

IronRuby
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Shay Friedman

IronRuby Unleashed
Copyright © 2010 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-672-33078-0
ISBN-10: 0-672-33078-4

Library of Congress Cataloging-in-Publication Data

Friedman, Shay.
IronRuby unleashed / Shay Friedman.

p. cm.
ISBN 978-0-672-33078-0

1. IronRuby (Computer program language) 2. Microsoft .NET Framework. 3. Ruby
(Computer program language) I. Title.

QA76.73.I586F74 2010
006.7’882—dc22

2009050114

Printed in the United States of America

First Printing: February 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793

international@pearsontechgroup.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Word Wise Publishing
Services

Proofreader
San Dee Phillips

Technical Editor
Justin Etheredge

Publishing
Coordinator
Cindy Teeters

Interior Designer
Gary Adair

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction . 1

Part I Introduction to IronRuby

1 Introduction to the Ruby Language. 5

2 Introduction to the .NET Framework. 13

3 Introduction to the Dynamic Language Runtime (DLR) . 21

4 Getting Started with IronRuby . 25

Part II The Ruby Language

5 The Basic Basics. 43

6 Ruby’s Code-Containing Structures . 87

7 The Standard Library. 131

8 Advanced Ruby . 161

Part III IronRuby Fundamentals

9 .NET Interoperability Fundamentals . 207

10 Object-Oriented .NET in IronRuby . 239

Part IV IronRuby and the .NET World

11 Data Access . 259

12 Windows Forms. 281

13 Windows Presentation Foundation (WPF) . 303

14 Ruby on Rails . 331

15 ASP.NET MVC . 363

16 Silverlight . 401

17 Unit Testing . 425

18 Using IronRuby from C#/VB.NET . 459

Part V Advanced IronRuby

19 Extending IronRuby. 477

Index. 511

Table of Contents

Introduction 1

Part I Introduction to IronRuby

1 Introduction to the Ruby Language 5

History of the Ruby Language. 5
Implementations . 6
Features . 6

Dynamic Language. 6
Object Oriented . 7
Duck Typing . 8
Metaprogramming . 9
REPL . 10
Available Libraries . 11

2 Introduction to the .NET Framework 13

History of the .NET Framework. 13
Overview . 15
Features . 16

Common Language Infrastructure. 16
Assemblies . 18
Base Class Library . 19
Security . 19
Memory Management. 19
Frameworks . 20

3 Introduction to the Dynamic Language Runtime 21

Overview . 22
Features . 23

Common Hosting Model . 23
Runtime Components. 23
Language Implementation . 24

v

4 Getting Started with IronRuby 25

Overview . 25
Installing IronRuby. 26

IronRuby Folders . 29
Getting the Sources . 29

Executables and Tools . 30
The IronRuby Interpreter (ir.exe). 31
File Execution Mode . 32

Development Environments . 34
Ruby in Steel. 34
NetBeans . 35
RubyMine. 36
Others . 37

The Power of IronRuby . 38

Part II The Ruby Language

5 Ruby Basics 43

Basic Syntax . 43
Comments. 43
Setting Values to Variables. 44
Calling Methods. 45
Code File Structure . 46
Coding Standards . 47

Hello World . 48
Variables . 48

Numbers. 48
Text . 50
Arrays. 54
Hashes . 57
Ranges. 59
Booleans. 60
Regular Expressions . 60
Date and Time . 62
Constants . 63

Control Structures . 64
Conditions . 64
Loops . 70
The yield Statement. 76
BEGIN and END. 77

Contents

vi

Exception Handling . 78
Exception Information. 78
rescue. 78
else . 81
ensure . 82
raise . 83
Custom Error Classes . 85

6 Ruby’s Code-Containing Structures 87

Methods . 87
Defining Methods . 88
Method Naming. 90
Returning a Value from Methods . 90
Method Name Aliasing . 91
Default Parameter Values . 92
Special Parameter Types . 93
Associate Methods with Objects. 94
Removing Method Definitions. 95

Blocks, Procs, and Lambdas . 96
Blocks . 96
Procs . 97
Lambdas. 99
Flow-Altering Keywords Within Blocks, Procs, and Lambdas. 100

Classes . 101
Defining Classes . 101
Creating a Class Instance. 102
Defining a Constructor . 102
Variables Inside Classes . 102
Accessors . 107
Methods . 109
Operator Overloading . 111
Special Methods . 115
The self Keyword . 118
Visibility Control. 118
Inheritance . 120
Duck Typing . 124

Modules. 126
Module-Contained Objects . 126
Namespaces . 127
Mixins . 128

IronRuby Unleashed

vii

7 The Standard Library 131

Using the Libraries . 131
Libraries Available in IronRuby . 132
Libraries Reference . 135

Abbrev. 135
Base64 . 135
Benchmark . 136
BigDecimal . 136
Complex. 137
CSV. 137
Digest . 138
E2MMAP . 139
English . 140
Erb . 141
FileUtils . 143
Logger . 143
Monitor . 144
Net/http . 144
Observer . 145
Open-uri . 145
Ping . 147
Rational . 152
Rexml. 153
Singleton . 154
Socket. 154
Thread. 157
YAML . 157
WEBrick. 157
Zlib . 158

Finding More Libraries . 159

8 Advanced Ruby 161

Threads. 161
Exceptions Within Threads. 163
Passing Data In and Out. 164
Thread Priority . 164
Thread State . 165
Thread Synchronization . 167

Handling Files . 169
Reading Files . 170
Writing Files. 172

Contents

viii

Accessing File Properties . 173
Listing Directories. 174
File Operations . 175

Reflection. 176
Finding Living Objects . 176
Investigating Objects . 177
Invoke Methods and Set Variables Dynamically. 178
Execute Code Dynamically . 180

Marshaling . 181
Binary Marshaling . 181
Textual Marshaling . 182

RubyGems. 183
Installing RubyGems. 183
Installing Gems . 183
Using Installed Gems . 183
Rake . 184
IronRuby RubyGems Limitations and Expertise . 185
Finding Gems. 185

Design Patterns. 186
The Strategy Pattern. 186
The Iterator Pattern . 188
The Command Pattern. 190
The Singleton Pattern . 192
The Observer Pattern . 194
The Builder Pattern. 196
Domain-Specific Languages . 199

Part III IronRuby Fundamentals

9 .NET Interoperability Fundamentals 207

Bringing .NET into Ruby . 207
require. 207
load_assembly . 209
load. 210
The $LOAD_PATH Variable. 210

.NET Code Mapping. 210
Types Differences. 211
Coding Standards Collision . 211
Private Binding Mode . 213

Using .NET Objects . 214
Namespaces . 214
Interfaces . 216

IronRuby Unleashed

ix

Classes. 216
Structs . 217
Delegates . 217
Events . 218
Enums . 221
Constants . 222
Methods . 222
Fields. 228
Properties. 228
Generics . 229

Special IronRuby Methods . 231
Object Class Methods . 231
Class Class Methods. 232
Method Class Methods. 233
String Class Methods . 234
The IronRuby Class. 235

CLR Objects and Ruby’s Reflection . 237
The Basic Object . 237

10 Object-Oriented .NET in IronRuby 239

Inheriting from CLR Classes . 239
Regular Classes . 239
Abstract Classes . 242
Sealed and Static Classes. 243

Inheriting from CLR Structs . 243
Inheriting from CLR Interfaces. 243
Overriding Methods . 245

Virtual Methods . 245
Abstract Methods. 246
Regular Methods. 247
Static Methods . 248
Methods with Multiple Overloads . 249
Sealed Methods . 250

Overriding Properties . 251
Overriding Events . 253
Opening CLR Classes . 254

Using Mixins. 254
Opening the Object Class . 255
Opening Namespaces . 256

Contents

x

Part IV IronRuby and the .NET World

11 Data Access 259

Hello, Data Access. 259
Preparing Your Environment. 260
Contacting a SQL Server . 260

Loading the Needed Assemblies . 260
Building the Class Structure. 260
Building the Connection String . 261
Opening a Connection to the SQL Server. 262
Querying the Database. 263
Wrapping Up sql.rb . 264
Using the SqlServerAccessor Class . 265

Contacting a MySQL Server . 265
Preparing the MySQL Database . 266
Loading the Assemblies . 267
Building the Class Structure. 267
Building the Connection String . 267
Opening a Connection to the MySQL Server . 268
Querying the Database. 268
Inserting Records . 269
Deleting Records. 269
Wrapping Up mysql.rb. 270
Using the MySQLAccessor Class . 272

Design Considerations. 272
The CachedDataAccess Class. 276

Wrapping Up cached_data_access.rb. 277
Using the CachedDataAccess Class . 278

A Word About LINQ. 279

12 Windows Forms 281

Introduction. 281
The Application Structure. 282

Building the Chat Class . 282
Requiring the Needed Assemblies . 282
Initiating the Class . 282
Receiving Messages . 283
Sending Messages . 283
Wrapping Up the Chat Class (chat.rb) . 284

Building the Chat Windows Form . 285
Loading the Needed Assemblies . 285
Building the Class. 285

IronRuby Unleashed

xi

Initializing the Form . 286
Setting the Form Properties . 287
Adding Controls . 289
Adding Functionality . 293
Using the Visual Studio Visual Designer. 295
Wrapping Up the ChatForm Class . 297

Writing the Execution Code. 300

13 Windows Presentation Foundation (WPF) 303

Hello, WPF. 303
XAML. 305

Namespaces . 306
IronRuby and WPF Fundamentals . 307

Running XAML . 307
Retrieving WPF Elements . 308
Event Handling . 308

Windows . 309
Window. 309
Navigation Window. 314

Layout Controls. 317
StackPanel . 317
Grid . 319
Canvas . 320
More Panels . 321

Graphics and Animations . 321
Shapes . 322
Brushes. 322
Animations . 324

Data Binding . 325
Binding to Static Data . 325
Binding to Dynamic Data. 327

REPL. 329

14 Ruby on Rails 331

Preparing Your Environment. 331
Hello, IronRuby on Rails. 332

Creating the Initial Project Files . 333
Directory Structure . 333
Database Configuration. 334
Running the Server . 337

Contents

xii

The Basic Concepts . 339
MVC . 339
REST. 339
CoC . 340
DRY. 340

Main Components . 340
The Model: ActiveRecord. 340
The View: ActionView. 341
The Controller: ActionController . 341
Routes . 341

Know Your Environment . 342
script/server . 342
script/generate. 343
db:migrate . 345

Creating a Page. 346
Generating the Page Controller and View . 346
Helper Classes . 349
Adding Stylesheets. 350
Adding Layouts . 351
Adding Functionality . 353

Creating a Database-Driven Page . 354
Generating the Page Resources. 354
Polishing the Index Page . 356

15 ASP.NET MVC 363

Preparing Your Environment. 363
Installing ASP.NET MVC. 364
Obtaining the IronRubyMvc DLL . 364
Adding IronRubyMvc Templates to Visual Studio . 365

Hello, ASP.NET MVC . 365
Generating the Initial Project. 365

MVC. 368
Models . 368
Controllers. 371
alias_action . 375
Views . 378

Routes . 385
Custom Routes . 386

Filters . 387
Action Filters. 387
Result Filters . 390
Authorization Filters . 392

IronRuby Unleashed

xiii

Exception Filters . 393
Controller-wide Filters . 394
Custom Action Filter Classes. 395

Validations . 396
Inside the Model . 396
Inside the Controller. 396
Inside the View . 397

Classic ASP.NET Features. 398
A Word About Classic ASP.NET. 398

16 Silverlight 401

Prepare Your Environment. 402
Hello, Silverlight . 402

The sl Tool: The Silverlight Application Creator. 402
The chr Tool: The Development Server . 404

Add Silverlight to a Web Page . 406
XAML. 409
Layout . 410
Controls. 411
Adding Code . 411

Running XAML . 411
Retrieving Silverlight Elements . 412
Event Handling . 414
Accessing the HTML Page and Window . 414

Graphics . 415
Media and Animations . 417
Data Binding . 419

Static Data . 419
Dynamic Data . 420
Data Templates. 422

17 Unit Testing 425

The Tested Code . 426
Test::Unit . 427

Test Cases . 427
Assertions . 428
Setup and Teardown . 432
Test Suites . 433
Running the Tests . 434

RSpec. 435
Install RSpec . 436
Requiring Needed Libraries . 436

Contents

xiv

Running Tests . 437
Creating a Behavior with describe . 438
Creating Examples with it . 439
Expectation Methods . 439
Before and After . 442

Cucumber . 443
Installing Cucumber . 445
Project Structure . 445
Features . 446
Scenarios . 447
A Background. 452
Tags. 453
Hooks. 454
A World . 456
Multilanguage . 456
Executing Cucumber. 457

18 Using IronRuby from C#/VB.NET 459

Hello, IronRuby from CLR . 459
The Classes of the Process. 461

ScriptRuntime . 462
ScriptEngine. 463
ScriptScope . 465
ScriptSource . 466

Executing IronRuby from C#/VB.NET . 468
Executing an IronRuby File. 468
Executing IronRuby Code from a String. 468
Pass Variables to and from IronRuby . 469
Using IronRuby Objects . 470
Using External Libraries . 472

Part V Advanced IronRuby

19 Extending IronRuby 477

Creating an Extension. 478
Main Concepts . 478
The Extension Project . 481
Target Environments. 482
Modules. 482
Classes. 488
Methods . 491
Constants . 501

IronRuby Unleashed

xv

Using an Extension in IronRuby . 501
Building an IronRuby Extension. 501

Creating the Extension Visual Studio Project. 502
Adding Build Configurations . 502
Creating the Actual Code . 504
Creating the Ruby Programming Interface . 506
Generating the Library Initializer . 508
Using the IronRuby .NET Extension in IronRuby. 509

Index 511

Contents

About the Author

Shay Friedman works extensively with IronRuby and other dynamic languages, but got his
start writing DOS scripts at age 8. He has been working professionally since age 16—first
as a freelance Web developer, coding mainly in ColdFusion and ASP, and later as part of
an information security team in an Israel Defense Forces (IDF) unit, where he developed in
C#, C++, and Perl. Friedman moved on to join Advantech Technologies as a C# developer,
and later as the leader of a Web development team at ActionBase. He currently works as a
consultant and teacher of dynamic languages and ASP.NET at The Sela Group, conducting
training courses around the world.

Feel free to contact the author through his website at http://www.IronShay.com.

http://www.IronShay.com

Dedication

To Shira, you bring light to my life.
You make me believe I can achieve anything.

With you, I really can.

To my parents, Shimon and Hana, my sister, Tali,
and my brothers, Ofer and Shraga, you taught me well

and helped me become who I am today.

Acknowledgments

Writing a book is not an easy task at all. However, without the help of many people this
task would have been much more difficult, on the edge of impossible. I want to thank
these people for lending me a hand during the process of writing this book.

To Brook Farling, the nicest person you would ever meet and a great acquisitions editor as
well, thanks for the support, the patience, and the understanding.

To Justin Etheredge, a .NET guru, thanks for the technical reviews, feedback, and answers.

To the IronRuby team—John Lam, Jimmy Schementi, Jim Deville, Shri Borde, Tomas
Matousek, and Curt Hagenlocher—for helping me out with my hurdles while you were
working hard to make IronRuby possible.

To the IronRuby mailing list participants, for assisting with every question I ran into.

To the team at Sams—Cindy Teeters, Mark Renfrow, Andy Beaster, and Keith Cline—for
making this book possible.

To Shira, my better half, thanks for the unlimited support throughout this journey despite
the odd working hours and stressful days. I would not have been able to do it without
you.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific technical
questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

The Ruby language was developed by Yukihiro Matsumoto, who began developing Ruby on
February 24, 1993. His main reason for doing so was his dissatisfaction with the scripting
languages at the time, languages such as Perl and Python. He designed Ruby to be intuitive, to be
natural, and to follow the “principle of least surprise”—making developers enjoy writing code
and focus on the creative part of programming instead of fighting the language to fit their needs.

Ruby 1.0 was released on December 25, 1996, exactly 1 year after the first public release (version
0.9.5) of Ruby. For the first year afterward, Ruby was mainly used inside Japan. Its use expanded
outside of Japan a few years later, but it was still used by a small number of eager early adapters.

In 2006, David Heinemeier Hansson from 37signals released a web development framework
named Ruby on Rails. This innovative MVC web framework made the difference. More and more
developers started using Ruby on Rails to develop their web applications and in the process
became familiar with the Ruby language, too. Following these newcomers, a phrase was coined to
explain how most current Ruby developers have come to use it: I came for the Rails, but I stayed
for the Ruby.

Since then, Ruby has become one of the most popular programming languages in the world and
is being used by thousands of developers every day.

Ruby is a dynamic language. It combines ideas from Perl, Smalltalk, Eiffel, Ada, and Lisp to
provide an intuitive, flexible, and simple-to-use language. Its strengths are in its permissive
syntax and powerful built-in capabilities, especially metaprogramming capabilities. However, it
never appealed to .NET developers because it lacked integration with .NET code. This situation
has changed with the birth of IronRuby.

IronRuby is Microsoft’s implementation of the Ruby language. It runs on top of the Dynamic
Language Runtime (DLR), which is a special dynamic language service provider that is built on
top of the Common Language Runtime (CLR).

IronRuby provides seamless integration with .NET code. It enables you to use .NET objects in
Ruby code just as if they were pure Ruby objects. This opens vast opportunities to the .NET world
and to the Ruby world. Both sides gain the power and strength of the other and provide together
a new and exciting development environment.

2 Introduction

In this book, I take you through all aspects of IronRuby so that you learn how to best
leverage the language for the simplest of tasks to the most advanced ones.

Part I, “Introduction to IronRuby,” is an overview of the different pieces that make
IronRuby possible. You learn about where it all began and the main concepts of the Ruby
language, the .NET Framework, and the DLR. Part I ends with a chapter that introduces you
to IronRuby for the first time. In that chapter, you learn the basics about using IronRuby
and witness the powerful capabilities it brings to your development environment.

Part II, “The Ruby Language,” is devoted to an in-depth tutorial of the Ruby language. The
part starts with the basic syntax, goes on with Ruby object-oriented programming capabili-
ties, and ends with advanced concepts and techniques.

In Part III, “IronRuby Fundamentals,” I add the Iron to Ruby. This part contains all the
information you need about IronRuby .NET integration. I explain how every .NET item
can be used from IronRuby—from variables to implementing .NET interfaces.

Part IV, “IronRuby and the .Net World,” is the practical part. It contains guides for how to
use IronRuby in several different scenarios. Most of the current .NET and Ruby frameworks
are explained, including WPF, ASP.Net MVC, Ruby on Rails, and Silverlight. In addition,
other possible usages are explained, such as testing .NET code using Ruby’s different unit
testing frameworks and running IronRuby code from .NET code.

The last part of the book, Part V, “Advanced IronRuby,” covers IronRuby advanced topics.
If you want to extend IronRuby objects or to create .NET code libraries that fit better to
Ruby code, you will be interested in what this part has to offer.

I believe that IronRuby can enhance your work and enable you to do things you have not
done before. I hope you find this book helpful and informative and that you can exploit
its contents in your own projects and development tasks.

PART I

Introduction to
IronRuby

IN THIS PART

CHAPTER 1 Introduction to the Ruby
Language 5

CHAPTER 2 Introduction to the .NET
Framework 13

CHAPTER 3 Introduction to the Dynamic
Language Runtime (DLR) 21

CHAPTER 4 Getting Started with IronRuby 25

This page intentionally left blank

CHAPTER 1

Introduction to the
Ruby Language

IN THIS CHAPTER

. History of the Ruby Language

. Implementations

. Features

After a few years of using the same static programming
language, we become apathetic to it. We think of its advan-
tages as an obvious thing; and moreover, we ignore its
disadvantages because we know there’s nothing we can do
about them.

We have to write all this code so that the single line of the
code we really intended to write can be executed; we have
to follow strict rules if we want our application to compile;
and when our application gets bigger, it takes a few minutes
to test any change in a single line of code.

When my interest in Ruby began to deepen, I had to remem-
ber to keep my mouth shut. The whole new world that was
revealing to me was so different from what I was used to,
and the built-in capabilities of the language just struck me.

In this chapter, I introduce you to the Ruby language. What
you learn here about its capabilities will, I hope, pique your
interest in the whole new world of opportunity that lies
ahead of you with Ruby.

History of the Ruby Language
Yukihiro Matsumoto, also known in the Ruby community
as Matz, started the Ruby programming language in 1993.
His goal was to make a language more powerful than Perl
and more object oriented than Python. The language was
designed for programmer productivity and fun. The result
was eventually a mix of Perl, Smalltalk, Eiffel, Ada, and Lisp.

6 CHAPTER 1 Introduction to the Ruby Language

The name Ruby was preferred over Coral (the second possibility) because ruby the
gemstone was the birthstone of one of Matsumoto’s colleagues.

The first version, 0.95, was released in December 1995 and was quickly followed by three
more versions in the next 2 days. One year later, in December 1996, Ruby 1.0 was released
to the public.

Until 1999, Ruby was known mainly within the borders of its country of origin, Japan.
After version 1.3 came out, interest began to increase outside of Japan, which led to the
establishment of Ruby’s first English mailing list.

It was not until 2006, when Ruby on Rails got the attention of the masses, that Ruby
became widely known. Since then, Ruby has reached the top 10 of the popular languages
list and continues to be used by thousands of developers worldwide.

The current stable Ruby version, 1.9.1, came out in January 2009.

Implementations
The first and most popular implementation of the Ruby language is called MRI, which is
short for Matz’s Ruby Interpreter. MRI is written in C and runs on most operating systems,
including Windows, Linux, and Mac. Recently, Microsoft Windows CE and Symbian OS
were added to the supported operating systems, bringing Ruby to cellular phones as well.

MRI is an open source project and is totally free to use. You can even grab the code and
contribute to the project. For more information about these subjects, take a look at http://
www.ruby-lang.org/en/community/ruby-core.

Many other implementations have been introduced over the years: JRuby, which runs on
top of the Java Virtual Machine; MacRuby; Rubinius; XRuby; and, of course, IronRuby.

Ruby has a test collection called Ruby Spec that describes the expected behavior of the
language. When a new implementation is created, it is tested against the Ruby Spec to
determine how close it complies to the expected language behavior.

Features
Ruby is an object-oriented dynamic language. It offers several features as a result of that
description, such as duck typing and an REPL (an interactive programming environment,
explained later in this chapter). In addition, the Ruby language contains a few unique
features, such as mixins and a huge collection of libraries. The next sections take you
through the main features one by one.

Dynamic Language

First of all, Ruby is a dynamic language. A dynamic language is a type of programming
language. Like any other programming language, dynamic languages support statements,
variables, and the handling of input and output. However, they differ from other
programming languages in their special behaviors.

http://www.ruby-lang.org/en/community/ruby-core
http://www.ruby-lang.org/en/community/ruby-core

7Features

The “signature” behavior of dynamic languages is the significant preference of runtime
over compilation time. They tend to execute behaviors, like code execution, during
runtime rather than compilation time because there is no traditional compilation step.

This special approach creates opportunities and incorporates capabilities that are too
complicated or even impossible to accomplish in other languages (for example, duck
typing and an REPL). Another issue inherent in the discussion about the differences
between static and dynamic languages is ceremony versus essence. Most static languages
force you to write quite a bit of code before you ever get to the code you really want to
write. For example, C# forces you to define a class and a method before you can start
writing the “real” code. Dynamic languages are not like that. They enable you to write
only the code you need; no class or method is required.

For example, if you want to write an application that writes “Hello World” to the screen,
this is the code you use:

class Main

{

static void main(string[] args)

{

Console.WriteLine(“Hello World”)

}

}

In the Ruby language, writing the same application requires only a single line of code:

puts “Hello World”

Although it might be concluded from the terms, dynamic languages are not the opposite
of static languages. They actually have more similarities than differences. Some even argue
that some alleged static languages, such as C#, are actually dynamic languages because of
their dynamic capabilities.

Object Oriented

Ruby is a fully class-based object-oriented language. As such, it features classes, inheri-
tance, encapsulation (using private, protected, and public directives), and polymorphism.
Every value in the language is, at its root, an Object class instance, even numeric or
Boolean values.

An especially interesting part of Ruby’s object-oriented capabilities is modules. A module
can contain several classes and group them together with a single logical name, very
similar to the concept of namespaces in C#. In addition, modules can contain methods.
Modules with methods can be included in, or “mixed into,” every class and enrich these
classes with their methods. This way you can declare and implement a certain behavior
and spread it to multiple classes with a single line of code. This is the way Ruby adds
enumeration capabilities to different built-in classes, for example.

8 CHAPTER 1 Introduction to the Ruby Language

For more information about Ruby’s object-oriented capabilities, see Chapter 6, “Ruby’s
Code-Containing Structures.”

Duck Typing

Ruby uses an implicit type system. Therefore, you do not need to declare the type of your
variables. However, this doesn’t mean Ruby doesn’t have types; Ruby has a dynamic
typing mechanism. This means that the types will be calculated during runtime and will
be enforced. This is the opposite approach to static typing, which is used commonly in
static programming languages. Programming languages that use static typing perform
type checks during compile time and prevent an application from compiling when a type
error is found.

To understand Ruby’s dynamic typing, take a look at the next code sample. It is okay
because it doesn’t fail any type policy validation:

my_var = 5

my_var = “IronRuby”

However, the next code raises an exception because when my_var is set with a string it
becomes a String type and supports only String methods, which do not include the
slash operator:

my_var = 5

my_var = my_var / 2 # OK

my_var = “IronRuby”

my_var = my_var / 2 # Error!

The implicit typing mechanism opens up the road for a feature called duck typing. The
basic principle is this: If it sounds like a duck and swims like a duck, then it’s probably a
duck. Taking this sentence into the programming world, this means that every object
should not be seen as an instance of class X. Instead, it should be seen as an object that
responds to method Y.

For example, suppose we have a method that adds two objects together and returns the
following result:

def add(a, b)

result = a + b

result

end

This method can obviously receive integers:

add(1, 3) # = 4

9Features

Moreover, it can receive floats, strings, or even a date and an integer combination:

add(1.5, 4.6) # = 6.1

add(“Iron”, “Ruby”) # = “IronRuby”

add(Time.now, 60) # = adds 60 seconds to the current time

The main concept here is that it does not matter which type the parameters consist of. It
just matters that they can be joined together with a plus operator.

Ruby offers a special method that can be used in such cases: respond_to?. This method
returns true if the target object contains an implementation of a method with a given
name. For example, the next sample code checks whether a string contains a definition of
a plus operator:

”My string”.respond_to?(“+”) # = true

Metaprogramming

Ruby is a permissive language. It gives as much control as possible to the programmer, and
programmers can generally reshape the language to their own needs instead of reshaping
themselves to the language.

Metaprogramming refers to Ruby’s capabilities in terms of modifying class implementation
(built-in and custom classes), controlling code executing during runtime, and reflection
functionality.

For example, Ruby can open a class and add, remove, or redefine its methods.

The next sample code adds a method to the built-in Numeric class, which prints the
number in a friendly message:

class Numeric

def print_friendly

puts “The number is: #{self}”

end

end

Now every number in the system responds to the print_friendly method—integers and
floats as well as every other instance of a class that inherits from the Numeric class:

1.print_friendly # Prints “The number is: 1”

1.8.print_friendly # Prints “The number is: 1.8”

In addition to opening classes, Ruby has methods that are used as fallback methods. This
means that whenever a method is called and it does not have an implementation, the call
is redirected to the fallback method. The fallback method is called method_missing.

10 CHAPTER 1 Introduction to the Ruby Language

The obvious use for such is error handling: When an unimplemented method is called, we
can log it or show some kind of a message to the user. This is a good use, but it doesn’t
take advantage of the great power that this mechanism holds. We can take it one step
further and use method_missing to enable users to write method names that can be inter-
preted afterward.

For example, the next code makes it possible to call methods like add_1_and_2 or
add_5_and_6 by using the method_missing fallback method:

class Sample

def method_missing(name)

Convert the method name to string

method_name = name.to_s

Run a regular expression on the method name

in order to retrieve the numbers

result = /add_(\d)_and_(\d)$/.match method_name

If result is null, send the method to the base implementation

since the name of the method isn’t valid for our operation

super if result.nil?

Get the found numbers (result[0] contains the whole valid string)

a = result[1].to_i

b = result[2].to_i

Return the sum of the two numbers

a + b

end

end

REPL

Ruby features a read-evaluate-print loop (REPL). REPL refers to the capability to receive
commands and execute them instantly. Pretty much like the Windows command prompt,
Ruby has an interactive console that allows writing Ruby code and executing it immedi-
ately. It also allows defining whole classes and using them.

The main console for IronRuby is accessible through the ir.exe file. Just run the file (which
should appear on the IronRuby installation folder), and the IronRuby console loads.

Following is a sample session on the IronRuby console:

> ir

IronRuby 1.0.0.0 on .NET 2.0.50727.4927

Copyright (c) Microsoft Corporation. All rights reserved.

>>> 1+1

=> 2

11Summary

>>> “IronRuby”.reverse

=> “ybuRnorI”

>>> def add(a, b)

... a + b

... end

=> nil

>>> add(1, 2)

=> 3

>>> exit

REPL is a great way to test code in a hurry or find out how a method reacts to a given input.
In this book, you also see that you can add REPL capabilities to your applications (for
example, WinForms, WPF, or Silverlight) and make testing and polishing them much easier.

Available Libraries

Ruby has been out there for more than 13 years now. That’s a lot of time for a program-
ming language, and during this time (especially in the past 3 years), a lot of libraries
were written for it. Most of them are free for use, and all you need to do to use them is
to find them.

There are libraries that cover almost everything, and there is a good chance that any
complex algorithm you are about to write has already been implemented and is just
waiting for you to use it.

Several websites collect and list these libraries. The biggest are RAA (http://raa.ruby-lang.
org), RubyForge (http://rubyforge.com), and GitHub (http://github.com).

For more information about Ruby libraries, see Chapter 7, “The Standard Library.”

Summary
The Ruby language is not a new language. It has been around for more than a decade and
has proven itself to many as the right language for the job. It definitely has a wow factor
when you start to discover its built-in capabilities.

Ruby offers many great features that help developers become more effective and happier
with their programming language. This is why Ruby has made it into the top 10 program-
ming languages in the world and continues to attract more and more converts.

http://raa.ruby-lang.org
http://raa.ruby-lang.org
http://rubyforge.com
http://github.com

This page intentionally left blank

CHAPTER 2

Introduction to the
.NET Framework

IN THIS CHAPTER

. History of the .NET Framework

. Overview

. Features

Microsoft announcement about the .NET framework in
2002, came after long years that C++ had been the king of
programming language for the Windows environment.
Some people liked it, a lot of others didn’t, to say the least.
You had to do so much work to get the most common task
done. The .NET Framework was released with a big promise
and even a bigger concept: Leave the nasty stuff to the
compiler and focus on your design and your targets.

The first version wasn’t that great. However, more than 7
years have gone by, and we’re already on version 3.5 of the
.NET Framework, and eagerly awaiting 4.0. C# and VB.Net
have already earned the trust of developers, and they both
are now in the top 10 programming languages in the world.

The .NET Framework is the other half of IronRuby. It
provides its architecture, services, and powerful frameworks,
which enable the Ruby language to walk the miles it
couldn’t have walked before.

In this chapter, you learn about the .NET Framework,
including where it came from and where it is now. You
learn about its architecture and main concepts and its range
of features.

History of the .NET Framework
Just like spoken languages, programming languages evolve.
That’s a fact. When a language stops to grow and advance,
it will slowly but surely lose all its fans and users. The .NET
Framework, initially, represented the evolution of C++, VB,

14 CHAPTER 2 Introduction to the .NET Framework

and ASP. In addition, the architecture of the .NET Framework offered an opportunity for
other languages to be created on top of it.

C++, VB 6, and ASP weren’t the only reasons for the .NET Framework, however. Microsoft
doesn’t live in a void, and the people at the headquarters couldn’t miss Sun’s new baby,
Java. Java first came out in 1996, and was a breakthrough in terms of cross-platform
deployment. Java’s concept was “write once, run anywhere”—a concept that could not be
achieved by any Microsoft languages at the time.

At the core of Java is the Java Virtual Machine, known as the JVM. The code you write
goes first to the JVM, where it is translated to machine code and executed. Thus, the only
thing that changes when moving between Windows and Linux, for example, is the JVM
implementation, and not your code.

Microsoft joined the choir and wrote its own JVM implementation, MSJVM. Moreover,
Microsoft created its own version of Java and named it J++. It even had an IDE, which was
called Visual J++.

Sun claimed that Microsoft did not conform to the Java standards and had added
Windows-only extensions to their MSJVM. As a result, Sun initiated litigation against
Microsoft for failing to adhere to Java’s license agreement. After a long battle, Microsoft
and Sun signed an agreement that practically meant that Microsoft’s Java implementation
would disappear in a few years. Since then, Microsoft has stopped developing its JVM
implementation, and J++ has been discontinued. The last Java-related action from
Microsoft came with J#, which was intended to help J++ developers to move on to the
new .NET Framework. However, the language is now discontinued, and its last version was
released with Visual Studio 2005.

After the Java experience, Microsoft started to work on its own idea: the .NET Framework.
Initially, it was called Next Generation Windows Services (NGWS), but that name was later
changed to the .NET Framework. Microsoft wanted industry approval for their new project
and sought out industry partners. As a result, Intel and HP joined Microsoft and cospon-
sored the implementation of C# and the Common Language Infrastructure (CLI).
Moreover, C# and CLI specifications are ratified by ECMA.

Unlike Java, Microsoft doesn’t share its CLI code and does not encourage the creation of
other runtime environments. Others, however, such as the Mono project (an open source
project led and sponsored by Novell), intend to run .NET code on various platforms,
including Linux, BSD, UNIX, Mac OS X, and Solaris.

The first version of the .NET Framework came out in 2002, followed by five more versions
in the next 7 years. By the time Microsoft released the .NET Framework, along with C#,
VB.Net, and ASP.Net, it was clear to all that programming in the Microsoft world would
never be the same again.

15Overview

Overview
The .NET Framework was created based on the experience, bad experience, of developers
with the language prior to it. For example, C and C++ weren’t cross platform. You had to
compile the code on the target operating system and even modify it for the application to
work on the specific system.

The .NET Framework brought a whole new architecture that resolves the problem
completely. The .NET architecture separates the framework into three different pieces:
the language, such as C# or VB.Net; the class library; and the Common Language
Runtime (CLR).

Figure 2.1 presents the architecture of the .NET Framework.

The separation is also hierarchical. The language code is on top and uses the base class
library. Then all that code goes through the CLR and gets executed.

Figure 2.2 shows the flow of .NET code until it is executed on the target machine.

The flow of program execution starts with the language code. This could be any .NET
language that uses the CLR. .NET dynamic languages, unlike static languages that commu-
nicate directly with the CLR, go through another layer before the CLR (the DLR, which is
discussed in the next chapter).

Next we compile the code via Visual Studio or csc.exe. Our .NET code is compiled into a
DLL or EXE file (according to the project type). This file is called a .NET assembly. The
assembly doesn’t hold the actual code we have written; it contains a Common
Intermediate Language (CIL, also known as IL or MSIL) code. CIL code is part of the
Common Language Infrastructure (CLI), and it is the language the CLR is familiar with.
For more information about CIL, see the “Features” section later in this chapter.

Class Library

CLR

Language Code

Custom Libraries

FIGURE 2.1 The architecture of the .NET Framework.

16 CHAPTER 2 Introduction to the .NET Framework

Code
C#, VB.Net, other .NET languages

Common Language
Runtime (CLR)

.Net Assembly

.Net Application Runs

Compiler compiles code into CIL
code

JIT compiles CIL code into machine
code which gets executed

FIGURE 2.2 The road of .NET code until it is executed on the target machine.

After the code is compiled and an assembly is created, we can run it. When the assembly
is run, it goes through the CLR, which is not a part of the application code or assembly
and comes in a separate installation package. A feature called JIT compiling (just-in-time),
which is a part of the CLR, converts the IL code to CPU instructs and executes them.

From then on, while the application is running, the CLR controls the code behind the
scenes and provides several services to it (for example, memory management, security,
and caching).

Features
Many .NET Framework features were designed to make the development process faster and
more efficient. The framework was also built so that applications could be run locally,
remotely, and distributed via the Internet. In addition, you notice that some of the
features are fixes for major problems in development prior to the .NET Framework.

Common Language Infrastructure

The Common Language Infrastructure (CLI) is a specification developed by Microsoft that
contains the details of the different parts of the CLI:

. Common Type System (CTS): Describes types and operators that can be used by
all CTS-compliant languages written on top of it.

. Metadata: Holds application structure information and references to CTS types,
which enables cross-language communication.

17Features

. Common Language Specification (CLS): Describes a set of rules that any CLS-
compliant language must conform to.

. Virtual Execution System (VES): Responsible for loading and running programs
written for the CLI and does so by using the application metadata.

The CLI has several different implementations. The most noted one is the Common
Language Runtime (CLR), which is Microsoft’s commercial implementation of the CLI. It
is distributed for free and works on Windows operating systems.

Mono, an open source project led by Novell, is another implementation. Its target is to
make it possible to run .NET applications on non-Windows platforms (including Linux,
Mac, BSD, and more).

Microsoft has some other CLI implementations, too; for example, the .NET Compact
Framework, which intends to bring .NET applications to mobile devices (and Xbox 360), and
Silverlight, which implements a part of the .NET Framework for use inside web browsers.

Common Language Runtime

The CLR is Microsoft’s commercial implementation of the CLI specs that runs on
Windows operating systems.

When .NET language code is compiled, the compiler converts the code to CIL, also known
as IL or MSIL code. This way, all code that reaches the CLR is CIL code. During runtime,
this CIL code is converted to machine code and gets executed. The component responsible
for compiling CIL into native machine code is called the JIT compiler.

Common Intermediate Language

CIL, formerly called Microsoft Intermediate Language (MSIL), is a low-level programming
language that every .NET language compiles to.

CIL is an object-oriented assembly language and is entirely platform-independent.
Therefore, the CLI can compile CIL code on different platforms.

To get the feeling of what CIL looks like, look at the next C# code. This code uses the base
library System.Console class and prints “Hi from C#” on the console:

private void PrintHello()

{

Console.WriteLine(“Hi from C#”);

}

The next code is the equivalent code in CIL:

.method private hidebysig instance void PrintHello() cil managed

{

.maxstack 8

L_0000: nop

L_0001: ldstr “Hi from C#”

18 CHAPTER 2 Introduction to the .NET Framework

L_0006: call void [mscorlib]System.Console::WriteLine(string)

L_000b: nop

L_000c: ret

}

Assemblies

A .NET assembly is a file (usually with an .exe or .dll extension) that contains .NET code
written in CIL.

A single assembly can contain multiple code files, and each one of them is called a module.
Code modules can, in principle, be written in different .NET languages and create an
assembly together, but currently Visual Studio does not support that.

This possibility is a direct result of the .NET framework architecture that compiles code
from different languages to the same CIL.

Every assembly has a name that consists of four parts:

. Short name: The name of the file without its extension.

. Culture: The culture of the assembly. Generally, assemblies are culture neutral, but
some assemblies do contain language-specific strings and resources that do have a
culture.

. Version: Every assembly has a version built from four values (major, minor, build,
and revision). These values are separated by dots, and so a version value will look
like 1.5.67.13422.

. Public key token: This is used when an assembly is signed. It contains a 64-bit
hash of the public key, which corresponds to the private key used when signing the
assembly. Signed assemblies are said to have a strong name. Signing the assembly
makes it more secure against possible spoofing attacks (in which the assembly is
maliciously replaced).

The Global Assembly Cache
In C++, all developers learned in their first week of training what DLL hell was. The lack
of standards and the lack of a central place for libraries made it really difficult to confirm
that all of them existed and whether they were in the correct version. This is exactly what
the Global Assembly Cache (GAC) addresses.

The GAC is a central place for all shared .NET libraries on a single machine. Assemblies
that are put in the GAC must have a version and be strong named.

It is possible for various versions of the same assembly to exist in the GAC. The applica-
tion that uses it should refer to a specific version if needed; otherwise, it will be supplied
with the latest one.

19Features

Base Class Library

The Base Class Library (BCL) is the standard library of the .NET framework available to all
languages written on top of it or using it.

The BCL contains various different libraries for many different needs. These include
libraries that provide basic needs such as basic types (String, Boolean, and so on) or
collection types (List, Dictionary, Stack, and so forth). More advanced libraries are avail-
able, too, including file handling, network protocols communication, database interac-
tion, and many more.

All the BCL library names start with System. For example, the basic library is called System,
and the library that contains collections is called System.Collections.

Security

The .NET framework provides two methods of security: Code Access Security (CAS), and
validation and verification.

CAS uses an object called evidence to find out which permissions are granted to the code.
An evidence can be the directory where the assembly is located, the URL from where the
assembly was launched, a strong name, or other available evidence types. (Custom
evidence implementation can also used.) When code runs, permission demands are made
to determine whether the code really has the requested permissions. Permissions are set in
permission sets and can control almost anything (for example, blocking file handling or
using network protocols).

Another security mechanism is validation and verification. When an assembly is loaded,
the CLR validates that the assembly contains valid metadata, CIL, and internal tables. In
addition, the CLR tries to verify that the assembly code doesn’t do anything malicious.

Memory Management

One of the biggest performance and security problems in C++ was faulty memory manage-
ment. The .NET Framework takes care of that and removes that headache for the developer.

The CLR contains a component called Garbage Collector (GC). This component wakes up
when there is a need to free up some memory, determines the object to release, releases it
(them), and goes back to sleep.

The decision of which objects to release is made according to their references in the code.
If an object is referenced directly or via a graph of objects, it is considered in use.
Otherwise, it is candidate for release.

The candidates are released according to their generation. A generation of an object is
actually the number of times it has “survived” a garbage collection and starts from zero.
The candidates with the lowest generation are the ones that will be released first. The
assumption is that older objects that have survived more garbage collections are more
essential to the application than newly created ones.

20 CHAPTER 2 Introduction to the .NET Framework

Frameworks

The .NET Framework incorporates numerous frameworks that Microsoft has released over
the past few years. Each of these frameworks centralizes and standardizes the development
of a single field:

. Windows Forms: Provides access to Microsoft Windows graphical elements

. ASP.Net: A web development platform.

. ADO.Net: A data framework that provides base classes to connect and use data
taken from a data source.

. Windows Presentation Foundation (WPF): An enhanced graphical framework to
create GUIs. WPF graphics are based on DirectX.

. Windows Communication Foundation (WCF): Provides classes to simplify build-
ing connected applications.

. Windows Workflow Foundation (WF): A framework that provides classes to
define, execute, and manage workflows.

. Windows CardSpace: A framework that provides a unified identity mechanism to
.NET applications.

These frameworks and others make the process of writing applications with the .Net
framework easier and faster, leaving more time to invest in designing and proofing the
application.

Summary
The .NET Framework was a great leap ahead for Microsoft and for its developer commu-
nity. It provided solutions that had never been seen before and led the entire program-
ming world forward.

Microsoft continues to improve and enhance the .NET Framework, with new versions
coming every year and a half on average. Within a few months of this writing, the next
version of the .NET Framework (4.0) will most likely be released (and might have already
been released by the time you read this). It will contain several improvements and excit-
ing new features.

In this chapter, you were introduced to the .NET Framework. You learned about its history,
its workflow, and its main features. The next chapter introduces you to the Dynamic
Language Runtime, which is the .NET Framework component that enables dynamic
languages to run on top of the .NET Framework.

CHAPTER 3

Introduction to the
Dynamic Language

Runtime

IN THIS CHAPTER

. Overview

. Features

When people hear about IronRuby for the first time,
they express various different expressions.

Some think it is great, some think it is nice, and some just
don’t have a determined opinion. (After all, most program-
mers prefer not to think too much about how something is
actually implemented.) This chapter is about to pay respect
to the dark horse of dynamic languages in the .NET
Framework: the Dynamic Language Runtime (DLR).

As a result of the rise in interest and popularity of dynamic
languages in the past few years, the .NET Framework was
left behind, supporting only static languages. Developers
who wanted to use the .NET Framework from their favorite
dynamic language found it hard to do so.

The DLR came to solve this exact issue. It is the component
that enables dynamic languages to be implemented on top
of the Common Language Infrastructure (CLI). Thus, it
enables interoperability between static .NET languages and
dynamic .NET languages (and between different dynamic
.NET languages, too).

It is designed to serve dynamic languages and provide
them with the tools they need to become members of the
.NET Framework.

In this chapter, you learn about the DLR’s architecture
various features.

22 CHAPTER 3 Introduction to the Dynamic Language Runtime

Common Language Runtime (CLR)

Dynamic Language Runtime (DLR)

Common
Hosting Model

Runtime Language
Implementation

FIGURE 3.1 The Dynamic Language Runtime architecture.

Overview
The Dynamic Language Runtime (DLR) was firstly introduced in 2007 at the MIX confer-
ence. It is still in development (version 0.91 in October 2009) and is planned to reach the
version 1.0 milestone in the next few months.

The DLR is a set of libraries whose goal is to support dynamic language implementations
on the .NET Framework. Its main goal is to make it possible for dynamic language devel-
opers to use .NET in their dynamic language of choice and vice versa (.NET static language
developers who want to add dynamic capabilities to their platform).

Before the DLR was announced, several attempts were made to port dynamic languages to
the .NET Framework (for example, Ruby.Net, IronPython 1.0, S#, and Phalanger).
However, most of them didn’t reach a maturity level because of the complex work to
provide dynamic capabilities on top of the static-language-targeted Common Language
Runtime (CLR). The DLR standardizes the implementation of dynamic languages on the
.NET Framework and provides documentation and samples that make the process of
implementing languages on top of it much easier than it was before.

Another important fact about the DLR is that unlike most other Microsoft products, it is
an open source object. The sources are available on CodePlex and are published under the
Microsoft Public License (MS-PL). You can get the sources at http://www.codeplex.com/dlr.

The DLR is composed of three big conceptual parts: a common hosting model, runtime
components, and base classes for language implementations.

Figure 3.1 shows the DLR architecture.

The common hosting model provides developers a way to host the DLR and the languages
written on top of it inside their applications. It is also used to host the DLR on different
hosts, such as Silverlight.

The runtime components provide classes and utilities for the execution of dynamic language
code. They contain, for example, caching mechanisms that make the code run faster.

http://www.codeplex.com/dlr

23Features

The last part is the language implementation aspect of the DLR. This is where the heart of
the DLR framework is located: shared ASTs (expression trees). It also contains the base
classes for dynamic language implementations, like the language compiler that converts
the dynamic language code to expression trees.

Features
The DLR main features were introduced in the “Overview” section, earlier in this chapter.
In this section, I explain them and their internal components in more detail.

Common Hosting Model

The common hosting model contains several classes that make it possible to host the DLR
in applications. Therefore, you can use the DLR hosting model to execute dynamic
language code from your static-language-driven application.

The common hosting model consists of the following classes:

. ScriptRuntime: The starting point of the hosting model. Contains the global object
of the application, the runtime configuration, and the referenced assemblies. The
script runtime also provides methods for getting the specific-language engine.

. ScriptEngine: The hard worker of the hosting model. It represents a dynamic
language, and every interaction with the language goes through the engine instance.

. ScriptScope: Represents a context. These hold variables and enable to manage
them. The scope can be used with an engine to give a context to the running code.
It also helps in isolating the context because running code with one script scope
instance does not affect other script scope instances.

. ScriptSource: Represents dynamic language source code. Offers methods to read
and execute the source code.

For more information about the classes of the common hosting model and their usage, see
Chapter 18, “Using IronRuby from C#/VB.Net.”

Runtime Components

The runtime components are responsible to execute dynamic language code. In addition,
they are responsible for making the code run faster. The runtime components are as follows:

. Call sites: Call sites increase performance by caching operations and calls in
dynamic code. The call site stores a rule for each call based on the argument charac-
teristics. This way, if you send two fixnums to a method 10 times, the call will be
interpreted only once and will be immediately returned in the next 9 times.

24 CHAPTER 3 Introduction to the Dynamic Language Runtime

. Binders: When a dynamic call needs to be interpreted, it is sent to the binder. The
binder converts the code to an expression tree and returns it to the call site for
caching and further work.

. Rules: Represents a single cache object in a call site. Contains information about
how to invoke a single operation.

Language Implementation

The language implementation part includes the base classes for dynamic language imple-
mentations. This part is the main part in terms of a specific dynamic language. In case
you are interested in writing your own language on top of the DLR, this part is what you
should care about most.

The language implementation part consists of the following:

. Shares ASTs (expression trees): This is a central piece in the DLR. The DLR team
took LINQ’s expression trees, enhanced and upgraded them, and made them fit for
presenting dynamic language calls.

Actually, the code you write in IronRuby (or any other DLR dynamic language) is
converted to an expression tree before it is executed. This way, the DLR compiler
doesn’t need to be familiar with any dynamic language, only with the expression trees.

. Language context: The actual language implementation. The language context
contains the code that converts the dynamic language code to an expression tree
that can be compiled and invoked afterward.

. Compiler: Compiles DLR expression trees and returns a delegate for invoking them.

Summary
In this chapter, you learned about the DLR and its components. When developing with
IronRuby, you will not run into the DLR often because it is the background worker of
dynamic languages in the .NET Framework, just like the CLR for static .NET languages.

However, just like people research their family history to better understand themselves, it is
good to know the roots of your programming language to understand it on a deeper level.

In conclusion, the DLR took the .NET Framework to the next level. It opened the .NET
world to developers who hadn’t had any connection to it before and thus created numer-
ous new opportunities for interoperability and cooperation.

Now that you know all the background you need (Ruby, the .NET Framework, and the
DLR), all that is left to learn is the main subject of this book: IronRuby.

CHAPTER 4

Getting Started with
IronRuby

IN THIS CHAPTER

. Overview

. Installing IronRuby

. Executables and Tools

. Development Environments

. The Power of IronRuby

IronRuby is Microsoft’s implementation of the Ruby
language on top of the DLR. Its main goal is to provide seam-
less interoperability between Ruby and the .NET Framework.

IronRuby combines the powers of both the .NET Framework
and the Ruby language. On the one hand, it contains the
built-in capabilities of Ruby, and on the other hand, it is
capable of using the wide variety of frameworks and
libraries of the .NET Framework. The combination opens a
whole new set of opportunities to both Ruby and .NET
developers.

In this chapter, you get your first taste of IronRuby. You
install it, read an overview of the language and its tools,
and start to discover the power it brings to the .NET family.

Overview
IronRuby is Microsoft’s implementation of the Ruby
programming language. It is built on top of the DLR and
provides seamless integration between Ruby code and .NET
Framework code. It is compatible with Ruby 1.8.6 and runs
on .NET Framework 2.0 Service Pack 1 and above.

IronRuby was first announced on April 30, 2007, at the
MIX conference. Iron, in its name, is actually an acronym
and stands for “implementation running on .NET.”

IronRuby is supported by the Common Language Runtime
(CLR) and Mono, which means that it can be run on
Windows, Linux, UNIX, BSD, Mac, and all other operating
systems that are supported by Mono. Apart from operating

26 CHAPTER 4 Getting Started with IronRuby

systems, IronRuby can also be run from the browser using Silverlight. (See Chapter 16,
“Silverlight,” for more about IronRuby and Silverlight.)

IronRuby is an open source project and is released with full source code under the
Microsoft Public License (MS-PL). The code is hosted on GitHub and can be downloaded
from the CodePlex site, too. Because it is an open source project, the IronRuby team is
looking for contributions both in bug fixing and library implementation. Look at the
contribution page on IronRuby’s GitHub home page to see how you can help (http://wiki.
github.com/ironruby/ironruby/contributing).

Installing IronRuby
IronRuby runs on .NET Framework 2.0 Service Pack 1 and above. Therefore, you need to
have .NET Framework 2.0 SP1 or above installed on your machine before you start. Same
goes for every machine on which you deploy your IronRuby applications.

You can download .NET Framework 2.0 SP1 from http://www.microsoft.com/downloads/
details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5.

When you have the correct framework, we can move on and install IronRuby. The recom-
mended method of installing IronRuby is by using the IronRuby installer. Follow the next
steps to do so:

1. Visit http://www.ironruby.net/download and click the Download IronRuby link.

2. The downloaded file is an MSI file. Double-click it to start the installation.

The first input you will be asked to enter is the installation folder for IronRuby. The
default is your program files directory\IronRuby. The folder you choose will be refer-
enced as the IronRuby installation folder throughout this book.

During the installation, you will be asked to select the features to install. The
features that will be presented are as follows:

. Runtime: The main files of IronRuby. This feature is required.

. Standard Library: Ruby standard libraries. Needed if the standard libraries are
used in IronRuby code.

. Samples: Sample IronRuby applications like WPF and PowerShell samples.

. Silverlight Binaries: Binaries needed for using IronRuby in Silverlight
applications.

. Add IronRuby to %PATH%: Adds IronRuby binaries path to the PATH envi-
ronment variable. This spares the need to provide full path to IronRuby
executables when they are called from the command line.

3. After approving all steps, the installation of IronRuby takes place.

http://www.ironruby.net/download
http://www.microsoft.com/downloads/details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5
http://www.microsoft.com/downloads/details.aspx?familyid=79BC3B77-E02C-4AD3-AACF-A7633F706BA5
http://wiki.github.com/ironruby/ironruby/contributing
http://wiki.github.com/ironruby/ironruby/contributing

27Installing IronRuby

FIGURE 4.1 My Computer Properties Menu Item.

Another option to install IronRuby is manually. IronRuby can be downloaded as a zip
package. This lets you fully control the installation process but also forces you to execute
the automatic tasks manually (optionally).

Follow the next steps to install IronRuby manually:

1. Visit IronRuby’s CodePlex homepage at http://ironruby.codeplex.com and click on
the Downloads button on the page menu. In the downloads page, choose to down-
load the IronRuby ZIP package.

2. After the download is complete, extract this Zip file to the folder in which you want
to place IronRuby (for example, C:\IronRuby). This folder will be referenced as the
IronRuby installation folder throughout this book.

You’re actually done now and can start using IronRuby. However, if you want IronRuby to
be available from every location on your Windows system, you want to add the <installa-
tion folder>\bin path to the Windows PATH environment variable. Be aware, however,
that this can be done only if you have administrative privileges.

To do that, follow the next steps:

1. Navigate to Start > My Computer and right-click My Computer. On the menu,
choose Properties as presented in Figure 4.1.

2. In the open dialog, click Advanced System Settings as presented in Figure 4.2.

http://ironruby.codeplex.com

28 CHAPTER 4 Getting Started with IronRuby

FIGURE 4.2 The Advanced System Settings Link.

FIGURE 4.3 The Environment Variables button.

3. Click the Environment Variables button as presented in Figure 4.3.

4. Find Path in the System Variables section (the lower part), select it, and click Edit as
presented in Figure 4.4.

5. In the Edit System Variable dialog, place the cursor at the end of the Variable Value
field and add a semicolon (;) and <IronRuby installation folder>\Bin. For example,
if you’ve extracted IronRuby to C:\IronRuby, you add ;C:\IronRuby\Bin to the
Variable Value field as presented in Figure 4.5.

29Installing IronRuby

FIGURE 4.4 The PATH Environment Variable.

FIGURE 4.5 Setting the PATH Environment Variable.

6. Click OK on all the dialogs you’ve opened during the process to save the new setting.

Congratulations, IronRuby is now installed on your machine.

IronRuby Folders

After you extract IronRuby to the desired installation folder, you notice several folders
there. Table 4.1 lists and describes the folders.

Getting the Sources

If you’d like to go deep into IronRuby and go through its code, you need to download the
source code of IronRuby. The source code is hosted on GitHub and uses Git as its source
control application. You can download the source code in a Zip format from http://github.
com/ironruby/ironruby/zipball/master.

http://github.com/ironruby/ironruby/zipball/master
http://github.com/ironruby/ironruby/zipball/master

30 CHAPTER 4 Getting Started with IronRuby

TABLE 4.2 IronRuby Executables and Tools

File Description

ir.exe
and
ir64.exe

The main IronRuby executable. It is the IronRuby interpreter file. ir64.exe is for
64-bit systems.

iirb.bat The IronRuby REPL (read-evaluate-print loop) console.

igem.bat Used to work install and manage RubyGems. See Chapter 8, “Advanced Ruby.” for
more information about RubyGems.

irackup.bat Runs Rack, which is a Ruby framework that simplifies the way of interacting with
different Ruby web servers.

irake.bat Executes the Rake. See Chapter 8 for more about Rake.

irails.bat Used to create a Ruby on Rails application. See Chapter 14, “Ruby On Rails.” for
more about Ruby on Rails.

irdoc.bat Runs RDoc, which is a Ruby tool to create formatted documentation out of Ruby
code. The output can be plain text or a formatted HTML.

iir.bat Ruby tool to read the textual documentation of Ruby objects. (The documentation is
created by RDoc.)

To download the sources, you do not have to install Git on your machine. You need to do
so only to contribute to the IronRuby code. For more information about how to contribute
and how to use Git, look at the IronRuby wiki at http://wiki.github.com/ironruby/ironruby.

Executables and Tools
IronRuby comes with several different executables and tools. All of them are located under
the Bin folder in the IronRuby installation directory.

Table 4.2 lists and describes the executables and tools in the IronRuby Bin folder, and then
the following subsections take a closer look at them.

TABLE 4.1 IronRuby Folders and Their Roles

Folder Description

Root Contains license files, release notes, and the package readme file

Bin Contains the IronRuby binaries, executables, and tools

Libs Contains the standard libraries, including special IronRuby libraries and the
RubyGems repository

Samples Contains a few IronRuby samples and the IronRuby tutorial application

Silverlight Contains binaries, samples, and tools for embedding IronRuby in Silverlight

http://wiki.github.com/ironruby/ironruby

31Executables and Tools

The IronRuby Interpreter (ir.exe)

The IronRuby interpreter is the heart of IronRuby. Everything goes through it. For
example, all the tools mentioned in Table 4.2 eventually run ir.exe.

The IronRuby interpreter can run Ruby files as well as a REPL console. These are two
different modes, and so I discuss each of them separately.

REPL Console Mode
The REPL console mode opens a console where you can write code and execute it
immediately.

To run IronRuby in the REPL console mode, follow these steps:

1. Click Start > Run.

2. Type cmd and click OK. The command prompt opens.

3. If you haven’t added the IronRuby installation folder to the Path system variable,
navigate to <installation folder>\Bin. If you have updated the Path system variable,
skip this step.

4. Type ir and press Enter.

The IronRuby REPL console opens. You can now write Ruby code there (for example,
“puts ‘hello world’”) or even write whole classes and use them.

The format is simple. Each line where you can write a Ruby statement starts with a triple
right-angle sign (>>>). If the line is not assumed to be continued (like method or class
definitions), when you press Enter its output (if any) is printed to the console and the
next line contains the return value of the statement preceded by an equal or greater than
sign (=>). If the line is assumed to be continued, the next statement line starts with an
ellipsis (...).

THE RETURN VALUE OF METHODS THAT DO NOT RETURN ONE

You notice that after executing methods with no return value, such as puts, the console
still shows a return value: nil. This is really the return value.

Every method in Ruby returns a value. If the method code doesn’t return a value, the
method returns nil to the caller.

Figure 4.6 shows an REPL console session.

The REPL console mode has some specific command-line switches that can be used when
running ir.exe. Table 4.3 lists and describes the switches. Be aware that the switches are
case sensitive.

These are the REPL mode-only switches. All other switches appear on Table 4.4, and some
can be used in this mode, too.

32 CHAPTER 4 Getting Started with IronRuby

File Execution Mode

This mode executes a given file. Its format is as follows:

ir [options] [file path] [file arguments]

All switches and ir.exe command-line arguments should be placed before the file path.
Otherwise, they will be considered arguments of the file and will be passed to it rather
than to the interpreter.

The simplest way to execute an IronRuby file is by passing only its path to the interpreter.
For example, the next command executes the file test.rb, which is located within the
current directory:

ir test.rb

FIGURE 4.6 A screenshot of an IronRuby REPL console session.

TABLE 4.3 ir.exe REPL Mode Command-Line Switches

Switch Description

-
X:ColorfulConsole

Makes the REPL console colorful.
Prompt signs such as >>> and ... appear gray, errors red, and warnings
yellow; messages (like the banner on top) appear cyan, and all other output
uses the default console output color.

33Executables and Tools

Along with this way, IronRuby provides several command-line arguments that affect the
way the code executes. Table 4.4 lists and describes available arguments for the ir.exe file
execution mode.

TABLE 4.4 ir.exe Command-Line Arguments for File Execution Mode

Argument Description

-d
or
-D

Debug mode. Allows using breakpoints in Ruby code with the Visual
Studio debugger.

-e “command” Executes the command and exits. Several -e arguments are allowed.
When used, the file path should not be passed and will be ignored if
it exists.
For example:
ir -e “str = ‘Hello World’” -e “puts str”

-I “directory” Includes the given directory in the $LOAD_PATH variable. This means
that it will be included in the search paths for required libraries.

-r “library” Requires the library before executing the file.
For example:
ir -r “csv” test.rb

-v Prints the IronRuby version on the first line.

-w Turns on warnings in the default level (verbose).

-W[level] Sets the warning level. 0 = silence, 1 = medium, 2 = verbose
(default).
For example:
ir -W1 test.rb

-K[kcode] Specifies KANJI (Japanese) code set. E or e = EUC, S or s = SJIS, U
or u = UTF8.
For example:
ir -KU test.rb

-trace Enables Ruby tracing capabilities.

-profile Enables profiling. When this switch exists, a profile.log file will be
added to the directory of the executed file with profiling information
about the latest execution.

-18
or
-19
Or
-20

Run IronRuby in Ruby 1.8 compatibility mode (default), Ruby 1.9, or
Ruby 2.0 compatibility mode accordingly.
Ruby 2.0 doesn’t currently exist, so this switch is for future release
only.

34 CHAPTER 4 Getting Started with IronRuby

Development Environments
Support for IronRuby in Visual Studio is not available in IronRuby 1.0. Such support is not
in Microsoft’s current plans, and no one can really promise it will be in the near future.

However, the Ruby language already has several IDEs available. This section discusses
some of them so that you can choose the one that best fits your needs.

Ruby in Steel

This commercial add-on to Visual Studio by SapphireSteel makes developing Ruby applica-
tions inside Visual Studio much more natural. It adds new Ruby project types, intellisense,
code snippets, and syntax highlighting.

Figure 4.7 is a screenshot from Visual Studio that shows the syntax highlighting and intel-
lisense capabilities of Ruby in Steel.

TABLE 4.4 ir.exe Command-Line Arguments for File Execution Mode

Argument Description

-X:ExceptionDetail In this mode, every exception is presented with a full call stack.

-
X:NoAdaptiveCompilation

Disables adaptive compilation feature. This affects performance (for
the worse).

-X:PassExceptions In this mode, exceptions are not caught by the interpreter. This means
that in case of an exception with no handling in the script, the appli-
cation crashes.

-X:PrivateBinding Enables binding to private members of CLR objects. Chapter 9, “.Net
Interoperability Fundamentals,” discusses the uses of this switch.

-X:ShowClrExceptions When this mode is on, a CLR exception part is added to every excep-
tion with full exception details (the exception.ToString output).

-X:CompilationThreshold Specifies the number of iterations before the interpreter starts compil-
ing the code.
Should be followed by a number.
Note that this switch can affect performance dramatically. Hence it is
not recommended to use it when not needed.

-h Shows all available command-line arguments with a short description.
When this exists, the file or REPL console does not run.

35Development Environments

Although you cannot run IronRuby with Ruby in Steel out of the box, it is possible to
alter the solution settings to execute ir.exe. Follow these steps to do so:

1. Inside Visual Studio, click Project > Project Settings.

2. In the Settings window, you see a Ruby region with a “Ruby Interpreter” line.
Change the value on this line to the path of ir.exe.

For example, if you installed IronRuby in C:\IronRuby, you must set the value to
“C:\IronRuby\Bin\ir.exe”.

3. Save the project and press Ctrl + F5 to execute the Ruby files.

Ruby in Steel is a commercial product that costs money. It supports Visual Studio 2005,
2008, and also machines without Visual Studio at all (uses the Visual Studio Shell).

To read more about it, try it, or buy it, visit http://www.sapphiresteel.com/Ruby-In-Steel-
Developer-Overview.

NetBeans

NetBeans is a free, open source IDE that supports several programming languages, along
with the Ruby language. It is Java-based and can run on all operating systems that run
Java applications.

For Ruby, you get code completion, naming convention warnings, a convenient project
tree, and Ruby on Rails support.

Figure 4.8 shows the NetBeans window with Ruby code inside.

FIGURE 4.7 Ruby in Steel syntax highlighting and intellisense.

http://www.sapphiresteel.com/Ruby-In-Steel-Developer-Overview
http://www.sapphiresteel.com/Ruby-In-Steel-Developer-Overview

36 CHAPTER 4 Getting Started with IronRuby

Unfortunately, NetBeans in its current version 6.7 doesn’t support IronRuby. Therefore,
you cannot run or debug IronRuby code directly from NetBeans. You must run the
IronRuby file from the command prompt using ir.exe.

The NetBeans team plans to add IronRuby to its supported Ruby platforms in one of its
next versions.

To learn more about NetBeans and download it, visit http://www.netbeans.org.

RubyMine

RubyMine is a commercial Ruby IDE by JetBrains. This is one of the most advanced Ruby
IDEs available and features project creation wizards, syntax highlighting, code tools (like a
“surround with” function), intellisense, refactoring, and version control system integration.

Figure 4.9 shows the RubyMine interface and its intellisense pop-up.

FIGURE 4.9 RubyMine IDE screenshot with intellisense.

FIGURE 4.8 NetBeans IDE screenshot with Ruby code.

http://www.netbeans.org

37Development Environments

RubyMine doesn’t come with IronRuby as its Ruby interpreter, and you have to add it as
one to execute files with the IronRuby interpreter directly from the interface.

Follow these steps to add IronRuby as a Ruby interpreter in RubyMine:

1. Go to File > Settings.

2. On the left, choose Ruby SDKs and Gems.

3. On the settings on the right, click the Add SDK button, which is located in the
upper-right corner of the dialog.

4. On the file selector dialog that opens, navigate to <IronRuby installation
folder>\Bin\ir.exe. Click OK after you select the file.

5. When you click OK on the settings form, RubyMine makes IronRuby its default
interpreter.

Before you run a file, you need to modify something else. RubyMine uses configuration
settings for each execution. In this configuration, the command-line arguments are sent to
the interpreter. The default ones do not work with IronRuby, and you need to remove
them. Follow these steps to do that:

1. Go to Run > Edit Configurations.

2. Click the Edit Defaults button, which is located in the lower-left corner of the dialog.

3. Choose Ruby on the left panel.

4. On the right, clear the text from the Ruby Arguments field.

5. Click OK on all open dialogs to save the changes.

Now you can work on and run files by using the IronRuby interpreter.

RubyMine is a commercial product that costs money. It works on Windows, Mac OS X,
and Linux. You can read more about it, try it, and buy it at http://www.jetbrains.com/ruby.

Others

Along with these IDEs, a lot of other great IDEs are available. Some are appropriate for
bigger applications, and some for smaller applications and scripts. Most of them offer
simple code completion and syntax highlighting.

Like the others, they still cannot run IronRuby directly from their interface, so you have
to switch to the command prompt and use ir.exe to run the Ruby file you’ve been
working on.

Some of these IDEs are RadRails (http://www.aptana.com/radrails), SciTE (http://www.scin-
tilla.org/SciTE.html), and Notepad++ (http://notepad-plus.sourceforge.net). Search the
Internet for “Ruby IDEs” to find more Ruby IDEs.

http://www.jetbrains.com/ruby
http://www.aptana.com/radrails
http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html
http://notepad-plus.sourceforge.net

38 CHAPTER 4 Getting Started with IronRuby

The Power of IronRuby
As a finale to the IronRuby introduction, I want to leave you wanting more. Instead of
just writing a simple Hello World application, I want you to see how great IronRuby is and
how it can enhance your development work.

Ruby comes with very powerful built-in metaprogramming capabilities. One of its features
is a built-in method called method_missing (read more about it in Chapter 6, “Ruby’s
Code-Containing Structures”). The method_missing method catches all calls to undefined
methods and lets you handle them the way you want.

In Listing 4.1, by using method_missing, I implement a Recorder class that records calls to
methods and plays them back on request. Notice how easy it is to accomplish this with
Ruby. Even though you might not be familiar with all the syntax elements, this code is
pretty simple and straightforward.

LISTING 4.1 A Recorder Class Implementation

class Recorder

def initialize

@calls = []

end

def method_missing(method, *args, &block)

@calls << [method, args, block]

end

def playback(obj)

@calls.each do |method, args, block|

obj.send method, *args, &block

end

end

end

Now that the Recorder class is ready, we can take advantage of it. Unlike regular Ruby
code, we can take advantage of IronRuby capabilities and run the Recorder class with
.NET code. Listing 4.2 takes advantage of the Stack class of the .NET Framework and runs
recorded operations on it using our Recorder class.

LISTING 4.2 Using the Recorder Class on a CLR Object

recorder = Recorder.new

recorder.push 5.6

recorder.pop

recorder.push 1

recorder.push “IronRuby”

Run the recorded calls on the CLR Stack instance

39Summary

stack = System::Collections::Stack.new

recorder.playback(stack)

recorder.playback(stack)

stack.each { |x| puts x }

Prints “IronRuby

1

IronRuby

1”

Summary
After reading this chapter, you are ready to start developing with IronRuby on your
computer. You have installed IronRuby and have been introduced to the tools it comes
with. This chapter also covered a few options for IronRuby development environments. At
the end of the chapter, you saw an IronRuby sample that gave you a taste of the great
power IronRuby holds inside.

We now delve further into the Ruby language and examine the fundamentals of IronRuby,
and then you learn how to use IronRuby with the different frameworks of Ruby and .NET,
all on the road to becoming an IronRuby master.

This page intentionally left blank

PART II

The Ruby Language

IN THIS PART

CHAPTER 5 Ruby Basics 43

CHAPTER 6 Ruby’s Code-Containing Structures 87

CHAPTER 7 The Standard Library 131

CHAPTER 8 Advanced Ruby 161

This page intentionally left blank

CHAPTER 5

Ruby Basics

IN THIS CHAPTER

. Basic Syntax

. Hello World

. Variables

. Control Structures

. Exception Handling

IronRuby is, first and foremost, an implementation of the
Ruby language. Therefore, to know IronRuby you first need
to get familiar with its foundation—the Ruby language.

This chapter can help you to get to know Ruby. It covers
the basic concepts of the language including basic syntax
and common programming tasks. After reading this
chapter, you will be able to read and write simple Ruby
applications.

Basic Syntax
Every programming language consists of a few building
blocks that you must know to use all other language parts
that are built on top of them. The Ruby language is no
exception. Hence, before we delve into the world of Ruby,
we get familiar with its basic syntax.

Comments

Comments are important. They make your application
clearer to other developers, and to yourself. Ruby features
two types of comments: single line and multiline.

The single-line comments start with a sharp character (#):

This is a comment

num = 5 # Comments can start at the end of a code line

➥as well

44 CHAPTER 5 Ruby Basics

The multiline comments start with =begin and end with =end:

=begin

Here you can write

as many lines as you wish

and they will all be ignored by the compiler.

=end

NO MIDDLE-LINE COMMENTS

Ruby does not have a way to write comments on the middle of the line, like /* */ in
C++ or C#.

Setting Values to Variables

Ruby is a highly dynamic language and does not require types to be defined explicitly.
Furthermore, there is no need to declare variables. The approach is the opposite: There are
ways to determine whether a variable has already been declared.

Setting a value to a variable can create the variable if needed. The operation is done by
writing the variable name and its value in the following way:

my_variable = 1

another_variable = “Hello”

USE OR LOOSE SYNTAX ELEMENTS

Ruby allows you to use or lose certain syntax characters. One of them is the semi-
colon. For example

my_variable = 1

is equivalent to

my_variable = 1;

The semicolon becomes handy when you want to write several statements in the same
line:

my_variable = 1; my_variable += 1; print my_variable;

Be aware that the semicolon is almost never used in Ruby and should be avoided in
general (to keep the code clear and readable).

Ruby also allows parallel assignments. This means that in a single line you can assign
values to multiple parameters:

one, two = 1, 2 # one now contains 1 and two contains 2

45Basic Syntax

A special case of parallel assignment is arrays:

one, two = [1, 2]

This line is identical to the preceding one; it assigns 1 to one and 2 to two. However, the
next line is different:

one, two = [1, 2], 3

After this line is executed, one contains the array [1,2], and two contains 3.

To understand this behavior, think of the assignment values as an array. When you write
one, two = 1, 2, it is actually one, two = [1, 2]. Consequently, one, two = [1, 2],
3 is actually one, two = [[1, 2], 3].

You can bypass this using the * operator. When the * operator is put before an array, it
flattens it so that *[1, 2] becomes 1, 2:

one, two, three = 1, *[2, 3] # one = 1, two = 2, three = 3

THE * OPERATOR ALLOWED POSITION

The * operator is allowed only on the last value of the assignment. For example, the
next statement results in a syntax error:

one, two, three = *[1, 2], 3

Calling Methods

Calling methods in Ruby can be done with or without parentheses. This allows method
invocations to look like statements, which make it very human readable. For instance, the
next two lines are equivalent:

method_name(param1, param2)

method_name param1, param2

WHITESPACES AND PARENTHESES

When you do want to use parentheses, you must make sure that the opening bracket
follows the method name, with no whitespaces between them.

The next two lines are entirely different:

method_name(1+2)+5

method_name (1+2)+5

The first line will pass 3 to the method and add 5 to its result. The second line sends
8 as a parameter to the method.

46 CHAPTER 5 Ruby Basics

An issue to notice is calling two methods one after another without parentheses. This
confuses the Ruby interpreter and results with a warning or even an error in some cases.

For example, the next line

puts add 1, 3

can be interpreted in multiple ways:

puts add(1, 3)

Or

puts add(1), 3

Or maybe even

puts; add(1, 3)

To resolve this behavior, the most obvious solution is to put parentheses around the para-
meters passed to the add method. Another way to resolve the issue is by surrounding add
with parentheses, along with a whitespace after the first method call:

puts (add 1, 3)

Code File Structure

Ruby files have a few structure rules.

If you run your application on UNIX-like operating systems, the first line of the code
should be a “shebang” comment that tells the operating system how to execute the file.
This line can be omitted in Windows or Mac:

#!/usr/bin/ruby –w

The next lines should consist of require statements. A require statement allows loading
other code files and compiled libraries (DLL files, for example):

require ‘base64’ # Load Ruby’s base64 library

require ‘otherCodeFile.rb’ # Load local otherCodeFile.rb file

require ‘C:\RubyFiles\MyRubyLib.rb’ # Load Ruby file from a specific location

The require statements will be followed by the program code. There are no strict restric-
tions for how the code should appear. Nevertheless, when a code container is declared, a
code hierarchy should be kept according to the next order:

module ModuleName

class ClassName

def method_name

while condition do

if condition then

... code ...

47Basic Syntax

end

end

end

end

end

If the special statement __END__ appears somewhere within the code file, everything after
it is ignored and is not executed. The __END__ statement signals to the Ruby interpreter
the end of the file. It is optional; when it doesn’t appear, the whole file is processed:

... code ...

__END__

We can write here everything we want and it will not be processed by the interpreter.

Coding Standards

Ruby has somewhat different coding standards than, for example, C# or VB.Net. It is
important to know these standards because Ruby code you will run into will most likely
comply with them.

Comments
Method, class, and module description comments usually follow RDoc’s rules, to allow the
use of ri with them. (The ri tool is introduced in Chapter 4, “Getting Started with
IronRuby.”)

RDoc documentation can be found at http://rdoc.sourceforge.net/doc.

Variables
Variables are written all lowercase and with an underscore to separate words (for example,
my_variable).

Constants
Constants are written all uppercase and with an underline as word delimiter (for example,
THIS_IS_A_CONSTANT).

Methods
Methods are written all lowercase and with an underscore to separate words (for example,
my_method).

Classes and Modules
Class and module names are written using PascalCase. Therefore, there are no word delim-
iters, but the first letter of each word is capitalized (for example, MyClassName,
IAmAModule).

http://rdoc.sourceforge.net/doc

48 CHAPTER 5 Ruby Basics

Hello World
Ruby is a very flexible language. Therefore, you write only what you need. You don’t have
to adhere to strict rules for indentation, special coding ceremonies, and so forth.

Writing a program that prints “Hello World!” to the screen is as simple as it sounds:

print “Hello World!”

This actually invokes Ruby’s kernel method – print with ”Hello World!” as its parameter.

Variables
Variables in Ruby have implicit types. Therefore, you don’t declare types; Ruby does
that for you.

Even though you don’t explicitly declare types, variables do have types. These types are
computed during runtime. As a result, variables are type-safe and obey type restrictions.
For example, the next code block ends up with an exception:

num = 1

str = “Hello”

mix = num + str

However, the following will work just fine:

my_variable = 1

my_variable = “Hello”

This code works because there is no violation of any type restriction. On the second line,
my_variable type is changed from a numeric 1 to a textual one.

Ruby comes with a set of basic types. The base type is Object. Everything is an object in
Ruby, and because the language is entirely object oriented, every object in Ruby inherits
from the Object class implicitly or explicitly.

Numbers

Ruby contains several types for numeric values. These include types for integers, floats
and the standard library adds rational and complex numbers support. All numbers in
Ruby derive from the Numeric class. Figure 5.1 presents the inheritance tree of Ruby
numeric types.

All integers are of the Integer type. If a value is up to 31 bits, it will become a Fixnum.
Otherwise, the Bignum class will be used. In case of real numbers, the Float class will be
picked, because it has a built-in support for a floating point. Numbers in Ruby never over-
flow. When a Fixnum reaches its limit, it is converted to a Bignum.

49Variables

Numeric

Integer Float

Fixnum Bignum

FIGURE 5.1 The inheritance tree of numeric types in Ruby.

Integer Declaration
You can declare integers in the regular numeric way or in octal, hexadecimal, or binary
way. For example, the next statements are all equivalent:

num_integer = 777

num_octal = 01411 # octal way, value starts with a zero

num_binary = 0b1100001001 # binary way, starts with 0b

num_hexadecimal = 0x309 # hexadecimal way, starts with 0x

MAKING BIG NUMBERS MORE HUMAN READABLE

You can use an underscore to make big numbers more readable:

num1 = 1000000000 # A billion

num2 = 1_000_000_000 # A billion. Equivalent to the previous line

Float Declaration
Float values have a floating point. This is all you need to define a float:

float_value = 34.89

negative_float_value = -12.35

Arithmetic
All numeric types support the +, -, *, /, and ** (power) operators. You can also use them
with an equal operator. For instance, these are equivalent:

num = 1 + 2 # = 3

num = 1

num += 2 # = 3

50 CHAPTER 5 Ruby Basics

DIVIDING INTEGERS

When you divide two integers, the result is an integer, too. To avoid that, you can add a
floating point to the values or convert them explicitly to a Float:

result = 5 / 2 # = 2

result = 5.0 / 2 # = 2.5

int1, int2 = 5, 2

result = int1.to_f / int2 # = 2.5

Text

Text is represented in Ruby by the String class. The String class contains various methods
to help you create, read, manipulate, and delete text.

Defining Strings
There are a few different ways to define strings in Ruby, each with its own purpose.

Double-Quoted Strings
The most common and flexible approach is to use double-quoted strings:

my_string = “Hello there”

The double-quoted string supports several escape characters, like \n for a new line and \t
for a Tab space. It can also be expended to multiple lines:

my_string = “Hello

there!

This is a three line string.”

USING A DIFFERENT STRING DELIMITER

In case you have a string with lots of quotes, you can define a different delimiter for
the string. This is done using the %q and %Q statements. The next character is the
delimiter, and the string limiter continues until this character is found again. The differ-
ence between %q and %Q is that %q generates a single-quoted string and %Q gener-
ates a double-quoted string:

my_string = %q^I’ve seen enought of the chef’s food!^

Equivalent to: ‘I\’ve seen enough of the chef\’s food!’

my_string = %Q~The “car” is actually a horse~

Equivalent to: “The \”car\” is actually a horse”

51Variables

String.new
Using the String.new method achieves the same as the double-quoted string:

my_string = String.new “Hello” # = A string containing “Hello”

Without arguments, an empty string is created:

my_string = String.new # = An empty string

Single-Quoted Strings
Another way to create strings is to use a single-quoted string:

my_string = ‘A \’single-quoted string\’’ # = A ‘single-quoted string’

The single-quoted string is rarely used because it is not as flexible as the double-quoted
string. For example, it does not support most of the escape characters (only single quote
and backslash). However, using the single-quoted string can improve performance,
although this should be your last resort for that.

A CHARACTER’S NUMERIC VALUE

To get a character’s numeric value, you can write a question mark followed immediately
by the character:

num = ?A # = 65

num = ?& # = 38

Here Documents
Here documents, also known as heredocs, are suitable for long text blocks. You define a
delimiter, which when it appears again, it signals the end of the text chunk. A << starts a
here document, and the delimiter then follows. Then the text and the delimiter to signal
the end of the text block follow:

my_string = <<DOC

Hello there! # This is part of the text... Can’t put comments inside heredocs

This is the second line.

DOC

my_string = <<’END OF MY STRING’

I’m writing here whatever I want.

Yes, everything goes!

Hallelujah!

END OF MY STRING

52 CHAPTER 5 Ruby Basics

Expression Interpolation
This is a way to format strings. Expression interpolation means you can insert Ruby code
into strings. The way to do that is to insert #{expression} into the string:

num = 5

string = “#{num}+1 = #{num+1}” # = “5+1 = 6”

This also works in here documents and can be handy (for example, with XML blocks):

value = 6

string = <<END

<root>

<value>#{value}</value>

</root>

END

printf
Similar to the expression interpolation technique, printf allows formatting strings.
printf gives more control over the format of the variables in terms of width, floating-
point precision, and more.

The printf method receives the string with format sequences and the variables afterward.
This is different from string interpolation, where the variables are inserted into the format-
ted string.

A format sequence in the string consists of a percent sign (%) followed by option flags and
width and precision indicators. The format sequence ends with a field type indicator.

The following code samples demonstrate the most common uses of printf. To read more
about printf and its different flags, refer to www.ruby-doc.org/core/classes/Kernel.
html#M005984.

Show only 2 digits after the floating point:

printf(“%.2f”, 12.12345) # = 12.12

Add leading zeros if the number is smaller than 3 digits:

printf(“%03d”, 12) # = 012

Enforce at least 5 characters to be shown (zeros will be added if needed)

and show only 2 digits after the floating point:

printf(“%05.2f”, 1.12345) # = 01.12

Show at least 10 characters and keep the original string on the left

printf(“%-10s”, “IronRuby”) # = “IronRuby “

Use the same value multiple times

printf(“%1$s %2$s, %2$s %1$s, %2$s %2$s %2$s”, “hello”, “Ruby!”)

= “hello Ruby!, Ruby! hello, Ruby! Ruby! Ruby!”

www.ruby-doc.org/core/classes/Kernel.html#M005984
www.ruby-doc.org/core/classes/Kernel.html#M005984

53Variables

sprintf is identical to printf in terms of arguments and flags. The only difference is that
sprintf returns a new generated string and printf prints it immediately to the screen:

str = sprintf(“%-10s”, “IronRuby”) # str now equals “IronRuby “

The String class offers another way of doing sprintf operations: the % operator. The
percent sign operator does exactly the same as sprintf. It assumes that the string before
the operator is the format string and the variables after the operator are the values.

For example, the following line

str = sprintf(“%-10s”, “IronRuby”)

is equivalent to this:

str = “%-10s” % “IronRuby”

When the % operator is sent with multiple values, use square brackets to wrap them as an
array first:

str = “%s %s !!!” % [“IronRuby”, “Unleashed”] # str now equals “IronRuby Unleashed

!!!”

Accessing Strings
You can access substrings within Ruby strings using the array-index operator, []. The
substrings are both readable and writable. Using an integer, you can access single charac-
ters within the string:

my_string = “Hello There”

my_string[0] # = 72 – the first letter ASCII code

my_string[my_string.length-1] # = 101 – the last letter ASCII code

my_string[-1] # Another way to get the last character = 101

my_string[0] = “j” # Now the string is “jello There”

my_string[100] # = nil. Index doesn’t exist.

The way to access whole substrings within the string is to use two integers. The first indi-
cates the starting position, and the second indicates the length of the substring:

my_string = “Hello There”

my_string[0,2] # = “He”

my_string[my_string.length-1, 5] # = “e” (the index can exceed the string length)

my_string[-5, 5] # = “There”

my_string[-5,5] = “Ruby” # The string is now “Hello Ruby”

Another way to access substrings is by using ranges. A range in Ruby is two integers sepa-
rated with two dots. The integers represent two indexes in the string. This is an important
difference from the previous way: The two integers do not represent an index and a
length; they stand for two indexes:

54 CHAPTER 5 Ruby Basics

my_string = “Hello There”

my_string[3..4] # = “lo”

my_string[6..my_string.length] # = “There”

my_string[1..3] = “ipp” # The string is now “Hippo There”

String Class Methods
The String class features several methods that return the length of the string, go through
the string characters, and more.

length and size are identical and both return the length of the string:

”IronRuby Unleashed”.length # = 18

strip removes whitespaces from the string beginning and end. strip creates a new string
and returns it. Use strip! to change the original string:

” IronRuby Unleashed “.strip # = “IronRuby Unleashed”

STRIP ONE SIDE ONLY

If you want to remove whitespaces from only the beginning of the string, use lstrip. If
you want to remove them from the end, use rstrip:

” IronRuby Unleashed “.lstrip # = “IronRuby Unleashed “

“ IronRuby Unleashed “.rstrip # = “ IronRuby Unleashed”

include? returns true if the given string exists within the string:

”IronRuby Unleashed”.include?(“Ruby”) # = true

each loops over the string content by a given separator:

str = “IronRuby Rocks!”

str.each(“ “) { |x| print “->#{x}<-” } # prints “->IronRuby <—>Rocks!<-”

str.each(“R”) { |x| print “->#{x}<-” }# prints “->IronR<—>uby R<—>ocks!<-”

Arrays

Arrays are indexed collections. Every value can be accessed by its position in the array.
Arrays in Ruby grow automatically when needed and can hold objects of any type.

Defining Arrays
Ruby arrays can be defined and constructed in multiple ways. The most straightforward
way to use square brackets follows:

55Variables

my_array = [“Hello”, 5, Time.now, 5**7]

The preceding code constructs an array with four items of different types.

USING A DIFFERENT VALUE DELIMITER

If you have multiple string values and each value doesn’t have spaces, you can use the
%w or %W operators. These allow you to define the delimiter of the array. Similar to the
String’s %q and %Q, %w generates single-quoted values, and %W generates double-
quoted values. After the delimiter is set, the values inside are separated by spaces:

my_array = %w-A B C 5- # Same as [‘A’, ‘B’, ‘C’, ‘5’]

my_array = %W~”Iron Ruby” V1~ # Same as [“\”Iron”, “Ruby\””, “V1”]

Another way to generate an array is by using Array.new. This method enables you to
create an array with an initial number of positions, set initial values to them, and copy a
different array:

array1 = Array.new # = an empty array

array1 = Array.new(5) # = [nil, nil, nil, nil, nil]

array1 = Array.new(5,”hey”) # = [“hey”, “hey”, “hey”, “hey”, “hey”]

array1 = Array.new(5) { |i| 5 * i } # = [0, 5, 10, 15, 20]

array2 = Array.new(array1) # creates a clone of array1

The next approach can help you construct arrays. After you define an array, you can add
items to it using the append (<<) operator:

my_array = Array.new # = an empty array

my_array << “Hello” # the array is now [“Hello”]

my_array << 5 << Time.now # The array is now [“Hello”, 5, Time.now]

Accessing Arrays
Accessing array items is similar to accessing substrings within Ruby strings. After an item
or a range of items is accessed, it can be modified or deleted. The similarity between all
ways to access arrays is that all of them use the square brackets operator, [].

The first way to access an array item is by using its index. Write the index and receive the
item. You can also use negative numbers, which indicate positions from last to first:

my_array = [1, 2, 3, 4, 5]

my_array[0] # = 1

my_array[-4] # = 2

my_array[10] # = nil. Index doesn’t exist.

56 CHAPTER 5 Ruby Basics

my array

[0]

1

[-5]

[1]

2

[-4]

[2]

3

[-3]

[3]

4

[-2]

[4]

5

[-1]

FIGURE 5.2 The available indexes to access array items.

Figure 5.2 presents the possible indexes to access array elements.

The next way uses two integers. The first indicates the starting index, and the second spec-
ifies the number of elements to get. The number of elements can exceed the array length:

my_array = [1, 2, 3, 4, 5]

my_array[0,1] # = 1

my_array[1, 2] # = [2, 3]

my_array[3, 100] # = [4, 5]

my_array[1, 2] = “Hey” # The array is now [1, “Hey”, 4, 5]

Another way to access array parts is by using ranges. The range defines a starting index
and an ending index:

my_array = [1, 2, 3, 4, 5]

my_array[0..0] # = 1

my_array[2..4] # = [3, 4, 5]

my_array[2..3] = [6, 7] # The array is now [1, 2, 6, 7, 5]

my_array[2..3] = [] # deletes positions 2 and 3 = [1, 2, 5]

One more way to access the array elements is by using the each method. The each method
sends every array element to the given code block. This way you can move through all the
array items and process them:

my_array = [1, 2, 3, 4, 5]

Print each element in a new line

my_array.each { |element| puts element }

Array Class Methods
All arrays in Ruby are of type Array. Array is a class in Ruby and has several methods that
you can use on every array you have.

I’ll introduce you here with some of the most usable methods of the Array class. For a
complete reference, check out the ruby-doc website: http://www.ruby-doc.org/core/classes/
Array.html.

http://www.ruby-doc.org/core/classes/Array.html
http://www.ruby-doc.org/core/classes/Array.html

57Variables

empty? returns true if the array is empty:

[].empty? # = true

[1, 2, 3].empty? # = false

first and last return the first and last elements of the array:

my_array = [1, 2, 3, 4, 5]

my_array.first # = 1

my_array.last # = 5

delete removes all elements that match the given parameter:

my_array = [1, 2, 1, 1, 5]

my_array.delete(1) # the array is now [2, 5]

select returns all array elements that the given block returns true for:

my_array = [9, 7, 1, 4, 12, 5]

my_array.select { |element| element > 6 } # = [9, 7, 12]

Hashes

Hashes are similar to arrays, with one big difference: Instead of indexes, a hash maps keys to
values. A key is an object itself, and when given, the corresponding value will be retrieved.

Defining Hashes
To define a hash, you need to set the key and the value for the element. In case the key
already exists, its value will be replaced.

One way to define a hash is via the Hash.new method. After you construct an empty hash,
you add elements to it as follows:

hash = Hash.new # constructs an empty hash

Add an element with key=”country” and value=”USA”

hash[“country”] = “USA”

Add an element with key=1776 and value= “Declaration of Independence”

hash[1776] = “Declaration of Independence”

Another way to define a hash is by declaring its key-value pairs between curly brackets.
The key and the value should be separated by a => symbol:

Generate a hash with a, b, c as the keys and their ASCII codes as the values

my_hash = { “a” => ?a, “b” => ?b, “c” => ?c }

58 CHAPTER 5 Ruby Basics

Using Symbols
Symbols in Ruby are strings with a colon before them:

:hello

:”there”

:’I am a symbol’

Symbols are used as keys in various places across the language. It is preferred to use
symbols as keys because their comparison is much faster.

To use symbols in hashes, you just set them as the keys:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

Accessing Hashes
You can access hash values by passing a key between square brackets:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

my_hash[:a] # = 97 = ?a

my_hash = { “First Name” => “Shay”, “Last Name” => “Friedman” }

my_hash[“First Name”] # = “Shay”

Another way to access the pairs in the hash is to use the each method:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

my_hash.each { |key, value| puts “#{key} = #{value}” }

This code outputs the following:

a = 97

b = 98

c = 99

Hash Class Methods
The Hash class, unlike the Array class, does not have index-related methods. Instead, it has
unique methods of its own to support the key-value pair mechanism.

For a complete reference on the Hash class, visit the ruby-doc website: http://www.ruby-doc.
org/core/classes/Hash.html.

has_key? finds out whether a given key exists in the hash:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

my_hash.has_key?(:a) # = true

my_hash.has_key?(“Hey there”) # = false

http://www.ruby-doc.org/core/classes/Hash.html
http://www.ruby-doc.org/core/classes/Hash.html

59Variables

has_value? determines whether a given value exists within the hash:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

my_hash.has_value?(?b) # = true

my_hash.has_value?(?k) # = false

select returns all array elements that the given block returns true for:

my_hash = { :a => ?a, :b => ?b, :c => ?c }

my_hash.select { |key, value| value > ?b } # = { :c => ?c }

Ranges

A range in Ruby is a series of values from one object to another that are represented as
one single object. Ranges are declared by writing the start object, two or three dots, and
then the end object. Two dots means that the end object is included within the range.
Three dots means that the end object will be excluded from the range:

1..5 # = integers between 1 and 5

1.0...5.0 # = all numbers between 1 to 5, excluding 5.

Ranges can also be used with strings:

”a”..”d” # = “a”, “b”, “c”, “d”

“AAA”..”BBB” # all possible combinations between “AAA” and “BBB”

“AAA”, “AAB”, ..., “ABA”, “ABB”, ..., “ART”, “ARU”, ..., “BAZ”, “BBA”, “BBB”

CONVERT A RANGE TO AN ARRAY

You can convert a range to an array using the to_a method:

my_array = (“AAA”..”BBB”).to_a

When a range is defined, you can loop over its elements using the each method:

my_range = “AAA”..”BBB”

Print all range values. Each in a new row.

my_range.each { |elem| puts elem }

Notice that not all ranges can be iterated over. For example, you can’t iterate over Float
ranges because that would be an infinite number of values.

60 CHAPTER 5 Ruby Basics

You can also check whether a given value is a member of the range by using the member?
and include? methods or the === operator, which all do exactly the same thing:

my_range = 1..50

my_range.member?(4) # = true

my_range.member?(100) # = false

my_range.include?(“Hey”) # = false

my_range === 40 # = true

my_range === 55 # = false

Custom objects can also be made available for “ranging” using the succ method. We
discuss this in the next chapter.

Booleans

Ruby does not have a Boolean type. Instead, it has a type for true, TrueClass, and a type
for false, FalseClass. The keywords true and false actually return a singleton instance of
the TrueClass and the FalseClass, accordingly.

When a Boolean value is required, false and nil result, because false and any other
value results in true:

This will print “Hey!” to the screen

num = 1

if (num)

puts “Hey!”

end

This will not print “Hey!”

num = nil

if (num)

puts “Hey!”

end

Regular Expressions

Regular expressions are “native” to the Ruby language and are used in various scenarios. A
regex is a textual pattern that can be verified upon a given string. The regex can also be
used to parse text and retrieve parts from it.

Defining Regular Expressions
A regular expression in Ruby is declared between slashes:

regex = /^(Iron)?Ruby$/

61Variables

TABLE 5.1 Regular Expression Flags

Flag Description

I Ignore case.

M Multiline mode. Treats newline characters like regular characters.

X Allow whitespaces and comments within the regular expression.

O Perform string interpolation only the first time the regular expression is evaluated.

U Define the regular expression encoding to Unicode.

N Define the regular expression encoding to none, which is ASCII.

This regular expression accepts only two strings: ”Ruby” and ”IronRuby”.

A regular expression can be followed by various flags that affect the pattern-matching
process:

To use these flags, add them to the end of the regular expression:

regex = /^(Iron)?Ruby$/i

Now this pattern accepts strings such as ”ironruby”, ”RUBY”, and so on.

Another way to construct a regex is by using the Regexp.new method:

Regexp.new(“[a-z]*”) # = /[a-z]*/

Regexp.new(“[a-z]*”, Regexp::IGNORECASE) # = /[a-z]*/i

Regexp.new(“[a-z]*”, Regexp::MULTILINE | Regexp::IGNORECASE) # = /[a-z]*/mi

Table 5.1 contains all possible regular expressions flags.

Using Regular Expressions
To match a regex pattern against a string, you can use the =~ operator. This operator
returns the index of the first match or nil if none is found:

regex = /(Iron)?Ruby/i

“IronRUBY” =~ regex # = 0

“this book is about ironruby” =~ regex # = 19

“Hello there” =~ regex # = nil

You can also retrieve the matches after a successful pattern matching. After a successful
execution of =~, a thread-local and method-local variable are available to you: $~. This
variable holds a MatchData object that you can inspect and thus get information about the
found matches:

regex = /(Iron)?Ruby/i

“we love IronRuby” =~ regex

62 CHAPTER 5 Ruby Basics

TABLE 5.2 Format Directives

Directive Description

%a Abbreviated weekday name (“Sun”)

%A Full weekday name

%b Abbreviated month name (“Jan”)

%B Full month name

%c Preferred local date and time representation

puts $~[0] # = “IronRuby”. The whole match.

puts $~[1] # = “Iron”. First subpattern match.

puts $~.begin(1) # = 8. The start position of the first subpattern.

puts $~.end(0) # = 16. The end position of the whole match.

Date and Time

Ruby has a built-in class to handle dates and times: the Time class. This class features
several methods and attributes related to dates and time.

now returns a Time object representing the current date and time. new is identical to now:

Time.now

Time.new

local, utc and gmt, which is identical to utc, construct a new Time object from the given
parameters. local creates the time in the local time zone and utc in the GMT time zone:

Time.local(2009, 9, 6, 15, 0, 50) # = September 6 2009, 3pm and 50 seconds

year, month, day, hour, min, and sec return their related part of the time:

t = Time.local(2009, 9, 6, 15, 0, 50)

t.year # = 2009

t.month # = 9

t.day # = 6

t.hour # = 15

t.min # = 0

t.sec # = 50

strftime converts the Time object to string in a given format:

t = Time.local(2009, 9, 6, 15, 0, 50)

t.strftime(“%B %d %Y %H:%M”) # = “September 06 2009 15:00”

Table 5.2 contains all possible format directives that can be used on the strftime method.

63Variables

TABLE 5.2 Format Directives

Directive Description

%d Day of the month

%H Hour of the day, 24-hour clock

%I Hour of the day, 12-hour clock

%j Day of the year

%m Month

%M Minute of the hour

%p “AM” or “PM”

%S Second of the minute

%U Week number of the current year, starting with the first Sunday.

%W Week number of the current year, starting with the first Monday.

%w Day of the week (Sunday = 0)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century

%Z Time zone name

%% A % character

For a complete reference of the Time class, refer to http://www.ruby-doc.org/core/classes/
Time.html.

Constants

Constants in Ruby are similar to variables. The language doesn’t even restrict constants to
stay with the same value. The only difference is that the Ruby interpreter generates a
warning when the value is changed.

To indicate to Ruby that a variable is a constant, you just name it with a capital letter. For
example, helloWorld is a regular variable, whereas HelloWorld is a constant.

Declaring and using constants is just like variables then:

BOOK_NAME = “IronRuby Unleashed”

puts “You are reading #{BOOK_NAME}”

http://www.ruby-doc.org/core/classes/Time.html
http://www.ruby-doc.org/core/classes/Time.html

64 CHAPTER 5 Ruby Basics

If you try to set a new value to BOOK_NAME, you receive a warning: Already initialized
constant BOOK_NAME.

Constants names can also be attached to a class or module object. This is done using the
double-colon operator (::), as follows:

class Books

end

A constant attached to a class named Books

Books::IRON_RUBY = “IronRuby Unleashed”

This is equivalent to the following:

class Books

IRON_RUBY = “IronRuby Unleashed”

end

Constants appear in the global context. You can access them from outside their original
scope. For example, using the Books class IRON_RUBY constant from outside is simple:

class Books

IRON_RUBY = “IronRuby Unleashed”

end

puts Books::IRON_RUBY

Control Structures
Just like any other programming language, Ruby has control structures (for example,
different conditions, loops, and enumeration possibilities). Even though control structures
are quite “rock solid” across different languages, Ruby manages to provide new and
helpful statements to make the code more readable and maintainable.

Conditions
Comparison Operators
Before we start talking about conditions, let’s take a look at the comparison operators
Ruby offers. Table 5.3 contains the available comparison operators of the Ruby language.

BOOLEAN OPERATOR’S PRECEDENCE

Notice the Boolean operator’s precedence. This is an important thing to notice because
you might experience unexpected behavior if you are not familiar with those.

65

Consider the next statement:

1 || 2 && false

Because && has a higher precedence than the rest of the Boolean operators, it is
performed first. So the preceding statement is identical to the following:

1 || (2 && false)

Therefore, the result of the statement is 1.

The named Boolean operators, and and or, have the lowest precedence. (Both have
the same precedence, though.) Using and and or only ensures that the Boolean state-
ment is evaluated from left to right. This is why the next statement returns false:

1 or 2 and false

Control StructuresControl Structures

TABLE 5.3 Comparison Operators

Operator Description

== Equal to.

!= Not equal to.

<, <= Less than / less than or equal to.

>, >= Greater than / greater than or equal to.

<=> General comparison. If the operand on the left is less than the operand on the right, -
1 is returned. If the operand on the left is greater, 1 is returned. In case the operands
are equal, 0 is returned. If the operands are not comparable together, nil is returned.

=~ Pattern match (see regular expressions).

!~ No pattern match.

=== Case equality. Mostly used implicitly in case statements. It has different implementa-
tions. For example, for ranges it checks for membership, and for regular expressions
it tries to pattern match.

&& Boolean AND (highest precedence).

|| Boolean OR (high precedence).

AND Boolean AND (low precedence).

OR Boolean OR (low precedence).

If
if is the base condition of any language, and Ruby is no exception. The simple syntax of
if is as follows:

if condition

...code...

end

66 CHAPTER 5 Ruby Basics

For example:

x = 5

if x > 2

x = 7

end

You can also use then to strictly define the end of the condition:

if condition then

...code...

end

For instance:

x = 5

if x > 2 then

x = 7

end

if can be used on a single line, too. A single-line if has two available syntaxes. The first
is the usual way, where you must use the then keyword so that it is clear where the
condition ends:

x = “Ruby”

if x == “Ruby” then x = “IronRuby” end

The second way to write a single-line if statement is by writing the code block first and
the if condition afterward. This way is also called an if modifier. It makes the statement
sound entirely human when said out loud (try it):

language = “IronRuby”

print “IronRuby Rocks!” if language.eql?(“IronRuby”)

The if syntax also supports elsif and else. if must be declared as the first condition.
elsif can appear multiple times afterward, with more conditions. And else, when it
appears, must be the last of the bunch. The end keyword appears only at the end of the
conditional statement:

person = { :FirstName => “Shay”, :LastName => “Friedman” }

if person[:FirstName] == “John”

puts “You’re John!”

elsif person[:LastName] == “Doe”

puts “You’re a Doe, but not John!”

elsif person.length > 2 then # then can be used on elsif too

67Control Structures

puts “We have more than just first and last name!”

else

puts “Your name is #{person[:FirstName]} #{person[:LastName]}”

end

IF AS AN EXPRESSION

Just like everything else in Ruby, if is an expression. This allows you to return a value
from an if statement straight into a variable:

x = 6

day_name = if x == 1 then “Monday”

elsif x == 2 then “Tuesday”

elsif x == 3 then “Wednesday”

elsif x == 4 then “Thursday”

elsif x == 5 then “Friday”

else “Weekend!” end

Unless
unless is the opposite of if. It specifies a condition that passes in case it returns false or
nil. The unless statement structure is identical to if’s, except for one difference: elsif
statements are not allowed.

x = 5

unless x.nil? # identical to: if not (x == nil)

puts x

end

unless x < 5 then puts x end #identical to: if x >= 5 then...

unless x < 5

puts x

else

puts “Smaller than 5”

end

Also support modifier syntax:

puts x unless x < 5

Case
The case statement is a powerful control structure in Ruby. It has various usages, as
discussed in just a moment. The case statement consists of case, when, else, and end
keywords. case always starts the expression, optionally following an associated expression,

68 CHAPTER 5 Ruby Basics

and then several when clauses appear with conditions, and else optionally ends the struc-
ture. The end keyword closes the statement:

case

when condition

...code...

when condition

...code...

else

...code...

end

Only the first when clause whose condition results in true is processed. If no when condi-
tion is true and an else clause exists, the else code block is executed. Otherwise, no code
is executed and the case expression returns nil.

The first usage of the case statement is as a replacement for the if-elsif-else syntax:

x = 5

case

when x == 5

puts “It’s a five”

when x > 5 then puts “Bigger than five” # Single line is available using then

else

puts “Smaller than five”

end

This is equivalent to the following:

if x == 5 then puts “It’s a five”

elsif x > 5 then puts “Bigger than five”

else puts “Smaller than five”

end

The second way to use case is by using an associated expression. The expression comes
right after the case keyword and is evaluated only once. Then, every when condition
defines a value the expression should be equal to. The comparison is done using the ===
operator, which is not the pure comparison operator. For example, for ranges it checks for
membership in the range, for classes it checks whether the expression is an instance of the
given class, and for regular expressions it tries to match the string to the pattern. This
mechanism gives case its real power, simplifying the code and its writing and mainte-
nance processes:

day_num = 6

case day_num

69Control Structures

when 1 then puts “Monday”

when 2 then puts “Tuesday”

when 3 then puts “Wednesday”

when 4 then puts “Thursday”

when 5 then “puts Friday”

when 6 || 7 then puts “Weekend” # an Or (||) operator is valid here

else puts “Not valid”

end

Range can be used as well

case day_num

when 1..5 then puts “Work”

when 6..7 then puts “Rest”

else puts “Hmmm...”

end

Act accrording to variable type

case x

when String

puts “text”

when Numeric

puts “number”

when Array

puts “array”

end

Because every statement in Ruby is an expression, the case statement can also return a
value:

action = case day_num

when 1..5 then “Work”

when 6..7 then “Rest”

else “Hmmm...”

end

The Ternary Operator
Just like in various other languages, you can use ? and : to write a shorthand version of
if-else statements:

day_num = 3

action = day_num > 5 ? “Rest” : “Work”

70 CHAPTER 5 Ruby Basics

Loops

Ruby offers three kinds of simple loops: while, until, and for. Apart from these,
enumerable objects are used extensively in the Ruby language, even more than the plain
simple loops.

while
Similar to other programming languages, while in Ruby defines a code block that is
executed repetitively as long as the loop condition turns out false or nil. The syntax is
as follows:

while condition do

...code...

end

do may be omitted if the condition ends with a newline character, just like if’s then
keyword:

x = 5

while x > 2 and x < 10

puts x

x += 1

end

while x <= 100 do x *= 5 end

while in Ruby can also be used as a modifier and be written after the loop code, just like
the if statement:

x = 5

x -= 1 while x > 1

Inverted while The while statement can also be written in an inverted way:

begin

...code...

end while condition

When the statement is written this way, the associated code block is executed at least
once. Only after the first iteration is the loop condition tested.

until
until is the opposite of while. Its syntax is identical to while’s, and the loop repeats until
the condition becomes true. It can also be used as a modifier:

71Control Structures

x = 5

until x > 100

x = x**2

puts x

end

until x == 5 do x = Math.sqrt(x); puts x; end

my_array = [1, 2, 3]

puts my_array.pop until my_array.empty?

Inverted until Similar to the inverted while syntax, until can also be declared after the
loop-associated code block:

begin

...code...

end until condition

for
The for loop iterates through the elements of a given object. On each loop iteration, the
current element is assigned to the loop variable, and the loop code is executed. The for
syntax includes the in keyword, too:

for loop_variable in enumerable_object

...code...

end

As you may have noticed, for in Ruby is more similar to the foreach loop in other
languages than it is to the regular for loop. This is correct. The “regular” for behavior can
be achieved in other ways, which are explained in Chapter 6, “Ruby’s Code-Containing
Structures.”

You can use commas to define multiple variables as loop variables to get more than a
single item at a time. If there are more variables than values, the spare variables are
assigned nil:

my_array = [1, 2, 3]

for num in my_array

print num

end

Output: 123

for a,b in my_array

print a

print b

72 CHAPTER 5 Ruby Basics

end

Output: 123nil

my_array = [[‘a’,’b’,’c’], [‘d’,’e’,’f’], [‘g’,’h’,’i’]]

for a,b,c in my_array

print a

print b

print c

end

Output: abcdefghi

my_hash = { :a => ?a, :b => ?b }

for key,value in my_hash

puts “#{key} = #{value}”

end

Output:

a = 97

b = 98

loop
Ruby has another interesting loop directive: loop. The loop loop has no condition, and it
intends to loop indefinitely. The only way to exit a loop loop is by using the break
keyword, which is introduced later in this chapter.

You can define a loop loop by calling the loop keyword and declaring its associated code
block afterward:

With do-end:

loop do

...code...

end

Or with curley brackets:

loop {

...code...

}

Enumerable Objects
Enumerable objects are objects that can be iterated throughout. All of Ruby’s base types
are enumerable. Therefore, you don’t need while, until, or for loops to go through
them. Enumerable objects also help us achieve the familiar for loop behavior we
discussed earlier.

Before I describe enumerable objects, I want to introduce you to Ruby’s blocks. A block in
Ruby is an anonymous method—a method with statements and return values but without
a name. There are two ways to write a code block that matches a specific specification.

73Control Structures

The first way is a single-line block. This block is surrounded with curly brackets and
optionally starts with a definition of the expected parameters between vertical bars (|).
After the parameters have been defined, they can be used inside the code block:

{ puts “Hey!” } # no parameters defined

{ |x, y| x = x + y } # expects 2 parameters: x and y.

The second way is the multiline approach. Its syntax is started with a do, and then option-
ally comes the variable definitions between vertical bars, then the code block in a new
line, and an end keyword to close the block:

do

puts “Hey!”

end

do |x, y|

x = x + y

end

Now that you are familiar with the concept of blocks, let’s move on and take a look at
how we use them.

Chapter 6 discusses block in more detail.

Numbers Numeric variables support three types of loops: times, upto\downto, and step.

times is available for Integer types only (Fixnum and Bignum). It executes its code block
the number of times of the numeric value:

10.times { puts “Hey!” } # prints “Hey!” 10 times

The next loop will print the numbers 0 to 9 on the screen

10.times do |x|

puts x

end

upto and downto are also available for Integer types only. They iterate from the numeric
value up to or down to the given parameter:

5.upto(10) { |x| puts x } # prints the numbers from 5 to 10 on the screen

The next loop will print “Hey!” 5 times

5.downto(1) do

puts “Hey!”

end

74 CHAPTER 5 Ruby Basics

step is available to all numeric variables. It enables you to run toward a certain limit using
a custom step size. The first parameter is the limit, and the second one is the step size:

5.step(25, 5) { |x| print “-#{x}-” }

Output: -5—10—15—20—25-

1.step(0, -0.1) { |x| print x if x < 0.5 }

Output: 0.4 0.3 0.2 0.1 0.0

Ranges Ranges are “native” to the task of looping. By using the range’s each method,
you can loop over the range values:

(1..5).each { |x| puts x } # prints the numbers between 1 to 5

(“A”..”Z”).each { |x| puts x } # prints the English alphabet

Other Enumerable Objects We’ve discussed here the commonly used enumerations.
However, there are many more enumerable objects in the Ruby language. Actually, you
will find that almost every object holds some kind of enumeration capabilities. Array,
Hash, String, File, and Dir classes all support enumerations, and of course, there are
more that do, as well:

[1,2,3].each { |x| print x } # prints “123”

{ :a => ?a, :b => ?b }.each { |k, v| print k, v } # prints “a97b98”

Dir.new(“C:\\”).each { |file| puts file } # prints all files and folders in C:\

Altering Loops Flow
Ruby features several keywords whose aim is to alter the execution flow of loop blocks
(and blocks in general, as discussed in the next chapter). These keywords include break,
next, and redo.

break When break is used inside a loop, the loop immediately ends, and the application
flow continues to the next expression:

(1..1000000).each do |i|

break if i > 5

puts i

end

The preceding code prints to the screen the numbers from 1 to 5. Then, the flow reaches
the break statement and the loop ends.

75Control Structures

BREAK AS AN EXPRESSION

We’ve discussed earlier that everything in Ruby is an expression and can return a
value. break is no exception; it is an expression, too, and can return a value:

status = for elem in [“Beagle”, “Terrier”, “Labrador Retriever”, “Persian

➥Cat”]

if elem.include?(“Cat”) then

break “Cat alert!”

end

end

puts status # print “Cat alert!” to the screen

next The next keyword causes the current loop iteration to end. The loop then continues
to the next iteration:

[-2, 5, -12, 19, 43].each do |x|

next if x < 0

puts x

end

This code outputs to the screen the numbers 5, 19, and 43.

redo When the redo keyword is called, the current iteration starts over. Unlike the next
keyword, which results in moving forward to the next iteration, the redo keyword runs
the same iteration again:

num = 0

(1..5).each do |i|

num += 1

redo if num == 2

end

puts num # print 6 to the screen

This code will redo the iteration in case of a wrong answer

1.upto(5) do |x|

puts “-> #{x} <-”

print “What number do you see? “

answer = gets

if answer.to_i != x

puts “WRONG... Try Again:”

76 CHAPTER 5 Ruby Basics

redo

end

end

puts “CONGRATULATIONS!”

The yield Statement

You can think of yield as a built-in delegating mechanism. Calling yield executes the
code block that is attached to the method call, similar to regular method invocations.
After this code is done, the flow returns to the clause yield is declared in. Because of its
nature, yield is commonly used in iterator implementations (each methods, for example).

You can pass parameters with yield and they will be passed to the executed code.

For example, in the next sample I define an enumerable method that implements the hail-
stone sequence. On each iteration, I use yield to call the associated code. The associated
code takes the current value and prints it to the screen:

def hailstone_sequence(start, steps)

step_index = 0

num = start

Send the initial number to the associated code block

yield num

while (step_index < steps)

Calculate the next number in the sequence

if num % 2 == 0

num = num / 2

else

num = (3*num) + 1

end

Send the current number to the associated code block

yield num

step_index += 1

end

end

Using the enumerable method

hailstone_sequence(100, 50) do |x|

puts x

end

77Control Structures

The code ends up printing a sequence of 50 numbers to the screen according to the hail-
stone sequence specifications.

THE HAILSTONE SEQUENCE

A hailstone sequence, also known as the Collatz conjecture, is still an unsolved theory.
By using the algorithm in the code, given any positive integer, the sequence eventually
reaches 1. Then the sequence infinitely continues with the subsequence of 4, 2, 1.

There is $500 waiting for whoever finds a solution to the theory. Good luck!

BEGIN and END

BEGIN and END, when defined, executes their associated code block at the beginning of the
application and at the end. BEGIN and END are followed by a code block that is surrounded
by curly brackets:

BEGIN {

puts “Starting”

}

END {

puts “Ending”

}

If you run this, you’ll print “Starting” and “Ending” to the screen.

These blocks can appear multiple times within the application, and they will all be
executed. BEGIN clauses are executed first to last, and END clauses last to first:

BEGIN { puts “begin #1” }

END { puts “end #1” }

puts “Outside BEGIN or END”

BEGIN { puts “begin #2” }

END { puts “end #2” }

The preceding sample prints the following output to the screen:

begin #1

begin #2

Outside BEGIN or END

end #2

end #1

78 CHAPTER 5 Ruby Basics

Exception Handling
Exceptions in Ruby are similar to exceptions in other languages. They are raised when an
error occurs. There are several types of exceptions in Ruby. Some add extended informa-
tion about the error, but most don’t. The base exception class is named Exception, and
its derivatives are StandardError, NoMethodError, SyntaxError, TypeError,
SystemCallError, and more.

By default, Ruby terminates the application when an error occurs. Exception handling
using the rescue statement can prevent this from happening.

Exception Information

As mentioned, every exception in Ruby is based on the Exception class. This class offers a
few methods that enable you to investigate the source of the exception.

message retrieves a human-readable error message related to the exception:

begin

Divide by zero... this will raise an exception

num = 5 / 0

rescue => ex

puts ex.message

end

An error will be printed to the screen: Attempted to divide by zero.

backtrace is the stack trace of the place where the error occurred. It returns an array of
the trace, each line with the filename, line number, and method name:

begin

Divide by zero... this will raise an exception

num = 5 / 0

rescue => ex

puts ex.backtrace

end

This will print the stack trace to the screen:

Demo.rb:3:in ‘/’ Demo.rb:3

rescue

The rescue statement is used to handle exceptions. When an exception occurs, the appli-
cation flow skips all other statements and jumps right to the rescue statement.

79Exception Handling

rescue is most often used in a begin-end clause. When an exception occurs within the code
that is written inside the begin-end clause, the exception gets to the rescue statement:

begin

... code ...

rescue

The flow will reach this point only in case the code between the

begin and rescue keywords raises an exception

... handling the exception ...

end

RESCUE CAN BE USED WITH MORE CLAUSES

The rescue statement can be used with more than just the begin-end clause. It can
also be used with method, class, and module definitions. It then catches errors raised
from the scope it is written in. For example, rescue on a class definition will not catch
errors that are raised in methods in that class.

The way to use rescue in a method clause is demonstrated in the following example:

def my_method(param)

... method code ...

rescue

... exception handling ...

End

Receiving the Exception Object
You can also retrieve the exception object when an error occurs. With this object, you can
get information about the error and handle it accordingly. To retrieve the exception, the
rescue statement allows defining a variable that will hold the object. The name of the
variable comes after an => operator, which says to the rescue statement “put the excep-
tion there”:

begin

... code ...

rescue => ex # ex is the variable that will hold the exception once it occurs

... exception handling ...

Using the ex variable:

puts ex.message

end

80 CHAPTER 5 Ruby Basics

RECEIVING THE EXCEPTION WHEN NO VARIABLE IS DEFINED

If you have a rescue clause with no variable defined and you still want to access the
exception object, you can do that through the special Ruby variable $!, as follows:

begin

do_something # do_something is not defined

rescue

print “Exception: “

print $!.message

end

This prints the following the screen:

Exception: undefined local variable or method `do_something’ for main:Object

Handling Different Exception Types
A rescue statement can be defined for a single exception type. This is handy when you
want to handle the exceptions differently. For example, you will want to show the error to
the user when a SyntaxError occurs and maybe retry the operation when an IOError
occurs. This behavior is available by writing the exception class name right after the
rescue statement:

begin

do_something

rescue NameError

puts “We couldn’t find the method!”

rescue IOError => ioEx # can still set the exception to a variable

puts “IO error: #{ioEx.message}”

rescue => ex # Other exceptions will end up here

puts “Unexpected error: #{ex.message}”

end

rescue as a Statement Modifier
Similar to other statements in Ruby (like if), the rescue statement can be used as a modi-
fier and be written on a single line. In this case, the begin-end clauses can be skipped:

x = 5/0 rescue x = 1 # x will end up set to 1

Because everything is an expression, the next block is identical to the preceding one:

x = begin

5 / 0

rescue

1

end

81Exception Handling

retry
The retry keyword, as its name declares, retries the block that has caused the rescue
statement to start. The next code sample tries to connect to the server two times at most:

retries = 0

begin

retries += 1

contact_server

rescue

puts “Error, trying again”

if retries < 2

sleep 1 # Sleep for one second

retry

end

end

The retry keyword proves handy for exceptions that are caused because of server time-
outs, for example. It is not a good idea to use it for every exception because most excep-
tions inform of problems within the application flow and should be treated otherwise.

else

The else statement, as odd as it sounds, is an alternative to rescue. It doesn’t mean that
else catches exceptions. It means that when none of the rescue statements is called, the
flow continues to the else clause.

Putting code in an else clause is similar to putting it at the end of the begin clause. The
only difference is that exceptions from the code in the else clause will not be caught by
the rescue statements.

begin

... code ...

rescue TypeError

.. TypeError handling ...

rescue IOError

... IOError handling ...

rescue NameError

... NameError handling ...

rescue Exception

... All other exceptions handling ...

else

The code will reach here if none of the above rescue statements is executed

... code ...

end

82 CHAPTER 5 Ruby Basics

This technique is quite uncommon. It might help when you want to distinguish the
“rescue-protected” code and the code that should be run in case of a success.

ensure

Code that is defined within an ensure clause will always run (similar to finally in other
languages). This code will be executed in both cases when an error occurs in the begin
clause and when the code successfully ends.

The ensure statement appears at the end of a rescue block. It is placed beneath all rescue
statements and the else statement (if else appears). ensure can also be used without
rescue statements above it. This ends up running even if the code in its begin clause fails.

For example, the next code fails after a file is opened. The ensure clause ensures that the
file stream is closed:

begin

Open a file for writing

f = File.open(“demo.txt”, “w”)

x = 5/0

rescue

... error handling ...

ensure

Make sure the the file stream is closed

f.close

end

Remember that else and ensure have entirely different roles: ensure is always called,
whereas else is called only when no error occurs. Moreover, ensure will be executed even
after an else clause is run and even after a return, break, or next:

1.upto(4) do |x|

begin

next if x > 2

puts x

ensure

puts “In ensure”

end

end

What is the output of the preceding code? Think a moment about it. (Hint: It’s tricky!)

The first answer most of the people think of is this:

1

2

83Exception Handling

In ensure

In ensure

This is not the right answer, though. As previously mentioned, ensure always runs. This is
what makes it possible to run after flow breakers like next. However, ensure will be
executed also after a successful run. So the real output of the code is as follows:

1

In ensure

2

In ensure

In ensure

In ensure

raise

Apart from catching exceptions, Ruby enables you to raise them, too. Raising exceptions
proves handy when you want to indicate to the caller that something didn’t go as expected.

Be aware that an exception raised manually is identical to a system-raised exception. In
case no handling exists, the application terminates.

Raising an exception in Ruby is done via the raise statement. This statement is flexible
and allows you to raise exceptions in various ways.

Way 1: raise with No Arguments
When raise is used with no arguments in a rescue clause, it re-raises the exception:

begin

5 / 0

rescue

puts “Error!”

raise

end

This code prints “Error!” to the screen and rethrows the ZeroDivisionError that it caught.

When raise is used without arguments in every clause other than rescue, it raises an
empty RuntimeError exception. This technique is not recommended because the caller
does not know why the error happened:

begin

raise

rescue => ex

puts ex.message # ex.message is empty, nothing will be printed out

end

84 CHAPTER 5 Ruby Basics

Way 2: raise with a String Argument
Passing a string to raise throws a RuntimeError with the string as its message:

begin

raise “Oh no!”

rescue RuntimeError => ex

puts ex.message

end

The screen output is “Oh no!”

Way 3: raise with an Exception Object Argument
If you have generated the exception object, you can pass it to the raise statement. This
exception will be thrown to the caller:

begin

raise SyntaxError.new(“There’s no code here!”)

rescue SyntaxError => ex

puts “Syntax problem: #{ex.message}”

rescue

puts “Unexpected error”

end

The preceding code outputs “Syntax problem: There’s no code here!” to the screen.

Way 4: raise with an Object Argument
This way is rather uncommon. You can pass an object to raise. This object should have
an exception method that generates an exception object. The raise statement then
invoke this method and throws the exception:

class SomeClass

def exception

RuntimeError.new(“SomeClass error!”)

end

end

begin

raise SomeClass.new

rescue RuntimeError => ex

puts “#{ex.message}”

end

This outputs “SomeClass error!” to the screen.

85Exception Handling

Way 5: rescue with Exception Details
raise can receive up to three arguments. The first is the exception’s type, the second is
the error message, and the third is the backtrace content. The backtrace argument lets
you define a more human-friendly version of the stack trace.

The second and third arguments are optional here (and we’ve already seen that the error
message can also be passed alone):

begin

raise NotImplementedError, “Implementation is due next summer”

rescue NotImplementedError => ex

puts “Not implemented [#{ex.message}]”

puts ex.backtrace

end

Output:

Not implemented [Implementation is due next summer]

Demo.rb:2

begin

raise RuntimeError, “Code’s missing”, [“demo.rb first part”, “Second begin-end”]

rescue RuntimeError => ex

puts “Not implemented [#{ex.message}]”

puts ex.backtrace

end

Output:

Error: Code’s missing demo.rb first part Second begin-end

This is the recommended way of raising exceptions. It gives the caller all the information
it needs to handle the error correctly.

Custom Error Classes

You can declare your own exception classes to customize them to your needs.

Creating custom exception classes is easy. All you have to do is to inherit from the
StandardError class. (You’ll read more about classes and inheritance in the next chapter.)

The most common way is to inherit from StandardError without adding any new func-
tionality. The type of the error is a sufficient indicator for the error:

class CustomError < StandardError

end

Or even in one line:

class CustomError < StandardError; end

86 CHAPTER 5 Ruby Basics

You can, of course, add functionality to the error classes. For example, in the next custom
error, DayError, I add the name of the related day, as well:

class DayError < StandardError

attr_accessor :DayName

end

Using custom error classes is just like using system error classes. You can raise them and
catch them in rescue clauses:

begin

if (5..6).include?(Time.now.wday)

#Construct the error object

error = DayError.new(“This is the weekend, no work!”)

error.DayName = “WEEKEND!”

Raise it

raise error

end

rescue DayError => ex

puts “Wrong day: #{ex.DayName}, #{ex.message}”

end

Output: “Wrong day: WEEKEND!, This is the weekend, no work!”

Summary
The Ruby language is a permissive and flexible language. This chapter has introduced you
to its basic syntax and concepts (such as the different variable types, conditions, loops,
and exception-handling techniques).

So far in this book, you’ve learned about only a small part of the Ruby language and its
possibilities, which limits us to small and simple Ruby applications. The next chapters
take a deeper look at the Ruby language, after which you can leverage your newfound
knowledge to write larger and more complex Ruby applications.

CHAPTER 6

Ruby’s Code-
Containing Structures

IN THIS CHAPTER

. Methods

. Blocks, Procs, and Lambdas

. Classes

. Modules

With Ruby’s basic syntax only, we still find it hard to
build a full Ruby application.

For example, sometimes when building an application you
need to write the same code several times. If you really
write it several times, you end up shortly with an impossi-
ble-to-maintain and buggy application. The solution to that
is to write the code once in a central place and refer to it
from several places.

Another common example is code design. One important
task in building big applications is designing your code to
make it more maintainable, efficient, and change-ready. We
can’t implement such design decisions currently because we
don’t yet know how to separate our code to logical parts.

In this chapter, you learn how to organize the building
blocks discussed in the preceding chapter into bigger units
that can help you write code in a more efficient, easier-to-
maintain, and logical way.

Methods
Methods are code blocks that have names and parameters.
In Ruby, the last executed expression is returned from the
method to its caller. Therefore, there are no methods in
Ruby that do not return a value (sometimes called proce-
dures). If the last expression evaluated does not consist of a
value, nil is returned.

Methods can be associated with an object. (In most cases,
the object will be a class.) When a method is associated
with an object, the method is executed within the object

88 CHAPTER 6 Ruby’s Code-Containing Structures

context. Previous code samples have shown methods that are not associated with any
object. This is absolutely acceptable in Ruby. However, because Ruby is an object-oriented
language, the “no-object” methods are actually implicitly defined and invoked as private
members of the Object class.

For information about calling methods, see Chapter 5, “Ruby Basics.”

Defining Methods

Methods are defined using the def keyword. The def keyword is followed by the method
name and parameters list if needed, optionally surrounded with parentheses. After the list
of parameters, the method code appears, and then the end keyword finishes the method
definition:

def add_one(num)

puts num + 1

end

This method is named add_one. It receives one argument called num. The method then
adds 1 to the received number and prints it to the screen. Because puts returns nil, and
it’s the last (and first) expression invoked during the method execution, the method
returns nil to the caller, as well.

Methods do not have to contain arguments. In case a method does not have parameters,
only the method name follows the def keyword:

def say_hello

puts “Hello!”

end

CATCHING EXCEPTIONS WITHIN METHODS

When you define a method, def acts as the begin clause that is needed for the
rescue statement. Therefore, you don’t have to write the following:

def my_method

begin

...code...

rescue

... handle error...

else

...code...

ensure

...code...

end

89Methods

The following code also works (and is more readable and recommended):

def my_method

...code...

rescue

... handle error...

else

...code...

ensure

...code...

End

MULTIPLE-PARAMETER REPLACEMENT

It is common in Ruby to “squeeze” multiple logically related attributes into a single
parameter and pass it as a hash.

For example, take a look at the next code sample:

def print_person(first_name, last_name, age, country)

puts “#{first_name} #{last_name}”

puts “#{age} years old, from #{country}”

end

print_person(“John”, “Doe”, 25, “USA”)

You should change it to the following code block, which other developers will find more
readable and easier to use:

def print_person(details)

puts “#{details[:first_name]} #{details[:last_name]}”

puts “#{details[:age]} years old, from #{details[:country]}”

end

print_person(:first_name => “John”,

:last_name => “Doe”,

:age => 25,

:country => “USA”)

Another common use for hash parameters is for optional parameters. The required
ones are direct parameters, and the optional ones are given via the hash.

90 CHAPTER 6 Ruby’s Code-Containing Structures

Method Naming

As discussed in Chapter 5, methods are named using lowercase letters and an underscore
to separate the words.

Two important naming conventions are used widely across the language. They are recom-
mended to make the code more readable.

Methods that are expected to return a Boolean value should have a question mark at the
end of their name: nil?, empty?, include?.

Methods that should be carefully used, or that change the internal data of the object,
should have an exclamation mark at the end of their name: sort!, strip!, merge!. The
difference, for example, between String.reverse and String.reverse! is that reverse
returns a new reversed String object and reverse! changes the same string:

str = “Hello”

another_str = str.reverse # str = “Hello”, another_str = “olleH”

str.reverse! # str = “olleH”

Returning a Value from Methods

Methods in Ruby always return a single value. This value can be of any object: numeric,
string, array, or any other object. The sole case when a method will not return a value is
in case of an exception.

Generally, the result of the last executed line is the return value of a method:

def get_hour_name(hour)

case hour

when 0, 24

“Midnight”

when 1..11

“Morning”

when 12

“Noon”

when 13..20

“Afternoon”

when 21..23

“Night”

end

end

This method returns the name of the part of day for a given hour. If the hour is 0 or 24,
“Midnight” is returned. For values between 1 and 11, “Morning” is returned, and so on.

Another way to return a value from a method is by using the return keyword. The return
keyword stops the method execution. If an expression follows it, the expression is evalu-
ated, and its result is returned to the method caller.

91Methods

The return keyword can be also used to explicitly return a value. For example, there is no
difference between the next two method definitions:

def add_one(num)

num + 1

end

def add_one(num)

return num + 1

end

Another important feature the return keyword offers is returning multiple values. You can
pass the return keyword multiple values separated by commas, and they will be sent to
the caller as an array:

def get_country_details(country_name)

if country_name == “USA”

return “USA”, 1776

elsif country_name == “IL”

return “Israel”, 1948

else

return “unknown”, 0

end

end

This return value can be set into different variables directly:

name, declared_on = get_country_details(“USA”)

Method Name Aliasing

In many places in Ruby, you can find multiple methods that do exactly the same task.
This is an ingenious approach. It increases the readability of the code and makes it clearer
to the developers, who can use the term that makes more sense to them.

Creating an alias name for a method is done with the alias keyword. The way to define
an alias is by passing alias the alias name as the first argument and the method name as
the second one:

def merge

...code...

end

alias unite merge

Now you can call unite rather than merge.

92 CHAPTER 6 Ruby’s Code-Containing Structures

Another common use-case for method aliasing is to replace a method in a class and then
still be able to call the old method. For example, the next code replaces the
the_next_big_thing method but keeps the original implementation using method aliasing:

def the_next_big_thing

puts “Other languages”

end

alias the_previous_big_thing the_next_big_thing

def the_next_big_thing

puts “IronRuby”

end

the_next_big_thing # Prints “IronRuby”

the_previous_big_thing # Prints “Other languages”

Default Parameter Values

Method arguments can have default values. These values are used when no parameters are
passed in their position.

The way to declare a default value is by setting it to the parameter when it is defined. For
example, in the next sample, the size argument has a default value of 1:

def get_substring(str, size = 1)

str[0..size-1]

end

get_substring(“Hello”, 3) # = “Hel”

get_substring(“Hello”) # = “H”

The default value is evaluated every time it is needed (not once in a method lifetime). This
behavior makes it available to set a default value according to other values. For instance,
the next sample redefines the get_substring method so that the whole string is returned
if size is not defined:

def get_substring(str, size = str.size)

str[0..size-1]

end

get_substring(“Hello”) # = “Hello”

POSITION OF ARGUMENTS WITH DEFAULT VALUES

Parameters with default values should always be positioned after parameters without
default values, if they exist. Otherwise an error occurs:

def method(a = 1, b, c, d = 5) # Syntax error!

def method(b, c, a = 1, d = 5) # OK

93Methods

Special Parameter Types

Ruby methods have two special parameter types. These are the * parameters and the &
parameters. The * parameter, also known as the array parameter, is a “catch all parame-
ters” argument that can be used when the number of parameters is unknown. The & para-
meter, also known as a block argument, allows passing a code block to the method.

The Array Parameter (*)
We have already met the * operator in Chapter 5, where it helped us flatten arrays. Here its
role differs just a bit. The * operator is used to define a parameter that catches an unknown
number of arguments passed to the method. The array parameter contains an array of the
caught values. If no values are “caught,” the argument contains an empty array.

This special parameter type can appear along with regular parameters, and in that case, it
receives the rest of the passed arguments:

def concat(*values)

total = ““

values.each { |str| total = total + str }

total

end

concat(“Iron”,”Ruby”) # values = [“Iron”, “Ruby”]

concat() # values = []

def concat(first, *values)

values.each { |str| first = first + str }

first

end

concat(“Iron”,”Ruby”, “ Unleashed”) # values = [“Ruby”, “ Unleashed”]

concat(“IronRuby”) # values = []

The array parameter must be positioned after regular parameters. The only argument that
may appear after it is the block argument.

The Block Argument (&)
The block argument is used to send code blocks to the method. These blocks can then be
invoked during the method execution.

This approach is similar to the yield keyword discussed in Chapter 5. The difference is
that the block argument provides more control over the code block. You can investigate
it (for example, discover how many arguments it expects), and you can pass it on to
other methods.

Similar to the array parameter, to define a block argument, an ampersand, &, should be
added before the parameter name. A block argument is actually a Proc object, and so
unlike yield, invoking it is done via the call method:

94 CHAPTER 6 Ruby’s Code-Containing Structures

def concat(first, *values, &result_processor)

Calculate the return value

values.each { |str| first = first + str }

Invoke the block attached to the method call

result_processor.call(first)

Return a value to the caller

first

end

Calling a method with a block argument is the same as passing a code block to a method
with a yield keyword:

concat(“Iron”,”Ruby”) { |result| puts result }

This prints “IronRuby” to the screen.

BLOCK ARGUMENT POSITION

A block argument must be the last parameter in the list. Otherwise an error will be raised.

USING METHODS AS BLOCK ARGUMENTS

Instead of passing a new code block, you can pass the method every object that can
be converted to a Proc object. This includes other methods. For example, we could
write the concat method call this way:

def print_string(str)

puts str

end

concat(“Iron”,”Ruby”, &method(:print_string))

The method named method is actually an Object class method, and it returns the
Method object of a given method. The ampersand at front actually converts the Method
object to a Proc object. Eventually, the method is executed, and we get the same
result as before.

Associate Methods with Objects

You can associate methods to every object out there, even to constants. This mechanism is
also called singleton methods because the method is available only for a single object.

To define a singleton method, the def statement, instead of writing it like we’ve already
seen (def [method name]), is written along with the associated object name, def [object
name].[method name], as follows:

95Methods

str = “Hello”

def str.welcome?

self == “Hello”

end

str.welcome? # = true

The welcome? method is available only for the str object. It is not available to any other
string, clone of str, or object. The method will be accessible during the whole lifespan of
str and no longer.

There is another syntax for creating singleton methods. It consists of a class-like defini-
tion. The equivalent code of the welcome? sample using this syntax is as follows:

str = “Hello”

class << str

def welcome?

self == “Hello”

end

end

str.welcome?

This syntax is a bit more complex. First you must declare that you are modifying the class
of str (class << str), and then you can write the singleton method definition.

OBJECTS YOU CANNOT ASSOCIATE METHODS WITH

Because numeric values (particularly Fixnum) and symbol values are not object refer-
ences in Ruby, you cannot associate methods with their objects. You can, however,
associate methods with the classes themselves (Fixnum, Symbol).

Removing Method Definitions

Ruby allows methods to be undefined. When this is done, the method is no longer acces-
sible. The way to return the method is to define it again.

You can remove a method definition via the undef keyword. It receives the method name
and removes its definition:

def add_one(num)

num + 1

end

add_one(3) # works

undef add_one

add_one(3) # undefined method error!

96 CHAPTER 6 Ruby’s Code-Containing Structures

Another way to remove method definitions is by using the undef_method method. The
difference between undef_method and undef is that undef_method is a private member of
Module and so it can be used only within classes or modules. In addition, undef_method
receives a symbol representing the method name and not the method itself.

UNDEF AND SINGLETON METHODS

As mentioned earlier, singleton methods can be associated with any object. This kind
of method cannot be removed using the undef keyword.

To remove singleton methods, you should use undef_method with the class instance
extension syntax. For example, if you want to remove the welcome? method from str,
you should write the following:

class << str

undef_method(:welcome?)

end

Blocks, Procs, and Lambdas
Methods are code containers. They have a name to uniquely identify them, and they
contain code inside. In Ruby, methods are not the sole code containers. Ruby features addi-
tional ways to pass around code blocks (for example, via blocks, procs, and lambdas). They
are similar to methods, just without the name; they are anonymous. These code blocks are
widely used throughout the Ruby language because they’re easy to use and intuitive.

Blocks

Blocks in Ruby are anonymous methods. Which means that they are similar to regular
methods but with a main difference: They do not have a name. This characteristic
enforces the biggest limitation of blocks, which is they must be declared along with a
method call. In addition, blocks are not objects and cannot be treated as such. You can’t
pass them around and you cannot execute operations on them. You can only invoke them
with or without parameters.

Blocks can be defined in two ways: the curly brackets way and the do-end way. The vari-
ables the block expects are declared between vertical bars (|) after the beginning of the
block clause:

Curly brackets block:

some_method_call { |x| puts x }

Multiline also:

some_method_call { |x|

puts x

}

97Blocks, Procs, and Lambdas

begin-end block:

some_method_call do |x| puts x end

Multiline also:

some_method_call do |x|

puts x

end

Blocks were discussed in Chapter 5 in relation to iterators. However, iterators are only one
possible implementation. In fact, a block can be added to any method. It is possible even
if the method does not have code that invokes it (yield or an ampersand parameter). In
this case, the block will be quietly ignored.

BLOCKS ARE CLOSURES

Blocks in Ruby are closures. This means that they carry their context with them.

For example, in the following code, the block can access the num variable even though
it is not in the iteration context:

num = 1

[1,2,3].each { |x| print x+num } # Prints 234 to the screen

Procs

Procs enable you to save blocks into variables. This gives them the ability to be passed
around and reused. Procs consist of the Proc class that contains methods that provide
information about the proc.

Defining a Proc object is done by using the Proc class constructor, Proc.new, as follows:

Using curly brackets:

p = Proc.new { |x| puts x }

Using do-end:

p = Proc.new do |x| puts x end

Because a proc is an object, it cannot be invoked directly like methods. The alternative to
that is using Proc’s call method. The parameters targeted to the block are passed to the
call method:

p.call(“Hello”) # Prints “Hello” to the screen

Another way to execute a proc is by calling it with square brackets:

p[“Hello”] # identical to p.call[“Hello”]

98 CHAPTER 6 Ruby’s Code-Containing Structures

This way is more similar to method invocation. Unlike regular methods, when the block
doesn’t receive any arguments, square brackets will still be needed:

p = Proc.new { puts “Hello” }

p[] # prints “Hello” to the screen

Proc Class Methods
The Proc class has several methods that allow getting information about the code block.

arity returns the number of parameters the block expects:

p = Proc.new { |x| }

p.arity # = 1

p = Proc.new { |x, y| }

p.arity # = 2

There are some behaviors to notice regarding the arity method. For blocks with no para-
meters, it returns -1:

p = Proc.new { }

p.arity # = -1

After the block is defined to receive an asterisk parameter, arity returns the number of
arguments as a negative number (including the asterisk parameter):

p = Proc.new { |*x| }

p.arity # = -1

p = Proc.new { |x, y, z, *t| }

p.arity # = -4

to_s generates a string representation of the Proc object. This string contains some useful
information, such as the file and line number where the object was defined. Its format is
as follows:

p = Proc.new { puts “Hello” }

p.to_s # = #<Proc:0x03c6fe3c2>

Figure 6.1 shows the parts of Proc’s to_s output.

99Blocks, Procs, and Lambdas

Proc unique identifier File name Line number

#<Proc:0x0383fe48@Demo.rb:3>

FIGURE 6.1 The different parts of the result of the Proc’s to_s method.

Lambdas

Lambdas are similar to procs. Actually, lambdas and procs both consist of the Proc class.
Calling them is done the same way. They both have Proc methods available (like arity),
and their syntax is very close. They differ in their behavior. Procs have a block-like behav-
ior, and lambdas have a method-like behavior.

Defining Lambdas
A lambda is defined using the lambda keyword. Just like blocks, after the lambda

keyword can appear a curly-brackets block or a do-end block:

l = lambda { |x| puts x }

l = lambda do |x| puts x end

Differences Between Lambdas and Procs
The differences between lambdas and procs find expression on a few occasions. One occa-
sion is when too few arguments are passed to the block. A proc sets the missing parame-
ters to nil, whereas a lambda raises an error:

p = Proc.new { |x, y| print x; print y }

l = lambda { |x, y| print x; print y }

p.call(1) # Prints “1nil”

l.call(1) # Error!

Another case is when the return keyword is used inside the block. Lambdas, just like
methods, return this value to the invoking method. For example, the next code sample
ends up printing “In Lambda, result = 1”:

l = lambda { print “In Lambda”; return 1 }

result = l.call

print “, result = #{result}”

The behavior of procs can be slightly unexpected. When defined and invoked within the
same context, a return statement inside a proc will be treated just like it happened
within the invoker context. For instance, the following code sample ends up printing
only “In Proc”:

100 CHAPTER 6 Ruby’s Code-Containing Structures

def my_method

p = Proc.new { puts “In Proc”; return 1 }

p.call

puts “Outside”

end

result = my_method # result will contain 1 after the method invocation

When the proc is not defined and executed within the same context, an error occurs:

def my_method(p)

p.call

puts “Outside”

end

my_method(Proc.new { puts “In Proc”; return 1 }) # LocalJumpError!

Flow-Altering Keywords Within Blocks, Procs, and Lambdas

The keywords we discuss in this section have already been mentioned in the context of
loops (in Chapter 5). Loop blocks are like every other block in Ruby, and so it is natural
that what you can do in one block can be done in another. This is correct about blocks,
but not entirely right about procs and lambdas.

next is available in blocks, procs, and lambdas. It is used to stop the block execution and
continue the application flow. When it appears with a value afterward, this value is
returned to the invoker:

def demo(m1, m2)

block_result = yield

proc_result = m2.call

lambda_result = m1.call

print “#{block_result}, #{proc_result}, #{lambda_result}”

end

p = Proc.new { next “From Proc”; puts “Hello” }

l = lambda { next “From Lambda”; puts “Hello” }

demo(l, p) { next “From Block”; puts “Hello” }

This code will print “From Block, From Proc, From Lambda” to the screen.

101Classes

redo is also allowed within all block types. When used, it restarts the block execution:

p = Proc.new do

puts “IronRuby rocks? [Y|N]”

answer = gets.chomp # Get the answer without the enter char at the end

redo if answer != “Y”

end

p.call

This code asks the user “IronRuby rocks?” and waits for the user to insert input. If the
input is other than Y, the question is asked again.

break behaves identically to the return keyword mentioned earlier in this chapter. It is
available within blocks and within procs from the same context. break is not available in
lambdas at all.

Classes
Ruby is a purely object-oriented language. Everything is an object or acts like one. Every
object consists of a class. For instance, we have mentioned that even the Boolean values,
true and false, are actually TrueClass and FalseClass.

Classes are containers. They contain methods, attributes, and variables, which all serve the
purpose of the class. Conforming to the OOP guidelines, classes in Ruby can inherit and
extend their superclasses. Ruby classes also have control over the visibility of their
methods, defining them as public, protected, or private.

Although classes in many languages are very strict, classes in Ruby are very permissive.
You can “open” every class and add methods to it, and you can even add methods to a
single object instance, as discussed in relation to singleton methods.

Defining Classes

The class keyword is used to define a class. The keyword is followed by the class name.
The class definition is ended with the end keyword. Class names in Ruby must start with a
capital letter. An error will be raised otherwise:

class ClassName

...class content...

end

Class names must start with a capital letter because Ruby creates a constant with the same
name to refer to the class.

102 CHAPTER 6 Ruby’s Code-Containing Structures

Creating a Class Instance

To use a class, we should instantiate it first. The way to do that is by calling the new
method, which is the constructor of every class in Ruby:

human = Human.new

Every class has two methods that can help identify the class of the current variable
instance. These methods are class and is_a?:

human.class # gets the class name of the variable = “Human”

human.is_a?(Human) # tests if a variable consists of the class Human = true

Defining a Constructor

When the new method is called, an instance of the class is created, and the class construc-
tor is executed. The name of the constructor method in Ruby is initialize. You can add
parameters to the method, and they will be passed along by the new method:

class Human

def initialize(first_name, last_name)

print “#{first_name} #{last_name}”

end

end

Human.new(“John”, “Doe”) # prints “John Doe”

INITIALIZE VISIBILITY

The initialize method is used as the constructor method. Ruby automatically makes
initialize a private method, so you can’t call it from outside the class:

human = Human.new

human.initialize # Error!

This also means that calling the initialize method is available from instance meth-
ods. Calling it from there, although doing so makes no sense, will not harm the applica-
tion flow or create a new class instance. initialize is just a regular method with a
special role that is automatically called after the class instance has been created.

Variables Inside Classes

Talking about classes is a bit different from talking about global objects. Classes have
instances, and their inside state differs from one instance to another. This is why classes
can contain more than one variable type. Actually, a class has four different variable types:
class variables, instance variables, local variables, and constants.

103Classes

Class Variables
A class variable is similar to static variables in other languages. A class variable is single for
every class and is not affected by different instances of the class. Therefore, if a new value
is set to a class variable, this new value is visible to all instances of this class.

To define a class variable, add two “at” signs (@) before its name (for example,
@@class_variable_name).

The next code sample uses a class variable @@instances_count to count the number of
instances of the Demo class:

class Demo

@@instances_count = 0

def initialize

@@instances_count += 1

end

def print_instances_count

puts @@instances_count

end

end

c = Demo.new

c.print_instances_count # prints 1

d = Demo.new

d.print_instances_count # prints 2

Instance Variables
An instance variable exists within a single class instance. Unlike class variables, changing
an instance variable on one instance of a class will not affect its value on other instances.
Instance variables are very useful in saving data that is needed across the class methods. It
is a common use to set instance variables with data provided on the initialize method.

Defining an instance variable is done by adding a single “at” sign (@) before the variable
name (for example, @instance_variable_name).

In the next code sample, we improve the Human class and make it save the data passed to
the constructor. In the introduce method, we use the data and print it out:

class Human

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

104 CHAPTER 6 Ruby’s Code-Containing Structures

def introduce

puts “Hi, I’m #{@first_name} #{@last_name}”

end

end

john = Human.new(“John”, “Doe”)

joanne = Human.new(“Joanne”,”Doe”)

john.introduce # prints “Hi, I’m John Doe”

joanne.introduce # prints “Hi, I’m Joanne Doe”

USING INSTANCE VARIABLES OUTSIDE INSTANCE METHODS

Coming from languages like C# or Java, you might find it logical to initialize instance
variables in this way:

class Demo

@number = 0

def demo_method

Use the number instance variable

@number += 1

puts @number

end

end

This is wrong in Ruby and will end up with an error when trying to execute demo_method.

Code that isn’t defined within instance method clauses relates to the class object itself.
Like class variables, the @number variable we have defined relates to the class and not to its
instances. This is why it cannot be accessed through instance-related code. It will be acces-
sible to class methods, as discussed later in this chapter.

To write the preceding sample correctly, we just need to move the variable initialization to
the initialize method:

class Demo

def initialize

@number = 0

end

def demo_method

Use the number instance variable

105Classes

@number += 1

puts @number

end

end

Local Variables
Local variables are the same method variables we’ve already seen. A variable, which is
defined inside a method, will “live” during a single method invocation only. It will not be
accessible from outside the method or from the same method on a different invocation:

class Demo

def initialize

@first_time = true

end

def method1

Add 1 to num only if this method was called before

if (!@first_time)

num += 1 # Error! num still hasn’t been initialized!

end

num = 0

@first_time = false

end

def method2

num += 1 # Error! num doesn’t exist in this scope

end

end

Constants
Constants, as mentioned in Chapter 5, are similar to variables. Inside classes, constants are
similar to class variables. They are class object variables and not instance related.

The way to define class constants is no different from regular constants:

class Human

NUMBER_OF_LEGS = 2

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

106 CHAPTER 6 Ruby’s Code-Containing Structures

def introduce

puts “Hi, I’m #{@first_name} #{@last_name}”

puts “I have #{NUMBER_OF_LEGS} legs”

end

end

Human.new(“John”, “Doe”).introduce # = “Hi, I’m John Doe

I have 2 legs”

Constants differ from the other variable types in their accessibility. They are, by default,
accessible from outside the class. From within the class, constants can be accessed by their
name. From outside, they should be called with the name of the class and two colons
before their name:

Human::NUMBER_OF_LEGS # = 2

Accessing Variables from Outside
Class, instance, and local variables cannot be accessed from outside the class:

class Demo

@@var1 = “I’m var #1”

def initialize

@var2 = “I’m var #2”

var3 = “I’m var 3”

end

end

c = Demo.new

c.@@var1 # Error!

c.@var2 # Error!

c.var3 # Error!

Accessing the variables from the class object won’t work either:

Demo::@@var1 # Errror!

Demo::@var2 # Error!

Demo::var3 # Error!

To make these variables available from outside, we have to add getter methods that
acquire them:

class Demo

@@var1 = “I’m var #1”

def initialize

@var2 = “I’m var #2”

107Classes

var3 = “I’m var 3”

end

def get_var1

@@var1

end

def get_var2

@var2

end

def get_var3

var3 is a local variable of the initialize method, it doesn’t exist in this

scope!

end

end

c = Demo.new

c.get_var1 # = “I’m var #1”

c.get_var2 # = “I’m var #2”

This approach is okay, but it’s annoying to write this code again and again. Ruby has a
much simpler solution: accessors.

Accessors

Accessors are the Ruby way to automate the writing of getter and setter methods. A vari-
able that has been created using accessors is called an attribute. There are four types of
accessors in Ruby: attr, attr_reader, attr_writer, and attr_accessor. They differ in
access level. attr_reader creates a read-only attribute (getter), attr_writer generates a
write-only attribute (setter), and attr_accessor produces a read-write attribute. attr
creates a getter attribute, but it receives another parameter that makes it possible to tell it
to add a setter also.

To use these accessors, the attribute name should be passed to them. The convention is to
use symbols as the attribute names (Ruby also accepts strings):

class Demo

attr_reader :read_only_attribute

attr_writer :write_only_attribute

attr_accessor :read_write_attribute

attr :read_only_attribute2

attr :read_write_attribute2, true

end

108 CHAPTER 6 Ruby’s Code-Containing Structures

Except for the attr accessor, the rest support receiving multiple attribute names on the
same line:

class Demo

attr_accessor :att1, :att2, :att3

end

Calling the accessors is done by the symbol name (no need for the colon at start). If you
want to set a value to a read-only attribute, you can do so only within instance methods.
To do that, you need to access an instance variable, which is added automatically “behind
the scenes” to store the attribute data. It is named after the attribute name. So, if your
attribute is named :my_attribute, an instance variable named @my_attribute is added
automatically to the class. An alternative for that is calling the attribute via the self
object, self.my_attribute:

class Human

attr_reader :last_name

attr_accessor :first_name

def initialize(first_name, last_name)

Set the constructor params to the attributes

@first_name = first_name

@last_name = last_name

end

def introduce

puts “Hi, I’m #{self.first_name} #{self.last_name}”

end

end

h = Human.new(“John”, “Doe”)

h.first_name # = “John”

Set a new value to the first_name attribute

h.first_name = “Mo”

h.last_name # = “Doe”

h.last_name = “Shmo” # Error! This is a read-only attribute!

h.introduce # = “Hi, I’m Mo Doe”

ACCESSORS “UNDER THE HOOD”

Accessors are actually methods. They belong to the Module method, which is the
superclass of the Class method. The attr_reader, attr_writer, attr_accessor,
and attr do some metaprogramming behind the scenes and add code to your class.

109Classes

When you declare a read-write attribute

attr_accessor :first_name

this line, in fact, translates to

Getter method

def first_name

@first_name

end

Setter method

def first_name=(value)

@first_name = value

end

Methods

Methods, which are defined within classes, like variables, can be instance related or class
related (static in other languages). Instance-related methods are called instance methods
and class object related methods are called class methods.

Instance Methods
Instance methods are the common methods written in classes. They are associated with
class instances and can access the current instance variables.

Defining an instance method is the same as regular methods. The one thing to make sure
is that the method is placed within a class scope:

class Demo

def instance_method(param)

... method code ...

... can define and access @ variables here...

end

end

Class Methods
Class methods, known as static methods in languages such as C# or Java, are methods that
are associated with the class object itself and not its instances.

There are a few ways to define a class method. The most common one is to add the class
name before the method name. In the following example, I declare a class method named
class_method:

110 CHAPTER 6 Ruby’s Code-Containing Structures

class Demo

def Demo.class_method

puts “Inside a class method”

end

end

Another way to define a class method is by using self before the method name. This
makes the code a bit less clear, but in case the class name is changed, you will not need to
also change the class method names:

class Demo

def self.class_method

puts “Inside a class method”

end

end

The third way to define class methods is by creating a special scope for class methods. This
way is good if you want to make a sharp separation between instance and class methods.
There are two ways to do that, inside the class definition and outside the class definition:

Inside the class definition

class Demo

...instance methods...

Class methods scope

class << self

def class_method

puts “Inside a class method”

end

end

end

Outside the class definition

class Demo

...instance methods...

end

Class methods scope

class << Demo

def class_method

puts “Inside a class method”

end

end

111Classes

The association with the class object forces a restriction upon class methods—instance
variables cannot be accessed from within them. This restriction applies to class attributes,
too (because they reference an instance variable):

class Demo

@@class_var = 1

def initialize

@instance_var = 1

end

def Demo.class_method

@instance_var += 1 # Error! @instance_var isn’t defined within the class context!

@@class_var += 1 # OK!

end

end

An exception is instance variables that have been defined within the class context (and not
the instance scope). These variables, although they are written like instance variables (with
one “at” sign), operate just like class variables, and using them this way should be avoided.

Calling class methods is done without the need of a class instance. These methods relate
to the class itself, so calling them is done via the class object:

class Demo

def Demo.class_method

puts “Inside a class method”

end

end

Demo.class_method # prints “Inside a class method”

d = Demo.new

d.class_method # Error! class_method does not exist on the instance context

Operator Overloading

Like other programming languages, Ruby can define new behavior to different operators.

Table 6.1 describes the operators available for overloading. The Number of Parameters
column lists the number of arguments the operator method should accept.

To define the behavior of these operators, we define methods with their names and their
requested number of arguments.

112 CHAPTER 6 Ruby’s Code-Containing Structures

RETURN VALUE OF OPERATOR METHODS

It is a common technique to return the current object or a new object of the same
class from the operator method. Users expect, for example, that using the plus opera-
tor returns the same object type. This expectation applies to almost all operators.
Redefining these operators to return a different type might make the code hard to
understand and to maintain.

Arithmetic Operators (+ - * / % **)
Arithmetic operators are usually used to perform numeric operations. However, they are
not restricted to this role only. Every class that can take advantage of these operators might
do so. For example, the String class defines the + operator to concatenate two strings.

In the next code sample, I add a plus operator to the Human class, which allows a human
to have a baby (no minus operator for that!):

class Human

def +(human)

Baby’s name will be a combination of the

first 2 characters from the parent names

Human.new(self.first_name[0..1] + human.first_name[0..1], self.last_name)

TABLE 6.1 Available Operators for Oveloading

Operator Number of
Parameters

Description

+ - * /
% **

1 Arithmetic operators (addition, subtraction, multiplication, division,
modulo, and exponentiation).

+@ -@ 0 Unary plus and unary minus.

<< >> 1 Shift-left and shift-right.

& | ^ ~ 1 Bitwise-and, bitwise-or, bitwise-xor, and bitwise-complement.

< <= =>
>

1 Order comparison.

== 1 Equality.

=== 1 Case comparison.

=~ 1 Pattern matching.

<=> 1 Comparison.

[] N Array access. Can retrieve any number of parameters.

[]= N Array access setter. Can retrieve any number of parameters.

To define the behavior of these operators, we define methods with their names and their
requested number of arguments.

113Classes

end

end

john = Human.new(“John”, “Doe”)

joanne = Human.new(“Joanne”, “Doe”)

baby = john + joanne

baby.introduce # prints “Hi, I’m JoJo Doe”

Unary + and - Operators
The unary operators are used on numeric objects to indicate whether the number is posi-
tive or negative. By default, the unary plus operator is not needed, but it is available for
redefining.

I’ll add a new attribute to the Human class: asleep. It will indicate whether a human is asleep
or awake. Next I’ll define the unary minus operator to indicate that the human is sleeping:

class Human

attr_accessor :asleep

def -

Set state

self.asleep = true

Return self for ease of use

self

end

end

john = Human.new(“John”, “Doe”)

john.asleep # = nil (will be treated as false on boolean expressions)

Use the unary minus operator

john = -john

john.asleep # = true

Shifting Operators
The << and >> operators are used as shifting operators in Ruby. For numeric objects, they
are used to shift the bits of a number. The shift-left (<<) operator is also used as the
append operator. The Array class, for instance, allows adding new items to the array by
using this operator.

The Case Comparison Operator
The case comparison operator (===) is not commonly used. It is mostly used implicitly by
the case statement. This operator doesn’t necessarily compare two objects. For example,
the Range class defines the === operator to check for membership within the range.

I’ll add the case operator to the Human class and define it to check whether the parameter
equals the first or last name of the current instance:

114 CHAPTER 6 Ruby’s Code-Containing Structures

class Human

def ===(other)

if other.first_name == self.first_name || other.last_name == self.last_name

true

else

false

end

end

end

john = Human.new(“John”, “Doe”)

joanne = Human.new(“Joanne”, “Doe”)

shay = Human.new(“Shay”, “Friedman”)

case john

when shay

puts “Shay and John are similar”

when joanne

puts “Joanne and John are similar”

end

This will print “Joanne and John are similar”

The Comparison Operator
The comparison operator (<=>) is used to compare two objects. Pay attention that the
standard return value of the comparison operator is 1, 0, -1, and nil. 1 stands for left is
greater than right, 0 means both sides are equal, -1 stands for left is less than right, and
nil means the sides cannot be compared.

The Array Access Operator
The array access operator ([]) can be redefined, too. This operator can receive multiple
parameters, just like accessing a multidimensional array.

I will add the array access operator to the Human class. It will allow to access part of the
human’s full name. To do that, I request two parameters, start_index and end_index:

class Human

def [](start_index, end_index)

“#{self.first_name} #{self.last_name}”[start_index..end_index]

end

end

john = Human.new(“John”, “Doe”)

john[2, 6] # = “hn Do”

The Array Access Setter Operator
The array access setter operator ([]=) is used to assign values to a specific array index.
It can, like the array access operator, receive multiple variables.

115Classes

I will add this operator to the Human class, allowing its users to change a part of the full
name:

class Human

def []=(start_index, end_index, new_value)

Set the combination of the first and sure names to a single variable

full_name = “#{self.first_name} #{self.last_name}”

Update the full name string

full_name[start_index..end_index] = new_value

Set the new first and last name after

the change (done by splitting the full name by a space char)

@first_name, @last_name = full_name.split(“ “)

end

end

john = Human.new(“John”, “Doe”)

john[1,5] = “ack B”

john.introduce # = “Hi, I’m Jack Boe”

It is important to notice that once you define the []= operator method to retrieve multi-
ple arguments, calling the operator will be done by sending the first parameters inside
square brackets and the last parameter after the equal sign.

Special Methods

A few methods in Ruby have special uses. Some give new capabilities to the class by
redefining them, and some help to handle invocation errors.

to_s
The to_s method generates a string representation of the current object. This is the
default method that’s called when Ruby needs to implicitly convert an object to a string.
Most classes in Ruby redefine to_s to give more details than the default implementation
does. For example, the Array class joins all of the array members to one string.

Our Human class doesn’t redefine the to_s method. This is the reason for the output of the
next code block:

human = Human.new(“John”, “Doe”)

puts human # prints “#<Human:0x381b250>”

The output is the name of the class and the memory address. Let’s redefine to_s to return
the full name of the current human instance. Note that this method returns a string and
doesn’t print it out by itself:

116 CHAPTER 6 Ruby’s Code-Containing Structures

class Human

def to_s

“Human: #{self.first_name} #{self.last_name}”

end

end

human = Human.new(“John”, “Doe”)

puts human # prints “Human: John Doe”

each
each is used to give a class the capability to iterate through its inner objects. It has no
default definition. If a class has a few ways to iterate through, it is recommended to create
multiple each methods. For example, the String class defines each, each_line, and
each_byte iterator methods.

succ
The succ method role is to return the successor of the current object. For example, for
Fixnum, succ returns the current number plus one. This method is necessary if you want
to make your class to work with ranges.

To have a “rangeable class,” you must also provide an implementation to the <=> operator
(which is what the range uses internally to know when it should stop).

I’ll add these methods to the Human class now to make it “rangeable.” A successor of a
human will have the same first name but with the addition of Jr. at the end:

class Human

def <=>(other)

self.first_name <=> other.first_name

end

def succ

successor = self.dup # duplicate current object

successor.first_name = successor.first_name + “ Jr.”

successor

end

end

Notice that the succ method should return a new object.

After the code above is written, we can go ahead and use Human within ranges:

start_human = Human.new(“John”, “Doe”)

end_human = Human.new(“John Jr. Jr. Jr.”, “Doe”)

(start_human..end_human).each { |human| human.introduce }

117Classes

The result of this code is as follows

Hi, I’m John Doe

Hi, I’m John Jr. Doe

Hi, I’m John Jr. Jr. Doe

Hi, I’m John Jr. Jr. Jr. Doe

Setter Methods
Setter methods are methods with the equal sign (=) at the end of their name. You can
define those to give it the feeling of an attribute (or property on languages like C#). This is
actually what’s constructed when you define a setter attribute.

I will add a setter method to the Human class, full_name, so that users can set it directly
without setting the first and last names separately:

class Human

def full_name=(value)

@first_name, @last_name = value.split(“ “)

end

end

human = Human.new(“John”, “Doe”)

human.full_name = “Shay Friedman”

human.introduce # print “Hi, I’m Shay Friedman”

method_missing
The method_missing method is invoked by Ruby when a call to an undefined method
occurs. The method receives as parameters the name of the requested method, the argu-
ments passed to it, and the block attached to the call, if it exists.

I’ll now add a method_missing implementation to the Human class that will write an error
to the screen when an undefined method is invoked:

class Human

def method_missing(method_name, *args, &block)

puts “Humans can’t #{method_name}!”

end

end

john = Human.new(“John”, “Doe”)

john.bark # Prints to the screen “Humans can’t bark!”

If the method_missing implementation doesn’t throw an exception, the caller of the
method won’t know that a different method than requested was invoked (and it returned
the expected result of course). This behavior opens a whole new world of opportunities to
dynamically execute operations. It is exploited in various Ruby frameworks (such as Ruby

118 CHAPTER 6 Ruby’s Code-Containing Structures

on Rails) to allow a more readable and intuitive syntax. You’ll learn how to take advantage
of this method in Chapter 8, “Advanced Ruby.”

const_missing
Like the method_missing method, the const_missing method is invoked when a call to an
undefined constant is made. The requested constant name is passed as a symbol to the
method. The method can return a value to the caller. Because constants are class related
and not instance related, the const_missing method should be defined as a class method
as well (otherwise it won’t be invoked):

class Demo

def Demo.const_missing(const_symbol)

puts %Q_The constant “#{const_symbol.to_s}” is undefined_

end

end

Demo::A_CONSTANT # prints “The constant “A_CONSTANT” is undefined”

The self Keyword

self is used within classes to refer to the class. The important thing to notice about self
is that the object it refers to is changed according to the context of its invocation. Inside
instance methods, self will refer to the current instance of the class. Outside instance
methods, self will refer to the class object itself (inside class methods for example):

class Demo

attr_accessor :instance_attr

On method definition, which is outside an instance method definition, self

refers to the class object and makes the method a class method

def self.my_class_method

puts “I’m a class method!”

end

def my_instance_method

self.my_class_method # Error! self refers to the instance and my_class_method

is a class method.

self.instance_attr = 5 # OK! instance_attr is an instance attribute

end

end

Visibility Control

Ruby, being an object-oriented language, makes it available to control the visibility of class
objects. There are three levels of visibility: public, protected, and private. Ruby is a bit

119Classes

unusual with the meaning of these visibility levels as it prefers encapsulation capabilities
over strict visibility rules:

. Methods are public unless they are defined differently. Public methods are visible to
everyone from anywhere. The only exception is the initialize method, which is
made private by default.

. When a method is declared as private, it is accessible only via the instance methods
of the class itself and not by the users of the class. Private methods must be called
using only their name (even self.method_name won’t work). Pay attention that
private methods are also accessible by subclasses of the class.

. Protected methods are similar to private methods with two differences; they can be
called using self and they are accessible by other instances of the same class.

The way to define the visibility of class objects is done in two ways. The first is to gather
methods with the same visibility to the same scope:

class Demo
def initialize
end

Public methods scope

def m1
end

Protected methods scope
protected

def m2
end

Private methods scope
private

def m3
end

end

The second way to do that is to define the visibility after the method creation:

def m2
end
def m3
end

protected :m2, :m3

120 CHAPTER 6 Ruby’s Code-Containing Structures

Changing the visibility of class methods is a bit different and involves using different
keywords. private_class_method is used as private, and public_class_method is used as
public (the default). There is no way to define a protected class method. The technique of
using these keywords is the same as above (scoping or explicit setting):

class Demo

def Demo.m4

end

private_class_method :m4

end

WHERE VISIBILITY IS NOT APPLIED

For constants, class variables, and instance variables, visibility is not relevant.
Constants will always be public and accessible from outside, class variables are always
protected, and instance variables are always private.

Inheritance

Ruby features the object-oriented principle inheritance. Therefore, a class can extend or
modify some behaviors of another class. Ruby doesn’t allow a multiple inheritance
behavior, which means that a class can inherit from, at most, one class. Instead of multi-
ple inheritance, it is possible to create a tree of inheritance so that the descendant classes
can access methods and attributes from the superclass of their superclass (or even higher
in the tree).

Inheritance is done with the < operator:

class DescendantClass < SuperClass

...code...

end

Note that the initialize method is inherited just like every other method. This is why,
for example, I’ve mentioned earlier that it is a common practice to create exception classes
with nobody that inherits from the StandardError class. These classes are copycats of the
StandardError class with only a different name. The next code sample contains a descen-
dant of the Human class: Doctor. This class will describe a human whose occupation is to
take care of people’s health. After defining the class, it is possible to use it just as it would
have been done with the Human class:

class Doctor < Human

end

john = Doctor.new(“John”, “Doe”)

puts john # prints “Human: John Doe”

121Classes

Overriding Methods
A vital part of the inheritance principle is modifying the behavior of the superclass in a
way that matches the current class approach. In Ruby, overriding methods is done implic-
itly; the method definition is identical to any other method definition. If the method has
the same signature as a method on the superclass, this implementation is used, not the
one on the superclass. Notice that the result of this behavior is that in Ruby there is no
real way to keep a method from being overridden. For example, I’ll update the Human class
and add a getter method to retrieve the full name and then change the introduce

method to use it:

class Human

def full_name

“#{self.first_name} #{self.last_name}”

end

def introduce

puts “Hi, I’m #{full_name}”

end

end

Now, in the Doctor class I’ll override the full_name method:

class Doctor < Human

def full_name

“Dr. #{self.last_name} #{self.first_name}”

end

end

After that, let’s see what happens when we define a Doctor instance and call the
introduce method:

john = Doctor.new(“John”, “Doe”)

john.introduce # prints “Hi, I’m Dr. Doe John”

The following chain of events led to this output:

. Ruby dynamically looks for the introduce method on the Doctor class.

. The method isn’t found, so the search continues to the superclass Human.

. The method is found and invoked.

. Within the method, there is a call to a method named full_name.

. Ruby searches for a full_name method on Doctor and finds it.

. Within the full_name method, there are calls to first_name and last_name.

122 CHAPTER 6 Ruby’s Code-Containing Structures

. Ruby fails to find those on the Doctor class, locates them on the Human superclass,
and invokes them.

. first_name and last_name return their values to the full_name method on Doctor.

. The full_name method constructs the string “Dr. Doe John” and returns it to the
introduce method on Human.

. The introduce method constructs a string with the full_name value—“Hi, I’m Dr.
Doe John”—and prints it out to the screen.

Overriding Private Methods
As mentioned previously, Ruby is a very permissive language. This principle finds expres-
sion when trying to override private methods: It is possible without any restriction.

Overriding a private method is done just like regular methods.

Overriding Class Methods
Class methods are inherited from the superclass like other methods and can be over-
ridden. If the inheriting class does not define an implementation to the class method,
the superclass method will run.

The exception with class methods is the ability to explicitly run the superclass
implementation.

Consider the following A and B classes:

class A

def A.message

“I am A”

end

end

class B < A

def B.message

“I am B”

end

end

In the preceding code, B overrides A’s message class method. Let’s extend this sample and
add the class method show_message to class A:

def A.show_message

puts A.message

end

Note that I refer to the A’s message method explicitly. As a result, the output of the next
line will be “I am A”:

B.show_message # prints “I am A”

123Classes

To change this behavior so that the inheritance process will run as expected, you should
replace the explicit method with the self keyword, which will refer to the current class
and therefore overridden method implementations (if any):

def A.show_message

puts self.message

end

Now if we re-run the previous sample, we will get the expected result:

B.show_message # prints “I am B”

Invoking Superclass Method Implementation
In some cases, we’ll want to add code to the superclass method and not replace it entirely.
This can be done via the super keyword. When this keyword is executed, it invokes a
method with the same name on the superclass.

super can be called with or without parameters. It has a unique behavior after it’s called
without arguments and no parentheses: It invokes the superclass method with the same
arguments the current method received.

For example, I will inherit from the Doctor class and create a new class: Dentist. Then I
will extend (and not replace) the introduce method to add a relevant welcome message:

class Dentist < Doctor

def introduce

super

puts “How are your teeth today?”

end

end

john = Dentist.new(“John”, “Doe”)

john.introduce # prints “Hi, I’m Dr. Doe John

how are your teeth today?”

Abstract Classes
Ruby doesn’t have the usual support for abstract classes that you may be familiar with
from languages such as C#. Every class in Ruby can be initialized and used, and the same
rule applies to methods, too. When it’s defined, it can be exploited.

This is the reason why abstract classes are a bit different. The way to approach the abstract
classes issue in Ruby is to consider abstract classes as classes that specify a certain flow
while this flow is not implemented yet.

For example, I’ll extend the Doctor class and add to it a method called work. In this
method, I’ll call an abstract method, write_prescription. I call it “abstract” because I will

124 CHAPTER 6 Ruby’s Code-Containing Structures

not implement it within the Doctor class but only in its descendants (for example the
Dentist class):

class Doctor < Human

def work

write_prescription

end

end

class Dentist < Doctor

def write_prescription

...write a prescription...

end

end

doc = Doctor.new(“John”, “Doe”)

doc.work # Error! write_prescription is not implemented here

dentist = Dentist.new(“John”, “Doe”)

dentist.work # OK

Another useful pattern to follow is to have a method in the base class that throws an
exception that tells the user to implement it. This is a way of asking the user to override a
method. To do that, just add the following method to the Doctor class:

def write_prescription

raise “write_prescription method is not implemented!”

end

Inheritance Collisions
If you’re not familiar with the code of the class you’re inheriting from, you might mistak-
enly override one of its methods (even private ones) or variables and dramatically change
the way it works. This can lead to a very big mess when the application is executed.

To avoid this kind of chaos, do not inherit from classes if you are unfamiliar with their
code. Even though Ruby allows inheriting from every class, even basic ones, it is a good
idea to just use these classes and their public API instead of inheriting from them.

Duck Typing

Now that you know about Ruby’s classes, it’s time to learn how objects are treated in Ruby.

From the Ruby perspective, every object might be what we’re looking for. This is what the
term duck typing means: If it quacks like a duck and swims like a duck, it must be a duck.

125Classes

Ruby’s duck typing philosophy can be demonstrated easily. Look at the next method:

def print_all_values(container)

container.each { |x| print x }

end

This is a simple method. It receives an object, iterates over its elements via the each

method, and prints every item. Our “duck” here is an object that implements the each

method. It doesn’t matter what the object is, who its superclass is, or what it is for. As long
as it implements the each method, it is a valid input for the print_all_values method:

Arrays are valid

a = [“a”, “b”, “c”]

print_all_values(a) # Prints “abc”

Strings are valid too

b = “abc”

print_all_values(b) # Prints “abc”

Custom classes that implement each are valid as well

class CustomClass

def each

yield “a”

yield “b”

yield “c”

end

end

c = CustomClass.new

print_all_values(c) # Prints “abc”

We can avoid duck typing by enforcing our method to receive parameters of a specific
type. This will be done using the is_a? method. In the next example, I enforce the para-
meter to be an array:

def print_all_values(container)

raise TypeError, “container must be an array” unless container.is_a?(Array)

container.each { |x| print x }

end

a = [“a”, “b”, “c”]

print_all_values(a) # Prints “abc”

b = “abc”

print_all_values(b) # Error!

126 CHAPTER 6 Ruby’s Code-Containing Structures

This is not a recommended practice, though. The more appropriate approach (but still not
widely used) is to make sure that the method we need really exists. This is done via the
respond_to? method:

def print_all_values(container)

unless container.respond_to?(:each)

raise TypeError, “container must implement the each method”

end

container.each { |x| print x }

end

Modules
Modules, like classes, are containers. They contain classes, methods, and constants. Unlike
classes, modules cannot have a superclass, cannot be inherited from, and cannot be instan-
tiated. Modules can also be used as mixins, a technique introduced later in this section.

Defining a module is much like defining a class—starting with the module keyword,
followed by the module name, and ending with the end keyword. Module names must
start with a capital letter:

module DemoModule

...module content...

end

CLASSES AND MODULES

Classes in Ruby consist of the Class class. Likewise, modules consist of the Module
class. The Class class inherits from the Module class. This means that every class is
also a module and can access the module private methods (like include, as dis-
cussed in relation to mixin later in this section).

Module-Contained Objects

As mentioned previously, modules can contain different objects. The contained objects are
accessed in a different way than normal, a way very similar to class object members (not
class instance members).

Classes
As mentioned earlier, modules can contain classes. The way to do that is to just nest the
class definition into the module definition. After a class has been defined within a
module, the module name followed by two colons should precede its name to call it:

127Modules

module DemoModule

class Demo

end

end

d = Demo.new # Error!

d = DemoModule::Demo.new # OK!

Methods
Methods can be defined within modules just like they can within classes. Namespace
modules often have only class methods; mixin modules mostly have only instance methods.

The same rules of class methods apply to module methods—their names should be
preceded by the module name or by the self keyword:

module Earth

def Earth.days_in_year

Time.local(Time.now.year, 12, 31).yday

end

end

puts Earth::days_in_year # print 365 (or 366 on leap years)

Constants
A module can also contain constants. Just as with classes, the constants are accessible
through the module:

module Earth

HOURS_PER_DAY = 24

end

puts Earth::HOURS_PER_DAY # prints “24”

Namespaces

Namespaces provide a way to group various logically related objects into a single
container. You might find this approach useful as you application gets bigger or when
writing a stand-alone component. Using modules as namespaces helps prevent name colli-
sions between classes and methods. For example, the Human class can be related to Earth,
but it can also be related to Mars in a whole different way. It is possible to create two
different classes with different names, EarthHuman and MarsHuman, but this will become
annoying when you want to inherit from those classes. Eventually, you will find yourself
with long-named classes that are hard to follow. This is exactly where defining name-
spaces comes in. We define two modules, one for Earth and one for Mars, and inside of
them we declare any life form we need:

128 CHAPTER 6 Ruby’s Code-Containing Structures

module Earth

class Human

...code...

end

end

module Mars

class Human

...code...

end

end

Pay attention that now we can no longer access the Human class like we did before. Human
exists within modules, so we have to indicate the module we’re referring to:

Supposing that both Human classes receive the same constructor parameters

human = Earth::Human.new(“John”, “Doe”)

alien = Mars::Human.new(“Al”, “ien”)

Mixins

The mixin technique in Ruby is powerful. It provides a way to add functionality to classes.
A mixin is a module that includes instance methods. After you mix the module into a
class, the module methods appear as part of the class.

The include method is used to mix in a module. include can retrieve multiple module
names in one call (comma separated). For example, I will add a Politeable module that will
provide politeness functionality. Then I will include this functionality to the Doctor class:

module Politeable

def thank_you

puts “Thank you”

end

def please

puts “Please”

end

end

class Doctor < Human

include Politeable

end

john = Doctor.new(“John”,”Doe”)

john.thank_you # prints “Thank you”

129Modules

To find out whether a class has been mixed in with a specific module, you should use the
is_a? method:

john.is_a? Politeable # = true

john.is_a? Doctor # = true

john.instance_of? Doctor # = true

john.instance_of? Politeable # = false

Available Ruby Modules for Mixin
Ruby already contains several modules ready for mixin that allow developers to add great
new functionality to their classes with ease. The common ones are Comparable and
Enumerable. Comparable, after you define the <=> operator in your class, will add the
implementation of < <= > >= == and between? to the class. Enumerable, after you define
an each method in your class, will add various methods that add a lot of functionality
(such as min, max, sort, and member?).

We’ve already defined a comparison (<=>) method to the Human class earlier that compares
the human first names. I also add an each method that goes through the human full
name by letters:

class Human

def <=>(other)

self.first_name <=> other.first_name

end

def each

full_name.scan(/./m) { |x| yield x }

end

end

Now I can mix in Comparable and Enumerable to add a lot of functionality to the Human
class:

class Human

include Comparable, Enumerable

end

john = Human.new(“John”,”Doe”)

john.max # the biggest character in the name = “o”

john.sort # sorts the letters of the name = DJehnoo

john.between? Human.new(“J”, “Doe”), Human.new(“Zohn”, “Doe”) # = true

john.each_with_index do |value, index|

print “#{index}#{value}”

end # prints “0J1o2h3n4 5D6o7e”

130 CHAPTER 6 Ruby’s Code-Containing Structures

Summary
In this chapter, you learned how to use Ruby to convert arbitrary lines of code into
logical, “living” objects. The chapter covered methods, blocks, classes, and modules—the
basics that Ruby programmers use every day.

With the knowledge you currently have of the Ruby language, you can develop large
modular applications. The next chapters describe more advanced mechanisms that may
prove to be lifesavers in various scenarios.

CHAPTER 7

The Standard Library

IN THIS CHAPTER

. Using the Libraries

. Libraries Available in IronRuby

. Libraries Reference

. Finding More Libraries

In the process of development, you sometimes hit the
point when you feel you’re inventing the wheel once
again. Your feeling is somewhat justified because most
development tasks involve similar utilities (for example,
reading from and saving to files, parsing text, sending data,
and so forth).

The Ruby language, in addition to the core elements, is
distributed with an additional set of libraries that provide
tools for executing common tasks easily. Among them are
libraries for CSV, SOAP, unit tests, numbers, date and time,
HTTP, POP3, RSS, and more. These libraries can save plenty
of development hours, and it is a good idea to become
familiar with the available features.

For detailed information about all the standard libraries,
visit the ruby-doc website: http://www.ruby-doc.org/stdlib.

Using the Libraries
The standard library is not part of the core of Ruby.
Therefore, to use one of the libraries, we will have to
require it. It will be done using the require method
mentioned previously in Chapter 5, “Ruby Basics.”

For example, if we want to use the BigDecimal library, which
supports large decimals, we require it first and then use it:

require ‘bigdecimal’

12312321434.32432432434*50_000.5 # = 615622227876933.0

http://www.ruby-doc.org/stdlib

132 CHAPTER 7 The Standard Library

TABLE 7.1 Standard Libraries Available in IronRuby 1.0

Library Description

Abbrev Provides a method that calculates the available abbreviations of a given set of
words. Good for calculating suggestions for a given string.

Base64 Provides methods for base64 encoding and decoding.

Benchmark Provides methods to benchmark Ruby code with detailed reports.

BigDecimal Provides support for very large or precise decimal numbers.

CGI A Common Gateway Interface (CGI) implementation. Provides several classes
and methods to read and create HTTP requests and responses.

Complex Provides support for complex numbers, such as 1+2i.

Csv Provides comma-separated value (CSV) data creation and reading.

Date Provides enhanced date and time operations. For example, converting between
the Gregorian and Julian calendars or easy-to-use date enumeration methods.

Debug Provides enhanced debugging capabilities.

Delegate Provides a way to inherit from every Ruby class. It acts like a proxy—adding
method calls to the delegated class on the delegating class.

Digest Cryptography support. Provides classes to cipher strings with MD5, SHA256,
SHA384, and SHA512 algorithms.

Drb Drb stands for dRuby or Distributed Ruby. Like remoting in .NET, Drb allows
using objects from other ruby processes located on the same machine or a
different one.

E2mmap E2mmap stands for Exception to Message Mapper. Provides a way to couple
exception types with message formats. New exception types can be created
with it, too.

English Aliases Ruby’s strangely named global variables to more readable names.

Erb Provides a templating system. Erb makes it very simple to integrate Ruby code
in text or HTML files.

Eregexp Extends the Regexp class and provides methods to compare a single string
against multiple regular expressions at once.

FileUtils Provides enhanced file operations (for example, copying and moving files or
deleting multiple files simultaneously).

Libraries Available in IronRuby
On its first version, IronRuby will not contain all of the libraries available for Ruby. Table
7.1 briefly describes the libraries included in IronRuby.

133Libraries Available in IronRuby

TABLE 7.1 Standard Libraries Available in IronRuby 1.0
Library Description

Find Provides methods to get all files within a directory and all of its subdirectories.

Forwardable Provides support to the delegate pattern. It allows exposing inner object
methods as part of the class itself.

Generator Converts an internal iterator to an external iterator. For example, an object that
implements each to iterate through a collection can support the end?, next,
and current methods with the help of the Generator library.

GetOptLong Provides an easy-to-use command-line arguments interpreter.

GServer Provides a generic server implementation, including thread pool management,
simple logging, and multiserver management.

IPAddr Provides IP address related methods. Allows you to manipulate an address
and to test it against a single IP address or a range of addresses.

JCode Provides Japanese strings support.

Kconv Provides methods for Kanji string conversion to several encodings.

Logger Provides a logging support. Supports different logging levels and autorolling of
log files.

MailRead An Internet mail message (RFC 822 and RFC 2822) parser.

MathN Enhanced mathematical operations (for example, the Prime class for prime
numbers support, finding an integer’s prime factors, power rational numbers,
and finding the square root of a complex number).

Matrix Provides matrix and vector support via the Matrix and Vector classes.

Monitor A thread synchronization mechanism.

Mutex_m Allows an object or a class to add mutex-like features.

Net/ftp Provides support for FTP.

Net/ftptls Provides support for secured FTP, running with TLS.

Net/http Provides support the HTTP.

Net/https Provides support for secured HTTP, HTTPS.

Net/imap Provides support for IMAP.

Net/pop Provides support for POP3.

Net/smtp Provides support for SMTP.

Net/telnet Provides support for the Telnet protocol.

Net/telnets Provides support for the secured Telnet protocol.

Observer Provides an easy way to implement the observer design pattern.

134 CHAPTER 7 The Standard Library

TABLE 7.1 Standard Libraries Available in IronRuby 1.0
Library Description

Open-uri Provides HTTP, HTTPS, and FTP streams’ reading operations.

Open3 Provides access to the STDIN, STDOUT and STDERR of another application.

OpenSSL The SSL protocol implementation. Based on the OpenSSL project.

Optparse Provides a command-line arguments interpreter. More enhanced than the
GetOptLong library.

OStruct Provides a way to define a data object with arbitrary attributes.

Parse_Tree Generates an array, which represents the expression tree generated from a
given class.

ParseDate Provides methods to parse a string and convert it to an array of date parts.

PathName Provides support for manipulating file paths (for example, joining paths or
using relative paths).

Ping Provides a method for testing a connection to a server on a specific port.

PP PP stands for PrettyPrinter. It provides a mechanism that allows a more human-
readable output when inspecting objects.

PrettyPrint Provides a way to construct an output and format it according to specified
attributes.

PStore Provides an easy way to store and read hash data (key-value pairs) in the file
system.

Racc/parser A complicated text parser using a defined grammar for the parsing operation.
Can be used to parse very complex content.

Rational Provides support for rational numbers (1/2 and not 0.5). After requiring this
library, some interactions between numbers will return a Rational object
rather than the regular return type.

Readbytes Extends the IO class and adds a readbytes method to read fixed-length
buffers.

Rexml A fast and easy-to-use XML processor.

RSS An RSS feed reader and writer.

Scanf Adds a C-like scanf method to the String and IO classes and to the Kernel
module.

Set Provides support to set collections (an unordered collection with no dupli-
cates).

Shell Enhances the Ruby environment with UNIX commands like pipes.

135Libraries Reference

TABLE 7.1 Standard Libraries Available in IronRuby 1.0
Library Description

YAML Provides support to serialize and deserialize objects to and from YAML syntax.

Zlib Provides GZip support.

Libraries Reference
Table 7.1 listed the available libraries. Now this section takes a closer look at the
commonly used libraries and some sample uses.

Abbrev

The abbrev library generates an unambiguous abbreviation list for every given string. It
can be used for word-completion processes.

When the abbrev library is included, the Abbrev::abbrev method becomes available as
well as an abbrev method on the Array class:

require ‘abbrev’

abbrevs = Abbrev::abbrev([“IronRuby”, “IronPython”])

abbrevs now contains:

{ “IronP” => “IronPython”, “IronPy” => “IronPython”,

“IronPyt” => “IronPython”, “IronPyth” => “IronPython”,

“IronPytho” => “IronPython”, “IronPython” => “IronPython”,

“IronR” => “IronRuby”, “IronRu” => “IronRuby”,

“IronRub” => “IronRuby”, “IronRuby” => “IronRuby” }

Identical call

abbrevs = [“IronRuby”, “IronPython”].abbrev

Base64

The base64 library is used to encode or decode strings in the base64 textual encoding:

require ‘base64’

Encode:

str = Base64.encode64(“Hello World”)

puts str # prints “SGVsbG8gV29ybGQ=”

Decode:

decoded_str = Base64.decode64(str)

puts decoded_str # prints “Hello World”

136 CHAPTER 7 The Standard Library

Benchmark

The benchmark library proves very handy when you need to measure how long it takes
for parts of the code to execute.

There are a few ways to benchmark code. The first is to measure a single block:

require ‘benchmark’

result = Benchmark.measure { 10000.times { x = “IronRuby” } }

puts result # Prints “ 0.202801 0.000000 0.202801 (0.114000)”

The result format is as follows:

<user CPU time> <system CPu time> <total time> (<elapsed real time>)

Another way is to measure multiple code blocks sequentially (with an optional parameter
of a block caption):

require ‘benchmark’

The 7 parameter is the length of the caption

Benchmark.bm(7) do |b|

b.report(“times”) { 10000.times { x = “IronRuby” } }

b.report(“range”) { (1..10000).each { x = “IronRuby” } }

b.report(“upto”) { 1.upto(10000) { x = “IronRuby” } }

end

The preceding code outputs to the screen the next summary:

user system total real

times 0.109201 0.000000 0.109201 (0.087000)

range 0.062400 0.000000 0.062400 (0.047000)

upto 0.015600 0.000000 0.015600 (0.020000)

If more accurate results are needed, consider using the bmbm method rather than bm. bmbm
stands for “benchmark benchmark,” and it does exactly that—it runs the code blocks
twice. The first run is a “rehearsal” mode, and the second run is the “real” mode. This
bmbm method removes the possibility that the loading time of the interpreter will be
included in the results.

BigDecimal

Ruby has support for floating-point numbers via the Float class. The problem with its
built-in support is the use of binary floating-point arithmetic. A binary floating-point
representation is good for 0.5 and 0.25 but isn’t that good for 0.1, 0.01, and so on. This

137Libraries Reference

leads to problems with the precision of Float variables. For example, the next code line
returns false:

(0.7-0.5) == 0.2

The BigDecimal library uses decimal arithmetic, which solves the precision issues;
BigDecimal numbers support more than a billion digits after the floating point.

Using BigDecimal numbers resolves the previous issue:

require “bigdecimal”

(BigDecimal.new(“0.7”) - BigDecimal.new(“0.5”)) == BigDecimal.new(“0.2”) #= true

Creating a BigDecimal number is done via its new method. The decimal value is passed to
the constructor as a string:

dec = BigDecimal.new(“0.34234324442565634632”)

dec = BigDecimal(“0.34234324442565634632”) # Same as above - new is not required

BigDecimal also adds support for infinity. A BigDecimal can be initialized using
”Infinity” or ”-Infinity” as a value:

pos_inf = BigDecimal.new(“Infinity”)

neg_inf = BigDecimal.new(“-Infinity”)

As a result of its infinity support, you should notice that dividing by zero is acceptable
with BigDecimals, and the result will be infinity.

Complex

The complex standard library adds complex numbers support to the Ruby language.

Defining a complex number is done with or without the new method:

require “complex”

c = Complex.new(1,-2) # = 1 - 2i

c = Complex(1,-2) # = 1 - 2i

After a complex number exists, all arithmetic operators are available for use. The Numeric
and Math classes are also updated to support complex numbers.

CSV

CSV (Comma-Separated-Values) is a common format used to present column-based data.
For example, data that consist of first name and last name fields will be presented in CSV
format as “Shay, Friedman” or “John, Doe”.

The CSV library adds support for creating and parsing comma-separated values (CSV) data.

138 CHAPTER 7 The Standard Library

Creating and reading CSV files is incorporated into the library:

require “csv”

Create a CSV file

CSV.open(“data.csv”, “w”) do |w|

w << [“New York City”, “New York”, “USA”]

w << [“Toronto”, “Ontario”, “Canada”]

end

Generates a file with two lines:

New York City,New York,USA

Toronto,Ontario,Canada

Read a CSV file

CSV.open(“data.csv”, “r”) do |row|

row # 1st iteration = [“New York City”, “New York”, “USA”]

2nd iteration = [“Toronto”, “Ontario”, “Canada”]

end

However, files are not a necessity. A CSV string can be parsed, too:

require “csv”

str = “IronRuby Unleashed,Shay Friedman”

CSV.parse_line(str) # = [“IronRuby Unleashed”, “Shay Friedman”]

Digest

The digest library is a cryptography library supporting MD5 and SHA encryption algorithms.

The method hexdigest exists in all the different encryption classes and is used to encrypt
a string using the classes’ encryption algorithm.

To use MD5 encryption, the digest/MD5 library should be required. For SHA encryption,
the digest/SHA2 library should be used:

require “digest/MD5”

Digest::MD5.hexdigest(“Hi”) # = “c1a5298f939e87e8f962a5edfc206918” (32 chars)

require “digest/SHA2”

Digest::SHA256.hexdigest(“Hi”) # = “3639efcd08abb273b1619e82e78c29a7df02c1...”

➥(64 chars)

Digest::SHA384.hexdigest(“Hi”) # = “efcbca4c3e81ba9f55cfc49bc8bf20d4b0e254...”

➥(96 chars)

Digest::SHA512.hexdigest(“Hi”) # = “45ca55ccaa72b98b86c697fdf73fd364d4815...”

➥(128 chars)

139Libraries Reference

E2MMAP

The e2mmap library is an exception-mapping library. It allows coupling of messages with
exception types. For example, the TypeError can be coupled with the message “Wrong
type!” After they are attached, raised TypeErrors always results in a “Wrong type!” message:

require “e2mmap”

class MyMath

extend Exception2MessageMapper

def_e2message TypeError, “Wrong type!”

def double(a)

Raise TypeError unless a.is_a?(Numeric)

a*2

end

end

MyMath.new.double(“hi”) # TypeError occurs with message “Wrong type!”

Note that to raise e2mmap exceptions, the Raise method is used rather than the regular
raise method.

Dynamic Messages
The library also allows adding dynamic content to the messages, which will be provided
after the exception has been raised. For example, I’ll change the preceding sample to
support a dynamic error message:

require “e2mmap”

class MyMath

extend Exception2MessageMapper

def_e2message TypeError, “Type %s isn’t allowed here!”

def double(a)

Raise TypeError, a.class unless a.is_a?(Numeric)

a*2

end

end

MyMath.new.double(“hi”)

TypeError occurs with message “Type String isn’t allowed here!”

Defining New Exception Types
E2mmap also provides a way to easily define new exception types:

140 CHAPTER 7 The Standard Library

TABLE 7.2 English Library Global Variable Aliases

Global Variable Alias

$! $ERROR_INFO

$@ $ERROR_POSITION

$; $FS

$; $FIELD_SEPARATOR

$, $OFS

$, $OUTPUT_FIELD_SEPARATOR

require “e2mmap”

class MyMath

extend Exception2MessageMapper

def_exception exception_name, message, superclass (optional)

def_exception :MyMathError, “%s isn’t allowed”, StandardError

def double(a)

Raise MyMathError, a.class unless a.is_a?(Numeric)

a*2

end

end

MyMath.new.double(“hi”) # MyMathError occurs with message “String isn’t allowed”

English

The English standard library aims to make Ruby code more human readable. We’ve seen
in several cases that Ruby has global variables that define behaviors across the language.
For example, $! is the last error object. After you require the English library, this variable
can be accessed via $ERROR_INFO:

require ‘english’

begin

5/0

rescue

$!.message # OK

$ERROR_INFO.message # Also OK!

end

Table 7.2 lists all the global variable aliases provided by the English standard library.

141Libraries Reference

Erb

Erb stands for eRuby and is a template engine. It allows inserting dynamic code into
text strings.

The syntax of an Erb template is similar to classic ASP syntax. To execute code, the code
should be written inside <% %>. To add an expression result to the page, the <%= %>

should be used.

For example, Erb can be used to create an HTML page (also known as RHTML):

require “erb”

template = <<EOF

<HTML>

TABLE 7.2 English Library Global Variable Aliases

Global Variable Alias

$/ $RS

$/ $INPUT_RECORD_SEPARATOR

$\ $ORS

$\ $OUTPUT_RECORD_SEPARATOR

$. $INPUT_LINE_NUMBER

$. $NR

$_ $LAST_READ_LINE

$> $DEFAULT_OUTPUT

$< $DEFAULT_INPUT

$$ $PID

$$ $PROCESS_ID

$? $CHILD_STATUS

$~ $LAST_MATCH_INFO

$= $IGNORECASE

$* $ARGV

$& $MATCH

$` $PREMATCH

$’ $POSTMATCH

$+ $LAST_PAREN_MATCH

142 CHAPTER 7 The Standard Library

<BODY>

<% if welcome %>

Welcome <%=name%>!

<% else %>

Goodbye <%=name%>!

<% end %>

</BODY>

</HTML>

EOF

html = ERB.new(template)

Set the needed values for the template

welcome = true

name = “John Doe”

Print the result

puts html.result

The result of this code is the following HTML syntax printed to the screen:

<HTML>

<BODY>

Welcome John Doe!

</BODY>

</HTML>

The result method can also receive a binding object as a parameter to use variables and
methods of another object:

require “erb”

class Human

attr_accessor :first_name, :last_name

def get_binding

binding

end

end

h = Human.new

h.first_name = “John”

h.last_name = “Doe”

143Libraries Reference

text = ERB.new(“<% 3.times do %><%=first_name%> <%=last_name%> <% end %>”)

text.run(h.get_binding) # run is like result and just prints the result, too.

The result is “John Doe John Doe John Doe.”

FileUtils

The FileUtils library enhances file operations in Ruby. For example, it allows copying
and moving files, deleting a directory with its content, deleting multiple files and direc-
tories, and more.

For more information, see the “Handling Files” section in Chapter 8, “Advanced Ruby.”

Logger

The logger standard library provides a logging system for Ruby applications. A log can be
written to any stream or directly to a filename:

require “logger”

Logger.new(STDOUT) # Write to the default stdout stream

Logger.new(“c:/logfile.log”) # Write to C:\logfile.log file

Adding Log Entries
Adding a log entry is done with the log entry level (FATAL, ERROR, WARN, INFO, DEBUG, and
UNKNOWN):

require “logger”

log = Logger.new(“c:/logfile.log”) # Write to C:\logfile.log file

log.info { “Started” }

log.fatal { “Oh no!” }

Every log can also be sent its associated progname:

log.debug(“My class”) { “this is debug data!” }

log.info(“Global”) { “info!” }

log.unknown { “Ended” }

Closing the log

log.close

Logger Level
The entire logger also has a level, and if the logger level is higher than the entry level, the
entry is ignored.

The levels priority, from bottom to top, are DEBUG > INFO > WARN > ERROR > FATAL > UNKNOWN:

require “logger”

log = Logger.new(“c:/logfile.log”)

log.level = Logger::INFO # Set the log level

144 CHAPTER 7 The Standard Library

log.info { “Started on #{Time.now}” }

log.debug { “this is debug data!” } # Ignored

log.fatal { “oh no!” }

log.error { “error!” }

log.unknown { “Ended” }

Automatic Log Rotation
The logger library also allows automatic rotation of log files. When creating a log, you can
define whether it will be rotated daily, weekly, or monthly:

log = Logger.new(“c:/logfile.log”, “daily”)

log = Logger.new(“c:/logfile.log”, “weekly”)

log = Logger.new(“c:/logfile.log”, “monthly”)

If day rotation is not suitable, it can be done also when a file hits a specified size. When
the size is specified, it is also possible to define how many log files should be stored:

Rotate log file when it is 1Mb in size and delete log files older than 14 days:

log = Logger.new(“c:/logfile.log”, 14, 1024)

Monitor

The monitor standard library adds another thread synchronization mechanism. Monitors
are similar to mutexes with a few differences, such as the capability to incorporate moni-
tors into objects.

For more information about the monitor standard library, see the “Threads” section in
Chapter 8.

Net/http

The net/http standard library contains classes and methods to use HTTP. It allows retriev-
ing pages from web servers, post form data, send requests, and get responses.

Retrieving Pages
The library enables retrieving pages in a very simple and direct way:

require “net/http”

str = Net::HTTP.get “www.ironruby.net”, “/About”

File.open(“ruby.net.txt”,”w”) { |file| file.print str }

The preceding code retrieves the HTML content of the given page and writes it into a file.
This operation can be done in a more customized way, specifying the port and the
request, for instance:

145Libraries Reference

require “net/http”

require “uri” # URI is another standard library explained later in this chapter.

url = URI.parse(‘http://www.ironruby.net/About’)

Define a GET request

req = Net::HTTP::Get.new(url.path)

Start an HTTP communication

res = Net::HTTP.start(url.host, url.port) {|http|

Send the request

http.request(req)

}

#Print the response headers

res.each_header { |key, value| puts “#{key} = #{value}” }

Print the response content

puts res.body

Posting Form Data
Instead of reading only data, the library features a more active approach. It features
methods for posting form data to web pages. For example, in the following sample I’ll
post a search query to Google Blog Search:

require ‘net/http’

require ‘uri’

res = Net::HTTP.post_form(URI.parse(‘http://blogsearch.google.com/blogsearch’),

{“q” => “IronRuby”})

puts res.body

Observer

Observer is a well-known and commonly used design pattern. The observer standard
library makes it easy to incorporate this pattern into classes.

See the “Design Patterns” section in the next chapter for more information about the
observer design pattern and the observer standard library.

Open-uri

The open-uri standard library provides an easy-to-use support for handling HTTP, HTTPS,
and FTP streams.

After you open such a stream, it is possible to read it or retrieve its metadata like the
content type or last modification date:

146 CHAPTER 7 The Standard Library

require “open-uri”

open(“http://www.ironruby.net”) do |stream|

stream.read # page content

stream.base_uri # = URI object of “http://www.ironruby.net”

stream.content_type # = “text/html”

stream.charset # = “utf-8”

stream.content_encoding # = []

stream.last_modified # = nil

end

The open method can also receive header information for its request:

require “open-uri”

open(“http://www.ironruby.net”,

“UserAgent” => “IronRuby”,

“Referer” => “http://www.ironshay.com”

...any other header information...

) do |stream|

stream.read

end

Proxies
Open-uri uses the default proxies, which are defined on the environment variables
http_proxy, https_proxy, and ftp_proxy. If you need to use a different proxy or not use a
proxy at all, the proxy option should be passed to the open method:

require “open-uri”

open(“http://www.ironruby.net”,

:proxy => “http://proxy.mynetwork.net” # Set the proxy manually

) { |stream| stream.read }

open(“http://www.ironruby.net”,

:proxy => nil # Do not use any proxy server

) { |stream| stream.read }

Progress
The open method also allows passing it a proc or a lambda that will receive updates about
the transferred size. Two arguments can be helpful for that: content_length_proc and
progress_proc.

The content_length_proc proc is invoked before the transfer begins, passing the expected
content length to the proc. It is possible that the length would be nil (when the
requested URI doesn’t support it).

147Libraries Reference

The progress_proc is invoked after each fragment is returned from the server with the
transferred size. For example, the following code outputs on the screen the download
progress in percentage:

require “open-uri”

content_length = 0

stream = open(“http://www.ironshay.com”,

:content_length_proc => lambda { |length|

content_length = length unless length == nil; puts “Starting...” },

:progress_proc => lambda { |size|

puts “#{((size.to_f/content_length.to_f)*100).to_i}% done” }

)

stream.close

Ping

The ping standard library enables pinging a given server on a specific port. This standard
library adds a single method, Ping.pingecho, which does the actual ping request.

For example, the next statement tries to open a connection to the Echo service port:

require “ping”

Ping.pingecho(“127.0.0.1”)

The pingecho method also supports two more arguments, timeout (by seconds) and
service name/port number:

require “ping”

Tries to ping ironruby.net on port 80 with timeout of 10 seconds

Ping.pingecho(“ironruby.net”, 10, 80)

PING LIBRARY OPERATION

Note that the ping operation is not the regular ICMP request. The library’s ping opera-
tion is done by trying to open a connection to a port.

Instead of the port number, a service name can be passed. Table 7.3 lists the available
socket services.

148 CHAPTER 7 The Standard Library

TABLE 7.3 Available Socket Services

Service Name Port Number

”echo” 7

”discard” 9

”systat” 11

”daytime” 13

”netstat” 15

”qotd” 17

”chargen” 19

”ftp-data” 20

”ftp” 21

”telnet” 23

”smtp” 25

”time” 37

”rlp” 39

”name” 42

”whois” 43

”domain” 53

”nameserver” 53

”mtp” 57

”bootp” 67

”tftp” 69

”rje” 77

”finger” 79

”http” 80

”link” 87

”supdup” 95

”hostnames” 101

”iso-tsap” 102

”dictionary” 103

149Libraries Reference

TABLE 7.3 Available Socket Services
Service Name Port Number

”x400” 103

”x400-snd” 104

”csnet-ns” 105

”pop” 109

”pop2” 109

”pop3” 110

”portmap” 111

”sunrpc” 111

”auth” 113

”sftp” 115

”path” 117

”uucp-path” 117

”nntp” 119

”ntp” 123

”nbname” 137

”nbdatagram” 138

”nbsession” 139

”NeWS” 144

”sgmp” 153

”tcprepo” 158

”snmp” 161

”snmp-trap” 162

”print-srv” 170

”vmnet” 175

”load” 315

”vmnet0” 400

”sytek” 500

”biff” 512

150 CHAPTER 7 The Standard Library

TABLE 7.3 Available Socket Services
Service Name Port Number

”exec” 512

”login” 513

”who” 513

”shell” 514

”syslog” 514

”printer” 515

”talk” 517

”ntalk” 518

”efs” 520

”route” 520

”timed” 525

”tempo” 526

”courier” 530

”conference” 531

”rvd-control” 531

”netnews” 532

”netwall” 533

”uucp” 540

”klogin” 543

”kshell” 544

”new-rwho” 550

”remotefs” 556

”rmonitor” 560

”monitor” 561

”garcon” 600

”maitrd” 601

”busboy” 602

”acctmaster” 700

151Libraries Reference

TABLE 7.3 Available Socket Services
Service Name Port Number

”acctslave” 701

”acct” 702

”acctlogin” 703

”acctprinter” 704

”elcsd” 704

”acctinfo” 705

”acctslave2” 706

”acctdisk” 707

”kerberos” 750

”kerberos_master” 751

”passwd_server” 752

”userreg_server” 753

”krb_prop” 754

”erlogin” 888

”kpop” 1109

”phone” 1167

”ingreslock” 1524

”maze” 1666

”nfs” 2049

”eklogin” 2105

”rmt” 5555

”mtb” 5556

”man” 9535

”w” 9536

”mantst” 9537

”bnews” 10000

”rscs0” 10000

”queue” 10001

152 CHAPTER 7 The Standard Library

Creating a rational number is done with the class name:

require “rational”

Rational(7, 2) # = 7/2

Rational(5) # = 5/1

When you create rational numbers this way, you also reduce the number to its lowest term:

Rational(11, 22) # = 1/2 (not 11/22)

To prevent this reduction, use the new! method to create the number:

Rational.new!(11, 22) # = 11/22

TABLE 7.3 Available Socket Services
Service Name Port Number

”rscs1” 10001

”poker” 10002

”rscs2” 10002

”gateway” 10003

”rscs3” 10003

”remp” 10004

”rscs4” 10004

”rscs5” 10005

”rscs6” 10006

”rscs7” 10007

”rscs8” 10008

”rscs9” 10009

”rscsa” 10010

”rscsb” 10011

”qmaster” 10012

Rational

The rational standard library adds support for rational numbers. A rational number is a
number that is expressed as a fraction p/q, where p and q are integers and q is not zero.
This means that 0.5 is expressed as 1/2 and not as 0.5.

153Libraries Reference

Rational numbers support all the regular arithmetic operators. In addition, after the ratio-
nal library is required, every integer number can be converted to a rational number via the
to_r method.

Rexml

Rexml is an XML processor supporting files, strings, and streams. It features methods to
iterate through the XML or to search it via XPath. In addition to parsing existing XML
documents, the rexml library supports generating XML documents, too.

Generating XML Documents
There are two ways of building an XML document with rexml. The first is by passing it
the whole XML as text:

require “rexml/document”

xml = <<EOF

<Countries>

<Country Name=”USA”>

<Population>306566000</Population>

<Continent>America</Continent>

</Country>

<Country Name=”Ireland”>

<Population>5981448</Population>

<Continent>Europe</Continent>

</Country>

</Countries>

EOF

doc = REXML::Document.new xml

The second way is to actually generate the XML elements by code. The next code sample
generates the same XML document as the preceding one:

require “rexml/document”

doc = REXML::Document.new

root = doc.add_element “Countries”

usa = root.add_element “Country”, {“Name”=>”USA”}

usa.add_element(“Population”).text = “306566000”

add_text sets the text or appends if text already exists

usa.add_element(“Continent”).add_text(“America”)

ireland = root.add_element “Country”, {“Name”=>”Ireland”}

adds a text node explicitly

ireland.add_element(“Population”).add(REXML::Text.new(“5981448”))

Same as the add method

ireland.add_element(“Continent”) << REXML::Text.new(“Europe”)

154 CHAPTER 7 The Standard Library

Reading XML Documents
Reading an XML document can also be done in two different ways. The first is by iterating
through the elements. The examples are based on the XML document defined in the
previous samples:

def print_element(elem)

Print the beginning of the node

print “<” + elem.name

Print the attributes

elem.attributes.each { |name, value| print “ #{name} = \”#{value}\”” }

Close the node beginning

puts “>”

Print text is exists

puts elem.text if elem.has_text?

Print all child elements

elem.elements.each { |child| print_element(child) }

Close the node

puts “</#{elem.name}>”

end

Start printing from the root

print_element(doc.root)

Another way to read the XML document is via XPath. XPath can be used from the XML
document object or by itself:

Print all Country elements where their “Name” attribute equals “USA”

doc.elements.each(“//Country[@Name = ‘USA’]”) { |elem| puts elem }

With the XPath class, same as above

REXML::XPath.each(doc, “//Country[@Name = ‘USA’]”) { |elem| puts elem }

Singleton

The singleton standard library adds a singleton module, which after it is included makes it
a singleton class, which follows the singleton design pattern.

See the “Design Patterns” section in Chapter 8 for more information about the singleton
design pattern and the singleton standard library.

Socket

The various socket libraries feature different ways to communicate with other hosts via
the network.

To use one of the socket libraries, ”socket” should be required:

require “socket”

155Libraries Reference

The socket library has a hierarchy of inheritance, as shown by the inheritance tree in
Figure 7.1.

BasicSocket
BasicSocket is an abstract class that all the other socket libraries inherit from.

Socket
The Socket class provides access to the operating system implementation of socket. It
features methods for obtaining address information.

For example, fetching the local host name is easy:

require “socket”

Socket.gethostname # = the host name

Another handy method is gethostbyname. When provided with a hostname or an IP
address, it returns an array with information about the host:

require “socket”

arr = Socket.gethostbyname(“google.com”)

arr[0] # = hostname

arr[1] # = An array of aliases to the hostname (if any)

arr[2] # = The address family. Usually one of the

constants Socket::AF_INET (network) or Socket::AF_INET6 (V6 network)

arr[3] # = The binary value of the address

BasicSocket

IPSocket Socket

IO

TCPSocket UDPSocket

TCPServer

FIGURE 7.1 The inheritance tree of the socket standard libraries.

156 CHAPTER 7 The Standard Library

IPSocket
IPSocket is the base class for socket classes that base their transportation on IP.

UDPSocket
UDP is a stateless protocol with a “send and forget” philosophy. The UDPSocket class can
be used to send and receive UDP packets.

The simplest way to send or receive UDP messages is to bind the socket to a specific port
and then use send to send the message or recvfrom and recvfrom_nonblock to receive
the message:

require “socket”

Create the listening socket

listening = UDPSocket.new

listening.bind(“127.0.0.1”, 7891) # bind to port 7891

Send a UDP message

UDPSocket.new.send “IronRuby”, 0, “127.0.0.1”, 7891

waits to receive a max-64-characters message and print it

puts listening.recvfrom(64)[0] # Prints IronRuby

TCPSocket
TCP provides a reliable and ordered delivery of a data stream. The TCPSocket class is used
to send messages and receive replies. It cannot be used to listen for incoming messages—
this is the target of the TCPServer class.

For example, the following code connects to a server on port 9988, sends it a message, and
receives one:

require “socket”

s = TCPSocket.new(“Localhost”,9988)

Write “Hi” to the socket stream

s.puts “Hi”

Read from the socket

s.gets

s.close

TCPServer
TCPServer is aimed to accept incoming requests and send responses if needed.

The following code is the server that the TCPSocket from the preceding example has
connected to. It listens to incoming connections on port 9988, prints the request message
onscreen, and returns a message of its own:

require “socket”

server = TCPServer.new(“localhost”, 9988) # Listen on port 9988

while session = server.accept

157Libraries Reference

Print the request

puts session.gets

Send response

session.puts “Hello from server”

Close the session

session.close

end

Thread

The thread library adds enhanced thread synchronization support. Requiring the thread
library adds the ConditionVariable, Mutex, Queue, and SizedQueue classes that provide
different thread synchronization mechanisms.

See the Threads section in the next chapter for more information about the thread stan-
dard library.

YAML

YAML is a markup language similar in concept to XML. It is designed for serializing
objects to a textual representation. The YAML standard library helps in serializing and
deserializing objects using YAML.

Read more about the YAML standard library on the “Marshalling” section in the next
chapter.

WEBrick

WEBrick is a HTTP server library. It provides everything you need to create a HTTP-based
server or application.

WEBrick is “low level.” You will find creating a normal HTTP server quite difficult.
However, numerous libraries built on top of the WEBrick framework make it much easier
to use (like Tofu).

WEBrick is all about servlets. Servlets handle requests and responses in WEBrick and can
be defined in several ways.

On the next code sample, I create an HTTP server on the default port (80). I also define a
servlet to respond to requests to the page /IronRuby. When users request this page, they
will be welcomed with a message:

require “webrick”

Create the server object

server = WEBrick::HTTPServer.new

Set behavior when http://localhost/IronRuby is called

server.mount_proc(‘/IronRuby’) do |req, resp|

resp.body = “<h1>IronRuby Rules!!!</h1>”

158 CHAPTER 7 The Standard Library

end

start the server

server.start

An in-depth coverage of WEBrick is beyond the scope of this book; for more information
visit http://www.webrick.org.

WEBRICK USES

WEBrick isn’t used for production purposes. It is used mainly for small proof-of-concept
projects and testing purposes. Several other similar frameworks are considered more
efficient and fast (for example, Mongrel and Thin, which can be used via RubyGems).

Zlib

Zlib provides support for the file-compression algorithm Gzip. The Zlib standard library
has two main classes: GzipWriter for writing Gzip files and GzipReader for reading files.

Writing Files
The GzipWriter class is responsible for writing files. The writer class compresses the given
data and writes the compressed result to a specified file. To do that, a filename should be
passed to the GzipWriter constructor and an associated code block, which writes the data
to the Gzip stream:

require “zlib”

Generate a Gzip file “compressed.gz” with the defined text

Zlib::GzipWriter.open(“compressed.gz”) do |gz|

gz.write “This data will be compressed, “

gz.write “another line of data, “

gz.write “more data...”

end

Reading Files
To achieve the opposite of GzipWriter, you can use the GzipReader class. This class
decompresses the data and returns the original content:

require “zlib”

Zlib::GzipReader.open(“compressed.gz”) { |gz|

print gz.read

}

This code returns the data we wrote in the preceding example:

”This data will be compressed, another line of data, more data...”

http://www.webrick.org

159Summary

Finding More Libraries
The libraries introduced here are just those that ship with IronRuby. Numerous other
libraries are available, and most are free and ready to use.

Several websites contain libraries and allow users to search and download them:

. RubyForge is the biggest libraries resource and is being updated all the time:
http://rubyforge.org.

. The Ruby Application Archive is also a good resource for libraries. It is a part of the
official Ruby language website: http://raa.ruby-lang.org.

Summary
This chapter introduced you to the available libraries that enhance Ruby’s built-in
features. As you can see, the standard library contains powerful tools for various different
programming tasks, including logging, networking, design patterns, and threading. These
tools have been tested and implemented in a generic way to fit different scenarios.

Now that you are aware of the possibilities, you can use these libraries and save yourself
the time of implementing them and even make your code more robust and readable.

http://rubyforge.org
http://raa.ruby-lang.org

This page intentionally left blank

CHAPTER 8

Advanced Ruby

IN THIS CHAPTER

. Threads

. Handling Files

. Reflection

. Marshaling

. RubyGems

. Design Patterns

This chapter covers advanced techniques and operations
that are available in Ruby. You learn about threads and file
operations in Ruby. You also learn about reflection, which is
outstanding compared to what you might be familiar with
from static languages such as C# and RubyGems (a library
container). The chapter finishes by showcasing several
design patterns and their implementation in Ruby.

Threads
Ruby supports multithreaded applications. Therefore, code
blocks can be defined as threads and be run in parallel. For
example, remember the Human class. Humans, as we know,
usually do several tasks at the same time (for example,
seeing and hearing). With the help of multithreading, we
can implement these methods to run simultaneously.

Just like other programming languages, multithreading is
achieved with the Thread class.

Starting a new thread is done with the new or start methods,
followed by a code block that will be run in parallel:

Thread.new do

puts “I’m here”

end

Thread.start do

puts “I’m also here!”

end

162 CHAPTER 8 Advanced Ruby

A thread can return a value. Just like methods, the return value is the last invoked expres-
sion on the thread code block. To obtain the thread return value, the value method
should be called. If the thread hasn’t ended yet, the call to value is blocking, and the
application will hang until the thread is done:

t = Thread.new do

sleep 3 # Sleeps for 3 seconds

“I’m a thread”

end

puts t.value # Prints “I’m a thread” after 3 seconds

Threads in Ruby are not blocking threads. When the main application thread flow is
done, the application terminates along with its threads, running or not. To prevent the
application from terminating while the threads are still working, a waiting mechanism
should be written. This can be done with the value method call as we’ve just seen, by
creating an infinite loop or by calling the join method, which blocks the current thread
until the associated thread terminates:

t = Thread.new do

sleep 3 # Sleeps for 3 seconds

puts “I’m a thread”

end

t.join # waits until the thread ends

The preceding code prints “I’m a thread” to the screen. If I hadn’t called the join method,
the application would have terminated before the thread could manage to print the
message to the screen.

IRONRUBY THREADS IMPLEMENTATION

IronRuby uses .NET background threads. Consider the next line of code:

Thread.new {}

This line of IronRuby code is translated to the next C# code:

Thread result = new Thread(new ThreadStart(delegate() { }));

result.IsBackground = true;

result.Start();

Make sure the thread is generated as a background thread. This is done to conform to
Ruby’s thread behavior, which doesn’t stop the application from terminating unless a
waiting mechanism is written.

163Threads

Exceptions Within Threads

By default, when an exception occurs within a thread’s code block, the application
doesn’t stop. Actually, in such case, the error will be discovered only when value or join
are called. If they aren’t called, the error will be “swallowed” without anyone noticing it
ever happened:

t = Thread.new do

sleep 3 # Sleeps for 3 seconds

raise “oh no”

end

t.join # Only now the “oh no” error terminates the application

There is a way, however, to change this behavior. The Thread class has an attribute
abort_on_exception. When this attribute is set to true, the application terminates if
an error occurs within a thread, just like code outside threads.

This attribute can be set for all threads at once using the class attribute
Thread.abort_on_exception:

Thread.abort_on_exception = true

t = Thread.new do

The exception will be raised immidiately

and will terminate the whole application

raise “oh no”

end

It can also be set to a single thread by accessing the attribute via the thread instance from
inside or outside the thread:

t = Thread.new do

Thread.current.abort_on_exception = true

The exception will be raised immidiately

and will terminate the whole application

raise “oh no”

end

This could be done as well:

t.abort_on_exception = true

164 CHAPTER 8 Advanced Ruby

Passing Data In and Out

Ruby offers a few ways to interact between the thread and its outer environment. The first
way is by passing parameters to the new thread. This is done by passing the arguments to
the new method and receiving them within the code like the regular Ruby block way,
between two vertical bars:

Thread.new(“Shay”, “Friedman”) do |first_name, last_name|

puts “#{first_name} #{last_name}” # prints “Shay Friedman” to the screen

end

The second way to pass data to and from the thread is via three methods that are part of
every Ruby thread:[], []=, and key?. The thread behaves like a hash and can contain
symbols and values. The key? method checks whether a given symbol exists within the
hash. These methods are accessible from within the thread and from outside it and make
it easy to pass data around:

t = Thread.new do

5.times do |ind|

Thread.current[:current_index] = ind

sleep 1

end

end

10.times do

sleep 0.5

puts t[:current_index] if t.key?(:current_index)

end

The preceding code prints the following number sequence: 0, 1, 1, 2, 2, 3, 3, 4, 4, 4. It
doesn’t print every number two times because of the different intervals; instead, the t
thread and the main thread are sleeping and waking up.

Thread Priority

A thread priority can be set programmatically. This is useful in case you want your thread
to be preferred over other threads.

This is done using the priority method. Table 8.1 describes the available priority values.

Setting the priority can be done from within the thread using the Thread.current method
or from outside:

t = Thread.new do

... thread code ...

end

t.priority = 2

165Threads

TABLE 8.1 Thread Priority Values

Value Description

-2 or lower A thread that is scheduled after any other thread

-1 A thread that is scheduled after normal-priority threads

0 Default priority

1 A thread that is scheduled after highest-priority threads

2 or higher A thread that is scheduled before any other thread

TABLE 8.2 Thread States

status Value Description

”run” Thread is running or can be run.

”sleep” Thread is sleeping.

”aborting” Thread has been killed (via the kill method) but has not terminated yet.

False Thread has terminated.

Nil Thread has terminated unexpectedly.

The pass method can be used to generate a context switch. Therefore, if a high-priority
thread is running and other threads should be able to run, too, the pass method should
be called once in a while:

Thread.new do

... code ...

Thread.pass

... code ...

end

Thread State

A thread can be checked for its state, via the status method. The status method has
several return values, each representing a different state of the thread. Table 8.2 describes
the available states.

Another way to check whether a thread is alive is by using the alive? and stop? methods.
A thread is considered alive when the thread hasn’t terminated already. It is considered
stopped when the thread is sleeping, is aborting, or has terminated.

166 CHAPTER 8 Advanced Ruby

t = Thread.new do

sleep 5

end

t1 = Thread.new do

raise “error!”

end

t.status # = “sleep”

t.alive? # = true

t.stop? # = true

t1.status # = nil

t1.alive? # = false

t1.stop? # = true

The thread state can also be altered. Ruby offers a set of methods that can pause, resume,
and kill a thread:

. To pause a thread, the Thread.stop method should be used. This puts the thread to
a “sleep” state. This can be called only from within the thread.

. To resume the thread, the wakeup or run methods can be used. run also signals the
CPU, which means it has potential to start running more quickly than wakeup.

. To kill a thread, the terminate method should be used. When the method is used,
the thread’s ensure clause is executed. If the terminate! method is used, the ensure
clause is ignored, and the thread terminates immediately.

For example, the next sample runs a thread that writes numbers on the screen and pauses
after each iteration. The user inserts a selection on the main thread, which either awakes
the thread or terminates it (softly or not):

t = Thread.new do

begin

i = 0

loop do

puts i

i = i + 1

Thread.stop # pause the thread

end

ensure

puts “Bye bye”

end

end

choise = gets.chomp

while choise != ‘q’

case choise

167Threads

when ‘r’

t.run

when ‘t’

t.terminate

when ‘t!’

t.terminate!

end

choise = gets.chomp

end

Thread Synchronization

When multiple threads work simultaneously, sometimes a problem arises that causes two
or more threads to depend on each other. When this issue arises, a mechanism to
synchronize between the threads is needed. Ruby supports a few kinds of synchronization
techniques as part of the standard library thread.

Mutex
The first synchronization mechanism is the Mutex class. Mutex is a locking mechanism
that helps in situations when a critical section exists. To use it, before a thread accesses a
critical section, it needs to lock the mutex. When the thread is done, the mutex should be
unlocked. After the mutex has been locked, any other thread that tries to access it will be
blocked until the mutex is unlocked.

The Mutex class has lock and unlock methods. However, the common scenario is done
with the synchronize method. The synchronize method retrieves a code block and auto-
matically locks the mutex while the code is running and unlocks it when it’s over:

require ‘thread’ # Get the thread standard library

mutex = Mutex.new

t = Thread.new {

mutex.synchronize {

... critical section code ...

}

}

t1 = Thread.new {

mutex.synchronize {

... critical section code ...

}

}

As mentioned, mutex lock and synchronize are blocking for the other threads that access
them. Mutex features two methods that will not block the thread if the mutex is locked:
try_lock and locked?. They both return a Boolean value. try_lock returns a value that

168 CHAPTER 8 Advanced Ruby

indicates whether it succeeded in locking the mutex, and locked? returns a value that
indicates whether the mutex is locked.

Queues
If you have a producers-consumers design, you may sometimes need a way to interact
between them. The communication can be done using mutexes, although the more
appropriate solution is using a queue. The producers will add items to the queue, and the
consumers will retrieve them.

Ruby supports two types of queues: Queue and SizedQueue. These are thread-safe FIFO
queues. They support two main methods: enq and deq for enqueuing and dequeuing
items. These queues also have a special behavior: If the deq method is called when the
queue is empty, the call blocks the calling thread until an item is added to the queue. The
difference between the queues is the limit on the number of items that can be defined on
SizedQueues. Similar to deq, when a thread tries to enqueue an item and the sized queue is
already full, the thread is blocked until the queue has the needed space. The maximum
number of items can be defined on SizeQueue’s constructor or by the max= method.

For example, the next code sample writes the numerals 0 to 99 on the screen:

require ‘thread’

Defining a queue with 10 items at most

q = SizedQueue.new(10)

The consumer thread

t = Thread.new do

100.times { |i| puts q.deq }

end

The producer thread

t1 = Thread.new do

100.times { |i| q.enq(i) }

end

t.join; t1.join

Monitor
Monitors are similar to mutexes. They enable synchronizing blocks using the
synchronize method. However, there is one major difference between monitors and
mutexes: A mutex can be synchronized using a mutex variable, and a monitor can be
incorporated into an object.

For example, suppose we have the following class:

class ParallelDemo

def run

(1..100).each { |i| puts i; sleep(rand) }

169Threads

end

end

The class has a method, run, which loops 99 times, writes each number, and sleeps for a
random number of milliseconds.

Consider the next code:

p = ParallelDemo.new

t = Thread.new { p.run }

t1 = Thread.new { p.run }

t.join; t1.join

The output of this code would have been a random sequence of numbers rather than two
1 to 99 sequences that appear one after the other.

We can change the ParallelDemo class to add synchronization capabilities. This is done
with the monitor standard library, which contains a MonitorMixin module and the
Monitor class itself:

require “monitor”

class ParallelDemo

include MonitorMixin

def run

(1..100).each { |i| puts i; sleep(rand) }

end

end

Now we can change the execution code, as well, to synchronize run method invocations:

p = ParallelDemo.new

t = Thread.new { p.synchronize { p.run } }

t1 = Thread.new { p.synchronize { p.run } }

t.join; t1.join

Make sure that mutexes are closer to the OS than monitors and that their performance is
better than the monitors’ performance. In addition, you can use mutexes across several
applications. Nevertheless, monitors are easy to use and fit a lot of cases where you need a
quick and easy solution.

Handling Files
Working with files is a common practice during application development. Ruby has
various classes that help in reading and writing files, checking file properties, listing

170 CHAPTER 8 Advanced Ruby

directories, and running operations on files. The File class is the center of file operations
in Ruby, and it contains most of the available file operations.

SAMPLE FILE USED IN THIS SECTION

Code samples in this section use a sample.txt file, which contains the next text block:

This is the first line

This is the second line

Reading Files

The File class has multiple methods that offer different ways for reading a file.

The first method group allows reading the file content directly into a variable. This is
done using one of the methods: read, readlines, or foreach. read reads the whole file
content into a variable, readlines returns the lines in the file as an array (a different
delimiter can be defined), and foreach yields each line to its associated code block (a
different delimiter can be defined):

content = File.read(“Sample.txt”)

puts content

Output: “This is the first line

This is the second line”

lines = File.readlines(“Sample.txt”)

lines.each_with_index { |line, index| puts “#{index}: #{line}” }

Output: “ 1: This is the first line

2: This is the second line”

Seperate the file by spaces:

File.foreach(“Sample.txt”, “ “) { |c| print “_#{c}” }

Output: “_This _is _the _first _line

This _is _the _second _line”

The second method group uses streams to read the file. To read a file as a stream, the
stream should be opened first. This is done by the File.open method. There are two ways
of calling it. The first one is to call it, store the returned File instance in a variable, use it,
and then close it. The second way is to associate a code block to the call. This way the file
stream will be closed when the code block ends. For example, the next two samples are
equivalent:

file = File.open(“Sample.txt”)

puts file.read

file.close

171Handling Files

TABLE 8.3 File.open Modes

Mode Description

”r” Read only. The default mode.

”r+” Read and write. Fails if file doesn’t exist.

”w” Write only. Creates a new file or truncates the existing file.

”w+” Read and write. Creates a new file if file doesn’t exist.

”a” Write only. Creates a new file or appends to the end of the existing file.

”a+” Like ”a” but allows reading as well.

”b” Binary file mode. Should be added to one of the previous modes.

File.open(“Sample.txt”) do |file|

puts file.read

end

The open method receives another parameter that indicates the mode the file will be
opened in. Table 8.3 describes the different available modes.

When the file stream is opened, several reading operations can be done: read, readchar,
getc, readline, and gets.

read, without parameters, reads the entire file like we’ve seen previously in this section.
When read is used inside a stream, it can be used to read the file by chunks—just pass the
length of each read operation. This length is the maximum number of characters. If fewer
characters exist, they will be returned:

file = File.open(“Sample.txt”)

while !file.eof?

puts file.read(11)

end

file.close

#Output: “This is the

first line

#

This is th

e second li

ne”

read can also receive a buffer parameter that will contain the read buffer. This way the read
call can replace the loop condition. The next code sample is identical to the one above:

172 CHAPTER 8 Advanced Ruby

file = File.open(“Sample.txt”)

buffer = String.new # The variable must be of type string

while file.read(11, buffer)

puts buffer

end

file.close

readchar reads the file by characters. The char is returned as its ASCII code. readchar will
raise an exception on end of file. The alternative to that is to use getc, which behaves the
same but returns nil on the end of file.

readline reads the file line by line. Like readchar, an error is raised on end of file. Use
gets as an alternative; it returns nil on end of file.

When a stream is used, a few each methods also become available: each and each_byte.
each will yield to its associated code block every line in the file (a different separator can
be defined). each_byte will iterate through the file bytes. Using the each methods saves
the checks for the end of file:

file = File.open(“Sample.txt”)

file.each { |x| puts x }

file.close

Writing Files

Writing to files in Ruby requires a writable stream. When such a stream is opened, several
methods allow writing to the stream: print, printf, puts, and write.

print adds the given string to the stream. It can receive multiple arguments separated by
commas, and it will convert them to strings (using to_s) and add them to the stream:

file = File.open(“a.txt”,”w”)

file.print “One “, 1, “, Two “, 2

file.close

a.txt now contains “One 1, Two 2”

CHANGE PRINT SEPARATOR

print actually adds the given arguments to the stream and the global output record
separator at the end. The default separator is nil by default but can be changed. The
global output record separator can be accessed by the $\ global variable:

$\ = “>>”

file = File.open(“a.txt”,”w”)

file.print “One “, 1, “, Two “, 2

file.close

a.txt now contains “One 1, Two 2>>”

173Handling Files

write is very similar to print. The only difference between them is that print adds the
global output record separator ($\) after appending its arguments to the stream, whereas
write doesn’t do that.

printf is a way to append a formatted output to the stream. Look at the printf descrip-
tion in Chapter 5, “Ruby Basics,” for more information.

puts acts like print except that it adds a new line at the end of each output. If puts is
given an array, it prints every array item in its own line:

file = File.open(“a.txt”,”w”)

file.print [“one”,”two”,”three”], “Four”

file.close

a.txt now contains “one

two

threeFour

Accessing File Properties

Sometimes you need to check or change file properties, such as the file size or whether it
is read-only.

Ruby features methods to examine file properties:

file = “a.txt”

File.file?(file) # Is this a file?

File.directory?(file) # Is this a folder?

File.size(file) # The file size in bytes

File.zero?(file) # Is the file empty?

File.readable?(file) # Can the file be read?

File.writable?(file) # Can the file be written to?

File.executable?(file) # Can the file be executed?

File.mtime(file) # Last modification time

File.atime(file) # Last access time

file = File.join(“D:”,”Dev”,”Scripts”,”Sample.txt”) # = “D:/Dev/Scripts/Sample.txt”

File.basename(file) # = “Sample.txt”

File.basename(file,”*”) # The filename without any extension = “Sample”

File.basename(file,”.txt”) # = The filename without .txt extension = “Sample”

File.basename(file,”.exe”) # = The filename without .exe extension = “Sample.txt”

File.extname(file) # = “.txt”

File.dirname(file) # = “D:/Dev/Scripts”

File.split(file) # = [“D:/Dev/Scripts”, “Sample.txt”]

174 CHAPTER 8 Advanced Ruby

You can also retrieve the file metadata into a single object by using the File.stat method:

stat = File.stat(“a.txt”)

stat.file?

stat.directory?

stat.readable?

stat.writable?

stat.executable?

stat.mtime

stat.atime

Changing file read-only state is done via the File.chmod method:

File.writable?(“a.txt”) # = true

File.chmod(0, “a.txt”) # Make it read-only

File.writable?(“a.txt”) # = false

File.chmod(128, “a.txt”) # Make it writable

File.writable?(“a.txt”) # = true

To update the modification and last access time, you use the File.utime method:

Change a.txt modified date to 9/6/1983 and access time to 9/6/2009

File.utime(Time.local(2009, 9, 6), Time.local(1983,9, 6), “a.txt”)

File.mtime(“a.txt”) # = 9/6/1983

File.atime(“a.txt”) # = 9/6/2009

Listing Directories

You can list directories by using the Dir class, which holds directory-related methods.

To retrieve all files within a directory, the entries and foreach methods can be called.
entries returns the files as an array, and foreach yields each file to its associated code block:

arr = Dir.entries(“IronRuby”)

Dir.foreach(“IronRuby”) { |file| puts file }

Another way to retrieve the file list of a specific folder is by using [] or the glob methods.
They are different from entries and foreach by their capability to filter the file list. []
returns the file list as an array, and glob yields each file to its associated code block. To
define the directory on which the methods will be executed, Dir.chmod should be used;
otherwise, the executed file directory is used:

Dir.chdir(“D:/IronRuby”)

Get all rb files from D:\IronRuby

175Handling Files

arr = Dir[“*.rb”]

Get rb files in all sub directories of D:\IronRuby

Dir.glob(“**/*.rb”) { |file| puts file }

File Operations

The File class also features methods for modifying or deleting files:

Rename a file:

File.rename(“a.txt”, “Example.txt”)

Delete a file:

File.delete(“Example.txt”)

Create a directory

Dir.mkdir(“SampleDir”)

Delete a directory

Dir.rmdir(“SampleDir”)

The standard library class FileUtils adds some more operations, such as copying and
moving files, and improves existing operations:

require ‘fileutils’

dir = “C:/Hello/Ruby/From/FileUtils”

Create the whole directory tree

FileUtils.makedirs(dir)

Copy a file from current directory to the new directory

FileUtils.copy(“Sample.txt”, dir)

The copy method can copy multiple files as well:

FileUtils.copy(Dir.glob(“*.rb”), dir)

Move a single or multiple files from one directory to another

FileUtils.move([“a.rb”, “b.rb”], dir)

Delete a folder along with its content

FileUtils.remove_dir(“C:/Hello”)

Delete a list of files and directories

#(directories are deleted recuresively like remove_dir)

FileUtils.rm_r([“C:/temp/tempFiles”, “C:/temp/temp.bin”])

These capabilities are available out-of-the-box with IronRuby installation. However, there
are numerous more libraries that can add even more file handling capabilities to the
language (for example, discovering the MIME type of a file). Look at the RubyGems
section later in this chapter for information about how to locate, retrieve, and use Ruby
libraries from the Internet.

176 CHAPTER 8 Advanced Ruby

Reflection
Ruby is a very permissive language, as you’ve already seen time and time again. It allows
developers to open any class, add new methods, remove others, include mixins, and
more. Ruby isn’t satisfied with just that, and so it provides some impressive reflection
capabilities.

Reflection means that the code can investigate itself and its environment. Hence, you can
retrieve a list of current defined variables, check what the superclass of an object is, and
more. This gives you a lot of control over objects during the runtime of the application.

Reflection serves advanced needs of applications. For example, creating code dynamically
or developing extremely generic classes. It can also help tremendously during debug
sessions by making it possible to investigate the running objects.

Finding Living Objects

The ObjectSpace module interacts with Ruby’s Garbage Collector. This is why it can help
us discover all living objects within our application.

ObjectSpace contains an each_object method that calls its associated block for every
living object. A module or class type can be passed as a parameter to retrieve objects from
this type only:

john = Human.new(“John”, “Doe”)

ObjectSpace.each_object(Human) { |x| x.introduce }

Output: “Hi, I’m John Doe”

TYPES THAT OBJECTSPACE WON’T FIND

ObjectSpace will not return immediate types: Fixnum, Symbol, true, false, or nil.

For example:

num = 5 # This is a Fixnum

float = 5.5 # This is a Decimal

bignum = 9_999_999_999_999_999 # This is a Bignum

ObjectSpace.each_object(Numeric) { |x| puts x }

Output:

9999999999999999

5.5

2.71828182845905

3.14159265358979

177Reflection

2.22044604925031e-016

1.79769313486232e+308

2.2250738585072e-308

Ensure the Fixnum variable named num doesn’t appear on the list. The spare numbers
are constants from the Math module.

Investigating Objects

When we have an object, we can investigate its internals. We can get its methods, test
whether the object responds to a specific method name, look at its inheritance hierarchy,
and even access its internal variables.

Object class and class hierarchy can be retrieved in the following ways:

str = “Hello”

str.class # = String

str.class.superclass # = Object

str.class.ancestors # = [String, Enumerable, Comparable, Object, Kernel]

str.class.included_modules # = [Enumerable, Comparable, Kernel]

str.class.ancestors - str.class.included_modules # Class hierarchy only = [String,

Object]

instance_of? returns true for the direct superclass

str.instance_of?(String) # = true

str.instance_of?(Object) # = false

str.instance_of?(Comparable) # = false

#kind_of? returns true for every superclass or mixin module:

str.kind_of?(String) # = true

str.kind_of?(Object) # = true

str.kind_of?(Comparable) # = true

=== is similar to kind_of?

String === str # = true

Object === str # = true

Comparable === str # = true

Method listing and information can be retrieved in the following ways:

str = “Hello”

str.methods # all public methods as an array

str.public_methods(false) # Public methods without inherited ones

str.public_methods(true) # Public methods with inherited ones

178 CHAPTER 8 Advanced Ruby

str.protected_methods(false) # Protected methods without inherited ones

str.private_methods(false) # Private methods without inherited ones

str.singleton_methods(false) # Singleton methods without inherited ones

str.class.methods # Class methods

String.methods # Same as str.class.methods

Test if method exists as public or protected

str.respond_to?(“chomp”) # Does a method named “upcase” exist?

str.respond_to?(:chomp) # Works with symbols too

Test if method exists as public, protected or private

str.class.public_method_defined?(“chomp”)

str.class.protected_method_defined?(“chomp”)

str.class.private_method_defined?(“chomp”)

Variables can also be listed:

john = Dentist.new(“John”, “Doe”)

john.instance_variables # Get instance variables = [“@first_name”, “@last_name”]

john.class.class_variables # Get class variables = nil

john.class.constants # Get class constants = nil

local_variables # get the current scope local variables = [“john”]

Test if variable or const exist:

Does @first_name exist as an instance variable?

john.instance_variable_defined?(“@first_name”)

Does @@first_name exist as a class variable?

john.class.class_variable_defined?(“@@first_name”)

Does FIRST_NAME const exist?

john.class.const_defined?(:FIRST_NAME)

Invoke Methods and Set Variables Dynamically

The preceding section introduced ways to receive information about a specific object. This
section shows you techniques to use these internal methods and variables.

To play with a class we know, let’s construct a Demo class:

class Demo

@@class_var = “I’m a class var!”

def self.class_method

puts @@class_var

end

def initialize(value)

@instance_var = value

end

179Reflection

private

def private_method(prefix)

puts “#{prefix} #@instance_var”

end

end

Now that we have a class, let’s see how we can invoke its methods, even the private ones:

Invokes Demo class_method

Demo.send(:class_method) # Prints “I’m a class var!”

Demo.method(“class_method”).call

Invoke Demo private instance method private_method with one parameter

d = Demo.new(“Rocks!”)

d.method(:private_method).call(“IronRuby”) # Prints “IronRuby Rocks!”

d.send(“private_method”, “IronRuby”)

Invoking methods is not all we can do. Setting and getting variables is another capability
that Ruby’s reflection mechanism holds:

d = Demo.new(“Rocks!”)

Get and set instance variables

d.instance_variable_get(:@instance_var) # = “Rocks!”

d.instance_variable_set(:@instance_var, “is DA BOMB!”)

d.send(:private_method, “IronRuby”) # Prints “IronRuby is DA BOMB!”

Get and set class variables

Demo.send(“class_variable_get”,:@@class_var) # = “I’m a class var!”

Demo.send(“class_variable_set”, :@@class_var, “Oh yea!”)

Demo.class_method # Prints “Oh yea!”

The class_variable_get and class_variable_set are private methods in Ruby 1.8; this is
why we use the send method to invoke them.

Other than just setting variables, we can also get and set class constants:

Math::PI # = 3.1415....

Math.const_get(:PI) # = 3.1415....

Math.const_set(:PI, 3.2) # Set PIE constant to the high school PIE value

Math::PI # = 3.2

180 CHAPTER 8 Advanced Ruby

SETTING CONSTANT VALUES

Setting a constant value via the const_set method shows a warning in case the inter-
preter is set to show warnings.

Execute Code Dynamically

Maybe one of the strongest reflection capabilities in Ruby is the capability to execute code
dynamically. This is done using the eval method. eval receives a string that contains a
valid Ruby code and executes it, just as if it were written in the code file:

str = %q{puts “Hello!”}

eval str # Prints “Hello!”

eval runs in the current context. Two more eval methods can execute the code in a differ-
ent context: class_eval (or its synonym, module_eval) and instance_eval. class_eval
can execute code in the class context (self can be the class object), and instance_eval

can execute code in the context of the class (self can be the class instance):

d = Demo.new(“IronRuby”)

d.instance_eval %q{puts “#@instance_var Rocks!”} # Prints “IronRuby Rocks!”

Demo.class_eval “@@class_var = ‘Changed by class_eval!’”

Demo.class_method # Prints “Changes by class_eval!”

ACCESSORS IMPLEMENTATION

As you may recall, when we discussed accessors in Chapter 6, “Ruby’s Code-Containing
Structures,” I mentioned that accessors were simply code generators. After we know
what eval is, we can implement accessors ourselves. Let’s implement our own
attr_accessor. First, I’ll open the Module class and add the accessor implementation:

class Module

def unleashed_accessor(symb)

code = <<CODE

def #{symb}

@#{symb}

end

def #{symb}=(value)

@#{symb} = value

end

CODE

181Marshaling

I use class_eval to define instance methods

class_eval code

end

end

After we have our accessor ready, we can us it:

class Sample
unleashed_accessor :accessor

end

s = Sample.new
s.accessor = “Hello”
puts s.accessor # Prints “Hello” to the screen

Marshaling
Most applications need to save data to a permanent location so that it is available every
time the application runs. In Ruby, this called marshaling. In other languages, it is some-
times called serialization.

Ruby has two techniques for marshaling: binary and textual. Both of these techniques
have their advantages and disadvantages—binary marshaling is generally faster and takes
less space whereas textual marshaling ends up as a human readable file that can be modi-
fied outside of the application context.

Binary Marshaling

There are two methods for binary marshaling: Marshal.dump and Marshal.load. As you
can guess from their names, Marshal.dump serializes the object to a binary format, and
Marshal.Load constructs the object from the binary stream:

john = Human.new(“John”,”Doe”)

Save john to a file
f = File.open(“john”, “w+”)
Marshal.dump(john, f)
f.close

Load john from the file
File.open(“john”, “r”) do |f|

john = Marshal.load(f)
end

john.introduce # Prints “Hi, I’m John Doe”

182 CHAPTER 8 Advanced Ruby

Textual Marshaling

Binary marshaling has two disadvantages. First, when the object structure is changed, the
binary format changes significantly. Second, the formats are not readable by humans.

This is what YAML is for. YAML is a standard library that helps in serializing objects to
text. After you have the text saved on a file, for example, there is no problem with chang-
ing the values, and the new ones will be reflected when the object is deserialized.

YAML, just like the Marshal module, has dump and load methods:

require ‘yaml’

john = Human.new(“John”, “Doe”)

Save john as text

text = YAML.dump(john)

Load john from the text

john = YAML.load(text)

john.introduce # Prints “Hi, I’m John Doe”

The text that the variable john was converted to looked like the following:

--- !ruby/object:Human

first_name: John

last_name: Doe

If we modify the code to replace one of the values in the string, we will see them change
after we load the object:

require ‘yaml’

john = Human.new(“John”, “Doe”)

Save john as text

text = YAML.dump(john)

Replace “John” with “Joanne”

text[“John”] = “Joanne”

Load john from the text

john = YAML.load(text)

john.introduce # Prints “Hi, I’m Joanne Doe”

183RubyGems

RubyGems
RubyGems is a centralized place for Ruby libraries. It is similar to .NET’s Global Assembly
Cache (GAC). RubyGems allows installing and uninstalling Ruby libraries, signing
libraries, listing the available libraries, and version management.

RubyGems is not an integral part of Ruby 1.8 or IronRuby 1.0. It is included in the instal-
lation package as an external utility.

Installing RubyGems

In IronRuby’s installation directory, you will find the RubyGem utility, called igem.
RubyGems is ready for use.

Calling igem help can show you a short help document about RubyGems. If you want to
get more information about a specific command, run igem help <COMMAND>.

Installing Gems

RubyGems is all about the gems, right? So the next thing we need to do is to find gems
and install them. The list of available gems is available via the igem utility. igem list –l
shows the list of local gems, and igem list –r shows the list of gems on the gems server.
To get a brief description of the gem, add --details to the end of the command: igem
list –r --details.

After we’ve decided which library to install, we can use the igem install <GEM>
command. We can install the simple-rss library, which features a simple way to read RSS
and ATOM feeds:

> igem install simple-rss

Successfully installed simple-rss-1.2

1 gem installed

Installing ri documentation for simple-rss-1.2...

Installing RDoc documentation for simple-rss-1.2...

Using Installed Gems

After a gem is installed, you can use it within your application. To use gems, we need to first
require RubyGems and then require our gem. In our case, we write the next couple of lines:

require ‘rubygems’

require ‘simple-rss’

184 CHAPTER 8 Advanced Ruby

Now we can use the simple-rss library and read our favorite RSS feed. We use the open-uri
library, as well, which is a part of the standard library. This library helps in reading HTTP,
HTTPS, and FTP streams.

The entire application, which reads my personal blog RSS feed and prints general details
to the screen, looks like this:

require ‘rubygems’

require ‘simple-rss’

require ‘open-uri’

rss = SimpleRSS.parse open(‘http://feeds.feedburner.com/ShayTalksAbout’)

puts rss.feed.title # = “IronShay”

puts rss.feed.link # = “http://www.IronShay.com”

puts rss.items.size # = 15 (number of items in the RSS feed)

Print post titles

rss.items.each { |post| puts post.title }

Rake

Rake is a gem library that is used to build and install ruby applications. Rake is built of
rakefiles. A rakefile is a file written in Ruby code that supplies the instructions to the build
process. Rake is similar to make or ant.

Rake enables you to create a task base flow, which builds and configures the application
and its environment. For example, we can define a task that creates folders for the applica-
tion, build code, run tests, configure a database, and eventually send an email to the
administrator that the process is complete.

A simple rakefile looks like the following (the file is actually called rakefile):

task :create_directories do

puts “Creating folders...”

#...creating folders...

end

“Copy files” is dependent on “Create Directories”

task :copy_files => :create_directories do

puts “Copying files...”

#...copy files

end

To run this rakefile, we use the irake tool, which is in the IronRuby installation folder.
irake gets as a parameter the name of the task to start with. It then looks for a file named

185RubyGems

rakefile and executes the code inside the given task and its dependencies (the dependen-
cies will be executed before):

> irake copy_files

(in C:/IronRubyApps)

Creting folders...

Copying files...

RAKE IS NOT JUST FOR RUBY APPLICATIONS

Rake is a build tool, and it is not restricted to building Ruby files. The build tasks are
written in Ruby, and they can be used to execute building processes of applications
written in other programming languages. For instance, building .NET code can be done
by running the msbuild process via IronRuby.

Delving deeper into rake is beyond the scope of this book. For further information about
the rake tool, visit http://rake.rubyforge.org.

IronRuby RubyGems Limitations and Expertise

In version 1.0 of IronRuby, there are a few known limitations apply to using gems:

. Native gems are not supported. Native gems are gems that include native code (C
code) extensions.

. Signed gems are not supported.

However, IronRuby has an expertise that no other Ruby implementation offers: the ability
to use CLR extensions. An extension can be written in one of the .NET languages and still
be used from Ruby.

Chapter 19, “Extending IronRuby” covers how to write CLR extensions.

Finding Gems

There are numerous websites that catalog gems. The big sites contain thousands of gems
that implement almost anything you might need.

The big gem catalog sites are

. GitHub: http://www.github.com

. Gemcutter: http://gemcutter.org

http://www.github.com
http://gemcutter.org
http://rake.rubyforge.org

186 CHAPTER 8 Advanced Ruby

Design Patterns
In the world of programming, chaos is common. Applications that get bigger by the
minute lose their initial clean and smooth way of coding and become one massive patches
container. Design patterns are planned to help avoid this.

Design patterns should not be followed blindly. In essence, they are just templates, and
they should be shaped to fit the exact needs of every application.

The following are some common design patterns that are easy to implement in Ruby.

The Strategy Pattern

The strategy pattern is used to change the way an object works by passing it a strategy
object. For example, in a basketball match, the team has different defensive strategies. If
we need to code a basketball game, we can use the strategy pattern, for example:

class BasketballTeam

def initialize

@players = []

end

def play_defense(strategy)

strategy.play(@players)

end

end

class ZoneDefense

def play(players)

... do zone defense ...

end

end

class ManToManDefense

def play(players)

... do man-to-man defense ...

end

end

team = BasketballTeam.new

Play zone defense

team.play_defense(ZoneDefense.new)

Or play man-to-man defense

team.play_defense(ManToManDefense.new)

187Design Patterns

As you can see from this code sample, the BasketballTeam class does not have to know its
strategy objects. It just needs to know its interface to use them. Now we can add multiple
other defensive strategies without modifying the main class, BasketballTeam.

Ruby’s duck typing capability makes it easy to create strategy objects. We do need to
declare an interface or an abstract class. In our basketball sample, all a class needs to
become a valid strategy class is to contain a play method.

The code is currently “unsafe” because there is no check of the strategy object before using
it. To make it safer, a validation should be added to check whether the object responds to
the play method:

def play_defense(strategy)

strategy.play(@players) if strategy.respond_to?(:play)

end

After this change, if the strategy object isn’t valid, the team will not play defense (and will
probably lose the game).

Even though it might seem like a good idea to use respond_to? all the time, it is not
used that much in practice. The more common way of dealing with that is by unit
testing the code.

The strategy pattern can be written in another way that takes advantage of another Ruby
feature, blocks. Instead of passing a strategy object, we can provide a strategy code block:

class BasketballTeam

def initialize

@players = []

end

def play_defense(&strategy)

strategy.call(@players)

end

end

team = BasketballTeam.new

Play zone defense

team.play_defense do |players|

... do zone defense ...

end

Or play man-to-man defense

team.play_defense do |players|

... do man-to-man defense ...

end

188 CHAPTER 8 Advanced Ruby

Real-World Samples
It’s impossible to list all possible uses for the strategy pattern here, but it is possible to
categorize a couple common uses for the strategy pattern:

. Storage access: Different strategy class for different storage locations (memory,
database, file system, and so on)

. Formatting: Different strategies for every format (text, Word document, OpenOffice
document)

The Iterator Pattern

The iterator pattern is used to generate a way of accessing an object’s inner collection of
subobjects. An iterator doesn’t necessarily have to loop over a list of objects. It is just a
forward-only cursor-based scan of the object’s inner collection.

There are two kinds of iterators: internal iterators and external iterators. Internal iterators
iterate through the collection and pass the current item to the users on each iteration.
External iterators expose an iteration object (sometimes called a cursor), and the users
advance the iteration and check its state by themselves.

For example, in our BasketballTeam class, we can add an iterator to go through the
players of the team.

Let’s first create a BasketballPlayer class that will hold player information:

class BasketballPlayer

attr_accessor :first_name, :last_name, :height

def initialize(first_name, last_name, height)

@first_name = first_name

@last_name = last_name

@height = height

end

end

Next we’ll implement methods to add players to a team:

class BasketballTeam

def initialize

@players = []

end

def add_player(player)

@players << player

end

end

189Design Patterns

This section is about the iterator pattern, so let’s implement an iterator method. We will
call it each, which is the convention for iterators in Ruby:

def each

@players.each { |player| yield player }

end

This wraps up the iterator pattern implementation. We can now iterate through the
basketball team members with ease, as follows:

team = BasketballTeam.new

team.add_player BasketballPlayer.new(“Shaquille”, “O’Neal”, 7.1)

team.add_player BasketballPlayer.new(“James”, “LeBron”, 6.8)

team.each { |player| puts player.first_name }

Writes “Shaquille” and “James” to the screen

After we have this defined, we can add lots more functionality to our class. This can be
done using the Enumerable mixin, which was discussed in Chapter 6. All we have to do is
to implement <=> on the iterator objects (BasketballPlayer) and include Enumerable in
our BasketballTeam class:

class BasketballPlayer

def <=>(other)

height <=> other.height

end

end

class BasketballTeam

include Enumerable

end

Now we can sort the team members, check for membership, and more:

lakers = BasketballTeam.new

lakers.add_player BasketballPlayer.new(“Andrew”, “Bynum”, 7.0)

lakers.add_player BasketballPlayer.new(“Pau”, “Gasol”, 7.0)

lakers.add_player BasketballPlayer.new(“Trevor”, “Ariza”, 6.8)

lakers.add_player BasketballPlayer.new(“Kobe”, “Bryant”, 6.6)

lakers.add_player BasketballPlayer.new(“Derek”, “Fisher”, 6.1)

Sort players by height

lakers.sort # = [Fisher, Bryant, Arize, Gasol, Baynum]

Check whether there are any players below 6ft

lakers.any? { |player| player.height < 6 } # = false

190 CHAPTER 8 Advanced Ruby

Real-World Samples
The iterator pattern is one of the most commonly used patterns. It appears in data collec-
tions, streams (like files), strings, and more.

The Command Pattern

The command pattern aims to separate our operation code from the rest. It should
support executing a command and undoing it, too. The idea is to have different command
classes that support a single interface (do and undo). After a command is executed, it is
added to a command container. When an undo request comes in, the last command from
the list should be undone and removed from the list.

For example, let’s add a mechanism that can enable the user to directly add new players to
our basketball team:

class BasketballTeam

def show_menu

puts “Add New Players”

puts “Q to exit or the player info: first name,last name,height”

gets.chomp

end

def get_new_users

input = show_menu

while input.downcase != “q”

fn, ln, h = input.split(‘,’)

add_player BasketballPlayer.new(fn, ln, h.to_f)

input = show_menu

end

end

end

Now we can incorporate the command pattern here and make the flow clearer and even
allow undoing!

First, I’ll change the BasketballTeam class to support commands:

class BasketballTeam

attr_accessor :players

def initialize

@players = []

@commands = []

end

def add_player(player)

command = AddBasketBallPlayerCommand.new(self, player)

191Design Patterns

command.execute

@commands << command

end

def undo

return if @commands.empty?

@commands.pop.undo

end

end

The preceding code uses the AddNewPlayerCommand class. Let’s code it:

class AddBasketBallPlayerCommand

def initialize(team, player)

@team = team

@player = player

end

def execute

@team.players << @player

end

def undo

@team.players.delete @player

end

end

After these changes, the command class takes full control over the player addition process,
and the BasketballTeam class is used as the container of the commands. On every
command execution, the command object is inserted into a list of commands and into
every undo request. The last command is removed from the list while undoing its operation.

The latest changes make it possible to write the next code lines:

lakers = BasketballTeam.new

lakers.add_player BasketballPlayer.new(“Kobe”, “Bryant”, 6.6)

lakers.add_player BasketballPlayer.new(“Derek”, “Fisher”, 6.1)

lakers.undo

lakers.players # = [Bryant]

We can also take advantage of procs (another Ruby feature) and make this pattern more
“developer friendly.”

192 CHAPTER 8 Advanced Ruby

To do that, we’ll create a single command class that will hold two procs, one for execute
and one for undo:

class Command

def initialize(execute, undo)

@execute = execute

@undo = undo

end

def execute

@execute.call

end

def undo

@undo.call

end

end

This class can save us the need for a special command class for every command. When we
have this class defined, we can delete the AddNewPlayerCommand class and replace the
add_player method code with the following:

def add_player(player)

command = Command.new(Proc.new { @players << player },

Proc.new { @players.delete(player) })

command.execute

@commands << command

end

Real-World Samples
The command pattern is widely used in applications that support multiple undo/redo
operations (for example, text and image editors). It is also used when rollback support is
needed (to undo an entire operation when the operation fails).

The command pattern comes in various shapes and has several uses. It is good practice to
use it when you have commands to execute that can be separated logically into their own
command classes.

The Singleton Pattern

The singleton pattern is one of the most popular patterns. It is used in almost every appli-
cation, probably as a result of its simplicity and added value.

193Design Patterns

The singleton pattern is described as a class that can only have a single instance, and this
instance is globally accessible. To make our BasketballTeam class a singleton class, we
have to add a class method that will return an instance of the class:

class BasketballTeam

@@instance = BasketballTeam.new

def self.instance

@@instance

end

end

The pattern also says that the class can have only one instance. To enforce that, we should
make BasketballTeam.new unavailable. We can do so by making the new method private:

class BasketballTeam

private_class_method :new

end

With these code lines added to the class, we can now use it as follows:

BasketballTeam.instance.add_player BasketballPlayer.new(“Kobe”, “Bryant”, 6.6)

BasketballTeam.instance.players # = [Bryant]

lakers = BasketballTeam.new # Error!

In Ruby, all the code we’ve written is unneeded. Ruby has it ready for us already via the
Singleton mixin module. All we have to do to convert a class to a singleton class is to
include the Singleton module.

If we had not converted the BasketballTeam class to a singleton class, this is what we
would have done:

require ‘singleton’

class BasketballTeam

include Singleton

end

After we do so, the BasketballTeam is a singleton class that can be accessed through the
instance method and cannot be initialized using the new method.

194 CHAPTER 8 Advanced Ruby

Real-World Samples
As mentioned previously, the singleton pattern is one of the most commonly used
patterns. It is mostly used when shared resources are at hand, as in the following:

. Logger classes.

. Settings classes. The settings are loaded once and are accessible through accessors.

The Observer Pattern

The observer pattern, as its name implies, is used when several objects are interested in
changes made to another object. For example, when a player scores during a basketball
match, the scoreboard and the statistics board should be updated.

We can solve this problem in various different ways. Most of them will involve coupling
between classes, timers, or threads. The more sane way is to use the observer pattern. To
do that, let’s update our application first:

class Scoreboard

def update(team, score)

#... update scoreboard ...

end

end

class StatisticsBoard

def update(team, score)

#... update stats board ...

end

end

class BasketballTeam

def score(amount)

#... update score tables ...

end

end

Now our application contains the needed classes and methods. The task now is to make
the score method of the BasketballTeam class notify the Scoreboard and
StatisticsBoard classes about the change. For that, I will add an observers collection to
the BasketballTeam class and methods to add and remove observers. When this is done, I
can use the update method to notify the added observers of changes:

class BasketballTeam

def initialize

@observers = []

end

195Design Patterns

def add_observer(observer)

@observers << observer

end

def remove_observer(observer)

@observers.delete(observer)

end

def score(amount)

@observers.each { |o| o.update(self, amount) }

end

end

After this code change, we can write the following code to notify the Scoreboard and
StatisticsBoard classes of every score update:

team1 = BasketballTeam.new

scores = Scoreboard.new

stats = StatisticsBoard.new

team1.add_observer(scores)

team1.add_observer(stats)

team1.score(2) # Invokes the scores.update and stats.update methods

Ruby is distributed with a standard library that adds the observer pattern functionality
with only a couple of lines. The library is called observer. To use it, we have to require the
library and then include the Observable module within our target class. For example, our
BasketballTeam class could have been rewritten using the observer library:

require ‘observer’

class BasketballTeam

include Observable

def score(amount)

changed

notify_observers(self, amount)

end

end

This code achieves exactly the same updates as the earlier examples.

Note that when using the observer library, before notifying the observers, the changed
method should be called. If the changed method sets a Boolean value to true (and only in
this case), the notify_observers method will then really notify the observers. After the
notify_observers method notifies the observers, it sets the Boolean value back to false.

196 CHAPTER 8 Advanced Ruby

Real-World Samples
The observer pattern is used in many cases, including the following:

. User interface objects that notify of changes in the UI (a click on a button, for
instance)

. Database objects that notify of changes in the data

. Parallel tasks that notify of their progress

In .NET languages, the observer pattern is rarely used this way. You might be more
familiar with it as used for events and delegates.

The Builder Pattern

Building a basketball team isn’t an easy task. Adding players is just one of many different
tasks. The team should also have a coach, a general manager, a court, a gym, and so forth.
The builder pattern simplifies such complicated building processes. The pattern instructs
to create a class that builds another class. That way, the building process is easier and
more structured.

Let’s start by adding more information about the basketball team in the BasketballTeam
class:

class BasketballTeam

attr_accessor :players, :coach, :general_manager

attr_accessor :courts

def initialize

@players = []

@courts = []

end

def add_player(player)

@players << player

end

def add_court(court)

@courts << court

end

end

Now I want to add two more classes: Human and Court. Two more classes will inherit from
the Court class: TrainingCourt and GameCourt. The Human class will hold nonplayer team
members (like the coach), and the Court classes will be added to the courts collection and
hold information about the courts:

197Design Patterns

class Human

attr_accessor :first_name, :last_name

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

end

class Court

attr_accessor :name

def initialize(name)

@name = name

end

end

class TrainingCourt < Court; end;

class GameCourt < Court; end;

With all of these objects, which are necessary for our BasketballTeam class, it gets pretty
complicated to build a basketball team. The developer needs to be familiar with the differ-
ent classes and know what class to use for the different attributes. We spare the developer
the headaches by featuring a builder class that handles this process and exposes the built
BasketballTeam object:

class BasketballTeamBuilder

def initialize

@team = BasketballTeam.new

end

def team

@team

end

def add_player(first_name, last_name, height)

@team.add_player BasketballPlayer.new(first_name, last_name, height)

end

def add_court(name, training = false)

@team.add_court training ? TrainingCourt.new(name) : GameCourt.new(name)

end

198 CHAPTER 8 Advanced Ruby

def set_coach(first_name, last_name)

@team.coach = Human.new(first_name, last_name)

end

def set_general_manager(first_name, last_name)

@team.general_manager = Human.new(first_name, last_name)

end

end

When the builder class exists, we can build a basketball team with ease:

builder = BasketballTeamBuilder.new

builder.set_coach(“Phil”, “Jackson”)

builder.set_general_manager(“Mitch”, “Kupchak”)

builder.add_court(“Stapeless Center”)

builder.add_court(“Stapeless Center”, true)

builder.add_player(“Andrew”, “Bynum”, 7)

builder.add_player(“Pau”, “Gasol”, 7)

builder.add_player(“Trevor”, “Ariza”, 6.8)

builder.add_player(“Kobe”, “Bryant”, 6.6)

builder.add_player(“Derek”, “Fisher”, 6.1)

lakers = builder.team

Ruby allows us to improve the builder class and make it more developer friendly. This is
done with the method_missing method (see Chapter 2, “Introduction to the .NET
Framework”).

For example, we can improve the way of adding courts. In the preceding sample, I add the
same court as a training and a game court. By using the method_missing method, I can
join these code lines to a single one and make it more readable.

My method_missing implementation will parse the requested method name and add a
training/game court. Thus, I can use methods such as add_game_court or even
add_training_and_game_court:

class BasketballTeamBuilder

def method_missing(name, *args, &block)

Use default implemenetation if the method name

doesn’t match our exepectations

super(name, *args, &block) if name.to_s !~ /(add_)([a-z_]+)(_court)/

Remove the beginning add_ and ending _court

and replace word delimiter with a space

add_what = name.to_s.gsub(“add_”,””).gsub(“_court”,””).gsub(“_”, “ “)

199Design Patterns

add_what.split(“ and “).each do |val|

Decide whether the user wants to add a training court

training = (val == “training”)

Add the court using the name passed as a parameter

add_court(args[0], training)

end

end

end

The preceding code sample enables us to minimize the next two lines

builder.add_court(“Stapeless Center”)

builder.add_court(“Stapeless Center”, true)

into a single one:

builder.add_training_and_game_court(“Stapeless Center”)

A side effect of this is making the code more readable for other developers.

Real-World Samples
The builder pattern is used widely when the process of building a class is complex, includ-
ing in the following scenarios:

. Generating documents (XML, HTML, Word, OpenOffice, and so on)

. Generating a user interface

. Defining unit tests

Domain-Specific Languages

Domain-specific languages (DSLs) are languages dedicated to solving a specific problem.
DSLs can be a part of a bigger language (and “bend” it to its needs) or an entirely different
language. One of the most popular DSLs is the regular expressions language. Its syntax is
very different from any other programming language and is specific to the problem of
parsing text.

In Ruby, creating DSLs is easy. The language is permissive by nature and gives us various
options to “bend” it to our needs. Because we can skip parentheses, for example, our
methods can be read as language keywords, which makes the method feel like an inte-
grated part of the language.

Let’s create our own DSL. I want to create a language that can be used to interpret people’s
desires and demands.

200 CHAPTER 8 Advanced Ruby

The end result can enable us to write the following code lines:

I.want “a big house”

I.want 5.dogs

I.demand 1_000_000.bucks

I.demand “a fast car”

My.desires # Prints “a big house, 5 dogs”

My.demands # Prints “1000000 bucks, a fast car”

Creating this DSL is pretty straightforward. If you look carefully, you can separate the
classes and methods.

We have two classes in our DSL: I and My. The I class has two class methods: want and
demand. The My class has two class methods, as well: desires and demands.

The I class actually has two arrays: @@desires and @@demands. These arrays store the
desires and demands written in the code:

class I

@@desires = []

@@demands = []

def self.want(desire)

@@desires << desire

end

def self.demand(dem)

@@demands << dem

end

end

The My class inherits from I and adds the desires and demands methods:

class My < I

def self.desires

puts @@desires

end

def self.demands

puts @@demands

end

end

201Design Patterns

This is enough to make I.want “a big house” available. I want to make I.want
100000.dollars a valid syntax, too.

To achieve that, I first add a HumanWish class that will hold a single desire or demand:

class HumanWish

def initialize(wish, amount=nil)

@wish = wish

@amount = amount

end

def to_s

if @amount != nil

“#@amount #@wish”

else

@wish

end

end

end

I have also added a to_s implementation to ease the task of printing it out. Now that we
have this defined, let’s update the I class to add HumanWish classes to the @@desires and
@@demands arrays rather than simple strings:

class I

@@desires = []

@@demands = []

def self.want(desire)

if desire.is_a? String

desire = HumanWish.new(desire)

end

@@desires << desire

end

def self.demand(dem)

if dem.is_a? String

dem = HumanWish.new(dem)

end

@@demands << dem

end

end

202 CHAPTER 8 Advanced Ruby

Notice that before adding the demand or desire to its corresponding array, I validate it is
not a simple string. In that case, I convert the string to a HumanWish object before adding it
to the array.

After the infrastructure is ready, we should make sure that 1000000.dollars returns a
HumanWish object. To do that, I will open the Numeric class and add a method_missing
implementation:

class Numeric

def method_missing(name)

HumanWish.new(name, self)

end

end

The preceding code means that you can write whatever you want along with a numeric
value and it will generate a HumanWish out of it:

5.houses.is_a? HumanWish # = true

puts 5.houses # Prints “5 houses” (because of the HumanWish.to_s implementation)

Now the DSL is complete, the code I’ve written at the beginning of the section runs, and
you can also write and store your desires and demands:

I.want “a big house”

I.want 5.dogs

I.demand 1_000_000.bucks

I.demand “a fast car”

My.desires # Prints “a big house, 5 dogs”

My.demands # Prints “1000000 bucks, a fast car”

Real-World Samples
DSLs are often used without people realizing they are actually DSLs, as in the following:

. Regular expressions

. XPath

. Ruby’s unit testing framework

. Rake and ant

203Design Patterns

Summary
This chapter covered some of Ruby’s advanced topics. You learned about threads and
writing parallel code, handling files using the different file classes, taking advantage of
Ruby’s powerful metaprogramming capabilities, marshaling objects to and from files,
using Ruby libraries from the web via RubyGems, and ways to implement several design
patterns in the Ruby language.

Familiarity with these concepts can help you design more scalable and robust applications
(and applications that are more “change friendly” for when requirements change)—a
necessity for big applications.

This page intentionally left blank

PART III

IronRuby Fundamentals

IN THIS PART

CHAPTER 9 .NET Interoperability Fundamentals 207

CHAPTER 10 Object-Oriented .NET in IronRuby 239

This page intentionally left blank

CHAPTER 9

.NET Interoperability
Fundamentals

IN THIS CHAPTER

. Bringing .NET into Ruby

. .NET Code Mapping

. Using .NET Objects

. Special IronRuby Methods

. CLR Objects and Ruby’s
Reflection

. The Basic ObjectThe previous chapters covered the Ruby language, from
basics to advanced topics. Now it’s time to look at
IronRuby’s specialty: its interoperability with the .NET
Framework. It can speak with .NET classes and frameworks
as if they were natural Ruby objects.

In this chapter, you learn the fundamentals of the interop-
erability between .NET and IronRuby, such as the transition
of .NET objects as they become part of the Ruby language,
enhancements that IronRuby adds to Ruby, and more.

Bringing .NET into Ruby
The interoperability of IronRuby with the .NET Framework
is a built-in support. You can start talking with .NET objects
right away. The System namespace is also available without
any direction. However, other .NET assemblies are not
included directly and should be loaded before using.

Three methods can load .NET assemblies, all of them are
part of the global Kernel class: load, load_assembly, and
require. Each method has its own behavior, and it’s impor-
tant to know the different capabilities of each.

require

require loads the given assembly only once and returns
true. If it is called again with the same assembly, the call is
ignored and the method returns false.

It can retrieve a string as a parameter that represents the
library to load. Regarding .NET assemblies, there are various
ways to pass them to the method.

208 CHAPTER 9 .NET Interoperability Fundamentals

By Filename
The filename can be passed with or without its extension. IronRuby looks for the assembly
with three extensions (.dll, .so, and .exe). The search is done in the folders from the
$LOAD_PATH variable:

require “CustomAssembly”

require “CustomAssembly.dll”

By Full Path
The given full path can contain the file extension or not. If not, IronRuby looks for the
file with .dll, .so, and .exe extensions. Note that the path separator is / or \\:

require “d:/MyAssemblies/CustomAssembly”

require “d:\\MyAssemblies\\CustomAssembly.dll”

Another way to write a path is by using a single-quoted string. If you write a path in this
way, you don’t have to escape the backslashes:

require ‘d:\MyAssemblies\CustomAssembly’By Home Path

The home path is the path in the HOME environment variable. The given assembly name
(with or without extension) is searched in the Env[“HOME”] directory (not in its subdirec-
tories). To sign the interpreter to load the assembly from the home directory, the assembly
path should start with ~/ or ~\\:

require “~/CustomAssembly.dll”

require “~\\CustomAssembly”

By Strong Name
When a strong name is used, the assembly is loaded using the
System.Reflection.Assembly.Load method, which looks for the assembly in the Global
Assembly Cache (GAC), in the installation directory, and in all the directories that have
been used to load assemblies in the current session:

require “CustomAssembly, Version=1.0.0.0,

Culture=neutral,

PublicKeyToken=fef93daee49d7d60”

If the assembly is not signed, the PublicKeyToken can be written as
”PublicKeyToken=null”.

REQUIRING .NET FRAMEWORK ASSEMBLIES

When you need .NET Framework assemblies, like System.Data or
System.Windows.Forms, there is no difference than in other custom assemblies. You
need to provide a strong name or use a specific path using one of the possible inputs.

209Bringing .NET into Ruby

However, IronRuby contains within its Lib folder (under the IronRuby installation folder)
some of the commonly used assemblies. The folder contains Ruby files that have one
line in them: a require statement with the assembly strong name. The Lib folder is
one of the folders in the $LOAD_PATH variable, so requiring the Ruby files there is
direct, without the need to specify the full path.

The available assemblies in the Lib folder are System, System.Data, System.Drawing,
System.Windows.Forms, PresentationCore, PresentationFramework, and
WindowsBase.

As a result, instead of writing

require “System, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089,

processorArchitecture=MSIL”

It is possible to write the following:

require “System”

load_assembly

load_assembly is a special IronRuby method that is intended to make it easier to distin-
guish between .NET assemblies loading and other Ruby files.

load_assembly, unlike require, loads the assembly every time it is called.

The method receives a full or partial assembly name. The assembly is looked for in the
GAC, in the installation folder, and in the loaded assemblies directories cache:

load_assembly “System.Management”

load_assembly “System.Management, Version=2.0.0.0,

Culture=neutral,

PublikcKeyToken=b03f5f7f11d50a3a”

load_assembly has another optional parameter. This parameter contains the initializer
class name. The initializer class is used for IronRuby libraries that are implemented in
other .NET languages (like a part of the standard library). It allows these classes to map
Ruby objects to .NET ones and initialize themselves in the Ruby context. For more infor-
mation about using initializers, see Chapter 19, “Extending IronRuby,” where it is demon-
strated as part of the discussion about creating IronRuby libraries using .NET languages.

The major difference between load_assembly and require is the capability of
load_assembly to load assemblies from the GAC with their partial name. This is not avail-
able via require (only using the strong name):

require “System.Management” # Error!

load_assembly “System.Management” # OK

210 CHAPTER 9 .NET Interoperability Fundamentals

TABLE 9.1 .NET to Ruby Object Mapping

.NET Object Ruby Object

Namespace Module

Interface Module

Class Class

Struct Class

load

load is identical to require with a few exceptions:

. load loads the assembly every time it is called.

. For full paths, load requires the path to contain the expected extension.

The $LOAD_PATH Variable

$LOAD_PATH is a global variable that contains an array of locations that the load and
require methods are looking at to find requested assemblies.

The $LOAD_PATH variable is set upon IronRuby startup. Its source is the ir.exe.config file,
which exists within the IronRuby installation dir, right next to the ir.exe file.

Inside this XML file, under the options element, there are set elements. The one that has
”LibraryPaths” as its option attribute value is $LOAD_PATH related. Its value element
contains the assembly search directory paths, delimited by a semicolon. If you have a
certain directory where you store your Ruby libraries or .NET assemblies, you can add its
path to the semicolon-separated list. Doing so adds the directory to every current and
future IronRuby application on the machine.

For a more local change, the $LOAD_PATH variable can be modified during runtime, which
affects only the current running IronRuby instance. To add another path to the assembly
lookup list during runtime, just add it to the $LOAD_PATH array:

require “CustomAssembly.dll” # Error!

$LOAD_PATH << “C:/CustomAssemblies”

require “CustomAssembly.dll” # OK

.NET Code Mapping
The major languages of the .NET Framework, C# and VB.Net, have similarities and differ-
ences to Ruby. Classes appear in all of them, and Ruby’s modules are similar to .NET’s
namespaces (not in the mixin meaning, though). Interfaces, on the other hand, do not
exist in Ruby at all. To solve this collision, IronRuby maps .NET objects to similar Ruby
objects. Table 9.1 lists the mapping.

211.NET Code Mapping

TABLE 9.1 .NET to Ruby Object Mapping

.NET Object Ruby Object

Delegate Class

Enum Class

Enum constant Class method

Constant Class method

Static method Class method

Method Instance method

Field Getter and setter methods

Property Getter and setter methods

TABLE 9.2 CLR to Ruby Type Mapping

CLR Type Ruby Type

Int32 FixNum

Double Float

Boolean TrueClass, FalseClass

DateTime Time

The “Using .NET Objects” section, later in this chapter, describes how to use each of the
.NET objects in IronRuby.

Types Differences

The CLR and Ruby have different types. For example, int, short, and byte don’t have an
equivalent in Ruby. From the other side, TrueClass, Fixnum, and Bignum don’t have an
equivalent CLR type.

When .NET objects are converted to IronRuby, most of the CLR types stay the same. For
example, System.String stays the same in IronRuby (with its naming convention:
System::String).

However, a few types are mapped to native Ruby types, as shown in Table 9.2.

Coding Standards Collision

Coding standards of .NET code and Ruby code are different. .NET namespaces, classes, and
methods are written in Pascal case (with the first letter of each word capitalized). Ruby
modules and classes are also written in Pascal case, but the methods are written in lower-
case letters.

212 CHAPTER 9 .NET Interoperability Fundamentals

PASCAL CASING IN .NET CODE

Pascal case isn’t always used in .NET code. For example, nothing stops developers
from writing the following code:

namespace startWithLowercase

{

class lowercaseToo

{

void lowercaseAgain()

{

}

}

}

This kind of naming is problematic in Ruby code. As you may recall, when we discussed
classes and modules in Ruby, I mentioned that they must start with a capital letter.
Therefore, class lowercaseToo is not valid in Ruby.

This kind of convention is rarely used within .NET classes. This is why IronRuby does
not support it in version 1.0. Namespaces and classes that start with a lowercase
letter are ignored.

To solve this naming convention conflict and make .NET code feel more Ruby-like,
IronRuby allows calling .NET code with Ruby idioms:

. CLR namespace, interface, and class names are capitalized. That is, their names actu-
ally stay the same.

. CLR methods can be used with their .NET name (for example, WriteLine). They can
also be called with a Ruby-like name, via a conversion of Pascal case to lowercase
letters with an underscore as a word delimiter (an action known as mangling),
write_line:

require “system”

Parenthesis is optional, just like regular Ruby code

System::Console.WriteLine “Hello!”

This line works as well:

System::Console.write_line “Hello!”

. CLR methods of IronRuby built-in types that are based on CLR classes such as
Object or Fixnum are not mangled. That is, methods such as ToString or GetType are
not accessible as to_string or get_type.

. CLR method names that contain a two-letter word that is not as, by, do, id, it, if,
in, is, go, my, of, ok, on, to or up will not be mangled. For example, a method named
ReloadMe will be available in IronRuby only by ReloadMe and not by reload_me.

213.NET Code Mapping

. CLR method names will not be mangled if they are one of Class, Clone, Display,
Dup, Extend, Freeze, Hash, Initialize, Inspect, InstanceEval, InstanceExec,
InstanceVariableGet, InstanceVariableSet, InstanceVariables, Method,
Methods, ObjectId, PrivateMethods, ProtectedMethods, PublicMethods, Send,
SingletonMethods, Taint or Untaint. These are either Ruby keywords or global
methods, and mangling their names results in naming collisions.

. CLR method names that contain only uppercase letters and more than two letters
will not be mangled. For example, SH will be mangled to s_h whereas SHA will not
be mangled.

. CLR method named with more than three attached uppercase letters followed by
lower case letters will not be mangled. For example, IPAddress will be mangled to
ip_address but DOTCom will not be mangled.

. CLR virtual methods that are overridden in IronRuby must be overridden with their
Ruby-like name, which is all lowercase delimited by underscores.

Private Binding Mode

Generally, all members of a loaded .Net assembly are mapped to IronRuby code. However,
in the default behavior, IronRuby doesn’t map private members (improves the mapping
process performance). Private binding mode can be used to force IronRuby to map private
members as well.

To turn on the private binding mode, start IronRuby with the -X:PrivateBinding switch.

Instead of ir %filename%, the call should be ir -X:PrivateBinding %filename%. (Note
that ir switches are case-sensitive.)

When the private binding switch is applied, IronRuby behavior changes—all protected
and private methods are mapped to public Ruby methods. Therefore, you can use them
freely from inside or outside their classes:

In C#

public class Printer

{

private void PrintHello()

{

Console.WriteLine(“Hi from C#”);

}

}

In IronRuby, run with the -X:PrivateBinding switch:

Printer.new.PrintHello # Prints “Hi from C#”

Get Printer class only private methods

Printer.new.private_methods - Class.private_methods

= []

214 CHAPTER 9 .NET Interoperability Fundamentals

Get Printer class only public methods

Printer.new.public_methods - Class.public_methods

= [“print_hello”]

Using .NET Objects
We’ve seen how IronRuby maps .NET types and objects. Now let’s look at how they can be
used from IronRuby.

Namespaces

CLR namespaces are converted to modules in IronRuby. When the assembly is required,
the module is available through the namespace name.

The namespace-contained objects are accessible using the module name followed by two
colons.

For example, the namespace in C#

// Namespace

namespace CSharpNamespace

{

...

}

And the module in IronRuby

require “c:/assemblies/customAssembly.dll”

CSharpNamespace.class # = Module

Accessing a CSharpNamespace object named “SomeObject”

CSharpNamespace::SomeObject

EMPTY NAMESPACES

If a namespace doesn’t contain members, the namespace will not exist in IronRuby.
Attempts to access it result in an error.

The same thing also happens if a namespace contains private members only.

Aliasing Namespaces
Namespaces are good for grouping different code objects together, but it can become
annoying to write their names before any object they contain.

The first way of dealing with it is by setting an alias for the namespace, giving it a
shorter name:

215Using .NET Objects

require “System”

Accessing the String class:

System::String

Giving alias to System

Sys = System

Now String can be accessed with Sys:

Sys::String

It is also possible to remove the need for the namespace at all. Just like using in C# and
Import in Visual Basic.Net, the include method in Ruby brings the included module to
the current scope, which means you can skip writing the module name every time:

require “System.Data”

Accessing the DataSet class:

System::Data::DataSet.new

Include the System.Data namespace

include System::Data

Now Data can be accessed without a prefix

DataSet.new

Aliasing namespaces or using the include method can be done inside and outside code
containers (modules, classes, methods, and so on). The effect takes place only within the
scope where the request is created, as follows:

require “System.Data”

class MyClass

Inside the class scope

include System::Data

def my_method

DataSet.new # OK

end

end

Outside the scope

DataSet.new # Error!

System::Data::DataSet.new # OK

UNDERSTANDING THE ALIASING SYNTAX

For some, the syntax of aliasing CLR namespace names might be a bit weird. It is
similar to setting a variable. Well, it is.

As mentioned, CLR namespaces are converted to modules in IronRuby. Modules in
Ruby are objects, like everything else. Therefore, there is no problem setting them to
variables.

This is different from C# or VB.Net, for example. In those languages, you should use
the using or Import directive to alias a namespace.

216 CHAPTER 9 .NET Interoperability Fundamentals

Interfaces

CLR interfaces do not have an equivalent type in the Ruby world. To solution this
problem, interfaces are converted to empty modules in IronRuby.

When a class that implements the interface exists, after it is converted to IronRuby, the
ancestors method returns the interface module as part of the ancestors list.

For example, consider the following C# code:

public interface CSharpInterface { }

public class CSharpClass : CSharpInterface { }

Now let’s look into the ancestors list in IronRuby:

CSharpClass.ancestors # = [CSharpClass, CSharpInterface, Object, Kernel]

If CSharpClass actually inherits from CSharpInterface, it generates major problems when
a class implements multiple interfaces, or inherits from a class. Ruby cannot support it
because it does not support multiple inheritance. A similar technique that Ruby does
support is mixins, which are used in this situation.

CLR interfaces are translated to empty Ruby modules. This is because Ruby doesn’t have
support for interfaces; its duck typing capabilities make interfaces rather unnecessary. To
keep the chain of inheritance, this module is mixed in to the class. When this is done, the
application can still check whether a class responds to a given interface, and the problem
of multiple inheritance is solved.

Classes

CLR classes are converted to Ruby classes, which generally means that they stay and act in
a similar way.

There is one difference, though. When the IronRuby interpreter is run with the -
X:PrivateBinding switch, classes that are marked as internal become accessible just as if
they were public classes.

In C#

public class A { }

internal class B { }

In IronRuby

A.new # OK

B.new # OK only if run with -X:PrivateBinding. Otherwise, error.

217Using .NET Objects

Structs

CLR structs are very similar to classes in .NET languages, so it is natural that they will be
converted to classes in IronRuby.

The difference between a struct and a class is that a struct is a value-type, whereas a class
is a reference-type. This means that, for example, when struct is passed to a method, no
matter what modifications this method makes to it, those modifications will not affect the
original struct.

As a result of the mapping of structs to classes, this behavior doesn’t happen in IronRuby;
CLR structs behave like every other class:

In C#

public struct FullName

{

public string FirstName { get; set; }

public string LastName { get; set; }

}

In IronRuby

strct = FullName.new

strct.FirstName = “Shay”

strct.LastName = “Friedman”

puts “#{strct.FirstName} #{strct.LastName}”

Prints “Shay Friedman”

The next method is a method which changes the

struct internally. It will not affect the original

struct in C# or VB.Net but will work regularly in IronRuby

def change_struct(struct)

struct.FirstName = “John”

struct.LastName = “Doe”

end

change_struct(strct)

puts “#{strct.FirstName} #{strct.LastName}”

Prints “John Doe”

Delegates

Delegates on the CLR are method signatures that are used as pointers to methods with the
same signature.

For example, in the following C# code, I define a delegate and a method that receives the
delegate and executes it:

218 CHAPTER 9 .NET Interoperability Fundamentals

class Printer

{

public delegate void PrintValue(string value);

public void Print(PrintValue printValue)

{

printValue(“Hello”);

}

// Sample use of the delegate

public void TestPrint()

{

// Use an anonymous method as a delegate

Print(delegate(string str)

{ Console.WriteLine(str); }); }

}

A common Ruby technique might pop into your head right away: blocks. Delegates are,
indeed, very similar in concept to blocks. Anonymous methods, which are used in the
preceding sample, are even closer to Ruby’s blocks.

However, there are a few major differences between them:

. Delegates have a name. Blocks, procs, and lambdas in Ruby are anonymous.

. Blocks (not procs nor lambdas) can appear only as the last parameter of methods.
Delegates are free of this restriction.

. Delegates are invoked using the invoke method. Block, proc, and lambdas do not
support that. They are invoked using yield, call, or square brackets.

As a result of these differences, none of the different Ruby blocks can replace the CLR
delegates. Consequently, delegates are converted to classes that receive blocks on initializa-
tion. After the class is initialized, the class invoke method executes the block.

Assuming we have required the C# code from the previous sample, the next code creates a
PrintValue delegate implementation and uses it:

dlg = Printer::PrintValue.new { |str| puts str }

We can pass it to the Print method:

Printer.new.Print(dlg) # Prints “Hello”

The delegate can also be invoked directly:

dlg.invoke(“Hi there!”) # Prints “Hi there!”

Events

Events are a common practice in the .NET Framework. They provide a way to sequentially
invoke .NET delegates that match a specific signature.

219Using .NET Objects

The two basic concepts of events are subscribing and unsubscribing them. When a code
block is subscribed to an event, it is executed every time the event is raised. When there is
no need to react to the event anymore, the code block can be unsubscribed from the event.

IronRuby provides several ways to use .NET events, even though the Ruby language
doesn’t have built-in support for it.

Assume the next code exists on the events.dll file. It is C# code and has an event, MyEvent,
and a method that raises it. The event uses the built-in delegate, which consists of two
parameters, the event sender object and the event arguments (a MyEventArgs object):

public class EventsSample

{

public class MyEventArgs : EventArgs

{

public string Message { get; set; }

public MyEventArgs(string message)

{

Message = message;

}

}

// The event will be sent with the MyEventArgs class as its

args parameter

public event EventHandler<MyEventArgs> MyEvent;

public void InvokeEventSubscribers()

{

if (MyEvent != null)

{

MyEvent(this, new MyEventArgs(“Hello from .Net”));

}

}

}

Subscribing Events
IronRuby features a special way to subscribe to .NET events: It provides a new method for
that matter—the add method.

When you subscribe to an event, a code block that handles the event should be passed.
IronRuby offers several ways to define a code block: methods, procs, lambdas, and associ-
ated code blocks. All of these can be used to handle CLR events.

220 CHAPTER 9 .NET Interoperability Fundamentals

The only requirement is that they match the event delegate signature:

require “events.dll”

def event_handler(sender, args)

puts “Method: #{args.message}”

end

handler_method = method(:event_handler)

handler_proc = proc { |sender, args| puts “Proc: #{args.message}” }

handler_lambda = lambda { |sender, args| puts “Lambda: #{args.message}” }

obj = EventsSample.new

Subscribe with the method

obj.my_event.add handler_method

Subscribe with the proc

obj.my_event.add handler_proc

Subscribe with the lambda expression

obj.my_event.add handler_lambda

It is possible to subscribe twice with the same code block:

obj.my_event.add handler_lambda

Invoke the subscribers

obj.invoke_event_subscribers

Prints: “Method: Hello from .Net

Proc: Hello from .Net

Lambda: Hello from .Net

Lambda: Hello from .Net”

The exception here is the associated code block. It is possible to subscribe to an event
using a block, but it is done without the preceding add method . It is simply associated
with the event name:

obj.my_event { |sender, args| puts “Block: #{args.message}” }

obj.invoke_event_subscribers # Prints “Block: Hello from .Net”

Unsubscribing Events
You unsubscribe to events in the opposite way you subscribe to them: with the remove
method.

Note that it is not possible to unsubscribe an associated code block. If you need to unsub-
scribe, use the other alternatives to subscribe and unsubscribe from the event.

obj.my_event.add handler_method

obj.my_event.add handler_proc

obj.my_event.add handler_lambda

221Using .NET Objects

obj.my_event.add handler_lambda

obj.invoke_event_subscribers

Prints: “Method: Hello from .Net

Proc: Hello from .Net

Lambda: Hello from .Net

Lambda: Hello from .Net”

Unsubscribe

obj.my_event.remove handler_method

obj.my_event.remove handler_proc

obj.my_event.remove handler_lambda

obj.invoke_event_subscribers

Prints: “Lambda: Hello from .Net”

Enums

Ruby does not have enums within its arsenal. Therefore, enums are translated to classes.
These classes include class methods, which are the enum values.

As a result, accessing enum values is identical to .NET syntax:

In C#

public enum CSharpEnum

{

EnumConstant1,

EnumConstant2

}

In IronRuby

Accessing enum values:

CSharpEnum.EnumConstant1

IronRuby also supports combining several enum values, which are marked as flags. This is
done with the logical OR operator (|):

In C#

[Flags]

public enum CSharpFlaggedEnum

{

EnumConstant1,

EnumConstant2

}

222 CHAPTER 9 .NET Interoperability Fundamentals

In IronRuby

Combining multiple flag values:

enum_value = CSharpFlaggedEnum.EnumConstant1 | CSharpFlaggedEnum.EnumConstant2

Constants

CLR constants are translated to getter methods. Public and protected constants are
mapped, but private constants are not mapped to IronRuby at all.

In C#:

public class ConstsClass

{

public const string PublicConst = “I’m public”;

protected const string ProtectedConst = “I’m protected”;

private const string PrivateConst = “I’m private”;

}

In IronRuby:

ConstsClass.PublicConst # = “I’m public”

ConstsClass.ProtectedConst # = “I’m protected”

ConstsClass.PrivateConst # Error!

UNDERSTANDING CONSTANTS MAPPING

To some, constants and enum constants mapping to class methods might seem irra-
tional because Ruby has constants, too. The answer to that is simple. In Chapter 5,
“Ruby Basics,” we discuss the special behavior of Ruby constants: They are change-
able. This is entirely different from the behavior of .NET enum constants, which cannot
be changed.

To conform with .NET’s behavior, constants are converted to getter methods without
setter methods.

Methods

Methods are the core building block of both .NET languages and Ruby. As a result, trans-
lating methods from one language to the other is simple. It is important, however, to be
familiar with the different cases and to know what to expect.

Instance Methods
Instance methods are translated to Ruby instance methods.

Public methods are the most direct case; they are mapped to public Ruby methods.

223Using .NET Objects

Protected methods are mapped to protected Ruby methods. In this case, you should pay
attention to the difference between protected methods in C# or VB.Net and protected
methods in Ruby. In Ruby, protected methods are accessible by all instances of the class,
not by the specific deriving class only.

Private methods are not mapped at all. You cannot see them use them unless private
binding mode is turned on.

Static Methods
CLR static methods are converted to Ruby class methods. Same rules apply here for public,
protected, and private static methods. The private binding mode has the same effect on
static methods as it has on regular methods.

Overloaded Methods
Ruby doesn’t support method overloading. Ruby’s approach to overloading is optional
parameters: If you have optional parameters, you can define default values for them.

IronRuby deals with that by inspecting the input to the method and sending the request
to the right CLR method. From the developer perspective, the method is just like any
other method with optional arguments:

In C#

public class OverloadingSample

{

public OverloadingSample()

{

Console.WriteLine(“No arguments”);

}

public OverloadingSample(string a) : this()

{

Console.WriteLine(“1 argument”);

}

public void Method()

{

Console.WriteLine(“No parameters”);

}

public void Method(string a)

{

Console.WriteLine(“1 parameter”);

}

}

In IronRuby

c1 = OverloadingSample.new # Prints “No arguments”

c2 = OverloadingSample.new(“hi”) # Prints “1 argument No arguments”

224 CHAPTER 9 .NET Interoperability Fundamentals

c1.Method # Prints “No parameters”

c1.Method(“hi”) # Prints “1 parameter”

The mapping to the right CLR method is not based solely on the number of arguments,
but on the parameter types, too. It is done this way to handle overloaded methods with
the same number of arguments and different argument types:

In C#

public class OverloadingSample

{

public void Method(string a, string b)

{

Console.WriteLine(“2 strings”);

}

public void Method(string a, int b)

{

Console.WriteLine(“string + int”);

}

}

In IronRuby

c = OverloadingSample.new

c.Method(“hi”,”hi”) # Prints “2 strings”

c.Method(“hi”, 3) # Prints “string + int”

c.Method(“hi”, Time.new) # Error!

Indexer Methods
Indexers in .NET have a unique syntax. Indexers in Ruby are like every other method;
they just have a more special name than the others.

The mapping here is simple. The CLR indexer getter part is mapped to the [] method in
Ruby, and the indexer setter part is mapped to the []= method:

In C#

public class IndexerSample

{

public int this[int x]

{

get { return x + 1; }

set { /* ... code ... */ }

}

}

225Using .NET Objects

In IronRuby

c = IndexerSample.new

c[1]

c[17] = 8

c.methods.delete_if { |x| x !~ /[[]]?/ } # = [[], []=]

Special .NET Methods
Every IronRuby object contains, like every .NET object, two methods: GetHashCode and
Equals. These methods are used for several CLR operations, such as comparison, hash-
related algorithms (like in Dictionary or HashTable objects), and more. The Ruby
language has similar methods that are used for the exact same aim: hash and eql?.

This similarity generates a conflict. If a developer wants to write an IronRuby object that
implements a special hash calculation, what should be implemented? GetHashCode or
hash? IronRuby takes this into consideration and does an automatic mapping between the
CLR and the Ruby methods.

This means that when in the Ruby world, we need to stick to Ruby methods and imple-
ment hash or eql? and not GetHashCode or Equals.

Inside the IronRuby context, only the hash and eql? methods should be implemented
and called. Note that by implementing these methods, calling the CRL methods will not
use the new implementations, as follows:

class String

def hash

1111

end

end

str = “Ruby string!”

puts str.hash # = 1111

puts str.GetHashCode # = -1632647123

Outside the IronRuby context (when accessing IronRuby objects from C#, for example),
the GetHashCode and Equals methods are seamlessly mapped to the hash and eql?

methods accordingly.

Note that the == operator is not related to these mappings because it doesn’t have the
same behavior. The == operator compares the object contents, and eql? compares the
object hashes.

Special Argument Types
.NET features three special argument types: out, ref, and params. These appear only
partially in Ruby, so a special treatment is required.

226 CHAPTER 9 .NET Interoperability Fundamentals

out parameter This parameter type is used to return multiple values to the method caller.
The method is also required to assign a value to the parameter before terminating. Ruby
does not support out parameters, so the mapping is done with a trick: out parameters are
mapped in IronRuby to return values. A CLR method with out parameters returns an array
of values, including the original return type and the out parameters. Trying to pass objects
to out parameters can result in an error because the method will not expect them:

In C#

public class OutSample

{

public string OutMethod(string value, out string outParam)

{

outParam = “You’re out!”;

return “Done”;

}

public string OutMethod2(string val, out string outParam, string val2)

{

outParam = “You’re out!”;

return “Done”;

}

}

In IronRuby

c = OutSample.new

c.OutMethod(“hi”) # = [“Done”, “You’re out!”]

Can be used in a convenient way:

ret_val, out_param = c.OutMethod(“hi”)

Cannot be used like in .Net languages:

str = ““

c.OutMethod(“hi”, str) # Error!

Pay attention that out parameters are excluded from the

method signature in IronRuby

c.OutMethod2(“value1”, “value2”) # = [“Done”, “You’re out!”]

ref parameter This parameter type allows sending value-type variables to methods, chang-
ing them inside, and using the new value outside the method (that is, making value-types
act like reference-types). Unlike out parameters, ref parameters must be initialized before
they are passed to the method. In IronRuby, ref arguments, similar to out arguments, are
returned from the method as an array. The difference from out arguments is that ref para-
meters should be passed to the method, too, because they might be needed inside the
method. (Remember, they are already initialized when they are passed to the method.)

227Using .NET Objects

Note that this solution makes ref parameters in IronRuby lose their initial aim; they are
not modified by the method. If you need to change them, make sure to set them with the
matching return value.

When ref and out parameters are used on the same method, the returned array contains
their values in the order they appear on the method signature:

In C#

public class OutRefSample

{

public string OutRefMethod(string val1, out string outParam,

ref string refParam, string val2,

out string outParam2)

{

outParam = “out 1”;

refParam = “ref 1”;

outParam2 = “out 2”;

return “Done”;

}

}

In IronRuby

c = OutRefSample.new

ret_val, out1, ref1, out2 = c.OutRefMethod(“val1”, “ref val”, “val2”)

params parameter This parameter type allows sending an arbitrary number of arguments
to the method. The params parameter must be the last one in the parameters list.

params parameters are close to * parameters in Ruby. This is exactly the mapping that
takes place:

In C#

public class ParamsSample

{

public void ParamsMethod(params string[] args)

{

Console.WriteLine(args.Length);

}

}

In IronRuby

c = ParamsSample.new

c.ParamsMethod(“val1”, “val2”, “val3”) # Prints “3”

228 CHAPTER 9 .NET Interoperability Fundamentals

Fields

CLR fields are different from instance or class variables in IronRuby. CLR fields can be
marked as public and then be accessed from outside the class. In Ruby, class and instance
variables are accessed only from their class and cannot be accessed from outside. Getter
and setter methods should be written to make them accessible to the outside scope.

It is important to notice that IronRuby mangles the names of fields, too. However, it
mangles only field names that are Pascal cased. Fields are not written in Pascal case
according to the .NET coding conventions. As a result, it is recommended to use fields in
IronRuby in their original case to avoid mistakes.

To bridge this gap, CLR fields are translated to getter and setter methods in IronRuby.
Public and protected fields are accessible like every other public method. Private fields are
accessible only in private binding mode.

In C#

public class FieldsSample

{

public string publicField;

protected string protectedField;

private string privateField;

}

In IronRuby

c = FieldsSample.new

c.publicField = “Hi”

c.publicField # = “Hi”

c.protectedField = “Hi”

c.protectedField # = “Hi”

c.privateField # Error!

c.methods.select { |x| x =~ /[a-z]*Field?/ }

= [publicField=, publicField, protectedField=, protectedField]

Properties

CLR properties are mapped to getter and setter methods in IronRuby. Properties’ access
control levels are mapped, too:

. Public properties are mapped to Ruby public getter and setter methods.

. Protected properties are translated to Ruby protected getter and setter methods.
Notice that Ruby’s protected access control is not CLR’s protected access control.

. Private properties are not mapped at all when not in private binding mode.

229Using .NET Objects

. Mixed access control levels for the getter and setter parts on the same property are
mapped accordingly to the getter and setter methods in IronRuby.

. Properties with only getter or setter parts are mapped only with the matching method.

In C# (C# 3.0 syntax)

public class PropertiesSample

{

public string PublicProperty { get; set; }

protected string ProtectedProperty { get; set; }

private string PrivateProperty { get; set; }

public string Mixed1 { get; protected set; }

protected string Mixed2 { private get; set; }

}

In IronRuby

c = PropertiesSample.new

c.PublicProperty; c.PublicProperty = “hi”

c.ProtectedProperty # Error! Can be done only from within the class

c.instance_eval “ProtectedProperty = ‘hi’” # OK!

c.PrivateProperty # Error!

c.Mixed1

c.Mixed1 = “hi” # Error! Only from within the class

c.Mixed2 # Error!

c.Mixed2 = “hi” # Error! Only from within the class

Private Binding Mode
When IronRuby runs in private binding mode, all properties, regardless of their visibility
level, are treated as public.

For example, all the errors that occurred in the preceding sample code wouldn’t occur in
private binding mode.

Generics

Generics is a commonly used concept that is a vital part of the .NET Framework. Ruby,
however, is dynamically typed. As a result, a generics-like capability is not needed, and
therefore it is not a part of the language.

IronRuby supports .NET generic objects and allows using them in a slightly different syntax.

The way to use generic objects is by passing the types between square brackets, []. For
example, using the System.Collections.Generic.List class to create a list of strings:

230 CHAPTER 9 .NET Interoperability Fundamentals

include System::Collections::Generic

list = List[String].new

list.add(“IronRuby!”)

list.add(4) # Error: “can’t convert Fixnum into String”

If multiple types should be passed, the types are separated with a comma inside the square
brackets (for example, the Dictionary class):

include System::Collections::Generic

There is no problem with using Ruby and CLR types:

Dictionary[Fixnum, System::Int64].new

Calling generic methods also has a special syntax. It consists of getting the method object,
supplying it with the generic types, and calling it.

To get the method object, we need Ruby’s reflection method method. when the method
object exists, we need to supply the generic types with the of method. This result in a
method object of the types we supplied to it. All there is left is to execute it like any other
method object—via the call method.

For example, assume we have the next C# methods:

public class GenericsDemoClass

{

public string Test<T>(T param1)

{

return param1.ToString();

}

public string Test<T,S>(T param1, S param2)

{

return param1.ToString() + “,” + param2.ToString();

}

}

The next code snippet executes the preceding generic methods from IronRuby:

generic_obj = GenericsDemoClass.new

Get the method object

test_method = generic_obj.method(:test)

Get the type-specific method object

string_text_method = test_method.of(String)

Execute the generic method

string_text_method.call(“IronRuby”) # Returns “IronRuby”

One line call:

generic_obj.method(:test).of(String).call(“IronRuby”)

231Special IronRuby Methods

To call a method with multiple generic types, just pass as

much types to the of method as needed

generic_obj.method(:test).of(String, Fixnum).call(“IronRuby”, 1)

Returns “IronRuby,1”

Special IronRuby Methods
The preceding section covered the mapping IronRuby does to CLR objects to make them
conform to their new environment. This mapping is essential, but it has one disadvan-
tage: It makes CLR objects look different than their real implementation.

To deal with that, IronRuby adds unique methods that are intended to help communicate
better with the CLR. These methods allow interacting directly with CLR types without the
limits of the IronRuby mapping.

Object Class Methods

IronRuby adds methods that are available applicationwide by adding them to the
Object class.

to_clr_type
IronRuby core objects are mapped to CLR objects. For example, the Thread class is mapped
to the System.Threading.Thread class. On regular Ruby methods, like class, the IronRuby
Thread class acts like the original Ruby Thread class:

Thread.class # = Class

By using to_clr_type, the Thread class CLR mapping will be discovered:

Thread.to_clr_type # = System.Threading.Thread

In case the method is used with a pure Ruby object, nil will be returned:

class MyRubyClass; end;

MyRubyClass.to_clr_type # = nil

clr_member
The clr_member method receives a symbol of the method name and returns the CLR
method:

trim = System::String.new(“ Hello “).clr_member(:Trim)

Invoke the method

puts trim.call # Prints “Hello”

232 CHAPTER 9 .NET Interoperability Fundamentals

There are two main uses for this method. The first is to inspect the original CLR method
(by using the special Method class methods discussed later in this section). The second is to
make sure the original CLR method is used and not its redefinition.

For example, the following sample is possible in IronRuby:

class System::String

def Trim

Sabotage Trim functionality

“<<” + self + “>>”

end

end

str = System::String.new(“ Hello “)

puts str.Trim # Prints “<< Hello >>”

puts str.clr_member(:Trim).call # Prints “Hello”

The clr_member method is available both as a class method and as an instance method.
When it is used as a class method, static CLR methods are searched for. When it is used as
an instance method, instance CLR methods are looked for.

Class Class Methods

Classes differentiate from other objects by their capability to be initialized. IronRuby adds
special constructor-related methods to its classes for investigating and using CLR construc-
tors rather than IronRuby ones.

clr_constructor and clr_ctor
IronRuby tends to modify CLR constructors and fit them to its conventions. For example,
classes with overloaded constructors are mapped to a single new method in IronRuby.

There is another issue with CLR constructors: A few classes in IronRuby are mapped
directly to CLR classes. This makes it impossible to call the real CLR constructor (for
example, the Thread class):

System::Threading::Thread.new

Error: “must be called with a block”

This is not the expected result. The CLR Thread class expects a ThreadStart delegate, not a
Ruby block. This happens because IronRuby’s Thread class is, by design, a direct mapping
of the CLR Thread class:

System::Threading::Thread == Thread # = true

To deal with these issues, clr_constructor and its alias, clr_ctor, can be used. These
methods return a Method object representing the constructor. The Method object can then

233Special IronRuby Methods

be further investigated or called. Later in this chapter I discuss the special methods that
are added to the Method class.

In C#

public class OverloadingSample

{

public OverloadingSample()

{

}

public OverloadingSample(string a) : this()

{

}

}

In IronRuby

OverloadingSample.clr_ctor.class # = Method

OverloadingSample.clr_ctor.clr_members.size # = 2

It is possible to also execute the constructor with the call method:

OverloadingSample.clr_ctor.call # Executes the parameterless constructor

OverloadingSample.clr_ctor.call(“hello”) # Executes the second constructor

clr_new
Similar to the clr_constructor method, clr_new deals with CLR constructors. However,
they have different behaviors. clr_new, unlike clr_constructor, executes the CLR
constructor right away. Notice the different behavior of the Thread class when initiated
with clr_new:

System::Threading::Thread.clr_new

Error “Wrong number of arguments”

With the clr_new method, the constructor is looking for a CLR ThreadStart method and
not a Ruby block.

Method Class Methods

The Method class has two special CLR-related methods. These methods are targeted to
examine a CLR method, especially its overloads list.

clr_members
The clr_members method returns an array of System.Reflection.RuntimeMethodInfo
objects. Each array item represents a single overload of the method:

234 CHAPTER 9 .NET Interoperability Fundamentals

str = System::String.new(“Hello”)

trim = str.clr_member(:Trim)

trim.clr_members.length # = 2

trim.clr_members[0].ReturnType # = System.String

trim.clr_members[0].GetParameters().Length # = 1

trim.clr_members[1].GetParameters().Length # = 0

A nice feature of the RuntimeMethodInfo class is its string representation of the method
signature. Printing out the clr_members result array can provide a good overview of the
possible method overloads and their required parameters:

str = System::String.new(“Hello”)

puts str.clr_member(:Trim).clr_members

Output:

System.String Trim(Char[])

System.String Trim()

overload
Sometimes there is a need for only a specific overload and not for the whole list. This is
exactly what the overload method is for. It receives types as parameters, which represent
the argument list of the requested overload, and returns the matching Method object.

For example, the following code sample retrieves the String.Replace(String, String)
method overload and then the String.Replace(Char, Char) overload:

str = System::String.new(“Hello”)

str.clr_member(:Replace).overload(System::String, System::String)

str.clr_member(:Replace).overload(System::Char, System::Char)

String Class Methods

IronRuby strings are not mapped directly to CLR String objects as you might expect.
IronRuby strings are mapped to an object called MutableString, which is a part of the
IronRuby implementation.

As a result of this condition, IronRuby provides a method to easily convert an IronRuby
string to CLR string, to_clr_string:

str = “IronRuby!”

str.class # = String

str.class.to_clr_type # = IronRuby.Builtins.MutableString

str.to_clr_string.class # = System.String

235Special IronRuby Methods

TABLE 9.3 IronRuby Class Members

Member Name Description

configuration A DlrConfiguration object with the current language configuration.
Sample:
Gets a value indicating whether private
binding mode is turned on
IronRuby.configuration.private_binding
Get a value indicating whether debug
mode is turned on
IronRuby.configuration.debug_mode

globals Returns a Microsoft.Scripting.ScopeStorage object that represents the
global scope. It provides methods to get, set, and remove global objects.
Sample:
class Demo; end;
Get all global members
IronRuby.globals.get_member_names
Returns [‘Demo’]
Create a scope variable
IronRuby.globals.set_value(“demo”, true, Demo.new)
Get the variable value
IronRuby.globals.get_value(“demo”, true)
Remove the variable
IronRuby.globals.delete_value(“demo”, true)

loaded_assemblies Returns an array of Assembly objects representing the loaded CLR
assemblies.
Sample:
IronRuby.loaded_assemblies.each do |assembly|

puts assembly.full_name
end
prints:
mscorlib, Version=2.0.0.0...
System, Version=2.0.0.0...

TO_CLR_STRING IS A NONDESTRUCTIVE OPERATION

to_clr_string is a nondestructive operation and produces a new CLR string out of
the current MutableString.

The IronRuby Class

IronRuby comes with a unique class targeted to provide IronRuby-specific environment
information and operations. As such, you find it useful in cases when you need to dynam-
ically investigate the environment or IronRuby’s behavior.

The class provides six methods and an inner class, as shown in table 9.3.

236 CHAPTER 9 .NET Interoperability Fundamentals

TABLE 9.3 IronRuby Class Members
Member Name Description

loaded_scripts Returns a read-only dictionary with name-scope pairs representing scripts
that were loaded using IronRuby.require or IronRuby.load methods.
Sample:
IronRuby.load(‘C:\demo.rb’)

IronRuby.loaded_scripts.each do |name, scope|

puts name

end

prints “C:\demo.rb”

require Same as Kernel.require that is discussed previously in this chapter but
returns the assembly object or script scope of the loaded object.
Sample:
Returns nil:

require ‘C:\MyAssembly.dll’

Returns Assembly object

assembly = IronRuby.require ‘C:\MyAssembly.dll’

puts assembly.full_name

Prints “MyAssembly, Version=1.0.0.0...

load Same as Kernel.load that is discussed previously in this chapter but
returns the assembly object or script scope of the loaded object.

IronRuby::Clr A class that contains IronRuby-specific CLR modules like BigInteger,
Float, or String. These have no specific purpose, but they might give you
an idea of the CLR types that IronRuby types are based on.
An additional and interesting class is the IronRuby::Clr::Name class.
This class contains name-mangling methods. For example, if you want to
check how a method name is mangled (or unmangled—the reverse opera-
tion), you can use this class:
IronRuby::Clr::Name.mangle(“HelloWorld”)

returns “hello_world”

IronRuby::Clr::Name.mangle(“AAA”)

returns nil (meaning that this method

name is not mangled)

IronRuby::Clr::Name.unmangle(“hello_world”)

returns “HelloWorld”

The mangle method can also be accessed via clr_to_ruby and the
unmangle method via ruby_to_clr.
It is also possible to create an instance of the Name class and then investi-
gate the name mangling results:
name = IronRuby::Clr::Name.new(“HelloWorld”)

name.ruby_name # = “hello_world”

name.clr_name # = “HelloWorld”

237Summary

CLR Objects and Ruby’s Reflection
IronRuby allows investigating objects—getting a list of the available methods, variables,
execute dynamic code, and more. Chapter 8, “Advanced Ruby,” covers reflection in
more detail.

In IronRuby, CLR objects are also available for Ruby’s reflection operations:

Get System.String static methods:

System::String.methods - Class.methods

Output: [‘join’,..., ‘is_null_or_empty’, ‘compare’,...,

‘format’, ..., ‘empty’]

Get System.String instance methods:

System::String.instance_methods - Class.instance_methods

Output: [‘equals’,...,’to_char_array’,..., ‘starts_with’...]

The Basic Object
In Ruby, everything is an object. Object is the base class that everything inherits from.
Changing the Object class affects every single object across the application. This concept
is identical to C# and Visual Basic .NET, where Object is also the root of all objects.

One of the most important keys to understanding the interoperability of IronRuby and
the .NET Framework is their shared basic object: IronRuby’s Object is actually
System.Object!

To demonstrate that, look at the following code line:

Object == System::Object # = true

This doesn’t happen because of a similar name. The types are actually equal.

Passing around objects between .NET and IronRuby makes more sense now. It works
because in .NET, IronRuby objects are eventually System.Object, and in IronRuby, .NET
objects are eventually Object.

Summary
IronRuby expertise is the seamless integration with .NET objects. In this chapter, you
learned the fundamentals of this expertise. You learned about loading .NET assemblies,
using the different types of objects and the new features that IronRuby adds to .NET
objects and to the Ruby environment.

The next chapter takes you one step further in IronRuby’s .NET interoperability. You learn
how to integrate and implement .NET objects in your IronRuby code.

This page intentionally left blank

CHAPTER 10

Object-Oriented .NET
in IronRuby

IN THIS CHAPTER

. Inheriting from CLR Classes

. Inheriting from CLR Structs

. Inheriting from CLR Interfaces

. Overriding Methods

. Overriding Properties

. Overriding Events

. Opening CLR Classes.NET languages are designed from the beginning to be
fully object-oriented, as is Ruby.

They support inheritance, method overriding, access
control, and more. As a part of its interoperability with the
CLR, IronRuby allows Ruby code to act similarly to .NET
code and implement object-oriented concepts with .NET
objects, the Ruby way.

In this chapter, you learn how to inherit from .NET classes
and interfaces, use Ruby object-oriented concepts with CLR
types, and become familiar with the rough edges, like sealed
CLR classes.

Inheriting from CLR Classes
Inheritance is a vital part of .NET languages, and IronRuby,
too. As you saw in Chapter 6, “Ruby’s Code-Containing
Structures,” Ruby has inheritance capabilities with Ruby
classes. This is also possible with CLR classes.

In the following subsections, I cover different types of CLR
classes and explain how they can be inherited in IronRuby.

Regular Classes

Regular CLR classes are the simplest case. They act as the
superclass of their inheriting classes, with no special
catches. Protected members are available to the inheriting
classes, as well:

240 CHAPTER 10 Object-Oriented .NET in IronRuby

In C# (human.dll)

public class Human

{

public void SayHello()

{

Console.WriteLine(“Hello”);

}

protected string GetInternalCondition()

{

return “all good”;

}

}

In IronRuby

require “Human.dll”

Inherit from the CLR Human class

class Doctor < Human

attr_accessor :first_name, :last_name

def introduce

say_hello

puts “I’m Dr. #{last_name}”

end

def check_condition

if get_internal_condition != “all good”

puts “Call an ambulance!”

else

puts “All is good!”

end

end

end

doctor = Doctor.new

doctor.first_name = “John”

doctor.last_name = “Doe”

doctor.introduce # Prints “Hello

I’m Dr. Doe”

doctor.check_condition # Prints “All is good!”

Private members are available only in private binding mode. For more information about
private method mapping, see Chapter 9, “.NET Interoperability Fundamentals.”

241Inheriting from CLR Classes

Constructor Inheritance
In .NET languages like C#, when you inherit from a class without a default constructor
(a constructor with no parameters), you have to implement a constructor on the inherit-
ing class and call the constructor of the parent class.

Ruby has a different approach to constructor inheritance. When a superclass has an
initialize method, it is automatically inherited to the class itself. It doesn’t matter
whether the method requests none or multiple arguments.

When a class inherits from a CLR superclass, the class automatically inherits the construc-
tor, and there’s no need to explicitly define it.

In C# (human.dll)

public class Human
{

public string FirstName { get; set; }

public Human(string firstName)
{

FirstName = firstName;
}

}

In IronRuby

require “Human.dll”
class Doctor < Human; end

doctor = Doctor.new # Error “wrong number of arguments”
doctor = Doctor.new(“Shay”) # OK!

Generic Classes
As a result of the lack of support for generics in Ruby, generic CLR classes are an excep-
tional case. Because of this limitation, new generic classes cannot be created with IronRuby.

IronRuby takes a special approach to handle the situation, which provides a partial solu-
tion to the problem. You can inherit from a specific class type, like List<String>, and not
from the generic type, List<T>:

In C# (human.dll)

public class HumanList<T> where T : Human

{

public void Add(T human)

{

// ...Add human to list...

}

}

242 CHAPTER 10 Object-Oriented .NET in IronRuby

In IronRuby

require “Human.dll”

class DoctorList < HumanList[Doctor]

end

doctors = DoctorList.new

doctors.add(Human.new) # Error! Wrong type!

doctors.add(Doctor.new(“John”))

Abstract Classes

Abstract classes are classes that contain abstract code parts that are implemented by the
deriving classes. Abstract classes cannot be initialized either.

In IronRuby, abstract classes do not exist because there is no concept of overriding
methods. When CLR abstract classes are mapped to IronRuby, they become regular classes
that cannot be initialized. Consequently, inheriting from them is just like every other class.

In C# (human.dll)

public abstract class Creature

{

public void Breathe()

{

Console.WriteLine(“Breathing...”);

}

}

In IronRuby

require “Human.dll”

class Dog < Creature

def introduce

puts “Woof woof!”

end

end

dog = Dog.new

dog.breathe # Prints “Breathing...”

dog.introduce # Prints “Woof woof!”

dog.class.superclass # = Creature

Creature.new # Error!

243Inheriting from CLR Interfaces

Sealed and Static Classes

Sealed and static CLR classes are special: They cannot be inherited. The Ruby language
doesn’t support such a behavior. IronRuby, however, goes the extra mile and disallows
inheriting from sealed and static CLR classes.

Pay attention to the timing of the error. The error will not be raised on the class defini-
tion, only when the class is initialized.

In C# (human.dll)

public sealed class Man : Human

{

}

In IronRuby

require “Human.dll”

class MultitaskMan < Man

end

So far so good, now let’s create an instance:

new_man = MultitaskMan.new(“Shay”) # Error!

Inheriting from CLR Structs
In .NET languages, inheriting for structs is impossible. In IronRuby, we know that structs
are actually classes, so you may think that this might become possible.

Structs act like sealed CLR classes in IronRuby. Therefore, even though it might sound
logical, they cannot be inherited.

Inheriting from CLR Interfaces
As you learned in Chapter 9, CLR interfaces are mapped to modules in IronRuby. This
mapping makes interface implementation in IronRuby tricky because modules cannot act
as superclasses:

In C# (creature.dll)

public interface ILivingCreature

{

void Eat();

}

244 CHAPTER 10 Object-Oriented .NET in IronRuby

In IronRuby

require “creature.dll”

class Dog < ILivingCreature

end

Error: “superclass must be a Class (Module given)”

You also learned in Chapter 9 that interfaces are used as mixins when CLR mapped classes
have implemented them. This is the way IronRuby classes can implement interfaces—by
using them as mixins.

The following code sample shows how to implement CLR interfaces in IronRuby. I imple-
ment the ILivingCreature interface in an IronRuby class and pass it to a CLR method
that uses ILivingCreature objects.

In C# (creature.dll)

public interface ILivingCreature

{

void Eat();

}

public static class Runner

{

public static void FeedCreature(ILivingCreature creature)

{

creature.Eat();

}

}

In IronRuby

require “creature.dll”

class Cat

include ILivingCreature # Include interface mixin

Implement the interface method

Can be implemented by its Ruby name - eat

or its CLR name - Eat

def eat

puts “Mew Yummy Yummy”

end

end

Runner.feed_creature Cat.new # Prints “Mew Yummy Yummy”

245Overriding Methods

Overriding Methods
Overriding methods is the center of the object-oriented programming principle: polymor-
phism. By changing method implementation in different classes, the classes still follow the
general flow and rules, but they are still unique. For example, in our Creature class, we
can define a Sleep method. The Human class implements this method differently than the
Horse class. At the end, we have various creatures that sleep, each in its individual way.

The CLR features different methods that can be inherited. In this section, I introduce each
of them and demonstrate how to implement them with IronRuby.

Virtual Methods

Virtual methods are methods that have an implementation, but the inheriting classes can
override this implementation. The implementation in a method that is marked as virtual
is called default implementation.

In C#, you have to use the override keyword to override a method. In IronRuby, there is
no need for that; you just implement the method, using the same name. If the method is
not implemented on the inheriting class, the default implementation is used.

In C# (creature.dll)

public class Creature

{

public virtual void Fly()

{

Console.WriteLine(“Sorry, I can’t fly”);

}

}

In IronRuby

require “creature.dll”

class Bird < Creature

Override default implementation

def fly

puts “Flying”

end

end

class Dog < Creature

end

Bird.new.fly # Prints “Flying”

246 CHAPTER 10 Object-Oriented .NET in IronRuby

Dog.new.fly # Uses default implementation -

Prints “Sorry, I can’t fly”

You can also execute the default implementation via Ruby’s super keyword:

class Dog < Creature

def fly

puts “Woof!”

super

end

end

Dog.new.fly # Prints “Woof!

Sorry, I can’t fly”

Abstract Methods

Abstract methods are methods that can appear only in abstract classes. They contain only
the signature of the method, without any implementation. For example, our Creature
class can have two abstract methods: Sleep and Wakeup. Another method defines the flow
of a single day:

public abstract class Creature

{

public abstract void Sleep();

public abstract void Wakeup();

public void DayFlow()

{

Wakeup();

Sleep();

}

}

Now every creature has the same “day flow,” but its sleep and wakeup operations differ.

Implementing abstract methods in IronRuby is done just as you do with regular methods.
The methods are defined with the same name of the abstract methods. Make sure that
super is not available here, because the superclass doesn’t have an implementation:

require “creature.dll”

class Human < Creature

def wakeup

puts “Good morning!”

end

def sleep

247Overriding Methods

puts “ZzzZzzzz”

end

end

Human.new.DayFlow # Prints “Good morning!

ZzzZzzzz”

PARTIALLY IMPLEMENTING ABSTRACT CLASSES

If you don’t implement all abstract methods, IronRuby still lets you construct the
object, but an error will be raised when those methods are called.

Regular Methods

Regular methods cannot be inherited. However, they can be hidden. In C#, you need to
use the new keyword to give a new implementation to regular methods (also called name
hiding). In IronRuby, the process is catchy because every CLR method has two names: the
CLR one and the Ruby-like one. To entirely hide a method, you must implement the
method twice (or alias the method to respond to the second name, too):

In C# (human.dll)

public class Human

{

public void Eat()

{

Console.WriteLine(“Going to a restaurant”);

}

}

In IronRuby

require “human.dll”

class Vegetarian < Human

def eat

puts “Going to vegetarian restaurant”

end

alias :Eat :eat

end

class Carnivore < Human

def eat

puts “Going to a fast food place”

end

alias :Eat :eat

end

248 CHAPTER 10 Object-Oriented .NET in IronRuby

Vegetarian.new.eat # Prints “Going to vegetarian restaurant”

Carnivore.new.Eat # Prints “Going to a fast food place”

If you hide the original implementation, it cannot be invoked directly anymore. If you do
want to invoke it, you can use the super keyword or use the clr_member method, get the
Method object of the CLR implementation, and invoke it:

class Vegetarian < Human

def eat

clr_member(:eat).call

super

puts “A vegetarian one”

end

end

Vegetarian.new.eat # Prints “Going to a restaurant

Going to a restaurant

A vegetarian one”

Static Methods

In .NET languages, static methods are impossible to override. The original implementation
can be hidden and replaced only by a new implementation.

Calling the base class implementation is impossible, as well, and the way to call it is by
explicitly calling the base class name and method (TheBaseClass.TheStaticMethod).

The case with static methods in IronRuby is similar to what happens with regular
methods. The original implementation is hidden by the new implementation. It is possi-
ble to hide CLR static methods by implementing them as class methods. In the following
sample, I create a small-factory method for the Human class and change its implementation
on the IronRuby Doctor class:

In C# (human.dll)

public class Human

{

public static Human Create(string firstName)

{

Console.WriteLine(“Creating a human”);

return new Human(firstName);

}

public Human(string firstName)

{

}

}

249Overriding Methods

In IronRuby

require “human.dll”

class Doctor < Human

def self.create(first_name)

puts “Creating a doctor!”

Doctor.new(first_name)

end

end

Doctor.create(“John”) # Prints “Creating a doctor!”

and returns a Doctor object

Methods with Multiple Overloads

CLR methods, unlike Ruby ones, can be declared several times with different parameters. You
learned about the mapping of such methods in Chapter 9. But, how do you override them?

Well, overriding them is easy, but doing so has consequences. When you override a multi-
overloads method, you lose the overloads in IronRuby.

For example, take a look at the following C# class. It provides some overloads to the Sleep
method, with different methods that supply different parameters for the sleep operation:

public class Human

{

public virtual void Sleep()

{

Sleep(8);

}

public virtual void Sleep(int numberOfHours)

{

Sleep(numberOfHours, “bed”);

}

public virtual void Sleep(int numberOfHours, string where)

{

Console.WriteLine(“Sleeping {0} hours in {1}”,

numberOfHours, where);

}

}

Now I implement a RubyDeveloper class that inherits from the Human class (assuming all
Ruby developers are human). When this class is defined in IronRuby, all the Human.Sleep
overloads are available:

250 CHAPTER 10 Object-Oriented .NET in IronRuby

require “human.dll”

class RubyDeveloper < Human

end

ruby_dev = RubyDeveloper.new

ruby_dev.sleep

Output: “Sleeping 8 hours in bed”

ruby_dev.sleep(14)

Output: “Sleeping 14 hours in bed”

ruby_dev.sleep(14, “IronBed”)

Output: “Sleeping 14 hours in IronBed”

If we want to override the parameterless sleep method overload on the RubyDeveloper
class, so the default sleeping hours will be 14 rather than 8 (Ruby saves a lot of time, so
Ruby developers can sleep more!), this is what we usually do:

class RubyDeveloper < Human

def sleep

super(14)

end

end

Note the cost of this overridden method:

ruby_dev = RubyDeveloper.new

ruby_dev.sleep

Output: “Sleeping 14 hours in bed”

ruby_dev.sleep(14) # Error! “wrong number of arguments”

ruby_dev.sleep(14, “IronBed”) # Error! “wrong number of arguments”

Sealed Methods

A sealed method is a method that implements an abstract or a virtual method and doesn’t
allow further inheritance from this method.

In CLR languages, it is impossible to inherit a sealed method, but it is possible to hide
them. This is also what happens when you implement a sealed method in IronRuby: It
hides the original sealed implementation.

Like regular method hiding, when you reimplement a sealed method, the CLR name and
the Ruby name should both be reimplemented. Reimplementing only one name results in
executing the original implementation when the other name is used.

In C# (human.dll)

public class Creature

{

public virtual void Jump()

251Overriding Properties

{

}

}

public class Human : Creature

{

public override sealed void Jump()

{

Console.WriteLine(“Jumping”);

}

}

In IronRuby

require “human”

class Athlete < Human

def jump

puts “Jumping very high”

end

end

Athlete.new.jump # Prints “Jumping very high”

Athlete.new.Jump # Print “Jumping”

To work around this behavior, instead of writing the implementation twice, it is better to
just alias the method names:

class Athlete < Human

alias :Jump :jump

end

Athlete.new.jump # Prints “Jumping very high”

Athlete.new.Jump # Print “Jumping very high”

Overriding Properties
CLR properties, like methods, can be overridden in the .NET Framework. Their behavior is
identical to method overriding, with one major difference. Properties in IronRuby appear
as two methods: a getter and a setter. To override a property, it is necessary to override
both methods. It is also possible to override only the setter method or the getter method.

For example, consider the following C# class:

public class Human

{

private string _fullName;

252 CHAPTER 10 Object-Oriented .NET in IronRuby

public virtual string FullName

{

get

{

Console.WriteLine(“Getting FullName”);

return _fullName;

}

set

{

Console.WriteLine(“Setting FullName”);

_fullName = value;

}

}

}

Using the FullName property in an IronRuby inheriting class writes “Setting FullName”
and “Getting FullName” when accessing the property:

class Doctor < Human

end

doctor = Doctor.new

doctor.full_name = “John Doe” # Prints “Setting FullName”

doctor.full_name # Prints “Getting FullName”

To redefine the property, I override the getter and setter methods:

class Doctor < Human

def full_name

puts “IronRuby Getter”

@full_name

end

def full_name=(value)

puts “IronRuby Setter”

@full_name = value

end

end

doctor = Doctor.new

doctor.full_name = “John Doe” # Prints “IronRuby Setter”

doctor.full_name # Prints “IronRuby Getter”

Another way to override a property is by using accessors. To completely remove the CLR
implementation and use the simple implementation of the accessor, the accessor name
needs to be the same as the CLR accessor:

253Overriding Events

class Doctor < Human

attr_accessor :full_name

end

doctor = Doctor.new

doctor.full_name = “John Doe” # Nothing is printed

doctor.full_name # Nothing is printed

CLR properties act the same as CLR methods with regard to access control variations. Refer
back to the “Overriding Methods” section, earlier in this chapter, for a detailed explana-
tion of each case.

Overriding Events
CLR classes can contain virtual events. Therefore, they can be overridden by the class
inheritors. The principles are similar to method overriding principles with a slight change.
Like properties, events are split into two methods in IronRuby: add_EventName and
remove_EventName.

For example, assume we have the next C# class:

public class Human

{

public virtual event EventHandler ChangeMade;

public void RaiseChangeMade()

{

if (ChangeMade != null)

{

ChangeMade(this, EventArgs.Empty);

}

}

}

In IronRuby, it is possible to override the event as follows:

class Doctor < Human

def add_ChangeMade(handler)

puts “Adding #{handler.inspect}”

Call the Human class “add event handler” implementation

super

end

def remove_ChangeMade(handler)

puts “Removing #{handler.inspect}”

Call the Human class “remove event handler” implementation

254 CHAPTER 10 Object-Oriented .NET in IronRuby

super

end

end

Now adding an event handler from IronRuby to the Doctor class outputs a message as well:

d = Doctor.new

d.ChangeMade { puts “A change has been made” }

Prints “Adding System.EventHandler”

d.raise_change_made

Prints “A change has been made”

Opening CLR Classes
When a CLR method is used in IronRuby, it instantly becomes a Ruby object. Ruby objects
are dynamic, permissive, and open. Therefore, we can take a CLR class, for example, open
it, and add more methods to it.

We do it exactly as we would have done it with pure Ruby classes. For example, the
following code sample adds a multiply method to the CLR String class:

class System::String

def multiply(amount)

str = self

(1...amount).each { str = str + self }

str

end

end

clr_string = System::String.new(“IronRuby”)

puts clr_string.multiply(3)

Prints “IronRubyIronRubyIronRuby”

The change we made to the System.String class affects every System.String across the
IronRuby application.

Using Mixins

One of the most powerful features of the Ruby language is mixins (as covered in detail in
Chapter 6). When opening CLR classes, it is possible to mix in modules to them, as well.

In the following code sample, I implement the each method for the System.String class
and then mix in the Enumerable mixin:

255Opening CLR Classes

class System::String

include Enumerable

def each

(0...self.length).each { |i| yield self[i] }

end

end

str = System::String.new(“Test String”)

str.max # = “T”

str.member?(“s”) # = true

str.sort # = %q{e g i n r s S t t T}

The max and sort methods are available because System.Char implements the <=> method
when it is mapped to IronRuby.

MIXIN CLR INTERFACES TO CLR CLASSES

As mentioned in Chapter 9, CLR interfaces are mapped to Ruby modules so that they
can be used as mixins. This is correct only with regard to pure Ruby classes. It is
impossible to mix CLR interfaces into CLR classes.

This behavior happens because mixing in a CLR interface to a CLR class means the
class should inherit from the interface. IronRuby maps only CLR types; they do not
become pure Ruby classes. Therefore, changing the class inheritance list after it’s
been created is not possible in static .NET languages. As a result, trying to perform
this operation ends with an error.

Opening the Object Class

IronRuby and the CLR share a single base object: System.Object (as discussed in Chapter 6).

This design makes it easy for us to add functionality to all objects in IronRuby, including
CLR types (by opening the Object class).

For example, we can add a method that discovers whether the current object is pure Ruby:

class Object

def self.is_pure_ruby?

self.to_clr_type.nil?

end

end

System::String.is_pure_ruby? # = false

Fixnum.is_pure_ruby? # = false (Fixnum is System.Int32)

256 CHAPTER 10 Object-Oriented .NET in IronRuby

class PureRubyClass; end

PureRubyClass.is_pure_ruby? # = true

Opening Namespaces

Namespaces are mapped into Ruby modules. There is no problem with opening them and
adding classes or methods to them.

The next example demonstrates how to add a new class to the System.Data namespace:

module System::Data

class YamlDataSource

... code ...

end

end

yaml = System::Data::YamlDataSource.new

Summary
In this chapter, you saw how the concepts of object-oriented programming in Ruby and
the .NET Framework merge in IronRuby. You are now familiar with the main techniques
(and some advanced ones), and you are now ready to learn how to take advantage of
IronRuby’s capabilities and the .NET world.

PART IV

IronRuby and the
.NET World

IN THIS PART

CHAPTER 11 Data Access 259

CHAPTER 12 Windows Forms 281

CHAPTER 13 Windows Presentation
Foundation (WPF) 303

CHAPTER 14 Ruby on Rails 331

CHAPTER 15 ASP.NET MVC 363

CHAPTER 16 Silverlight 401

CHAPTER 17 Unit Testing 425

CHAPTER 18 Using IronRuby from
C#/VB.NET 459

This page intentionally left blank

CHAPTER 11

Data Access

IN THIS CHAPTER

. Hello, Data Access

. Preparing Your Environment

. Contacting a SQL Server

. Contacting a MySQL Server

. Design Considerations

. The CachedDataAccess Class

. A Word About LINQData access is a vital part of almost every application.
After all, if an application stores data, data access is eventu-
ally necessary. This chapter focuses on data access in the
context of accessing databases and using the obtained data.
It is done via .NET Framework data access classes in
IronRuby. The chapter guides you through using datasets,
the SqlClient namespace, and the MySQL connector
library in IronRuby.

Hello, Data Access
Data access refers to the storage-related operations done in
an application. It typically relates to a set of operations
known as CRUD, which stands for Create Read Update
Delete. Data access is incorrectly associated exclusively with
database access. Although database access is a major compo-
nent of data access, the term relates to every source of data,
whether it is a database, file, web service, or public API.

In this chapter, I build a data access library that connects to
a remote Microsoft SQL server. This library features a
caching mechanism: When data is obtained from the SQL
server, it is held in a local MySQL database. The local data-
base data is cleaned after a specified amount of time.

As you see throughout this chapter, .NET Framework
components make it easy to accomplish the complicated
task of accessing databases. With the CLR interoperability
support in IronRuby, these components are available for
you to take advantage of.

260 CHAPTER 11 Data Access

Preparing Your Environment
To run the code samples in this chapter, you need to download and install a few
applications.

The first application is Microsoft SQL Server. Microsoft offers a free edition of the applica-
tion, called SQL Server Express. You can download the latest edition from http://www.
microsoft.com/express/sql/default.aspx.

The database I use in this chapter is the AdventureWorksLT sample SQL Server database.
You can download it from http://www.codeplex.com/MSFTDBProdSamples.

The next application you need is MySQL. You can download a free edition of MySQL from
http://dev.mysql.com/downloads/mysql/5.1.html#downloads.

You should also install GUI tools to make the administration process easier (http://dev.
mysql.com/downloads/gui-tools/5.0.html).

The last package you need for this chapter is the MySQL connector. This is a .NET library
for connecting the MySQL library. You can download it from http://dev.mysql.com/
downloads/connector/net/6.0.html.

Contacting a SQL Server
Contacting a SQL server is done via the System.Data.SqlClient namespace. This is the
.NET way, and IronRuby is fully capable of taking advantage of it.

I build a class, named SqlServerAccessor, which handles the connection and execution
of queries on the remote SQL server. The class is in a separate file named sql.rb.

Loading the Needed Assemblies

To work with the SqlClient namespace, we have to load it first.

The System.Data.SqlClient namespace exists within the System.Data assembly. To load
it, we can use the partial name only. (For more information about loading .NET assem-
blies, see Chapter 9, “.NET Interoperability Fundamentals.”)

require “System.Data”

When the assembly is loaded, we can start building our SqlServerAccessor class.

Building the Class Structure

Building a class is simple and consists of defining its name. I’m also going to add a couple
of include statements to the class to make developing inside the class easier. Writing an
include statement inside the class scope, apart from being the way to mix in modules,
acts like a using or import statement of C# and VB.Net; it brings the module content to
the current scope:

http://www.microsoft.com/express/sql/default.aspx
http://www.microsoft.com/express/sql/default.aspx
http://www.codeplex.com/MSFTDBProdSamples
http://dev.mysql.com/downloads/gui-tools/5.0.html
http://dev.mysql.com/downloads/gui-tools/5.0.html
http://dev.mysql.com/downloads/mysql/5.1.html#downloads
http://dev.mysql.com/downloads/connector/net/6.0.html
http://dev.mysql.com/downloads/connector/net/6.0.html

261Contacting a SQL Server

TABLE 11.1 Common Configuration Keys for the SQL Server Connection String

Key Description Values

Data Source
or
Server
or
Address

The network address of the SQL server, including the
instance name if it exists.

Any string

Initial Catalog
or
Database

The name of the database. Any string

Integrated Security
or
Trusted_Connection

When true, Windows authentication is used. When false,
SQL Server authentication is used.
Default is false.

True = true, yes,
or sspi
False = false or
no

User ID The SQL Server login account name.
Used when integrated security is set to false.

Any string

Password The password for the SQL Server login account. Used
when integrated security is set to false.

Any string

class SqlServerAccessor

include System::Data

include System::Data::SqlClient

end

With these defined, instead of calling System::Data::SqlClient::SqlConnection every
time, I can use SqlConnection directly.

Building the Connection String

The first thing you must do before accessing a database is to define the connection string
for it. The connection string is a semicolon-delimited string that defines the configuration
of the connection to the database (server name, database name, whether the connection is
trusted, and more).

Table 11.1 describes the common configuration properties for the SQL Server connec-
tion string.

Sample Connection Strings
The following are a few samples for SQL Server connection strings.

Here, we use integrated security for a database named foo that runs on a server called sqlsrv:

Data Source=sqlsrv;Database=foo;Integrated Security=true

262 CHAPTER 11 Data Access

In the following code, we use SQL Server security with a user named john with password
doe. The server is sqlsrv, and database is called foo:

Server=sqlsrv;Initial Catalog=foo;Trusted_Connection=false;User

ID=john;Password=doe;

The following code shows a connection string for connecting a SQL Server Express instance
on the local host, with a database named AdventureWorks using integrated security:

Integrated Security=True;Data Source=localhost\sqlexpress;initial

➥catalog=AdventureWorks;

Adding the Connection String to the Class
Now that you’ve learned how to build a connection string, we can add it as part of our class.

I add the connection string as an instance variable and initialize it within the constructor:

def initialize

@connection_str = “Integrated Security=True;

Data Source=localhost\\sqlexpress;

Initial Catalog=AdventureWorks;”

end

Opening a Connection to the SQL Server

The main task, after actually executing queries, is opening a connection to the database.
After the connection has been opened, the queries can be made via it.

The class for SQL Server connectivity is SqlConnection. This class handles connections to
the SQL Server and exposes events that help retrieving messages from the server, to know
when the connection state has changed.

An in-depth look at this class is beyond the scope of this book. For more information
about the class, search for System.Data.SqlClient.SqlConnection on the MSDN site.

In the SQLAccessor class, I add two methods that handle the server connection, one for
opening a connection and one for closing it:

def open_connection

Open a connection only if it’s not opened already

if @connection.nil? || @connection.state != ConnectionState.open

@connection = SqlConnection.new(@connection_str)

@connection.open

end

end

def close_connection

@connection.close unless @connection.nil?

end

263Contacting a SQL Server

Querying the Database

To use data stored in databases we must execute queries on them. A query is written in the
SQL language, which except for small differences here and there has the same syntax on
the various SQL servers (Microsoft SQL Server, MySQL, SQLite, and others).

The way to query a SQL Server in the SqlClient namespace is via the SqlCommand class.
This class contains a SQL statement or a stored procedure call to a database and allows
executing it.

To get the results in a convenient fashion, I use a SqlDataAdapter that fills a dataset with
the command results.

The query is hard-coded in the method and gets the products whose name fully or
partially matches the filter string:

def query(filter)

Make sure the connection is opened

open_connection

sql = <<SQL

SELECT Name

FROM SalesLT.Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

SQL

Create a command

command = SqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Create a data adapter for dataset filling

adapter = SqlDataAdapter.new(command)

dataset = DataSet.new

Fill the dataset with the data

adapter.fill(dataset, “Product”)

Return the filled dataset

dataset

end

TYPED DATASETS

As you might have noticed, in this chapter I use untyped datasets. I do so mainly to
keep things simple.

Typed datasets are available in IronRuby, because they are regular .NET classes.
However, you have to create them in Visual Studio, which means that until IronRuby is
supported in Visual Studio you can create only typed-datasets written in C# or VB.Net.

264 CHAPTER 11 Data Access

To work around this problem, the typed dataset can be created via Visual Studio and
saved to a .NET assembly. Then the assembly can be loaded in IronRuby, which makes
the typed dataset available within the IronRuby code.

Wrapping Up sql.rb

With all the code written in this section, we have created a class that connects to a SQL
Server, executes a query on its data, and returns a dataset with results.

Listing 11.1 contains the whole content of the sql.rb file.

LISTING 11.1 sql.rb File Content

require “System.Data”

class SqlServerAccessor

include System::Data

include System::Data::SqlClient

def initialize

@connection_str = “Integrated Security=True;

Data Source=localhost\\sqlexpress;

Initial Catalog=AdventureWorks;”

end

def query(filter)

Make sure the connection is opened

open_connection

sql = <<SQL

SELECT Name

FROM SalesLT.Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

SQL

Create a command

command = SqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Create a data adapter for dataset filling

adapter = SqlDataAdapter.new(command)

dataset = DataSet.new

Fill the dataset with the data

adapter.fill(dataset, “Product”)

265Contacting a MySQL Server

Return the filled dataset

dataset

end

def open_connection

Open a connection only if it’s not opened already

if @connection.nil? || @connection.state != ConnectionState.open

@connection = SqlConnection.new(@connection_str)

@connection.open

end

end

def close_connection

@connection.close unless @connection.nil?

end

end

Using the SqlServerAccessor Class

Before we move on, let’s try out our new class.

The next code uses our SQL Server class to search for helmets in the product table and
presents the results. You can create an rb file out of it and run it or just execute it from the
ir console:

require “sql.rb”

sql = SqlServerAccessor.new

data = sql.query(“helmet”)

for row in data.Tables[“Product”].rows

puts row[“Name”]

end

sql.close_connection

Try it out and watch the results getting printed on the screen.

Contacting a MySQL Server
The MySQL server instance will be used as a local database that I will deploy to the client’s
machine. As a result, our database instance should match the data we retrieve from the
main server, the SQL Server. The class itself will be similar in its structure to the SQL
Server class, too, because it needs to serve the same needs. The MySQL class will be stored
in a separate file named mysql.rb.

266 CHAPTER 11 Data Access

Preparing the MySQL Database

The first thing we need to do is to create a database on the MySQL server that includes
that data we need.

To do that, I create a database instance with a single table named Product. This table
contains an auto-incremented ID column, a Name column that holds the product name,
and a CreationDate column that helps to determine whether this cached row is still rele-
vant. (The requirements for the class state that the cache has a time limit.)

After you have installed MySQL on your local machine and configured its basic properties,
proceed with these steps:

1. Go to Start > Run.

2. Type <MySQL installation folder>\bin\mysql.exe and press Enter.

The installation folder should be something like C:\Program Files\MySQL\MySQL
Server 5.1.

3. Insert the password of the root user you have specified during the Configuration
Wizard.

4. Now the MySQL console is ready. The first task is to create a database. Type the
following and press Enter:

create database adventureworks;

5. After we have a database, we need to create the table. Type the following SQL
statement and press Enter:

CREATE TABLE ‘adventureworks‘.‘Product‘ (

‘ID‘ INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

‘Name‘ VARCHAR(255) NOT NULL,

‘CreationDate‘ DATETIME NOT NULL,

PRIMARY KEY (‘ID‘)

);

6. The last task is to create a user to query the database we’ve just created. First we
create a user named John with the password Doe. Insert the next line and press Enter:

CREATE USER ‘john’ IDENTIFIED BY ‘doe’;

7. Now grant this user permission to query and delete rows from the database. Insert
the following into the console and press Enter:

GRANT SELECT, INSERT, DELETE

ON adventureworks.*

TO ‘john’;

8. That’s it. We’re done. Type quit and press Enter to exit the console.

This process can also be done through a graphical user interface called MySQL
Administrator, which is a part of the MySQL GUI Tools package.

267Contacting a MySQL Server

Loading the Assemblies

After you install the MySQL connector library, a few new files will be added to the Global
Assembly Cache. The file we need is called MySql.Data, and it is loaded as follows:

require “MySql.Data,

Version=6.0.4.0, Culture=neutral,

PublicKeyToken=c5687fc88969c44d”

MySql.Data uses enum values from the System.Data assembly, and therefore we need to
require it, too:

require “System.Data”

Building the Class Structure

After we have loaded the required assembly, we need to create a class to contain the
needed operations for the MySQL server. The class will be called MySQLAccessor. I include
the MySQL main namespace to make it easier to use its inner classes afterward:

class MySQLAccessor

include System::Data

include MySql::Data::MySqlClient

end

Building the Connection String

Following the connection string configuration keys mentioned in the previous section, we
can build the connection string to the MySQL server. This time we cannot use integrated
security, because MySQL does not support Windows users. (It is a multiplatform database.)
Therefore, we have to define the username and password explicitly. The connection string
will be as follows:

Server=localhost;Database=adventureworks;User ID=john;Password=doe

This connection string will be set to an instance variable on the class’s initialize method:

def initialize

@connection_str = “Server=localhost;Database=adventureworks;

User ID=john;Password=doe”

end

268 CHAPTER 11 Data Access

Opening a Connection to the MySQL Server

The MySQL connector library has a similar object model to .NET’s SqlClient library. This is
the reason why the next methods are almost identical to the SQL Server class ones, with
the small difference of using a different connection object. I create two methods, one for
opening a connection and one for closing it. The name of the connection class is
MySqlConnection, which might remind you of its SQL Server equivalent, SqlConnection:

def open_connection

Open a connection only if it’s not opened already

if @connection.nil? || @connection.state != ConnectionState.open

@connection = MySqlConnection.new(@connection_str)

@connection.open

end

end

def close_connection

@connection.close unless @connection.nil?

end

Querying the Database

Querying the MySQL database is done using the MySqlCommand class. The table and
column names are the same as in the SQL Server database, and therefore this method is
almost identical to the SQL Server class:

def query(filter)

Make sure the connection is opened

open_connection

sql = <<SQL

SELECT Name

FROM Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

SQL

Create a command

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Create a data adapter for dataset filling

adapter = MySqlDataAdapter.new(command)

dataset = DataSet.new

Fill the dataset with the data

adapter.fill(dataset, “Product”)

269Contacting a MySQL Server

Return the filled dataset

dataset

end

Inserting Records

The MySQL database is used as a local cache. Therefore, it should support insertion of new
records. The next method does just that; it receives the row details and inserts them into
the database:

def insert_record(product_name)

Make sure the connection is opened

open_connection

sql = “INSERT INTO Product(Name,CreationDate)

VALUES(‘#{product_name.sub(“‘“,”’’”)}’, NOW())”

Create a command

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Execute the delete command

This will also return the number of affected rows

command.execute_non_query

end

This SQL statement doesn’t return records, so the method returns only the number of
affected rows.

Deleting Records

A cache mechanism requirement is to delete old records. Hence, the MySQL class should
support record removal. I add another method that deletes records older than the current
time. As earlier, this SQL statement doesn’t return records, so the method returns the
number of affected rows:

def delete_old_records

Make sure the connection is opened

open_connection

sql = “DELETE FROM Product

WHERE CreationDate < NOW()”

Create a command

270 CHAPTER 11 Data Access

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Execute the command and delete the records

This will also return the number of affected rows

command.execute_non_query

end

Wrapping Up mysql.rb

The MySQLAccessor class is based on an open source .NET assembly and not on a built-in
assembly like System.Data.

Listing 11.2 contains the whole class implementation that appears in the mysql.rb file.

LISTING 11.2 mysql.rb File Content

require “System.Data”

require “MySql.Data,

Version=6.0.4.0, Culture=neutral,

PublicKeyToken=c5687fc88969c44d”

class MySQLAccessor

include System::Data

include MySql::Data::MySqlClient

def initialize

@connection_str = “Server=localhost;

Database=adventureworks;

User ID=john;Password=doe”

end

def query(filter)

Make sure the connection is opened

open_connection

sql = <<SQL

SELECT Name

FROM Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

SQL

Create a command

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Create a data adapter for dataset filling

adapter = MySqlDataAdapter.new(command)

271Contacting a MySQL Server

dataset = DataSet.new

Fill the dataset with the data

adapter.fill(dataset, “Product”)

Return the filled dataset

dataset

end

def insert_record(product_name)

Make sure the connection is opened

open_connection

sql = “INSERT INTO Product(Name,CreationDate)

VALUES(‘#{product_name.sub(“‘“,”’’”)}’, NOW())”

Create a command

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Execute the delete command

This will also return the number of affected rows

command.execute_non_query

end

def delete_old_records

Make sure the connection is opened

open_connection

sql = “DELETE FROM Product

WHERE CreationDate < NOW()”

Create a command

command = MySqlCommand.new(sql, @connection)

command.command_type = CommandType.text

Execute the delete command

This will also return the number of affected rows

command.execute_non_query

end

def open_connection

Open a connection only if it’s not opened already

if @connection.nil? || @connection.state != ConnectionState.open

@connection = MySqlConnection.new(@connection_str)

@connection.open

end

end

272 CHAPTER 11 Data Access

def close_connection

@connection.close unless @connection.nil?

end

end

Using the MySQLAccessor Class

We have now finished writing our MySQL class. Let’s give it a try.

The next code uses the class to create, query, and delete the local MySQL database:

require “mysql.rb”

mysql = MySQLAccessor.new

Create a records

mysql.insert_record(“Iron helmet”)

mysql.insert_record(“Blue helmet”)

Query

data = mysql.query(“helmet”)

for row in data.Tables[“Product”].rows

puts row[“Name”]

end

Delete records

mysql.delete_old_records

mysql.close_connection

Design Considerations
As a result of the similarity in the object model of the SQL Server classes and MySQL
classes, the classes are very similar. We can take advantage of the Ruby language and save
several lines of code.

I do that by creating a mixin module. This module contains the basic methods needed for
a generic database server connection. The module assumes existence of four variables, as
follows, that determine the type of server to communicate with:

. @connection_str: The connection string to the database server

. @connection_class: The class for connecting the server (like SqlConnection)

. @command_class: The class for creating a SQL command (like SqlCommand)

. @adapter_class: The class that is used to fill a dataset with the command results
(like SqlDataAdapter)

When all these variables exist, the code can initialize the classes and use them.

273Design Considerations

The module contains a more general implementation of the query methods. Two methods
are at hand: execute_query, which execute a given SQL statement and return a dataset
with the results (good for SELECT statements); and execute_non_query, which execute a
given SQL statement and return the number of affected rows (good for INSERT, UPDATE,
and DELETE statements).

Listing 11.3 contains the module code.

LISTING 11.3 The SqlAccessor Module (sql_accessor.rb)

require “System.Data”

module SqlAccessor

include System::Data

def execute_query(sql, table_name)

Make sure the connection is opened

open_connection

Create a command

command = @command_class.new(sql, @connection)

command.command_type = CommandType.text

Create a data adapter for dataset filling

adapter = @adapter_class.new(command)

dataset = DataSet.new

Fill the dataset with the data

adapter.fill(dataset, table_name)

Return the filled dataset

dataset

end

def execute_non_query(sql)

Make sure the connection is opened

open_connection

Create a command

command = @command_class.new(sql, @connection)

command.command_type = CommandType.text

Execute the command

command.execute_non_query

end

def open_connection

Open a connection only if it’s not opened already

if @connection.nil? || @connection.state != ConnectionState.open

274 CHAPTER 11 Data Access

@connection = @connection_class.new(@connection_str)

@connection.open

end

end

def close_connection

@connection.close unless @connection.nil?

end

end

Notice how the names of the classes were changed to the variables. This is another capa-
bility of the Ruby language. In static languages like C#, you can pass a type to a method
and then call this type’s constructor with a few lines of unattractive reflection code. In
Ruby, this is very straightforward; the type can be passed around and be used just as if it
were the type itself. This behavior makes the following line possible:

command = @command_class.new(sql, @connection)

Now that we have this module in hand, the SqlServerAccessor class size is greatly
reduced, as you can see in Listing 11.4.

LISTING 11.4 The Modified SqlServerAccessor Class (sql.rb)

require “sql_accessor.rb”

class SqlServerAccessor

include System::Data::SqlClient

include SqlAccessor

def initialize

@connection_str = “Integrated Security=True;

Data Source=localhost\\sqlexpress;

Initial Catalog=AdventureWorks;”

@connection_class = SqlConnection

@command_class = SqlCommand

@adapter_class = SqlDataAdapter

end

def query(filter)

sql = <<SQL

SELECT Name

FROM SalesLT.Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

275Design Considerations

SQL

execute_query(sql,”Product”)

end

end

The implementation is now reduced to a minimal amount of code. Only the necessary
configuration variables are set, and the generation of the SQL statement is done locally on
the class. The rest is done via the mixin module methods.

The MySqlAccessor class also benefits from the new mixin module, as shown in Listing 11.5.

LISTING 11.5 The Modified MySqlAccessor Class (mysql.rb)

require “MySql.Data,

Version=6.0.4.0, Culture=neutral,

PublicKeyToken=c5687fc88969c44d”

require “sql_accessor.rb”

class MySQLAccessor

include MySql::Data::MySqlClient

include SqlAccessor

def initialize

@connection_str = “Server=localhost;

Database=adventureworks;

User ID=john;Password=doe”

@connection_class = MySqlConnection

@command_class = MySqlCommand

@adapter_class = MySqlDataAdapter

end

def query(filter)

sql = <<SQL

SELECT Name

FROM Product

WHERE Name like ‘%#{filter.sub(“‘“, “‘’”)}%’

SQL

execute_query(sql,”Product”)

end

def insert_record(product_name)

sql = “INSERT INTO Product(Name,CreationDate)

VALUES(‘#{product_name.sub(“‘“,”’’”)}’, NOW())”

276 CHAPTER 11 Data Access

execute_non_query(sql)

end

def delete_old_records

sql = “DELETE FROM Product

WHERE CreationDate < NOW()”

execute_non_query(sql)

end

end

In the modified MySqlAccessor class, we can see that the connection and command
handling has been moved to the mixin module, and the class remains to handle MySQL
related code only.

The CachedDataAccess Class
Now that we have the database access classes, we can use them in our cached data access
class. The class contains a single method: get_products. The method first checks whether
the local MySQL database contains the requested data. If not, the SQL Server is queried,
and the results are cached in the local MySQL database:

Require the accessor files

require “sql.rb”

require “mysql.rb”

class CachedDataAccess

def get_products(name)

Try to get the data from the MySQL database

mysql = MySQLAccessor.new

data = mysql.query(name)

if (data.tables[“Product”].rows.count == 0)

Try to retrieve data from the remote SQL Server

sql = SqlServerAccessor.new

data = sql.query(name)

Add the returned rows to the local database

for row in data.Tables[“Product”].rows

mysql.insert_record(row[“Name”])

end

end

Return the result to the user

data

ensure

277The CachedDataAccess Class

Close the connections

mysql.close_connection unless mysql.nil?

sql.close_connection unless sql.nil?

end

end

Another task the cache class should do is to delete old records. For that, I create a thread
that runs the delete_old_records method every 60 seconds:

def initialize

Thread.new do

Loop endlessly

loop {

begin

Wait 60 seconds

sleep(60)

Remove old records

mysql = MySQLAccessor.new

mysql.delete_old_records

ensure

Close the connection

mysql.close_connection unless mysql.nil?

end

}

end

end

Wrapping Up cached_data_access.rb

The preceding code blocks create our needed data access class. Listing 11.6 contains the
entire class code.

LISTING 11.6 CachedDataAccess Class (cached_data_access.rb)

Require the accessor files

require “sql.rb”

require “mysql.rb”

class CachedDataAccess

def initialize

Thread.new do

Loop endlessly

loop {

begin

278 CHAPTER 11 Data Access

Wait 60 seconds

sleep(60)

Remove old records

mysql = MySQLAccessor.new

mysql.delete_old_records

ensure

Close the connection

mysql.close_connection unless mysql.nil?

end

}

end

end

def get_products(name)

Try to get the data from the MySQL database

mysql = MySQLAccessor.new

data = mysql.query(name)

if (data.tables[“Product”].rows.count == 0)

Try to retrieve data from the remote SQL Server

sql = SqlServerAccessor.new

data = sql.query(name)

Add the returned rows to the local database

for row in data.Tables[“Product”].rows

mysql.insert_record(row[“Name”])

end

end

Return the result to the user

data

ensure

Close the connections

mysql.close_connection unless mysql.nil?

sql.close_connection unless sql.nil?

end

end

Using the CachedDataAccess Class

The class we created in this chapter exposes a single method only and is very easy to use.

Listing 11.7 uses the class and shows the user products that are related to his or her search
string. The code exists when the user inputs q.

279A Word About LINQ

LISTING 11.7 Using the CachedDataAccess Class (main.rb)

require “cached_data_access.rb”

cached_dal = CachedDataAccess.new

Get initial input from the user

print “Insert search keyword: “

input = gets.chomp

while input != “q”

Search

data = cached_dal.get_products(input)

Show results

puts “Found #{data.Tables[“Product”].rows.count} item(s)”

for row in data.Tables[“Product”].rows

puts row[“Name”]

end

Get more input from the user

puts

print “Insert search keyword: “

input = gets.chomp

end

To sum it up, we built the following files in our application:

. sql_accessor.rb: The mixin module that is used by the SQL Server and MySQL
classes to reduce code duplication.

. sql.rb: Contains the class responsible for accessing the SQL Server.

. mysql.rb: Contains the class that accesses the MySQL server.

. cached_data_access.rb: Contains the class that has the caching mechanism logic.

. main.rb: A sample use of the CachedDataAccess class.

A Word About LINQ
LINQ (Language-Integrated Query) has become quite popular since it first appeared in
.NET 3.0. You might wonder why only a word about it, then. Well, IronRuby doesn’t
support LINQ. The familiar syntax of LINQ is a DSL (Domain-Specific Language), which is
internal to C# and VB.Net.

280 CHAPTER 11 Data Access

IronRuby in its first version does not support LINQ syntax. Even though Ruby’s lambdas
are similar to LINQ syntax, behind the scenes they are implemented entirely different and
cannot (currently) be converted to each other.

LINQ methods, like where, do exist in IronRuby, but you must pass them an
expression tree, which you have to build by yourself (a complicated task).

Summary
In this chapter, you learned to access different databases using IronRuby. You learned how
the use of built-in and custom .NET assemblies is identical, how to use datasets, and how
to take advantage of the Ruby language to reduce code duplication.

Data access is a common practice that appears in almost every application. Therefore, you
should become familiar with the available classes and possibilities so that you can leverage
them during the development process.

CHAPTER 12

Windows Forms

IN THIS CHAPTER

. Introduction

. Building the Chat Class

. Building the Chat Windows
Form

. Writing the Execution Code

Windows Forms, or WinForms for short, refers to the
Windows graphical user interface (GUI) support of the .NET
Framework. It consists of base UI classes and out-of-the-box
controls (such as text box, grid, and various layout organi-
zation controls). WinForms is common and used exten-
sively in Windows applications.

In this chapter, you learn how to use WinForms in
IronRuby. You also learn how to build the initial user inter-
face, using various UI controls, and how to respond to user
actions. This chapter also covers the various ways you can
create a UI (with or without a visual designer).

Introduction
Since the early days of the .NET Framework, WinForms has
been one of the major parts. It was a breath of fresh air
after C++ MFC and made the process of developing
Windows GUIs much easier than it was until then.

The basic component of every WinForm is the form. A form
is an instance of the Form class, and it is generally a
container of other controls with a few properties of its own.
For example, a form can present Maximize, Minimize, and
Close buttons. It also has a title, a size, and more.

Not only the form is a container, but every control in the
form is a container as well. This allows complex UI compo-
nents to be created like grids, trees, or tabular layouts. To
reduce the complexity of code, the Windows Forms frame-
work is designed using the composite design pattern.
Therefore, everything within this framework has the same
base class: System.Windows.Control. Even the Form object

282 CHAPTER 12 Windows Forms

itself is a Control. Every control can contain other controls, and so eventually we get a
hierarchy of controls that build up a whole form.

In this chapter, you learn the different aspects of WinForms development in IronRuby by
creating a WinForms application. The application is a simple peer-to-peer chat application,
for which Ruby libraries for connection between peers will be used.

The Application Structure

The chat application is separated into three classes:

. ChatForm class: The WinForms form implementation, which contains the form and
controls definitions

. Chat class: The logic class, which is responsible for the communication with the
other chat window

. ChatRunner class: Prepares the environment for running a WinForms application and
shows the form

Building the Chat Class
The Chat class is responsible for the communication between two chat applications,
sending and receiving chat messages.

To communicate between separate processes, maybe even on different machines, we
need some kind of a communication class. The TCPSocket library is used for this
purpose. You can choose any of several other options (for example, the XmlRPC library
or .NET’s web services).

To keep this example simple, it is assumed that both chat applications exist on the same
machine. Changing this behavior is easy and requires passing the server name to this class.

Requiring the Needed Assemblies

The first task for the Chat class is to require the standard library that handles TCP sockets.
That library, as mentioned in Chapter 7, “The Standard Library,” is socket:

require “socket”

Initiating the Class

The Chat class receives one argument for its initialize method. This parameter represents
the side of the chat communication. Every user should choose a different side, and accord-
ing to the chosen value, the ports for sending and receiving messages are determined:

class Chat

def initialize(side)

if side == “A”

283Building the Chat Class

@receive_port = 9988

@send_port = 9989

else

@receive_port = 9989

@send_port = 9988

end

end

end

As you can see, I decided to use ports 9988 and 9989 for the application. This was an arbi-
trary pick and not a safe one: When choosing ports, make sure the ports are free and not
already taken by other applications.

Receiving Messages

The listen method is the one responsible for receiving chat messages from the other end.
This is done using the TCPServer class. The TCPServer class opens the required port and
waits for incoming connections. When a message is received, it is processed, and the
server returns to wait for more connections.

If you come from the .NET world, you might consider events for the task at hand: When
an incoming message is accepted, an event will be raised. In Ruby, there is no such object
as an event. There are several other possibilities, such as the observer design pattern (the
observable standard library can be used for that). In this method, the incoming message is
passed to an associated code block using yield:

def listen

server = TCPServer.new(“localhost”, @receive_port)

Wait for incoming messages

while session = server.accept

Send the request to the associated code block

yield session.gets

Close the current session

session.close

end

end

Sending Messages

The send method receives a message argument, opens a connection to the outgoing port,
and sends the message there. For that matter, I use the simple TCPSocket class. There is no
need here for a continuous communication; the message is sent, and the operation is done:

def send(message)

Open the response socket

s = TCPSocket.new(“localhost”,@send_port)

284 CHAPTER 12 Windows Forms

Send the message

s.puts message

Close the response socket

s.close

end

Wrapping Up the Chat Class (chat.rb)

The Chat class is very much a general-purpose TCP communication class. It takes advan-
tage of the basic operations needed in every TCP-driven application and can be easily
transformed for other uses.

Listing 12.1 joins the section’s code samples together into a single complete class.

LISTING 12.1 The Chat Class (chat.rb)

require “socket”

class Chat

def initialize(side)

if side == “A”

@receive_port = 9988

@send_port = 9989

else

@receive_port = 9989

@send_port = 9988

end

end

def listen

server = TCPServer.new(“localhost”, @receive_port)

Wait for incoming messages

while session = server.accept

Send the request to the associated code block

yield session.gets

Close the current session

session.close

end

end

def send(message)

Open the response socket

s = TCPSocket.new(“Localhost”,@send_port)

Send the message

s.puts message

285Building the Chat Windows Form

Close the response socket

s.close

end

end

Building the Chat Windows Form
The common way of building Windows Forms is via Visual Studio. Visual Studio offers a
UI, called a visual designer, that features a way to build a form in an interface similar to the
end result. It supports drag and drop of controls to the form, allowing developers to place
them and set their properties without writing code. Behind the scenes, the visual designer
generates code (C# or VB.Net) that creates the form and its controls with the settings that
have been set during the design process.

Unfortunately, IronRuby lacks Visual Studio integration in its first version. Therefore, the
visual designer cannot generate IronRuby code. As a result, the process of building a
WinForm UI in IronRuby becomes a complicated and awkward task.

The way to create a WinForm in IronRuby is to just write the code that the visual designer
would have written automatically if it were available.

Loading the Needed Assemblies

To develop a WinForms application, two assemblies need to be loaded:
System.Windows.Forms and System.Drawing. The first is the main assembly and contains
all the form-related classes and controls. The second is used mainly for several enum
values or property classes (such as Size or Point).

These assemblies have reference files within the IronRuby Libs folder, so there’s no need to
state the strong name, only the partial one:

require “System.Windows.Forms”

require “System.Drawing”

Because it will be more convenient afterward, you should also include the namespaces:

include System::Windows::Forms

include System::Drawing

Building the Class

The ChatForm class is a Windows Form class. Even though we can control a form from
outside its scope, it is better to inherit from the System.Windows.Forms.Form class. This
can give us more control over the form’s internal state.

286 CHAPTER 12 Windows Forms

Therefore, the class can inherit from the Form class as follows:

class ChatForm < Form

include System::Windows::Forms

include System::Drawing

end

Initializing the Form

The first task for this Form class is to initialize it. The initialize method code can call the
methods that build the form in the right order—set form properties, create controls and
register to control events:

def initialize

Set the form properties

set_form

Create the controls

create_controls

Register and response to control events

register_events

end

The set_form, create_controls and register_events methods are discussed next in
this chapter.

SUPPRESSING LAYOUT EVENTS

When a form is built, several controls are added to it, and some events contain other
controls themselves. Each control is then set with different properties to make it fit to
the form layout.

The controls and the form are refreshed with almost every change like this. In a small
form such as ours, we haven’t noticed that. In bigger forms, however, the refreshes
might result in a big performance impact.

However, the Windows Forms framework has a solution to that. Every control supports
two methods: SuspendLayout and ResumeLayout. When you plan to change multiple
properties of a specific control, it is recommended to call SuspendLayout at the begin-
ning and ResumeLayout at the end. This way the control is drawn only at the end, with
all the new properties applied simultaneously.

If the change, as in our case, is done on numerous controls on the form, it is more
convenient to suspend and resume layout of the container control only. In our case,
that would be the form itself: self.SuspendLayout and self.ResumeLayout.

287Building the Chat Windows Form

TABLE 12.1 Commonly Used Form Properties

Property Name Type Description

ClientSize

or
Size

System.Drawing.Size ClientSize is the size of the window without the
borders and the title bar.
Size includes them.
It is enough to set only one of them.

ControlBox System.Boolean false hides the Minimize, Maximize, Close
buttons strip at the top of the form.
True shows them (the default).

MinimizeBox System.Boolean false disables the Minimize button at the top of
the form.
true shows it.

MaximizeBox System.Boolean false disables the Maximize button at the top of
the form.
true shows it.

FormBorderStyle System.Windows.Forms.
FormBorderStyle

Defines the look and functionality of the form
border. The available values are as follows:
None: No borders at all
FixedSingle: With borders and control box, no
resize
Fixed3D: Like FixedSingle, but with a 3D
border
FixedDialog: Like FixedSingle, but without a
form icon
Sizable: Like FixedSingle, but allows resizing
(FormBorderStyle default value)
FixedToolWindow: Like FixedDialog, but with
smaller title bar and no Maximize and Minimize
buttons
SizableToolWindow: Like FixedToolWindow, but
allows resizing

Setting the Form Properties

A Windows form has numerous properties. It is possible to control almost every aspect of
the form, from its start position, through its resizing abilities, and to its background
color or image.

A detailed explanation of the different form properties is beyond the scope of this book.
For a complete reference, take a look at the MSDN website at http://msdn.microsoft.com/
en-us/library/system.windows.forms.form.aspx.

Table 12.1 describes the commonly used properties.

http://msdn.microsoft.com/en-us/library/system.windows.forms.form.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.form.aspx

288

TABLE 12.1 Commonly Used Form Properties

Property Name Type Description

StartPosition System.Windows.Forms.
FormStartPosition

Defines the position of the form as it loads. The
available values are as follows:
Manual: Defined manually using the Location
property
CenterScreen: Positioned at the center of the
screen
WindowsDefaultLocation: Positioned at the
Windows default location (StartPosition
default value)
WindowsDefaultBounds: Positioned at the
Windows default location with a Windows default
window size
CenterParent: Positioned at the center of the
parent window

Text System.String The title of the form.

CHAPTER 12 Windows Forms

For the chat application, I use only a few of those; I leave the rest at their default values. I
set the form to be at a fixed size (no resizing), disable maximizing, and use the title “The
IronRuby Chat”:

def set_form

Set the form size to 330 pixels width and 340 pixels height

self.client_size = Size.new(330,340)

Do not allow resizing the window

self.form_border_style = FormBorderStyle.fixed_single

Set the window title to “The IronRuby Chat”

self.text = “The IronRuby Chat”

Disable the maximize button

self.maximize_box = false

end

Note that the self keyword is used to set the form’s property values (like self.text and
not just text). Properties must be approached that way because otherwise the property
names will be treated as local variables and won’t affect the form object.

After these properties are set, the form looks like Figure 12.1.

289Building the Chat Windows Form

FIGURE 12.1 The application UI after the basic properties are set.

Adding Controls

At this point, we have a form, but it is empty and isn’t really handy. To make it user
friendly, we should add controls to it.

Every Windows Forms control inherits from the System.Windows.Forms.Control class.
This base class defines several methods and properties that are commonly used and thus
are good to know. Table 12.2 describes these.

TABLE 12.2 Commonly Used Control Properties

Property
Name

Type Description

Location System.Drawing.Point The location of the control on the form. Point.new(0,0)
is the top-left point on the form.

Size System.Drawing.Size The size of the control. The first parameter is the width,
and the second is the height: Size.new(width,
height).

Text System.String The text of the control. For example, a text box contains
the text inside, and a check box displays the text nearby.

Enabled System.Boolean true makes the control accessible for the user. false
makes it inaccessible.

290 CHAPTER 12 Windows Forms

Every control adds additional properties that are related to its own behavior (as you’ll see
in this section).

Let’s start adding controls to the form. I start with the connection part on the top of the
form. This part lets the user choose his side of the chat and connect to the chat. To build
that we need three controls: a label to display the title of the combo box, a combo box
that lets the user choose her side of the chat, and a button to connect to the chat.

The first task is to create these controls and save them to instance variables:

@side_combo = ComboBox.new

@side_label = Label.new

@connect_button = Button.new

Now that we have the controls, we can set their properties. The first control is the label
control. I set its text and location:

Set the location 15 pixels from the top and from the left borders

@side_label.location = Point.new(15, 15)

Set the text to “Chat Side”

@side_label.text = “Chat Side”

The label control also contain a property for setting the font family, size, and style (Font)
and one for changing the text color (ForeColor).

The next control to set is the combo box. Here, along with its location, I need to add the
available values:

Set the location 70 pixels from the left and 10 from the top

@side_combo.location = Point.new(70, 10)

Set its size to 170 pixels width and 20 pixel height

@side_combo.size = Size.new(170,20)

Set its style. DropDownList doesn’t allow custom input to the list.

@side_combo.drop_down_style = ComboBoxStyle.DropDownList;

Add the available items

@side_combo.items.add “Side One”

@side_combo.items.add “Side Two”

Set the first item as the default one

@side_combo.selected_index = 0

The control in this part is the button. Its properties are similar to the other controls:

Set the button location to 245 pixels from the left and 10 from the top

@connect_button.location = Point.new(245, 10)

Set the size to 72 pixels width and 22 pixels height

@connect_button.size = Size.new(72, 22)

Set the text to “Connect”

@connect_button.text = “Connect”

291Building the Chat Windows Form

FIGURE 12.2 The application UI after the connection part is added.

After this part is done, the form looks like Figure 12.2.

The rest of the form is the conversation part. It contains the conversation text, a text box
to write a new message, and a button to send the new message:

@conversation_textbox = TextBox.new

@message_textbox = TextBox.new

@send_button = Button.new

The conversation text will be presented inside a read-only text box. This way the user can
see the conversation text but cannot modify it:

Set the textbox location to 15 pixels from the left and 40 from the top

@conversation_textbox.location = Point.new(15, 40)

Set the textbox size to 300 pixel width and 230 pixels height

@conversation_textbox.size = Size.new(300, 230)

Enable multiline content

@conversation_textbox.multiline = true

Make the textbox read-only

@conversation_textbox.read_only = true

The next control is the message text box:

Set the textbox location to 15 pixels from the left and 275 from the top

@message_textbox.location = Point.new(15, 275)

292 CHAPTER 12 Windows Forms

FIGURE 12.3 The finished application UI.

Set the textbox size to 230 pixels wide and 45 pixels tall

@message_textbox.size = Size.new(230, 45)

Enable multiline content

@message_textbox.multiline = true

The last control on the chat form is the button to send messages. The button is located
right next to the message text box and is called Send:

Set the button location to 250 pixels from the left and 275 from the top

@send_button.location = Point.new(250, 275)

Set the button size to 64 pixels width and 45 pixels height

@send_button.size = Size.new(64, 45)

Set the button text to “Send”

@send_button.text = “Send”

After all this is written, the form design is done. Figure 12.3 shows how this should look.

As the last task to complete the form design, we need to actually add the controls to the
form. This is done by adding the controls to the controls list of the form:

self.controls.add @side_combo

self.controls.add @side_label

self.controls.add @connect_button

self.controls.add @conversation_textbox

self.controls.add @message_textbox

self.controls.add @send_button

293Building the Chat Windows Form

Note that without this last step of adding the controls to the controls collection, the
controls will not be presented on the form at all.

Adding Functionality

Currently, we have the form ready with all the needed controls inside. The problem is that
the form is not interactive; the buttons do not react to the user actions. The task now is to
give life to these buttons and make the form react to user actions. This is where the previ-
ous class, Chat, comes into play.

Our goal is to make the Connect button start a listening thread by using the listen

method and make the Send button execute the send method with the relevant parameters.

The WinForms framework is based on the observer pattern for handling user actions. In
C# or VB.Net, this comes more naturally via events: Every UI control contains several
events that notify subscribers of different actions. The subscribers then take the necessary
actions according to the raised event. For example, buttons support the Click event,
which is raised when the button is clicked; text boxes support the TextChanged event,
which is raised after the user changes its content; and combo boxes feature the
SelectedIndexChange event, which notifies of a new value selection.

CLR EVENTS IN IRONRUBY

In IronRuby, we do not have events, but as discussed in Chapter 9, “.NET
Interoperability Fundamentals,” the way to use and respond to .NET events is easy and
straightforward.

Before we start handling events, we need to add a method we will need afterward. This
method adds text to the conversation text box. It gets two parameters. The first, from_me,
indicates whether the message is written by me or by the other chat member. The second
parameter, message, is the message itself. The method generates the needed text and
appends it to the text box:

def print_message(from_me, message)

Add user identification text

@conversation_textbox.text += if from_me then “Me: “ else “Friend: “ end

Add the message and a new line afterwards

@conversation_textbox.text += message + “\r\n”

end

After we have this helper method available, we can move forward and handle the first user
action (clicking the Connect button). When the user clicks the Connect button, we need
to create a new Chat class instance and pass it the user-selected chat side. Connect means

294 CHAPTER 12 Windows Forms

that we can start receiving messages from the other chat side, so we will also need to
create a listening thread that prints messages once they arrive:

@connect_button.click {

Get the user selected chat side

if @side_combo.selected_index == 0 then side = “A” else side = “B” end

Create a new chat class instance

@chat = Chat.new(side)

Start a listening thread. Once a message arrives, print it

Thread.new {@chat.listen { |m| print_message false, m }}

}

The next user action to handle is clicking the Send button. When the user clicks Send,
there are three tasks to do (add the message to the conversation text box, send the
message to the other chat side, and clear the message text box):

@send_button.click {

Check if the connection has been made

if @chat.nil? then

Connection hasn’t been made, show an error

MessageBox.show(“Please connect first.”)

else

Add the message to the conversation textbox

print_message true, @message_textbox.text

Send the message to the other side

@chat.send @message_textbox.text

Clear the textbox content

@message_textbox.clear

end

}

Notice the beginning of this last code block. we start by validating that a connection has
been made. If the validation fails, an error is presented to the user using the MessageBox
class. The MessageBox class, which is a part of the System.Windows.Forms namespace, is a
very handy class. It features only the show method that shows a message box with a given
message at the center of the screen. The method features numerous different parameters,
such as the box title, icon, buttons, and more. You should familiarize yourself with the
MessageBox class; you’ll find it handy in various situations.

For a detailed description of the MessageBox class, take a look at the MSDN site at
http://msdn.microsoft.com/en-us/library/system.windows.forms.messagebox.aspx.

http://msdn.microsoft.com/en-us/library/system.windows.forms.messagebox.aspx

295Building the Chat Windows Form

FIGURE 12.4 The Solution Explorer file tree.

EVENTS PARAMETERS

In the examples in this chapter, I haven’t used the parameters that are passed to the
events. Events in the .NET Framework usually send two arguments: sender and args.
The sender parameter contains the object that has raised the event, and args
contains the information passed with the event (if any).

UI events are no exception. I could write the above event-handling code with these
parameters:

@send_button.click { |sender, args| ... }

I didn’t need this information for this example, but you might find them useful in your
application. To find out which information is passed with the event, look for the event in
the MSDN class and look at the args variable type.

Using the Visual Studio Visual Designer

The process of designing WinForms without a visual designer isn’t easy. However, we can
still use the visual designer for a kick start.

To do so, we just create a new Windows Forms application in Visual Studio and design the
form as we need while using everything that Visual Studio features. Afterward, we have
two options: convert the designer code to IronRuby or save the form in a C#/VB.Net
assembly and use it from IronRuby.

Converting the Designer Code to IronRuby
When we finish designing our form, on the Solution Explorer the form file contains
subfiles. One of them ends with .designer.cs or .designer.vb. Figure 12.4 shows the file
we’re looking for. (We’re looking for it because it contains the designer-generated code.)

296 CHAPTER 12 Windows Forms

All we have to do now is to take the C# or VB.Net code and convert it to Ruby code.

When doing so, follow these guidelines:

. Controls should be saved to instance variables. They do not need to be declared
outside the method (like C# requires for instance variables). For example,
this.textBox1 should be converted to @textBox1.

. Initialization should be done the Ruby way. For example

this.textBox1 = new System.Windows.Forms.TextBox();

should be converted to

@textBox1 = System::Windows::Forms::TextBox.new

. Explicit calls to namespaces should be done the Ruby way. For example,
System.Windows.Forms should be converted to System::Windows::Forms.

. Form property and method calls should use the self keyword. For example,
this.ClientSize or this.SuspendLayout should be converted to self.ClientSize
or self.SuspendLayout. Be careful not to change this.ClientSize to @ClientSize

or to client_size (self.client_size is okay) because they will not work and might
even result in an exception.

Using the Form from a .NET Assembly
Another way to skip the task of placing and setting control and form properties is by
using the form from a .NET assembly. On the one hand, it makes your application not
entirely Ruby; on the other hand, however, it saves you a lot of effort.

To do so, you just use Visual Studio as a visual designer, as follows:

1. Create a new Windows Forms application in Visual Studio.

2. Add controls and design one or multiple forms. Do not handle events or write any
code; this will be done via IronRuby.

3. Delete the file program.cs or program.vb from the project. This file contains the
code that runs the application, which we will write by ourselves in IronRuby.

4. Compile to an assembly. Let’s assume that the name of the assembly is
ChatForm.dll.

5. From IronRuby, load the assembly: require “ChatForm.dll”.

6. Initialize the form in IronRuby, handle the different events, and write any code that
is needed for the application. No need for the set_form and create_controls meth-
ods from the ChatForm class introduced in this chapter.

Note that this time you don’t create a form, and therefore you don’t need to create a Form
class that inherits from System.Windows.Forms.Form. The Form class has already been
generated in the assembly, and all you have to do now is use the generated Form class.

297Building the Chat Windows Form

Wrapping Up the ChatForm Class

In this section, we built the ChatForm class, set the needed control properties, and handled
user actions.

Listing 12.2 contains the entire code of the ChatForm class.

LISTING 12.2 The ChatForm Class (chat_form.rb)

require “System.Windows.Forms”

require “System.Drawing”

require “chat”

include System::Windows::Forms

include System::Drawing

class ChatForm < Form

def initialize

Set the form properties

set_form

Create the controls

create_controls

Register and response to control events

register_events

end

def print_message(from_me, message)

Add user identification text

@conversation_textbox.text += if from_me then “Me: “ else “Friend: “ end

Add the message and a new line afterwards

@conversation_textbox.text += message + “\r\n”

end

def register_events

@connect_button.click {

Get the user selected chat side

if @side_combo.selected_index == 0 then side = “A” else side = “B” end

Create a new chat class instance

@chat = Chat.new(side)

Start a listening thread. Once a message arrives, print it

Thread.new {@chat.listen { |m| print_message false, m }}

}

@send_button.click {

Check if the connection has been made

298 CHAPTER 12 Windows Forms

if @chat.nil? then

Connection hasn’t been made, show an error

MessageBox.show(“Please connect first.”)

else

Add the message to the conversation textbox

print_message true, @message_textbox.text

Send the message to the other side

@chat.send @message_textbox.text

Clear the textbox content

@message_textbox.clear

end

}

end

def set_form

Set the form size to 330 pixels width and 340 pixels height

self.client_size = Size.new(330,340)

Do not allow resizing the window

self.form_border_style = FormBorderStyle.fixed_single

Set the window title to “The IronRuby Chat”

self.text = “The IronRuby Chat”

Disable the maximize button

self.maximize_box = false

end

def create_controls

init controls

@side_combo = ComboBox.new

@side_label = Label.new

@connect_button = Button.new

@conversation_textbox = TextBox.new

@message_textbox = TextBox.new

@send_button = Button.new

Set control properties

Set the location 70 pixels from the left and 10 from the top

@side_combo.location = Point.new(70, 10)

Set its size to 170 pixels width and 20 pixel height

@side_combo.size = Size.new(170,20)

Set its style. DropDownList doesn’t allow custom input to the list.

@side_combo.drop_down_style = ComboBoxStyle.DropDownList;

Add the available items

@side_combo.items.add “Side One”

@side_combo.items.add “Side Two”

299Building the Chat Windows Form

Set the first item as the default one

@side_combo.selected_index = 0

Set the location 15 pixels from the top and from the left borders

@side_label.location = Point.new(15, 15)

Set the text to “Chat Side”

@side_label.text = “Chat Side”

Set the button location to 245 pixels from the left and 10 from the top

@connect_button.location = Point.new(245, 10)

Set the size to 72 pixels width and 22 pixels height

@connect_button.size = Size.new(72, 22)

Set the text to “Connect”

@connect_button.text = “Connect”

Set the textbox location to 15 pixels from the left and 40 from the top

@conversation_textbox.location = Point.new(15, 40)

Set the textbox size to 300 pixel width and 230 pixels height

@conversation_textbox.size = Size.new(300, 230)

Enable multiline content

@conversation_textbox.multiline = true

Make the textbox read-only

@conversation_textbox.read_only = true

Set the textbox location to 15 pixels from the left and 275 from the top

@message_textbox.location = Point.new(15, 275)

Set the textbox size to 230 pixels wide and 45 pixels tall

@message_textbox.size = Size.new(230, 45)

Enable multiline content

@message_textbox.multiline = true

Set the button location to 250 pixels from the left and 275 from the top

@send_button.location = Point.new(250, 275)

Set the button size to 64 pixels width and 45 pixels height

@send_button.size = Size.new(64, 45)

Set the button text to “Send”

@send_button.text = “Send”

Add the controls to the form

self.controls.add @side_combo

self.controls.add @side_label

self.controls.add @connect_button

self.controls.add @conversation_textbox

self.controls.add @message_textbox

self.controls.add @send_button

end

end

300 CHAPTER 12 Windows Forms

Writing the Execution Code
Now that we have almost everything ready, the last task left is to write code that will
show the form.

This is a tricky part. The Form class has a show method, and it seems logical that this
method will open and show the dialog. However, this is not quite correct. For an applica-
tion to run as a Windows form, there are a few configuration calls to execute when the
application starts.

These configuration methods are a part of the System.Windows.Forms.Application class.
This is a static class (no instance is needed) with various different methods; most of them
are related to handling the Windows message loop.

Two method calls should be done right after the application has started. These are calls to
Application.EnableVisualStyles and Application.SetCompatibleTextRendering-

Default. The first makes the application use visual styles. Your application can run
without this call, but it looks better with it. The second is also an optional but recom-
mended call. It provides compatibility for a previous text-rendering technique used in
.NET 1.0. If there is no obvious reason to do otherwise, this method should be passed with
false as its argument (tells the controls to use the new text-rendering technique).

The last and most important call is the run method. To show the first form of the appli-
cation (the next ones can be shown using the show method), the run method must be
used. The run method starts the application message loop and shows the form passed as
an argument.

To gather all of these operations, we create a single file named main.rb, as shown in
Listing 12.3. Running this file shows the form.

LISTING 12.3 The Application Executing Code (main.rb)

require “System.Windows.Forms”

require “System.Drawing”

require “chat_form”

include System::Windows::Forms

Enable visual styles

Application.EnableVisualStyles()

Make controls use the recent text rendering technique

Application.SetCompatibleTextRenderingDefault(false)

Create the form and show it

Application.Run(ChatForm.new);

301Summary

FIGURE 12.5 A sample chat session between two IronRuby-driven chat windows.

Eventually, if we execute main.rb twice to open two chat windows, choose different sides,
and click Connect, we can start the chat session and transfer messages between the chat
windows, as shown in figure 12.5.

Summary
In this chapter, we built a Windows Forms application with a user-friendly interface. You
have learned the basic of the framework: the different controls, their properties, how to
initiate them, and how to respond to user actions. You have also been introduced to a
couple of workarounds to deal with the lack of a WinForms visual designer in IronRuby.

Windows Forms is an extensively used framework. It is easy to use and understand, and
because it’s been around awhile, it has numerous control suites that can make your appli-
cation look very attractive.

However, a new presentation framework is available that offers better graphics capabilities
and smarter designer/developer separation. This framework is called Windows
Presentation Foundation (WPF) and is the subject of the next chapter.

This page intentionally left blank

CHAPTER 13

Windows Presentation
Foundation (WPF)

IN THIS CHAPTER

. Hello, WPF

. XAML

. IronRuby and WPF
Fundamentals

. Windows

. Layout Controls

. Graphics and Animations

. Data Binding

. REPL

Windows Presentation Foundation (WPF) is a graphical
framework for creating rich user interfaces. Evolved from
the WinForms framework, it provides a similar functionality
(for example, input controls, data binding, and handling of
user actions).

This is where the similarity ends. WPF is richer, and more
mature, and makes complicated tasks turn to a matter of
minutes. It’s like WinForms on steroids.

Hello, WPF
WPF is a presentation framework that was first introduced
in .NET Framework 3.0. Remember that IronRuby can run
on .NET 2.0 SP1, so to use WPF you need to install .NET
3.0 or later.

With WPF, several tasks that were really complicated on the
WinForms framework are made much easier. For example,
creating animations and image effects is a matter of
seconds. However, with great power comes more complex-
ity. You see throughout the chapter that mastering WPF is a
bit harder than WinForms; it takes more than just coding
and positioning components on a form.

But, one step at a time.

To create our first IronRuby-driven WPF application, we
need to require the WPF assemblies. These are the
PresentationFramework and PresentationCore assemblies:

require “PresentationFramework,

Version=3.0.0.0,

Culture=neutral,

304 CHAPTER 13 Windows Presentation Foundation (WPF)

PublicKeyToken=31bf3856ad364e35”

require “PresentationCore,

Version=3.0.0.0,

Culture=neutral,

PublicKeyToken=31bf3856ad364e35”

These assemblies have references on the IronRuby Libs folder, so it is possible to require
them with their partial name, too:

require “PresentationFramework”

require “PresentationCore”

Now that we have WPF at our fingertips, we can write our first WPF application:

require “PresentationFramework”

require “PresentationCore”

w = System::Windows::Window.new

t = System::Windows::Controls::TextBlock.new

t.text = “Hello, WPF!”

w.content = t

app = System::Windows::Application.new

app.run w

This code is pretty straightforward. After requiring the WPF assemblies, I created a
window. To show text inside the window, I added a TextBlock element and set a welcom-
ing text to it. Then I set the TextBlock as the content of the window.

To run the WPF window, it is necessary to create the WPF application first and then run it.
This is what is done on the last two lines.

There is another way to show the window via the Application class that some might find
more appealing:

def app_start(sender, args)

w = System::Windows::Window.new

t = System::Windows::Controls::TextBlock.new

t.text = “Hello, WPF!”

w.content = t

w.show

end

app = System::Windows::Application.new

app.startup.add method(:app_start)

app.run

305XAML

The difference here is that we don’t pass the window to the Application.run method, but
we subscribe to the startup event and do our initialization there.

These code blocks generate the window shown in Figure 13.1.

This window wraps up our first IronRuby-driven WPF application.

XAML
On our Hello, WPF application, we have created the UI entirely via code. This might work
for the first or second application but not for bigger complex applications.

XAML, which stand for eXtensible Application Markup Language, is an XML-based
language used as the UI description language. The idea is brilliant—providing a full separa-
tion between UI and code. No more writing locations and sizes of controls in code; this
can be done entirely in a convenient XML format.

For example, take the Hello, WPF application. Its equivalent XAML string is as follows:

<Window xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>

<TextBlock Text=”Hello, WPF!”/>

</Window>

The XAML language is very powerful. Apart from being able to describe UI elements and
their properties, it can hold resources and reference them.

For example, we could use a color name as a resource and use it on several different
elements:

FIGURE 13.1 The first IronRuby-driven WPF window.

306 CHAPTER 13 Windows Presentation Foundation (WPF)

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Window.Resources>

<SolidColorBrush Color=”Fuchsia” x:Key=”MyColor”/>

</Window.Resources>

<StackPanel>

<TextBlock x:Name=”msg” Text=”Hello, WPF!” Foreground=”{StaticResource

MyColor}”/>

<Ellipse Width=”100” Height=”100” Fill=”{StaticResource MyColor}”/>

</StackPanel>

</Window>

This XAML code ends up as the window shown in Figure 13.2.

Static resources are discussed later in the chapter in the “Data Binding” section.

XAML AND WPF

It is important to notice that XAML is an XML language. This means that XAML doesn’t
have to be used solely by the WPF framework.

Any framework, even not a .NET one, that can interpret the XAML language can use it.

Namespaces

XAML samples in this section contain namespace declaration (xmlns and xmlns:x), and
you might wonder what they are for:

FIGURE 13.2 A WPF Window generated by XAML.

307IronRuby and WPF Fundamentals

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

</Window>

The first namespace (xmlns) makes the elements correlate to .NET’s WPF controls. Just like
C# or VB.Net has namespaces to uniquely identify System.Window.Forms.Control and
System.Web.UI.Control, XAML has these namespaces to uniquely identify WPF elements.

The second namespace (xmlns:x) is used for more WPF-specific elements and attributes.
For example, naming objects is done via it: x:Name. Naming an element is done for a more
convenient use via code, which makes it not a pure XAML property. This is why it appears
within the second namespace and not the first one.

IronRuby and WPF Fundamentals
To work with WPF via IronRuby, there are a few simple tasks to master. When you know
these, you can accomplish tasks with ease with WPF and IronRuby.

Running XAML

WPF is fully integrated with the XAML language. In current .NET static language, you can
even use XAML windows as classes and have a direct connection to their content.

IronRuby, however, does not support this in version 1.0. We need to load the XAML file
manually and access content in a fully dynamic way.

To load a XAML file, we can use the parse method of the
System::Windows::Markup::XamlReader class. If the XAML appears on a file, we read it
into a variable first and then use the parse method.

The parse method returns the root WPF object of the XAML file (Window,
NavigationWindow, or Page, for example):

require “PresentationFramework”

require “PresentationCore”

xaml = File.open(‘d:/app/window1.xaml’,”r”).read

@root = System::Windows::Markup::XamlReader.parse(xaml)

Now that we have the root object, we can use the Application class run method or, if a
WPF application is already running, we can use the show or show_dialog methods (if the
root object is a window):

app = System::Windows::Application.new

app.run @root

or

@root.show

308 CHAPTER 13 Windows Presentation Foundation (WPF)

Retrieving WPF Elements

When you work with XAML, you do not have all the elements as objects within the code.
This situation can easily be solved.

Every framework element provides the find_name method that searches for an element
that matches the given name and returns it.

This means that if we have the root element (the window, for instance), we can find and
access every element within it. For example, to find an element named msg within the
root element, we write the following code:

@root.find_name(“msg”)

We can even enhance that and implement the method_missing method so that it locates
elements for us:

def method_missing(name)

super if @root.nil?

control = @root.find_name(name)

if control.nil? then super else control end

end

With that implemented, accessing msg is much more natural:

msg.text = “Hello from IronRuby!”

Event Handling

Responding to user actions is one of the essentials of every client application. Every WPF
element contains several events that will be raised under certain circumstances.

Registering to WPF events is done like every other CLR event, by using add, or with a code
block. For example, if we have a button on the XAML code:<Button x:Name=“btn”>Say
Hello</Button>

We can register to its click event:

def say_hello(sender, args)

System::Windows::MessageBox.show(“Hello!”)

end

win.find_name(“btn”).click.add method(:say_hello)

or

win.find_name(“btn”).click += method(:say_hello)

or

win.find_name(“btn”).click do |s,e|

System::Windows::MessageBox.show(“Hello!”)

end

309Windows

WPF events bubble up until someone handles them. Sometimes we may want to stop the
event bubbling. For example, we may want to disable closing the form, even by the Alt+F4
combination. To do that, we can catch that keyboard click, handle it, and stop the event
from bubbling up (which eventually closes the form). We can do that by the arguments
object that is passed with every WPF element event. This object is a RoutedEventArgs
object. It contains a property named handled, which is the key to our solution. If we set
this one to true, it stops the event bubbling.

If you write a custom component or subscribe to an event from multiple locations, it is a
good practice to check the handled property before starting and not to proceed when it
equals true.

Windows
WPF features a few control containers that are used for displaying the UI in slightly differ-
ent approaches.

If you are a Windows Forms developer, the following looks familiar to you, but don’t you
despair, WPF has a surprising new window type, NavigationWindow, which is described at
the end of this section.

WINDOW CONTENT

WPF windows can contain only a single item. There is no Controls collection or a simi-
lar concept. As weird as it sounds, it makes sense. In the WPF framework, these con-
trol containers are designed to provide the surface and not the layout mechanism. For
example, you might want to place controls one after another or place them in fixed
positions. This will be done via one of the several layout controls available (described
later on the “Layout Controls” section) and not by the window itself.

Window

A Window is a resizable control container that provides, except from the controls surface, a
border and a title bar that contains an icon, a textual title, and control boxes (minimize,
maximize, and close).

The following XAML code contains the most common Window attributes as well as
Table 13.1:

<Window
WindowSt1yle=”SingleBorderWindow”
ResizeMode=”CanResize”
WindowState=”Normal”
WindowStartupLocation=”CenterScreen”
Icon=”windowIcon.ico”
Title=”WPf Window”
Width=”500”
Height=”500”/>

310 CHAPTER 13 Windows Presentation Foundation (WPF)

TABLE 13.2 WindowStyle Values

Value Description Output

SingleBorderWindow Includes a border and a full title bar.

WindowStyle
The WindowStyle attribute has four possible values. Each value makes the window look
slightly different. Table 13.2 describes the possible values.

TABLE 13.1 Common Attributes of Window

Name Description Value

WindowStyle Controls the window
border and title bar look

SingleBorderWindow

ThreeDBorderWindow

ToolWindow

None

ResizeMode Controls resizing and
minimizing capabilities

CanResize

CanResizeWithGrip

CanMinimize

NoResize

WindowState Controls the state of the
window as it opens

Normal

Maximized

Minimized

WindowStartupLocation Controls the position of
the window as it opens

Manual

CenterOwner

CenterScreen

Icon Controls the icon of the
window

A path to the icon file. Can be a file
system path or URI.

Title Sets the text on the title
bar

A string.

Width and Height Controls the size of the
window

A double value followed by px (for pixels),
in (for inches), cm (for centimeters) or pt
(for points).
Default is pixels.
Can be set to Auto to enable automatic
resizing.

311Windows

ResizeMode
ResizeMode controls the resizing capabilities of the window. Unlike WinForms, this also
controls the minimize/maximize boxes when needed. Table 13.3 describes the possible
values.

TABLE 13.3 ResizeMode Values

Value Description Output

CanResize Default value. Enables resizing.

CanResizeWithGrip Enables resizing and adds a resize grip to the
bottom-right corner.

TABLE 13.2 WindowStyle Values

Value Description Output

ThreeDBorderWindow Includes a 3D border and a full title bar.

ToolWindow Includes a border and a title bar with no
icon and no minimize/maximize boxes.

None Does not include a border or a title bar at
all.
A small border is added only when the
window allows resizing.

312 CHAPTER 13 Windows Presentation Foundation (WPF)

TABLE 13.3 ResizeMode Values

Value Description Output

CanMinimize Disables resizing and maximizing the window.
Only minimizing is enabled.

NoResize Disables resizing. The maximize and minimize
boxes become hidden.
Use this value to remove the border from a
window with None as its WindowStyle.

Showing the Window
There are three ways to display a window. The first one is via the Application.run
method. By passing a window object to it, the window will be presented to the user and
will act as the main window of the application. Note that you cannot use the run method
more than once.

The second way is by executing the show method of the Window class.

The final way of to show a window is by using the show_dialog method of the Window
class. This method, like the show method, will present the window immediately to the
user. However, if you use the show_dialog method, the window becomes a modal window,
which means that the user cannot access the open window (or other control container)
until it is closed. Showing a window in modal mode also makes the code that opened it
wait until it is closed. Modal windows are primarily used for dialog boxes for very specific
tasks (choosing files, setting properties, and so on). There is no real difference in the way
we build the window itself. The difference is only in the concept and goal of the window.

Passing Data Between Windows
Sometimes a need arises to pass data between two windows (or more). For example, one
window might contain user input that the other window needs for its operations.

Achieving that is simple. We have code, so there is no problem with inheriting from the
Window class and adding the needed attributes.

Listing 13.1 contains two windows: main_window and dialog_box. main_window opens the
dialog_box window and takes the needed information from it after it is closed.

LISTING 13.1 Passing Data Between Windows

require “PresentationFramework”

require “PresentationCore”

313Windows

main_window = System::Windows::Markup::XamlReader.parse <<XAML

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Width=”400” Height=”200”>

<StackPanel>

<Button x:Name=”button”>Click</Button>

</StackPanel>

</Window>

XAML

dialog_box = System::Windows::Markup::XamlReader.parse <<XAML

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Width=”300” Height=”150”>

<StackPanel

HorizontalAlignment=”Center” VerticalAlignment=”Center”>

<TextBlock>What would you like to do?</TextBlock>

<RadioButton x:Name=”sleep”>Sleep</RadioButton>

<RadioButton x:Name=”jump”>Jump</RadioButton>

<Button x:Name=”ok_button”>OK</Button>

</StackPanel>

</Window>

XAML

main_window.find_name(“button”).click {

Show the dialog

dialog_box.show_dialog

The code will reach the next condition only

after the dialog_box window is closed

if dialog_box.find_name(“sleep”).is_checked

System::Windows::MessageBox.show “Go to bed!”

else

System::Windows::MessageBox.show “Jump jump jump!”

end

}

dialog_box.find_name(“ok_button”).click {

dialog_box.close

}

app = System::Windows::Application.new

app.run main_window

314 CHAPTER 13 Windows Presentation Foundation (WPF)

FIGURE 13.4 A WPF navigation window.

With the preceding code, our application looks like Figure 13.3.

When the user clicks OK in this situation, a “Go to bed!” message pops up.

Navigation Window

Windows are a nice concept, but multiple windows that pop up every time is passé. With
the fast rise of the Internet and rich web applications, users are less tolerant to Windows
applications that open various windows on a regular basis.

This is where NavigationWindow saves the day. The concept is simple: You do not open
different windows for the user; instead, you display the new content on the same window.
The user then can navigate back and forward between the windows.

In addition to that, NavigationWindow has a built-in support for displaying web pages.

A blank navigation window is almost identical to a regular window. The addition on navi-
gation windows is a navigation panel at the top of the window (which, of course, can be
removed), as shown in Figure 13.4.

NavigationWindow Properties and Methods
NavigationWindow supports all properties and methods that regular windows do. (It actu-
ally inherits from the Window class.)

FIGURE 13.3 Passing data between windows.

315Windows

FIGURE 13.5 Using the navigation window to visit Internet sites.

Apart from it, NavigationWindow adds some more unique properties and methods. The
most common are ShowsNavigationUI and Source:

. ShowsNavigationUI is a Boolean property (supports true and false values) that indi-
cates whether the navigation panel should be shown or hidden.

. Source is a string property that can contain a URI to a website, a file, or a resource.

For example, the following XAML code shows the navigation panel and sets the source to
http://www.samspublishing.com:

<NavigationWindow

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

ShowsNavigationUI=”true”

Source=”http://www.samspublishing.com”/>

This XAML code is translated to the window shown in Figure 13.5.

As well as navigation-related properties, NavigationWindow has unique related methods:

. navigate changes the current content to the given object or URI.

. refresh reloads the current page.

Content
Up until now, with regular windows, we got used to a certain format of an XAML file: the
window declaration and then the controls it contains between its tags.

http://www.samspublishing.com

316 CHAPTER 13 Windows Presentation Foundation (WPF)

This is not the case with navigation windows. Navigation windows are lone wolves, and
hence it is impossible to add controls between the NavigationWindow tags.

To use WPF controls as NavigationWindow content, we must declare them in a different
XAML file (or object). The control container that is used for this purpose is Page.

A Page contains controls and can be contained within a NavigationWindow. As a control
designed to be used inside navigation windows, the Page class has some attributes for
controlling their parent window:

. Title sets the page title. This is not the title that the window will display. The
place where you can see it is on the navigation list (the small arrow near the navi-
gation buttons).

. WindowHeight, WindowWidth, and WindowTitle set the host window properties.

. KeepAlive, when set to true, keeps the page in memory after the user has navigated
away. When the user returns, the page isn’t rerendered.

Listings 13.2 and 13.3 contain two pages that the user can navigate between.

LISTING 13.2 First Navigation Page (page1.xaml)

<Page

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

WindowTitle=”Page 1”>

<StackPanel>

<TextBlock>This is page 1</TextBlock>

<TextBlock>

<Hyperlink NavigateUri=”page2.xaml”>

Go to page 2!

</Hyperlink>

</TextBlock>

</StackPanel>

</Page>

LISTING 13.3 Second Navigation Page (page2.xaml)

<Page

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

WindowTitle=”Page 2”>

<StackPanel>

<TextBlock>This is page 2</TextBlock>

317Layout Controls

<Button Command=”NavigationCommands.BrowseBack”>

Back to page 1</Button>

</StackPanel>

</Page>

To make the application use these pages, just change the Source property of the naviga-
tion window to page1.xaml file URL:

<NavigationWindow

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

ShowsNavigationUI=”true”

Source=”file://C:/WPFApplication/page1.xaml”/>

Layout Controls
Now that you know the different window types of the WPF framework, let’s continue and
explore the layout possibilities. As mentioned previously, windows supply the surface, and
layout controls supply the layout mechanism. The different layout controls provide, each
in its own special way, a layout organization mechanism.

The available layout controls are StackPanel, WrapPanel, DockPanel, Grid, and
ScrollViewer.

There is no problem with combining several different layout controls. For example, a Grid
can contain a WrapPanel inside one of its cells to provide wrapping capabilities to it.

StackPanel

A StackPanel is a layout control that lets you arrange controls in a stack form (one on top
of the other or side by side).

It is good for simple and small sections more than for big and complex ones.

For instance, the following XAML sample demonstrates a sample stack panel content:

<StackPanel>

<TextBlock>Hello there</TextBlock>

<Button>Click me</Button>

<RadioButton>Check here</RadioButton>

<Image Source=”file://c:/flower.jpg”/>

</StackPanel>

318 CHAPTER 13 Windows Presentation Foundation (WPF)

FIGURE 13.7 Using HorizontalAlignment property to prevent element stretching.

Figure 13.6 shows how this looks.

PREVENTING ELEMENT STRETCHING

As you might have noticed, elements within the stack panel automatically stretch to fill
its entire width. For example, look at the button in Figure 13.6. Sometimes this behav-
ior might suit our needs, but most of the times it just looks weird.

We can prevent this from happening if we want to. To do so, just set the
HorizontalAlignment property. For example, if we change the button definition as
follows:

<Button HorizontalAlignment=”Left”>Click me</Button>

The button returns to its original size, as shown in Figure 13.7.

StackPanel supports a horizontal orientation, too, which places the UI elements side by
side:

<StackPanel Orientation=”Horizontal”>

This changes the look of the panel from a vertical strip to a horizontal one, as shown in
Figure 13.8.

WrapPanel
WrapPanel is similar to StackPanel as they both place their child elements in vertical or
horizontal orientations. The difference is that WrapPanel creates another column (in verti-
cal orientation) or starts a new line (in horizontal orientation) when it runs out of space.

FIGURE 13.6 Using the StackPanel layout.

319Layout Controls

FIGURE 13.9 Using the WrapPanel layout.

FIGURE 13.8 The StackPanel layout in horizontal orientation.

For example, look how using WrapPanel in the following sample forces the image to move
to a new column because there is not enough room for it on the first one:

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Width=”230” Height=”130”>

<WrapPanel Orientation=”Vertical”>

<TextBlock Margin=”5”>Hello there</TextBlock>

<Button Margin=”5”>Click me</Button>

<RadioButton Margin=”5”>Check here</RadioButton>

<Image Margin=”5” Source=”file://d:/flower.jpg”/>

</WrapPanel>

</Window>

Grid

A grid provides a table layout mechanism. It enables you to organize the content in rows
and columns. After defining the number and properties of the rows and columns, you can
position elements within the grid cells.

POSITIONING ELEMENTS WITHIN CELLS

Although multiple elements can be positioned within a single cell (stacked one on top
the other), you might want to consider also using panels to organize the cell content.
(Nesting panels within panels is a great way to organize the whole and its parts.)

320 CHAPTER 13 Windows Presentation Foundation (WPF)

FIGURE 13.10 Using the Grid layout.

The following XAML sample contains a grid of two columns and three rows. Notice how
the elements are positioned in the right cell (Grid.Column and Grid.Row) and the ability to
span one cell over multiple columns or rows (Grid.RowSpan and Grid.ColumnSpan):

<Grid>

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />

<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”75”/>

<ColumnDefinition Width=”*” />

</Grid.ColumnDefinitions>

<Label Grid.Column=”0” Grid.Row=”0” Margin=”5”>Name:</Label>

<TextBox Grid.Column=”1” Grid.Row=”0” Margin=”5”/>

<CheckBox Grid.Column=”0” Grid.Row=”1” Grid.ColumnSpan=”2”

Margin=”5”>Loves IronRuby</CheckBox>

<Button Grid.Column=”1” Grid.Row=”2” Margin=”5”>

Send</Button>

</Grid>

Figure 13.10 shows how this looks.

Canvas

So far, we’ve been talking about panels that are relative to the window size. Canvas is
different: Its element positioning agenda is the absolute one. Every element is positioned
in a specific position that does not change according to canvas size changes.

The following sample sets the elements in fixed positions (Canvas.Top, Canvas.Botton,
Canvas.Left, and Canvas.Right):

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Canvas>

<Button Canvas.Top=”10” Canvas.Left=”15”>

Click me!</Button>

321Graphics and Animations

FIGURE 13.11 Using the Canvas layout.

<Button Canvas.Top=”40” Canvas.Left=”45”>

I’m the one to click!</Button>

<Button Canvas.Bottom=”20” Canvas.Right=”10”>

No! Click me!</Button>

</Canvas>

</Window>

The top button (and the others according to their positions) will always be 10 pixels from
the top and 15 from the left, no matter whether there is enough room.

The preceding XAML content generates the window shown in Figure 13.11.

More Panels

WPF offers more panel variations, but these are beyond the scope of this book. These
panels are DockPanel, ScrollViewer, and ViewBox.

You can read more about them on the MSDN website:

. DockPanel: http://msdn.microsoft.com/en-us/library/system.windows.controls.
dockpanel.aspx

. ScrollViewer: http://msdn.microsoft.com/en-us/library/system.windows.controls.
scrollviewer.aspx

. ViewBox: http://msdn.microsoft.com/en-us/library/system.windows.controls.viewbox.
aspx

Graphics and Animations
WPF is a great framework offering excellent UI flexibility and options. However, up to
now I haven’t described anything major that isn’t possible with the WinForms framework.

The graphics capabilities of WPF are some of its “killer features” that have been much
more complicated to achieve before.

http://msdn.microsoft.com/en-us/library/system.windows.controls.dockpanel.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.dockpanel.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.viewbox.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.viewbox.aspx

322 CHAPTER 13 Windows Presentation Foundation (WPF)

Shapes

There are various different shapes in the WPF framework, which together make it possible
to build every shape out there. Table 13.4 briefly describes each of the available shapes.

For example, creating a drawing of a home with circular windows is simple:

<Canvas>

<Rectangle Canvas.Left=”88” Canvas.Top=”80” Height=”70”

Width=”90” Stroke=”Black” />

<Polyline Canvas.Left=”88” Canvas.Top=”50”

Stroke=”Black” Points=”0,30 45,0 90,30”/>

<Ellipse Canvas.Left=”95” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black” />

<Ellipse Canvas.Left=”145” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black” />

<Rectangle Canvas.Left=”119” Canvas.Top=”119”

Height=”31” Width=”26” Stroke=”Black”/>

</Canvas>

The XAML code results in the drawing shown in Figure 13.12.

Brushes

Every element that is drawn in a WPF window uses a brush for drawing itself. WPF provides
several brushes that offer different ways to paint a control, as described in Table 13.5.

TABLE 13.4 WPF Shapes

Name Description

Rectangle Draws rectangles.

Ellipse Draws ellipse shapes (circles and others).

Line Draws a single line that starts at one point and ends at another. A line doesn’t
have to be a horizontal one.

Polyline Instead of a line between two points, a polyline is a line that can be drawn
between multiple points.

Polygon Just like polyline but creates a closed shape.

Path The most complex shape and provides a large number of capabilities; can combine
several shapes, draw curves, and more.

323Graphics and Animations

FIGURE 13.12 Using shapes.

TABLE 13.5 WPF Brushes

Name Description Sample

SolidColorBrush Draws using a single color

LinearGradientBrush Draws with a transformation between two colors

RadialGradientBrush Start with one color and transforms to a second one in an
elliptical shape

ImageBrush Draws using a given picture

DrawingBrush Draws using a given drawing (defined with WPF shapes)

VisualBrush Draws using a given WPF element (every element acceptable)

The screenshots in the preceding table are made from a rectangle using the different
brushes for filling itself. To give you an idea how easy this is, look at the code responsible
for the linear gradient sample:

<Rectangle Height=”100” Width=”100” Margin=”20”>

<Rectangle.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”>

324 CHAPTER 13 Windows Presentation Foundation (WPF)

<GradientStop Color=”Yellow” Offset=”0”/>

<GradientStop Color=”Green” Offset=”1”/>

</LinearGradientBrush>

</Rectangle.Fill>

</Rectangle>

It is important to note that brushes can be used wherever a color can be used (for
example, even for filling text).

Animations

WPF has built-in extensive support for animation. The animation possibilities are exten-
sive: size changing, rotation, transition effects, moving in paths, and more.

Every WPF element can be animated. We are not limited here to video clips or GIF anima-
tions; we can actually animate a text box, for example.

The simplest and most commonly used animation is the one that changes a specific prop-
erty. For example, to animate the size of a control, the Height and Width properties should
be changed, or to animate the background color, the Background property should be
changed, and so on.

The following sample XAML code generates a TextBlock that animates the font size from
1 pixels to 60 pixels after the TextBlock is loaded:

<TextBlock Name=”txt” FontSize=”1px”>Hello

<TextBlock.Triggers>

<EventTrigger RoutedEvent=”TextBlock.Loaded”>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation

Storyboard.TargetName=”txt”

Storyboard.TargetProperty=”FontSize”

From=”1.0” To=”60.0” Duration=”0:0:2”

AutoReverse=”True” RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</TextBlock.Triggers>

</TextBlock>

The important element for us here is the DoubleAnimation element. DoubleAnimation can
manipulate values of type double. On this example, FontSize is a double value that makes
DoubleAnimation a perfect match.

There are more animation elements, one for every type. Each of them support a From-To
set of values: ByteAnimation, ColorAnimation, DecimalAnimation, Int16Animation,
Int32Animation, Int64Animation, Point3DAnimation, PointAnimation,

325Data Binding

QuaternionAnimation, RectAnimation, Rotation3DAnimation, SingleAnimation,
SizeAnimation, ThicknessAnimation, Vector3DAnimation, and VectorAnimation.

You might sometimes want to create animations via code. As in XAML, you must define a
DoubleAnimation object and connect it to the property you want to animate. The follow-
ing code is the equivalent to the preceding XAML code:

include System::Windows::Media::Animation

include System::Windows::Controls

include System::Windows

anim = DoubleAnimation.new

anim.from = 1.0

anim.to = 60.0

anim.duration = Duration.new(System::TimeSpan.from_seconds(2))

anim.repeat_behavior = RepeatBehavior.forever

anim.auto_reverse = true

win.find_name(“txt”).BeginAnimation(

TextBlock.font_size_property, anim)

The WPF framework includes even more animation capabilities. You can define anima-
tions on a timeline, use key frames, and move elements around on a given path. These are
not described here, but you can read about them on the MSDN website.

Data Binding
Applications are mostly about displaying data. Layout arrangements, special graphics, and
animations are there to enhance the users’ experience while they are obtaining data.

Data binding in WPF is an integral part of every single property. You can bind text to a
given data, which is the common case, and you can also bind the color, font size, or posi-
tion to the data.

Binding to Static Data

Sometimes there are static values that you would like properties to bind to (for example, if
you want a specific color to appear on the application or a special text message).

Static data is called a resource. The location of the resources is within the Windows.
resources XAML element. Every resource has a special name to reference afterward. This
name is defined on the x:Name attribute.

The next XAML code contains color and string resources. Note that the extra namespace
allows using CLR types:

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

326 CHAPTER 13 Windows Presentation Foundation (WPF)

xmlns:s=”clr-namespace:System;assembly=mscorlib”>

<Window.Resources>

<SolidColorBrush x:Key=”olive_color” Color=”Olive” />

<s:String x:Key=”ironruby_text”>IronRuby!!!</s:String>

</Window.Resources>

</Window>

You can leverage these resources straight from the XAML code or from the IronRuby code.

From XAML code, we would use the binding special value format. The format consists of
curly brackets with the StaticResource keyword and the resource name right
afterwards:{StaticResource resource_name}. For example, the following XAML code
makes use of the above resources to set the TextBlock color and content:

<TextBlock x:Name=”text_block”

Foreground=”{StaticResource olive_color}”

Text=”{StaticResource ironruby_text}”/>

Accessing the resources via code is an easy matter, too, but with one trick:

win.find_name(“text_block”).text = win.find_resource(“ironruby_text”.to_clr_string)

The find_resource method must retrieve System::String values. The IronRuby string
consists of the MutableString class, and you end up not finding the requested resource if
you use it directly. Make sure to use the to_clr_string method to convert IronRuby’s
string to the expected System::String.

Styles
These static resources mostly consist of style elements. This is why WPF provides a way to
gather style settings into a single resource. This makes it much easier to create and use
systemwide styles.

A style declaration starts with a root element named Style (surprise) that is given the
known x:Key for referencing. The child nodes of a Style element are Setter elements that
have two attributes: Property and Value. The Property attribute defines the name of the
property to set, and the Value defines the value to set.

For example, the following XAML code creates a style that sets the foreground color and
text of the control that uses it:

<Window.Resources>

<Style x:Key=”the_ironruby_style”>

<Setter Property=”TextBlock.Foreground” Value=”Red”/>

<Setter Property=”TextBlock.Text” Value=”IronRuby!!!”/>

</Style>

</Window.Resources>

327Data Binding

Using this style is just as easy:

<TextBlock Style=”{StaticResource the_ironruby_style}”/>

As you can see, it might be irritating to write the target type on every property name (for
example, TextBlock.Foreground and TextBlock.Text). The TargetType attribute is exactly
what we need to skip it:

<Style x:Key=”the_ironruby_style” TargetType=”TextBlock”>

<Setter Property=”Foreground” Value=”Red”/>

<Setter Property=”Text” Value=”IronRuby!!!”/>

</Style>

Binding to Dynamic Data

Binding to dynamic data is one of the tasks you perform most often when programming
user applications. This task is quite straightforward in WPF.

The first task is to set the data to the element. The binding is done to specific properties in
the given data object.

For example, the next class represents a single person:

class Person

attr_accessor :first_name, :last_name

def initialize(first_name, last_name)

self.first_name = first_name

self.last_name = last_name

end

end

IRONRUBY CLASSES FOR DATA BINDING

You should be aware of a few issues when constructing classes that WPF should be
bound to.

Binding is done to specific properties in the data object. IronRuby does not have an
equivalent to CLR properties. Even attributes are only metaprogramming methods that
create getter and setter methods.

The WPF framework has a workaround for it. It finds the needed properties within the
IronRuby object if it has a getter and setter method. In every other case, WPF won’t
find the data property.

Another issue is the lack of full support of IronRuby types. If you encounter a problem
with the data binding, try using CLR types rather than IronRuby ones.

328 CHAPTER 13 Windows Presentation Foundation (WPF)

To bind a WPF element to an instance of the Person class, the element’s data_context
property should be set:

shay = Person.new(“Shay”,”Friedman”)

Bind the entire window

win.data_context = shay

On the XAML side, similar to the way of binding to static resources, we use the special
binding value format. This time, between curly brackets we use the Binding keyword and
the property name afterward:

<TextBlock>

Full name:

<TextBlock Text=”{Binding first_name}”/>

<TextBlock Text=”{Binding last_name}”/>

</TextBlock>

Data Templates
In most scenarios, you bind more than just one value. Most of the time, we have to
present a list of records taken from some kind of a data source.

WPF provides an integrated way to bind to lists of data called data templates. The idea is
that instead of defining the way one item looks, we provide a template for all of them.

The binding in the template itself is done like you saw with the Binding keyword. This is
because every presentation item has the right data item as its data context.

Let’s look at a simple ListView data template:

<ListView x:Name=”listbox” ItemsSource=”{Binding}”>

<ListView.ItemTemplate>

<DataTemplate>

<TextBlock>

<TextBlock Text=”{Binding first_name}”/>

<TextBlock Text=”{Binding last_name}”/>

</TextBlock>

</DataTemplate>

</ListView.ItemTemplate>

</ListView>

Notice that to “tell” the ListView that it is going to be data bound, its ItemsSource
attribute contains a {Binding} directive. This is important because the binding will not
happen otherwise.

When we have the UI ready, let’s fill it up with data:

shay = Person.new(“Shay”, “Friedman”)

john = Person.new(“John”,”Doe”)

329REPL

FIGURE 13.13 Using data templates.

melissa = Person.new(“Melissa”,”Smith”)

win.find_name(“listbox”).data_context = [shay, john, melissa]

Eventually, with the addition of a window element that wraps the ListView and upon
execution of the XAML code via code, the window shown in Figure 13.13 results.

REPL
IronRuby, as mentioned in early chapters of this book, is a read-evaluate-print loop
(REPL) language. This means that the language has integrated capabilities to evaluate
code during runtime.

Adding REPL capabilities to an IronRuby-driven WPF application requires minor changes
to the application. All we need actually is a place to write our code and a way to execute it
(a button click or some other way).

For example, look at the following WPF application:

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<StackPanel>

<TextBlock x:Name=”text_block”/>

</StackPanel>

</Window>

It is a simple application that contains one TextBlock named text_block. We now add
REPL capabilities to this application.

First, let’s add a text box and a button so that we have a place to insert Ruby commands:

<Window

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<StackPanel>

<TextBlock x:Name=”text_block”/>

<TextBox x:Name=”ruby_command”/>

<Button x:Name=”btn”>Execute</Button>

</StackPanel>

</Window>

330 CHAPTER 13 Windows Presentation Foundation (WPF)

The second and last task is to handle the button’s click event via code. There we evaluate
and execute the code:

app = System::Windows::Application.new

win = System::Windows::Markup::XamlReader.parse xaml

win.loaded {

win.find_name(“btn”).click {

code = win.find_name(“ruby_command”).text.to_s

eval code

}

}

app.run win

eval is the method that executes textual Ruby commands. Notice that it receives a Ruby
string and the text box contains a System::String value. This is why the to_s method
should be called before passing the value to the eval method.

Now we can pass commands and execute them during runtime. For example, we can
change the window height by filling win.height = 500 in the REPL box and clicking the
button to execute it.

Adding REPL to a WPF application is easy. I recommend that you take advantage of this
capability; it can be a lifesaver. You can access elements, read values, and see how design
changes take place in a live and instant way.

Summary
In this chapter, you learned the fundamentals of WPF via IronRuby. WPF is a powerful
framework that brings fresh air to Windows applications development.

You have learned in this chapter about window types, layout options, graphics capabili-
ties, and data binding. The WPF framework features even more (templates to fully control
UI elements, 3D graphics, themes, printing capabilities, and more, and then some more).

If you liked what saw in this chapter, I urge you to read more about it. A good place to
start is the Microsoft website for Windows client programming at http://windowsclient.net.

http://windowsclient.net

CHAPTER 14

Ruby on Rails

IN THIS CHAPTER

. Preparing Your Environment

. Hello, IronRuby on Rails

. The Basic Concepts

. Main Components

. Know Your Environment

. Creating a Page

. Creating a Database-Driven
Page

Ruby has been around since 1995. Yet it was not widely
known until 2006, the year when Ruby on Rails became
popular. Ruby on Rails, also known as Rails or RoR, is an
innovative web framework. It has brought new concepts to
web development and influenced the entire web develop-
ment industry. Clones started to show up in various
languages like PHP, Java, Python, and .NET.

The framework started as an internal product of 37signals,
led by David Heinemeier Hansson. In 2004, they decided to
make the project open source, and the rest is history.

Nowadays, many websites are developed using Ruby on
Rails. The biggest and most popular one is Twitter, which
receives millions of visitors every day.

This chapter introduces you the main concepts of Ruby on
Rails. In this chapter, you build a small, full-featured web
page by exploiting Rails features.

Preparing Your Environment
Ruby on Rails is a RubyGem. Therefore, the gem should be
installed before you can start developing Ruby on Rails
applications. In addition, RoR applications use databases to
store the data of the application, so you need a database
server as well. Follow the next steps to prepare your
computer for RoR development:

332 CHAPTER 14 Ruby on Rails

1. Install the Ruby on Rails gem. This is done with the igem tool, which you can find
in the IronRuby installation folder. To install RoR, run the following command on
the command prompt:

> igem install rails

Successfully installed activesupport-2.3.3

Successfully installed activerecord-2.3.3

Successfully installed rack-1.0.0

Successfully installed actionpack-2.3.3

Successfully installed actionmailer-2.3.3

Successfully installed activeresource-2.3.3

Successfully installed rails-2.3.3

7 gems installed

...

2. Make sure that the IronRuby installation folder is on the PATH environment variable.

On the command prompt, write set PATH to see all paths that are listed there.

To add the IronRuby folder to the PATH variable, use the following command (assum-
ing that IronRuby is installed at C:\IronRuby):

set PATH = %PATH%;C:\IronRuby

3. Set up the database adapter. RoR has support for the major databases. If it doesn’t
support one, there is a good chance that a connection adapter has already been writ-
ten for it. In this chapter, we use the SQL Server adapter that was written by the
IronRuby team in C#.

To use it, you must first install SQL Server or the free SQL Server Express. You can
download the latest version from http://www.microsoft.com/express/sql/default.aspx.

When SQL Server is installed and running, download the MS SQL connection
adapter from http://github.com/jschementi/activerecord-mssql-adapter. The down-
loadable zip file contains a file named mssql_adapter.rb. Copy this file to the
%IronRuby Gems folder%\ 1.8\gems\activerecord-2.3.3\lib\active_record\
connection_adapters folder.

Your environment is now ready to run Ruby on Rails applications. These steps should be
done only once per machine so once they are done, there is no need to redo them for
every new application.

Hello, IronRuby on Rails
In this section, we create our first Ruby on Rails web application that is driven by
IronRuby. It is a basic application for every IronRuby on Rails application. Therefore, you
can use this section to create the initial structure of every IronRoR application.

http://www.microsoft.com/express/sql/default.aspx
http://github.com/jschementi/activerecord-mssql-adapter

333Hello, IronRuby on Rails

TABLE 14.1 Directory Structure Description

Folder Name Description

App The main code of the application lies within the subdirectories of this folder.
As a directory of itself, it doesn’t have a specific role.

app/controllers Holds the controller classes, which are responsible for handling web
requests.

Creating the Initial Project Files

The first task is to create the project files. Ruby on Rails does that for us, and with a single
command, we can have an almost entirely working application.

To do that, open the command prompt in the location where you want the project file:

> cd MyProjects

MyProjects>

Now we need to create the actual project files. We use the irails tool for that matter. It
takes the project name as an argument. Make sure the name doesn’t contain spaces:

MyProjects> irails IronRubyRocks

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

...

create public/javascripts/application.js

create doc/README_FOR_APP

create log/server.log

create log/production.log

create log/development.log

create log/test.log

The irails tool creates a set of folders and files that actually sum up to a small web applica-
tion.

Directory Structure

The numerous folders created for every new RoR application might be confusing at the
beginning. Table 14.1 tries to clear it up and provides information about the folder struc-
ture and the role of each folder.

334 CHAPTER 14 Ruby on Rails

TABLE 14.1 Directory Structure Description

Folder Name Description

app/helpers Holds helper classes that are available for controller, model, and view
classes.

app/models Contains the model classes, which are responsible for the application busi-
ness logic.

app/view Contains the HTML templates for viewing the application data.

app/view/layouts View layouts that repeat on various different views can be put here for
reuse.

Config Configuration files for the application-like database configuration files.

Db Holds database access classes.

Doc Contains the application documentation after irake doc:app is executed.

Lib Contains code that doesn’t fit one of app subdirectories.

Log Error logs will be created here.

Public Contains static pages and resources like 404 error page.

public/images Contains the application static images.

public/javascripts Holds the application static JavaScript code.

public/stylesheets Contains the application static CSS code.

Script Contains rails scripts. For example, server runs the web server.

Test Contains the test code for the application. There are subdirectories for
fixture, functional, integration, performance, and unit tests.

Tmp Temp files directory used by the Rails framework.

Vendor Holds third-party libraries and plug-ins.

Database Configuration

Ruby on Rails web applications are data-driven applications. This means that they are
connected to a database. The RoR framework makes it easy to work with the database,
including creating the needed tables.

Before we can start and run our first Rails application, we need to create a database. We
already have SQL Server or SQL Server Express installed, so we can go on and create the
database.

335Hello, IronRuby on Rails

Follow the next steps to create the SQL database:

1. Go to application folder\config\database.yml and open it for editing. You see YAML
code in there that contains database configuration. There is different configuration
for the development, testing, and production environments. The default database is
SQLite, but we want to use SQL Server.

To change it, replace the development part so that it looks like the following:

development:

adapter: mssql

host: localhost\SQLEXPRESS

database: IronRubyRocks

integrated_security: true

Save the file and close it.

2. Now we create the database:

. Open the SQL Server Management Studio application (Start menu > All
Programs > Microsoft SQL Server > SQL Server Management Studio).

. Log in to the database with your credentials (Windows or SQL Server). If you
work with SQL Express, the connection dialog looks similar to the one shown
in Figure 14.1.

FIGURE 14.1 SQL Server login window.

. In Object Explorer on the left, right-click Databases and choose New Database.

. Write the name of the database. It should be the same name you have set in
the database.yml file. Click OK to finish.

336 CHAPTER 14 Ruby on Rails

FIGURE 14.2 Creating a new database from “Object Explorer”.

FIGURE 14.3 Naming the new SQL database.

Note that apart from creating the database, there is no need to take any more
actions directly on the database. Ruby on Rails provides tools for adding and design-
ing database tables, which are discussed in further detail in the following sections.

337Hello, IronRuby on Rails

CREATING A DATABASE FROM THE COMMAND LINE

For some databases, like SQLite, the creation of a new database can be done with RoR
command-line tools.

All you have to do is execute the irake tool with db:create as its argument, as follows:

irake db:create

It’s important to note that this does not work for SQL Server and some other
databases. If it doesn’t work for you, just create the database yourself and continue.

Running the Server

To run the Ruby on Rails application, we use the command line to start the server and
then log in to the web page.

To start the server, open the command prompt and navigate to the web application folder.
The command that starts the server is ir script/server:

> cd MyProjects\IronRubyRocks

MyProjects\IronRubyRocks> ir script/server

=> Booting WEBrick

=> Rails 2.3.3 application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2009-07-31 11:38:04] INFO WEBrick 1.3.1

[2009-07-31 11:38:04] INFO ruby 1.8.6 (2008-05-28) [i386-mswin32]

[2009-07-31 11:38:04] INFO WEBrick::HTTPServer#start: pid=6368 port=3000

The server is now running and ready to accept requests. Therefore, we can visit our first
Ruby on Rails web application.

Open your browser and navigate to http://localhost:3000. The result will be similar to the
one in Figure 14.4.

Now click the About Your Application’s Environment link. When you click it, an AJAX
call to the server is sent, and some information is delivered back to you, as shown in
Figure 14.5.

Your first Ruby on Rails application is now complete. Note that this application is the
basic one for every RoR application; hence you can start every RoR application by building
this basic application and then enhancing it.

338 CHAPTER 14 Ruby on Rails

FIGURE 14.4 The default page of every Ruby on Rails application.

FIGURE 14.5 The “application environment” part of the default page.

339The Basic Concepts

The Basic Concepts
Ruby on Rails has a few main concepts and guidelines you should be aware of before
using it. These concepts include MVC, REST, CoC, and DRY.

MVC

MVC is a design pattern. It stands for model-view-controller. Its aim is to completely sepa-
rate the business logic from the presentation. Ruby on Rails applications are build with
this design pattern. (Remember the app folder subdirectories?)

The model is the main layer of this architecture. It contains the business logic and the
expected responses to changes to its state. It means that all the core functionality of the
application will be placed here (for example, database reading/writing, generation of enti-
ties, and so on). A single model can serve various controllers and views.

The view is the user interface. It manages the display of information and reacts to state
changes from the modal. In Rails, views are mostly HTML files with embedded Ruby code.

The controller is the bridge between the model and the view. It reacts to user actions and
acts accordingly, informing the modal or the view when needed. The controller is respon-
sible for the application behavior, and it is expected that a single controller will deal with
a single functionality feature. As a result, multiple controllers can serve a single view. In
Rails, controllers process incoming requests from the web browser.

REST

REST stands for Representational State Transfer. It is a set of rules that instruct how web
standards should be used (URIs, for example).

The center of the REST architecture is resources. A resource might be an application entity,
an image, a web page, or any other “thing” you might come up with.

REST principals important to Ruby on Rails include the following:

. Every resource has an ID: This is a good practice in any application, not just REST
applications. When you have a unique identifier for a resource, you can refer it from
any place it might be needed.

For example, the following URL shows a page for the user whose ID is 987 (assuming
this page is implemented):

http://localhost:3000/users/987

. Link state: The ability to transfer the state of the resource between multiple system
components.

340 CHAPTER 14 Ruby on Rails

The REST theory is bigger than what I have introduced to you. If you want to read more
about it, check out REST on Wikipedia: http://en.wikipedia.org/wiki/Representational_
State_Transfer or Roy Fielding doctoral dissertation at http://www.ics.uci.edu/~taylor/
documents/2002-REST-TOIT.pdf.

CoC

CoC is a design paradigm. It stands for Convention over Configuration. For the Rails
developer, it means that you need to treat only the unconventional aspects of the applica-
tion. Rails assumes what you want to do and how you’re going to do so instead of letting
you set multiple configuration files to achieve just that.

The standard convention of RoR is that the model is named after the table. For example, if
the table is named user, the model will be named user, too. The controller will be named
users_controller, and the views will contain a folder named users with template pages
inside such as new, edit, and view. The convention is presented in Table 14.2.

TABLE 14.2 Default Ruby on Rails Convention

Database Table Name User

Model app/models/user.rb

Controller app/controllers/users_controllers.rb

Views app/views/users/show.html.erb

app/views/users/edit.html.rb

app/views/users/new.html.rb

DRY

The last acronym for this section is DRY: Don’t Repeat Yourself. The idea is simple. After
you have written code, you do not need to repeat it. RoR helps by reducing duplicated
code blocks, which makes your application code more readable and less error prone.

Main Components
Now that you know what the main concepts of Ruby on Rails are, it’s time to take a look
at the building blocks of every Ruby on Rails application.

The Model: ActiveRecord

ActiveRecord is the base class for all models in an RoR application. It provides the busi-
ness logic of the application and is supposed to be the main and biggest part of the appli-
cation code.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf

341Main Components

ActiveRecord is an ORM (Object Rational Mapping) layer. It provides indirect and data-
base-independent access to the data storage. The principles are simple:

. Database tables are mapped into classes.

. Table rows are mapped into objects.

. Table columns are mapped to attributes.

ActiveRecord provides CRUD functionality (create, read, update, and delete objects on the
database), advanced find capabilities, the capability to relate models to one another, and
more.

The View: ActionView

ActionView manages the view layer of the application. It can create HTML and XML
output, use layouts and partials, execute helper class methods, and generate AJAX calls.

The Controller: ActionController

The base class for the RoR controllers is ActionController. Rail’s controllers, unlike its
models, are aware of the fact that the client is actually a web browser and they are capable
of interpreting web requests. Incoming requests are processed by them, and the related
action is invoked with the extracted parameters.

ActionController provides session and cache management tools, rendering view template
capabilities and redirecting capabilities.

Routes

Routing is the first meeting point of the Ruby on Rails application. Just like a real router
that receives network requests and routes them to the right port, routing in RoR retrieves
incoming web requests and sends them to the right controller to get going.

The action takes place in the config\routes.rb file. If you open it, you see lots of lines that
use the map object.

On the last lines of the file, you can find the default routes, which map the request to its
obvious controller (request for “users” will be mapped to users_controller, for instance).

The routes.rb file exists not for the obvious mapping of course. It is there for customiza-
tion reasons. For example, if I would like to change the convention (not recommended!)
and call the people controller when a request to view a user page is sent, I’d add the
following line:

map.connect ‘users/:id’, :controller => ‘people’, :action => ‘view’

The result of this line is that when a visitor navigates to http://localhost:3000/users/15,
the view method in app/controllers/people_controller.rb file will be invoked.

342 CHAPTER 14 Ruby on Rails

Routing is much wider than this brief description. If you are interested in reading more
about it, the Rails webpage provides a great in-depth guide: http://guides.rubyonrails.org/
routing.html.

Know Your Environment
Before you start creating real applications, you need to know a bit more about how to
interact with the RoR environment.

The foremost point you need to know is that most interaction is done via the command
line. You can execute several different commands: creating database tables, creating
views and controllers, and more. The following subsections introduce you to the avail-
able commands.

script/server

The script/server command is the one that runs the Ruby on Rails web server. It is
needed when your web server is not one that is always up (IIS, for instance).

The command format is ir script/server [options].

The options part is optional. You can call ir script/server without any options and the
default options will be used. Table 14.2 describes the commonly used options of the
script/server command.

TABLE 14.2 script/server Common Command Options

Option Description

-p

or
--port

The port to use for the server. Default is 3000.
Sample:
> ir script/server --port=5678

-u

or
--debugger

Enables Ruby debugging.

-e

or
--environment

Runs the server in the given environment configuration: development,
test or production. Default is development.
Sample:
> ir script/server -e=production

Note that the preceding options can be mixed together. For example, to run a production
server on port 5678, the command is as follows:

> ir script/server --environment=production -p=5678

http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html

343Know Your Environment

TABLE 14.3 script/generate Common Command Options

Option Description

controller Create a new controller in app/controllers, view templates in
app/views/controller_name, a helper class in app/helpers, a functional test
suite in test/functional, and a helper test suite in test/unit/helpers.
Format (operation list is optional):
ir script/generate controller [controller name] [operations]

Sample:
> ir script/generate controller book sell buy read toc

exists app/controllers/
exists app/helpers/
create app/views/book
exists test/functional/
create test/unit/helpers/
create app/controllers/book_controller.rb
create test/functional/book_controller_test.rb
create app/helpers/book_helper.rb
create test/unit/helpers/book_helper_test.rb
create app/views/book/sell.html.erb
create app/views/book/buy.html.erb
create app/views/book/read.html.erb
create app/views/book/toc.html.erb

model
Creates a new model in app/models, a unit test in test/unit, a text fixture in
text/fixtures, and a migration in db/migrate.
Format (attribute list is optional and consists of space separated items in format
of column_name:sql_type):
ir script/generate model [model name] [attribute list]

Sample:
> ir script/generate model book name:string price:int

exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/book.rb
create test/unit/book_test.rb
create test/fixtures/books.yml
create db/migrate
create db/migrate/20090801145631_create_books.rb

script/generate

Some of the most used commands are those that generate stuff. This is what the
script/generate command does. It can generate almost anything in the application and
make it available to you in a matter of seconds.

The command format is ir script/generate [option] [arguments].

Table 14.3 describes the commonly used options of the script/generate command.

344 CHAPTER 14 Ruby on Rails

TABLE 14.3 script/generate Common Command Options

Option Description

helper Generates a helper class. It generates the class under app/helpers and a test
suite in test/unit/helpers.
Format:
ir script/generate helper [helper name]

Sample:
> ir script/generate helper MyHelper

exists app/helpers/
exists test/unit/helpers/
create app/helpers/my_helper_helper.rb
create test/unit/helpers/my_helper_helper_test.rb

scaffold Generates an application resource. This operation creates and prepares every
aspect of the resource: a model, a db migration script, a controller, views, a
stylesheet, a helper, and a full test suite.
Format (attribute list is optional and consists of space separated items in format
of column_name:sql_type):
ir script/generate scaffold [model name] [attribute list]

Sample:
> ir script/generate scaffold user full_name:string bio:text age:
integer

exists app/models/
exists app/controllers/
exists app/helpers/
create app/views/users
exists app/views/layouts/
exists test/functional/
exists test/unit/
exists test/unit/helpers/
exists public/stylesheets/
create app/views/users/index.html.erb
create app/views/users/show.html.erb
create app/views/users/new.html.erb
create app/views/users/edit.html.erb
create app/views/layouts/users.html.erb
create public/stylesheets/scaffold.css
create app/controllers/users_controller.rb
create test/functional/users_controller_test.rb

345Know Your Environment

TABLE 14.3 script/generate Common Command Options

Option Description

scaffold create app/helpers/users_helper.rb
create test/unit/helpers/users_helper_test.rb
route map.resources :users

dependency model
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/user.rb
create test/unit/user_test.rb
create test/fixtures/users.yml
exists db/migrate
create db/migrate/20090801152012_create_users.rb

The available column types are binary, boolean, date, datetime, decimal, float, integer,
primary_key, string, text, time, and timestamp.

If you want to find out about more available script/generate commands, run ir
script/generate to get the help content. For specific command help, run ir
script/generate [command_name] --help.

ROLLING BACK

If you use the script/generate command to create resources but then decide you
shouldn’t have done so and want to remove the resource, RoR makes it easy for you:
Just use the script/destroy command.

The script/destroy command receives the same attributes as script/generate,
but without the extended attributes.

For example, if you use the following scaffold command

ir script/generate scaffold user full_name:string bio:text age:integer

You can roll back the operation (actual meaning = delete the files) with the following
command:

ir script/destroy scaffold user

db:migrate

When you use a scaffold command, for example, it generates a db migration script. This
script contains the needed operations to create a database table, add/remove columns, and
to perform other database operations.

346 CHAPTER 14 Ruby on Rails

The script isn’t run instantly, and you need to run the db:migrate command to run it.
The command is using the irake tool:

Application directory> irake db:migrate

For example, the following command prompt text demonstrates the db:migrate
command for the scaffold command we executed in the previous section:

D:\MyProjects\IronRubyRocks>irake db:migrate

(in D:/MyProjects/IronRubyRocks)

== CreateUsers: migrating ==

-- create_table(:users)

-> 0.3400s

== CreateUsers: migrated (0.4050s) ===

Creating a Page
The previous section covered common commands for the RoR developer. With those
commands in your arsenal, you can start building web pages using the Ruby on Rails
framework.

The first page we create here is a simple page with no need for database access. It shows us
the current time in several locations around the world.

Generating the Page Controller and View

Creating a controller and a view involves executing a script/generate controller
command:

MyProjects\IronRubyRocks> ir script/generate controller clocks

exists app/controllers/

exists app/helpers/

create app/views/clocks

exists test/functional/

exists test/unit/helpers/

create app/controllers/clocks_controller.rb

create test/functional/clocks_controller_test.rb

create app/helpers/clocks_helper.rb

create test/unit/helpers/clocks_helper_test.rb

As you can see, the command has created the controller (clocks_controller.rb) and the
views folder.

347Creating a Page

Let’s take a closer look. If we open the controller file, we find an empty class:

class ClocksController < ApplicationController

end

This is the result of the lack of a view. We now add the available actions ourselves and
implement them.

The first action I want to add is the index action. This default action takes place when
no specific action is defined. This means that http://localhost:3000/clocks work, but
http://localhost:3000/clocks/show, for example, ends up with an exception about an
unknown action.

On the index action, I want to generate the data for the view. The data should contain a list
of places and their current time. To do that, I calculate the current time in the UTC zone
and then convert the time to the local time zone by adding or subtracting seconds from it:

def index

utc_time = Time.now.getutc

@clocks = []

@clocks << [“USA - New York”, utc_time - 60*60*5]

@clocks << [“England - London”, utc_time]

@clocks << [“Israel - Jerusalem”, utc_time + 60*60*2]

@clocks << [“India - Mumbai”, utc_time + 60*60*5.5]

end

As you can see, I store the data in an instance variable @clocks. I do this so that the view
can access the controller’s instance variables.

And speaking of the view, we have our controller doing its thing, so let’s move on to the
view. The view files are HTML files with Ruby code inside: ERB files. The .erb extension
indicates eRuby, a templating system that allows embedding Ruby into text documents.
eRuby isn’t used only for HTML templating or Ruby on Rails; you can find it on other
frameworks and in different usage scenarios, as well.

So, we need to add a matching view to the controller. To conform to the convention, the
view should follow the name of the controller action. Hence, the file will be named
index.html.erb. We create this file in the matching directory that has been created for us
at the time we generated the controller: app/views/clocks.

Just by creating the file, we complete the circle and can immediately try to navigate to the
page, http://localhost:3000/clocks.

This now gives us a blank page, of course, because we haven’t put any content inside the
index.html.erb file. Let’s take care of it now.

348 CHAPTER 14 Ruby on Rails

We want to display the clocks and city names near each other. The ERB content can do that:

<html>

<head>

<title>Clocks</title>

</head>

<body>

<% @clocks.each do |city, time| %>

<%=h city %>: <%=h time %>

<% end %>

</body>

</html>

Note the Ruby code inside of this HTML code. The Ruby code goes between the <% %>
symbols. The <%= %> outputs the result of the code that is written inside.

MAKING VALUES HTML SAFE

When inserting text into HTML documents, be careful not to insert characters that
might damage the HTML content (< or > characters, for example).

Ruby on Rails provides a method named h that make the text HTML safe by converting
special characters into its HTML entities (for example, < is converted to <).

Just like in the index.html.erb sample, make sure to use the h method when using the
<%= %> symbols. For example, the following code

<%=h “<hello>”%>

is translated to

<hello>.

The preceding code loops over the clocks array that is built in the controller and prints
every city in its own row. The output looks like Figure 14.6.

FIGURE 14.6 Output of clocks page showing the current local time in various places.

349Creating a Page

That’s the page we wanted. We have the cities and the local time in each presented to us.

The only issue here that bothers me is the unfriendly date format. I’d like to change that.
The straightforward way is to change the view code and format the date to a friendlier
representation. However, we want to keep the view as “dumb” as we can. The formatting
method fits a different location: the helper class.

Helper Classes

Helper classes are classes that are meant to help in common view-related tasks. Each
controller has a helper class available for the views only; the controller cannot access it.
Using helper classes also helps you follow the Don’t Repeat Yourself dictum.

The application_helper.rb file contains helper methods that can be used on any view
across the application, whereas other helpers are available only for their matching view.

We add our helper method to the clocks_helper.rb file:

module ClocksHelper

def get_formatted_time(time)

time.strftime(“%B %d %Y %H:%M”)

end

end

With that in place, we can go back to our view and update the code:

<% @clocks.each do |city, time| %>

<%=h city %>: <%=h get_formatted_time(time) %>

<% end %>

Now the output looks much better, as you can see in Figure 14.7.

FIGURE 14.7 Presenting a user-friendly time string using helper classes.

350 CHAPTER 14 Ruby on Rails

BUILT-IN HELPERS

Ruby on Rails comes with multiple helpers that help in various view-related tasks. For
example, TagHelper helps in building HTML output, UrlHelper helps in generating
application URLs, and FormHelper helps in creating RoR HTML forms.

Look into it on the Ruby on Rails API site (look for classes that start with
ActionView::Helpers): http://api.rubyonrails.org.

Adding Stylesheets

Our page is very functional now, but it needs some more color to it. Stylesheets are the
answer to our colorful needs.

Unlike RoR objects so far, stylesheets are not page specific. This is logical because most of
the times you would want a few CSS files that set the entire application theme. You still
can, however, add CSS code to a specific page only; you have the HTML page itself, and
you can decide what to do with it.

The place for the application stylesheets is public/stylesheets. Let’s add a new file there,
blue_theme.css, with the next content:

BODY {

font-size: 14px;

color: white;

background-color: blue;

}

B {

font-size: 16px;

font-weight: bold;

color: chartreuse;

}

a { color: aqua; }

img { border-width: 0px; }

This CSS code makes our page very colorful. To make the page use it, we edit the
index.html.erb file and update the header file with a stylesheet reference:

<head>

<title>Clocks</title>

<%= stylesheet_link_tag “blue_theme” %>

</head>

http://api.rubyonrails.org

351Creating a Page

STYLESHEET_LINK_TAG

Remember the helpers we examined earlier in this chapter? stylesheet_link_tag is
one of the built-in helpers available for every view in the application. The specific helper
that provides this method is AssetTagHelper.

After this change is applied, the page becomes colorful, as presented in Figure 14.8.

FIGURE 14.8 The page after CSS is applied.

Adding Layouts

Layouts are HTML pages that contain layout components that appear on multiple pages.
Layouts can save you a tremendous number of lines of code in big applications, all while
letting you adhere to the DRY dictum.

A layout is just like any view. It’s an ERB file, and RoR uses, by default, the layout with the
name of the controller. If this is not found, it looks for a layout named
application.html.erb, which is the default layout of the application. The only difference is
that layout exists in app/views/layouts.

I’d like to create an applicationwide layout, so let’s add application.html.erb file to the
layouts folder with the following content:

<html>

<head>

<title>IronRuby Rocks: <%= @title %></title>

<%= stylesheet_link_tag “blue_theme” %>

</head>

<body>

<h1 style=”text-align:center”>IronRuby Rocks Web Site</h1>

<hr>

352 CHAPTER 14 Ruby on Rails

<%= yield %>

</body>

</html>

Let’s see what each part of this layout contains.

Head Part
The head part contains the stylesheet we used in the page. It is there because it is a cross-
application style, so there is no reason to add it on each view separately.

The addition to the head part is the title part. I create the title by concatenating a static
string ”IronRuby Rocks:” and a view title, which will be provided by the controller.

To conform to that, the controller code will be extended:

def index

@title = “Clocks”

utc_time = Time.now.getutc

@clocks = []

...

end

Body Part
The body part contains a big header that appears on every view and indicates to the
visitor what website she is currently viewing. (And believe me, visitors won’t overlook it.)

The next part is the most important one: <%= yield %>. This is the location where the
view itself appears. Every layout must have this to make the real content of the applica-
tion available. Without it, the only content we see in our application is the layout (for
every single view).

According to its new location within the layout page, we can update clocks.index.html.
This is the view code after the update:

<% @clocks.each do |city, time| %>

<%=h city %>: <%=h get_formatted_time(time) %>

<% end %>

Figure 14.9 shows what the view looks like now.

353Creating a Page

Adding Functionality

Now I want to add some functionality to this page.

The obvious feature for our page is a Refresh button. The first possibility that comes to
mind is adding this code to the view:

<form><input type=”submit” value=”Refresh”/></form>

This actually works. It makes the form refresh. However, Rails provides a better mecha-
nism for doing so.

One of the built-in helpers, FormTagHelper, can help us create HTML form tags by using
Ruby commands. This is a better solution than the one at the beginning of this section
because it also takes care of Rails-related issues (such as authentication) and enables more
RoR capabilities (for example, enabling you to submit the form to a different action on
the controller).

To achieve the Refresh button we’re looking for, we add the following code snippet to the
end of index.html.erb file:

<% form_tag do %>

<%= submit_tag “Refresh!” %>

<% end %>

If we look at the source of the output HTML page, this is what we see:

<form action=”/clocks” method=”post”>

<div style=”margin:0;padding:0;display:inline”>

<input name=”authenticity_token” type=”hidden”

value=”8COb/BStnkpTgjXc5IHRJmP7yrGTzGy4fJ4b5x71TZI=” />

</div>

<input name=”commit” type=”submit” value=”Refresh!” />

</form>

FIGURE 14.9 The page after the layout is applied.

354 CHAPTER 14 Ruby on Rails

As you can see, Ruby on Rails enriched the form data to fit its needs. For example, the
form action goes to the current page. (We could specify a different action that would have
been redirected to a different controller method.) Rails added the authenticity_token
hidden field, too, which is a part of its security mechanism.

Creating a Database-Driven Page
The clocks page we built in the previous section ran on its own, without the need of a
database. These pages do exist on web applications, but the bigger slice of the web pages
pie belongs to database-driven pages.

In this section, we take the clocks page to the next level. We allow users to define and use
their favorite clocks.

Generating the Page Resources

We begin with the enhanced clocks page by executing the scaffold command to create
the set of page resources. I call the model UserClock and use City Name and Difference
from UTC Time columns:

> ir script/generate scaffold UserClock city_name:string utc_difference:float

After this command is done, we need to update the database with the new migration scripts:

> irake db:migrate

We’re done. The page resources are done.

If you navigate to http://localhost:3000/user_clocks (assuming that the server is running,
of course), you see that you already have a full operating page, as shown in Figure 14.10.

FIGURE 14.10 A default database-driven Ruby on Rails page.

355Creating a Database-Driven Page

Clicking the New user_clock link takes you to a form to insert a new user_clock entity, as
shown in Figure 14.11.

Filling in the fields and clicking Create inserts a new record to the database and shows the
new record on the index page. Figure 14.12 shows what the index page looks like after I
have inserted a few clock definitions.

FIGURE 14.11 A default new record form.

FIGURE 14.12 The default list page showing data from the database.

At this point, we have a fully functional page that allows listing, creating, editing, and
deleting records. However, there are still a few tasks ahead to make this page really helpful
to the user.

356 CHAPTER 14 Ruby on Rails

Polishing the Index Page

The index page needs some polishing before it can become a real part of our application.
The tasks ahead include the following:

. Word changes. user_clock should be replaced; Destroy should be renamed.

. Show the time, not the UTC difference.

. The list should have the layout of the list in the previous clocks view.

. The application layout should be used.

. A Refresh button should be added.

Looking into the Generated View
Before we begin, we go through the generated index page and see how it is built.

To work on the index page, we need to open it for edit. The page is located at
app/views/user_clocks/index.html.erb.

Looking into the source code is like revealing a magician’s trick: You understand that
there’s no magic at all, only some quick fingers. Don’t forget, however, that in software
development, working quicker is important, and scaffolding helps us generate pages more
quickly, much more quickly.

Anyway, back to our index page. The content of the view page is similar to the view we
wrote by ourselves a few sections ago:

<h1>Listing user_clocks</h1>

<table>

<tr>

<th>City name</th>

<th>Utc difference</th>

</tr>

<% @user_clocks.each do |user_clock| %>

<tr>

<td><%=h user_clock.city_name %></td>

<td><%=h user_clock.utc_difference %></td>

<td><%= link_to ‘Show’, user_clock %></td>

<td><%= link_to ‘Edit’, edit_user_clock_path(user_clock) %></td>

<td><%= link_to ‘Destroy’, user_clock, :confirm => ‘Are you sure?’, :method =>

:delete %></td>

</tr>

<% end %>

</table>

357Creating a Database-Driven Page

<%= link_to ‘New user_clock’, new_user_clock_path %>

First we loop over the data array and show the data by using the <%= %> symbols, exactly
what we did earlier.

The improvement here is the links. Every clock contains three links: one to show the
clock alone, one to edit its details, and one to delete it. At the lower part of the page is a
link to create a new clock.

The link_to method, which is part of the UrlHelper class, generates a link to another RoR
page. It is especially helpful with ActiveRecord objects (like user_clock in the preceding
code block), where it can create links to specific object page or methods (like the link to
the edit page or to the delete method).

Word Changes
Now that you know what the index view actually looks like, changing the problematic
words is a matter of seconds.

The header should be totally removed, and the label of the link at the end of the page
should be changed to Add a new clock:

<%= link_to ‘Add a new clock’, new_user_clock_path %>

The Destroy link is also a bit too much. Let’s soften it a bit and call it Remove:

<td><%= link_to ‘Remove’, user_clock, :confirm => ‘Are you sure?’, :method =>

➥:delete %></td>

We’re done with the word changes. Our page is starting to look better, as you can see in
Figure 14.13.

FIGURE 14.13 The index page after the word changes.

358 CHAPTER 14 Ruby on Rails

Displaying the Time Rather Than the UTC Difference
To make the view more user friendly, we need to get the current time rather than the UTC
difference value. The most suitable place for doing so is the view (because it is a view-only
feature and not a data feature).

Let’s open the ViewHelper module (located in app/views/user_clocks_helper.rb) and add a
method that helps us transform the UTC difference value to a real-time object:

module UserClocksHelper

@@utc_time = Time.now.getutc

def convert_to_time(utc_difference)

@@utc_time + (utc_difference.to_f * 60 * 60)

end

end

Remember the get_formatted_time method we added to the clocks_helper class? We
need it here, as well, to show the user a friendly time string. Because we need this method
on two different views, it is a good idea to move it to the application_helper.rb file and
place it in the ApplicationHelper module, where it will be available to all the views in the
application:

module ApplicationHelper

def get_formatted_time(time)

time.strftime(“%B %d %Y %H:%M”)

end

end

When we have these helper methods ready, we can move on to the view and update it.
On the index view page, we update the utc_difference presentation code to use the
helper methods we just created:

<td><%=h get_formatted_time(convert_to_time(user_clock.utc_difference)) %></td>

With these changes applied, the list displays the time rather than the UTC difference
value, as shown in Figure 14.14:

Applying the Previous List Layout
Scaffold’s default table layout is nice, but it doesn’t fit our needs for this view. I’d like to
take the previous clocks view list layout and apply it here.

359Creating a Database-Driven Page

Again, we open the app/views/user_clocks/index.html.erb file and update it. We’re going
to remove the table entirely and replace it with other HTML tags:

<% @user_clocks.each do |user_clock| %>

<%=h user_clock.city_name %>:

<%=h get_formatted_time(convert_to_time(user_clock.utc_difference)) %>

<%= link_to ‘Show’, user_clock %>

<%= link_to ‘Edit’, edit_user_clock_path(user_clock) %>

<%= link_to ‘Remove’, user_clock, :confirm => ‘Are you sure?’, :method => :delete %>

<% end %>

This change makes the view a bit better, but we still have the links at the end of each line
that seem not to belong. The way to solve this layout issue is by using images as links
instead of plain text. We also remove the Show link because the Show action doesn’t
really have a meaning in our application. (It’s good to remove the show method from the
controller, too.)

Assuming that we have edit.png and remove.png files in the public/images folder, this is
how the link part looks after the change has taken place:

<% link_to edit_user_clock_path(user_clock) do %>

<%= image_tag “edit.png”, :alt=> “Edit” %>

<% end %>

<% link_to user_clock, :confirm => ‘Are you sure?’, :method => :delete do %>

<%= image_tag “remove.png”, :alt=> “Remove” %>

<% end %>

FIGURE 14.14 The list displays the time rather than the UTC difference.

360 CHAPTER 14 Ruby on Rails

FIGURE 14.15 The previous list layout applied to the database-driven list page.

With this change applied, Figure 14.15 shows what our page looks like now:

FIGURE 14.16 The list page after the application layout is applied.

Using the Application Layout
At this point, you probably wonder why our world-class application layout didn’t take
effect. This happens because the scaffold command generates a new layout page for the
view. For the view to use the application layout, it must not have its own layout view.

Deleting the app/views/layout/user_clocks.rb file restores the application layout to our
new page, as shown in Figure 14.16.

Adding the Refresh Button
For the Refresh button, we use a slightly different approach than what we have done on
the previous clocks page.

We use the button_to method, which is a shorter version of what we did before. However,
we need to set some options for our button to work:

<%= button_to “Refresh!”, “/user_clocks”, :method => :get %>

361Summary

The first argument is the value of the button, the second is the path where the button
should be submitted to, and the last is the method that the form uses.

Note that for the button to work, the method must be a get method. This is done to make
the request similar to the regular one when users navigate to the page.

Figure 14.17 shows what the page looks like after the last addition.

FIGURE 14.17 The page with the new Refresh button.

This is it. The list page is now complete. Users can add several clocks, modify them, and
remove them at their will. Of course, they can also watch their clocks on the list page and
see what the local time is in every city.

Summary
In this chapter, you learned the basics of Ruby on Rails. You learned how to use the tools,
create databases, generate web pages, and make use of the different sides of the MVC
framework. You have also used stylesheets, layouts, and helper classes.

This chapter introduced you to the very basic basics of the RoR framework. Ruby on Rails
is a wide and solid framework that enables you to do various different tasks in a matter of
minutes. If you want to learn more about the Rails framework, a good place to start is its
official site at http://rubyonrails.org.

http://rubyonrails.org

This page intentionally left blank

CHAPTER 15

ASP.NET MVC

IN THIS CHAPTER

. Preparing Your Environment

. Hello, ASP.NET MVC

. MVC

. Routes

. Filters

. Validations

. Classic ASP.NET Featres

. A Word About Classic ASP.NET

ASP.NET has been around for years without any signifi-
cant change. With the rise of Ruby on Rails and other
model-view-controller (MVC)-based web frameworks,
Microsoft has joined the trend with its own MVC-based
web framework. ASP.NET MVC is a framework built on top
of the classic ASP.NET infrastructure. It is based on the
model-view-controller design pattern and includes some
new concepts such as routes, filters, and validations.

ASP.NET MVC is different from what you are used to with
classic web forms. However, the new framework makes
several tasks possible that have been hard (or even impossi-
ble) to implement before (for example, simple testing capa-
bilities, AJAX, and improved code exit points).

This chapter covers the IronRubyMvc framework, which is
the IronRuby implementation of the ASP.NET MVC frame-
work. You learn how to use the MVC framework capabilities
to create a simple web application.

And just a last word for you Ruby on Rails developers: You
will find IronRubyMvc similar to the RoR framework. This
is no surprise because they are both MVC-based web frame-
works. However, each has its own advantages and disadvan-
tages, so don’t hesitate to learn IronRubyMvc; you might
even like it!

Preparing Your Environment
To use and run ASP.NET MVC on your computer, you
need to install the ASP.NET MVC framework and the
IronRubyMvc framework that gives ASP.NET MVC a native

364 CHAPTER 15 ASP.NET MVC

FIGURE 15.1 Choosing the Release_Signed build configuration in Visual Studio.

Ruby feeling. Hence before we begin, you need to get your computer ready for IronRuby-
driven ASP.NET MVC.

Installing ASP.NET MVC

The first task is to download and install ASP.NET MVC from its official site: http://www.
asp.net/mvc/download. This installation requires you to have Visual Studio 2008 SP1 or
Visual Web Developer 2008 SP1 installed.

Visual Web Developer 2008 is free and can be downloaded from http://www.microsoft.
com/express/download.

At the time of this writing, IronRubyMvc is built on top of ASP.NET MVC 1.0. If possible,
use this version. Although it is supposed to be safe to run this on later frameworks, you
might run into some unexpected behavior in case of major changes to the class library.

Obtaining the IronRubyMvc DLL

For the next step, you need the IronRubyMvc DLL file. To get it, you must download its
source code and compile it.

To compile the project, you must have Visual Studio or Visual C# Express.

Visual C# Express is free and can be downloaded from http://www.microsoft.com/
express/download.

After you ensure you have a way to compile the code, follow these steps:

1. Navigate to http://github.com/casualjim/ironrubymvc.

2. Click the Download button and save the archive.

3. Extract the archive.

4. The extracted folder contains a folder named Dependencies. Go there and open
update.bat for edit. Replace c:\ironruby\bin with the path to your IronRuby installa-
tion folder. After you’re done, save the file and execute it.

5. Open IronRubyMvc.sln in Visual Studio and build the solution. Make sure you’re
building the Release_Signed configuration as shown in Figure 15.1.

http://www.asp.net/mvc/download
http://www.asp.net/mvc/download
http://www.microsoft.com/express/download
http://www.microsoft.com/express/download
http://www.microsoft.com/express/download
http://www.microsoft.com/express/download
http://github.com/casualjim/ironrubymvc

365Hello, ASP.NET MVC

After the compilation is complete, you can close Visual Studio. The important files now lie
within ironrubymvc\bin\Release_Signed. Remember this path; we use it in the next section.

Adding IronRubyMvc Templates to Visual Studio

To make the work in Visual Studio smoother for the IronRuby developers, you can import
and use a few templates.

The IronRubyMvc package you have just downloaded contains a folder named VS
Templates. This directory is our starting point for the next steps:

1. Copy the content of the folder Project Template to My documents\Visual Studio
2008\Templates\ProjectTemplates\Visual C#.

2. Copy the content of the folder File Templates to My documents\Visual Studio
2008\Templates\ItemTemplates\Visual C#.

Hello, ASP.NET MVC
ASP.NET MVC comes with a convenient Visual Studio integration. We can partially enjoy
this convenience even though IronRuby doesn’t play nicely with Visual Studio yet.

We can build the application structure inside Visual Studio and then continue with
writing the actual code in the IronRuby IDE of our choice.

Throughout this chapter, we use IronRuby and ASP.NET MVC to build a simple page that
enables us to manage a to-do list. Let’s start by generating and running the initial project.

Generating the Initial Project

Creating the initial project is done via Visual Studio by using the IronRubyMvc template.
Follow the next steps to create the project

1. Open Visual Studio or Visual Web Developer and click File > New > Project.

2. In the New Project dialog, choose Visual C# on the left, and then choose at the
bottom the template we prepared previously: IronRubyMvcTemplate. Type in the
project name, ToDoList, choose a location, and click OK. The dialog should look
similar to the one in Figure 15.2.

3. The project is now almost entirely ready. We now need to update it to the latest
IronRuby and IronRubyMvc assemblies.

Open Solution Explorer and expand the References node. Delete the next assemblies
from the project references: IronRuby, IronRuby.Libraries, and
System.Web.Mvc.IronRuby, as shown in Figure 15.3.

366 CHAPTER 15 ASP.NET MVC

FIGURE 15.2 The New Project dialog with input.

FIGURE 15.3 Removing the IronRuby assemblies.

4. Go to Project > Add Reference and browse to the IronRubyMvc\bin\Release_Signed
folder we prepared earlier. Choose the files IronRuby.dll, IronRubyLibraries.dll, and
System.Web.Mvc.IronRuby.dll as shown in Figure 15.4 and click OK.

367Hello, ASP.NET MVC

FIGURE 15.4 Adding references to the updated IronRuby assemblies.

FIGURE 15.5 The default IronRuby-driven ASP.NET MVC page.

5. We now need to fix an issue with the default controller. Open the file
Controllers/home_controller.rb and replace the line. (It appears twice in the file.)

view nil, ‘layout’

with this:

view ‘’, ‘layout’

6. Click F5 to run the web application using Cassini, Visual Studio’s internal web
server. The default ASP.NET page will be presented, as shown in Figure 15.5.

You have just run your first IronRuby-driven ASP.NET MVC application.

368

MVC
MVC, which stands for model-view-controller, is a design pattern that makes it possible to
separate an application into three layers, each with a different role.

Models

Models in the MVC web application are the place where the business logic exists. They are
plain IronRuby classes, with no special parent class or design rules. They are located in the
Models folder.

Models are the place to

. Connect to the database or any other data storage and external resource

. Implement CRUD (create, read, update, delete) methods

. Validate the data right before it actually goes into the data storage

Creating the Application Model
On our To Do List application, I want to save the data in a file. Note that using files as
data storage is not recommended when talking about a real web application. Files tend to
become locked pretty easily, which is not a good thing in this scenario.

The object we use for presenting the data is a simple hash with three values: ID, descrip-
tion, and creation date. I use the Marshal class for writing and reading it from a file.

Reading the file will be done when the model is loaded (happens when the model is
needed, once per page load), which means that it occurs inside the constructor. The
following code will be saved to to_do_list_model.rb file under the models directory:

class ToDoListModel

A constant with the data file path

DataFileName = ‘d:\temp\data.txt’

def initialize

if File.exist?(DataFileName)

File.open(DataFileName,”r”) do |f|

@data = Marshal.load(f)

end

else

@data = []

end

end

end

As you can see, the ToDoListModel class is a pure Ruby class with no superclass or mixin
module that we have to add.

CHAPTER 15 ASP.NET MVC

369MVC

When we have the list ready, we can continue and add the public methods of the model.
We need to provide three actions: list, create, and delete.

list is the simplest; it just returns the @data variable:

def list

@data

end

The create method receives the description to add, generates its ID, and adds a new item
to the hash. After that, it serializes the hash to the data file to keep the persistent data
storage up-to-date:

def create_item(description)

Generate the new id

id = if @data.nil? then 1 else @data.length + 1 end

Add the new record to the hash

@data << {:id => id,

:description => description.to_s,

:creation_date => Time.now}

Save to file

File.open(DataFileName,”w+”) { |f| Marshal.dump(@data, f) }

end

For the create method, we also need to validate that the description is not empty. A to-do
task without a description is like lemonade without lemons, isn’t it?

This is why we add a validation method that we use later on in the controller:

def validate_for_creation(description)

return false if description.to_s.length == 0

If data is valid, return true

true

end

The delete method consists of removing the item with the given ID from the hash and
then saving the new hash to the file:

def delete_item(id)

Delete the matching row from the hash

@data.delete_if { |item| item[:id] == id }

Update the file

File.open(DataFileName,”w+”) { |f| Marshal.dump(@data, f) }

end

370

That’s it! Listing 15.1 contains the code of the entire ToDoListModel class.

LISTING 15.1 The ToDoListModel Class

class ToDoListModel

A constant with the data file path

DataFileName = ‘d:\temp\data.txt’

def initialize

if File.exist?(DataFileName)

File.open(DataFileName,”r”) do |f|

@data = Marshal.load(f)

end

else

@data = []

end

end

def list

@data

end

def validate_for_creation(description)

return false if description.to_s.length == 0

If data is valid, return true

true

end

def create_item(description)

Generate the new id

id = if @data.nil? then 1 else @data.length + 1 end

Add the new record to the hash

@data << {:id => id,

:description => description.to_s,

:creation_date => Time.now}

Save to file

File.open(DataFileName,”w+”) { |f| Marshal.dump(@data, f) }

end

def delete_item(id)

CHAPTER 15 ASP.NET MVC

371MVC

Delete the matching row from the hash

@data.delete_if { |item| item[:id] == id }

Update the file

File.open(DataFileName,”w+”) { |f| Marshal.dump(@data, f) }

end

end

Controllers

Controllers are the input logic in an MVC application, and they are responsible for
handling incoming web requests. They inherit, in most cases, from the Controller class.

Controllers expose actions. An action is a public controller method (it must be defined as
public!) that gets invoked when a matching URL is visited.

Figure 15.6 shows the routing of a simple URL to a controller action.

Use UserController Invoke edit action Pass 3 as id param
params[:id]

htttp://www.mysite.com/User/edit/3

FIGURE 15.6 URL routing sample.

Controllers are the place to

. Interpret data of incoming requests

. Communicate with the model

. Decides which action to take (render a specific view, redirect to another controller,
raise an error, and so on)

Controller Features
Inside the controller, a few attributes enable you to provide information about the web
request and response, as described in Table 15.1.

Actions Return Values
Controller actions must return a value. This value represents the actual action that the
MVC framework should take. The return type is ActionResult or one of its derivatives.

The commonly used ActionResults are ViewResult and RedirectResult.

372 CHAPTER 15 ASP.NET MVC

TABLE 15.1 Available Attributes Inside the Controller

Attribute Description

Request An HttpRequestBase instance. Contains information about the web request.
IronRubyMvc enhances this class and adds in more Ruby-like methods to investigate
the request:
post?, get?, put?, delete?, head?, ajax?

Response The HTTP response instance.

Server An HttpServerUtilityBase instance. Contains the server name (machine_name)
and methods for easier server related tasks (for example, map_path).

Session The session management class instance. Via the Session attribute, you can access
session variables and configuration.

ViewResult This type of result instructs the ASP.NET MVC framework to send the given
view as the response. The way to use it is by the IronRubyMvc view method, which
constructs the ViewResult instance from the given parameters.

The view method retrieves three parameters:

. View name (optional): Specifies the name of the view to use. The default is
decided according to the route table.

. Master layout name (optional): Specifies the name of the master layout to use.
The default is none.

. Model instance or a hash (optional): This argument has two possible uses. One is
to pass the model object to the view; the second is to pass a hash of data to the view.
The view can then access the model or the hash via the model object.

The following code sample demonstrates different calling options to the view method:

Use the default view according to the route table view

Use index.html.erb view on the controller views folder

(or the shared views folder), do not use a layout

and do not send model data to the view

view ‘index’

view :index # view name can be sent as a symbol as well

Use list.html.erb view with a layout specified

on main.html.erb

view “list”, “main”

373MVC

Use index.html.erb view with no layout

and pass it a MyModel instance

view “index”, nil, MyModel.new

Use about_me.html.erb view with main.html.erb layout

and pass it a hash of data items

hash = { :name => “Shay Friedman”,

:blog => “http://www.ironshay.com” }

view ‘about_me’, ‘main’, hash

Using this hash from the view will be done as follows:

My name is <%= model[:name] %>

RedirectResult Sometimes you need to redirect the request to a different controller
action. For example, after deleting a record, you would want to take the users to the list
page instead of showing them a success message. This is what the RedirectResult is for.

To create this type of result, there are two helper methods on IronRubyMvc controllers:
redirect_to_action and redirect_to_route. redirect_to_action is a more specific
method than redirect_to_route. They both enable you to send the request to a different
action method on the same controller, on another controller, or to a different route.

redirect_to_action takes two parameters: the action name and an optional route details
hash. redirect_to_route receives only the route details hash.

The following sample code demonstrates different uses for these methods:

Redirect to the index action method on the same controller

redirect_to_action “index”

Same result using the redirect_to_route method:

redirect_to_route { :action => “index” }

Redirect to the list action on the user controller

redirect_to_action “index”, { :controller => “user” }

or

redirect_to_route { :action => “index”,

:controller => “user” }

Redirect to the edit action on the same controller

with an id parameter

redirect_to_action “edit”, { :id => 5 }

or

redirect_to_route { :action => “edit”, :id => 5 }

374 CHAPTER 15 ASP.NET MVC

There are other methods for other ActionResult responses, too:

. json: Responds with a JSON-formatted result. It is intended mostly for AJAX calls.

. java_script: Responds with a JavaScript script.

. content: Responds with a textual response.

. file: Responds with a file (can send the binary content, the path, or the file stream).

If you want to read more about them, refer to the ASP.NET MVC learning site at http:/
/www.asp.net/learn/mvc.

Method Selectors
Every controller method can be enhanced with selectors that change the way it works
with the ASP.NET MVC framework.

There are three main selectors: accept_verbs, non_action and alias_action.

accept_verbs This selector makes an action available only on a specific method: POST,
GET, PUT, DELETE, or HEAD. This means that an action that is instructed to work on POST
requests only will be entirely unavailable for other request methods like GET.

The following code shows how to use the accept_verbs selector method:

Make the index method available for GET requests only

accept_verbs :index, :get

Make the update method available for POST requests only

accept_verbs :update, :post

USE ACCEPT_VERBS REGULARY

A best practice for controller actions is to use accept_verbs for each and make the
action respond only to its matching request types. For example, there is no need for an
edit action that shows an edit form to receive POST requests, and there is no need for
an update action that updates the database to receive GET requests.

The basic rule is to use :post for data-modifying actions and :get for data-reading
actions.

non_action As mentioned previously, public controller methods are considered action
methods. Sometimes, however, you may want to have a public method but not want it to
act as an action method. This is what the non_action selector is for. In such a case, just
use the non_action selector method to instruct the MVC framework that your method is
not an action method.

http://www.asp.net/learn/mvc
http://www.asp.net/learn/mvc

375MVC

To use it, you just pass the method name as a symbol to the non_action selector method:

Make calculate_something method a non-action method

non_action :calculate_something

WHEN TO USE NON_ACTION

Using the non_action method should be the last resort when you want to prevent a
method from being considered as an action. The better way to do so in terms of code
design is by making the method private or protected.

alias_action

When you need to provide a way to call a single action via different names, the
alias_action can prove handy. For example, you might want the list action to be acces-
sible via the index action. Writing the same code twice is bad for you, so using
alias_action is the better alternative.

The first parameter to the alias_action selector method is the alias action name as a
symbol, and the second argument is the actual action name as a symbol:

Make list_alias an alias for the list action method

alias_action :list_alias, :list

With this line in the controller code, the next two URLs will be redirected to the list
action (assuming it is written in the UserController class):

http://localhost/User/list
http://localhost/User/list_alias

Using Libraries
If you make use of the standard library or some other third-party libraries and you don’t
have IronRuby installed on the computer (only the IronRubyMvc framework), copy the
needed libraries to the Libs folder under the application root directory.

The Libs folder is one of the loaded paths of the application, so its content is available
without having to specify the full path.

Creating the Application Controller
For the To Do List application, we prepare a controller that takes care of the main actions
on our page: listing, creating, and deleting.

376 CHAPTER 15 ASP.NET MVC

The first task we complete is building the controller class and its constructor. The
controller class will be named ToDoListController, and it will be saved to Controllers\
to_do_list_controller.rb. Inside the constructor, we generate the model class to make it
available and ready for the controller actions:

require “to_do_list_model”

class ToDoListController < Controller

def initialize

@model = ToDoListModel.new

end

end

When the constructor is in place, let’s move on to the action methods.

The first action is listing. This is a simple one. All we need is to get the data from the
model, save it to an instance variable so that the view can use it, and call the view (with
to_do_layout as its layout):

def index

@data = @model.list

view ‘index’, ‘to_do_layout’

end

The action is now called index and we want it to be available as a list, too. To do so we
use the alias_action method:

alias_action :list, :index

The next action is the create action. The create action has a page of its own with a form
that contains the needed fields. The input can then be sent with the request to the
create action:

def create

return view(“create”, “to_do_layout”) unless request.post?

@model.create_item request.form[‘description’]

redirect_to_action ‘list’

end

Notice that we act differently for POST requests. When a POST request is coming, it origi-
nates from the creation form, so we call the create_item method on the model and redi-
rect to the list action (so that the user can see the new addition). Otherwise, we just
show the creation form.

The last action is the delete action. This one does not have its own form and is invoked
via a link on the index page. Inside the action method, we call the delete_item method
on the model and then redirect to the list action:

377MVC

def delete

id].to_i)

redirect_to_action ‘list’

end

The id parameter is accessed via the params hash because it is one of the route parameters.

The delete action method is accessed via a link, so the only approved way to call the
delete action is via a GET request. To enforce that, we use the accept_verbs selector:

accept_verbs :delete, :get

That sums up our work on the controller. Listing 15.2 contains the code of the entire
ToDoListController class.

LISTING 15.2 The ToDoListController Class

require “to_do_list_model”

class ToDoListController < Controller

def initialize

@model = ToDoListModel.new

end

alias_action :list, :index

def index

@data = @model.list

view ‘index’, ‘to_do_layout’

end

def create

return view(“create”, “to_do_layout”) unless request.post?

@model.create_item request.form[‘description’]

redirect_to_action ‘list’

end

accept_verbs :delete, :get

def delete

id].to_i)

redirect_to_action ‘list’

end

end

378 CHAPTER 15 ASP.NET MVC

TABLE 15.2 Html Helper Methods

Method Description

action_link Generates a link to another controller action. It retrieves two parameters:
the display value; and a hash of controller name, action name, and para-
meters (each optional).
For example:
<%= html.action_link(“Click me”,

{:controller => ‘users’

:action => ‘show’

:user_id => 5}

Views

Views contain the UI logic. A view is connected to a specific action in the model. So, for
every controller, you can find several different views: one for listing, one for creating new
records, one for editing, and so forth.

Views are HTML files with IronRuby code inside: ERB files. ERB, which stands for eRuby, is
a templating system that allows embedding Ruby code inside text documents. Views are
located in subfolders of the Views folder. Each controller has a matching folder under the
Views folder, which is where the controller-related views are placed.

Views are responsible for

. Rendering the HTML to show the model and controller data

. Implementing client behavior using JavaScript

. Using stylesheets

. Implementing view layouts

Using Controller Data
Views can use data from the controller. This is done via the view_data object. Every
instance variable of the controller class is available to the view through the view_data
object. For example, if the controller contains the following statement

@title = “Title from the controller”

The view can use this data by calling view_data.title.

View HTML Helper
When writing a view, you don’t have to write the actual HTML by yourself. Instead, you
can let the HTML helper do it. The helper, which is available via the helper object,
contains several methods that aid in constructing HTML links to other controller actions
and form-building tasks. Table 15.2 describes the main methods.

379MVC

TABLE 15.2 Html Helper Methods

Method Description

Encode Prepares a string to be shown on an HTML page (for example, replacing
less-than signs with <).
For example:
<%= html.encode(“<problematic for HTML>”) %>

begin_form

end_form

Helps to create a form’s begin and end tags. The begin_form can accept
also the action name, controller name, parameters, and method type
(POST or GET).
For example:
<% html.begin_form({:action => “create”}) %>

...form...

<% html.end_form %>

check_box

drop_down_list

hidden

list_box

password

radio_button

text_area

text_box

These create form elements. They receive the element name and value
(optional).
For example:
<%= html.text_box(“name”, “your name here”) %>

<%= html.check_box(“yes_no”, true) %>

validation_message

validation_summary

Placeholders for validation messages (discussed in more detail later in
this chapter). The validation_message is for a specific element, and
validation_summary shows all the validation errors in the form.
For example:
<%= html.text_box(“name”) %>

<%= html.validation_message(“name”,”required”) %>

<%= html.validation_summary %>

HTML HELPER USAGE

The ASP.NET MVC HTML helper is there to, well, help you. The framework will not force
you to use it. You are free to create the HTML by yourself if you find doing so more
suitable for you.

Nonetheless, it is recommended to use the HTML helper because it automatically
takes care of issues you would otherwise have to handle manually (for example, creat-
ing the correct URLs).

380 CHAPTER 15 ASP.NET MVC

Custom View Helpers
The HTML helper is a great helper, but it doesn’t have all the answers. A day will come (it
will!) when you find yourself with repeating UI logic across the application. Don’t fear;
just build a custom view helper.

Custom view helpers exist in the Helpers directory. The way to create a helper method is
to open the System::Web::Mvc::IronRuby::Helpers::RubyHtmlHelper class and add
methods to it.

Let’s create a custom view helper. We call the method link_google, and it can help us to
create links to search results on Google. We save this helper in a file called
google_helper.rb:

module System::Web::Mvc::IronRuby::Helpers

class RubyHtmlHelper

def link_google(caption, query)

“#{caption}”

end

end

end

To use it in the view, we need to tell the view to load it. So as the first line of our selected
view, we add the following line:

<% load “google_helper.rb” %>

With this line in our view, we can go on and use our new helper method:

<%= html.link_google(“IronRuby Unleashed on Google”,

“IronRuby Unleashed”) %>

MAKING CUSTOM HELPERS AVAILABLE TO ALL

If you want to make your custom helper available to all views on the application, just
add the load statement to the application master layout.

Shared Views
In most web applications, you have a standard layout that can be permanent throughout
the application. Shared views are exactly for that. Here you create ERB files that can be
available for every controller. These files are located under Views\Shared.

Inside a shared view, to set the location to the page content, you should use the
<% yield %> statement.

In our To Do List application, we want to use a single layout. The layout is based on the
default ASP.NET MVC layout with a few modifications. Listing 15.3 contains the layout

381MVC

code. Notice that most of the code is plain HTML, but I use the HTML helper there to
create links to the application pages (which we will soon build, too). The layout file will
be called to_do_layout.html.erb.

LISTING 15.3 The To Do List Layout

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>IronRubyMvc To Do List</title>

<link href=”/Content/Site.css” rel=”stylesheet” type=”text/css” />

</head>

<body>

<div class=”page”>

<div id=”header”>

<div id=”title”>

<h1>To Do List</h1>

</div>

<div id=”menucontainer”>

<ul id=”menu”>

<%= html.action_link(“List”,

{:controller => “ToDoList”,

:action => “index”})%>

<%= html.action_link(“Create”,

{:controller => “ToDoList”,

:action => “create”})%>

</div>

</div>

<div id=”main”>

<% yield %>

<div id=”footer”>

</div>

</div>

</div>

</body>

</html>

382 CHAPTER 15 ASP.NET MVC

MORE USES FOR SHARED VIEWS

The main use for shared views is as shared layouts (like we just did). However,
shared views can also be used when you want a single view for multiple different
controller actions.

As mentioned previously, views are located on a directory that matches the controller
name. This is the most common case, but views can also be put in the shared views
directory, and the ASP.NET MVC framework will look for them there, too.

Creating the Application Views
With the knowledge we have now, we can go ahead and create our pages. We begin with
the index page, which lists all the current to-do items.

The code includes IronRuby code (between the <% %> signs) that loops over the model
data (handed in by the controller) and displays the tasks in a tabular layout. The code is
saved as index.html.erb under the views\ToDoList directory:

<table>

<% view_data.data.each do |item| %>

<tr>

<td><%= html.encode(item[:id]) %></td>

<td><%= html.encode(item[:description]) %></td>

<td><%= html.action_link(“Remove”,

{:action => “delete”,

:id => item[:id]}) %></td>

</tr>

<% end %>

</table>

<% if view_data.data.length == 0 %> No tasks defined <% end %>

<p>

<%= html.action_link(“Add new”, {:action => “create”}) %>

</p>

As you can see, along with the Ruby loop, we’re taking advantage of the HTML helper
class to encode the items correctly and to add a Remove link. Also notice that we do not
write any layout code; this is done by the shared layout we have created before.

The output page is presented in Figure 15.7.

We do not have any tasks currently, and we also don’t have a view that enables us to add
new ones. This is our next task: building the create action view.

383MVC

FIGURE 15.7 The list page without items.

In the create action view, we need a form where the user can input the task description
and send it. We can use the HTML helper to create the form and form elements’ HTML.
The code will be saved to create.html.erb under views\ToDoList:

<h2>Add New</h2>

<% html.begin_form({:action =>”create”}) %>

<label for=”Description”>Task description:</label>

<%= html.text_box(“description”) %>

<input type=”submit” value=”Create” />

<% html.end_form %>

If you wonder (or already frustrated) about the amount of HTML code this generates, you
may be surprised to learn that the HTML code is as simple as it can be. This is the HTML
that is generated by the preceding code:

<h2>Add New</h2>

<form action=”/ToDoList/create” method=”post”>

<label for=”Description”>Task description:</label>

<input id=”description” name=”description”

type=”text” value=”” />

<input type=”submit” value=”Create” />

</form>

384 CHAPTER 15 ASP.NET MVC

FIGURE 15.9 The list page with items.

After adding a few tasks, the page looks like Figure 15.9.

FIGURE 15.8 The new task page.

Figure 15.8 shows how the page turns out.

385Routes

The To Do List web application is now fully working—handling user input, reading and
saving data from data storage, and looking good with a pleasant user interface. No doubt
this is going to be the next big thing.

Even though the main functionality is written, there is more to the ASP.NET MVC frame-
work. Throughout the rest of this chapter, we explore more capabilities and enhance our
web application with their help.

Routes
ASP.NET MVC routing is the first place incoming requests “meet” the application. The
routing module is responsible to route the incoming request to its matching controller.

When you created the ASP.NET MVC application via the IronRubyMvc template, a routes
file was added automatically. This file is located on the root of the application and has the
“surprising” name of routes.rb.

This file already defines the default routing rule:

$routes.map_route(“default”, # Route name

“{controller}/{action}/{id}”, # URL format

{:controller => ‘Home’,

:action => ‘index’,

:id => ‘’}) # Default values

The default route is a simple rule. For example, for the URL users/delete/5, the request
will be sent to the UsersController class, the delete action, with 5 as the id parameter.

Default values are also defined on the default route. In the preceding code, when the
controller is not specified, the Home controller is used. When no action is specified, the
index action is used. And when no id is specified, an empty string is used as the id value.

There is no problem with changing the default values. Not every application is expected
to have a HomeController with an index action method.

I’d like to change the default to use the ToDoListController. You can also send more data
items to the controller via the route. I will add an item_amount default value, which we
use in the upcoming “Custom Routes” subsection:

$routes.map_route(“default”,

“{controller}/{action}/{id}”,

{:controller => ‘ToDoList’,

:action => ‘index’,

:item_amount => 10,

:id => ‘’})

386 CHAPTER 15 ASP.NET MVC

Custom Routes

Aside from the default route, you can create your own routes to match your needs.

To add a new route, we add another row to the routes.rb file above the default route line
(not doing so results in ignoring the custom route).

For example, the next route accepts URLs with a value representing the number of items
to show:

$routes.map_route(“with_item_amount”,

“LimitedList/{item_amount}”,

{:controller => ‘ToDoList’,

:action => ‘index’,

:item_amount => 10})

This custom route enables URLs as ”/LimitedList/3”. It executes the list method on the
ToDoList controller class with the given item number. If no number is given, 10 is used.

To support this new route on the ToDoListController, we change the index action
method to send only the given number of items to the view:

def index

@data = item_amount].to_i]

view ‘index’, ‘to_do_layout’

end

With this applied, you need to restart Cassini to refresh the route table. After that, calling
http://localhost/LimitedList/3 results in the list shown in Figure 15.10. (Remember we
have six items in the data file.)

FIGURE 15.10 The index page showing a limited number of items.

387Filters

Action code is executed Result is sent

Authorization
filter

Action filter
before

Exception
filter

Result filter
after

Result filter
before

Action filter
after

FIGURE 15.11 Flow of filters during an action execution.

AVOIDING CUSTOM ROUTES WHEN POSSIBLE

For most small-to-medium web applications, custom routes are not necessary, and the
default route can be sufficient. It is recommended to avoid custom routes when they
are not needed. Using those changes the expected result of the application and as a
result makes it harder to understand and debug.

Filters
Filters are the ASP.NET MVC framework way of providing interference points for an
incoming action request.

There are four types of filters:

. Action filters: Add code before and after an action is executed.

. Result filters: Add code before and after the result is sent back to the framework.

. Authorization filters: Add user authorization code. Can cancel the entire request if
needed.

. Exception filters: The execution flow will get here when an exception is raised.
You can then write code to log the error, show a nice error message to the user, or
take any other action you want.

The different filters have different execution time frames. Figure 15.11 shows the flow of
filters during an action execution.

Action Filters

Action filters allow you to run code before and after an action is executed, but before the
result is invoked.

Several action filter methods can be applied to a single action filter. For example, two
methods are invoked on the before_action filter.

388 CHAPTER 15 ASP.NET MVC

CANCELING AN ACTION

When you cancel an action (by setting the Result attribute to a non-nil value), all fil-
ters that are expected to be executed after the before_action method (for example,
after_action or before_result) will not be executed. Only filter methods from other
actions that should be executed (like in a case of action redirection) will be invoked
as expected.

Using the before_action filter is done from inside the controller class. There are two ways
of implementing it: via a block or via a method/lambda/proc. The following code uses the
before_action method to write some request details to the response stream before the
index action is executed:

before_action :index do |context|

context.http_context.response.write(“POST?

#{context.http_context.request.post?}”)

context.route_data.values.each do |val|

context.http_context.response.write(“
#{val.key} = #{val.value}”)

end

end

before_action
In the “before” filter, you can investigate the request and change the result of the action.
The before_action filter is supplied with a context variable of type
System.Web.Mvc.ActionExecutingContext.

Table 15.3 describes the important attributes of the ActionExecutingContext object.

TABLE 15.3 Attributes of ActionExecutingContext

Attribute Name Description

action_parameters Gets or sets the parameters passed to the action.

Controller Gets or sets the controller instance. (Changing the controller here is not
recommended.)

http_context Accesses the HTTP context objects l(session variables, application vari-
ables, cache, and more). Consists of the HttpContextBase class.

route_data Gets or sets the route data. You can access the route object and the
values it passes.

Result Gets or sets the result of the action. Note that when this attribute is set
to a non-nil value, the action is canceled and won’t be executed.

389Filters

TABLE 15.4 Additional Attributes of ActionExecutedContext

Attribute Name Description

Cancelled Determines whether the action was canceled.

Exception If an exception has occurred during the execution of the action, this
attribute contains the exception object instance.

exception_handled Gets or sets a Boolean value indicating whether the exception was
handled. If you do some exception handling here and you want to notify
that the flow can continue, set this attribute to true.

An equivalent to the preceding code is as follows:

before_action :index, :write_context_details

def write_context_details(context)

context.http_context.response.write “POST? #{context.http_context.request.post?}”

context.route_data.values.each do |val|

context.http_context.response.write “
#{val.key} = #{val.value}”

end

end

after_action
After the action is executed, the after_action filter methods are invoked. You cannot
cancel the action here (because it has already run), but you can still change the result or
investigate the request.

Like the before_action filter, the after_action one contains a context variable. This time
it is of type System.Web.Mvc.ActionExecutedContext. It has the same attributes as the
ActionExecutingContext except for the action_parameters attribute, which doesn’t exist
here, and a few additional attributes (described in Table 15.4).

Using the after_action action filter is done from inside the controller via a block or a
method. The next sample writes “action ended successfully” or “action ended unsuccess-
fully” to the response stream when the index action ends, according to the exception status:

after_action :index do |context|

if context.exception.nil?

msg = “action ended successfully”

else

msg = “action ended unsuccessfully”

end

context.http_context.response.write msg

end

390 CHAPTER 15 ASP.NET MVC

around_action
This action filter is a combination of the two actions previously described. When given a
block, it executes the same block before and after the action (just make sure not to use
unique context attributes when you do that):

around_action :index do |context|

context.http_context.response.write “POST? #{context.http_context.request.post?}”

context.exception # error! exception attribute does not exist on

both before_action and after_action context objects

end

If you choose to pass lambdas or procs, it is done in a hash where you can pass the object
for the before_action filter and for the after_action filter:

run_before = lambda { |context|

context.http_context.response.write “BEFORE” }

run_after = lambda { |context|

context.http_context.response.write “AFTER” }

around_action :index,

{ :before => run_before, :after => run_after }

Result Filters

Result filters are similar to action filters. The difference is the time of their execution.
Result filters are executed after the action has finished running and before/after the result
is invoked.

before_result
This filter is executed before the result is invoked. This is the last place you can cancel the
result. To do so, just set the cancel attribute to true. Other than canceling the result, you
can investigate the request just as with the before_action and after_action filters.

The context parameter is a ResultExecutingContext object that contains the attributes
described in Table 15.5.

We use it in a similar way to the way we have used the before_action filter: by passing it
a block. The current version of IronRubyMvc does not support passing
methods/procs/lambdas to result filters:

before_result :index do |context|

Cancel PUT request

if context.http_context.request.put?

context.cancel = true

end

end

391Filters

TABLE 15.6 Additional Attributes of ResultExecutedContext

Attribute Name Description

Cancelled Determines whether the result was canceled.

Exception If an exception has occurred, this attribute contains the exception object
instance.

exception_handled Gets or sets a Boolean value indicating whether the exception was
handled. If you do some exception handling here and you want to notify
that the flow can continue, set this attribute to true.

Result Although it exists on ResultExecutingContext, too, it’s a bit different.
Here you can examine the result but not modify it (because it was already
executed).

after_result
On the after_result method, you can’t cancel the result anymore (pretty obvious restric-
tion). What you can do is check whether an exception has occurred and if it were taken
care of, check whether the result was canceled, and access the web request information.

The after_result context variable is of type ResultExecutedContext. It does not contain
a cancel attribute, but it has the extras additional attributes described in Table 15.6,
which before_result’s ResultExecutingContext doesn’t offer.

TABLE 15.5 Attributes of ResultExecutingContext

Attribute
Name

Description

Cancel Gets or sets a value indicating to cancel the result execution.

Controller Gets or sets the controller instance. (Changing the controller here is not recom-
mended.)

http_context Accesses the HTTP context objects (session variables, application variables,
cache, and more). Consists of the HttpContextBase class.

route_data Gets or sets the route data. You can access the route object and the values it
passes.

Result Gets or sets the result of the action. Notice that you can still change or replace
the result object here.

You use it with a block (methods/procs/lambdas are not supported for result filters
currently):

after_result :index do |context|

if context.canceled

context.http_context.response.write “Result was canceled”

end

end

392 CHAPTER 15 ASP.NET MVC

around_result
The around_result executes code before and after a result. It can receive a block that will
be invoked (make sure not to use unique context attributes):

around_result :index do |context|

context.http_context.response.write “Around the result”

end

Or you can use lambdas/procs:

do_before = Proc.new { |context|

context.http_context.response.write “
--------->BEFORE”

}

do_after = Proc.new { |context|

context.http_context.response.write “
--------->AFTER”

}

around_result :index, nil, { :before => do_before,

:after => do_after }

Authorization Filters

Authorization filters are the first to be invoked. You want to set some special authorization
rules inside them and cancel the request in case these rules are not followed.

The authorization filter is set via the authorization_action method, and the filter
methods receive a context parameter of type System.Web.Mvc.AuthorizationContext.

The AuthorizationContext object contains the attributes described in Table 15.7.

TABLE 15.7 Attributes of AuthorizaionContext

Attribute
Name Description

Controller Gets or sets the controller instance. (Changing the controller here is not recom-
mended.)

http_context Accesses the HTTP context objects (session variables, application variables,
cache, and more). Consists of the HttpContextBase class.

route_data Gets or sets the route data. You can access the route object and the values it
passes.

Result Gets or sets the result of the action. Note that when this attribute is set to a
non-nil value, the action is canceled and won’t be executed (neither will the
other filters of the current action).

393Filters

The authorization filter is used with a block or a method, which is given to the
authorize_action method. The following sample checks whether the current user exists
in the Administrator role. If not, the result is set to a redirection result (to redirect the user
to the login page):

authorized_action :index do |context|

unless context.http_context.user.nil? and

context.http_context.user.is_in_role(“Admininstrator”)

context.result = System::Web::Mvc::RedirectResult.new(“/account/log_on”)

end

end

The preceding code uses a block and is equivalent to the next one, which uses a method:

authorized_action :index, :auth

def auth(context)

unless context.http_context.user.nil? and

context.http_context.user.is_in_role(“Admininstrator”)

context.result = System::Web::Mvc::RedirectResult.new(“/account/log_on”)

end

end

Exception Filters

Exception filters are the last to run. They are invoked only if an exception has occurred.
Note that they run even if you have handled the exception on after_action or
after_result filters and set the exception_handled attribute to true.

The exception filter is run after the result is invoked. This doesn’t mean, however, that
you’re out of options. The ASP.NET MVC framework allows you to set the result one more
time to show the user a nice error page.

Make sure to set the exception_handled to true if you really take care of the exception.
Failing to do so can result in the event bubbling up and handled by a different exception
handler (or the default one if none exist). If exception_handled is false or the new result
ends up with an exception, the classic ASP.NET error pages are used (defined in the
customErrors part in the web.config file).

The exception filter comes, like the others, with a context parameter. This time it is built
of the ExceptionContext class. Its attributes are identical to some we’ve already seen (see
Table 15.8).

To take advantage of exception filters, IronRubyMvc provides the exception_action filter.
It receives a block and executes it when needed. Notice that methods, procs, and lambdas
are not currently supported by this filter.

394 CHAPTER 15 ASP.NET MVC

The following sample code outputs some exception details to the response stream if the
exception has already been handled:

exception_action :index do

unless context.exception_handled

context.http_context.response.write “An error has occurred!
”

context.http_context.response.write “Message: #{context.exception.message}”

end

context.exception_handled = true

end

Controller-wide Filters

Until now, all the filters I’ve shown you are specific action filters. There is another possi-
bility: making the filter controllerwide.

Controllerwide action filters run on their time slot for every action execution. Logging,
error handling, and authorization—all of them are very likely to be needed for every
controller action and not for a specific one.

To make a filter controllerwide, pass nil as the method name.

For example, the following code demonstrates some kind of lame logging mechanism that
will be run before and after every controller action:

before_action nil do |context|

context.http_context.response.write “Started on #{Time.now}”

end

TABLE 15.8 Attributes of ExceptionContext

Attribute Name Description

Controller The controller instance.

http_context Accesses the HTTP context objects (session variables, application vari-
ables, cache, and more). Consists of the HttpContextBase class.

route_data Gets or sets the route data. You can access the route object and the
values it passes.

Exception The exception object.

exception_handled Gets or sets a Boolean value indicating whether the exception was
handled.

Result Gets or sets the result of the action. After the result is set here, it will be
executed.

395Filters

TABLE 15.9 FILTER SupercLASSES and Methods

Filter Type Class to Inherit From Method to Implement

Action RubyActionFilter on_action_executing(context)

on_action_executed(context)

Result RubyResultFilter on_result_executing(context)

on_result_executed(context)

Authorization RubyAuthorizationFilter on_authorization(context)

Exception RubyExceptionFilter on_exception(context)

after_result nil do |context|

context.http_context.response.write “Ended on #{Time.now}”

end

Custom Action Filter Classes

If you don’t like the way of using filters that you’ve seen so far, you can do it differently
by creating a filter class and adding it to the action filter list.

Every filter type has its own IronRuby filter class, which you can inherit from to imple-
ment your custom behavior.

Table 15.9 contains the class and method names. All classes are part of the module
System::Web::Mvc::IronRuby::Controllers. (Remember to include it on the file you’re
using the filter classes.)

To use your custom filter class, the Controller class contains a method named filter.
This method received two parameters: a symbol representing the name of the action (nil
for all actions), and the filter class instance.

Let’s create a sample custom filter, an exception one. The class contains the on_exception
method that runs the code we used earlier. The code can be added to the top of the
to_do_list_controller.rb file. (Otherwise, the file should be loaded before using the filter.)

class MyException < System::Web::Mvc::IronRuby::Controllers ::RubyExceptionFilter

def on_exception(context)

unless context.exception_handled

context.http_context.response.write “An error has occurred!
”

context.http_context.response.write “Message: #{context.exception.message}”

end

context.exception_handled = true

end

end

396 CHAPTER 15 ASP.NET MVC

Now inside the controller, we can make all controller actions use this exception filter:

filter nil, MyException.new

That’s it, you just implemented a custom filter.

Implementing the other filter types is exactly the same, just with a different superclass
name and methods.

Validations
On data-driven applications, you want to validate that users input expected values. The
validation capabilities of ASP.NET MVC are meant to make this process easier.

Inside the Model

No one knows the data and its expected format better than the model. That is why the
validation itself should be done inside the model.

On our To Do List application, we add validation for the description field; we do not want
it to be left blank.

We add a validation method to the model so that classes from other layers (someone
say controllers?) can validate the data without needing to actually know what is
expected from it:

def validate_for_creation(description)

return false if description.to_s.length == 0

If data is valid, return true

true

end

Inside the Controller

The controller contains an object named model_state. This object is used by the view to
determine whether the model action failed.

If the validation fails, the controller adds an error to the model_state object:

The format: model_state.add_model_error(field_name, error)

model_state.add_model_error(“description”,”Description is required”)

When an error is added to the model_state, the model_state.is_valid returns false, and
the view knows something is wrong.

In our application, we change the create action to validate the data before adding it to
the data storage:

397Validations

def create

return view(“create”, “to_do_layout”) unless request.post?

valid = @model.validate_for_creation request.form[‘description’]

unless valid

model_state.add_model_error(“description”,”Description is required”)

view ‘create’, ‘to_do_layout’

else

@model.create_item request.form[‘description’]

redirect_to_action ‘list’

end

end

The preceding code validates the data first. If it fails, it adds the validation error to the
model_state object and shows the same page. If validation passes, the new record is
created and the user is redirected to the list action.

Inside the View

On the view side, there are some actions to be taken, as well. To make the user know
about the error, view validation helpers come to our aid.

There are two validation helpers: single-field validator and validation summary.

The single-field validator, assuming you have a form field named description, is added
as follows:

<%= html.validation_message(“description”, “required!”) %>

This line could go near the field itself or anywhere else on the page.

The validation summary shows all the errors on the form in a bullet list, using the errors
from the model_state object. The following line adds a validation summary to the view:

<%= html.validation_summary %>

With the validation elements, the To Do List application creation form consists of the
following code:

<% html.begin_form({:action =>”create”}) %>

<label for=”Description”>Task description:</label>

<%= html.text_box(“description”) %>

<input type=”submit” value=”Create” />

<%= html.validation_message(“description”, “The description is required.”) %>

<% html.end_form %>

398 CHAPTER 15 ASP.NET MVC

If a user tries to create a to-do item with no description, he will be presented with the
creation form again, but this time it will be presented with an obvious error notification,
as shown in Figure 15.12.

FIGURE 15.12 A validation error notification after an invalid input is submitted.

Classic ASP.NET Features
Although ASP.NET MVC looks and feels very different from classic ASP.NET, it is still based
on the classic framework. This means that all the features that were available to you in
ASP.NET are also available to you in ASP.NET MVC.

It includes HTTP modules and handlers, session state management, authorization and
authentications mechanisms, profiles, and more. Also notice that third-party components
that have been built for classic ASP.NET still work in ASP.NET MVC views.

A Word About Classic ASP.NET
Version 1.0 of IronRuby is not expected to support classic ASP.NET out-of-the-box, as
known as Web Forms.

However, if you are interested in Web Forms support, keep an eye on the ASP.NET
Dynamic Language Support project on CodePlex,
http://aspnet.codeplex.com/Wiki/View.aspx?title=Dynamic%20Language%20Support.

This project is currently in its alpha version. It has support only for IronPython, but
IronRuby support is coming soon.

http://aspnet.codeplex.com/Wiki/View.aspx?title=Dynamic%20Language%20Support

399

Summary
In this chapter, you learned about the ASP.NET MVC framework and how to use it with
IronRuby. You learned about the MVC different parts, routes, action filters, validations,
and classic ASP.NET capabilities.

With this knowledge, you can create your own web applications with IronRubyMvc.

This framework brings some fresh air to the world of ASP.NET. The community of develop-
ers who use it for their projects is growing by the minute, and you can find immediate
help for any problem you encounter.

The best resource for ASP.NET MVC material is the official site: http://www.asp.net/mvc.

Summary

http://www.asp.net/mvc

This page intentionally left blank

CHAPTER 16

Silverlight

IN THIS CHAPTER

. Prepare Your Environment

. Hello, Silverlight

. Add Silverlight to a Web Page

. XAML

. Layout

. Controls

. Adding Code

. Graphics

. Media and Animations

. Data Binding

In 2002, the term RIA was introduced. RIA, an acronym for
rich Internet applications, is a generic name for applications
that have the characteristics of desktop applications even
though they are actually web applications. These applica-
tions differ from other web applications by their richness,
which is expressed in an enhanced interface, media capabil-
ities, and the overall “look and feel” of the application.

This rich interface cannot be achieved currently with the
browser out-of-the-box capabilities like HTML and JavaScript.
A special plug-in should be installed for that matter.

One of these plug-ins is the Silverlight plug-in. Silverlight
started as a video streaming plug-in and gained more and
more features as every version came out. The current
version, Silverlight 3.0, is a mature framework that is used
on popular websites. The most prominent use of Silverlight
so far was for the Beijing Olympic Games, when the NBC
Olympics website used Silverlight to give its users an incred-
ible viewing experience. The site allowed users to rewind
and watch a specific part again, watch live streams, and
even watch in a picture-in-picture mode.

In this chapter, you learn what Silverlight is and how you
can take advantage of it using IronRuby. I start by introduc-
ing Silverlight and its main concepts, then walk you
through creating your first IronRuby-driven Silverlight
application, and end with creating a small but fun
Silverlight application.

402 CHAPTER 16 Silverlight

Prepare Your Environment
The only piece of software you need to run Silverlight with IronRuby on your computer is
the Silverlight 2.0 or 3.0 browser plug-in.

The plug-in can be obtained from the official Silverlight site at http://silverlight.net. This
is the main site for Silverlight resources, so you might want to explore it a bit.

After you download and install the plug-in (and you have IronRuby on your system), you
are ready to write IronRuby-driven Silverlight applications!

Hello, Silverlight
Silverlight is a subset of Microsoft Windows Presentation Foundation (WPF) framework in
terms of functionality and features. It provides graphics, multimedia, animations, and
interactivity features. Moreover, a subset of the .NET framework is also available. The
plug-in supports all major web browsers, including Internet Explorer, Firefox, and Safari,
and can be run from Windows, Mac OS X, and Linux.

The concept of programming a Silverlight application is similar to a WPF application.
Most of the layout, graphics, and animations are declared in XAML, and the code is
written in IronRuby to support the layout and react to user actions.

Unlike WPF, where the user receives an EXE file with the program, here in Silverlight
world we have a file called a XAP file (pronounced ZAP). This file is actually a zip file that
contains the compressed assemblies and resources of the Silverlight application. The
Silverlight plug-in then downloads the XAP file and runs it.

Creating your first Silverlight application takes just a few seconds. IronRuby comes with a
handy tool to create everything for us, just run and play, and another one to run the
application.

Let’s get down to work and create our first Silverlight application.

The sl Tool: The Silverlight Application Creator

The sl command-line tool is found in the IronRuby directory, within the
silverlight\script folder.

This tool receives two arguments. The first one is the dynamic language you want to use:
ruby or python. The second one is the path to where the application should be created:

sl [ruby | python] [application path]

Follow the next steps to create your first IronRuby-driven Silverlight application using
the sl tool:

http://silverlight.net

403Hello, Silverlight

1. Open the command prompt. (Click Start > Run, type cmd, and press Enter.)

2. Navigate to the IronRuby installation folder. For example, if you have your IronRuby
files on c:\IronRuby, enter the following:

cd c:\IronRuby

3. Navigate to the silverlight subfolder:

C:\IronRuby> cd silverlight

4. Now we use the sl tool and create an IronRuby-driven application in
c:\SilverlightApps\IronRubySilverlight:

> script\sl ruby c:\SilverlightApps\IronRubySilverlight

5 File(s) copied

Your “ruby” Silverlight application was created in

c:\SilverlightApps\IronRubySilverlight\.

SL TOOL TEMPLATES DIRECTORY

When you create a Silverlight application using the sl tool, it is created from a template
that exists in the IronRuby directory under silverlight/scripts/templates/ruby. If you use
the tool frequently and would like the template to contain other files, change the files
in this directory.

The Folder Structure
The basic template contains a few folders and files. Table 16.1 describes the different
folders and their roles in the application.

DEFAULT FOLDER STRUCTURE IS NOT A REQUIREMENT

The folder structure is not a requirement. It is how the basic template is built, and it
gives you a good structure to begin with. Nevertheless, there is no problem with
putting all files together on the same folder or on entirely different directories. It’s up
to you to decide.

TABLE 16.1 sl Tool Output Folder Structure

Name Description

app Contains the application XAML and code files.

css Contains the application stylesheet files.

js Holds the application JavaScript files.

index.html The main page that runs the Silverlight application.

404 CHAPTER 16 Silverlight

The chr Tool: The Development Server

The chr tool runs the dynamic language development server, Chiron (named after the
intelligent centaur from Greek mythology).

Chiron dynamically packages everything you need to run the IronRuby-driven Silverlight
application into a XAP file and serves it up to the browser. It also generates the required
AppManifest.xaml file that contains information about the application assemblies and
entry point.

chr has several command-line switches, as described in Table 16.2.

TABLE 16.2 chr Tool Command-Line Switches

Switch Description Sample

/w

or
/webserver

Launches the development server. It
creates an XAP file automatically.
Port number can optionally be added to
the switch, as well.

Start the web server on default port
2060:
chr /w

Start the web server on port 3456:
chr /webserver:3456

/b

or
/browser

Starts the web server and launches the
default browser. There is no need to
use /w switch when this one is used.
Cannot be combined with /x or /z.
Start URL can optionally be added to
the switch.

Start the web server and default browser
on the root folder:
chr /browser

Start the web server and launches the
default browser on index.html:
chr /b:index.html

/z

or
/zipdlr

Generates an XAP file, including
dynamic language DLLs, and auto-
generates AppManifest.xaml if it
doesn’t exist.
Doesn’t start the web server.
Cannot be combined with /w or /b.
The file path must be added to the
switch, as well.

Create a XAP file on my_file.xap:
chr /z:my_file.xap

/m

or
/manifest

Saves the generated AppManifest.xaml
file to disk.
Doesn’t start the web server.
Can only be combined with /d, /n, and
/s.

Save the manifest file to the current
directory:
chr /m

405Hello, Silverlight

Running Our First Silverlight Application
To run the Silverlight application we use the /b switch, which also starts the browser for us.

Open the command prompt. If you don’t have IronRuby’s Silverlight directory path on
the Path environment variable, navigate to it. Otherwise, you can run the command from
any other location. Now let’s start the server:

> script\chr /d:C:\SilverlightApps\IronRubySilverlight /b:index.html

Chiron - Silverlight Development Utility. Version 1.0.0.0

Chiron serving ‘c:\silverlightapps\ironrubysilverlight’ as http://localhost:2060/

TABLE 16.2 chr Tool Command-Line Switches

Switch Description Sample

/d

or
/dir

or
/directory

Specifies the directory on disk. Default
is the current directory.
The path must be added to the switch.

Start the web server with files on
c:\MyApp:
chr /w /d:c:\MyApp

Create the AppManifest.xaml file from
sources found in c:\MyApp:
chr /m /d:c:\MyApp

/r

or
/refpath

Path where assemblies are located.
Default is the same directory as
Chiron.exe.
The path must be added to the switch.

Set the reference path to
c:\IronRuby\bin:
chr /r:c:\IronRuby\bin

/path Adds paths to be included within the
XAP file.
A semicolon-separated path string must
be added.

Create a XAP file and add c:\IronRuby
and c:\IronPython to the paths:
chr /z:myfile.xap
/path:c:\IronRuby;c:\IronPython

/x

or
/xap

or
/xapfile

Creates a XAP file only with the direc-
tory content and without the manifest
or the dynamic language DLLs.
Does not start the web server.
Cannot be combined with /w or /b.
File path must be added to the switch.

Create a XAP file for c:\MyApp and name
it xap_file.xap:
chr /d:c:\MyApp
/xap:c:\MyApp\xap_file.xap

Create a XAP file for the current directory
and name it xap_file.xap:
chr /xapfile:xap_file.xap

/n

or
/nologo

Suppresses display of the logo banner
when starting the server.

Start the web server on the current direc-
tory with no logo banner text:
chr /w /n

/s

or
/silent

Suppresses display of all output. Start the web server on the current direc-
tory without any message being
displayed:
chr /w /s

406 CHAPTER 16 Silverlight

If /s or /silent wasn’t used, these messages appear (/n or /nologo hides the first line).
When requests are made to the server, the served files are written to the console, as well.

Because we started the server with the /b switch, the browser was also opened on the
index page. There you find your first IronRuby-driven Silverlight application, as shown in
Figure 16.1.

You probably wonder what the big black area is doing there. This is the REPL (read-
evaluate-print loop) text area. It is added automatically by Chiron (can be called off, as
well), and it allows you to write IronRuby code directly into the browser.

Go ahead and make a little statement in the browser; insert the next code line in the
REPL area:

Application.current.root_visual.find_name(“message”).text = “IronRuby Rocks!”

Our statement and our page now look like Figure 16.2.

Now that we have the very basic Silverlight application, we can go on and enhance it to
make it a real application (as far as real goes in book samples).

Add Silverlight to a Web Page
Silverlight works in the web browser. As a result, it is loaded from the website HTML code.
The HTML object element enables you to embed and configure the Silverlight plug-in:

FIGURE 16.1 The default IronRuby-driven Silverlight page.

407Add Silverlight to a Web Page

FIGURE 16.2 Using the IronRuby REPL console

The preceding code adds a Silverlight object to the page that fills the entire page. It is
possible to provide different height and width values to make the object take only a
portion of the page.

The source parameter is the most important parameter. It contains the name of the XAP
file that holds the entire application. The source parameter is handled differently when
you run the server via Chiron or via a different server (or even a simple HTML file). When
Chiron is your server, the source parameter should point to the folder where the applica-
tion start file (default is app.rb) is located. For example, in our application the app.rb file is
located in the app folder. As a result, the source parameter value is ”app.xap”. If the folder
were named my_app_folder, the value would have been ”my_app_folder.xap”. When you
don’t use Chiron as your server, the source parameter should point to a real XAP file.

The next important parameter for us is the one called initParams. The initParams
contains a comma-separated key-value argument that enables passing user-defined initial-
ization parameters to the Silverlight application. When you use Chiron, several unique
keys are available for you within the initParams parameter, as described in Table 16.3.

The final parameter we discuss is the onerror parameter. When an error occurs and
initParams doesn’t contain an element ID for the error message, a JavaScript function,
whose name is defined in the onerror parameter, is executed.

<object data=”data:application/x-silverlight,”

type=”application/x-silverlight-2”

width=”100%” height=”100%”>

<param name=”source” value=”app.xap”/>

</object>

408 CHAPTER 16 Silverlight

For example, if the onerror parameter is declared as follows:

<param name=”onerror” value=”onSilverlightError” />

The JavaScript function that handles it can be as follows:

function onSilverlightError(sender, args) {

alert(args.ErrorMessage);

}

You might want to look at the error.js file, which you can find within the js folder on the
project directory. This is the default error handler and shows all the possible information
about the error.

For more available parameters for the Silverlight object, visit the Silverlight Plug-in Object
Reference at http://msdn.microsoft.com/en-us/library/cc838259(VS.95).aspx.

TABLE 16.3 initParams Chiron-Related Keys

Key Available Value Description

start Filename.rb The entry point of the application. The filename can be
anything, but it must have the .rb extension for Chiron to
know that we’re working with IronRuby.
Default is app.rb.

debug true or false Runs the application in debug mode. Stack traces will be
presented in case of an error.
When it is set to true, you can attach the browser to
Visual Studio debugger and debug your code (when
Silverlight tools are installed).

reportErrors ID of the HTML
element

When an error occurs, the error message will be written to
the innerHTML property of the HTML element with an ID
matching the value of this key.
If there is no matching element with such an ID, an HTML
element will be created with that ID, and the message will
appear inside it.
If this key is omitted, no errors will be shown (unless the
onerror parameter is defined).

exceptionDetail true or false If set to true, it shows the entire managed stack trace
rather than just the dynamic one.

console true or false If set to true, the REPL console will be added to the
bottom of the page.

http://msdn.microsoft.com/en-us/library/cc838259(VS.95).aspx

409XAML

XAML
XAML is a markup language that describes the UI of the Silverlight application. (WPF also
uses it.) The UI elements are represented in the XAML code, including their properties.
Moreover, XAML can contain static resources and animation definitions.

Our Silverlight application contains the default XAML file named app.xaml on the app
folder. It contains a very simple page that allows showing the welcome message:

<UserControl x:Class=”System.Windows.Controls.UserControl”

xmlns=”http://schemas.microsoft.com/client/2007”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<Grid x:Name=”layout_root” Background=”White”>

<TextBlock x:Name=”message” FontSize=”30” />

</Grid>

</UserControl>

If we want to add a blue rectangle to the page, we just add the following self-explanatory
element right after the TextBlock element:

<Rectangle Height=”70” Width=”70” Fill=”Blue” />

This makes our application look like Figure 16.3.

To learn more about XAML, look at the “XAML” section in Chapter 13, “Windows
Presentation Foundation (WPF).” Another good resource is the XAML Overview in the
MSDN site: http://msdn.microsoft.com/en-us/library/cc189036(VS.95).aspx.

FIGURE 16.3 The Silverlight page with the new added rectangle.

http://msdn.microsoft.com/en-us/library/cc189036(VS.95).aspx

410 CHAPTER 16 Silverlight

Layout
In Silverlight, you cannot throw elements on a page without a layout element to contain
them. The layout element provides the mechanism that is used to organize the elements.
Table 16.4 describes the available layout controls for your Silverlight application.

TABLE 16.4 Silverlight Layout Controls

Control Description Sample

StackPanel Organize elements in a stack
form—one on top of the other
or side by side.

Good for simple needs.

<StackPanel Orientation=”Horizontal”>

<TextBlock>Hello</TextBlock>

<Button Content=”Push Me”/>

</StackPanel>

Grid Position elements in a grid
form—by rows and columns.
Good for almost any layout
need.

<Grid>

<Grid.ColumnDefinitions>

<ColumnDefinition Width=”50”/>

<ColumnDefinition Width=”*”/>

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

<RowDefinition Height=”100”/>

<RowDefinition Height=”*”/>

</Grid.RowDefinitions>

<TextBlock

Grid.Column=”0”

Grid.Row=”0”>

Hello

</TextBlock>

<Button

Grid.Column=”0”

Grid.Row=”1”

Content=”Push Me”/>

<Rectangle

Grid.Column=”1” Grid.Row=”0”

Grid.RowSpan=”2” Height=”70”

Width=”70” Fill=”Blue” />

</Grid>

411Layout

TABLE 16.4 Silverlight Layout Controls

Control Description Sample

Canvas Position elements in absolute
positions——by providing its
distance from the borders.
Good for absolute positioning
needs.

<Canvas>

<TextBlock

Canvas.Top=”10”

Canvas.Left=”15”>

Hello

</TextBlock>

<Button

Canvas.Top=”30”

Canvas.Left=”5”

Content=”Push Me”/>

</Canvas>

The great thing about these layout controls is that you don’t have to settle for only a
single one. There is no problem with combining them all to satisfy your layout needs.

Controls
Silverlight provides several different controls to help you build your application. The
controls range from ones that show data, like DataGrid, TreeView, and TextBlock, to
shape controls like Rectangle, Ellipse, and Line, to input controls like TextBox, Button,
DatePicker, and more.

For a list and overview of all available controls, take a look at the MSDN page at
http://msdn.microsoft.com/en-us/library/cc645072(VS.95).aspx.

Adding Code
XAML is a wonderful markup language for views. However, XAML only is not enough
when developing applications that should respond to user actions or execute complex
tasks. For that you need to add code.

Running XAML

With the default project template, you get the default code file, too. The file is app.rb, and
it is located in the app folder. This file reveals to us the basic way to create a Silverlight
application with IronRuby:

@root = Application.current.load_root_visual(UserControl.new, “app.xaml”)

http://msdn.microsoft.com/en-us/library/cc645072(VS.95).aspx

412 CHAPTER 16 Silverlight

This code line creates the main Silverlight object from an XAML file. We can then access
all elements via this object, remove them, or add new ones programmatically.

The load_root_visual method needs a bit of clarification. If you were to search for it on
MSDN, you wouldn’t easily find it. This is because it is not a built-in method of the
Silverlight framework. It is part of the Microsoft.Scripting.Silverlight assembly, which
is a set of extension methods that make some Silverlight tasks easier. The
load_root_visual method does a simple trick: It uses the load_component method to load
the XAML file and then sets the retrieved object to the root_visual property.

Note that the root_visual property can be set only a single time. As a result, there is no
need to use the load_root_visual more than once in an application. If you need to load
another XAML file, use the load_component method of the Application class.

The load_component method receives two arguments. The first one is an instance of an
object of the same type as the root object of the XAML file. A UserControl would fit every
need you have, so most of the time you pass UserControl.new as the first argument. The
second argument is the path to the XAML file. The next sample code loads the XAML file
sl_file.xaml into a variable named sl_file_root:

sl_file_root = Application.current.load_component(UserControl.new, “sl_file.xaml”)

REPLACING THE ENTIRE SILVERLIGHT CONTENT

As a result of root_visual being a one-time-only set attribute, we can’t change the
entire content in such a direct way as setting a new element to the root_visual
attribute or using load_root_visual again.

If you still want to do it, there is a way. First, you can redirect the user to a different
web page and have a new Silverlight content there. On the Silverlight way to replace
the entire content, we need to remove all child nodes from the root element (which is
one of the layout controls) and add the new root element to it. For example, assuming
we have a new user control on a XAML file named my_user_control.xaml, all we have to
do so that its content shows to the user rather than the current one is to run the
following code:

new_root_object = Application.current.load_component(UserControl.new,

“my_user_control.xaml”)

@root.children.clear

@root.children.add new_root_object

Retrieving Silverlight Elements

The next obvious task after loading an XAML file is to access its elements. Unlike
Windows or Web Forms, for which you have the elements as local variables, here you
have to work a bit harder.

413Adding Code

The way to retrieve an element is by the find_name method, which is available for every
UI element in the Silverlight framework. The find_name method looks recursively into the
element tree; so, by using the top element, you can use any element within the XAML
page. The name it looks for is set to each element by the x:Name attribute.

For example, the next XAML user control contains two elements, a StackPanel named
layout_root and a CheckBox named my_checkbox:

<UserControl x:Class=”System.Windows.Controls.UserControl”

xmlns=”http://schemas.microsoft.com/client/2007”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<StackPanel x:Name=”layout_root”>

<CheckBox x:Name=”my_checkbox” Content=”This is my checkbox” />

</StackPanel>

</UserControl>

Assuming that the preceding XAML code is placed within a file named sample.xaml, this
is how you can load the file, get the CheckBox object, and set it to be checked:

root_object = Application.current.load_component(UserControl.new, “sample.xaml”)

checkbox = root_object.find_name(“my_checkbox”)

checkbox.is_checked = true

MAKE RETRIEVING ELEMENTS EASIER USING RUBY CAPABILITIES

The process of retrieving an element in Silverlight is not as smooth as we’re used to.
Ruby has the tools to make this process much easier for us. By using the
method_missing method, we can make the syntax much clearer and smoother. To
use it, we open the FrameworkElement class, which is the base class for every
Silverlight element:

include System::Windows

class FrameworkElement

def method_missing(name)

elem = self.find_name(name)

if elem.nil?

The element is not found, continue with the original flow

super

else

Return the element to the caller

elem

end

end

end

414 CHAPTER 16 Silverlight

With this code available, instead of accessing an element in the regular way

@root.find_name(“my_element”)

we can write the following:

@root.my_element

Event Handling

One of the most important tasks when writing an application is to respond to user
actions. In Silverlight, when an action is executed, an event is raised. For example, when a
button is clicked, the button element click event is invoked. All we’ve got left to do is to
subscribe to the event we are after and respond in a way that fit our needs.

For example, if we have the preceding XAML file with the check box inside, we can
subscribe to the check box’s click event and react when the user changes its state:

my_checkbox = root_object.find_name(“my_checkbox”)

my_checkbox.click do |sender, args|

my_checkbox.content =

“This is my checkbox (current value: #{my_checkbox.is_checked.to_s})”

end

Accessing the HTML Page and Window

One of the great things about Silverlight is its capability to interact with the browser.
Silverlight contains an HTML bridge—managed classes that make it very easy to interact
with the browser page (including JavaScript code) and window without leaving the
comfort of IronRuby.

The main object for HTML interaction is HtmlPage. It is part of the
System::Windows::Browser namespace. This is a CLR static object, so there is no need to
initialize it. Via this object, we can access the document HTML, browser details, window,
JavaScript, and more.

The following sample code creates a string message with some browser and page informa-
tion and shows it in a JavaScript alert box:

include System::Windows::Browser

str = <<DOC

Browser: #{HtmlPage.browser_information.name}

Operating system: #{HtmlPage.browser_information.platform}

URL: #{HtmlPage.document.document_uri.to_s}

DOC

HtmlPage.window.alert str

415Adding Code

Figure 16.4 shows the sample output of the preceding code.

FIGURE 16.4 Showing a JavaScript alert box via IronRuby code.

For more information about the Silverlight HTML bridge, visit the related MSDN section at
http://msdn.microsoft.com/en-us/library/cc645076(VS.95).aspx.

Graphics
To this point, we covered several Silverlight features (but nothing you couldn’t have
accomplished with just plain HTML). Now we start to examine the great power and inno-
vation in Silverlight.

Silverlight provides several different visual effects that you can create in XAML code (or by
dynamically create them via code): drawings, shapes, paths, and complex geometries.

For example, the house drawing in Figure 16.5 is done entirely in XAML code.

The XAML code to draw it is as follows:

<Canvas>

<Rectangle Canvas.Left=”88” Canvas.Top=”80” Height=”70”

Width=”90” Stroke=”Black” />

<Polyline Canvas.Left=”88” Canvas.Top=”50”

Stroke=”Black” Points=”0,30 45,0 90,30”/>

<Ellipse Canvas.Left=”95” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black” />

<Ellipse Canvas.Left=”145” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black” />

<Rectangle Canvas.Left=”119” Canvas.Top=”119”

Height=”31” Width=”26” Stroke=”Black”/>

</Canvas>

Apart from these graphics capabilities, every Silverlight element can be filled with solid
colors, color gradients, images, or even video clips. These effects are done with
Silverlight brushes. Let’s add some color to our house with the different brushes, as
shown in Figure 16.6.

http://msdn.microsoft.com/en-us/library/cc645076(VS.95).aspx

416 CHAPTER 16 Silverlight

Want to draw this crazy house yourself? Well, I’m sure you do. The following XAML code,
which differs from the previous one only by its use of brushes, will draw the house:

<Canvas>

<!-- House structure with a gradient brush - >

<Rectangle Canvas.Left=”88” Canvas.Top=”80” Height=”70”

Width=”90” Stroke=”Black”>

<Rectangle.Fill>

<LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”>

<GradientStop Color=”Yellow” Offset=”0”/>

<GradientStop Color=”Green” Offset=”1”/>

</LinearGradientBrush>

</Rectangle.Fill>

</Rectangle>

FIGURE 16.5 A house drawing created by XAML.

FIGURE 16.6 The house drawing filled with different brushes.

417Graphics

<!-- Roof with an image brush - >

<Polyline Canvas.Left=”88” Canvas.Top=”50”

Stroke=”Black” Points=”0,30 45,0 90,30”>

<Polyline.Fill>

<ImageBrush ImageSource=”flower.jpg”/>

</Polyline.Fill>

</Polyline>

<!-- Left window with default brush (solid color brush) - >

<Ellipse Canvas.Left=”95” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black” Fill=”Blue” />

<!-- Right window with solid color brush - >

<Ellipse Canvas.Left=”145” Canvas.Top=”85” Height=”22”

Width=”23” Stroke=”Black”>

<Ellipse.Fill>

<SolidColorBrush Color=”Blue”/>

</Ellipse.Fill>

</Ellipse>

<!-- Door with gradient brush - >

<Rectangle Canvas.Left=”119” Canvas.Top=”119”

Height=”31” Width=”26” Stroke=”Black”>

<Rectangle.Fill>

<LinearGradientBrush StartPoint=”0.5,0” EndPoint=”0.5,1”>

<GradientStop Color=”Lime” Offset=”0”/>

<GradientStop Color=”Pink” Offset=”1”/>

</LinearGradientBrush>

</Rectangle.Fill>

</Rectangle>

</Canvas>

To read more about brushes, visit http://msdn.microsoft.com/en-us/library/
cc189003(VS.95).aspx.

In addition to brushes, Silverlight supports 2D and 3D transforms. For example, you can
rotate an image 45 degrees to the right, or you can rotate it in 3D to add deepness to the UI.

For more information about transforms and 3D transforms, visit the relevant MSDN page
at http://msdn.microsoft.com/en-us/library/cc189037(VS.95).aspx and http://msdn.
microsoft.com/en-us/library/dd470131(VS.95).aspx.

Media and Animations
Silverlight offers video, audio, and animation capabilities. These capabilities are built in
and are easy to integrate into the pages.

http://msdn.microsoft.com/en-us/library/cc189003(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc189003(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc189037(VS.95).aspx
http://msdn.microsoft.com/en-us/library/dd470131(VS.95).aspx
http://msdn.microsoft.com/en-us/library/dd470131(VS.95).aspx

418 CHAPTER 16 Silverlight

Adding a video is done with the MediaElement element. Just provide it with the URL to
the movie, the height and width, and you’re good to go:

<MediaElement Source=”Wildlife.wmv” x:Name=”movie” Height=”300” Width=”300”/>

MediaElement provides a way to control it via code. It supports three methods: play, pause,
and stop. For example, if we want to pause the movie, we can use the next line of code:

@root.find_name(‘movie’).pause

To read more about video and audio in Silverlight, navigate to http://msdn.microsoft.com/
en-us/library/cc189078(VS.95).aspx.

Besides media capabilities, Silverlight has great animation capabilities. Every element can
be animated. We can even animate a check box, for instance. The animation in Silverlight
is based on changing an element property value over time. For example, DoubleAnimation
changes a property of CLR type Double, Int32Animation changes a property of CLR type
Int32, and so on. That means that to fade an element in and out, we need to use a
DoubleAnimation that changes the value of its Opacity property from 0.0 to 1.0.

The animation goes into a Storyboard element. This element is an animation container.
You can set the time when each animation takes place, and you can even nest storyboards.

When you have a storyboard, you need to define when the animation begins. This is done
by associating the storyboard with an event. The association is done entirely in XAML
code and does not require IronRuby code (even though it can be defined via code).

The next XAML code makes the Hello text grow and shrink infinitely. The animation
starts when the TextBlock.Loaded event is triggered:

<TextBlock Name=”txt” FontSize=”1”>Hello

<TextBlock.Triggers>

<EventTrigger RoutedEvent=”TextBlock.Loaded”>

<BeginStoryboard>

<Storyboard>

<DoubleAnimation

Storyboard.TargetName=”txt”

Storyboard.TargetProperty=”FontSize”

From=”1.0” To=”60.0” Duration=”0:0:2”

AutoReverse=”True” RepeatBehavior=”Forever” />

</Storyboard>

</BeginStoryboard>

</EventTrigger>

</TextBlock.Triggers>

</TextBlock>

For more information about Silverlight animations, visit http://msdn.microsoft.com/
en-us/library/cc189019(VS.95).aspx.

http://msdn.microsoft.com/en-us/library/cc189078(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc189078(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc189019(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc189019(VS.95).aspx

419Data Binding

Data Binding
In addition to looking good, Silverlight knows how to display data in a convenient way.
Several data binding options and controls are available for you: static data binding,
dynamic data binding, and data templates.

Static Data

Sometimes there is a certain data item that you want to store in a single location. This
way you can use it everywhere you need it without the need to duplicate it. This is called
a resource in the XAML world. Every element has its resource storage, and it is available
for itself and all its child elements.

For example, we can store a brush we’d like to use across the page. Then we can just refer
to the resource whenever we need it instead of defining the brush explicitly. The following
XAML code does exactly that. The brush is saves on the StackPanel resource storage
(StackPanel.Resources) and is used on all elements inside it. Note that to identify a
resource, we give it a name using the x:Key attribute:

<StackPanel>

<StackPanel.Resources>

<SolidColorBrush x:Key=”olive_color” Color=”Olive” />

</StackPanel.Resources>

<TextBlock Foreground=”{StaticResource olive_color}”>Hello</TextBlock>

<Rectangle Height=”50” Width=”50” Fill=”{StaticResource olive_color}”/>

</StackPanel>

Styles
One of the more useful methods of static resources is styles. Silverlight provides a way to
define a whole set of properties. After this set is applied to an element, all the properties
are applied to it. This is an easy way to create a style for the application.

The style definition is declared within the Resources tag. It has two important attributes:
x:Key to define its name, and TargetType, which is the name of the type the style will be
applied to. Inside the style definition setters of attribute name and value will be declared.
The next style is supposed to be applied on TextBlock elements and set its foreground
color and text:

<StackPanel.Resources>

<Style x:Key=”the_ironruby_style” TargetType=”TextBlock”>

<Setter Property=”Foreground” Value=”Red”/>

<Setter Property=”Text” Value=”IronRuby!!!”/>

</Style>

</StackPanel.Resources>

420 CHAPTER 16 Silverlight

To apply this style on a TextBlock element, we use the StaticBinding declaration for the
element Style attribute:

<TextBlock Style=”{StaticResource the_ironruby_style}”/>

Besides styles, there are also control templates, which make it possible for you to create a
whole element tree as a template. To read about control templates, take a look at
http://msdn.microsoft.com/en-
us/library/system.windows.controls.controltemplate(VS.95).aspx.

Dynamic Data

Most of the data binding code you write will probably be related to dynamic data.
Silverlight supports binding to data that comes from code. However, you can bind only to
reflection-based properties, which is not the case with IronRuby (it uses
ICustomTypeDescriptor instead).

The way to work around the problem is to use CLR objects. There is no problem filling
them with IronRuby; the only restriction is that they not be native IronRuby objects.

To bind to dynamic data, we first create a CLR object. The next VB.Net class will be
contained in country.dll as part of the CLRObjects namespace:

Public Class Country

Private _name As String

Private _capitalCity As String

Public Property Name() As String

Get

Return _name

End Get

Set(ByVal value As String)

_name = value

End Set

End Property

Public Property CapitalCity() As String

Get

Return _capitalCity

End Get

Set(ByVal value As String)

_capitalCity = value

End Set

End Property

Public Sub New(ByVal name As String, ByVal capitalCity As String)

_name = name

http://msdn.microsoft.com/enus/library/system.windows.controls.controltemplate(VS.95).aspx
http://msdn.microsoft.com/enus/library/system.windows.controls.controltemplate(VS.95).aspx

421Data Binding

_capitalCity = capitalCity

End Sub

End Class

Our next task is to create the data in IronRuby:

require “country.dll”

united_states = CLRObjects::Country.new(“USA”, “Washington D.C”)

If we want to use this data and present it to the user, we need to set the data context of
the target element with our data object and make sure the element attributes and child
elements are bound correctly to the expected data.

In our sample, we bind the data to TextBlock objects that show the country name and
capital city. The following XAML code does this binding:

<StackPanel x:Name=”layout_root”>

<TextBlock>Country name:</TextBlock>

<TextBlock Text=”{Binding Name}”/>

<TextBlock>Capital city:</TextBlock>

<TextBlock Text=”{Binding CapitalCity}”/>

</StackPanel>

The last piece of the puzzle is to actually set the data object as the context of the page.
The layout_root StackPanel is the root of the application, so we already have its object
(and we don’t have to find it). The following IronRuby code loads the form and sets the
data object to the StackPanel. Note that when you data bind an element, all of its subele-
ments are also getting bound to that data:

@root = Application.current.load_root_visual(UserControl.new, “app.xaml”)

united_states = CLRObjects::Country.new(“USA”, “Washington D.C”)

@root.data_context = united_states

That’s it. Figure 16.7 shows the output of our application.

FIGURE 16.7 A Silverlight page showing dynamic data.

422 CHAPTER 16 Silverlight

Data Templates

In addition to binding to a single data item, Silverlight supports data binding to a list of
data items. This is done using data templates—a template where you define the way a
single item will be presented. This data template is then used for each item on the list.

For example, let’s assume we have an array (there is no problem the array is native
IronRuby) of Country objects:

countries = [CLRObjects::Country.new(“USA”, “Washington D.C”),

CLRObjects::Country.new(“England”, “London”),

CLRObjects::Country.new(“Ireland”, “Dublin”)]

On the XAML side, we create a combo box to show them. In the combo box definition,
we add a data template that defines how each item on the list is shown on the list:

<Canvas>

<ComboBox x:Name=”combo” ItemsSource=”{Binding}”>

<ComboBox.ItemTemplate>

<DataTemplate>

<StackPanel Orientation=”Horizontal”>

<TextBlock Text=”{Binding Name}”/>

<TextBlock Text=” (“/>

<TextBlock Text=”{Binding CapitalCity}”/>

<TextBlock Text=”)”/>

</StackPanel>

</DataTemplate>

</ComboBox.ItemTemplate>

</ComboBox>

</Canvas>

With the data template in place, all we have left to do is to set the countries array as the
data context of the combo box:

@root.find_name(“combo”).data_context = countries

Figure 16.8 shows the output.

Data templates are used massively within data-driven applications. They appear in grid
controls, menu controls, and any other list-related control. Even though binding IronRuby
objects to Silverlight controls is unavailable at the moment, the workaround is bearable
and allows you to use IronRuby to write your Silverlight applications almost seamlessly.

423Summary

Summary
In this chapter, you learned the fundamentals of Silverlight and IronRuby. You learned
about the tools IronRuby has for Silverlight, the XAML language, the different controls
Silverlight offers, graphics and animations, and data binding—everything by using the
IronRuby language. There is a lot more in Silverlight, and if you find it interesting, I
recommend that you peruse the MSDN library or Silverlight-specific books.

Silverlight is becoming more and more relevant as more and more websites take advan-
tage of it.

Moreover, as a result of the easy integration between Silverlight and HTML, we’re starting
to see some interesting projects that might affect the entire client development field for
web application. One of the most impressive projects is the Gestalt project. By using
Silverlight behind the scenes, the Gestalt project allows writing Ruby and Python scripts
rather than JavaScript. For example, the following sample shows an alert box with a
welcome message according to user input:

<html>

<head>

<script src=”js/jquery.js” type=”text/javascript”></script>

<script src=”js/gestalt.js” type=”text/javascript”></script>

</head>

<body>

<input id=”username” type=”text”/>

<input id=”say_hello” type=”button” value=”Say, Hello!” />

FIGURE 16.8 A Silverlight combo box showing data via data templates.

424 CHAPTER 16 Silverlight

<script language=”ruby”>

document.say_hello.onclick do |s,e|

window.alert “Hello, #{document.username.value}!”

end

</script>

</body>

</html>

For more information about the Gestalt project, visit the project home page at http://
www.visitmix.com/labs/gestalt.

http://www.visitmix.com/labs/gestalt
http://www.visitmix.com/labs/gestalt

CHAPTER 17

Unit Testing

IN THIS CHAPTER

. The Tested Code

. Test::Unit

. RSpec

. Cucumber

Software quality is an important subject. Improving soft-
ware quality is a big task, which includes code reviews,
team meetings, code quality tools, QA, and more. The one
task that you, as a developer, can do to make sure your
code works as expected even before it leaves your develop-
ment machine is to test it. By that, I don’t mean to run it
once, see that it works, and move on. I mean to write unit
tests for it.

A unit test is a piece of code that runs the software and
tests its output. Usually a unit test tests the smallest portion
of code it can. For example, every method will be tested to
make sure it works as expected. By having code that tests
the application code, you gain a lot for “free.” For example,
the code is more stable. When you make changes to the
application code, you can always retest it to see whether
the changes affected the expected result. And, unit tests
also act as informal documentation of the code. (By reading
the test code, you understand how to use the method and
what it does.)

There are a lot of different unit testing frameworks. In this
chapter, I show you three common Ruby unit testing frame-
works: Test::Unit, RSpec, and Cucumber. We use these
frameworks to test CLR code. It’s having the best of both
worlds: Continue coding the application with the static
language of your choice, and test it using IronRuby while
taking advantage of its amazing syntax and capabilities.

426 CHAPTER 17 Unit Testing

The Tested Code
In this chapter we test a specific CLR class named Calculator. The calculator is not a
regular one, it is a numerological calculator that calculates the numeric value of a given
string according to Numerological rules.

List 17.1 contains the class code. If you want to use it, just create a new Class Library
project, copy the code there, and build it.

LISTING 17.1 The Numerology.Calculator class

using System;

using System.Collections.Generic;

using System.Text;

namespace Numerology

{

public class Calculator

{

public Calculator()

{

}

public int GetStringNumerologicalValue(string str)

{

int total = 0;

foreach (char c in str.ToLower())

{

total += GetCharValue(c);

}

return SummarizeDigits(total);

}

private int GetCharValue(char c)

{

if (c == ‘a’ || c == ‘j’ || c == ‘s’) return 1;

if (c == ‘b’ || c == ‘k’ || c == ‘t’) return 2;

if (c == ‘c’ || c == ‘l’ || c == ‘u’) return 3;

if (c == ‘d’ || c == ‘m’ || c == ‘v’) return 4;

if (c == ‘e’ || c == ‘n’ || c == ‘w’) return 5;

if (c == ‘f’ || c == ‘o’ || c == ‘x’) return 6;

if (c == ‘g’ || c == ‘p’ || c == ‘y’) return 7;

if (c == ‘h’ || c == ‘q’ || c == ‘z’) return 8;

if (c == ‘i’ || c == ‘r’) return 9;

427Test::Unit

throw new NotSupportedException(“Char value not supported”);

}

private int SummarizeDigits(int num)

{

// The way to summarize the number’s digits is to take the value modulo 9.

// If 0 is the result, 9 should be returned.

int sum = num % 9;

if (sum == 0) return 0;

return sum;

}

}

}

Test::Unit
The Ruby language comes with a built-in testing framework available under the Test
module. If you’re familiar with .NET’s NUnit, you will feel at home here. The Test unit
testing framework is built of test suites, cases, methods, and eventually and most impor-
tant, assertions.

To use the test framework, you need to require ’test/unit’ first. So the following line of
code should be added to every file you write tests in:

require ‘test/unit’

To write a test, you need to create a class that contains the tests.

Test Cases

The class should inherit from the Test::Unit::TestCase class. This way, you point the
test framework that this class is a Test class. We create a Test class named
TC_NumerologicalCalculatorPublicTest:

class TC_NumerologicalCalculatorPublicTest < Test::Unit::TestCase

end

NAMING CONVENTIONS

There is a recommended naming convention for the unit testing framework:

. Test case class names should be preceded with TC_.

. Test suite class names should be preceded with TS_.

Tests method must start with test_, so this convention is pretty much forced on you
and is not just a recommendation.

428 CHAPTER 17 Unit Testing

Now we should add some test methods. For a method to be treated as a test method, its
name must start with test_.

We write two tests—one that calculates a string and one that calculates a string with a
single character (remember to also require the CLR assembly):

require ‘test/unit’

require “NumerologicalCalculator.dll”

class TC_NumerologicalCalculatorPublicTest < Test::Unit::TestCase

def test_string

instance = Numerology::Calculator.new

result = instance.get_string_numerological_value “Shay”

assert_equal 8, result

end

def test_single_character

instance = Numerology::Calculator.new

result = instance.get_string_numerological_value “a”

assert_equal 1, result

end

end

TESTING PRIVATE METHODS

IronRuby provides an easy way to access private CLR methods by using the
-X:PrivateBinding switch. With private binding mode on, you can also test private
CLR methods as if they were public. There is no need to code the test methods differ-
ently. Just run the tests with the -X:PrivateBinding switch.

Note that testing private methods is not recommended since it tightly couples tests to
internal details of classes.

Note that every test method should have an assert method call. Without an assertion,
the test is useless because it doesn’t verify anything, and as a result, it never fails.

Assertions

There are several different types of assert methods in the Test::Unit framework, as
described in Table 17.1.

429Test::Unit

TABLE 17.1 Assert Methods

Method Description

assert(boolean, message) Passes if the given Boolean value is true. Otherwise,
the test fails.
For example:
assert 6 == “IronRuby”.size

assert_equal(expected, actual,
message)

Passes if the expected and the actual values are equal.
For example:
assert_equal 6, “IronRuby”.length

assert_not_equal(expected,
actual, message)]

Passes if the expected and the actual values are not
equal.
For example:
assert_not_equal 0, “Shay”.length

assert_block(message) { } Passes if the given block returns true.
For example:
assert_block {

6 == “IronRuby”.length

}

assert_in_delta(expected,
actual, delta, message)

Passes if the expected and actual values are equal with
delta tolerance. Works on float values only.
For example:
assert_in_delta(5.0, 4.7, 0.3)

assert_instance_of(class,
object, message)

Passes if the given object is an instance of the given
class.
For example:
assert_instance_of String, “IronRuby”

assert_kind_of(class, object,
message)

Passes if the given object is an instance of the given
class or if class is one of its superclasses or one of the
modules included in the object.
For example:
assert_kind_of Numeric, 5.5

assert_respond_to(object,
method, message)

Passes if the given object contains a definition of the
given method.
For example:
assert_response_to “Shay”, :downcase

430 CHAPTER 17 Unit Testing

TABLE 17.1 Assert Methods

Method Description

assert_match(pattern, string,
message)

Passes if the string matches the regex pattern.
For example:
assert_match /d/, “5”

assert_no_match(pattern,
string, message)

Passes if the string doesn’t match the regex pattern.
For example:
assert_no_match /d/, “five”

assert_nil(object, message) Passes if the object is nil.
For example:
val = nil

assert_nil(val)

assert_not_nil(object, message) Passes if the object is not nil.
For example:
assert_not_nil “IronRuby”

assert_same(expected, actual,
message)

Passes if actual.equal? expected returns true.
For example:
assert_same 1, 1

assert_not_same(expected,
actual, message)

Passes if actual.equal? expected returns false.
For example:
assert_not_same 5, 6

assert_raise(*args) Passes if the given block raises one of the given excep-
tions. The *args list should consist of exception
classes. The message, if it exists, should be passed as
the last parameter.
For example:
assert_raise(ArgumentError) do

raise ArgumentError

end

431Test::Unit

TABLE 17.1 Assert Methods

Method Description

assert_nothing_raised(*args) {} Passes if the block doesn’t raise an exception.
The *args is there to specify expected exceptions and
the message. If an exception class is specified, the test
fails when it is raised. For other exception types, the
test fails with the error. Default is any exception.
If you want to pass a message, it must be passed as
the last argument.
For example:
assert_nothing_raised do

1 + 1

end

assert_nothing_raised(ArgumentError) {

This will cause the test to fail but

without throwing an error.

raise ArgumentError

}

assert_throws(expected_symbol,
message, &proc)

Passes if the block throws the expected symbol.
For example:
assert_throws :success do

throw :success

end

assert_nothing_thrown(message,
&proc)

Passes if the block doesn’t throw anything (an
Exception instance or any other objects).
For example:
assert_nothing_thrown do

1 + 1

end

assert_operator(object1,
operator, object2, message)

Passes if object1 operator object2 return true.
For example:
assert_operator 1, ==, 1

assert_send(send_array,
message)

send_array consists of three items (an object, a
method to execute, and the arguments to pass to the
method).
The assert passes if invoking the method on the object
with the given arguments returns true.

flunk(message) Always fails.
For example:
flunk “test not implemented yet”

432 CHAPTER 17 Unit Testing

Notice that every assert method has an optional message argument. This message will be
printed when the test fails (in addition to the regular failure message).

Setup and Teardown

Every test case class contains two methods: setup and teardown. These methods are blank
by default, but they can be overridden by the test case class. The setup method is run
before every test method is executed, and the teardown method is invoked after the test
method is done.

The setup method is the place to write code that is needed by all the tests (or most of
them, at least). For example, you can initiate the tested object in the setup method and
save it to an instance variable so that the test method can use it.

GOAL OF OBJECTS INITIATED IN THE SETUP METHOD

Each test should focus on a very single method and therefore tests should not share
state. This affects the objects you initiate in the setup method—the objects should
not be used to share state between test methods. If they carry state, they should be
released on the teardown method.

The teardown method is the place to write code that frees resources taken by the test. For
example, if you open a connection to a database, create a heavy UI object, or open a file,
the teardown method is where you should close or delete these objects. The teardown
method is run even if the test fails or raises an unexpected exception.

In the preceding sample we have two methods, and they both create an instance of the
CLR object. We can do that on the setup method and leave the actual tests to the methods:

require ‘test/unit’

require “NumerologicalCalculator.dll”

class TC_NumerologicalCalculatorPublicTest < Test::Unit::TestCase

def setup

@instance = Numerology::Calculator.new

end

def teardown

Close connections, delete files, etc.

end

def test_string

result = @instance.get_string_numerological_value “Shay”

assert_equal 8, result

end

433Test::Unit

def test_single_character

result = @instance.get_string_numerological_value “a”

assert_equal 1, result

end

end

Test Suites

As the number of test cases rises, it will become harder to keep track of all of them, and
you might forget to run some. Test suites provide a way to gather several test cases into a
single file and execute this file instead of running each test case file individually.

There are two ways to create a test suite: explicitly or implicitly.

Creating Test Suites Explicitly
Every test case you create contains an implementation of a method named suite. This
method returns all the test cases and test methods in the class. The test framework takes
this list and executes everything inside it.

To gather various test cases together, all you need is to create a class with a suite method
that joins multiple suites into a single one.

For example, assuming we have two test case classes,
TC_NumerologicalCalculatorPublicTest and TC_NumerologicalCalculatorPrivateTest,
this is how we combine them both into a single test suite explicitly:

class TS_NumerologicalCalculatorTests

def self.suite

Create a test suite named “Numerological Calculator Tests”

suite = Test::Unit::TestSuite.new(“Numerological Calculator Tests”)

suite << TC_NumerologicalCalculatorPublicTest.suite

suite << TC_NumerologicalCalculatorPrivateTest.suite

return suite

end

end

Creating Test Suites Implicitly
The test framework tries to make it easier for you to use it. Every file that requires the
test/unit framework is automatically searched for tests when it is run. Therefore, all you
have to do to run multiple test cases is to have them all in the same file.

It doesn’t mean that you must write one huge file with tests. To gather some files together,
just require them on the test suite file.

For example, assuming TC_NumerologicalCalculatorPublicTest is found within
public_tests.rb and TC_NumerologicalCalculatorPrivateTest is found within
private_tests.rb, the following sample code is equivalent to the explicit test suite sample:

434 CHAPTER 17 Unit Testing

require ‘test/unit’

require ‘public_tests.rb’

require ‘private_tests.rb’

NESTED TEST SUITES

An important capability of test suites is that they can also contain test suites. You can
nest test suites and test cases in each other in the way you find most appropriate for
the job at hand.

For example, you can create a test tree where the top test suite contains all tests of the
application and the smaller suites contain tests for smaller portions of the application.

Running the Tests

To this point, we’ve examined how to create tests and gather them. However, we still
haven’t seen how to actually run them.

Running a test file is as simple as it can be: Just execute the file with the test case classes
like any other IronRuby file. When you require the test framework (test/unit), it automati-
cally knows to execute the tests on the file when the file is executed.

So to run our public_tests.rb file, open the command prompt and run the following:

ir public_tests.rb

This will run all test suites and cases on the file or the files required within it.

Running a Specific Test Case or Suite
If you don’t want to run the whole file but only a selected test case or suite, you have two
options for doing so.

The first one, which is capable of running a specific test case but not a specific test
suite, is to provide a command-line argument -t or --testcase=, specifying the name of
the test case:

ir all_tests.rb -t TC_NumerologicalCalculatorPublicTest

Or

ir all_tests.rb --testcase=TC_NumerologicalCalculatorPublicTest

This runs the public test class only, even if there are other suites or cases in the file.

Patterns also can be passed as the --testcase value. For example, if you want run all test
cases on the files, you can use a regex pattern:

ir all_tests.rb -t /TC_\s*/

435RSpec

The second way to run a specific test is via code. We can supply the code to run the test
instead of the automatic one provided by the unit test framework. When the framework
indicates that the code already executes tests, it suppresses the automatic runner.

To run a test case or suite via code, we use the console runner. The following code
executes the test suite TS_NumerologicalCalculatorTests:

require ‘test/unit/ui/console/testrunner’

Test::Unit::UI::Console::TestRunner.run TS_NumerologicalCalculatorTests

Running a Specific Test Method
Running a specific test method is available through the command-line argument -n or --
name=. Like the --testcase argument, this one can receive a full name or a regex pattern.

For example, if we want to run the test test_string only, we run the following statement
from the command prompt:

ir public_tests.rb -n test_string

Or

ir public_tests.rb -name=test_string

This argument and the --testcase argument can also be combined to specify a test
method (or methods by using a pattern) in a particular test case.

Running Tests of Private Methods
As mentioned previously, there is no problem with testing private CLR methods. The only
thing to remember is that you should use the -X:PrivateBinding switch:

ir -X:PrivateBinding private_tests.rb

Or use command-line arguments, as follows:

ir -X:PrivateBinding private_tests.rb --testcase=/TC_\s*/

RSpec
RSpec is a unit test framework that works by the principles of behavior-driven develop-
ment (BDD). It provides a special DSL for describing the expected behavior of the applica-
tion. A behavior in the RSpec framework refers to a test container (like test case in the
Test::Unit framework), and an example refers to the test method. The logic behind the
terms is to make you think more about a behavior than structure; you have a behavior
that contains examples of how it is expected to behave. You allegedly do not test code;
you validate behavior.

436 CHAPTER 17 Unit Testing

For detailed documentation about RSpec, visit the project web page at http://rspec.info
and the documentation part at http://rspec.info/documentation.

Install RSpec

Before we start to actually use RSpec, we need to install it. RSpec comes as a Ruby Gem, so
we use the igem tool to install it (which is located in the IronRuby installation folder).

Open the command prompt and execute the following command:

igem install rspec

When the command is done, you are ready to start using RSpec.

Although this is enough and lets you run RSpec tests, it is recommended to create a
simple batch file that wraps a built-in RSpec command-line tool and helps you in execut-
ing the tests. Follow the next steps to create the file:

1. Go to your IronRuby directory and create a file named ispec.bat.

2. Open the file for edit and insert the following content into it:

@ECHO OFF

@ir.exe “c:\ironruby\lib\ironruby\gems\1.8\bin\spec” %*

If you have installed IronRuby in a different location, replace c:\ironruby in the
command above with the location of the IronRuby folder. If you use the IronRuby
sources, the path will be Merlin\Main\Languages\lib\ironruby\gems\1.8\bin.

3. Save the file. Now if your IronRuby directory is on the Windows PATH environment
variable, you can use RSpec from any directory via the ispec file you have just created.

Go ahead and test it. Open the command prompt and enter the following:

ispec --help

You should receive brief help content about the RSpec command-line arguments.

Requiring Needed Libraries

To work with RSpec, you need to require its libraries in the test files.

There are two required ones, rubygems and spec, and these provide the main functional-
ity for RSpec:

require “rubygems”

require “spec”

http://rspec.info
http://rspec.info/documentation

437RSpec

To test our Numerological calculator C# application, we need to require the CLR
assembly, too:

require “NumerologicalCalculator.dll”

Running Tests

If you have only a single test file, it is possible to require spec/autorun and execute the file
using the ir executable.

For example, assuming we have a file named calculator_spec.rb, we can add the next line
to the file:

require “spec/autorun”

Afterward, open the command prompt and navigate to the directory where the file exists.
Then just run the file like every other IronRuby file:

ir calculator_spec.rb

This approach is good for one or two test files, but it won’t suffice for larger projects. This
is why we created the ispec file, which can help us run multiple test files and even entire
directories.

The ispec command can receive a single file to execute:

ispec calculator_spec.rb

Or a directory path to execute all spec files found within:

ispec specs

When a directory path is passed, it is possible to pass a pattern that limits the files that are
executed. For example, the next command executes only files that start with numerology_
and end with .rb:

ispec specs --pattern “**/numerology_*.rb”

It is also feasible to run specific examples by passing the --example argument. The follow-
ing command executes examples named ”calculator test”:

ispec specs --example “calculator test”

For all the available command-line arguments, run the help command:

ispec --help

438 CHAPTER 17 Unit Testing

Creating a Behavior with describe

Examples in RSpec are held in an object named a Behavior. This object is created via the
describe method. The describe method must be accompanied by a description or a class
name (or both).

In our case, we strictly test the Numerology::Calculator class, so we will pass it to the
describe method:

describe Numerology::Calculator do

examples will come here

end

If we were testing integration between several classes, it would have been odd to pass only
one of the classes to the describe method. This is why you can pass a string instead that
describes the behavior:

describe “integration test between several assemblies” do

examples will come here

end

It is also possible to combine the class name and description, to provide as much data as
possible to the one who’s reading the code or running the tests:

describe Numerology::Calculator, “is tested for perfection” do

examples will come here

end

If we run the file with the preceding code sample inside and we tell ispec to output the
strings, too (by using --format s), the output we receive will be clear to read and
understand:

> ispec calculator_spec.rb --format s

Numerology::Calculator is tested for perfection

- should calculate the right value for ‘Shay’

- should work for a single character

Finished in 0.2960169 seconds

2 examples, 0 failures

The lines underneath the behavior title (start with should) are the examples that are
defined within the code that is passed to the describe method. In the next section, we
add them to the code.

439RSpec

Creating Examples with it

As mentioned previously, a behavior in the RSpec world contains examples that validate
that it behaves as expected. If a behavior doesn’t have examples, it is useless and actually
will not be executed by RSpec at all.

The it method is used to create an example. You probably wonder what the purpose of
this name is; the method receives a description as its first parameter, so using it as the
method name gives the sample code a more human language feeling.

Let’s add two sample methods that will test our get_string_numerological_value
method. Note how readable and clear the code is:

describe Numerology::Calculator, “is tested for perfection” do

it “should calculate the right value for ‘Shay’” do

instance = Numerology::Calculator.new

result = instance.get_string_numerological_value “Shay”

result.should == 8

end

it “should work for a single character” do

instance = Numerology::Calculator.new

result = instance.get_string_numerological_value “a”

result.should == 1

end

end

The most important line in every example is the line where the actual result is compared
to the expected one. Without this line, the example won’t really test anything.

Expectation Methods

When you require the RSpec framework file, every object in the system is extended with
two new methods: should and should_not. With these methods, you can verify whether
the actual result of the example code is the expected one.

These two methods might be a bit underestimated at first glance, but they contain every-
thing you need and even more.

Their strength is in what they receive as a parameter, which is called an expression matcher.
A matcher is a class that contains methods that know how to compare two objects in a
specific way. Several different matchers come out of the box with RSpec, and you can
create one yourself if the existing ones do not satisfy your needs.

Table 17.2 describes all the out-of-the-box matchers available to you on RSpec.

440 CHAPTER 17 Unit Testing

TABLE 17.2 RSpec Expression Matchers

Method Description

be_true

be_false

be_nil

Passes if the tested object is true, false, or nil, accordingly.
For example:
(1 == 1).should be_true

be_[predicate] Passes if the tested object equals a given arbitrary predicate.
For example:
(1+2).should be_3

be_a

be_an

be_kind_of

Passes if the tested object is an instance of the given class or if class is
one of its superclasses or one of the modules included in the object.
For example:
1.should be_a(Numeric)

[1,2].should be_an(Array)

be_instance_of

be_an_instance_of

Passes if the tested object is an instance of the given class.
For example:
”Hi”.should_not be_instance_of(Numeric)

be_close Passes if the tested object equals or close to the value within delta
tolerance.
For example:
1.5.should be_close(2, 0.5)

change Passes if the tested object value (or one of its attributes) is changed as
expected after running a given proc.
To set the expected results, the following methods are available: by,
by_at_least, by_at_most, from and to.
For example:
arr = []

lambda {

arr << 1

}.should change(arr, :size).by(1)

str = “Ruby”

lambda {

str = “Iron” + str

}.should change { str }.from(“Ruby”).to(“IronRuby”)

Eql Passes if the tested object is the same as the expected object but not
necessarily the same object.
For example:
obj1 = 1

obj2 = 1

obj1.should eql(obj2)

441RSpec

TABLE 17.2 RSpec Expression Matchers

Method Description

Equal Passes if the tested object and the expected object are the same object.
For example:
1.should equal(1) # Fixnums are the same object

Have

have_at_least

have_at_most

Passes if the tested object contains the expected number of items.
Note that the have method should be preceded by the name of the collec-
tion. If the object itself is the collection, you can write whatever you like
as the collection name.. (Something logical is recommended; for instance,
items or members.)
For example:
[1, 2].should have(2).items

include Passes if the tested object includes the value.
For example:
[1,2,3].should include(1)

[1,2,3].should include(1,2)

“IronRuby”.should include(“Ruby”)

Match Passes if the tested object matches the given regular expression pattern.
For example:
”IronRuby”.should match(/Iron[\s]*/)

raise_error Passes if the tested object raises an error.
The different variations of raise_error are presented on the following
samples:
err = lambda {

raise StandardError, “Oh no!”

}

Passes on every raised error

err.should raise_error

Passes when a StandardError is raised

err.should raise_error(StandardError)

Passes when a StandardError is raised with

the message “Oh no!”

err.should raise_error(StandardError, “Oh no!”)

Passes when a StandardError is raised with a message

that matches the given pattern

err.should raise_error(StandardError, /no!/)

Passes when an error is raised and the message length

is shorter than 10 characters

err.should raise_error do |error|

error.message.length.should < 10

end

442 CHAPTER 17 Unit Testing

Before and After

The RSpec framework allows you to inject code in several places. This is good for logging
purposes, initialization, disposing of heavy objects, and so on.

Before and After Each Example
To run code before and after each example is executed, the before(:each) and
after(:each) methods can be used.

For example, the following code initializes our Calculator class before every example and
saves the instance to an instance variable:

describe Numerology::Calculator, “is tested for perfection” do

before(:each) do

@instance = Numerology::Calculator.new

end

end

Before and After a Behavior
It is possible to inject code before the behavior examples are invoked and after they are
finished. This is done with the same before and after methods from before, just with a
different parameter value passed to them: before(:all) and after(:all).

The next sample prints a message to the screen before and after the behavior is executed:

describe Numerology::Calculator, “is tested for perfection” do

before(:all) do

puts “Starting behavior”

end

TABLE 17.2 RSpec Expression Matchers

Method Description

respond_to Passes if the tested object responds to all of the names or symbols
provided.
For example:
”Hi”.should respond_to :reverse, “upcase”

satisfy Passes if the given block returns true. The tested object is passed to the
block.
For example:
”IronRuby”.should satisfy do |obj|

obj == “IronRuby”

end

throw_symbol Passes if the tested proc throws the expected symbol.
For example:
lambda { throw :good }.should throw_symbol(:good)

443Cucumber

after(:all) do

puts “Finished behavior”

end

end

Global Before and After
It is also possible to assign code to global before and after methods. This code will be the
first and last to run.

These global hooks should be defined on a file that all spec files require. In this file, you
should add the global before and after code as follows:

Spec::Runner.configure do |config|

Will run before every behavior

config.before(:all) {}

Will run before each example

config.before(:each) {}

Will run after each behavior

config.after(:all) {}

Will run after each example

config.after(:each) {}

end

Order of Execution
There are multiple possibilities to add code before and after different operations. As a
result, it might become unclear when the code is actually executed. Figure 17.1 attempts
to make that clear and lays out the order of their execution.

Cucumber
Cucumber is another test framework that matches the BDD agenda, and it’s the most
interesting one.

The Cucumber framework lets you define behavior rules in a unique DSL called Gherkin,
which is as close as a DSL can be to regular English (or one of the other available language
packs for Cucumber).

A unit test file in Cucumber consists of a feature declaration, scenarios, and scenario
steps. The feature contains scenarios and can be declared with a plain English description.
Every feature scenario has a name, and it contains a list of steps that are translated after-
ward to code.

444 CHAPTER 17 Unit Testing

Global before(:all)

before(:all)

Global before(:each)

before(:each)

after(:each)

Global after(:each)

after(:all)

Global after(:all)

FIGURE 17.1 Order of execution of before and after methods.

For example, the following code is a valid Cucumber test:

Feature: Make a Salad

If we want to stay healthy

we must eat salad. The application

should cut vegetables successfully every time.

Scenario: Cut Vegetables

Given 1 tomato for the salad

445Cucumber

And 3 cucumbers for the salad

When I press the cut button

Then salad should be ready

You can access the official Cucumber website at http://cukes.info, where you can find
detailed documentation and various examples.

Installing Cucumber

Just like RSpec, Cucumber is a Ruby Gem. To install it, open the command prompt and
execute the following command:

igem install cucumber

The command installs several gems that Cucumber also uses.

Now we create a wrapper script file that makes using Cucumber easier. We call it icucum-
ber. The file shortens the command we need to write to use Cucumber. Follow the next
steps to create the file:

1. Go to your IronRuby directory and create a file named icucumber.bat.

2. Open the file for edit and insert the following content into it:

@ECHO OFF

@ir.exe “c:\ironruby\lib\ironruby\gems\1.8\bin\cucumber” %*

If you have installed IronRuby, you should replace c:\ironruby in the preceding
command with the location of the IronRuby folder. If you use the IronRuby sources,
the path will be Merlin\Main\Languages\lib\ironruby\gems\1.8\bin.

3. Save the file. Now if you’re IronRuby directory is on the Windows PATH environ-
ment variable, you can use Cucumber from any directory via the icucumber file you
just created.

Go ahead and test it. Open the command prompt and enter the following:

icucumber --help

You should receive brief help content about the Cucumber command-line arguments.

Project Structure

Cucumber project files should be separated into different logical directories under a root
folder named features. The full folder structure is shown in the following table.

http://cukes.info

446 CHAPTER 17 Unit Testing

Folder Name Description

features Root directory. Holds all feature files.

features/step_definitions Contains the files that define the step definitions.

features/support Contains files with support code for the features. Contains the env.rb
file, as well.

In addition, using multiple folders can help to separate logical parts of the application.

For example, a sample project structure might be as follows:

features

-- Server

-- step_definitions

-- Client

-- step_definitions

-- step_definitions

-- support

Another advantage of using multiple directories is that it is possible to execute the features
of a specific folder only. On the preceding sample folder structure, for instance, it is possi-
ble to execute only server related tests.

The env.rb File
The env.rb file is a file where you can put Cucumber environment related code. For
example, hooks can go there or special initialization code.

The file should be placed within the support folder. It is an optional file, and you can use
any other filename for it, as long as the file is located in the support folder.

Features

A feature in Cucumber represents a feature of the application. It contains a set of scenarios
that are expected to make sure the tested feature works.

A feature file should have the extension of .feature. It also has a format that should be
followed:

Feature: <title>

<description>

<scenario 1>

<scenario 2>

...

447Cucumber

The title and description are free text arguments. The description is also multiline and is
intended to explain what the feature is about, how it is expected to work, and every other
detail you find important to document.

WHAT TO INCLUDE IN THE FEATURE DESCRIPTION

The feature description is there so that everyone who reads the feature file under-
stands what it is about and why. It is recommended to use a format for the description
so that all the needed information will be included.

The format shouldn’t be strictly enforced, but it’s recommended to stick to one. The
recommended details to include in the description are as follows:

. The user who is expected to use the feature (for example, “a regular user” or
“a power user”)

. What the feature does (for example, “sends an alert email”)

. The reason why the feature is needed (for instance, “to warn everybody and
prevent data loss”)

To test our .NET code, we start by creating a feature named
calc_numerological_value.feature. The feature definition follows:

Feature: Numerological Value Calculation

As a regular creature living on earth

I want to know my numerological number

To know my future

This file should be saved under the features folder. If you have defined a folder tree to
logically separate the features, save this file in the correct subfolder. For example, in the
sample structure on the previous section, we could put this file under the Client folder
instead of the root folder.

The next section describes our next task—to define the actual test scenarios.

Scenarios

A scenario is a part of a feature. It consists of a sequence of steps that form a single test.

The scenario format is as follows:

Scenario: <title>

<step 1>

<step 2>

...

A scenario is built from three types of steps:

. Given: Sets up preconditions for the scenario (for example, the input to the feature,
the context)

448 CHAPTER 17 Unit Testing

. When: The behavior that is being tested (for instance, clicking a button, executing
an operation)

. Then: Defines the expected result (for example, “the output should be 8” or “’Hello’
should be printed on the screen”)

Another step directive, which doesn’t belong to a specific type, is And, which provides a
way to add another statement of the last step type. It can be used with any step type. For
example, consider the next scenario:

Scenario: ask the rabbit

Given I love carrots

Given I love lettuce

When I am asked what I am

Then I should answer “rabbit”

Then I should run away

The And directive makes this scenario easier for humans to read. Consider how the preced-
ing scenario looks with And (the scenarios are equal):

Scenario: ask the rabbit

Given I love carrots

And I love lettuce

When I am asked what I am

Then I should answer “rabbit”

And I should run away

For our little application, we need a scenario to test the numerological calculation result.
The next scenario checks that:

Scenario: Calculate the value of Shay

Given I have inserted “Shay” to the calculator

When I calculate

Then the result should be 8

This scenario wraps up the feature file and eventually, the
calc_numerological_value.feature looks as follows:

Feature: Numerological Value Calculation

As a regular creature living on earth

I want to know my numerological number

To know my future

Scenario: Calculate the value of Shay

Given I have inserted “Shay” to the calculator

When I calculate

Then the result should be 8

449Cucumber

Implementing Steps
The step implementation is defined in an RB file, which can be placed on the same direc-
tory of the feature or on the step_definitions folder (which is the recommended place).

A steps definition file includes the code that interprets the Given, When, and Then direc-
tives. There is no need for a class or a module; the code is placed in the file directly on the
global context.

The format of the different directives is similar. The generic one is as follows:

<Given or When or Then> <regex pattern> do

... code ...

end

As you can see, Cucumber uses regular expressions to interpret the textual step
commands. A simple string is also a possibility, but regex gives much better control over
the input and is recommended over plain strings.

The strength of this way of interpreting strings is the option to extract data from it. This is
done using regular expression groups. For example, when given a string ”When you wish
upon a star” and the pattern /When you (.*) upon a (.*)/, you can to use wish and
star as variables in the code afterward.

To pass variables between steps, just use instance variables.

Okay, so now that you know how to implement the steps in general, let’s create a step
definition file for our numerology calculator feature we wrote earlier.

The first task for us is to require the CLR DLL file. This way we can use it within our steps:

require “NumerologicalCalculator.dll”

With the tested assembly ready for us, we can move on to the step definitions.

From the Given part of our scenario, “Given I have inserted “Shay” to the calcula-
tor”, you can see that we need to extract what was inserted to the calculator. We can
extract this data item and save it to the next steps:

Given /I have inserted “(.*)” to the calculator/ do |name|

@name = name

end

The extracted groups are passed to the associated code block via the block arguments. If
we had, for example, two groups within our pattern, then we would have two block argu-
ments, as well.

Now to the next step: When. The When step is the one where the action is executed. In
our application, this step doesn’t provide any additional data, it just points out that all
the preconditions have been specified (by the Given steps) and that the action should
be executed.

450 CHAPTER 17 Unit Testing

Hence, we execute the calculation on this step:

When “I calculate” do

instance = Numerology::Calculator.new

@result = instance.get_string_numerological_value @name

end

Notice that we used here the @name variable that we had saved on the Given step.

The last step is the Then step. Here we need to validate that the result is the expected one.
We extract the expected result from the Then string and compare it to the result from the
calculator (which we have received on the When step):

Then /the result should be (.*)/ do |result|

@result.should == result.to_i

end

COMPARING THE ACTUAL AND EXPECTED RESULTS

Note the way we validate the result: We use the should method for that. This should
method comes from the RSpec framework, which Cucumber takes advantage of. All
should and should_not variations are available for you to use.

Another issue to note is that the values extracted from the string (via the regular
expression) are always strings. You have to convert them to the expected type before
comparing to the actual result.

Save the file, and we’re ready to run the test. Open the command prompt and navigate to
the folder containing the features directory. For example, if the features directory is found
at C:\Projects\NumerologicalCalc\Features, navigate to C:\Projects\NumerologicalCalc.
When you’re in the directory, run the next command:

icucumber features --no-color --no-source

The test results display a few moments later:

Feature: Numerological Value Calculation

As a regular creature living on earth

I want to know my numerological number

To know my future

Scenario: Calculate the value of Shay

Given I have inserted “Shay” to the calculator

When I calculate

Then the result should be 8

451Cucumber

1 scenario (1 passed)

3 steps (3 passed)

0m0.294s

Additional information about running Cucumber tests appears later in this chapter.

Scenario Outlines and Example Tables
It is pretty common to have several scenarios that differ only by the values they pass to
the test framework. For example, if we want to test our calculator with different strings,
we have to write the same scenario with only the string value and result different between
the scenarios.

This is exactly where scenario outlines and example tables come to our aid. A scenario
outline lets us describe a scenario with placeholders, and the example table is used to
provide the values for the placeholders. This way you write the scenario once and just pass
different value to it every time.

There are two differences between a regular scenario and a scenario outline:

. Scenario outlines begin with Scenario Outline: rather than Scenario: in regular
scenarios.

. Scenario outlines contain placeholders that are defined between smaller-than and
greater-than signs. For example, on the line Given I have <amount> apples, there
is a single placeholder named amount.

The example table follows the scenario outline and supplies values for the placeholders.
The example table is laid out as a table. The first line is the header line where each place-
holder should have a column with its name. The next lines contain the values themselves;
each line describes the values for a single scenario. The table columns are delimited by a
vertical bar.

Let’s convert our scenario from previous sections to a scenario outline with an example
table. The following Gherkin code defines three scenarios using the scenario outline and
example table technique:

Scenario Outline: Calculate values

Given I have inserted “<name>” to the calculator

When I calculate

Then the result should be <result>

Examples:

| name | result |

| Shay | 8 |

| IronRuby | 5 |

| Unleashed | 8 |

452 CHAPTER 17 Unit Testing

When we run this feature, we see that three scenarios have been executed:

> icucumber features --no-color --no-source

Feature: Numerological Value Calculation

As a regular creature living on earth

I want to know my numerological number

To know my future

Scenario Outline: Calculate values

Given I have inserted “<name>” to the calculator

When I calculate

Then the result should be <result>

Examples:

| name | result |

| Shay | 8 |

| IronRuby | 5 |

| Unleashed | 8 |

3 scenarios (3 passed)

9 steps (9 passed)

0m0.444s

A Background

Sometimes you have the same preconditions on all features (when working as a specific
user, setting some values, and so on). The Background directive enables you to write
Gherkin code that runs before any scenario on the feature file.

For example, in the following feature code, I use the Background directive to define the
user to work as in the feature scenarios:

Feature: give permissions

As a system administrator

I want to change permissions of files

To enable other users to use them

Background:

Given I work as user “sysadmin”

Scenario: change permissions to a restricted file

Given I use “restricted_file”

When I change its permissions to allow “Everyone” to write

Then I should receive a warning

453Cucumber

Tags

By default, Cucumber executes all feature files and scenarios within the folder it’s pointed
to. However, sometimes you may want to test specific features or scenarios only (for
example, when you want to run only the most basic tests). One way is to separate the
features into different folders, but with this approach it will be quite complicated to run
only the basic scenarios of each feature.

Tags make it possible to mark features or scenarios with a unique name and execute only
them.

Tagging Features and Scenarios
To tag a feature or a scenario, the tag identifier prefixed by an at sign (@) should be placed
on the line before the feature or scenario definition.

TAG IDENTIFIER IS NOT AN INSTANCE VARIABLE

The use of the at sign (@) for the tag identifiers might be confused with Ruby’s instance
variables. However, it is important to notice that there is no connection between them
because the tag identifiers are placed on the feature files that contain Gherkin code
and not Ruby.

Several tags can be applied to a single feature or scenario by writing them one after the
other, delimited by a space.

For example, in the following code sample, I tag the feature with @numerology and
@calc_numerological_value tags; the first scenario is tagged with the @important tag:

@numerology @calc_numerological_value

Feature: Numerological Value Calculation

@important

Scenario: Calculate the value of Shay

Given I have inserted “Shay” to the calculator

When I calculate

Then the result should be 8

Scenario: Calculate the value of IronRuby

Given I have inserted “IronRuby” to the calculator

When I calculate

Then the result should be 5

454 CHAPTER 17 Unit Testing

Running Tagged Features and Scenarios
To run only features and scenarios that are marked with a certain tag, the --tags argu-
ment should be used when executing the icucumber batch file.

It is possible to execute multiple tags by passing them separated by a comma.

For example, the next command runs all scenarios and features tagged with @numerology
and @important tags:

icucumber features --tags @numerology, @important

The --tags argument can also receive the tags that should not be run. To do that, just add
a tilde (~) before the tag name. The following command runs all features and scenarios
except the ones marked with the @important tag:

icucumber features --tags ~@important

Hooks

The Cucumber framework enables you to add code that runs during the execution of the
tests by using hooks. Hooks can be written in the env.rb file or in any other Ruby file that
is placed in the features/support directory.

Global Hooks
Global hooks are executed when Cucumber starts and before it exits. To run code when
Cucumber starts, just add it to the global context.

For example, to write print a message on the screen when Cucumber starts, just add the
next line to the file where you host the hooks in:

puts “IronCucumber is starting”

The other side of the global hooks is the code that runs when Cucumber exits. This is
done via the at_exit method, which receives a block of code. The following code prints a
message to the screen when Cucumber exits:

at_exit do

puts “IronCucumber ends”

end

Scenario Hooks
Scenario hooks execute code before and after every scenario is invoked.

The Before method is used to set the code to run before every scenario. The following
code prints a message before every scenario:

455Cucumber

Before do

puts “A scenario is starting”

end

The After method is used to set the code to run after every scenario is done. The method
passes to its associated code block an object that contains information about the scenario.
The available methods are failed?, passed?, and exception.

The next code adds code to print an informative message after every scenario ends:

After do |scenario|

if scenario.passed?

puts “Scenario passed”

else

puts “Scenario failed: #{scenario.exception.message}”

end

end

Step Hooks
Cucumber also enables you to run code after each step is executed. This is done with the
AfterStep method. The scenario object is passed to the step and lets you investigate it
for failures.

The following code prints a message with the exception message whenever a step fails:

AfterStep do |scenario|

if scenario.failed?

puts “FAILURE: #{scenario.exception.message}”

end

end

Tagged Scenario Hooks
The last type of scenarios enables you to run code before and after scenarios with
specific tags only.

This is done with methods you’ve seen previously on this chapter: Before, After, and
AfterStep. To define which tags these methods are related to, just pass them the tag
names as a comma-separated list.

For instance, the following code shows a message before a scenario tagged with
@high_priority or @critical tags:

Before(‘@high_priority’, ‘@critical’) do

puts “THIS IS AN IMPORTANT STEP”

end

456 CHAPTER 17 Unit Testing

A World

When a Cucumber scenario is run, it runs inside a world. A world is actually an instance
of an object. Because the scenarios run inside the world, we can use it to share helper
methods, logging, and so forth.

To do that, you must create a class with whatever methods you want and then tell
Cucumber to use it in its world.

For example, in the next sample, I create a class with a single method that writes messages
to the log, and then I add it to the framework world. This code should be added to the
env.rb file or any other Ruby file within the support folder:

def HelperMethods

def add_log(message)

Write to log...

end

end

Add the class to the Cucumber world

World do

HelperMethods.new

end

Now the add_log method is available to any step definition in the code.

Multilanguage

Up to this point, I have shown you sample Cucumber code in English only. Cucumber
doesn’t ignore those who speak languages other than English. Cucumber does enable users
to write feature specification in various languages (such as Spanish, German, Russian,
Hebrew, and even funny ones like LOL code). To view all available languages, open the
command prompt and execute the following command:

icucumber --language help --no-color

If you want to see the keyword translation, open the languages.yml file, which is located
under the Cucumber directory at %Cucumber Folder%/Lib/Cucumber/languages.yml. A
translation part, for Danish in the next sample, looks like this:

”da”:

name: Danish

native: dansk

encoding: UTF-8

feature: Egenskab

background: Baggrund

scenario: Scenarie

scenario_outline: Abstrakt Scenario

examples: Eksempler

457Cucumber

given: Givet

when: Når

then: Så

and: Og

but: Men

space_after_keyword: true

When you prepare to use a language other than English, make sure that the patterns on
the code match the language.

To run Cucumber with a language other than English, add the --language argument to
the icucumber command followed by the language name.

For example, the next command runs the tests using the Polish language:

icucumber features --language pl

Executing Cucumber

The Cucumber framework has several command-line arguments and switches.

The simplest Cucumber command requires a relative path to the features directory:

icucumber features

Or with a longer path:

icucumber my_project/features

It is also possible to define a specific features file:

icucumber features/my_feature.feature

This goes even further: You can specify the line in the file where the scenario you want to
execute exists. When the line number is passed, only the scenario on this line will be
executed. In the next example, the scenario on line 12 in the my_feature.feature file is
executed:

icucumber features/my_feature.feature:12

It is also possible to run scenarios with a specific name by using the --name argument. The
following sample executes scenarios that are named ”test a string”:

icucumber features --name “test a string”

These are just a few of the available commands. To review all available command-line
arguments and switches, use the help command:

icucumber --help

458 CHAPTER 17 Unit Testing

Summary
In this chapter, you were introduced to three different test frameworks: Test::Unit, RSpec,
and Cucumber. Each framework has its advantages and disadvantages, and you should use
the one that you feel most comfortable with.

In this chapter, you learned the basics of the different test frameworks. These suffice in
most cases, but I still highly recommend you to read further and delve deeper into these
frameworks when you start working with them.

If you didn’t like these frameworks, don’t give up just yet. Several other test frameworks
that you might like are available in the Ruby language. These include Shoulda, test-spec,
expectations, webrat for web testing, and more. Just search the Internet for them, and
you’ll find a plethora of documentation and examples.

CHAPTER 18

Using IronRuby from
C#/VB.NET

IN THIS CHAPTER

. Hello, IronRuby from CLR

. The Classes of the Process

. Executing IronRuby code from
C#/VB.NET

In this book so far, we have discussed in depth how to use
CLR objects from IronRuby in various different ways. This
chapter is different because it goes the other way around:
You learn how to embed and run IronRuby code from your
static languages code.

In this chapter, you are shown how to create a C#/VB.NET
project in Visual studio that can run IronRuby code. After
that, we delve into the DLR classes that take part in the
process of running IronRuby code, and in the last part of
this chapter you are introduced to some real-world scenar-
ios and their solutions.

Hello, IronRuby from CLR
Thanks to the DLR, calling IronRuby code from other
languages is a matter of a few lines of codes.

In this section, you see how easy this task is, all while you
create your first project that runs IronRuby from a static
CLR language.

So let’s start. The first task is to create a project in Visual
Studio:

1. Open Visual Studio. The instructions here are targeted
to Visual Studio 2008, but they will be the same or
very similar in other versions of Visual Studio.

2. Go to File > New > Project.

3. On the left panel, choose Visual C#/Windows or
Visual Basic/Windows.

4. On the right panel, choose Console Application.

460 CHAPTER 18 Using IronRuby from C#/VB.NET

5. We are going to work on a console application, but it is possible to use IronRuby
from any project type.

6. In the lower panel, insert the project name IronRubyViaCLR, choose a location for
the solution, and click OK.

Figure 18.1 shows what the dialog should look like before you click OK.

Now that we have our solution ready, we need to add references to IronRuby and DLR
assemblies:

1. When the solution is opened in Visual Studio, go to Project > Add Reference.

2. In the Add Reference dialog, go to the Browse tab.

3. Navigate to your IronRuby folder.

4. Choose IronRuby.dll, IronRuby.Libraries.dll, Microsoft.Scripting.dll,
Microsoft.Scripting.Core.dll (you can choose multiple DLLs by keeping the Ctrl key
pressed), and click OK.

Currently, you have a Visual Studio project that is ready to work with IronRuby. Every
time you want to embed IronRuby in a C# or a VB.NET project, redo these steps and
continue with writing the actual code.

IRONRUBY CAN BE EMBEDDED INTO EVERY PROJECT TYPE

Even though all the samples in this chapter use a console application project, it is not
the only project type you can embed IronRuby into.

IronRuby can be embedded into every project type. Just add the needed assemblies to
the referenced assemblies list and you’re ready to go.

FIGURE 18.1 New Project dialog as it should be filled.

461The Classes of the Process

The next step is to write the actual code. The next code runs the IronRuby code puts
‘Hello from IronRuby’.

In C#

using Microsoft.Scripting.Hosting;

class Program

{

static void Main(string[] args)

{

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

ScriptSource source =

engine.CreateScriptSourceFromString(

“puts ‘Hello from IronRuby’”);

source.Execute();

}

}

In VB.NET

Imports Microsoft.Scripting.Hosting

Module Module1

Sub Main()

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

Dim source As ScriptSource = _

engine.CreateScriptSourceFromString(

“puts ‘Hello from IronRuby’”)

source.Execute()

End Sub

End Module

Running this code prints “Hello from IronRuby” onscreen.

Other than just running textual scripts, the DLR enables us to execute entire files, pass data
between the languages, and even use IronRuby classes and methods in C# and VB.NET.

We start by getting to know the DLR classes involved.

The Classes of the Process
The DLR contains different classes, each with a goal in the script execution life. Let’s go
through the important ones: ScriptRuntime, ScriptEngine, ScriptScope, and
ScriptSource.

462 CHAPTER 18 Using IronRuby from C#/VB.NET

ScriptRuntime

The ScriptRuntime class is the top-level object. It contains the runtime configuration
(which can be passed on initialization), the “global scope,” which is available to all the
scripts running within this runtime, the referenced assemblies, and the available language
engines. To better isolate running scripts, multiple runtimes can be created on a single
app domain.

Creating a ScriptRuntime
There are a few ways to create a script runtime.

The first one is to use the Ruby class static method CreateRuntime. This method does not
require a configuration object because it uses IronRuby’s configuration by default:

ScriptRuntime runtime = IronRuby.Ruby.CreateRuntime();

The second way is by calling the ScriptRuntime constructor where you won’t be able to
avoid passing the configuration object. Here we just pass an empty configuration (but we
will talk more about ScriptRuntimeSetup shortly):

ScriptRuntimeSetup conf = New ScriptRuntimeSetup()

ScriptRuntime runtime = New ScriptRuntime(conf)

The third way to create a ScriptRuntime object makes it possible to create the runtime on
a different app domain. This is done via the static method of the ScriptRuntime class
named CreateRemote:

AppDomain domain = AppDomain.CreateDomain(“IronRuby app domain”);

ScriptRuntimeSetup conf = new ScriptRuntimeSetup();

ScriptRuntime s = ScriptRuntime.CreateRemote(domain, conf);

ScriptRuntimeSetup
It is possible to provide startup configuration to the script runtime via the
ScriptRuntimeSetup class.

The class contains a few properties that provide some control over the runtime execution.
They are described in Table 18.1.

TABLE 18.1 ScriptRuntimeSetup Properties

Property Name Description

DebugMode Determines whether the runtime is run in debug mode.
When the runtime is run in debug mode, it runs without debug symbols and
without any JIT optimizations.

HostArguments Arguments that are passed to the host when it is constructed.

463The Classes of the Process

Executing Code
The ScriptRuntime class contains a way to execute IronRuby code. However, it provides
less control over the operation compared to other approaches.

Executing IronRuby code is done via the ExecuteFile method. It receives a path to a
dynamic language code file, realizes the language (by file extension), executes it, and
returns a ScriptScope object that describes the context in which the code was executed.

The next sample executes the IronRuby file that exists in C:\test.rb:

ScriptRuntime runtime = IronRuby.Ruby.CreateRuntime();

runtime.ExecuteFile(\test.rb”);

ScriptEngine

A script engine is the main object that represents a DLR language. All our interaction with
IronRuby starts from this class.

Creating a ScriptEngine
There are two ways to create an IronRuby script engine: the direct one and the generic one.

The direct way is done via the Ruby class:

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

The generic one allows creating script engines for other installed DLR languages (like
IronPython):

Dim runtime As ScriptRuntime = IronRuby.Ruby.CreateRuntime()

Dim engine As ScriptEngine = runtime.GetEngineByFileExtension(“rb”)

TABLE 18.1 ScriptRuntimeSetup Properties

Property Name Description

HostType The type of the host of the runtime. Intended to make it possible to run the
runtime in different environments (such as Silverlight).
The type can be any class that inherits from the ScriptHost class.

LanguageSetups A list of LanguageSetup instances that contain language-specific configura-
tion like the language display name or file extensions.

Options A dictionary of string-object pairs with miscellaneous configuration items.
For example, this is used to define directories for the search path in IronRuby.

PrivateBinding Determines whether CLR visibility should be ignored.

464 CHAPTER 18 Using IronRuby from C#/VB.NET

Search Paths
When IronRuby code loads, it might require different files or libraries. In such case,
IronRuby goes to the engine search paths and looks for the file there.

The ScriptEngine class provides two methods to access and alter the search paths:
GetSearchPaths and SetSearchPaths. These methods return or set a collection of strings
that represent the paths to look in.

The next sample adds ”C:\libs” to the search paths of the engine:

ICollection<string> paths = engine.GetSearchPaths() ?? new List<string>();

paths.Add(\libs”);

engine.SetSearchPaths(paths);

Executing Code
Script engine can also execute IronRuby code. It provides four methods for doing so, and
each method can help you in a different situation.

Execute receives a string that represents the code to execute, runs it, and returns the result
as an object. It can also run the code in a specific scope (as well as the other methods we
will see), as discussed in the “ScriptScope” section, later in this chapter.

The next sample executes 1+1 with IronRuby, gets the result, and uses it:

object result = engine.Execute(“1+1”)

int num = Convert.ToInt32(result) + 8

‘ Prints 10 on the screen

Console.WriteLine(num)

Execute<> is identical to Execute, with a single difference: The return value will be
converted to the type passed as the generics parameter. For example, the following code is
doing exactly what the previous one did, just without saving the result as an Object and
converting it to Int32:

int num = engine.Execute<Int32>(“1+1”);

num = num + 8;

Console.WriteLine(num);

ExecuteFile executes a file and returns a ScriptScope object representing the scope it was
executed in. Just like the regular IronRuby interpreter, if you don’t have code to run (for
example, everything is inside modules, classes, and methods), nothing will be actually
executed at this stage. You must have code in the global context to do that.

For example, the following IronRuby code exists within a file named test.rb, which is
located under C:\Libs:

def add(a, b)

a+ b

end

465The Classes of the Process

puts add(1,2)

puts add(12.5, 25.3)

puts add(“Iron”,”Ruby”)

To run it, we can take advantage of ExecuteFile:

engine.ExecuteFile(\Libs\test.rb”)

This prints the following output onscreen:

3

37.8

IronRuby

ExecuteAndWrap is similar to Execute, only it returns a
System.Runtime.Remoting.ObjectHandle object. This object can be passed between app
domains, and it is recommended to use this method only for such cases.

ScriptScope

The ScriptScope object represents a context. It doesn’t have a lot of methods, and the
ones that it does have are all variable related. You can set, get, and remove variables from
the scope with a very easy API. These variables are then available to the code that runs
with this scope.

Creating a ScriptScope
You can create a ScriptScope either from the script runtime or from script engine instances.

Via the ScriptRuntime instance, you can use the CreateScope method. Here you can also
pass a language name that defines the dynamic language this scope is related to:

// General scope, not language specific

runtime.CreateScope();

// IronRuby scope

runtime.CreateScope(“IronRuby”);

Through the ScriptEngine instance, there are two ways of creating a scope:

// Create a scope from the file content

engine.ExecuteFile(\libs\test.rb”)

// Create an empty scope

engine.CreateScope()

Working with Variables
When you have a scope, you can access and modify its variables.

466 CHAPTER 18 Using IronRuby from C#/VB.NET

The following code demonstrates the different methods in the ScriptScope class:

ScriptScope scope = engine.CreateScope();

// Setting a variable

scope.SetVariable(“str”, “IronRuby Rocks!”);

// Check existence

bool b = scope.ContainsVariable(“str”);

// Get variable - throws an exception if variable doesn’t exist

object o = scope.GetVariable(“str”); // returns Object

string s = scope.GetVariable<string>(“str”); // returns generic type

ObjectHandle h = scope.GetVariableHandle(“str”); // returns Remoting’s ObjectHandle

// Try to get variable - returns true on successful retrieval

object o1;

bool success = scope.TryGetVariable(“str”, out o);

string s1;

success = scope.TryGetVariable<string>(“str”, out s1);

ObjectHandle h1;

success = scope.TryGetVariableHandle(“str”, out h1);

// Get all variables

IEnumerable<KeyValuePair<string, object>> vars = scope.GetItems();

IEnumerable<string> varNames = scope.GetVariableNames();

// Remove variable

scope.RemoveVariable(“str”);

Running with Code
As mentioned previously, all code execution methods have an optional scope parameter.
This means that you can prepare a scope with parameters and pass it to the code, and the
variables will be available for use.

For example, in the following code sample, I set the str variable on the scope and then
print it from the IronRuby code:

scope.SetVariable(“str”, “IronRuby Rocks!”);

engine.Execute(“puts str”, scope);

ScriptSource

The ScriptSource class represents a source code. The class features, as a result, source
code-related methods such as compiling, executing, or reading source code.

Creating a ScriptSource
A ScriptScope can be generated via factory methods on the ScriptEngine instance.

CreateScriptSourceFromFile creates a ScriptSource from a code file:

ScriptScope scope = engine.CreateScriptSourceFromFile(\libs\test.rb”);

467The Classes of the Process

CreateScriptSourceFromString creates a ScriptSource out of a string:

ScriptScope scope = engine.CreateScriptSourceFromString(

“puts ‘Hello from IronRuby’”);

Reading the Code
One of the special capabilities the ScriptSource class has is the power to read source code
files (as a whole, in batches, or line by line).

For example, remember the c:\libs\test.rb file we created earlier? Let’s read it using the
ScriptSource class:

ScriptSource source = engine.CreateScriptSourceFromFile(\libs\test.rb”);

// Get all code

source.GetCode();

// Get only line two of the code = “a + b”

source.GetCodeLine(2);

// Get lines 1-3 = add method definition

source.GetCodeLines(1, 3);

Compiling the Code
If you have a piece of code that you use multiple times, it is a good idea to compile it
once and then execute the compiled code every time. This might become a performance
lifesaver when you have numerous calls to a single source code.

The CompileCode method compiles the code and returns a CompiledCode object that can
be executed via its Execute method (even with a different scope every time):

ScriptSource source = engine.CreateScriptSourceFromFile(\libs\test.rb”);

CompiledCode compiled = source.CompileCode();

compiled.Execute();

Executing Code
The ScriptSource class allows an interesting way of executing code. Unlike the previous
ways of doing so, the ExecuteProgram method of the ScriptSource class executes the code
as if it were executed from the OS command shell. It then returns the exit code represent-
ing a success or a failure:

ScriptSource source = engine.CreateScriptSourceFromFile(\libs\test.rb”);

int exitCode = source.ExecuteProgram();

Console.WriteLine(“Script exited with code {0}”, exitCode);

468 CHAPTER 18 Using IronRuby from C#/VB.NET

Executing IronRuby from C#/VB.NET
The code components in the preceding section are good to know, and their capabilities
might prove helpful in some advanced scenarios. However, everyday tasks are more
straightforward.

In this section, I guide you through the common use cases of embedding IronRuby in a
static .NET language.

Executing an IronRuby File

If the IronRuby code is saved in an external file, you must execute it from within your C#
or VB.NET code.

Listing 18.1 contains code in C# that executes the file c:\libs\test.rb.

LISTING 18.1 Executing an IronRuby File from C#

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

engine.ExecuteFile(\libs\test.rb”);

Listing 18.2 contains code in VB.NET that executes the file c:\libs\test.rb.

LISTING 18.2 Executing an IronRuby File from VB.NET

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

engine.ExecuteFile(“C:\libs\test.rb”)

Executing IronRuby Code from a String

Executing IronRuby code from a string can be extremely helpful. The most obvious
example is adding REPL (read-evaluate-print loop) capabilities to the application. All you
need to do is to make it possible for the user to input IronRuby code to your application.
Then all that’s left for you is to execute it using the code in Listing 18.3 or Listing 18.4.

Listing 18.3 contains C# code that executes two types of IronRuby expressions, one that
does not return a value and one that does.

LISTING 18.3 Executing IronRuby Code from C#

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

engine.Execute(“puts ‘Hello’”); // Prints “Hello”

int result = engine.Execute<int>(@”def add(a, b)

a+b

end

add(12, 18)”);

Console.WriteLine(result); // Prints 30

469Executing IronRuby from C#/VB.NET

Listing 18.4 is equivalent to Listing 18.3, but this time it is written in VB.NET.

LISTING 18.4 Executing IronRuby Code from VB.NET

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

engine.Execute(“puts ‘Hello’”) ‘ Prints “Hello”

Dim result As Integer = engine.Execute(Of Integer)(“def add(a, b)” & vbCrLf & _

“ a+b “ & vbCrLf & _

“end “ & vbCrLf & _

“add(12, 18) “)

Console.WriteLine(result) ‘ Prints 30

Pass Variables to and from IronRuby

When you use IronRuby in a different language, it is important to pass data between the
languages. This way you can really interact between the languages and use each language’s
strengths to deal with the data.

The variables are set in a ScriptScope that can be passed to the execution method.

USING SCOPE VARIABLES INSIDE IRONRUBY CODE

Note that inside the script you should access the scope variables with the self key-
word. Otherwise, IronRuby considers your variables as local ones and not scope ones.

In Listing 18.5, I send a string to the script through a scope variable, which in turn alters
it. Then I access it again from the C# code.

LISTING 18.5 Passing Variables Between C# and IronRuby

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

ScriptScope scope = engine.CreateScope();

scope.SetVariable(“str”, “Iron”);

engine.Execute(“self.str = self.str + ‘Ruby’”, scope);

Console.WriteLine(scope.GetVariable(“str”)); // Prints “IronRuby”

470 CHAPTER 18 Using IronRuby from C#/VB.NET

Listing 18.6 contains the equivalent VB.NET code.

LISTING 18.6 Passing Variables Between VB.NET and IronRuby

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

Dim scope As ScriptScope = engine.CreateScope()

scope.SetVariable(“str”, “Iron”)

engine.Execute(“self.str = self.str + ‘Ruby’”, scope)

Console.WriteLine(scope.GetVariable(“str”)) ‘ Prints “IronRuby”

Using IronRuby Objects

Ruby has been around for a long time, and as a result there are code snippets and libraries
for almost everything. Let’s assume that within this load of code files you have found your
one—a great looking, fun, well-documented, and feature-rich Ruby library. You remain
faithful to it, and it does everything you want. But then reality strikes; you realize that
you need to use it from your static language code.

The DLR, as always, saves the day and makes it possible to use IronRuby objects from C#
and VB.NET. The “secret” is in the ScriptRuntime.Globals collection. This collection
represents the global context. It is actually a ScriptScope instance that contains variables
from the global scope. Nevertheless, the variables are not the plain old variables that
you’re used to; they are the objects that exist in the global scope (like modules and classes
without modules).

Obtaining the module or class from the Globals collection is step one. The next step is to
actually use it and execute methods from within it. For that, the
ScriptEngine.Operations class comes to our aid. This class contains several different
methods that run operations in the way the dynamic language does. Thus, we can create
an instance of the module or class we have from the Globals collection.

Listing 18.7 contains an IronRuby code file with a class that we use later from .NET static
languages. The file is located at C:\libs\my_math.rb.

LISTING 18.7 IronRuby Class for Static Language Use (my_math.rb)

class MyMathOps

def add(a, b)

a + b

end

def multiply(a, b)

a * b

end

end

471Executing IronRuby from C#/VB.NET

Listing 18.8 contains the C# code that initializes the MyMath::Ops class and executes its
add and multiply methods.

LISTING 18.8 Using IronRuby Objects from C#

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

ScriptScope scope = engine.ExecuteFile(\libs\my_math.rb”);

// Get the class type

object myMathOpsType = engine.Runtime.Globals.GetVariable(“MyMathOps”);

// Create a class instance

object myMathOps = engine.Operations.CreateInstance(myMathOpsType);

// Execute the add method

object result = engine.Operations.InvokeMember(myMathOps, “add”, 1, 2);

// result = 3

// Execute the multiply method

object result2 = engine.Operations.InvokeMember(myMathOps, “multiply”, “Shay”, 2);

// result2 = “ShayShay”

Notice that I passed a string and a number to the multiply method. This is possible
because of Ruby duck typing capabilities. (”Shay” * 2 is a valid statement in Ruby.)

Listing 18.9 contains the same code in VB.NET.

LISTING 18.9 Using IronRuby Objects from VB.NET

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

Dim scope As ScriptScope = engine.ExecuteFile(“C:\libs\my_math.rb”)

‘ Get the class type

Dim myMathOpsType As Object = engine.Runtime.Globals.GetVariable(“MyMathOps”)

‘ Create a class instance

Dim myMathOps As Object = engine.Operations.CreateInstance(myMathOpsType)

‘ Execute the add method

Dim result As Object = engine.Operations.InvokeMember(myMathOps, “add”, 1, 2)

‘ result = 3

‘ Execute the multiply method

Dim result2 As Object = engine.Operations.InvokeMember(myMathOps, “multiply”,

➥“Shay”, 2)

‘ result2 = “ShayShay”

472 CHAPTER 18 Using IronRuby from C#/VB.NET

Using External Libraries

When you start to work more intensively with IronRuby, you will find yourself using more
and more external libraries, like the standard library or Ruby Gems.

Listing 18.10 contains an IronRuby file, which is located at c:\libs\base64play.rb and takes
advantage of the Base64 standard library.

LISTING 18.10 IronRuby Code That Uses the Base64 Library (base64play.rb)

require “base64”

encoded_string = Base64.encode64(“hello”)

str = Base64.decode64(encoded_string)

puts str

If we were to execute this file as we did in the “Executing an IronRuby File” section,
earlier in this chapter, we would receive a “No Such File to Load — Base64” exception.
This exception would occur because when you execute IronRuby code using DLR compo-
nents, IronRuby doesn’t know where to look for the libraries.

All we have to do to fix that is tell the DLR where to search for libraries.

Listing 18.11 adds the IronRuby Libs folder to the runtime search paths collection and
then executes the file.

LISTING 18.11 Adding Search Paths for Using External IronRuby Libraries in C#

ScriptEngine engine = IronRuby.Ruby.CreateEngine();

// Create a new collection based on the current search path collection

ICollection<string> paths = new List<string>(engine.GetSearchPaths());

// Add Ruby libraries folder

paths.Add(\IronRuby\lib\ruby\1.8”);

// Add IronRuby libraries folder

paths.Add(\IronRuby\lib\IronRuby”);

// Set the new search paths to the engine

engine.SetSearchPaths(paths);

// Execute the file

engine.ExecuteFile(\libs\base64play.rb”);

Listing 18.12 contains the equivalent code in VB.NET

473Summary

LISTING 18.12 Adding Search Paths for Using External IronRuby Libraries in VB.NET

Dim engine As ScriptEngine = IronRuby.Ruby.CreateEngine()

‘ Create a new collection based on the current search path collection

Dim paths As ICollection(Of String) = New List(Of String)(engine.GetSearchPaths())

‘ Add Ruby libraries folder

paths.Add(“d:\IronRuby\lib\ruby\1.8”)

‘ Add IronRuby libraries folder

paths.Add(“d:\IronRuby\lib\IronRuby”)

‘ Set the new search paths to the engine

engine.SetSearchPaths(paths)

‘ Execute the file

engine.ExecuteFile(“C:\libs\base64play.rb”)

Summary
In this chapter, you learned how to run IronRuby code from C# and VB.NET. You learned
about the main classes that take part in the process and read about different C#/VB.NET
and IronRuby real-world scenarios.

By using IronRuby, you can, with minimal effort, extend your application. It also opens
up a whole new world for CLR static languages; all Ruby libraries are now available to
them (and there are many of them).

Stay tuned, this capability might become one of the killer features of the DLR in the very
near future.

This page intentionally left blank

PART V

Advanced IronRuby

IN THIS PART

CHAPTER 19 Extending IronRuby 477

This page intentionally left blank

CHAPTER 19

Extending IronRuby

IN THIS CHAPTER

. Creating an Extension

. Using an Extension

. Building an Extension from
Scratch

Iron Ruby provides amazing interoperability between Ruby
and CLR objects. As a result, you can seamlessly use every
.NET class inside IronRuby code. However, there are times
when you want to write code in a static language that will
act as a native Ruby object from within IronRuby code.

This is not a new idea. Ruby itself provides a way to write
extensions in C: native extensions.

There are several reasons for that. The first reason might be
to handle Win32 API calls. IronRuby can’t call the Win32
API like C# or VB.Net do with DllImport. To solve this
issue, you can either write a regular .NET assembly that
does that and use it from IronRuby or write a .NET exten-
sion and use it in IronRuby as if it were native Ruby code.
This becomes handy when you run into Ruby libraries that
use native C extensions. C extensions are not supported by
IronRuby, so to make these libraries run in IronRuby, you
need to port the C extensions to .NET ones. This way you
don’t need to change the library Ruby code (except one
load_assembly line), and you just replace the extension
(which, from the Ruby code perspective, is the same).

Another possible reason to use .NET extensions is improv-
ing performance. IronRuby extensions use an initializer
model that prevents the need of reflection when loading
.NET assemblies. This way you can improve IronRuby inter-
operability performance and enjoy more control over the
process at the same time.

The last usage reason I’ll mention is the possibility to use
.NET objects with Ruby-like method names. For example,
when using CLR assemblies as is, you never have methods

478 CHAPTER 19 Extending IronRuby

that end with a question mark or exclamation mark (like Ruby has). With a .NET exten-
sion, you can fully control the Ruby interface.

In this chapter, you learn all about IronRuby’s .NET extensions. You also learn how to
create Ruby modules, classes, and methods in C# and VB.Net, and how to use them from
IronRuby.Preparing Your Environment

To develop IronRuby extensions, you need an application to write the C#/VB.Net code in.
It is recommended to use Visual Studio, which is the best IDE for the job.

For that matter, you can use the free edition of Visual Studio 2008, which is called Visual
Studio Express.

To download the C# IDE, visit http://www.microsoft.com/express/vcsharp.

To download the VB.Net IDE, visit http://www.microsoft.com/express/vb.

You also need to have the IronRuby source code and compile it to use a tool that is not
available in the product installation package. To learn how to download and compile the
source of IronRuby, see Chapter 4, “Getting Started with IronRuby.”

Creating an Extension
Creating a .NET extension for IronRuby involves declaring the Ruby programming inter-
face in a class named a library initializer. A library initializer contains several method calls
that define the way a .NET class appears inside IronRuby. Writing the initializer code is
complicated, so the IronRuby team created a tool that creates it for you. All you need is to
write your code and tell the initializer generator how to work by using attributes.

This doesn’t mean, however, that you can take any current .NET code, generate an initial-
izer for it, and make it an IronRuby extension. (It is not that far from that, though.) There
are some rules you need to follow to make it work.

In addition, to write extensions that work the best in IronRuby and can accept Ruby types
seamlessly, you also need to be familiar with IronRuby’s CLR types. For example, IronRuby
doesn’t use the System.String class, but it has a dedicated object named MutableString.

EXTENSIONS IN ANY .NET LANGUAGE

Although this chapter talks about creating IronRuby extensions in C# and VB.Net,
extensions are not limited to these languages only. Any .NET language that can create
objects like we write in this chapter and save them into an assembly is valid for writing
IronRuby extensions.

Main Concepts

The IronRuby extension infrastructure is not very straightforward. You need to be famil-
iar with its concepts and how it works to start developing IronRuby extensions. This
subsection covers the basic principles for creating IronRuby .NET extensions to help you
along the way.

http://www.microsoft.com/express/vcsharp
http://www.microsoft.com/express/vb

479Creating an Extension

The Initializer Model
IronRuby extensions use a special model to avoid reflection operations that take time and
reduce performance. This model is called the initializer model.

The initializer model has a simple concept: The extension Ruby interface is declared via
special model methods. No reflection is needed in this case, and CLR objects that do not
exist within the initializer aren’t processed and aren’t accessible via IronRuby code.

Four principles apply when creating an initializer:

. The name of the initializer class must have the next format, <namespace
name>LibraryInitializer. For example, if your extensions are placed in a name-
space named MyIronRubyExtensions, the library initializer class name will be
MyIronRubyExtensionsLibraryInitializer.

. The class must inherit from IronRuby.Builtins.LibraryInitializer.

. To declare the Ruby programming interface, you need to override the method
LoadModules and write the declarations there.

. Only a single library initializer can appear per namespace. In case you have several
IronRuby extensions within a single namespace, make sure to initialize them all on
this namespace library initializer.

INITIALIZER .NET CODE STRUCTURE

Because inside an initializer you actually declare every IronRuby object (modules,
classes, methods, and constants), there is no restriction to the CLR code to have any
special structure.

Therefore, you can write your extensions’ C#/VB.Net code in multiple classes, files, or
even projects. In the initializer code, you just point IronRuby to the class, method, or
constant and give them their IronRuby name.

Listing 19.1 contains a sample library initializer with no code, only the structure.

LISTING 19.1 The Structure of an IronRuby Extension Library Initializer

namespace IronRubyExtension
{

public class SampleExtensionLibraryInitializer :
IronRuby.Builtins.LibraryInitializer

{
protected override void LoadModules()
{

}
}

}

480 CHAPTER 19 Extending IronRuby

The code inside the library initializer class is complicated and requires you to be familiar
with the internals of the IronRuby code. Therefore, there is a tool in the IronRuby Visual
Studio solution, the class initializer generator, that generates the library code automati-
cally according to the Ruby programming interface attributes that should decorate every
IronRuby extension object.

The Class Initializer Generator Tool
This tool reads the types and attributes in a given assembly and creates the library initial-
izer code accordingly. The tool comes as a part of the IronRuby Visual Studio solution
(Chapter 4 contains information where to obtain the IronRuby sources) and is not
included in the installation package.

After you compile the solution, you can find the tool as ClassInitGenerator.exe in the bin
folder of the build configuration. (For example, if you compile in Debug configuration,
you can find the file under Debug\bin.)

The generator tool is a command-line utility. It receives the assembly path and two
required arguments, as shown in Table 19.1.

The full format of a class initializer call is as follows:

ClassInitGenerator [assembly path] -out:[output file path] -libraries:[namespace

list]

For example, if our IronRuby extension exists within a file named CustomExtension.dll
and the extension is written inside the namespace CustomNamespace, the command to
create the initializer is as follows:

ClassInitGenerator CustomExtension.dll -out:Initializer.Generated.cs

➥-libraries:CustomNamespace

After this command is executed, the library initalizer class is saved to the file
Initializer.Generated.cs.

When the class is ready, include it in your project, rebuilt it, and there you go. You have
an IronRuby .NET extension ready.

TABLE 19.1 ClassInitGenerator Command-Line Arguments

Argument Description

-out:[file path] The output file path.
The output file will be a C# file with the library initalizer code.

-libraries:[semicolon
separated list]

A semicolon-separated list of the namespaces to investigate
and generate initializer to.
The namespaces should exist within the given assembly.

481Creating an Extension

Ruby Programming Interface Attributes
Creating an IronRuby extension also involves a few CLR attributes that instruct the class
initializer generator tool how to write the library initializer. These attributes do not have a
role during runtime, and they are only used when the class initializer generator tool runs.

The attributes decorate .NET objects and provide the Ruby programming interface infor-
mation of them. For example, there are attributes for Ruby modules, classes, methods,
constants, and more.

The next sample code makes it clear that the IronRubySample C# class will be defined in
the initializer and will appear in IronRuby code as Sample class:

[RubyClass(“Sample”)]

public class IronRubySample { }

IronRuby .NET Extension Development Best Practices
When you write IronRuby .NET extensions, you would want to follow some recommenda-
tions. Following these practices can make the development process of IronRuby .NET
extensions more clear, maintainable, and IronRuby friendly.

IronRuby .NET extension development best practices include the following:

. When throwing exceptions, use the IronRuby.Runtime.RubyExceptions helper class
to create Ruby exceptions when possible.

. Use IronRuby CLR types when possible. For example, use MutableString instead of
String.

For more information about parameter types, see the “Methods” section later in
this chapter.

. IronRuby runs on .NET Framework 2.0, .NET Framework 4.0, and Silverlight. Make
sure to test your extension on every IronRuby environment and apply specific
changes or entirely prevent it from running on a certain environment when needed.

. Name the library initializer file Initializer.Generated.cs.

. Do not write IronRuby .NET extensions if you don’t really need to. Instead, you can
rely on IronRuby’s interoperability capabilities and use CLR libraries directly from
IronRuby code.

The Extension Project

An IronRuby extension project is a simple class library. Therefore, to create an extension
project, just create a new class library project in the language of your choice.

Three assemblies, which are located in <IronRuby installation folder>\Bin, must be refer-
enced to the project if you want to use IronRuby classes, types, and attributes.

482 CHAPTER 19 Extending IronRuby

The required assemblies are IronRuby.dll, Microsoft.Scripting.dll, and
Microsoft.Scripting.Core.dll.

Target Environments

When writing an IronRuby .NET extension, keep in mind that IronRuby works in different
environments: .NET 2.0, .NET 4.0, and Silverlight. Make sure that your extension runs in
all different environments, or just prevent it from running in specific environments.

IMPORTANCE OF PREPARING FOR MULTIPLE ENVIRONMENTS

Not preparing for different environments can result in unexpected behavior of the exten-
sion in the untested environments. For example, if your extension uses the file system,
it can fail to run in Silverlight environment.

The best way to do it is to provide different assemblies for different environments, just
like IronRuby does it. You can do so via different build configurations with compilation
symbols. For more about this, see the “Building an IronRuby Extension” section later in
this chapter.

Modules

Modules in Ruby are slightly different from their equivalent in the .NET Framework,
namespaces. CLR namespaces are not really objects and can’t contain methods or vari-
ables; they’re there mainly for adding order to the code. In Ruby, modules act like CLR
namespaces, but they also act as mixins (see Chapter 6, “Ruby’s Code-Containing
Structures,” for more about mixins), which can contains methods, variables, and more. As
a result, IronRuby modules are translated to CLR classes and not to CLR namespaces.

The creation of an IronRuby module in an IronRuby extension consists of two steps: creat-
ing a CLR class and decorating it with IronRuby specific attributes.

The module attribute is RubyModuleAttribute, and by its very basic form, you do not need
to add any arguments to it. This basic form looks as follows in code:

[RubyModule]

public class SampleIronRubyModule { }

ATTRIBUTES ROLE

Just a reminder, attributes do not really have a runtime part in the process of creating
IronRuby extensions. Their only role is to make the code understandable to the class
initializer generator utility.

483Creating an Extension

TABLE 19.2 RubyModuleAttribute Properties

Name Description

Name The name of the module inside IronRuby. Make sure it satisfies Ruby’s rules
(for example, the first letter must be uppercase).
If this argument exists in the module attribute declaration, it must come as
the first argument and cannot be referenced by its name.

BuildConfig Contains the compiler condition for this module. For example, if this module
will not run under Silverlight, it will contain ”!SILVERLIGHT”. If it will not run
on Silverlight or .NET 2.0, the value will be ”!SILVERLIGHT && !CLR2”.
Note that these uppercase variables are compilation symbols that you define,
and they might have different names. For more about creating compilation
symbols, see the “Building an IronRuby Extension” section later in this
chapter.
If this argument is omitted, it means that the module is platform
independent.
For example, the next sample indicates that the module does not work
under Silverlight:
[RubyModule(BuildConfig = “!SILVERLIGHT”)]

class SampleIronRubyModule { }

Compatibility Indicates the Ruby version that this module is compatible with.
The available values are RubyCompatibility.Default,
RubyCompatibility.Ruby18, RubyCompatibility.Ruby19,
RubyCompatibility.Ruby20.
For example, the next sample indicates that the module works only when
IronRuby runs in Ruby 1.9 mode:
[RubyModule(Compatibility = RubyCompatibility.Ruby19)]

class SampleIronRubyModule { }

DefineIn If this module will be defined within another module (in case of a module that
works as a namespace, for example), this attribute will contains the CLR type
of the parent module.
For example, the next sample has one module that is used as a namespace
and another module is a part of it:
[RubyModule]

class MyIronRubyNamespace { }

[RubyModule(DefineIn = typeof(MyIronRubyNamespace))]

class SampleIronRubyModule { }

The RubyModule attribute contains several properties that describe its behavior. Table 19.2
describes these properties.

484 CHAPTER 19 Extending IronRuby

The Basic Module Definition
The very basic module definition of an IronRuby module means that the name of the
module in IronRuby is the same as the CLR class and all the other properties are using
default values.

To achieve that, we decorate our class with the RubyModule attribute. Because this is the
basic definition, there is no need to add any parameters to the attribute:

[RubyModule]

public class SampleIronRubyModule { }

Name
The RubyModuleAttribute allows us to define a special IronRuby name for a module. This
proves handy when you want to give a different name to your CLR object inside IronRuby.

RUBY NAMING CONVENTIONS

Make sure to follow Ruby naming conventions when naming your Ruby modules. Ruby
modules, classes, and constants must start with an uppercase letter, and method
names should start with a lowercase letter.

TABLE 19.2 RubyModuleAttribute Properties

Name Description

Extends If this module does not stand on its own and actually adds functionality to
another module, it is considered a module extender (a bit similar to partial
classes in C#). This attribute will get the type of the CLR class that repre-
sents the module that is extended by the current module class.
For example, the next sample contains one module class and the module
extender class:
[RubyModule]

class MyIronRubyNamespace { }

[RubyModule(Extends = typeof(MyIronRubyNamespace))]

class SampleIronRubyModule { }

HideClrMembers A Boolean value indicating whether the CLR members will be available via
IronRuby.

Restrictions The restrictions the module will have. Can contain any of the
ModuleRestrictions enum values or a combination of them (via the XOR
operator, |.
For example, the next module will prevent its methods from being overridden
and prevent name mangling:
[RubyModule(Restrictions = ModuleRestrictions.NoOverrides |

ModuleRestrictions.NoNameMangling)]

class SampleIronRubyModule { }

485Creating an Extension

We use the first parameter of the attribute to pass the name. The next code sample indi-
cates that SampleIronRubyModule will be accessed as SampleModule via IronRuby code:

[RubyModule(“SampleModule”)]

public class SampleIronRubyModule { }

Build Configuration
The next module attribute parameter is BuildConfig. This one is responsible for indicating
any platform-related restrictions (for example, the restriction that the module cannot be
run under Silverlight).

The attribute contains the compiler condition as the value of BuildConfig. The following
code indicates that the module does not work under Silverlight:

[RubyModule(BuildConfig = “!SILVERLIGHT”)]

class SampleIronRubyModule { }

The SILVERLIGHT compilation symbol is declared in the project build settings. The
process of defining it is described in the “Building an IronRuby Extension” section later
in this chapter.

Compatibility
The Compatibility parameter indicates on which IronRuby version the module can run.
The version you specify indicates the minimal version, and the extension will be consid-
ered suitable to run in higher versions, too. If this parameter is omitted, the extension is
considered to be compatible with all versions.

Table 19.3 describes the available values.

TABLE 19.3 Compatibility Available Values

Value Description

RubyCompatibility.Default The default Ruby version of IronRuby. In IronRuby version 1.0,
the default is Ruby 1.8.

RubyCompatibility.Ruby18 Compatible with Ruby 1.8 and later. Same as not setting the
Compatibility value.

RubyCompatibility.Ruby19 Compatible with Ruby 1.9 and later.

RubyCompatibility.Ruby20 Compatible with Ruby 2.0 and later. This is for future use since
Ruby 2.0 hasn’t been released yet.

You should look at the changes in Ruby behavior between the versions to see whether
your code is compatible with them. You can instruct IronRuby to run in a specific Ruby
version compatibility mode by using the -18, -19, or -20 switches with ir.exe. For more
information about these switches, see Chapter 4.

486 CHAPTER 19 Extending IronRuby

DefineIn
When you want a module to be a part of another module, you need to use the DefineIn
attribute parameter to define the CRL type of the parent module:

[RubyModule]

class MyIronRubyNamespace { }

[RubyModule(DefineIn = typeof(MyIronRubyNamespace))]

class SampleIronRubyModule { }

Extends
The Extends argument is used in two cases. The first is on CLR classes that do not exist as
themselves inside IronRuby, but instead they extend another object or are being used as
the Ruby programming interface of a non-IronRuby class.

The next declaration indicates that MyNetLibOps extends the class MyNetLib:

public class MyNetLib { }

[RubyModule(“MyNetLib”, Extends = typeof(MyNetLib))]

public class MyNetLibOps { }

The second case is when an IronRuby module already exists and your new module only
adds to it. For example, the next declaration indicates that MyNetLibOps extends
IronRuby’s Kernel module:

[RubyModule(Extends = typeof(IronRuby.Builtins.Kernel))]

public class MyNetLibOps { }

This statement generally indicates that the CLR class itself will not have any meaning and
all IronRuby is going to care about is the class internal members that will be added to a
different defined module.

Restrictions
The restrictions are used to apply special behavior to the module members after they are
interpreted by IronRuby. The Restrictions attribute value is a combination of
ModuleRestrictions enum values.

Table 19.4 describes possible restriction values.

The restrictions declaration via the RubyModule attribute is done via the Restrictions
parameter. In the next sample, SampleIronRubyModule is declared with the NoOverrides
and NoNameMangling restrictions:

[RubyModule(Restrictions = ModuleRestrictions.NoOverrides |

ModuleRestrictions.NoNameMangling)]

class SampleIronRubyModule { }

487Creating an Extension

Hide CLR Members
When your CLR IronRuby module contains methods, these methods will be interpreted
when the module is loaded and will become available to the IronRuby code. If the .NET
code you write should not be exposed to IronRuby code (except the parts that are explicitly
decorated with IronRuby attributes), you need to signal IronRuby to hide the CLR members.

To declare this behavior, the RubyModule attribute provides the HideClrMembers Boolean
value:

[RubyModule(HideClrMembers = true)]

class SampleIronRubyModule { }

Mixin Definitions
Your module can include code of other IronRuby types or mix in other modules to add
features to it. For example, by mixing the IronRuby.Builtins.Comparable class, you will
add comparison capabilities between the objects of your module.

This is done using IncludesAttribute. Along with the RubyModuleAttribute definition,
IncludesAttribute adds the definition of the mixin classes. The attribute can be added to
modules and classes.

The attribute receives two parameters: a list of types that represent the types of the mixin
classes and an optional Boolean parameter named Copy that indicates whether the types
should be copied into the class or be used as mixin. The default of Copy is false.

The next code adds the module class SampleIronRubyMixin as a mixin to the
SampleIronRubyModule class:

TABLE 19.4 ModuleRestrictions Enum Values

Value Description

ModuleRestrictions.NotPublished The module will not be published on IronRuby’s global
context.
To access it, you must provide a way manually (like
setting a constant in a class that references the
module).

ModuleRestrictions.NoOverrides Overriding the module methods will not be available.

ModuleRestrictions.NoNameMangling Method names will not be mangled.

ModuleRestrictions.Builtin A combination of all the above. Used for built-in
modules.

ModuleRestrictions.All Same as ModuleRestrictions.Builtin.

ModuleRestrictions.None None of the above; no special restrictions. This is the
default value.

488 CHAPTER 19 Extending IronRuby

[RubyModule]

class SampleIronRubyMixin { }

[RubyModule]

[Includes(typeof(SampleIronRubyMixin), Copy = false)]

class SampleIronRubyModule { }

To include more than one class, just pass the types one after another. The next sample
includes the built-in Comparable and Enumerable mixins in the SampleIronRubyModule class:

[RubyModule]

[Includes(typeof(IronRuby.Builtins.Comparable),

typeof(IronRuby.Builtins.Enumerable))]

class SampleIronRubyModule { }

USING BUILT-IN MIXINS

In certain scenarios, you need to use IronRuby built-in mixin modules like Comparable
or Enumerable.

To do that, you need to find out the type name. To do so, I suggest you to go through
the IronRuby.Builtins namespace. It contains all the built-in types. A quick look
there and you can locate the type you need.

Notice that you have to add a reference to the IronRuby.Libraries.dll assembly to use
the Comparable class and other built-in classes.

Classes

IronRuby classes are similar to .NET classes. They contain methods, constants, and vari-
ables and can even contain modules and classes inside them (although this is uncommon).

Just like IronRuby modules, creating an IronRuby class consists of defining the class and
decorating it with a related attribute.

From Ruby’s perspective, classes inherit from modules. They get all the module character-
istics and add some of their own. This behavior is transferred to IronRuby, too, and as a
result, RubyClass inherits from RubyModule. Therefore, most of the IronRuby class defini-
tion process is identical to the module one.

The attribute that should decorate .NET classes that are intended to be IronRuby classes is
RubyClassAttribute. This attribute contains the same parameters as
RubyModuleAttribute, with an extra one. Read the previous section to learn about all the
RubyModuleAttribute parameters, which can also be used with RubyClassAttribute.

Table 19.5 describes the RubyClassAttribute unique properties.

489Creating an Extension

The Basics
The basic definition of a class is done by using the RubyClassAttribute without any
parameters:

[RubyClass]

public class MyIronRubyClass { }

By doing so, you define a class that will be called by its CLR name from within IronRuby
code, and all other properties use their default values (or no value at all).

Note that when your IronRuby class exists within another class, which is an IronRuby
class or module, too, the name of your class will be <parent class name>::<class name>.
For example, the next code generates an IronRuby module and a class:

[RubyModule(“SampleModule”)]

public class SampleIronRubyModule

{

[RubyClass(“SampleClass”)]

public class SampleIronRubyClass { }

}

Inside IronRuby code, to access SampleClass you need to refer it as
SampleModule::SampleClass.

Inherits
In case the IronRuby class you’re writing should inherit from another IronRuby class (built
in or custom), you should indicate its type on the Inherits parameter. If your CLR class
really inherits from the parent CLR class, you can omit this parameter, and the initializer
generator will make the connection automatically.

The next code sample makes SampleIronRubyClass inherit from
SampleIronRubyParentClass:

[RubyClass]

public class SampleIronRubyParentClass { }

[RubyClass(Inherits = typeof(SampleIronRubyParentClass))]

public class SampleIronRubyClass { }

TABLE 19.5 RubyClassAttribute Unique Properties (see also Table 19.2)

Property Description

Inherits If this class inherits from another IronRuby class, this property contains the .NET
type of the IronRuby superclass.

490 CHAPTER 19 Extending IronRuby

This preceding code sample is equivalent to the following:

[RubyClass]

public class SampleIronRubyParentClass { }

[RubyClass]

public class SampleIronRubyClass : SampleIronRubyParentClass { }

For a description of all other properties of RubyClassAttribute, look at the properties of
its parent class, RubyModuleAttribute, previously in this chapter.

Singleton Classes
Ruby supports defining singleton classes. You can achieve the same behavior by attributes
when you build your own IronRuby .NET class.

To do so, instead of using RubyClassAttribute, use RubySingletonAttribute. This
attribute inherits from RubyModuleAttribute and therefore does not contain the Inherits
parameter of the RubyClass attribute.

However, this is not enough. As a result of the class being singleton, you must define
where the singleton instance is stored. You do so inside an IronRuby constant, and the
way to define it is to use RubyConstantAttribute on the class, as well.

The next code sample declares SampleIronRubyClass as a singleton class:

[RubyConstant]

[RubySingleton]

public class SampleIronRubyClass { }

RubySingletonAttribute receives the same parameters as RubyModuleAttribute. (You can
review the RubyModuleAttribute parameters by looking back over what we’ve already
covered in this chapter.)

Exception Classes
IronRuby provides several exception classes. All of them exist within the
IronRuby.Builtins namespace, and you will spot them by the “Error” suffix (like
NoMemoryError or EOFError). The RubyExceptions helper class also makes creating
IronRuby exceptions easier.

However, sometimes the available classes aren’t answering your needs, and you want to
define a new IronRuby exception class.

IronRuby exception classes should follow these rules:

. The class should inherit from the Exception class or one of its derived classes.

. The class should be serializable. This can be achieved by using
SerializableAttribute and making sure all public members of the class are also
serializable.

. The name of the class should end with “Error” to meet Ruby’s conventions.

491Creating an Extension

. The class must have a constructor that receives a message and an inner exception
objects.

. The exception class should be decorated using RubyExceptionAttribute.

RubyExceptionAttribute receives the same parameters as RubyClassAttribute. There is
one difference, though: You must specify its IronRuby name.

The next code sample defines a custom IronRuby exception class named
CustomIronRubyError:

[RubyException(“CustomIronRubyError”)]

[Serializable]

public class CustomIronRubyError : Exception

{

public CustomIronRubyError(string message, Exception inner) : base(message, inner)

{ }

}

Undefining Class Methods
IronRuby attributes allow you to undefine methods that are defined within the class. This
technique is used primary to prevent classes from being created via the new method. You
can then supply a different method to do that or prevent creating class instances from
IronRuby at all (and leave it possible only to the .NET extension code).

This is done via UndefineMethodAttribute, which receives two parameters. The first is the
name of the method. The second one is an optional Boolean parameter named IsStatic,
which indicates whether the method is an instance or a class method.

For example, the next code sample prevents IronRuby code from creating instances of the
SampleIronRubyClass class by undefining the new method (which is a class method):

[RubyClass]

[UndefineMethod(“new”, IsStatic = true)]

public class SampleIronRubyClass { }

Methods

Every class or module in Ruby can contain methods. Methods are actually the place where
the logics of the application can be written.

Methods that are supposed to be used as IronRuby methods must be declared as static
and should also be decorated with RubyMethodAttribute. Table 19.6 describes the proper-
ties of RubyMethodAttribute.

492 CHAPTER 19 Extending IronRuby

Special Parameters
Every IronRuby method receives a few parameters besides the real method parameters.
These parameters are sent to the method automatically and are not available in
IronRuby code.

Table 19.7 contains the parameters in the order of their definition and further details about
each of them. Note that the order of the parameters is essential and may not be changed.

TABLE 19.6 RubyMethodAttribute Properties

Property Description

Name The name of the method inside IronRuby code.
Required. Must be passed as the first parameter.

methodAttributes The method characteristics, such as its visibility (private, protected, public)
or its context (instance method or class method).
Optional. If declared, must be passed as the second parameter.

BuildConfig Contains the compiler condition for this method. See Table 19.2 for more
information about this property.

Compatibility Indicates the Ruby version that this method is compatible with.
See Table 19.2 for more information about this property.

TABLE 19.7 IronRuby Method Special Parameters (in order)

Type Possible
Appearances

Description

CallSiteStorage 0 or more If the library needs to call back into Ruby code, the needed
call site storages can be passed here.
For call site storage types, look in the IronRuby code at
Ruby\Runtime\CallSiteStorages.cs

RubyContext or
RubyClass

0 or 1 A RubyContext object will be available for class methods
and will provide a way to access information about the
context (for example, global variables or several environ-
ment options).
A RubyClass object will be available for instance methods
and will provide a way to access the class (getting all its
mixins, adding methods, and more).

BlockParam 0 or 1 If the method receives a Ruby block, this parameter will
contain it and enable to get information about it and
invoke it.

493Creating an Extension

For example, the next sample is an IronRuby class method that from IronRuby code
doesn’t require any parameters except from a block. However, it does receive several ones
that are filled automatically by the IronRuby interpreter:

[RubyMethod(“sample”, RubyMethodAttributes.PublicSingleton)]

public static void Sample(RubyContext context, BlockParam block, RubyClass self)

{

}

The Basics
The basic definition for IronRuby methods includes their IronRuby name. The name,
unlike for IronRuby classes and modules, is required because of the difference in naming
conventions between Ruby methods and CLR methods. The naming convention for Ruby
methods is all lowercase, with underscore as a word delimiter.

The next code sample contains a definition of an IronRuby extension class with a single
method that does not receive parameters in IronRuby and prints a “Hello World!” message:

[RubyClass]

public class SampleIronRubyClass

{

[RubyMethod(“say_hello”)]

public static void SayHello(SampleIronRubyClass self)

{

Console.WriteLine(“Hello World!”);

}

}

TABLE 19.7 IronRuby Method Special Parameters (in order)

Type Possible
Appearances

Description

Object or
RubyClass

1 Required and must be named self.
For instance methods, the type of this parameter will be the
class itself, providing a way to access the class instance
members.
For class methods, the type of this parameter will be
RubyClass, providing a way to access the class object and
the class members.

Others 0 or more All other parameters and their types.

494 CHAPTER 19 Extending IronRuby

From IronRuby, after the extension is loaded, the method will be used as follows:

sample = SampleIronRubyClass.new

sample.say_hello # Prints “Hello World!”

Method Attributes
The second parameter of RubyMethodAttribute is the method attributes. This parameter
helps defining the way this method is declared. The value of the parameter is one of the
RubyMethodAttributes enum values or a combination of several values (via the XOR oper-
ator). Table 19.8 describes the available values.

TABLE 19.8 RubyMethodAttributes Values

Value Description

Public The method is a public method.

Protected The method is a protected method.

Private The method is a private method.

DefaultVisibility Same as Public.

Empty Indicates that the method does nothing.

Instance The method is an instance method.

Singleton The method is a class method.

NoEvent Do not trigger method_added metaprogramming method when the
method is defined.

PublicInstance The method is a public instance method.
A combination of Public and Instance values.

PrivateInstance The method is a private instance method.
A combination of Private and Instance values.

ProtectedInstance The method is a protected instance method.
A combination of Protected and Instance values.

PublicSingleton The method is a public class method.
A combination of Public and Singleton values.

PrivateSingleton The method is a private class method.
A combination of Private and Singleton values.

ProtectedSingleton The method is a protected class method.
A combination of Protected and Singleton values.

495Creating an Extension

TABLE 19.8 RubyMethodAttributes Values

Value Description

ModuleFunction The method is a public method declared as an instance and a class
method.
A combination of Public, Instance and Singleton values.

Default Same as PublicInstance.

The next sample defines the SayHello method as a public class method:

[RubyClass]

public class SampleIronRubyClass

{

[RubyMethod(“say_hello”, RubyMethodAttributes.PublicSingleton)]

public static void SayHello(RubyClass self)

{

Console.WriteLine(“Hello World!”);

}

}

From IronRuby code, the method will now be available as a class method:

SampleIronRubyClass.say_hello # Prints “Hello World!”

For more about BuildConfig and Compatibility, see the “Modules” section earlier in
this chapter.

Parameters
Method parameters have a few regulations you should be aware of.

First and foremost, always prefer IronRuby types to CLR ones. This will prevent unneeded
conversions between the types and improve performance. For example, prefer
MutuableString to System.String or RubyArray to System.Array. Take a look at the types
available in the IronRuby.Builtins namespace to discover the available types.

Second, a few attributes can decorate the method parameters and enforce different behav-
iors, as shown in Table 19.9.

TABLE 19.9 Parameter IronRuby Attributes

Attribute Description

DefaultProtocol Enforces the parameter to contain its expected type.
For example, for MutableString parameters, if a System.String is
passed, IronRuby will convert it to MutableString automatically
when DefaultProtocol exists.

496 CHAPTER 19 Extending IronRuby

For example, the next method uses the several different attributes for its parameters:

[RubyMethod(“sample_method”)]

public static void SampleMethod(object self, [DefaultProtocol]MutableString str,

[DefaultProtocol]int num,

[NotNull]MutableString nonNullStr,

[NotNull, NotNullItems]int[] numbers,

[Optional]object param,

[DefaultParameterValue(true)]bool yesOrNo)

{

}

The last detail you need to know about the Ruby method parameters is Ruby’s special
parameters—blocks, procs, lambdas, and array arguments:

. Blocks: When a method needs to receive a block, this is done via the BlockParam
parameter. See the “Special Parameters” section to see where this parameter should
be placed. If your method requires a block, make sure to use the NotNullAttribute
on it.

For example, the next method receives a block and executes it:

[RubyMethod(“sample”, RubyMethodAttributes.PublicSingleton)]

public static void Sample([NotNull]BlockParam block, RubyClass self)

{

// The result variable will contain the return value of the block

object result;

// Execute the block and pass it a “Hello” string

block.Yield(“Hello”, out result);

}

. Procs and lambdas: To get a proc or lambda object as a parameter, use the
IronRuby.Builtins.Proc type for the parameter. Then use the Call method to
execute it. To identify whether the parameter value is a proc or lambda, you can use
the Proc.Kind property.

TABLE 19.9 Parameter IronRuby Attributes

Attribute Description

NotNull Indicates that the parameter is required.

NotNullItems Can decorate array parameters. Indicates that the array items
cannot be null values.

Optional Indicates that the parameter is optional.

DefaultParameterValue Indicates the default parameter value. This means that the
parameter is optional, too as.

497Creating an Extension

The next code sample gets a proc as its parameter and throws an exception if the
value is not a lambda object and not a proc:

[RubyMethod(“sample”)]

public static void Sample(object self, Proc proc)

{

if (proc.Kind == ProcKind.Lambda)

{

RubyExceptions.CreateArgumentError(“Lambdas are forbidden”);

}

proc.Call();

}

. Array argument: Ruby’s array argument means that the method can receive an
unlimited number of parameters. This is done, via Ruby code, with the asterisk (*).
To achieve that in your .NET extension, you need to use the equivalent of the array
argument in your .NET language. In C#, this will be the params keyword. Note that
this argument must be the last one.

For example, the following code sample allows an arbitrary number of arguments to be
passed to the method:

[RubyMethod(“sample”)]

public static void Sample(object self, params object[] args)

{

}

Constructor Methods
When you want to define constructor behavior to your IronRuby class, you need to deco-
rate the constructor method with RubyConstructorAttribute. Because IronRuby CLR
methods must be static methods, the constructor will be a regular IronRuby method that
creates the requested type. In other words, methods decorated with the RubyConstructor
attribute are factory methods.

RubyConstructorAttribute has two optional parameters: BuildConfig and Compatiblity.
For more information about them, see the “Modules” section earlier in this chapter.

The following code sample defines a constructor to the SampleIronRubyClass class, which
initializes the class and returns it:

[RubyClass]

public class SampleIronRubyClass

{

[RubyConstructor]

public static SampleIronRubyClass CreateInstance(RubyClass self)

498 CHAPTER 19 Extending IronRuby

{

return new SampleIronRubyClass();

}

}

THE INITIALIZE METHOD

You can define an initialize method in your code, which is Ruby’s constructor
method. However, this method will not be called automatically, and you will have to call
it from the method you define as a Ruby constructor.

This behavior is the result of the real behavior of the Ruby language: The initialize
method doesn’t really construct an object, it only initializes it.

Ruby Attributes
Many Ruby classes contain attributes, which are similar to CLR properties. However, Ruby
doesn’t really have attributes. The attribute creator methods attr_accessor, attr_reader,
and attr_writer actually create methods that emulate real attributes. For example, if you
declare a reader-writer attribute named full_name, two methods will be created automati-
cally: full_name and full_name=.

If you want to declare attributes in your IronRuby extension, you must define a getter and
a setter method for each attribute. Be aware of the difference between instance attributes
and class attributes.

Instance attribute values can be saved within instance members. Class attribute values, on
the other hand, should be saved in class members.

The following sample defines two attributes; one is an instance attribute, and one is a
class attribute:

[RubyClass]

public class Test

{

// Instance attribute

public MutableString InstanceAttributeValue;

[RubyMethod(“instance_attribute”)]

public static MutableString GetInstanceAttribute(Test self)

{

return self.InstanceAttributeValue;

}

[RubyMethod(“instance_attribute=”)]

public static void SetInstanceAttribute(Test self, [NotNull]MutableString value)

{

self.InstanceAttributeValue = value;

}

499Creating an Extension

// Class attribute

[RubyMethod(“class_attribute”, RubyMethodAttributes.PublicSingleton)]

public static MutableString GetClassAttribute(RubyClass self)

{

object value;

if (self.TryGetClassVariable(“class_attribute_value”, out value))

{

return (MutableString)value;

}

return MutableString.CreateEmpty();

}

[RubyMethod(“class_attribute=”, RubyMethodAttributes.PublicSingleton)]

public static void SetClassAttribute(RubyClass self, [NotNull]MutableString value)

{

self.SetClassVariable(“class_attribute_value”, value);

}

}

Aliasing Methods
In Ruby, you can give methods an alias name. You can also do so in your IronRuby .NET
extension code.

There are two possible ways to do that. The first is to add another RubyMethodAttribute
declaration with the alias name:

[RubyMethod(“sample”)]

[RubyMethod(“another_sample”)]

public void Sample(object self) { }

The second way is to use the AliasMethodAttribute on the class definition. The first argu-
ment of the attribute is the alias name, and the second attribute is the current name:

[RubyClass]

[AliasMethod(“another_sample”, “sample”)]

public class SampleIronRubyClass

{

[RubyMethod(“sample”)]

public void Sample(object self) { }

}

There is no actual difference between these ways. Choosing one over the other consists of
where you want the method alias to be—above the method declaration or above the class
declaration.

500 CHAPTER 19 Extending IronRuby

Hiding Methods
When your IronRuby class copies another IronRuby class or module (by using
IncludesAttribute and Copy = true), there might be some methods that you do not
want to include in your class.

IronRuby attributes provide a solution to this need through HideMethodAttribute. This
attribute decorates the class and has two parameters. The first is required and must appear
as the first argument. It contains the name of the method to hide. The second parameter
is named IsStatic and indicates whether the method to hide is an instance method or a
class method. The default is instance method.

The following code sample hides the method print from the SampleIronRubyClass class:

[RubyModule]

public class SampleIronRubyModule

{

[RubyMethod(“print”)]

public static void Print(object self)

{

Console.WriteLine(“Print”);

}

}

[RubyClass]

[Includes(typeof(SampleIronRubyModule), Copy = true)]

[HideMethod(“print”)]

public class SampleIronRubyClass

{

}

Hiding Methods from Ruby’s Stack Trace
In rare cases, you want your method to not appear in the stack trace. IronRuby has a small
number of methods that use this behavior (for example, method_missing and raise).

RubyStackTraceHiddenAttribute is used to hide methods from the stack trace.

For example, the next method does not appear in Ruby’s stack trace:

[RubyMethod(“sample”)]

[RubyStackTraceHidden]

public void Sample(object self) { }

501Building an IronRuby Extension

Constants

IronRuby extension classes can also contain constants. Defining a constant is done by
decorating a CLR constant with RubyConstantAttribute.

RubyConstantAttribute receives an optional IronRuby name for the constant. If this para-
meter is omitted, the CLR name is used.

The following code defines an IronRuby constant:

[RubyConstant(“MyConstant”)]

public const int MyIronRubyConstant = 1;

Using an Extension in IronRuby
Using an extension inside IronRuby is simple. With all the hard work behind us, all we
have to do is load the CLR assembly and use it as if it were a regular Ruby object.

Loading a .NET extension is done via the load_assembly method. This method,
commonly receiving only a single parameter, needs two parameters to load our extension.

The first one is the assembly name, which can be a partial or a strong name (see Chapter
9, “NET Interoperability Fundamentals”).

The second one is the namespace of our library. IronRuby will then go and look for the
library initializer class according to the namespace name.

For example, our extension assembly is located within the current folder, and its name is
MyIronRubyExtensions.dll. In addition, this assembly has a namespace called
IronRubyExtensions that contains a library initializer. This is the way how we load it:

load_assembly “MyIronRubyExtensions”, “IronRubyExtensions”

After this line, our IronRuby .NET extension is loaded and can be used from IronRuby
code just as if it were written in native Ruby code.

Building an IronRuby Extension
Let’s use everything we’ve learned in this chapter and create our own IronRuby .NET
extension.

The extension we are going to write is simple. It will get a text message and display it in a
couple of ways. Another feature will be to display the message in color.

Even though the extension is simple, it can give basic experience (and a taste for) writing
real IronRuby .NET extensions.

502 CHAPTER 19 Extending IronRuby

Creating the Extension Visual Studio Project

First we need to create a project for the extension. Follow these steps to create and prepare
a project for writing an IronRuby extension:

1. Open Visual Studio and go to File > New > Project.

2. Choose your .NET programming language from the left panel and Class Library
from the right panel, as shown in Figure 19.1. Set the directory and project name
and click OK.

FIGURE 19.1 The New Project window when creating an IronRuby .NET extension project.

3. After the project is created, go to Project > Add Reference.

4. In the Add Reference dialog, display the Browse tab and navigate to <IronRuby
installation folder>\Bin.

5. Select three files (you can do that by holding Ctrl pressed during the selection):
IronRuby.dll, Microsoft.Scripting.dll, and Microsoft.Scripting.Core.dll. Click OK to
apply.

You’re now ready to start developing the IronRuby .NET extension.

Adding Build Configurations

As previously mentioned in this chapter, IronRuby runs in different environments, and
you need to make sure that your extension is compatible in all of them. It is okay to not
support an environment, but make sure to let the user know about it right away to keep
the unexpected behavior to a minimum.

503Building an IronRuby Extension

You can use Visual Studio features to create different versions of your extension, one for
every environment. This is controlled, inside Visual Studio, by the Configuration Manager,
where you can add build configurations. Every project can be assigned compilation
symbols for each build configuration. With this compilation symbol, you can make a
block of code to compile or not to compile when a specific build configuration is selected.

The IronRuby team has six build configurations in the IronRuby project, which are good
to incorporate to your .NET extension project, too: .NET Framework 2.0 Debug and
Release, .NET Framework 4.0 Debug and Release, and Silverlight Debug and Release.

The following steps take you through the process of adding a build configuration for
Silverlight and a matching compilation symbol named SILVERLIGHT:

1. When the IronRuby .NET extension solution is opened in Visual Studio, go to the
Build > Configuration Manager.

2. The Configuration Manager dialog will open. Click the upper-left list box and
choose <New...>.

3. In the New Solution Configuration dialog, enter Silverlight in the Name field as
shown in Figure 19.2 and click OK.

4. Click Close to close the Configuration Manager.

5. Click View > Solution Explorer.

6. A panel appears with a tree of all the projects and files in the solution. Click once on
the project name to select it as shown in Figure 19.3.

FIGURE 19.2 Adding a SILVERLIGHT compilation symbol.

FIGURE 19.3 Solution Explorer presenting the extension project file tree.

504 CHAPTER 19 Extending IronRuby

7. In the menu, go to Project > SampleExtension Properties.

8. A view of the project properties will open. On the left navigation panel, click Build.

9. On the right, select Silverlight in the Configuration select box.

10. In the Conditional Compilation Symbols field, enter SILVERLIGHT. This is where
you define the compilation symbols for the specific build. It is a semicolon-separated
list. Figure 19.4 shows how it will look when you finish.

11. Go to File > Save All to save the new build configuration.

With these steps, you can define more build configurations and more compilation symbols.

Note that when you define build configurations, you must compile the solution in each
configuration (and therefore have a different assembly for each configuration).

IronRuby code contains three build configurations that are presented in Table 19.10. You
can use these configurations as a guideline to the required supported environments for
your project.

Creating the Actual Code

Before I start to write the Ruby programming interface, I’d like to write the actual library
code. Because it is not convenient to use static methods only, I recommend that you write
your code as you are used to writing it and then add static methods that provide the Ruby
programming interface. This is exactly how I’m going to build this sample extension.

FIGURE 19.4 The project configuration with a compilation symbol defined.

TABLE 19.10 IronRuby Build Configurations

Compilation Symbol Description

CLR2 Targeted to .NET 2.0

CLR4 Targeted to .NET 4.0

SILVERLIGHT Targeted to Silverlight environment

505Building an IronRuby Extension

Listing 19.2 contains the code of the class without any extension attributes or methods,
just plain C#.

LISTING 19.2 Library Code Without IronRuby Extension Methods

using System;

namespace MyRubyExtension

{

public class TextFormatter

{

public MutableString Text { get; set; }

public bool UseColors { get; set; }

public void Congratulate()

{

ConsoleColor originalColor = Console.ForegroundColor;

if (UseColors)

{

Console.ForegroundColor = ConsoleColor.Green;

}

Console.WriteLine(“Congratulations!”);

Console.WriteLine(Text);

if (UseColors)

{

Console.ForegroundColor = originalColor;

}

}

public void Warn()

{

ConsoleColor originalColor = Console.ForegroundColor;

if (UseColors)

{

Console.ForegroundColor = ConsoleColor.Red;

}

Console.WriteLine(“Beware!”);

Console.WriteLine(Text);

if (UseColors)

{

Console.ForegroundColor = originalColor;

}

}

}

}

506 CHAPTER 19 Extending IronRuby

As you can see in Listing 19.2, the code is quite simple. All it does is set the console colors
if needed and write the given text with a related header.

Creating the Ruby Programming Interface

Now we want to turn our very regular C# class into an IronRuby .NET extension class. I
want to use the class as is, so I just add a part to it that redirects IronRuby requests to the
real CLR instance methods.

The code has three more interesting parts. First, because I use the console, this code does
not work in Silverlight. To cope with that, I add a no-Silverlight condition to the class
BuildConfig condition. This is only for the sample purposes, because in this case, my
IronRuby extension in Silverlight mode will be empty. If your extension doesn’t work in
Silverlight, just let the users know about it before they download it and don’t provide
them an empty assembly.

The second interesting part is the IronRuby constructor. This changes the way the CLR
class works: Instead of using attributes for the Text and UseColors CLR properties, I chose
to send them via the constructor only. This is the kind of freedom you get when develop-
ing IronRuby .NET extensions; you are not tied to the CLR implementation, and you can
provide IronRuby code a more Ruby-esque look and feel.

Third, take a look how I alias the warn method. Although C# doesn’t allow me to use
exclamation mark in method names, Ruby allows that, and with the IronRuby extension
attributes I can give my constrained CLR methods a Ruby name that fits it the most.

Listing 19.3 contains the class with its Ruby programming interface part.

LISTING 19.3 Sample .NET Extension Full Code

using System;

using IronRuby.Builtins;

using IronRuby.Runtime;

using Microsoft.Scripting.Runtime;

using System.Runtime.InteropServices;

namespace MyRubyExtension

{

[RubyClass(BuildConfig = “!SILVERLIGHT”, HideClrMembers = true)]

public class TextFormatter

{

public MutableString Text { get; set; }

public bool UseColors { get; set; }

public void Congratulate()

{

ConsoleColor originalColor = Console.ForegroundColor;

if (UseColors)

507Building an IronRuby Extension

{

Console.ForegroundColor = ConsoleColor.Green;

}

Console.WriteLine(“Congratulations!”);

Console.WriteLine(Text);

if (UseColors)

{

Console.ForegroundColor = originalColor;

}

}

public void Warn()

{

ConsoleColor originalColor = Console.ForegroundColor;

if (UseColors)

{

Console.ForegroundColor = ConsoleColor.Red;

}

Console.WriteLine(“Beware!”);

Console.WriteLine(Text);

if (UseColors)

{

Console.ForegroundColor = originalColor;

}

}

// ---- Ruby Programming Interface ---

[RubyConstructor]

public static TextFormatter CreateTextFormatter(RubyClass self,

[DefaultProtocol, NotNull]MutableString text,

[DefaultParameterValue(true)]bool useColors)

{

TextFormatter instance = new TextFormatter();

return Initialize(instance, text, useColors);

}

[RubyMethod(“initialize”, RubyMethodAttributes.PrivateInstance)]

public static TextFormatter Initialize(TextFormatter self,

[NotNull]MutableString text, bool useColors)

{

self.Text = text;

self.UseColors = useColors;

return self;

}

508 CHAPTER 19 Extending IronRuby

[RubyMethod(“congratulate”, RubyMethodAttributes.PublicInstance)]

public static void IronRubyCongratualate(TextFormatter formatter)

{

formatter.Congratulate();

}

[RubyMethod(“warn”, RubyMethodAttributes.PublicInstance)]

[RubyMethod(“warn!”, RubyMethodAttributes.PublicInstance)]

public static void IronRubyWarn(TextFormatter formatter)

{

formatter.Warn();

}

}

}

Generating the Library Initializer

Now that we have our extension code ready, we need to add the initializer code to it.

First, compile the code. Make sure that Debug is the current selected build configuration.
(Do that from the Configuration Manager window by selecting the active build configura-
tion in the upper-left select box.)

After the project is built, we need to create the initializer code. This is done with the
ClassInitGenerator.exe utility. Navigate to the tool location. Assuming that the built
extension assembly exists in C:\ SampleExtension\SampleExtension\bin\Debug; this is
the command that should be executed:

classinitgenerator “C:\

SampleExtension\SampleExtension\bin\Debug\SampleExtension.dll” -out:” C:\ SampleEx-

tension\SampleExtension\Initializer.Generated.cs” -libraries:MyRubyExtension

The output will be a single line:

Library MyRubyExtension

For more about this tool, see the “The Class Initializer Generator Tool” section earlier in
this chapter.

WHAT TO DO WHEN THE GENERATED INITIALIZER IS EMPTY

When you have multiple IronRuby assemblies on your computer (like the compiled
sources and the official release), you might run into a problem when the generated
initializer file contains no actual code (only the class structure).

509Building an IronRuby Extension

A problem like that can happen when the class initializer generator is built with a differ-
ent IronRuby.dll assembly than the extension project. They both must reference the
same IronRuby.dll assembly because otherwise the initializer generator can’t locate the
custom attributes it’s looking for.

With the file in the project directory, we just need to include it in our project and recom-
pile. Follow the next steps to do that:

1. Go to View > Solution Explorer.

2. In the Solution Explorer panel, click the project node of the tree to select it, and
then click the Show All Files icon.

3. A few directories and the initializer files will be added to the tree. Right-click the
Initializer.Generated.cs file and choose Include in Project.

4. Rebuild the solution.

Using the IronRuby .NET Extension in IronRuby

After all the hard work, we can now use our extension in IronRuby. Open the command
prompt and navigate to the directory where our assembly is located (for example,
C:\SampleExtension\SampleExtension\bin\Debug).

FIGURE 19.5 Show All Files icon in Solution Explorer.

FIGURE 19.6 Choosing the initializer file in Solution Explorer.

510 CHAPTER 19 Extending IronRuby

Run ir.exe to start the IronRuby REPL console. The first task now is to load the extension.
This is done with the load_assembly method:

>>> load_assembly “SampleExtension”, “MyRubyExtension”

true

The extension is loaded and we can use it. The next sample is a REPL console session that
uses the IronRuby .NET extension we’ve just created:

>>> t = TextFormatter.new(“IronRuby Extensions Rock!”)

=> MyRubyExtension.TextFormatter

>>> t.congratulate

Congratulations!

IronRuby Extensions Rock!

=> nil

>>> t.warn!

Beware!

IronRuby Extensions Rock!

=> nil

>>> t = TextFormatter.new(“IronRuby Extensions Rock!”, false)

=> MyRubyExtension.TextFormatter

>>> t.congratulate

Congratulations!

IronRuby Extensions Rock!

=> nil

Go ahead and try it out yourself!

Summary
In this chapter, you learned all about IronRuby .NET extensions. You learned about the
process of writing an IronRuby .NET extension (and best practices for doing so), you saw
different attributes of IronRuby extensions like RubyModuleAttribute and
RubyClassAttribute, and you even wrote an entire IronRuby .NET extension (from creat-
ing its Visual Studio project to using it inside IronRuby code).

IronRuby .NET extensions provide developers a great and easy way to customize their
.NET code to fit perfectly with IronRuby. Nonetheless, the decision whether to write an
extension or to rely on IronRuby’s interoperability capabilities should be considered seri-
ously, because writing .NET extensions, even though doing so is not a complicated
process, is much more complicated than just using .NET classes.

Index

SYMBOLS
>, >= (greater than/greater than or equal to)

operator, 65
<, <= (less than/less than or equal to) operator, 65 []

(array access) operator, 112, 114
|| (Boolean OR) operator, 65
== (equality) operator, 112
<=> (general comparison) operator, 65
< <= => > (order comparison) operator, 112
() (parentheses), 45
<< (shift-left) operator, 112
>> (shift-right) operator, 112
-@ (unary minus) operator, 112
+@ (unary plus) operator, 112
| (vertical bars), 96
! (no pattern match) operator, 65
!= (not equal to) operator, 65
$LOAD_PATH variable, 210
&& (Boolean AND) operator, 65
; (semicolon), 44
=== (case equality) operator, 65, 112, 113
== (equal to) operator, 65
@ (at sign), 453
[] = (array access setter) operator, 112, 114

A
abbrev library, 132

references, 135
About Your Application’s Environment link, 337
abstract classes, 123, 242

implementation, 247
abstract methods, 246-247
accept_verbs method, 374
accessing. See also security

arrays, 55-56
CAS, 19

data. See data access
file properties, 173-174
hashes, 58
HTML, Silverlight, 414-415
strings, 53-54
variables from outside, 106-107
XAML elements, 412-414

accessors
classes, 107-109
implementation, 180
properties, overriding, 252

ActionController, 341
ActionExecutingContext object, 388

actions
canceling, 388
controllers, return values, 371
customizing, 395-396
filters, 387-390

ActionView, 341
ActiveRecord model, 340-341
Ada, 1, 5
add_EventName method, 253
adding

build configurations, 502-504
code, Silverlight, 411-415
connection strings to classes, 262
functionality, 353-354
IronRubyMvs Dll files, Visual Studio, 365
layouts, 351-352
log entries, 143
references to assemblies, 367
Refresh button, 360-361
stylesheets, 350-351
video, 418
web pages to Silverlight, 406-408
WinForms

controls, 289-293
functionality, 293-295

add_log method, 456
add_one method, 88
Advanced System Settings, 27
AdventureWorksLT, 260
after_action filter, 389
after method, 443
after_result filter, 391
alias_action method, 375
aliasing

methods, 499
namespaces, 214
syntax, 215

alias keyword, methods, 91-92
and, 30
And directive, 448
AND operator, 65
animation

Silverlight, 417-418
WPF, 324-325

app/controllers folder, 333
App folder, 333
app/helpers folder, 334
Application class, 304
Application.run method, 305
applications

ASP.Net MVC, building, 365-367
code-containing structures, 86
controllers, creating, 375-377
C#/VB.Net, 459-461

data access. See data access
execution code, writing, 300
Hello World!, 48
Java, 35
layouts, applying, 360
models, creating, 368-371
NetBeans, 35-36

reflection. See reflection
RoR, creating, 332-337
Ruby in Steel, 34-35
Silverlight, 402-406, 405
structures, WinForms, 282
threads, 161-169
views, creating, 382-385

applying
built-in mixins, 488
CachedDataAccess class, 278-279
designer, Visual Studio, 295-296
extensions

IronRuby, 501
.NET, 509-510

gems, 183-184
layouts, 360
libraries, MVC, 375
methods as block arguments, 94
mixins, 254-255
objects

IronRuby, 470-471
.NET, 214-231

previous layout lists, 358-360
regular expressions, 61
SqlServerAccessor class, 265
standard libraries, 131
symbols, 58

app/models folder, 334
app/view folder, 334
app/view/layouts folder, 334
architecture

DLR, 20-21, 22-23. See also DLR
.NET Framework, 15-16
REST, 339-340

arithmetic operators, 49, 112
around_action filter, 382
around_result filter, 392
Array class methods, 56-57
arrays

accessing, 55-56
defining, 54-55
ranges, converting, 59
Ruby, 54-57

ASP.Net MVC, 363
applications, building, 365-367
classic ASP.Net, 398
environments, preparing, 363-365
features, 398
filters, 387-396
installing, 364
routes, 385-387
validations, 396-398

assemblies, 18
deleting, 366
GAC, 18
loading, 260, 267
.NET

loading, 207-210
WinForms, 296

references, adding, 367
requirements, Chat class, 282

actions512

running, 16
WinForms, loading, 285

assertions, unit testing, 428-431
associating methods with objects, 94-95
at sign (@), 453
attributes

Window, 309-310
WindowStyle, 310-311

audio, 418
AuthorizationContext object, 392-393
authorization filters, 392-393
automatic log rotation, 144
availability

libraries, 11, 133-135
socket services, 149-152

B
Background directive, Cucumber, 452
Base Class Library. See BCL
base64 library, 132

references, 135
BasicSocket class, 155
BCL (Base Class Library), 19
BDD (behavior-driven development), 435
be_an_instance_of RSpec expression matcher, 440
be_an RSpec expression matcher, 440
be_a RSpec expression matcher, 440
be_close RSpec expression matcher, 440
be_false RSpec expression matcher, 440
before_action filter, 388
before method, 443
before_result filter, 390-391
BEGIN class, 77
begin clause, 88
behavior

RSpec, creating, 438
rules, Cucumber, 443-457

behavior-driven development (BDD), 435
Behavior object, 438
be_instance_of RSpec expression matcher, 440
be_kind_of RSpec expression matcher, 440
benchmark library, 132, 136
be_nil RSpec expression matcher, 440
be_[predicate] RSpec expression matcher, 440
best practices, extension development, 481
be_true RSpec expression matcher, 440
BigDecimal library, 132

references, 136
binary marshaling, 181
binders, 24
binding

data
Silverlight, 419-422
WPF, 325-329

dynamic data, 327-328
private binding mode, 213-214
static data, 325-326

How can we make this index more useful? Email us at indexes@samspublishing.com

Bin folder, 30
bitwise operators, 112
block arguments, applying methods as, 94
BlockParam parameter, 492
blocks, 96-97, 496

flow, 100-101
body parts, web pages, 352
Booleans, 60
break keyword, 74
brushes

Silverlight, 415
WPF, 322-324

BuildConfig property, 483, 485
build configurations, adding, 502-504
builder pattern, 196-199
building

applications, ASP.Net MVC, 365-367
chat, WinForms, 285-299
Chat class, 282-285
ChatForm class, 285-286
class structures, 260, 267
connection strings, 261, 267
extensions, 501-510

built-in mixins, 488
buttons

Environment Variables, 28
Refresh, adding, 360-361

C
CachedDataAccess class, 276-279

applying, 278-279
cached_data_access.rb file, 277-278
caches, 22

GAC, 18
calc_numerological_value.feature, 448
calling

accessors, 108
class methods, 111
methods, 45-46, 94
procs, 97

call sites, 23
CallSiteStorage parameter, 492
canceling actions, 388
canvas, formatting, 320-321
Canvas control, 411
CAS (Code Access Security), 19
case statement, 67-69
catching exceptions within methods, 88
CGI (Common Gateway Interface), 132
change RSpec expression matcher, 440
characters, numeric values of, 51
chat, building WinForms, 285-299
Chat class, 282

building, 282-285
Chatform class, 282, 297-299

building, 285-286

Chatform class 513

chat.rb file, 284-285
ChatRunner class, 282
Chiron, initParams parameter, 407
CIL (Common Intermediate Language), 17-18
Class class methods, 232-233
classes

abstract, 123, 247
accessors, 107-109
Application, 304
Array, methods, 56-57
BasicSocket, 155
BCL, 19
BEGIN, 77
CachedDataAccess, 276-279
Chat, 282-285
ChatForm, 282, 285-286
Chatform, 297-299
ChatRunner, 282
Class, methods, 232-233
CLR, 216, 217

inheritance from, 239-243
opening, 254-256

code standards, 47
connection strings, adding, 262
constants, 105-106
defining, 93
duck typing, 124-126
END, 77
errors, customizing, 85-86
Exception, methods, 78
ExceptionContext, 393-394
exceptions, 490-491
extensions, 488-491
File, 170
Form, initializing, 286
generic, 241-242
Hash, methods, 58-59
helper, 349-350
inheritance, 120-124
instances, creating, 102
IPSocket, 156
IronRuby, 235-236
IronRuby::Clr, 236
methods, 109-111

overriding, 122
undefining, 491

module-contained objects, 126
modules, 126
Mutex, 167-168
MySQLAccessor, 272
Numerology.Calculator, 426
Object

methods, 231-232
opening, 255-256

Recorder, implementation, 38-39
regular, 239-242
Ruby, 101-126
RubyClassAttribute properties, 488-489
RubyMethodAttributes, 492, 494-495
ScriptEngine, 23, 463-465
ScriptRuntime, 23, 462-463

ScriptRuntimeSetup, 462
ScriptScope, 23, 465-466
ScriptSource, 23, 466-467
sealed, 243
singleton, 490
SqlServerAccessor, applying, 265
Stack, 38
static, 243
String, 53, 54, 234-235
structures, building, 260, 267
System.String, 254
System.Windows.Forms.Application, 300
TCPServer, 156
TCPSocket, 156, 283
ToDoListModel, 370
UDPSocket, 156
variables, 102-107, 103
visibility control, 118-120

classic ASP.Net, 398
class keyword, 101
clauses

begin, 88
block, 96
ensure, 82-83
rescue statement, 79

CLI (Common Language Infrastructure), 14-18
ClientSize property, 287
closures, blocks, 97. See also blocks
CLR (Common Language Runtime), 1, 15, 17

classes, 216, 217
inheritance from, 239-243
opening, 254-256

constants, 222
delegates, 217-218
fields, 228
interfaces, 216, 243-244
members, hiding, 487
namespaces, converting, 214
naming conventions, 212-213
objects

applying Recorder class on, 38
reflection, 237

properties, 228-229
Ruby, type differences, 211
structs, inheritance from, 243

clr_constructor method, 232
clr_ctor method, 232
clr_member method, 231
clr_members method, 233
clr_new method, 233
CoC (Convention over Configuration), 340
code

compiling, 467
creating, 504-506
dynamically, executing, 180-181
execution, 300-301, 467
file structure, 46-47
Gherkin, 451
hosts, 26
naming, 212

chat.rb file514

.NET
Framework, 16
mapping, 210-214
standards, 211-213

reading, 467
reflection. See reflection

RSpec, injecting, 442-444
Ruby, 2-5. See also Ruby
ScriptEngine class, executing, 464-465
ScriptRuntime class, executing, 463
Silverlight, adding, 411-415

source. See source code
standards, 47
unit testing, 426-427
XAML, 305-307

Code Access Security (CAS), 19
code-containing structures, Ruby, 86
CodePlex, 22, 26
Collatz conjecture, 77
collisions

inheritance, 124
.NET, mapping code, 210-214

command-line
arguments for file execution mode, 33-34
chr tool, 404-406
databases, creating from, 337
sl tool, 402-403
switches, 31

commands
db:migrate, 345-346
icucumber, 457
patterns, 190-192
scaffold, 344, 345
script/destroy, 345
script/generate, 343-345
script/generate controller, 346
script/server, 342

comma-separated value. See CSV
comments

code standards, 47
syntax, 43-44

Common Gateway Interface. See CGI
Common Intermediate Language. See CIL
Common Language Infrastructure. See CLI
Common Language Runtime. See CLR
Common Type System (CTS), 16
comparison operators, 64-65, 112, 114
Compatibility property, 483, 485
compilers, DLR, 24
compiling

code, 467
JIT, 16

complex library, 132
references, 137

components
RoR, 340-342
runtime, 22, 23-24

conditions, 64-74

How can we make this index more useful? Email us at indexes@samspublishing.com

Config folder, 334
configuration method, 235
configuring

applications, RoR, 332-337
behavior, RSpec, 438
build, adding, 502-504
class instances, 102
controllers, 346-349
databases, RoR, 334-337
extensions, .NET, 478-501
form properties, 287-289
keys for SQL Server connections, 261
PATH Environment Variable, 29
RubyMine, 37
ScriptRuntime class, 462-463
values to variables, 44-45
views, 346-349
visibility control, 118-120
web pages, 346-354

connections
MySQL, opening, 268
SQL Server, opening, 262
strings

adding, 262
building, 261, 267
examples of, 261

connectors, MySQL, 260
consoles, 11

keys, 408
modes, REPL, 31

constants
classes, 105-106
CLR, 222
code standards, 47
extensions, 501
mapping, 222
module-contained objects, 127
Ruby, 63-64

const-missing method, 118
constructors

defining, 102
inheritance, 241
methods, 497

contacting
MySQL, 265-272
SQL Server, 260-265

content, WPF, 315-317
contribution pages, 26
ControlBox property, 287
controllers

ActionController, 341
actions, return values, 371
applications, creating, 375-377
ASP.Net MVC validations, 396-397
creating, 343, 346-349
features, 371-372
filters, 394
MVC, 371-372
views, creating, 378

controllers 515

controls
layouts

Silverlight, 410-411
WPF, 317-321

Silverlight, 411
StackPanel, 317-319
structures, Ruby, 64-77
WinForms, adding, 289-293
WrapPanel, 318-319

Convention over Configuration. See CoC
conventions, naming, 212

Ruby, 484
unit testing, 427-428

converting
namespaces, CLR, 214
ranges to arrays, 59

CRUD (Create Read Update Delete), 259, 341
CSV (comma-separated value), 132

references, 137
CTS (Common Type System), 16
Cucumber, 443-457

Background directive, 452
executing, 457
features, 446-447
hooks, 454-455
installing, 445
multilanguage, 456-457
project structures, 445-446
scenarios, 447-452
tags, 453-454
worlds, 456

culture of assemblies, 18
customizing

error classes, 85-86
filters, 395-396
index pages, 356
installation, 26
routes, 386-387

C#/VB.Net, 458-459
applications, 459-461
external libraries, 472-473
IronRuby, executing from, 468-473
ScriptEngine class, 463-465
ScriptRuntime class, 462-463
ScriptScope class, 465-466
ScriptSource class, 466-467

D
-D, 33
-d, 33
data access, 256

environments, preparing, 260-259
overview, 259
SQL Server, contacting, 260-265

databases. See also MySQL; SQL Server
MySQL, preparing, 266
queries, 263-264, 268
RoR configuration, 334-337
web pages, formatting, 354-361

data binding
Silverlight, 419-422
WPF, 325-329

data templates, Silverlight, 422
dates

and times, Ruby, 62-63
libraries, 132

DayError, 86
Db folder, 334
db:migrate command, 345-346
debug key, 408
Debug library, 132
DebugMode property, 462
declaring

floats, 49
integers, 49
types, 48

default parameter values, 92
DefineIn property, 483, 486
defining

arrays, 54-55
blocks, 96
classes, 93
class methods, 110
constants, 105
constructors, 102
exception types, 139
hashes, 57
Lambdas, 99
methods, 88-89, 95-96
operator behavior, 111
proc objects, 97
regular expressions, 60-61
strings, 50
types, 44

def keyword, 88
Delegate library, 132
delegates, CLR, 217-218
deleting

assemblies, 366
method definitions, 95-96
records, MySQL, 269
resources, 345

delimiters, strings, 50
describe method, 438
design

MySQL, 272-276
patterns, 186-202

builder, 196-199
command, 190-192
iterator, 188-190
observer, 194-196
singleton, 192-194
strategy, 186-188

SQL Server, 272-276
designer, Visual Studio, 295-296
development

environments, 34-37
integrated development environments. See IDEs
dialog boxes

Edit System Variable, 28
New Project, 366

controls516

differences between Lambdas and Procs, 99
digest library, 132

references, 138
directives

And, 448
Background, Cucumber, 452

directories
listing, 174-175
structures, 333-334
templates, sl tool, 403

Distributed Ruby. See Drb
dividing integers, 50
DLR (Dynamic Language Runtime), 1

architecture, 22-23
features, 23-24
overview of, 20-21

Doc folder, 334
documents. See also text

here, 51
words, modifying, 357
XAML, 305-307
XML

generating, 153
reading, 154

domain-specific languages. See DSLs
Don’t Repeat Yourself. See DRY
DoubleAnimation element, 324
double-quoted strings, 44-50
downloading

code, 26
IronRubyMvs Dll files, 364-365
.NET Framework, 26
standard libraries, 159

Drb (Distributed Ruby), 132
DRY (Don’t Repeat Yourself), 340
DSLs (domain-specific languages), 199-202
duck typing, 8-9

classes, 124-126
dynamic data

binding to, 327-328
Silverlight, 420-421

Dynamic Language Runtime. See DLR
dynamic languages, 6-7, 20-21

implementation, 24
dynamic messages, 139

E
each method, 59, 116
-e “command,” 33
Edit System Variable dialog box, 28
Eiffel, 1, 5
elements

DoubleAnimation, 324
MediaElement, 418
Silverlight, retrieving, 412-414
Storyboard, 418

How can we make this index more useful? Email us at indexes@samspublishing.com

TextBlock, 304
WPF, retrieving, 308

else statements, 81-82
e2mmap library, 132, 139
empty namespaces, 214
END class, 77
end keyword, 88
English library, 132

references, 140-141
ensure clause, 82-83
entries, adding log, 143
enumerable objects, 72-73
enums, 221-222
environments

ASP.Net MVC, preparing, 363-365
data access, preparing, 260-259
development, 34-37

integrated development environments. See IDEs
reflection. See reflection

RoR
navigating, 342-346
preparing, 331-332

Silverlight, preparing, 402
target, .NET extensions, 482

Environment Variables button, 28
env.rb file, 446
Eql RSpec expression matcher, 440
Equal RSpec expression matcher, 441
Erb library, 132

references, 141-143
Eregexp library, 132
error.js file, 408
errors

classes, customizing, 85-86
DayError, 86
IOError, 80
StandardError, 85
SyntaxError, 80

events
handling, Silverlight, 414
layout, suppressing, 286
.NET, 218-221
overriding, 253-254
startup, 305
subscribing, 219-220
TextBlock.Loaded, 418
unsubscribing, 220
WPF, handling, 308-309

examples, tables, 451-452
Exception class methods, 78
ExceptionContext class, 393-394
exceptionDetail key, 408
exceptions

catching within methods, 88
classes, 490-491
filters, 393-394
handling, 78-86
raising, 83-85

exceptions 517

threads, 163
types, defining, 139

executables, 30-34
executing

code, 467
dynamically, 180-181
RSpec, 443
ScriptEngine class, 464-465
ScriptRuntime class, 463

Cucumber, 457
IronRuby from C#/VB.Net, 468-473
virtual methods, 246

execution code, writing, 300-301
expectation methods

RSpec, 439-442
expressions

interpolation, 52
matchers, RSpec, 441-442
regular, 60-62
trees, 23, 24

extending IronRuby, 473-478
Extends property, 484, 486
eXtensible Application Markup Language. See XAML
extensions

classes, 488-491
constants, 501
infrastructure, 478-481
IronRuby

applying, 501
building, 501-510

methods, 491-500
.NET

applying, 509-510
creating, 478-501
modules, 482-488

projects, 481
Visual Studio, creating projects, 502

external libraries, C#/VB.Net, 472-473

F
features

ASP.Net MVC, 398
controllers, 371-372
Cucumber, 446-447
DLR, 23-24
installation, 26
.NET Framework, 16-20
Ruby, 6-11
tagging, 453

fields, CLR, 228
File class, 170
filenames, loading .NET assemblies, 208
File.open method, 170
files, 169-175

cached_data_access.rb, 277-278
chat.rb, 284-285
code structure, 46-47
env.rb, 446
error.js, 408

initial project, creating, 333
IronRuby, executing, 468
IronRubyMvs Dll, adding to Visual Studio, 365
mysql.rb, 270-272
operations, 175
properties, accessing, 173-174
reading, 158, 170-172
sql.rb, 264-265
writing, 158, 172-173
ZIP, 27

FileUtils library, 132
references, 143

filters
actions, 387-390
ASP.Net MVC, 387-396
authorization, 392-393
controllers, 394
customizing, 395-396
exceptions, 393-394
results, 390-392

finding
gems, 185
living objects, 176-177
standard libraries, 159

Find library, 133
find_name method, 308
flags, regular expressions, 61
floats, declaring, 49
flow

filters, 387
keywords, 100-101
loops, modifying, 74

folders, 29-30
Lib, 209
RoR, 333-334
structures, sl tool, 403

for loops, 71
formatting

applications
controllers, 375-377
RoR, 332-337
views, 382-385

behavior, RSpec, 438
canvas, 320-321
class instances, 102
code, 504-506
controllers, 346-349
databases, web pages, 354-361
extensions, .NET, 478-501
form properties, 287-289
MVC views, 378-385
views, 346-349
visibility control, 118-120
web pages, 346-354

FormBorderStyle property, 287
Form class, initializing, 286
forms

data, posting, 145
properties, formatting, 287-289
WinForms, 280. See also WinForms

Forwardable library, 133

exceptions518

frameworks
Cucumber, 443-457
.NET

Framework, 20
overview of, 11-13

RoR. See RoR
RSpec, 435-444

WPF. See WPF
full paths, loading .NET assemblies, 208
functionality

adding, 353-354
WinForms, adding, 293-295

G
GAC (Global Assembly Cache), 18
Garbage Collector, 176
gems

applying, 183-184
finding, 185
installing, 183
RoR, installing, 332

generating
ASP.Net MVC initial projects, 365-367
helper classes, 344
resources, web pages, 354-355
XML documents, 153

Generator library, 133
generic classes, 229-231, 241-242
GetOptLong library, 133
get_products method, 276
Gherkin code, 451
GitHub, 26
Given step, 447
Global Assembly Cache. See GAC
global hooks, 454
globals method, 235
graphics

Silverlight, 415-417
WPF, 321-325

Grid control, 410
grids, 319-320
GServer library, 133
guidelines, RoR, 339-311
GUI (graphical user interface) tools, installing, 260

H
-h, 34
Hailstone Sequence, 77
handled property, 309
handling

events
Silverlight, 414
WPF, 308-309

exceptions, 78-86
files, 169-175

How can we make this index more useful? Email us at indexes@samspublishing.com

Hansson, David Heinemeier, 1
Hash class methods, 58-59
hashes, 57-59

accessing, 58
defining, 57

have_at_least RSpec expression matcher, 441
have_at_most RSpec expression matcher, 441
Have RSpec expression matcher, 441
head parts, web pages, 352
Hello World!, 48
helper classes, 349-350

generating, 344
helper methods

HTML, 378-379
views, 380

here documents, 51
HideClrMembers property, 484
hiding

CLR members, 487
methods, 500

highlighting syntax, 35
history

of .NET Framework, 13-14
of Ruby, 5-6

hooks, Cucumber, 454-455
HostArguments property, 462
hosts

code, 26
models, 22, 23

HostType property, 463
HTML (Hypertext Markup Language)

helper methods, 378-379
Silverlight, accessing, 414-415

I
-I “command,” 33
icucumber command, 457
identifiers, tags, 453
IDEs (integrated development environments), 35
if, 65-67
if-else statements, 69
igem.bat, 30
iir.bat, 30
iirb.bat, 30
implementation, 24-25

abstract classes, 247
accessors, 180
dynamic languages, 24
invoking superclass method, 123
Recorder class, 38-39
regular methods, 247-248
Ruby, 6
sealed methods, 250-251
static methods, 248-249
steps, 449-451
threads, 162
virtual methods, 245-246

implementation 519

include method, 215
include RSpec expression matcher, 441
indexer methods, 224-225
index pages, customizing, 356
infrastructure extensions, 478-481
inheritance

classes, 120-124
CLR classes, 239-243
CLR interfaces, 243-244
CLR structs, 243
collisions, 124
constructors, 241
numeric types, 49

Inherits parameter, 489-490
Initialize method, 102, 498-499
initializers, libraries, 508-509
initializing

Form class, 286
ScriptRuntime class, 462-463
visibility, 102

initial project files, creating, 333
initiating Chat class, 282-283
initParams parameter, 407
injecting code, RSpec, 442-444
inserting records, MySQL, 269
installing, 26-30

ASP.Net MVC, 364
Cucumber, 445
features, 26
gems, 183, 332
GUI tools, 260
RSpec, 436
SQL Server, 332

instances
classes, creating, 102
methods, 222
variables, 103-104, 453

integers
declaring, 49
dividing, 50

integrated development environment. See IDEs
integration, 1
intellisense, 35
interfaces

CGI, 132
CLR, 216, 243-244
programming, 506-508

WinForms. See WinForms
interoperability

.NET, 203
interpolation

expressions, 52
interpreters, 31. See also ir.exe

RubyMine, 37
inverted until loops, 71
inverted while loops, 70
investigating objects, 177-178
invoking

methods, 178-180
superclass method implementation, 123

IOError, 80

IPAddr library, 133
IPSocket class, 156
irackup.bat, 30
irails.bat, 30
irake.bat, 30
irake tool, 337
irdoc.bat, 30
ir.exe, 30

command-line arguments for file execution mode,
33-34

ir64.exe, 30
IronRuby, 6. See also Ruby

classes, 235-236
C#/VB.Net, 468-473
extending, 473-478
extensions

applying, 501
building, 501-510

objects, applying, 470-471
IronRuby::Clr class, 236
IronRubyMvs Dll files

adding, 365
downloading, 364-365

iterator pattern, 188-190

J
Java applications, 35
Java Virtual Machine. See JVM
JCode library, 133
JIT (just-in-time) compiling, 16
join method, 162
JRuby, 6
just-in-time. See JIT
JVM (Java Virtual Machine), 14

K
Kconv library, 133
keys, initParams Chiron-related, 408
keywords, flow, 100-101
-K[kcode], 33

L
lambdas, 99-100, 496

flow, 100-101
Language-Integrated Query. See LINQ
languages, 1

context, 24
DSLs, 199-202
dynamic, 6-7, 20-21
object-oriented, 7
programming, 13

Ruby. See Ruby
LanguageSetups property, 463
layout

controls, WPF, 317-321
events, suppressing, 286

include method520

layouts. See also formatting
adding, 351-352
applications, applying, 360
previous layout lists, applying, 358-360
Silverlight, 410-411

Lib folder, 209, 334
libraries

available, 11
BCL, 19
code without IronRuby extension methods, 505
DLR, 22. See also DLR
external, C#/VB.Net, 472-473
initializers, 508-509
MVC, 375
RSpec requirements, 436-437
standard, 130-131. See also standard libraries

Libs folder, 30
licenses, MS-PL, 22
limitations of RubyGems, 185
LINQ (Language-Integrated Query), 279-280
Linux operating system, 14
Lisp, 5
listen method, 283
listing directories, 174-175
lists, applying previous, 358-360
living objects, finding, 176-177
load_assembly method, 209, 501
load_component method, 412
loaded_assemblies method, 235
loaded_scripts method, 236
loading assemblies, 260, 267

.NET, 207-210
WinForms, 285

load method, 210, 236
load_root_visual method, 412
local variables, 105
log entries, adding, 143
Log folder, 334
logger library, 133

references, 143
loops, 70-72

flow, modifying, 74
for, 71
inverted until, 71
inverted while, 70
loop loops, 72
numbers, 73-74
ranges, 74
until, 70
while, 70

M
MacRuby, 6
MailRead library, 133
managing memory, .NET Framework, 19
manual installation, 27. See also installation

How can we make this index more useful? Email us at indexes@samspublishing.com

mapping
constants, 222
namespaces, 256
.NET code, 210-214
objects, 211
ORM, 341

marshaling, 181-182
binary, 181
textual, 182

matchers, expressions, 441-442
Match RSpec expression matcher, 441
MathN library, 133
Matrix library, 133
Matsumoto, Yukihiro, 1
Matz’s Ruby Interpreter. See MRI
MaximizeBox property, 287
media. See also animation; graphics

Silverlight, 417-418
MediaElement element, 418
members, hiding CLR, 487
memory management, .NET Framework, 19
messages

dynamic, 139
receiving, 283
sending, 283

metadata, 16
metaprogramming, 9-10
method_missing method, 38, 117
methods, 222-227

abstract, 246-247
accept_verbs, 374
add_EventName, 253
add_log, 456
add_one, 88
after, 443
alias_action, 375
aliasing, 499
alias keyword, 91-92
Application.run, 305
Array class, 56-57
assert, unit testing, 428-431
before, 443
calling, 45-46
Class class, 232-233
classes, 109-111

overriding, 122
undefining, 491

clr_constructor, 232
clr_ctor, 232
clr_member, 231
clr_members, 233
clr_new, 233
code standards, 47
configuration, 235
const-missing, 118
constructors, 497
defining, 88-89, 95-96
describe, 438

methods 521

each, 59, 116
Exception class, 78
expectation, RSpec, 439-442
extensions, 491-500
File.open, 170
find_name, 308
get_products, 276
globals, 235
Hash class, 58-59
helper. See helper methods
hiding, 500
include, 215
indexers, 224-225
Initialize, 498-499
initialize, 102
instances, 222
invoking, 178-180
IronRuby class, 235-236
join, 162
listen, 283
load, 236
load_assembly, 501
load_component, 412
loaded_assemblies, 235
loaded_scripts, 236
load_root_visual, 412
method-missing, 117
method_missing, 38
Module, 108
module-contained objects, 127
multiple overloads, 249-250
multiply, 254
naming, 90
NavigationWindow, 314-315
new, 161
non_action, 374
Object class, 231-232
objects,associating, 94-95
open, 171
overload, 234
overloaded, 223
overriding, 121-122, 245-251
overview of, 87-88
parameters, 495
parse, 307
-print, 48
printf, 52-53
private, 223

overriding, 122
testing, 428

public, 222
regular, 247-248
remove_EventName, 253
require, 131, 207, 236
run, 169, 300
sealed, 250-251
selectors, 374
setter, 117
setup, unit testing, 432-433
singleton, 96

special, 115-118
special IronRuby, 231-236
special .NET, 225
special parameters, 493
start, 161
static, 223, 248-249
String class, 54, 234-235
String.new, 51
succ, 116
teardown, unit testing, 432-433
the_next_big_thing, 92
to_clr_type, 231
undef, 96
values, returning from, 90-91
virtual, 245-246
visibility control, 118-120

Microsoft Intermediate Language (MSIL). See CIL
Microsoft Public License (MS-PL), 22
Microsoft SQL Server. See SQL Server
MinimizeBox property, 287
mixins

applying, 254-255
built-in, 488
definitions, 487-488
modules, 128-129

models
ActiveRecord, 340-341
ASP.Net MVC validations, 396
creating, 343
hosts, 22, 23
MVC, 368-371

model-view-controller. See MVC
modes

consoles, REPL, 31
private binding, 213-214

modifier statements, 80
modifying

databases, 335
loop flow, 74
print separators, 172
visibility control, 118-120
words, 357

Module method, 108
ModuleRestrictions enum values, 486-487
modules, 126-129

classes, 126
code standards, 47
mixins, 128-129
module-contained objects, 126-127
namespaces, 127-128, 256
.NET extensions, 482-488

monitor library, 133
references, 144

monitors, 168-169
Mono, 17
MRI (Matz’s Ruby Interpreter), 6
MSIL (Microsoft Intermediate Language). See CIL
MS-PL (Microsoft Public License), 22
multilanguage, Cucumber, 456-457
multiline comments, 43

methods522

multiple overloads, methods with, 249-250
multiple-parameter replacement, 89
multiple statements, writing, 44
multiply method, 254
Mutex class, 167-168
Mutex_m library, 133
MVC (model-view-controller), 339, 368-385
ASP.Net MVC. See ASP.Net MVC

controllers, 371-372
models, 368-371
views, 378-385

My Computer, 27
MySQL, 260

connections, opening, 268
connectors, 260
contacting, 265-272
databases, preparing, 266
design, 272-276
records

deleting, 269
inserting, 269

MySQLAccessor class, 272
mysql.rb files, 270-272

N
Name property, 483, 484
namespaces

aliasing, 214
mapping, 256
modules, 127-128
.NET objects, 214-215
opening, 256
XAML, 306

naming
assemblies, 18
code, 212
conventions

Ruby, 484
unit testing, 427-428

methods, 90
navigating environments, RoR, 342-346
NavigationWindow, 314-315
nested test suites, 434
.NET, 1

assemblies
loading, 207-210
WinForms, 296

code
mapping, 210-214
standards, 211-213

events, 218-221
extensions

applying, 509-510
creating, 478-501
modules, 482-488

How can we make this index more useful? Email us at indexes@samspublishing.com

Framework
downloading, 26
features, 16-20
frameworks, 20
history of, 13-14
memory management, 19
overview of, 11-13, 15-16
security, 19
versions, 14

interoperability, 203
objects, applying, 214-231
special methods, 225

NetBeans, 35-36
Net/ftp library, 133
Net/ftptls library, 133
Net/http library, 133

references, 144
Net/imap library, 133
Net/pop library, 133
Net/smtp library, 133
Net/telnet library, 133
Net/telnets library, 133
new method, 161
New Project dialog box, 366
Next Generation Windows Services. See NGWS
next keyword, 75
NGWS (Next Generation Windows Services), 14
non_action method, 374
Notepad++, 37
Novell, 14
numbers

loops, 73-74
Ruby, 48-50

Numerology.Calculator class, 426

O
Object class

methods, 231-232
opening, 255-256

object-oriented languages, 7
Object Rational Mapping. See ORM
objects

ActionExecutingContext, 388
AuthorizationContext, 392-393
Behavior, 438
CLR

applying Recorder class on, 38
reflection, 237

enumerable, 72-73
investigating, 177-178
IronRuby, applying, 470-471
living, finding, 176-177
mapping, 211
methods, associating, 94-95
module-contained, 126-127

objects 523

.NET, applying, 214-231
procs, defining, 97
receiving exception, 79
Ruby, 237

ObjectSpace module, 176
Observer library, 133

references, 145
observer patterns, 194-196
onerror parameter, 407
opening

CLR classes, 254-256
connections

MySQL, 268
SQL Server, 262

namespaces, 256
Object class, 255-256

Open3 library, 134
open method, 171
open source projects, 6
OpenSSL library, 134
open-uri library references, 145
operating systems, 14
operations, files, 175
operators, 16

AND, 65
arithmetic, 49, 112
array access ([]), 112, 114
array access setter ([] =), 112, 114
bitwise, 112
Boolean AND (&&), 65
Boolean OR (||), 65
case equality (===), 65, 112, 113
comparison, 64-65, 112, 114
equality (==), 112
equal to (==), 65
general comparison (<=>), 65
greater than/greater than or equal to (>, >=), 65
less than/less than or equal to (<, <=), 65
no pattern match (!), 65
not equal to (!=), 65
OR, 65
order comparison (< <= => >), 112
overloading, 111-115
pattern match, 65, 112
precedence, 64
shifting, 113
shift-left (<<), 112
shift-right (>>), 112
ternary, 69
unary, 113
unary minus (-@), 112
unary plus (+@), 112

options, installation, 26
Options property, 463
Optparse library, 134
ORM (Object Rational Mapping), 341
OR operator, 65
or property, 287
OStruct library, 134
outline scenarios, 451-452
out parameter, 226

overloading
methods, 223
operators, 111-115

overload method, 234
override keyword, 245
overriding

class methods, 122
events, 253-254
methods, 121-122, 245-251
private methods, 122
properties, 251-253

P
pages. See web pages
panels, websites, 321
parameters

default values, 92
Inherits, 489-490
initParams, 407
load_assembly method, 209
methods, 495
multiple-parameter replacement, 89
onerror, 407
out, 226
params, 227
ref, 226-227
scope, 466
source, 407
special methods, 493
special types, 93-94

params parameter, 227
parentheses (), 45
ParseDate library, 134
parse method, 307
Parse_Tree library, 134
Pascal casing in .NET code, 212
passing

data between windows, 312-314
data in and out of threads, 164
filenames, 208
variables to and from IronRuby, 469-470

pass method, 165
PATH Environment Variable, configuring, 29
PathName library, 134
paths

full, loading .NET assemblies, 208
searching, 464

PATH variable, 332
pattern match operator, 65, 112
patterns, design, 186-202

builder, 196-199
command, 190-192
iterator, 188-190
observer, 194-196
singleton, 192-194
strategy, 186-188

Perl, 1, 5

objects524

ping library, 134
references, 147

positioning
arguments with default values, 92
block arguments, 94

posting form data, 145
PP library, 134
precedence, operators, 64
preparing

environments
ASP.Net MVC, 363-365
for data access, 260-259
RoR, 331-332
Silverlight, 402

MySQL databases, 266
PrettyPrint library, 134
previous layout lists, applying, 358-360
printf method, 52-53
-print method, 48
print method, modifying separators, 172
priority, threads, 164-165
private binding mode, 213-214
PrivateBinding property, 463
private methods, 223

overriding, 122
testing, 428

procs, 97-99, 496
flow, 100-101

-profile, 33
programming

interfaces, Ruby, 506-508
languages, 13. See also languages
metaprogramming, 9-10

programs, Hello World!, 48
progress_proc, 146
project files, creating, 333
projects

extensions, 481
structures, Cucumber, 445-446
Visual Studio, creating extensions, 502

properties
CLR, 228-229
files, accessing, 173-174
forms, formatting, 287-289
NavigationWindow, 314-315
overriding, 251-253
redefining, 252
RubyClassAttribute class, 488-489
RubyMethodAttribute class, 492
RubyModuleAttribute, 483-484
ScriptRuntimeSetup class, 463

proxies, 146
PStore library, 134
Public folder, 334
public/images folder, 334
public/javascripts folder, 334
public key tokens, assemblies, 18
public methods, 222
public/stylesheets folder, 334

How can we make this index more useful? Email us at indexes@samspublishing.com

Q
queries

databases, 263-264, 268
LINQ, 279-280

queues, 168

R
Racc/parser library, 134
RadRails, 37
raise_error RSpec expression matcher, 441
raising exceptions, 83-85
Rake, 184-185
rakefiles, 184-185
ranges

arrays, converting, 59
loops, 74
Ruby, 59-60

rational library, 134
references, 152

Readbytes library, 134
read-evaluate-print loop. See REPL
reading

code, 467
files, 158, 170-172
XML documents, 154

receiving
exception objects, 79
messages, 283

Recorder class, implementation, 38-39
records, MySQL

deleting, 269
inserting, 269

redefining properties, 252
redirect results, 373-374
redo keyword, 75
references

assemblies, adding, 367
standard libraries, 135-158

reflection, 176
CLR objects, 237
living objects, finding, 176-177
methods, invoking, 178-180
objects, investigating, 177-178
variables, configuring dynamically, 178-180

ref parameter, 226-227
Refresh button, adding, 360-361
regular classes, 239-242
regular expressions, 60-62
regular methods, 247-248
remove_EventName method, 253
removing assemblies, 366
replacing

multiple-parameters, 89
Silverlight content, 412

replacing 525

REPL (read-evaluate-print-loop), 10-11
console mode, 31
WPF, 329-330

reportErrors key, 408
Representational State Transfer. See REST
requirements

assemblies, Chat class, 282
libraries, RSpec, 436-437
.NET Framework assemblies, 208

require method, 131, 207, 236
rescue statement, 78-80
ResizeMode values, 311-312
resources

deleting, 345
panels, 321
standard libraries, 159
web pages, generating, 354-355

respond_to RSpec expression matcher, 442
REST (Representational State Transfer), 339-340
Restrictions property, 484, 486
results

filters, 390-392
redirects, 373-374
views, 372-373

retrieving
pages, 144
Silverlight elements, 412-414
WPF elements, 308

retry keyword, 81
return keyword, 90, 99
return values

controller actions, 371
methods, 90-91
threads, 162

Rexml library, 134
references, 153

-r “library,” 33
Root folder, 30
root-visual property, 412
RoR (Ruby on Rails), 330-331

applications, creating, 332-337
components, 340-342
database configuration, 334-337
environments

navigating, 342-346
preparing, 331-332

folders, 333-334
guidelines, 339-311
servers, running, 337
web pages

creating, 346-354
formatting database-driven pages, 354-361

rotating automatic logs, 144
routes

ASP.Net MVC, 385-387
customizing, 386-387
RoR, 341
URLs, 371

RSpec, 435-444
behavior, creating, 438
code, injecting, 442-444

examples, 439
expectation methods, 439-442
expression matchers, 441-442
installing, 436
library requirements, 436-437
running, 437

RSS library, 134
Rubinius, 6
Ruby

accessors, 107-109
arrays, 54-57
blocks, 96-97
classes, 101-126
code, naming, 212
code-containing structures, 86
constants, 63-64
control structures, 64-77
dates and times, 62-63
features, 6-11
Hello World!, 48
history of, 5-6
implementation, 6
Lambdas, 99-100
naming conventions, 484
.NET, loading assemblies, 207-210
numbers, 48-50
objects, 237
overview of, 2-5, 25-26
process, 97-99
programming interfaces, 506-508
ranges, 59-60
regular expressions, 60-62
symbols, 58
syntax, 43-47
text, 50-54
threads, 161-169
type differences, CLR and, 211
variables, 48-64

RubyClassAttribute class properties, 488-489
RubyClass parameter, 492
RubyContext parameter, 492
RubyGems, 183

gems
applying, 183-184
finding, 185
installing, 183

installing, 183
limitations, 185

Ruby in Steel, 34-35
RubyMethodAttribute class properties, 492
RubyMethodAttributes class, 494-495
RubyMine, 36-37
RubyModuleAttribute properties, 483-484
Ruby on Rails. See RoR
Ruby Spec, 6
rules

behavior, Cucumber, 443-457
runtime components, 24

run method, 300
synchronization, 169

REPL (read-evaluate-print-loop)526

running
assemblies, 16
REPL console mode, 31
RSpec tests, 437
servers, RoR, 337
Silverlight applications, 405
tagged features and scenarios, 454
unit testing, 434-435
XAML, 307, 411-412

runtime
components, 22, 23-24

DLR. See DLR
ScriptRuntime class, 462-463

S
Samples folder, 30
satisfy RSpec expression matcher, 442
scaffold command, 344, 345
Scanf library, 134
scenarios

Cucumber, 447-452
hooks, 454-455
outlines, 451-452
tagging, 453

SciTE, 37
scope parameter, 466
script/destroy command, 345
ScriptEngine class, 23

C#/VB.Net, 463-465
Script folder, 334
script/generate command, 343-345
script/generate controller command, 346
ScriptRuntime class, 23

C#/VB.Net, 462-463
ScriptRuntimeSetup class, 462
ScriptScope class, 23

C#/VB.Net, 465-466
script/server command, 342
ScriptSource class, 23
sealed classes, 243
sealed methods, 250-251
searching

gems, 185
living objects, 176-177
paths, 464
standard libraries, 159

security
CAS, 19
.NET Framework, 19

selectors, methods, 374
self keyword, 118
semicolon (;), 44
sending messages, 283
servers, running RoR, 337
services, sockets, 149-152

How can we make this index more useful? Email us at indexes@samspublishing.com

Set library, 134
setter methods, 117
settings. See configuration; formatting
setup method, unit testing, 432-433
shapes, WPF, 322-323
sharing views, 380-382
Shell library, 134
shifting operators, 113
short names, assemblies, 18
Silverlight, 22, 401

animation, 417-418
applications, 402-406
chr tool, 404-406
code, adding, 411-415
controls, 411
data binding, 419-422
dynamic data, 420-421
elements, retrieving, 412-414
environments, preparing, 402
event handling, 414
folders, 30
graphics, 415-417
HTML, accessing, 414-415
layouts, 410-411
sl tool, 402-403
static data, 419-420
templates, 422
web pages, adding, 406-408
XAML, 409

single line comments, 43
single-quoted strings, 51
singleton

classes, 490
library, 154
methods, 96
patterns, 192-194

Size property, 287
sl tool, 402-403
Smalltalk, 1, 5
socket library, 154
sockets, services, 149-152
source code, 29
source parameter, 407
special argument types, 225
special IronRuby methods, 231-236
special methods, 115-118
special .NET methods, 225
special parameters

methods, 493
types, 93-94

sql.rb files, 264-265
SQL Server, 260

connections, opening, 262
data access, contacting, 260-265
design, 272-276
installing, 332

SQL Server 527

SqlServerAccessor class, applying, 265
Stack class, 38
StackPanel control, 317-319, 410
StandardError, 85
standard libraries, 131

applying, 131
available libraries, 132-135
MVC, 375
references, 135-158
searching, 159

standards
code, 47
.NET code, 211-213
REST, 339-340

starting, 24-25
threads, 161

start key, 408
start method, 161
StartPosition property, 288
startup events, 305
statements

case, 67-69
else, 81-82
if-else, 69
modifiers, 80
rescue, 78-80
writing, 44
yield, 76-77

states, threads, 165-167
static classes, 243
static data

binding to, 325-326
Silverlight, 419-420

static methods, 223, 248-249
steps

hooks, 454-455
implementation, 449-451

Storyboard element, 418
strategy pattern, 186-188
String class, 53

methods, 54, 234-235
String.new method, 51
strings

accessing, 53-54
connections

adding, 262
building, 261, 267
examples of, 261

defining, 50
delimiters, 50
double-quoted, 44-50
IronRuby code, executing from, 468-469
single-quoted, 51
time, helper classes, 349

strong names, loading .NET assemblies, 208-209
structs, inheritance from CLR, 243
structures

applications, WinForms, 282
classes, building, 260, 267

code file, 46-47
directories, 333-334
folders, sl tool, 403
projects, Cucumber, 445-446
Ruby

code-containing, 86
control, 64-77

str variable, 466
styles

Silverlight, 419-420
WPF, 326-327

stylesheets, adding, 350-351
subscribing events, 219-220
substrings, 53. See also strings
succ method, 116
suites, test, 433-434
superclass method implementation, invoking, 123
super keyword, 246
suppressing layout events, 286
switches

chr tool command-line, 405
command-line, 31

symbols, Ruby, 58
synchronization, threads, 167-169
syntax

aliasing, 215
comments, 43-44
LINQ, 279-280
Ruby, 43-47
Ruby in Steel, 35

SyntaxError, 80
System.String class, 254
System.Windows.Forms.Application class, 300

T
tables, examples, 451-452
tags

Cucumber, 453-454
scenarios, hooks, 455

target environments, .NET environments, 482
target machines, executing code on, 16
TCPServer class, 156
TCPSocket class, 156, 283
teardown method, unit testing, 432-433
templates

directories, sl tool, 403
IronRubyMvs Dll files, adding, 365
Silverlight, 422
WPF, 328-329

ternary operators, 69
Test folder, 334
testing

Cucumber, 443-457
private methods, 428
RSpec, 435-444

unit testing. See unit testing
Test::Unit, 427-433

SqlServerAccessor class528

text
Ruby, 50-54
words, modifying, 357

TextBlock element, 304
TextBlock.Loaded event, 418
Text property, 288
textual marshaling, 182
the_next_big_thing method, 92
Then step, 448
third-party libraries, MVC, 375

references, 157
threads, 161-169

exceptions within, 163
priority, 164-165
states, 165-167
synchronization, 167-169

throw_symbol RSpec expression matcher, 442
time

Ruby, 62-63
strings, helper classes, 349

Tmp folder, 334
to_clr_type method, 231
ToDoListModel class, 370
tools, 30-34

chr, 404-406
GUI, installing, 260
irake, 337
Rake, 184-185
sl, 402-403

-trace, 33
trees

expressions, 23, 24
inheritance, 49

types, 16
accessors, 107
declaring, 48
defining, 44
differences, CLR and Ruby, 211
exceptions

defining, 139
handling, 80

special argument, 225
special parameter, 93-94

U
UDPSocket class, 156
unary operators, 113
undefining class methods, 491
undef methods, 96
uniform resource locators. See URLs
unit testing, 424-425

assertions, 428-431
code, 426-427
running, 434-435
setup method, 432-433

How can we make this index more useful? Email us at indexes@samspublishing.com

teardown method, 432-433
test suites, 433-434
Test::Unit, 427-433

unless, 67
unsubscribing events, 220
until loops, 70
URLs (uniform resource locators), 371
UTC difference values, modifying, 358-359

V
-v, 33
validations, ASP.Net MVC, 396-398
values

compatibility available, 485
CSV, 132
default parameter, 92
methods, returning from, 90-91
numeric, 48-50
priority threads, 164-165
ResizeMode, 311-312
return, threads, 162
variables, configuring, 44-45

variables
$LOAD_PATH, 210
accessing from outside, 106-107
classes, 103
code standards, 47
configuring dynamically, 178-180
constants, 63. See also constants
inside classes, 102-107
instances, 103-104, 453
local, 105
PATH, 332
Ruby, 48-64
str, 466
to and from IronRuby, passing, 469-470
values, configuring, 44-45

VB.Net. See C#/VB.Net
Vendor folder, 334
versions

assemblies, 18
.NET Framework, 13, 14
Ruby, release dates of, 6

vertical bars (|), 96
VES (Virtual Execution System), 17
video, adding, 418
viewing

data templates, 423
generated index pages, 356-357
windows, 312

views
ActionView, 341
applications, creating, 382-385
ASP.Net MVC validations, 397-398
creating, 346-349

views 529

helper methods, 380
MVC, 339, 378-385
results, 372-373
sharing, 380-382

Virtual Execution System. See VES
virtual methods, 245-246
visibility

control, 118-120
initializing, 102

Visual Studio, 35
designer, applying, 295-296
extensions, creating projects, 502
IronRubyMvs Dll files, adding, 365

W
-w, 33
web pages

creating, 346-354
database-driven pages, formatting, 354-361
resources, generating, 354-355
Silverlight, adding, 406-408
references, 157

websites
panels, 321
standard libraries, 159

When step, 448
while loops, 70
whitespaces, 45
Window attribute, 309-310
windows

content, 315-317
NavigationWindow, 314-315
passing data between, 312-314
viewing, 312
WPF, 309-310

Windows Forms. See WinForms
Windows operating system, 14
Windows Presentation Foundation. See WPF
WindowStyle attribute, 310-311
WinForms, 281

assemblies, loading, 285
chat, building, 285-299
Chat class, building, 282-285
controls, adding, 289-293
execution code, writing, 300-301
functionality, adding, 293-295
overview of, 281-282

-W[level], 33
words, modifying, 357
worlds, Cucumber, 456
WPF (Windows Presentation Foundation), 301

animation, 324-325
brushes, 322-324
content, 315-317
data binding, 325-329
elements, retrieving, 308

events, handling, 308-309
graphics, 321-325
IronRuby fundamentals, 307-309
layout controls, 317-321
overview of, 303-305
REPL, 329-330
shapes, 322-323
styles, 326-327
templates, 328-329
windows, 309-310
XAML, 305-307

WrapPanel control, 318-319
writing

code, 504-506
execution code, 300-301
files, 158, 172-173
Hello World!, 48
statements, 44
tests, 427

X
XAML (eXtensible Application Markup Language),

305-307
animation, 417-418
elements, accessing, 412-414
graphics, 415-417
running, 307, 411-412
Silverlight, 409

-X:ColorfulConsole, 32
-X:CompilationThreshold, 34
-X:ExceptionDetail, 34
XML (eXtensible Markup Language) documents

generating, 153
reading, 154

-X:NoAdaptiveCompilation, 34
-X:PassExceptions, 34
-X:PrivateBinding, 34
XRuby, 6
-X:ShowClrExceptions, 34

Y–Z
YAML library, 135

references, 157
textual marshaling, 182

yield keyword, 94
yield statement, 76-77

ZIP files, 27
Zlib library, 135, 158

views530

	Table of Contents
	Introduction
	Part I: Introduction to IronRuby
	1 Introduction to the Ruby Language
	History of the Ruby Language
	Implementations
	Features

	2 Introduction to the .NET Framework
	History of the .NET Framework
	Overview
	Features

	3 Introduction to the Dynamic Language Runtime
	Overview
	Features

	4 Getting Started with IronRuby
	Overview
	Installing IronRuby
	Executables and Tools
	Development Environments
	The Power of IronRuby

	Part II: The Ruby Language
	5 Ruby Basics
	Basic Syntax
	Hello World
	Variables
	Control Structures
	Exception Handling

	6 Ruby’s Code-Containing Structures
	Methods
	Blocks, Procs, and Lambdas
	Classes
	Modules

	7 The Standard Library
	Using the Libraries
	Libraries Available in IronRuby
	Libraries Reference
	Finding More Libraries

	8 Advanced Ruby
	Threads
	Handling Files
	Reflection
	Marshaling
	RubyGems
	Design Patterns

	Part III: IronRuby Fundamentals
	9 .NET Interoperability Fundamentals
	Bringing .NET into Ruby
	.NET Code Mapping
	Using .NET Objects
	Special IronRuby Methods
	CLR Objects and Ruby’s Reflection
	The Basic Object

	10 Object-Oriented .NET in IronRuby
	Inheriting from CLR Classes
	Inheriting from CLR Structs
	Inheriting from CLR Interfaces
	Overriding Methods
	Overriding Properties
	Overriding Events
	Opening CLR Classes

	Part IV: IronRuby and the .NET World
	11 Data Access
	Hello, Data Access
	Preparing Your Environment
	Contacting a SQL Server
	Contacting a MySQL Server
	Design Considerations
	The CachedDataAccess Class
	A Word About LINQ

	12 Windows Forms
	Introduction
	Building the Chat Class
	Building the Chat Windows Form
	Writing the Execution Code

	13 Windows Presentation Foundation (WPF)
	Hello, WPF
	XAML
	IronRuby and WPF Fundamentals
	Windows
	Layout Controls
	Graphics and Animations
	Data Binding
	REPL

	14 Ruby on Rails
	Preparing Your Environment
	Hello, IronRuby on Rails
	The Basic Concepts
	Main Components
	Know Your Environment
	Creating a Page
	Creating a Database-Driven Page

	15 ASP.NET MVC
	Preparing Your Environment
	Hello, ASP.NET MVC
	MVC
	Routes
	Filters
	Validations
	Classic ASP.NET Features
	A Word About Classic ASP.NET

	16 Silverlight
	Prepare Your Environment
	Hello, Silverlight
	Add Silverlight to a Web Page
	XAML
	Layout
	Controls
	Adding Code
	Graphics
	Media and Animations
	Data Binding

	17 Unit Testing
	The Tested Code
	Test::Unit
	RSpec
	Cucumber

	18 Using IronRuby from C#/VB.NET
	Hello, IronRuby from CLR
	The Classes of the Process
	Executing IronRuby from C#/VB.NET

	Part V: Advanced IronRuby
	19 Extending IronRuby
	Creating an Extension
	Using an Extension in IronRuby
	Building an IronRuby Extension

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y–Z

