival of low-power wide-area network technologies, the

IoT paradigm’s integration in a an SG design is being discussed among the experts.

5.2.2 Power electronic components

The relationship between the power grid and DERs is an essential function in the

SG system performance, which introduces the role of power electronics.

Furthermore, boosting, regulation, and DC/DC or DC/AC transformation electricity,

especially grid and RE integration, happens in this process. For interfacing to the

grid, the distributed energy unregulated RE sources’ voltage output and intermit-

tency require power electronics [11].
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The DER’s voltage output has two states: DC and AC, which comes into the cal-

culations with variable frequency. Power electronics, such as high-voltage direct

current, voltage source inverter, and boost converter, grant grids additional supplies

with the goal of improving power excellence, reactive power service, and electric

grid strength and balance. A smart inverter that merges RE and ESS technologies to

the electric grid, has the ability to serve distinctive operations to make a power sys-

tem performance more stable and reliable [12].

5.2.2.1 Volt-VAR control

The definition of Volt-VAR control is the responsive power injection for voltage

regulation. Smart inverters have the ability to provide reactive power for the dis-

cussed goal at connection points for the SG voltage regulation. An Inverter special

design and program cause its reactive power output to be dependent on the grid

voltage.

A communication link is employed to utilize the power converter. It is another

solution for the injection process by the grid operator command. In the interfacing

meantime, the inverter is able to monitor variables, including current, voltage, fre-

quency, and phase angles, with regard to control functions. This extracted informa-

tion will further be used for data analytics and data-driven actions [13].

5.2.2.2 Ramp-rate control

Nontransmissible RE, such as solar and wind production outputs, fluctuates many

times, even in a few minutes, which might cause confusion for the operators. A

reduction in the up/down output power ramping rate is possible with a smart

inverter associated with a built-in supercapacitor [14].

5.2.2.3 Frequency and voltage

If the RE production output parameters such as voltage and frequency are not

within an acceptable range, the inverter is not able to release the output into the

grid. However, there may be an exceptional temporary period of low/high voltage

or frequency on the grid. If renewable sources have a further loss, the situation

might aggravate these grid conditions [15].

5.2.3 Communication challenge and cyber-security

Assuring effective communication among the peers is an important matter in SGs.

Also, protection should be implemented on the SG operations’ database. On this sub-

ject, the communication role and assured cyber-security systems are discussed below.

5.2.3.1 Communication role in smart grid

The bidirectional information flow, electricity flow, and real-time communication

between elements in the system is a vital problem in SGs. Communication
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importance comes up with two challenges; first, grid integration with DER, and sec-

ond, aid in the reconstruction of the ESN topology according to the electric power

adjustment need. Since SG is a large and complicated system, it needs a range of

cutting-edge network technologies that can enable high-speed bidirectional inter-

communication among elements, users, and operators in a specific time interval.

Usually, these communications are wired (power line communication, fiber optics,

and copper cables) optionally. Also, there are other wireless communications, such

as Wi-Fi, cellular, and microwave. [16].

In the traditional grids’ approach, engineers use power sensors as input for data

collection and a consumer’s terminal for the monitoring process, which takes place

on a regular timetable basis. While in SGs, smart meters and sensors/devices

receive real-time data and store all historical data by remote monitoring. All this

extracted grid information is the output of an interaction platform connecting to a

central processing unit with all considered points using wired/wireless communica-

tion technologies. This new real-time condition monitoring notices IoT power sys-

tems’ operators about devices’ health status by AI-based prediction, so they will be

informed about the fault occurring ahead of time. This information includes vari-

ables such as notifications on possible outages with duration, energy consumption

from the power meter, and available energy in determined time intervals.

Additionally, users have the option to alter their power consumption patterns

extracted from information available in the power databases in accordance with

their power consumption rate and total cost. When IoT layers are completed in SG,

this information and changing ability is accessible on an exchanging information

platform [17].

5.2.3.2 Cyber-security role in smart grid

A need to prohibit misuse, suspicious destructive activities, and unauthorized access

to an SG’s bidirectional information flow is considered as a reason for cyber-

security in SG. Great consumption knowledge as an output of information analytics

and consumers’ commerce patterns are available within ESN. So, the data has to be

protected from leakage, being hacked, and loss.

Inadequate cyber-security standards will expose the IoT system to a high-risk

cyberattack, which compromises the IoT system and face our grid with stability

challenges. Other problems such as fraud, information leakage, energy consump-

tion, and collected data manipulation are outcomes of cyberattack. Cyber-security

must be interpreted as accessibility, cohesion, creditability, and data accessibility

schedule. Moreover, cyberattacks and information security violations detection in

SGs will be solved by automatically sending signals to the peer. As a result, the

peer will be helped in protecting the system cohesion [18].

5.2.4 Internet of Things components

The data preprocessing transmission for the SGs are categorized into an information

and implementation database. The output results consist of smart meter results
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readings, utility statements, power consumption rates, power flow patterns, and cus-

tomers’ geographical information system (GIS) in SG. The SG’s performance data

contains a condenser bank, fault positions, IoT network’s ongoing variables levels,

and energy storage statistics [19]. The central and incidental technologies employ

distinctive intelligent devices mentioned below:

5.2.4.1 Advanced sensing and intelligent measurement system

SM arises with the data gathering process on energy prices and resource usage

rates. This includes the electricity consuming time and quantity. System security,

SG integration with upcoming technologies, and state-of-the-art protective support

in SGs all allow the customer to alleviate grid congestion. Grid stability improve-

ment through early faults detection occurs through advance monitoring and analy-

sis, helps in operating system isolation, and prevents power outages [19].

5.2.4.2 Mechanized monitoring and control

Real-time energy tracking for power device status display is a great SG feature,

which takes place by optimization power system modules, device operators, and

user recognition. These technologies extract data and supply a visual system status

presentation for the decision-making process and help to enhance power distribution

scope and authenticity [20].

5.2.4.3 Renewable resources consuming prediction

There is a need for an accurate forecast according to the intermittent nature of REs,

specifically wind and solar. Advanced precise energy accessibility computations

can lessen negative effects on the SG’s required spinning reserves. Furthermore, it

will contain exploratory knowledge on utilities, load, and other vital computational

SG factors. A dynamic nature in all power system type levels, while equalizing the

generating variables process, interprets forecasting by stabilizing the grid [21].

5.2.4.4 Information and communication technology

What is typical in current power system base includes all significant power system

operational facilities (power generation, transmission, and primary distribution sub-

station) connecting to the control unit center. However, extended communication

taking place throughout power delivery networks ends in offering express bidirec-

tional information flows. This forms the SG into a dynamic state for real-time com-

munication. SGs employ information and communication technologies according to

the power system status with attention to the up-down nature of a generation. Its

goal is to perform more effectively for consumer appliances. Hence, electric power

maintenance, grid dependability and productivity, cost-benefit analysis, and envi-

ronmental protection will be improved [22].
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5.2.4.5 Power distribution industrialization

Distribution automation (DA) is a method for mechanized control for power distri-

bution networks’ efficiency maximization, so the SG will be more steady and well-

performed. As an important SG element, it enables the distribution geographical

location readjustment to integrate RE mutability, power increasing, and two-way

power flows. The DA facilitates voltage and power factors sensing and monitoring

at some determined points on the power distribution circuit. In case of deviation

detection from the determined feasible range, it causes voltage regulating devices

automated control. So, the reflexive power and voltage injection to be regulated to

the present value is allowed. In the moment of fault, the fault’s real-time moments

can be identified and located faster and more accurately by operators, even at

remote locations. So, the time wasted on manual fault tracking will be reduced, and

consumers/users do not see the troubleshooting time as a problem anymore [23].

5.3 Key features in energy internet

With the socioeconomic growth influence in mind, it is a noticeable practice to

determine linked uncertainties affecting the energy demand/supply patterns. So, sat-

isfactory, reliable, flexible, equal, and secured energy supplies exploration is pre-

ferred the most. Concerning environmental protection, and other clean energy

standards in the energy supplies, efficient and viable energy resources are com-

manded to make socioeconomic growth secure. Considering DER, particularly RE

and ESS trend, the conventional electric grid, has been given high priority in most

infrastructures. The main cause of the DER employment importance rising and ESS

is the increasing need for a decarbonized energy zone in the near future [24].

5.3.1 Internet of Energy

The Internet of Energy (IoE) is defined as the IoT development into distributed

energy systems containing SG elements, including distributed sources, data ware-

house systems, smart meters, and equipment, such as circuit breakers, digital relays,

and transformers [25]. It initiates the inner-connection and peer-to-peer (P2P) trans-

action of energy and continues it. The most significant aim of IoE is to gather and

summon data from distinctive grid edge elements throughout the accessible frame-

work to all other grid control contributors clearly and promptly.

5.3.2 Modern methods for computation

According to computational techniques growth, especially in data analytics, some

trending ML and DL methods have been applied in various applications and busi-

nesses. The DL is being used for feature engineering and big data management

(especially when it is real-time) where ML methods fail. DL also contains large

advanced neural networks consisting of several layers, including processing units,
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activation functions, and enhancing training methods to learn functional patterns

from a great dataset.

In the SG applications, according to current and combined new technologies

assembled together for the ESN monitoring in a more accurate way, approved data

analytics and business intelligence methods are applied. There has been appropriate

usage of traditional and basic data mining tools in the industries until now. Their

goal has been to achieve better results in the field of exact electricity demand esti-

mation. These tools have also been applied for other goals such as energy creation

forecasting patterns according to peer behavior in the ESN [26].

Among the mentioned methods in Fig. 5.3, the two methods, convolutional neu-

ral network (CNN) and recurrent neural network (RNN), are frequently applied in

SGs’ applications. For the GIS distribution data analysis and interpretation, the

CNN method is suitable. Moreover, RNN is good for handling the sequential and

time-series data efficiently. According to Fig. 5.4, which is showing the DL

schematic in the SG application, considering SG as massive data analytics,

load prediction, and load equalizing circumstances application, it would be useful

and effective to employ DL algorithms with the goal of achieving more accurate

results.

Discussing about IoT and the IoE, the IoT gateways are emerging the “data gath-

ering, dispatch, and analysis” SGs’ networks. For example, an IoT gateway device

triggers the dataset to be routed across the IoT network with a two-way interaction

structure (i.e., device-to-gateway and gateway-to-cloud).

Methods 
Associated 
with deep 
learning

Deep Belief 
networks 
(DBN)

Feedforward 
Deep 

Networks 
(FDN)

Generative 
Adversarial 
networks 
(GAN)

Recurrent 
Neural 

network 
(RNN)

Boltzmann 
Machine 

(BM)

Convolutional 
Neural 

networks 
(CNN)

Multilayer 
Percetron 

(MLP)

Long-short 
Term Memory 

networks

Figure 5.3 Applied deep learning methods.
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5.4 Internet of Things challenges in energy systems

Improving the electricity power networks needs allowing IoT to access that brings

up some issues. Besides database and power sources, the IoT network must be

addressed from the electricity business perspective. The reason is that IoT technolo-

gies create commercial chances in the electricity industry; however, it poses a risk

in the implementation and control process, such as authenticity, surveillance, and

identification process. These challenges are being discussed among experts as an

important bottleneck in the irregular and ever-changing IoT regions.

In SGs’ IoT, considering heterogeneous networks and systems, the network

should give prominence to the resilience to support all data types, according to their

service quality demands. Different IoT devices generate datasets without complying

with any standard, so the data are often depicted in different compositions and con-

figurations [27].

Reference architecture is one of the solutions to address these challenges that

play a vital role in the building block representation. These architectures are defined

as abstract architectures combined with knowledge and practice in a specific range

of application domains. In fact, this incorporation contains development facilitating,

order, interoperability, and software systems evolution. Another topic is developing

solutions adaptability, which is able to be retained by reorganizing and innovating

in design-based solutions conforming to reference architecture. Among the most

used and reputable solutions, the trending open IoT platform is considered as a pio-

neer by being the reference architecture and IoT merger. This platform is designed

by guidelines presentation and explanations of detailed automation with regard to

required software and hardware [28].

In continue, all challenges categorized by their application are discussed with

respect to SGs’ experiences all around the world.

5.4.1 Internet of Things attacks

The security challenges and problems encircling the IoT, take place as a threat

emerging consequence due to invalid entrances. Critical data flow in the IoT

Figure 5.4 A deep learning schema for energy control and management use cases in SGs.

SGs, Smart grids.
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architecture (i.e., clinical health data, GIS data) and not efficient communication

routes facilitate the interconnection of sensors/equipment through a wide range of

protocols and standards [29].

Most of the IoT attacks are in the field of proof of concepts weaponization

which exploits with destructive charges against popular weaknesses. Many vulner-

abilities are left unknown because of differences in IoT systems performance or

cost-benefit analysis challenges. As a matter of fact, the proper security controls on

IoT devices are an expensive process but demand limited energy resources.

The most threatening IoT attacks are categorized in the following subsets:

� Malware: A destructive software hijacking the sensors’ functionality of sensors and

expanding in the IoT base. Its target is to gain operational intelligence, which can influ-

ence critical equipment connected to IoT devices such as smart meters to be exploited.

With IoT devices integration in the SG, many malwares have the ability to damage both

the clients and the grid supplier.
� Botnet: An infected device network that spreads across the world. It is controlled in the

remote state by a master following the client-server framework.

In the conclusion of reviewing these attacks, there are other issues that come up

with the Narrowband 5G approval and the IoT devices topology. A brief review of

issues and IoT attacks are discussed below:

� Physical layer attacks on 5G: With the existence of several issues and attacks of this type,

the physical channel is vulnerable, which is the path for the device’s interconnection [30].
� Selectively jamming primary and secondary synchronization signal (PSS/SSS): Similar to

the LTE standard, the 5G also consists of the PSS and the SSS which can be interrupted

by a jammer transmitting fake signals [31].
� Sniffing and spoofing vulnerability of the physical broadcast channel (PBCH): The PBCH

is utilized by the system information block messages, which cover information about the

power thresholds. The information being carried is transmitting unencrypted, leaving it

vulnerable to malicious activities [32].

5.5 Future research potentials

Current IoT systems have many advantages highlighted in previous sections for

providing energy-efficient solutions in the energy sector. About IoT deployment in

the energy domain, new solutions and trends are required to improve the IoT perfor-

mance and overcome the associated challenges. In the following, we present the

blockchain technology and green-IoT (G-IoT) as two approaches to tackle some of

the challenges.

5.5.1 Blockchain for Internet of Things

Considering current IoT systems essentially rely on centralized cloud systems, a

large number of IoT devices and machines need to be connected in most IoT appli-

cations, which is hard to synchronize. In addition, according to the centralized and
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server-client nature of IoT, all connected objects are easy to be hacked and compro-

mised. In looking for a solution for these security concerns and privacy issues for

users, blockchain will be a good choice.

Blockchain proposes a decentralized platform with no need for a third party’s

intervention that requires every IoT node to seek the same goal as others. In the

form of a block, verified transactions are stored and linked to the previous ones in a

way information can never be erased. Additionally, every single transaction history

at every node can be recorded, and everyone has access to them. As a result, any

blockchain member becomes aware of any changes in each block instantly. Also,

with attention to the distributed nature of blockchain, a great number of IoT devices

can be synchronized easily. A secure distributed database is provided by P2P net-

works, so decentralized and private-by-design IoT can guarantee the privacy in need.

In modern energy grids, processed and streaming data is commonly exchanged

without limit within the network. Hence, consumers/operators have direct access to

power consumption results data without any third-party presence. By simply trading

energy between neighbors, a high level of energy costs can be in centralized grids.

Another positive point is considered as an area monitoring statistic, which enables

the energy flow to be controlled remotely by the power distribution. In this regard,

IoT systems help with the equipment fault diagnosis and maintenance process

within the SG by blockchain implementation [33].

Despite beneficial cloud and fog computing platforms, there are three obstacles

to efficient blockchain technology employment in an IoT-based SG, including

computational supply shortage, insufficient bandwidth, and energy retainment.

5.5.2 Green Internet of Things

IoT devices’ energy consumption, particularly in large-scale technology deployment

of a large scope, is a vital challenge in the coming years. A great quantity of power

is necessary to run all of the connected devices to the Internet. A carbon-free and

effective communication internet is required to solve these problems, which caused

the G-IoT presence. The vital elements in this field are energy measurement charac-

teristics during the life cycle, such as scheme, generation, deployment, and final

exposure.

Different IoT technologies, including RFID tags are applications of the G-IoT

cycle. For reducing the number of materials used in each RFID tag, the size of

RFID tags should be reduced. Another example is green M2M communications,

enabling power transmission adjustment to the least amount by deploying algorith-

mic and distributed computing techniques and getting help from more efficient

communication protocols [34].

These are three practical ways for energy management in G-IoT. The first is to

get the wireless sensor network nodes in the rest mode and perform just when it is

necessary. Second, signal optimization methods, such as synthesis optimization or

cooperative connection, are applicable for the nodes’ energy consumption reduc-

tion. Third, efficient routing methods, such as clustering approaches or multipath

routing methods, provide efficient explanations [35].
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The modern sustainable power system introduces a more possible strategy for

the future SG market share planning according to IoE modern trends. There are

some issues with this process, for example, adaptability, connectivity, and most cru-

cial, IoE functions trustworthy among households and consumers. The newly IoE

decentralized concept for SG effective management and monitoring is most likely

to become ever-present by 2030. The goal in this regard is the overall SG cost mini-

mization, including the investment cost and the operational cost, due to CO2 emis-

sions restrictions and the operational limitations, Internet devices, and modern

carbon-free facilities, which are inconvenient according to new power consumption

patterns. While SG power efficiency increases, demand/supply control platforms

improvements, and developed interplatforms matching (matter of software) will

become possible [36].

5.6 Conclusion

In the new smart era, large-scale usage of IoT technologies in energy systems distri-

butionally and useful energy consumption need integrated IoT structures. Hence,

the socioeconomic-environmental, sociological, and economic energy systems’

influences will be minimized by helping the energy grid sector change completely

from a centralized and clustered supply chain to a decentralized, smart, and opti-

mized IoT enabled system.

In this chapter, the main achievements are the mentioned challenges and pros

versus cons discussions instructing a new approach for IoT technologies in SGs.

The proposed structure comes with infrastructure, components, challenges, future

structures, and applications.

In addition, the modern IoT-based grid management system’s advantages were

explained, including energy efficiency increase and RE integration. Distinct IoT

system components, such as communication facilities and sensors, with attention to

their role in the power grid, were also described. Temperature, speed, infrared,

humidity, light, and proximity sensors, alongside computing facilities and informa-

tion analytics platforms, were investigated in detail. Information analytics and data

visualization methods were used for several smart functions in the power grids.

Moreover, some IoT application challenges, including object identification

issues, big data systems administration, connectivity challenges, systems subsets

coordination, safety and availability, IoT grid power requirements, standardization,

and system design, were discussed. Trending solutions such as blockchain and G-

IoT were also mentioned for these issues.
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6.1 Introduction

Smart grids (SGs) are the intelligent version of power grids well unified with con-

nectivity and information infrastructures to make system monitoring, control, and

grid management better. The two-way electricity flow and circulation of data in

these structures are the most popular original attributes comparing traditional power

grids. For conceiving a generic intuition about big data, the literature history, com-

position, methods, and facilities are needed to be discussed. The foundation of big

data comes from the huge dataset processing issues and lacks suitable storage capa-

bilities [1]. The big data evolution stages are categorized from megabyte (MB) to

gigabyte (GB) from the 1970s to late 1980s, GB to terabyte (TB) from the late

1980s to late 1990, TB to petabyte (PB) from the late 1990s to 2012, and PB to

exabyte announced commonly in 2012 [2]. There are many disputes about the exact

and appropriate big data definition in vast approaches, and it sounds that attaining a

consensus and institutionalized description has been always hard. Currently,

roughly the popular three kinds of descriptions are architectural, attributive, and

comparative explanations [3]. In addition, the term Internet of Things (IoT) itself is

hard to define, since it produces great constant data quantity, which is related

straight to the storage capacity. Big data is a term for massive structured, unstruc-

tured, and semistructured data, which has been used for information generation [4].

The sections of this chapter are presented as follows. In the second section, data

science (DS) approaches and tools are discussed. In the third section, big data ana-

lytics methods are described. In the fourth section, future potential studies are being

considered. In the fifth section, the conclusion of the chapter is brought.

6.2 Data science

With a large amount of structured data available in energy systems gathered by

devices and sensors, there is a crucial need for new analytics methods for extracting

knowledge out of these datasets [5]. In this section, the theoretical and practical

structures of DS from SG problems to final products are discussed assisting the

data scientists in solving real-world problems. Many keywords in this field, includ-

ing data analysis, data mining (DM), big data, DS, machine learning (ML), and

deep learning (DL), have been used among experts, which are highly correlated and

challenging [6]. The “data analysis” is defined as the data processing by empirical

or logical tools for knowledge extraction and practical purposes, while the “data

analytics” is defined as instruments and processes that help with an in-depth infor-

mation insight exploration [7]. Also, “data mining” is referred to knowledge discov-

ery from data, data/pattern analysis, data archeology, and data dredging. In this

regard, data sources consist of databases, data centers (DCs), big data warehouses,

and the internet [8].

The term “big data” contains many more features and challenges, including mas-

sive, noisy, and erroneous data records, high dimensional data, heterogeneous
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features, and unstructured data types [9]. In energy systems, big data is generated

by IoT networks and devices. There are 5Vs, including volume, velocity, variety,

veracity, and value, being used to understand and describe big data [10]. For data

understanding purposes and granular data analysis, “advanced analytics” is defined

as autonomous content analysis enabled by advanced techniques to discover deep

insights and make recommendations in a new SG intelligence or analytics form

[11]. Hence, the term “machine learning” is known as a branch of artificial intelli-

gence (AI) with the goal of automating analytical model building. In addition,

trends recognition and decision-making with minimal human involvement are rec-

ognized as ML purposes. The term “deep learning” is a subset in the ML field,

inspired by the human brain’s system and its operation termed artificial neural net-

work (ANN) [12]. Hence, distinct from clear definitions discussed till now, the

term “data science” is a conceptual field that comprises advanced data analytics,

DM, ML, DL, modeling, and some other related disciplines such as statistics, opti-

mization, ranking strategies, and useful information extraction and transforms them

into SG decisions [13]. DS is introduced as a new interdisciplinary field that synthe-

sizes statistics, information systems, optimization, communication knowledge, man-

agement, and hardware/software engineering to study data and its derivatives by

employing a data-to-information-to-knowledge procedure [14]. In the following sec-

tions, all aspects of the DS comprehension and implementation are discussed.

6.2.1 Understanding data science modeling in smart grids

To understand how DS is able to play a vital role in real-world problems, different

data structures should be categorized at first and then DS steps should be deter-

mined from SG understanding to final product and computerization. Commonly,

data availability is the fundamental issue in data-driven application system building.

The data is categorized in four fields: (1) structured—built up on a well-defined

data structure following an approved order, that is, first and last names, phone num-

bers, addresses, credit/debit card information, stock market reports, and location;

(2) unstructured—without any predefined format, that is, input data, e-mails, blog

posts, text issues, text documents, audio, videos, images, presentations’ files, and

web pages; (3) semistructured—providing features from both the structured and

unstructured data, that is, HTML, XML, JSON files, and NoSQL/MySQL data-

bases; and (4) metadata—representing data as the data representator, that is, the

author information, keywords, file type and size, file creation date, last modification

date, and time [15]. DS model development, which is briefly explained in continue,

helps scholars for data analysis in a discussed problem domain and gain insights

out of the data to achieve a data-driven model or a product [16].

6.2.2 Steps of data science modeling in smart grid

DS model development from collected data to data product is shown in Fig. 6.1. In

the following, each step of this DS process is concisely explained:
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� The SG domain understanding: Achieving a complete problem understanding throughout

the SG domain is an initial task considering the impacts on the relevant firms/individuals

and the ultimate targets. In this regard, there should be questions including which cate-

gory/group is the target, which action/option should be chosen, etc. These questions

depend on the problem’s nature and are recommended to be asked at the beginning. These

activities are essential to find more information about SG requirements and the expected

information from data. This will result in enabling firms to improve their decision-making

system, which is recognized as “SG Intelligence” [17]. Another vital step is the data

source identification that will help with formulated question answering, also actions and

trends based on the data. When the SG problem is defined clearly, the analytical tool or

approach is used for the problem-solving.
� Understanding data: With a data-driven model/system, fine data understanding is the next

step. The data preprocessing tasks are needed to achieve informative insights, which is

crucial to any DS employment. Thus data evaluation that assesses the availability of data

and its adjustment to the SG problem is known as the data understanding the first job.

Several characteristics include data format, the quantity of dataset, quantity sufficiency,

relevancy, data authorized access, variable importance, linking several data sources, data

evaluation outputs, etc. [18]. They are undoubtedly essential for understanding the data

for a discussed SG problem. Generally, the data understanding pipeline helps know the

needs of data and the best ways to obtain it.
� Data preprocessing: In the beginning, a statistical developed model is needed besides pro-

viding tools for hypotheses creation by mostly data visualization and interpretation such

as charts, pi-plots, and histograms. The data quality assurance, which is available by the

data preprocessing methods, is generally the raw data transformation and cleaning proce-

dure before data analytics. It is also associated with information format manipulating,

adjusting data, and combining datasets to refine data. Then, several activities, including

missing values imputation and manipulation, unbalanced data and bias problem-solving

methods, statistical distribution modeling, dealing with outliers/anomalies, etc., are known

as the key elements in this phase [19].
� Machine learning methods and model evaluation: Whenever the data is preprocessed for

the model building, data scientists are ready to develop a model/algorithm to address the

target problem. They are commonly distinct training and test sets of the given data. The

division is mostly in the ratio of 80 to 20 or consideration of the most standard k-fold

data partition tools [20]. To maximize the model performance, it should be observed every

Figure 6.1 Data science modeling from real-world data to the data-driven system and

decision-making.
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moment. Several model validation and evaluation metrics, including accuracy, true and

false positive/negative rates, precision, recall, F-score, error rate, (receiver operating char-

acteristic curve) ROC, etc., can be used to evaluate the model performance, which helps

to choose or design the learning structure [21]. Furthermore, many advanced analytics

tools and approaches, including feature engineering/selection/extraction, parameter tuning,

ensemble methods, etc., are available for machine learning experts to shape the final data-

driven model to deal with a specific SG problem by smart decision-making.
� Data science product: Every DS activity output must be a DS product. A DS product gen-

erally is a data-enabled product, which is either SG exploration, prediction, data as a ser-

vice, recommendation engine, data insight, making decisions, classification, clustering,

knowledge, paradigm, application, or system. Thus, for decision-making improvement,

great distinct machine learning pipelines and DS procedures should be developed [22].

Overall, implementation of DS methods can affect SG practices to alter the per-

formance. The most appealing section in the DS procedure is attaining a further

comprehension of the SG problem. If it does not happen, data collecting will be

more difficult, which ends in performance decreasing for useful information extrac-

tion and decision-making. Talking about the role, “data scientists” usually interpret

and study the data to expose the most substantial questions’ answers, so organiza-

tions’/firms’ decision-making procedure will be smoother [23]. In conclusion, a

data scientist actively collects and interprets datasets out of many data sources, so a

better understanding of the SG performance will be achieved. They also design and

develop machine learning methods/algorithms, with attention to multivariational

analytics, resulting in intelligent computing.

6.2.3 Advanced data analytics and smart computing in smart
grids

Forecasting trends, episodes, and attitudes are cases used for advanced analytics

methods and smart computing capabilities. Hence, advanced data analytics is

known as automated or semiautomated content analysis to discover more informa-

tive insights, prove assumptions/hypotheses, and predict trends and make recom-

mendations where machine learning comes to help [24]. In this regard, key SG

questions should be asked, that is, “What is happening?,” “Why did it happen?,”

“What will happen in the future?,” and “What operation should be taken?.”

According to these questions, the data analytics will be divided into four categories,

including descriptive, diagnostic, predictive, and prescriptive.

1. Descriptive analytics: Finding out the SG changes by historical data interpretation is cate-

gorized as descriptive analytics [25]. Thus, to answer the question “what has happened?,”

historical data summarization has been used. To present a precise SG problem’s picture

and its relation to previous times, descriptive analytics is important since utilizing a vast

range of data is considered in this regard. At last, the definition of strength/weakness

points is determined by administrators and managers.

2. Diagnostic analytics: The examination of content to answer the question, “Why did it

happen?” [25]. Simply finding the problem origins is the goal of this type of analytics. It

also enables value extraction from the dataset by suggesting the necessary questions and
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deeply interpreting them to attain helpful answers. It is identified by techniques including

data distribution interpretation, data visualization, and DM and recognizing the

correlations.

3. Predictive analytics: It is an essential data analytics method for various purposes and sev-

eral applications such as SG risk management, power consumption patterns, and predic-

tive and prescriptive maintenance, enhancing their performance [26]. Modern SGs, for

instance, simply use predictive analytics for cost minimization purposes by forecasting

future demand trends and managing power flow and inventory, production capacity opti-

mization, etc. As a result, predictive analytics is named as the DS analytical core.

4. Prescriptive analytics: For the overall rewards and profitability maximization purposes,

prescriptive analytics finds the most usage out of available information, so the question

“What operation/action should be taken?” can be answered [27]. Prescriptive analytics is

known as the last part of the SG analytics, which gathers data from several predictive/

descriptive data sources for the application of making decisions. So, its relation with pre-

dictive/descriptive analytics is obvious, but the difference is in the priority of actionable

insights instead of data monitoring. Integrating ML, DL, SG domain knowledge, big data,

and prescriptive analytics aids in the data-driven decision-making process for firms and

organizations.

In conclusion, the reasons and the clues of occurrence should be clarified.

Hence, descriptive and diagnostic analytics will operate historically. Historical

records of data aid in predictive analytics and prescriptive analytics, so the steps

that should be taken to make an impact on the discussed analytics will be clear.

Forward-looking firms/organizations in the SG practices can use all these analytical

methods for smart decision-making. All these results are summarized in Table. 6.1.

6.2.4 Supervised and unsupervised learning in smart grids

There are two learning algorithms that are fundamental categories of ML. While we

learn about them early in our DS journey, we might not fully understand their dif-

ferences, their use, and how we should approach them as engineering problems.

Supervised learning is a machine learning method where output vectors and target

Table 6.1 Analytics methods and their description.

Analytical method

types

Question answered

by the method

Examples

Descriptive analytics What happened in

the past?

Summary of historical events

Diagnostic analytics Why did it happen? Anomaly detection and casual relations

and effects

Predictive analytics What is the result in

the future?

Grid outputs prediction, recommendation

engines, and availability and planning

prediction

Prescriptive

analytics

What operation

should be taken?

SG management improvement
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labels correspond to prediction using dataset and features as input [28].

Unsupervised learning is a branch of ML where we apply statistical learning meth-

ods to understand our data or create a better representation of it [28]. In this case,

we do not have explicit labels.

In Fig. 6.2, a comprehensive ML-based modeling structure discussing the train-

ing and testing phase is shown. In continue, several methods, including classifica-

tion and regression, association rules analytics, time-series analytics, behavioral and

log analysis, etc., are explained and illustrated.

6.2.4.1 Classification

Classification is defined as the recognition and grouping process of objects into

determined labels. By the precategorized training sets, classification in ML pro-

blems leverages many algorithms to classify future test sets into respective and

appropriate categories. These classification methods utilize input training datasets

aiming at the likelihood or probability prediction [29].

Some classification models are discussed in the following. First, Naive Bayes

considers independent predictors, meaning that features are unrelated to each other.

Second, the decision tree is used for visual decision-making representation. It is

usually made by a yes/no question asking and splitting the answer to move to

another decision. Third, k-nearest neighbor (KNN) is used for data division into

classes based on the distance between the data points. This method assumes that

close data points must be similar and the data points to be classified will be grouped

with the closest cluster.

6.2.4.2 Regression

It is a supervised learning method to find the correlation between variables helping

scientists with the continuous output variable prediction based on the independent

variables. Regression’s most popular use cases are forecasting, time-series model-

ing, and determination of the cause�effect relationship between variables. Simply,

regression represents a curve (or a line) passing through all the data points on the

target variable graph in such a way that the vertical distance between the data

Figure 6.2 Data-driven modeling and training and model testing.
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points and the regression line is minimum. The distance between data points and

curves interprets the strength of the model [29].

Some regression models are discussed in the following. First is a linear regres-

sion, which shows the linear relationship between the independent variable (X-axis)

and the dependent variable (Y-axis). The second is a polynomial regression, in

which the original features are transformed into polynomial features of a given

degree and then modeled using a linear model. The third is a support vector regres-

sion (SVR), which tries to determine a hyperplane with a maximum margin so that

the maximum number of data points is covered in that margin. The SVR’s main

goal is to consider the maximum data points within the boundary lines and the

hyperplane.

6.2.4.3 Clustering

It is a method in the field of unsupervised ML, which is known in many DS areas

for statistical data analytics. Clustering algorithms are usually for the structure’s

recognition within a dataset. In the case of a lack of knowledge about groups and

categories in the dataset, it will help with the classification of homogeneous groups

of cases. In other words, identical data records are in a distinct cluster, which is dif-

ferent from other records in another cluster. Hence, various records sorting into

homogeneous internally and heterogeneous externally groups are the most popular

clustering goals. It even gives data scientists insight into how data is distributed in

a given dataset or as a preprocessing phase for other algorithms.

Through the literature, K-means, hierarchical clustering, and CLARA are catego-

rized into partitioning methods. Also, Density-Based Spatial Clustering of

Applications with Noise and ordering points to identify the clustering structure

(OPTICS) are categorized into density-based methods. The single and complete lin-

kages are tools for implementing hierarchical methods. There are several categories

left in this field: SG-based clustering algorithms, including STING, CLIQUE;

model-based clustering such as neural networks, Gaussian mixture model, self-

organizing map; and constrained-based algorithms including COP K-means, cyan,

magenta, yellow, key (CMWK)-means, etc. [30].

6.2.4.4 Association rules learning

It is recognized as a rule-based learning system in the unsupervised learning area,

which is mostly used for a relationship between features’ establishment.

Association rules learning is a descriptive method often used for large dataset anal-

ysis with the goal of pattern discovery. Its essential strength is its completeness and

comprehensiveness, which is viable via user-operational constraints such as mini-

mum support and confidence value.

It also helps a scientist to find and interpret trends and cooccurrences within

large datasets. In an SG, for instance, the organization infers knowledge about the

behavior of devices in terms of power, data flow in the system, etc. that will smooth

the production plan change. Most known association rules methods are frequent
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pattern-based, logic-based, tree-based, fuzzy rules, etc. In addition, the rule learning

algorithms including AIS, Apriori, Apriori-TID, and Apriori-Hybrid, FP-Tree,

Eclat, and RARM enable SGs for appropriate problem-solving. Apriori is the most

popular implemented method for association rules discovery from a given dataset

between all association rules learning methods [31].

6.2.4.5 Prediction and analytics for time-series data

When a dataset is indexed by the date and time stamp specifically including date

and time stamp, it is called a time-series data type. From the frequency perspective,

the time series are categorized into distinct types, including annual budget and

expenses, monthly expenditure computation, and power and energy metrics (daily).

Mathematical modeling for time-series data and fitting process is known as

time-series analysis. There are several popular time-series prediction algorithms

being used for useful information extraction applications. For example, for time-

series forecasting applications with attention to time patterns, the autoregressive

(AR) model learns the behavioral trends or patterns of the historical data. Another

algorithm is moving average (MA), which is a form of time-series smoothing and

forecasting using historical errors in a regression model to interpret averaged trends

[32].

The autoregressive moving average (ARMA) combines these two last methods,

where AR extracts the momentum and pattern of the trend, and the MA captures

the noise effects. The autoregressive integrated moving average (ARIMA) model is

an extension of ARMA, which is a frequently used time-series model. As a general-

ization of an ARMA model, ARIMA is more adaptive than other statistical meth-

ods, that is, exponential smoothing and linear regression. The ARMA model is only

available for stationary time series, even though the ARIMA model is usually being

used for cases of nonstationarity as well. Likewise, seasonal autoregressive inte-

grated moving average, autoregressive fractionally integrated moving average, and

autoregressive moving average model with exogenous inputs model (ARMAX

model) are other algorithms for time-series data [33]. Furthermore, ML-based and

DL-based approaches are appropriate for effective time-series analytics, which is

typically used for SG’s power flow and consumption, manufacturing, event data,

IoT devices data, and commonly in any applied science and engineering temporal

measurement domain in SGs. All these time-series-based data analytics algorithms

are shown in Fig. 6.3.

6.2.4.6 Behavioral data analysis

Behavioral data analysis helps with revealing new insights into SG sites and IoT

applications, power flow behavior, and operators’ behavior. It helps in pattern

understanding and identifying the reason behind them enabling more accurate activ-

ities. Cohort analysis is a division of behavioral analytics that concentrates on

studying behavior changes over time. Its popular methods are behavioral data clus-

tering, behavioral decision tree classification, behavioral association rules, etc. [34].
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6.2.4.7 Anomaly detection

This section of AI is also known as outlier analysis, which is a DM phase detecting

data points, and events that deviate from the regularities or normal behavior of a

dataset. Anomalies are commonly recognized as outliers, noise, abnormalities, nov-

elties, inconsistency, and exceptions. Exploring new situations and cases is viable

via anomaly detection methods deviant based on historical data by interpreting data

patterns using historical data.

Different data sources such as logs, facilities, the internet, and servers generate data

that can be used in case of inconsistency removal in anomaly detection. While super-

vised learning, many ML algorithms including KNN, isolation forests, and clustering

ease the anomaly exclusion process that results in a statistically substantial accuracy

growth [35]. Nevertheless, extraction of useful variables, recognition of normal trends,

imbalanced data management, addressing variations in abnormal behavior or irregular-

ities, sparsity of abnormal events, circumstantial variations, etc. are challenging in the

anomaly detection procedure. Anomaly detection applications are cyber-security anal-

ysis, intrusion, fraud, fault detection, and also ecosystem disturbance detection [36].

6.2.4.8 Factor analysis

Factors are considered as explanation of relationships or correlations between fea-

tures. So, factor analysis (FA) is a learning method based on fundamental entities.

Figure 6.3 Time-series data prediction and analytics methods.
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Its application is mainly feature organization by comparing them according to their

total variance, with attention to mathematical and statistical procedures. The goal of

FAis to determinethe features (factors) set number by degree calculation, so the

fundamental impact underlying the data will be exposed. As a result, it will be clear

which factors are associated with each other and also which factors contribute to

the target variable. The ultimate purpose of FA is data summarization so that pat-

terns between factors (variables) can easily be interpreted.

The two most common FA techniques are exploratory factor analysis (EFA) and

confirmatory factor analysis (CFA). Recognition of complex trends is possible by

EFA analyzing the dataset and prediction evaluation. On the other hand, CFA’s

mission is to validate hypotheses and use path analysis figures for factor representa-

tion [37]. FA is categorized in unsupervised learning with the goal of dimensional-

ity minimization. The most popular FA methods are principal components analysis,

principal axis factoring, and maximum likelihood [38]. Also, for the quantification

of the statistical interpretation between two continuous factors, some correlation

analyses, that is, Pearson correlation analysis are being used.

6.2.4.9 Logs analytics

The data that record system runtime activities in detail and production patterns are

known as logs. Log analytics is more of an interpretation approach, which is able to

understand generated records/messages. Types of logs are system log, event log,

device log, server log, network log, audit trail, record, etc. Data logging is defined

as record creation. Many programmed technologies, such as network devices/ser-

vers and operating systems, generate logs. There are many smartphone devices in

SGs that generate call logs, SMS/MMS Logs, app monitoring logs, notification

logs, etc. In SGs, operators’ actual behavioral activities with their devices are avail-

able as the main characteristics [39].

Appropriate log analytics tools are ML models, classification based on tagging,

correlation analysis, and pattern recognition algorithms. Within SGs, log analysis

helps with compliance with security procedures and power grids’ regulations. It

also finds the gaps in the system performance and so it supplies a better user experi-

ence by triggering the technical issue solving services. For example, log files are

being used to record data on the internet between devices and among grid servers

[40].

6.2.4.10 Deep learning and artificial neural networks

ANNs are used for building a computational architecture based on specific proces-

sing layers, including the input and output layers, and between them, the hidden

layers. The most essential advantage of DL in comparison with regular ML methods

is the performance from a complexity and time point of view, especially during the

time of training on the large datasets. The most effective and popular DL methods

are multilayer perceptron, convolutional neural networks (CNNs), and long short-

term memory (LSTM) networks [41]. There is also the “backpropagation”
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technique, which adjusts the weights internally in the model structure building pro-

cess. CNNs are developed on the basis of ANNs, consisting of convolutional layers,

pooling layers with filters, and fully connected layers. Its use cases are natural lan-

guage processing, speech enhancement and recognition, image processing, and

autocorrelated data since the two-dimensional (2D) data type is the input of these

cases. Advance CNN-based algorithms are AlexNet, Image-Net, Inceptions, Visual

Geometry Groups (VGG), ResNet, etc. [42].

Furthermore, recurrent neural networks (RNNs) are another popular kind of DL

network and some algorithms such as LSTM and GRU are categorized as RNN

methods. Despite regular feed-forward neural networks, LSTM involves feedback

through the network by the connections between units. Hence, LSTM networks are

appropriate for sequential data analysis and interpretation, including tasks such as

classification, sorting, and prediction for time-series data [43]. Thus, with the

sequential data type, RNNs can be widely used.

6.3 Big data

A great amount of data created from different data sources in SGs are named “big

data.” Big data is mostly for managing and facilitating smart infrastructures in mod-

ern power systems. The big data issues in SGs are related to different sources such

as including phasor measurement unit (PMU) data, power consumption records,

advanced metering infrastructure measurements data, and power system smart

meter monitoring, maintenance, and management data [44].

Information technology methods are now available in SGs for solving big data

issues. Recent surveys have studied some big data challenges in SG systems includ-

ing the big data role in technology and management in SGs and future issues [45].

Given the recent advancements in smart technologies, it is essential to study and

review big data challenges in SGs with attention to SG-oriented viewpoint’s theo-

retical, analytical, and standardized features. In this regard, the research gaps would

be the need for the cooperative SG-oriented, information and communication tech-

nology�oriented approaches for both scientific communities’ experts and public-

sector SG administrators and operators as big data application users with limited

information of big data challenges. In the following sections, the literature, applica-

tion, and management approaches for big data are discussed.

6.3.1 Big data in smart grid literature

Based on various definitions of big data, the current big data can be compared to

traditional data in order to clarify its applicableness. For the classification of big

data characteristics, new methods are needed based on distinct definitions from typ-

ical data sources [46]. The dataset records quantity is rising daily by the scale of

TBs and PBs because of the emerging big data. Classified structures recommended

by big data instead of typical data structures in traditional data sources are
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considered as another advantage. The big data velocity characteristic is mainly for

computation of the processing rate in the dataset, which is really needed for the

data streams and the real-time applications. At last, the goal of big data processing

will be extraction of important values from the huge amount of data for real-time

applications in SGs.

Volume (dataset size), velocity (the process of collecting big data and analyzing

its speed and timeliness), variety (structured, semistructured, and unstructured het-

erogeneous data types), value (information extracted from big data sparsity), verac-

ity (big data structures credibility and safety), and variability (data attribute

modification) are the most essential attributes known as big data 5Vs [47] as shown

in Fig. 6.4.

6.3.2 Big data architecture in smart grids

The big data system architecture can be demonstrated as a value chain consisting of

four phases that are discussed in the following. While these four phases are defined

and are under consideration, the raw data created by big data sources are analyzed

and modified for gaining knowledge with attention to distinct management and con-

trol goals.

1. Data generation: Big data generation along with its types, characteristics, and origins

from various data sources is the task of this phase.

2. Data acquisition: Aggregates of big data for effective outputs are discussed in this phase,

including tasks such as data gathering (information retrieval from sensors and measure-

ment facilities in SGs), preprocessing (errors integration, eliminating redundant records,

Figure 6.4 Big data 5Vs.
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and compressing the results), filtering, features engineering, and transmission [transferring

data into DCs for storage by communication infrastructures] [48].

3. Data storage: Big data storing and management for future applications are tasks for this phase.

4. Data analysis: Enhancement of the analytical aspects of the procedure to interpret the col-

lected data by modeling methods for classification and other DS approaches discussed

earlier. It is the most important phase in big data for making decisions based on big data

knowledge in SGs. Big data analytics are also classified into descriptive, predictive, prog-

nostic, and prescriptive analytics according to the depth of analysis, and their methods are

classified into data visualization, and statistical analysis. [49].

6.3.3 Big data technologies in smart grids

The big data technology is utilized for a huge amount of data and the case that typi-

cal DS methods or other hybrid ML and DL algorithms are not capable to deal with

big data architecture issues discussed earlier, that is, data acquisition and data anal-

ysis according to restrictions. Newly, big data technologies have emerged in mod-

ern grids, which play a critical role in developing an integrated system to supply

efficient operations on data so that timely event detection will happen [50]. Big

data tool integration is vital in SG applications. For example, state-of-the-art bidi-

rectional communication and big data management technologies are substantial in

SGs, that is, dispatchable energy resources containing electrical loads among them-

selves and development of distributed energy resources (DERs) [51]. PMU data is

applicable in smart distribution grids regarding the demand response for power sys-

tems and DERs as practical resources of adaptability. The goal of big data technol-

ogy could be an analytical framework that applies agent-based modeling for data

processing purposes in the SG.

Popular big data technologies in SGs are DM, IoT, cloud computing, software-

defined networking, and network function virtualization. DM is defined as pattern

recognition by means of computational algorithms with approaches such as estima-

tion, ML, and statistics, which are applicable in SGs [52]. Classification of the

devices and other facilities performance variables is an example of DM use case in

SGs, according to their power consumption type. Subsequently, AI methods are

applicable for designing a risk model and solving uncertainty issues within load

forecasting. These methods are developed with the fuzzy wavelet neural network to

help in predicting power consumption and also a singular nonparametric estimation

algorithm for the power distribution network scheduling [53].

Uncertainty and load-profile volatility, which are measured by smart metering

data, are among the issues in SG load forecasting. Heterogeneous big data in the

SG causes data-driven decision-making based on data streaming and load-profile

behavior prediction with the help of ML and DL methods [54]. These methods are

applied for grid energy management, safety, and security purposes. For instance,

DL is able to enhance the AI performance through complicated data management,

so SG administrators and data scientists are able to extract complex trends automat-

ically, intelligent interaction with devices for maintenance and production, and

more precise power load forecasting [55].
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6.3.4 Big data tools in smart grids

Here, some of the useful tools for big data analysis, such as Apache Drill, Hadoop,

game theory, and DCs, are discussed.

6.3.4.1 Apache Drill

The end users of SGs give the managers and administrators real-time interaction by

computers and processing units helping the data to be generated in a more interac-

tive environment. Apache Drill is mainly a distributed system providing interactive

analysis for big data and its aim is to contain responses with low latency to ad hoc

queries [56].

6.3.4.2 Hadoop

Hadoop is the most widespread big data technology applied in SGs, which provides

network searching, click-stream analytics, and spam data filtering. The CloudView,

which is a framework based on Hadoop, is for local load utilization, management

of various architectures, and clusters of big data analysis purposes. Hadoop consists

of two essential counterparts: first, Hadoop distributed file system for storing data

according to the capacity prioritized by available tasks and second, the Hadoop exe-

cution engine for data processing purposes [57].

6.3.4.3 Game Theory

Game theory is a mathematical method for users’ behavior analysis in many appli-

cations. In the literature, the multistage Stackelberg game is mentioned as an effi-

cient tool for optimization problem-solving in the field of micro-SG energy

management. Other AI complicated models including reinforcement learning,

dynamic programming, and game theory are applicable in SG’s security awareness

management [58]. It works as a security-aware resource allocation model in a

matching-coalition game scope.

6.3.4.4 Data centers

These tools represent platforms for dense storage of data enabling the system for

multiple functionalities such as data acquisition, transmission, and processing. DCs

are able to handle big data by maintaining requirements under time restrictions. The

characteristics of DCs, including protection, extensibility, redundancy, energy effec-

tiveness, and consistency, can maintain standardized functionality of big data fea-

tures by an authorized infrastructure [59]. Cloud-based DCs are capable of power

efficiency improvement and reduction in the cost of energy. According to the obvi-

ous rise in the data generation rate in power grids lately, it is expected that the big

data challenges in DCs attract more scholars to pay attention to the potential topics

in this regard, which may help to provide better insights for decision-making out of

big data in DCs [60].
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6.3.5 Big data applications in smart grids

The SG challenges are usually about data generation, preprocessing, distribution,

end users, resources, devices, networks, and interaction with one another for appli-

cations and purposes. In this part, the big data systems’ most important applications

in SGs are discussed and summarized. These applications are expanded in distinct

power system phases consisting of the power system scheduling, modeling, moni-

toring, control, security, and safety [61]. Power generation management is an essen-

tial application in SGs, which is adaptable for customizing the scheduling and

facilitating the decision-making procedure. The great aspects of this application are

efficient power load dispatch, the performance of power generation and storage sys-

tems, and power grid optimization in terms of production and cost [62].

Another application of big data is renewable energy resources (RERs) and

microgrid management, which is a promising technology for forecasting and man-

agement improvement. Based on the literature, this technology is applicable to the

association of RERs including wind, solar, biomass, and marine energies [63].

Microgrids known as the new integration of distributed power generation methods

are considered as another big data application in SGs. In this regard, the most two

important tasks are microgrid investment scheduling and microgrid load distribution

optimization. Also, demand-side management is another big data technology in

smart power systems.

6.4 Future research potentials

In this section, future possible fields of study in DS and big data analysis for IoT

energy systems are discussed. First, future challenges should be presented. Herein,

SG development needs to bring up and categorize challenges.

6.4.1 Security and privacy

The security issue of SGs is one of the main challenges in the future. In the litera-

ture, attacks and defenses on DL models have been detected, which influence mod-

els’ performance and make the accuracy, credibility, and trustworthiness less. One

of a kind of these threats is false data entrance, which enables IoT devices and sen-

sors with different configurations to send false data. This threat causes faulty

results, recommendations, and prognosis to the analytics operations.

Also, SGs are dealing with privacy challenges in the context of IoT applications.

In this regard, the data that are captured every second in different locations of the

grid by the sensors may contain distinct layers of information. This information

affects the decision-making process for different senior managers and middle man-

agers. First, sending and receiving sensitive data to servers with different authenti-

cations for administrators presents several privacy concerns. The second challenge

in the field of privacy will be the loss of data. Third, the SG’s database may be

exploited by a third party who does not have permission to employ or even access

102 IoT Enabled Multi-Energy Systems



the information. However, even the current solutions will remain vulnerable and are

able to be hacked by robust attacks. In fact, the hacking process is the development

of DL algorithm that learns other DL methods’ threat detection methods. This pro-

cess is explained by how these DL methods generate attacks that are difficult to

detect.

6.4.2 Internet of Things big data challenges

Due to the great volume of data generated by different IoT devices, several issues

are being concerned, including data depository, communication, complexity, and

data analysis. The generated data storage for a long time introduces an important

challenge because of the lack of ability to be managed using traditional database

management tools. Hence, modern specific tools and infrastructures are essential for

handling structured and unstructured big data. Furthermore, the IoT big data analyt-

ics requires specific technologies for extracting valuable insights including efficient

high-tech processors, levelized edge computing tools, and modern, high-quality, and

quick software for big data analysis as discussed before, that is, Apache Hadoop.

6.4.3 Deep learning implementation challenges and limitations

Although satisfying results have been achieved by DL models in SGs’ data analyt-

ics, in some situations these models are not adequate solutions. Several restrictions

should be considered; First, a large amount of data is required for providing good

results by DL models. Second, the more data is gathered for the database, the more

the training process complexity will appear, which is computationally expensive,

and extremely time-consuming. Third, limited access to datasets suffers SG trans-

formation scientists since they have to develop specific datasets requiring a great

deal of time and effort. Fourth, DL models are not appropriate for similar but not

identical purposes. Fifth, in a black-box running process, the model results’ accu-

racy improvement occurs with time, or it may prove a vulnerable point, especially

in the prediction process. In black-box models like neural networks, assuring the

training performance is difficult and in some situations, the models’ results are not

effective.

6.4.4 Smart grid data�driven planning, cost management, and
quality of service

A SG IoT system construction needs scheduling strategies that must be considered

before launching. A development plan must be designed for each section of the grid

based on the needs of its devices because avoiding problems and faults including

redundant services or uncoordinated power networks will be solved by this plan-

ning. Appropriate planning helps with the facilities development and grid services

by identifying the required areas and facilitating the legacy systems integration

within the new system.
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In this regard, the main SG characteristic is the interconnection of the compo-

nents, which is considered as an expensive service for governments where many

devices, sensors, actuators, and software should be deployed. For instance, a smart

surveillance system installation needs modern systems and platforms to gather and

process data. These prerequisites are expensive to implement and any error often

causes high losses. For maintaining a successful SG system, the quality of service

(QoS) is an essential characteristic of applications that should be certified. Separate

QoS measurements are used for quality examination such as response time, avail-

ability, extensibility, and trustworthiness. Many technologies are integrated for SG

service development, such as hosting services and storage frameworks. The assur-

ance of QoS provided by the discussed technologies to ensure an adaptable, power-

ful, and trustworthy energy system is vital.

6.5 Conclusion

Knowledge-based tools such as DS and big data analysis aid us to comprehend the

data’s nature and use the extracted insight for improving systems’ optimization.

How to automize the process for working in a more optimized way according to ana-

lytics and algorithms used for performance evaluation is important to consider. The

data gathering process from energy systems needs to be improved by experienced

experts to elevate the performance results. All features that are available by the data

gathering should be revised by the DS specialists, so some first empirical studies can

help us interpret the data at first and then find the structure to do the related analyt-

ics. This analysis will be much different in case of having a large number of transac-

tions (rows) meaning that we are dealing with big data. Some specific distributions

and platforms will be used to handle this data and tasks will be scheduled with net-

work and computing-based methods using nodes and connections.

The integration of information and communication in the energy supply chain

deploying IoT occurs with a variety range of embedded actuators, devices, and sen-

sors. Although the usage potential of the internet is now appropriate for reaching the

energy system devices attaining by standardized communication protocols, IoT in

energy system implementation has several challenges, including accessibility, secu-

rity, controlling the bandwidth, appropriate interface, connectivity, packet loss, and

data analyzing. Available and insightful information is being used for the decision-

making process in energy systems, which ends in big data according to great data

log, namely, vibration, temperature, and flow sensors outputs. All the gathered infor-

mation will be analyzed in the big data format. The result will be a more accurate

prediction, optimized performance, and better fault diagnosis in energy devices.
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7.1 Introduction

Batteries play an essential role in the rapid development of transportation electrifi-

cation and energy storage systems [1]. Lithium-ion batteries are known for their

high energy/power density and low self-discharge. They are becoming more avail-

able as the manufacturing cost continues to improve (Table 7.1). Large-scale energy

storage systems consist of MWh/GWh batteries that continuously operate under

adverse weather conditions. Electric vehicle batteries are subject to road harshness,

different driving behavior, and frequent high-current fast charges. These applica-

tions call for batteries to become more reliable, safe, and predictable. As such, mon-

itoring and control of Li-ion batteries become more critical. Battery algorithms,

such as state of charge (SOC) and state of health (SOH), deliver important informa-

tion about battery charge and health. This information is critical for maintaining
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optimal operations of modern energy networks. For example, inaccurate estimation

of SOC will force the energy storage battery systems to reduce charge/discharge

power or completely shut off, which subsequently affects the grid stability. On the

other hand, based on accurate SOH estimation, a modern energy network can

reduce the risk of battery failure. In addition, early thermal anomaly detection can

foresee thermal runaway, which is catastrophic for energy networks.

As of now, conventional onboard battery management systems (BMSs) are used

for monitoring and control. A BMS includes embedded microcontrollers (μC) and
peripheral integrated circuitry (IC). Usually, the BMS collects voltage, current, and

temperature measurement with dedicated sensing ICs that communicate with a

main μC, which then processes the measurements and perform various functions,

such as SOX estimation, diagnostics, protection, control, and thermal management.

Nevertheless, the microcontrollers are designed to handle simple tasks and have

minimal computing power and memory size. It prevents the onboard BMS from

executing advanced algorithms. For example, artificial neural networks (ANNs) are

becoming popular for SOC estimation [3]. As we will showin this chapter, an

onboard BMS might run a trained neural network. However, the ANN must be care-

fully designed to reduce its CPU and RAM impact. Although the BMS receives

numerous data from the measurements of hundreds of cells that it monitors, these

data are not stored due to the lack of onboard data storage, making incremental

learning impossible for the onboard BMS.

With the further development of Internet of Things (IoT) [4], future BMS is

expected to be cloud-connected. As a result, battery data can be seamlessly

uploaded and stored in a cloud data platform [5,6], and the power of cloud comput-

ing can be leveraged. The cloud computating and data storage can support advanced

algorithms to improve battery safety, performance, and economy. There are several

significant advantages. Firstly, the cloud database has battery data from not just one

pack but numerous Electric Vehicle (EV) Energy Storage System (ESS) battery

packs, allowing a massive amount of data to be used for extensive analysis and

machine learning (ML) training and validation. Secondly, cloud computing allows

complicated algorithms to be executed in real time, such as online ML, which is

not possible for onboard μC. Thirdly, the cloud platform allows data collection and

feedback from batteries throughout the entire life cycle. These data can benefit

other battery processes and applications. For example, battery manufacturing, sec-

ond life usage, and recycling. As depicted in Fig. 7.1, battery cloud is at the center

stage of a successful battery industry.

Table 7.1 Lithium-ion battery for energy storage applications.

Types Specific energy Life cycle Total Installed Cost

NMC .150 Wh/kg 1200 $410/kWh

LFP .110 Wh/kg 2000 $359.62/kWh

Note: Cost estimation based on 24hr and 10 MW, without warranty, insurance, and maintenance [2]. LFP, Lithium
Iron Phosphate; NMC, Nickel Manganese Cobalt.
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This chapter aims to provide an overview of battery cloud, including the essential

infrastructure and software components. We also discuss important topics for batteries

performance and safety, including the underlying mechanism, effects, and correspond-

ing algorithms. The remaining chapter is organized as follows. The first section dis-

cusses the critical components of a battery cloud. In the following sections, we

overview the critical areas regarding battery performance, health, and safety: SOC esti-

mation, SOH estimation, and thermal runaway/anomaly detection. This chapter presents

corresponding algorithms that were developed with the battery cloud. In the first sec-

tion, we train and validate an ANN to estimate pack SOC during vehicle charging

using remote vehicle data. The ANN is then implemented and tested by onboard BMS.

It gives highly accurate (,3%) real-life vehicle testing results. In the second section,

high accuracy (,%5) and onboard battery SOH estimation methods for electric vehi-

cles are developed based on the differential voltage (DVA) and incremental capacity

analysis (ICA). We extract the charging cycles and calculate the DVA and ICA curves

using cloud data. Multiple features are extracted and analyzed to estimate the SOH. At

last, a data-driven thermal anomaly detection method is developed for battery safety in

the last section. The method can detect unforeseen thermal anomalies at an early stage.

In one case, the prediction is more than 1 hour ahead of the event.

7.2 Battery in the cloud

This section covers essential components of a battery cloud. As depicted in

Fig. 7.2, it includes the database, data visualization, and algorithm/analytics.

7.2.1 Data sources and connections

Data are collected during different stages of the battery’s life cycle, ranging from

cell manufacture and module/pack assembly to vehicle driving/charging and pack

recycling. There are numerous procedures for cell manufacture alone, including

electrode mixing, coating, laser cutting, and stack [7], during which a large amount

of data is generated. Table 7.2 shows an example of battery-related data from

Figure 7.1 Battery cloud is at the center stage of the success of the future battery industry.
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different devices and scenarios. The EV battery pack is equipped with a BMS

which communicates with a wireless IoT component that transmits the collected

data to the cloud via the 4G/5G network. Online or private gateways will be used

for charging stations. Because ESS power plants affect grid stability, they are sub-

ject to more stringent cybersecurity regulations. As a result, usually, ESSs are con-

nected through a one-way, local gateway to ensure maximum security. Similarly,

battery data from cell/pack testing equipment are often transmitted via a secured,

one-way gateway. However, these equipments can be controlled securely via the

company’s intranet.

Data Sources Gateways Data Storage Algorithms Frontend

Timeseries Data

Meta Data

battery anomaly

Data Visualization

Data Analytics

EV Cloud gateway

ESS
Local Gateway

EV charger

Mobile App interface

digital twine

battery health

battery QM

BI report

Figure 7.2 Key hardware and software components and data flow of the battery cloud: data

storage includes but is not limit to (from top to bottom) NoSQL database, data storage,

binary files, SQL database, and spreadsheets.

Table 7.2 Battery data sources.

Item Stages Type of data

Cell manufacture manufacture metadata

battery time series data

Pack assembly assembly metadata

testing battery time series data

recycle recycle metadata

EV&ESS operation battery time series data

vehicle/grid metadata

Service service service event data
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7.2.2 Database

Choosing the right database. For production big data platforms, Hadoop [8] is the

prevailing choice. Hadoop is based on HDFS (Hadoop files system) and

MapReduce (the programming model) that ensure good scalability, robustness, and

high availability, all of which are essential requirements for a battery database.

Besides, Hadoop has a complete ecosystem, including software stacks like Spark,

Hbase, Kafka, Hive, and many others, making it easier to use and expand function-

alities. There are also dedicated time series databases (TSDBs), such as Influxdb,

Timescale, and Prometheus. TSDB has built-in features for time series data, such as

time-domain queries (integration, differential). This makes TSDB ideal for a small

R&D battery database. As TSDBs are being developed and improved actively, they

will become more competitive against traditional databases in the future.

Database deployment. The database can be hosted on-premise or on the cloud.

Although on-premise deployment will theoretically give better control and security, it

is often more expensive to maintain and scale. For cloud deployment, there are several

models to consider. IaaS (Infrastructure as a Service) let the cloud provider handle

hardware resources, where the company has complete control of all software stacks.

Popular IaaS providers are Amazon Web Services (AWS) [9], Microsoft Azure [10],

and Google Cloud Platform [11]. In the PaaS (Platform as a Service) model, such as

AWS EMR, the cloud provider also hosts basic software stacks, except for application

software. The provider manages all software stacks in the SaaS (Software as a Service)

model, such as Cloudera [12] and Influxdata Cloud [13].

7.2.3 Data visualization

Most end-users of battery data are data analysts or operators who monitor EV/ESS

in real time. It is vital to have a responsive and interactive data visualization tool

where essential data are displayed in real time. Users can create a dashboard and

add custom processing/query to explore statistical insights. Other features include

(1) adding a signal threshold, which can trigger quick alarms to the ESS site opera-

tor, and (2) options to trigger an ML pipeline from the frontend. Many data visuali-

zation tools are web-based, such as Grafana, Datadog, and Kibana. Fig. 7.3 depicts

an example battery data display dashboard.

7.2.4 Algorithms and analytics

With the data platform built, advanced algorithms that leverage big data and ML

[3] can be applied to increase battery performance, safety, and economy. An inter-

esting topic is the digital twin [14]. Based on sophisticated electrochemical model-

ing, the digital twin can give insight into the internal states of its physical twin,

which can be used for battery states estimation, diagnosis and prognosis. The bat-

tery cloud platform will need API (application programming interface) for popular

programming languages, such as Python and Matlabs, based on the developers’

preferences. It may also provide a more interactive development tool such as
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Jupyter Notebook/Lab or Sagemaker, commonly used for data analytics/ML. After

the algorithms/analytics are developed, they should be optimized and incorporated

into a data processing engine, such as Spark, Kafka, and Airflow. Life data of all

the battery cells are used to analyze the manufacture, assembly process, and facility

to improve quality management. Similarly, these data can be used as references dur-

ing battery second life application, recycling, and refurbishing, eliminating the need

for extra testing/calibration.

7.3 Onboard state of charge estimation with cloud-
trained ANNs

SOC estimation is one of the essential functions of battery software. It has been

researched extensively. There are mainly three different methods for SOC estima-

tion. The commonly used, basic method is coulomb counting, which calculates the

accumulated charge by current integral, given as

zðtÞ5 1

C

ðt
0

iðτÞdτ1 zð0Þ; (7.1)

where C is the battery capacity. This method is susceptible to accumulated error

generated from iðtÞ or data loss from zð0Þ. As such, estimation accuracy degrades if

coulomb counting is used without correction over a prolonged period of time. The

other two methods are model-based and data-driven. Both have self-correction fea-

tures to correct the SOC. The model-based approach utilizes a battery model, either

ECM (equivalent circuit model) or electrochemical model, to establish the

Figure 7.3 A typical dashboard for displaying battery data, developed by Gotion [6].
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connection between battery measurements, such as voltage, temperature, and cur-

rent, and immeasurable internal states. Then an estimator, such as Kalman filter, is

applied to estimate the SOC. Because those batteries are highly nonlinear systems,

modified Kalman filters such as extended Kalman filters and unscented Kalman fil-

ters are often used in practice. Model-based approaches require an accurate model.

The model can be calibrated accurately by long-term cell and pack testing. But it is

also prone to overfitting, meaning it cannot tolerate individual cell/pack variations.

Making an accurate and well-generalized model is very challenging and time-

consuming. Data-driven approaches range from simple voltage-based correction

[15] to deep neural networks [16]. More detailed reviews of data-driven SOC esti-

mation methods are covered by Refs. [3,17]. Most of these methods are resource-

consuming and cannot be easily applied to an onboard BMS.

This section presents a data-driven SOC estimation method that fuses the

onboard BMS with the battery cloud. A neural network is trained with cloud battery

data. Then, it is designed to reduce the computational and memory footprint to be

fit into a microcontroller.

7.3.1 Requirements, definition, and design

When designing SOC algorithms, there are typical requirements to be considered.

For example:

1. SOC estimation should be 100% when the battery is fully charged.

2. SOC estimation should not change suddenly, including between power cycles.

3. SOC estimation should have a maximum error of less than 5%.

4. SOC estimation should have an average error of less than 3%.

The neural network presented is designed to meet requirements #1, #3, and #4.

Other requirements, such as #2, are implemented by a different software compo-

nent, such as the SOC initialization function.

As depicted in Fig. 7.4, the neural network includes an input layer, hidden

layers, and an output layer. The inputs are measurable battery signals, including

voltage, current, and temperature. Both present and historical measurements are

used. Historical measurements are critical for the feed-forward ANN to infer the

internal SOC of the battery, which is a dynamical system.

7.3.2 Artificial neural network training with cloud data

The ANN is developed using Matlab and Simulinks. Cloud battery data are

fetched through Matlab API and used to train the neural network. DC charging data

of NMC (Nickel Manganese Cobalt) cells are used for training. The training data

includes the cells being charged at a range of temperatures, including 210�C, 0�C,
25�C, 40�C, and 50�C, during which the voltage and current signals are recorded.

As depicted in Fig. 7.5, these data are split into training data (75%), validation data

(15%), and test data (15%). During the training, Levenberg�Marquardt is config-

ured as the optimization algorithm. The training results are depicted in Fig. 7.6.
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After acquiring the parameters, the ANN is implemented as Matlab code and

integrated into the SOC software component, a Simulinks model. Using the

embedded coder, the Simulinks model is converted to C code, integrated with

other software components, and eventually become executable binaries.

Hidden LayerInput Layer Output Layer

Current(tk)

Current(tk-iT)

Current(tk-nT)

Voltage(tk)

Voltage(tk-iT)

Voltage(tk-nT)

Temperature(tk)

EstimatedSOC(tk)

xk

yk

Figure 7.4 The neural network model used for SOC estimation. SOC, State of charge.

Yes
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Data Error
Improved?

Update Neural Network
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Training
Data

Validation
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Test
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Start

End
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Shuffle

Input
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Figure 7.5 The ANN training flowchart for SOC estimation. ANN, Artificial neural

networks; SOC, state of charge.
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7.3.3 Hardware-in-the-loop and vehicle testing results

The ANN is first tested using the hardware-in-the-loop (HIL) system, during which

basic functions of the software component and SOC accuracy are evaluated using

cloud data. More importantly, as the ANN executes in the BMS real-time operating

system, the impact on CPU and RAM usage is evaluated. It is found that the ANN

takes approximately 50 μs of execution time. Its RAM usage is also small.

Finally, the algorithm is tested on a vehicle BMS. The ANN is deployed as a sha-

dowing strategy in addition to existing software for several passenger EVs. To verify

its robustness, the ANN is tested under the AC charge scenario to verify its robustness.

Even though it is only trained with DC charge data, the ANN performed satisfactorily

during AC charging. For example, Fig. 7.7 depicts the SOC comparison, current, volt-

age, and temperature plots of one test. As shown in the SOC comparison plot, for most

of the time, the true SOC (solid blue) falls into the 1 /2 5% bracket of the SOC esti-

mation (solid red). The RMSE of all testing results is 1.9%, well below the 3% target.

7.4 Online state-of-health estimation

Li-ion batteries and many other secondary cells are subject to different degradation

mechanisms that cause loss of usable energy or power, which lead to a decrease in

Figure 7.6 ANN training results. ANN, Artificial neural networks. Please see the online

version to view the color image of the figure.
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range and acceleration for battery electric vehicle [18]. For that reason, it is essen-

tial to monitor the SOH of Li-ion batteries. The degradation mechanisms are briefly

discussed and organized into three categories in the following section. Furthermore,

the concept of the end of life (EOL) and the SOHC will be presented. Conclusively,

an overview of SOHC estimation methods will be given, with a closer look at the

differential voltage analysis (DVA) and the ICA.

7.4.1 Degradation mechanisms and modes of Li-ion batteries

The components of a Li-ion battery are subject to different degradation mechan-

isms. In general, the degradation mechanisms can be classified into three modes:

[18�20]

� Loss of lithium inventory (LLI): The Li-ions are consumed by side reactions and are no

longer available for intercalation/deintercalation in the anode and cathode.
� Loss of active material of the anode (LAMA): The anode active material is no longer

available for lithium intercalation due to particle cracking and loss of electrical contact or

active areas being blocked by solid surface layers.
� Loss of active material of the cathode (LAMC): The cathode active material is no longer

available for lithium intercalation due to structural failure, particle cracking, or loss of

electrical contact.

These modes can be attributed to different degradation mechanisms in the com-

ponents of a Li-ion cell. In the following sections, the primary degradation

Figure 7.7 Onboard vehicle test: AC charging.
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mechanisms on the components of a Li-ion cell are named and briefly explained.

An overview of these degradation mechanisms is presented in Fig. 7.8.

7.4.1.1 Anode

The main degradation modes at the negative electrode are lithium plating and the

formation of solid electrolyte interphase (SEI). Lithium plating is a commonly rec-

ognized and inherently damaging degradation mechanism in Li-ion batteries, which

describes the deposition of lithium metal on the surface of the anode as soon as the

anode potential exceeds the threshold of 0 V (vs Li/Li1 ) [21]. On the other hand,

the SEI is a protective layer on the surface of the anode particles due to the decom-

position of the electrolyte, which is formed mainly during the first cycles [22]. Both

degradation modes are the main contributor for LLI and LAMA [18].

7.4.1.2 Cathode

On the other side of the battery, the degradation modes of the cathode are still

growing in interest and therefore not thoroughly documented yet. It is considered

that structural changes and mechanical stress are the main contributors to LLI and

LAMC. Due to various cathode materials, the Li-ion battery suffers from different

side reactions based on the cathode material composition. For example, an Mn-

based cathode is more prone to the dissolution of the active material due to Mn dis-

solution. In contrast, the degradation of the LFP (Lithium Iron Phosphate) cathode

is more likely to be defined by Fe dissolution, which generates HF as a byproduct

and attacks the surface of the cathode particles [21].

Figure 7.8 Degradation mechanisms in Li-ion cells.

Source: Adapted from C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, D. A. Howey,

Degradation diagnostics for lithium ion cells, J. Power Sources, 341 (2017) 373�386.
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7.4.1.3 Separator, electrolyte, and current collectors

The separator, electrolyte, and current collectors also suffer from various degrada-

tion mechanisms. Although the porous separator of a Li-ion cell is electrochemi-

cally inactive, the separator can negatively affect the performance of the cell.

According to various studies, deposits from the electrolyte decomposition can clog

the pores of the separator. This can increase the impedance and also can reduce the

accessible active surface of the electrodes (LAMA and LAMC, respectively)

[19,23].

On the other hand, the electrolyte is involved in side reactions that lead mainly

to the formation of a surface film on the negative electrode, but also partly on the

positive electrode. Electrolyte oxidation at the cathode does not directly affect any

of the three modes of degradation, but it does cause reintercalation into the active

material, also known as self-discharge of the cell. In contrast, electrolyte reduction

at the anode results in a loss of cyclable lithium, which leads to a capacity loss

[24,25]. The current collectors of a Li-ion cell suffer mainly from two degradation

mechanism. First, the current collectors can corrode electrochemically. This occurs

particularly at the aluminum collector of the positive electrode when acidic species,

such as HF, are present [26]. The copper current collector of the negative electrode

may dissolve during deep discharge when the anode potential increases to 1.5 V in

reference to Li/Li1 [27]. Second, the current collector foils may deform due to

mechanical stress. This can disrupt the contact between the electrodes and the sepa-

rator so that specific active areas can no longer participate in the intercalation pro-

cess of Li-ions in to the electrodes, which causes a loss in capacity [28].

Based on Fig. 7.9, it can be seen that all degradation modes can be organized by

their effect on the electric characteristics of a Li-ion battery, the capacity and power

fade. For further elaborations, we will focus primarily on the capacity fade.

7.4.2 State of health and end of life

Due to the degradation mechanisms, Li-ion batteries have a limited lifetime. The

EOL of a Li-ion battery is reached when the battery can no longer provide the

power or energy intended for its application [29]. However, as of today, there is no

uniform standard that defines a clear EOL criterion for Li-ion batteries in the new

energy industry [24]. The USABC consortium is the only one to define two EOL

criteria in its manual of test procedures for electric vehicle batteries. According to

this manual, the EOL of a Li-ion battery is reached when:

� the net capacity delivered is less than 80% of the rated capacity CN or
� the peak capacity is less than 80% of the rated capacity at a DOD of 80% [30].

Also, in many publications, the EOL for the Li-ion-based traction battery of a

BEV at a capacitive aging condition of SOHC # 80% assumed [31�33]. The capac-

itive aging state SOHC can be calculated using Eq. (7.2). Here, CN corresponds to

the nominal capacity of the Li-ion battery, and Qdis,max corresponds to the
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maximum charge quantity that can be removed from a Li-ion battery, which is also

known as the net capacity.

SOHC 5
Qdis;max

CN

U100% (7.2)

7.4.3 Advanced online state-of-health estimation methods

The capacitive aging state SOHC has an impact on two critical factors of a BEV,

the maximum range and the charging time during fast charging. Based on the

capacitive aging state SOHC, the maximum range can be predicted to the driver,

and the fast charging function can be adjusted to find the optimal compromise

between minimum charging time and damage of the anode by lithium plating [34].

Therefore an online SOHC estimation is essential for automotive applications.

7.4.3.1 Methods

There are several options for determining the capacitive aging state, which can first

be divided into experimental and model-based methods, respectively. As shown in

Fig. 7.101, these categories can be subdivided into further subcategories. For exam-

ple, experimental methods can be divided into direct methods, such as capacity

Figure 7.9 Overview of different degradation mechanisms and their cause and effect on the

performance of the Li-ion cell.

Source: Adapted from C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, D. A. Howey,

Degradation diagnostics for lithium ion cells, J. Power Sources, 341 (2017) 373�386.

1 This figure was published in Journal of Power Sources, 405, R. Xiong, L. Li, J. Tian, Towards a smarter

battery management system: a critical review on battery state of health monitoring methods, 18�29,

Copyright Elsevier (2018).
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measurement (coulomb counting), and indirect methods, such as DVA. In contrast,

model-based methods can be divided into SOHC determination based on adaptive

battery models or data-driven methods.

At this point, the most popular methods regarding the capacitive aging condition

SOHC are mentioned and briefly discussed. More detailed summaries about meth-

ods for SOHC estimation were given by Berecibar et al. [36]. and Xiong et al. [35].

Direct measurements. These are the most straightforward method to determine

the SOHC. One prevalent method is the direct measurement of the current battery

capacity. However, this method requires an enormous expenditure due to the low

charging current during the capacity measurement, which is why this method is

only used for R&D purposes.

Model-based estimation methods. These utilize algorithms such as Kalman filter

or neural networks to model the battery cell parameters. These methods achieve rel-

atively high accuracy and can be implemented in a cloud-BMS. Yet, these algo-

rithms require a high development effort. For example, the accuracy of the Kalman

Figure 7.10 Methods for SOHC estimation.

Source: From R. Xiong, L. Li, J. Tian, Towards a smarter battery management system: a

critical review on battery state of health monitoring methods, J. Power Sources, 405 (2018)

18�29.
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filter is highly dependent on the accuracy of the applied battery model, whereby

high accuracy is only achieved with complex battery models. Also, training a neural

network requires a large amount of data, which can only be generated by cost-

intensive testing of battery cells. In addition, these algorithms need extensive vali-

dation. For example, the neural network is considered a black box, and the output

cannot be generally predicted based on unexpected input data.

Indirect analysis methods. These methods utilize various battery parameters to

correlate the capacity fade with various features of the Li-ion battery. For example,

the charge curve can characterize the SOHC of the battery as it changes throughout

the battery degradation. Constant current followed by constant voltage with current

limiting (CCCV) charging mode is commonly used for batteries. Eddahech et al.

[37]. developed a method for SOHC estimation using the CV stage as a health indi-

cator. Since minimal intrinsic information about the battery can be obtained directly

from the voltage curves, Dubarry et al. [38,39], for example, used electrochemical

characterization and analysis techniques, ICA, and DVA (dV/dQ). These methods

are often applied in laboratories since a low current rate is required to record these

differential curves. However, due to the increasing energy of the battery packs and

the lower power of AC charging, it is also possible to record the differential curves

during an AC charging process in a BEV. For this reason, the basics of the DVA

and ICA and their correlation with capacity fade will be discussed in more detail in

the following section.

7.4.3.2 Differential voltage analysis/ICA-based state-of-health
estimation method

As mentioned before, it is essential to estimate the SOHC of battery packs in BEV.

In the following section, a DVA- and ICA-based estimation method is introduced.

Therefore the DVA and ICA will be presented and discussed in detail to present a

simple SOH estimation implementation, which could be realized on a cloud

platform.

The DVA and ICA are commonly known analysis methods for Li-ion batteries

in laboratories. The IC curves can be calculated from Eq. (7.3) during a low-current

charging or discharging process. The division of an infinitesimal charge change due

to the charge/discharge current by the resulting voltage change is calculated. This

process converts the low-slope regions of the OCV curve, also known as voltage

plateaus of the two-phase transition, into detectable IC peaks. Another method is

the DVA (dV/dQ). The DV curves can be calculated by the reciprocal of the IC

curve as shown in Eq. (7.4). The distance between two peaks of the DV curve

represents the amount of charge involved in the two-phase transition, so it is easier

to analyze the capacity degradation quantitatively using the DV curves [40].

dQ

dV
� QðtÞ2Qðt1ΔtÞ

VðtÞ2Vðt1ΔtÞ (7.3)
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� �21

� VðtÞ2Vðt1ΔtÞ
QðtÞ2Qðt1ΔtÞ (7.4)

The result of calculating the IC curve during a low current rate charging process

is shown in Fig. 7.11. It should be noted that the DV curves can be represented

using the half-cell potentials due to the superposition behavior of the anode and

cathode [see Eq. (7.4)]. Thus the peaks and valleys of the DV curve can be assigned

to the anode and cathode, respectively.

As mentioned before, Li-ion batteries suffer from various degradation mechan-

isms, which lead to LLI, LAMC, and LAMA. Due to these degradation modes, a

change in the DV and IC curves can be observed. Fig. 7.12 shows the shift of the

DV and IC curve due to cyclic aging. Based on the change of these features, the

SOHC can be estimated by correlation, for example, the distance between two peaks

in the DV curve with the capacity fade of the Li-ion battery. Another possible fea-

ture is the height or depth of the peaks or valleys of the IC curve, which also shift

throughout the ongoing degradation of battery materials.

In order to implement a DVA/ICA-based SOH estimation on a battery cloud the

following workflow should be included:

1. The platform monitors the typical battery cell parameters, voltage, current, and

temperature.

2. Whenever the battery is charging, it determines if the charging data has satisfied feature

detection based on several conditions. The conditions include the C rates, amount of

charge, and so on.

3. If the conditions are met, proceed with the following steps. Otherwise, abort and watch

for the next window.

Figure 7.11 The differential curve of ICA during a CC charge with C/10 of a Li-ion battery

consisting of a graphite anode and NMC cathode. CC, Constant current; ICA, incremental

capacity analysis; NMC, Nickel Manganese Cobalt.
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4. Calculate and filter the differential curves (dV/dQ) based on the measurements.

5. Apply feature detection algorithm, that is, a peak detection algorithm, to extract the fea-

tures. Based on the scenarios, different features may be extracted and used. Since the fea-

tures themselves do not indicate the SOHC, they will be further processed.

6. Apply a mapping function that relates the features with the SOHC. Typically, the refer-

ence is represented by a Look-Up-Table that is based on the correlation between features

and SOHC, extracted from existing cyclic aged battery data.

As depicted in Fig. 7.13, the real SOHC has strong correlations with DVA and

ICA features; for example, the distance of two features or the height of a feature.

The correlations also depend on the temperature. Higher charging currents will

affect the estimation accuracy. However, this method can generally achieve 5%

SOH accuracy when charging at C/2 or less.

7.5 Cloud-based thermal runaway prediction

7.5.1 Cause and effects of thermal runaway

One significant disadvantage of batteries is the narrow operating temperature range.

The safety and stability of the battery cells are dependent on keeping interior tem-

peratures under certain limits. A thermal runaway can occur if the temperature
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Figure 7.12 The course of the differential curves of the (A) ICA and (B) DVA during a C/2

of a cyclically aged Li-ion battery (graphite anode/LFP cathode). DVA, Differential voltage

analysis; LFP, Lithium Iron Phosphate. Please see the online version to view the color image

of the figure.
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surpasses the critical level, killing the battery or, even worse, causing a fire.

Thermal runaway is a chain reaction that can be very difficult to stop once it has

begun within a battery cell. During a thermal runaway, the temperature rises incred-

ibly fast (milliseconds), and temperature can be higher than 752�F/400�C. At such
elevated temperatures, electrolytes in the battery cell can be vaporized and combus-

tive when exposed to oxygen. Such battery fires are hard to extinguish with conven-

tional ways.

The heat generated by the electrochemical reactions is critical as it can lead to

thermal runaway. The heat generation is caused by chemical/electrochemical reac-

tions and joule heating inside the battery. Radiation and convection dissipate heat

to the surroundings. The process of thermal runaway can be explained by the plot

Fig. 7.14. The heat generation because of an exothermic reaction assuming

Arrhenius law, an exponential function, is shown in curved line 4. In comparison,

the heat dissipation is represented by straight lines, which follow Newton’s cooling

law at different coolant temperatures. For the lithium-ion battery, curve 4 is the

combined results of reactions in the cell during the thermal runaway process and

the energy balance between the heat generation. Heat dissipation is shown as

Eq. (7.5):

@ ρCpT
� �
@t

52rðkrTÞ1Qab2chem 1Qjoul 1QS 1QP 1Qex 1?; (7.5)

where ρ gcm23
� �

is the composite/average density of the battery, Cp Jg21K21
� �

is

the composite/average heat capacity per unit mass under constant pressure, TðKÞ is
the temperature, tðsÞ is the time, and k Wcm21K21

� �
is the thermal conductivity.
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Figure 7.13 Correlation of selected features with capacity fade: (A) height of selected

feature and (B) distance between two features. Please see the online version to view the color

image of the figure.
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Qab2chem is the abuse chemical reaction in the battery, Qjoul is Joule heat, Qs is the

entropy heat, QP is the overpotential heat, and Qex is the heat exchange between the

system and the ambient.

Generally, thermal runaway can be triggered by various types of abuse in a bat-

tery shown in Fig. 7.15 [42], which are described in the following sections.

Internal short circuit: caused by physical damage to the battery or poor battery

maintenance.

Mechanical abuse: Vehicle collision and consequent crush or penetration of the

battery pack are the typical conditions for mechanical abuse.

Figure 7.14 Thermal runaway explanation based on heat generation and dissipation models [41].

Figure 7.15 Abuses that cause thermal runaway [42].
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Electrical abuse

� Overcharging: The voltage that exceeds the maximum safety operation voltage range will

damage the battery and lead to thermal runaway. Because of the extra energy filled into

the battery during overcharge, the overcharge-induced TR can be more severe than other

abuse conditions.
� Rapid charging can lead to excessive currents, therefore, causing thermal runaway.
� External short circuit: External short circuit happens when the electrodes with voltage dif-

ference are connected by conductors, which could also kick off the TR chain reaction.

Thermal abuse

� Over/under temperatures: Either the low or high side of the safety ranges degrades battery

health, leading to irreversible damage that may eventually trigger the TR reaction.

7.5.2 Methods for thermal runaway detection

For typical batteries applications, including microgrids and electric vehicles, cells

are connected and packed in modules and packs. Suppose one or a few cells expe-

rience thermal runaway due to the limited space for heat exchange. In that case,

the heat will rapidly go up, leading to thermal runaway propagation among all

surrounding batteries. Therefore it’s essential to detect thermal runaways at an

early stage to ensure safety. Lithium-ion batteries may experience voltage and

current anomalies, temperature rises, or gas ventings during the thermal runaway

process. Those are the indicators that can be detected at the early stage [43].

Methods of thermal runaway detection include:

Terminal voltage. The terminal voltage can be detected by using voltage sensors

within the BMS.

Mechanical deformation. Mechanical deformation can be detected by creepage

distance sensors.

Internal temperature. The core temperature directly represents the thermal condi-

tion within batteries, it can be either:

� measured by temperature sensor inserted in the batteries or
� estimated based on the measured surface temperature of batteries.

Gas component. Some gas components can be identified during the thermal run-

away process, such as carbon monoxide, hydrocarbons, and hydrogen. Gas sensors

such as thermal conductivity detectors (TCD) can be used for this purpose.

7.5.3 Data-driven thermal anomaly detection

Here we give a cloud-based and data-driven method for detecting battery thermal

anomalies [44]. Because that this method is based on the measurements’ shape sim-

ilarities, which is less affected by cell deterioration or environmental variation, it is

robust to battery aging or environment variations. As a result, this method can be

applied to different battery configurations. The shape-based distance [Eq. (7.6)]
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measurement handles the asynchronous data issue. It also needs very little reference

data. This method is based on K-shape clustering [45]

SBDð x!; y
!Þ5 12 max

ω

CCω x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 x; xð ÞR0 y; yð Þ

p
 !

; (7.6)

where x
!
; y
!

are two time series measurements that used for comparing similarity,

and R0 the Rayleigh quotient.

7.5.3.1 Workflow

As depicted in Fig. 7.16, the proposed anomaly detection method contains the follow-

ing steps. At first, data is continuously buffered and segmented. During the preproces-

sing stage, invalid/faulted data points are removed. Signals are normalized. Segments

with static signals are filtered out. During the anomaly confirmation stage, the K-shape

algorithm is applied to each segment for the distances (SBDðxi; cjÞ) for each cluster.

Two criteria are used for determining anomaly. (1) when at least one of the measure-

ments change the membership and (2) when no change was found in cluster member-

ship, we check for any noticeable increase in the fitting errors. During each iteration,

the ith cluster is compared to the reference cluster, which captures the accumulated,

long-term changes that result from anomalies caused by gradual deterioration. Such as

thermal anomalies caused by increased battery impedance. It’s also compared to the

predecessor for anomalies that developed abruptly, such as short circuit. In the final

stage of anomaly isolation, we use the change of membership or increase in fitting error

to isolate the signals that caused the anomaly.

7.5.3.2 Case study

We apply the proposed anomaly detection method to EV batteries. The data was

collected and transmitted from an onboard BMS. As shown in Fig. 7.17A, tempera-

ture measurement from sensor #13 increased to over 70�C on October 30. The

onboard BMS detects the overtemperature anomaly around 3:45 pm, during which

the temperature was over 55�C. Meanwhile, the proposed method was able to detect

anomalies around 2:15 p.m., which is about 90 minutes earlier. The detailed com-

parisons are illustrated in Fig. 7.17B. As it shows, the proposed method detects the

anomaly when sensor #13 just started to behave differently from the other measure-

ments. Fig. 7.17C is the shape plot of the segment that detects the anomaly. In this

figure, sensor #13 is flagged as the outlier for its rising shape.

7.6 Conclusion

In this chapter, we present a battery cloud (cloud-BMS) which is aimed at improv-

ing battery performance, safety, and economy by utilizing cloud computing and the
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IoT. The major component of a battery cloud includes the data sources during the

stages of the battery life cycle, the different choices of databases, and deployment

for battery data and data visualization. In addition, we discuss core algorithms for

K-Shape
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Y Matching...

reference...

new cluster

anomaly detected

Preprocess

Y

residual incr...

previous...

Segment

Online data

Buffering

Anomaly Isolation

Figure 7.16 Flowchart for the thermal anomaly detection algorithm.
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the battery cloud. Firstly, an ANN is trained with cloud battery data for SOC esti-

mation. The ANN is eventually deployed to the onboard BMS and tested on the

vehicle. The successful testing results show that cloud battery data is essential for

developing advanced battery algorithms. Secondly, we discuss the degradation

mechanisms of battery health and different algorithms for SOH. We develop an

SOH estimation method based on DVA/ICA, which shows ,5% accuracy under

different operating temperatures. At last, we review one important safety issue for

batteries, thermal runaway. Its cause and effects are discussed. A data-driven bat-

tery anomaly detection method is developed to give early warnings.

(A)

(B) (C)

Figure 7.17 Test case (A) temperature measurement which shows the overtemperature fault.

(B) The zoom-in view of the fault occurrence, this method detects the temperature anomaly

90 min before the onboard BMS. (C) Further zoom-in view of the segment’s shapes plot

where the anomaly is detected, which is also highlighted in (B).
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8.1 Introduction

The energy grid, which was previously monopolized by non-renewables, has wit-

nessed unprecedented changes with the incorporation of renewable energy sources,

such as solar, wind, biomass, and tidal. The main reason behind this transformation

is climate change and the need to take urgent actions in line with the United

Nations sustainable development goal (SDG) 13. SDG 13 has set a number of tar-

gets to combat climate change. Some of these targets are strengthening resilience

and adaptive capacity to climate-related hazards and natural disasters in all coun-

tries; integrating of climate change measures into national policies, planning and
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strategies; building knowledge and capacity to meet climate change; and promoting

mechanisms to raise capacity for effective climate change-related planning and

management.

These critical energy infrastructures (CEIs) are adopting digitization at an accel-

erated pace together with the inclusion of the Internet of Things (IoT) in view of

bringing smartness in all aspects of the different systems involved in the proper

functioning of the architecture. Smart grids provide considerable benefits over tradi-

tional power systems through improved reliability, availability, and efficiency [1].

Essentially, within such grids, intelligent systems are deployed to control and moni-

tor energy generation, transmission, distribution, and storage. Additionally, machine

learning (ML) mechanisms have gained tremendous interest and popularity in vari-

ous fields over the past decade. This has engendered automated mechanisms to be

brought into being and deployed in CEIs as well. Although the digitization process

and adoption of ML in CEIs aid in easing human efforts for accomplishing various

tasks, it cannot be denied that it comes along with possibilities of security breaches

and cyberattacks. It is of paramount importance to research the different security

vulnerabilities that can be exploited by attackers and devise robust mechanisms for

countering them.

Moreover, the voluminous data in CEIs calls for big data infrastructures. As in

any other application domain where big data is concerned, having a centralized

data warehouse involves serious burdens on the communication links in terms of

bandwidth consumption and the data warehouse in terms of the storage capacity

requirements. As such, ingenious developments in the intersecting area of ML

and parallel computing domains have given rise to the concept of federated learn-

ing (FL), which addresses the problem of having a centralized data warehouse.

However, this new concept still needs a lot of research in studying the security

vulnerabilities and devising robust defense mechanisms before being fully fit for

deployment in CEIs.

The main motivation of this work is to channel the attention of the readers of

this book into:

� the security and privacy concerns involved in modern interconnected networks/ smart

grids,
� the evolution of ML into FL in this setup environment, and
� the possible enhancements that can be made to the FL approach in this context.

Thus, the main objectives of this chapter are:

� to present a review of FL and its applications in security and privacy and
� to present a demonstration case involving the implementation of a simulated model of FL

for enhancing the security of systems.

Typically, most research concerning strategies for securing CEIs includes

reviews of techniques and evaluation studies. However, our work differs from pre-

vious works with the following significant contributions:

� presenting a demonstration case using FL for enhancing the security of systems and
� providing insights regarding security vulnerabilities and possible mitigation strategies.
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This chapter is organized as follows: Section 8.2 presents a review of cyberat-

tacks in smart grids. In Section 8.3, a review of FL and its challenges is presented.

This is followed by a demonstration case involving the use of FL for enhancing

cyber-security in Section 8.4. In Section 8.5, we present the simulation results.

Insights into FL security countermeasures are provided in Section 8.6, followed by

concluding remarks in Section 8.7.

8.2 Review of cyberattacks in smart grids

Information and communication technologies, particularly the IoT, are set to

become the core platform of smart grids. These grids enable the real-time monitor-

ing of electrical parameters, including voltage, current, power, and frequency, while

providing remote access and reading capabilities.

Moreover, smart grids typically consist of various technologies, including

advanced metering infrastructures, energy storage mechanisms, automated power

outage management, renewable energy sources, and electric vehicles. These sys-

tems, coupled with the data transmission and communication infrastructures, add to

the complexity of smart grids. Furthermore, smart grid domains comprise multiple

communicating components, namely; markets, operations, service providers, custo-

mers, bulk generation, distribution, and transmission [2]. This varied ecosystem of

technologies and components makes smart grids, inherently cyber-physical systems,

particularly vulnerable to various cyberattacks. The following section presents an

overview of major cyberattacks on power systems and smart grids.

8.2.1 Major cyberattacks in power systems and smart grids

Given the heterogeneity of systems used in smart grids and the volume of data com-

municated across the various systems, such grids are typically prone to cyberat-

tacks. The nature of these attacks can be varied; for instance, it could involve

attacking the system components for manipulating electricity bills, end users or

consumers trying to change their power consumption information, or even the total

collapse of entire systems.

In 2009, the US electric grid was hacked by cyberspies, and it was reported that

hidden software could be used to cause power disruptions by attackers. It is

believed that the spies were aiming to map to electrical grid infrastructure rather

than cause immediate damage [3].

In 2010, a major cyber-security incident occurred in the Bushehr nuclear power

plant in Iran, whereby the Stuxnet malware was used to manipulate control systems,

which destroyed more than 1000 centrifuges [4]. This malware was introduced via

an infected USB drive to exploit SCADA systems. It was able to identify the target

control system, update itself and cause the centrifuges to malfunction [2].

A major cyber-security incident occurred in the Ukrainian power companies,

whereby remote cyber intrusions were used to create unscheduled power outages
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that impacted around 225,000 customers. It was reported that the BlackEnergy and

KillDisk malware were used during these attacks. Moreover, the attack entailed the

deletion of selected files from several systems, which, in turn, hindered their opera-

tion [5].

In March 2019, the North American Electric Reliability Corporation reported

that a cyberattack on the US grid had caused a utility company to lose communica-

tion with some of its systems. A firewall vulnerability was exploited, which led to

the unexpected reboots of multiple devices, thus causing communication outages

[6,7]. A summary of the major cyberattacks on CEIs is presented in Table 8.1.

Given the impending threats to CEIs, numerous techniques and strategies are

being devised to enhance the smart grids’ resilience and their interconnecting com-

ponents. One particular area that has gained momentum recently is the application

of ML techniques, in particular FL, for securing grid infrastructures. These are

illustrated in the next section of this article.

8.2.2 Suitability of Internet of Things-based technologies in
modern grids

According to the United Nations SDG, ensuring access to reliable, sustainable, and

modern energy remains a prime area of focus. As such, researchers, energy compa-

nies, and practitioners have been exploring the conversion of modern energy grids

into smart grids [8]. IoT technologies can harness the capabilities of various sens-

ing, actuation, and communication technologies in order to automate and integrate

the core processes within the energy supply chain [9].

Advanced sensing mechanisms can be used to gather data from different grid assets

in real-time, and IoT communication protocols with strong inbuilt security mechan-

isms, such as constrained application protocol can relay the data to operators for

improved decision making related to the operational performance of the smart grid

[10,11]. Moreover, IoT technologies have the potential to be used in automated threat

mitigation systems. Such systems use data aggregation and analytics mechanisms

coupled with intelligent systems to detect any anomalies in energy distribution and

efficiency or even potential failures as a result of security threats [12].

Other mechanisms that have been proposed to improve cyber-security for smart

grids include the principle of defense-in-depth [13]. This principle incorporates dif-

ferent measures for device and application security, network security, physical secu-

rity, and policies. With regard to device and application security, IoT technologies

can be used to gather data about the configuration of devices in the grids and detect

insecure configurations and runtime vulnerabilities [13]. Likewise, changes in mem-

ory usage and modifications of the firmware of devices can be detected and

reported to grid operators. Moreover, at the network level, IoT technologies can be

used for implementing intrusion detection systems that can detect, as well as block,

unwanted or suspicious network activities. For physical security, IoT technologies

can be used to implement smart surveillance systems that can provide alerts in cases

of unauthorized access to premises.
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Table 8.1 Major cyberattacks on critical energy infrastructures.

No. Security incident Year Type Location Impact/description References

1. US electric grid 2009 Power generation

and distribution

United States Mapping of the US electric grid by cyberspies.

Although no damage was done, it was reported

that the backdoors to the system could be

opened during crisis times.

[3]

2. Bushehr nuclear

power plant

2010 Power generation Iran Stuxnet malware used to manipulate control

systems caused the destruction of more than

1000 centrifuges.

[4,2]

3. Ukrainian power

companies

2015 Power distribution Ukraine Remote cyber intrusions at three electric power

distribution companies causing unscheduled

power outages and impacting 225,000

customers.

[5]

4. Power grid

cyberattack

2019 Communication Western

United States

Loss of communication with multiple power

generation sites. Firewalls rebooting and going

offline for nearly 10 hours

[6,7]



8.3 Federated learning and challenges

In this section, an overview of FL and the corresponding challenges is provided.

8.3.1 Federated learning

FL is a decentralized ML technique introduced by Google in the year 2016 [14]. It

aims at addressing two main challenges, which are privacy and resource constraints.

Efficient ML algorithms require a high volume of data for training purposes.

Nowadays, large datasets are available but are generally stored in isolated systems.

In centralized ML techniques, the data is transferred to a cloud platform or central

server for processing. The transfer of large amounts of data is sometimes infeasible

due to unstable Internet connections and the asymmetric nature of broadband

Internet. Typically, the uplink speed is less than that of the downlink. Moreover,

the uploading of a lot of data can clog the network and increase latency.

Privacy and new legislations are another set of challenges faced by centralized

ML techniques. The 2008 General Data Protection Regulation and other regulations

have been implemented to protect individuals’ privacy and data security.

Nowadays, integrating data across institutions and sharing raw data with third-party

organizations are complicated [14].

FL uses a decentralized approach and conducts training on individual devices on

which the data is generated. The technique aims at exploiting the unused processing

power of many modern edge devices. After the training, each device transfers only

the local model parameters to a central unit. The latter uses those parameters and

an aggregation algorithm to revise the global model. The updated model is then fed

back to individual devices for future use. Fig. 8.1 shows an FL model. The raw data

is not transferred and remain on the original devices [15]. The enhanced privacy

may encourage more users to participate in collaborative training.

8.3.2 Challenges of federated learning

FL is a relatively new technique that still presents some challenges. Statistical and

system heterogeneity are discussed in this section, whereas security threats are

discussed in Section 7.3.3.

8.3.2.1 Statistical heterogeneity

In FL, the various devices may generate data that is not reflective of the distribution

of the entire dataset leading to a nonindependent and identically distributed format.

Moreover, the datasets are considered unbalanced as the amount of data collected

by each device may vary. In [16], the authors propose a few methods to address the

challenges of statistical heterogeneity. The methods focus on the global model,

consider preprocessing data, and modify the local training approach.
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8.3.2.2 System heterogeneity

Distributed conventional ML is normally carried out in a data center on a set of

homogenous machines with a robust communication network. However, FL uses a

large number of heterogeneous devices to conduct local training over diverse net-

works. The network may not be stable at all times and lead to devices dropping off

[17]. These devices have varying computing, energy, and storage resources leading

to unequal training times. One possible approach to mitigate this problem is encour-

aging premium devices to participate in the training [16]. Nevertheless, robust

FL methods should tolerate participating devices dropping off in the middle of a

training iteration.

8.3.3 Survey of threats, attacks, and defense strategies

Numerous research works have been done, and many more are ongoing to identify

potential security risks. The information about security threats, attacks, and defen-

sive techniques in FL have been derived from reference [18] and are presented in

Table 8.2.

Poisoning [19,20] is a security threat that deals with the tampering of the data or

the model weights being exchanged during the FL process. It can be categorized

into data poisoning/data injection [21], model poisoning [24�26], and data modifi-

cation [27,28]. Data poisoning or data injection deals with incorporating malicious

data points in the form of training data or model parameters, depending on where

Cloud/Server

Local DeviceLocal DeviceLocal Device

Local
update

Local
update

Local update

Global
Model

Global
Model

Global
Model

Figure 8.1 Federated learning model.

143Applicability of federated learning for securing critical energy infrastructures



the attack is taking place. Inference attacks [19,20] are mainly a privacy threat, but

the impact is as severe as that caused by poisoning attacks. Research for corre-

sponding countermeasures is ongoing in inference attacks, but anonymization

techniques can be used. Backdoor attacks [24,29] are quite difficult and time-

consuming to detect since it involves the injection of malicious tasks in existing

models without altering the latter’s accuracy. GAN-based attacks are mostly a com-

bination of inference and poisoning attacks [32]. Malicious server attack is very

dangerous in cross-device FL since model parameters can be easily extracted, and

global models can be manipulated with undetectable malicious tasks before broad-

casting to client devices. Communication bottleneck attacks significantly disrupt

the FL ecosystem when having low communication bandwidth due to different

flavors of denial of service attacks. Free-riding attacks [44] occur mainly in cases

where ML models are deployed from crowdsourced information. In this case, cli-

ents not contributing to the training process will be leveraging the global model.

They can, at any instant, have the ability to inject false updates without any training

on local data. Unavailability is, to some extent, similar to free-riding attacks, but in

this case, the client fails to contribute to the global model update. Eavesdropping

occurs on weak communication channels between client and server where an

Table 8.2 Security threats, attacks, and defensive techniques in federated learning (FL)

domain.

Security threats, attacks in FL domain Defensive techniques for security

vulnerabilities in FL

Poisoning

[19,20]

Data poisoning/data injection

[21]

Sniper [22], data sanitization [23]

Model poisoning [24�26]

Data modification [27,28]

Inference attacks [19,20]

Backdoor attacks [24,29] Model pruning and fine-tuning

[30,31]

Generative adversarial networks [32] PDGAN [33]

Malicious server [34] Secure FL [35], anomaly detection

[36], Foolsgold [37]

Communication bottlenecks [38,39] Communication bandwidth

preserving [40,41], knowledge

distillation [42], federated

multitask learning [43]

Free-riding attacks [44] Enhanced anomaly detection using

autoencoders [45]

UnavailabilityEavesdroppingInterplay with data

protection laws

Moving target defense [46]
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attacker can monitor traffic and extract data. The interplay with data protection

laws usually has a low possibility of occurrence since a thorough analysis is con-

ducted by configurators of the FL environment before being deployed into produc-

tion. All the corresponding defensive mechanisms are also provided for each of the

presently known attacks in the literature. However, there is ongoing research in

detecting security threats, enhancing existing defensive mechanisms, and devising

novel defense systems for existing and newly discovered security in the FL ecosys-

tem. The advantages/strengths and drawbacks/weaknesses can be summarized as

shown in Figs. 8.2 and 8.3.

Advantages/
Strengths of 

FL

Minimal 
Infrastructure 

Enhanced 
learning 

Flexible 
Scalability 

Real Time 
Predic�on

Be�er Data 
Security and 

Privacy

Figure 8.2 Advantages/strengths of federated learning.

Drawbacks 
/Weaknesses 

of FL 

Limited 
device 

resources

Non IID and 
unbalanced 

data sets

Limited 
bandwidth 

at some 
loca�ons

Unreliable 
devices and 
connec�on 

Figure 8.3 Drawbacks/weaknesses of federated learning.
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8.4 Simulated system model

The simulations have been conducted using the Python programming language.

More specifically, the PyGAD library is used for training a classification-based

neural network using the genetic algorithm [47].

The parameters set in the mathematical model of a genetic algorithm-based

neural network are as follows:

� number of neurons at the input layer: 78
� number of hidden layers: 2
� number of neurons in each hidden layer: 10
� number of neurons in the output layer: 2
� activation function for the neurons of the hidden layer: “relu”
� activation function for the neurons of the output layer: “softmax”

8.4.1 System architecture

The conventional FL model simulated is shown in Fig. 8.4. The individual models

for each attack are learned locally, the model parameters are aggregated at the

EDGE server, and the global model is then broadcasted to the plants.

The scenario shown assumes that the two plants (Plant 1 and Plant 2) have a

local data store with preprocessed and labeled data ready for training an ML model.

Instead of having a centralized data store, the idea of FL is to have a centralized

model aggregation performed at the EDGE, as shown in Fig. 8.2. This technique

avoids the hassle of transferring data, which burdens the communication link and

Plant 1
Attack 1 -> Model_1

Plant 2
Attack 1 -> Model_2

Model parameters from Plant 1

Model parameters from Plant 2

Aggregated Model parameters

EDGE – Aggregating and 
updating model parameters

Figure 8.4 Simulated model for federated learning.
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raises data privacy and security concerns during the transfer. Given that only the

model parameters are being transferred, the risk for an attacker to access the data

during that process on the communication link has a minuscule or zero probability.

The simulation is performed such that a multithreaded socket connection is set

up with the initial model specified at the EDGE. The information about the model

is then forwarded to the two respective plants once the connection is established.

Locally, at the plants, the model is trained on the respective datasets. The para-

meters of which are then sent over to the EDGE for aggregation. The global model

obtained is then broadcasted to the plants, and a comparison is made in terms of fit-

ness with the previous local models. The model parameters are updated at the plants

and aggregated at the EDGE until no more improvement in the trained model is

observed. The process is then halted, the final model is sent over to the plants, and

the socket connection is closed.

8.4.2 HAI dataset

In this chapter, the Hardware-in-Loop-based Augmented Industrial control system

(HAI) security dataset [48�50] has been used to present the FL mechanism. The

HAI dataset has been made available on repositories, such as GitHub and Kaggle,

for research purposes geared toward anomaly detection in cyber-physical systems.

Starting with three independent laboratory-scale testbeds comprising a boiler, tur-

bine, and water-treatment component, a more complex system was devised later

[50]. The latter incorporated a hardware-in-the-loop (HIL) simulator combining all

three testbeds in a single system. The complete process architecture is described in

the documentation of the HAI dataset [49,50]. The simulations performed were that

of pumped-storage hydropower and thermal power generation. In a nutshell, the

dataset consists of Industrial Control System data from both normal and anomalous

conditions related to different types of cyberattacks. The sample data folder for the

HAI dataset used has the characteristics shown in Table 8.3. The dataset globally

consists of 78 feature columns and 4 columns for data labels representing the occur-

rence of an attack. An additional column for the timestamp is also available but is

excluded at the data preprocessing stage. Furthermore, the predictive model is set

to a binary classifier for simplicity, and thus a single column of attack label is used

from the four provided columns in the dataset.

The dataset has a structure corresponding to a siloed data store. For simulating

the scenario for FL, the data files have been rearranged and organized so that

training data is received from two distinct plants, and a test dataset is used for the

testing and validation of the federated model obtained. The breakdown of the data

files is as shown in Table 8.4.

The breakdown shown in Table 8.4 has been performed with the aim:

� to have a balanced distribution of the amount of data being trained at both plants,
� to have a balance between the mix of normal anomalous data at both plants, and
� to have a balanced distribution of the attack counts for training at both plants and the

testing.
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During the simulation, the computer’s hardware resources were not sufficient to

handle the data sizes being processed in parallel. For proceeding with the proper

running of the simulations, the redistribution and assignment of the data files were

performed, as highlighted in Table 8.4.

8.5 Simulation results

The simulation results obtained are presented in this section. The simulations have

been conducted using the Python programming language. More specifically, the

PyGAD library is used for training a classification-based neural network using the

genetic algorithm. The hardware used to perform the simulations has the specifica-

tions shown in Table 8.5.

8.5.1 Model fitness evolution

The evolution of the model fitness for one set of generations with the genetic algo-

rithm is shown in Fig. 8.5.

The evolution of the fitness of the different local models at the respective plants

is depicted in Fig. 8.3. It demonstrates how the fitness increases from approximately

50% to finally stabilize at around 97%. The final model is obtained when the fitness

settles and remains fairly constant over successive iterations and until the condition

for no further change is met. The confusion matrix representing the results obtained

with the test dataset is shown in Fig. 8.6.

Table 8.3 Characteristics of HAI dataset folder.

Normal dataset Attack dataset

Folder name/

version

Data points Files Interval Files Attack

count

Interval

HAI 21.03 78 points/sec train1.csv 60 hours test1.csv 5 12 hours

train2.csv 63 hours test2.csv 20 33 hours

train3.csv 229 hours test3.csv 8 30 hours

test4.csv 5 11 hours

test5.csv 12 26 hours

Table 8.4 Breakdown of data files.

Plant 1—Training data Plant 2—Training data Test data

train1.csv train3.csv test1.csv

train2.csv test3.csv test5.csv

test2.csv test4.csv �

148 IoT Enabled Multi-Energy Systems



8.5.2 Confusion matrix

The metric providing insight on the number of correct results that the model has

managed to identify is defined as the accuracy and is given as:

Accuracy5
Tp 1 Tn

Tp 1Fp 1Fn 1 Tn
5

1321 132794

1321 21 26741 1332794
5 0:9803 (8.1)

where Tp represents the true positive and is indicative of the “No Attack” labels

predicted as “No Attack,” Fp represents the false positive and is indicative of the

“No Attack” labels predicted as “Attack,” Fn represents the false negative and is

indicative of the “Attack” labels predicted as “No Attack,” Tn represents the true

negative and is indicative of the “Attack” labels predicted as “Attack.”

Table 8.5 Device specifications.

System type 64-bit operating system, 3 64-based processor

Processor Intel(R) Core(TM) i5�10210U CPU @ 1.60 GHz 2.11 GHz

Installed RAM 16.0 GB (15.8 GB usable)

Figure 8.5 Model fitness evolution. (A) Evolution of fitness in the range 50%�58%.

(B) Evolution of fitness in the range 51%�56%. (C) Evolution of fitness in the range

97.100%�97.125%. (D) Stabilised fitness between 97% and 98%.
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The precision metric represents the fraction of predicted attacks that have been

correctly classified and is given as:

Precision5
Tp

Tp 1Fp

5 0:9851 (8.2)

The fraction of the correctly predicted “Attack” labels to the total number of

“Attack” predicted classes is given by the recall:

Recall5
Tp

Tp 1Fn

5 0:0470 (8.3)

The specificity of the correctly predicted “No Attack” labels to the total number

of “No Attack” predicted classes is given by the recall:

Specificity5
Tn

Fp 1 Tn
5 1:0 (8.4)

The F-score measure, which enables the trade-off between precision and recall

metrics by approximately averaging them, is given as:

F2 score5
2xTp

2xTp 1Fp 1Fn

5 0:0898 (8.5)

Figure 8.6 Confusion matrix for FL model prediction with the HAI test dataset. FL,

Federated learning.
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In this case, the F-score is very low, and one possible reason could be the larger

number of “No Attack” labels in the test dataset, as can be seen from the confusion

matrix. The model used can thus be further tuned for use in the FL ecosystem such

that better accuracy and F-score are obtained.

8.6 Insights on federated learning security
countermeasures

One loophole that can be intuitively spotted in the simulated system is that the

socket connections are kept open until the final aggregated model is not obtained.

Although access to the data is limited in this case, the possibility for an attacker to

access the ML model parameters and make modifications can still not be pushed

aside. In the advent of this scenario, modification of the model parameters will

completely disrupt the proper functioning of the anomaly detection model itself. It

may result in an increased number of false positives or false negatives.

One possible way to tackle this scenario would be to use ensemble models on

top of the FL process. The single model parameters being transferred back and forth

between the plants and the EDGE aggregator do present a risk, if intercepted by an

attacker, in terms of the disruption of the model parameters themselves. This risk

can be reduced if the concept of ensemble learning [51] is used, whereby different

ML models are ensembled locally at the plants for usage.

Consider the model shown in Fig. 8.7 for illustration. Multiple models are

trained for the prediction of one specific attack. The additional security enhance-

ment is that different socket connections are used for parsing the model parameters.

There can be two approaches to this model involving the combined use of ensemble

and the FL approach. The first one consists of obtaining a local ensemble model at

each plant and having the model parameters of the ensemble models parsed until

the final aggregated model is obtained at the EDGE, which is then sent over to the

respective plants. However, the same risk as the previous model prevails with this

approach. If a cyber-attacker manages to access the model parameters of the ensem-

ble model and modifies them, then the whole predictive model will collapse.

Thus, a second approach can be employed to increase security further. The para-

meters of the individual models are exchanged with the EDGE over different socket

connections. Once the final model parameters are obtained at the EDGE and trans-

ferred to all the plants, a local ensemble with all the models is mounted at the

plants. In the advent that the parameters of one model have been intercepted and

tampered with by a cyber-attacker, the other models would compensate for the mal-

function of the tampered model and help detect it after several prediction parses.

This hybrid approach of using ensemble learning with FL brings about an additional

security layer and a robustness feature of the local aggregated models.

Despite the increased security and robustness features that can be inherently

obtained with the proposed methodology and mechanism, there is still the fact that

the socket connection remains open during the whole FL process. One possible
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proposal would be to have an intelligent mechanism that would open the socket

connection only when model parameters need to be exchanged between the plants

and EDGE. Furthermore, a different socket connection could be used each time the

exchange process needs to be carried out. In order to avoid complete randomness in

the establishment of socket connections, a pool of TCP ports could be selected to

enable intelligent selection and reuse. Additional security could be included by

using secure sockets such that a secure link is established for the parameters’

exchange. Further encryption mechanisms can also be incorporated at the para-

meters’ level and have distinct cryptographic schemes associated with each plant.

The proposed layers of security would be adding complexity to the whole sys-

tem. Still, the burden on the communication link is, to a very large extent, lesser

Plant 1
Attack 1 -> Model_11

Attack 1 -> Model_12

.

.

.

Attack 1 -> Model_1n

Plant 2
Attack 1 -> Model_21

Attack 1 -> Model_22

.

.

.

Attack 1 -> Model_2n

EDGE – Aggregating and 
updating model parameters

Model 11

Socket 1

Thread 1

Model 1n

Socket n

Thread 1

Model 2n

Socket n

Thread 2

Model 21

Socket 1

Thread 2

... ...

Ensemble Model_1 Ensemble Model_2

Figure 8.7 Hybrid model with federated learning and ensemble learning.
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than having voluminous data transfer to a centralized location. The idea is to add to

the security level already achieved when using FL. Even if an attacker manages to

get hold of the model parameters after decryption of one of the models, the latter

will still be required to overcome the different encryptions of the other models.

Furthermore, even if the attacker alters the model parameters managed to be

decrypted, the usage of the local ensemble model would be in a position to detect

and handle that situation effectively.

Additional security layers can be incorporated by leveraging blockchain technol-

ogy [52,53] to reinforce the defense systems against malicious cyberattacks in the

realm of FL. The blockchain architecture involves the exchange and verification of

local learning model updates. More specifically, the local/global model parameter

weights can be saved on a blockchain ledger to ensure the security of the respective

models. Moreover, the use of differential privacy mechanisms with FL is being

extensively investigated to tackle data privacy concerns [54,55]. More robust hybrid

data privacy and anonymization algorithms [56], involving differential privacy,

k-anonymity, k-map, and l-diversity, could also be investigated.

Modern energy grids consist of numerous renewable plants interconnected with

each other. This setup comes with a high level of individual uncertainties to the

global system. However, the FL mechanism evaluated in this chapter is suitable for

modern energy grids in the sense that a security mechanism is put in place to pro-

tect the ML/ensemble models used for detecting these uncertainties. In addition, the

FL model put in place has the ability to incorporate the newly detected and learned

uncertainties locally and further aggregate it in the global model.

8.7 Conclusion

CEIs are rapidly adopting a combination of IoT architectures and intelligent sys-

tems for data acquisition and actionable insights. Increasing the smartness of legacy

systems entails the opening up of communication links, thereby making CEIs more

prone to cyberattacks. Additionally, ML is being extensively investigated and

deployed in CEIs for predictive analytics, and one approach that is gaining signifi-

cant ground is FL. FL can offer privacy-enhanced solutions for smart grid opera-

tions. It avoids the transmission to the cloud and possible leakage of information,

such as energy preferences, power traces, and addresses of individual households or

companies. In this work, a review of cyberattacks in smart grids has been presented

together with FL and its challenges. A system model of FL in CEIs for detecting

cyberattacks has been simulated, and the corresponding results are presented. As

such, the main achievement of this chapter lies in the presentation of a simulated

framework of a FL environment related to CEIs. Another achievement and contri-

bution of this chapter deals with the assessment of the potential security threats in

the simulated architecture for FL and the insights provided toward possible counter-

measures that could be implemented to obtain a more robust system and move

closer to the possibility of standardization.
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9.1 Introduction

Because of the rapid increase in internet-based technologies, cloud computing pro-

vides a large-scale and powerful computing infrastructure for various applications.

IoT devices generate large-scale data for real-time critical applications. Those data

need to be preprocessed before transmitting onto the cloud for storage and further

processing. The cloud computing platform offers big data storage, as well as large-

scale processing services. The cloud service can be used to integrate the complete

life cycle of data collection, transmission, processing, storage, and analytics; how-

ever, the above-mentioned infrastructure also suffers from security and privacy

threats due to shared and multitenancy features supported by cloud computing [1].

Many issues have already been addressed and continued. Continuous enhancement

needs more investigation of related issues in this field for the wide deployment of

IoT Enabled Multi-Energy Systems. DOI: https://doi.org/10.1016/B978-0-323-95421-1.00007-0
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applications on the cloud. Since the semantics of data keeps on changing, security

systems also need a continuous understanding of the data pattern, user, system, and

how event interact with the data in order to protect it. Effective research is required

for more scalable detection and prevention techniques in the cloud computing

environment. In this paper, we will propose an efficient real-time string-matching

technique, which helps in monitoring the device from malicious activities against

various attacks varying from network packet monitoring to sensitive and confiden-

tial information detection and prevention.

For all our proofs and implementations, we have used the multifast library and

tool [2] implemented in C programming language efficient tool for mass string

search solution via Aho�Corasick (AC) algorithm. Along with multifast, we also

used regular expression validation using the PCRE2-based regex101 library [3].

All the state diagram for finite state machine is drawn using JFLAP [4]. All the

diagrams are constructed using draw.io [5]

9.2 Background

In this section, we will discuss several related algorithms, such as the

Knuth�Morris�Pratt algorithm (KMP) and AC string-matching techniques, and

their possible applications in cloud security using a virtual wireless sensor network.

These techniques are very useful for maintaining real-time cloud-scale security and

confidentiality for sensitive content to comply with data privacy laws and regula-

tions like HIPAA policy. The current traditional policy-based approach, combined

with dictionary and regular expression, still exists and is valid. This approach is

based on string matching of related keywords maintained in a well-defined

dictionary. The demand for the detection of sensitive information from its semantic

contextual information through machine learning, AI, and deep learning techniques

are, however, increasing. The data loss prevention (DLP) strategy ensures regula-

tory compliance, as well as the security of personnel health information, personnel

identifiable information, and intellectual property (IP), during the transmission [6]

from the private cloud to the public cloud when such risks are high. In Ref. [6],

context-aware detection methods claim a better performance over the existing

dictionary-based methods.

9.2.1 Knuth�Morris�Pratt algorithm

KMP [7] is one of the well-known string search algorithms improving over the

naive string search algorithm where every character input search string n is com-

pared with each character in the input text m. The KMP algorithm approach is to

create a failure function for each character in m, defining the number of characters,

which can be skipped during a failed partial match in m. This technique results in

no backing up while iterating “m”, that is, no character in “m” will, in the worst

case, be compared more than once, and therefore, result in a linear time O(|n|)
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complexity with respect to the size of “n”. There will be an added time complexity

when constructing the failure function, which also has a linear time complexity with

respect to the size of the search string m, resulting in overall time complexity of Θsize

(m)1 size(n) [8].

9.2.2 Aho�Corasick algorithm

According to AC [9], string search algorithm based on a finite state machine (FSM)

constructed from a list of keywords K. The main goal of this algorithm is to locate

all occurrences of K in a text string. Any Aho�Corasick finite state machine

(AC-FSM) is defined using six tuples [10] defined in Eq. 9.1.

AC-FSM5 fQ;
X

; δ;Δ; q0;Fg (9.1)

where Q is a set of states,
P

is a set of input characters, δ is the goto function

defined in Eq. 9.2, Δ is a set of success and failure functions defined in Eqs. 9.3

and 9.4, respectively. q0 AQ is initial state, F DQ is a set of the final state.

Transition between the state goto q; cð Þ: Q3
X

! Q (9.2)

Represents a pattern match success qð Þ: Q ! F (9.3)

If c is not defined in go to function failureðqÞ: Q ! Q� (9.4)

The fail function, that is, failure(q), is the state transition from state qi to state qj
when no transition is defined in the goto function for the current input character.

Similarly, the success function, that is, success (q), represents a successful match

from list K. The finite state machine [8] is represented in Fig. 9.1 based on the

TRIE data structure. AC goto() for keywords K5 {‘/usr/lib, ‘/usr/src’, ‘/usr/bin’} is

represented in Table 9.1.

The complexity of constructing state machine for the |K| number of keywords is

O Kj j:Lð Þ where L is the average length of the keyword. Each transition takes

constant time and the time complexity to process an input string of length n is

O n1max Kð Þð Þ [8].

Figure 9.1 Aho�Corasick goto function.

161A lightweight string-matching technique for secure communication within IoT energy systems



9.2.3 Data loss prevention in cloud service

In the era of cloud computing, DLP has become an important security strategy. It

helps in protecting sensitive information from accidental loss of data outside of the

trust zone. DLP service contains a set of policies and tools that are meant to prevent

data leakage due to intentional or unintentional misuse. This equally applies to all

states of data, that is, data at rest, data in motion, and data in use. In public and

hybrid clouds, there exist many potential risks that need mitigation to ensure opti-

mal utilization of service. One of the major risks is maintaining the security and

confidentiality of sensitive information. Real-time detection of security content in

the cloud is a critical step to preventing data loss, as well as complying with laws

and regulations. For proactive early detection of sensitive data in order to govern,

manage, protect, and use in the cloud environment [6], we proposed a system that

could detect sensitive content using a dictionary and policy-based approach with

the help of the modified AC technique. The main goal of DLP on the cloud is to

ensure that, out of many cloud applications or managed and unmanaged app

instances, try to find, protect and classify data used by applications, as well as data

movement between SaaS cloud applications, IaaS cloud service, email, and the

web. In this paper, we will propose the design of vWSN to either allow or block

using policy enforcement to restrict activities such as downloading and copying. It

is also a key driver mechanism to assure regulatory compliance and IP protection.

9.3 Literature review

Data protection is the most important security issue when it comes to the transfer of

an organization’s data to a remote machine, especially a hybrid or public cloud.

Many techniques have already been proposed, but there are a lot of challenges.

Some of the popular security techniques are secure socket layer, encryption, multi-

tenancy, access control list, etc. cloud computing provides fast and cost-effective

solutions using shared storage and computing resource.

9.4 Proposed architecture and design

The proposed design is based on a content-aware DLP technique using exact data

match. It is a content-based data modeling technique where sensitive information

Table 9.1 Success function.

State (q) Success(q)

q8 /usr/lib

q11 /usr/bin

q14 /usr/src
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follows a certain pattern, which can be queried using regular expression. The data

can be classified into pattern, keyword, confidence level, and proximity [11]. The

confidence level can be further divided into high, medium, and low. Sensitive infor-

mation within the document is a combination of primary and supporting element

(as indicated in Fig. 9.2). Proximity is the distance between policy-defined pairs of

words. If the words are within the range, then a match is triggered.

The proposed design on which thread pool consists of a group of threads to sup-

port multitenant. Each agent is assigned a free thread from the thread pool, which is

responsible for processing the input streams through the AC driver program, which

is a combination of a multifast string processing engine, dictionary, terms, and

regular expression.

In a SaaS (software as a service) model, the above design can be easily integrated

through REST API-based communication protocol to implement CRUD (create, read,

update, and delete) operations based on the sensitivity of information contained in the

document. The request is sent from the cloud storage service (SaaS) layer using REST

API call to the DLP server to inspect files in real time for possible action. The action

could allow, quarantine, or block the data that violates the regulation. It can be used for

on-demand detection of files.

9.5 Result, discussion, and findings

The comparative analysis is presented along with a graph for different input file

sizes, percentage of data match, and run time on a virtual machine.

Table 9.2 shows the experimental value, which is done on the Linux platform on a

virtual system having 8-Gb RAM and 8-core processor intel core i9 2.3 GHz. The result

is for policies having a combined dictionary and regex-based search (as indicated in

Fig. 9.3) using the proposed AC model.

The final step is to match the content with the configured rule. Each rule is

matched against the payload. The payload is processed through the AC state

machine to determine if any of the rule matches. If the specified content is found,

then a user-defined action is performed.

Figure 9.2 Pattern consists primary and supporting elements and proximity.
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9.5.1 Performance test result

In the below graph (as indicated in Fig. 9.4) is shown the percentage of record

matches on the x-axis, ranging from (0, 100, 25) in the sample data that varies from

10 kb to 1 Gb, whereas the y-axis represents the run time in ms. It is observed that

when a sample doesn’t match, then the time taken to run the policies is proportional

to the sample size, which is also the same as the naı̈ve method, which always

remains proportional to file size. The algorithm performs well when the sample

contains matching data.

The graph in Fig. 9.5, is the result where the x-axis represents file size, and the

running time (ms) on the y-axis.

9.5.2 Comparative analysis of Aho�Corasick versus
Knuth�Morris�Pratt

Fig. 9.5 shows average run time for pattern match using AC and KMP algorithm.

Different experiments [8] show that performance of the AC algorithm is much

better after a threshold point.

Table 9.2 Performance test result for multiple policies for varying sizes.

File size

(kb/Mb/Gb)

Run time (ms)

(no match)

25%�30%

match

50%�60%

match

75%�80%

match

100%

match

10 kb 1286 1275 1310 1289 1293

100 kb 1287 1357 1451 1525 1632

1 Mb 1327 1850 2127 2440 2530

50 Mb 3371 15,932 15,783 17,515 17,900

100 Mb 5380 15,839 15,767 17,954 17,698

1 Gb 42,858 15,656 16,000 17,634 17,664

Figure 9.3 Aho�Corasick-based policy engine.
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Figure 9.4 Percentage match versus run time (ms).

Figure 9.5 File size versus run time (ms).
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9.6 Conclusion

In this paper, we introduced a model using a dictionary, regular expression combined

with AC string-matching technique for detecting sensitive content in the public and

hybrid cloud model. It also leverages contextual semantic information to some extent.

The proposed DLP system can detect sensitive content at various granularity levels

within the document and respond immediately to any event or behavior that violates

data sensitivity compliance. We also demonstrate that for various synthetic data on the

proposed model and methods, the system is capable enough to mitigate future threats

that could help in applying strong security and integrity of their hybrid cloud by taking

appropriate preventative measures.
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